Oracle® Database

SecureFiles and Large Objects Developer's
Guide

19¢c
E96333-05
June 2025

ORACLE"

Oracle Database SecureFiles and Large Objects Developer's Guide, 19c
E96333-05

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Authors: Jayashree Sharma , Tanmay Choudhry

Contributing Authors: Tulika Das, Amith Kumar

Contributors: Bharath Aleti, Geeta Arora, Thomas H. Chang, Maria Chien, Subramanyam Chitti, Amit Ganesh, Kevin
Jernigan, Vikram Kapoor, Balaji Krishnan, Jean de Lavarene, Geoff Lee, Scott Lynn, Jack Melnick, Atrayee Mullick, Eric
Paapanen, Ravi Rajamani, Kam Shergill, Ed Shirk, Srinivas Vemuri

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience XXiii
Documentation Accessibility XXiii
Related Documents XXiV
Conventions XXV
Changes in Oracle Database
New Features XXV
Deprecated Features XXV
Desupported Features XXVii
Part | Getting Started
1 Introduction to Large Objects and SecureFiles
1.1 What Are Large Objects? 1-2
1.2 Why Use Large Objects? 1-2
1.2.1 Data Types that Use Large Objects 1-2
1.2.2 LOBs Used for Semistructured Data 1-3
1.2.3 LOBs Used for Unstructured Data 1-3
1.3 Why Not Use LONGs? 1-4
1.4 Different Kinds of LOBs 1-4
1.4.1 Internal LOBs 1-4
1.4.2 External LOBs and the BFILE Data Type 1-5
1.5 LOB Locators 1-6
1.6 Database Semantics for Internal and External LOBs 1-6
1.7 Large Object Data Types 1-7
1.8 About Object Data Types and LOBs 1-7
1.9 Storage and Creation of Other Data Types with LOBs 1-7
1.9.1 VARRAYs Stored as LOBs 1-8
1.10 BasicFiles and SecureFiles LOBs 1-8

ORACLE"

1.11 Database File System (DBFS) 1-8

2 Working with LOBs

2.1 LOB Column States 2-2
2.2 Locking a Row Containing a LOB 2-2
2.3 LOB Open and Close Operations 2-2
2.4 LOB Locator and LOB Value 2-3
2.4.1 Using the Data Interface for LOBs 2-3
2.4.2 Use the LOB Locator to Access and Modify LOB Values 2-3

2.5 LOB Locators and BFILE Locators 2-4
2.5.1 Table for LOB Examples: The PM Schema print_media Table 2-4
2.5.2 LOB Column Initialization 2-5
2.5.2.1 Initializing a Persistent LOB Column 2-5

2.5.2.2 Initializing BFILEsS 2-7

2.6 LOB Access 2-7
2.6.1 Accessing a LOB Using SQL 2-8
2.6.2 Accessing a LOB Using the Data Interface 2-8
2.6.3 Accessing a LOB Using the Locator Interface 2-8

2.7 LOB Rules and Restrictions 2-9
2.7.1 Rules for LOB Columns 2-9
2.7.2 Restrictions for LOB Operations 2-10

3 Using Oracle LOB Storage

3.1 LOB Storage 3-1
3.1.1 BasicFiles LOB Storage 3-2
3.1.2 SecureFiles LOB Storage 3-2

3.1.2.1 About Advanced LOB Compression 3-3
3.1.2.2 About Advanced LOB Deduplication 3-3
3.1.2.3 About SecureFiles Encryption 3-3

3.2 CREATE TABLE with LOB Storage 3-4
3.2.1 CREATE TABLE LOB Storage Parameters 3-8
3.2.2 CREATE TABLE and SecureFiles LOB Features 3-11

3.2.2.1 CREATE TABLE with Advanced LOB Compression 3-12
3.2.2.2 CREATE TABLE with Advanced LOB Deduplication 3-14
3.2.2.3 CREATE TABLE with SecureFiles Encryption 3-15

3.3 ALTER TABLE with LOB Storage 3-17
3.3.1 About ALTER TABLE and LOB Storage 3-17
3.3.2 BNF for the ALTER TABLE Statement 3-18
3.3.3 ALTER TABLE LOB Storage Parameters 3-19
3.3.4 ALTER TABLE SecureFiles LOB Features 3-20

ORACLE

3.3.4.1 ALTER TABLE with Advanced LOB Compression 3-20
3.3.4.2 ALTER TABLE with Advanced LOB Deduplication 3-21
3.3.4.3 ALTER TABLE with SecureFiles Encryption 3-22
3.4 Initialization, Compatibility, and Upgrading 3-23
3.4.1 Compatibility and Upgrading 3-24
3.4.2 Initialization Parameter for SecureFiles LOBs 3-24
3.5 Migrating Columns from BasicFiles LOBs to SecureFiles LOBs 3-25
3.5.1 Preventing Generation of REDO Data When Migrating to SecureFiles LOBs 3-25
3.5.2 Online Redefinition for BasicFiles LOBs 3-26
3.5.3 Online Redefinition Example for Migrating Tables with BasicFiles LOBs 3-26
3.5.4 Redefining a SecureFiles LOB in Parallel 3-27
3.6 PL/SQL Packages for LOBs and DBFS 3-27
3.6.1 The DBMS_LOB Package Used with SecureFiles LOBs and DBFS 3-28
3.6.2 DBMS_LOB Constants Used with SecureFiles LOBs and DBFS 3-28
3.6.3 DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS 3-29
3.6.4 DBMS_SPACE Package 3-35
3.6.4.1 DBMS_SPACE.SPACE_USAGE() 3-35
4 Operations Specific to Persistent and Temporary LOBs
4.1 Persistent LOB Operations 4-1
4.1.1 Inserting a LOB into a Table 4-1
4.1.2 Selecting a LOB from a Table 4-2
4.2 Temporary LOB Operations 4-2
4.2.1 Creating and Freeing a Temporary LOB 4-2
4.3 Creating Persistent and Temporary LOBs in PL/SQL 4-3
4.4 Freeing Temporary LOBs in OCI 4-4
5 Distributed LOBs

5.1 Working with Remote LOBs 5-1
5.1.1 Working with Remote LOB Columns 5-1
5.1.1.1 Create table as select or insert as select 5-2
5.1.1.2 Functions on remote LOBSs returning scalars 5-2
5.1.1.3 Data Interface for remote LOBs 5-2
5.1.2 Working with Remote Locator 5-2

5.1.2.1 Using Local and Remote locators as bind with queries and DML on remote
tables 5-3
5.1.2.2 Restrictions when using remote LOB locators 5-4
5.2 SQL Semantics with LOBs in Remote Tables 5-4
5.2.1 Built-in Functions for Remote LOBs and BFILEs 5-5
5.2.2 Passing Remote Locator to Built in SQL Functions 5-6

ORACLE

5.3 Working with Remote LOBs in PL/SQL 5-6

5.3.1 PL/SQL Functions for Remote LOBs and BFILEs 5-7
5.3.1.1 Restrictions on Remote User-Defined Functions 5-7

5.3.1.2 Remote Functions in PL/SQL, OCI, and JDBC 5-7

5.3.2 Using Remote Locator in PL/SQL 5-8
5.3.3 Using Remote Locators with DBMS_LOB 5-8
5.3.3.1 Restrictions on Using Remote Locators with DBMS_LOB 5-8

5.4 Using Remote Locators with OCILOB API 5-9

6 DDL and DML Statements with LOBs

6.1 Creating a Table Containing One or More LOB Columns 6-1
6.2 Creating a Nested Table Containing a LOB 6-4
6.3 Inserting a Row by Selecting a LOB From Another Table 6-5
6.4 Inserting a LOB Value Into a Table 6-5
6.5 Inserting a Row by Initializing a LOB Locator Bind Variable 6-6
6.5.1 About Inserting Rows with LOB Locator Bind Variables 6-7
6.5.2 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable 6-7
6.5.3 C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable 6-8
6.5.4 COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind
Variable 6-9
6.5.5 C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable 6-10
6.5.6 Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable 6-11
6.6 Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() 6-12
6.7 Updating a Row by Selecting a LOB From Another Table 6-13

Part ||l Value Semantics LOBs

7 SQL Semantics and LOBs

7.1 About Using LOBs in SQL 7-1
7.2 SQL Functions and Operators Supported for Use with LOBs 7-2
7.2.1 About SQL Functions and Operators for LOBs 7-2
7.2.2 Implicit Conversion of CLOB to CHAR Types 7-3
7.2.3 CLOBs and NCLOBs Do Not Follow Session Collation Settings 7-6
7.2.4 UNICODE Support 7-6
7.2.5 Codepoint Semantics 7-7
7.2.6 Return Values for SQL Semantics on LOBs 7-8
7.2.7 LENGTH Return Value for LOBs 7-8
7.3 Implicit Conversion of LOB Data Types in SQL 7-8
7.3.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL 7-8
7.4 Unsupported Use of LOBs in SQL 7-10
ORACLE

Vi

7.5 VARCHAR2 and RAW Semantics for LOBs 7-11
7.5.1 About VARCHAR2 and RAW Semantics for LOBs 7-11
7.5.2 LOBs Returned from SQL Functions 7-11
7.5.3 IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs 7-12
7.5.4 WHERE Clause Usage with LOBs 7-13

7.6 Built-in Functions for Remote LOBs and BFILEs 7-13

8 PL/SQL Semantics for LOBs

8.1 PL/SQL Statements and Variables 8-1

8.2 Implicit Conversions Between CLOB and VARCHAR2 8-1

8.3 Explicit Conversion Functions 8-2
8.3.1 VARCHAR?2 and CLOB in PL/SQL Built-In Functions 8-3

8.4 PL/SQL Functions for Remote LOBs and BFILEs 8-5

9 Data Interface for Persistent LOBs

9.1 Overview of the Data Interface for Persistent LOBs 9-1

9.2 Benefits of Using the Data Interface for Persistent LOBs 9-2

9.3 Using the Data Interface for Persistent LOBs in PL/SQL 9-2
9.3.1 About Using the Data Interface for Persistent LOBs in PL/SQL 9-3
9.3.2 Guidelines for Accessing LOB Columns Using the Data Interface in SQL and

PL/SQL 9-4
9.3.3 Implicit Assignment and Parameter Passing 9-5
9.3.4 Passing CLOBs to SQL and PL/SQL Built-In Functions 9-5
9.3.5 Explicit Conversion Functions 9-6
9.3.6 Calling PL/SQL and C Procedures from SQL 9-6
9.3.7 Calling PL/SQL and C Procedures from PL/SQL 9-6
9.3.8 Binds of All Sizes in INSERT and UPDATE Operations 9-7
9.3.9 4000 Byte Limit on Results of a SQL Operator 9-7
9.3.10 Example of 4000 Byte Result Limit of a SQL Operator 9-7
9.3.11 Restrictions on Binds of More Than 4000 Bytes 9-8
9.3.12 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ)
Operations on LOBs 9-8
9.3.13 Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and
UPDATE 9-9
9.3.14 Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT
Operations 9-10
9.3.15 Using the Data Interface for LOBs in Assignments and Parameter Passing 9-10
9.3.16 Using the Data Interface for LOBs with PL/SQL Built-In Functions 9-11

9.4 The Data Interface Used for Persistent LOBs in OCI 9-11
9.4.1 LOB Data Types Bound in OCI 9-12
9.4.2 LOB Data Types Defined in OCI 9-13

ORACLE

Vii

9.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs 9-13
9.4.4 OCI Functions Used to Perform INSERT or UPDATE on LOB Columns 9-13
9.4.4.1 Performing Simple INSERTs or UPDATESs in One Piece 9-14
9.4.4.2 Using Piecewise INSERTs and UPDATES with Polling 9-14
9.4.4.3 Performing Piecewise INSERTs and UPDATEs with Callback 9-14
9.4.4.4 Array INSERT and UPDATE Operations 9-14
9.4.5 The Data Interface Used to Fetch LOB Data in OCI 9-14
9.4.5.1 Simple Fetch in One Piece 9-15
9.4.5.2 Performing a Piecewise Fetch with Polling 9-15
9.4.5.3 Performing a Piecewise with Callback 9-15
9.4.5.4 Array Fetch 9-15
9.4.6 PL/SQL and C Binds from OCI 9-16
9.4.7 Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE 9-16
9.4.8 Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs 9-17
9.4.9 Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes 9-18
9.4.10 Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling 9-18
9.4.11 Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback 9-19
9.4.12 Binding LONG Data to LOB Columns Using an Array INSERT 9-21
9.4.13 Selecting a LOB Column into a LONG Buffer Using a Simple Fetch 9-21
9.4.14 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with
Polling 9-22
9.4.15 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with
Callback 9-23
9.4.16 Selecting a LOB Column into a LONG Buffer Using an Array Fetch 9-24
9.5 The Data Interface Used with Persistent LOBs in Java 9-25
9.6 The Data Interface Used with Remote LOBs 9-25
9.6.1 About the Data Interface with Remote LOBs 9-26
9.6.2 Non-Supported Syntax 9-26
9.6.3 Remote Data Interface Example in PL/SQL 9-27
9.6.4 Remote Data Interface Example in OCI 9-27
9.6.5 Remote Data Interface Examples in JDBC 9-28
Part Ill Reference Semantics LOBs
10 Overview of Supplied LOB APIs
10.1 Programmatic Environments That Support LOBs 10-1
10.2 Comparing the LOB Interfaces 10-2
10.3 Using PL/SQL (DBMS_LOB Package) to Work With LOBs 10-5
10.3.1 Provide a LOB Locator Before Running the DBMS_LOB Routine 10-5
10.3.2 Guidelines for Offset and Amount Parameters in DBMS_LOB Operations 10-6
10.3.3 Determining Character Set ID 10-7
ORACLE

viii

10.3.4 PL/SQL Functions and Procedures for LOBs 10-7

10.3.5 PL/SQL Functions and Procedures to Modify LOB Values 10-8
10.3.6 PL/SQL Functions and Procedures for Introspection of LOBs 10-8
10.3.7 PL/SQL Operations on Temporary LOBs 10-9
10.3.8 PL/SQL Read-Only Functions and Procedures for BFILES 10-9
10.3.9 PL/SQL Functions and Procedures to Open and Close Internal and External
LOBs 10-9
10.4 Using OCI to Work With LOBs 10-10
10.4.1 Prefetching of LOB Data, Length, and Chunk Size 10-10
10.4.2 Setting the CSID Parameter for OCI LOB APIs 10-10
10.4.3 Fixed-Width and Varying-Width Character Set Rules for OCI 10-11
10.4.3.1 Other Operations 10-12
10.4.3.2 NCLOBs in OCI 10-12
10.4.4 OClILobLoadFromFile2() Amount Parameter 10-12
10.4.5 OCILobRead2() Amount Parameter 10-12
10.4.6 OCILobLocator Pointer Assignment 10-12
10.4.7 LOB Locators in Defines and Out-Bind Variables in OCI 10-13
10.4.8 OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs 10-13
10.4.9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values 10-13
10.4.10 OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE)
Values 10-14
10.4.11 OCI Functions for Temporary LOBs 10-14
10.4.12 OCI Read-Only Functions for BFILES 10-14
10.4.13 OCI LOB Locator Functions 10-15
10.4.14 OCI Functions to Open and Close Internal and External LOBs 10-15
10.4.15 OCI LOB Examples 10-15
10.4.16 Further Information About OCI 10-15
10.5 Using C++ (OCCI) to Work With LOBs 10-16
10.5.1 OCCI Classes for LOBs 10-17
10.5.1.1 Clob Class 10-17
10.5.1.2 Blob Class 10-17
10.5.1.3 Bfile Class 10-18
10.5.2 Fixed-Width Character Set Rules 10-18
10.5.3 Varying-Width Character Set Rules 10-18
10.5.4 Offset and Amount Parameters for Other OCCI Operations 10-19
10.5.4.1 NCLOBs in OCCI 10-19
10.5.5 Amount Parameter for OCCI LOB copy() Methods 10-19
10.5.6 Amount Parameter for OCCI read() Operations 10-20
10.5.7 Further Information About OCCI 10-20
10.5.8 OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs 10-20
10.5.9 OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values 10-20
10.5.10 OCCI Methods to Read or Examine Persistent LOB and BFILE Values 10-21
ORACLE

10.5.11 OCCI Read-Only Methods for BFILES
10.5.12 Other OCCI LOB Methods
10.5.13 OCCI Methods to Open and Close Internal and External LOBs

10.6

Using C/C++ (Pro*C) to Work With LOBs

10.6.1 Providing an Allocated Input Locator Pointer That Represents LOB
10.6.2 Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and

BFILEs

10.6.3 Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values
10.6.4 Pro*C/C++ Embedded SQL Statements for Introspection of LOBs

10.6.5 Pro*C/C++ Embedded SQL Statements for Temporary LOBs

10.6.6 Pro*C/C++ Embedded SQL Statements for BFILES

10.6.7 Pro*C/C++ Embedded SQL Statements for LOB Locators

10.6.8 Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

10.7

Using COBOL (Pro*COBOL) to Work With LOBs

10.7.1 Providing an Allocated Input Locator Pointer That Represents LOB
10.7.2 Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBSs, and

BFILEs

10.7.3 Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values
10.7.4 Pro*COBOL Embedded SQL Statements for Introspection of LOBs

10.7.5 Pro*COBOL Embedded SQL Statements for Temporary LOBs

10.7.6 Pro*COBOL Embedded SQL Statements for BFILESs

10.7.7 Pro*COBOL Embedded SQL Statements for LOB Locators

10.7.8 Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and

10.8

BFILEs
Using Java (JDBC) to Work With LOBs

10.8.1 Modifying Internal Persistent LOBs Using Java
10.8.2 Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java

10.8.2.1 BLOB, CLOB, and BFILE Classes

10.8.3 Calling DBMS_LOB Package from Java (JDBC)
10.8.4 Prefetching LOBs to Improve Performance

10.8.5 Zero-Copy Input/Output for SecureFiles to Improve Performance

10.8.5.1 Zero-Copy Input/Output on the Server
10.8.5.2 Zero-Copy Input/Output in the JDBC Thin Driver
10.8.5.3 JDBC-OCI Driver Considerations

10.8.6 Referencing LOBs Using Java (JDBC)

10.8.6.1 Using OracleResultSet: BLOB and CLOB Objects Retrieved

10.8.7 JDBC Syntax References and Further Information

10.8.8 JDBC Methods for Operating on LOBs

10.8.9 JDBC oracle.sql.BLOB Methods to Modify BLOB Values

10.8.10 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values
10.8.11 JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data
10.8.12 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

10.8.13 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value

ORACLE

10-21
10-21
10-22
10-22
10-23

10-23
10-23
10-24
10-24
10-24
10-25
10-25
10-25
10-25

10-26
10-27
10-27
10-27
10-27
10-28

10-28
10-28
10-29
10-29
10-29
10-30
10-30
10-30
10-31
10-31
10-31
10-31
10-31
10-32
10-32
10-33
10-33
10-33
10-33
10-34

10.8.14 JDBC oracle.sgql.CLOB Methods and Properties for Streaming CLOB Data 10-34
10.8.15 JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE)

Values 10-34

10.8.16 JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data 10-35
10.8.17 JDBC Temporary LOB APIs 10-35
10.8.18 JDBC: Opening and Closing LOBs 10-36
10.8.19 JDBC: Opening and Closing BLOBs 10-36
10.8.19.1 Opening the BLOB Using JDBC 10-37
10.8.19.2 Checking If the BLOB Is Open Using JDBC 10-37
10.8.19.3 Closing the BLOB Using JDBC 10-37
10.8.20 JDBC: Opening and Closing CLOBs 10-38
10.8.20.1 Opening the CLOB Using JDBC 10-38
10.8.20.2 Checking If the CLOB Is Open Using JDBC 10-38
10.8.20.3 Closing the CLOB Using JDBC 10-39
10.8.21 JDBC: Opening and Closing BFILEs 10-39
10.8.21.1 Opening BFILEs 10-39
10.8.21.2 Checking If the BFILE Is Open 10-40
10.8.21.3 Closing the BFILE 10-40
10.8.21.4 Usage Example (OpenCloselLob.java) 10-40
10.8.22 Truncating LOBs Using JDBC 10-42
10.8.22.1 JDBC: Truncating BLOBs 10-42
10.8.22.2 JDBC: Truncating CLOBs 10-42
10.8.23 JDBC BLOB Streaming APIs 10-43
10.8.24 JDBC CLOB Streaming APIs 10-44
10.8.25 BFILE Streaming APIs 10-45
10.8.25.1 JDBC BFILE Streaming Example (NewStreamLob.java) 10-45
10.8.26 JDBC and Empty LOBs 10-48
10.9 Oracle Provider for OLE DB (OraOLEDB) 10-49
10.10 Overview of Oracle Data Provider for .NET (ODP.NET) 10-49

11 LOB APIs for BFILE Operations

11.1 Supported Environments for BFILE APIs 11-3
11.2 About Accessing BFILEs 11-3
11.3 Directory Objects 11-4
11.3.1 Initializing a BFILE Locator 11-4
11.3.2 How to Associate Operating System Files with a BFILE 11-5
11.4 BFILENAME and Initialization 11-5
11.5 Characteristics of the BFILE Data Type 11-6
11.5.1 DIRECTORY Name Specification 11-6
11.5.1.1 On Windows Platforms 11-7

11.6 BFILE Security 11-7

ORACLE

Xi

11.6.1 Ownership and Privileges 11-7
11.6.2 Read Permission on a DIRECTORY Object 11-7
11.6.3 SQL DDL for BFILE Security 11-8
11.6.4 SQL DML for BFILE Security 11-8
11.6.5 Catalog Views on Directories 11-9
11.6.6 Guidelines for DIRECTORY Usage 11-9
11.6.7 BFILEs in Shared Server (Multithreaded Server) Mode 11-10
11.6.8 External LOB (BFILE) Locators 11-10
11.6.8.1 When Two Rows in a BFILE Table Refer to the Same File 11-10
11.6.8.2 BFILE Locator Variable 11-10
11.6.8.3 Guidelines for BFILEs 11-11

11.7 About Loading a LOB with BFILE Data 11-11
11.8 About Opening a BFILE with OPEN 11-13
11.9 About Opening a BFILE with FILEOPEN 11-14
11.10 About Determining Whether a BFILE Is Open Using ISOPEN 11-15
11.11 About Determining Whether a BFILE Is Open with FILEISOPEN 11-16
11.12 About Displaying BFILE Data 11-17
11.13 About Reading Data from a BFILE 11-18
11.14 About Reading a Portion of BFILE Data Using SUBSTR 11-19
11.15 Comparing All or Parts of Two BFILES 11-20
11.16 Checking If a Pattern Exists in a BFILE Using INSTR 11-21
11.17 Determining Whether a BFILE EXxists 11-21
11.18 Getting the Length of a BFILE 11-22
11.19 About Assigning a BFILE Locator 11-23
11.20 Getting Directory Object Name and File Name of a BFILE 11-23
11.21 About Updating a BFILE by Initializing a BFILE Locator 11-24
11.22 Closing a BFILE with FILECLOSE 11-25
11.23 Closing a BFILE with CLOSE 11-26
11.24 Closing All Open BFILEs with FILECLOSEALL 11-27
11.25 About Inserting a Row Containing a BFILE 11-27

12 Using LOB APlIs

12.1 Supported Environments 12-3
12.2 About Appending One LOB to Another 12-4
12.3 About Determining Character Set Form 12-5
12.4 About Determining Character Set ID 12-5
12.5 Loading a LOB with Data from a BFILE 12-6
12.6 About Loading a BLOB with Data from a BFILE 12-8
12.7 Loading a CLOB or NCLOB with Data from a BFILE 12-9
12.7.1 About PL/SQL: Loading Character Data from a BFILE into a LOB 12-10
12.7.2 About PL/SQL: Loading Segments of Character Data into Different LOBs 12-10

ORACLE

Xii

12.8 Determining Whether a LOB is Open 12-11

12.8.1 Java (JDBC): Checking If a LOB Is Open 12-11
12.8.1.1 Checking If a CLOB Is Open 12-12
12.8.1.2 Checking If a BLOB Is Open 12-12

12.9 About Displaying LOB Data 12-12
12.10 About Reading Data from a LOB 12-13
12.11 About LOB Array Read 12-15
12.12 Reading a Portion of a LOB (SUBSTR) 12-21
12.13 Comparing All or Part of Two LOBs 12-21
12.14 Patterns: Checking for Patterns in a LOB Using INSTR 12-22
12.15 Length: Determining the Length of a LOB 12-23
12.16 Copying All or Part of One LOB to Another LOB 12-23
12.17 Copying a LOB Locator 12-24
12.18 Equality: Checking If One LOB Locator Is Equal to Another 12-25
12.19 About Determining Whether LOB Locator Is Initialized 12-26
12.20 About Appending to a LOB 12-26
12.21 About Writing Data to a LOB 12-28
12.22 LOB Array Write 12-30
12.23 About Trimming LOB Data 12-35
12.24 About Erasing Part of a LOB 12-36
12.25 Determining Whether a LOB instance Is Temporary 12-37

12.25.1 Java (JDBC): Determining Whether a BLOB Is Temporary 12-38
12.26 Converting a BLOB to a CLOB 12-38
12.27 Converting a CLOB to a BLOB 12-39
12.28 Ensuring Read Consistency 12-39

Part I\ Application Design with LOBs

13 LOB Storage with Applications

13.1 Tables That Contain LOBs 13-1
13.1.1 Persistent LOBs Initialized to NULL or Empty 13-2
13.1.1.1 Setting a Persistent LOB to NULL 13-2
13.1.1.2 Setting a Persistent LOB to Empty 13-2

13.1.2 Initializing LOBs 13-3
13.1.3 Initializing Persistent LOB Columns and Attributes to a Value 13-3
13.1.4 Initializing BFILEs to NULL or a File Name 13-3
13.1.5 Restriction on First Extent of a LOB Segment 13-4
13.2 Data Types for LOB Columns 13-4
13.2.1 LOBs Compared to LONG and LONG RAW Types 13-4
13.2.2 Varying-Width Character Data Storage in LOBs 13-5

ORACLE

Xiii

13.2.3 Converting Character Sets Implicitly with LOBs
13.3 LOB Storage Parameters
13.3.1 Inline and Out-of-Line LOB Storage
13.3.2 Defining Tablespace and Storage Characteristics for Persistent LOBs
13.3.2.1 Assigning a LOB Data Segment Name
13.3.3 LOB Storage Characteristics for LOB Column or Attribute
13.3.4 TABLESPACE and LOB Index
13.3.4.1 Tablespace for LOB Index in Non-Partitioned Table
13.3.5 PCTVERSION
13.3.6 RETENTION Parameter for BasicFiles LOBs
13.3.7 RETENTION Parameter for SecureFiles LOBs
13.3.8 CACHE / NOCACHE / CACHE READS
13.3.8.1 CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
13.3.9 LOGGING / NOLOGGING Parameter for BasicFiles LOBs
13.3.9.1 LOBs Always Generate Undo for LOB Index Pages
13.3.9.2 When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages
13.3.10 LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs
13.3.10.1 CACHE Implies LOGGING
13.3.10.2 SecureFiles and an Efficient Method of Generating REDO and UNDO
13.3.10.3 FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts
13.3.11 CHUNK
13.3.11.1 The Value of CHUNK
13.3.11.2 Set INITIAL and NEXT to Larger than CHUNK
13.3.12 ENABLE or DISABLE STORAGE IN ROW Clause
13.3.13 Guidelines for ENABLE or DISABLE STORAGE IN ROW
13.4 LOB Columns Indexing
13.4.1 Domain Indexing on LOB Columns
13.4.2 Text Indexes on LOB Columns
13.4.3 Function-Based Indexes on LOBs
13.4.4 Extensible Indexing on LOB Columns
13.4.4.1 Extensible Optimizer
13.4.5 Oracle Text Indexing Support for XML
13.5 LOB Manipulation in Partitioned Tables
13.5.1 About Manipulating LOBs in Partitioned Tables
13.5.2 Partitioning a Table Containing LOB Columns
13.5.3 Creating an Index on a Table Containing Partitioned LOB Columns
13.5.4 Moving Partitions Containing LOBs
13.5.5 Splitting Partitions Containing LOBs
13.5.6 Merging Partitions Containing LOBs
13.6 LOBs in Index Organized Tables
13.7 Restrictions on Index Organized Tables with LOB Columns
13.8 Restrictions for LOBs in Partitioned Index-Organized Tables

ORACLE

13-5
13-6
13-7
13-8
13-8
13-9
13-9
13-10
13-10
13-11
13-11
13-12
13-12
13-12
13-13
13-13
13-13
13-14
13-14
13-14
13-14
13-15
13-16
13-16
13-16
13-17
13-17
13-18
13-18
13-18
13-19
13-19
13-20
13-20
13-20
13-21
13-21
13-21
13-22
13-22
13-23
13-23

Xiv

13.9 Updating LOBs in Nested Tables 13-24
14 Advanced Design Considerations
14.1 Opening Persistent LOBs with the OPEN and CLOSE Interfaces 14-1
14.1.1 Index Performance Benefits of Explicitly Opening a LOB 14-2
14.1.2 Closing Explicitly Open LOB Instances 14-2
14.2 Read-Consistent Locators 14-2
14.2.1 A Selected Locator Becomes a Read-Consistent Locator 14-3
14.2.2 Example of Updating LOBs and Read-Consistency 14-4
14.2.3 Example of Updating LOBs Through Updated Locators 14-5
14.2.4 Example of Updating a LOB Using SQL DML and DBMS_LOB 14-6
14.2.5 Example of Using One Locator to Update the Same LOB Value 14-8
14.2.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable 14-9
14.2.7 Example of Deleting a LOB Using Locator 14-11
14.3 LOB Locators and Transaction Boundaries 14-12
14.3.1 About LOB Locators and Transaction Boundaries 14-13
14.3.2 Read and Write Operations on a LOB Using Locators 14-13
14.3.3 Selecting the Locator Outside of the Transaction Boundary 14-13
14.3.4 Selecting the Locator Within a Transaction Boundary 14-14
14.3.5 LOB Locators Cannot Span Transactions 14-15
14.3.6 Example of Locator Not Spanning a Transaction 14-15
14.4 LOBs in the Object Cache 14-16
14.5 Terabyte-Size LOB Support 14-17
14.5.1 About Terabyte-Size LOB Support 14-17
14.5.2 Maximum Storage Limit for Terabyte-Size LOBs 14-18
14.5.3 Using Terabyte-Size LOBs with JDBC 14-19
14.5.4 Using Terabyte-Size LOBs with the DBMS_LOB Package 14-19
14.5.5 Using Terabyte-Size LOBs with OCI 14-19
14.6 Guidelines for Creating Gigabyte LOBs 14-20
14.6.1 Creating a Tablespace and Table to Store Gigabyte LOBs 14-20
15 Performance Guidelines

15.1 LOB Performance Guidelines 15-1
15.1.1 AlILOBs 15-1
15.1.1.1 Chunk Size 15-2
15.1.1.2 LOB Pre-fetching 15-2
15.1.1.3 Small LOBs 15-2
15.1.1.4 Large LOBs 15-2

15.1.2 Persistent LOBs 15-2
15.1.2.1 Performance Guidelines for Small BasicFiles LOBs 15-3

ORACLE

XV

15.1.2.2 General Performance Guidelines for BasicFiles LOBs 15-3

15.1.3 Temporary LOBs 15-4
15.2 Moving Data to LOBs in a Threaded Environment 15-6
15.3 LOB Access Statistics 15-6

15.3.1 Example of Retrieving LOB Access Statistics 15-7

Part V LOB Administration

16 Managing LOBs: Database Administration

16.1 Database Utilities for Loading Data into LOBs 16-1
16.1.1 About Using SQL*Loader to Load LOBs 16-2
16.1.2 About Using SQL*Loader to Populate a BFILE Column 16-3
16.1.3 About Using Oracle Data Pump to Transfer LOB Data 16-5

16.2 Temporary LOB Management 16-6

16.3 BFILEs Management 16-6
16.3.1 Rules for Using Directory Objects and BFILEs 16-7
16.3.2 Setting Maximum Number of Open BFILES 16-7

16.4 Changing Tablespace Storage for a LOB 16-7

16.5 Managing LOB Signatures 16-8

17 Migrating Columns from LONGs to LOBs

17.1 Benefits of Migrating LONG Columns to LOB Columns 17-1
17.2 Preconditions for Migrating LONG Columns to LOB Columns 17-2
17.2.1 Dropping a Domain Index on a LONG Column Before Converting to a LOB 17-2
17.2.2 Preventing Generation of Redo Space on Tables Converted to LOB Data Types 17-2
17.3 Determining how to Optimize the Application Using utldtree.sq|l 17-3
17.4 Converting Tables from LONG to LOB Data Types 17-3
17.4.1 Migration Issues 17-3
17.4.2 Using ALTER TABLE to Convert LONG Columns to LOB Columns 17-4
17.4.3 Copying a LONG to a LOB Column Using the TO_LOB Operator 17-5
17.4.4 Online Redefinition of Tables with LONG Columns 17-5
17.4.5 Migrating LOBs with Data Pump 17-8
17.5 Migrating Applications from LONGs to LOBs 17-9
17.5.1 About Migrating Applications from Longs to LOBs 17-9
17.5.2 LOB Columns Are Not Allowed in Clustered Tables 17-10
17.5.3 LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers 17-10
17.5.4 Rebuilding Indexes on Columns Converted from LONG to LOB Data Types 17-10
17.5.5 Empty LOBs Compared to NULL and Zero Length LONGs 17-11
17.5.6 Overloading with Anchored Types 17-11
ORACLE

XVi

17.5.7 Some Implicit Conversions Are Not Supported for LOB Data Types 17-12
Part VI Oracle File System (OFS) Server
18 Introducing Network File System (NFS)
18.1 Accessing OFS with an NFS Account 18-1
18.2 Prerequisites to Access Storage Through NFS Server 18-1
18.3 NFS Security 18-2
18.3.1 About Kerberos 18-2
18.3.2 Configuring Kerberos Server 18-3
19 Using OFS
19.1 About OFS 19-1
19.2 About Oracle File Server Process 19-1
19.3 Limitations of using OFS 19-3
19.4 OFS Configuration Parameters 19-3
19.5 Managing DBFS Locally Using FUSE 19-3
19.5.1 Configuring FUSE 19-4
19.5.2 Accessing OFS in Cloud 19-4
19.6 OFS Client Interface 19-5
19.6.1 DBMS_FS Package 19-5
19.6.2 Views for OFS 19-6
Part VIl Database File System (DBFS)
20 Introducing the Database File System
20.1 Why a Database File System? 20-1
20.2 What Is Database File System (DBFS)? 20-1
20.2.1 About DBFS 20-2
20.2.2 DBFS Server 20-3
20.2.3 DBFS Client 20-3
20.3 What Is a Content Store? 20-4
21 DBFS SecureFiles Store
21.1 Setting Up a SecureFiles Store 21-1
21.1.1 About Managing Permissions 21-2
21.1.2 Creating or Setting Permissions 21-2
ORACLE

XVii

21.1.3 Creating a SecureFiles File System Store 21-2
21.1.4 Accessing Tables that Hold SecureFiles System Store Data 21-4
21.1.5 |Initializing SecureFiles Store File Systems 21-4
21.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs 21-5
21.2 Using a DBFS SecureFiles Store File System 21-5
21.2.1 DBFS Content API Working Example 21-5
21.2.2 Dropping SecureFiles Store File Systems 21-6
21.3 About DBFS SecureFiles Store Package, DBMS_DBFS_SFS 21-7
21.4 Database File System (DBFS)— POSIX File Locking 21-7
21.4.1 About Advisory Locking 21-8
21.4.2 About Mandatory Locking 21-8
21.4.3 File Locking Support 21-9
21.4.4 Compatibility and Migration Factors of Database Filesystem—TFile Locking 21-9
21.45 Examples of Database Filesystem—TFile Locking 21-9
21.4.6 File Locking Behavior 21-11
21.4.7 Scheduling File Locks 21-11
21.4.7.1 Greedy Scheduling 21-12
21.4.7.2 Fair Scheduling 21-12
22 DBFS Hierarchical Store

22.1 About the Hierarchical Store Package, DBMS_DBFS_HS 22-1
22.2 Ways to Use DBFS Hierarchial Store 22-2
22.3 Setting up the Store 22-2
22.3.1 Managing a HS Store Wallet 22-2
22.3.2 Creating, Registering, and Mounting the Store 22-3
22.4 Using the Hierarchical Store 22-4
22.4.1 Using Hierarchical Store as a File System 22-4
22.4.2 Using Hierarchical Store as an Archive Solution For SecureFiles LOBs 22-5
22.4.3 Dropping a Hierarchical Store 22-5
22.4.4 Compression to Use with the Hierarchical Store 22-5
22.4.5 Program Example Using Tape 22-6
22.4.6 Program Example Using Amazon S3 22-10
22.5 Database File System Links 22-14
22.5.1 About Database File System Links 22-15
22.5.2 Ways to Create Database File System Links 22-16
22.5.3 Database File System Links Copy 22-17
22.5.4 Copying a Linked LOB Between Tables 22-17
22.5.5 Online Redefinition and DBFS Links 22-18
22.5.6 Transparent Read 22-18
22.6 The DBMS_DBFS_HS Package 22-18
22.6.1 Constants for DBMS_DBFS_HS Package 22-18

ORACLE

XVviil

22.6.2 Methods for DBMS_DBFS_HS Package 22-19

22.7 Views for DBFS Hierarchical Store 22-20
22.7.1 DBA Views 22-20
22.7.2 User Views 22-21

23 DBFS Content API

23.1 Overview of DBFS Content API 23-3
23.2 Stores and DBFS Content API 23-3
23.3 Getting Started with DBMS_DBFS_CONTENT Package 23-4
23.3.1 DBFS Content API Role 23-5
23.3.2 Path Name Constants and Types 23-5
23.3.3 Path Properties 23-5
23.3.4 Content IDs 23-6
23.3.5 Path Name Types 23-6
23.3.6 Store Features 23-6
23.3.7 Lock Types 23-7
23.3.8 Standard Properties 23-7
23.3.9 Optional Properties 23-8
23.3.10 User-Defined Properties 23-8
23.3.11 Property Access Flags 23-8
23.3.12 Exceptions 23-8
23.3.13 Property Bundles 23-9
23.3.14 Store Descriptors 23-9
23.4 Administrative and Query APIs 23-10
23.4.1 Registering a Content Store 23-10
23.4.2 Unregistering a Content Store 23-11
23.4.3 Mounting a Registered Store 23-11
23.4.4 Unmounting a Previously Mounted Store 23-12
23.4.5 Listing all Available Stores and Their Features 23-12
23.4.6 Listing all Available Mount Points 23-12
23.4.7 Looking Up Specific Stores and Their Features 23-13
23.5 Querying DBFS Content API Space Usage 23-13
23.6 DBFS Content API Session Defaults 23-14
23.7 DBFS Content API Interface Versioning 23-14
23.8 Notes on DBFS Content API Path Names 23-14
23.9 DBFS Content API Creation Operations 23-15
23.10 DBFS Content API Deletion Operations 23-16
23.11 DBFS Content API Path Get and Put Operations 23-16
23.12 DBFS Content APl Rename and Move Operations 23-17
23.13 Directory Listings 23-17
23.14 DBFS Content API Directory Navigation and Search 23-18
ORACLE

XiX

23.15 DBFS Content API Locking Operations 23-18

23.16 DBFS Content API Access Checks 23-19
23.17 DBFS Content API Abstract Operations 23-19
23.18 DBFS Content API Path Normalization 23-20
23.19 DBFS Content API Statistics Support 23-20
23.20 DBFS Content API Tracing Support 23-21
23.21 Resource and Property Views 23-22

24 Creating Your Own DBFS Store

24.1 Overview of DBFS Store Creation and Use 24-1
24.2 DBFS Content Store Provider Interface (DBFS Content SPI) 24-2
24.3 Creating a Custom Provider 24-3
24.3.1 Mechanics 24-4
24.3.1.1 |Installation and Setup 24-4
24.3.1.2 TBFS Use 24-5
24.3.1.3 TBFS Internals 24-5

24.3.2 TBFS.SQL 24-6
24.3.3 TBL.SQL 24-6
24.3.4 spec.sql 24-7
24.3.5 body.sql 24-16
24.3.6 capi.sql 24-29

25 Using DBFS

25.1 DBFS Installation 25-1
25.2 Creating a DBFS File System 25-1
25.2.1 Privileges Required to Create a DBFS File System 25-2
25.2.2 Advantages of Non-Partitioned Versus Partitioned DBFS File Systems 25-2
25.2.3 Creating a Non-Partitioned File System 25-3
25.2.4 Creating a Partitioned File System 25-3
25.2.5 Dropping a File System 25-4
25.3 DBFS File System Access 25-4
25.3.1 DBFS Client Prerequisites 25-4
25.3.2 DBFS Client Command-Line Interface Operations 25-5
25.3.2.1 About the DBFS Client Command-Line Interface 25-5
25.3.2.2 Creating Content Store Paths 25-6
25.3.2.3 Creating a Directory 25-6
25.3.2.4 Listing a Directory 25-6
25.3.2.5 Copying Files and Directories 25-7
25.3.2.6 Removing Files and Directories 25-7

25.3.3 DBFS Mounting Interface (Linux and Solaris Only) 25-7

ORACLE

XX

25.3.3.1 Installing FUSE on Solaris 11 SRU7 and Later 25-8
25.3.3.2 Mounting the DBFS Store 25-9
25.3.3.3 Solaris-Specific Privileges 25-9
25.3.3.4 About the Mount Command for Solaris and Linux 25-9
25.3.3.5 Mounting a File System with a Wallet 25-10
25.3.3.6 Mounting a File System with Password at Command Prompt 25-11
25.3.3.7 Mounting a File System with Password Read from a File 25-11
25.3.3.8 Unmounting a File System 25-11
25.3.3.9 Mounting DBFS Through fstab Utility for Linux 25-11
25.3.3.10 Mounting DBFS Through the vfstab Utility for Solaris 25-12
25.3.3.11 Restrictions on Mounted File Systems 25-12

25.3.4 File System Security Model 25-13
25.3.4.1 About the File System Security Model 25-13
25.3.4.2 Enabling Shared Root Access 25-14
25.3.4.3 About DBFS Access Among Multiple Database Users 25-14
25.3.4.4 Establishing DBFS Access Sharing Across Multiple Database Users 25-14

25.3.5 HTTP, WebDAV, and FTP Access to DBFS 25-17
25.3.5.1 Internet Access to DBFS Through XDB 25-18
25.3.5.2 Web Distributed Authoring and Versioning (WebDAV) Access 25-18
25.3.5.3 FTP Access to DBFS 25-19
25.3.5.4 HTTP Access to DBFS 25-20

25.4 DBFS Administration 25-20
25.4.1 Using Oracle Wallet with DBFS Client 25-20
25.4.2 DBFS Diagnostics 25-21
25.4.3 Preventing Data Loss During Failover Events 25-21
25.4.4 Bypassing Client-Side Write Caching 25-22
25.4.5 Backing up DBFS 25-22
25.4.5.1 DBFS Backup at the Database Level 25-22
25.4.5.2 DBFS Backup Through a File System Utility 25-22

25.4.6 Small File Performance of DBFS 25-23
25.4.7 Enabling Advanced SecureFiles LOB Features for DBFS 25-23
25.5 Shrinking and Reorganizing DBFS Filesystems 25-23
25.5.1 About Changing DBFS Filesystems 25-24
25.5.2 Advantages of Online Filesystem Reorganization 25-24
25.5.3 Determining Availability of Online Filesystem Reorganization 25-25
25.5.4 Invoking Online Filesystem Reorganization 25-25

A LOB Demonstration Files

A.1 PL/SQL LOB Demonstration Files A-1
A.2 OCI LOB Demonstration Files A-3

ORACLE

XXi

A.3 Java LOB Demonstration Files

Glossary

A4

Index

ORACLE"

XXii

Preface

Audience

This guide describes database features that support application development using
SecureFiles and Large Object (LOB) data types and Database File System (DBFS). The
information in this guide applies to all platforms, and does not include system-specific
information.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Oracle Database SecureFiles and Large Objects Developer's Guide is intended for
programmers who develop new applications using LOBs and DBFS, and those who have
previously implemented this technology and now want to take advantage of new features.

Efficient and secure storage of multimedia and unstructured data is increasingly important, and
this guide is a key resource for this topic within the Oracle Application Developers
documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer's Guide contains information that
describes the SecureFiles LOB and BasicFiles LOB features and functionality of Oracle
Database 12c Release 2 (12.2).

Prerequisites for Using LOBs

Oracle Database includes all necessary resources for using LOBs in an application; however,
there are some restrictions, described in "LOB Rules and Restrictions" and "Restrictions for
LOBs in Partitioned Index-Organized Tables ".

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

XXIii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information, see the following manuals:

e Oracle Database 2 Day Developer's Guide

e Oracle Database Development Guide

* Oracle Database Utilities

e Oracle XML DB Developer’s Guide

e Oracle Database PL/SQL Packages and Types Reference

e Oracle Database Data Cartridge Developer's Guide

e Oracle Call Interface Programmer's Guide

e Oracle C++ Call Interface Programmer's Guide

e Pro*C/C++ Programmer's Guide

e Pro*COBOL Programmer's Guide

e Oracle Database Programmer's Guide to the Oracle Precompilers
e Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Java
The Oracle Java documentation set includes the following:

e Oracle Database JDBC Developer’s Guide
e Oracle Database Java Developer’s Guide

Basic References

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN)

http://www.oracle.com/technetwork/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

XXiV

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Changes in Oracle Database

The following are changes in Oracle Database SecureFiles and Large Objects Developer's
Guide for Oracle Database.

New Features
Deprecated Features
Desupported Features
New Features
Deprecated Features

Desupported Features

New Features

New Features for 19c Release

Oracle Database allows configuring signature-based security for large object (LOB)
locators using the LOB_SIGNATURE_ENABLE initialization parameter

Managing LOB Signatures for more information.

New Features for 18c Release

Oracle Database allows 1L.0Bs and LOB related functionality to be used with Oracle
Database In-Memory.

Oracle Database In-Memory Guide for more information.
Oracle Database extends Exadata support for LoBs to Compressed LOBS.
ENABLE or DISABLE STORAGE IN ROW Clause

Oracle Database has improved the performance of multiple persistent and temporary LOB
operations.

Deprecated Features

ORACLE

List of deprecated features in Oracle® Database SecureFiles and Large Objects 18c

Oracle Multimedia is deprecated in Oracle Database Release 18c, and may be desupported in
a future release. Oracle recommends that you stop using deprecated features as soon as
possible.

XXV

ORACLE

Changes in Oracle Database

List of deprecated features in Oracle® Database SecureFiles and Large Objects 12c,
Release 2 (12.2)

The following list of features is deprecated in Oracle Database 12c Release 2 (12.2), and may
be desupported in a future release.

e DBMS LOB.LOADFROMFILE Procedure.
Use DBMS LOB.LoadClobFromFile Of DBMS LOB.LoadBlobFromFile instead.
e LOB Buffering subsystem APIs
The following functions are deprecated beginning with Oracle 12¢ Release 2 (12.2):
— OCILobEnableBuffering()
— OCILobDisableBuffering()
— OCILobFlushBuffer()

In place of using these LOB buffering functions, use the LOB prefetch feature described in
Prefetching of LOB Data, Length, and Chuck Size.

* DBMS XSLPROCESSOR.CLOB2FILE procedure.

Use DBMS_LOB.CLOB2FILE procedure instead.
* DBMS LOB.LOADFROMFILE Procedure.

Use DBMS_LOB.LoadClobFromFile Or DBMS LOB.LoadBlobFromFile instead.
* DBMS_XSLPROCESSOR.CLOB2FILE procedure.

Use DBMS LOB.CLOB2FILE procedure instead.

Security Update for Native Encryption

Oracle provides a patch that you can download to address necessary security enhancements
that affect native network encryption environments in Oracle Database release 11.2 and later.

This patch is available in My Oracle Support note 2118136.2.
The supported algorithms that have been improved are as follows:

e Encryption algorithms: AES128, AES192 and AES256
e Checksumming algorithms: SHA1, SHA256, SHA384, and SHA512

Algorithms that are deprecated and should not be used are as follows:

* Encryption algorithms: DES, DES40, 3DES112, 3DES168, RC4_40, RC4_56, RC4_128,
and RC4_256

e Checksumming algorithm: MD5

If your site requires the use of network native encryption, then you must download the patch
that is described in My Oracle Support note 2118136.2. To enable a smooth transition for your
Oracle Database installation, this patch provides two parameters that enable you to disable the
weaker algorithms and start using the stronger algorithms. You will need to install this patch on
both servers and clients in your Oracle Database installation.

An alternative to network native encryption is Transport Layer Security (TLS), which provides
protection against person-in-the-middle attacks.

XXVI

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2

Changes in Oracle Database

See Also:

e Choosing Between Native Network Encryption and Transport Layer Security in
Oracle Database Security Guide

e Improving Native Network Encryption Security in Oracle Database Security
Guide

Desupported Features

List of desupported features in Oracle® Database SecureFiles and Large Objects 19c

Oracle Multimedia has been desupported in its entirety. Oracle recommends that you store
multimedia content in SecureFiles LOBs and use third-party products.

See Also:

Oracle Database Upgrade Guide for more information.

List of desupported features in Oracle® Database SecureFiles and Large Objects 18c
The following functions related to LOB Buffering subsystem APIs are desupported in its
entirety:

e OCILobEnableBuffering()

e OClLobDisableBuffering()
e OCILobFlushBuffer()

List of desupported features in Oracle® Database SecureFiles and Large Objects 12c,
Release (2) 12.2

* Desupport of Advanced Replication

The Oracle Database Advanced Replication feature is desupported in its entirety.

¢ See Also:

— Oracle Database Upgrade Guide for more information.

ORACLE XXVii

Getting Started

ORACLE

This part introduces Large Objects (LOBs) and discusses general concepts for using them in
your applications.

This part contains these chapters:

Introduction to Large Objects and SecureFiles
Working with LOBs

Using Oracle LOB Storage

Operations Specific to Persistent and Temporary LOBs
Distributed LOBs

DDL and DML Statements with LOBs

Introduction to Large Objects and SecureFiles
Large Objects (LOBSs), SecureFiles LOBs, and Database File System (DBFS) work
together with various database features to support application development.

Working with LOBs

Using Oracle LOB Storage
Oracle LOB storage has two types, SecureFiles LOB storage and BasicFiles LOB storage,
which are used with different types of tablespaces.

Operations Specific to Persistent and Temporary LOBs
Distributed LOBs
DDL and DML Statements with LOBs

Introduction to Large Objects and SecureFiles

ORACLE

Large Objects (LOBSs), SecureFiles LOBs, and Database File System (DBFS) work together
with various database features to support application development.

Large Objects are used to hold large amounts of data inside Oracle Database, SecureFiles
provides performance equal to or better than file system performance when using Oracle
Database to store and manage Large Objects, and DBFS provides file system access to files
stored in Oracle Database.

Topics:

What Are Large Objects?

Why Use Large Objects?

Why Not Use LONGs?

Different Kinds of LOBs

LOB Locators

Database Semantics for Internal and External LOBs
Large Object Data Types

About Object Data Types and LOBs

Storage and Creation of Other Data Types with LOBs
BasicFiles and SecureFiles LOBs

Database File System (DBFS)

What Are Large Objects?

Why Use Large Objects?
Large objects allow you to store large amounts of data in several types of structures.

Why Not Use LONGs?
Oracle Database supports L.ONG and LOB data types. However, LOBs provide added
benefits described below.

Different Kinds of LOBs
Different kinds of LOBs can be stored in the database or in external files.

LOB Locators
A LOB instance has a locator and a value.

Database Semantics for Internal and External LOBs
In all programmatic environments, database semantics differ between internal LOBs and
external LOBs as follows:

Large Object Data Types
The database provides a set of large object data types as SQL data types where the term
LOB generally refers to the set.

About Object Data Types and LOBs

1-1

Chapter 1
What Are Large Objects?

Storage and Creation of Other Data Types with LOBs
You can use LOBs to create other user-defined data types or store other data types as
LOBs.

BasicFiles and SecureFiles LOBs
BasicFiles LOB and SecureFiles LOB are the two storage types used with Oracle
Database 12c.

Database File System (DBFS)
Database File System (DBFS) provides a file system interface to files that are stored in an
Oracle database.

1.1 What Are Large Objects?

Large Objects (LOBSs) are a set of data types that are designed to hold large amounts of data.

The maximum size for a single LOB can range from 8 terabytes to 128 terabytes depending on
how your database is configured. Storing data in LOBs enables you to access and manipulate
the data efficiently in your application.

1.2 Why Use Large Objects?

Large objects allow you to store large amounts of data in several types of structures.

Topics:

Data Types that Use Large Objects
LOBs Used for Semistructured Data

LOBs Used for Unstructured Data

Data Types that Use Large Objects
Large objects are suitable for semistructured and unstructured data.

LOBs Used for Semistructured Data

Semistructured data include document files such as XML documents or word processor
files, which contain data in a logical structure that is processed or interpreted by an
application, and is not broken down into smaller logical units when stored in the database.

LOBs Used for Unstructured Data
Unstructured data is data that cannot be decomposed into standard components.

1.2.1 Data Types that Use Large Objects

Large objects are suitable for semistructured and unstructured data.

ORACLE

Large object features allow you to store these kinds of data in the database and in operating
system files that are accessed from the database.

Semistructured data

Semistructured data has a logical structure that is not typically interpreted by the database,
for example, an XML document that your application or an external service processes.
Oracle Database provides features such as Oracle XML DB, Oracle Multimedia, and
Oracle Spatial and Graph to help your application work with semistructured data.

Unstructured data

1-2

Chapter 1
Why Use Large Objects?

Unstructured data is easily not broken down into smaller logical structures and is not
typically interpreted by the database or your application, such as a photographic image
stored as a binary file.

When you develop applications, you encounter different types of data, not all of which are
suitable for large objects. For example, there is no need for the following to be created as large
objects:

e Simple structured data

Simple structured data can be organized into relational tables that are structured based on
business rules.

e Complex structured data

Complex structured data is more complex than simple structured data and is suited for the
object-relational features of the Oracle database such as collections, references, and user-
defined types.

With the growth of the Internet and content-rich applications, it has become imperative for
Oracle Database to provide LOB support that:

¢ Can store unstructured and semistructured data in an efficient manner
* |s optimized for large amounts of data

* Provides a uniform way of accessing data stored within the database or outside the
database

1.2.2 LOBs Used for Semistructured Data

Semistructured data include document files such as XML documents or word processor files,
which contain data in a logical structure that is processed or interpreted by an application, and
is not broken down into smaller logical units when stored in the database.

Applications that use semistructured data often use large amounts of character data. The
Character Large Object (cL.0B) and National Character Large Object (NCLOB) data types are
ideal for storing and manipulating this kind of data.

Binary File objects (BFILE data types) can also store character data. You can use BFILES to
load read-only data from operating system files into CLOB or NCLOB instances that you then
manipulate in your application.

1.2.3 LOBs Used for Unstructured Data

ORACLE

Unstructured data is data that cannot be decomposed into standard components.

This is in contrast to structured data, such as data about an employee typically containing
these components: a name, stored as a string; an identifier, such as an ID number; a salary;
and so on.

Unstructured data, such as a photograph, consists of a long stream of 1s and 0s. These bits
are used to switch pixels on or off so that you can see the picture on a display, but the bits are
not broken down into any standard components for database storage.

Also, unstructured data such as text, graphic images, still video clips, full motion video, and
sound waveforms tends to be large in size. A typical employee record may be a few hundred
bytes, while even small amounts of multimedia data can be thousands of times larger.

SQL data types that are ideal for large amounts of unstructured binary data include the BLOB
data type (Binary Large Object) and the BFILE data type (Binary File object).

1-3

Chapter 1
Why Not Use LONGs?

1.3 Why Not Use LONGS?

Oracle Database supports 1L.ONG and LOB data types. However, LOBs provide added benefits
described below.

Using LOB data types is recommended for storing large amounts of structured and
semistructured data (from Oracle8i and on). Applications developed for use with Oracle7 and
earlier used the LONG or LONG RAW data type to store large amounts of unstructured data.

You can use LONG-to-LOB migration to easily migrate your existing applications that access
LONG columns, to use LOB columns.

Advantages of LOB data types over LONG and LONG RAW types:

* LOB Capacity: LOBs can store much larger amounts of data. LOBs can store 4 GB of data
or more depending on your system configuration. LONG and LONG RAW types are limited to 2
GB of data.

e Number of LOB columns in a table: A table can have multiple LOB columns. LOB columns
in a table can be of any LOB type. In Oracle7 Release 7.3 and higher, tables are limited to
a single LONG or LONG RAW column.

e Random piece-wise access: LOBs support random access to data, but LONGS support only
sequential access.

e LOBs can also be object attributes.

" See Also:
Migrating Columns from LONGs to LOBs

1.4 Different Kinds of LOBS

Different kinds of LOBs can be stored in the database or in external files.

LOBs in the database are sometimes also referred to as internal LOBs or internal persistent
LOBs.

LOBSs can be internal or external:

* Internal LOBs
» External LOBs and the BFILE Data Type

e Internal LOBs
e External LOBs and the BFILE Data Type

1.4.1 Internal LOBs

LOBs in the database are stored inside database tablespaces in a way that optimizes space
and provides efficient access.

ORACLE 4

Chapter 1
Different Kinds of LOBs

SQL Data Types for Internal LOBs

The following SQL data types are supported for declaring internal LOBs: BLOB, CLOB, and
NCLOB.

¢ See Also:

Large Object Data Types

Persistent and Temporary LOBs
Persistent and temporary LOBs are both internal LOBs (LOBs in the database).

* Apersistent LOB is a LOB instance that exists in a table row in the database.

« Atemporary LOB instance is created when you instantiate a LOB only within the scope of
your local application.

A temporary instance becomes a persistent instance when you insert the instance into a table
row.

Persistent LOBs use copy semantics and participate in database transactions. You can recover
persistent LOBs in the event of transaction or media failure, and any changes to a persistent
LOB value can be committed or rolled back. In other words, all the Atomicity, Consistency,
Isolation, and Durability (ACID) properties that apply to database objects apply to persistent
LOBs.

1.4.2 External LOBs and the BFILE Data Type

ORACLE

External LOBs are data objects stored in operating system files, outside the database
tablespaces.

BFILE is the SQL data type that the database uses to access external LOBs and is the only
SQL data type available for external LOBs.

BFILES are read-only data types. The database allows read-only byte stream access to data
stored in BFILES. You cannot write to or update a BFILE from within your application.

The database uses reference semantics with BFILE columns. Data stored in a table column of
type BFILE is physically located in an operating system file, not in the database.

You typically use BFILES to hold:

* Binary data that does not change while your application is running, such as graphics

» Data that is loaded into other large object types, such as a BLOB or CLOB, where the data
can then be manipulated

« Data that is appropriate for byte-stream access, such as multimedia

Any storage device accessed by your operating system can hold BFILE data, including hard
disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFILES provided the
operating system supports stream-mode access to the operating system files.

1-5

Chapter 1
LOB Locators

Note:

External LOBs do not participate in transactions. Any support for integrity and
durability must be provided by the underlying file system as governed by the
operating system.

1.5 LOB Locators

A LOB instance has a locator and a value.

A LOB locator is a reference to where the LOB value is physically stored. The LOB value is the
data stored in the LOB.

When you use a LOB in an operation such as passing a LOB as a parameter, you are actually
passing a LOB locator. For the most part, you can work with a LOB instance in your application
without being concerned with the semantics of LOB locators. There is no requirement to
dereference LOB locators, as is required with pointers in some programming languages.

¢ See Also:

e "LOB Locator and LOB Value"
e« "LOB Locators and BFILE Locators"

e "LOB Storage Parameters”

1.6 Database Semantics for Internal and External LOBSs

ORACLE

In all programmatic environments, database semantics differ between internal LOBs and
external LOBs as follows:

e Internal LOBs use copy semantics

With copy semantics, both the LOB locator and LOB value are logically copied during
insert, update, or assignment operations. This ensures that each table cell or each variable
containing a LOB, holds a unique LOB instance.

« External LOBs use reference semantics

With reference semantics, only the LOB locator is copied during insert operations. Note
that update operations do not apply to external LOBs because external LOBs are read-
only.

¢ See Also:
External LOBs and the BFILE Data Type

1-6

Chapter 1
Large Object Data Types

1.7 Large Object Data Types

The database provides a set of large object data types as SQL data types where the term LOB
generally refers to the set.

In general, the descriptions given for the data types in this table and related sections also apply
to the corresponding data types provided for other programmatic environments.

Table 1-1 describes each large object data type that the database supports and describes the
kind of data that uses it.

Table 1-1 Large Object Data Types

]
SQL Data Type Description

CLOB Character Large Object
Stores string data in the database character set format. Used for large strings or
documents that use the database character set exclusively. Characters in the
database character set are in a fixed width format.

NCLOB National Character Set Large Object
Stores string data in National Character Set format, typically large strings or
documents. Supports characters of varying width format.

BFILE External Binary File

A binary file stored outside of the database in the host operating system file
system, but accessible from database tables. BFEILES can be accessed from your
application on a read-only basis. Use BFILES to store static data, such as image
data, that is not manipulated in applications.

Any kind of data, that is, any operating system file, can be stored in a BFILE. For
example, you can store character data in a BFILE and then load the BFILE data
into a CLOB, specifying the character set upon loading.

1.8 About Object Data Types and LOBs

In general, there is no difference in the use of a LOB instance in a LOB column or as a
member of an object data type. When used in this guide, the term LOB attribute refers to a
LOB instance that is a member of an object data type. Unless otherwise specified, discussions
that apply to LOB columns also apply to LOB attributes.

1.9 Storage and Creation of Other Data Types with LOBs

ORACLE

You can use LOBs to create other user-defined data types or store other data types as LOBs.

These are examples of data types provided with the database that are stored or created with
LOB types.

Topics:
* VARRAYs Stored as LOBs

* VARRAYs Stored as LOBs
An instance of type VARRAY in the database is stored as an array of LOBs when you create
a table in the following scenarios:

1-7

Chapter 1
BasicFiles and SecureFiles LOBs

1.9.1 VARRAYs Stored as LOBs

An instance of type VARRAY in the database is stored as an array of LOBs when you create a
table in the following scenarios:

e If the VARRAY storage clause is not specified, and the declared size of varray data is more
than 4000 bytes: VARRAY varray item STORE AS

e If the VARRAY column properties are specified using the STORE AS LOB clause: VARRAY
varray item STORE AS LOB ...

1.10 BasicFiles and SecureFiles LOBs

BasicFiles LOB and SecureFiles LOB are the two storage types used with Oracle Database
12c.

Certain advanced features can be applied to SecureFiles LOBs, including compression and
deduplication (part of the Advanced Compression Option), and encryption (part of the
Advanced Security Option).

SecureFiles LOBs can only be created in a tablespace managed with Automatic Segment
Space Management (ASSM).

SecureFiles is the default storage mechanism for LOBs starting with Oracle Database 12c¢, and
Oracle strongly recommends SecureFiles for storing and managing LOBSs, rather then
BasicFiles. BasicFiles will be deprecated in a future release.

¢ See Also:

Using Oracle LOB Storage for a discussion of both storage types

1.11 Database File System (DBFS)

ORACLE

Database File System (DBFS) provides a file system interface to files that are stored in an
Oracle database.

Files stored in an Oracle database are usually stored as SecureFiles LOBs, and pathnames,
directories, and other filesystem information is stored in database tables. SecureFiles LOBs is
the default storage method for DBFS, but BasicFiles LOBs can be used in some situations.

¢ See Also:
What Is Database File System (DBFS)?

With DBFS, you can make references from SecureFiles LOB locators to files stored outside the
database. These references are called DBFS Links or Database File System Links.

1-8

Chapter 1
Database File System (DBFS)

See Also:

Database File System Links

ORACLE Lo

Working with LOBs

ORACLE

Working with LOBs for application development requires that you understand LOB semantics
and various techniques used with LOBs.

Most of the discussions regarding persistent LOBs assume that you are dealing with existing
LOBs in tables. The task of creating tables with LOB columns is typically performed by your
database administrator.

¢ See Also:

* Using Oracle LOB Storage for creating LOBs using the SecureFiles paradigm

* LOB Storage with Applications for storage parameters used in creating LOBs

Topics:

¢ LOB Column States

e Locking a Row Containing a LOB
e LOB Open and Close Operations
* LOB Locator and LOB Value

* LOB Locators and BFILE Locators
 LOB Access

 LOB Rules and Restrictions

e LOB Column States
The techniques you use when accessing a cell in a LOB column differ depending on the
state of the given cell.

* Locking a Row Containing a LOB
You can lock a row containing a LOB to prevent other database users from writing to the
LOB during a transaction.

* LOB Open and Close Operations
The LOB APIs include operations that enable you to explicitly open and close a LOB
instance.

* LOB Locator and LOB Value
You can use two different techniques to access and modify LOB values.

* LOB Locators and BFILE Locators
There are differences between the semantics of locators for the LOB types BLOB, CLOB, and
NCLOB, and the semantics of locators for the BFILE type:

« LOB Access

* LOB Rules and Restrictions
This section provides details on LOB rules and restrictions.

2-1

Chapter 2
LOB Column States

2.1 LOB Column States

The technigues you use when accessing a cell in a LOB column differ depending on the state
of the given cell.

A cell in a LOB Column can be in one of the following states:

NULL
The table cell is created, but the cell holds no locator or value.
Empty

A LOB instance with a locator exists in the cell, but it has no value. The length of the LOB
is zero.

Populated

A LOB instance with a locator and a value exists in the cell.

2.2 Locking a Row Containing a LOB

You can lock a row containing a LOB to prevent other database users from writing to the LOB
during a transaction.

To lock the row, specify the FOR UPDATE clause when you select the row. While the row is
locked, other users cannot lock or update the LOB until you end your transaction.

2.3 LOB Open and Close Operations

The LOB APIs include operations that enable you to explicitly open and close a LOB instance.

ORACLE

You can open and close a persistent LOB instance of any type: BLOB, CLOB, NCLOB, Or BFILE.
You open a LOB to achieve one or both of the following results:

Open the LOB in read-only mode

This ensures that the LOB (both the LOB locator and LOB value) cannot be changed in
your session until you explicitly close the LOB. For example, you can open the LOB to
ensure that the LOB is not changed by some other part of your program while you are
using the LOB in a critical operation. After you perform the operation, you can then close
the LOB.

Open the LOB in read write/mode, for persistent BLOB, CLOB, or NCLOB instances only

Opening a LOB in read/write mode defers any index maintenance on the LOB column until
you close the LOB. Opening a LOB in read/write mode is only useful if there is an
extensible index on the LOB column, and you do not want the database to perform index
maintenance every time you write to the LOB. This technique can increase the
performance of your application if you are doing several write operations on the LOB while
it is open.

If you open a LOB, then you must close the LOB at some point later in your session. This is the
only requirement for an open LOB. While a LOB instance is open, you can perform as many
operations as you want on the LOB—provided the operations are allowed in the given mode.

2-2

Chapter 2
LOB Locator and LOB Value

See Also:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces for more information
about usage of these APIs

2.4 LOB Locator and LOB Value

You can use two different techniques to access and modify LOB values.
Topics:

* Using the Data Interface for LOBs

* Use the LOB Locator to Access and Modify LOB Values

e Using the Data Interface for LOBs
You can perform bind and define operations on CLOB and BLOB columns in C applications
using the data interface for LOBs in OCI.

e Use the LOB Locator to Access and Modify LOB Values
You can use the LOB locator to access and modify LOB values.

2.4.1 Using the Data Interface for LOBs

You can perform bind and define operations on CLOB and BLOB columns in C applications using
the data interface for LOBs in OCI.

Using the data interface enables you to insert or select out data in a LOB column without using
a LOB locator as follows:

* Use a bind variable associated with a LOB column to insert character data into a CLOB, or
RAW data into a BLOB.

« Use a define operation to define an output buffer in your application that holds character
data selected from a CLOB or RAW data selected from a BLOB.

See Also:

Data Interface for Persistent LOBs for more information on implicit assignment of
LOBs to other data types

2.4.2 Use the LOB Locator to Access and Modify LOB Values

ORACLE

You can use the LOB locator to access and modify LOB values.

A LOB locator, which is a reference to the location of the LOB value, can access the value of a
LOB instanced stored in the database. Database tables store only locators in CLOB, BLOB,
NCLOB and BFILE columns.

Note the following with respect to LOB locators and values:

* LOB locators are passed to various LOB APIs to access or manipulate a LOB value.

A LOB locator can be assigned to any LOB instance of the same type.

2-3

Chapter 2
LOB Locators and BFILE Locators

« LOB instances are characterized as temporary or persistent, but the locator is not.

2.5 LOB Locators and BFILE Locators

There are differences between the semantics of locators for the LOB types BLOB, CLOB, and
NCLOB, and the semantics of locators for the BFILE type:

* For LOB types BLOB, CLOB, and NCLOB, the LOB column stores a locator to the LOB value.
Each LOB instance has its own distinct LOB locator and also a distinct copy of the LOB
value.

* For initialized BFILE columns, the row stores a locator to the external operating system file
that holds the value of the BFILE. Each BFILE instance in a given row has its own distinct
locator; however, two different rows can contain a BFILE locator that points to the same
operating system file.

Regardless of where the value of a LOB is stored, a locator is stored in the table row of any
initialized LOB column. Also, when you select a LOB from a table, the LOB returned is always
a temporary LOB.

Note:

When the term locator is used without an identifying prefix term, it refers to both LOB
locators and BFILE locators.

¢ See Also:

LOBs Returned from SQL Functions for more information on locators for temporary
LOBs

Topics:
e Table for LOB Examples: The PM Schema print_media Table
e LOB Column Initialization

e Table for LOB Examples: The PM Schema print_media Table
Many Oracle LOB examples use the print media table of the Oracle Database Sample
Schema pPM.

e LOB Column Initialization
LOB instances that are NULL do not have a locator.

2.5.1 Table for LOB Examples: The PM Schema print_media Table

ORACLE

Many Oracle LOB examples use the print media table of the Oracle Database Sample
Schema pM.

The print media table is defined as:

CREATE TABLE print media
(product id NUMBER (6)
, ad_id NUMBER (6)

2-4

Chapter 2
LOB Locators and BFILE Locators

, ad_composite BLOB

, ad_sourcetext CLOB

, ad_finaltext CLOB

, ad_fltextn NCLOB

, ad_textdocs ntab textdoc tab
, ad_photo BLOB

, ad_graphic BFILE

, ad_header adheader typ
)

NESTED TABLE ad textdocs ntab STORE AS textdocs nestedtab;

¢ See Also:

"Creating a Table Containing One or More LOB Columns" for information about
creating print media and its associated tables and files

2.5.2 LOB Column Initialization

LOB instances that are NULL do not have a locator.

Before you can pass a LOB instance to any LOB API routine, the instance must contain a
locator. For example, you can select a NULL LOB from a row, but you cannot pass the instance
to the PL/SQL DBMS LOB.READ procedure. You must initialize a LOB instance, which provides it
with a locator, to make it non-NULL. Then you can pass the LOB instance.

Topics:
e Initializing a Persistent LOB Column
e Initializing BFILES

e Initializing a Persistent LOB Column
Before you can start writing data to a persistent LOB using supported programmatic
environment interfaces such as PL/SQL, OCI, Visual Basic, or Java, you must make the
LOB column/attribute non-NULL.

e Initializing BFILESs
Before you can access BFILE values using LOB APIs, the BFILE column or attribute must
be made non-NULL.

2.5.2.1 Initializing a Persistent LOB Column

Before you can start writing data to a persistent LOB using supported programmatic
environment interfaces such as PL/SQL, OCI, Visual Basic, or Java, you must make the LOB
column/attribute non-NULL.

You can make a LOB column/attribute non-NULL by initializing the persistent LOB to empty,
using an INSERT/UPDATE statement with the function EMPTY BLOB for BLOBS or EMPTY CLOB for
CLOBS and NCLOBS.

ORACLE oE

ORACLE

Chapter 2
LOB Locators and BFILE Locators

Note:

You can use SQL to populate a LOB column with data even if it contains a NULL
value.

See Also:

e LOB Storage with Applications for more information on initializing LOB columns

e "Programmatic Environments That Support LOBs" for all supported interfaces

Running the EMPTY BLOB () or EMPTY CLOB () function in and of itself does not raise an
exception. However, using a LOB locator that was set to empty to access or manipulate the
LOB value in any PL/SQL DBMS LOB or OCI function raises an exception.

Valid places where empty LOB locators may be used include the VALUES clause of an INSERT
statement and the SET clause of an UPDATE statement.

¢ See Also:

» "Directory Objects" for details of CREATE DIRECTORY and BFILENAME usage

e Oracle Database SQL Language Reference, CREATE DIRECTORY statement

Note:

Character strings are inserted using the default character set for the instance.

The INSERT statement in the next example uses the print media table described in "Table for
LOB Examples: The PM Schema print_media Table" and does the following:

* Populates ad_sourcetext with the character string 'my Oracle'
* Sets ad composite, ad finaltext, and ad fltextn to an empty value
e Sets ad photo to NULL

* Initializes ad_graphic to point to the file my picture located under the logical directory
my directory object

CREATE OR REPLACE DIRECTORY my directory object AS 'oracle/work/tklocal';
INSERT INTO printimedia VALUES (1726, 1, EMPTY BLOB(),

'my Oracle', EMPTY CLOB(), EMPTY CLOB(),

NULL, NULL, BFILENAME ('my directory object', 'my picture'), NULL);

Similarly, the LOB attributes for the ad_header column in print media can be initialized to
NULL, empty, or a character/raw literal, which is shown in the following statement:

2-6

Chapter 2
LOB Access

INSERT INTO print media (product id, ad id, ad header)
VALUES (1726, 1, adheader typ('AD FOR ORACLE', sysdate,
'Have Grid', EMPTY BLOB()));

¢ See Also:

e "Inserting a Row by Selecting a LOB From Another Table"
e "Inserting a LOB Value Into a Table"

e "Inserting a Row by Initializing a LOB Locator Bind Variable"

"OCIlLobLocator Pointer Assignment" for details on LOB locator semantics in OCI

2.5.2.2 Initializing BFILES

Before you can access BFILE values using LOB APIs, the BFILE column or attribute must be
made non-NULL.

You can initialize the BFILE column to point to an external operating system file by using the
BFILENAME function.

¢ See Also:

"About Accessing BFILES" for more information on initializing BFILE columns

2.6 LOB Access

You can access a LOB instance with several techniques.
Topics:
e Accessing a LOB Using SQL

e Accessing a LOB Using the Data Interface

e Accessing a LOB Using the Locator Interface

e Accessing a LOB Using SQL
You can access LOBs using SQL.

e Accessing a LOB Using the Data Interface
You can access LOBs using the data interface.

e Accessing a LOB Using the Locator Interface
You can access and manipulate a LOB instance by passing the LOB locator to the LOB
APIs supplied with the database.

ORACLE .

Chapter 2
LOB Access

2.6.1 Accessing a LOB Using SQL

You can access LOBs using SQL.

The support for columns that use LOB data types that is built into many SQL functions enables
you to use SQL semantics to access LOB columns. In most cases, you can use the same SQL
semantics on a LOB column that you would use on a VARCHAR2 column.

¢ See Also:

For details on SQL semantics support for LOBs, see SQL Semantics and LOBs

2.6.2 Accessing a LOB Using the Data Interface

You can access LOBs using the data interface.

You can select a LOB directly into CHAR or RAW buffers using LONG-to-LOB APlIs in OCI and
PL/SQL interfaces. In the following PL/SQL example, ad_finaltext is selected into a VARCHAR2
buffer final ad.

DECLARE
final ad VARCHAR2 (32767);
BEGIN
SELECT ad finaltext INTO final ad FROM print media
WHERE product id = 2056 and ad id = 12001 ;
/* PUT_LINE can only output up to 255 characters at a time */

DBMS OUTPUT.PUT LINE (final ad);
/* more calls to read final ad */

END;

¢ See Also:

For more details on accessing LOBs using the data interface, see Data Interface for
Persistent LOBs

2.6.3 Accessing a LOB Using the Locator Interface

ORACLE

You can access and manipulate a LOB instance by passing the LOB locator to the LOB APIs
supplied with the database.

To access the LOB instance, use the extensive set of LOB APIs provided with each supported
programmatic environment. In OCI, a LOB locator is mapped to a locator pointer, which is used
to access the LOB value.

2-8

Chapter 2
LOB Rules and Restrictions

Note:

In all environments, including OCI, the LOB APIs operate on the LOB value implicitly
—there is no requirement to dereference the LOB locator.

See Also:

* Overview of Supplied LOB APIs

e "OCILobLocator Pointer Assignment" for details on LOB locator semantics in OCI

2.7 LOB Rules and Restrictions

This section provides details on LOB rules and restrictions.

Topics:

Rules for LOB Columns
Restrictions for LOB Operations
Rules for LOB Columns

Restrictions for LOB Operations
LOB operations have certain restrictions.

2.7.1 Rules for LOB Columns

LOB columns are subject to the following rules and restrictions:

ORACLE

You cannot specify a LOB as a primary key column.

Oracle Database has limited support for remote LOBs and ORA-22992 errors can occur
when remote LOBs are used in ways that are not supported.

Clusters cannot contain LOBSs, either as key or nonkey columns.
Even though compressed VARRAY data types are supported, they are less performant.

The following data structures are supported only as temporary instances. You cannot store
these instances in database tables:

— VARRAY of any LOB type

— VARRAY of any type containing a LOB type, such as an object type with a LOB attribute
— ANYDATA of any LOB type

— ANYDATA of any type containing a LOB

You cannot specify LOB columns in the ORDER BY clause of a query, the GROUP BY clause of
a query, or an aggregate function.

You cannot specify a LOB column in @ SELECT... DISTINCT Or SELECT... UNIQUE statement or
in a join. However, you can specify a LOB attribute of an object type column in a SELECT...

2-9

Chapter 2
LOB Rules and Restrictions

DISTINCT statement, a query that uses the UNION, or a MINUS set operator if the object type
of the column has a MAP or ORDER function defined on it.

The first (INITIAL) extent of a LOB segment must contain at least three database blocks.

The minimum extent size is 14 blocks. For an 8K block size (the default), this is equivalent
to 112K.

When creating an AFTER UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause.

You cannot specify a LOB column as part of an index key. However, you can specify a LOB
column in the indextype specification of a domain index. In addition, Oracle Text lets you
define an index on a CLOB column.

In an INSERT... AS SELECT operation, you can bind up to 4000 bytes of data to LOB columns
and attributes. There is no length restriction when you doINSERT... AS SELECT from one
table to another table using SQL with no bind variables.

If a table has both L.oNG and LOB columns, you cannot bind more than 4000 bytes of data
to both the L.oNG and LOB columns in the same SQL statement. However, you can bind
more than 4000 bytes of data to either the LONG or the LOB column.

Note:

For a table on which you have defined an AFTER UPDATE DML trigger, if you use OCI
functions or the DBMS LOB package to change the value of a LOB column or the LOB
attribute of an object type column, the database does not fire the DML trigger.

¢ See Also:

» Using Oracle LOB Storage for SecureFiles capabilities (encryption, compression,
and deduplication)

* Working with Remote LOB Columns for more information about Remote LOBS.
* Restrictions for LOBs in Partitioned Index-Organized Tables

» Migrating Columns from LONGs to LOBs for migration limitations on clustered
tables, domain indexes, and function-based indexes

* Unsupported Use of LOBs in SQL for restrictions on SQL semantics
* Restriction on First Extent of a LOB Segment

e The Data Interface Used with Remote LOBs

2.7.2 Restrictions for LOB Operations

LOB operations have certain restrictions.

General LOB restrictions include the following:

ORACLE

In SQL Loader, a field read from a LOB cannot be used as an argument to a clause.

2-10

ORACLE

Chapter 2
LOB Rules and Restrictions

Case-insensitive searches on CLOB columns often do not succeed. For example, to do a
case-insensitive search on a CLOB column:

ALTER SESSION SET NLS COMP=LINGUISTIC;
ALTER SESSION SET NLS SORT=BINARY CI;
SELECT * FROM ci test WHERE LOWER(clob col) LIKE 'aa%';

The select fails without the LOWER function. You can do case-insensitive searches with
Oracle Text or DBMS LOB.INSTR().

Session migration is not supported for BFILES in shared server (multithreaded server)
mode. This implies that operations on open BFILES can persist beyond the end of a call to
a shared server. In shared server sessions, BFILE operations are bound to one shared
server, they cannot migrate from one server to another.

Symbolic links are not allowed in the directory paths or file names when opening BFILEs.
The entire directory path and filename is checked and the following error is returned if any
symbolic link is found:

ORA-22288: file or LOB operation FILEOPEN failed soft link in path

¢ See Also:

» Database Ultilities for Loading Data into LOBs
* SQL Semantics and LOBs

2-11

Using Oracle LOB Storage

Oracle LOB storage has two types, SecureFiles LOB storage and BasicFiles LOB storage,
which are used with different types of tablespaces.

You design, create, and modify tables with LOB column types.
Topics:

* LOB Storage

e CREATE TABLE with LOB Storage

e ALTER TABLE with LOB Storage

* Initialization_ Compatibility_ and Upgrading

e Migrating Columns from BasicFiles LOBs to SecureFiles LOBs
e PL/SQL Packages for LOBs and DBFS

e LOB Storage
Earlier Oracle database releases supported only one type of LOB storage. In Oracle
Database 119, SecureFiles LOB storage was introduced; the original storage type was
given the name BasicFiles LOB storage and became the default.

e CREATE TABLE with LOB Storage
The CREATE TABLE statement works with LOB storage using parameters that are specific to
SecureFiles or BasicFiles LOB storage, or both.

e ALTER TABLE with LOB Storage
You can modify LOB storage with an ALTER TABLE statement and specific LOB-related

parameters.

e Initialization, Compatibility, and Upgrading
You must perform LOB initialization using appropriate compatibility parameters.

e Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

e PL/SQL Packages for LOBs and DBFS
There are PL/SQL packages that can be used with BasicFiles LOBs and SecureFiles
LOBs.

3.1 LOB Storage

ORACLE

Earlier Oracle database releases supported only one type of LOB storage. In Oracle Database
11g, SecureFiles LOB storage was introduced; the original storage type was given the name
BasicFiles LOB storage and became the default.

LOBs created using BasicFiles LOB storage became known as BasicFiles LOBs and LOBs
created using SecureFiles LOB storage were hamed SecureFiles LOBSs. The CREATE TABLE
statement added new keywords to indicate the differences: BASICFILE specifies BasicFiles
LOB storage and SECUREFILE specifies SecureFiles LOB storage.

3-1

Chapter 3
LOB Storage

Beginning with Oracle Database 12c, SecureFiles LOB storage became the default in the
CREATE TABLE statement. If no storage type is explicitly specified, new LOB columns use
SecureFiles LOB storage.

The term LOB can represent LOBs of either storage type unless the storage type is explicitly
indicated, by name or by reference to archiving or linking (can only apply to the SecureFiles
LOB storage type).

¢ See Also:

Initialization, Compatibility, and Upgrading for more information about Initialization
and compatibility.

The following sections discuss the two storage types in detail:

* BasicFiles LOB Storage
e SecureFiles LOB Storage

- BasicFiles LOB Storage
You must use BasicFiles LOB storage for LOB storage in tablespaces that are not
managed with Automatic Segment Space Management (ASSM).

e SecureFiles LOB Storage
SecureFiles LOBs can only be created in tablespaces managed with Automatic Segment
Space Management (ASSM), unlike BasicFiles LOB storage.

3.1.1 BasicFiles LOB Storage

You must use BasicFiles LOB storage for LOB storage in tablespaces that are not managed
with Automatic Segment Space Management (ASSM).

3.1.2 SecureFiles LOB Storage

ORACLE

SecureFiles LOBs can only be created in tablespaces managed with Automatic Segment
Space Management (ASSM), unlike BasicFiles LOB storage.

SecureFiles LOB storage is designed to provide much better performance and scalability
compared to BasicFiles LOBs and to meet or exceed the performance capabilities of traditional
network file systems.

SecureFiles LOB storage supports three features that are not available with the BasicFiles
LOB storage option: compression, deduplication, and encryption.

Oracle recommends that you enable compression, deduplication, and encryption through the
CREATE TABLE statement. If you enable these features through the ALTER TABLE statement, all
SecureFiles LOB data in the table is read, modified, and written; this can cause the database
to lock the table during a potentially lengthy operation, though there are online capabilities in
the ALTER TABLE statement which can help you avoid this issue.

Topics:
* About Advanced LOB Compression
* About Advanced LOB Deduplication

e About SecureFiles Encryption

3-2

Chapter 3
LOB Storage

* About Advanced LOB Compression
Advanced LOB Compression transparently analyzes and compresses SecureFiles LOB
data to save disk space and improve performance.

* About Advanced LOB Deduplication
Advanced LOB Deduplication enables Oracle Database to automatically detect duplicate
LOB data within a LOB column or partition, and conserve space by storing only one copy
of the data.

* About SecureFiles Encryption
SecureFiles Encryption introduces a new encryption facility for LOBs. The data is
encrypted using Transparent Data Encryption (TDE), which allows the data to be stored
securely, and still allows for random read and write access.

3.1.2.1 About Advanced LOB Compression

Advanced LOB Compression transparently analyzes and compresses SecureFiles LOB data to
save disk space and improve performance.

License Requirement: You must have a license for the Oracle Advanced Compression Option
to implement Advanced LOB Compression.

See Also:

* "CREATE TABLE with Advanced LOB Compression"
e "ALTER TABLE with Advanced LOB Compression"

3.1.2.2 About Advanced LOB Deduplication

Advanced LOB Deduplication enables Oracle Database to automatically detect duplicate LOB
data within a LOB column or partition, and conserve space by storing only one copy of the
data.

License Requirement: You must have a license for the Oracle Advanced Compression Option
to implement Advanced LOB Deduplication.

¢ See Also:

* "CREATE TABLE with Advanced LOB Deduplication”
* "ALTER TABLE with Advanced LOB Deduplication"

3.1.2.3 About SecureFiles Encryption

ORACLE

SecureFiles Encryption introduces a new encryption facility for LOBs. The data is encrypted
using Transparent Data Encryption (TDE), which allows the data to be stored securely, and still
allows for random read and write access.

License Requirement: You must have a license for the Oracle Advanced Security Option to
implement SecureFiles Encryption.

3-3

Chapter 3
CREATE TABLE with LOB Storage

¢ See Also:

e "CREATE TABLE with SecureFiles Encryption"
e "ALTER TABLE with SecureFiles Encryption"

3.2 CREATE TABLE with LOB Storage

ORACLE

The CREATE TABLE statement works with LOB storage using parameters that are specific to
SecureFiles or BasicFiles LOB storage, or both.

Example 3-1 provides the syntax for CREATE TABLE in Backus Naur (BNF) notation, with LOB-
specific parameters in bold.

The SHRINK option is not supported for SecureFiles LOBs.

¢ See Also:

e CREATE TABLE LOB Storage Parameters for parameter descriptions and the
CREATE TABLE Statement

e Oracle Database SQL Language Reference

Example 3-1 BNF for CREATE TABLE

CREATE [GLOBAL TEMPORARY | TABLE
[schema.]table OF
schema.]object type
(relational properties)]
ON COMMIT { DELETE | PRESERVE } ROWS]
OID clause]
OID index clause]
physical properties]
[table properties] ;
<relational properties> ::=
{ column definition
| { out of line constraint
| out of line ref constraint
| supplemental logging props
}

[
[
[
[
[
[

[, { column_definition
| { out of line constraint
| out of line ref constraint
| supplemental logging props
}
I...
<column definition> ::=
column data type [SORT]
[DEFAULT expr |

3-4

ORACLE

[ENCRYPT encryption spec]
[(inline constraint [inline constraint]
| inline ref constraint

]

<data type> ::=

{ Oracle built in datatypes
| ANSI supported datatypes
| user defined types

Oracle supplied types

|
}

<Oracle built in datatypes> ::=
character datatypes

number datatypes

long and raw datatypes
datetime datatypes

large object datatypes

rowid datatypes

{
|
|
|
|
|
}

<large object datatypes> ::=
{ BLOB | CLOB | NCLOB| BFILE }
<table properties> ::=

[
[
[
[
[
[
[
[

[

column properties]

table partitioning clauses]

CACHE | NOCACHE]

parallel clause]

ROWDEPENDENCIES | NOROWDEPENDENCIES]
enable disable clause]

enable disable clause]...

row movement clause]

AS subquery]

<column properties> ::=

{
|
|

|
}
[

object type col properties
nested table col properties
{ varray col properties | LOB storage clause }
[(LOB partition storage
[, LOB partition storage]...
)

]
XMLType column properties

{ object type col properties
| nested table col properties
| { varray col properties | LOB storage clause }

[(LOB partition storage

[, LOB partition storage]...
)

]
| XMLType column properties
}

l...
<LOB partition storage> ::=
PARTITION partition

{

[

LOB storage clause | varray col properties }

[LOB storage clause | varray col properties]...

(SUBPARTITION subpartition

Chapter 3
CREATE TABLE with LOB Storage

3-5

Chapter 3
CREATE TABLE with LOB Storage

{ LOB storage clause | varray col properties }
[LOB_storage clause
| varray col properties

l...

]
<LOB_storage clause> ::=
LOB
{ (LOB item [, LOB item]...)
STORE AS [SECUREFILE | BASICFILE | (LOB storage parameters)
| (LOB item)
STORE AS [SECUREFILE | BASICFILE]
{ LOB_segname (LOB storage parameters)
| LOB_ segname
| (LOB storage parameters)
}
}
<LOB storage parameters> ::=
{ TABLESPACE tablespace
| { LOB parameters [storage clause]
}
| storage clause
}
[TABLESPACE tablespace
| { LOB parameters [storage clause]
}
I,
<LOB parameters> ::=
[{ ENABLE | DISABLE } STORAGE IN ROW
| CHUNK integer
| PCTVERSION integer
| RETENTION [{ MAX | MIN integer | AUTO | NONE }]
| FREEPOOLS integer
| LOB deduplicate clause
| LOB compression clause
| LOB encryption clause
| { CACHE | NOCACHE | CACHE READS } [logging clause] } }

]
<logging clause> ::=
{ LOGGING | NOLOGGING | FILESYSTEM LIKE LOGGING }
<storage clause> ::=
STORAGE
({ INITIAL integer [K | M]
| NEXT integer [K | M]
MINEXTENTS integer
MAXEXTENTS { integer | UNLIMITED }
PCTINCREASE integer
FREELISTS integer
FREELIST GROUPS integer
OPTIMAL [integer [K | M]
| NULL
]
| BUFFER_POOL { KEEP | RECYCLE | DEFAULT }

[INITIAL integer [K | M]
| NEXT integer [K | M]

ORACLE 3-6

Chapter 3

CREATE TABLE with LOB Storage

MINEXTENTS integer
MAXEXTENTS { integer | UNLIMITED }
MAXSIZE { { integer { K | M | G | T | P } } | UNLIMITED }
PCTINCREASE integer
FREELISTS integer
FREELIST GROUPS integer
OPTIMAL [integer [K | M]
| NULL
]
| BUFFER_POOL { KEEP | RECYCLE | DEFAULT }
T.o..
)
<LOB deduplicate clause> ::=
{ DEDUPLICATE
| KEEP_DUPLICATES
}
<LOB compression clause> ::=
{ COMPRESS [HIGH | MEDIUM | LOW]
| NOCOMPRESS
}
<LOB encryption clause> ::=
{ ENCRYPT [USING 'encrypt algorithm']
[IDENTIFIED BY password]
| DECRYPT
}
<XMLType column properties> ::=
XMLTYPE [COLUMN] column
[XMLType storage]
[XMLSchema spec]
<XMLType storage> ::=

STORE AS

{ OBJECT RELATIONAL

| [SECUREFILE | BASICFILE] { CLOB | BINARY XML }
[{ LOB segname [(LOB parameters)]

| LOB parameters
}
]

<varray col properties> ::=

VARRAY varray item
{ [substitutable column clause]
STORE AS [SECUREFILE | BASICFILE] LOB
{ [LOB_segname] (LOB parameters)
| LOB segname

}

| substitutable column clause

}

e CREATE TABLE LOB Storage Parameters
The CREATE TABLE statement uses parameters relating to LOB storage, and more
specifically to either BasicFiles LOB or SecureFiles LOB.

» CREATE TABLE and SecureFiles LOB Features

Note usage notes and examples for SecureFiles LOBs used with theCREATE TABLE.

ORACLE

3-7

Chapter 3
CREATE TABLE with LOB Storage

3.2.1 CREATE TABLE LOB Storage Parameters

The CREATE TABLE statement uses parameters relating to LOB storage, and more specifically
to either BasicFiles LOB or SecureFiles LOB.

Table 3-1 summarizes the parameters of the CREATE TABLE statement that relate to LOB
storage, where necessary noting whether a parameter is specific to BasicFiles LOB or

SecureFiles LOB storage.

Table 3-1 Parameters of CREATE TABLE Statement Related to LOBs
]

Parameter

Description

BASICFILE

SECUREFILE

CHUNK

ORACLE

Specifies BasicFiles LOB storage, the original architecture for
LOBs.

If you set the compatibility mode to Oracle Database 119, then
BASICFILE functionality is enabled by default and specified for
completeness.

Starting with Oracle Database 12c, you must explicitly specify the
parameter BASICFILE to use the BasicFiles LOB storage type.
Otherwise, the CREATE TABLE statement uses SecureFiles LOB,
the current default.

For BasicFiles LOBs, specifying any of the SecureFiles LOB
options results in an error.

¢ See Also:

Initialization, Compatibility, and
Upgrading

Specifies SecureFiles LOBs storage.

Starting with Oracle Database 12c, the SecureFiles LOB storage
type, specified by the parameter SECUREFILE, is the default.

A SecureFiles LOB can only be created in a tablespace managed
with Automatic Segment Space Management (ASSM).

For BasicFiles LOBSs, specifies the chunk size when creating a table
that stores LOBs.

CHUNK is one or more Oracle blocks and corresponds to the data
size used by Oracle Database when accessing or modifying the
LOB.

For SecureFiles LOBs, it is an advisory size provided for backward
compatibility.

3-8

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

. ___|
Parameter Description

RETENTION Configures the LOB column to store old versions of LOB data in a
specified manner.

In Oracle Database Release 12c, this parameter specifies the
retention policy.

RETENTION has these possible values:

* MAX specifies that the system keep old versions of LOB data
blocks until the space used by the segment has reached the
size specified in the MAXSIZE parameter. If MAXSIZE is not
specified, MAX behaves like AUTO.

e MIN specifies that the system keep old versions of LOB data
blocks for the specified number of seconds.

* NONE specifies that there is no retention period and space can
be reused in any way deemed necessary.

e AUTO specifies that the system manage the space as efficiently
as possible weighing both time and space needs.

" See Also:

RETENTION Parameter for
BasicFiles LOBs for more information
about RETENTION parameter used
with BasicFiles LOBs.

MAXSIZE Specifies the upper limit of storage space that a LOB may use.

If this amount of space is consumed, new LOB data blocks are
taken from the pool of old versions of LOB data blocks as needed,
regardless of time requirements.

FREEPOOLS Specifies the number of FREELIST groups for BasicFiles LOBs, if
the database is in automatic undo mode. Under Release 12c
compatibility, this parameter is ignored when SecureFiles LOBs are
created.

ORACLE 29

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description
LOGGING, NOLOGGING, or Specifies logging options:
FILESYSTEM LIKE LOGGING - LOGGING specifies logging the creation of the LOB and

subsequent inserts into the LOB, in the redo log file. LOGGING
is the default.

* NOLOGGING specifies no logging.

e FILESYSTEM LIKE LOGGING specifies that the system only
logs the metadata. This is similar to metadata journaling of file
systems, which reduces mean time to recovery from failures.
FILESYSTEM LIKE LOGGING ensures that data is completely
recoverable (an instance recovery) after a server failure.

This option is invalid for BasicFiles LOBs.
For SecureFiles LOBs, the following applies:

* The NOLOGGING setting is converted internally to
FILESYSTEM LIKE LOGGING.

e The LOGGING setting is similar to the data journaling of file
systems.

. Both the LOGGING and FILESYSTEM LIKE LOGGING settings
provide a complete transactional file system.

For a non-partitioned object, the value specified for this clause is

the actual physical attribute of the segment associated with the

object.

For partitioned objects, the value specified for this clause is the

default physical attribute of the segments associated with all

partitions specified in the CREATE statement (and in subsequent

ALTER ... ADD PARTITION statements), unless you specify the

logging attribute in the PARTITION description.

CAUTION:

For LOB segments with NOLOGGING or
FILESYSTEM LIKE LOGGING settings, it is possible that data can
change on the disk during a backup operation. This results in read
inconsistency. To avoid this situation, ensure that changes to LOB
segments are saved in the redo log file by setting LOGGING for LOB
storage.

NOLOGGING and FILESYSTEM_LIKE_LOGGING SecureFiles are
recoverable after an instance failure, but not after a media failure.
LOGGING SecureFiles are recoverable after both instance and
media failures.

¢ See Also:

e Oracle Database Backup and
Recovery User’s Guide for a
discussion of data protection,
media failure, and instance
failure.

» LOGGING / NOLOGGING
Parameter for BasicFiles LOBs

e Ensuring Read Consistency

ORACLE 310

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

. ___|
Parameter Description

FREELISTS or FREELIST GROUPS Specifies the number of process freelists or freelist groups,
respectively, allocated to the segment; NULL for partitioned tables.
Under Release 12¢ compatibility, these parameters are ignored
when SecureFiles LOBs are created.

PCTVERSION Specifies the percentage of used BasicFiles LOB data space that
may be occupied by old versions of the LOB data pages.

Under Release 12c compatibility, this parameter is ignored when
SecureFiles LOBs are created.

COMPRESS or NOCOMPRESS The COMPRESS option turns on Advanced LOB Compression, and
NOCOMPRESS turns it off.

Note that setting table or index compression does not affect
Advanced LOB Compression.

DEDUPLICATE or The DEDUPLICATE option enables Advanced LOB Deduplication; it

KEEP_ DUPLICATES specifies that SecureFiles LOB data that is identical in two or more
rows in a LOB column, partition or subpartition must share the
same data blocks. The database combines SecureFiles LOBs with
identical content into a single copy, reducing storage and
simplifying storage management. The opposite of this option is
KEEP_DUPLICATES.

ENCRYPT or DECRYPT The ENCRYPT option turns on SecureFiles Encryption, and encrypts
all SecureFiles LOB data using Oracle Transparent Data Encryption
(TDE). The DECRYPT options turns off SecureFiles Encryption.

3.2.2 CREATE TABLE and SecureFiles LOB Features

Note usage notes and examples for SecureFiles LOBs used with theCREATE TABLE.

This section provides usage notes and examples for features specific to SecureFiles LOBs
used with CREATE TABLE.

Note:

Clauses in example discussions refer to the Backus Naur (BNF) notation
Example 3-1.

See Also:

CREATE TABLE LOB Storage Parameters for more information about parameters

Topics:

 CREATE TABLE with Advanced LOB Compression
« CREATE TABLE with Advanced LOB Deduplication
« CREATE TABLE with SecureFiles Encryption

ORACLE 311

Chapter 3
CREATE TABLE with LOB Storage

CREATE TABLE with Advanced LOB Compression
You can use Advanced LOB Compression with the CREATE TABLE statement under certain
circumstances.

CREATE TABLE with Advanced LOB Deduplication
You can use Advanced LOB Deduplication with the CREATE TABLE statement.

CREATE TABLE with SecureFiles Encryption
You can use SecureFiles Encryption with the CREATE TABLE statement.

3.2.2.1 CREATE TABLE with Advanced LOB Compression

You can use Advanced LOB Compression with the CREATE TABLE statement under certain
circumstances.

Topics:

Usage Notes for Advanced LOB Compression
Examples of CREATE TABLE and Advanced LOB Compression

Usage Notes for Advanced LOB Compression
Consider these issues when using the CREATE TABLE statement and Advanced LOB
Compression.

Examples of CREATE TABLE and Advanced LOB Compression
These examples demonstrate how to issue CREATE TABLE statements for specific
compression scenarios.

3.2.2.1.1 Usage Notes for Advanced LOB Compression

Consider these issues when using the CREATE TABLE statement and Advanced LOB
Compression.

ORACLE

Advanced LOB Compression is performed on the server and enables random reads and
writes to LOB data. Compression utilities on the client, like utl compress, cannot provide
random access.

Advanced LOB Compression does not enable table or index compression. Conversely,
table and index compression do not enable Advanced LOB Compression.

The Low, MEDIUM, and HIGH options provide varying degrees of compression. The higher
the compression, the higher the latency incurred. The HIGH setting incurs more work, but
compresses the data better. The default is MEDIUM.

The 1.ow compression option uses an extremely lightweight compression algorithm that
removes the majority of the CPU cost that is typical with file compression. Compressed
SecureFiles LOBs at the 1.ow level provide a very efficient choice for SecureFiles LOB
storage. SecureFiles LOBs compressed at 1.ow generally consume less CPU time and less
storage than BasicFiles LOBs, and typically help the application run faster because of a
reduction in disk /0.

Compression can be specified at the partition level. The CREATE TABLE
lob storage clause enables specification of compression for partitioned tables on a per-
partition basis.

The DBMS_LOB.SETOPTIONS procedure can enable and disable compression on individual
SecureFiles LOBs.

3-12

Chapter 3
CREATE TABLE with LOB Storage

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
DBMS_LOB.SETOPTIONS procedure

3.2.2.1.2 Examples of CREATE TABLE and Advanced LOB Compression

These examples demonstrate how to issue CREATE TABLE statements for specific compression
scenarios.

Example 3-2 Creating a SecureFiles LOB Column with LOW Compression

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
COMPRESS LOW
CACHE
NOLOGGING
)7

Example 3-3 Creating a SecureFiles LOB Column with MEDIUM (default) Compression

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
COMPRESS
CACHE
NOLOGGING
)

Example 3-4 Creating a SecureFiles LOB Column with HIGH Compression

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
COMPRESS HIGH
CACHE
);

Example 3-5 Creating a SecureFiles LOB Column with Disabled Compression

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
NOCOMPRESS
CACHE
);

Example 3-6 Creating a SecureFiles LOB Column with Compression on One Partition

CREATE TABLE tl1 (REGION VARCHAR2 (20), a BLOB)
LOB(a) STORE AS SECUREFILE (
CACHE

)
PARTITION BY LIST (REGION) (

PARTITION pl VALUES ('x', 'y')

LOB(a) STORE AS SECUREFILE (
COMPRESS
) r

PARTITION p2 VALUES (DEFAULT)

)i

ORACLE 313

Chapter 3
CREATE TABLE with LOB Storage

3.2.2.2 CREATE TABLE with Advanced LOB Deduplication

You can use Advanced LOB Deduplication with the CREATE TABLE Statement.
Topics:

* Usage Notes for Advanced LOB Deduplication

* Examples of CREATE TABLE and Advanced LOB Deduplication

e Usage Notes for Advanced LOB Deduplication
Consider these issues when using CREATE TABLE and Advanced LOB Deduplication.

e Examples of CREATE TABLE and Advanced LOB Deduplication
These examples demonstrate how to issue CREATE TABLE statements for specific
deduplication scenarios.

3.2.2.2.1 Usage Notes for Advanced LOB Deduplication

Consider these issues when using CREATE TABLE and Advanced LOB Deduplication.

» ldentical LOBs are good candidates for deduplication. Copy operations can avoid data
duplication by enabling deduplication.

« Duplicate detection happens within a LOB segment. Duplicate detection does not span
partitions or subpartitions for partitioned and subpartitioned LOB columns.

» Deduplication can be specified at a partition level. The CREATE TABLE lob_storage clause
enables specification for partitioned tables on a per-partition basis.

* The DBMS LOB.SETOPTIONS procedure can enable or disable deduplication on individual
LOBs.

3.2.2.2.2 Examples of CREATE TABLE and Advanced LOB Deduplication

ORACLE

These examples demonstrate how to issue CREATE TABLE statements for specific deduplication
scenarios.

Example 3-7 Creating a SecureFiles LOB Column with Deduplication

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
DEDUPLICATE
CACHE
)

Example 3-8 Creating a SecureFiles LOB Column with Disabled Deduplication

CREATE TABLE tl (a CLOB)
LOB(a) STORE AS SECUREFILE (
KEEP DUPLICATES
CACHE
);

Example 3-9 Creating a SecureFiles LOB Column with Deduplication on One Partition

CREATE TABLE tl (REGION VARCHAR2 (20), a BLOB)
LOB(a) STORE AS SECUREFILE (
CACHE

)
PARTITION BY LIST (REGION) (

3-14

Chapter 3
CREATE TABLE with LOB Storage

PARTITION pl VALUES ('x', 'y')
LOB(a) STORE AS SECUREFILE (
DEDUPLICATE
) ’
PARTITION p2 VALUES (DEFAULT)
)i

Example 3-10 Creating a SecureFiles LOB column with Deduplication Disabled on One
Partition

CREATE TABLE tl (REGION VARCHAR2 (20), ID NUMBER, a BLOB)
LOB(a) STORE AS SECUREFILE (
DEDUPLICATE
CACHE
)
PARTITION BY RANGE (REGION)
SUBPARTITION BY HASH(ID) SUBPARTITIONS 2 (
PARTITION pl VALUES LESS THAN (51)
lob(a) STORE AS a t2 pl
(SUBPARTITION t2 pl sl lob(a) STORE AS a t2 pl sl,
SUBPARTITION t2 pl s2 lob(a) STORE AS a t2 pl s2),
PARTITION p2 VALUES LESS THAN (MAXVALUE)
lob(a) STORE AS a t2 p2 (KEEP DUPLICATES)
(SUBPARTITION t2 p2 sl lob(a) STORE AS a t2 p2 sl,
SUBPARTITION t2 p2 s2 lob(a) STORE AS a t2 p2 s2)
)i

3.2.2.3 CREATE TABLE with SecureFiles Encryption

You can use SecureFiles Encryption with the CREATE TABLE statement.
Topics:

* Usage Notes for SecureFiles Encryption

« Examples of CREATE TABLE and SecureFiles Encryption

e Usage Notes for SecureFiles Encryption
Consider these issues when using CREATE TABLE and SecureFiles Encryptions

* Examples of CREATE TABLE and SecureFiles Encryption
These examples demonstrate how to issue CREATE TABLE statements for specific
encryption scenarios.

3.2.2.3.1 Usage Notes for SecureFiles Encryption

ORACLE

Consider these issues when using CREATE TABLE and SecureFiles Encryptions
e Transparent Data Encryption (TDE) supports encryption of LOB data types.

e Encryption is performed at the block level.

* The encrypt algorithmindicates the name of the encryption algorithm. Valid algorithms
are: AES192 (default), AES128, and AES256.

* The column encryption key is derived from PASSWORD, if specified.
* The default for LOB encryption is SALT. NO SALT is not supported.
e Al LOBs in the LOB column are encrypted.

° DECRYPT keeps the LOBs in clear text.

3-15

Chapter 3
CREATE TABLE with LOB Storage

* LOBs can be encrypted only on a per-column basis, similar to TDE. All partitions within a
LOB column are encrypted.

* Key management controls the ability to encrypt or decrypt.

* TDE is not supported by the traditional import and export utilities or by transportable-
tablespace-based export. Use the Data Pump expdb and impdb utilities with encrypted
columns instead.

¢ See Also:

"Oracle Database Advanced Security Guide for information about using the
ADMINISTER KEY MANAGEMENT Statement to create TDE keystores

3.2.2.3.2 Examples of CREATE TABLE and SecureFiles Encryption

These examples demonstrate how to issue CREATE TABLE statements for specific encryption
scenarios.

Example 3-11 Creating a SecureFiles LOB Column with a Specific Encryption
Algorithm

CREATE TABLE tl (a CLOB ENCRYPT USING 'AES128')
LOB(a) STORE AS SECUREFILE (
CACHE
)

Example 3-12 Creating a SecureFiles LOB column with encryption for all partitions

CREATE TABLE tl1 (REGION VARCHAR2 (20), a BLOB)
LOB(a) STORE AS SECUREFILE (
ENCRYPT USING 'AES128'
NOCACHE
FILESYSTEM LIKE LOGGING
)
PARTITION BY LIST (REGION) (
PARTITION pl VALUES ('x', 'y'),
PARTITION p2 VALUES (DEFAULT)
)i

Example 3-13 Creating a SecureFiles LOB Column with Encryption Based on a
Password Key

CREATE TABLE tl (a CLOB ENCRYPT IDENTIFIED BY foo)
LOB(a) STORE AS SECUREFILE (
CACHE
)i

The following example has the same result because the encryption option can be set in the
LOB_deduplicate clause section of the statement:

CREATE TABLE tl1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
CACHE
ENCRYPT
IDENTIFIED BY foo
)i

ORACLE 316

Chapter 3
ALTER TABLE with LOB Storage

Example 3-14 Creating a SecureFiles LOB Column with Disabled Encryption

CREATE TABLE tl1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
CACHE DECRYPT
)

3.3 ALTER TABLE with LOB Storage

You can modify LOB storage with an ALTER TABLE statement and specific LOB-related
parameters.

Topics:

e About ALTER TABLE and LOB Storage

* BNF for the ALTER TABLE Statement

e ALTER TABLE LOB Storage Parameters
 ALTER TABLE SecureFiles LOB Features

e About ALTER TABLE and LOB Storage
You can use ALTER TABLE to enable compression, deduplication, or encryption features for
a LOB column.

* BNF for the ALTER TABLE Statement
This Backus Naur (BNF) notation provides the syntax for ALTER TABLE with LOB-specific
parameters in bold.

e ALTER TABLE LOB Storage Parameters
You must use specific parameters of the ALTER TABLE statement that relate to LOB
storage.

e ALTER TABLE SecureFiles LOB Features
Certain features specific to SecureFiles LOBs work with the ALTER TABLEStatement.

3.3.1 About ALTER TABLE and LOB Storage

You can use ALTER TABLE to enable compression, deduplication, or encryption features for a
LOB column.

The ALTER TABLE Statement supports online operations and Oracle Database supports parallel
operations on SecureFiles LOBs columns, making this a resource-efficient approach.

As an alternative to ALTER TABLE, you can use online redefinition to enable one or more of
these features. As with ALTER TABLE, online redefinition of SecureFiles LOB columns can be
executed in parallel.

Note that the SHRINK option is not supported for SecureFiles LOBs.

ORACLE 3-17

Chapter 3
ALTER TABLE with LOB Storage

See Also:

e Oracle Database SQL Language Reference for more information about ALTER
TABLE statement

e Migrating Columns from BasicFiles LOBs to SecureFiles LOBs for more
information about online redefinition

e Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS REDEFINITION package

3.3.2 BNF for the ALTER TABLE Statement

This Backus Naur (BNF) notation provides the syntax for ALTER TABLE with LOB-specific
parameters in bold.

¢ See Also:

e CREATE TABLE LOB Storage Parameters for parameter descriptions

e Oracle Database SQL Language Reference for more information about ALTER TABLE
statement

ALTER TABLE [schema.]table
alter table properties
column_clauses

constraint clauses

alter table partitioning
alter external table clauses
move table clause

enable disable clause

{ ENABLE | DISABLE }

TABLE LOCK | ALL TRIGGERS }
enable disable clause

{ ENABLE | DISABLE }

TABLE LOCK | ALL TRIGGERS }

;

column_clauses> ::=

{ add _column clause
modify column clause
drop_column clause

add _column clause
modify column clause
drop_column clause

rename_column clause
modify collection retrieval
modify collection retrieval]...

e e e U A e e e e e

ORACLE 318

Chapter 3
ALTER TABLE with LOB Storage

| modify LOB storage clause

[modify LOB storage clause]

| alter varray col properties

[alter varray col properties]
}

<modify LOB storage clause> ::=

MODIFY LOB (LOB item) (modify LOB parameters)
<modify LOB parameters> ::=

{ storage clause

| PCTVERSION integer

| FREEPOOLS integer

| REBUILD FREEPOOLS

| LOB retention clause

| LOB deduplicate clause

| LOB compression clause

| { ENCRYPT encryption_spec | DECRYPT }

| { CACHE

| { NOCACHE | CACHE READS } [logging clause]
}

|

|

|

}

allocate extent clause
shrink clause
deallocate unused clause

3.3.3 ALTER TABLE LOB Storage Parameters

You must use specific parameters of the ALTER TABLE statement that relate to LOB storage.

Parameters may be specific to BasicFiles LOB or SecureFiles LOB storage, as indicated.

Table 3-2 Parameters of ALTER TABLE Statement Related to LOBs

. ___|
Parameter Description

RETENTION Configures the LOB column to store old versions of LOB data in a
specified manner. Altering RETENTION only affects space created
after the ALTER TABLE statement runs.

COMPRESS or NOCOMPRESS Enables or disables Advanced LOB Compression. All LOBs in the
LOB segment are altered with the new setting.

DEDUPLICATE or Enables or disables Advanced LOB Deduplication.

KEEP_DUPLICATES The option DEDUPLICATE enables you to specify that LOB data that

is identical in two or more rows in a LOB column share the same
data blocks. The database combines LOBs with identical content
into a single copy, reducing storage and simplifying storage

management. The opposite of this option is KEEP_DUPLICATES.

ENCRYPT or DECRYPT Enables or disables SecureFiles LOB encryption. Alters all LOBs in
the LOB segment with the new setting. A LOB segment can be only
altered to enable or disable LOB encryption. That is, ALTER cannot
be used to update the encryption algorithm or the encryption key.
Update the encryption algorithm or encryption key using the ALTER
TABLE REKEY syntax.

ORACLE 319

Chapter 3
ALTER TABLE with LOB Storage

3.3.4 ALTER TABLE SecureFiles LOB Features

Certain features specific to SecureFiles LOBs work with the ALTER TABLEStatement.

These SecureFiles LOBs features work with ALTER TABLE as described in the usage notes and
examples.

< Note:

Clauses in example discussions refer to the Backus Naur (BNF) notation "BNF for
the ALTER TABLE Statement".

Parameters are described in "ALTER TABLE LOB Storage Parameters".

Topics:

ALTER TABLE with Advanced LOB Compression
ALTER TABLE with Advanced LOB Deduplication
ALTER TABLE with SecureFiles Encryption

ALTER TABLE with Advanced LOB Compression
Advanced LOB Compression works with the ALTER TABLE Statement.

ALTER TABLE with Advanced LOB Deduplication
Advanced LOB Deduplication works with the ALTER TABLE Statement.

ALTER TABLE with SecureFiles Encryption
SecureFiles Encryption works with the ALTER TABLE statement.

3.3.4.1 ALTER TABLE with Advanced LOB Compression

Advanced LOB Compression works with the ALTER TABLE statement.

Topics:

Usage Notes for Advanced LOB Compression
Examples of ALTER TABLE and Advanced LOB Compression

Usage Notes for Advanced LOB Compression
Consider these issues when using ALTER TABLE and Advanced LOB Compression.

Examples of ALTER TABLE and Advanced LOB Compression
These examples demonstrate how to issue ALTER TABLE statements for specific
compression scenarios.

3.3.4.1.1 Usage Notes for Advanced LOB Compression

ORACLE

Consider these issues when using ALTER TABLE and Advanced LOB Compression.

This syntax alters the compression mode of the LOB column.

The DBMS_LOB.SETOPTIONS procedure can enable or disable compression on individual
LOBs.

Compression may be specified either at the table level or the partition level.

3-20

Chapter 3
ALTER TABLE with LOB Storage

e The Low, MEDIUM, and HIGH options provide varying degrees of compression. The higher
the compression, the higher the latency incurred. The HIGH setting incurs more work, but
compresses the data better. The default is MEDIUM.

See Also:
CREATE TABLE with Advanced LOB Compression

3.3.4.1.2 Examples of ALTER TABLE and Advanced LOB Compression

These examples demonstrate how to issue ALTER TABLE statements for specific compression
scenarios.

Example 3-15 Altering a SecureFiles LOB Column to Enable LOW Compression

ALTER TABLE tl MODIFY
LOB(a) (
COMPRESS LOW
)

Example 3-16 Altering a SecureFiles LOB Column to Disable Compression

ALTER TABLE tl MODIFY
LOB(a) (
NOCOMPRESS
);

Example 3-17 Altering a SecureFiles LOB Column to Enable HIGH Compression

ALTER TABLE tl1 MODIFY
LOB(a) (
COMPRESS HIGH
)

Example 3-18 Altering a SecureFiles LOB Column to Enable Compression on One
partition

ALTER TABLE tl MODIFY PARTITION pl
LOB(a) (
COMPRESS HIGH
);

3.3.4.2 ALTER TABLE with Advanced LOB Deduplication

ORACLE

Advanced LOB Deduplication works with the ALTER TABLE statement.
Topics:

e Usage Notes for Advanced LOB Deduplication

* Examples of ALTER TABLE and Advanced LOB Deduplication

* Usage Notes for Advanced LOB Deduplication
Consider these issues when using ALTER TABLE and Advanced LOB Deduplication.

e Examples of ALTER TABLE and Advanced LOB Deduplication
These examples demonstrate how to issue ALTER TABLE statements for specific
deduplication scenarios.

3-21

Chapter 3
ALTER TABLE with LOB Storage

3.3.4.2.1 Usage Notes for Advanced LOB Deduplication

Consider these issues when using ALTER TABLE and Advanced LOB Deduplication.

e The ALTER TABLE syntax can enable or disable LOB-level deduplication.
* This syntax alters the deduplication mode of the LOB column.

* The DBMS LOB.SETOPTIONS procedure can enable or disable deduplication on individual
LOBs.

» Deduplication can be specified at a table level or partition level. Deduplication does not
span across partitioned LOBs.

3.3.4.2.2 Examples of ALTER TABLE and Advanced LOB Deduplication

These examples demonstrate how to issue ALTER TABLE statements for specific deduplication
scenarios.

Example 3-19 Altering a SecureFiles LOB Column to Disable Deduplication

ALTER TABLE tl1 MODIFY
LOB(a) (
KEEP DUPLICATES
) ;
Example 3-20 Altering a SecureFiles LOB Column to Enable Deduplication

ALTER TABLE tl MODIFY
LOB(a) (
DEDUPLICATE
);

Example 3-21 Altering a SecureFiles LOB Column to Enable Deduplication on One
Partition

ALTER TABLE tl MODIFY PARTITION pl
LOB(a) (
DEDUPLICATE
)

3.3.4.3 ALTER TABLE with SecureFiles Encryption

SecureFiles Encryption works with the ALTER TABLE statement.
Topics:

* Usage Notes for SecureFiles Encryption

e Examples of ALTER TABLE and SecureFiles Encryption

e Usage Notes for SecureFiles Encryption
Consider these issues when using ALTER TABLE and SecureFiles Encryption.

* Examples of ALTER TABLE and SecureFiles Encryption
These examples demonstrate how to issue ALTER TABLE statements for specific encryption
scenarios.

3.3.4.3.1 Usage Notes for SecureFiles Encryption

Consider these issues when using ALTER TABLE and SecureFiles Encryption.

ORACLE 399

Chapter 3
Initialization, Compatibility, and Upgrading

e ALTER TABLE enables and disables SecureFiles Encryption. This syntax also allows the
user to re-key LOB columns with a new key or algorithm.

e ENCRYPT and DECRYPT options enable or disable encryption on all LOBs in the specified
SecureFiles LOB column.

e The default for LOB encryption is SALT. NO SALT is not supported.
e The DECRYPT option converts encrypted columns to clear text form.
* Key management controls the ability to encrypt or decrypt.

* LOBs can be encrypted only on a per-column basis. A partitioned LOB has either all
partitions encrypted or not encrypted.

3.3.4.3.2 Examples of ALTER TABLE and SecureFiles Encryption

These examples demonstrate how to issue ALTER TABLE statements for specific encryption
scenarios.

Example 3-22 Altering a SecureFiles LOB Column by Encrypting Based on a Specific
Algorithm

Enable LOB encryption using AES256.

ALTER TABLE tl MODIFY
(a CLOB ENCRYPT USING 'AES256');

This is another example of enabling LOB encryption using AES256.

ALTER TABLE t1 MODIFY LOB(a)
(ENCRYPT USING 'AES256');

Example 3-23 Altering a SecureFiles LOB Column by Encrypting Based on a Password
Key

Enable encryption on a SecureFiles LOB column and build the encryption key using a
password.

ALTER TABLE tl MODIFY
(a CLOB ENCRYPT IDENTIFIED BY foo);

Example 3-24 Altering a SecureFiles LOB Column by Re-keying the Encryption

To re-encrypt the LOB column with a new key, re-key the table.

ALTER TABLE tl1 REKEY USING 'AES256';

3.4 Initialization, Compatibility, and Upgrading

ORACLE

You must perform LOB initialization using appropriate compatibility parameters.
Topics:

e Compatibility and Upgrading

* Initialization Parameter for SecureFiles LOBs

e Compatibility and Upgrading
All features described in this document are enabled with compatibility setto 11.2.0.0.0 or
higher. There is no downgrade capability after 11.2.0.0.0 is set.

3-23

Chapter 3
Initialization, Compatibility, and Upgrading

e Initialization Parameter for SecureFiles LOBs
You, as database administrator, using the DB_SECUREFILE initialization parameter, can
modify the initial settings that the COMPATIBILITY parameter sets as default.

3.4.1 Compatibility and Upgrading

All features described in this document are enabled with compatibility setto 11.2.0.0.0 or
higher. There is no downgrade capability after 11.2.0.0.0 is set.

If you want to upgrade BasicFiles LOBs to SecureFiles LOBs, you must use typical methods
for upgrading data (CTAS/ITAS, online redefinition, export/import, column to column copy, or
using a view and a new column). Most of these solutions require twice the disk space used by
the data in the input LOB column. However, partitioning and taking these actions on a partition-
by-partition basis lowers the disk space requirements.

3.4.2 Initialization Parameter for SecureFiles LOBS

ORACLE

You, as database administrator, using the DB_SECUREFILE initialization parameter, can modify
the initial settings that the COMPATIBILITY parameter sets as default.

By changing the intial settings, you change the circumstances under which SecureFiles LOBs
or BasicFiles LOBs are created or allowed. The DB _SECUREFILE parameter is typically set in the
file init.ora.

¢ See Also:

e Oracle Database Reference

e Compatibility and Upgrading

The DB SECUREFILE initialization parameter is dynamic and can be modified with the ALTER
SYSTEM statement. Example 3-25 shows the format for changing the parameter value:

The valid values for DB SECUREFILE are:

° NEVER prevents SecureFiles LOBs from being created. If NEVER is specified, any LOBs that
are specified as SecureFiles LOBs are created as BasicFiles LOBs. If storage options are
not specified, the BasicFiles LOB defaults are used. All SecureFiles LOB-specific storage
options and features such as compress, encrypt, or deduplicate throw an exception.

e IGNORE disallows SecureFiles LOBs and ignores any errors that forcing BasicFiles LOBs
with SecureFiles LOBs options might cause. If IGNORE is specified, the SECUREFILE
keyword and all SecureFiles LOB options are ignored.

e PERMITTED allows SecureFiles LOBs to be created, if specified by users. Otherwise,
BasicFiles LOBs are created.

e PERFERRED attempts to create a SecureFiles LOB unless BasicFiles LOB is explicitly
specified for the LOB or the parent LOB (if the LOB is in a partition or sub-partition).
PREFERRED is the default value starting with Oracle Database 12c.

° ALWAYS attempts to create SecureFiles LOBs but creates any LOBS not in ASSM
tablespaces as BasicFiles LOBs, unless the SECUREFILE parameter is explicitly specified.
Any BasicFiles LOB storage options specified are ignored, and the SecureFiles LOB
defaults are used for all storage options not specified.

3-24

Chapter 3
Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

° FORCE attempts to create all LOBs as SecureFiles LOBs even if users specify BASICFILE.
This option is not recommended. Instead, PREFERRED or ALWAYS should be used.

Example 3-25 Setting DB_SECUREFILE parameter through ALTER SYSTEM

ALTER SYSTEM SET DB SECUREFILE = 'ALWAYS';

3.5 Migrating Columns from BasicFiles LOBs to SecureFiles

LOBs

You can use several methods of migrating LOBs columns.

Topics:

e Preventing Generation of REDO Data When Migrating to SecureFiles LOBs
* Online Redefinition for BasicFiles LOBs

e Online Redefinition Example for Migrating Tables with BasicFiles LOBs

e Redefining a SecureFiles LOB in Parallel

* Preventing Generation of REDO Data When Migrating to SecureFiles LOBs
Migrating BasicFiles LOB columns generates redo data, which can cause performance
problems.

e Online Redefinition for BasicFiles LOBs
Online redefinition is the recommended method for migration of BasicFiles LOBs to
SecureFiles LOBs.

e Online Redefinition Example for Migrating Tables with BasicFiles LOBs
You can migrate a table using Online Redefinition.

* Redefining a SecureFiles LOB in Parallel
You can redefine a SecureFiles LOB column in parallel, if the system has sufficient
resources for parallel execution.

3.5.1 Preventing Generation of REDO Data When Migrating to SecureFiles

LOBs

ORACLE

Migrating BasicFiles LOB columns generates redo data, which can cause performance
problems.

Redo changes for the table are logged during the migration process if the CREATE TABLE
statement had the LOGGING clause set.

Redo changes for a column being converted from BasicFiles LOB to SecureFiles LOB are
logged if LOGGING is the storage setting for the SecureFiles LOB column. The logging setting
(LOGGING or NOLOGGING) for the LOB column is inherited from the tablespace in which the LOB
is created.

You can prevent redo space generation during migration to SecureFiles LOB.
* Specify the NOLOGGING storage parameter for any new SecureFiles LOB columns.

You may turn LOGGING on when the migration is complete.

3-25

Chapter 3
Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

3.5.2 Online Redefinition for BasicFiles LOBs

Online redefinition is the recommended method for migration of BasicFiles LOBs to
SecureFiles LOBs.

You can perform online redefinition at the table or partition level.

Online Redefinition Advantage

* No requirement to take the table or partition offline
e Can be done in parallel

Online Redefinition Disadvantages

e Additional storage equal to the entire table or partition required and all LOB segments must
be available

e Global indexes must be rebuilt

3.5.3 Online Redefinition Example for Migrating Tables with BasicFiles

LOBs

ORACLE

You can migrate a table using Online Redefinition.

Online Redefinition has the advantage of not requiring the table to be off line, but it requires
additional free space equal to or even slightly greater than the space used by the table.
Example 3-26 demonstrates how to migrate a table using Online Redefinition.

Example 3-26 Example of Online Redefinition

REM Grant privileges required for online redefinition.
GRANT EXECUTE ON DBMS REDEFINITION TO pm;
GRANT ALTER ANY TABLE TO pm;
GRANT DROP ANY TABLE TO pm;
GRANT LOCK ANY TABLE TO pm;
GRANT CREATE ANY TABLE TO pm;
GRANT SELECT ANY TABLE TO pm;
REM Privileges required to perform cloning of dependent objects.
GRANT CREATE ANY TRIGGER TO pm;
GRANT CREATE ANY INDEX TO pm;
CONNECT pm
// ALTER SESSION FORCE parallel dml;
DROP TABLE cust;
CREATE TABLE cust(c_id NUMBER PRIMARY KEY,
c_zip NUMBER,
C_nhame VARCHAR (30) DEFAULT NULL,
c lob CLOB
)
INSERT INTO cust VALUES (1, 94065, 'hhh', 'ttt');
-- Creating Interim Table
-- There is no requirement to specify constraints because they are
-- copied over from the original table.
CREATE TABLE cust_int(c_id NUMBER NOT NULL,
c_zip NUMBER,
C_nhame VARCHAR (30) DEFAULT NULL,
c lob CLOB
) LOB(c_lob) STORE AS SECUREFILE (NOCACHE FILESYSTEM_LIKE_LOGGING);
DECLARE

3-26

Chapter 3
PL/SQL Packages for LOBs and DBFS

col mapping VARCHAR2 (1000);
BEGIN
-- map all the columns in the interim table to the original table
col mapping :=
'c id ¢ id , '[|
'c_ zip c_zip , '||
'c_name c name, '||
'c_lob ¢ lob';
DBMS REDEFINITION.START REDEF TABLE('pm', 'cust', 'cust int', col mapping);
END;

/
DECLARE
error _count pls integer := 0;
BEGIN
DBMS REDEFINITION.COPY TABLE DEPENDENTS('pm', 'cust', 'cust int',
1, TRUE, TRUE, TRUE,FALSE, error count);
DBMS OUTPUT.PUT LINE('errors := ' || TO CHAR(error count));
END;
/

EXEC DBMS REDEFINITION.FINISH REDEF TABLE('pm', 'cust', 'cust int');
-- Drop the interim table

DROP TABLE cust int;

DESC cust;

-- The following insert statement fails. This illustrates

-- that the primary key constraint on the c_id column is

-- preserved after migration.

INSERT INTO cust VALUES (1, 94065, 'hhh', 'ttt');

SELECT * FROM cust;

3.5.4 Redefining a SecureFiles LOB in Parallel

You can redefine a SecureFiles LOB column in parallel, if the system has sufficient resources
for parallel execution.

To set up parallel execution of online redefinition, run ALTER SESSION.

* Add the following statement after the connect statementExample 3-26 in the last section:

ALTER SESSION FORCE PARALLEL DML;

3.6 PL/SQL Packages for LOBs and DBFS

ORACLE

There are PL/SQL packages that can be used with BasicFiles LOBs and SecureFiles LOBs.
Changes made to accommodate SecureFiles LOBs and DBFS are emphasized.

Topics:

« The DBMS_L OB Package Used with SecureFiles LOBs and DBFS

- DBMS_LOB Constants Used with SecureFiles LOBs and DBFS

« DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS

« DBMS_SPACE Package

¢ The DBMS_LOB Package Used with SecureFiles LOBs and DBFS
The DBMS_LOB package provides subprograms to operate on, or access and manipulate
specific parts of a LOB or complete LOBs.

- DBMS_LOB Constants Used with SecureFiles LOBs and DBFS
Certain constants support DBFS link interfaces.

3-27

Chapter 3
PL/SQL Packages for LOBs and DBFS

e DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS
You should note that some changes have been made to the DBMS LOB subprograms over
time.

« DBMS_SPACE Package
You can analyze segment growth and space requirements using the DBMS SPACE PL/SQL
package.

3.6.1 The DBMS_LOB Package Used with SecureFiles LOBs and DBFS

The DBMS_LOB package provides subprograms to operate on, or access and manipulate
specific parts of a LOB or complete LOBs.

The DBMS_LOB package applies to both SecureFiles LOB and BasicFiles LOB.

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS and DBMS_LOB
Subprograms Used with SecureFiles LOBs and DBFS describe modifications made to the
DBMS LOB constants and subprograms with the addition of SecureFiles LOB and Database File
System (DBFS).

See Also:

e Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS LOB package

e Introducing the Database File System

3.6.2 DBMS_LOB Constants Used with SecureFiles LOBs and DBFS

ORACLE

Certain constants support DBFS link interfaces.

Table 3-3 lists constants that support DBFS Link interfaces.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for complete information
about constants used in the PL/SQL DBMS LOB package

Table 3-3 DBMS_LOB Constants That Support DBFS Link Interfaces

. ___|
Constant Description

DBFS_LINK NEVER DBFS link state value

DBFS_LINK YES DBFS link state value

DBFS_LINK NO DBFS link state value

3-28

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-3 (Cont.) DBMS_LOB Constants That Support DBFS Link Interfaces

. ___|
Constant Description

DBFS LINK CACHE Flag used by COPY DBFS LINK() and MOVE DBFS LINK().

DBFS LINK NOCACHE Flag used by COPY DBFS LINK() and MOVE DBFS LINK().

DBFS_LINK_PATH MAX SIZE The maximum length of DBFS pathnames; 1024.

CONTENTTYPE MAX SIZE The maximum 1-byte ASCII characters for content type; 128.

3.6.3 DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS

ORACLE

You should note that some changes have been made to the DBMS LOB subprograms over time.
Table 3-4 summarizes changes made to PL/SQL package DBMS LOB subprograms.

Be aware that some of the DBMS_ LOB operations that existed before Oracle Database 11g
Release 2 throw an exception error if the LOB is a DBFS link. To remedy this problem, modify
your applications to explicitly replace the DBFS link with a LOB by calling the

DBMS LOB.COPY FROM LINK procedure before they make these calls. When the call completes,
then the application can move the updated LOB back to DBFS using the

DBMS LOB.MOVE TO DBFS LINK procedure, if necessary.

Other DBMS LOB operations that existed before Oracle Database 11g Release 2 work
transparently if the DBFS Link is in a file system that supports streaming. Note that these
operations fail if streaming is either not supported or disabled.

Table 3-4 DBMS_LOB Subprograms

Subprogram Description
APPEND Appends the contents of the source LOB to the destination LOB
¢ See Also:
Oracle Database PL/SQL Packages and
Types Reference
COMPARE Compares two LOBs in full or in parts

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

3-29

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

. ___|
Subprogram Description

CONVERTTOBLOB Converts the character data of a CLOB or NCLOB into the specified
character set and writes it in binary format to a destination BLOB

" See Also:

Oracle Database PL/SQL Packages and
Types Reference

CONVERTTOCLOB Converts the binary data of a BLOB into the specified character set and
writes it in character format to a destination CLOB or NCLOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

COPY Copies all or part of the source LOB to the destination LOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

COPY DBFS LINK Copies an existing DBFS link into a new LOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

COPY FROM DBFS LINK Copies the specified LOB data from DBFS HSM Store into the
database

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

ORACLE 330

ORACLE

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms
]

Subprogram

Description

DBFS LINK GENERATE PATHN

AME

ERASE

FRAGMENT DELETE

FRAGMENT INSERT

FRAGMENT MOVE

Returns a unique file path name for creating a DBFS Link

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

Erases all or part of a LOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

Deletes a specified fragment of the LOB

See Also:

Oracle Database PL/SQL Packages and
Types Reference

Inserts a fragment of data into the LOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

Moves a fragment of a LOB from one location in the LOB to another
location

See Also:

Oracle Database PL/SQL Packages and
Types Reference

3-31

ORACLE

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

. ___|
Subprogram Description

FRAGMENT REPLACE Replaces a fragment of a LOB with new data

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

GET DBFS LINK Returns the DBFS path name for a LOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

GET_DBFS_LINK STATE Returns the linking state of a LOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

GETCONTENTTYPE Retrieves the content type string of the LOB data

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

GETOPTIONS Retrieves the previously set options of a specific LOB

See Also:

e Oracle Database PL/SQL Packages and Types Oracle Database
PL/SQL Packages and Types Reference

e Oracle Call Interface Programmer's Guidefor more information on
the corresponding OCILobGetContentType () an OCI LOB
function

3-32

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

. ___|
Subprogram Description

ISSECUREFILE Determines if a LOB is a SecureFiles LOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

LOADBLOBFROMFILE Loads BFILE data into a BLOB

" See Also:

Oracle Database PL/SQL Packages and
Types Reference

LOADCLOBFROMFILE Loads BFILE data into a CLOB
If the CLOB is linked, an exception is thrown.

See Also:

Oracle Database PL/SQL Packages and
Types Reference

LOADFROMFILE Loads BFILE data into a LOB

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

MOVE_TO DBFS LINK Moves the specified LOB data from the database into DBFS HSM
Store

¢ See Also:

Oracle Database PL/SQL Packages and
Types Reference

ORACLE 333

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms
]

Subprogram Description
READ Reads data from a LOB
¢ See Also:
Oracle Database PL/SQL Packages and
Types Reference
SET DBFS LINK Links a LOB with a DBFS path name
¢ See Also:
Oracle Database PL/SQL Packages and
Types Reference
SETCONTENTTYPE Sets the content type string of the LOB data
" See Also:
Oracle Database PL/SQL Packages and
Types Reference
SETOPTIONS Sets new options for a specific LOB
¢ See Also:
e Oracle Database PL/SQL Packages
and Types Reference
e Oracle Call Interface Programmer's
Guidefor more information on the
corresponding
OCILobSetContentType ()
(OCI LOB function)
SUBSTR Returns a fragment of a LOB

See Also:

Oracle Database PL/SQL Packages and
Types Reference

ORACLE _—

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description
TRIM Trims the LOB to a specified length
¢ See Also:
Oracle Database PL/SQL Packages and
Types Reference
WRITE Writes data to a LOB
¢ See Also:
Oracle Database PL/SQL Packages and
Types Reference
WRITEAPPEND Appends data to the end of a LOB

" See Also:

Oracle Database PL/SQL Packages and
Types Reference

3.6.4 DBMS_SPACE Package

You can analyze segment growth and space requirements using the DBMS_SPACE PL/SQL
package.

The DBMS_SPACE PL/SQL package enables you to analyze segment growth and space
requirements.

+ DBMS_SPACE.SPACE_USAGE()
The existing DBMS SPACE.SPACE_USAGE procedure is overloaded to return information about
LOB space usage.

3.6.4.1 DBMS_SPACE.SPACE_USAGE()

The existing DBMS_SPACE.SPACE_USAGE procedure is overloaded to return information about
LOB space usage.

It returns the amount of disk space in blocks used by all the SecureFiles LOBs in the LOB
segment.

ORACLE .

Chapter 3
PL/SQL Packages for LOBs and DBFS

See Also:

Oracle Database PL/SQL Packages and Types Reference

ORACLE 3-36

Operations Specific to Persistent and
Temporary LOBs

LOB operations between persistent and temporary LOB instances can differ.
Topics:

* Persistent LOB Operations

e Temporary LOB Operations

e Creating Persistent and Temporary LOBs in PL/SQL

e Freeing Temporary LOBs in OCI

e Persistent LOB Operations

e Temporary LOB Operations

* Creating Persistent and Temporary LOBs in PL/SQL
e Freeing Temporary LOBs in OCI

¢ See Also:

e Using LOB APIs gives details and examples of API usage for LOB APIs that can
be used with either temporary or persistent LOBs.

* LOB APIs for BFILE Operations gives details and examples for usage of LOB
APIs that operate on BFILEs.

4.1 Persistent LOB Operations

This section describes operations that apply only to persistent LOBSs.

* Inserting a LOB into a Table

e Selecting a LOB from a Table

4.1.1 Inserting a LOB into a Table

You can insert LOB instances into persistent LOB columns using by multiple methods.

¢ See Also:

DDL and DML Statements with LOBs for more information about the different
methods available to insert LOB instances into persistent LOB columns

ORACLE

Chapter 4
Temporary LOB Operations

4.1.2 Selecting a LOB from a Table

You can select a persistent LOB from a table just as you would any other data type. In the
following example, persistent LOB instances of different types are selected into PL/SQL
variables.

declare
blobl BLOB;
blob2 BLOB;
clobl CLOB;
nclobl NCLOB;
BEGIN
SELECT ad photo INTO blobl FROM print media WHERE Product id = 2268
FOR UPDATE;

SELECT ad photo INTO blob2 FROM print media WHERE Product id = 3106;

SELECT ad_sourcetext INTO clobl FROM Print media
WHERE product i1d=3106 and ad id=13001 FOR UPDATE;

SELECT ad fltextn INTO nclobl FROM Print media
WHERE product i1d=3060 and ad id=11001 FOR UPDATE;

END;
/

show errors;

4.2 Temporary LOB Operations

This section describes operations that apply only to temporary LOB instances.

e Creating and Freeing a Temporary LOB

4.2.1 Creating and Freeing a Temporary LOB

To create a temporary LOB instance, you must declare a variable of the given LOB data type
and pass the variable to the CREATETEMPORARY API.

The temporary LOB instance exists in your application until it goes out of scope, your session
terminates, or you explicitly free the instance. Freeing a temporary LOB instance is
recommended to free system resources.

The following example demonstrates how to create and free a temporary LOB in the PL/SQL
environment using the DBMS_LOB package.

declare
blobl BLOB;
blob2 BLOB;
clobl CLOB;
nclobl NCLOB;

BEGIN
-- create temp LOBs
DBMS LOB.CREATETEMPORARY (blobl, TRUE, DBMS LOB.SESSION)
DBMS LOB.CREATETEMPORARY (blob2, TRUE, DBMS LOB.SESSION)
DBMS LOB.CREATETEMPORARY (clobl, TRUE, DBMS LOB.SESSION)
DBMS LOB.CREATETEMPORARY (nclobl, TRUE, DBMS LOB.SESSION

’

;
;
)i

-- fill with data

ORACLE 4o

Chapter 4
Creating Persistent and Temporary LOBs in PL/SQL

writeDataToLOB proc (blobl);
writeDataToLOB proc (blob2);

-- CHAR->LOB conversion
clobl := 'abcde';
nclobl := TO NCLOB(clobl);

-- Other APIs
call lob apis(blobl, blob2, clobl, nclobl);

-- free temp LOBs
DBMS LOB.FREETEMPORARY (blobl)
DBMS LOB.FREETEMPORARY (blob2)
DBMS LOB.FREETEMPORARY (clobl)
DBMS LOB.FREETEMPORARY (nclobl

’

)7
END;

/

show errors;

4.3 Creating Persistent and Temporary LOBs in PL/SQL

The code example that follows illustrates how to create persistent and temporary LOBs in PL/
SQL. This code is in the demonstration file:

$ORACLE HOME/rdbms/demo/lobs/plsgl/lobdemo.sqgl

This demonstration file also calls procedures in separate PL/SQL files that illustrate usage of
other LOB APIs.

¢ See Also:

PL/SQL LOB Demonstration Files for a list of demonstration files and links for more
information about related LOB APIs

declare
blobl BLOB;
blob2 BLOB;
clobl CLOB;
nclobl NCLOB;
BEGIN
SELECT ad photo INTO blobl FROM print media WHERE Product id = 2268
FOR UPDATE;
SELECT ad photo INTO blob2 FROM print media WHERE Product id = 3106;

SELECT ad_sourcetext INTO clobl FROM Print media
WHERE product i1d=3106 and ad id=13001 FOR UPDATE;

SELECT ad fltextn INTO nclobl FROM Print media
WHERE product i1d=3060 and ad id=11001 FOR UPDATE;

call lob apis(blobl, blob2, clobl, nclobl);
rollback;

ORACLE 4-3

END;

show errors;

declare

blobl BLOB;
blob2 BLOB;
clobl CLOB;
nclobl NCLOB;

BEGIN

-- create temp LOBs

DBMS LOB.CREATETEMPORARY (blobl, TRUE, DBMS LOB.SESSION)
DBMS LOB.CREATETEMPORARY (blob2, TRUE, DBMS LOB.SESSION)
DBMS LOB.CREATETEMPORARY (clobl, TRUE, DBMS LOB.SESSION)
DBMS LOB.CREATETEMPORARY (nclobl, TRUE, DBMS LOB.SESSION

’

4
;
)i

-- fill with data
writeDataToLOB proc (blobl);
writeDataToLOB proc (blob2);

-- CHAR->LOB conversion
clobl := 'abcde';
nclobl := TO NCLOB(clobl);

-- Other APIs
call lob apis(blobl, blob2, clobl, nclobl);

-- free temp LOBs
DBMS LOB.FREETEMPORARY (blobl)
DBMS LOB.FREETEMPORARY (blob2)
DBMS LOB.FREETEMPORARY (clobl)
DBMS LOB.FREETEMPORARY (nclobl

’

’

)7

END;

show errors;

4.4 Freeing Temporary LOBs in OCI

ORACLE

OCILobIsTemporary(env, err, locator, is temporary);
if (is_temporary)

OCILobFreeTemporary(svc, err, locator);

¢ See Also:

Chapter 4
Freeing Temporary LOBs in OCI

Any time that your OCI program obtains a LOB locator from SQL or PL/SQL, check that the
locator is temporary. If it is, free the locator when your application is finished with it. The locator
can be from a define during a select or an out bind. A temporary LOB duration is always
upgraded to session when it is shipped to the client side. The application must do the following
before the locator is overwritten by the locator of the next row:

Oracle Call Interface Programmer's Guide chapter 16, section "LOB Functions."

4-4

Distributed LOBs

Topics:

e Working with Remote LOBs

e SQL Semantics with LOBs in Remote Tables
e Working with Remote LOBs in PL/SQL

e Using Remote Locators with 0CILOB API

* Working with Remote LOBs

* SQL Semantics with LOBs in Remote Tables
* Working with Remote LOBs in PL/SQL

e Using Remote Locators with OCILOB API

5.1 Working with Remote LOBs

You can work with LOB data in remote tables is the following ways:

« Directly referencing LOB columns in remote tables (Remote LOB Columns) accessed
using a database link.

* Selecting remote LOB columns into a local LOB locator variable (Remote locator)
Topics

* Working with Remote LOB Columns

* Working with Remote Locator

e Working with Remote LOB Columns

e Working with Remote Locator

5.1.1 Working with Remote LOB Columns

Remote LOBs are supported in these ways:

* Create table as select or insert as select

* Functions on remote LOBs returning scalars
e Data Interface for remote LOBs

* Create table as select or insert as select

e Functions on remote LOBSs returning scalars

e Data Interface for remote LOBs

ORACLE

Chapter 5
Working with Remote LOBs

5.1.1.1 Create table as select or insert as select

Only standalone LOB columns are allowed in the select list for statements that are structured
in the following manner:

CREATE
INSERT
UPDATE
INSERT
UPDATE
DELETE

TABLE t AS SELECT * FROM tablel@remote site;

INTO t SELECT * FROM tablel@remote site;

t SET lobcol = (SELECT lobcol FROM tablell@remote site);

INTO tablel@remote site SELECT * FROM local table;
tablel@remote site SET lobcol = (SELECT lobcol FROM local table);
FROM tablel@remote site <WHERE clause involving non lob columns>

5.1.1.2 Functions on remote LOBSs returning scalars

SQL and PL/SQL functions having a LOB parameter and returning a scalar data type are
supported. Other SQL functions and DBMS LOB APIs are not supported for use with remote LOB
columns. For example, the following statement is supported:

CREATE TABLE tab AS SELECT DBMS_LOB.GETLENGTH@dbSZ(ClOb_COl) len FROM
tab@dbs2;
CREATE TABLE tab AS SELECT LENGTH(Clob_COl) len FROM tab@dbs?2;

However, the following statement is not supported because DBMS LOB.SUBSTR returns a LOB:

CREATE TABLE tab AS SELECT DBMS_ LOB.SUBSTR(clob col) from tab@dbs2;

5.1.1.3 Data Interface for remote LOBs

You can insert a character or binary buffer into a remote CLOB or BLOB, and select a remote
CLOB or BLOB into a character or binary buffer, for example, using PL/SQL:

SELECT clobcoll, typel.blobattr INTO varchar bufl, raw buf2 FROM
tablel@remote site;

INSERT INTO tablel@remotesite (clobcoll, typel.blobattr) VALUES varchar bufl,
raw_buf2;

INSERT INTO tablel@remotesite (lobcol) VALUES ('test');

UPDATE tablel SET lobcol = 'xxx';

5.1.2 Working with Remote Locator

You can select a persistent LOB locator from a remote table into a local variable and this can
be done in PL/SQL or in OCI. The remote columns can be of type BLOB, CLOB or NCLOB.
The following SQL statement is the basis for all the examples with remote LOB locator in this

ORACLE

chapter.

CREATE TABLE lob tab (cl NUMBER, c2 CLOB);

5-2

Chapter 5
Working with Remote LOBs

In the following example, the table 1ob tab (with columns c2 of type CLOB and c1 of type
number) defined in the remote database is accessible using database link db2 and a local CLOB
variable lob varl.

SELECT c2 INTO lob varl FROM lob tab@db2 WHERE cl=1;
SELECT c2 INTO lob varl FROM lob tab@db2 WHERE cl=1 for update;

In PL/SQL, the function dbms_lob.isremote can be used to check if a particular LOB belongs
to a remote table. Similarly, in 0CI, you can use the 0OCI_ATTR LOB REMOTE attribute of
OCILobLocator to check if a particular LOB belongs to a remote table. For example,

IF (dbms lob.isremote (lob varl)) THEN
dbms_output.put line(‘LOB locator is remote)
ENDIF;

See Also:

» ISREMOTE Function
e OCI_ATTR_LOB_REMOTE Attribute

Topics:
* Using Local and Remote locators as bind with queries and DML on remote tables

e Restrictions when using remote LOB locators

« Using Local and Remote locators as bind with queries and DML on remote tables

e Restrictions when using remote LOB locators

5.1.2.1 Using Local and Remote locators as bind with queries and DML on remote

tables

ORACLE

For the Queries and DMLs (INSERT, UPDATE, DELETE) with bind values, the following four cases
are possible. The first case involves local tables and locators and is the standard LOB
functionality. The other three cases are part of the distributed LOBs functionality and have
restrictions listed at the end of this section.

* Local table with local locator as bind value.

* Local table with remote locator as bind value

* Remote table with local locator as bind value

* Remote table with remote locator as bind value

Queries of the following form which use remote lob locator as bind value will be supported:

SELECT name FROM lob tab@db2 WHERE length(cl)=length(:lob vl);

In the above query, c1 is an LOB column and lob vl is a remote locator.

DMLs of the following forms using a remote LOB locator will be supported. Here, the bind
values can be local or remote persistent LOB locators.

5-3

Chapter 5
SQL Semantics with LOBs in Remote Tables

UPDATE lob tab@db2 SET cl=:lob vl;

INSERT into lob_tab@db2 VALUES (:1, :2);

< Note:

DMLs with returning clause are not supported on remote tables for both scalar and
LOB columns.

5.1.2.2 Restrictions when using remote LOB locators

General restrictions while using remote LOB locators include the following:

e You cannot select a remote temporary LOB locator into a local variable using SELECT
statement. For example,

select substr(c2, 3, 1) from lob tab@db2 where cl=1
The above query returns an error.

* Remote lob functionality will not be supported for Index Organized tables (I0T). An attempt
to get a locator from remote an IOT table will result in an error.

* Both local database and remote database have to be of Database release 12.2 or higher
version.

* With distributed LOBs functionality, tables mentioned in the from clause or where clause
should be collocated on the same database. If remote locators are used as bind variables
in the where clauses, they should belong to the same remote database. You cannot have
one locator from DB1 and another locator from DB2 to be used as bind variables.

* Collocated tables or locators use the same database link. It is possible to have 2 different
DB Links pointing to the same database. In the example below, both dblinkl and dblink2
point to the same remote database, but perhaps with different authentication method.
Oracle Database does not support such operations.

INSERT into tabl@dblinkl SELECT * from tab2@dblink2;

e Bind values should be the same LOB type as the column LOB type. For example, NCLOB
locators should be bound to NCLOB column and CLOB locators should be bound to CLOB
column. Implicit conversion between NCLOB and CLOB types is not supported in remote
LOBs case.

e DMLs (INSERTS/ UPDATES) with Array Binds is not supported when bind involves a remote
locator or if table involved is a remote table

* You cannot select a BFILE column from a remote table into a local variable.

5.2 SQL Semantics with LOBs in Remote Tables

Topics:
e Built-in Functions for Remote LOBs and BFILEs
* Passing Remote Locator to Built in SQL Functions

e Built-in Functions for Remote LOBs and BFILEs

ORACLE -

Chapter 5
SQL Semantics with LOBs in Remote Tables

e Passing Remote Locator to Built in SQL Functions

5.2.1 Built-in Functions for Remote LOBs and BFILEs

ORACLE

Any SQL built-in functions and user-defined functions that are supported on local LOBs and
BFILEs are also supported on remote LOBs and BFILEs, as long as the final value returned by
nested functions is not a LOB type. This includes functions for remote persistent and
temporary LOBs and for BFILEs.

Built-in SQL functions which are executed on a remote site can be part of any SQL statement,
like SELECT, INSERT, UPDATE, and DELETE. For example:

SELECT LENGTH (ad_sourcetext) FROM print media@remote site -- CLOB

SELECT LENGTH (ad fltextn) FROM print media@remote site; -- NCLOB

SELECT LENGTH (ad_composite) FROM print media@remote site; -- BLOB

SELECT product id from print media@remote site WHERE LENGTH (ad sourcetext) >
3;

UPDATE print medial@remote site SET product id = 2 WHERE LENGTH (ad sourcetext)
> 3;

SELECT TO_CHAR(foo@dbs2(...)) FROM dual@dbs2;
-- where fool@dbs2 returns a temporary LOB

The SQL functions fall under the following (not necessarily exclusive) categories:

e SQL functions that are not supported on LOBSs:
These functions are relevant only for CLOBS: an example is DECODE.

These functions cannot be supported on remote LOBs because they are not supported
on local LOBs.

* Functions taking exactly one LOB argument (all other arguments are of other data types)
and not returning a LOB:

These functions are relevant only for CLOBs, NCLOBs, and BLOBs: an example is LENGTH
and it is supported. For example:

SELECT LENGTH (ad _composite) FROM print media@remote site;

SELECT LENGTH (ad_header.logo) FROM print medialremote site; -- LOB in
object

SELECT product id from print media@remote site WHERE LENGTH (ad sourcetext)
> 3;

e Functions that return a LOB:

All these functions are relevant only for CLOBs and NCLOBs. These functions may
return the original LOB or produce a temporary LOB. These functions can be performed on
the remote site, as long as the result returned to the local site is not a LOB.

Functions returning a temporary LOB are: REPLACE, SUBSTR, CONCAT, ||, TRIM, LTRIM, RTRIM,
LOWER, UPPER, NLS_LOWER, NLS_UPPER, LPAD, and RPAD.

Functions returning the original LOB locator are: NVL, DECODE, and CASE. Note that even
though DECODE and CASE are not supported currently to operate on LOBs, they could
operate on other data types and return a LOB.

5-5

Chapter 5
Working with Remote LOBs in PL/SQL

For example, the following statements are supported:
SELECT TO_CHAR (CONCAT (ad_sourcetext, ad sourcetext)) FROM

print medialremote site;
SELECT TO_CHAR(SUBSTR(ad fltextnfs, 1, 3)) FROM print media@remote site;

But the following statements are not supported:

SELECT CONCAT (ad_sourcetext, ad sourcetext) FROM print medialremote site;
SELECT SUBSTR (ad_sourcetext, 1, 3) FROM print medial@remote site;

e Functions that take in more than one LOB argument:

These are: INSTR, LIKE, REPLACE, CONCAT, ||, SUBSTR, TRIM, LTRIM, RTRIM, LPAD, and RPAD.
All these functions are relevant only for CLOBS and NCLOBS.

These functions are supported only if all the LOB arguments are in the same dblink, and
the value returned is not a LOB. For example, the following is supported:

SELECT TO_CHAR (CONCAT (ad_sourcetext, ad sourcetext)) FROM

print media@remote site; -- CLOB
SELECT TO CHAR (CONCAT (ad_fltextn, ad fltextn)) FROM
print media@remote site; -- NCLOB

But the following is not supported:

SELECT TO_CHAR (CONCAT (a.ad sourcetext, b.ad sourcetext)) FROM
print media@dbl a, print media@db2 b WHERE a.product id = b.product id;

5.2.2 Passing Remote Locator to Built in SQL Functions

You can pass a remote locator to most built-in SQL functions such as LENGTH, INSTR, SUBSTR,
and UPPER. For example,

Var lobl CLOB;
BEGIN
select c2 into lobl from lob tab@db2 where cl=1;
END;
/
select length(:lobl) from dual;

5.3 Working with Remote LOBs in PL/SQL

ORACLE

Topics:
¢ PL/SQL Functions for Remote LOBs and BFILES

* Using Remote Locators with DBMS LOB

e PL/SQL Functions for Remote LOBs and BFILEs
e Using Remote Locator in PL/SQL

5-6

Chapter 5
Working with Remote LOBs in PL/SQL

e Using Remote Locators with DBMS_LOB
5.3.1 PL/SQL Functions for Remote LOBs and BFILES

Built-in and user-defined PL/SQL functions that are executed on the remote site and operate
on remote LOBs and BFILEs are allowed, as long as the final value returned by nested
functions is not a LOB.

The following example uses the print media table described in "Table for LOB Examples: The
PM Schema print_media Table"

SELECT product id FROM print media@dbs2 WHERE foo@dbs2(ad sourcetext, 'aa') >
0;
-- foo is a user-define function returning a NUMBER

DELETE FROM print media@dbs2 WHERE DBMS LOB.GETLENGTH@dbs2 (ad graphic) = 0;

¢ Restrictions on Remote User-Defined Functions
* Remote Functions in PL/SQL, OCI, and JDBC

5.3.1.1 Restrictions on Remote User-Defined Functions

e The restrictions that apply to SQL functions apply here also.

¢ See Also:

Built-in Functions for Remote LOBs and BFILEs

* Afunction in one dblink cannot operate on LOB data in another dblink.For example, the
following statement is not supported:

SELECT a.product_id FROM print media@dbsl a, print mediaCdbs2 b WHERE
CONTAINS@dbsl (b.ad sourcetext, 'aa') > 0;

* One query block cannot contain tables and functions at different do1inks. For example, the
following statement is not supported:

SELECT a.product_id FROM print media@dbs2 a, print mediaCdbs3 b
WHERE CONTAINS@dbs2(a.ad sourcetext, 'aa') > 0 AND
foo@dbs3 (b.ad sourcetext) > 0;

-- foo is a user-defined function in dbs3

* There is no support for performing remote LOB operations (that is, DBMS LOB) from within
PL/SQL, other than issuing SQL statements from PL/SQL.

5.3.1.2 Remote Functions in PL/SQL, OCI, and JDBC

All the SQL statements listed in Restrictions on Remote User-Defined Functions work the
same if they are executed from inside PL/SQL, OCI, and JDBC. No additional functionality is
provided.

ORACLE .

Chapter 5
Working with Remote LOBs in PL/SQL

5.3.2 Using Remote Locator in PL/SQL

A remote locator can be passed as a parameter to built in PL/SQL functions like LENGTH, INSTR,
SUBSTR, UPPER and so on which accepts LOB as input. For example,

DECLARE

substr data varchar2 (4000);

remote loc CLOB;

BEGIN

SELECT c2 into remote loc

FROM lob_tab@de WHERE cl=1;

substr data := substr(remote loc, position, length)
END;

5.3.3 Using Remote Locators with peus ros

All DBMS LOB APIs other than the APIs targeted for BFILES support operations on remote LOB
locators.

The following example shows how to pass remote locator as input to dbms 1lob operations.

DECLARE
lob CLOB;
buf VARCHAR2 (120) := 'TST';
amt NUMBER(2) ;
len NUMBER(2);
BEGIN
amt :=30;
select c2 into lob from lob tab@db2 where cl=3 for update;
dbms_lob.write(lob, amt, 1, buf);
amt :=30;
dbms lob.read(lob, amt, 1, buf);
len := dbms lob.getlength(lob);
dbms_output.put line (buf);
dbms_output.put line(amt);
dbms_output.put line('get length output =
END;
/

A\l

len);

Topics:
* Restrictions on Using Remote Locators with DBMS LOB

* Restrictions on Using Remote Locators with DBMS_LOB
5.3.3.1 Restrictions on Using Remote Locators with osus 1oz

All the APIs that accepts two LOB locators must have both LOBSs collocated at one database.

ORACLE -

Chapter 5
Using Remote Locators with OCILOB API

See Also:

e Oracle Database PL/SQL Packages and Types Reference to view the complete
list of DBMS_LOB APIs.

5.4 Using Remote Locators with oc:wc: API

ORACLE

All oc1L.0B APIs (except APIs meant for BFILES) support operations on remote 1LOB locators.

Note:

All the APIs that accept two locators must obtain both the LOB locators through the
same database link.

The following list of 0cIL0B functions will give an error when a remote LOB locator is passed to
them:

* OCILobAssign

e OCILobLocatorAssign
* OCILobArrayRead()

* OCILobArrayWrite()

. OCILobLoadFromFile2 ()

The following example shows how to pass a remote locator to 0CILOB API.

void select read remote lob()
{
text *select sql =
ub4 amtp = 10;
ub4 nbytes = 0;
ub4 loblen=0;
OCILobLocator * one lob;
text strbufl40];

(text *)"SELECT c2 lob tab@dbsl where cl=1";

/* initialize single locator */

OCIDescriptorAlloc(envhp, (dvoid **) &one lob,
(ub4) OCI DTYPE LOB,
(size t) 0, (dvoid **) 0)

OCIStmtPrepare (stmthp, errhp, select sql, (ub4)strlen((char*)select sql),

(ub4) OCI_NTV SYNTAX, (ub4) OCIiDEFAULT);
OCIDefineByPos (stmthp, &defp, errhp, (ub4) 1,
(dvoid *) &one lob,
(sb4) -1,
(ub2) SQLT CLOB,
(dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, (ubd) OCIiDEFAULT));

5-9

ORACLE

Chapter 5
Using Remote Locators with OCILOB API

/* fetch the remote locator into the local variable one lob */
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI DEFAULT);

/* Get the length of the remote LOB */
OCILobGetLength (svchp, errhp,
(OCILobLocator *) one lob, (ub4 *)é&loblen)

printf ("LOB length = %d\n", loblen);

memset ((void*)strbuf, (int)'\0', (size t)40);

/ * Read the data from the remote LOB */

OCILobRead (svchp, errhp, one lob, &amtp,
(ub4) 1, (dvoid *) strbuf, (ub4)é& nbytes, (dvoid *)O0,
(OCICallbackLobRead) 0,

(ub2) 0, (ubl) SQLCS_IMPLICIT));
printf ("LOB content = %s\n", strbuf);

¢ See Also:

OClI Programmer’s Guide, for the complete list of 0CI1.0B APIs

5-10

DDL and DML Statements with LOBS

6.1 Creating a Table Containing One or More LOB Columns

ORACLE

DDL and DML statements work with LOBSs.

Topics:

Creating a Table Containing One or More LOB Columns
Creating a Nested Table Containing a LOB

Inserting a Row by Selecting a LOB From Another Table
Inserting a LOB Value Into a Table

Inserting a Row by Initializing a LOB Locator Bind Variable
Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
Updating a Row by Selecting a LOB From Another Table

Creating a Table Containing One or More LOB Columns
Creating a Nested Table Containing a LOB

Inserting a Row by Selecting a LOB From Another Table
Inserting a LOB Value Into a Table

Inserting a Row by Initializing a LOB Locator Bind Variable
You can insert a row by initializing a LOB locator bind variable.

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
Updating a Row by Selecting a LOB From Another Table

¢ See Also:

For guidelines on how to INSERT into a LOB when binds of more than 4000 bytes are

involved, see the following sections in "Binds of All Sizes in INSERT and UPDATE

Operations".

You can create a table containing one or more LOB columns.

When you use functions, EMPTY BLOB () and EMPTY CLOB (), the resulting LOB is initialized, but
not populated with data. Also note that LOBs that are empty are not NULL.

6-1

ORACLE

See Also:

Chapter 6
Creating a Table Containing One or More LOB Columns

Oracle Database SQL Language Referencefor a complete specification of syntax for
using LOBs in CREATE TABLE and ALTER TABLE with:

e BLOB, CLOB, NCLOB and BFILE columns

+ EMPTY BLOB and EMPTY CLOB functions

e LOB storage clause for persistent LOB columns, and LOB attributes of

embedded objects

Scenario

These examples use the following Sample Schemas:

Human Resources (HR)

e Order Entry (OE)

/*

*/

DROP
DROP
DROP
DROP
DROP
DROP
DROP
DROP
DROP
DROP
DROP
DROP

Product Media (PM)

Note:

Note HR and OE schemas must exist before the PM schema is created.

< Note:

Because you can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS LOB package.

Setup script for creating Print media,
Online media and associated structures

USER pm CASCADE;

DIRECTORY ADPHOTO DIR;

DIRECTORY ADCOMPOSITE DIR;

DIRECTORY ADGRAPHIC DIR;

INDEX onlinemedia CASCADE CONSTRAINTS;
INDEX printmedia CASCADE CONSTRAINTS;
TABLE online media CASCADE CONSTRAINTS;
TABLE print media CASCADE CONSTRAINTS;
TYPE textdoc typ;

TYPE textdoc tab;

TYPE adheader typ;

TABLE adheader typ;

CREATE USER pm identified by password;
GRANT CONNECT, RESOURCE to pm;

CREATE DIRECTORY ADPHOTO DIR AS '/tmp/';
CREATE DIRECTORY ADCOMPOSITE DIR AS '/tmp/';
CREATE DIRECTORY ADGRAPHIC DIR AS '/tmp/';

6-2

ORACLE

Chapter 6

Creating a Table Containing One or More LOB Columns

CREATE DIRECTORY media dir AS '/tmp/';

GRANT READ ON DIRECTORY ADPHOTO DIR to pm;
GRANT READ ON DIRECTORY ADCOMPOSITE DIR to pm;
GRANT READ ON DIRECTORY ADGRAPHIC DIR to pm;
GRANT READ ON DIRECTORY media dir to pm;

CONNECT pm/password (or &pass);
COMMIT;

CREATE TABLE a table (blob col BLOB);

CREATE TYPE adheader typ AS OBJECT (
header name VARCHAR2 (256),
creation date DATE,
header text VARCHAR (1024),
logo BLOB);

CREATE TYPE textdoc typ AS OBJECT (
document typ VARCHAR2 (32),
formatted doc BLOB);

CREATE TYPE Textdoc ntab AS TABLE of textdoc typ;

CREATE TABLE adheader tab of adheader typ (
Ad_finaltext DEFAULT EMPTY CLOB(), CONSTRAINT
Take CHECK (Take IS NOT NULL), DEFAULT NULL);

CREATE TABLE online media

(product id NUMBER(6),

product photo ORDSYS.ORDImage,
product photo signature ORDSYS.ORDImageSignature,
product thumbnail ORDSYS.ORDImage,

product video ORDSYS.ORDVideo,

product audio ORDSYS.ORDAudio,

product text CLOB,

product testimonials ORDSYS.ORDDoc) ;

CREATE UNIQUE INDEX onlinemedia pk
ON online media (product id);

ALTER TABLE online media
ADD (CONSTRAINT onlinemedia pk
PRIMARY KEY (product id), CONSTRAINT loc c id fk

FOREIGN KEY (product id) REFERENCES oe.product information(product id)

)i

CREATE TABLE print media
(product id NUMBER(6),
ad_id NUMBER (6),
ad_composite BLOB,
ad_sourcetext CLOB,

ad finaltext CLOB,

ad fktextn NCLOB,

ad testdocs ntab textdoc tab,
ad photo BLOB,

ad _graphic BFILE,

ad header adheader typ,

press release LONG) NESTED TABLE ad textdocs ntab STORE AS textdocs nestedtab;

CREATE UNIQUE INDEX printmedia_pk
ON print media (product id, ad id);

6-3

Chapter 6
Creating a Nested Table Containing a LOB

ALTER TABLE print media

ADD (CONSTRAINT printmedia pk

PRIMARY KEY (product id, ad id),

CONSTRAINT printmedia fk FOREIGN KEY (product id)
REFERENCES oe.product information(product id)

)

6.2 Creating a Nested Table Containing a LOB

ORACLE

You can create a nested table containing a LOB.

You must create the object type that contains the LOB attributes before you create a nested
table based on that object type. In the example that follows, table Print media contains nested
table ad textdoc ntab that has type textdoc tab. This type uses two LOB data types:

° BFILE - an advertisement graphic
e CLOB - an advertisement transcript

The actual embedding of the nested table is accomplished when the structure of the containing
table is defined. In our example, this is effected by the NESTED TABLE statement when the
Print media table is created as shown in the following example:

/* Create type textdoc_typ as the base type
for the nested table textdoc ntab,
where textdoc ntab contains a LOB:

*/

CREATE TYPE textdoc_typ AS OBJECT

(
document typ VARCHARZ2 (32),
formatted doc BLOB

)i

/

/* The type has been created. Now you need a */
/* nested table of that type to embed in */

/* table Print media, so: */

CREATE TYPE textdoc ntab AS TABLE of textdoc typ;
/

CREATE TABLE textdoc ntable (
id NUMBER,
ntab col textdoc ntab)
NESTED TABLE ntab col STORE AS textdoc nestedtab;

DROP TYPE textdoc typ force;
DROP TYPE textdoc ntab;
DROP TABLE textdoc ntable;

¢ See Also:

* "Creating a Table Containing One or More LOB Columns"

* Oracle Database SQL Language Reference for further information on CREATE
TABLE

6-4

Chapter 6
Inserting a Row by Selecting a LOB From Another Table

6.3 Inserting a Row by Selecting a LOB From Another Table

You can insert a row containing a LOB as SELECT.

Note:

Persistent LOB types BLOB, CLOB, and NCLOB, use copy semantics, as opposed to
reference semantics that apply to BFILES. When a BLOB, CLOB, or NCLOB is copied
from one row to another in the same table or a different table, the actual LOB value is
copied, not just the LOB locator.

For LOBSs, one of the advantages of using an object-relational approach is that you can define
a type as a common template for related tables. For instance, it makes sense that both the
tables that store archival material and working tables that use those libraries, share a common
structure.

For example, assuming Print media and Online media have identical schemas. The
statement creates a new LOB locator in table Print media. It also copies the LOB data
from Online media to the location pointed to by the new LOB locator inserted in table
Print media.

The following code fragment is based on the fact that the table Online media is of the same
type as Print media referenced by the ad textdocs ntab column of table Print media. It
inserts values into the library table, and then inserts this same data into Print media by means
of a SELECT.

/* Store records in the archive table Online media: */
INSERT INTO Online media
VALUES (3060, NULL, NULL, NULL, NULL,
'some text about this CRT Monitor', NULL);

/* Insert values into Print media by selecting from Online media: */
INSERT INTO Print media (product id, ad id, ad sourcetext)
(SELECT product id, 11001, product text
FROM Online media WHERE product id = 3060);

See Also:

e Oracle Database SQL Language Reference for more information on INSERT

e Oracle Database Sample Schemas for a description of the PM Schema and the
Print media table used in this example

6.4 Inserting a LOB Value Into a Table

You can insert a LOB value using EMPTY CLOB () Or EMPTY BLOB().

ORACLE g

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

Usage Notes

Here are guidelines for inserting LOBs:

Before Inserting Make the LOB Column Non-Null

Before you write data to a persistent LOB, make the LOB column non-NULL; that is, the LOB
column must contain a locator that points to an empty or populated LOB value. You can
initialize a BLOB column value by using the function EMPTY BLOB () as a default predicate.
Similarly, a CLOB or NCLOB column value can be initialized by using the function EMPTY CLOB ().

You can also initialize a LOB column with a character or raw string less than 4000 bytes in
size. For example:

INSERT INTO Print media (product id, ad id, ad sourcetext)
VALUES (1, 1, 'This is a One Line Advertisement');

Note that you can also perform this initialization during the CREATE TABLE operation.

¢ See Also:

Creating a Table Containing One or More LOB Columns

These functions are special functions in Oracle SQL, and are not part of the DBMS 1L0B
package.

/* In the new row of table Print media,
the columns ad sourcetext and ad fltextn are initialized using EMPTY CLOB(),
the columns ad composite and ad photo are initialized using EMPTY BLOB(),
the column formatted-doc in the nested table is initialized using
EMPTY BLOB(),
the column logo in the column object is initialized using EMPTY BLOB(): */

INSERT INTO Print media
VALUES (3060,11001, EMPTY BLOB(), EMPTY CLOB(),EMPTY CLOB(),EMPTY CLOB(),
textdoc tab(textdoc typ ('HTML', EMPTY BLOB())), EMPTY BLOB(), NULL,
adheader typ('any header name', <any date>, 'ad header text goes here',
EMPTY BLOB()),

'Press release goes here');

6.5 Inserting a Row by Initializing a LOB Locator Bind Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable.

Examples for this use case are provided in several programmatic environments:
Topics:

e About Inserting Rows with LOB Locator Bind Variables

* PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable

e C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable

e COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
e C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable

« Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

6-6

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

e SQL: Oracle Database SQL Language Reference, the INSERT statement
e C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions"
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and embedded SQL and precompiler directives — INSERT.

e C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide INSERT

« Java (JDBC):Oracle Database JDBC Developer's Guide "Working With LOBs" — Creating
and Populating a BLOB or CLOB Colum

e About Inserting Rows with LOB Locator Bind Variables

e PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable

e C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable

e« COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
e C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable

e Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

6.5.1 About Inserting Rows with LOB Locator Bind Variables

You need to consider these points.

Preconditions
Before you can insert a row using this technique, the following conditions must be met:

e The table containing the source row must exist.
e The destination table must exist.

For details on creating tables containing LOB columns, see "LOB Storage Parameters".

Usage Notes

For guidelines on how to INSERT and UPDATE a row containing a LOB when binds of more than
4000 bytes are involved, see "Binds of All Sizes in INSERT and UPDATE Operations"”.

Syntax

Review these syntax references for details on using this operation in each programmatic
environment:

6.5.2 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable in PL/SQL

/* This file is installed in the following path when you install */
/* the database: $ORACLE HOME/rdbms/demo/lobs/plsql/linsert.sqgl */

/* inserting a row through an insert statement */

CREATE OR REPLACE PROCEDURE insertLOB proc (Lob loc IN BLOB) IS

BEGIN
/* Insert the BLOB into the row */
DBMS OUTPUT.PUT LINE('------------ LOB INSERT EXAMPLE --——==———--- ')
INSERT INTO print media (product id, ad id, ad photo)

6-7

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

values (3106, 60315, Lob loc);

END;

6.5.3 C (OCIl): Inserting a Row by Initializing a LOB Locator Bind Variable

You can insert a row by initializing a LOB locator bind variable in C (OCI).

/* This file is installed in the following path when you install */
/* the database: $SORACLE HOME/rdbms/demo/lobs/oci/linsert.c */

/* Insert the Locator into table using Bind Variables. */
#include <oratypes.h>
#include <lobdemo.h>
void insertLOB proc (OCILobLocator *Lob loc, OCIEnv *envhp,

{

ORACLE

OCIError *errhp, OCISvcCtx *svchp, OCIStmt *stmthp)

int product id;
OCIBind *bndhp3;
0OCIBind *bndhp2;
0OCIBind *bndhpl;
text *insstmt =

(text *) "INSERT INTO Print media (product id, ad id, ad sourcetext) \
VALUES (:1, :2, :3)";

printf ("----------- OCI Lob Insert Demo --------=------ \n") ;
/* Insert the locator into the Print media table with product id=3060 */
product id = (int)3060;

/* Prepare the SQL statement */

checkerr (errhp, OCIStmtPrepare (stmthp, errhp, insstmt, (ubd)
strlen((char *) insstmt),
(ub4) OCI NTV SYNTAX, (ub4)OCI DEFAULT));

/* Binds the bind positions */

checkerr (errhp, OCIBindByPos (stmthp, &bndhpl, errhp, (ub4) 1,
(void *) g&product id, (sb4) sizeof (product id),
SQLT INT, (void *) 0, (ub2 *)0, (ub2 *)0,

(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT));

checkerr (errhp, OCIBindByPos (stmthp, &bndhpl, errhp, (ub4d) 2,
(void *) g&product id, (sb4) sizeof (product id),
SQLT INT, (void *) 0, (ub2 *)0, (ub2 *)0,

(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT));

checkerr (errhp, OCIBindByPos (stmthp, &bndhp2, errhp, (ub4) 3,
(void *) &Lob loc, (sb4) 0, SQLT CLOB,
(void *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT));

/* Execute the SQL statement */

checkerr (errhp, OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot*)
(ub4) OCIiDEFAULT));

0,

6-8

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

6.5.4 COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator

Bind Variable

You can insert a row by initializing a LOB locator bind variable in COBOL (Pro*COBOL).

ORACLE

* This file is installed in the following path when you install
* the database: $ORACLE HOME/rdbms/demo/lobs/procob/linsert.pco

IDENTIFICATION DIVISION.
PROGRAM-ID. INSERT-LOB.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 BLOB1 SQL-BLOB.
01 USERID PIC X(11) VALUES "PM/password".
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
INSERT-LOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
EXEC SQL CONNECT :USERID END-EXEC.
* Initialize the BLOB locator
EXEC SQL ALLOCATE :BLOB1 END-EXEC.
* Populate the LOB
EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
EXEC SQL
SELECT AD PHOTO INTO :BLOB1 FROM PRINT MEDIA
WHERE PRODUCT ID = 2268 AND AD ID = 21001 END-EXEC.

* Insert the value with PRODUCT ID of 3060
EXEC SQL
INSERT INTO PRINT MEDIA (PRODUCTilD, ADiPHOTO)
VALUES (3060, 11001, :BLOB1)END-EXEC.

* Free resources held by locator
END-OF-BLOB.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
EXEC SQL FREE :BLOB1 END-EXEC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

SQL-ERROR.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY " ".
DISPLAY "ORACLE ERROR DETECTED:".
DISPLAY " ".
DISPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
STOP RUN.

6-9

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

Note:

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide
for password management guidelines and other security recommendations.

6.5.5 C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind

Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable in C/C++ (Pro*C/C++).

/* This file is installed in the following path when you install */
/* the database: $SORACLE HOME/rdbms/demo/lobs/proc/linsert.pc */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample Error ()
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf ("$.*s\n", sqglca.sglerrm.sqglerrml, sglca.sqlerrm.sglerrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit (1);

void insertUseBindVariable proc(Rownum, Lob loc)
int Rownum, Rownum2;
OCIBlobLocator *Lob loc;

EXEC SQL WHENEVER SQLERROR DO Sample Error();
EXEC SQL INSERT INTO Print media (product id, ad id, ad photo)
VALUES (:Rownum, :Rownum2, :Lob loc);
}
void insertBLOB proc()

{
OCIBlobLocator *Lob loc;

/* Initialize the BLOB Locator: */
EXEC SQL ALLOCATE :Lob loc;

/* Select the LOB from the row where product id = 2268 and ad 1d=21001: */
EXEC SQL SELECT ad photo INTO :Lob loc
FROM Print media WHERE product id = 2268 AND ad id = 21001;

/* Insert into the row where product id = 3106 and ad id = 13001: */
insertUseBindVariable proc (3106, 13001, Lob loc);

/* Release resources held by the locator: */
EXEC SQL FREE :Lob loc;

void main ()

{

6-10

Chapter 6

Inserting a Row by Initializing a LOB Locator Bind Variable

char *samp = "pm/password";
EXEC SQL CONNECT :pm;
insertBLOB proc();

EXEC SQL ROLLBACK WORK RELEASE;

6.5.6 Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind

Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable in Java (JDBC).

/* This file is installed in the following path when you install */
/* the database: SORACLE HOME/rdbms/demo/lobs/java/linsert.java */

// Core JDBC classes:

import java.sqgl.DriverManager;
import java.sql.Connection;

import Jjava.sqgl.Statement;

import java.sql.PreparedStatement;
import Jjava.sgl.ResultSet;

import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class linsert
{
public static void main (String args [])
throws Exception

// Load the Oracle JDBC driver
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
// Connect to the database:
Connection conn =
DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "password");

// It's faster when auto commit is off:
conn.setAutoCommit (false);

// Create a Statement:
Statement stmt = conn.createStatement ();
try
{
ResultSet rset = stmt.executeQuery (
"SELECT ad photo FROM Print media WHERE product id = 3106 AND ad id = 13001");
if (rset.next())
{
// retrieve the LOB locator from the ResultSet
BLOB adphoto blob = ((OracleResultSet)rset).getBLOB (1);
OraclePreparedStatement ops =
(OraclePreparedStatement) conn.prepareStatement (
"INSERT INTO Print media (product id, ad id, ad photo) VALUES (2268, "
+ "21001, 2)");
ops.setBlob(l, adphoto blob);
ops.execute () ;
conn.commit ()
conn.close();

’

}
catch (SQLException e)

6-11

Chapter 6
Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

e.printStackTrace();

6.6 Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

You can UPDATE a LOB with EMPTY CLOB () Or EMPTY BLOB().

Note:

Performance improves when you update the LOB with the actual value, instead of
using EMPTY CLOB () Or EMPTY BLOB().

Preconditions

Before you write data to a persistent LOB, make the LOB column non-NULL; that is, the LOB
column must contain a locator that points to an empty or populated LOB value. You can
initialize a BLOB column value by using the function EMPTY BLOB () as a default predicate.
Similarly, a CLOB or NCLOB column value can be initialized by using the function EMPTY CLOB ().

You can also initialize a LOB column with a character or raw string less than 4000 bytes in
size. For example:

UPDATE Print media
SET ad sourcetext = 'This is a One Line Story'
WHERE product id = 2268;

You can perform this initialization during CREATE TABLE (See "Creating a Table Containing One
or More LOB Columns") or, as in this case, by means of an INSERT.

The following example shows a series of updates using the EMPTY CLOB operation to different
data types.

UPDATE Print media SET ad sourcetext = EMPTY CLOB()
WHERE product id = 3060 AND ad id = 11001;

UPDATE Print media SET ad fltextn = EMPTY CLOB()
WHERE product id = 3060 AND ad id = 11001;

UPDATE Print media SET ad photo = EMPTY BLOB()
WHERE product id = 3060 AND ad id = 11001;

¢ See Also:

SQL: Oracle Database SQL Language Reference for more information on UPDATE

ORACLE 610

Chapter 6
Updating a Row by Selecting a LOB From Another Table

6.7 Updating a Row by Selecting a LOB From Another Table

ORACLE

You can use the SQL UPDATE AS SELECT Statement to update a row containing a LOB column
by selecting a LOB from another table.

To use this technique, you must update by means of a reference. For example, the following
code updates data from online media:

Rem Updating a row by selecting a LOB from another table (persistent LOBs)
UPDATE Print media SET ad sourcetext =

(SELECT * product text FROM online media WHERE product id = 3060);
WHERE product id = 3060 AND ad id = 11001;

6-13

Value Semantics LOBs

This part describes SQL semantics for LOBs supported in the SQL and PL/SQL environments.
This part contains these chapters:

e SQL Semantics and LOBs

e PL/SQL Semantics for LOBs

e Migrating Columns from LONGs to LOBs

e SQL Semantics and LOBs
Various SQL semantics are supported for LOBs.

e PL/SQL Semantics for LOBs

» Data Interface for Persistent LOBs

ORACLE

SQL Semantics and LOBs

Various SQL semantics are supported for LOBs.

These techniques allow you to use LOBs directly in SQL code and provide an alternative to

using LOB-specific APIs for some operations.

Topics:

About Using LOBs in SQL

SQL Functions and Operators Supported for Use with LOBs
Implicit Conversion of LOB Data Types in SQL
Unsupported Use of LOBs in SQL

VARCHAR2 and RAW Semantics for LOBs

Built-in Functions for Remote LOBs and BFILEs

About Using LOBs in SQL

SQL Functions and Operators Supported for Use with LOBs
Implicit Conversion of LOB Data Types in SQL
Unsupported Use of LOBs in SQL

VARCHAR2 and RAW Semantics for LOBs

Built-in Functions for Remote LOBs and BFILEs

7.1 About Using LOBs in SQL

ORACLE

You can access CLOB and NCLOB data types using SQL VARCHAR2 semantics, such as SQL

string operators and functions. (LENGTH functions can be used with BLOB data types and CLOB

and NCLOBS.) These techniques are beneficial in the following situations:

SQL semantics are not recommended in the following situations:

When performing operations on LOBs that are relatively small in size (up to about 100K

bytes).

After migrating your database from L.ONG columns to LOB data types, any SQL string
functions, contained in your existing PL/SQL application, continue to work after the

migration.

When you use advanced features such as random access and piece-wise fetch, you must

use LOB APIs.

When performing operations on LOBs that are relatively large in size (greater than 1MB)

using SQL semantics can impact performance. Using the LOB APIs is recommended in

this situation.

7-1

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

Note:

SQL semantics are used with persistent and temporary LOBs. (SQL semantics
do not apply to BFILE columns because BFILE is a read-only data type.)

7.2 SQL Functions and Operators Supported for Use with LOBS

Many SQL operators and functions that take VARCHAR2 columns as arguments also accept LOB
columns.

e About SQL Functions and Operators for LOBs
e Implicit Conversion of CLOB to CHAR Types
 CLOBs and NCLOBs Do Not Follow Session Collation Settings

* UNICODE Support
Variations on certain functions are provided for Unicode support.

* Codepoint Semantics
¢ Return Values for SQL Semantics on LOBs

e LENGTH Return Value for LOBs

7.2.1 About SQL Functions and Operators for LOBs

ORACLE

This list summarizes those categories of SQL functions and operators that are supported for
use with LOBs. Details on individual functions and operators are given in Table 7-1.

e Concatenation
e Comparison
(Some comparison functions are not supported for use with LOBS.)
e Character functions
e Conversion
(Some conversion functions are not supported for use with LOBs.)

The following categories of functions are not supported for use with LOBs:

e Aggregate functions

Note that although pre-defined aggregate functions are not supported for use with LOBS,
you can create user-defined aggregate functions to use with LOBs.

* Unicode functions

Details on individual functions and operators are in Table 7-1, which lists SQL operators and
functions that take VARCHAR?2 types as operands or arguments, or return a VARCHAR?2 value. The
SQL column identifies the functions and operators that are supported for CLOB and NCLOB data
types. (The LENGTH function is also supported for the BLOB data type.)

The DBMS_LOB PL/SQL package supplied with Oracle Database supports using LOBs with most
of the functions listed in Table 7-1 as indicated in the PL/SQL column.

7-2

Chapter 7

SQL Functions and Operators Supported for Use with LOBs

Note:

and functions are supported for use directly in PL/SQL code.

See Also:

defined aggregate functions

7.2.2 Implicit Conversion of CLOB to CHAR Types

Functions designated as CNV in the SQL or PL/SQL column of Table 7-1 are performed by
converting the CLOB to a character data type, such as VARCHAR?2. In the SQL environment, only

the first 4K bytes of the C1.0B are converted and used in the operation; in the PL/SQL

Operators and functions with No indicated in the SQL column of Table 7-1 do not
work in SQL queries used in PL/SQL blocks - even though some of these operators

Oracle Database Data Cartridge Developer's Guide for more information about user-

environment, only the first 32K bytes of the CLOB are converted and used in the operation.

Table 7-1 SQL VARCHAR2 Functions and Operators on LOBs
C__ |

Category Operator / Function SQL Example | Comments SQL PL/SQL

Concatenation | |, CONCAT () Select clobCol || clobCol2 from tab; Yes Yes

Comparison = ,1=>>=<<=<>,"= 1if clobCol=clobCol2 then... No Yes

Comparison IN, NOT IN if clobCol NOT IN (clobl, clob2, clob3) No Yes
then...

Comparison SOME, ANY, ALL if clobCol < SOME (select clobCol2 No N/A
from...) then...

Comparison BETWEEN if clobCol BETWEEN clobCol2 and clobCol3 No Yes
then...

Comparison LIKE [ESCAPE] if clobCol LIKE '%pattern%' then... Yes Yes

Comparison IS [NOT] NULL where clobCol IS NOT NULL Yes Yes

Character INITCAP, NLS INITCAP select INITCAP(clobCol) from... CNV CNV

Functions

Character LOWER, NLS_LOWER, UPPER, .. .where LOWER (clobColl) = LOWER (clobCol2) Yes Yes

Functions NLS_UPPER

Character LPAD, RPAD select RPAD(clobCol, 20, ' La') from... Yes Yes

Functions

Character TRIM, LTRIM, RTRIM ...where RTRIM(LTRIM(clobCol, 'ab'), 'xy') Yes Yes

Functions = 1¢g"

Character REPLACE select REPLACE (clobCol, 'orig', 'new') Yes Yes

Functions from...

Character SOUNDEX ...where SOUNDEX (clobCOl) = CNV CNV

Functions SOUNDEX ('SMYTHE ")

ORACLE

7-3

Chapter 7

SQL Functions and Operators Supported for Use with LOBs

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs
|

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Character SUBSTR ...where substr(clobCol, 1,4) = like Yes Yes
Functions '"THIS'
Character TRANSLATE select TRANSLATE (clobCol, 'l123abc','NC'") CNV CNV
Functions from...
Character ASCII select ASCII(clobCol) from... CNV CNV
Functions
Character INSTR ...where instr(clobCol, 'book') = 11 Yes Yes
Functions
Character LENGTH ...where length(clobCol) != 7; Yes Yes
Functions
Character NLSSORT ...where NLSSORT (clobCol, 'NLS SORT = CNV CNV
Functions German') > NLSSORT ('S','NLS SORT =
German')
Character INSTRB, SUBSTRB, These functions are supported only for CLOBs that use Yes Yes
Functions LENGTHB single-byte character sets. (LENGTHB is supported for
BLOBs and CLOBS.)
Character REGEXP LIKE This function searches a character column for a Yes Yes
Functions - pattern. Use this function in the WHERE clause of a
Regular query to return rows matching the regular expression
Expressions you specify.
¢ See Also:
e Oracle Database SQL Language Reference for
syntax details on SQL functions for regular
expressions.
* Oracle Database Development Guide for
information on using regular expressions with the
database.
Character REGEXP REPLACE This function searches for a pattern in a character Yes Yes
Functions - column and replaces each occurrence of that pattern
Regular with the pattern you specify.
Expressions
Character REGEXP_INSTR This function searches a string for a given occurrence Yes Yes
Functions - of a regular expression pattern. You specify which
Regular occurrence you want to find and the start position to
Expressions search from. This function returns an integer indicating
the position in the string where the match is found.
Character REGEXP SUBSTR This function returns the actual substring matching the Yes Yes
Functions - regular expression pattern you specify.
Regular
Expressions
Conversion CHARTOROWID CHARTOROWID (clobCol) CNV CNV
ORACLE

7-4

Chapter 7

SQL Functions and Operators Supported for Use with LOBs

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Conversion COMPOSE COMPOSE ('string') CNV CNV
Returns a Unicode string given a string in the data type
CHAR, VARCHARZ2, CLOB, NCHAR, NVARCHARZ, NCLOB.
An o code point qualified by an umlaut code point is
returned as the o-umlaut code point.
Conversion DECOMPOSE DECOMPOSE ('str' [CANONICAL | CNV CNV
COMPATIBILITY])
Valid for Unicode character arguments. Returns a
Unicode string after decomposition in the same
character set as the input. o-umlaut code point is
returned as the o code point followed by the umlaut
code point.
Conversion HEXTORAW HEXTORAW (CLOB) No CNV
Conversion CONVERT select CONVERT (clobCol, 'WEBDEC', 'WESHP') Yes CNV
from...
Conversion TO_DATE TO_DATE (clobCol) CNV CNV
Conversion TO_NUMBER TO_NUMBER (clobCol) CNV CNV
Conversion TO_TIMESTAMP TO_TIMESTAMP (clobCol) No CNV
Conversion TO MULTI BYTE TO_MULTI BYTE (clobCol) CNV CNV
TO_SINGLE BYTE TO_SINGLE BYTE (clobCol)
Conversion TO CHAR TO CHAR (clobCol) Yes Yes
Conversion TO_NCHAR TO_NCHAR (clobCol) Yes Yes
Conversion TO_LOB INSERT INTO... SELECT TO_LOB(longCol)... N/A N/A
Note that TO_LOB can only be used to create or insert
into a table with LOB columns as SELECT FROM a table
with a LONG column.
Conversion TO_CLOB TO CLOB (varchar2Col) Yes Yes
Conversion TO_NCLOB TO NCLOB (varchar2Clob) Yes Yes
Aggregate COUNT select count(clobCol) from... No N/A
Functions
Aggregate MAX, MIN select MAX(clobCol) from... No N/A
Functions
Aggregate GROUPING select grouping(clobCol) from... group by No N/A
Functions cube (clobCol);
Other Functions GREATEST, LEAST select GREATEST (clobColl, clobCol2) No CNV
from...
Other Functions DECODE select DECODE (clobCol, conditionl, valuel, CNV CNV
defaultvValue) from...
Other Functions NVL select NVL(clobCol, 'NULL') from... Yes Yes
Other Functions DUMP select DUMP (clobCol) from... No N/A
Other Functions VSIZE select VSIZE (clobCol) from... No N/A
Unicode INSTR2, SUBSTRZ, These functions use UCS2 code point semantics. No CNV
LENGTH2, LIKE2
ORACLE

7-5

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs
|

Category Operator / Function SQL Example | Comments SQL PL/ISQL

Unicode INSTR4, SUBSTR4, These functions use UCS4 code point semantics. No CNV
LENGTH4, LIKE4

Unicode INSTRC, SUBSTRC, These functions use complete character semantics. No CNV

LENGTHC, LIKEC

7.2.3 CLOBs and NCLOBs Do Not Follow Session Collation Settings

Standard operators that operate on CLOBS and NCLOBS without first converting them to VARCHAR?
or NVARCHAR?2, (those marked Yes in the SQL or PL/SQL columns of Table 7-1), do not behave
linguistically, except for REGEXP functions. Binary comparison of the character data is performed
irrespective of the NLS_COMP and NLS_SORT parameter settings.

These REGEXP functions are the exceptions, where, if CLOB or NCLOB data is passed in, the
linguistic comparison is similar to the comparison of VARCHAR2 and NVARCHAR? values.

° REGEXP_LIKE

°* REGEXP REPLACE
° REGEXP_INSTR

° REGEXP_SUBSTR

* REGEXP_COUNT
Note:

CLOBs and NCLOBs support the default USING NLS_COMP option.

¢ See Also:

Oracle Database Reference for more information about NLS_COMP

7.2.4 UNICODE Support

ORACLE

Variations on certain functions are provided for Unicode support.

Variations on the INSTR, SUBSTR, LENGTH, and LIKE functions are provided for Unicode support.
(These variations are indicated as Unicode in the Category column of Table 7-1.)

7-6

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

See Also:

* Oracle Database Globalization Support Guide
e Oracle Database Development Guide
e Oracle Database SQL Language Reference

Oracle Database PL/SQL Packages and Types Referencefor a detailed
description on the usage of UNICODE functions

7.2.5 Codepoint Semantics

Codepoint semantics of the INSTR, SUBSTR, LENGTH, and LIKE functions, described in Table 7-1,
differ depending on the data type of the argument passed to the function. These functions use
different codepoint semantics depending on whether the argument is a VARCHAR2 or a CLOB
type as follows:

e When the argument is a C1.0B, UCS2 codepoint semantics are used for all character sets.

e When the argument is a character type, such as VARCHAR?2, the default codepoint semantics
are used for the given character set:

— UCS2 codepoint semantics are used for ALI6UTF16 and UTF8 character sets.
— UCS4 codepoint semantics are used for all other character sets, such as AL32UTFS8.

* If you are storing character data in a CLOB or NCLOB, then note that the amount and offset
parameters for any APIs that read or write data to the CLOB or NCLOB are specified in UCS2
codepoints. In some character sets, a full character consists one or more UCS2 codepoints
called a surrogate pair. In this scenario, you must ensure that the amount or offset you
specify does not cut into a full character. This avoids reading or writing a partial character.

» Oracle Database helps to detect half surrogate pair on read or write boundaries in case of
SQL functions and in case of read/write through LOB APIs. The behavior is as follows:

— If the starting offset is in the middle of a surrogate pair, an error is raised for both read
and write operations.

— If the read amount reads only a partial character, increment or decrement the amount
by 1 to read complete characters.

Note:
The output amount may vary from the input amount.
— If the write amount overwrites a partial character, an error is raised to prevent the

corruption of existing data caused by overwriting of a partial character in the
destination CL.OB or NCLOB.

ORACLE s

Chapter 7
Implicit Conversion of LOB Data Types in SQL

< Note:

This check only applies to the existing data in the CLOB or NCLOB. You
must make sure that the incoming buffer for the write operation starts and
ends in complete characters.

7.2.6 Return Values for SQL Semantics on LOBs

The return type of a function or operator that takes a LOB or VARCHAR? is the same as the data
type of the argument passed to the function or operator.

Functions that take more than one argument, such as CONCAT, return a LOB data type if one or
more arguments is a LOB. For example, CONCAT (CLOB, VARCHAR2) returns a CLOB.

¢ See Also:

Oracle Database SQL Language Reference for details on the CONCAT function and
the concatenation operator (||).

A LOB instance is always accessed and manipulated through a LOB locator. This is also true
for return values: SQL functions and operators return a LOB locator when the return value is a
LOB instance.

Any LOB instance returned by a SQL function is a temporary LOB instance. LOB instances in
tables (persistent LOBs) are not modified by SQL functions, even when the function is used in
the SELECT list of a query.

7.2.7 LENGTH Return Value for LOBs

The return value of the LENGTH function differs depending on whether the argument passed is a
LOB or a character string:

* If the input is a character string of length zero, then LENGTH returns NULL.

» For a CLOB of length zero, or an empty locator such as that returned by EMPTY CLOB(), the
LENGTH and DBMS_LOB.GETLENGTH functions return O.

7.3 Implicit Conversion of LOB Data Types in SQL

Some LOB data types support implicit conversion and can be used in operations such as
cross-type assignment and parameter passing. These conversions are processed at the SQL
layer and can be performed in all client interfaces that use LOB types.

* Implicit Conversion Between CLOB and NCLOB Data Types in SQL

7.3.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL

The database enables you to perform operations such as cross-type assignment and cross-
type parameter passing between CLOB and NCLOB data types. The database performs implicit

ORACLE .

ORACLE

Chapter 7
Implicit Conversion of LOB Data Types in SQL

conversions between these types when necessary to preserve properties such as character
set formatting.

Note that, when implicit conversions occur, each character in the source LOB is changed to the
character set of the destination LOB, if needed. In this situation, some degradation of
performance may occur if the data size is large. When the character set of the destination and
the source are the same, there is no degradation of performance.

After an implicit conversion between CLOB and NCLOB types, the destination LOB is implicitly
created as a temporary LOB. This new temporary LOB is independent from the source LOB. If
the implicit conversion occurs as part of a define operation in a SELECT statement, then any
modifications to the destination LOB do not affect the persistent LOB in the table that the LOB
was selected from as shown in the following example:

SQL> -- check lob length before update
SQL> select dbms lob.getlength(ad sourcetext) from Print media
2 where product 1d=3106 and ad id = 13001;

DBMS LOB.GETLENGTH (AD SOURCETEXT)

SQL> declare
2 clobl clob;
amt number:=10;
BEGIN
-- select a clob column into a clob, no implicit convesion
SELECT ad sourcetext INTO clobl FROM Print media
WHERE product i1d=3106 and ad id=13001 FOR UPDATE;

dbms_lob.trim(clobl, amt); -- Trim the selected lob to 10 bytes
END;
/

= O W 0 J oy U > W

=

PL/SQL procedure successfully completed.

SQL> -- Modification is performed on clobl which points to the

SQL> -- clob column in the table

SQL> select dbms lob.getlength(ad sourcetext) from Print media
2 where product 1d=3106 and ad id = 13001;

DBMS LOB.GETLENGTH (AD SOURCETEXT)

SQL>
SQL> rollback;

Rollback complete.

SQL> -- check lob length before update

SQL> select dbms lob.getlength(ad sourcetext) from Print media
2 where product 1d=3106 and ad id = 13001;

DBMS LOB.GETLENGTH (AD SOURCETEXT)

SQL>
SQL> declare
2 nclobl nclob;

7-9

Chapter 7
Unsupported Use of LOBs in SQL

amt number:=10;
BEGIN

-- select a clob column into a nclob, implicit conversion occurs
SELECT ad_sourcetext INTO nclobl FROM Print media
WHERE product i1d=3106 and ad id=13001 FOR UPDATE;

10 dbms lob.trim(nclobl, amt); -- Trim the selected lob to 10 bytes
11 END;
12/

PL/SQL procedure successfully completed.

SQL> -- Modification to nclobl does not affect the clob in the table,
SQL> -- because nclobl is a independent temporary LOB

SQL> select dbms_lob.getlength(ad sourcetext) from Print_media
2 where product i1d=3106 and ad id = 13001;

DBMS LOB.GETLENGTH (AD SOURCETEXT)

¢ See Also:

e "Implicit Conversions Between CLOB and VARCHAR2" for information on
PL/SQL semantics support for implicit conversions between CLOB and VARCHAR?

types.
e "Converting Character Sets Implicitly with LOBs" for more information on implicit
character set conversions when loading LOBs from BILES.

e Oracle Database SQL Language Reference for details on implicit conversions
supported for all data types.

7.4 Unsupported Use of LOBs in SQL

Table 7-2 lists SQL operations that are not supported on LOB columns.

Table 7-2 Unsupported Usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage

SELECT DISTINCT SELECT DISTINCT clobCol from...

SELECT clause SELECT... ORDER BY clobCol

ORDER BY

SELECT clause SELECT avg(num) FROM...

GROUP BY GROUP BY clobCol

UNION, INTERSECT, MINUS SELECT clobColl from tabl UNION SELECT clobCol2 from
(Note that UNTON ALL works for LOBS.) tab2;

Join queries SELECT... FROM... WHERE tabl.clobCol = tab2.clobCol

ORACLE 7-10

Chapter 7
VARCHAR?2 and RAW Semantics for LOBs

Table 7-2 (Cont.) Unsupported Usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage

Index columns

CREATE INDEX clobIndx ON tab(clobCol)...

7.5 VARCHAR?2 and RAW Semantics for LOBS

Semantics used with VARCHAR2 and RAW data types also apply to LOBs.

About VARCHARZ2 and RAW Semantics for LOBs

LOBs Returned from SQL Functions

IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs
WHERE Clause Usage with LOBs

7.5.1 About VARCHAR?2 and RAW Semantics for LOBs

These semantics, used with VARCHAR2 and RAW data types, also apply to LOBs:

Defining a CHAR buffer on a CLOB

You can define a VARCHAR? for a CLOB and RAW for a BLOB column. You can also define CLOB
and BLOB types for VARCHAR2 and RAW columns.

Selecting a CLOB column into a CHAR buffer or VARCHAR2

If a CLOB column is selected into a VARCHAR? variable, then data stored in the CLOB column
is retrieved and put into the CHAR buffer. If the buffer is not large enough to contain all the
CLOB data, then a truncation error is thrown and no data is written to the buffer. After
successful completion of the SELECT operation, the VARCHAR? variable holds as a regular
character buffer.

In contrast, when a CLOB column is selected into a local CLOB variable, the CLOB locator is
fetched.

Selecting a BLOB column into a RAW

When a BLOB column is selected into a RAW variable, the BLOB data is copied into the RAW
buffer. If the size of the BLOB exceeds the size of the buffer, then a truncation error is
thrown and no data is written to the buffer.

7.5.2 LOBs Returned from SQL Functions

When a LOB is returned from a SQL function, the result returned is a temporary LOB.

ORACLE

Your application should view the temporary LOB as local storage for the data returned from the
SELECT operation as follows:

In PL/SQL, the temporary LOB has the same lifetime (duration) as other local PL/SQL
program variables. It can be passed to subsequent SQL or PL/SQL VARCHAR? functions or
queries as a PL/SQL local variable. The temporary LOB goes out of scope at the end of
the program block at which time, the LOB is freed. These are the same semantics as those
for PL/SQL VARCHAR?2 variables. At any time, nonetheless, you can use a

DBMS LOB.FREETEMPORARY () call to release the resources taken by the local temporary
LOBs.

7-11

Chapter 7
VARCHAR?2 and RAW Semantics for LOBs

Note:

If the SQL statement returns a LOB or a LOB is an ouT parameter for a PL/SQL

function or procedure, you must test if it is a temporary LOB, and if it is, then free
it after you are done with it.

e In OCI, the temporary LOBs returned from SQL queries are always in session duration,
unless a user-defined duration is present, in which case, the temporary LOBs are in the
user-defined duration.

WARNING:

Ensure that your temporary tablespace is large enough to store all temporary
LOB results returned from queries in your program(s).

The following example illustrates selecting out a CLOB column into a VARCHAR?2 and returning the
result as a CHAR buffer of declared size:

DECLARE
vcl VARCHAR2 (32000) ;
1bl CLOB;
1b2 CLOB;
BEGIN
SELECT clobColl INTO vcl FROM tab WHERE colID=1;
-- 1bl is a temporary LOB
SELECT clobCol2 || clobCol3 INTO lbl FROM tab WHERE colID=2;

1b2 := vcl|| 1bl;

-- 1b2 is a still temporary LOB, so the persistent data in the database
-- 1s not modified. An update is necessary to modify the table data.
UPDATE tab SET clobColl = 1b2 WHERE colID = 1;

DBMS LOB.FREETEMPORARY (1b2); -- Free up the space taken by 1b2
<... some more queries ...>
END; -- at the end of the block, 1bl is automatically freed

7.5.3 IS NULL and IS NOT NULL Usage with VARCHARZ2s and CLOBs

You can use the IS NULL and IS NOT NULL operators with LOB columns.

When used with LOBs, the IS NULL and IS NOT NULL operators determine whether a LOB
locator is stored in the row.

ORACLE 7-12

Chapter 7
Built-in Functions for Remote LOBs and BFILEs

Note:

In the SQL 92 standard, a character string of length zero is distinct from a NULL
string. The return value of IS NULL differs when you pass a LOB compared to a
VARCHAR2:

* When you pass an initialized LOB of length zero to the IS NULL function, zero
(FALSE) is returned. These semantics are compliant with the SQL standard.

* When you pass a VARCHAR? of length zero to the 1S NULL function, TRUE is
returned.

7.5.4 WHERE Clause Usage with LOBs

SQL functions with LOBs as arguments, except functions that compare LOB values, are
allowed in predicates of the WHERE clause.

The LENGTH function, for example, can be included in the predicate of the WHERE clause:

CREATE TABLE t (n NUMBER, c CLOB);
INSERT INTO t VALUES (1, 'abc');

SELECT * FROM t WHERE c IS NOT NULL;
SELECT * FROM t WHERE LENGTH(c) > 0;
SELECT * FROM t WHERE c LIKE 'Sa%';
SELECT * FROM t WHERE SUBSTR(c, 1, 2) LIKE '$b%';
SELECT * FROM t WHERE INSTR(c, 'b') = 2;

7.6 Built-in Functions for Remote LOBs and BFILEs

ORACLE

¢ See Also:

Built-in Functions for Remote LOBs and BFILEs for more information about built-in
functions and user-defined functions supported on remote L0OBs and BFILES

7-13

PL/SQL Semantics for LOBs

Topics:

PL/SQL Statements and Variables

Implicit Conversions Between CLOB and VARCHAR2
Explicit Conversion Functions

PL/SQL Functions for Remote LOBs and BFILEs
PL/SQL Statements and Variables

Implicit Conversions Between CLOB and VARCHAR?2
Explicit Conversion Functions

PL/SQL Functions for Remote LOBs and BFILEs

8.1 PL/SQL Statements and Variables

In PL/SQL, semantic changes have been made.

Note:

Most discussions concerning PL/SQL semantics, and CLOBS and VARCHAR?S, also
apply to BLOBs and RAWS, unless otherwise noted. In the text, BLOB and RAW are not
explicitly mentioned.

PL/SQL semantics support is described in the following sections:

Implicit Conversions Between CLOB and VARCHAR2
Explicit Conversion Functions
VARCHAR2 and CLOB in PL/SQL Built-In Functions

8.2 Implicit Conversions Between CLOB and VARCHAR?2

Implicit conversions from CLOB to VARCHAR2 and from VARCHAR? to CLOB data types are allowed
in PL/SQL.

ORACLE

These conversions enable you to perform the following operations in your application:

CLOB columns can be selected into VARCHAR2 PL/SQL variables
VARCHAR? columns can be selected into CLOB variables

Assignment and parameter passing between CLOBS and VARCHAR2S

8-1

Chapter 8
Explicit Conversion Functions

Accessing a CLOB as a VARCHAR2 in PL/SQL

The following example illustrates the way CLOB data is accessed when the CLOBs are treated as
VARCHAR?ZS:

declare
myStoryBuf VARCHARZ2 (4001);

BEGIN
SELECT ad sourcetext INTO myStoryBuf FROM print media WHERE ad id = 12001;
-- Display Story by printing myStoryBuf directly

END;

/

Assigning a CLOB to a VARCHAR2 in PL/SQL

declare
myLOB CLOB;
BEGIN
SELECT 'ABCDE' INTO myLOB FROM print media WHERE ad id = 11001;
-- myLOB is a temporary LOB.
-- Use myLOB as a lob locator
DBMS OUTPUT.PUT LINE('Is temp? '||DBMS LOB.ISTEMPORARY (myLOB));
END;
/

8.3 Explicit Conversion Functions

ORACLE

In SQL and PL/SQL, the certain explicit conversion functions convert other data types to and
from CLOB, NCLOB, and BLOB as part of the LONG-to-LOB migration:

* TO CLOB(): Converting from VARCHAR2, NVARCHAR2, Or NCLOB to a CLOB
* TO NCLOB(): Converting from VARCHAR2, NVARCHAR2, or CLOB to an NCLOB
e TO BLOB(): Converting from RAW to a BLOB

* TO CHAR() converts a CLOB to a CHAR type. When you use this function to convert a
character LOB into the database character set, if the LOB value to be converted is larger
than the target type, then the database returns an error. Implicit conversions also raise an
error if the LOB data does not fit.

* TO_NCHAR() converts an NCLOB to an NCHAR type. When you use this function to convert a
character LOB into the national character set, if the LOB value to be converted is larger
than the target type, then the database returns an error. Implicit conversions also raise an
error if the LOB data does not fit.

e CAST does not directly support any of the LOB data types. When you use CAST to convert a
CLOB value into a character data type, an NCLOB value into a national character data type,
or a BLOB value into a RAW data type, the database implicitly converts the LOB value to
character or raw data and then explicitly casts the resulting value into the target data type.
If the resulting value is larger than the target type, then the database returns an error.

Other explicit conversion functions are not supported, such as, TO NUMBER (), see Table 7-1.

Note:

LOBs do not support duplicate LONG binds.

8-2

Chapter 8
Explicit Conversion Functions

e VARCHARZ2 and CLOB in PL/SQL Built-In Functions

¢ See Also:

Migrating Columns from LONGs to LOBs for more information about conversion
functions

8.3.1 VARCHAR2 and CLOB in PL/SQL Built-In Functions

ORACLE

CLOB and VARCHAR? are two distinct types.

However, depending on the usage, a CLOB can be passed to SQL and PL/SQL VARCHAR? built-
in functions, used exactly like a VARCHAR2. Or the variable can be passed into DBMS LOB APIs,
acting like a LOB locator. See the following combined example,"CLOB Variables in PL/SQL".

PL/SQL VARCHAR? functions and operators can take CLOBS as arguments or operands.

When the size of a VARCHAR? variable is not large enough to contain the result from a function
that returns a CLOB, or a SELECT on a CLOB column, an error is raised and no operation is
performed. This is consistent with VARCHAR2 semantics.

CLOB Variables in PL/SQL

1 declare

2 myStory CLOB;

3 revisedStory CLOB;

4 myGist VARCHARZ (100);

5 revisedGist VARCHAR2 (100);

6 BEGIN

7 -- select a CLOB column into a CLOB variable

8 SELECT Story INTO myStory FROM print media WHERE product id=10;

9 -- perform VARCHAR2 operations on a CLOB variable

10 revisedStory := UPPER(SUBSTR (myStory, 100, 1));

11 -- revisedStory is a temporary LOB

12 -- Concat a VARCHARZ2 at the end of a CLOB

13 revisedStory := revisedStory || myGist;

14 -- The following statement raises an error because myStory is

15 -- longer than 100 bytes
16 myGist := myStory;
17 END;

Please note that in line 10 of "CLOB Variables in PL/SQL", a temporary CLOB is implicitly
created and is pointed to by the revisedStory CLOB locator. In the current interface the line can
be expanded as:

buffer VARCHARZ2 (32000)
DBMSiLOB.CREATETEMPORARY(revisedStory);

buffer := UPPER(DBMS LOB.SUBSTR (myStory,100,1));

DBMS LOB.WRITE (revisedStory,length (buffer),1, buffer);

In line 13, myGist is appended to the end of the temporary LOB, which has the same effect of:

DBMS LOB.WRITEAPPEND (revisedStory, myGist, length (myGist));

In some occasions, implicitly created temporary LOBs in PL/SQL statements can change the
representation of LOB locators previously defined. Consider the next example.

8-3

ORACLE

Chapter 8
Explicit Conversion Functions

Change in Locator-Data Linkage

declare

myStory CLOB;

amt number:=100;

buffer VARCHAR2 (100) :='some data';

BEGIN

-- select a CLOB column into a CLOB variable

SELECT Story INTO myStory FROM print media WHERE product id=10;
DBMS LOB.WRITE (myStory, amt, 1, buf);

-- write to the persistent LOB in the table

QO ~J o) U B W N

O

10

11 myStory:= UPPER(SUBSTR (myStory, 100, 1));

12 -- perform VARCHAR2 operations on a CLOB variable, temporary LOB created.
13 -- Changes are not reflected in the database table from this point on.

14

15 update print media set Story = myStory WHERE product id = 10;

16 -- an update is necessary to synchronize the data in the table.

17 END;

After line 7, myStory represents a persistent LOB in print media.
The DBMS LOB.WRITE call in line 8 directly writes the data to the table.

No UPDATE statement is necessary. Subsequently in line 11, a temporary LOB is created and
assigned to myStory because myStory is now used like a local VARCHAR? variable. The LOB
locator myStory now points to the newly-created temporary LOB.

Therefore, modifications to myStory are no longer reflected in the database. To propagate the
changes to the database table, an UPDATE statement becomes necessary now. Note again that
for the previous persistent LOB, the UPDATE is not required.

Note:

If the SQL statement returns a LOB or a LOB is an oUT parameter for a PL/SQL
function or procedure, you must test if it is a temporary LOB, and if it is, then free it
after you are done with it.

Freeing Temporary LOBs Automatically and Manually

Temporary LOBs created in a program block as a result of a SELECT or an assignment are freed
automatically at the end of the PL/SQL block or function or procedure. You must also free the
temporary LOBs that were created with DBMS LOB.CREATETEMPORARY to reclaim system
resources and temporary tablespace. Do this by calling DBMS LOB.FREETEMPORARY on the CLOB
variable.

declare
Storyl CLOB;
Story2 CLOB;
StoryCombined CLOB;
StoryLower CLOB;

BEGIN
SELECT Story INTO Storyl FROM print media WHERE product ID = 1;
SELECT Story INTO Story2 FROM print media WHERE product ID 2;
StoryCombined := Storyl || Story2; -- StoryCombined is a temporary LOB
-- Free the StoryCombined manually to free up space taken
DBMS_LOB.FREETEMPORARY(StoryCOmbined);

8-4

Chapter 8
PL/SQL Functions for Remote LOBs and BFILES

StoryLower := LOWER(Storyl) || LOWER(Story2);
END; -- At the end of block, StoryLower is freed.

8.4 PL/SQL Functions for Remote LOBs and BFILES

¢ See Also:

PL/SQL Functions for Remote LOBs and BFILEs for PL/SQL functions that support
remote LOBs and BFILEs

ORACLE 8.5

Data Interface for Persistent LOBs

Data interface is a generic term referring to whichever interface is in use, to query the
database or to update the database.

Topics:

* Overview of the Data Interface for Persistent LOBs

* Benefits of Using the Data Interface for Persistent LOBs
* Using the Data Interface for Persistent LOBs in PL/SQL
* The Data Interface Used for Persistent LOBs in OCI

e The Data Interface Used with Persistent LOBs in Java

 The Data Interface Used with Remote LOBs

e Overview of the Data Interface for Persistent LOBs

* Benefits of Using the Data Interface for Persistent LOBs
« Using the Data Interface for Persistent LOBs in PL/SQL
* The Data Interface Used for Persistent LOBs in OCI

e The Data Interface Used with Persistent LOBs in Java

 The Data Interface Used with Remote LOBs

9.1 Overview of the Data Interface for Persistent LOBS

The data interface for persistent LOBs includes a set of Java, PL/SQL, and OCI APIs that are
extended to work with LOB data types.

These APIls, originally designed for use with legacy data types such as LONG, LONG RAW, and
VARCHAR?2, can also be used with the corresponding LOB data types shown in Table 9-1 and
Table 9-2. These tables show the legacy data types in the bind or define type column and the
corresponding supported LOB data type in the LOB column type column. You can use the data
interface for LOBs to store and manipulate character data and binary data in a LOB column
just as if it were stored in the corresponding legacy data type.

Note:

The data interface works for LOB columns and LOBs that are attributes of objects. In
this chapter LOB columns means LOB columns and LOB attributes.

You can use array bind and define interfaces to insert and select multiple rows in one
round-trip.

While most of this discussion focuses on character data types, the same concepts apply to the
full set of character and binary data types listed in Table 9-1 and Table 9-2. CLOB also means
NCLOB in these tables.

ORACLE o1

Table 9-1 Corresponding LONG and LOB Data Types in SQL and PL/SQL

Chapter 9

Benefits of Using the Data Interface for Persistent LOBS

Bind or Define Type

LOB Column Type

Used For Storing

CHAR CLOB Character data
LONG CLOB Character data
VARCHAR? CLOB Character data
LONG RAW BLOB Binary data
RAW BLOB Binary data

Table 9-2 Corresponding LONG and LOB Data Types in OCI
]

Bind or Define Type

LOB Column Type

Used For Storing

SQLT AFC(n) CLOB Character data
SQLT CHR CLOB Character data
SQLT LNG CLOB Character data
SQLT VCS CLOB Character data
SQLT BIN BLOB Binary data
SQLT LBI BLOB Binary data
SQLT LVB BLOB Binary data

9.2 Benefits of Using the Data Interface for Persistent LOBs

Using the data interface for persistent LOBs has the following benefits:

If your application uses LONG data types, then you can use the same application with LOB
data types with little or no modification of your existing application required. To do so, just
convert LONG audiotape columns in your tables to LOB audiotape columns as discussed in
Migrating Columns from LONGs to LOBs.

Performance is better for OCI applications that use sequential access techniques. A
piecewise INSERT or fetch using the data interface has comparable performance to using
OCI functions like 0CILobRead? () and OCILobWrite? (). Because the data interface allows
more than 4K bytes of data to be inserted into a LOB in a single OCI call, a round-trip to
the server is saved.

You can read LOB data in one ocIstmtFetch () call, instead of fetching the LOB locator
first and then calling 0CILobRead? (). This improves performance when you want to read
LOB data starting at the beginning.

You can use array bind and define interfaces to insert and select multiple rows with LOBs
in one round trip.

9.3 Using the Data Interface for Persistent LOBs in PL/SQL

The data interface enables you to use LONG and LOB data types listed in Table 9-1 to perform
the following operations in PL/SQL:

ORACLE

About Using the Data Interface for Persistent LOBs in PL/SQL

9-2

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

Guidelines for Accessing LOB Columns Using the Data Interface in SQL and PL/SQL
Implicit Assignment and Parameter Passing

Passing CLOBs to SQL and PL/SQL Built-In Functions

Explicit Conversion Functions

Calling PL/SQL and C Procedures from SQL

Calling PL/SQL and C Procedures from PL/SQL

Binds of All Sizes in INSERT and UPDATE Operations

4000 Byte Limit on Results of a SQL Operator

Example of 4000 Byte Result Limit of a SQL Operator

Restrictions on Binds of More Than 4000 Bytes

Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on
LOBs

Oracle supports parallel execution of the following operations when performed on
partitioned tables with SecureFiles LOBs or BasicFiles LOBs.

Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and UPDATE
Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT Operations
Using the Data Interface for LOBs in Assignments and Parameter Passing

Using the Data Interface for LOBs with PL/SQL Built-In Functions

9.3.1 About Using the Data Interface for Persistent LOBs in PL/SQL

ORACLE

INSERT Or UPDATE character data stored in datatypes such as VARCHAR2, CHAR, Or LONG into
a CLOB column.

INSERT Or UPDATE binary data stored in datatypes such as RAW or LONG RAW into a BLOB
column.

Use the SELECT statement on CLOB columns to select data into a character buffer variable
such as CHAR, LONG, Oor VARCHAR?.

Use the SELECT statement on BLOB columns to select data into a binary buffer variable such
as RAW and LONG RAW.

Make cross-type assignments (implicit type conversions) between CLOB and VARCHAR?,
CHAR, Or LONG variables.

Make cross-type assignments (implicit type conversions) between BLOB and RAW or LONG
RAW variables.

Pass LOB datatypes to functions defined to accept LONG datatypes or pass LONG datatypes
to functions defined to accept LOB datatypes. For example, you can pass a CLOB instance
to a function defined to accept another character type, such as VARCHAR2, CHAR, Or LONG.

Use cLOBs with other PL/SQL functions and operators that accept VARCHAR2 arguments
such as INSTR and SUBSTR.

9-3

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

Note:

When using the data interface for LOBs with the SELECT statement in PL/SQL,
you cannot specify the amount you want to read. You can only specify the buffer
length of your buffer. If your buffer length is smaller than the LOB data length,
then the database throws an exception.

¢ See Also:

— SQL Semantics and LOBs for details on LOB support in SQL statements
— Some Implicit Conversions Are Not Supported for LOB Data Types

— Passing CLOBs to SQL and PL/SQL Built-In Functions for the complete list
of functions that accept VARCHAR2 arguments such as INSTR and SUBSTR

9.3.2 Guidelines for Accessing LOB Columns Using the Data Interface in
SQL and PL/SQL

ORACLE

This section describes techniques you use to access LOB columns or attributes using the data
interface for persistent LOBs.

Data from CcL0B and BLOB columns or attributes can be referenced by regular SQL statements,
such as INSERT, UPDATE, and SELECT.

There is no piecewise INSERT, UPDATE, or fetch routine in PL/SQL. Therefore, the amount of
data that can be accessed from a LOB column or attribute is limited by the maximum character
buffer size. PL/SQL supports character buffer sizes up to 32KB - 1 (32767 bytes). For this
reason, only LOBs less than 32K bytes in size can be accessed by PL/SQL applications using
the data interface for persistent LOBs.

If you must access more than 32KB -1 using the data interface, then you must make OCI calls
from the PL/SQL code to use the APIs for piece-wise insert and fetch.

Use the following guidelines for using the data interface to access LOB columns or attributes:

e INSERT operations

You can INSERT into tables containing LOB columns or attributes using regular INSERT
statements in the VALUES clause. The field of the LOB column can be a literal, a character
datatype, a binary datatype, or a LOB locator.

e UPDATE operations

LOB columns or attributes can be updated as a whole by UPDATE... SET statements. In the
SET clause, the new value can be a literal, a character datatype, a binary datatype, or a
LOB locator.

e 4000 byte limit on hexadecimal to raw and raw to hexadecimal conversions

The database does not do implicit hexadecimal to RAW or RAW to hexadecimal conversions
on data that is more than 4000 bytes in size. You cannot bind a buffer of character data to
a binary datatype column, and you cannot bind a buffer of binary data to a character

9-4

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

datatype column if the buffer is over 4000 bytes in size. Attempting to do so results in your
column data being truncated at 4000 bytes.

For example, you cannot bind a VARCHAR?2 buffer to a LONG RAW or a BLOB column if the
buffer is more than 4000 bytes in size. Similarly, you cannot bind a RAW buffer to a LONG or a
CLOB column if the buffer is more than 4000 bytes in size.

e SELECT operations

LOB columns or attributes can be selected into character or binary buffers in PL/SQL. If
the LOB column or attribute is longer than the buffer size, then an exception is raised
without filling the buffer with any data. LOB columns or attributes can also be selected into
LOB locators.

9.3.3 Implicit Assignment and Parameter Passing

Implicit assignment and parameter passing are supported for LOB columns.

For the data types listed in Table 9-1 and Table 9-2, you can pass or assign: any character type
to any other character type, or any binary type to any other binary type using the data interface
for persistent LOBs.

Implicit assignment works for variables declared explicitly and for variables declared by
referencing an existing column type using the $TYPE attribute as show in the following example.
This example assumes that column long col in table t has been migrated from a LONG to a

CLOB column.
CREATE TABLE t (long col LONG); -- Alter this table to change LONG column to LOB
DECLARE
a VARCHAR2 (100) ;
b t.long col%type; -- This variable changes from LONG to CLOB
BEGIN
SELECT * INTO b FROM t;
a :=Db; -- This changes from "VARCHAR2? := LONG to VARCHAR2 := CLOB
b := a; -- This changes from "LONG := VARCHAR2 to CLOB := VARCHAR?
END;

Implicit parameter passing is allowed between functions and procedures. For example, you
can pass a CLOB to a function or procedure where the formal parameter is defined as a
VARCHAR2.

< Note:

The assigning a VARCHAR? buffer to a LOB variable is somewhat less efficient than
assigning a VARCHAR? to a LONG variable because the former involves creating a
temporary LOB. Therefore, PL/SQL users experience a slight deterioration in the
performance of their applications.

9.3.4 Passing CLOBs to SQL and PL/SQL Built-In Functions

Implicit parameter passing is also supported for built-in PL/SQL functions that accept character
data. For example, INSTR can accept a CLOB and other character data.

ORACLE o5

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

Any SQL or PL/SQL built-in function that accepts a VARCHAR2 can accept a CLOB as an
argument. Similarly, a VARCHAR? variable can be passed to any DBMS LOB API for any parameter
that takes a LOB locator.

See Also:

SQL Semantics and LOBs

9.3.5 Explicit Conversion Functions

In PL/SQL, these explicit conversion functions convert other data types to CLOB and BLOB
datatypes as follows:

e TO CLOB() converts LONG, VARCHARZ, and CHAR to CLOB
° TO BLOB() converts LONG RAW and RAW to BLOB

Also note that the conversion function TO CHAR () can convert a CLOB to a CHAR type.

9.3.6 Calling PL/SQL and C Procedures from SQL

When a PL/SQL or C procedure is called from SQL, buffers with more than 4000 bytes of data
are not allowed.

9.3.7 Calling PL/SQL and C Procedures from PL/SQL

ORACLE

You can call a PL/SQL or C procedure from PL/SQL. You can pass a CLOB as an actual
parameter where CHR is the formal parameter, or vice versa. The same holds for BL.oBs and
RAWS.

One example of when these cases can arise is when either the formal or the actual parameter
is an anchored type, that is, the variable is declared using the table name.column name%type
syntax.

PL/SQL procedures or functions can accept a CLOB or a VARCHAR? as a formal parameter. For
example the PL/SQL procedure could be one of the following:

* When the formal parameter is a CLOB:

CREATE OR REPLACE PROCEDURE get lob(table name IN VARCHARZ, lob INOUT
CLOB) AS

BEGIN

END;
/

* When the formal parameter is a VARCHAR2:

CREATE OR REPLACE PROCEDURE get lob(table name IN VARCHAR2, lob INOUT
VARCHAR2) AS

BEGIN

END;
/

9-6

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

The calling function could be of any of the following types:

e When the actual parameter is a CHR:

create procedure ...
declare
c VARCHAR2([200];
BEGIN

get lob('table name', c);
END;

e When the actual parameter is a CLOB:

create procedure ...
declare
c CLOB;
BEGIN

get lob('table name', c);
END;

9.3.8 Binds of All Sizes in INSERT and UPDATE Operations

Binds of all sizes are supported for INSERT and UPDATE operations on LOB columns. Multiple
binds of any size are allowed in a single INSERT or UPDATE statement.

Note:

When you create a table, the length of the default value you specify for any LOB
column is restricted to 4000 bytes.

9.3.9 4000 Byte Limit on Results of a SQL Operator

If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data consists of a SQL
operator, then Oracle Database limits the size of the result to at most 4000 bytes.

The following statement inserts only 4000 bytes because the result of LPAD is limited to 4000
bytes:

INSERT INTO print media (ad _sourcetext) VALUES (lpad('a', 5000, 'a'")):;
The following statement inserts only 2000 bytes because the result of LPAD is limited to 4000

bytes, and the implicit hexadecimal to raw conversion converts it to 2000 bytes of RAW data:

INSERT INTO print media (ad photo) VALUES (lpad('a', 5000, 'a')):;

9.3.10 Example of 4000 Byte Result Limit of a SQL Operator

This example illustrates how the result for SQL operators is limited to 4000 bytes.

/* The following command inserts only 4000 bytes because the result of
* LPAD is limited to 4000 bytes */

INSERT INTO print media(product id, ad id, ad sourcetext)
VALUES (2004, 5, lpad('a', 5000, 'a'));

SELECT LENGTH (ad_sourcetext) FROM print media
WHERE product 1d=2004 AND ad id=5;

ROLLBACK;

ORACLE o

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

/* The following command inserts only 2000 bytes because the result of
* LPAD is limited to 4000 bytes, and the implicit hex to raw conversion
* converts it to 2000 bytes of RAW data. */
INSERT INTO print media(product id, ad id, ad composite)
VALUES (2004, 5, lpad('a', 5000, 'a"));
SELECT LENGTH (ad _composite) from print media
WHERE product 1d=2004 AND ad id=5;
ROLLBAACK;

9.3.11 Restrictions on Binds of More Than 4000 Bytes

There are restrictions for binds of more than 4000 bytes:

e If a table has both L.oNG and LOB columns, then you can bind more than 4000 bytes of data
to either the LONG or LOB columns, but not both in the same statement.

* Inan INSERT AS SELECT operation, binding of any length data to LOB columns is not
allowed.

9.3.12 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query
(PQ) Operations on LOBs

ORACLE

Oracle supports parallel execution of the following operations when performed on partitioned
tables with SecureFiles LOBs or BasicFiles LOBs.

e CREATE TABLE AS SELECT
° INSERT AS SELECT

e Multitable INSERT

e SELECT
e DELETE
e UPDATE

* MERGE (conditional UPDATE and INSERT)
° ALTER TABLE MOVE

e SQL Loader

e Import/Export

Additionally, Oracle supports parallel execution of the following operations when performed on
non-partitioned tables with only SecureFile LOBs:

e CREATE TABLE AS SELECT
° INSERT AS SELECT

e Multitable INSERT

e SELECT
e DELETE
e UPDATE

* MERGE (conditional UPDATE and INSERT)

e ALTER TABLE MOVE

9-8

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

e SQL Loader

Restrictions on parallel operations with LOBs

- Parallel insert direct load (PIDL) is disabled if a table also has a BasicFiles LOB column, in
addition to a SecureFiles LOB column.

e PDML is disabled if LOB column is part of a constraint.
e PDML does not work when there are any domain indexes defined on the LOB column.
« Parallelism must be specified only for top-level non-partitioned tables.

e Usethe ALTER TABLE MOVE statement with LOB storage clause, to change the storage
properties of LOB columns instead of the ALTER TABLE MODIFY statement. The ALTER
TABLE MOVE statement is more efficient because it executes in parallel and does not
generate undo logs.

See Also:

Oracle Database Administrator's Guide section "Managing Processes for Parallel
SQL Execution”

Oracle Database SQL Language Reference section "ALTER TABLE"

9.3.13 Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT
and UPDATE

ORACLE

This example demonstrates using binds larger than 4000 bytes in INSERT and UPDATE
operations.

DECLARE
bigtext VARCHARZ2 (32767);
smalltext VARCHAR?2 (2000);
bigraw RAW (32767);

BEGIN
bigtext := LPAD('a', 32767, 'a');
smalltext := LPAD('a', 2000, 'a');
bigraw := utl raw.cast to raw (bigtext);

/* Multiple long binds for LOB columns are allowed for INSERT: */
INSERT INTO print media (product id, ad id, ad sourcetext, ad composite)
VALUES (2004, 1, bigtext, bigraw);

/* Single long bind for LOB columns is allowed for INSERT: */
INSERT INTO print media (product id, ad id, ad sourcetext)
VALUES (2005, 2, smalltext);

bigtext := LPAD('b', 32767, 'b');
smalltext := LPAD('b', 20, 'a');
bigraw := utl raw.cast to raw (bigtext);

/* Multiple long binds for LOB columns are allowed for UPDATE: */
UPDATE print media SET ad sourcetext = bigtext, ad composite = bigraw,

ad finaltext = smalltext;

/* Single long bind for LOB columns is allowed for UPDATE: */
UPDATE print media SET ad sourcetext = smalltext, ad finaltext = bigtext;

9-9

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

/* The following is NOT allowed because we are trying to insert more than
4000 bytes of data in a LONG and a LOB column: */
INSERT INTO print media (product id, ad id, ad sourcetext, press release)
VALUES (2030, 3, bigtext, bigtext);

/* Insert of data into LOB attribute is allowed */
INSERT INTO print media(product id, ad id, ad header)
VALUES (2049, 4, adheader typ(null, null, null, bigraw));

/* The following is not allowed because we try to perform INSERT AS
SELECT data INTO LOB */

INSERT INTO print media (product id, ad id, ad sourcetext)
SELECT 2056, 5, bigtext FROM dual;

END;
/

9.3.14 Using the Data Interface for LOBs with INSERT, UPDATE, and
SELECT Operations

INSERT and UPDATE statements on LOBs are used in the same way as on LONGS. For example:

DECLARE
ad buffer VARCHARZ (100);
BEGIN
INSERT INTO print media(product id, ad id, ad sourcetext)
VALUES (2004, 5, 'Source for advertisement 1');
UPDATE print media SET ad sourcetext= 'Source for advertisement 2'
WHERE product i1d=2004 AND ad id=5;
/* This retrieves the LOB column if it is up to 100 bytes, otherwise it
* raises an exception */
SELECT ad_sourcetext INTO ad buffer FROM print media
WHERE product i1d=2004 AND ad id=5;
END;
/

9.3.15 Using the Data Interface for LOBs in Assignments and Parameter
Passing

The data interface for LOBs enables implicit assignment and parameter passing as shown in
the following example:

CREATE TABLE t (Clob_col CLOB, blob_col BLOB) ;
INSERT INTO t VALUES ('abcdefg', 'aaaaaa');

DECLARE
var buf VARCHARZ (100);
clob buf CLOB;
raw_buf RAW(100);
blob buf BLOB;

BEGIN
SELECT * INTO clob buf, blob buf FROM t;
var _buf := clob buf;
clob _buf:= var buf;
raw_buf := blob buf;
blob buf := raw buf;

END;

/

ORACLE 910

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

CREATE OR REPLACE PROCEDURE FOO (a IN OUT CLOB) IS

BEGIN
-- Any procedure body
a := 'abc';
END;
/
CREATE OR REPLACE PROCEDURE BAR (b IN OUT VARCHARZ2) IS
BEGIN
-- Any procedure body
b := "xyz';
END;
/
DECLARE
a VARCHAR2 (100) := '1234567';
b CLOB;
BEGIN
FOO (a) ;
SELECT clob _col INTO b FROM t;
BAR (b) ;
END;
/

9.3.16 Using the Data Interface for LOBs with PL/SQL Built-In Functions

This example illustrates the use of CLOBs in PL/SQL built-in functions, using the data interface
for LOBs:

DECLARE
my ad CLOB;
revised ad CLOB;
myGist VARCHAR2 (100):= 'This is my gist.';
revisedGist VARCHAR2 (100);
BEGIN
INSERT INTO print media (product id, ad id, ad sourcetext)
VALUES (2004, 5, 'Source for advertisement 1');

-- select a CLOB column into a CLOB variable
SELECT ad sourcetext INTO my ad FROM print media
WHERE product i1d=2004 AND ad id=5;

-- perform VARCHAR2 operations on a CLOB variable
revised ad := UPPER(SUBSTR(my ad, 1, 20));

-- revised ad is a temporary LOB
-- Concat a VARCHAR2 at the end of a CLOB
revised ad := revised ad || myGist;

-- The following statement raises an error if my ad is
-- longer than 100 bytes
myGist := my ad;

END;

/

0.4 The Data Interface Used for Persistent LOBs in OCI

This section discusses OCI functions included in the data interface for persistent LOBs. These
OCI functions work for LOB datatypes exactly the same way as they do for LONG datatypes.

ORACLE 011

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

Using these functions, you can perform INSERT, UPDATE, fetch, bind, and define operations in
OCIl on LOBs using the same techniques you would use on other datatypes that store
character or binary data.

Note:

You can use array bind and define interfaces to insert and select multiple rows with
LOBs in one round trip.

e LOB Data Types Bound in OCI

e LOB Data Types Defined in OCI

e Multibyte Character Sets Used in OCI with the Data Interface for LOBs

e OCI Functions Used to Perform INSERT or UPDATE on LOB Columns

* The Data Interface Used to Fetch LOB Data in OCI

« PL/SQL and C Binds from OCI

« Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE

e Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs

e Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes

e Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling

¢ Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback

¢ Binding LONG Data to LOB Columns Using an Array INSERT

e Selecting a LOB Column into a LONG Buffer Using a Simple Fetch

e Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling
e Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback
e Selecting a LOB Column into a LONG Buffer Using an Array Fetch

See Also:

Oracle Call Interface Programmer's Guide, section "Runtime Data Allocation and
Piecewise Operations in OCI"

9.4.1 LOB Data Types Bound in OCI

ORACLE

You can bind LOB datatypes in the following operations:

* Regular, piecewise, and callback binds for INSERT and UPDATE operations
e Array binds for INSERT and UPDATE operations

e Parameter passing across PL/SQL and OCI boundaries

Piecewise operations can be performed by polling or by providing a callback. To support these
operations, the following OCI functions accept the LONG and LOB data types listed in Table 9-2.

9-12

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

* OCIBindByName () and OCIBindByPos ()

These functions create an association between a program variable and a placeholder in
the SQL statement or a PL/SQL block for INSERT and UPDATE operations.

* OCIBindDynamic ()

You use this call to register callbacks for dynamic data allocation for INSERT and UPDATE
operations

e 0OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo ()

These calls are used to get or set piece information for piecewise operations.

9.4.2 LOB Data Types Defined in OCI

The data interface for persistent LOBs allows the following OCI functions to accept the LONG
and LOB data types listed in Table 9-2.

. OCIDefineByPos ()
This call associates an item in a SELECT list with the type and output data buffer.
e OCIDefineDynamic()

This call registers user callbacks for SELECT operations if the 0OCI_DYNAMIC FETCH mode
was selected in 0CIDefineByPos () function call.

When you use these functions with LOB types, the LOB data, and not the locator, is selected
into your buffer. Note that in OCI, you cannot specify the amount you want to read using the
data interface for LOBs. You can only specify the buffer length of your buffer. The database
only reads whatever amount fits into your buffer and the data is truncated.

9.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs

When the client character set is in a multibyte format, functions included in the data interface
operate the same way with LOB datatypes as they do for LONG datatypes as follows:

« For a piecewise fetch in a multibyte character set, a multibyte character could be cut in the
middle, with some bytes at the end of one buffer and remaining bytes in the next buffer.

e For a regular fetch, if the buffer cannot hold all bytes of the last character, then Oracle
returns as many bytes as fit into the buffer, hence returning partial characters.

9.4.4 OCI Functions Used to Perform INSERT or UPDATE on LOB Columns

ORACLE

This section discusses the various techniques you can use to perform INSERT or UPDATE
operations on LOB columns or attributes using the data interface. The operations described in
this section assume that you have initialized the OCI environment and allocated all necessary
handles.

e Performing Simple INSERTs or UPDATES in One Piece

* Using Piecewise INSERTs and UPDATESs with Polling

* Performing Piecewise INSERTs and UPDATEs with Callback
* Array INSERT and UPDATE Operations

9-13

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9.4.4.1 Performing Simple INSERTs or UPDATESs in One Piece

To perform simple INSERT or UPDATE operations in one piece using the data interface for
persistent LOBs, perform the following steps:

1. CallocistmtPrepare () to prepare the statement in OCI_DEFAULT mode.

2. Call ocIBindByName () or OCIBindbyPos () in OCI_DEFAULT mode to bind a placeholder for
LOB as character data or binary data.

3. CallocistmtExecute () to do the actual INSERT or UPDATE operation.

9.4.4.2 Using Piecewise INSERTs and UPDATEs with Polling

To perform piecewise INSERT or UPDATE operations with polling using the data interface for
persistent LOBs, do the following steps:

1. CallocIstmtPrepare () to prepare the statement in OCI_DEFAULT mode.

2. Call 0CIBindByName () Oor OCIBindbyPos () in OCI_DATA AT EXEC mode to bind a LOB as
character data or binary data.

3. Call ocistmtExecute () in default mode. Do each of the following in a loop while the value
returned from OCIStmtExecute () is OCI_NEED DATA. Terminate your loop when the value
returned from OCIStmtExecute () iS OCI_SUCCESS.

e CallocIistmtGetPiecelInfo () to retrieve information about the piece to be inserted.

e CallocIstmtSetPiecelInfo () to set information about piece to be inserted.

9.4.4.3 Performing Piecewise INSERTs and UPDATESs with Callback

To perform piecewise INSERT or UPDATE operations with callback using the data interface for
persistent LOBs, do the following steps:

1. CallocIstmtPrepare () to prepare the statement in OCI_DEFAULT mode.

2. Call 0CIBindByName () or OCIBindbyPos () in OCI_DATA AT EXEC mode to bind a
placeholder for the LOB column as character data or binary data.

3. CallociBindDynamic () to specify the callback.

4, Call ocistmtExecute () in default mode.

9.4.4.4 Array INSERT and UPDATE Operations

To perform array INSERT or UPDATE operations using the data interface for persistent LOBS, use
any of the techniques discussed in this section in conjunction with 0CIBindArrayOfStruct (),
or by specifying the number of iterations (iter), with iter value greater than 1, in the
OCIStmtExecute () call.

9.4.5 The Data Interface Used to Fetch LOB Data in OCI

This section discusses technigues you can use to fetch data from LOB columns or attributes in
OCI using the data interface for persistent LOBs.

e Simple Fetch in One Piece

* Performing a Piecewise Fetch with Polling

ORACLE 014

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

Performing a Piecewise with Callback

Array Fetch

9.4.5.1 Simple Fetch in One Piece

To perform a simple fetch operation on LOBs in one piece using the data interface for
persistent LOBs, do the following:

1.

2.

3.
4,

Call oCIStmtPrepare () to prepare the SELECT statement in OCI_DEFAULT mode.

Call ocIDefineByPos () to define a select list position in 0OCI_DEFAULT mode to define a
LOB as character data or binary data.

Call ocIstmtExecute () to run the SELECT statement.

Call ocistmtFetch () to do the actual fetch.

9.4.5.2 Performing a Piecewise Fetch with Polling

To perform a piecewise fetch operation on a LOB column with polling using the data interface
for LOBs, do the following steps:

1.

2.

Call oCIStmtPrepare () to prepare the SELECT statement in OCI_DEFAULT mode.

Call ocIDefinebyPos () to define a select list position in OCI_DYNAMIC FETCH mode to
define the LOB column as character data or binary data.

Call oc1stmtExecute () to run the SELECT statement.

Call ocIstmtFetch () in default mode. Do each of the following in a loop while the value
returned from OCIStmtFetch () iS OCI_NEED DATA. Terminate your loop when the value
returned from OCIStmtFetch () iS OCI_SUCCESS.

e CallocIistmtGetPiecelInfo () to retrieve information about the piece to be fetched.

e CallocIstmtSetPiecelInfo () to set information about piece to be fetched.

9.4.5.3 Performing a Piecewise with Callback

To perform a piecewise fetch operation on a LOB column with callback using the data interface
for persistent LOBs, do the following:

1. CallocIstmtPrepare () to prepare the statementin OCI_DEFAULT mode.
2. Call ocIDefinebyPos () to define a select list position in OCI_DYNAMIC FETCH mode to
define the LOB column as character data or binary data.
3. Call ocistmtExecute () to run the SELECT statement.
4. CallocipefineDynamic () to specify the callback.
5. CallocistmtFetch () in default mode.
9.4.5.4 Array Fetch

ORACLE

To perform an array fetch in OCI using the data interface for persistent LOBs, use any of the
techniques discussed in this section in conjunction with 0CIDefineArrayOfStruct (), or by
specifying the number of iterations (i ter), with the value of iter greater than 1, in the
OCIStmtExecute () call.

9-15

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9.4.6 PL/SQL and C Binds from OCI

When you call a PL/SQL procedure from OCI, and have an IN or 0UT or IN OUT bind, you
should be able to:

* Bind a variable as SQLT CHR or SQLT LNG where the formal parameter of the PL/SQL
procedure is SQLT CLOB, of

* Bind a variable as SQLT BIN or SQLT LBI where the formal parameter is SQLT BLOB

The following two cases work:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner
Here is an example of calling PL/SQL out-binds in the "begin foo(:1); end;" Manner:

text *sqglstmt = (text *)"BEGIN get lob(:c); END; " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner

Here is an example of calling PL/SQL out-binds in the "call foo(:1);" manner:

text *sqlstmt = (text *)"CALL get lob(:c);" ;

In both these cases, the rest of the program has these statements:

OCIStmtPrepare (stmthp, errhp, sglstmt, (ub4)strlen((char *)sqglstmt),
(ub4) OCI NTV_ SYNTAX, (ub4) OCI DEFAULT);
curlen = 0;

0CIBindByName (stmthp, &bndhp[3], errhp,
(text *) ":c", (sb4d) strlen((char *) ":c"),
(dvoid *) bufb, (sb4) LONGLEN, SQLT CHR,
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 1, (ub4 *) &curlen, (ub4) OCI DATA AT EXEC);

The PL/SQL procedure, get _1ob (), is as follows:

procedure get lob(c INOUT CLOB) is -- This might have been column%type
BEGIN
. /* The procedure body could be in PL/SQL or C*/
END;

9.4.7 Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and

UPDATE

ORACLE

You can use binds of more than 4000 byes for INSERT and UPDATE operations.

void insert3()
{
/* Insert of data into LOB attributes is allowed. */
ubl buffer[8000];
text *insert sql = (text *)"INSERT INTO Print media (ad header) \
VALUES (adheader typ(NULL, NULL, NULL,:1))";
OCIStmtPrepare (stmthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
0CIBindByPos (stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4d) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (const OCISnapshot*) 0,
(OCISnapshot*)0, OCI DEFAULT);

9-16

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9.4.8 Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs

The data interface for LOBs allows LOB PL/SQL binds from OCI to work. When you call a
PL/SQL procedure from OCI, and have an IN or OUT or IN OUT bind, you should be able to bind
a variable as SQLT CHR, where the formal parameter of the PL/SQL procedure is SQLT CLOB.

¢ Note:

C procedures are wrapped inside a PL/SQL stub, so the OCI application always calls
the PL/SQL stub.

For the OCI calling program, the following are likely cases:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner

For example:

text *sglstmt = (text *)"BEGIN PKGl.P5 (:c); END; " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner
For example:

text *sglstmt = (text *)"CALL PKGl1.P5(:c);" ;

In both these cases, the rest of the program is as follows:

OCIStmtPrepare (stmthp, errhp, sglstmt, (ub4)strlen((char *)sglstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
curlen = 0;

0CIBindByName (stmthp, &bndhp[3], errhp,
(text *) ":cd4", (sb4) strlen((char *) ":c"),
(dvoid *) bufb, (sb4) LONGLEN, SQLT CHR,
(dvoid *) 0, (ub2 *) 0, (ub2 *) O,
(ub4) 1, (ub4 *) é&curlen, (ub4) OCI DATA AT EXEC);

OCIStmtExecute (svchp, stmthp, errhp, (ub4) 0, (ub4) 0, (const OCISnapshot*) 0,
(OCISnapshot*) 0, (ub4) OCI DEFAULT);

The PL/SQL procedure PKG1.P5 is as follows:
CREATE OR REPLACE PACKAGE BODY pkgl AS
procedure p5 (c OUT CLOB) is
-- This might have been table%rowtype (so it is CLOB now)
BEGIN
END p5;

END pkgl;

ORACLE 9-17

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9.4.9 Binding LONG Data for LOB Columns in Binds Greater Than 4000
Bytes

This example illustrates binding character data for a LOB column:

void simple insert()
{
word buflen;
text buf[5000];
text *insstmt = (text *) "INSERT INTO Print media(Product id, Ad id,\

Ad sourcetext) VALUES (2004, 1, :SRCTXT)";

OCIStmtPrepare (stmthp, errhp, insstmt, (ubd4)strlen((char *)insstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);

OCIBindByName (stmthp, &bndhp[0], errhp,
(text *) ":SRCTXT", (sbd4) strlen((char *) ":SRCTXT"),
(dvoid *) buf, (sb4) sizeof (buf), SQLT CHR,
(dvoid *) 0, (ub2 *) 0, (ub2 *) O,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);

memset ((void *)buf, (int)'A', (size t)5000);
OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(const OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI DEFAULT);

9.4.10 Binding LONG Data to LOB Columns Using Piecewise INSERT with
Polling

This example illustrates using piecewise INSERT with polling using the data interface for LOBs.

void piecewise insert()
{
text *sqglstmt = (text *)"INSERT INTO Print media (Product id, Ad_id,\
Ad sourcetext) VALUES (:1, :2, :3)";
ub2 rcode;
ubl piece, i;
word product id = 2004;
word ad id = 2;
ub4 buflen;
char buf[5000];

OCIStmtPrepare (stmthp, errhp, sglstmt, (ub4)strlen((char *)sglstmt),
(ub4) OCI _NTV_ SYNTAX, (ub4) OCI DEFAULT) ;
OCIBindByPos (stmthp, &bndhp[0], errhp, (ub4) 1,
(dvoid *) &product id, (sb4) sizeof (product id), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);
0CIBindByPos (stmthp, &bndhp[l], errhp, (ub4) 2,
(dvoid *) &ad id, (sb4) sizeof(ad id), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) 0, (sb4) 15000, SQLT LNG,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI DATA AT EXEC);

ORACLE 018

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

while (1)
{
1++;
retval = OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot*) O,
(ub4) OCI DEFAULT);
switch(retval)
{
case OCI NEED DATA:
memset ((void *)buf, (int)'A'+i, (size t)5000);
buflen = 5000;
if (1 == 1) piece = OCI FIRST PIECE;
else if (i == 3) piece = OCI LAST PIECE;
else piece = OCI_NEXT PIECE;

if (OCIStmtSetPieceInfo((dvoid *)bndhp[2],
(ub4)OCI_HTYPE BIND, errhp, (dvoid *)buf,
&buflen, piece, (dvoid *) 0, &rcode))
{
printf ("ERROR: OCIStmtSetPieceInfo: %d \n", retval);
break;

break;

case OCI_SUCCESS:
break;

default:
printf("oci exec returned %d \n", retval);
report error (errhp);
retval = OCI_SUCCESS;

} /* end switch */

if (retval == OCI_SUCCESS)
break;

} /* end while (1) */

9.4.11 Binding LONG Data to LOB Columns Using Piecewise INSERT with

Callback

ORACLE

This example illustrates binding LONG data to LOB columns using a piecewise INSERT with
callback:

void callback insert()
{
word buflen = 15000;
word product id = 2004;
word ad id = 3;
text *sqglstmt = (text *) "INSERT INTO Print media(Product id, Ad id,\
Ad sourcetext) VALUES (:1, :2, :3)";
word pos = 3;

OCIStmtPrepare (stmthp, errhp, sglstmt, (ubd)strlen((char *)sglstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)

OCIBindByPos (stmthp, &bndhp[0], errhp, (ub4) 1,
(dvoid *) é&product id, (sb4) sizeof (product id), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bndhp[l], errhp, (ub4) 2,
(dvoid *) &ad id, (sb4) sizeof(ad id), SQLT INT,

9-19

ORACLE

}

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

(dvoid *) 0, (ub2 *)0, (ub2 *)O0,

(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bndhp[2], errhp, (ub4) 3,

(dvoid *) 0, (sb4) buflen, SQLT CHR,

(dvoid *) 0, (ub2 *)0, (ub2 *)O0,

(ub4) 0, (ub4 *) 0, (ub4) OCI_DATA AT EXEC);

O0CIBindDynamic (bndhp[2], errhp, (dvoid *) (dvoid *) &pos,
insert cbk, (dvoid *) 0, (OCICallbackOutBind) 0);

OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(const OCISnapshot*) 0, (OCISnapshot*)
(ub4) OCI DEFAULT);

/* end insert data() */

0,

/* Inbind callback to specify input data. */
static sb4 insert cbk(dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,

{

}

dvoid **bufpp, ub4 *alenpp, ubl *piecep, dvoid **indpp)

static int a = 0;

word J;

ub4 inpos = *((ub4 *)ctxp);
char buf [5000];

switch (inpos)
{
case 3:
memset ((void *)buf, (int) 'A'+a, (size t) 5000);
*bufpp = (dvoid *) buf;
*alenpp = 5000 ;
att;
break;
default: printf ("ERROR: invalid position number: %d\n", inpos);
}

*indpp = (dvoid *) 0;
*piecep = OCI_ONE PIECE;
if (inpos == 3)
{
if (a<=1)
{
*piecep = OCI FIRST PIECE;
printf ("Insert callback: 1st piece\n");
}
else 1f (a<3d)
{
*piecep = OCI_NEXT PIECE;
printf ("Insert callback: %d'th piece\n", a);
}
else {
*piecep = OCI_LAST PIECE;
printf ("Insert callback: %d'th piece\n", a);
a = 0;

}
return OCI_CONTINUE;

9-20

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9.4.12 Binding LONG Data to LOB Columns Using an Array INSERT

This example illustrates binding character data for LOB columns using an array INSERT
operation:

void array insert()

ubd i;
word buflen;
word arrbufl[5];
word arrbuf2[5];
[51[5000];
= (text *)"INSERT INTO Print media(Product id, Ad id,\
Ad sourcetext) VALUES (:PID, :AID, :SRCTXT)";

text arrbuf3
text *insstmt

OCIStmtPrepare (stmthp, errhp, insstmt,
(ub4)strlen((char *)insstmt), (ub4) OCI NTV SYNTAX,
(ub4) OCI_DEFAULT);

OCIBindByName (stmthp, &bndhp[0], errhp,
(text *) ":PID", (sb4) strlen((char *) ":PID"),
(dvoid *) &arrbufl([0], (sb4) sizeof(arrbufl[0]), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) O,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);

OCIBindByName (stmthp, &bndhp[l], errhp,
(text *) ":AID", (sb4) strlen((char *) ":AID"),
(dvoid *) &arrbuf2([0], (sb4) sizeof(arrbuf2[0]), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) O,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);

OCIBindByName (stmthp, &bndhp[2], errhp,
(text *) ":SRCTXT", (sbd4) strlen((char *) ":SRCTXT"),
(dvoid *) arrbuf3[0], (sb4) sizeof (arrbuf3[0]), SQLT CHR,
(dvoid *) 0, (ub2 *) 0, (ub2 *) O,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);

0CIBindArrayOfStruct (bndhp[0], errhp sizeof (arrbufl[0]),
indsk, rlsk, rcsk);

OCIBindArrayOfStruct (bndhp[l], errhp, sizeof (arrbuf2[0]),
indsk, rlsk, rcsk);

OCIBindArrayOfStruct (bndhp[2], errhp, sizeof (arrbuf3[0]),
indsk, rlsk, rcsk);

for (i=0; i<5; i++)
{
arrbufl[i] = 2004;
arrbuf2[i] = i+4;
memset ((void *)arrbuf3[i], (int)'A'+i, (size t)5000);
}
OCIStmtExecute (svchp, stmthp, errhp, (ub4) 5, (ub4) 0,
(const OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT);

9.4.13 Selecting a LOB Column into a LONG Buffer Using a Simple Fetch

This example illustrates selecting a LOB column using a simple fetch:

ORACLE

9-21

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

void simple fetch()
{
word retval;
text buf[15000];
text *selstmt = (text *) "SELECT Ad sourcetext FROM Print media WHERE\
Product id = 2004";

OCIStmtPrepare (stmthp, errhp, selstmt, (ubd)strlen((char *)selstmt),
(ub4) OCI NTV SYNTAX, (ub4) OCI_DEFAULT);

retval = OCIStmtExecute (svchp, stmthp, errhp, (ub4) 0, (ub4d) O,
(const OCISnapshot*) 0, (OCISnapshot¥*)
(ub4) OCI DEFAULT);
while (retval == OCI SUCCESS || retval == OCI_SUCCESS WITH INFO)
{
OCIDefineByPos (stmthp, &defhp, errhp, (ub4) 1, (dvoid *) buf,
(sb4) sizeof (buf), (ub2) SQLT CHR, (dvoid *) 0,
(ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);
retval = OCIStmtFetch(stmthp, errhp, (ub4) 1,
(ub4) OCI FETCH NEXT, (ub4) OCI DEFAULT);
if (retval == OCI SUCCESS || retval == OCI _SUCCESS WITH INFO)
printf ("buf = %.*s\n", 15000, buf);

0,

9.4.14 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch
with Polling

This example illustrates selecting a LOB column into a LONG buffer using a piecewise fetch with
polling:

vold piecewise fetch()
{
text buf[15000];
ub4 buflen=5000;
word retval;
text *selstmt = (text *) "SELECT Ad sourcetext FROM Print media
WHERE Product id = 2004 AND Ad id = 2";

OCIStmtPrepare (stmthp, errhp, selstmt,
(ub4) strlen((char *)selstmt),
(ub4) OCI_NTV SYNTAX, (ub4) OCI_DEFAULT);

OCIDefineByPos (stmthp, &dfnhp, errhp, (ub4) 1,
(dvoid *) NULL, (sb4) 100000, SQLT LNG,
(dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, (ub4) OCI_DYNAMIC FETCH);

retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) O,
(CONST OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT);

retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
(ub2) OCI_FETCH NEXT, (ub4) OCI_DEFAULT);

while (retval != OCI_NO DATA && retval != OCI_SUCCESS)
{

ubl piece;

ub4d iter;

ub4 idx;

ORACLE 9.99

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

genclr ((void *)buf, 5000);
switch (retval)
{
case OCI _NEED DATA:
OCIStmtGetPieceInfo (stmthp, errhp, &hdlptr, &hdltype,
&in out, &iter, &idx, &piece);
buflen = 5000;
0CIStmtSetPieceInfo (hdlptr, hdltype, errhp,
(dvoid *) buf, &buflen, piece,
(CONST dvoid *) &indpl, (ub2 *) 0);
retval = OCI_NEED DATA;
break;
default:
printf ("ERROR: piece-wise fetching, %d\n", retval);
return;
} /* end switch */
retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
(ub2) OCI_FETCH NEXT, (ub4) OCI_DEFAULT);
printf ("Data : %.5000s\n", buf);
} /* end while */

9.4.15 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch

with Callback

ORACLE

This example illustrates selecting a LONG column into a LOB buffer when using a piecewise
fetch with callback:

char buf[5000];
void callback fetch()

{

word outpos = 1;
text *sqglstmt = (text *) "SELECT Ad sourcetext FROM Print media WHERE
Product id = 2004 AND Ad id = 3";

OCIStmtPrepare (stmthp, errhp, sglstmt, (ubd)strlen((char *)sglstmt),
(ub4) OCI_NTV SYNTAX, (ub4) OCI_DEFAULT);
OCIDefineByPos (stmthp, &dfnhp[0], errhp, (ub4) 1,
(dvoid *) 0, (sb4)3 * sizeof(buf), SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) OCI_DYNAMIC FETCH);

OCIDefineDynamic (dfnhp[0], errhp, (dvoid *) &outpos,
(OCICallbackDefine) fetch cbk);

OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(const OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT);

buf[4999] = '"\0';

printf ("Select callback: Last piece: %s\n", buf);

2 */
/* Fetch callback to specify buffers. */
2 */

static sb4 fetch cbk(dvoid *ctxp, OCIDefine *dfnhp, ub4 iter, dvoid **bufpp,

{

ub4 **alenpp, ubl *piecep, dvoid **indpp, ub2 **rcpp)

static int a = 0;

9-23

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

ub4 outpos = *((ub4 *)ctxp);
ub4 len = 5000;
switch (outpos)
{
case 1:
a t++;
*bufpp = (dvoid *) buf;
*alenpp = &len;
break;
default:
*bufpp = (dvoid *) 0;
*alenpp = (ub4 *) 0;
printf ("ERROR: invalid position number: %d\n", outpos);
}
*indpp = (dvoid *) 0;
*rcpp = (ub2 *) 0;

buf[len] = '"\0';
if (a<=1)
{
*piecep = OCI_FIRST PIECE;
printf ("Select callback: 0th piece\n");
}
else 1f (ax3d)
{
*piecep = OCI_NEXT PIECE;
printf ("Select callback: %d'th piece: %s\n", a-1, buf);
}
else {
*piecep = OCI_LAST PIECE;
printf ("Select callback: %d'th piece: %s\n", a-1, buf);
a=0;
}
return OCI_CONTINUE;

9.4.16 Selecting a LOB Column into a LONG Buffer Using an Array Fetch

ORACLE

This example illustrates selecting a LOB column into a LONG buffer using an array fetch:

void array fetch()
{
word 1i;
text arrbuf[5][5000];
text *selstmt = (text *) "SELECT Ad sourcetext FROM Print media WHERE
Product id = 2004 AND Ad id >=4";

OCIStmtPrepare (stmthp, errhp, selstmt, (ubd)strlen((char *)selstmt),
(up4) OCI_NTV SYNTAX, (ub4) OCI_DEFAULT);

OCIStmtExecute (svchp, stmthp, errhp, (ub4) 0, (ub4) O,
(const OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI DEFAULT);

OCIDefineByPos (stmthp, &defhpl, errhp, (ub4) 1,
(dvoid *) arrbuf[0], (sb4) sizeof (arrbuf[0]),
(ub2) SQLT CHR, (dvoid *) 0,
(ub2 *) 0, (ub2 *) 0, (ub4) OCI DEFAULT);

OCIDefineArrayOfStruct (dfnhpl, errhp, sizeof (arrbuf[0]), indsk,
rlsk, rcsk);

retval = OCIStmtFetch (stmthp, errhp, (ub4) 5,

9-24

Chapter 9
The Data Interface Used with Persistent LOBs in Java

(ub4) OCI FETCH NEXT, (ub4) OCI DEFAULT);
if (retval == OCI_SUCCESS || retval == OCI_SUCCESS WITH INFO)
{

printf ("$.5000s\n", arrbuf[0]);
printf ("$.5000s\n", arrbuf[l]);
printf ("%$.5000s\n", arrbuf[2]);
printf ("$.5000s\n", arrbuf[3]);
printf ("$.5000s\n", arrbuf[4]);

9.5 The Data Interface Used with Persistent LOBS in Java

You can also read and write CLOB and BLOB data using the same streaming mechanism as for
LONG and LONG RAW data.

To read, use defineColumnType (nn, Types.LONGVARCHAR) of defineColumnType (nn,
Types.LONGVARBINARY) on the column. This produces a direct stream on the data as if it is a
LONG Or LONG RAW column. For input in a PreparedStatement, you may use setBinaryStream(),
setCharacterStream(), Or setAsciiStream() for a parameter which is a BLOB or CLOB. These
methods use the stream interface to create a LOB in the database from the data in the stream.
If the length of the data is known, for better performance, use the versions of
setBinaryStream() Or setCharacterStream functions which accept the length
parameter. The data interface also supports standard JDBC methods such as getString/
getBytes on ResultSet and CallableStatement and setString/setBytes on PreparedStatement to
read and write LOB data. It is easier to code, and in many cases faster, to use these APIs for
LOB access. All these techniques reduce database round trips and may result in improved
performance in some cases. See the Javadoc on stream data for the significant restrictions
which apply, at http://www.oracle.com/technology/.

Refer to the following in the JDBC Developer's Guide and Reference:

¢ See Also:

e Oracle Database JDBC Developer's Guide, "Working with LOBs and BFILEs",
section "Data Interface for LOBs"

e Oracle Database JDBC Developer's Guide, "JDBC Standards Support"

9.6 The Data Interface Used with Remote LOBS

ORACLE

The data interface for insert, update, and select of remote LOBs (access over a dblink) is
supported after Oracle Database 10g Release 2.

* About the Data Interface with Remote LOBs
* Non-Supported Syntax

* Remote Data Interface Example in PL/SQL
* Remote Data Interface Example in OCI

* Remote Data Interface Examples in JDBC

9-25

http://www.oracle.com/technology/

Chapter 9
The Data Interface Used with Remote LOBs

9.6.1 About the Data Interface with Remote LOBSs

The examples discussed use the print media table created in two schemas: dos1 and dbs2.
The CcLOB column of that table used in the examples shown is ad_finaltext. The examples to
be given for PL/SQL, OCI, and Java use binds and defines for this one column, but multiple
columns can also be accessed. Here is the functionality supported and its limitations:

You can define a CLOB as CHAR or NCHAR and an NCLOB as CHAR or NCHAR. cLOB and
NCLOB can be defined as a LONG. A BLOB can be defined as a RAW or a LONG RAW.

Array binds and defines are supported.

¢ See Also:

"Remote Data Interface Example in PL/SQL" and the sections following it.

9.6.2 Non-Supported Syntax

Certain syntax is not supported for remote LOBs.

ORACLE

Queries involving more than one database are not supported:

SELECT tl.lobcol, a2.lobcol FROM tl, t2.lobcol@dbs2 a2 WHERE
LENGTH (tl.lobcol) = LENGTH (a2.lobcol);

Neither is this query (in a PL/SQL block):

SELECT tl.lobcol INTO varchar bufl FROM tl@dbsl
UNION ALL
SELECT t2.lobcol INTO varchar buf2 FROM t2@dbs2;

Only binds and defines for data going into remote persistent LOB columns are supported,
so that parameter passing in PL/SQL where CHAR data is bound or defined for remote
LOBs is not allowed because this could produce a remote temporary LOB, which are not
supported. These statements all produce errors:

SELECT foo() INTO varchar buf FROM tablel@dbs2; -- foo returns a LOB
SELECT foo()@dbs INTO char val FROM DUAL; -- foo returns a LOB

SELECT XMLType () .getclobval INTO varchar buf FROM tablel@dbs2;
If the remote object is a view such as

CREATE VIEW v AS SELECT foo() a FROM ... ; -- foo returns a LOB
/* The local database then tries to get the CLOB data and returns an error */
SELECT a INTO varchar buf FROM v@dbs2;

This returns an error because it produces a remote temporary LOB, which is not
supported.

RETURNING INTO does not support implicit conversions between CHAR and CLOB.

PL/SQL parameter passing is not allowed where the actual argument is a LOB type and
the remote argument is a VARCHAR2, NVARCHAR?2, CHAR, NCHAR, Of RAW.

9-26

Chapter 9
The Data Interface Used with Remote LOBs

9.6.3 Remote Data Interface Example in PL/SQL

The data interface only supports data of size less than 32KB in PL/SQL. The following snippet
shows a PL/SQL example:

CONNECT pm
declare
my ad varchar(6000) := lpad('b', 6000, 'b'");
BEGIN
INSERT INTO print media@dbs2 (product id, ad id, ad finaltext)
VALUES (10000, 10, my ad);
-- Reset the buffer value
my ad := 'a';
SELECT ad finaltext INTO my ad FROM print media@dbs2
WHERE product id = 10000;
END;
/

If ad finaltext were a BLOB column instead of a CLOB, my ad has to be of type Raw. If the LOB
is greater than 32KB - 1 in size, then PL/SQL raises a truncation error and the contents of the
buffer are undefined.

9.6.4 Remote Data Interface Example in OCI

The data interface only supports data of size less than 2 GBytes (the maximum value possible
of a variable declared as sb4) for OCI. The following pseudocode can be enhanced to be a part
of an OCI program:

text *sql = (text *)"insert into print_media@dbs2
(product id, ad id, ad finaltext)
values (:1, :2, :3)";
OCIStmtPrepare(...);
OCIBindByPos(...); /* Bind data for positions 1 and 2
* which are independent of LOB */
OCIBindByPos (stmthp, &bndhp[2], errhp, (ubd) 3,
(dvoid *) charbufl, (sb4) len charbufl, SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)0, 0, 0, OCI_DEFAULT);
OCIStmtExecute(...);

text *sql = (text *)"select ad finaltext from print_media@dbs2
where product id = 10000";
OCIStmtPrepare(...);
OCIDefineByPos (stmthp, &dfnhp[2], errhp, (ub4) 1,
(dvoid *) charbuf2, (sb4) len charbuf2, SQLT CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI DEFAULT);
OCIStmtExecute(...);

If ad finaltext were a BLOB instead of a CLOB, then you bind and define using type SQLT BIN.
If the LOB is greater than 2GB - 1 in size, then OCI raises a truncation error and the contents
of the buffer are undefined.

ORACLE 9-27

Chapter 9
The Data Interface Used with Remote LOBs

9.6.5 Remote Data Interface Examples in JDBC

The following code snippets works with all three JDBC drivers (OCI, Thin, and kprb in the
database):

Bind:

This is for the non-streaming mode:

String sql = "insert into print media@dbs2 (product id, ad id, ad final text)" +
" values (:1, :2, :3)";
PreparedStatement pstmt = conn.prepareStatement (sql);
pstmt.setInt(1, 2);
pstmt.setInt(2, 20);
pstmt.setString(3, "Java string");
int rows = pstmt.executeUpdate();

For the streaming mode, the same code as the preceding works, except that the setString()
statement is replaced by one of the following:

pstmt.setCharacterStream(3, new LabeledReader (), 1000000);
pstmt.setAsciiStream(3, new LabeledAsciiInputStream(), 1000000);

Here, LabeledReader () and LabeledAsciiInputStream() produce character and ASCII
streams respectively. If ad finaltext were a BLOB column instead of a CLOB, then the
preceding example works if the bind is of type RAW:

pstmt.setBytes(3, <some byte[] array>);
pstmt.setBinaryStream(3, new LabeledInputStream(), 1000000);

Here, LabeledInputStream() produces a binary stream.
Define:

For non-streaming mode:

OracleStatement stmt = (OracleStatement) (conn.createStatement());
stmt.defineColumnType (1, Types.VARCHAR);
ResultSet rst = stmt.executeQuery("select ad finaltext from print media@dbs2");
while(rst.next())
{
String s = rst.getString(1);
System.out.println(s);

}

For streaming mode:

OracleStatement stmt = (OracleStatement) (conn.createStatement());
stmt.defineColumnType(1, Types.LONGVARCHAR) ;
ResultSet rst = stmt.executeQuery("select ad finaltext from print media@dbs2");
while(rst.next())
{

Reader reader = rst.getCharacterStream(1);

while(reader.ready())

{

System.out.print((char) (reader.next()));

}

ORACLE 0.98

Chapter 9
The Data Interface Used with Remote LOBs

System.out.println();

If ad finaltext were a BLOB column instead of a CLOB, then the preceding examples work if
the define is of type LONGVARBINARY:

OracleStatement stmt = (OracleStatement)conn.createStatement();

stmt.defineColumnType (1, Types.INTEGER);
stmt.defineColumnType (2, Types.LONGVARBINARY);

ResultSet rset = stmt.executeQuery("SELECT ID, LOBCOL FROM LOBTAB@MYSELE");

while (rset.next())
{
/* using getBytes() */
/*
byte[] b = rset.getBytes ("LOBCOL");
System.out.println ("ID: " + rset.getInt("ID") + " length: " + b.length);
*/
/* using getBinaryStream() */
InputStream byte stream = rset.getBinaryStream("LOBCOL");
byte [] b = new byte [100000];

int b len = byte stream.read(b);
System.out.println("ID: " + rset.getInt("ID") + " length: " + b len);

byte stream.close();

See Also:
Oracle Database JDBC Developer's Guide

ORACLE 9.99

Reference Semantics LOBSs

This part provides details on using LOB APIs in supported environments. Examples of LOB
APl usage are given.

This part contains these chapters:
e Overview of Supplied LOB APIs

e LOB APIs for BFILE Operations
e Using LOB APIs

e Overview of Supplied LOB APIs
e LOB APIs for BFILE Operations
* Using LOB APIs

ORACLE

Overview of Supplied LOB APIs

10.1 Programmatic Environments That Support LOBs

Table 10-1 lists the programmatic environments that support LOB functionality.

ORACLE

There are APIs supplied to support LOBs.

Topics:

Programmatic Environments That Support LOBs
Comparing the LOB Interfaces

Using PL/SQL (DBMS_LOB Package) to Work With LOBs
Using OCI to Work With LOBs

Using C++ (OCCI) to Work With LOBs

Using C/C++ (Pro*C) to Work With LOBs

Using COBOL (Pro*COBOL) to Work With LOBs

Using Java (JDBC) to Work With LOBs

Oracle Provider for OLE DB (OraOLEDB)

Overview of Oracle Data Provider for .NET (ODP.NET)

Programmatic Environments That Support LOBs
Comparing the LOB Interfaces

Using PL/SQL (DBMS_LOB Package) to Work With LOBs
Using OCI to Work With LOBs

Using C++ (OCCI) to Work With LOBs

Using C/C++ (Pro*C) to Work With LOBs

Using COBOL (Pro*COBOL) to Work With LOBs

Using Java (JDBC) to Work With LOBs

Oracle Provider for OLE DB (OraOLEDB)

Overview of Oracle Data Provider for .NET (ODP.NET)

¢ See Also:

APIs for supported LOB operations are described in detail in the following chapters:

e Operations Specific to Persistent and Temporary LOBs

e Using LOB APIs
e LOB APIs for BFILE Operations

10-1

Table 10-1

Programmatic Environments That Support LOBs

Chapter 10
Comparing the LOB Interfaces

Language Precompiler or Related Sections Related Books
Interface Program

PL/SQL DBMS_LOB "Using PL/SQL (DBMS_LOB Package) Oracle Database PL/SQL Packages
Package to Work With LOBs". and Types Reference

C Oracle Call "Using OCI to Work With LOBs". Oracle Call Interface Programmer's
Interface for C Guide
(oci

C++ Oracle Call "Using C++ (OCCI) to Work With Oracle C++ Call Interface
Interface for C++ LOBs". Programmer's Guide
(occaiy

C/C++ Pro*C/C++ "Using C/C++ (Pro*C) to Work With Pro*C/C++ Programmer's Guide
Precompiler LOBs".

COBOL Pro*COBOL "Using COBOL (Pro*COBOL) to Work Pro*COBOL Programmer's Guide
Precompiler With LOBs".

Java JDBC Application "Using Java (JDBC) to Work With Oracle Database JDBC Developer’s
Programmatic LOBs". Guide.
Interface (API)

ADO/OLE DB Oracle Provider for "Oracle Provider for OLE DB Oracle Provider for OLE DB
OLE DB (OraOLEDB)" Developer's Guide for Microsoft
(OraOLEDB). Windows

.NET Oracle Data "Overview of Oracle Data Provider Oracle Data Provider for .NET
Provider for NET for .NET (ODP.NET) " Developer's Guide for Microsoft
(ODP.NET) Windows

10.2 Comparing the LOB Interfaces

Table 10-2 and Table 10-3 compare the eight LOB programmatic interfaces by listing their
functions and methods used to operate on LOBs. The tables are split in two simply to
accommodate all eight interfaces. The functionality of the interfaces, with regards to LOBS, is
described in the following sections.

Table 10-2 Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB C (ocql) C++ (OCCI) Pro*CIC++ and
(dbmslob.sql) (ociap.h) (occiData.h). Also for Pro*COBOL
Clob and Bfile classes.
DBMS LOB.COMPARE N/A N/A N/A
DBMS LOB.INSTR N/A N/A N/A
DBMS LOB.SUBSTR N/A N/A N/A
DBMS LOB.APPEND OCILobAppend () Blob.append () APPEND
N/A (use PL/SQL assign operator) OCILobAssign () ASSIGN
N/A OCILobCharSetForm() Clob.getCharsetForm N/A
(CLOB only)
N/A OCILobCharSetId() Clob.getCharsetId() N/A
(CLOB only)
DBMS LOB.CLOSE OCILobClose () Blob.close () CLOSE

ORACLE

10-2

Table 10-2 (Cont.) Comparing the LOB Interfaces, 1 of 2

Chapter 10
Comparing the LOB Interfaces

PL/SQL: DBMS_LOB C (ocql) C++ (OCCI) Pro*CI/C++ and
(dbmslob.sql) (ociap.h) (occiData.h). Also for Pro*COBOL

Clob and Bfile classes.
N/A N/A Clob.closeStream() N/A
DBMS LOB.COPY OCILobCopy2 () Blob.copy () COPY
DBMS LOB.ERASE OCILobErase?2 () N/A ERASE
DBMS LOB.FILECLOSE OCILobFileClose() Clob.close() CLOSE
DBMS LOB.FILECLOSEALL OCILobFileCloseAll () N/A FILE CLOSE ALL
DBMS LOB.FILEEXISTS OCILobFileExist () Bfile.fileExists() DESCRIBE [FILEEXISTS]
DBMS_LOB.GETCHUNKSIZE OClILobGetChunksSize() Blob.getChunksSize() DESCRIBE [CHUNKSIZE]
DBMS LOB.GET STORAGE LIMIT OCILobGetStorageLimi N/A N/A

t()

DBMS LOB.GETOPTIONS OCILobGetOptions () Blob/Clob:igetOptions N/A
DBMS LOB.FILEGETNAME OCILobFileGetName () Bfile.getFileName () DESCRIBE DIRECTORY,

and FILENAME

Bfile.getDirAlias ()
DBMS LOB.FILEISOPEN OCILobFileIsOpen () Bfile.isOpen /() DESCRIBE ISOPEN
DBMS LOB.FILEOPEN OCILobFileOpen() Bfile.open() OPEN
N/A (use BFILENAME operator) OCILobFileSetName () Bfile.setName () FILE SET
DBMS LOB.GETLENGTH OCILobGetLength?2 () Blob.length() DESCRIBE LENGTH
N/A OCILobIsEqual () Use operator = ()=/1= N/A
DBMS LOB.ISOPEN OCILobIsOpen () Blob.isOpen () DESCRIBE ISOPEN
DBMS LOB.LOADFROMFILE OCILobLoadFromFile2 () Use overloadedcopy() LOAD FROM FILE
N/A OCILobLocatorIsInit() Clob.isinitialized() N/A
DBMS LOB.OPEN OCILobOpen () Blob.open OPEN
DBMS LOB.READ OCILobRead () Blob.read READ
DBMS LOB.SETOPTIONS OCILobSetOptions() Blob/Clob:isetOptions N/A
DBMS LOB.TRIM OCILobTrim2 () Blob.trim TRIM
DBMS LOB.WRITE OCILobWrite2 Blob.write WRITEORALOB.
DBMS LOB.WRITEAPPEND OCILobWriteAppend?2 () N/A WRITE APPEND
DBMS LOB.CREATETEMPORARY OCILobCreateTemporar N/A N/A

y ()

DBMS LOB.FREETEMPORARY OCILobFreeTemporary () N/A N/A
DBMS LOB.ISTEMPORARY OCILobIsTemporary () N/A N/A
N/A OCILobLocatorAssign() use operator=()orcopy N/A

constructor

ORACLE

10-3

ORACLE

Table 10-3 Comparing the LOB Interfaces, 2 of 2
'

PL/SQL: DBMS_LOB
(dbmslob.sql)

Java (JDBC)

Chapter 10
Comparing the LOB Interfaces

ODP.NET

DBMS LOB.COMPARE
DBMS LOB.INSTR
DBMS LOB.SUBSTR

DBMS LOB.APPEND

OCILobAssign ()
OCILobCharSetForm /()
OCILobCharSetId()
DBMS_LOB.CLOSE

DBMS LOB.COPY

DBMS LOB.ERASE

DBMS LOB.FILECLOSE
DBMS LOB.FILECLOSEALL
DBMS LOB.FILEEXISTS
DBMS LOB.GETCHUNKSIZE
DBMS LOB.FILEGETNAME

DBMS_LOB.FILEISOPEN
DBMS_LOB.FILEOPEN
OCILobFileSetName ()

OCILobFlushBuffer ()
DBMS LOB.GETLENGTH
N/A

DBMS LOB.ISOPEN

DBMS LOB.LOADFROMFILE
DBMS LOB.OPEN
DBMS LOB.READ

DBMS LOB.TRIM

Use DBMS LOB.
position

getBytes for BLOBS or
BFILEsgetSubString for
CLOBs

Use length and then
putBytes () or
PutString ()

N/A [use equal sign]
N/A

N/A

use DBMS_LOB.

Use read and write
Use DBMS LOB.
closeFile

Use DBMS_LOB.
fileExists
getChunkSize

getDirAlias
getName

Use DBMS LOB.ISOPEN
openFile

Use BFILENAME

N/A
length
equals ()

use DBMS_LOB. ISOPEN ()

Use read and then write
UseDBMS_LOB.OPEN()

BLOB or BFILE: getBytes ()
and getBinaryStream()

CLOB: getString() and
getSubString () and
getCharacterStream()

Use DBMS LOB.TRIM()

OracleClob.Compare
OracleClob.Search
N/A

OracleClob.Append

OracleClob.Clone

N/A

N/A

OracleClob.Close
OracleClob.CopyTo
OracleClob.Erase
OracleBFile.CloseFile

N/A

OracleBFile.FileExists
OracleClob.OptimumChunkSize

OracleBFile.DirectoryNameOra
cle.BFile.FileName

OracleBFile.IsOpen
OracleBFile.OpenFile

OracleBFile.DirectoryName

Oracle.BFile.FileName
N/A

OracleClob.Length

N/A

OracleClob.IsInChunkWriteMod
e

N/A
OracleClob.BeginChunkWrite
OracleClob.Read

OracleClob.SetLength

10-4

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

Table 10-3 (Cont.) Comparing the LOB Interfaces, 2 of 2

PL/SQL: DBMS_LOB Java (JDBC) ODP.NET
(dbmslob.sql)
DBMS LOB.WRITE BLOB: setBytes () and OracleClob.Write
setBinaryStream()
CLOB: setString () and
setCharacterStream()
DBMS LOB.WRITEAPPEND Use length () and then OracleClob.Append
putString () or putBytes ()
DBMS LOB.CREATETEMPORARY N/A OracleClob constructors
DBMS LOB.FREETEMPORARY N/A OracleClob.Dispose
DBMS LOB.ISTEMPORARY N/A OracleClob.IsTemporary

10.3 Using PL/SQL (DBMS_LOB Package) to Work With LOBs

The PL/SQL DBMS_LOB package can be used for the following operations:

< Internal persistent LOBs and Temporary LOBs: Read and modify operations, either
entirely or in a piece-wise manner.

e BFILEs: Read operations

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
documentation, including parameters, parameter types, return values, and
example code.

* Provide a LOB Locator Before Running the DBMS_LOB Routine

* Guidelines for Offset and Amount Parameters in DBMS_LOB Operations
e Determining Character Set ID

e PL/SQL Functions and Procedures for LOBs

e PL/SQL Functions and Procedures to Modify LOB Values

e PL/SQL Functions and Procedures for Introspection of LOBs

e PL/SQL Operations on Temporary LOBs

e PL/SQL Read-Only Functions and Procedures for BFILEs

e PL/SQL Functions and Procedures to Open and Close Internal and External LOBs

10.3.1 Provide a LOB Locator Before Running the DBMS_LOB Routine

DBMS_LOB routines work based on LOB locators. For the successful completion of DBMS_L0B
routines, you must provide an input locator representing a LOB that exists in the database
tablespaces or external file system, before you call the routine.

ORACLE 105

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

Persistent LOBs: First use SQL to define tables that contain LOB columns, and
subsequently you can use SQL to initialize or populate the locators in these LOB columns.

External LOBs: Define a DIRECTORY object that maps to a valid physical directory
containing the external LOBs that you intend to access. These files must exist, and have
READ permission for Oracle Server to process. If your operating system uses case-
sensitive path names, then specify the directory in the correct case.

Once the LOBs are defined and created, you may then SELECT a LOB locator into a local
PL/SQL LOB variable and use this variable as an input parameter to DBMS LOB for access to
the LOB value.

Examples provided with each DBMS LOB routine illustrate this in the following sections.

¢ See Also:

Directory Objects

10.3.2 Guidelines for Offset and Amount Parameters in DBMS_LOB

Operations

The following guidelines apply to offset and amount parameters used in procedures in the
DBMS_LOB PL/SQL package:

ORACLE

For character data—in all formats, fixed-width and varying-width—the amount and of fset
parameters are in characters. This applies to operations on CLOB and NCLOB data types.

For binary data, the offset and amount parameters are in bytes. This applies to operations
on BLOB data types.

When using the following procedures:
— DBMS LOB.LOADFROMFILE

— DBMS_ LOB.LOADBLOBFROMFILE

— DBMS LOB.LOADCLOBFROMFILE

you cannot specify an amount parameter with a value larger than the size of the BFILE you
are loading from. To load the entire BFILE with these procedures, you must specify either
the exact size of the BFILE, or the maximum allowable storage limit.

When using DBMS LOB.READ, the amount parameter can be larger than the size of the data.
The amount should be less than or equal to the size of the buffer. The buffer size is limited
to 32K.

10-6

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

See Also:

— Loading a LOB with Data from a BFILE

— About Loading a BLOB with Data from a BFILE

— Loading a CLOB or NCLOB with Data from a BFILE
— About Reading Data from a LOB

10.3.3 Determining Character Set ID

To determine the character set ID, you must know the character set name.

A user can select from the V$NLS_VALID VALUES view, which lists the names of the character
sets that are valid as database and national character sets. Then call the function
NLS_CHARSET ID with the desired character set name as the one string argument. The
character set ID is returned as an integer. UTF16 does not work because it has no character set
name. Use character set ID = 1000 for UTF16. Although UTF16 is not allowed as a database or
national character set, the APIs in DBMS LOB support it for database conversion purposes.

DBMS LOB.LOADCLOBFROMFILE and other procedures in DBMS LOB take character set ID, not
character set name, as an input.

See Also:

e Oracle Database PL/SQL Packages and Types Reference for details and
supported Unicode encodings

e Oracle Database Globalization Support Guide for supported languages

10.3.4 PL/SQL Functions and Procedures for LOBs

ORACLE

¢ See Also:
PL/SQL functions and procedures that operate on BLOBS, CLOBS, NCLOBS, and BFILES

e Table 10-4 to modify persistent LOB values

e Table 10-5 to read or examine LOB values

e Table 10-6 to create, free, or check on temporary LOBs

e Table 10-7 for read-only functions on external LOBs (BFILES)
e Table 10-8 to open or close a LOB, or check if LOB is open

e PL/SQL Packages for LOBs and DBFS to perform archive management on
SecureFiles

10-7

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

10.3.5 PL/SQL Functions and Procedures to Modify LOB Values

Here is a table of DBMS LOB procedures:

Table 10-4 PL/SQL: DBMS_LOB Procedures to Modify LOB Values

Function/Procedure

Description

APPEND
CONVERTTOBLOB
CONVERTTOCLOB
COPY

ERASE

FRAGMENT DELETE
FRAGMENT INSERT
FRAGMENT MOVE
FRAGMENT REPLACE
LOADFROMFILE
LOADCLOBEFROMFILE
LOADBLOBFROMFILE
SETOPTIONS

TRIM

WRITE
WRITEAPPEND

Appends the LOB value to another LOB

Converts a CLOB to a BLOB

Converts a BLOB to a CLOB

Copies all or part of a LOB to another LOB

Erases part of a LOB, starting at a specified offset

Delete the data from the LOB at the given offset for the given length
Insert the given data (< 32KBytes) into the LOB at the given offset
Move the given amount of bytes from the given offset to the new given offset
Replace the data at the given offset with the given data (< 32kBytes)
Load BFILE data into a persistent LOB

Load character data from a file into a LOB

Load binary data from a file into a LOB

Sets LOB features (deduplication and compression)

Trims the LOB value to the specified shorter length

Writes data to the LOB at a specified offset

Writes data to the end of the LOB

10.3.6 PL/SQL Functions and Procedures for Introspection of LOBs

Table 10-5 PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External LOB values
|

Function/Procedure

Description

COMPARE
GETCHUNKSIZE

GETLENGTH
GETOPTIONS
GET STORAGE LIMIT

Compares the value of two LOBs

Gets the chunk size used when reading and writing. This only works on persistent
LOBs and does not apply to external LOBs (BFILES).

Gets the length of the LOB value.
Returns options (deduplication, compression, encryption) for SecureFiles.

Gets the LOB storage limit for the database configuration.

INSTR Returns the matching position of the nth occurrence of the pattern in the LOB.

ISSECUREFILE Returns TRUE if the BLOB or CLOB locator passed to it is for a SecureFiles or FALSE if it
is not.

READ Reads data from the LOB starting at the specified offset.

SETOPTIONS Sets options (deduplication and compression) for a SecureFiles, overriding the default
LOB column settings. Incurs a server round trip.

SUBSTR Returns part of the LOB value starting at the specified offset.

ORACLE 10-8

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

10.3.7 PL/SQL Operations on Temporary LOBs

Table 10-6 PL/SQL: DBMS_LOB Procedures to Operate on Temporary LOBs
|

Function/Procedure Description

CREATETEMPORARY Creates a temporary LOB

ISTEMPORARY Checks if a LOB locator refers to a temporary LOB
FREETEMPORARY Frees a temporary LOB

10.3.8 PL/SQL Read-Only Functions and Procedures for BFILES

Table 10-7 PL/SQL: DBMS_LOB Read-Only Procedures for BFILEsS
|

Function/Procedure Description

FILECLOSE Closes the file. Use CLOSE () instead.

FILECLOSEALL Closes all previously opened files

FILEEXISTS Checks if the file exists on the server

FILEGETNAME Gets the directory object name and file name

FILEISOPEN Checks if the file was opened using the input BFILE locators. Use

ISOPEN () instead.
FILEOPEN Opens a file. Use OPEN () instead.

10.3.9 PL/SQL Functions and Procedures to Open and Close Internal and
External LOBs

Table 10-8 PL/SQL: DBMS_LOB Procedures to Open and Close Internal and External LOBs
|

Function/Procedure Description
OPEN Opens a LOB
ISOPEN Sees if a LOB is open
CLOSE Closes a LOB

See Also:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces for detailed
information about these procedures for specific LOB operations, such as, INSERT a
row containing a LOB

ORACLE 0.0

Chapter 10
Using OCI to Work With LOBs

10.4 Using OCI to Work With LOBs

Oracle Call Interface (OCI) LOB functions enable you to access and make changes to LOBs
and to read data from BFILES in C.

* Prefetching of LOB Data, Length, and Chunk Size

e Setting the CSID Parameter for OCI LOB APIs

* Fixed-Width and Varying-Width Character Set Rules for OCI

* OCILobLoadFromFile2() Amount Parameter

e OCILobRead2() Amount Parameter

* OCILobLocator Pointer Assignment

* LOB Locators in Defines and Out-Bind Variables in OCI

e OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs

* OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
* OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE) Values
* OCI Functions for Temporary LOBs

e OCI Read-Only Functions for BFILES

* OCI LOB Locator Functions

e OCI Functions to Open and Close Internal and External LOBs

* OCI LOB Examples

e Further Information About OCI

¢ See Also:

Oracle Call Interface Programmer's Guide chapter "LOB and BFILE Operations" for
the details of all topics discussed in this section.

10.4.1 Prefetching of LOB Data, Length, and Chunk Size

To improve OCI access of smaller LOBs, LOB data can be prefetched and cached while also
fetching the locator. This applies to internal LOBs, temporary LOBs, and BFILES.

10.4.2 Setting the CSID Parameter for OCI LOB APIs

ORACLE

If you want to read or write data in 2-byte Unicode format, then set the csid (character set ID)
parameter in OCILobRead2 () and OCILobWrite2 () to OCI_UTF16ID.

The csid parameter indicates the character set id for the buffer parameter. You can set the
csid parameter to any character set ID. If the csid parameter is set, then it overrides the
NLS_LANG environment variable.

10-10

Chapter 10
Using OCI to Work With LOBs

See Also:

e Oracle Call Interface Programmer's Guidefor information on the
0CIUnicodeToCharSet () function and details on OCI syntax in general.

* Oracle Database Globalization Support Guidefor detailed information about
implementing applications in different languages.

10.4.3 Fixed-Width and Varying-Width Character Set Rules for OCI

In OCI, for fixed-width client-side character sets, the following rules apply:

ORACLE

CLOBSs and NCLOBS: offset and amount parameters are always in characters

BLOBs and BFILES: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

Offset parameter:

Regardless of whether the client-side character set is varying-width, the offset parameter is
always as follows:

— CLOBs and NCLOBS: in characters

— BLOBs and BFILES: in bytes

Amount parameter:

The amount parameter is always as follows:

— When referring to a server-side LOB: in characters
— When referring to a client-side buffer: in bytes
OCILobFileGetLength():

Regardless of whether the client-side character set is varying-width, the output length is as
follows:

— CLOBs and NCLOBS: in characters

— BLOBs and BFILES: in bytes

OCILobRead2():

With client-side character set of varying-width, CLOBS and NCLOBS:

— Input amount is in characters. Input amount refers to the number of characters to read
from the server-side CLOB or NCLOB.

— Output amount is in bytes. Output amount indicates how many bytes were read into
the buffer bufp.

OCILobWrite2(): With client-side character set of varying-width, CLOBs and NCLOBS:

— Input amount is in bytes. The input amount refers to the number of bytes of data in
the input buffer bufp.

— Output amount is in characters. The output amount refers to the number of characters
written into the server-side CLOB or NCLOB.

Other Operations

10-11

Chapter 10
Using OCI to Work With LOBs

* NCLOBs in OCI

10.4.3.1 Other Operations

For all other LOB operations, irrespective of the client-side character set, the amount parameter
is in characters for CLOBs and NCLOBS. These include 0CILobCopy?2 (), OCILobErase? (),
OCILobLoadFromFile2 (), and OCILobTrim2 (). All these operations refer to the amount of LOB
data on the server.

¢ See Also:

Oracle Database Globalization Support Guide

10.4.3.2 NCLOBs in OCI

NCLOBS are allowed as parameters in methods.

10.4.4 OClILobLoadFromFile2() Amount Parameter

When using 0CILobLoadFromFile2 () you cannot specify amount larger than the length of the
BFILE. To load the entire BFILE, you can pass the value returned by
OCILobGetStorageLimit ().

10.4.5 OClLobRead2() Amount Parameter

To read to the end of a LOB using 0CILobRead? (), you specify an amount equal to the value
returned by OCILobGetStorageLimit ().

See Also:
About Reading Data from a LOB

10.4.6 OClLobLocator Pointer Assignment

Special care must be taken when assigning 0CILobLocator pointers in an OCI program—using
the "=" assignment operator. Pointer assignments create a shallow copy of the LOB. After the
pointer assignment, the source and target LOBs point to the same copy of data.

These semantics are different from using LOB APIs, such as 0CILobAssign () or
OCILobLocatorAssign () to perform assignments. When the these APIs are used, the locators
logically point to independent copies of data after assignment.

For temporary LOBSs, before performing pointer assignments, you must ensure that any
temporary LOB in the target LOB locator is freed by calling 0CIFreeTemporary (). In contrast,
when 0CILobLocatorAssign () is used, the original temporary LOB in the target LOB locator
variable, if any, is freed automatically before the assignment happens.

ORACLE 1012

Chapter 10
Using OCI to Work With LOBs

10.4.7 LOB Locators in Defines and Out-Bind Variables in OCI

Before you reuse a LOB locator in a define or an out-bind variable in a SQL statement, you
must free any temporary LOB in the existing LOB locator buffer using 0CIFreeTemporary ().

10.4.8 OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and

BFILEsS

OCI functions that operate on BLOBS, CLOBS, NCLOBS, and BFILES are as follows:

e To modify persistent LOBs, see #unique_282/unique_282_Connect_42_G1039025

e Toread or examine LOB values, see #unique_283/unique_283 Connect_42_G1039053

* To create or free temporary LOB, or check if Temporary LOB exists, see #unique_284/
unigue_284 Connect_42_G1039069

e For read only functions on external LOBs (BFILES), see #unique_285/
unigue_285 Connect_42_G1039085

* To operate on LOB locators, see #unique_286/unique_286_Connect_42_G1039110
* To open and close LOBs, see #unique_287/unique_287_ Connect_42_G1039151

10.4.9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB)

Values

Table 10-9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values

Function/Procedure

Description

OCILobAppend () Appends LOB value to another LOB.

OCILobArrayWrite () Writes data using multiple locators in one round trip.
OCILobCopy2 () Copies all or part of a LOB to another LOB.

OCILobErase2 () Erases part of a LOB, starting at a specified offset.
OCILobLoadFromFile2 () Loads BFILE data into a persistent LOB.
OCILobSetContentType () Sets a content string in a SecureFiles.

OCILObSetOptions () Enables option settings (deduplication and compression) for a SecureFiles.
OCILobTrim2 () Truncates a LOB.

OCILobWrite2 () Writes data from a buffer into a LOB, overwriting existing data.
OCILobWriteAppend?2 () Writes data from a buffer to the end of the LOB.
ORACLE

10-13

Chapter 10
Using OCI to Work With LOBs

10.4.10 OCI Functions to Read or Examine Persistent LOB and External
LOB (BFILE) Values

Table 10-10 OCI Functions to Read or Examine persistent LOB and external LOB (BFILE) Values
|

Function/Procedure Description

OCILobArrayRead () Reads data using multiple locators in one round trip.

OCILobGetChunkSize () Gets the chunk size used when reading and writing. This works on persistent
LOBs and does not apply to external LOBs (BFILES).

OCILobGetContentType () Gets the content string for a SecureFiles.

OCILobGetLength2 () Returns the length of a LOB or a BFILE.

OCILObGetOptions () Obtains the enabled settings (deduplication, compression, encryption) for a
given SecureFiles.

OCILobGetStoragelimit () Gets the maximum length of an internal LOB.

OCILobRead?2 () Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

10.4.11 OCI Functions for Temporary LOBs

Table 10-11 OCI Functions for Temporary LOBs
|

Function/Procedure Description
OCILobCreateTemporary () Creates a temporary LOB.
OCILobIsTemporary () Sees if a temporary LOB exists.
OCILobFreeTemporary () Frees a temporary LOB.

10.4.12 OCI Read-Only Functions for BFILES

Table 10-12 OCI Read-Only Functions for BFILES
|

Function/Procedure Description
OCILobFileClose() Closes an open BFILE.
OCILobFileCloseAll () Closes all open BFILES.
OCILobFileExists () Checks whether a BFILE exists.
OCILobFileGetName () Returns the name of a BFILE.
OCILobFileIsOpen() Checks whether a BFILE is open.
OCILobFileOpen () Opens a BFILE.

ORACLE 1014

Chapter 10
Using OCI to Work With LOBs

10.4.13 OCI LOB Locator Functions

Table 10-13 OCI LOB-Locator Functions

Function/Procedure Description

OCILobAssign () Assigns one LOB locator to another.
OCILobCharSetForm() Returns the character set form of a LOB.
OCILobCharSetId() Returns the character set ID of a LOB.
OCILobFileSetName () Sets the name of a BFILE in a locator.

OCILobIsEqual () Checks whether two LOB locators refer to the same LOB.
OCILobLocatorIsInit () Checks whether a LOB locator is initialized.

10.4.14 OCI Functions to Open and Close Internal and External LOBs

Table 10-14 OCI Functions to Open and Close Internal and External LOBs

Function/Procedure Description
OCILobOpen () Opens a LOB.
OCILobIsOpen () Sees if a LOB is open.
OCILobClose () Closes a LOB.

10.4.15 OCI LOB Examples

Further OCI examples are provided in:

e Using LOB APIs
* LOB APIs for BFILE Operations

See Also:

Oracle Call Interface Programmer's Guide for further OCI demonstration script
listings

10.4.16 Further Information About OCI

¢ See Also:

http://www.oracle.com/technology/ for more information about OCI features and
frequently asked questions.

ORACLE 1015

http://www.oracle.com/technology/

Chapter 10
Using C++ (OCCI) to Work With LOBs

10.5 Using C++ (OCCI) to Work With LOBs

ORACLE

Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle database.
OCCIl is organized as an easy-to-use set of C++ classes that enable a C++ program to connect
to a database, run SQL statements, insert/update values in database tables, retrieve results of
a query, run stored procedures in the database, and access metadata of database schema
objects. OCCI also provides a seamless interface to manipulate objects of user-defined types
as C++ class instances.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCI and OCCI together to
build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

e OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the
functionality of OCI that JDBC does not provide.

e OCCI provides compiled performance. With compiled programs, the source code is written
as close to the computer as possible. Because JDBC is an interpreted API, it cannot
provide the performance of a compiled API. With an interpreted program, performance
degrades as each line of code must be interpreted individually into code that is close to the
computer.

e OCCI provides memory management with smart pointers. You do not have to be
concerned about managing memory for OCCI objects. This results in robust higher
performance application code.

* Navigational access of OCCI enables you to intuitively access objects and call methods.
Changes to objects persist without writing corresponding SQL statements. If you use the
client side cache, then the navigational interface performs better than the object interface.

* With respect to ODBC, the OCCI API is simpler to use. Because ODBC is built on the C
language, OCCI has all the advantages C++ provides over C. Moreover, ODBC has a
reputation as being difficult to learn. The OCCI, by contrast, is designed for ease of use.

You can use OCCI to make changes to an entire persistent LOB, or to pieces of the beginning,
middle, or end of it, as follows:

e For reading from internal and external LOBs (BFILES)

* For writing to persistent LOBs

* OCCI Classes for LOBs

e Fixed-Width Character Set Rules

e Varying-Width Character Set Rules

« Offset and Amount Parameters for Other OCCI Operations

e Amount Parameter for OCCI LOB copy() Methods

e Amount Parameter for OCCI read() Operations

e Further Information About OCCI

e OCCI Methods That Operate on BLOBs, BLOBs, NCLOBSs, and BFILEs
* OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
* OCCI Methods to Read or Examine Persistent LOB and BFILE Values
e OCCI Read-Only Methods for BFILES

10-16

Chapter 10
Using C++ (OCCI) to Work With LOBs

e Other OCCI LOB Methods
e OCCI Methods to Open and Close Internal and External LOBs

10.5.1 OCCI Classes for LOBs

OCCI provides these classes that allow you to use different types of LOB instances as objects
in your C++ application:

e Clob class to access and modify data stored in internal CL.OBS and NCLOBS
e Blob class to access and modify data stored in internal BLOBS

* Bfile class to access and read data stored in external LOBS (BFILES)

¢ See Also:

Syntax information on these classes and details on OCCI in general is available
in theOracle C++ Call Interface Programmer's Guide.

¢ Clob Class
 Blob Class

« Bfile Class

10.5.1.1 Clob Class

The Clob driver implements a CLOB object using an SQL LOB locator. This means that a CLOB
object contains a logical pointer to the SQL CLOB data rather than the data itself.

The CcLOB interface provides methods for getting the length of an SQL cLoB value, for
materializing a CLOB value on the client, and getting a substring. Methods in the ResultSet and
Statement interfaces such as getClob () and setClob () allow you to access SQL CLOB values.

¢ See Also:

Oracle C++ Call Interface Programmer's Guide for detailed information on the Clob
class.

10.5.1.2 Blob Class

Methods in the ResultSet and Statement interfaces, such as getBlob () and setBlob (), allow
you to access SQL BLOB values. The Blob interface provides methods for getting the length of
a SQL BLOB value, for materializing a BLOB value on the client, and for extracting a part of the
BLOB.

ORACLE 10-17

Chapter 10
Using C++ (OCCI) to Work With LOBs

See Also:

e Oracle C++ Call Interface Programmer's Guide for detailed information on the
Blob class methods and details on instantiating and initializing a Blob object in
your C++ application.

e Oracle Database Globalization Support Guidefor detailed information about
implementing applications in different languages.

10.5.1.3 Bfile Class

The Bfile class enables you to instantiate a Bfile object in your C++ application. You must
then use methods of the Bfile class, such as the setName () method, to initialize the Bfile
object which associates the object properties with an object of type BFILE in a BFILE column of
the database.

See Also:

Oracle C++ Call Interface Programmer's Guide for detailed information on the Bfile
class methods and details on instantiating and initializing an Bfile object in your C++
application.

10.5.2 Fixed-Width Character Set Rules

In OCCI, for fixed-width client-side character sets, these rules apply:
* Clob: offset and amount parameters are always in characters
* Blob: offset and amount parameters are always in bytes

e Bfile: offset and amount parameters are always in bytes

10.5.3 Varying-Width Character Set Rules

The following rules apply only to varying-width client-side character sets:

* Offset parameter: Regardless of whether the client-side character set is varying-width, the
offset parameter is always as follows:

— Clob():in characters
— Blob():in bytes
— Bfile():in bytes
Amount parameter: The amount parameter is always as indicated:
— Clob: in characters, when referring to a server-side LOB
— Blob: in bytes, when referring to a client-side buffer

— Bfile: in bytes, when referring to a client-side buffer

ORACLE 1018

Chapter 10
Using C++ (OCCI) to Work With LOBs

length(): Regardless of whether the client-side character set is varying-width, the output
length is as follows:

— Clob.length(): in characters
— Blob.length():in bytes
— Bfile.length():in bytes

Clob.read() and Blob.read(): With client-side character set of varying-width, CLOBs and
NCLOBS:

— Input amount is in characters. Input amount refers to the number of characters to read
from the server-side CLOB or NCLOB.

— Output amount is in bytes. Output amount indicates how many bytes were read into
the OCCI buffer parameter, buffer.

Clob.write() and Blob.write(): With client-side character set of varying-width, CLOBs and
NCLOBS:

— Input amount is in bytes. Input amount refers to the number of bytes of data in the
OCCI input buffer, buffer.

— Output amount is in characters. Output amount refers to the number of characters
written into the server-side CLOB or NCLOB.

10.5.4 Offset and Amount Parameters for Other OCCI Operations

For all other OCCI LOB operations, irrespective of the client-side character set, the amount
parameter is in characters for CLOBs and NCLOBS. These include the following:

Clob.copy ()
Clob.erase()
Clob.trim()

For LoadFromFile functionality, overloaded Clob. copy ()

All these operations refer to the amount of LOB data on the server.

¢ See also:

Oracle Database Globalization Support Guide

NCLOBs in OCCI

10.5.4.1 NCLOBs in OCCI

NCLOB instances are allowed as parameters in methods

NCLOB instances are allowed as attributes in object types.

10.5.5 Amount Parameter for OCCI LOB copy() Methods

The copy () method on Clob and Blob enables you to load data from a BFILE. You can pass
one of the following values for the amount parameter to this method:

ORACLE

10-19

Chapter 10
Using C++ (OCCI) to Work With LOBs

e An amount smaller than the size of the BFILE to load a portion of the data
* An amount equal to the size of the BFILE to load all of the data
e The UBSMAXVAL constant to load all of the BFILE data

You cannot specify an amount larger than the length of the BFILE.

10.5.6 Amount Parameter for OCCI read() Operations

The read () method on an Clob, Blob, Or Bfile object, reads data from a BFILE. You can pass
one of these values for the amount parameter to specify the amount of data to read:

e An amount smaller than the size of the BFILE to load a portion of the data
e An amount equal to the size of the BFILE to load all of the data
e 0 (zero) to read until the end of the BFILE in streaming mode

You cannot specify an amount larger than the length of the BFILE.

10.5.7 Further Information About OCCI

¢ See Also:

* Oracle C++ Call Interface Programmer's Guide

* http://www.oracle.com/ search for articles and product information featuring
OCCI.

10.5.8 OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and
BFILES

OCCI methods that operate on BLOBS, CLOBS, NCLOBS, and BFILES are as follows:

* To modify persistent LOBs, see Table 10-15

* Toread or examine LOB values, see Table 10-16

* For read only methods on external LOBs (BFILES), see Table 10-17
e Other LOB OCCI methods are described in Table 10-18

e To open and close LOBs, see Table 10-19

10.5.9 OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and
NCLOB) Values

Table 10-15 OCCI Clob and Blob Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values

Function/Procedure Description

Blob/Clob.append () Appends CLOB or BLOB value to another LOB.

ORACLE 10.20

http://www.oracle.com/

Chapter 10
Using C++ (OCCI) to Work With LOBs

Table 10-15 (Cont.) OCCI Clob and Blob Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB)
Values

Function/Procedure Description

Blob/Clob.copy () Copies all or part of a CLOB or BLOB to another LOB.
Blob/Clob.copy () Loads BFILE data into a persistent LOB.

Blob/Clob.trim() Truncates a CLOB or BLOB.

Blob/Clob.write () Writes data from a buffer into a LOB, overwriting existing data.

10.5.10 OCCI Methods to Read or Examine Persistent LOB and BFILE
Values

Table 10-16 OCCI Blob/Clob/Bfile Methods to Read or Examine persistent LOB and BFILE Values

Function/Procedure Description

Blob/Clob.getChunkSize () Gets the chunk size used when reading and writing. This works on persistent
LOBs and does not apply to external LOBs (BFILES).

Blob/Clob.getOptions () Obtains settings for existing and newly created LOBs.

Blob/Clob.length () Returns the length of a LOB or a BFILE.

Blob/Clob.read() Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Blob/Clob.setOptions () Enables LOB settings for existing and newly created LOBs.

10.5.11 OCCI Read-Only Methods for BFILES

Table 10-17 OCCI Read-Only Methods for BFILES

Function/Procedure Description

Bfile.close() Closes an open BFILE.
Bfile.fileExists() Checks whether a BFILE exists.
Bfile.getFileName () Returns the name of a BFILE.
Bfile.getDirAlias () Gets the directory object name.
Bfile.isOpen () Checks whether a BFILE is open.
Bfile.open() Opens a BFILE.

10.5.12 Other OCCI LOB Methods

Table 10-18 Other OCCI LOB Methods

Methods Description
Clob/Blob/Bfile.operator=() Assigns one LOB locator to another. Use = or the copy constructor.
Clob.getCharSetForm() Returns the character set form of a LOB.

ORACLE 10.91

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

Table 10-18 (Cont.) Other OCCI LOB Methods
|

Methods Description

Clob.getCharSetId() Returns the character set ID of a LOB.
Bfile.setName () Sets the name of a BFILE.
Clob/Blob/Bfile.operator==() Checks whether two LOB refer to the same LOB.
Clob/Blob/Bfile.isInitialized() Checks whether a LOB is initialized.

10.5.13 OCCI Methods to Open and Close Internal and External LOBs

Table 10-19 OCCI Methods to Open and Close Internal and External LOBs

Function/Procedure Description
Clob/Blob/Bfile.Open () Opens a LOB
Clob/Blob/Bfile.isOpen () Sees if a LOB is open
Clob/Blob/Bfile.Close() Closes a LOB

10.6 Using C/C++ (Pro*C) to Work With LOBs

You can make changes to an entire persistent LOB, or to pieces of the beginning, middle or
end of a LOB by using embedded SQL. You can access both internal and external LOBs for
read purposes, and you can write to persistent LOBs.

Embedded SQL statements allow you to access data stored in BLOBS, CLOBS, NCLOBS, and
BFILES. These statements are listed in the following tables, and are discussed in greater detail
later in the chapter.

* Providing an Allocated Input Locator Pointer That Represents LOB

e Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
e Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values

e Pro*C/C++ Embedded SQL Statements for Introspection of LOBs

e Pro*C/C++ Embedded SQL Statements for Temporary LOBs

e Pro*C/C++ Embedded SQL Statements for BFILES

e Pro*C/C++ Embedded SQL Statements for LOB Locators

e Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

¢ See Also:

Pro*C/C++ Programmer's Guidefor detailed documentation, including syntax, host
variables, host variable types and example code.

ORACLE 10.99

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

10.6.1 Providing an Allocated Input Locator Pointer That Represents LOB

Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers which are
then used to refer to the LOB or BFILE value.

To successfully complete an embedded SQL LOB statement you must do the following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the database
tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable.

3. Use this variable in the embedded SQL LOB statement to access and manipulate the LOB
value.

¢ See Also:

APIs for supported LOB operations are described in detail in:
* Operations Specific to Persistent and Temporary LOBs

* Using LOB APIs

 LOB APIs for BFILE Operations

10.6.2 Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs,
and BFILEs

Pro*C/C++ statements that operate on BLOBs, CLOBs, and NCLOBs are listed in the following
tables:

e To modify persistent LOBs, see #unique_311/unique_311_Connect 42 (G1039287
e Toread or examine LOB values, see #unique_312/unique_312_ Connect_42_ G1039315

e To create or free temporary LOB, or check if Temporary LOB exists, see #unique_313/
unigue_313 Connect_42 G1039331

e To operate close and 'see fif file exists' functions on BFILES, see #unique_314/
unigue_314 Connect_42_ G1039347

e To operate on LOB locators, see #unique_315/unique_315 Connect 42 (G1039363
e To open or close LOBs or BFILES, see #unique_316/unique_316_ Connect_42_G1039392

10.6.3 Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB
Values

Table 10-20 Pro*CI/C++: Embedded SQL Statements to Modify Persistent LOB Values

Statement Description
APPEND Appends a LOB value to another LOB.
COPY Copies all or a part of a LOB into another LOB.

ORACLE 10.93

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

Table 10-20 (Cont.) Pro*C/C++: Embedded SQL Statements to Modify Persistent LOB Values

Statement Description
Erases part of a LOB, starting at a specified offset.

ERASE

LOAD FROM FILE Loads BFILE data into a persistent LOB at a specified offset.
TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset.

WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

10.6.4 Pro*C/C++ Embedded SQL Statements for Introspection of LOBs

Table 10-21 Pro*C/C++: Embedded SQL Statements for Introspection of LOBs

Statement Description
Gets the chunk size used when writing. This works for persistent LOBs only. It does not
apply to external LOBs (BFILES).

DESCRIBE [CHUNKSIZE]

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE.

READ reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

10.6.5 Pro*C/C++ Embedded SQL Statements for Temporary LOBs

Table 10-22 Pro*C/C++: Embedded SQL Statements for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE [ISTEMPORARY] Sees if a LOB locator refers to a temporary LOB.
FREE TEMPORARY Frees a temporary LOB.

10.6.6 Pro*C/C++ Embedded SQL Statements for BFILES

Table 10-23 Pro*CI/C++: Embedded SQL Statements for BFILES

Statement Description
FILE CLOSE ALL Closes all open BFILES.
DESCRIBE [FILEEXISTS] Checks whether a BFILE exists.

DESCRIBE Returns the directory object name and filename of a BFILE.

[DIRECTORY, FILENAME]

ORACLE 10.94

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

10.6.7 Pro*C/C++ Embedded SQL Statements for LOB Locators

Table 10-24 Pro*C/C++ Embedded SQL Statements for LOB Locators
|

Statement Description
ASSIGN Assigns one LOB locator to another.
FILE SET Sets the directory object name and filename of a BFILE in a locator.

10.6.8 Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

Table 10-25 Pro*C/C++ Embedded SQL Statements to Open and Close Persistent LOBs and External
LOBs (BFILEs)

Statement Description

OPEN Opens a LOB or BFILE.
DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.
CLOSE Closes a LOB or BFILE.

10.7 Using COBOL (Pro*COBOL) to Work With LOBs

You can make changes to an entire persistent LOB, or to pieces of the beginning, middle or
end of it by using embedded SQL. You can access both internal and external LOBs for read
purposes, and you can also write to persistent LOBs.

Embedded SQL statements allow you to access data stored in BLOBS, CLOBS, NCLOBS, and
BFILES. These statements are listed in the following tables, and are discussed in greater detail
later in the manual.

e Providing an Allocated Input Locator Pointer That Represents LOB

e Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBSs, and BFILEs

* Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values

* Pro*COBOL Embedded SQL Statements for Introspection of LOBs

* Pro*COBOL Embedded SQL Statements for Temporary LOBs

¢ Pro*COBOL Embedded SQL Statements for BFILES

* Pro*COBOL Embedded SQL Statements for LOB Locators

* Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and BFILEs

10.7.1 Providing an Allocated Input Locator Pointer That Represents LOB

Unlike locators in PL/SQL, locators in Pro*COBOL are mapped to locator pointers which are
then used to refer to the LOB or BFILE value. For the successful completion of an embedded
SQL LOB statement you must perform the following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the database
tablespaces or external file system before you run the statement.

ORACLE 10.95

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

SELECT a LOB locator into a LOB locator pointer variable

Use this variable in an embedded SQL LOB statement to access and manipulate the LOB
value.

¢ See Also:

APIs for supported LOB operations are described in detail in:
e Operations Specific to Persistent and Temporary LOBs

e Using LOB APIs

e LOB APIs for BFILE Operations

Where the Pro*COBOL interface does not supply the required functionality, you can call OCI
using C. Such an example is not provided here because such programs are operating system
dependent.

2 See Also:

Pro*COBOL Programmer's Guidefor detailed documentation, including syntax, host
variables, host variable types, and example code.

10.7.2 Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs,

and BFILEs

The following Pro*COBOL statements operate on BLOBs, CLOBs, NCLOBSs, and BFILEs:

ORACLE

To modify persistent LOBs, see #unique_319/unique_319 Connect 42 G1039412

To read or examine internal and external LOB values, see #unique_320/
unigue_320_Connect_42_ G1039440

To create or free temporary LOB, or check LOB locator, see #unique_321/
unigue_321 Connect_42 G1039456

To operate close and 'see if file exists' functions on BFILES, see #unique_322/
unigue_322_ Connect_42_G1039472

To operate on LOB locators, see #unique_323/unique_323_Connect_ 42 (G1039488

To open or close persistent LOBs or BFILES, see #unique_324/
unigue_324 Connect_42_G1039517

10-26

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

10.7.3 Pro*COBOL Embedded SQL Statements to Modify Persistent LOB
Values

Table 10-26 Pro*COBOL Embedded SQL Statements to Modify LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

COPY Copies all or part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROM FILE Loads BFILE data into a persistent LOB at a specified offset.
TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset
WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

10.7.4 Pro*COBOL Embedded SQL Statements for Introspection of LOBs

Table 10-27 Pro*COBOL Embedded SQL Statements for Introspection of LOBs
___|

Statement Description

DESCRIBE [CHUNKSIZE] Gets the Chunk size used when writing.

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE.

READ Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

10.7.5 Pro*COBOL Embedded SQL Statements for Temporary LOBs

Table 10-28 Pro*COBOL Embedded SQL Statements for Temporary LOBs
___|

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE [ISTEMPORARY] Sees if a LOB locator refers to a temporary LOB.
FREE TEMPORARY Frees a temporary LOB.

10.7.6 Pro*COBOL Embedded SQL Statements for BFILES

Table 10-29 Pro*COBOL Embedded SQL Statements for BFILES
|

Statement Description

FILE CLOSE ALL Closes all open BFILES.

DESCRIBE [FILEEXISTS] Checks whether a BFILE exists.

DESCRIBE [DIRECTORY, Returns the directory object name and filename of a BFILE.
FILENAME]

ORACLE 10-27

Chapter 10
Using Java (JDBC) to Work With LOBs

10.7.7 Pro*COBOL Embedded SQL Statements for LOB Locators

Table 10-30 Pro*COBOL Embedded SQL Statements for LOB Locator Statements
|

Statement Description
ASSIGN Assigns one LOB locator to another.
FILE SET Sets the directory object name and filename of a BFILE in a locator.

10.7.8 Pro*COBOL Embedded SQL Statements for Opening and Closing
LOBs and BFILEs

Table 10-31 Pro*COBOL Embedded SQL Statements for Opening and Closing Persistent LOBs and
BFILEs

Statement Description

OPEN Opens a LOB or BFILE.
DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.
CLOSE Closes a LOB or BFILE.

10.8 Using Java (JDBC) to Work With LOBs

You can perform the following tasks on LOBs with Java (JDBC):

* Modifying Internal Persistent LOBs Using Java

e Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java
e Calling DBMS_LOB Package from Java (JDBC)

» Referencing LOBs Using Java (JDBC)

e Create and Manipulate Temporary LOBs and Store Them in Tables as Permanent LOBs.
See JDBC Temporary LOB APIs

e Modifying Internal Persistent LOBs Using Java

e Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java
e Calling DBMS_LOB Package from Java (JDBC)

e Prefetching LOBs to Improve Performance

e Zero-Copy Input/Output for SecureFiles to Improve Performance

e Referencing LOBs Using Java (JDBC)

« JDBC Syntax References and Further Information

e JDBC Methods for Operating on LOBs

e JDBC oracle.sql.BLOB Methods to Modify BLOB Values

« JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

e JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data

ORACLE 1098

Chapter 10
Using Java (JDBC) to Work With LOBs

» JDBC oracle.sql.CLOB Methods to Modify CLOB Values

» JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value

« JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data
« JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
« JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data
» JDBC Temporary LOB APIs

e JDBC: Opening and Closing LOBs

» JDBC: Opening and Closing BLOBs

* JDBC: Opening and Closing CLOBs

e JDBC: Opening and Closing BFILEs

e Truncating LOBs Using JDBC

* JDBC BLOB Streaming APIs

e JDBC CLOB Streaming APIs

e BFILE Streaming APIs

e JDBC and Empty LOBs

10.8.1 Modifying Internal Persistent LOBs Using Java

You can make changes to an entire persistent LOB, or to pieces of the beginning, middle, or
end of a persistent LOB in Java by means of the JDBC API using the classes:

* oracle.sql.BLOB
e oracle.sql.CLOB

These classes implement java.sgl.Blob and java.sql.Clob interfaces according to the
JDBC 3.0 specification, which has methods for LOB modification. They also include legacy
Oracle proprietary methods for LOB modification. These legacy methods are marked as
deprecated.

Starting in Oracle Database Release 11.1, the minimum supported version of the JDK is JDK5.
To use JDKS5, place ojdbc5.jar in your CLASSPATH. To use JDKG, place ojdbc6.jar in your
CLASSPATH. ojdbc5. jar supports the JDBC 3.0 specification and ojdbc6. jar supports the
JDBCA4.0 specification which is new with JDK®6.

10.8.2 Reading Internal Persistent LOBs and External LOBs (BFILES) With
Java

With JDBC you can use Java to read both internal persistent LOBs and external LOBs
(BFILES).

« BLOB, CLOB, and BFILE Classes

10.8.2.1 BLOB, CLOB, and BFILE Classes

e BLOB and CLOB Classes: In JDBC theses classes provide methods for performing
operations on large objects in the database including BLOB and CL.0B data types.

ORACLE 10.29

Chapter 10
Using Java (JDBC) to Work With LOBs

e BFILE Class: In JDBC this class provides methods for performing operations on BFILE data
in the database.

The BLOB, CLOB, and BFILE classes encapsulate LOB locators, so you do not deal with locators
but instead use methods and properties provided to perform operations and get state
information.

10.8.3 Calling DBMS_LOB Package from Java (JDBC)

Any LOB functionality not provided by these classes can be accessed by a call to the PL/SQL
DBMS_LOB package. This technique is used repeatedly in the examples throughout this manual.

10.8.4 Prefetching LOBSs to Improve Performance

The number of server round trips can be reduced by prefetching part of the data and metadata
(length and chunk size) along with the LOB locator during the fetch.

The SELECT parse, execution, and fetch occurs in one round trip. For large LOBs (larger than
five times the prefetch size) less improvement is seen.

To configure the prefetch size, a connection property, oracle.jdbc.defaultLobPrefetchSize,
defined as a constant in oracle.jdbc.OracleConnection can be used. Values can be -1 to
disable prefetching, 0 to enable prefetching for metadata only, or any value greater than 0
which represents the number of bytes for BLOBs and characters for CLOBS, to be prefetched
along with the locator during fetch operations.

You can change the prefetch size for a particular statement by using a method defined in
oracle.jdbc.OracleStatement:

void setLobPrefetchSize (int size) throws SQLException;

The statement level setting overrides the setting at the connection level. This setting can also
be overriden at the column level through the extended defineColumnType method, where the
size represents the number of bytes (or characters for CLOB) to prefetch. The possible values
are the same as for the connection property. The type must be set to OracleTypes.CLOB for a
CLOB column and OracleTypes.BLOB for a BLOB column. This method throws SQLException if
the value is less than -1. To complement the statement there is in
oracle.jdbc.OracleStatement:

int getLobPrefetchSize();

10.8.5 Zero-Copy Input/Output for SecureFiles to Improve Performance

ORACLE

To improve the performance of SecureFiles, there is a Zero-copy Input/Output protocol on the
server that is only available to network clients that support the new Net NS Data transfer
protocol.

To determine if a LOB is a SecureFiles or not, use the method
public boolean isSecureFile() throws SQLException
If it is a SecureFiles, TRUE is returned.

Use this thin connection property to disable (by setting to FALSE) the Zero-copy Input/Output
protocol:

oracle.net.useZeroCopyIO

10-30

Chapter 10
Using Java (JDBC) to Work With LOBs

e Zero-Copy Input/Output on the Server
e Zero-Copy Input/Output in the JDBC Thin Driver
e JDBC-OCI Driver Considerations

10.8.5.1 Zero-Copy Input/Output on the Server

Oracle Net Services is now able to use data buffers provided by the users of Oracle Net
Services without transferring the data into or out of its local buffers.

The network buffers (at the NS layer) are bypassed and internal lob buffers are directly written
on the network. The same applies to buffer reads.

This feature is only available to network clients that support the new NS Data packet (this is
negotiated during the NS handshake). The thin driver supports the new NS protocol so that the
server can use the zero-copy protocol and JavaNet exposes the zero-copy IO mechanism to
the upper layer so that data copies are no longer required in the thin driver code.

10.8.5.2 Zero-Copy Input/Output in the JDBC Thin Driver

When you call the BLOB.getBytes (long pos, int length, byte[] buffer) API, the buffer
provided is used at the JavaNet layer to read the bytes from the socket.

The data is retrieved in one single round trip. Similarly, during a write operation, when you call
BLOB.setBytes (long pos, byte[] bytes), the buffer is directly written on the network at the
JavaNet layer. So the data is written in one single round trip. The user buffer is sent as a
whole.

10.8.5.3 JDBC-OCI Driver Considerations

The JDBC-OCI driver supports Zero-copy Input/Output in the server and in the network layer.

10.8.6 Referencing LOBs Using Java (JDBC)

You can get a reference to any of the preceding LOBs in the following two ways:
e Asacolumn of an OracleResultSet
* As an ouT type PL/SQL parameter from an OraclePreparedStatement

e Using OracleResultSet: BLOB and CLOB Objects Retrieved

10.8.6.1 Using OracleResultSet: BLOB and CLOB Objects Retrieved

When BLOB and CLOB objects are retrieved as a part of an OracleResultSet, these objects
represent LOB locators of the currently selected row.

If the current row changes due to a move operation, for example, rset.next(), then the
retrieved locator still refers to the original LOB row.

To retrieve the locator for the most current row, you must call getBLOB (), getCLOB (), oOr
getBFILE () onthe OracleResultSet each time a move operation is made depending on
whether the instance is a BLOB, CLOB Or BFILE.

ORACLE 10.31

Chapter 10
Using Java (JDBC) to Work With LOBs

10.8.7 JDBC Syntax References and Further Information

For further JDBC syntax and information about using JDBC with LOBSs:

¢ See Also:

e Oracle Database JDBC Developer's Guide,for detailed documentation, including
parameters, parameter types, return values, and example code.

e http://www.oracle.com/technology/

10.8.8 JDBC Methods for Operating on LOBs

The following JDBC methods operate on BLOBS, CLOBS, and BFILES:

° BLOBS:
— To modify BLOB values, see #unique_334/unique_334 Connect_42_G1039682

— To read or examine BLOB values, see #unique_335/
unique_335_Connect_42_G1039692

— For streaming BLOB data, see Table 10-34

— Temporary BLOBS: Creating, checking if BLOB is open, and freeing. See #unique_343/
unique_343 Connect_42_ G1039847

— Opening, closing, and checking if BLOB is open, see #unique_343/
unigue_343 Connect_42_G1039847

— Truncating BLOBS, see #unique_356/unique_356_Connect_42_ (G1039898
— BLOB streaming API, see #unique_347/unique_347_Connect_42_ G1039922
* CLOBS:

— To read or examine CLOB values, see #unique_338/
unique_338_ Connect_42_ G1039743

— For streaming CLOB data, see Table 10-37
— To modify CLOBS, see #unique_347/unique_347_Connect 42 G1039922
e Temporary CLOBS:

— Opening, closing, and checking if CLOB is open, see #unique_344/
unigue_344 Connect_42_G1039863

— Truncating CLOBS, see #unique_357/unique_357_Connect_42_G1039908
— CLOB streaming API, see #unique_348/unique_348_Connect_42_G1039935
e BFILES:
— To read or examine BFILES, see #unique_340/unique_340_Connect 42 G1039790

— For streaming BFILE data, see Table 10-39

ORACLE 10.32

http://www.oracle.com/technology/

Chapter 10
Using Java (JDBC) to Work With LOBs

— Opening, closing, and checking if BFILE is open, see #unique_345/
unique_345 Connect_42_ G1039879

— BFILE streaming API, see #unique_349/unique_349 Connect_42_ G1039954

10.8.9 JDBC oracle.sql.BLOB Methods to Modify BLOB Values

Table 10-32 JDBC oracle.sql.BLOB Methods To Modify BLOB Values
|

Method Description
int setBytes(long, bytel[]) Inserts the byte array into the BLOB, starting at the given
offset

10.8.10 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

Table 10-33 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values
C___ |

Method Description

byte[] getBytes(long, int) Gets the contents of the LOB as an array of bytes, given an
offset

long position (bytel], long) Finds the given byte array within the LOB, given an offset

long position(Blob, long) Finds the given BLOB within the LOB

public boolean equals(java.lang.Object) Compares this LOB with another. Compares the LOB
locators.

public long length() Returns the length of the LOB

public int getChunkSize () Returns the ChunkSize of the LOB

10.8.11 JDBC oracle.sgl.BLOB Methods and Properties for Streaming BLOB
Data

Table 10-34 JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data
. __ |

Method Description

public java.io.InputStream getBinaryStream()) Streams the LOB as a binary stream

public java.io.OutputStream setBinaryStream() Retrieves a stream that can be used to write
to the BLOB value that this B1ob object
represents

10.8.12 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

Table 10-35 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

Method Description

int setString(long, java.lang.String) JDBC 3.0: Writes the given Java String to the CLOB value
that this C1ob object designates at the position pos.

ORACLE 10.33

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-35 (Cont.) JDBC oracle.sql.CLOB Methods to Modify CLOB Values
|

Method Description
int putChars(long, char[]) Inserts the character array into the LOB, starting at the
given offset

10.8.13 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value

Table 10-36 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Values
|

Method Description

java.lang.String getSubString(long, int) Returns a substring of the LOB as a string

int getChars(long, int, char[]) Reads a subset of the LOB into a character array
long position(java.lang.String, long) Finds the given String within the LOB, given an offset
long position (oracle.jdbc2.Clob, long) Finds the given CLOB within the LOB, given an offset
long length{() Returns the length of the LOB

int getChunkSize () Returns the ChunkSize of the LOB

10.8.14 JDBC oracle.sgl.CLOB Methods and Properties for Streaming
CLOB Data

Table 10-37 JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data
|

Method Description

java.io.InputStream getAsciiStream() Implements the Clob interface method. Gets the CLOB
value designated by this C1ob object as a stream of
ASCII bytes

java.io.OutputStream setAsciiStream(long pos) JDBC 3.0: Retrieves a stream to be used to write ASCII

characters to the CLOB value that this C1ob object
represents, starting at position pos

java.io.Reader getCharacterStream() Reads the CLOB as a character stream

java.io.Writer setCharacterStream(long pos) JDBC 3.0: Retrieves a stream to be used to write
Unicode characters to the CLOB value that this Clob

object represents, starting at position pos

10.8.15 JDBC oracle.sgl.BFILE Methods to Read or Examine External LOB
(BFILE) Values

Table 10-38 JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
|

Method Description
byte[] getBytes(long, int) Gets the contents of the BFILE as an array of bytes, given
an offset

ORACLE 10.34

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-38 (Cont.) JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
|

Method Description

int getBytes(long, int, bytel]) Reads a subset of the BFILE into a byte array

long position(oracle.sql.BFILE, long) Finds the first appearance of the given BFILE contents
within the LOB, from the given offset

long position(byte[], long) Finds the first appearance of the given byte array within
the BFILE, from the given offset

long length{() Returns the length of the BFILE

boolean fileExists() Checks if the operating system file referenced by this
BFILE exists

public void openFile () Opens the operating system file referenced by this BFILE

public void closeFile() Closes the operating system file referenced
by this BFILE

public boolean isFileOpen () Checks if this BFILE is open

public java.lang.String getDirAlias() Gets the directory object name for this
BFILE

public java.lang.String getName () Gets the file name referenced by this BFILE

10.8.16 JDBC oracle.sql.BFILE Methods and Properties for Streaming
BFILE Data

Table 10-39 JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data

- ___|]
Method Description

public java.io.InputStream getBinaryStream() Reads the BFILE as a binary stream

10.8.17 JDBC Temporary LOB APIs

Oracle Database JDBC drivers contain APIs to create and close temporary LOBs. These APIs
can replace workarounds that use the following procedures from the DBMS LOB PL/SQL
package in prior releases:

° DBMS LOB.createTemporary ()
. DBMS LOB.isTemporary ()

e DBMS LOB.freeTemporary ()

Table 10-40 JDBC: Temporary BLOB APIs

. __|]
Methods Description

public static BLOB createTemporary(Connection conn, Creates a temporary BLOB

boolean cache, int duration) throws SQLException
public static boolean isTemporary(BLOB blob) Checks if the specified BLOB locator refers to

throws SQLException a temporary BLOB

ORACLE 10.35

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-40 (Cont.) JDBC: Temporary BLOB APIs

- ___|]
Methods Description

public boolean isTemporary() throws SQLException Checks if the current BLOB locator refers to a
temporary BLOB

public static void freeTemporary (BLOB temp blob) Frees the specified temporary BLOB
throws SQLException
public void freeTemporary() throws SQLException Frees the temporary BLOB

Table 10-41 JDBC: Temporary CLOB APIs

- ___|]
Methods Description

public static CLOB createTemporary(Connection conn, Creates a temporary CLOB

boolean cache, int duration) throws SQLException

public static boolean isTemporary (CLOB clob) Checks if the specified CLOB locator refers
throws SQLException to a temporary CLOB

public boolean isTemporary() throws SQLException Checks if the current CLOB locator refers to
a temporary CLOB

public static void freeTemporary(CLOB temp clob) Frees the specified temporary CLOB
throws SQLException
public void freeTemporary() throws SQLException Frees the temporary CLOB

10.8.18 JDBC: Opening and Closing LOBs

oracle.sgl.CLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Clob interface. Table 10-41 lists the Oracle extension APIs in oracle.sql.CLOB for
accessing temporary CLOBs.

Oracle Database JDBC drivers contain APls to explicitly open and close LOBs. These APIs
replace previous techniques that use DBMS LOB.open () and DBMS LOB.close().

10.8.19 JDBC: Opening and Closing BLOBs

oracle.sqgl.BLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sgl.Blob interface. Table 10-42 lists the Oracle extension APIS in oracle.sgl.BLOB that
open and close BLOBs.

Table 10-42 JDBC: Opening and Closing BLOBs
|

Methods Description

public void open(int mode) throws SQLException Opens the BLOB
public boolean isOpen() throws SQLException Sees if the BLOB is open
public void close() throws SQLException Closes the BLOB

e Opening the BLOB Using JDBC
e Checking If the BLOB Is Open Using JDBC

ORACLE 10.36

Chapter 10
Using Java (JDBC) to Work With LOBs

e Closing the BLOB Using JDBC

10.8.19.1 Opening the BLOB Using JDBC

To open a BLOB, your JDBC application can use the open method as defined in
oracle.sql.BLOB class as follows:
/**

* Open a BLOB in the indicated mode. Valid modes include MODE READONLY,

* and MODE READWRITE. It is an error to open the same LOB twice.

*/

public void open (int mode) throws SQLException

Possible values of the mode parameter are:

public static final int MODE READONLY
public static final int MODE READWRITE

Each call to open opens the BLOB. For example:

BLOB blob = ...
blob.open (BLOB.MODE READWRITE) ;

10.8.19.2 Checking If the BLOB Is Open Using JDBC

To see if a BLOB is opened, your JDBC application can use the isOpen method defined in
oracle.sql.BLOB. The return Boolean value indicates whether the BLOB has been previously
opened or not. The isOpen method is defined as follows:

/**

* Check whether the BLOB is opened.

* @return true if the LOB is opened.

*/

public boolean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
// See if the BLOB is opened
boolean isOpen = blob.isOpen ();

10.8.19.3 Closing the BLOB Using JDBC

ORACLE

To close a BLOB, your JDBC application can use the close method defined in
oracle.sql.BLOB. The close API is defined as follows:

/**
* Close a previously opened BLOB.
*/
public void close () throws SQLException

The usage example is:

BLOB blob = ...
// close the BLOB
blob.close ();

10-37

Chapter 10
Using Java (JDBC) to Work With LOBs

10.8.20 JDBC: Opening and Closing CLOBs

Class oracle.sql.CLOB is the Oracle JDBC driver implementation of the standard JDBC
java.sql.Clob interface. Table 10-43 lists the Oracle extension APIs in oracle.sqgl.CLOB to
open and close CLOBS.

Table 10-43 JDBC: Opening and Closing CLOBs
___|

Methods Description

public void open (int mode) throws SQLException Open the CLOB

public boolean isOpen() throws SQLException See if the CLOB is opened
public void close() throws SQLException Close the CLOB

e Opening the CLOB Using JDBC
e Checking If the CLOB Is Open Using JDBC
e Closing the CLOB Using JDBC

10.8.20.1 Opening the CLOB Using JDBC

To open a CLOB, your JDBC application can use the open method defined in oracle.sql.CLOB
class as follows:

/**

* Open a CLOB in the indicated mode. Valid modes include MODE READONLY,
* and MODE READWRITE. It is an error to open the same LOB twice.

*x/

public void open (int mode) throws SQLException

The possible values of the mode parameter are:

public static final int MODE READONLY
public static final int MODE READWRITE

Each call to open opens the CLOB. For example,

CLOB clob = ...
clob.open (CLOB.MODE READWRITE);

10.8.20.2 Checking If the CLOB Is Open Using JDBC

To see if a CLOB is opened, your JDBC application can use the isOpen method defined in
oracle.sql.CLOB. The return Boolean value indicates whether the CcL0OB has been previously
opened or not. The isOpen method is defined as follows:

/**
* Check whether the CLOB is opened.
* @return true if the LOB is opened.
*/
public boolean isOpen () throws SQLException

The usage example is:

ORACLE 10.38

Chapter 10
Using Java (JDBC) to Work With LOBs

CLOB clob = ...
// See if the CLOB is opened
boolean isOpen = clob.isOpen ();

10.8.20.3 Closing the CLOB Using JDBC

To close a C1.0B, the JDBC application can use the close method defined in oracle.sql.CLOB.
The close API is defined as follows:

/**

* Close a previously opened CLOB.

*/

public void close () throws SQLException

The usage example is:

CLOB clob = ...
// close the CLOB
clob.close ();

10.8.21 JDBC: Opening and Closing BFILES

oracle.sqgl.BFILE class wraps the database BFILE object. Table 10-44 lists the Oracle
extension APIs in oracle.sql.BFILE for opening and closing BFILES.

Table 10-44 JDBC API Extensions for Opening and Closing BFILEs
C___ |

Methods Description

public void open() throws SQLException Opens the BFILE

public void open (int mode) throws SQLException Opens the BFILE

public boolean isOpen() throws SQLException Checks if the BFILE is open
public void close() throws SQLException Closes the BFILE

e Opening BFILEs
e Checking If the BFILE Is Open
e Closing the BFILE

e Usage Example (OpenCloseLob.java)

10.8.21.1 Opening BFILES

ORACLE

To open a BFILE, your JDBC application can use the 0OPEN method defined in
oracle.sql.BFILE class as follows:

/**
* Open a external LOB in the read-only mode. It is an error
* to open the same LOB twice.
*/

public void open () throws SQLException

/**

* Open a external LOB in the indicated mode. Valid modes include
* MODE_READONLY only. It is an error to open the same

* LOB twice.

10-39

Chapter 10
Using Java (JDBC) to Work With LOBs

*/

public void open (int mode) throws SQLException

The only possible value of the mode parameter is:

public static final int MODE READONLY

Each call to open opens the BFILE. For example,

BFILE bfile = ...
bfile.open ();

10.8.21.2 Checking If the BFILE Is Open

To see if a BFILE is opened, your JDBC application can use the isOpen method defined in
oracle.sql.BFILE. The return Boolean value indicates whether the BFILE has been previously
opened or not. The isOpen method is defined as follows:

/**
* Check whether the BFILE is opened.
* @return true if the LOB is opened.
*/
public boolean isOpen () throws SQLException

The usage example is:

BFILE bfile = ...
// See if the BFILE is opened
boolean isOpen = bfile.isOpen ();

10.8.21.3 Closing the BFILE

To close a BFILE, your JDBC application can use the close method defined in
oracle.sql.BFILE. The close APl is defined as follows:

/**
* Close a previously opened BFILE.
*/
public void close () throws SQLException

The usage example is --

BFILE bfile = ...
// close the BFILE
bfile.close ();

10.8.21.4 Usage Example (OpenCloseLob.java)

ORACLE

/%
* This sample shows how to open/close BLOB and CLOB.
*/

// You must import the java.sql package to use JDBC
import java.sql.*;

// You must import the oracle.sqgl package to use oracle.sql.BLOB
import oracle.sqgl.*;

class OpenCloselLob

{

10-40

Chapter 10
Using Java (JDBC) to Work With LOBs

public static void main (String args [])
throws SQLException

// Load the Oracle JDBC driver
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

String url = "jdbc:oracle:oci8:@";
try {
String urll = System.getProperty ("JDBC URL");
if (urll != null)
url = urll;
} catch (Exception e) {
// If there is any security exception, ignore it
// and use the default

// Connect to the database
Connection conn =

DriverManager.getConnection (url, "scott", "password");
// It is faster when auto commit is off
conn.setAutoCommit (false);

// Create a Statement
Statement stmt = conn.createStatement ();

try
{
stmt.execute ("drop table basic_lob_table");
}
catch (SQLException e)
{

// An exception could be raised here if the table did not exist.

// Create a table containing a BLOB and a CLOB
stmt.execute ("create table basic lob table (x varchar2 (30), b blob, c clob)");

// Populate the table
stmt.execute (
"insert into basic_lob table values"
+ " ('one', '010101010101010101010101010101"', 'onetwothreefour')");

// Select the lobs
ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
while (rset.next ())
{
// Get the lobs
BLOB blob = (BLOB) rset.getObject (2);
CLOB clob = (CLOB) rset.getObject (3);

// Open the lobs

System.out.println ("Open the lobs");
blob.open (BLOB.MODE READWRITE) ;
clob.open (CLOB.MODE READWRITE) ;

// Check if the lobs are opened
System.out.println ("blob.isOpen ()="+blob.isOpen());
System.out.println ("clob.isOpen ()="+clob.isOpen());

// Close the lobs

System.out.println ("Close the lobs");
blob.close ();

ORACLE 10-41

Chapter 10
Using Java (JDBC) to Work With LOBs

clob.close ();

// Check if the lobs are opened

System.out.println ("blob.isOpen ()="+blob.isOpen());

System.out.println ("clob.isOpen ()="+clob.isOpen());
}

// Close the ResultSet
rset.close ();

// Close the Statement
stmt.close ();

// Close the connection
conn.close ();

10.8.22 Truncating LOBs Using JDBC

Oracle Database JDBC drivers contain APIs to truncate persistent LOBs. These APIs replace
previous techniques that used DBMS LOB.trim().

e JDBC: Truncating BLOBs
e JDBC: Truncating CLOBs

10.8.22.1 JDBC: Truncating BLOBs

oracle.sqgl.BLOB class is Oracle JDBC driver implementation of the standard JDBC
java.sqgl.Blob interface. Table 10-45 lists the Oracle extension APl in oracle.sql.BLOB that
truncates BLOBs.

Table 10-45 JDBC: Truncating BLOBs

- ___|]
Methods Description

public void truncate(long newlen) throws SQLException Truncates the BLOB

The truncate API is defined as follows:

/**

*Truncate the value of the BLOB to the length you specify in the newlen parameter.
* @param newlen the new length of the BLOB.
*/

public void truncate (long newlen) throws SQLException

The newlen parameter specifies the new length of the BLOB.

10.8.22.2 JDBC: Truncating CLOBs

oracle.sgl.CLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Clob interface. Table 10-46 lists the Oracle extension APl in oracle.sql.CLOB that
truncates CLOBS.

ORACLE 1040

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-46 JDBC: Truncating CLOBs

- ___|]
Methods Description

public void truncate(long newlen) throws SQLException Truncates the CLOB

The truncate API is defined as follows:

/‘k*

*Truncate the value of the CLOB to the length you specify in the newlen parameter.
* @param newlen the new length of the CLOB.

*/

public void truncate (long newlen) throws SQLException

The newlen parameter specifies the new length of the CLOB.

¢ See:

"About Trimming LOB Data", for an example.

10.8.23 JDBC BLOB Streaming APIs

The JDBC interface provided with the database includes LOB streaming APIs that enable you
to read from or write to a LOB at the requested position from a Java stream.

The oracle.sqgl.BLOB class implements the standard JDBC java.sql.Blob interface.
Table 10-47 lists BLOB Streaming APlIs.

Table 10-47 JDBC: BLOB Streaming APIs

|
Methods Description

public java.io.OutputStream JDBC 3.0: Retrieves a stream that can be
used to write to the BLOB value that this
Blob object represents, starting at position
pos

setBinaryStream (long pos) throws SQLException

public java.io.InputStream JDBC 3.0: Retrieves a stream that can be
used to read the BLOB value that this Blob

getBinaryStream() throws SQLException) : o
object represents, starting at the beginning

public java.io.InputStream Oracle extension: Retrieves a stream that
can be used to read the BLOB value that
this B1ob object represents, starting at
position pos

getBinaryStream(long pos) throws SQLException

These APIs are defined as follows:

/**

* Write to the BLOB from a stream at the requested position.
*

* @param pos is the position data to be put.

* @return a output stream to write data to the BLOB

*/

public java.io.OutputStream setBinaryStream(long pos) throws SQLException

ORACLE 10.42

Chapter 10
Using Java (JDBC) to Work With LOBs

* Read from the BLOB as a stream at the requested position.

* @param pos 1is the position data to be read.

* @return a output stream to write data to the BLOB

*/

public java.io.InputStream getBinaryStream(long pos) throws SQLException

10.8.24 JDBC CLOB Streaming APIs

The oracle.sqgl.CLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Clob interface. Table 10-48 lists the CLOB streaming APlIs.

Table 10-48 JDBC: CLOB Streaming APIs

Methods

Description

public java.io.OutputStream

setAsciiStream (long pos) throws SQLException

public java.io.Writer

setCharacterStream (long pos) throws SQLException

public java.io.InputStream

getAsciiStream() throws SQLException

public java.io.InputStream

getAsciiStream(long pos) throws SQLException

public java.io.Reader

getCharacterStream() throws SQLException

public java.io.Reader

getCharacterStream(long pos) throws SQLException

JDBC 3.0: Retrieves a stream to be used to
write ASCII characters to the CLOB value that
this Clob object represents, starting at
position pos

JDBC 3.0: Retrieves a stream to be used to
write Unicode characters to the CLOB value
that this C1ob object represents, starting, at
position pos

JDBC 3.0: Retrieves a stream that can be
used to read ASCII characters from the CLOB
value that this C1ob object represents,
starting at the beginning

Oracle extension: Retrieves a stream that can
be used to read ASCII characters from the
CLOB value that this C1ob object represents,
starting at position pos

JDBC 3.0: Retrieves a stream that can be
used to read Unicode characters from the
CLOB value that this C1ob object represents,
starting at the beginning

Oracle extension: Retrieves a stream that can
be used to read Unicode characters from the
CLOB value that this C1ob object represents,
starting at position pos

These APIs are defined as follows:

/**

* Write to the CLOB from a stream at the requested position.

* (@param pos is the position data to be put.

* @return a output stream to write data to the CLOB

*/

public java.io.OutputStream setAsciiStream(long pos) throws SQLException

/**

* Write to the CLOB from a stream at the requested position.

* (@param pos is the position data to be put.

* @return a output stream to write data to the CLOB

*/

ORACLE

10-44

Chapter 10
Using Java (JDBC) to Work With LOBs

public java.io.Writer setCharacterStream(long pos) throws SQLException

/**

* Read from the CLOB as a stream at the requested position.
* @param pos is the position data to be put.

* @return a output stream to write data to the CLOB

*/

public java.io.InputStream getAsciiStream(long pos) throws SQLException

/**
* Read from the CLOB as a stream at the requested position.
* @param pos 1is the position data to be put.
* @return a output stream to write data to the CLOB
*/
public java.io.Reader getCharacterStream(long pos) throws SQLException

10.8.25 BFILE Streaming APIs

oracle.sql.BFILE class wraps the database BFILES. Table 10-49 lists the Oracle extension
APIs in oracle.sql.BFILE that reads BFILE content from the requested position.

Table 10-49 JDBC: BFILE Streaming APIs

___|]
Methods Description

public java.io.InputStream Reads from the BFILE as a stream
getBinaryStream(long pos) throws SQLException

These APIs are defined as follows:

/**
* Read from the BLOB as a stream at the requested position.
*

* @param pos 1s the position data to be read.
* @return a output stream to write data to the BLOB
*/

public java.io.InputStream getBinaryStream(long pos) throws SQLException

* JDBC BFILE Streaming Example (NewStreamLob.java)

10.8.25.1 JDBC BFILE Streaming Example (NewStreamLob.java)

/%
* This sample shows how to read/write BLOB and CLOB as streams.

*/
import java.io.*;

// You must import the java.sql package to use JDBC
import java.sql.*;

// You must import the oracle.sql package to use oracle.sql.BLOB
import oracle.sqgl.*;

class NewStreamLob

{
public static void main (String args []) throws Exception

{

ORACLE 10.45

Chapter 10
Using Java (JDBC) to Work With LOBs

// Load the Oracle JDBC driver
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

String url = "jdbc:oracle:oci8:@";
try {
String urll = System.getProperty ("JDBC URL");
if (urll != null)
url = urll;
} catch (Exception e) {
// If there is any security exception, ignore it
// and use the default

// Connect to the database
Connection conn =

DriverManager.getConnection (url, "scott", "password");
// It is faster when auto commit is off
conn.setAutoCommit (false);

// Create a Statement
Statement stmt = conn.createStatement ();

try
{
stmt.execute ("drop table basic_lob_table");
}
catch (SQLException e)
{

// An exception could be raised here if the table did not exist.

// Create a table containing a BLOB and a CLOB
stmt.execute (

"create table basic lob table"

+ "(x varchar?2 (30), b blob, ¢ clob)");

// Populate the table
stmt.execute (
"insert into basic_lob table values"
+ "('one', '010101010101010101010101010101", 'onetwothreefour')");

System.out.println ("Dumping lobs");

// Select the lobs
ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
while (rset.next ())
{
// Get the lobs
BLOB blob = (BLOB) rset.getObject (2);
CLOB clob = (CLOB) rset.getObject (3);

// Print the lob contents
dumpBlob (conn, blob, 1);
dumpClob (conn, clob, 1);

// Change the lob contents

fillClob (conn, clob, 11, 50);

fillBlob (conn, blob, 11, 50);
}

rset.close ();

System.out.println ("Dumping lobs again");

ORACLE 10-46

ORACLE

rset = stmt.executeQuery ("select * from basic_lob_table");

while (rset.next ())

{
// Get the lobs
BLOB blob = (BLOB) rset.getObject (2);
CLOB clob = (CLOB) rset.getObject (3);

// Print the lobs contents
dumpBlob (conn, blob, 11);
dumpClob (conn, clob, 11);
}
// Close all resources
rset.close();
stmt.close();
conn.close();

// Utility function to dump Clob contents

static void dumpClob (Connection conn, CLOB clob, long offset)

throws Exception

{

// get character stream to retrieve clob data
Reader instream = clob.getCharacterStream(offset);

// create temporary buffer for read
char[] buffer = new char[10];

// length of characters read
int length = 0;

// fetch data
while ((length = instream.read(buffer)

{

= -1)

System.out.print ("Read " + length + " chars:

for (int i1=0; i<length; i++)
System.out.print (buffer(i]);
System.out.println();

// Close input stream
instream.close () ;

// Utility function to dump Blob contents

static void dumpBlob (Connection conn, BLOB blob, long offset)

throws Exception

{

")

// Get binary output stream to retrieve blob data

InputStream instream = blob.getBinaryStream(offset);

// Create temporary buffer for read
byte[] buffer = new byte[10];

// length of bytes read

int length = 0;

// Fetch data

while ((length = instream.read(buffer)

{

System.out.print ("Read " + length + " bytes:

for (int 1=0; i<length; i++)
System.out.print (buffer[i]+" ");

= -1)

")

Chapter 10

Using Java (JDBC) to Work With LOBs

10-47

System.out.println();

// Close input stream
instream.close () ;

// Utility function to put data in a Clob

Chapter 10
Using Java (JDBC) to Work With LOBs

static void fillClob (Connection conn, CLOB clob, long offset, long length)

throws Exception

{

Writer outstream = clob.setCharacterStream(offset);

int 1 = 0;
int chunk = 10;

while (i < length)
{

outstream.write ("aaaaaaaaaa", 0, chunk);

i += chunk;
if (length - i < chunk)
chunk = (int) length - 1i;
}

outstream.close();

// Utility function to put data in a Blob

static void fillBlob (Connection conn, BLOB blob, long offset, long length)

throws Exception

{

OutputStream outstream = blob.setBinaryStream(offset);

int 1 = 0;
int chunk = 10;

byte [] data={1, 1, 1, 1, 1, 1,1, 1, 1,

while (i < length)
{

outstream.write (data, 0, chunk);

i += chunk;
if (length - i < chunk)
chunk = (int) length - 1i;
}

outstream.close();

10.8.26 JDBC and Empty LOBs

An empty BLOB can be created from the following API from oracle.sql.BLOB:

public static BLOB empty lob () throws SQLException

Similarly, the following API from oracle.sql.CLOB creates an empty CLOB:

public static CLOB empty lob () throws SQLException

ORACLE

10-48

Chapter 10
Oracle Provider for OLE DB (OraOLEDB)

Empty LOB instances are created by JDBC drivers without making database round trips.
Empty LOBs can be used in the following cases:

e set APIs of PreparedStatement
e update APIs of updatable result set
e attribute value of STRUCTs

» element value of ARRAYS

Note:
Empty LOBs are special marker LOBs but not real LOB values.
JDBC applications cannot read or write to empty LOBs created from the preceding APIs. An

ORA-17098 "Invalid empty lob operation" results if your application attempts to read/write to an
empty LOB.

10.9 Oracle Provider for OLE DB (OraOLEDB)

Oracle Provider for OLE DB (OraOLEDB) offers high performance and efficient access to
Oracle data for OLE DB and ADO developers.

Developers programming with COM, C++, or any COM client can use OraOLEDB to access
Oracle databases.

OraOLEDB is an OLE DB provider for Oracle. It offers high performance and efficient access to
Oracle data including LOBs, and also allows updates to certain LOB types.

The following LOB types are supported by OraOLEDB:
e For Persistent LOBs:
READ/WRITE through the rowset.
* For BFILEs:
READ-ONLY through the rowset.
e Temporary LOBs:

Are not supported through the rowset.

¢ See Also:

Oracle Provider for OLE DB Developer's Guide for Microsoft Windows

10.10 Overview of Oracle Data Provider for .NET (ODP.NET)

ORACLE

Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for the
Oracle database.

ODP.NET uses Oracle native APIs to offer fast and reliable access to Oracle data and features
from any .NET application. ODP.NET also uses and inherits classes and interfaces available in

10-49

ORACLE

Chapter 10
Overview of Oracle Data Provider for .NET (ODP.NET)

the Microsoft .NET Framework Class Library. The ODP.NET supports the following LOBs as
native data types with .NET: BLOB, CLOB, NCLOB, and BFILE.

COM and .NET are complementary development technologies. Microsoft recommends that
developers use the .NET Framework rather than COM for new development.

See Also:

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

10-50

LOB APIs for BFILE Operations

ORACLE

APIs for operations that use BFILES are listed in Table 11-1.

This information is given for each operation described:

Usage Notes provide implementation guidelines such as information specific to a given
programmatic environment or data type.

Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

Examples describe any setup tasks necessary to run the examples given. Demonstration
files listed are available in subdirectories under $SORACLE HOME/rdbms/demo/lobs/ named
plsql, oci, vb, and java. The driver program lobdemo.sql isin /plsql and the driver
program lobdemo.c isin /oci.

¢ Note:

LOB APIs do not support loading data into BFILES.

¢ See Also:

About Using SQL*Loader to Load LOBs for details about techniques to load data
into BFILES.

Topics:

Supported Environments for BFILE APIs

About Accessing BFILEs

Directory Objects

BFILENAME and Initialization

Characteristics of the BFILE Data Type

BFILE Security

About Loading a LOB with BFILE Data

About Opening a BFILE with OPEN

About Opening a BFILE with FILEOPEN

About Determining Whether a BFILE Is Open Using ISOPEN
About Determining Whether a BFILE Is Open with FILEISOPEN
About Displaying BFILE Data

About Reading Data from a BFILE

11-1

ORACLE

Chapter 11

About Reading a Portion of BFILE Data Using SUBSTR
Comparing All or Parts of Two BFILES

Checking If a Pattern Exists in a BFILE Using INSTR
Determining Whether a BFILE Exists

Getting the Length of a BFILE

About Assigning a BFILE Locator

Getting Directory Object Name and File Name of a BFILE
About Updating a BFILE by Initializing a BFILE Locator
Closing a BFILE with FILECLOSE

Closing a BFILE with CLOSE

Closing All Open BFILEs with FILECLOSEALL

About Inserting a Row Containing a BFILE

Supported Environments for BFILE APls

About Accessing BFILEs

Directory Objects

BFILENAME and Initialization

Characteristics of the BFILE Data Type

BFILE Security

About Loading a LOB with BFILE Data

About Opening a BFILE with OPEN

About Opening a BFILE with FILEOPEN

About Determining Whether a BFILE Is Open Using ISOPEN
About Determining Whether a BFILE Is Open with FILEISOPEN
About Displaying BFILE Data

About Reading Data from a BFILE

About Reading a Portion of BFILE Data Using SUBSTR
Comparing All or Parts of Two BFILES

Checking If a Pattern Exists in a BFILE Using INSTR
You can determine whether a pattern exists in a BFILE using the INSTRoperation.

Determining Whether a BFILE Exists

Getting the Length of a BFILE

About Assigning a BFILE Locator

Getting Directory Object Name and File Name of a BFILE
About Updating a BFILE by Initializing a BFILE Locator
Closing a BFILE with FILECLOSE

Closing a BFILE with CLOSE

Closing All Open BFILEs with FILECLOSEALL

About Inserting a Row Containing a BFILE

11-2

Chapter 11
Supported Environments for BFILE APIs

11.1 Supported Environments for BFILE APIs

Those programmatic environments that are supported for the APIs are listed in Table 11-1. The
first column describes the operation that the API performs. The remaining columns indicate
with Yes or No whether the API is supported in PL/SQL, OCI, COBOL, Pro*C/C++, and JDBC.

Table 11-1 Environments Supported for BFILE APIs

Operation PL/SQL OCl COoBOL Pro*CIC++ JDBC
About Inserting a Row Containing a BFILE Yes Yes Yes Yes Yes
About Loading a LOB with BFILE Data Yes Yes Yes Yes Yes
About Opening a BFILE with FILEOPEN Yes Yes No No Yes
About Opening a BFILE with OPEN Yes Yes Yes Yes Yes
About Determining Whether a BFILE Is Open Using Yes Yes Yes Yes Yes
ISOPEN

About Determining Whether a BFILE Is Open with Yes Yes No No Yes
FILEISOPEN

About Displaying BFILE Data Yes Yes Yes Yes Yes
About Reading Data from a BFILE Yes Yes Yes Yes Yes
About Reading a Portion of BFILE Data Using SUBSTR Yes No Yes Yes Yes
Comparing All or Parts of Two BFILES Yes No Yes Yes Yes
Checking If a Pattern Exists in a BFILE Using INSTR Yes No Yes Yes Yes
Determining Whether a BFILE Exists Yes Yes Yes Yes Yes
Getting the Length of a BFILE Yes Yes Yes Yes Yes
About Assigning a BFILE Locator Yes Yes Yes Yes Yes
Getting Directory Object Name and File Name of a Yes Yes Yes Yes Yes
BFILE

About Updating a BFILE by Initializing a BFILE Locator Yes Yes Yes Yes Yes
Closing a BFILE with FILECLOSE Yes Yes No No Yes
Closing a BFILE with CLOSE Yes Yes Yes Yes Yes
Closing All Open BFILEs with FILECLOSEALL Yes Yes Yes Yes Yes

11.2 About Accessing BFILEs

To access BFILES use one of the following interfaces:

e OCI (Oracle Call Interface)

 PL/SQL (DBMS_LOB package)

e Precompilers, such as Pro*C/C++ and ProxCOBOL
e Java (JDBC)

ORACLE 113

Chapter 11
Directory Objects

See Also:

Overview of Supplied LOB APIs for information about supported environments for
accessing BFILES.

11.3 Directory Objects

The DIRECTORY object facilitates administering access and usage of BFILE data types.

A DIRECTORY object specifies a logical alias name for a physical directory on the database
server file system under which the file to be accessed is located. You can access a file in the
server file system only if granted the required access privilege on DIRECTORY object. You can
also use Oracle Enterprise Manager Cloud Control to manage DIRECTORY objects.

e Initializing a BFILE Locator

* How to Associate Operating System Files with a BFILE
See Also:
e CREATE DIRECTORY in Oracle Database SQL Language Reference

» See Oracle Database Administrator's Guide for the description of Oracle
Enterprise Manager Cloud Control

11.3.1 Initializing a BFILE Locator

The DIRECTORY object provides the flexibility to manage the locations of the files, instead of
forcing you to hard-code the absolute path names of physical files in your applications.

A directory object name is used in conjunction with the BFTLENAME function, in SQL and PL/
SQL, or the 0CILobFileSetName () in OCI, for initializing a BFILE locator.

WARNING:

The database does not verify that the directory and path name you specify actually
exist. You should take care to specify a valid directory in your operating system. If
your operating system uses case-sensitive path names, then be sure you specify the
directory in the correct format. There is no requirement to specify a terminating slash
(for example, /tmp/ is not necessary, simply use /tmp).

Directory specifications cannot contain ".." anywhere in the path (for
example, /abc/def/hij..).

ORACLE 112

Chapter 11
BFILENAME and Initialization

11.3.2 How to Associate Operating System Files with a BFILE

To associate an operating system file to a BFILE, first create a DIRECTORY object which is an
alias for the full path name to the operating system file.

To associate existing operating system files with relevant database records of a particular table
use Oracle SQL DML (Data Manipulation Language). For example:

e Use INSERT to initialize a BFILE column to point to an existing file in the server file system.
e Use UPDATE to change the reference target of the BFILE.

e Initialize a BFILE to NULL and then update it later to refer to an operating system file using
the BFILENAME function.

e OCIl users can also use 0CILobFileSetName () to initialize a BFILE locator variable that is
then used in the VALUES clause of an INSERT statement.

Directory Example

The following statements associate the files ITmagel.gif and image2.qgif with records having
key value of 21 and 22 respectively. 'IMG' is a DIRECTORY object that represents the physical
directory under which Imagel.qgif and image2.gif are stored.

You may be required to set up data structures similar to the following for certain examples to
work:

CREATE TABLE Lob table (
Key value NUMBER NOT NULL,
F lob BFILE)
INSERT INTO Lobitable VALUES
(21, BFILENAME ('IMG', 'Imagel.gif'));
INSERT INTO Lobitable VALUES
(22, BFILENAME ('IMG', 'image2.gif'));

The following UPDATE statement changes the target file to image3.gif for the row with
key value of 22.

UPDATE Lob table SET f lob = BFILENAME ('IMG', 'image3.gif')
WHERE Key value = 22;

WARNING:

The database does not expand environment variables specified in the DIRECTORY
object or file name of a BFILE locator. For example, specifying:

BFILENAME ('WORK _DIR', '$MY FILE')

where MY FILE, an environment variable defined in the operating system, is not valid.

11.4 BFILENAME and Initialization

BFILENAME is a built-in function that you use to initialize a BFILE column to point to an external
file.

ORACLE 115

Chapter 11
Characteristics of the BFILE Data Type

Once physical files are associated with records using SQL DML, subsequent read operations
on the BFILE can be performed using PL/SQL DBMS LOB package and OCI. However, these
files are read-only when accessed through BFILES, and so they cannot be updated or deleted
through BFILES.

As a consequence of the reference-based semantics for BFILEs, it is possible to have multiple
BFILE columns in the same record or different records referring to the same file. For example,
the following UPDATE statements set the BFILE column of the row with key value =21 in
lob_table to point to the same file as the row with key value = 22.

UPDATE lob table
SET f_lob = (SELECT f_lob FROM lob_table WHERE key_value = 22)
WHERE key value = 21;

Think of BFILENAME in terms of initialization — it can initialize the value for the following:

e BFILE column

e BFILE (automatic) variable declared inside a PL/SQL module

11.5 Characteristics of the BFILE Data Type

Using the BFILE data type has the following advantages:

e If your need for a particular BFILE is temporary and limited within the module on which you
are working, then you can use the BFILE related APIs on the variable without ever having
to associate this with a column in the database.

e Because you are not forced to create a BFILE column in a server side table, initialize this
column value, and then retrieve this column value using a SELECT, you save a round-trip to
the server.

About Loading a LOB with BFILE Data for examples related toDBMS LOB.LOADFROMFILE .

The OCI counterpart for BEILENAME iS OCILobFileSetName (), which can be used in a similar
fashion.

 DIRECTORY Name Specification

11.5.1 DIRECTORY Name Specification

ORACLE

You must have CREATE ANY DIRECTORY System privilege to create directories.

Path names cannot contain two dots (".."). The naming convention for DIRECTORY objects is the
same as that for tables and indexes. That is, normal identifiers are interpreted in uppercase,
but delimited identifiers are interpreted as is. For example, the following statement:

CREATE OR REPLACE DIRECTORY scott dir AS '/usr/home/scott';

creates or redefines a DIRECTORY object whose name is 'SCOTT_DIR' (in uppercase). But if a
delimited identifier is used for the DIRECTORY name, as shown in the following statement

CREATE DIRECTORY "Mary Dir" AS '/usr/home/mary’;

then the directory object name is 'Mary Dir'. Use 'SCOTT DIR'and Mary Dir' when calling
BFILENAME. For example:

BFILENAME ('SCOTT DIR', 'afile')
BFILENAME ('Mary Dir', 'afile')

11-6

Chapter 11
BFILE Security

e On Windows Platforms

11.5.1.1 On Windows Platforms

On Windows platforms the directory hames are case-insensitive. Therefore the following two
statements refer to the same directory:

CREATE DIRECTORY "big cap dir" AS "g:\data\source";

CREATE DIRECTORY "small cap dir" AS "G:\DATA\SOURCE";

11.6 BFILE Security

BEFILE security concerns the BFILE security model and associated SQL statements. The main
SQL statements associated with BFILE security are:

e SQL DDL: CREATE and REPLACE Or ALTER @ DIRECTORY object

° SQL DML: GRANT and REVOKE the READ system and object privileges on DIRECTORY objects
e Ownership and Privileges

* Read Permission on a DIRECTORY Object

e SQL DDL for BFILE Security

e SQL DML for BFILE Security

e Catalog Views on Directories

e Guidelines for DIRECTORY Usage

e BFILEs in Shared Server (Multithreaded Server) Mode

e External LOB (BFILE) Locators

11.6.1 Ownership and Privileges

The DIRECTORY object is a system owned object.

For more information on system owned objects, see Oracle Database SQL Language
Reference. Oracle Database supports two new system privileges, which are granted only to
DBA:

e CREATE ANY DIRECTORY: For creating or altering the DIRECTORY object creation

° DROP ANY DIRECTORY: For deleting the DIRECTORY object

11.6.2 Read Permission on a DIRECTORY Object

READ permission on the DIRECTORY object enables you to read files located under that directory.
The creator of the DIRECTORY object automatically earns the READ privilege.

If you have been granted the READ permission with GRANT option, then you may in turn grant
this privilege to other users/roles and add them to your privilege domains.

ORACLE 11-7

Chapter 11
BFILE Security

Note:

The READ permission is defined only on the DIRECTORY object, not on individual files.
Hence there is no way to assign different privileges to files in the same directory.

The physical directory that it represents may or may not have the corresponding operating
system privileges (read in this case) for the Oracle Server process.

It is the responsibility of the DBA to ensure the following:

e That the physical directory exists

* Read permission for the Oracle Server process is enabled on the file, the directory, and the
path leading to it

e The directory remains available, and read permission remains enabled, for the entire
duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may read from files
in the directory. These privileges are checked and enforced by the PL/SQL DBMS LOB package
and OCI APIs at the time of the actual file operations.

WARNING:

Because CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges potentially
expose the server file system to all database users, the DBA should be prudent in
granting these privileges to normal database users to prevent security breach.

11.6.3 SQL DDL for BFILE Security

¢ See Also:

Oracle Database SQL Language Reference for information about the following SQL
DDL statements that create, replace, and drop DIRECTORY objects:

e CREATE DIRECTORY

O DROP DIRECTORY

11.6.4 SQL DML for BFILE Security

ORACLE

11-8

Chapter 11
BFILE Security

See Also:

Oracle Database SQL Language Reference for information about the following SQL
DML statements that provide security for BFILES:

* GRANT (system privilege)
* GRANT (object privilege)

* REVOKE (system privilege)
° REVOKE (object privilege)
e AUDIT (new statements)

e AUDIT (schema objects)

11.6.5 Catalog Views on Directories

Catalog views are provided for DIRECTORY objects to enable users to view object names and
corresponding paths and privileges. Supported views are:

ALL DIRECTORIES (OWNER, DIRECTORY NAME, DIRECTORY PATH)
This view describes all directories accessible to the user.
DBA DIRECTORIES(OWNER, DIRECTORY NAME, DIRECTORY PATH)

This view describes all directories specified for the entire database.

11.6.6 Guidelines for DIRECTORY Usage

The main goal of the DIRECTORY feature is to enable a simple, flexible, non-intrusive, yet secure
mechanism for the DBA to manage access to large files in the server file system. But to realize
this goal, it is very important that the DBA follow these guidelines when using DIRECTORY
objects:

ORACLE

Do not map a DIRECTORY object to a data file directory. A DIRECTORY object should not be
mapped to physical directories that contain Oracle data files, control files, log files, and
other system files. Tampering with these files (accidental or otherwise) could corrupt the
database or the server operating system.

Only the DBA should have system privileges. The system privileges such as CREATE ANY
DIRECTORY (granted to the DBA initially) should be used carefully and not granted to other
users indiscriminately. In most cases, only the database administrator should have these
privileges.

Use caution when granting the DIRECTORY privilege. Privileges on DIRECTORY objects
should be granted to different users carefully. The same holds for the use of the WITH
GRANT OPTION clause when granting privileges to users.

Do not drop or replace DIRECTORY objects when database is in operation. DIRECTORY
objects should not be arbitrarily dropped or replaced when the database is in operation. If
this were to happen, then operations from all sessions on all files associated with this
DIRECTORY object fail. Further, if a DROP or REPLACE command is executed before these files
could be successfully closed, then the references to these files are lost in the programs,
and system resources associated with these files are not be released until the session(s) is
shut down.

11-9

Chapter 11
BFILE Security

The only recourse left to PL/SQL users, for example, is to either run a program block that
calls DBMS LOB.FILECLOSEALL and restart their file operations, or exit their sessions
altogether. Hence, it is imperative that you use these commands with prudence, and
preferably during maintenance downtimes.

e Use caution when revoking a user's privilege on DIRECTORY objects. Revoking a user's
privilege on a DIRECTORY object using the REVOKE statement causes all subsequent
operations on dependent files from the user's session to fail. Either you must re-acquire
the privileges to close the file, or run a FILECLOSEALL in the session and restart the file
operations.

In general, using DIRECTORY objects for managing file access is an extension of system
administration work at the operating system level. With some planning, files can be logically
organized into suitable directories that have READ privileges for the Oracle process.

DIRECTORY oObjects can be created with READ privileges that map to these physical directories,
and specific database users granted access to these directories.

11.6.7 BFILEs in Shared Server (Multithreaded Server) Mode

The database does not support session migration for BFILE data types in shared server
(multithreaded server) mode. This implies that operations on open BFILE instances can persist
beyond the end of a call to a shared server.

In shared server sessions, BFILE operations are bound to one shared server, they cannot
migrate from one server to another.

11.6.8 External LOB (BFILE) Locators

For BFILES, the value is stored in a server-side operating system file; in other words, external
to the database. The BFILE locator that refers to that file is stored in the row.

« When Two Rows in a BFILE Table Refer to the Same File
* BFILE Locator Variable
e Guidelines for BFILEs

11.6.8.1 When Two Rows in a BFILE Table Refer to the Same File

If a BFILE locator variable that is used in a DBMS_LOB.FILEOPEN (for example L1) is assigned to
another locator variable, (for example L2), then both L1 and L2 point to the same file.

This means that two rows in a table with a BFILE column can refer to the same file or to two
distinct files — a fact that the canny developer might turn to advantage, but which could well be
a pitfall for the unwary.

11.6.8.2 BFILE Locator Variable

A BFILE locator variable operates like any other automatic variable. With respect to file
operations, it operates like a file descriptor available as part of the standard input/output library
of most conventional programming languages.

This implies that once you define and initialize a BFILE locator, and open the file pointed to by
this locator, all subsequent operations until the closure of this file must be done from within the
same program block using this locator or local copies of this locator.

ORACLE 1110

Chapter 11
About Loading a LOB with BFILE Data

11.6.8.3 Guidelines for BFILES

Note the following guidelines when working with BFILES:

Open and close a file from the same program block at same nesting level. The BFILE
locator variable can be used, just as any scalar, as a parameter to other procedures,
member methods, or external function callouts. However, it is recommended that you open
and close a file from the same program block at the same nesting level.

Set the BFILE value before flushing the object to the database. If an object contains a
BFILE, then you must set the BFILE value before flushing the object to the database,
thereby inserting a new row. In other words, you must call 0CILobFileSetName () after
OCIObjectNew () and before 0CIObjectFlush().

Indicate the DIRECTORY object name and file name before inserting or updating of a BFILE.
It is an error to insert or update a BFILE without indicating a DIRECTORY object name and
file name.

This rule also applies to users using an OCI bind variable for a BFILE in an insert or update
statement. The OCI bind variable must be initialized with a DIRECTORY object name and file
name before issuing the insert or update statement.

Initialize BFILE Before insert or update

Note:

OCISetAttr () does not allow the user to set a BFILE locator to NULL.

Before using SQL to insert or update a row with a BFILE, you must initialize the BFILE to
one of the following:

— NULL (not possible if using an OCI bind variable)
— A DIRECTORY object name and file name

A path name cannot contain two dots ("..") anywhere in its specification. A file name cannot
start with two dots.

11.7 About Loading a LOB with BFILE Data

You can load a LOB with data from a BFILE.

See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Oracle Database JDBC Developer’s Guide for details of working with BFILE functions
in this chapter.

Preconditions

The following preconditions must exist before calling this procedure:

ORACLE

11-11

ORACLE

Chapter 11
About Loading a LOB with BFILE Data

* The source BFILE instance must exist.

* The destination LOB instance must exist.

Usage Notes

Note:

The LOADBLOBFROMFILE and LOADCLOBFROMFILE procedures implement the
functionality of this procedure and provide improved features for loading binary data
and character data. The improved procedures are available in the PL/SQL
environment only. When possible, using one of the improved procedures is
recommended.

See Also:

e About Loading a BLOB with Data from a BFILE
e Loading a CLOB or NCLOB with Data from a BFILE

Character Set Conversion

In using OCI, or any of the programmatic environments that access OCI functionality, character
set conversions are implicitly performed when translating from one character set to another.

BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set

When you use the DBMS LOB.LOADFROMFILE procedure to populate a CLOB or NCLOB, you are
populating the LOB with binary data from the BFILE. No implicit translation is performed from
binary data to a character set. For this reason, you should use the LOADCLOBFROMFILE
procedure when loading text.

See Also:

* Loading a CLOB or NCLOB with Data from a BFILE

* Oracle Database Globalization Support Guide for character set conversion
issues.

Amount Parameter
Note the following with respect to the amount parameter:

° DBMS LOB.LOADFROMFILE

If you want to load the entire BFILE, then pass the constant DBMS LOB.LOBMAXSIZE. If you
pass any other value, then it must be less than or equal to the size of the BFILE.

e (OCILobLoadFromFile ()

11-12

Chapter 11
About Opening a BFILE with OPEN

If you want to load the entire BFILE, then you can pass the constant UB4MAXVAL. If you pass
any other value, then it must be less than or equal to the size of the BFILE.

OCILobLoadFromFile?2 ()

If you want to load the entire BFILE, then you can pass the constant UBSMAXVAL. If you pass
any other value, then it must be less than or equal to the size of the BFILE.

¢ See Also:

Table 12-2 for details on the maximum value of the amount parameter.

Syntax

Use the following syntax references for each programmatic environment:;

PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — LOADFROMFILE

C (OCI): Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes and examples. Chapter 16, "LOB Functions" —
OCILobLoadFromFile2 ().

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB LOAD (executable embedded SQL extension).

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements" "Embedded SQL Statements and Directives"— LOB LOAD.

Java (JDBC) Oracle Database JDBC Developer's Guide): "Working With LOBs and
BFILESs" — Working with BFILESs.

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB): floaddat.sql
OCI: floaddat.c
Java (JDBC): No example.

11.8 About Opening a BFILE with OPEN

You can open a BFILE using the OPEN function.

ORACLE

Note:

You can also open a BFILE using the FILEOPEN function; however, using the OPEN
function is recommended for new development.

11-13

Chapter 11
About Opening a BFILE with FILEOPEN

See Also:

e About Opening a BFILE with FILEOPEN for more information about FILEOPEN
function

e Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — OPEN

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes. Chapter 16, section "LOB Functions" — 0CILobOpen (),
OCILobClose().

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB OPEN executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

e Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs and
BFILEs" — Working with BFILESs.

Scenario

These examples open an image in operating system file ADPHOTO DIR.

Examples

Examples are provided in the following programmatic environments:
e PL/SQL(DBMS_LOB): fopen.sql

e OCI: fopen.c

e Java (JDBC): fopen.java

11.9 About Opening a BFILE with FILEOPEN

You can open a BFILE using the FILEOPEN function.

Note:

The FILEOPEN function is not recommended for new application development. The
OPEN function is recommended for new development.

ORACLE 1114

Chapter 11
About Determining Whether a BFILE Is Open Using ISOPEN

See Also:

e About Opening a BFILE with OPEN

e Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Usage Notes for Opening a BFILE

While you can continue to use the older FILEOPEN form, Oracle strongly recommends that you
switch to using OPEN, because this facilitates future extensibility.

Syntax
Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEOPEN, FILECLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations,
for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileOpen (),
OCILobFileClose (), OCILobFileSetName ().

« COBOL (Pro*COBOL): A syntax reference is not applicable in this release.
e C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

» Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs and
BFILEs" — Working with BFILEs.

Scenario for Opening a BFILE

These examples open keyboard logo.jpg in DIRECTORY object MEDIA DIR.

Examples

Examples are provided in the following programmatic environments:
e PL/SQL (DBMS_LOB): ffilopen.sql

e OCI: ffilopen.c

e Java (JDBC): ffilopen.java

11.10 About Determining Whether a BFILE Is Open Using
ISOPEN

You can determine whether a BFILE is open using ISOPEN.

" Note:

This function (ISOPEN) is recommended for new application development. The older
FILEISOPEN function, is not recommended for new development.

ORACLE s

Chapter 11
About Determining Whether a BFILE Is Open with FILEISOPEN

See Also:

e About Determining Whether a BFILE Is Open with FILEISOPEN

e Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — ISOPEN

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileIsOpen ().

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB DESCRIBE executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Large Objects (LOBSs)", "LOB Statements”, "Embedded SQL Statements and
Directives" — LOB DESCRIBE

e Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs and
BFILEs" — Working with BFILESs.

Examples

Examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB): fisopen.sqgl

e OCI: fisopen.c

e Java (JDBC): fisopen.java

11.11 About Determining Whether a BFILE Is Open with
FILEISOPEN

You can determine whether a BFILE is OPEN using the FILEISOPEN function.

¢ Note:

The FILEISOPEN function is not recommended for new application development. The
ISOPEN function is recommended for new development.

ORACLE 116

Chapter 11
About Displaying BFILE Data

See Also:

* About Determining Whether a BFILE Is Open Using ISOPEN

» Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Usage Notes

While you can continue to use the older FILEISOPEN form, Oracle strongly recommends that
you switch to using ISOPEN, because this facilitates future extensibility.

Syntax

Use the following syntax references for each programmatic environment:;

« PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEISOPEN

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileIsOpen ().

« COBOL (Pro*COBOL): A syntax reference is not applicable in this release.
e C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

e Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs and
BFILEs" — Working with BFILEs.

Scenario

These examples query whether a BFILE associated with ad graphic is open.

Examples

Examples are provided in the following programmatic environments:
e PL/SQL(DBMS_LOB): ffisopen.sql

e OCI: ffisopen.c

e Java (JDBC): ffisopen.java

11.12 About Displaying BFILE Data

ORACLE

You can display BFILE data using various operations that differ by programmatic environment..

¢ See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment;

11-17

Chapter 11

About Reading Data from a BFILE

"DBMS_LOB" — READ. Chapter 29, "DBMS_OUTPUT" - PUT_LINE

PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"

for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileOpen (),

OCILobRead?2 ().

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage

notes on LOB statements, and LOB READ executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB

Statements" — READ

e Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working With LOBs

and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:
« PL/SQL (DBMS_LOB): fdisplay.sql

e OCI: fdisplay.c

e Java (JDBC): fdisplay.java

11.13 About Reading Data from a BFILE

You can read data from a BFILE.

See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Usage Notes

Note the following when using this operation.

Streaming Read in OCI

The most efficient way to read large amounts of BFILE data is by 0CILobRead?2 () with the

streaming mechanism enabled, and using polling or callback. To do so, specify the starting

point of the read using the offset parameter as follows:

ub8 char amt = 0;
ub8 byte amt = 0;
ub4 offset = 1000;

OCILobRead2 (svchp, errhp, locp, &byte amt, &char amt, offset, bufp, bufl,
OCI_ONE PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byte amt parameter after each
OCILobRead? () call to see how many bytes were read into the buffer, because the buffer may

not be entirely full.

ORACLE

11-18

Chapter 11
About Reading a Portion of BFILE Data Using SUBSTR

When using callbacks, the 1enp parameter, which is input to the callback, indicates how many
bytes are filled in the buffer. Be sure to check the lenp parameter during your callback
processing because the entire buffer may not be filled with data.

Amount Parameter

* When calling DBMS_LOB.READ, the amount parameter can be larger than the size of the
data; however, the amount parameter should be less than or equal to the size of the buffer.
In PL/SQL, the buffer size is limited to 32K.

* When calling 0OCILobRead2 (), you can pass a value of O (zero) for the byte amt parameter
to read to the end of the BFILE.

¢ See Also:

Oracle Call Interface Programmer's Guide

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — READ

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobRead2 ().

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB READ executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB READ

e Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples
Examples are provided in the following programmatic environments:
° PL/SQL (DBMS_LOB): fread.sql

¢ OCI: fread.c

e Java (JDBC): fread.java

11.14 About Reading a Portion of BFILE Data Using SUBSTR

You can read a portion of BFILE data using SUBSTR.

See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

ORACLE 1119

Chapter 11
Comparing All or Parts of Two BFILES

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — SUBSTR

e OCI: A syntax reference is not applicable in this release.

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB CLOSE executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB OPEN.

e Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:
« PL/SQL (DBMS_LOB): freadprt.sql

e C (OCI): No example is provided with this release.

e Java (JDBC): freadprt.java

11.15 Comparing All or Parts of Two BFILES

ORACLE

You can compare all or parts of two BFILES.

¢ See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — COMPARE

e C (OCI): A syntax reference is not applicable in this release.

¢ COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB OPEN executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB OPEN.

e Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs and
BFILEs" — Working with BFILESs.

Examples

Examples are provided in these programmatic environments:

11-20

Chapter 11
Checking If a Pattern Exists in a BFILE Using INSTR

 PL/SQL(DBMS_LOB): fcompare.sql
e OCI: No example is provided with this release.

e Java (JDBC): fcompare.java

11.16 Checking If a Pattern Exists in a BFILE Using INSTR

You can determine whether a pattern exists in a BFILE using the INSTRoperation.

¢ See Also:

Table 11-1for a list of operations on BFILES and APIs provided for each programmatic
environment.

Syntax
Use the following syntax references for each programmatic environment;

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — INSTR

e C (OCI): A syntax reference is not applicable in this release.

« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB OPEN executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

e Java (JDBC) (Oracle Database JDBC Developer's Guide):"Working With LOBs and
BFILEs" — Working with BFILESs.

Examples
These examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB): fpattern.sql

e OCI: No example is provided with this release.

e Java (JDBC): fpattern.java

11.17 Determining Whether a BFILE EXists

This procedure determines whether a BFILE locator points to a valid BFILE instance.

See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

ORACLE 1101

Chapter 11
Getting the Length of a BFILE

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEEXISTS

e C (OCI) Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileExists ().

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB DESCRIBE executable embedded SQL extension.

e C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB DESCRIBE.

e Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

The examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB): fexists.sql

e OCI: fexists.c

e Java (JDBC): fexists.java

11.18 Getting the Length of a BFILE

ORACLE

You can get the length of a BFILE.

See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — GETLENGTH

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations". Chapter 16, section "LOB Functions" — 0CILobGetLength2 ().

¢ COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB DESCRIBE executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB DESCRIBE

e Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEsS" — Working with BFILES.

11-22

Chapter 11
About Assigning a BFILE Locator

Examples

The examples are provided in these programmatic environments:

PL/SQL (DBMS_LOB): flength.sql
OCI: flength.c
Java (JDBC): flength.java

11.19 About Assigning a BFILE Locator

You can assign one BFILE locator to another.

¢ See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

SQL (Oracle Database SQL Language Reference): Chapter 7, "SQL Statements" —
CREATE PROCEDURE

PL/SQL (DBMS_LOB): Refer to Advanced Design Considerations of this manual for
information on assigning one lob locator to another.

C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobLocatorAssign().

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB ASSIGN executable embedded SQL extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB ASSIGN

Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

The examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB): fcopyloc.sql
OCI: fcopyloc.c
Java (JDBC): fcopyloc.java

11.20 Getting Directory Object Name and File Name of a BFILE

You can get the DIRECTORY object name and file name of a BFILE.

ORACLE

11-23

Chapter 11
About Updating a BFILE by Initializing a BFILE Locator

See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEGETNAME

e C (OCI) (Oracle Call Interface Programmer's Guide):. Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileGetName ().

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB DESCRIBE executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB DESCRIBE ... GET
DIRECTORY ...

« Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILESs.

Examples

Examples of this procedure are provided in the following programmatic environments:
« PL/SQL (DBMS_LOB): fgetdir.sql

e OCI: fgetdir.c

e Java (JDBC): fgetdir.java

11.21 About Updating a BFILE by Initializing a BFILE Locator

ORACLE

You can update a BFILE by initializing a BFILE locator.

See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB): See the (Oracle Database SQL Language Reference), Chapter 7,
"SQL Statements" — UPDATE

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileSetName ().

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and ALLOCATE executable embedded SQL extension. See

11-24

Chapter 11
Closing a BFILE with FILECLOSE

also Oracle Database PL/SQL Packages and Types Reference for more information on
SQL UPDATE statement

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives"

« Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

* PL/SQL (DBMS_LOB): fupdate.sql
e OCI: fupdate.c

e Java (JDBC): fupdate.java

11.22 Closing a BFILE with FILECLOSE

ORACLE

You can close a BFILE with FILECLOSE.

Note:

This function (FILECLOSE) is not recommended for new development. For new
development, use the CLOSE function instead.

¢ See Also:
Closing a BFILE with CLOSE

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB)(Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEOPEN, FILECLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileClose().

e« COBOL (Pro*COBOL): A syntax reference is not applicable in this release.
e C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

e Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples
* PL/SQL (DBMS_LOB): fclose f.sql
* OCI: fclose f.c

11-25

Chapter 11
Closing a BFILE with CLOSE

* Java (JDBC): fclose f.java

11.23 Closing a BFILE with CLOSE

ORACLE

You can close a BFILE with the CLOSE function.

Note:

This function (CLOSE) is recommended for new application development. The older
FILECLOSE function, is not recommended for new development.

See Also:

Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Usage Notes

Opening and closing a BFILE is mandatory. You must close the instance later in the session.

¢ See Also:

e About Opening a BFILE with OPEN
e About Determining Whether a BFILE Is Open Using ISOPEN

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — CLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobClose ().

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB CLOSE executable embedded SQL extension

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB CLOSE

» Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples
* PL/SQL (DBMS_LOB): fclose c.sql

* OCI: fclose c.c

11-26

Chapter 11
Closing All Open BFILEs with FILECLOSEALL

* Java (JDBC): fclose c.java

11.24 Closing All Open BFILEs with FILECLOSEALL

You can close all open BFILES.

You are responsible for closing any BFILE instances before your program terminates. For
example, you must close any open BFILE instance before the termination of a PL/SQL block or
OCI program.

You must close open BFILE instances even in cases where an exception or unexpected
termination of your application occurs. In these cases, if a BFILE instance is not closed, then it
is still considered open by the database. Ensure that your exception handling strategy does not
allow BFILE instances to remain open in these situations.

See Also:

* Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

e "Setting Maximum Number of Open BFILEs "

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILECLOSEALL

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File Operations"
for usage notes. Chapter 16, section "LOB Functions" — 0CILobFileCloseAll ().

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB FILE CLOSE ALL executable embedded SQL
extension

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB FILE CLOSE ALL

e Java (JDBC) Oracle Database JDBC Developer's Guide: Chapter 7, "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples
* PL/SQL (DBMS_LOB): fclosea.sql
e OCI: fclosea.c

e Java (JDBC): fclosea.java

11.25 About Inserting a Row Containing a BFILE

You can insert a row containing a BFILE by initializing a BFILE locator.

ORACLE 11-27

ORACLE

Chapter 11
About Inserting a Row Containing a BFILE

See Also:

» Table 11-1, for a list of operations on BFILES and APIs provided for each
programmatic environment.

Usage Notes

You must initialize the BFILE locator bind variable to NULL or a DIRECTORY object and file name
before issuing the INSERT statement.

Syntax

See the following syntax references for each programmatic environment:

SQL(Oracle Database SQL Language Reference, Chapter 7 "SQL Statements” — INSERT
C (OCI) Oracle Call Interface Programmer's Guide: Chapter 7, "LOB and File Operations".

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, embedded SQL, and precompiler directives. See also Oracle
Database SQL Language Reference, for related information on the SQL INSERT
statement.

C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide: "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB FILE SET. See also
(Oracle Database SQL Language Reference), Chapter 7 "SQL Statements” — INSERT

Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEsS" — Working with BFILES.

Examples

PL/SQL (DBMS_LOB): finsert.sql
OCI: finsert.c

Java (JDBC): finsert.java

11-28

Using LOB APIs

ORACLE

APIs that perform operations on BLOB, CLOB, and NCLOB data types appear in Table 12-1. These
operations can be used with either persistent or temporary LOB instances. Note that these do
not apply to BFILES.

See Also:

* Operations Specific to Persistent and Temporary LOBs for information on how to
create temporary and persistent LOB instances and other operations specific to

temporary or persistent LOBs.

* LOB APIs for BFILE Operations for information on operations specific to BFILE

instances.

This information is given for each of these operations:

Preconditions describe dependencies that must be met and conditions that must exist

before calling each operation.

Usage Notes provide implementation guidelines such as information specific to a given

programmatic environment or data type.

Syntax refers you to the syntax reference documentation for each supported

programmatic environment.

Examples describe any setup tasks necessary to run the examples given. Demonstration
files listed are available in subdirectories under SORACLE HOME/rdbms/demo/lobs/ named

plsql, oci, vb, and java. The driver program lobdemo.sql isin /plsql and the driver

program lobdemo.c isin /oci.

Topics:

Supported Environments

About Appending One LOB to Another

About Determining Character Set Form

About Determining Character Set ID

Loading a LOB with Data from a BFILE

About Loading a BLOB with Data from a BFILE
Loading a CLOB or NCLOB with Data from a BFILE
Determining Whether a LOB is Open

About Displaying LOB Data

About Reading Data from a LOB

About LOB Array Read

Reading a Portion of a LOB (SUBSTR)

12-1

ORACLE

Chapter 12

Comparing All or Part of Two LOBs

Patterns: Checking for Patterns in a LOB Using INSTR
Length: Determining the Length of a LOB

Copying All or Part of One LOB to Another LOB
Copying a LOB Locator

Equality: Checking If One LOB Locator Is Equal to Another
About Determining Whether LOB Locator Is Initialized
About Appending to a LOB

About Writing Data to a LOB

LOB Array Write

About Trimming LOB Data

About Erasing Part of a LOB

Determining Whether a LOB instance Is Temporary
Converting a BLOB to a CLOB

Converting a CLOB to a BLOB

Ensuring Read Consistency

Supported Environments

About Appending One LOB to Another

About Determining Character Set Form

About Determining Character Set ID

Loading a LOB with Data from a BFILE

About Loading a BLOB with Data from a BFILE
Loading a CLOB or NCLOB with Data from a BFILE
Determining Whether a LOB is Open

About Displaying LOB Data

About Reading Data from a LOB

About LOB Array Read

Reading a Portion of a LOB (SUBSTR)

Comparing All or Part of Two LOBs

Patterns: Checking for Patterns in a LOB Using INSTR
Length: Determining the Length of a LOB

Copying All or Part of One LOB to Another LOB
Copying a LOB Locator

Equality: Checking If One LOB Locator Is Equal to Another
About Determining Whether LOB Locator Is Initialized
About Appending to a LOB

About Writing Data to a LOB

12-2

* LOB Array Write
* About Trimming LOB Data
e About Erasing Part of a LOB

« Determining Whether a LOB instance Is Temporary

e Converting a BLOB to a CLOB

You can convert a BLOB instance to a CLOB using the PL/SQL procedure

DBMS_LOB.CONVERTTOCLOB.
e Converting a CLOB to a BLOB

e Ensuring Read Consistency

12.1 Supported Environments

Table 12-1 indicates which programmatic environments are supported for the APIs discussed
in this chapter. The first column describes the operation that the API performs. The remaining
columns indicate with Yes or No whether the API is supported in PL/SQL, OCI, OCCI, COBOL,

Table 12-1 Environments Supported for LOB APIs

Pro*C/C++, and JDBC.

Chapter 12

Supported Environments

Operation PL/SQL OCI OCcCl COBOL Pro*CIC++ JDBC
About Appending One LOB to Another Yes Yes No Yes Yes Yes
About Determining Character Set Form No Yes No No No No
About Determining Character Set ID No Yes No No No No
Determining Chunk Size, See: About Writing Datato Yes Yes Yes Yes Yes Yes
aLOB

Comparing All or Part of Two LOBs Yes No No Yes Yes Yes
Converting a BLOB to a CLOB Yes No No No No No
Converting a CLOB to a BLOB Yes No No No No No
Copying a LOB Locator Yes Yes No Yes Yes Yes
Copying All or Part of One LOB to Another LOB Yes Yes No Yes Yes Yes
About Displaying LOB Data Yes Yes No Yes Yes Yes
Equality: Checking If One LOB Locator Is Equal to No Yes No No Yes Yes
Another

About Erasing Part of a LOB Yes Yes No Yes Yes Yes
About Determining Whether LOB Locator Is Initialized No Yes No No Yes No
Length: Determining the Length of a LOB Yes Yes No Yes Yes Yes
Loading a LOB with Data from a BFILE Yes Yes No Yes Yes Yes
About Loading a BLOB with Data from a BFILE Yes No No No No No
Loading a CLOB or NCLOB with Data from a BFILE ~ Yes No No No No No
About LOB Array Read No Yes No No No No
LOB Array Write No Yes No No No No
Opening Persistent LOBs with the OPEN and CLOSE Yes Yes Yes Yes Yes Yes
Interfaces

Open: Determining Whether a LOB is Open Yes Yes Yes Yes Yes Yes
ORACLE

12-3

Chapter 12
About Appending One LOB to Another

Table 12-1 (Cont.) Environments Supported for LOB APIs
|

Operation PL/SQL OCI OCcCI COBOL Pro*CIC++ JDBC
Patterns: Checking for Patterns in a LOB Using Yes No No Yes Yes Yes
INSTR

Reading a Portion of a LOB (SUBSTR) Yes No No Yes Yes Yes
About Reading Data from a LOB Yes Yes No Yes Yes Yes
Storage Limit, Determining: Maximum Storage Limit Yes No No No No No
for Terabyte-Size LOBs

About Trimming LOB Data Yes Yes No Yes Yes Yes
WriteNoAppend, see About Appending to a LOB . No No No No No No
About Writing Data to a LOB Yes Yes Yes Yes Yes Yes

12.2 About Appending One LOB to Another

ORACLE

This operation appends one LOB instance to another.

Preconditions

Before you can append one LOB to another, the following conditions must be met:

e Two LOB instances must exist.

e Both instances must be of the same type, for example both BLOB or both CLOB types.

* You can pass any combination of persistent or temporary LOB instances to this operation.

Usage Notes

Persistent LOBs: You must lock the row you are selecting the LOB from prior to updating a
LOB value if you are using the PL/SQL DBMS LOB Package or OCI. While the SQL INSERT and
UPDATE statements implicitly lock the row, locking the row can be done explicitly using the SQL
SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCl pin or lock
function in OCI programs.

Syntax

See the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — APPEND

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCILobAppend()
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB APPEND executable embedded SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on embedded SQL
statements and directives — LOB APPEND

e Java (JDBC):Oracle Database JDBC Developer’s Guidefor information on creating and
populating LOB columns in Java.

12-4

Chapter 12
About Determining Character Set Form

Examples

To run the following examples, you must create two LOB instances and pass them when you
call the given append operation.

Examples for this use case are provided in the following programmatic environments:
e PL/SQL (DBMS_LOB Package): 1append.sql
e OCI: lappend.c

e Java (JDBC): lappend.java

¢ See Also:

* Example of Updating LOBs Through Updated Locators for more details on the
state of the locator after an update

* Operations Specific to Persistent and Temporary LOBs for more information
about Creating a LOB instance

12.3 About Determining Character Set Form

This section describes how to get the character set form of a LOB instance.

Syntax
Use the following syntax references for each programmatic environment:

« PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this operation.

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OClILobCharSetForm()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
¢ COBOL (Pro*COBOL): There is no applicable syntax reference for this operation
e C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation.

e Java (JDBC): There is no applicable syntax reference for this operation.

Example

The example demonstrates how to determine the character set form of the foreign language
text (ad_fltextn).

This functionality is currently available only in OCI:

e OCI: lgetchfm.c

12.4 About Determining Character Set ID

This section describes how to determine the character set ID.

ORACLE 1o

Chapter 12
Loading a LOB with Data from a BFILE

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this operation.

e C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions" — LOB
Functions, OCILobCharSetld()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
e« COBOL (Pro*COBOL): There is no applicable syntax reference for this operation.
e C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation

e Java (JDBC): There is no applicable syntax reference for this operation.

Example
This functionality is currently available only in OCI;

e OCI: lgetchar.c

12.5 Loading a LOB with Data from a BFILE

ORACLE

This operation loads a LOB with data from a BFILE. This procedure can be used to load data
into any persistent or temporary LOB instance of any LOB data type.

Preconditions
Before you can load a LOB with data from a BFILE, the following conditions must be met:

¢ The BFILE must exist.

e The target LOB instance must exist.

Usage Notes

Note the following issues regarding this operation.

Use LOADCLOBFROMFILE When Loading Character Data

When you use the DBMS LOB.LOADFROMFILE procedure to load a CLOB or NCLOB instance, you
are loading the LOB with binary data from the BFILE and no implicit character set conversion is
performed. For this reason, using the DBMS LOB.LOADCLOBFROMFILE procedure is recommended
when loading character data.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to functions listed in Table 12-2 must be one of
the following:

e An amount less than or equal to the actual size (in bytes) of the BFILE you are loading.

e The maximum allowable LOB size (in bytes). Passing this value, loads the entire BFILE.
You can use this technique to load the entire BFILE without determining the size of the
BFILE before loading. To get the maximum allowable LOB size, use the technique
described in Table 12-2.

12-6

ORACLE

Chapter 12
Loading a LOB with Data from a BFILE

Table 12-2 Maximum LOB Size for Load from File Operations
]

Environment Function To pass maximum LOB size, get
value of:

DBMS LOB DBMS LOB.LOADBLOBFROMFILE DBMS LOB.LOBMAXSIZE

DBMS LOB DBMS LOB.LOADCLOBFROMFILE DBMS LOB.LOBMAXSIZE

OCI OCILobLoadFromFile2 () UBSMAXVAL

OCI OCILobLoadFromFile () (For LOBs less than 4 UB4MAXVAL

gigabytes in size.)

Syn

See
envi

tax

the following syntax references for details on using this operation in each programmatic
ronment:

PL/SQL (DBMS_LOB Package):Oracle Database PL/SQL Packages and Types
Reference"DBMS_LOB" — LOADFROMFILE.

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobLoadFromFile()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and L.OB LOAD, LOB OPEN, and LOB CLOSE executable embedded
SQL extension

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guide, for more information on LOB LOAD
executable embedded SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With LOBs"
— Creating and Populating a BL.0OB or CLOB Column

Examples

Exa

mples are provided in the following programmatic environments:
PL/SQL (DBMS_LOB Package): 11oaddat.sql
OCI: 11loaddat.c

Java (JDBC): 1loaddat.java

12-7

Chapter 12
About Loading a BLOB with Data from a BFILE

See Also:

The LOADBLOBFROMFILE and LOADCLOBFROMFILE procedures implement the
functionality of this procedure and provide improved features for loading binary
data and character data. (These improved procedures are available in the
PL/SQL environment only.) When possible, using one of the improved
procedures is recommended. See "About Loading a BLOB with Data from a
BFILE" and "Loading a CLOB or NCLOB with Data from a BFILE" for more
information.

As an alternative to this operation, you can use SQL*Loader to load persistent
LOBs with data directly from a file in the file system. See "About Using
SQL*Loader to Load LOBs" for more information.

Loading a CLOB or NCLOB with Data from a BFILE for more information about
DBMS LOB.LOADCLOBFROMFILE procedure

12.6 About Loading a BLOB with Data from a BFILE

This procedure loads a BLOB with data from a BFILE. This procedure can be used to load data
into any persistent or temporary BLOB instance.

ORACLE

¢ See Also:

"Loading a LOB with Data from a BFILE"

To load character data, use DBMS LOB.LOADCLOBFROMFILE. See "Loading a CLOB
or NCLOB with Data from a BFILE" for more information.

As an alternative to this operation, you can use SQL*Loader to load persistent
LOBs with data directly from a file in the file system. See "About Using
SQL*Loader to Load LOBs" for more information.

Preconditions

The following conditions must be met before calling this procedure:

The target BLOB instance must exist.
The source BFILE must exist.

You must open the BFILE. (After calling this procedure, you must close the BFILE at some

Usage Notes

Note the following with respect to this operation:

New Offsets Returned

Using DBMS_LOB.LOADBLOBFROMFILE to load binary data into a BLOB achieves the same result as
using DBMS LOB.LOADFROMFILE, but also returns the new offsets of BLOB.

12-8

Chapter 12
Loading a CLOB or NCLOB with Data from a BFILE

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to the DBMS LOB.LOADBLOBFROMFILE function
must be one of the following:

e An amount less than or equal to the actual size (in bytes) of the BFILE you are loading.

* The maximum allowable LOB size: DBMS LOB.LOBMAXSIZE. Passing this value causes the
function to load the entire BFILE. This is a useful technique for loading the entire BFILE
without introspecting the size of the BFILE.

¢ See Also:
Table 12-2

Syntax

See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADBLOBFROMFILE procedure for syntax details on this procedure.

Examples

This example is available in PL/SQL only. This API is not provided in other programmatic
environments. The online file is 11dblobf.sql. This example illustrates:

° How to use LOADBLOBFROMFILE to load the entire BFILE without getting its length first.

* How to use the return value of the offsets to calculate the actual amount loaded.

12.7 Loading a CLOB or NCLOB with Data from a BFILE

This procedure loads a CLOB or NCLOB with character data from a BFILE. This procedure can be
used to load data into a persistent or temporary CLOB or NCLOB instance.

See Also:

e "Loading a LOB with Data from a BFILE"

* To load binary data, use DBMS LOB.LOADBLOBFROMFILE. See "About Loading a
BLOB with Data from a BFILE" for more information.

* As an alternative to this operation, you can use SQL*Loader to load persistent
LOBs with data directly from a file in the file system. See "About Using
SQL*Loader to Load LOBs" for more information.

Preconditions
The following conditions must be met before calling this procedure:
e The target CLOB or NCLOB instance must exist.

 The source BFILE must exist.

ORACLE 150

Chapter 12
Loading a CLOB or NCLOB with Data from a BFILE

* You must open the BFILE. (After calling this procedure, you must close the BFILE at some
point.)

Usage Notes

You can specify the character set id of the BFILE when calling this procedure. Doing so,
ensures that the character set is properly converted from the BFILE data character set to the
destination CLOB or NCLOB character set.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to the DBMS LOB.LOADCLOBFROMFILE function
must be one of the following:

e An amount less than or equal to the actual size (in characters) of the BFILE data you are
loading.

* The maximum allowable LOB size: DBMS LOB.LOBMAXSIZE

Passing this value causes the function to load the entire BFILE. This is a useful technique
for loading the entire BFILE without introspecting the size of the BFILE.

Syntax

See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADCLOBFROMFILE procedure for syntax details on this procedure.

Examples
The following examples illustrate different techniques for using this API:

e "About PL/SQL: Loading Character Data from a BFILE into a LOB"
e "About PL/SQL: Loading Segments of Character Data into Different LOBs"

e About PL/SQL: Loading Character Data from a BFILE into a LOB
e About PL/SQL: Loading Segments of Character Data into Different LOBs

12.7.1 About PL/SQL: Loading Character Data from a BFILE into a LOB

The following example illustrates:

* How to use default csid (0).

e How to load the entire file without calling get1length for the BFILE.
e How to find out the actual amount loaded using return offsets.

This example assumes that ad_source is a BFILE in UTF8 character set format and the
database character set is UTF8. The online file is 11dclobf.sql.

12.7.2 About PL/SQL: Loading Segments of Character Data into Different
LOBs

The following example illustrates:

* How to get the character set ID from the character set name using the NLS_CHARSET ID
function.

ORACLE 1510

Chapter 12
Determining Whether a LOB is Open

How to load a stream of data from a single BFILE into different LOBs using the returned
offset value and the language context lang ctx.

How to read a warning message.

This example assumes that ad file ext 01 isaBFILE in JA16TSTSET format and the database
national character set is AL16UTF16. The online file is 11dclobs.sql.

12.8 Determining Whether a LOB is Open

This operation determines whether a LOB is open.

Preconditions

The LOB instance must exist before executing this procedure.

Usage Notes

When a LOB is open, it must be closed at some point later in the session.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, ISOPEN.

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — 0CILobIsOpen ().
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB DESCRIBE executable embedded SQL extension.

CI/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB DESCRIBE executable embedded
SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBS" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): 1isopen.sql

OCI: lisopen.c

C++ (OCCI): No example is provided with this release.
Java (JDBC): lisopen.java

Java (JDBC): Checking If a LOB Is Open

12.8.1 Java (JDBC): Checking If a LOB Is Open

Here is how to check a BLOB or a CLOB.

ORACLE

Checking If a CLOB Is Open
Checking If a BLOB Is Open

12-11

Chapter 12
About Displaying LOB Data

12.8.1.1 Checking If a CLOB Is Open

To see if a CLOB is open, your JDBC application can use the isopen method defined in
oracle.sqgl.CLOB. The return Boolean value indicates whether the CLOB has been previously
opened or not. The isOpen method is defined as follows:

/**
* Check whether the CLOB is opened.
* @return true if the LOB is opened.
*/
public boolean isOpen () throws SQLException

The usage example is:

CLOB clob = ...
// See if the CLOB is opened
boolean isOpen = clob.isOpen ();

12.8.1.2 Checking If a BLOB Is Open

To see if a BLOB is open, your JDBC application can use the isOpen method defined in
oracle.sql.BLOB. The return Boolean value indicates whether the BLOB has been previously
opened or not. The isOpen method is defined as follows:

/**

* Check whether the BLOB is opened.

* @return true if the LOB is opened.

*/

public boolean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
// See if the BLOB is opened
boolean isOpen = blob.isOpen ();

12.9 About Displaying LOB Data

ORACLE

This section describes APIs that allow you to read LOB data. You can use this operation to
read LOB data into a buffer. This is useful if your application requires displaying large amounts
of LOB data or streaming data operations.

Usage Notes

Note the following when using these APlIs.

Streaming Mechanism

The most efficient way to read large amounts of LOB data is to use 0CILobRead?2() with the
streaming mechanism enabled.

Amount Parameter

The value you pass for the amount parameter is restricted for the APIs described in Table 12-3.

12-12

Chapter 12
About Reading Data from a LOB

Table 12-3 Maximum LOB Size for Amount Parameter

Environment Function Value of amount parameter is limited
to:
DBMS LOB DBMS LOB.READ The size of the buffer, 32Kbytes.
OCI OCILobRead () UB4MAXVAL
(For LOBs less than 4 gigabytes in size.) Specifying this amount reads the entire
file.
OCI OCILobRead?2 () UB8SMAXVAL
(For LOBs of any size.) Specifying this amount reads the entire
file.
Syntax

Use the following syntax references for each programmatic environment;

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, READ, CLOSE.

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —, OCILobOpen(),
OClLobRead?2(), OClLobClose().

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB READ executable embedded SQL extension.

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on LOB READ
executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBS" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB Package): 1display.sql

e OCI: ldisplay.c

e C++ (OCCI): No example is provided in this release.

e Java (JDBC): 1display.java

12.10 About Reading Data from a LOB

ORACLE

This section describes how to read data from LOBs using 0CILobRead? ().

Usage Notes

Note the following when using this operation.

Streaming Read in OCI

The most efficient way to read large amounts of LOB data is to use 0CILobRead?2 () with the
streaming mechanism enabled using polling or callback. To do so, specify the starting point of
the read using the of fset parameter as follows:

12-13

ORACLE

Chapter 12
About Reading Data from a LOB

ub8 char amt = 0;
ub8 byte amt = 0;
ub4 offset = 1000;

OCILobRead2 (svchp, errhp, locp, &byte amt, &char amt, offset, bufp, bufl,
OCI ONE PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byte amt parameter after each
OCILobRead? () call to see how many bytes were read into the buffer because the buffer may
not be entirely full.

When using callbacks, the lenp parameter, which is input to the callback, indicates how many
bytes are filled in the buffer. Be sure to check the lenp parameter during your callback
processing because the entire buffer may not be filled with data.

¢ See Also:

Oracle Call Interface Programmer's Guide

Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the BasicFiles LOB
when creating the table that contains the LOB. This corresponds to the data size used by
Oracle Database when accessing or modifying the LOB value. Part of the chunk is used to
store system-related information and the rest stores the LOB value. The API you are using has
a function that returns the amount of space used in the LOB chunk to store the LOB value. In
PL/SQL use DBMS LOB.GETCHUNKSIZE. In OCI, use OCILobGetChunkSize (). For SecureFiles,
CHUNK is an advisory size and is provided for backward compatibility purposes.

To improve performance, you may run write requests using a multiple of the value returned by
one of these functions. The reason for this is that you are using the same unit that the Oracle
database uses when reading data from disk. If it is appropriate for your application, then you
should batch reads until you have enough for an entire chunk instead of issuing several LOB
read calls that operate on the same LOB chunk.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, GETCHUNKSIZE, READ, CLOSE

* C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — 0CILobOpen (),
OCILobRead2 (), OCILobClose ().

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB READ executable embedded SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information about LOB READ
executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With LOBs"
— Creating and Populating a BL.OB or CLOB Column

12-14

Chapter 12
About LOB Array Read

Examples

Examples are provided in the following programmatic environments:
e PL/SQL (DBMS_LOB Package): 1read.sql

e OCI: 1lread.c

e Java (JDBC): 1read.java

12.11 About LOB Array Read

This section describes how to read LOB data for multiple locators in one round trip, using
OCILobArrayRead().

Usage Notes

This function improves performance in reading LOBs in the size range less than about 512
Kilobytes. For an OCI application example, assume that the program has a prepared SQL
statement such as:

SELECT lobl FROM lob table for UPDATE;

where 1ob1 is the LOB column and lob_array is an array of define variables corresponding to
a LOB column:

OCILobLocator * lob array([10];

for (i=0; 1<10, i++) /* initialize array of locators */
lob array[i] = OCIDescriptorAlloc(..., OCI DTYPE LOB, ...);

OCIDefineByPos (..., 1, (dvoid *) lob array, ... SQLT CLOB, ...);

/* Execute the statement with iters = 10 to do an array fetch of 10 locators. */
OCIStmtExecute (<service context>, <statement handle>, <error handle>,

10, /* iters */

0, /* row offset */

NULL, /* snapshot IN */

NULL, /* snapshot out */

OCI_DEFAULT /* mode */);

ub4 array iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char amtp[10];
oraub8 offset[10];

for (i=0; 1<10; i++)
{

bufp[i] = (char *)malloc(1000);
bufl[i] 1000;
offset[i] = 1;

]
char amtp[i] = 1000; /* Single byte fixed width char set. */
}

/* Read the 1st 1000 characters for all 10 locators in one

ORACLE 1915

ORACLE

Chapter 12
About LOB Array Read

* round trip. Note that offset and amount need not be

* same for all the locators. */

OCILobArrayRead (<service context>,

<error handle>,

garray iter, /* array size */
lob array, /* array of locators */

NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */

(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */

OCI_ONE PIECE, /*
NULL, /*
NULL, /*
0, /*
SQLCS IMPLICIT);/*

for (1=0; 1i<10; i++)
{

piece information */

callback context */

callback function */
character set ID - default */
character set form */

/* Fill bufp[i] buffers with data to be written */

strncpy (bufp[i], "Test Data--
bufl[i] = 1000;

offset[i] = 50;

char amtp[i] = 15; /* Single

/* Write the 15 characters from of
* locators in one round trip. Not
* amount need not be same for all
*/

OCILobArrayWrite (<service context>
garray iter, /*
lob _array, /*

NULL, /*

char_amtp, /*

offset, /*
(void **)bufp, /*

bufl, /*

OCI_ONE_PTECE,

NULL,

NULL,

OI

SQLCS IMPLICIT);

Streaming Support

et 15);

byte fixed width char set. */

fset 50 to all 10
e that offset and
the locators. */

, <error handle>,

array size */

array of locators */

array of byte amounts */
array of char amounts */
array of offsets */

array of read buffers */
array of buffer lengths */
/* piece information */

/* callback context */

/* callback function */

/* character set ID - default */
/* character set form */

LOB array APIs can be used to read/write LOB data in multiple pieces. This can be done by
using polling method or a callback function.Here data is read/written in multiple pieces

sequentially for the array of locators.
reading/writing each piece with the a
locator for which data is read/written

For polling, the API would return to the application after
rray iter parameter (OUT) indicating the index of the

. With a callback, the function is called after reading/writing

each piece with array iter as IN parameter.

Note that:

* ltis possible to read/write data for a few of the locators in one piece and read/write data for

other locators in multiple pieces.

Data is read/written in one piece for locators which have

sufficient buffer lengths to accommodate the whole data to be read/written.

12-16

Chapter 12
About LOB Array Read

* Your application can use different amount value and buffer lengths for each locator.

e Your application can pass zero as the amount value for one or more locators indicating
pure streaming for those locators. In the case of reading, LOB data is read to the end for
those locators. For writing, data is written until 0CI_LAST PIECE is specified for those
locators.

LOB Array Read in Polling Mode

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte buffer size.
Each locator needs 10 pieces to read the complete data. 0OCILobArrayRead () must be called
100 (10*10) times to fetch all the data.First we call 0CILobArrayRead () with OCI_FIRST PIECE
as piece parameter. This call returns the first 1K piece for the first locator.Next
OCILobArrayRead () is called in a loop until the application finishes reading all the pieces for
the locators and returns 0CI_SUCCESS. In this example it loops 99 times returning the pieces for
the locators sequentially.

/* Fetch the locators */

/* array iter parameter indicates the number of locators in the array read.
* It is an IN parameter for the 1lst call in polling and is ignored as IN

* parameter for subsequent calls. As OUT parameter it indicates the locator
* index for which the piece is read.

*/

ub4 array iter = 10;
char “*bufp[10];

oraub8 bufl[10];

oraub8 char amtp([10];
oraub8 offset[10];
sword st;

for (i=0; 1<10; i++)
{
bufp[i] = (char *)malloc(1000);
bufl[i] = 1000;
offset[i] = 1;
char amtp[i] = 10000; /* Single byte fixed width char set. */

st = OCILobArrayRead (<service context>, <error handle>,
&array iter, /* array size */
lob array, /* array of locators */

NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS IMPLICIT); /* character set form */

/* First piece for the first locator is read here.

* bufpl[0] => Buffer pointer into which data is read.

* char amtp[0] => Number of characters read in current buffer
*

*/

ORACLE 12-17

ORACLE

While
{

(st

OCI_NEED DATA)

st = OCILobArrayRead (<service cont

garray iter, /* arr

lob_array, /* array
NULL, /* array
char_amtp, /* array
offset, /* array
(void **)bufp, /* array
bufl, /* array
OCI_NEXT PIECE, /*
NULL, /*
NULL, /*
0, /*

SQLCS IMPLICIT);

/* array iter returns the index of the
* data is read. for example, aray ite
* array iter = 2 implies second locat
* lob array| array_iter - 1]=> Lob lo

* bufplarray iter - 1] => Buffer
* char_amtp[array_iter - 1] => Number

/* Consume the data here */

LOB Array Read with Callback

Chapter 12
About LOB Array Read

ext>, <error handle>,
ay size */

of locators */

of byte amounts */

of char amounts */

of offsets */

of read buffers */
of buffer lengths */
piece information */
callback context */
callback function */
character set ID - default */

current array element for which
r = 1 implies first locator,
or and so on.

cator for which data is read.
pointer into which data is read.
of characters read in current buffer

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte buffer size.
Each locator needs 10 pieces to read all the data. The callback function is called 100 (10*10)

times to return the pieces sequentially.

/* Fetch the locators */

ub4
char
oraub8
oraub8
oraub8
sword

array iter = 10;
*bufp[10];
bufl[10];
char amtp[10];
offset[10];
st;
for (i=0; i<10; i++)
{
bufp[i] =
bufl[i] 1000;
offset[i] = 1;

]
char amtp[i] =

(char *)malloc(1000);

10000;

st = OCILobArrayRead (<service context>
garray iter, /* array

lob array, /* array

NULL, /* array

char amtp, /* array

offset, /* array

(void **)bufp, /* array

bufl, /* array

OCI FIRST PIECE,

/* Single byte fixed width char set. */

, <error handle>,
size */

of locators */

of byte amounts */
of char amounts */
of offsets */

of read buffers */
of buffer lengths */

/* piece information */

12-18

ORACLE

Chapter 12

About LOB Array Read
ctx, /* callback context */
cbk _read lob, /* callback function */
0, /* character set ID - default */

SQLCS IMPLICIT);

/* Callback function for LOB array read. */
sb4 cbk read lob(dvoid *ctxp, ub4 array iter, CONST dvoid *bufxp, oraub8 len,
ubl piece, dvoid **changed bufpp, oraub8 *changed lenp)
{
static ub4 piece count = 0;
piece count++;
switch (piece)
{
case OCI LAST PIECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the %d th piece(last piece) for %dth locator \n\n",
piece count, array iter);
piece count = 0;

break;
case OCI FIRST PIECE:
/*--- buffer processing code goes here ---*/

(void) printf("callback read the 1st piece for %dth locator\n",
array iter);
/* --Optional code to set changed bufpp and changed lenp if the buffer needs
to be changed dynamically --*/

break;
case OCT_NEXT PIECE:
/*--- buffer processing code goes here ---*/

(void) printf("callback read the %d th piece for %dth locator\n",
piece count, array iter);
/* --Optional code to set changed bufpp and changed lenp if the buffer
must be changed dynamically --*/
break;
default:
(void) printf("callback read error: unkown piece = %d.\n", piece);
return OCI_ERROR;
}
return OCI_CONTINUE;

Polling LOB Array Read

The next example is polling LOB data in 0CILobArrayRead () with variable amtp, bufl, and
offset.

/* Fetch the locators */

ub4 array iter = 10;
char *bufp[10];

oraub8 bufl[10];

oraub8 char amtp[10];
oraub8 offset[10];
sword st;

for (i=0; 1<10; i++)
{

bufp[i] = (char *)malloc(1000);

bufl[i] = 1000;

offset[i] = 1;

char amtp[i] = 10000; /* Single byte fixed width char set. */

12-19

Chapter 12
About LOB Array Read

/* For 3rd locator read data in 500 bytes piece from offset 101. Amount
* is 2000, that is, total number of pieces is 2000/500 = 4.

*/

offset (2] = 101; bufl[2] = 500; char amtp[2] = 2000;

/* For 6th locator read data in 100 bytes piece from offset 51. Amount
* is 0 indicating pure polling, that is, data is read till the end of
* the LOB is reached.

*/
offset[5] = 51; bufl[5] = 100; char amtp[5] = 0;

/* For 8th locator read 100 bytes of data in one piece. Note amount
* is less than buffer length indicating single piece read.

*/

offset[7] = 61; bufl[7] = 200; char _amtp[7] = 100;

st = OCILobArrayRead (<service context>, <error handle>,
&array iter, /* array size */
lob_array, /* array of locators */

NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS_IMPLICIT); /* character set form */

/* First piece for the first locator is read here.

* bufp[0] => Buffer pointer into which data is read.

* char_amtp[O] => Number of characters read in current buffer
*

*/

while (st == OCI_NEED DATA)
{
st = OCILobArrayRead (<service context>, <error handle>,
garray iter, /* array size */
lob array, /* array of locators */

NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCI_NEXT PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS IMPLICIT);

array iter returns the index of the current array element for which
data is read. for example, aray iter = 1 implies first locator,
array iter = 2 implies second locator and so on.

lob array[array iter - 1]=> Lob locator for which data is read.
bufplarray iter - 1] => Buffer pointer into which data is read.
char_amtp[array_iter - 1]=>Number of characters read in current buffer

EE S

ORACLE 12-20

Chapter 12
Reading a Portion of a LOB (SUBSTR)

/* Consume the data here */

}

Syntax

Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — O0CILobArrayRead ().

Example

An example is provided in the following programmatic environment:

OCI: Ireadarr.c

12.12 Reading a Portion of a LOB (SUBSTR)

This section describes how to read a portion of a LOB using SUBSTR.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — SUBSTR, OPEN, CLOSE

C (OCI): There is no applicable syntax reference for this use case
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guide for information on LOBs, usage
notes on LOB Statements, and ALLOCATE, LOB OPEN, LOB READ, LOB CLOSE
executable embedded SQL extensions

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB READ executable embedded
SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BL.OB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): 1substr.sql
OCI: No example is provided with this release.
C++ (OCCI): No example is provided with this release.

Java (JDBC): 1substr.java

12.13 Comparing All or Part of Two LOBs

This section describes how to compare all or part of two LOBs.

Syntax

Use the following syntax references for each programmatic environment:

ORACLE

12-21

Chapter 12
Patterns: Checking for Patterns in a LOB Using INSTR

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — COMPARE.

C (OCI): There is no applicable syntax reference for this use case.
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guideor information on LOBSs, usage
notes on LOB Statements, and EXECUTE executed embedded SQL

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on EXECUTE
executed embedded SQL

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): 1compare.sql
C (OCI): No example is provided with this release.
C++ (OCCI): No example is provided with this release.

Java (JDBC): lcompare.java

12.14 Patterns: Checking for Patterns in a LOB Using INSTR

This section describes how to see if a pattern exists in a LOB using INSTR.

ORACLE

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — INSTR

C (OCI): There is no applicable syntax reference for this use case.
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and EXECUTE executed embedded SQL

CI/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on EXECUTE
executed embedded SQL

Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With LOBs"
— Creating and Populating a BL.OB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): linstr.sql
C (OCI): No example is provided with this release.
C++ (OCCI): No example is provided with this release.

Java (JDBC): linstr.java

12-22

Chapter 12
Length: Determining the Length of a LOB

12.15 Length: Determining the Length of a LOB

This section describes how to determine the length of a LOB.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — GETLENGTH

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobGetLength?2 ()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB DESCRIBE executable embedded SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on LOB
DESCRIBE executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BL.OB or CLOB Column

Examples

Examples are provided in the following programmatic environments:
« PL/SQL (DBMS_LOB Package) 1length.sql

e OCI: llength.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): llength.java

12.16 Copying All or Part of One LOB to Another LOB

ORACLE

This section describes how to copy all or part of a LOB to another LOB. These APIs copy an
amount of data you specify from a source LOB to a destination LOB.

Usage Notes

Note the following issues when using this API.

Specifying Amount of Data to Copy

The value you pass for the amount parameter to the DBMS LOB.COPY function must be one of
the following:

e An amount less than or equal to the actual size of the data you are loading.

* The maximum allowable LOB size: DBMS LOB.LOBMAXSIZE.Passing this value causes the
function to read the entire LOB. This is a useful technique for reading the entire LOB
without introspecting the size of the LOB.

Note that for character data, the amount is specified in characters, while for binary data, the
amount is specified in bytes.

12-23

Chapter 12
Copying a LOB Locator

Locking the Row Prior to Updating

If you plan to update a LOB value, then you must lock the row containing the LOB prior to
updating. While the SQL INSERT and UPDATE statements implicitly lock the row, locking is done
explicitly by means of a SQL SELECT FOR UPDATE statement in SQL and PL/SQL programs, or
by using an 0CI pin or lock function in OCI programs.

See Also:

Example of Updating LOBs Through Updated Locators for more details on the state
of the locator after an update

Syntax
See the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — COPY

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCILobCopy2
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB COPY executable embedded SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on LOB COPY
executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BL.OB or CLOB Column

Examples

Examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB Package): 1copy.sql

e OCI: lcopy.c

e Java (JDBC): 1copy.java

12.17 Copying a LOB Locator

This section describes how to copy a LOB locator. Note that different locators may point to the
same or different data, or to current or outdated data.

¢ See Also:

Read-Consistent Locators for more details about how to assign one LOB to another
using PL/SQL using the := operator

ORACLE 1594

Chapter 12
Equality: Checking If One LOB Locator Is Equal to Another

Syntax
Use the following syntax references for each programmatic environment:

e« PL/SQL (DBMS_LOB Package): Refer to "Read-Consistent Locators" for information on
assigning one lob locator to another

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — 0CILobAssign (),
OCILobIsEqual ()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and ALLOCATE and LOB ASSIGN executable embedded SQL
extensions

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideSELECT, LOB ASSIGN executable
embedded SQL extensions

e Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With LOBs"
— Creating and Populating a BL.OB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

 PL/SQL (DBMS_LOB Package): 1copyloc.sgl

e OCI: lcopyloc.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): lcopyloc.java

12.18 Equality: Checking If One LOB Locator Is Equal to Another

ORACLE

This section describes how to determine whether one LOB locator is equal to another. If two
locators are equal, then this means that they refer to the same version of the LOB data.

See Also:

e Table 12-1

 "Read-Consistent Locators"

Syntax
Use the following syntax references for each programmatic environment:

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — 0CILobAssign (),
OCILobIsEqual ()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
e« COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB ASSIGN executable embedded
SQL extension

12-25

Chapter 12
About Determining Whether LOB Locator Is Initialized

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL: No example is provided with this release.
OCI: lequal.c
C++ (OCCI): No example is provided with this release.

Java (JDBC): lequal.java

12.19 About Determining Whether LOB Locator Is Initialized

This section describes how to determine whether a LOB locator is initialized.

¢ See Also:

Table 12-1

Syntax

Use the following syntax references for each programmatic environment;

PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this use case.

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobLocatorIsInit ()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.
C/C++ (Pro*C/C++)Pro*C/C++ Programmer's Guide

Java (JDBC): There is no applicable syntax reference for this use case.

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): No example is provided with this release.
OCl: linit.c
C (OCCI)): No example is provided with this release.

Java (JDBC): No example is provided with this release.

12.20 About Appending to a LOB

This section describes how to write-append the contents of a buffer to a LOB.

ORACLE

12-26

ORACLE

Chapter 12
About Appending to a LOB

See Also:
Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Writing Singly or Piecewise
The writeappend operation writes a buffer to the end of a LOB.

For OCI, the buffer can be written to the LOB in a single piece with this call; alternatively, it can
be rendered piecewise using callbacks or a standard polling method.

Writing Piecewise: When to Use Callbacks or Polling

If the value of the piece parameter is 0OCI_FIRST PIECE, then data must be provided through
callbacks or polling.

« If a callback function is defined in the cbfp parameter, then this callback function is called
to get the next piece after a piece is written to the pipe. Each piece is written from bufp.

* If no callback function is defined, then OCILobWriteAppend2() returns the OCI_NEED DATA
error code. The application must call 0CILobWriteAppend2() again to write more pieces of
the LOB. In this mode, the buffer pointer and the length can be different in each call if the
pieces are of different sizes and from different locations. A piece value of 0OCI_LAST PIECE
terminates the piecewise write.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS LOB package or the OCI, you must lock
the row containing the LOB. While the SQL INSERT and UPDATE statements implicitly lock the
row, locking is done explicitly by means of an SQL SELECT FOR UPDATE statement in SQL and
PL/SQL programs, or by using an 0CI pin or lock function in OCI programs.

See Also:

Example of Updating LOBs Through Updated Locators for more details on the state
of the locator after an update

Syntax
Use the following syntax references for each programmatic environment:

e« PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — WRITEAPPEND

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobWriteAppend2()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements

12-27

Chapter 12
About Writing Data to a LOB

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on Embedded
SQL Statements and Directives

e Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With LOBs"
— Creating and Populating a BL.0OB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

« PL/SQL (DBMS_LOB Package): lwriteap.sql

e OCI: lwriteap.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): lwriteap.java

12.21 About Writing Data to a LOB

ORACLE

This section describes how to write the contents of a buffer to a LOB.

¢ See Also:

* Table 12-1
* About Reading Data from a LOB

Usage Notes

Note the following issues regarding usage of this API.

Stream Write

The most efficient way to write large amounts of LOB data is to use 0CILobWrite2() with the
streaming mechanism enabled, and using polling or a callback. If you know how much data is
written to the LOB, then specify that amount when calling 0CILobWrite2 (). This ensures that
LOB data on the disk is contiguous. Apart from being spatially efficient, the contiguous
structure of the LOB data makes reads and writes in subsequent operations faster.

Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB when
creating the table that contains the LOB. This corresponds to the data size used by Oracle
Database when accessing or modifying the LOB value. Part of the chunk is used to store
system-related information and the rest stores the LOB value. The API you are using has a
function that returns the amount of space used in the LOB chunk to store the LOB value. In
PL/SQL use DBMS_LOB.GETCHUNKSIZE. In OCI, use OCILobGetChunkSize ().

Use a Multiple of the Returned Value to Improve Write Performance

To improve performance, run write requests using a multiple of the value returned by one of
these functions. The reason for this is that the LOB chunk is versioned for every write
operation. If all writes are done on a chunk basis, then no extra or excess versioning is
incurred or duplicated. If it is appropriate for your application, then you should batch writes until

12-28

ORACLE

Chapter 12
About Writing Data to a LOB

you have enough for an entire chunk instead of issuing several LOB write calls that operate on
the same LOB chunk.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS LOB Package or OCI, you must lock the
row containing the LOB. While the SQL INSERT and UPDATE statements implicitly lock the row,
locking is done explicitly by means of a SQL SELECT FOR UPDATE statement in SQL and PL/SQL
programs, or by using an 0CI pin or lock function in OCI programs.

See Also:

Example of Updating LOBs Through Updated Locators for more details on the state
of the locator after an update

Using DBMS_LOB.WRITE to Write Data to a BLOB

When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to a BLOB,
use the following guidelines:

e The amount parameter should be <= the buffer 1ength parameter

e The length of the buffer should be ((amount*2) - 1). This guideline exists because the two
characters of the string are seen as one hexadecimal character (and an implicit
hexadecimal-to-raw conversion takes place), that is, every two bytes of the string are
converted to one raw byte.

The following example is correct:

declare

blob loc BLOB;

rawbuf RAW(10);

an offset INTEGER := 1;

an_amount BINARY INTEGER := 10;
BEGIN

select blob col into blob loc from a table
where id = 1;

rawbuf := '1234567890123456789"';

dbms lob.write(blob loc, an amount, an offset,
rawbuf) ;

commit;

END;

Replacing the value for an_amount in the previous example with the following values, yields
error message, ora_21560:

an_amount BINARY INTEGER := 11;
or

an_amount BINARY INTEGER := 19;
Syntax

Use the following syntax references for each programmatic environment:

12-29

Chapter 12
LOB Array Write

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — WRITE

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCILobWrite2().
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB WRITE executable embedded SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB WRITE executable embedded
SQL extension

* Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With LOBs"
— Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:
« PL/SQL (DBMS_LOB Package): lwrite.sql

e OCI: lwrite.c

e Java (JDBC): lwrite.java

12.22 LOB Array Write

ORACLE

This section describes how to write LOB data for multiple locators in one round trip, using
OCILobArrayWrite().

Usage Notes

¢ See Also:

"About LOB Array Read" for examples of array read/write.

LOB Array Write in Polling Mode

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer size.
OCILobArrayWrite () has to be called 100 (10 times 10) times to write all the data. The function
is used in a similar manner to OCILobWrite?2 ().

/* Fetch the locators */

/* array iter parameter indicates the number of locators in the array read.

* It is an IN parameter for the 1lst call in polling and is ignored as IN

* parameter for subsequent calls. As an OUT parameter it indicates the locator
* index for which the piece is written.

*/

ub4 array iter = 10;
char “*bufp[10];

oraub8 bufl([10];

oraub8 char amtp([10];
oraub8 offset[10];
sword st;

int i, 3

12-30

Chapter 12
LOB Array Write

for (i=0; 1i<10; i++)

{
bufp[i] = (char *)malloc(1000);
bufl([i] = 1000;
/* Fill bufp here. */

offset[i] = 1;

char amtp[i] 10000; /* Single byte fixed width char set. */

for (1 = 1; i <= 10; i++)
{
/* Fill up bufp[i-1] here. The first piece for ith locator would be written from

bufp[i-1] */

st = OCILobArrayWrite (<service context>, <error handle>,
&array iter, /* array size */
lob array, /* array of locators */
NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */

(void **)bufp, /* array of write buffers */

bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS_IMPLICIT); /* character set form */

for (3 =2; j < 10; j++)
{
/* Fill up bufp[i-1] here. The jth piece for ith locator would be written from

bufp[i-1] */
st = OCILobArrayWrite (<service context>, <error handle>,

garray iter, /* array size */
lob array, /* array of locators */
NULL, /* array of byte amounts */
char amtp, /* array of char amounts */
offset, /* array of offsets */

(void **)bufp, /* array of write buffers */
bufl, /* array of buffer lengths */
OCI_NEXT PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS IMPLICIT);

/* array iter returns the index of the current array element for which
* data is being written. for example, aray iter = 1 implies first locator,
* array iter = 2 implies second locator and so on. Here i = array iter.

* lob array[array iter - 1] => Lob locator for which data is written.

* bufplarray iter - 1] => Buffer pointer from which data is written.
* char amtp[array iter - 1] => Number of characters written in

* the piece just written

/* Fill up bufp[i-1] here. The last piece for ith locator would be written from
bufp(i -1] */

ORACLE 1531

Chapter 12
LOB Array Write

st = OCILobArrayWrite (<service context>, <error handle>,

garray iter, /* array size */

lob array, /* array of locators */
NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */

(void **)bufp, /* array of write buffers */
bufl, /* array of buffer lengths */
OCI_LAST PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS IMPLICIT);

LOB Array Write with Callback

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer size. A
total of 100 pieces must be written (10 pieces for each locator). The first piece is provided by
the oCILobArrayWrite () call. The callback function is called 99 times to get the data for

subsequent pieces to be written.

/* Fetch the locators */

ub4 array iter = 10;
char “*bufp[10];

oraub8 bufl[10];

oraub8 char amtp[10];
oraub8 offset[10];
sword st;

for (i=0; 1i<10; i++)
{

bufp[i] = (char *)malloc(1000);
bufl[i] = 1000;
offset[i] = 1;
char amtp[i] = 10000; /* Single byte fixed width char set. */
}
st = OCILobArrayWrite (<service context>, <error handle>,
garray iter, /* array size */
lob_array, /* array of locators */
NULL, /* array of byte amounts */
char amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of write buffers */
bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
ctx, /* callback context */
cbk write lob /* callback function */
0, /* character set ID - default */

SQLCS IMPLICIT);

/* Callback function for LOB array write. */
sb4 cbk_write lob(dvoid *ctxp, ub4 array iter, dvoid *bufxp, oraub8 *lenp,
ubl *piecep, ubl *changed bufpp, oraub8 *changed lenp)

ORACLE

12-32

ORACLE

Chapter 12

LOB Array Write
{
static ub4 piece count = 0;
piece count++;
printf (" %dth piece written for %dth locator \n\n", piece_count, array iter);

/*-- code to fill bufxp with data goes here. *lenp should reflect the size and
* should be less than or equal to MAXBUFLEN -- */

/* --Optional code to set changed bufpp and changed lenp if the buffer must

* pe changed dynamically --*/

if (this is the last data buffer for current locator)
*piecep = OCI_LAST PIECE;

else 1if (this is the first data buffer for the next locator)
*piecep = OCI_FIRST PIECE;
piece count = 0;

else
*piecep = OCI_NEXT PIECE;

return OCI_CONTINUE;
}

Polling LOB Data in Array Write

The next example is polling LOB data in 0CILobArrayWrite () with variable amtp, bufl, and
offset.

/* Fetch the locators */

ub4 array iter = 10;
char “*bufp[10];

oraub8 bufl[10];

oraub8 char amtp[10];
oraub8 offset[10];
sword st;

int i, Js

int piece count;

for (1=0; 1i<10; i++)

{
bufp[i] = (char *)malloc(1000);
bufl[i] = 1000;
/* Fill bufp here. */

offset[i] = 1;

char amtp[i] 10000; /* Single byte fixed width char set. */

/* For 3rd locator write data in 500 bytes piece from offset 101. Amount
* is 2000, that is, total number of pieces is 2000/500 = 4.

*/

offset[2] = 101; bufl[2] = 500; char amtp[2] = 2000;

/* For 6th locator write data in 100 bytes piece from offset 51. Amount
* is 0 indicating pure polling, that is, data is written
* till OCI LAST PIECE

*/

offset[5] = 51; bufl[5] = 100; char amtp[5] = 0;

/* For 8th locator write 100 bytes of data in one piece. Note amount

12-33

Chapter 12
LOB Array Write

* is less than buffer length indicating single piece write.
*/
offset[7] = 61; bufl[7] = 200; char _amtp[7] = 100;

for (1 =1; 1 <= 10; i++4)

{

/* Fill up bufp[i-1] here. The first piece for ith locator would be written from
bufp[i-1] */

/* Calculate number of pieces that must be written */
piece count = char_amtp[i—l}/bufl[i—l};

/* Single piece case */
if (char amtp[i-1] <= bufl[i-1])
piece count = 1;

/* Zero amount indicates pure polling. So we can write as many
* pieces as needed. Let us write 50 pieces.
*/
if (char amtp[i-1] == 0)
piece count = 50;

st = OCILobArrayWrite (<service context>, <error handle>,
garray iter, /* array size */
lob array, /* array of locators */

NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of write buffers */
bufl, /* array of buffer lengths */
OCI_FIRST PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS_IMPLICIT); /* character set form */

for (j = 2; j < plece count; j++)

{
/* Fill up bufpli-1] here. The jth piece for ith locator would be written
* from bufp[i-1] */

st = OCILobArrayWrite (<service context>, <error handle>,
garray iter, /* array size */
lob array, /* array of locators */

NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of write buffers */
bufl, /* array of buffer lengths */
OCI_NEXT PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */

SQLCS IMPLICIT);

/* array iter returns the index of the current array element for which
* data is being written. for example, aray iter = 1 implies first locator,
* array iter = 2 implies second locator and so on. Here i = array iter.

* lob _array[array iter - 1] => Lob locator for which data is written.
* bufplarray iter - 1] => Buffer pointer from which data is written.
* char amtp[array iter - 1] => Number of characters written in

ORACLE 12-34

Chapter 12
About Trimming LOB Data

* the piece just written
*/
}

/* Fill up bufp[i-1] here. The last piece for ith locator would be written from
* bufpli -1] */

/* If piece count is 1 it is a single piece write. */

if (piece count[i] != 1)
st = OCILobArrayWrite (<service context>, <error handle>,
garray iter, /* array size */
lob array, /* array of locators */
NULL, /* array of byte amounts */
char_amtp, /* array of char amounts */
offset, /* array of offsets */
(void **)bufp, /* array of write buffers */

bufl, /* array of buffer lengths */
OCI_LAST PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0, /* character set ID - default */
SQLCS IMPLICIT);

}

Syntax

Use the following syntax references for the OCI programmatic environment:

C (OC): Oracle Call Interface Programmer's Guide "LOB Functions" — OCILobArrayWrite ().

Example
An example is provided in the following programmatic environment:

OCI: lwritearr.c

12.23 About Trimming LOB Data

ORACLE

This section describes how to trim a LOB to the size you specify.

¢ See Also:
Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS LOB Package, or OCI, you must lock the
row containing the LOB. While the SQL INSERT and UPDATE statements implicitly lock the row,
locking is done explicitly by means of:

12-35

Chapter 12
About Erasing Part of a LOB

e A SELECT FOR UPDATE statement in SQL and PL/SQL programs.

* AnOCI pin or lock function in OCI programs.

¢ See Also:

Example of Updating LOBs Through Updated Locators for more details on the state
of the locator after an update

Syntax
Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — TRIM

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCILobTrim2().
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB TRIM executed embedded SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guide for more information on LOB TRIM
executed embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With LOBs"
— Creating and Populating a BL0B or CLOB Column.

Examples

Examples are provided in the following programmatic environments:
« PL/SQL (DBMS_LOB Package): 1trim.sqgl

e OCI ltrim.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): 1trim.java

12.24 About Erasing Part of a LOB

This section describes how to erase part of a LOB.

¢ See Also:
Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

ORACLE 1536

Chapter 12
Determining Whether a LOB instance Is Temporary

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS LOB Package or OCI, you must lock the
row containing the LOB. While INSERT and UPDATE statements implicitly lock the row, locking is
done explicitly by means of a SELECT FOR UPDATE statement in SQL and PL/SQL programs, or

by using the OCI pin or lock function in OCI programs.

See Also:

Example of Updating LOBs Through Updated Locators f or more details on the state
of the locator after an update

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — ERASE

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — 0CILobErase2 ().
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB ERASE executable embedded SQL extension.

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on LOB ERASE
executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB Package): lerase.sql

e OCI: lerase.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): lerase.java

12.25 Determining Whether a LOB instance Is Temporary

This section describes how to determine whether a LOB instance is temporary.

" See Also:
Table 12-1

Syntax

Use the following syntax references for each programmatic environment:

ORACLE 12-37

Chapter 12
Converting a BLOB to a CLOB

PL/SQL (DBMS_LOB): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — ISTEMPORARY, FREETEMPORARY

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILoblsTemporary().

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and embedded SQL and LOB DESCRIBE executable
embedded SQL extension

e C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guidefor more information on LOB
DESCRIBE executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BL.0OB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:
e PL/SQL (DBMS_LOB Package): 1istemp.sql

e OCI: listemp.c

e Java (JDBC): Determining Whether a BLOB Is Temporary

12.25.1 Java (JDBC): Determining Whether a BLOB Is Temporary

To see if a BLOB is temporary, the JDBC application can either use the isTemporary instance
method to determine whether the current BLOB object is temporary, or pass the BLOB object to
the static isTemporary method to determine whether the specified BLOB object is temporary.
These two methods are defined inlistempb.java.

This JDBC API replaces previous work-arounds that use DBMS LOB.isTemporary () .

To determine whether a CLOB is temporary, the JDBC application can either use the
isTemporary instance method to determine whether the current CLOB object is temporary, or
pass the CLOB object to the static isTemporary method. These two methods are defined in
listempc.java.

12.26 Converting a BLOB to a CLOB

You can convert a BLOB instance to a CLOB using the PL/SQL procedure
DBMS_LOB.CONVERTTOCLOB.

This technique is convenient if you have character data stored in binary format that you want to
store in a CLOB. You specify the character set of the binary data when calling this procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details on syntax and
usage of this procedure

ORACLE 1538

Chapter 12
Converting a CLOB to a BLOB

12.27 Converting a CLOB to a BLOB

You can convert a CLOB instance to a BLOB instance using the PL/SQL procedure
DBMS LOB.CONVERTTOBLOB. This technique is a convenient way to convert character data to
binary data using LOB APIs. See

See Also:

Oracle Database PL/SQL Packages and Types Reference for details on syntax and
usage of this procedure

12.28 Ensuring Read Consistency

This script can be used to ensure that hot backups can be taken of tables that have NOLOGGING
or FILESYSTEM LIKE LOGGING LOBs and have a known recovery point with no read
inconsistencies:

ALTER DATABASE FORCE LOGGING;
SELECT CHECKPOINT CHANGE# FROM VS$DATABASE; --Start SCN

SCN (System Change Number) is a stamp that defines a version of the database at the time
that a transaction is committed.

Perform the backup.

Run the next script:

ALTER SYSTEM CHECKPOINT GLOBAL;
SELECT CHECKPOINT CHANGE# FROM VS$DATABASE; --End SCN
ALTER DATABASE NO FORCE LOGGING;

Back up the archive logs generated by the database. At the minimum, archive logs between
start SCN and end SCN (including both SCN points) must be backed up.

To restore to a point with no read inconsistency, restore to end SCN as your incomplete
recovery point. If recovery is done to an SCN after end SCN, there can be read inconsistency
in the NOLOGGING LOBs.

For SecureFiles, if a read inconsistency is found during media recovery, the database treats
the inconsistent blocks as holes and fills BLOBs with 0's and cL.0oBs with fill characters.

ORACLE 1530

Application Design with LOBs

This part covers issues that you must consider when designing LOB applications.
This part contains these chapters:

* LOB Storage with Applications

* Advanced Design Considerations

e Overview of Supplied LOB APIs

e Performance Guidelines

- LOB Storage with Applications

* Advanced Design Considerations

* Performance Guidelines

ORACLE

LOB Storage with Applications

Applications that contain tables with LOB columns may use both SECUREFILE and BASICFILE
LOBs. If a feature applies to only one kind of LOB, this is stated.

Topics:

e Tables That Contain LOBs

e Data Types for LOB Columns

* LOB Storage Parameters

* LOB Columns Indexing

e LOB Manipulation in Partitioned Tables

e LOBs in Index Organized Tables

* Restrictions on Index Organized Tables with LOB Columns
* Restrictions for LOBs in Partitioned Index-Organized Tables
« Updating LOBs in Nested Tables

e Tables That Contain LOBs

e Data Types for LOB Columns

* LOB Storage Parameters

e LOB Columns Indexing

e LOB Manipulation in Partitioned Tables

e LOBs in Index Organized Tables

e Restrictions on Index Organized Tables with LOB Columns
The ALTER TABLE MOVE operation cannot be performed on an index organized table
with a LOB column in parallel.

e Restrictions for LOBs in Partitioned Index-Organized Tables
e Updating LOBs in Nested Tables

13.1 Tables That Contain LOBs

When creating tables that contain LOBs, use these guidelines:
Topics:

* Persistent LOBs Initialized to NULL or Empty

e Initializing LOBs

* Initializing Persistent LOB Columns and Attributes to a Value
e Initializing BFILEs to NULL or a File Name

e Persistent LOBs Initialized to NULL or Empty

e Initializing LOBs

ORACLE 121

Chapter 13
Tables That Contain LOBs

* Initializing Persistent LOB Columns and Attributes to a Value
e Initializing BFILEs to NULL or a File Name

* Restriction on First Extent of a LOB Segment

13.1.1 Persistent LOBs Initialized to NULL or Empty

You can set a persistent LOB — that is, a LOB column in a table, or a LOB attribute in an
object type that you defined— to be NULL or empty:

e Set a Persistent LOB to NULL: A LOB set to NULL has no locator. A NULL value is stored
in the row in the table, not a locator. This is the same process as for all other data types.

* Set a Persistent LOB to Empty: By contrast, an empty LOB stored in a table is a LOB of
zero length that has a locator. So, if you SELECT from an empty LOB column or attribute,
then you get back a locator which you can use to populate the LOB with data using
supported programmatic environments, such as OCI or PL/SQL (DBMS_LOB).

e Setting a Persistent LOB to NULL

e Setting a Persistent LOB to Empty

¢ See Also:

Overview of Supplied LOB APIs for more information on supported environments

13.1.1.1 Setting a Persistent LOB to NULL

You may want to set a persistent LOB value to NULL upon inserting the row.
These are possible situations where this is useful:

e In cases where you do not have the LOB data at the time of the INSERT.

* If you want to use a SELECT statement, such as the following, to determine whether or not
the LOB holds a NULL value:

SELECT COUNT (*) FROM print media WHERE ad graphic IS NOT NULL;

SELECT COUNT (*) FROM print media WHERE ad graphic IS NULL;

Note that you cannot call OCI or DBMS_LOB functions on a NULL LOB, so you must then use an
SQL UPDATE statement to reset the LOB column to a non-NULL (or empty) value.

The point is that you cannot make a function call from the supported programmatic
environments on a LOB that is NULL. These functions only work with a locator, and if the LOB
column is NULL, then there is no locator in the row.

13.1.1.2 Setting a Persistent LOB to Empty

You can initialize a persistent LOB to EMPTY rather that NULL. Doing so, enables you to obtain a
locator for the LOB instance without populating the LOB with data.

* You set a persistent LOB to EMPTY, using the SQL function EMPTY BLOB () or EMPTY CLOB ()
in the INSERT statement, as follows.

ORACLE 130

Chapter 13
Tables That Contain LOBs

INSERT INTO a table VALUES (EMPTY BLOB());

As an alternative, you can use the RETURNING clause to obtain the LOB locator in one operation
rather than calling a subsequent SELECT statement:

DECLARE
Lob loc BLOB;
BEGIN

INSERT INTO a table VALUES (EMPTY BLOB()) RETURNING blob col INTO Lob loc;

/* Now use the locator Lob loc to populate the BLOB with data */
END;

13.1.2 Initializing LOBs

You can initialize the LOBs in print media by using the following INSERT statement:

INSERT INTO print media VALUES (1001, EMPTY CLOB(), EMPTY CLOB(), NULL,
EMPTY BLOB(), EMPTY BLOB(), NULL, NULL, NULL, NULL);

This sets the value of ad_sourcetext, ad fltextn, ad composite, and ad photo to an empty
value, and sets ad_graphic to NULL.

See Also:

Table for LOB Examples: The PM Schema print_media Table for the print media
table.

13.1.3 Initializing Persistent LOB Columns and Attributes to a Value

You can initialize the LOB column or LOB attributes to a value that contains more than 4G
bytes of data, the limit before release 10.2.

See Also:

Data Interface for Persistent LOBs

13.1.4 Initializing BFILEs to NULL or a File Name

A BFILE can be initialized to NULL or to a filename. To do so, you can use the BFILENAME ()
function.

See Also:

"BFILENAME and Initialization".

ORACLE 132

Chapter 13
Data Types for LOB Columns

13.1.5 Restriction on First Extent of a LOB Segment

The first extent of any segment requires at least 2 blocks (if FREELIST GROUPS was 0). That is,
the initial extent size of the segment should be at least 2 blocks. LOBs segments are different
because they need at least 3 blocks in the first extent if the LOB is a BasicFiles LOB and 16
blocks if the LOB is a SecureFiles LOB.

If you try to create a LOB segment in a permanent dictionary managed tablespace with initial =
2 blocks, then it still works because it is possible for segments in permanent dictionary-
managed tablespaces to override the default storage setting of the tablespaces.

But if uniform, locally managed tablespaces or dictionary managed tablespaces of the
temporary type, or locally managed temporary tablespaces have an extent size of 2 blocks,
then LOB segments cannot be created in these tablespaces. This is because in these
tablespace types, extent sizes are fixed and the default storage setting of the tablespaces is
not ignored.

13.2 Data Types for LOB Columns

When selecting a data type, consider the following three topics:
e LOBs Compared to LONG and LONG RAW Types

e Varying-Width Character Data Storage in LOBs

e Converting Character Sets Implicitly with LOBs

e LOBs Compared to LONG and LONG RAW Types

e Varying-Width Character Data Storage in LOBs

e Converting Character Sets Implicitly with LOBs

13.2.1 LOBs Compared to LONG and LONG RAW Types

ORACLE

Table 13-1 lists the similarities and differences between LOBs, LONGs, and LONG RAW types.

Table 13-1 LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type

You can store multiple LOBs in a single row You can store only one LONG or LONG RAW in each row.

LOBs can be attributes of a user-defined data This is not possible with either a LONG or LONG RAW
type

Only the LOB locator is stored in the table In the case of a LONG or LONG RAW the entire value is
column; BLOB and CLOB data can be stored in stored in the table column.

separate tablespaces and BFILE data is stored

as an external file.

For inline LOBs, the database stores LOBs that

are less than approximately 4000 bytes of data
in the table column.

When you access a LOB column, you can When you access a LONG or LONG RAW, the entire
choose to fetch the locator or the data. value is returned.

A LOB can be up to 128 terabytes or more in A LONG or LONG RAW instance is limited to 2 gigabytes
size depending on your block size. in size.

13-4

Chapter 13
Data Types for LOB Columns

Table 13-1 (Cont.) LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type

There is greater flexibility in manipulating data Less flexibility in manipulating data in a random, piece-

in a random, piece-wise manner with LOBs. wise manner with LONG or LONG RAW data.LONGS

LOBs can be accessed at random offsets. must be accessed from the beginning to the desired
location.

You can use Oracle Golden Gate to replicate Replication is not possible with LONG or LONG RAW.
LOBs.

13.2.2 Varying-Width Character Data Storage in LOBS

Varying-width character data in CLOB and NCLOB data types is stored in an internal format that is
compatible with UCS2 Unicode character set format. This ensures that there is no storage loss
of character data in a varying-width format. Also note the following if you are using LOBs to
store varying-width character data:

* You can create tables containing CLOB and NCLOB columns even if you use a varying-width
CHAR or NCHAR database character set.

* You can create a table containing a data type that has a CLOB attribute regardless of
whether you use a varying-width CHAR database character set.

13.2.3 Converting Character Sets Implicitly with LOBs

For cLOB and NCLOB instances used in OCI (Oracle Call Interface), or any of the programmatic
environments that access OCI functionality, character set conversions are implicitly performed
when translating from one character set to another.

e Use the DBMS LOB.LOADCLOBFROMFILE API to perform an implicit conversion from binary
data to character data when loading to a CLOB or NCLOB.

With the exception of DBMS LOB.LOADCLOBFROMFILE, LOB APIs do not perform implicit
conversions from binary data to character data.

For example, when you use the DBMS LOB.LOADFROMFILE API to populate a CLOB or NCLOB, you
are populating the LOB with binary data from a BFILE. In this case, you must perform character
set conversions on the BFILE data before calling DBMS LOB.LOADFROMFILE.

See Also:

Oracle Database Globalization Support Guide for more detail on character set
conversions.

ORACLE 12

Chapter 13
LOB Storage Parameters

Note:

The database character set cannot be changed from a single-byte to a multibyte
character set if there are populated user-defined C1.0B columns in the database
tables. The national character set cannot be changed between AL16UTF16 and UTFS if
there are populated user-defined NCLOB columns in the database tables.

Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to Relocating a
PDB Using CREATE PLUGGABLE DATABASE.

13.3 LOB Storage Parameters

You should consider certain LOB storage characteristics when designing tables with LOB
storage. For a discussion of SECUREFILE parameters:

ORACLE

¢ See Also:

+ "CREATE TABLE with LOB Storage"
¢ "ALTER TABLE with LOB Storage"

Topics:

Inline and Out-of-Line LOB Storage

Defining Tablespace and Storage Characteristics for Persistent LOBs
Inline and Out-of-Line LOB Storage

Defining Tablespace and Storage Characteristics for Persistent LOBs
LOB Storage Characteristics for LOB Column or Attribute
TABLESPACE and LOB Index

PCTVERSION

RETENTION Parameter for BasicFiles LOBs

RETENTION Parameter for SecureFiles LOBs

CACHE / NOCACHE / CACHE READS

LOGGING / NOLOGGING Parameter for BasicFiles LOBs
LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs
CHUNK

ENABLE or DISABLE STORAGE IN ROW Clause

Guidelines for ENABLE or DISABLE STORAGE IN ROW

13-6

Chapter 13
LOB Storage Parameters

13.3.1 Inline and Out-of-Line LOB Storage

LOB columns store locators that reference the location of the actual LOB value.

Actual LOB values are stored either in the table row (inline) or outside of the table row (out-of-
line), depending on the column properties you specify when you create the table, and
depending the size of the LOB.

LOB values are stored out-of-line when any of the following situations apply:

* If you explicitly specify DISABLE STORAGE IN ROW for the LOB storage clause when you
create the table.

« If the size of the LOB is greater than approximately 4000 bytes (4000 minus system control
information), regardless of the LOB storage properties for the column.

In case of multibyte character sets, such as AL32UTF8, LOBs stored as CLOB may take
up more space than when stored as single-byte character sets. The limit of 4000 bytes
refers to the amount of storage needed to store the characters in a CLOB and not to the
number of characters in a CLOB.

LOB values are stored inline when any of the following conditions apply:

e When the size of the LOB stored in the given row is small, approximately 4000 bytes or
less, and you either explicitly specify ENABLE STORAGE IN ROW or the LOB storage clause
when you create the table, or when you do not specify this parameter (which is the
default).

* When the LOB value is NULL (regardless of the LOB storage properties for the column).

Using the default LOB storage properties (inline storage) can allow for better database
performance; it avoids the overhead of creating and managing out-of-line storage for smaller
LOB values. If LOB values stored in your database are frequently small in size, then using
inline storage is recommended.

Note:

e LOB locators are always stored in the row.

A LOB locator always exists for any LOB instance regardless of the LOB storage
properties or LOB value - NULL, empty, or otherwise.

e Ifthe LOB is created with DISABLE STORAGE IN ROW properties and the BasicFiles
LOB holds any data, then a minimum of one CHUNK of out-of-line storage space is
used; even when the size of the LOB is less than the CHUNK size.

» Ifa LOB column is initialized with EMPTY CLOB() or EMPTY BLOB(), then no LOB
value exists, not even NULL. The row holds a LOB locator only. No additional LOB
storage is used.

» LOB storage properties do not affect BFILE columns. BFILE data is always stored
in operating system files outside the database.

ORACLE 13-7

Chapter 13
LOB Storage Parameters

13.3.2 Defining Tablespace and Storage Characteristics for Persistent LOBs

When defining LOBs in a table, you can explicitly indicate the tablespace and storage
characteristics for each persistent LOB column.

To create a BasicFiles LOB, the BASICFILE keyword is optional but is recommended for clarity,
as shown in the following example:

CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
lob (c) STORE AS BASICFILE segname (TABLESPACE lobtbsl CHUNK 4096
PCTVERSION 5
NOCACHE LOGGING
STORAGE (MAXEXTENTS 5)
);

For SecureFiles, the SECUREFILE keyword is necessary, as shown in the following example
(assuming TABLESPACE lobtbsl iS ASSM):

CREATE TABLE ContainsLOBitabl (n NUMBER, c CLOB)
lob (c) STORE AS SECUREFILE sfsegname (TABLESPACE lobtbsl
RETENTION AUTO
CACHE LOGGING
STORAGE (MAXEXTENTS 5)
)

Note:

There are no tablespace or storage characteristics that you can specify for external
LOBs (BFILES) as they are not stored in the database.

If you must modify the LOB storage parameters on an existing LOB column, then use the
ALTER TABLE ... MOVE statement. You can change the RETENTION, PCTVERSION, CACHE, NOCACHE
LOGGING, NOLOGGING, Or STORAGE settings. You can also change the TABLESPACE using the ALTER
TABLE ... MOVE statement.

e Assigning a LOB Data Segment Name

13.3.2.1 Assigning a LOB Data Segment Name

ORACLE

As shown in the previous example, specifying a name for the LOB data segment makes for a
much more intuitive working environment. When querying the LOB data dictionary views
USER LOBS, ALL LOBS, DBA LOBS , you see the LOB data segment that you chose instead of
system-generated names.

¢ See Also:

Oracle Database Reference for more information about initialization parameters

13-8

Chapter 13
LOB Storage Parameters

13.3.3 LOB Storage Characteristics for LOB Column or Attribute

LOB storage characteristics that can be specified for a LOB column or a LOB attribute include
the following:

TABLESPACE
PCTVERSION Or RETENTION

Note that you can specify either PCTVERSION or RETENTION for BasicFiles LOBs, but not
both. For SecureFiles, only the RETENTION parameter can be specified.

CACHE/NOCACHE/CACHE READS
LOGGING/NOLOGGING

CHUNK

ENABLE/DISABLE STORAGE IN ROW

STORAGE

For most users, defaults for these storage characteristics are sufficient. If you want to fine-tune
LOB storage, then consider the following guidelines.

¢ See Also:

° STORAGE clause in Oracle Database SQL Language Reference

* RETENTION parameter in Oracle Database SQL Language Reference

13.3.4 TABLESPACE and LOB Index

The LOB index is an internal structure that is strongly associated with LOB storage. This
implies that a user may not drop the LOB index and rebuild it.

ORACLE

< Note:

The LOB index cannot be altered.

The system determines which tablespace to use for LOB data and LOB index depending on
your specification in the LOB storage clause:

If you do not specify a tablespace for the LOB data, then the tablespace of the table is
used for the LOB data and index.

If you specify a tablespace for the LOB data, then both the LOB data and index use the
tablespace that was specified.

Tablespace for LOB Index in Non-Partitioned Table

13-9

Chapter 13
LOB Storage Parameters

13.3.4.1 Tablespace for LOB Index in Non-Partitioned Table

When creating a table, if you specify a tablespace for the LOB index for a non-partitioned table,
then your specification of the tablespace is ignored and the LOB index is co-located with the
LOB data. Partitioned LOBs do not include the LOB index syntax.

Specifying a separate tablespace for the LOB storage segments enables a decrease in
contention on the tablespace of the table.

13.3.5 PCTVERSION

ORACLE

When a BasicFiles LOB is modified, a new version of the BasicFiles LOB page is produced in
order to support consistent read of prior versions of the BasicFiles LOB value.

PCTVERSION is the percentage of all used BasicFiles LOB data space that can be occupied by
old versions of BasicFiles LOB data pages. As soon as old versions of BasicFiles LOB data
pages start to occupy more than the PCTVERSTION amount of used BasicFiles LOB space,
Oracle Database tries to reclaim the old versions and reuse them. In other words, PCTVERSION
is the percent of used BasicFiles LOB data blocks that is available for versioning old BasicFiles
LOB data.

PCTVERSION has a default of 10 (%), a minimum of 0, and a maximum of 100.
To decide what value PCTVERSION should be set to, consider the following:

e How often BasicFiles LOBs are updated?
e How often the updated BasicFiles LOBs are read?

Table 13-2 provides some guidelines for determining a suitable PCTVERSION value given an
update percentage of 'X'.

Table 13-2 Recommended PCTVERSION Settings

BasicFiles LOB Update Pattern BasicFiles LOB Read Pattern PCTVERSION
Updates X% of LOB data Reads updated LOBs X%

Updates X% of LOB data Reads LOBs but not the updated LOBs 0%

Updates X% of LOB data Reads both updated and non-updated LOBs 2X%

Never updates LOB Reads LOBs 0%

If your application requires several BasicFiles LOB updates concurrent with heavy reads of
BasicFiles LOB columns, then consider using a higher value for PCTVERSION, such as 20%.

Setting PCTVERSION to twice the default value allows more free pages to be used for old
versions of data pages. Because large queries may require consistent reads of BasicFiles LOB
columns, it may be useful to retain old versions of BasicFiles LOB pages. In this case,
BasicFiles LOB storage may grow because the database does not reuse free pages
aggressively.

If persistent BasicFiles LOB instances in your application are created and written just once and
are primarily read-only afterward, then updates are infrequent. In this case, consider using a
lower value for PCTVERSION, such as 5% or lower.

The more infrequent and smaller the BasicFiles LOB updates are, the less space must be
reserved for old copies of BasicFiles LOB data. If existing BasicFiles LOBs are known to be

13-10

Chapter 13
LOB Storage Parameters

read-only, then you could safely set PCTVERSION to 0% because there would never be any
pages needed for old versions of data.

13.3.6 RETENTION Parameter for BasicFiles LOBs

You can specify the RETENTION parameter in the LOB storage clause of the CREATE TABLE or
ALTER TABLE statement as an alternative to the PCTVERSION parameter,. Doing so, configures
the LOB column to store old versions of LOB data for a period of time, rather than using a
percentage of the table space. For example:

CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
lob (c) STORE AS BASICFILE segname (TABLESPACE lobtbsl CHUNK 4096
RETENTION
NOCACHE LOGGING
STORAGE (MAXEXTENTS 5)
);

The RETENTION parameter is designed for use with UNDO features of the database, such as
Flashback Versions Query. When a LOB column has the RETENTION property set, old versions
of the LOB data are retained for the amount of time specified by the UNDO RETENTION
parameter.

Note the following with respect to the RETENTION parameter:

e UNDO SQL is not enabled for LOB columns as it is with other data types. You must set the
RETENTION property on a LOB column to use Undo SQL on LOB data.

e You cannot set the value of the RETENTION parameter explicitly. The amount of time for
retention of LOB versions in determined by the UNDO RETENTION parameter.

* Usage of the RETENTION parameter is only supported in Automatic Undo Management
mode. You must configure your table for use with Automatic Undo Management before you
can set RETENTION on a LOB column. ASSM is required for LOB RETENTION to be in effect
for BasicFiles LOBs. The RETENTION parameter of the SQL (in the STORE AS clause) is
silently ignored if the BasicFiles LOB resides in an MSSM tablespace.

e The LOB storage clause can specify RETENTION or PCTVERSION, but not both.

¢ See Also:

— Oracle Database Development Guide for more information on using
flashback features of the database.

— Oracle Database SQL Language Reference for details on LOB storage
clause syntax.

13.3.7 RETENTION Parameter for SecureFiles LOBs

ORACLE

Specifying the RETENTION parameter for SecureFiles indicates that the database manages
consistent read data for the SecureFiles storage dynamically, taking into account factors such
as the UNDO mode of the database.

e Specify MAX if the database is in FLASHBACK mode to limit the size of the LOB UNDO retention
in bytes. If you specify M2AX, then you must also specify the MAXSIZE clause in the
storage clause.

13-11

Chapter 13
LOB Storage Parameters

* Specify AUTO if you want to retain UNDO sufficient for consistent read purposes only. This is
the default.

e Specify NONE if no UNDO is required for either consistent read or flashback purposes.

The default RETENTION for SecureFiles is AUTO.

13.3.8 CACHE / NOCACHE / CACHE READS

When creating tables that contain LOBS, use the cache options according to the guidelines in
Table 13-3:

Table 13-3 When to Use CACHE, NOCACHE, and CACHE READS

Cache Mode Read Write

CACHE READS Frequently Once or occasionally
CACHE Frequently Frequently

NOCACHE (default) Once or occasionally Never

« CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache

13.3.8.1 CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache

e CACHE: LOB pages are placed in the buffer cache for faster access.

* NOCACHE: As a parameter in the STORE AS clause, NOCACHE specifies that LOB values are
not brought into the buffer cache.

« CACHE READS: LOB values are brought into the buffer cache only during read and not
during write operations.

NOCACHE is the default for both SecureFiles and BasicFiles LOBs.

Note:

Using the CACHE option results in improved performance when reading and writing
data from the LOB column. However, it can potentially age other non-LOB pages out
of the buffer cache prematurely.

13.3.9 LOGGING / NOLOGGING Parameter for BasicFiles LOBs

The [NOJLOGGING parameter is applied to using LOBs in the same manner as for other table
operations. In the usual case, if the [NO]LOGGING clause is omitted, then this means that neither
NOLOGGING nor LOGGING is specified and the logging attribute of the table or table partition
defaults to the logging attribute of the tablespace in which it resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

* CACHE is specified and [NO]LOGGING clause is omitted. LOGGING is automatically
implemented (because you cannot have CACHE NOLOGGING).

ORACLE 1310

Chapter 13
LOB Storage Parameters

* CACHE is not specified and [NO]JLOGGING clause is omitted. The process defaults in the
same way as it does for tables and partitioned tables. That is, the [NO]JLOGGING value is
obtained from the tablespace in which the LOB segment resides.

The following issues should also be kept in mind.

* LOBs Always Generate Undo for LOB Index Pages
* When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages

13.3.9.1 LOBs Always Generate Undo for LOB Index Pages

Regardless of whether LOGGING or NOLOGGING is set, LOBs never generate rollback information
(undo) for LOB data pages because old LOB data is stored in versions.

Rollback information that is created for LOBs tends to be small because it is only for the LOB
index page changes.

13.3.9.2 When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages

NOLOGGING is intended to be used when a customer does not care about media recovery.

Thus, if the disk/tape/storage media fails, then you cannot recover your changes from the log
because the changes were never logged.

* NOLOGGING is Useful for Bulk Loads or Inserts.

13.3.9.2.1 NOLOGGING is Useful for Bulk Loads or Inserts.

For instance, when loading data into the LOB, if you do not care about redo and can just start
the load over if it fails, set the LOB data segment storage characteristics to NOCACHE NOLOGGING.
This provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the LOB
storage characteristics for the LOB data segment for normal LOB operations, for example, to
CACHE or NOCACHE LOGGING.

Note:

CACHE implies that you also get LOGGING.

13.3.10 LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs

The NOLOGGING and LOGGING parameters are applied to using LOBs in the same manner as for
other table operations.

In the usual case, if the logging clause is omitted, then the SecureFiles inherits its logging
attribute from the tablespace in which it resides. In this case, if NOLOGGING is the default value,
the SecureFiles defaults to FILESYSTEM LIKE LOGGING.

ORACLE 1312

Chapter 13
LOB Storage Parameters

Note:

Using the CACHE option results in improved performance when reading and writing
data from the LOB column. However, it can potentially age other non-LOB pages out
of the buffer cache prematurely.

e CACHE Implies LOGGING
* SecureFiles and an Efficient Method of Generating REDO and UNDO
* FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts

13.3.10.1 CACHE Implies LOGGING

For SecureFiles, there is a further alternative depending on how CACHE is specified:

e If CACHE is specified and the LOGGING clause is omitted, then LOGGING is used.

e If CACHE is not specified and the logging_clause is omitted. Then the process defaults in the
same way as it does for tables and partitioned tables. That is, the LOGGING value is
obtained from the tablespace in which the LOB value resides. If the tablespace is
NOLOGGING, then the SecureFiles defaults to FILESYSTEM LIKE LOGGING.

Keep the following issues in mind.

13.3.10.2 SecureFiles and an Efficient Method of Generating REDO and UNDO

This means that Oracle Database determines if it is more efficient to generate REDO and UNDO
for the change to a block, similar to heap blocks, or if it generates a version and full REDO of the
new block similar to BasicFiles LOBs.

13.3.10.3 FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts

For instance, when loading data into the LOB, if you do not care about REDO and can just start
the load over if it fails, set the LOB data segment storage characteristics to
FILESYSTEM LIKE LOGGING. This provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the LOB
storage characteristics for the LOB data segment for normal LOB operations. For example, to
CACHE Or NOCACHE LOGGING.

13.3.11 CHUNK

ORACLE

A chunk is one or more Oracle blocks.

You can specify the chunk size for the BasicFiles LOB when creating the table that contains
the LOB. This corresponds to the data size used by Oracle Database when accessing or
modifying the LOB value. Part of the chunk is used to store system-related information and the
rest stores the LOB value. The API you are using has a function that returns the amount of
space used in the LOB chunk to store the LOB value. In PL/SQL use DBMS_LOB.GETCHUNKSIZE.
In OCI, use OCILobGetChunkSize ().

13-14

Chapter 13
LOB Storage Parameters

Note:

If the tablespace block size is the same as the database block size, then CHUNK is
also a multiple of the database block size. The default CHUNK size is equal to the size
of one tablespace block, and the maximum value is 32K.

e The Value of CHUNK
e Set INITIAL and NEXT to Larger than CHUNK

¢ See Also:

"Terabyte-Size LOB Support" for information about maximum LOB sizes

13.3.11.1 The Value of CHUNK

Once the value of CHUNK is chosen (when the LOB column is created), it cannot be changed.

Because you cannot change the value CHUNK, it is important that you choose a value which
optimizes your storage and performance requirements. For SecureFiles, CHUNK is an advisory
size and is provided for backward compatibility purposes.

e Space Considerations

* Performance Considerations

13.3.11.1.1 Space Considerations

The value of CHUNK does not matter for LOBs that are stored inline.

Inline storage occurs when ENABLE STORAGE IN ROW is set, and the size of the LOB locator and
the LOB data is less than approximately 4000 bytes. However, when the LOB data is stored

out-of-line, it always takes up space in multiples of the CHUNK parameter. This can lead to a
large waste of space if your data is small, but the CHUNK is set to a large number. Table 13-4
illustrates this point:

Table 13-4 Data Size and CHUNK Size

Data Size CHUNK Size Disk Space Used to Store the LOB Space Utilization
(Percent)

3500 enable storage in row irrelevant 3500 in row 100

3500 disable storage in row 32 KB 32 KB 10

3500 disable storage in row 4 KB 4 KB 90

33 KB 32 KB 64 KB 51

2GB +10 32 KB 2GB +32KB 99+

13.3.11.1.2 Performance Considerations

It is more efficient to access LOBs in big chunks.

ORACLE

13-15

Chapter 13
LOB Storage Parameters

You can set CHUNK to the data size most frequently accessed or written. For example, if only
one block of LOB data is accessed at a time, then set CHUNK to the size of one block. If you
have big LOBs, and read or write big amounts of data, then choose a large value for CHUNK.

13.3.11.2 Set INITIAL and NEXT to Larger than CHUNK

If you explicitly specify storage characteristics for the LOB, then make sure that INITIAL and
NEXT for the LOB data segment storage are set to a size that is larger than the CHUNK size.

For example, if the database block size is 2KB and you specify a CHUNK of 8KB, then make
sure that INITIAL and NEXT are bigger than 8KB and preferably considerably bigger (for
example, at least 16KB).

Put another way: If you specify a value for INITIAL, NEXT, or the LOB CHUNK size, then make
sure they are set in the following manner:

° CHUNK <= NEXT

e CHUNK <= INITIAL

13.3.12 ENABLE or DISABLE STORAGE IN ROW Clause

The ENABLE | DISABLE STORAGE IN ROW clause is used to indicate whether the LOB should be
stored inline (in the row) or out-of-line. If the LOB is saved IN ROW,

* Exadata pushdown is enabled for LOBs without compression and encryption, and LOBs
with securefile compression

* In-Memory is enabled for LOBs without compression and encryption

Note:

You may not alter this specification once you have made it; if you ENABLE STORAGE IN
ROW, then you cannot alter it to DISABLE STORAGE IN ROW and vice versa.

The default is ENABLE STORAGE IN ROW.

13.3.13 Guidelines for ENABLE or DISABLE STORAGE IN ROW

ORACLE

The maximum amount of LOB data stored in the row is the maximum VARCHAR?2 size (4000).
This includes the control information and the LOB value. If you indicate that the LOB should be
stored in the row, once the LOB value and control information is larger than approximately
4000, then the LOB value is automatically moved out of the row.

This suggests the following guidelines:
The default, ENABLE STORAGE IN ROW, is usually the best choice for the following reasons:

* Small LOBs: If the LOB is small (less than approximately 4000 bytes), then the whole
LOB can be read while reading the row without extra disk 1/O.

* Large LOBs: If the LOB is big (greater than approximately 4000 bytes), then the control
information is still stored in the row if ENABLE STORAGE IN ROW is set, even after
moving the LOB data out of the row. This control information could enable us to read the
out-of-line LOB data faster.

13-16

Chapter 13
LOB Columns Indexing

However, in some cases DISABLE STORAGE IN ROW is a better choice. This is because storing
the LOB in the row increases the size of the row. This impacts performance if you are doing a
lot of base table processing, such as full table scans, multi-row accesses (range scans), or
many UPDATE/SELECT to columns other than the LOB columns.

13.4 LOB Columns Indexing

There are different techniques you can use to index LOB columns.

¢ Note:

After you move a LOB column any existing table indexes must be rebuilt.

Topics:

e Domain Indexing on LOB Columns

* Text Indexes on LOB Columns

* Function-Based Indexes on LOBs

« Extensible Indexing on LOB Columns

e Oracle Text Indexing Support for XML

e Domain Indexing on LOB Columns

e Text Indexes on LOB Columns

* Function-Based Indexes on LOBs

» Extensible Indexing on LOB Columns

e Oracle Text Indexing Support for XML

13.4.1 Domain Indexing on LOB Columns

You might be able to improve the performance of queries by building indexes specifically
attuned to your domain. Extensibility interfaces provided with the database allow for domain
indexing, a framework for implementing such domain specific indexes.

Note:

You cannot build a B-tree or bitmap index on a LOB column.

¢ See Also:

Oracle Database Data Cartridge Developer's Guide for information on building
domain specific indexes.

ORACLE 13-17

Chapter 13
LOB Columns Indexing

13.4.2 Text Indexes on LOB Columns

Depending on the nature of the contents of the LOB column, one of the Oracle Text options
could also be used for building indexes.

For example, if a text document is stored in a CLOB column, then you can build a text index to
speed up the performance of text-based queries over the CLOB column.

¢ See Also:

Oracle Text Application Developer's Guide for an example of using a CLOB column to
store text data

13.4.3 Function-Based Indexes on LOBs

A function-based index is an index built on an expression. It extends your indexing capabilities
beyond indexing on a column. A function-based index increases the variety of ways in which
you can access data.

Function-based indexes cannot be built on nested tables or LOB columns. However, you can
build function-based indexes on VARRAYSs.

Like extensible indexes and domain indexes on LOB columns, function-based indexes are also
automatically updated when a DML operation is performed on the LOB column. Function-
based indexes are also updated when any extensible index is updated.

¢ See Also:

Oracle Database Development Guide for more information on using function-based
indexes.

13.4.4 Extensible Indexing on LOB Columns

ORACLE

The database provides extensible indexing, a feature which enables you to define new index
types as required. This is based on the concept of cooperative indexing where a data cartridge
and the database build and maintain indexes for data types such as text and spatial for
example, for On-line-Analytical Processing (OLAP).

The cartridge is responsible for defining the index structure, maintaining the index content
during load and update operations, and searching the index during query processing. The
index structure can be stored in Oracle as heap-organized, or an index-organized table, or
externally as an operating system file.

To support this structure, the database provides an indextype. The purpose of an indextype is
to enable efficient search and retrieval functions for complex domains such as text, spatial,
image, and OLAP by means of a data cartridge. An indextype is analogous to the sorted or bit-
mapped index types that are built-in within the Oracle Server. The difference is that an
indextype is implemented by the data cartridge developer, whereas the Oracle kernel

13-18

Chapter 13
LOB Columns Indexing

implements built-in indexes. Once a new indextype has been implemented by a data cartridge
developer, end users of the data cartridge can use it just as they would built-in indextypes.

When the database system handles the physical storage of domain indexes, data cartridges

* Define the format and content of an index. This enables cartridges to define an index
structure that can accommodate a complex data object.

e Build, delete, and update a domain index. The cartridge handles building and maintaining
the index structures. Note that this is a significant departure from the medicine indexing
features provided for simple SQL data types. Also, because an index is modeled as a
collection of tuples, in-place updating is directly supported.

* Access and interpret the content of an index. This capability enables the data cartridge to
become an integral component of query processing. That is, the content-related clauses
for database queries are handled by the data cartridge.

By supporting extensible indexes, the database significantly reduces the effort needed to
develop high-performance solutions that access complex data types such as LOBs.

e Extensible Optimizer

13.4.4.1 Extensible Optimizer

The extensible optimizer functionality allows authors of user-defined functions and indexes to
create statistics collections, selectivity, and cost functions. This information is used by the
optimizer in choosing a query plan. The cost-based optimizer is thus extended to use the user-
supplied information.

Extensible indexing functionality enables you to define new operators, index types, and domain
indexes. For such user-defined operators and domain indexes, the extensible optimizer
functionality allows users to control the three main components used by the optimizer to select
an execution plan: statistics, selectivity, and cost.

See Also:

Oracle Database Data Cartridge Developer's Guide

13.4.5 Oracle Text Indexing Support for XML

You can create Oracle Text indexes on CLOB columns and perform queries on XML data.

¢ See Also:

* Oracle XML Developer's Kit Programmer's Guide
* Oracle Text Reference

* Oracle Text Application Developer's Guide

ORACLE 1310

Chapter 13
LOB Manipulation in Partitioned Tables

13.5 LOB Manipulation in Partitioned Tables

You can partition tables that contain LOB columns.

Topics:

About Manipulating LOBs in Partitioned Tables

Partitioning a Table Containing LOB Columns

Creating an Index on a Table Containing Partitioned LOB Columns
Moving Partitions Containing LOBs

Splitting Partitions Containing LOBs

Merging Partitions Containing LOBs

About Manipulating LOBs in Partitioned Tables

Partitioning a Table Containing LOB Columns

Creating an Index on a Table Containing Partitioned LOB Columns
Moving Partitions Containing LOBs

Splitting Partitions Containing LOBs

Merging Partitions Containing LOBs

13.5.1 About Manipulating LOBs in Partitioned Tables

As a result, LOBs can take advantage of all of the benefits of partitioning including the
following:

LOB segments can be spread between several tablespaces to balance I/O load and to
make backup and recovery more manageable.

LOBs in a partitioned table become easier to maintain.

LOBSs can be partitioned into logical groups to speed up operations on LOBs that are
accessed as a group.

This section describes some of the ways you can manipulate LOBs in partitioned tables.

13.5.2 Partitioning a Table Containing LOB Columns

LOBs are supported in RANGE partitioned, LIST partitioned, and HASH partitioned tables.
Composite heap-organized tables can also have LOBs.

ORACLE

You can partition a table containing LOB columns using the following techniques:

When the table is created using the PARTITION BY ... clause of the CREATE TABLE
statement.
Adding a partition to an existing table using the ALTER TABLE ... ADD PARTITION clause.

Exchanging partitions with a table that has partitioned LOB columns using the ALTER
TABLE ... EXCHANGE PARTITION clause. Note that EXCHANGE PARTITION can only be used
when both tables have the same storage attributes, for example, both tables store LOBs
out-of-line.

13-20

Chapter 13
LOB Manipulation in Partitioned Tables

Creating LOB partitions at the same time you create the table (in the CREATE TABLE statement)
is recommended. If you create partitions on a LOB column when the table is created, then the
column can hold LOBs stored either inline or out-of-line LOBSs.

After a table is created, new LOB partitions can only be created on LOB columns that are
stored out-of-line. Also, partition maintenance operations, SPLIT PARTITION and MERGE
PARTITIONS, only work on LOB columns that store LOBs out-of-line.

Note:

Once a table is created, storage attributes cannot be changed

¢ See Also:

e LOB Storage Parameters for more information about LOB storage attributes

e Restrictions for LOBs in Partitioned Index-Organized Tables for additional
information on LOB restrictions

13.5.3 Creating an Index on a Table Containing Partitioned LOB Columns

To improve the performance of queries, you can create indexes on partitioned LOB columns.
For example:

CREATE INDEX index name
ON table name (LOB column 1, LOB column 2, ...) LOCAL;

Note that only domain and function-based indexes are supported on LOB columns. Other
types of indexes, such as unique indexes are not supported with LOBs.

13.5.4 Moving Partitions Containing LOBs

You can move a LOB patrtition into a different tablespace. This is useful if the tablespace is no
longer large enough to hold the partition. To do so, use the ALTER TABLE ... MOVE PARTITION
clause. For example:

ALTER TABLE current table MOVE PARTITION partition name
TABLESPACE destination table space
LOB (column name) STORE AS (TABLESPACE current tablespace);

13.5.5 Splitting Partitions Containing LOBs

ORACLE

You can split a partition containing LOBs into two equally sized partitions using the ALTER
TABLE ... SPLIT PARTITION clause. Doing so permits you to place one or both new partitions
in a new tablespace. For example:

ALTER TABLE table name SPLIT PARTITION partition name
AT (partition range upper bound)
INTO (PARTITION parti tionﬁname,
PARTITION new partition name TABLESPACE new tablespace name

13-21

Chapter 13
LOBs in Index Organized Tables

LOB (column name) STORE AS (TABLESPACE tablespace name)

L

13.5.6 Merging Partitions Containing LOBs

You can merge partitions that contain LOB columns using the ALTER TABLE ... MERGE
PARTITIONS clause.

This technique is useful for reclaiming unused partition space. For example:

ALTER TABLE table name
MERGE PARTITIONS partition 1, partition 2
INTO PARTITION new partition TABLESPACE new tablespace name
LOB (column name) store as (TABLESPACE tablespace name)

L

13.6 LOBs in Index Organized Tables

Index Organized Tables (IOTs) support internal and external LOB columns. For the most part,
SQL DDL, DML, and piece wise operations on LOBs in I0Ts produce the same results as
those for normal tables. The only exception is the default semantics of LOBs during creation.
The main differences are:

« Tablespace Mapping: By default, or unless specified otherwise, the LOB data and index
segments are created in the tablespace in which the primary key index segments of the
index organized table are created.

e Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index organized
table created without an overflow segment are stored out of line. In other words, if an index
organized table is created without an overflow segment, then the LOBs in this table have
their default storage attributes as DISABLE STORAGE IN ROW. If you forcibly try to specify an
ENABLE STORAGE IN ROW clause for such LOBSs, then SQL raises an error.

On the other hand, if an overflow segment has been specified, then LOBs in index
organized tables exactly mimic their semantics in conventional tables.

See Also:

Defining Tablespace and Storage Characteristics for Persistent LOBs

Example of Index Organized Table (I0T) with LOB Columns

Consider the following example:

CREATE TABLE iotlob tab (cl INTEGER PRIMARY KEY, c2 BLOB, c3 CLOB, c4
VARCHAR2 (20))
ORGANIZATION INDEX
TABLESPACE iot ts
PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
PCTTHRESHOLD 50 INCLUDING c2
OVERFLOW
TABLESPACE ioto ts
PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
STORE AS lobseg (TABLESPACE lob ts DISABLE STORAGE IN ROW
CHUNK 16384 PCTVERSION 10 CACHE STORAGE (INITIAL 2M)
INDEX lobidx cl (TABLESPACE lobidx ts STORAGE (INITIAL 4K)));

ORACLE 1395

Chapter 13
Restrictions on Index Organized Tables with LOB Columns

Executing these statements results in the creation of an index organized table iotlob tab with
the following elements:

A primary key index segment in the tablespace iot ts,

An overflow data segment in tablespace ioto_ts

Columns starting from column ¢3 being explicitly stored in the overflow data segment
BLOB (column C2) data segments in the tablespace lob_ts

BLOB (column C2) index segments in the tablespace lobidx ts

CLOB (column C3) data segments in the tablespace iot ts

CLOB (column c3) index segments in the tablespace iot ts

CLOB (column ¢3) stored in line by virtue of the IOT having an overflow segment

BLOB (column c2) explicitly forced to be stored out of line

Note:

If no overflow had been specified, then both C2 and C3 would have been stored
out of line by default.

Other LOB features, such as BFILEs and varying character width LOBs, are also supported in
index organized tables, and their usage is the same as for conventional tables.

13.7 Restrictions on Index Organized Tables with LOB Columns

The ALTER TABLE MOVE operation cannot be performed on an index organized table with a
LOB column in parallel.

Instead, use the NOPARALLEL clause to move the LOB column for such tables. For example:

ALTER TABLE tl MOVE LOB(a) STORE AS (<tablespace users>) NOPARALLEL;

13.8 Restrictions for LOBs in Partitioned Index-Organized Tables

LOB columns are supported in range-, list-, and hash-partitioned index-organized tables with
the following restrictions:

ORACLE

Composite partitioned index-organized tables are not supported.

Relational and object partitioned index-organized tables (partitioned by range, hash, or list)
can hold LOBs stored as follows; however, partition maintenance operations, such as MOVE,
SPLIT, and MERGE are not supported with:

— VARRAY data types stored as LOB data types
— Abstract data types with LOB attributes
— Nested tables with LOB types

13-23

Chapter 13
Updating LOBs in Nested Tables

¢ See Also:

Additional restrictions for LOB columns in general are given in "LOB Rules
and Restrictions".

13.9 Updating LOBs in Nested Tables

ORACLE

To update LOBs in a nested table, you must lock the row containing the LOB explicitly. To do
so, you must specify the FOR UPDATE clause in the subquery prior to updating the LOB value.

Note that locking the row of a parent table does not lock the row of a nested table containing
LOB columns.

< Note:

Nested tables containing LOB columns are the only data structures supported for
creating collections of LOBs. You cannot create a VARRAY of any LOB data type.

13-24

Advanced Design Considerations

There are design considerations for more advanced application development issues.

Topicss:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces
Read-Consistent Locators

LOB Locators and Transaction Boundaries

LOBs in the Object Cache

Terabyte-Size LOB Support

Guidelines for Creating Gigabyte LOBs

Opening Persistent LOBs with the OPEN and CLOSE Interfaces
Read-Consistent Locators

LOB Locators and Transaction Boundaries

LOBs in the Object Cache

Terabyte-Size LOB Support

Guidelines for Creating Gigabyte LOBs

14.1 Opening Persistent LOBs with the OPEN and CLOSE

Interfaces

ORACLE

The 0PEN and CLOSE interfaces enable you to explicitly open a persistent LOB instance.

When you open a LOB instance with the OPEN interface, the instance remains open until you

explicitly close the LOB using the CLOSE interface. The ISOPEN interface enables you to

determine whether a persistent LOB is open.

Note that the open state of a LOB is associated with the LOB instance, not the LOB locator.
The locator does not save any information indicating whether the LOB instance that it points to
is open.

¢ See Also:

"LOB Open and Close Operations0.".

Topics:

Index Performance Benefits of Explicitly Opening a LOB

Closing Explicitly Open LOB Instances

Index Performance Benefits of Explicitly Opening a LOB

14-1

Chapter 14
Read-Consistent Locators

* Closing Explicitly Open LOB Instances

14.1.1 Index Performance Benefits of Explicitly Opening a LOB

Explicitly opening a LOB instance can benefit performance of a persistent LOB in an indexed
column.

If you do not explicitly open the LOB instance, then every modification to the LOB implicitly
opens and closes the LOB instance. Any triggers on a domain index are fired each time the
LOB is closed. Note that in this case, any domain indexes on the LOB are updated as soon as
any modification to the LOB instance is made; the domain index is always valid and can be
used at any time.

When you explicitly open a LOB instance, index triggers do not fire until you explicitly close the
LOB. Using this technique can increase performance on index columns by eliminating
unneeded indexing events until you explicitly close the LOB. Note that any index on the LOB
column is not valid until you explicitly close the LOB.

14.1.2 Closing Explicitly Open LOB Instances

If you explicitly open a LOB instance, then you must close the LOB before you commit the
transaction.

Committing a transaction on the open LOB instance causes an error. When this error occurs,
the LOB instance is closed implicitly, any modifications to the LOB instance are saved, and the
transaction is committed, but any indexes on the LOB column are not updated. In this situation,
you must rebuild your indexes on the LOB column.

If you subsequently rollback the transaction, then the LOB instance is rolled back to its
previous state, but the LOB instance is no longer explicitly open.

You must close any LOB instance that you explicitly open:

* Between DML statements that start a transaction, including SELECT ... FOR UPDATE and
COMMIT

* Within an autonomous transaction block
» Before the end of a session (when there is no transaction involved)

If you do not explicitly close the LOB instance, then it is implicitly closed at the end of the
session and no index triggers are fired.

Keep track of the open or closed state of LOBs that you explicitly open. The following actions
cause an error:

« Explicitly opening a LOB instance that has been explicitly open earlier.
« Explicitly closing a LOB instance that is has been explicitly closed earlier.

This occurs whether you access the LOB instance using the same locator or different locators.

14.2 Read-Consistent Locators

ORACLE

Oracle Database provides the same read consistency mechanisms for LOBs as for all other
database reads and updates of scalar quantities.

Read consistency has some special applications to LOB locators that you must understand.
The following sections discuss read consistency and include examples which should be looked
at in relationship to each other.

14-2

Chapter 14
Read-Consistent Locators

See Also:

e Oracle Database Concepts for general information about read consistency

e Table for LOB Examples: The PM Schema print_media Table

Topics:

* A Selected Locator Becomes a Read-Consistent Locator

« Example of Updating LOBs and Read-Consistency

* Example of Updating LOBs Through Updated Locators

e Example of Updating a LOB Using SQL DML and DBMS_LOB

* Example of Using One Locator to Update the Same LOB Value

* Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

* A Selected Locator Becomes a Read-Consistent Locator

e Example of Updating LOBs and Read-Consistency

e Example of Updating LOBs Through Updated Locators

e Example of Updating a LOB Using SQL DML and DBMS_LOB

* Example of Using One Locator to Update the Same LOB Value

* Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

* Example of Deleting a LOB Using Locator
Learn about deleting a LOB with a PL/SQL bind variable in this section.

14.2.1 A Selected Locator Becomes a Read-Consistent Locator

ORACLE

A selected locator, regardless of the existence of the FOR UPDATE clause, becomes a read-
consistent locator, and remains a read-consistent locator until the LOB value is updated
through that locator.

A read-consistent locator contains the snapshot environment as of the point in time of the
SELECT operation.

This has some complex implications. Suppose you have created a read-consistent locator (1.1)
by way of a SELECT operation. In reading the value of the persistent LOB through 1.1, note the
following:

* The LOB is read as of the point in time of the SELECT statement even if the SELECT
statement includes a FOR UPDATE.

< If the LOB value is updated through a different locator (1.2) in the same transaction, then 1.1
does not see the 1.2 updates.

e L1 does not see committed updates made to the LOB through another transaction.

« If the read-consistent locator L1 is copied to another locator 1.2 (for example, by a PL/SQL
assignment of two locator variables — 1.2:= L1), then L2 becomes a read-consistent
locator along with L1 and any data read is read as of the point in time of the SELECT for L1.

14-3

Chapter 14
Read-Consistent Locators

You can use the existence of multiple locators to access different transformations of the LOB
value. However, in doing so, you must keep track of the different values accessed by different
locators.

14.2.2 Example of Updating LOBs and Read-Consistency

Read-consistent locators provide the same LOB value regardless of when the SELECT occurs.

ORACLE

The following example demonstrates the relationship between read-consistency and updating
in a simple example. Using the print media table described in "Table for LOB Examples: The
PM Schema print_media Table" and PL/SQL, three CLOB instances are created as potential
locators: clob selected, clob update, and clob_copied.

Observe these progressions in the code, from times t1 through t6:

At the time of the first SELECT INTO (at t1), the value in ad sourcetext is associated with
the locator clob selected.

In the second operation (at t2), the value in ad_sourcetext is associated with the locator
clob_updated. Because there has been no change in the value of ad_sourcetext between
tl and t2, both clob selected and clob updated are read-consistent locators that
effectively have the same value even though they reflect snapshots taken at different
moments in time.

The third operation (at t3) copies the value in clob selected to clob copied. At this
juncture, all three locators see the same value. The example demonstrates this with a
series of DBMS_LOB.READ () calls.

At time t4, the program uses DBMS LOB.WRITE () to alter the value in clob_updated, and a
DBMS_LOB.READ () reveals a new value.

However, a DBMS LOB.READ () of the value through clob selected (at t5) reveals that it is a
read-consistent locator, continuing to refer to the same value as of the time of its SELECT.

Likewise, a DBMS_LOB.READ () of the value through clob copied (at t6) reveals that it is a
read-consistent locator, continuing to refer to the same value as clob_selected.

Example 14-1

INSERT INTO PRINT MEDIA VALUES (2056, 20020, EMPTY BLOB(),

'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num var INTEGER;
clob selected CLOB;
clob updated CLOB;
clob copied CLOB;
read amount INTEGER;
read offset INTEGER;
write amount INTEGER;
write offset INTEGER;

buffer

BEGIN

-- At time tl:

SELECT ad_sourcetext INTO clob selected

VARCHAR2 (20) ;

FROM Print media
WHERE ad_id = 20020;

14-4

Chapter 14
Read-Consistent Locators

-- At time t2:

SELECT ad sourcetext INTO clob updated
FROM Print media
WHERE ad_id = 20020
FOR UPDATE;

-- At time t3:

clob_copied := clob selected;

-- After the assignment, both the clob copied and the

-- clob_selected have the same snapshot as of the point in time
-- of the SELECT into clob selected

-- Reading from the clob selected and the clob copied does

-- return the same LOB value. clob updated also sees the same
-- LOB value as of its select:

read amount := 10;

read offset := 1;

dbms_lob.read(clob selected, read amount, read offset, buffer);
dbms_output.put_line('clob_selected value: ' || buffer);

-- Produces the output 'abcd'

read amount := 10;
dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);

-- Produces the output 'abcd'

read amount := 10;
dbms_lob.read(clob updated, read amount, read offset, buffer);
dbms_output.put_line('clob_updated value: ' || buffer);

-- Produces the output 'abcd'

-- At time t4:
write amount := 3;
write offset := 5;
buffer := 'efg';

dbms lob.write(clob updated, write amount, write offset, buffer);

read amount := 10;
dbms_lob.read(clob updated, read amount, read offset, buffer);
dbms_output.put_line('clob_updated value: ' || buffer);

-- Produces the output 'abcdefg'

-- At time t5:

read amount := 10;

dbms_lob.read(clob selected, read amount, read offset, buffer);
dbms_output.put_line('clob_selected value: ' || buffer);

-- Produces the output 'abcd'

-- At time té6:
read amount := 10;
dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);
-- Produces the output 'abcd'
END;
/

14.2.3 Example of Updating LOBs Through Updated Locators

When you update the value of the persistent LOB through the LOB locator (1.1), L1 is updated
to contain the current snapshot environment.

ORACLE s

Chapter 14
Read-Consistent Locators

This snapshot is as of the time after the operation was completed on the LOB value through
locator L.1. L1 is then termed an updated locator. This operation enables you to see your own
changes to the LOB value on the next read through the same locator, L1.

Note:

The snapshot environment in the locator is not updated if the locator is used to
merely read the LOB value. It is only updated when you modify the LOB value
through the locator using the PL/SQL DBMS LOB package or the OCI LOB APIs.

Any committed updates made by a different transaction are seen by L1 only if your transaction
is a read-committed transaction and if you use L1 to update the LOB value after the other
transaction committed.

< Note:

When you update a persistent LOB value, the modification is always made to the
most current LOB value.

Updating the value of the persistent LOB through any of the available methods, such as OCI
LOB APIs or PL/SQL DBMS_LOB package, updates the LOB value and then reselects the locator
that refers to the new LOB value.

Note:

Once you have selected out a LOB locator by whatever means, you can read from
the locator but not write into it.

Note that updating the LOB value through SQL is merely an UPDATE statement. It is
up to you to do the reselect of the LOB locator or use the RETURNING clause in the
UPDATE statement so that the locator can see the changes made by the UPDATE
statement. Unless you reselect the LOB locator or use the RETURNING clause, you
may think you are reading the latest value when this is not the case. For this reason
you should avoid mixing SQL DML with 0CI and DBMS LOB piecewise operations.

See Also:

Oracle Database PL/SQL Language Reference

14.2.4 Example of Updating a LOB Using SQL DML and DBMS_LOB

Using the Print media table in the following example, a CLOB locator is created as
clob_selected. Note the following progressions in the example, from times t1 through t3:

ORACLE e

Chapter 14
Read-Consistent Locators

* At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_selected.

* Inthe second operation (at t2), the value in ad_sourcetext is modified through the SQL
UPDATE statement, without affecting the clob_selected locator. The locator still sees the
value of the LOB as of the point in time of the original SELECT. In other words, the locator
does not see the update made using the SQL UPDATE statement. This is illustrated by the
subsequent DBMS_LOB.READ () call.

* The third operation (at t3) re-selects the LOB value into the locator clob selected. The
locator is thus updated with the latest snapshot environment which allows the locator to
see the change made by the previous SQL UPDATE statement. Therefore, in the next
DBMS LOB.READ (), an error is returned because the LOB value is empty, that is, it does not
contain any data.

INSERT INTO Print media VALUES (3247, 20010, EMPTY BLOB(),
'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;
DECLARE
num var INTEGER;
clob selected CLOB;
read amount INTEGER;
read offset INTEGER;
buffer VARCHAR2 (20) ;
BEGIN
-- At time tl:

SELECT ad sourcetext INTO clob selected
FROM Print media
WHERE ad_id = 20010;

read amount := 10;

read offset := 1;

dbms lob.read(clob selected, read amount, read offset, buffer);
dbms output.put line('clob selected value: ' || buffer);

-- Produces the output 'abcd'

-- At time t2:
UPDATE Print media SET ad sourcetext = empty clob()
WHERE ad_id = 20010;
-- although the most current LOB value is now empty,
-- clob selected still sees the LOB value as of the point
-- in time of the SELECT

read amount := 10;
dbms lob.read(clob selected, read amount, read offset, buffer);
dbms output.put line('clob selected value: ' || buffer);

-- Produces the output 'abcd'

-- At time t3:

SELECT ad sourcetext INTO clob selected FROM Print media WHERE
ad_id = 20010;

-- the SELECT allows clob selected to see the most current

-- LOB value

read amount := 10;
dbms lob.read(clob selected, read amount, read offset, buffer);
-- ERROR: ORA-01403: no data found

ORACLE 14-7

Chapter 14
Read-Consistent Locators

END;

14.2.5 Example of Using One Locator to Update the Same LOB Value

ORACLE

< Note:

Avoid updating the same LOB with different locators. You may avoid many pitfalls if
you use only one locator to update a given LOB value.

In the following example, using table Print media, two CLOBS are created as potential locators:
clob_updated and clob_copied.

Note these progressions in the example at times t1 through t5:

At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob updated.

The second operation (at time t2) copies the value in clob updated to clob copied. At
this time, both locators see the same value. The example demonstrates this with a series
of DBMS LOB.READ () calls.

At time t3, the program uses DBMS LOB.WRITE () to alter the value in clob_updated, and a
DBMS LOB.READ () reveals a new value.

However, a DBMS LOB.READ () of the value through clob copied (at time t4) reveals that it
still sees the value of the LOB as of the point in time of the assignment from clob updated
(at t2).

Itis not until clob_updated is assigned to clob copied (t5) that clob copied sees the
modification made by clob updated.

INSERT INTO PRINT MEDIA VALUES (2049, 20030, EMPTY BLOB(),

'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num var INTEGER;
clob updated CLOB;
clob copied CLOB;
read _amount INTEGER;
read offset INTEGER;
write amount INTEGER;
write offset INTEGER;
buffer VARCHAR?2 (20) ;

BEGIN

-- At time tl:

SELECT ad_sourcetext INTO clob updated FROM PRINT MEDIA

WHERE ad_id = 20030
FOR UPDATE;

-- At time t2:

clob copied := clob updated;

-- after the assign, clob copied and clob updated see the same
-- LOB value

14-8

Chapter 14
Read-Consistent Locators

read amount := 10;

read offset := 1;

dbms_lob.read(clob updated, read amount, read offset, buffer);
dbms_output.put_line('clob_updated value: ' || buffer);

-- Produces the output 'abcd'

read amount := 10;
dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);

-- Produces the output 'abcd'

-- At time t3:

write amount := 3;

write offset := 5;

buffer := 'efg';

doms lob.write(clob updated, write amount, write offset,
buffer);

read amount := 10;

dbms_lob.read(clob updated, read amount, read offset, buffer);

dbms_output.put_line('clob_updated value: ' || buffer);

-- Produces the output 'abcdefg'

-- At time t4:

read amount := 10;

dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);

-- Produces the output 'abcd'

-- At time t5:
clob copied := clob updated;

read amount := 10;
dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);

-- Produces the output 'abcdefg'

END;

14.2.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind

Variable

ORACLE

When a LOB locator is used as the source to update another persistent LOB (as in a SQL
INSERT or UPDATE statement, the DBMS LOB.COPY routine, and so on), the snapshot environment
in the source LOB locator determines the LOB value that is used as the source.

If the source locator (for example 1L.1) is a read-consistent locator, then the LOB value as of the
time of the SELECT of L1 is used. If the source locator (for example L2) is an updated locator,
then the LOB value associated with the L2 snapshot environment at the time of the operation is
used.

In the following example, three CLOBs are created as potential locators: clob selected,
clob_updated, and clob_copied.

Note these progressions in the example at times t1 through t5:

At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_updated.

14-9

ORACLE

Chapter 14
Read-Consistent Locators

* The second operation (at t2) copies the value in clob_updatedto clob_copied. At this
juncture, both locators see the same value.

* Then (at t3), the program uses DBMS LOB.WRITE () to alter the value in clob updated, and
a DBMS LOB.READ() reveals a new value.

* However, a DBMS LOB.READ () of the value through clob copied (at t4) reveals that
clob copied does not see the change made by clob updated.

* Therefore (at t5), when clob_copied is used as the source for the value of the INSERT
statement, the value associated with c1lob copied (for example, without the new changes
made by clob updated) is inserted. This is demonstrated by the subsequent
DBMS LOB.READ () of the value just inserted.

INSERT INTO PRINT MEDIA VALUES (2056, 20020, EMPTY BLOB(),
'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num var INTEGER;
clob selected CLOB;
clob updated CLOB;
clob copied CLOB;
read_amount INTEGER;
read offset INTEGER;
write amount INTEGER;
write offset INTEGER;
buffer VARCHAR2 (20) ;

BEGIN
-- At time tl:

SELECT ad sourcetext INTO clob updated FROM PRINT MEDIA
WHERE ad id = 20020
FOR UPDATE;

read amount := 10;

read offset := 1;

dbms_lob.read(clob updated, read amount, read offset, buffer);
dbms output.put line('clob updated value: ' || buffer);

-- Produces the output 'abcd'

-- At time t2:
clob copied := clob updated;

-- At time t3:
write amount := 3;
write offset := 5;
buffer := 'efg';

dbms lob.write(clob updated, write amount, write offset, buffer);

read amount := 10;
dbms_1lob.read(clob updated, read amount, read offset, buffer);
dbms output.put line('clob updated value: ' || buffer);

-- Produces the output 'abcdefg'
-- note that clob copied does not see the write made before
-- clob updated

-- At time t4:
read amount := 10;

14-10

Chapter 14
Read-Consistent Locators

dbms lob.read(clob copied, read amount, read offset, buffer);
dbms_output.put line('clob copied value: ' || buffer);
-- Produces the output 'abcd'

-- At time t5:

-- the insert uses clob copied view of the LOB value which does

-- not include clob updated changes

INSERT INTO PRINT MEDIA VALUES (2056, 20022, EMPTY BLOB(),
clob_copied, EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL)
RETURNING ad sourcetext INTO clob selected;

read amount := 10;
dbms_lob.read(clob selected, read amount, read offset, buffer);
dbms_output.put_line('clob_selected value: ' || buffer);
-- Produces the output 'abcd'
END;
/

14.2.7 Example of Deleting a LOB Using Locator

Learn about deleting a LOB with a PL/SQL bind variable in this section.

ORACLE

The following example illustrates that LOB content through a locator selected at a given point
of time is available even though the LOB is deleted in the same transaction.

In the following example, using table print media, two CLOBS are created as potential
locators:clob_selected and clob_copied.

Note these progressions in the example at times t1 through t3:

At the time of the first SELECT INTO (at t1), the value inad_sourcetext for ad_id value
20020 is associated with the locator clob_selected. The value in ad_sourcetext for ad id
value 20021 is associated with the locator clob copied.

The second operation (at t2) deletes the row with ad_id value 20020. However, a
DBMS LOB.READ () of the value through clob selected (at t1) reveals that it is a read-
consistent locator, continuing to refer to the same value as of the time of its SELECT.

The third operation (at t3), copies the LOB data read through clob selected into the LOB
clob copied. DBMS LOB.READ () of the value through clob selected and clob copied are
now the same and refer to the same value as of the time of SELECT of clob_selected.

INSERT INTO PRINT MEDIA VALUES (2056, 20020, EMPTY BLOB(),

'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

INSERT INTO PRINT MEDIA VALUES (2057, 20021, EMPTY BLOB(),

'cdef', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

DECLARE

clob selected CLOB;

clob copied CLOB;

buffer VARCHAR2 (20);

read amount INTEGER := 20;
read offset INTEGER := 1;

BEGIN

-- At time tl:

SELECT ad sourcetext INTO clob selected
FROM PRINT MEDIA
WHERE ad_id = 20020
FOR UPDATE;

14-11

Chapter 14
LOB Locators and Transaction Boundaries

SELECT ad_sourcetext INTO clob copied
FROM PRINT_ MEDIA
WHERE ad_id = 20021
FOR UPDATE;

dbms_lob.read(clob selected, read amount, read offset,buffer);
dbms_output.put line(buffer);
-- Produces the output 'abcd'

dbms lob.read(clob copied, read amount, read offset,buffer);
dbms_output.put line(buffer);
-- Produces the output 'cdef'

-- At time t2: Delete the CLOB associated with clob selected
DELETE FROM PRINT MEDIA WHERE ad id = 20020;

dbms_lob.read(clob _selected, read amount, read offset,buffer);
dbms_output.put line(buffer);
-- Produces the output 'abcd'

-- At time t3:

-- Copy using clob selected

dbms_lob.copy(clob copied, clob selected, 4000, 1, 1);

dbms lob.read(clob copied, read amount, read offset,buffer);
dbms_output.put line(buffer);

-- Produces the output 'abcd'

END;

/

14.3 LOB Locators and Transaction Boundaries

LOB locators can be used in transactions and transaction IDs.

ORACLE

¢ See Also:

LOB Locators and BFILE Locators for more information about LOB locators

Topics:

About LOB Locators and Transaction Boundaries

Read and Write Operations on a LOB Using Locators
Selecting the Locator Outside of the Transaction Boundary
Selecting the Locator Within a Transaction Boundary

LOB Locators Cannot Span Transactions

Example of Locator Not Spanning a Transaction

About LOB Locators and Transaction Boundaries

Read and Write Operations on a LOB Using Locators
Selecting the Locator Outside of the Transaction Boundary

Selecting the Locator Within a Transaction Boundary

14-12

Chapter 14
LOB Locators and Transaction Boundaries

e LOB Locators Cannot Span Transactions

« Example of Locator Not Spanning a Transaction

14.3.1 About LOB Locators and Transaction Boundaries

Note the following regarding LOB locators and transactions:

e Locators contain transaction IDs when:

You Begin the Transaction, Then Select Locator: If you begin a transaction and
subsequently select a locator, then the locator contains the transaction ID. Note that you
can implicitly be in a transaction without explicitly beginning one. For example, SELECT...
FOR UPDATE implicitly begins a transaction. In such a case, the locator contains a
transaction ID.

¢ Locators Do Not Contain Transaction IDs When...

— You are Outside the Transaction, Then Select Locator: By contrast, if you select a
locator outside of a transaction, then the locator does not contain a transaction ID.

— When Selected Prior to DML Statement Execution: A transaction ID is not assigned
until the first DML statement executes. Therefore, locators that are selected prior to
such a DML statement do not contain a transaction ID.

14.3.2 Read and Write Operations on a LOB Using Locators

You can always read LOB data using the locator irrespective of whether or not the locator
contains a transaction ID.

e Cannot Write Using Locator:

If the locator contains a transaction ID, then you cannot write to the LOB outside of that
particular transaction.

e Can Write Using Locator:

If the locator does not contain a transaction 1D, then you can write to the LOB after
beginning a transaction either explicitly or implicitly.

e Cannot Read or Write Using Locator With Serializable Transactions:

If the locator contains a transaction ID of an older transaction, and the current transaction
is serializable, then you cannot read or write using that locator.

e Can Read, Not Write Using Locator With Non-Serializable Transactions:

If the transaction is non-serializable, then you can read, but not write outside of that
transaction.

The examples Selecting the Locator Outside of the Transaction Boundary, Selecting the
Locator Within a Transaction Boundary, LOB Locators Cannot Span Transactions, and
Example of Locator Not Spanning a Transaction show the relationship between locators and
non-serializable transactions

14.3.3 Selecting the Locator Outside of the Transaction Boundary

Two scenarios describe techniques for using locators in non-serializable transactions when the
locator is selected outside of a transaction.

ORACLE 1413

Chapter 14
LOB Locators and Transaction Boundaries

First Scenario:

1.

N o g & e Dd

Select the locator with no current transaction. At this point, the locator does not contain a
transaction id.

Begin the transaction.

Use the locator to read data from the LOB.

Commit or rollback the transaction.

Use the locator to read data from the LOB.

Begin a transaction. The locator does not contain a transaction id.

Use the locator to write data to the LOB. This operation is valid because the locator did not
contain a transaction id prior to the write. After this call, the locator contains a transaction
id.

Second Scenario:

1.

® N o o

Select the locator with no current transaction. At this point, the locator does not contain a
transaction id.

Begin the transaction. The locator does not contain a transaction id.
Use the locator to read data from the LOB. The locator does not contain a transaction id.

Use the locator to write data to the LOB. This operation is valid because the locator did not
contain a transaction id prior to the write. After this call, the locator contains a transaction
id. You can continue to read from or write to the LOB.

Commit or rollback the transaction. The locator continues to contain the transaction id.
Use the locator to read data from the LOB. This is a valid operation.
Begin a transaction. The locator contains the previous transaction id.

Use the locator to write data to the LOB. This write operation fails because the locator
does not contain the transaction id that matches the current transaction.

14.3.4 Selecting the Locator Within a Transaction Boundary

Two scenarios describe techniques for using locators in non-serializable transactions when the
locator is selected within a transaction.

First Scenario:

1.
2.
3

ORACLE

Select the locator within a transaction. At this point, the locator contains the transaction id.
Begin the transaction. The locator contains the previous transaction id.

Use the locator to read data from the LOB. This operation is valid even though the
transaction id in the locator does not match the current transaction.

¢ See Also:

"Read-Consistent Locators" for more information about using the locator to read
LOB data.

14-14

Chapter 14
LOB Locators and Transaction Boundaries

4. Use the locator to write data to the LOB. This operation fails because the transaction id in
the locator does not match the current transaction.

Second Scenario:

1. Begin a transaction.

2. Select the locator. The locator contains the transaction id because it was selected within a
transaction.

3. Use the locator to read from or write to the LOB. These operations are valid.
4. Commit or rollback the transaction. The locator continues to contain the transaction id.

5. Use the locator to read data from the LOB. This operation is valid even though there is a
transaction id in the locator and the transaction was previously committed or rolled back.

6. Use the locator to write data to the LOB. This operation fails because the transaction id in
the locator is for a transaction that was previously committed or rolled back.

14.3.5 LOB Locators Cannot Span Transactions

Modifying a persistent LOB value through the LOB locator using DBMS LOB, OCI, or SQL
INSERT Or UPDATE statements changes the locator from a read-consistent locator to an updated
locator.

The INSERT or UPDATE statement automatically starts a transaction and locks the row. Once this
has occurred, the locator cannot be used outside the current transaction to modify the LOB
value. In other words, LOB locators that are used to write data cannot span transactions.
However, the locator can be used to read the LOB value unless you are in a serializable
transaction.

See Also:

"LOB Locators and Transaction Boundaries ", for more information about the
relationship between LOBs and transaction boundaries.

In Example of Locator Not Spanning a Transaction , a CLOB locator is created: clob updated

* At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is associated with
the locator clob_updated.

* The second operation (at t2), uses the DBMS LOB.WRITE function to alter the value in
clob updated, and a DBMS_LOB.READ reveals a new value.

* The commit statement (at t3) ends the current transaction.

* Therefore (at t4), the subsequent DBMS LOB.WRITE operation fails because the
clob_updated locator refers to a different (already committed) transaction. This is noted by
the error returned. You must re-select the LOB locator before using it in further DBMS LOB
(and OCI) modify operations.

14.3.6 Example of Locator Not Spanning a Transaction

The example uses the print media table described in "Table for LOB Examples: The PM
Schema print_media Table"

ORACLE Er

Chapter 14
LOBs in the Object Cache

INSERT INTO PRINT MEDIA VALUES (2056, 20010, EMPTY BLOB(),
'abcd', EMPTY CLOB(), EMPTY CLOB(), NULL, NULL, NULL, NULL);

COMMIT;
DECLARE
num var INTEGER;
clob updated CLOB;
read amount INTEGER;
read offset INTEGER;
write amount INTEGER;
write offset INTEGER;
buffer VARCHARZ (20) ;
BEGIN
-- At time tl:
SELECT ad_sourcetext
INTO clob updated
FROM PRINT MEDIA
WHERE ad_id = 20010
FOR UPDATE;
read amount := 10;

read offset := 1;

dbms_lob.read(clob updated, read amount, read offset, buffer);
dbms_output.put_line('clob_updated value: ' || buffer);

-- This produces the output 'abcd'

-- At time t2:

write amount := 3;

write offset := 5;

buffer := 'efg';

dbms lob.write(clob updated, write amount, write offset, buffer);
read amount := 10;

dbms_lob.read(clob updated, read amount, read offset, buffer);
dbms_output.put_line('clob_updated value: ' || buffer);

-- This produces the output 'abcdefg'

-- At time t3:
COMMIT;

-- At time t4:
dbms lob.write(clob updated , write amount, write offset, buffer);
-- ERROR: ORA-22990: LOB locators cannot span transactions
END;

14.4 LOBs in the Object Cache

ORACLE

When you copy one object to another in the object cache with a LOB locator attribute, only the
LOB locator is copied.

This means that the LOB attribute in these two different objects contain exactly the same
locator which refers to one and the same LOB value. Only when the target object is flushed is
a separate, physical copy of the LOB value made, which is distinct from the source LOB value.

14-16

Chapter 14
Terabyte-Size LOB Support

See Also:

"Example of Updating LOBs and Read-Consistency" for a description of what version
of the LOB value is seen by each object if a write is performed through one of the
locators.

Therefore, in cases where you want to modify the LOB that was the target of the copy, you
must flush the target object, refresh the target object, and then write to the LOB through
the locator attribute.

Consider these object cache issues for internal and external LOB attributes:

Persistent LOB attributes: Creating an object in object cache, sets the LOB attribute to
empty.

When you create an object in the object cache that contains a persistent LOB attribute, the
LOB attribute is implicitly set to empty. You may not use this empty LOB locator to write
data to the LOB. You must first flush the object, thereby inserting a row into the table and
creating an empty LOB — that is, a LOB with 0 length. Once the object is refreshed in the
object cache (use OCI_PIN LATEST), the real LOB locator is read into the attribute, and you
can then call the OCI LOB API to write data to the LOB.

External LOB (BFILE) attributes: Creating an object in object cache, sets the BFILE
attribute to NULL.

When creating an object with an external LOB (BFILE) attribute, the BFILE is set to NULL. It
must be updated with a valid directory object name and file name before reading from the
BFILE.

14.5 Terabyte-Size LOB Support

Terabyte-size LOBs are LOBs that are up to a maximum size of 8 to 128 terabytes depending
on database block size.

Topics:

About Terabyte-Size LOB Support

Maximum Storage Limit for Terabyte-Size LOBs

Using Terabyte-Size LOBs with JDBC

Using Terabyte-Size LOBs with the DBMS_LOB Package
Using Terabyte-Size LOBs with OCI

About Terabyte-Size LOB Support

Maximum Storage Limit for Terabyte-Size LOBs

Using Terabyte-Size LOBs with JDBC

Using Terabyte-Size LOBs with the DBMS_LOB Package
Using Terabyte-Size LOBs with OCI

14.5.1 About Terabyte-Size LOB Support

Terabyte-size LOBs are supported by the following APlIs:

ORACLE

14-17

Chapter 14
Terabyte-Size LOB Support

e Java using JDBC (Java Database Connectivity)
e PL/SQL using the DBMS_LOB Package
e Cusing OCI (Oracle Call Interface)

You cannot create and use LOB instances of size greater than 4 gigabytes "terabyte-size
LOBs"— in the following programmatic environments:

e COBOL using the Pro*COBOL Precompiler

e Cor C++ using the Pro*C/C++ Precompiler

Note:

Oracle Database does not support BFILES larger than 2764-1 bytes (UBSMAXVAL in
OCI) in any programmatic environment. Any additional file size limit imposed by your
operating system also applies to BFILES.

14.5.2 Maximum Storage Limit for Terabyte-Size LOBs

ORACLE

In supported environments, you can create and manipulate LOBs that are up to the maximum
storage size limit for your database configuration.

Oracle Database lets you create tablespaces with block sizes different from the database block
size, and the maximum size of a LOB depends on the size of the tablespace blocks. CHUNK is a
parameter of LOB storage whose value is controlled by the block size of the tablespace in
which the LOB is stored.

Note:

The CHUNK parameter does not apply to SecureFiles. It is only used for BasicFiles
LOBs.

When you create a LOB column, you can specify a value for CHUNK, which is the number of
bytes to be allocated for LOB manipulation. The value must be a multiple of the tablespace
block size, or Oracle Database rounds up to the next multiple. (If the tablespace block size is
the same as the database block size, then CHUNK is also a multiple of the database block size.)

The maximum allowable storage limit for your configuration depends on the tablespace block
size setting, and is calculated as (4 gigabytes - 1) times the value obtained from

DBMS LOB.GETCHUNKSIZE Or OCILobGetChunkSize (). This value, in number of bytes for BLOBS or
number of characters for CLOBS, is actually less than the size of the CHUNK parameter due to
internal storage overhead. With the current allowable range for the tablespace block size from
2K to 32K, the storage limit ranges from 8 terabytes to 128 terabytes.

For example, suppose your database block size is 32K bytes and you create a tablespace with
a nonstandard block size of 8K. Further suppose that you create a table with a LOB column
and specify a CHUNK size of 16K (which is a multiple of the 8K tablespace block size). Then
the maximum size of a LOB in this column is (4 gigabytes - 1) * 16K.

14-18

Chapter 14
Terabyte-Size LOB Support

See Also:

e Oracle Database Administrator's Guide for details on the initialization parameter
setting for your database installation

¢ "CHUNK"

This storage limit applies to all LOB types in environments that support terabyte-size LOBs.
However, note that CLOB and NCLOB types are sized in characters, while the BLOB type is sized
in bytes.

14.5.3 Using Terabyte-Size LOBs with JDBC

You can use the LOB APIs included in the Oracle JDBC classes to access terabyte-size LOBs.

¢ See Also:

"Using Java (JDBC) to Work With LOBs"

14.5.4 Using Terabyte-Size LOBs with the DBMS_LOB Package

You can access terabyte-size LOBs with all APIs in the DBMS_LOB PL/SQL package.

Use DBMS_LOB.GETCHUNKSIZE to obtain the value to be used in reading and writing LOBs. The
number of bytes stored in a chunk is actually less than the size of the CHUNK parameter due to
internal storage overhead. The DBMS LOB.GET STORAGE LIMIT function returns the storage limit
for your database configuration. This is the maximum allowable size for LOBs. BLOBs are sized
in bytes, while CLOBs and NCLOBs are sized in characters.

¢ See Also:

Oracle Database PL/SQL Packages and Types Referencefor details on the
initialization parameter setting for your database installation.

14.5.5 Using Terabyte-Size LOBs with OCI

ORACLE

The Oracle Call Interface API provides a set of functions for operations on LOBs of all sizes.

0CILobGetChunkSize () returns the value, in bytes for BLOBS, or in characters for CLOBS, to be
used in reading and writing LOBs. For varying-width character sets, the value is the number of
Unicode characters that fit. The number of bytes stored in a chunk is actually less than the size
of the CHUNK parameter due to internal storage overhead. The function
OCILobGetStorageLimit () returns the maximum allowable size, in bytes, of internal LOBs in
the current database installation. If streaming mode is used, where the whole LOB is read,
there is no requirement to get the chunk size.

14-19

Chapter 14
Guidelines for Creating Gigabyte LOBs

See Also:

Oracle Call Interface Programmer's Guide for details about OCI functions that
support LOBs

14.6 Guidelines for Creating Gigabyte LOBs

To create gigabyte LOBs in supported environments, use the following guidelines to make use
of all available space in the tablespace for LOB storage:

e Single Data File Size Restrictions:

There are restrictions on the size of a single data file for each operating system. For
example, Solaris 2.5 only allows operating system files of up to 2 gigabytes. Hence, add
more data files to the tablespace when the LOB grows larger than the maximum allowed
file size of the operating system on which your Oracle Database runs.

¢« Set PCT INCREASE Parameter to Zero:

PCTINCREASE parameter in the LOB storage clause specifies the percent growth of the new
extent size. When a LOB is being filled up piece by piece in a tablespace, numerous new
extents get created in the process. If the extent sizes keep increasing by the default value
of 50 percent every time, then extents become unmanageable and eventually waste space
in the tablespace. Therefore, the PCTINCREASE parameter should be set to zero or a small
value.

e Set MAXEXTENTS to a Suitable Value or UNLIMITED:

The MAXEXTENTS parameter limits the number of extents allowed for the LOB column. A
large number of extents are created incrementally as the LOB size grows. Therefore, the
parameter should be set to a value that is large enough to hold all the LOBs for the
column. Alternatively, you could set it to UNLIMITED.

* Use a Large Extent Size:

For every new extent created, Oracle generates undo information for the header and other
metadata for the extent. If the number of extents is large, then the rollback segment can be
saturated. To get around this, choose a large extent size, say 100 megabytes, to reduce
the frequency of extent creation, or commit the transaction more often to reuse the space
in the rollback segment.

e Creating a Tablespace and Table to Store Gigabyte LOBs

14.6.1 Creating a Tablespace and Table to Store Gigabyte LOBs

ORACLE

The following example illustrates how to create a tablespace and table to store gigabyte LOBs.

CREATE TABLESPACE lobtbsl DATAFILE '/your/own/data/directory/lobtbs 1.dat'
SIZE 2000M REUSE ONLINE NOLOGGING DEFAULT STORAGE (MAXEXTENTS UNLIMITED) ;
ALTER TABLESPACE lobtbsl ADD DATAFILE
'/your/own/data/directory/lobtbs 2.dat' SIZE 2000M REUSE;

CREATE TABLE print media backup
(product id NUMBER(6),
ad_id NUMBER(6),
ad composite BLOB,
ad sourcetext CLOB,
ad finaltext CLOB,

14-20

Chapter 14
Guidelines for Creating Gigabyte LOBS

ad fltextn NCLOB,

ad_textdocs ntab textdoc tab,

ad _photo BLOB,

ad_graphic BLOB,

ad_header adheader typ)

NESTED TABLE ad textdocs ntab STORE AS textdocs nestedtabd

LOB (ad_sourcetext) STORE AS (TABLESPACE lobtbsl CHUNK 32768 PCTVERSION 0
NOCACHE NOLOGGING
STORAGE (INITIAL 100M NEXT 100M MAXEXTENTS
UNLIMITED PCTINCREASE 0));

Note the following with respect to this example:

e The storage clause in this example is specified in the CREATE TABLESPACE statement.
* You can specify the storage clause in the CREATE TABLE statement as an alternative.
* The storage clause is not allowed in the CREATE TEMPORARY TABLESPACE statement.

* Setting the PCTINCREASE parameter to O is recommended for gigabyte LOBs. For small, or
medium size lobs, the default PCTINCREASE value of 50 is recommended as it reduces the
number of extent allocations.

ORACLE 1401

Performance Guidelines

There are performance guidelines for applications that use LOB data types.
¢ LOB Performance Guidelines

e Moving Data to LOBs in a Threaded Environment

* LOB Access Statistics

e LOB Performance Guidelines

e Moving Data to LOBs in a Threaded Environment

« LOB Access Statistics

15.1 LOB Performance Guidelines

There are various performance guidelines that apply to applications that use LOB data types.
Al LOBs

e Persistent LOBs

e Temporary LOBs

Related Topics

Al LOBs

e Persistent LOBs

e Temporary LOBs

15.1.1 Al LOBs

This section explains guidelines for using LOBs.

¢ Chunk Size

* LOB Pre-fetching
LOB pre-fetching allows to preview initial part of the data or use LOB locator interface to
access the stored data

¢ Small LOBs
Oracle Database allow LOBs to use Data Interface for read and write operations provided
the LOB size is smaller than the available buffer size.

* Large LOBs
Related Topics
e Chunk Size
* LOB Pre-fetching
* Small LOBs
* Large LOBs

ORACLE 151

Chapter 15
LOB Performance Guidelines

15.1.1.1 Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB when
creating the table that contains the LOB.

This corresponds to the data size used by Oracle Database when accessing or modifying the
LOB value. Part of the chunk is used to store system-related information and the rest stores
the LOB value. The API you are using has a function that returns the amount of space used in
the LOB chunk to store the LOB value. In PL/SQL use DBMS LOB.GETCHUNKSIZE. In OCI, use
OCILobGetChunkSize (). For SecureFiles, the usable data area of the tablespace block size is
returned.

15.1.1.2 LOB Pre-fetching

LOB pre-fetching allows to preview initial part of the data or use LOB locator interface to
access the stored data

LOB pre-fetching allows to perform the following operations:

e Preview the initial part of the data

* Use the locator interface to access the stored data
Related Topics

* Prefetching of LOB Data, Length, and Chunk Size

* Prefetching LOBs to Improve Performance

15.1.1.3 Small LOBs

Oracle Database allow LOBs to use Data Interface for read and write operations provided the
LOB size is smaller than the available buffer size.

Oracle Database allow LOBs to use Data Interface for data read and write operations if the
LOB size is smaller than the available buffer size.

Related Topics

« Data Interface for Persistent LOBs
15.1.1.4 Large LOBs

Starting from Oracle Database 19c release, piecewise or callback mechanism can be used for
OCIlLobRead and OCILobWrite operations.

15.1.2 Persistent LOBs

* Performance Guidelines for Small BasicFiles LOBs

* General Performance Guidelines for BasicFiles LOBs
Related Topics

* Performance Guidelines for Small BasicFiles LOBs

* General Performance Guidelines for BasicFiles LOBs

ORACLE 5o

Chapter 15
LOB Performance Guidelines

15.1.2.1 Performance Guidelines for Small BasicFiles LOBs

If most LOBs in your database tables are small in size, use these guidelines.

For LOBs in your database tables that are 8K bytes or less, with only a few rows containing
LOBs larger than 8K bytes, then use these guidelines to maximize database performance:

Use ENABLE STORAGE IN ROW.

Set the DB BLOCK_SIZE initialization parameter to 8K bytes and use a chunk size of 8K
bytes.

See Also:

LOB Storage Parameters for more information on tuning other parameters such
as CACHE, PCTVERSION, and CHUNK for the LOB segment

15.1.2.2 General Performance Guidelines for BasicFiles LOBs

You can achieve maximum performance with BasicFiles LOBs.

Use these guidelines for maximum performance with BasicFiles LOBs:

ORACLE

When Possible, Read/Write Large Data Chunks at a Time:

Because LOBs are big, you can obtain the best performance by reading and writing large
pieces of a LOB value at a time. This helps in several respects:

1. If accessing the LOB from the client side and the client is at a different node than the
server, then large reads/writes reduce network overhead.

2. If using the NOCACHE option, then each small read/write incurs an 1/0. Reading/writing
large quantities of data reduces the I/O.

3. Writing to the LOB creates a new version of the LOB chunk. Therefore, writing small
amounts at a time incurs the cost of a new version for each small write. If logging is on,
then the chunk is also stored in the redo log.

Use 0CILobRead?2 () and OCILobWrite2 () with Callback:

So that data is streamed to and from the LOB. Ensure the length of the entire write is set in
the amount parameter on input. Whenever possible, read and write in multiples of the LOB
chunk size.

Use a Checkout/Check-in Model for LOBs:
LOBs are optimized for the following operations:
— SQL UpDATE which replaces the entire LOB value

— Copy the entire LOB data to the client, modify the LOB data on the client side, copy
the entire LOB data back to the database. This can be done using 0CILobRead2() and

OCILobWrite2() with streaming.

Commit changes frequently.

15-3

Chapter 15
LOB Performance Guidelines

15.1.3 Temporary LOBs

In addition to the guidelines described in "LOB Performance Guidelines" on LOB performance
in general, here are some guidelines for using temporary LOBSs:

ORACLE

Use PGA memory to store temporary LOBs for improved performance.

Use a separate temporary tablespace for temporary LOB storage instead of the default
system tablespace

This avoids device contention when copying data from persistent LOBs to temporary
LOBs.

If you use the newly provided enhanced SQL semantics functionality in your applications,
then there are many more temporary LOBs created silently in SQL and PL/SQL than
before. Ensure that temporary tablespace for storing these temporary LOBs is large
enough for your applications. In particular, these temporary LOBs are silently created
when you use the following:

— SQL functions on LOBs

— PL/SQL built-in character functions on LOBs

— Variable assignments from VARCHAR2/RAW t0 CLOBS/BLOBS, respectively.
— Perform a LONG-to-LOB migration

If SQL operators are used on LOBs, the PGA memory and temporary tablespace must be
large enough to accommodate the temporary LOBs generated by SQL operators.

Free up temporary LOBs returned from SQL queries and PL/SQL programs

In PL/SQL, C (OCl), Java and other programmatic interfaces, SQL query results or
PL/SQL program executions return temporary LOBs for operation/function calls on LOBs.
For example:

SELECT substr (CLOB Column, 4001, 32000) FROM ...
If the query is executed in PL/SQL, then the returned temporary LOBs are automatically

freed at the end of a PL/SQL program block. You can also explicitly free the temporary
LOBs at any time. In OCI and Java, the returned temporary LOB must be explicitly freed.

Without proper deallocation of the temporary LOBs returned from SQL queries, temporary
tablespace is filled and you may observe performance degradation.

In PL/SQL, use NOCOPY to pass temporary LOB parameters by reference whenever
possible.

¢ See Also:

Oracle Database PL/SQL Language Referencefor more information on passing
parameters by reference and parameter aliasing

Take advantage of buffer cache on temporary LOBs.

Temporary LOBs created with the CACHE parameter set to true move through the buffer
cache. Otherwise temporary LOBs are read directly from, and written directly to, disk.

For optimal performance, temporary LOBs use reference on read, copy on write
semantics. When a temporary LOB locator is assigned to another locator, the physical LOB
data is not copied. Subsequent READ operations using either of the LOB locators refer to

15-4

ORACLE

Chapter 15
LOB Performance Guidelines

the same physical LOB data. On the first WRITE operation after the assignment, the
physical LOB data is copied in order to preserve LOB value semantics, that is, to ensure
that each locator points to a unique LOB value. This performance consideration mainly
applies to the PL/SQL and OCI environments.

In PL/SQL, reference on read, copy on write semantics are illustrated as follows:

LOCATOR1 BLOB;
LOCATOR2 BLOB;
DBMS LOB.CREATETEMPORARY (LOCATORI,TRUE,DBMS LOB.SESSION) ;

-- LOB data is not copied in this assignment operation:
LOCATOR2 := LOCATOR;

-- These read operations refer to the same physical LOB copy:
DBMS LOB.READ (LOCATORL, ...);

DBMS LOB.GETLENGTH (LOCATORZ, ...);

-- A physical copy of the LOB data is made on WRITE:
DBMS LOB.WRITE (LOCATOR2, ...);

In OCI, to ensure value semantics of LOB locators and data, 0OCILobLocatorAssign () is
used to copy temporary LOB locators and the LOB Data. 0OCILobLocatorAssign () does
not make a round trip to the server. The physical temporary LOB copy is made when LOB
updates happen in the same round trip as the LOB update API as illustrated in the
following:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOCl, ... TRUE,OCI DURATION SESSION);

/* No round-trip is incurred in the following call. */
OCILobLocatorAssign(... LOCl, LOC2);

/* Read operations refer to the same physical LOB copy. */
OCILobRead2 (... LOCL ...)

/* One round-trip is incurred to make a new copy of the
* LOB data and to write to the new LOB copy.
*/

OCILobWrite2 (... LOC1l ...)

/* LOC2 does not see the same LOB data as LOCl. */
OCILobRead2 (... LOC2 ...)

If LOB value semantics are not intended, then you can use C pointers to achieve reference
semantics as illustrated in the following:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOCl, ... TRUE,OCI DURATION SESSION);

/* Pointer is copied. LOCl and LOC2 refer to the same LOB data. */
LOC2 = LOC1;

/* Write to LOC2. */
OCILobWrite2 (...LOC2...)

/* LOCl sees the change made to LOC2. */
OCILobRead2(...LOCl...)

15-5

Chapter 15
Moving Data to LOBs in a Threaded Environment

* Use OCI_OBJECT mode for temporary LOBs

To improve the performance of temporary LOBs on LOB assignment, use OCI_OBJECT
mode for 0OCILobLocatorAssign (). In 0CI_OBJECT mode, the database tries to minimize the
number of deep copies to be done. Hence, after 0CILobLocatorAssign () is done on a
source temporary LOB in 0CI_0BJECT mode, the source and the destination locators point
to the same LOB until any modification is made through either LOB locator.

15.2 Moving Data to LOBs in a Threaded Environment

There are two possible procedures that you can use to move data to LOBs in a threaded
environment, one of which should be avoided.

Recommended Procedure

Note:

e There is no requirement to create an empty LOB in this procedure.

* You can use the RETURNING clause as part of the INSERT/UPDATE statement to
return a locked LOB locator. This eliminates the need for doing a SELECT-FOR-
UPDATE, as mentioned in step 3.

The recommended procedure is as follows:

1. INSERT an empty LOB, RETURNING the LOB locator.

2. Move data into the LOB using this locator.

3. COMMIT. This releases the ROW locks and makes the LOB data persistent.

Alternatively, you can insert more than 4000 bytes of data directly for the LOB columns or LOB
attributes.

Procedure to Avoid

The following sequence requires a new connection when using a threaded environment,
adversely affects performance, and is not recommended:

1. Create an empty (non-NULL) LOB

2. Perform INSERT using the empty LOB

3. SELECT-FOR-UPDATE of the row just entered
4. Move data into the LOB
5

COMMIT. This releases the ROW locks and makes the LOB data persistent.

15.3 LOB Access Statistics

ORACLE

After Oracle Database 10g Release 2, three session-level statistics specific to LOBs are
available to users: LOB reads, LOB writes, and LOB writes unaligned.

Session statistics are accessible through the VSMYSTAT, V$SESSTAT, and V$SYSSTAT dynamic
performance views. To query these views, the user must be granted the privileges

15-6

Chapter 15
LOB Access Statistics

SELECT CATALOG ROLE, SELECT ON SYS.V_$MYSTAT view, and SELECT ON SYS.V_$STATNAME
view.

LOB reads is defined as the number of LOB API read operations performed in the session/
system. A single LOB API read may correspond to multiple physical/logical disk block reads.

LOB writes is defined as the number of LOB API write operations performed in the session/
system. A single LOB API write may correspond to multiple physical/logical disk block writes.

LOB writes unaligned is defined as the number of LOB API write operations whose start offset
or buffer size is not aligned to the internal chunk size of the LOB. Writes aligned to chunk
boundaries are the most efficient write operations. The internal chunk size of a LOB is
available through the LOB API (for example, using PL/SQL, by DBMS LOB.GETCHUNKSIZE ()).

The following simple example demonstrates how LOB session statistics are updated as the
user performs read/write operations on LOBs.

It is important to note that session statistics are aggregated across operations to all LOBs
accessed in a session; the statistics are not separated or categorized by objects (that is, table,
column, segment, object numbers, and so on).

In these examples, you reconnect to the database for each demonstration to clear the
VSMYSTAT. This enables you to see how the lob statistics change for the specific operation you
are testing, without the potentially obscuring effect of past LOB operations within the same
session.

¢ See also:

Oracle Database Reference, appendix E, "Statistics Descriptions"

e Example of Retrieving LOB Access Statistics

15.3.1 Example of Retrieving LOB Access Statistics

ORACLE

This example demonstrates retrieving LOB access statistics.

rem
rem Set up the user
rem

CONNECT / AS SYSDBA;

SET ECHO ON;

GRANT SELECT_CZ—\TALOG_ROLE TO pm;
GRANT SELECT ON sys.v_Smystat TO pm;
GRANT SELECT ON sys.v_$statname TO pm;

rem
rem Create a simplified view for statistics queries
rem

CONNECT pm;
SET ECHO ON;

DROP VIEW mylobstats;

CREATE VIEW mylobstats

AS

SELECT SUBSTR(n.name,1,20) name,

15-7

ORACLE

Chapter 15
LOB Access Statistics

m.value value
FROM vSmystat m,
véstatname n
WHERE m.statistic# = n.statistic#
AND n.name LIKE 'lob%';

rem
rem Create a test table
rem

DROP TABLE t;
CREATE TABLE t (i NUMBER, c CLOB)
lob(c) STORE AS (DISABLE STORAGE IN ROW) ;

rem
rem Populate some data

rem

rem This should result in unaligned writes, one for
rem each row/lob populated.

rem

CONNECT pm

SELECT * FROM mylobstats;

INSERT INTO t VALUES (1, 'a');

INSERT INTO t VALUES (2, rpad('a',4000,'a'"));
COMMIT;

SELECT * FROM mylobstats;

rem
rem Get the lob length

rem

rem Computing lob length does not read lob data, no change
rem in read/write stats.

rem

CONNECT pm;

SELECT * FROM mylobstats;
SELECT LENGTH (c) FROM t;
SELECT * FROM mylobstats;

rem
rem Read the lobs

rem

rem Lob reads are performed, one for each lob in the table.
rem

CONNECT pm;

SELECT * FROM mylobstats;
SELECT * FROM t;

SELECT * FROM mylobstats;

rem
rem Read and manipulate the lobs (through temporary lobs)
rem

rem The use of complex operators like "substr()" results in

rem the implicit creation and use of temporary lobs. operations
rem on temporary lobs also update lob statistics.
rem

CONNECT pm;

SELECT * FROM mylobstats;
SELECT substr(c, length(c), 1) FROM t;

15-8

ORACLE

SELECT substr(c, 1, 1) FROM t;
SELECT * FROM mylobstats;

rem
rem Perform some aligned overwrites

rem

rem Only lob write statistics are updated because both the
rem byte offset of the write, and the size of the buffer
rem being written are aligned on the lob chunksize.

rem

CONNECT pm;
SELECT * FROM mylobstats;
DECLARE
loc CLOB;
buf LONG;
chunk NUMBER;
BEGIN
SELECT c INTO loc FROM t WHERE i = 1
FOR UPDATE;

chunk := DBMS LOB.GETCHUNKSIZE (loc);
buf := rpad('b', chunk, 'b');

-- aligned buffer length and offset
DBMS LOB.WRITE (loc, chunk, 1, buf);
DBMS LOB.WRITE (loc, chunk, l+chunk, buf);
COMMIT;
END;
/
SELECT * FROM mylobstats;

rem
rem Perform some unaligned overwrites

rem

rem Both lob write and lob unaligned write statistics are

rem updated because either one or both of the write byte offset
rem and buffer size are unaligned with the lob's chunksize.

rem

CONNECT pm;
SELECT * FROM mylobstats;
DECLARE
loc CLOB;
buf LONG;
BEGIN
SELECT c INTO loc FROM t WHERE i = 1
FOR UPDATE;

buf := rpad('b', DBMS LOB.GETCHUNKSIZE (loc), 'b');

-- unaligned buffer length
DBMS LOB.WRITE (loc, DBMS LOB.GETCHUNKSIZE (loc)-1, 1, buf);

-- unaligned start offset
DBMS LOB.WRITE (loc, DBMS LOB.GETCHUNKSIZE (loc), 2, buf);

-- unaligned buffer length and start offset
DBMS LOB.WRITE (loc, DBMS LOB.GETCHUNKSIZE (loc)-1, 2, buf);

COMMIT;
END;

Chapter 15
LOB Access Statistics

15-9

Chapter 15
LOB Access Statistics

/

SELECT * FROM mylobstats;
DROP TABLE t;

DROP VIEW mylobstats;

CONNECT / AS SYSDBA

REVOKE SELECT CATALOG ROLE FROM pm;
REVOKE SELECT ON sys.v_$mystat FROM pm;
REVOKE SELECT ON sys.v_$statname FROM pm;

QUIT;

ORACLE’ 1510

LOB Administration

This part introduces Large Objects (LOBs) and discusses general concepts for using them in
your applications.

This part contains these chapters:

* Managing LOBs: Database Administration

e Migrating Applications from LONGs to LOBs

e Managing LOBs: Database Administration
You must perform various administrative tasks to set up, maintain, and use a database that
contains LOBs.

e Migrating Columns from LONGs to LOBs

ORACLE

Managing LOBs: Database Administration

You must perform various administrative tasks to set up, maintain, and use a database that
contains LOBs.

Topics:

» Database Utilities for Loading Data into LOBs
e Temporary LOB Management

e BFILEs Management

* Changing Tablespace Storage for a LOB

e Managing LOB Signatures

Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to Relocating a
PDB Using CREATE PLUGGABLE DATABASE.

e Database Utilities for Loading Data into LOBs
Certain utilities are recommended for bulk loading data into LOB columns as part of
database setup or maintenance tasks.

 Temporary LOB Management
The database keeps track of temporary LOBSs in each session, and the application can
determine which user owns the temporary LOB by using the session ID.

 BFILEs Management
You need to perform various administrative tasks to manage databases that contain
BFILES.

e Changing Tablespace Storage for a LOB
Database administrators use certain techniques to change the default storage for a LOB.

e Managing LOB Signatures

16.1 Database Utilities for Loading Data into LOBSs

Certain utilities are recommended for bulk loading data into LOB columns as part of database
setup or maintenance tasks.

The following utilities are recommended for bulk loading data into LOB columns as part of
database setup or maintenance tasks:

e SQL*Loader

e Oracle Data Pump

ORACLE o

Chapter 16
Database Utilities for Loading Data into LOBs

Note:

Application Developers: If you are loading data into a LOB in your application, then
using the LOB APIs is recommended. See Using LOB APIs .

About Using SQL*Loader to Load LOBs
There are two general techniques for using SQL*Loader to load data into LOBs

About Using SQL*Loader to Populate a BFILE Column
You can load data from files in the file system into a BFILE column.

About Using Oracle Data Pump to Transfer LOB Data
You can use Oracle Data Pump to transfer LOB data from one database to another.

16.1.1 About Using SQL*Loader to Load LOBs

There are two general techniques for using SQL*Loader to load data into LOBs

ORACLE

You can use SQL*Loader to load data into LOBs in these ways:

Loading data from a primary data file

Loading from a secondary data file using LOB files

Consider the following issues when loading LOBs with SQL*Loader:

For SQL*Loader conventional path loads, failure to load a particular LOB does not result in
the rejection of the record containing that LOB; instead, the record ends up containing an
empty LOB.

For SQL*Loader direct-path loads, the LOB could be empty or truncated. LOBs are sent in
pieces to the server for loading. If there is an error, then the LOB piece with the error is
discarded and the rest of that LOB is not loaded. In other words, if the entire LOB with the
error is contained in the first piece, then that LOB column is either empty or truncated.

When loading from LOB files, specify the maximum length of the field corresponding to a
LOB-type column. If the maximum length is specified, then it is taken as a hint to help
optimize memory usage. It is important that the maximum length specification does not
underestimate the true maximum length.

When using SQL*Loader direct-path load, loading LOBs can take up substantial memory. If
the message "SQL*Loader 700 (out of memory)" appears when loading LOBS, then
internal code is probably batching up more rows in each load call than can be supported by
your operating system and process memory. A work-around is to use the ROWS option to
read a smaller number of rows in each data save.

You can also use the Direct Path API to load LOBs.

Using LOB files is recommended when loading columns containing XML data in CLOBS or
XMLType columns. Consider the following validation criteria for XML documents in
determining whether to use direct-path load or conventional path load with SQL*Loader:

— If the XML document must be validated upon loading, then use conventional path load.

— Ifitis not necessary to ensure that the XML document is valid, or if you can safely
assume that the XML document is valid, then you can perform a direct-path load.
Direct-path load performs better because you avoid the overhead of XML validation.

A conventional path load executes SQL INSERT statements to populate tables in an Oracle
database.

16-2

Chapter 16
Database Utilities for Loading Data into LOBS

A direct-path load eliminates much of the Oracle database overhead by formatting Oracle
data blocks and writing the data blocks directly to the database files. Additionally, it does
not compete with other users for database resources, so it can usually load data at near
disk speed. Considerations inherent to direct path loads, such as restrictions, security, and
backup implications, are discussed in Oracle Database Ultilities.

e Tables to be loaded must already exist in the database. SQL*Loader never creates tables.
It loads existing tables that either contain data or are empty.

e The following privileges are required for a load:
— You must have INSERT privileges on the table to be loaded.

— You must have DELETE privileges on the table to be loaded, when using the REPLACE or
TRUNCATE option to empty out the old data before loading the new data in its place.

See Also:
* Oracle Call Interface Programmer's Guide for more information about
Direct Path API

* Oracle Database Ultilities for more information about using SQL*Loader
to load LOBs

16.1.2 About Using SQL*Loader to Populate a BFILE Column

You can load data from files in the file system into a BFILE column.

You can load data from files in the file system into a BFILE column.

See Also:

"Supported Environments for BFILE APIs"

Note that the BFILE data type stores unstructured binary data in operating system files outside
the database. A BFILE column or attribute stores a file locator that points to a server-side
external file containing the data.

Note:

A particular file to be loaded as a BFILE does not have to actually exist at the time of
loading.

SQL*Loader assumes that the necessary DIRECTORY objects have been created.

ORACLE 62

ORACLE

Chapter 16
Database Utilities for Loading Data into LOBs

See Also:

See "Directory Objects" and the sections following it for more information on creating
directory objects

A control file field corresponding to a BFILE column consists of the column name followed by
the BFILE directive.

The BFILE directive takes as arguments a DIRECTORY object name followed by a BFILE name.
Both of these can be provided as string constants, or they can be dynamically sourced through
some other field.

See Also:

Oracle Database Utilities for details on SQL*Loader syntax

The following two examples illustrate the loading of BFILES.

Note:

You may be required to set up the following data structures for certain examples to
work (you are prompted for the password):

CONNECT system

Enter password:

Connected.

GRANT CREATE ANY DIRECTORY to samp;

CONNECT samp

Enter password:

Connected.

CREATE OR REPLACE DIRECTORY adgraphic photo as '/tmp';
CREATE OR REPLACE DIRECTORY adgraphic dir as '/tmp';

In the following example based on the "Table for LOB Examples: The PM Schema print_media
Table", only the file name is specified dynamically.

Control file:

LOAD DATA

INFILE sample9.dat

INTO TABLE Print media

FIELDS TERMINATED BY ','

(productiid INTEGER EXTERNAL (6),

FileName FILLER CHAR(30),

ad graphic BFILE(CONSTANT "modem graphic 2268 21001", FileName))

Data file:

007, modem 2268.7jpg,
008, monitor 3060.7jpg,
009, keyboard 2056.7jpg,

16-4

16.1.3 About Using Oracle Data Pump to Transfer LOB Data

You can use Oracle Data Pump to transfer LOB data from one database to another.

ORACLE

Note:

In the following example, the BFILE and the DIRECTORY objects are specified dynamically.

Control file:

LOAD DATA

INFILE samplel0O.dat

INTO TABLE Print media

FIELDS TERMINATED BY ','

(

product_id INTEGER EXTERNAL (6),

ad graphic BFILE (DirName, FileName),
FileName FILLER CHAR(30),

DirName FILLER CHAR(30)

)

Data file:

007, monitor 3060.jpg, ADGRAPHIC PHOTO,
008, modem 2268.93pg, ADGRAPHIC PHOTO,
009, keyboard 2056.]jpg, ADGRAPHIC DIR,

Note:

Oracle Data Pump can transfer LOB data from one database to another.

product ID defaults to (255) if a size is not specified. It is mapped to the file names
in the data file. ADGRAPHIC PHOTO is the directory where all files are stored.
ADGRAPHIC DIR is a DIRECTORY object created previously.

DirName FILLER CHAR (30) is mapped to the data file field containing the directory
name corresponding to the file being loaded.

Chapter 16
Database Utilities for Loading Data into LOBS

Beginning with Oracle Database 12c, Data Pump has an option to create all LOB columns as

SecureFiles LOBs.

" See Also:

"SecureFiles LOB Storage" for an introduction to SecureFiles LOBs

When Data Pump recreates tables, however, it recreates them as they existed in the source

database, by default. Therefore, if a LOB column was a BasicFiles LOB in the source

database, Data Pump attempts to recreate it as a BasicFiles LOB in the imported database.

You can force creation of LOBs as SecureFiles LOBs in the tables being recreated using a

16-5

Chapter 16
Temporary LOB Management

TRANSFORM parameter for the command line or a LOB_STORAGE parameter for the DBMS DATAPUMP
and DBMS METADATA packages.

< Note:

The transform name is not valid in transportable import.

See Also:

e Oracle Database Ultilities for specific table syntax used with SecureFiles LOBs

e Oracle Database Ultilities for details on using Oracle Data Pump

16.2 Temporary LOB Management

The database keeps track of temporary LOBs in each session, and the application can
determine which user owns the temporary LOB by using the session ID.

The database provides a v$ view called v$temporary lobs. As a database administrator, you
can use this view to monitor and guide any emergency cleanup of temporary space used by
temporary LOBs.

Temporary LOB data is stored in temporary tablespaces. As a database administrator, you
control data storage resources for temporary LOB data by controlling user access to temporary
tablespaces and by the creation of different temporary tablespaces.

See Also:

Oracle Database Administrator's Guide for details on managing temporary
tablespaces

16.3 BFILEs Management

ORACLE

You need to perform various administrative tasks to manage databases that contain BFILES.
Topics:

* Rules for Using Directory Objects and BFILES

e Setting Maximum Number of Open BFILEs

* Rules for Using Directory Objects and BFILEs
You can create a directory object or BFILE objects if these conditions are met.

e Setting Maximum Number of Open BFILEs
A limited number of BFILES can be open simultaneously in each session.

16-6

Chapter 16
Changing Tablespace Storage for a LOB

16.3.1 Rules for Using Directory Objects and BFILES

You can create a directory object or BFILE objects if these conditions are met.

When you create a directory object or BFILE objects, ensure that the following conditions are
met:

e The operating system file must not be a symbolic or hard link.

* The operating system directory path named in the Oracle DIRECTORY object must be an
existing operating system directory path.

* The operating system directory path named in the Oracle DIRECTORY object should not
contain any symbolic links in its components.

16.3.2 Setting Maximum Number of Open BFILEs

A limited number of BFILES can be open simultaneously in each session.

The initialization parameter, SESSION MAX OPEN FILES, defines an upper limit on the number of
simultaneously open files in a session.

The default value for this parameter is 10. Using this default, you can open a maximum of 10
files at the same time in each session. To alter this limit, the database administrator must
change the parameter value in the init.ora file. For example:

SESSION MAX OPEN FILES=20
If the number of unclosed files reaches the SESSION MAX OPEN FILES value, then you cannot

open additional files in the session. To close all open files, use the DBMS LOB.FILECLOSEALL
call.

16.4 Changing Tablespace Storage for a LOB

ORACLE

Database administrators use certain techniques to change the default storage for a LOB.

As the database administrator, you can use the following techniques to change the default
storage for a LOB after the table has been created:

* Using ALTER TABLE... MODIFY: You can change LOB tablespace storage as follows:

ALTER TABLE test MODIFY
LOB (lobl)
STORAGE
NEXT 4M
MAXEXTENTS 100
PCTINCREASE 50
)

16-7

Chapter 16
Managing LOB Signatures

Note:

The ALTER TABLE syntax for modifying an existing LOB column uses the MODIFY LOB
clause, not the LOB. ..STORE AS clause. The LOB...STORE AS clause is only for newly
added LOB columns.

There are two kinds of LOB storage clauses: LOB_storage clause and
modify LOB storage clause. Inthe ALTER TABLE MODIFY LOB Statement, you can
only specify the modify LOB storage clause.

e Using ALTER TABLE... MOVE: You can also use the MOVE clause of the ALTER TABLE
statement to change LOB tablespace storage. For example:

ALTER TABLE test MOVE
TABLESPACE tbsl
LOB (lobl, lob2)
STORE AS (
TABLESPACE tbs2
DISABLE STORAGE IN ROW);

16.5 Managing LOB Signatures

Starting from Oracle Database 19c release, you can configure signature-based security for
large object (LOB) locators using the LOB_SIGNATURE ENABLE initialization parameter.

» To enable signature, set the LOB SIGNATURE ENABLE initialization parameter at init.ora, or
using the following ALTER SYSTEM command. Also ensure that you have set the
compatibility to 12.2.0.2 or above.

ALTER SYSTEM SET LOB SIGNATURE ENABLE = [TRUE|FALSE];

* The following ALTER statement helps to encrypt, re-key, and delete the signature keys.
ALTER DATABASE DICTIONARY [ENCRYPT|REKEY|DELETE] CREDENTIALS;

For more information, refer to the Oracle Database Security Guide.

Related Topics

e Oracle Database Security Guide

ORACLE o

Migrating Columns from LONGs to LOBs

There are techniques for migrating tables that use LONG data types to LOB data types.
Topics:

* Benefits of Migrating LONG Columns to LOB Columns

* Preconditions for Migrating LONG Columns to LOB Columns

» Determining how to Optimize the Application Using utldtree.sql

e Converting Tables from LONG to LOB Data Types

* Migrating Applications from LONGs to LOBs

¢ See Also:
For support for LOB data types in various programming environments:
— SQL Semantics and LOBs
— PL/SQL Semantics for LOBs

— Data Interface for Persistent LOBs

* Benefits of Migrating LONG Columns to LOB Columns

e Preconditions for Migrating LONG Columns to LOB Columns

* Determining how to Optimize the Application Using utldtree.sql
e Converting Tables from LONG to LOB Data Types

e Migrating Applications from LONGs to LOBs

17.1 Benefits of Migrating LONG Columns to LOB Columns

There are many benefits to migrating table columns from LONG data types to LOB data types.

¢ Note:
You can use various techniques to do either of the following:
e Convert columns of type LONG to either CLOB or NCLOB columns
e Convert columns of type LONG RAW to BLOB type columns

Unless otherwise noted, discussions in this chapter regarding LONG to LOB
conversions apply to both of these data type conversions.

ORACLE 17-1

Chapter 17
Preconditions for Migrating LONG Columns to LOB Columns

These items compare the semantics of LONG and LOB data types in various application
development scenarios:

e The number of LONG type columns is limited. Any given table can have a maximum of only
one LONG type column. The number of LOB type columns in a table is not limited.

17.2 Preconditions for Migrating LONG Columns to LOB
Columns

Various preconditions must be met before converting a LONG column to a LOB column.

* Dropping a Domain Index on a LONG Column Before Converting to a LOB

* Preventing Generation of Redo Space on Tables Converted to LOB Data Types

See Also:

"Migrating Applications from LONGs to LOBs" before converting your table to
determine whether any limitations on LOB columns prevent you from converting to
LOBs.

17.2.1 Dropping a Domain Index on a LONG Column Before Converting to a
LOB

Any domain index on a LONG column must be dropped before converting the L.ONG column to
LOB column.

¢ See Also:

Rebuilding Indexes on Columns Converted from LONG to LOB Data Types

17.2.2 Preventing Generation of Redo Space on Tables Converted to LOB
Data Types

Generation of redo space can cause performance problems during the process of converting
LONG columns. Redo changes for the table are logged during the conversion process only if the
table has LOGGING on.

Redo changes for the column being converted from LONG to LOB are logged only if the storage
characteristics of the LOB column indicate LOGGING. The logging setting (LOGGING or
NOLOGGING) for the LOB column is inherited from the tablespace in which the LOB is created.

To prevent generation of redo space during migration, do the following before migrating your
table (syntax is in BNF):

1. ALTER TABLE Long tab NOLOGGING;

ORACLE 17-2

Chapter 17
Determining how to Optimize the Application Using utldtree.sq|

2. ALTER TABLE Long tab MODIFY (long col CLOB [DEFAULT <default val>]) LOB
(long col) STORE AS (NOCACHE NOLOGGING) ;

Note that you must also specify NOCACHE when you specify NOLOGGING in the STORE AS
clause.

3. ALTER TABLE Long tab MODIFY LOB (long col) (CACHE);
4. ALTER TABLE Long_tab LOGGING;

5. Make a backup of the tablespaces containing the table and the LOB column.

17.3 Determining how to Optimize the Application Using
utldtree.sql

When you migrate your table from LONG to LOB column types, in PL/SQL, certain parts of your
application may require rewriting. You can use the utility, rdbms/admin/utldtree.sql, to
determine which parts.

The utldtree.sql utility enables you to recursively see all objects that are dependent on a
given object. For example, you can see all objects which depend on a table with a LONG
column. You can only see objects for which you have permission.

Instructions on how to use utldtree.sql are documented in the file itself. Also, utldtree.sql
is only needed for PL/SQL. For SQL and OCI, you have no requirement to change your
applications.

17.4 Converting Tables from LONG to LOB Data Types

There are various issues and techniques for migrating existing tables from LONG to LOB data
types.

Topics:

e Migration Issues

e Using ALTER TABLE to Convert LONG Columns to LOB Columns

e Copying a LONG to a LOB Column Using the TO_LOB Operator

* Online Redefinition of Tables with LONG Columns where high availability is critical
* Migrating LOBs with Data Pump when you can convert using this utility

e Migration Issues

e Using ALTER TABLE to Convert LONG Columns to LOB Columns

e Copying a LONG to a LOB Column Using the TO_LOB Operator

* Online Redefinition of Tables with LONG Columns

e Migrating LOBs with Data Pump
Oracle Data Pump can either recreate tables as they are in your source database, or
recreate LOB columns as SecureFile LOBs.

17.4.1 Migration Issues

General issues concerning migration include the following:

ORACLE 17-3

Chapter 17
Converting Tables from LONG to LOB Data Types

* All constraints of your previous LONG columns are maintained for the new LOB columns.
The only constraint allowed on LONG columns are NULL and NOT NULL. To alter the
constraints for these columns, or alter any other columns or properties of this table, you
have to do so in a subsequent ALTER TABLE Statement.

e If you do not specify a default value, then the default value for the LONG column becomes
the default value of the LOB column.

* Most of the existing triggers on your table are still usable, however UPDATE OF triggers can
cause issues.

¢ See Also:
Migrating Applications from LONGs to LOBs

17.4.2 Using ALTER TABLE to Convert LONG Columns to LOB Columns

ORACLE

You can use the ALTER TABLE statement in SQL to convert a LONG column to a LOB column.

To do so, use the following syntax:

ALTER TABLE [<schema>.]<table name>
MODIFY (<long_column name> { CLOB | BLOB | NCLOB }
[DEFAULT <default_value>]) [LOB_storage clause];

For example, if you had a table that was created as follows:

CREATE TABLE Long tab (id NUMBER, long col LONG);

then you can change the column long col in table Long tab to data type CLOB using following
ALTER TABLE statement:

ALTER TABLE Long tab MODIFY (long col CLOB);

Note:

The ALTER TABLE statement copies the contents of the table into a new space, and
frees the old space at the end of the operation. This temporarily doubles the space
requirements.

Note that when using the ALTER TABLE statement to convert a LONG column to a LOB column,
only the following options are allowed:

e DEFAULT which enables you to specify a default value for the LOB column.

* The LOB storage clause, which enables you to specify the LOB storage characteristics for
the converted column, can be specified in the MODIFY clause.

Other ALTER TABLE options are not allowed when converting a LONG column to a LOB type
column.

17-4

Chapter 17
Converting Tables from LONG to LOB Data Types

17.4.3 Copying a LONG to a LOB Column Using the TO_LOB Operator

If you do not want to use ALTER TABLE, then you can use the TO LOB operator on a LONG column
to copy it to a LOB column. You can use the CREATE TABLE AS SELECT statement or the INSERT
AS SELECT statement with the TO_LOB operator to copy data from a LONG column to a CLOB or
NCLOB column, or from a LONG RAW column to a BLOB column. For example, if you have a table
with a LONG column that was created as follows:

CREATE TABLE Long tab (id NUMBER, long col LONG) ;

then you can do the following to copy the column to a LOB column:

CREATE TABLE Lob tab (id NUMBER, clob col CLOB);
INSERT INTO Lob tab SELECT id, TO LOB(long col) FROM long tab;
COMMIT;

If the INSERT returns an error (because of lack of undo space), then you can incrementally
migrate LONG data to the LOB column using the WHERE clause. After you ensure that the data is
accurately copied, you can drop the original table and create a view or synonym for the new
table using one of the following sequences:

DROP TABLE Long tab;

CREATE VIEW Long tab (id, long col) AS SELECT * from Lob_ tab;
or

DROP TABLE Longitab;

CREATE SYNONYM Long tab FOR Lob tab;

This series of operations is equivalent to changing the data type of the column Long col of
table Long_tab from LONG to CLOB. With this technique, you have to re-create any constraints,
triggers, grants and indexes on the new table.

Use of the TO_LOB operator is subject to the following limitations:
* You can use TO LOB to copy data to a LOB column, but not to a LOB attribute of an object

type.

* You cannot use TO LOB with a remote table. For example, the following statements do not
work:

INSERT INTO tbl@dblink (lob col) SELECT TO LOB(long col) FROM tb2;
INSERT INTO tbl (lob col) SELECT TO LOB(long col) FROM tb2@dblink;
CREATE TABLE tbl AS SELECT TO LOB(long col) FROM tb2@dblink;

* The TO_LOB operator cannot be used in the CREATE TABLE AS SELECT statement to convert a
LONG or LONG RAW column to a LOB column when creating an index organized table.

To work around this limitation, create the index organized table, and then do an INSERT AS
SELECT of the LONG or LONG RAW column using the TO LOB operator.

* You cannot use TO LOB inside any PL/SQL block.

17.4.4 Online Redefinition of Tables with LONG Columns

Tables with LONG and LONG RAW columns can be migrated using online table redefinition. This
technique is suitable for migrating LONG columns in database tables where high availability is
critical.

ORACLE 17-5

ORACLE

Chapter 17
Converting Tables from LONG to LOB Data Types

To use this technique, you must convert LONG columns to LOB types during the redefinition
process as follows:

e Any LONG column must be converted to a CLOB or NCLOB column.
* Any LONG RAW column must be converted to a BLOB column.

This conversion is performed using the TO LOB () operator in the column mapping of the
DBMS REDEFINITION.START REDEF TABLE () procedure.

Note:

You cannot perform online redefinition of tables with LONG or LONG RAW columns unless
you convert the columns to LOB types as described in this section.

General tasks involved in the online redefinition process are given in the following list. Issues
specific to converting LONG and LONG RAW columns are called out. See the related
documentation referenced at the end of this section for additional details on the online
redefinition process that are not described here.

« Create an empty interim table. This table holds the migrated data when the redefinition
process is done. In the interim table:

— Define a CLOB or NCLOB column for each LONG column in the original table that you are
migrating.

— Define a BL0OB column for each 1LONG RAW column in the original table that you are
migrating.

» Start the redefinition process. To do so, call DBMS_REDEFINITION.START REDEF TABLE and
pass the column mapping using the T0 LOB operator as follows:

DBMS REDEFINITION.START REDEF TABLE (
'schema name',
'original table',
'interim table',
'TO_LOB(long col name) lob col name',
'options flag',
'orderby cols');

where Iong col name is the name of the LONG or LONG RAW column that you are converting
in the original table and lob col name is the name of the LOB column in the interim table.
This LOB column holds the converted data.

» Call the DBMS REDEFINITION.COPY TABLE DEPENDENTS procedure as described in the
related documentation.

» Call the DBMS_REDEFINITION.FINISH REDEF TABLE procedure as described in the related
documentation.

Parallel Online Redefinition

On a system with sufficient resources for parallel execution, redefinition of a LONG column to a
LOB column can be executed in parallel under the following conditions:

In the case where the destination table is non-partitioned:

17-6

ORACLE

Chapter 17
Converting Tables from LONG to LOB Data Types

e The segment used to store the LOB column in the destination table belongs to a locally
managed tablespace with Automatic Segment Space Management (ASSM) enabled,
which is now the default.

e There is a simple mapping from one LONG column to one LOB column, and the destination
table has only one LOB column.

In the case where the destination table is partitioned, the normal methods for parallel execution
for partitioning apply. When the destination table is partitioned, then online redefinition is
executed in parallel.

Example of Online Redefinition
The following example demonstrates online redefinition with LOB columns.

REM Grant privileges required for online redefinition.
GRANT execute ON DBMS_REDEFINITION TO pm;

GRANT ALTER ANY TABLE TO pm;

GRANT DROP ANY TABLE TO pm;

GRANT LOCK ANY TABLE TO pm;

GRANT CREATE ANY TABLE TO pm;

GRANT SELECT ANY TABLE TO pm;

REM Privileges required to perform cloning of dependent objects.
GRANT CREATE ANY TRIGGER TO pm;
GRANT CREATE ANY INDEX TO pm;

connect pm/passwd

drop table cust;
create table cust(c_id number primary key,
c_zip number,
c name varchar (30) default null,
c_long long
)i
insert into cust values(l, 94065, 'hhh', 'ttt');

-- Creating Interim Table
-- There is no requirement to specify constraints because they are
-- copied over from the original table.
create table cust int(c id number not null,
c zip number,
c _name varchar (30) default null,

c_long clob
)i
declare
col mapping varchar2(1000);
BEGIN

-- map all the columns in the interim table to the original table
col mapping :=

'c_id c id , 'l
'c zip c zip , 'l
'c_name c name, '||

'to lob(c long) c long';

dbms redefinition.start redef table('pm', 'cust', 'cust int', col mapping);
END;
/
declare
error count pls integer := 0;

17-7

Chapter 17
Converting Tables from LONG to LOB Data Types

BEGIN
dboms redefinition.copy table dependents('pm', 'cust', 'cust int',
1, true, true, true, false,
error_count);

dbms_output.put_line('errors := ' || to_char(error count));
END;
/

exec dbms redefinition.finish redef table('pm', 'cust', 'cust int');

-- Drop the interim table
drop table cust int;

desc cust;

-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id column is
-- preserved after migration.

insert into cust values (1, 94065, 'hhh', 'ttt');

select * from cust;

Note:
Related documentation provides additional details on the redefinition process:

* Oracle Database Administrator's Guide gives detailed procedures and examples
of redefining tables online.

* Oracle Database PL/SQL Packages and Types Reference includes information
on syntax and other details on usage of procedures in the DBMS REDEFINITION
package.

17.4.5 Migrating LOBs with Data Pump

Oracle Data Pump can either recreate tables as they are in your source database, or recreate
LOB columns as SecureFile LOBs.

When Oracle Data Pump recreates tables, by default, it recreates them as they existed in the
source database. Therefore, if a LOB column was a BasicFiles LOB in the source database,
Oracle Data Pump attempts to recreate it as a BasicFile LOB in the imported database.
However, you can force creation of LOBs as SecureFile LOBs in the recreated tables by using
a TRANSFORM parameter for the command line, or by using a LOB_STORAGE parameter for the
DBMS DATAPUMP and DBMS METADATA packages.

Example:

impdp system/manager directory=dpump dir schemas=lobuser dumpfile=lobuser.dmp
transform=lob storage:securefile

ORACLE 17-8

Chapter 17
Migrating Applications from LONGs to LOBs

Note:

The transform name is not valid in transportable import.

¢ See Also:
TRANSFORM for using TRANSFORM parameter to convert to SecureFile LOBs

Restrictions on Migrating LOBs with Data Pump

You can't use SecureFile LOBs in non-ASSM tablespace. If the source database contains LOB
columns in a tablespace that does not support ASSM, then you'll see an error message when
you use Oracle Data Dump to recreate the tables using the securefile clause for LOB columns.

To import non-ASSM tables with LOB columns, run another import for these tables without
using TRANSFORM=LOB_STORAGE : SECUREFILE.

Example:

impdp system/manager directory=dpump dir schemas=lobuser dumpfile=lobuser.dmp

17.5 Migrating Applications from LONGs to LOBs

There are differences between LONG and LOB data types that may impact your application
migration plans or require you to modify your application.

e About Migrating Applications from Longs to LOBs

* LOB Columns Are Not Allowed in Clustered Tables

e LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers

e Rebuilding Indexes on Columns Converted from LONG to LOB Data Types
* Empty LOBs Compared to NULL and Zero Length LONGs

e Overloading with Anchored Types

« Some Implicit Conversions Are Not Supported for LOB Data Types

17.5.1 About Migrating Applications from Longs to LOBs

ORACLE

Most APIs that work with LONG data types in the PL/SQL and OCI environments are enhanced
to also work with LOB data types.

These APIs are collectively referred to as the data interface for persistent LOBs, or simply the
data interface. Among other things, the data interface provides the following benefits:

* Changes needed are minimal in PL/SQL and OCI applications that use tables with
columns converted from LONG to LOB data types.

* You can work with LOB data types in your application without having to deal with LOB
locators.

17-9

Chapter 17
Migrating Applications from LONGs to LOBs

See Also:

— Data Interface for Persistent LOBs for details on PL/SQL and OCI APIs
included in the data interface.

— SQL Semantics and LOBs for details on SQL syntax supported for LOB data
types.

— PL/SQL Semantics for LOBs for details on PL/SQL syntax supported for LOB
data types.

17.5.2 LOB Columns Are Not Allowed in Clustered Tables

LOB columns are not allowed in clustered tables, whereas 1L.ONGs are allowed. If a table is a
part of a cluster, then any LONG or LONG RAW column cannot be changed to a LOB column.

17.5.3 LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers

You cannot have LOB columns in the UPDATE OF list of an AFTER UPDATE OF trigger. LONG
columns are allowed in such triggers. For example, the following create trigger statement is not
valid:

CREATE TABLE t(lobcol CLOB);
CREATE TRIGGER trig AFTER UPDATE OF lobcol ON t ...;

All other triggers work on LOB columns.

17.5.4 Rebuilding Indexes on Columns Converted from LONG to LOB Data

Types

ORACLE

Indexes on any column of the table being migrated must be manually rebuilt after converting
any LONG column to a LOB column. This includes function-based indexes.

Any function-based index on a LONG column is unusable during the conversion process and
must be rebuilt after converting. Application code that uses function-based indexing should
work without modification after converting.

Note that, any domain indexes on a LONG column must be dropped before converting the LONG
column to LOB column. You can rebuild the domain index after converting.

To rebuild an index after converting, use the following steps:

1. Select the index from your original table as follows:

SELECT index_name FROM user_indexes WHERE table_name:'LONG_TAB';

Note:

The table name must be capitalized in this query.

2. For the selected index, use the command:

17-10

Chapter 17
Migrating Applications from LONGs to LOBs

ALTER INDEX <index> REBUILD

17.5.5 Empty LOBs Compared to NULL and Zero Length LONGs

A LOB column can hold an empty LOB. An empty LOB is a LOB locator that is fully initialized,
but not populated with data. Because 1L.ONG data types do not use locators, the empty concept
does not apply to LONG data types.

Both LOB column values and 1LONG column values, inserted with an initial value of NULL or an
empty string literal, have a NULL value. Therefore, application code that uses NULL or zero-
length values in a LONG column functions exactly the same after you convert the column to a
LOB type column.

In contrast, a LOB initialized to empty has a non-NULL value as illustrated in the following
example:

CREATE TABLE long_tab(id NUMBER, long col LONG);
CREATE TABLE lob tab(id NUMBER, lob col CLOB);

INSERT INTO long tab values (1, NULL);

REM A zero length string inserts a NULL into the LONG column:
INSERT INTO long tab values(l, '');

INSERT INTO lob tab values(l, NULL);

REM A zero length string inserts a NULL into the LOB column:
INSERT INTO lob tab values(l, '');

REM Inserting an empty LOB inserts a non-NULL value:
INSERT INTO lob tab values(l, empty clob());

DROP TABLE long tab;
DROP TABLE lob tab;

17.5.6 Overloading with Anchored Types

ORACLE

For applications using anchored types, some overloaded variables resolve to different targets
during the conversion to LOBs. For example, given the procedure p overloaded with
specifications 1 and 2:

procedure p(l long) is ...; -- (specification 1)
procedure p(c clob) is ...; -- (specification 2)

and the procedure call:

declare
var longtab.longcol%type;
BEGIN
p(var);
END;

Prior to migrating from LONG to LOB columns, this call would resolve to specification 1. Once
longtab is migrated to LOB columns this call resolves to specification 2. Note that this would
also be true if the parameter type in specification 1 were a CHAR, VARCHAR2, RAW, LONG RAW.

17-11

Chapter 17
Migrating Applications from LONGs to LOBs

If you have migrated you tables from LONG columns to LOB columns, then you must manually
examine your applications and determine whether overloaded procedures must be changed.

Some applications that included overloaded procedures with LOB arguments before migrating
may still break. This includes applications that do not use LONG anchored types. For example,
given the following specifications (1 and 2) and procedure call for procedure p:

procedure p(n number) is ...; -- (1)
procedure p(c clob) is ...; -- (2)
p('123"); -- procedure call

Before migrating, the only conversion allowed was CHAR to NUMBER, SO specification 1 would be
chosen. After migrating, both conversions are allowed, so the call is ambiguous and raises an
overloading error.

17.5.7 Some Implicit Conversions Are Not Supported for LOB Data Types

PL/SQL permits implicit conversion from NUMBER, DATE, ROW_ID, BINARY INTEGER, and
PLS INTEGER data types to a LONG; however, implicit conversion from these data types to a LOB
is not allowed.

If your application uses these implicit conversions, then you have to explicitly convert these
types using the TO_CHAR operator for character data or the T0_RaW operator for binary data. For
example, if your application has an assignment operation such as:

number var := long var; -- The RHS is a LOB variable after converting.

then you must modify your code as follows:

number var := TO CHAR(long var);
-- Assuming that long var is of type CLOB after conversion

The following conversions are not supported for LOB types:
° BLOB to VARCHAR2, CHAR, Of LONG
* CLOB to RAW Or LONG RAW

This applies to all operations where implicit conversion takes place. For example if you have a
SELECT statement in your application as follows:

SELECT long raw column INTO my varchar2 VARIABLE FROM my table

and long raw column iS a BLOB after converting your table, then the SELECT statement
produces an error. To make this conversion work, you must use the TO_RAW operator to
explicitly convert the BLOB to a RAW as follows:

SELECT TO RAW(long raw column) INTO my varchar2 VARIABLE FROM my table

The same holds for selecting a CLOB into a RAW variable, or for assignments of CLOB to RAW and
BLOB to VARCHAR?2.

ORACLE 17-12

Oracle File System (OFS) Server

The OFS server is a new background process that will be created as part of instance startup
and it will contain several pools of Oracle threads to work as file system server threads. The
main job of this background process is to manage the worker threads.

This part contains the following chapters:

e Introducing Network File System (NFS)
e Using OFS

e Introducing Network File System (NFS)

e Using OFS
The OFS implementation includes creating and accessing the file system and managing it.

ORACLE

Introducing Network File System (NFS)

NFS protocol is a widely used file system protocol to access storage across network.

Note:

Oracle objects exported through OFS server can be accessed by NFS clients by
mounting them on the client machines

Topics:
e Prerequisites to Access Storage Through NFS Server
¢ NFS Security

* Accessing OFS with an NFS Account
You can export an OFS mount to a specified list of nodes and NFS mount it on them. This
allows users to access the contents of an OFS mount point from a node where the
database is not running. The NFS exports may not work in cloud environments due to
security reasons, but you can use it in on-premise environments.

* Prerequisites to Access Storage Through NFS Server
* NFS Security

18.1 Accessing OFS with an NFS Account

You can export an OFS mount to a specified list of nodes and NFS mount it on them. This
allows users to access the contents of an OFS mount point from a node where the database is
not running. The NFS exports may not work in cloud environments due to security reasons, but
you can use it in on-premise environments.

NFS v3 is a stateless protocol because of which it encapsulates each readdir request
between opendir and releasedir calls. This may lead to poor performance when you want to
list directories that have a large number of files. Therefore, OFS maintains a directory cache
which persists across the opendir and releasedir calls. Do not use the no_rbt cache mount
option to avoid inconsistent directory cache listing and to utilize the benefits of directory cache.

18.2 Prerequisites to Access Storage Through NFS Server

The prerequisites to access storage through NFS server are as follows:

» DBFS file system must be created before using OFS.
* You should be able to mount the file systems exported by the database.

* NFS server must be configured with KERNEL module.

ORACLE a1

Chapter 18
NFS Security

Note:

The KERNEL module is supported through FUSE driver for Linux.

18.3 NFS Security

Starting from Oracle Database 12c Release 2 (12.2.0.1), OFS will use the OS authentication
model to authorize NFS client users. If the user is accessing a local node (where the Oracle
instance is running), the access to each file in the file system is controlled through Unix
Access Control List set for each object. On Linux, OFS uses FUSE to receive file system
requests from the OS kernel or NFS client. This requires user allow other parameter to be
setin /etc/fuse.cont configuration file if an OS user other than the root user and oracle user
need to access the file system.

Note:

Users can also be configured with an Oracle password to log into Oracle client tools
like sQL* Plus to execute SQL's.

If the network is not secure, the customer is advised to setup Kerberos to authenticate the user
using OS NFS.

Note:
e The Kerberos authentication is available from NFS version 4 onwards. If the OFS
is exported via NFS version 3, the authentication is performed using AUTH_SYS.

» For local node, the authentication is performed using AUTH SYS irrespective of
how the OFS is exported (NFS version 3 or NFS version 4).

This section contains the following topic:
e About Kerberos

e About Kerberos
Kerberos uses encryption technology, Key Distribution Center (KDC), and an arbitrator to
perform secure authentication on open networks.

e Configuring Kerberos Server
To configure a Kerberos Server in a Linux system:

18.3.1 About Kerberos

ORACLE

Kerberos uses encryption technology, Key Distribution Center (KDC), and an arbitrator to
perform secure authentication on open networks.

Kerberos is the widely used security mechanism that provides all three flavors of security:

e Authentication

18-2

Chapter 18
NFS Security

e Integrity check
e Privacy

Kerberos Infrastructure consists of Kerberos software, secured authentication servers,
centralized account and password store, and systems configured to authenticate through the
Kerberos protocol. The OS NFS server handles the complete authentication and integrity
checks by using kerberos principal name as the user name. Once the authentication is
performed, the requests passed to the Oracle kernel are handled based on the user name
passed through the VFS 1/O request.

18.3.2 Configuring Kerberos Server

To configure a Kerberos Server in a Linux system:

1. Install Kerberos software in the Linux system.

2. Check if the daemons are running using the following commands.

/sbin/chkconfig krb5kdc on
/sbin/chkconfig kadmin on

3. If the daemons are not running use the following commands to start the daemons
manually:

/etc/rc.d/init.d/krb5kdc start
/etc/rc.d/init.d/kadmin start

4. Add user principal using the kadmin.local command.

Example:

kadmin.local: addprinc <scott>

ORACLE 182

Using OFS

The OFS implementation includes creating and accessing the file system and managing it.
Topics:

* About OFS
Oracle File Server (OFS) addresses the need to store PDB specific scripts, logs, trace files
and other files produced by running an application in the database.

* About Oracle File Server Process
OFS manages the database file system using a non-fatal and dedicated background
process called Oracle File Server Deamon (OFSD).

e Limitations of using OFS

e OFS Configuration Parameters
The following table specifies the parameter that can be tuned to provide file system access
for database objects using OFS.

e Managing DBFS Locally Using FUSE
Understand how you can manage DBFS using Filesystem in User Space (FUSE).

* OFS Client Interface
The OFS interface includes views and procedures that support OFS operations.

19.1 About OFS

Oracle File Server (OFS) addresses the need to store PDB specific scripts, logs, trace files and
other files produced by running an application in the database.

Additionally, you can use OFS for the following tasks:

e As a staging area where you can host the source data before it is loaded into database
tables.

e To store import or export files from Oracle Data Pump process.

Ensure that you do not place core database files such as data, redo, archive log files, and
database trace file on OFS as this can produce a dependency cycle and cause the system to
hang. Similarly, the diagnostic_dest initialization parameter that sets the location of the
automatic diagnostic repository should not point to a directory inside OFS.

OFS provides methods and procedures to allow you to create a Database file system using
storage that is part of the PDB. You can mount the created file system, unmount it like any
other Unix file system using PL/SQL procedures, and destroy the file system when it is no
longer in use. When the PDB is destroyed, the file system is also destroyed, which frees up the
underlying storage space.

19.2 About Oracle File Server Process

OFS manages the database file system using a non-fatal and dedicated background process
called Oracle File Server Deamon (OFSD).

ORACLE 1o

Chapter 19
About Oracle File Server Process

For more information about background process, see Background Processes in the Database
Reference guide.

When an instance starts, the OFSD process gets spawned on operating system platforms,
such as Linux, where OFS is supported. OFSD is multi-threaded and non-fatal. It serves both
file system management requests and file requests from each mounted file system.

The centralized server background process model of OFS allows multiple file systems to be
mounted and accessed using a limited set of server threads. It allows better resource sharing
and a linear scalability with new file server threads created on demand. Both memory and CPU
used by these threads are controlled through system wide parameters set in the RDBMS
instance.

OFSD process starts two types of threads: receiver thread and worker thread. The receiver
thread receives requests from the mounted file system. The name of this thread name is
similar to of01. The requests received by this thread are placed in a submit queue which is
served by different worker threads. The submit queue is hash partitioned to efficiently distribute
the incoming requests across all the worker threads. By default, OFSD starts 3 worker threads.
You can update the value of the OFS_THREADS parameter to increase the number of worker

thread.
Oracle Database Instance
ofsd
Sentinel Thread
Oracle File Server Deamon (OFSD)
File Requests ———— of 01 Worker
| Thread
Receiving Thread Pool
File Request Queue
FUSE Q0 | RqO Rgl Rg2 Rgn of00
mount
point
Q1 | RgO Rqg1 Rqg2 Rgn of02
Q2 | RqgO Rq1 Rqgz2 Rgn > of03
Q12| RqO Rgl Rg2 Rgn ofnn
€—————— Completed Requests I

OFSD supports these 2 types of file systems: DBFS and OFS.

Use the DBMS_FS PL/SQL procedures to create, mount, and work with the file systems
managed by the OFSD process.

ORACLE Lo

Chapter 19
Limitations of using OFS

OFSD uses a pool of worker threads to serve requests from multiple file systems that are
mounted on the instance. Use VSOFSMOUNT to query the mounted file systems. The response
that is returned is specific to each PDB. It lists only the file systems that are mounted in the
specified PDB.

19.3 Limitations of using OFS

Use of OFS is subjected to the following limitations:

* DBFS mounted with ASM storage shows wrong mount size.

e OFS mounted with local storage shows wrong mount size.

19.4 OFS Configuration Parameters

The following table specifies the parameter that can be tuned to provide file system access for
database objects using OFS.

Table 19-1 OFS Configuration Parameters

Parameter Name Description

OFS_THREADS Set the number of OFS worker threads to handle OFS requests. Enter an integer
value in the range of 3—128. The default value is 4.

Set the value for this parameter based on the total number of mounted file systems
and the rate at which file operations are performed in each file system.

Set this value after careful consideration as you can only increase this value
dynamically and you cannot decrease it. If you set a high value for OFS_THREADS,
then the specified number of threads are created. If there is no workload, these
threads remain in an idle state and wait for new work.

¢ Note:

The diagnostic_dest initialization parameter sets the location of the automatic
diagnostic repository. When you use dbfs_client or Oracle File Server (OFS) as the
file system server, ensure that this parameter does not point to a directory inside
dbfs client or OFS as this can produce a dependency cycle and cause the system
to hang.

19.5 Managing DBFS Locally Using FUSE

ORACLE

Understand how you can manage DBFS using Filesystem in User Space (FUSE).

The FUSE interface in the Linux kernel makes the file systems available to the operating
system processes. After mounting the file system, you can export it, and then NFS mount it on
other nodes where client applications can access this file system.

e Configuring FUSE
OFSD exposes the database file system through FUSE. Before using OFSD to mount the
database file systems, you must install and configure the FUSE module.

19-3

Chapter 19
Managing DBFS Locally Using FUSE

* Accessing OFS in Cloud
To access files from an OFS mounted on any Cloud environment, you must perform
additional steps to configure the environment.

19.5.1 Configuring FUSE

OFSD exposes the database file system through FUSE. Before using OFSD to mount the
database file systems, you must install and configure the FUSE module.

If you are running your database instance in a Compute node, configure the FUSE module in
that node. The file system gets mounted and is visible through a mounted path on the compute
node. In a RAC configuration, configure FUSE in each node, so that the OFS file systems can
be mounted independently in each node.

To configure the FUSE module in Cloud or on-premises environment, where the database
instance is running:

1. Setread and execute permissions for an Oracle user to use the FUSE executable file,
fusermount.

sudo chmod o+rx /usr/bin/fusermount
Use the fusermount file to mount and unmount the FUSE user mode file systems.

2. Setthe setuid bit on the fusermount file to permit an Oracle user to mount file systems.
sudo chmod u+s /usr/bin/fusermount

3. Permit other users to access the mounted file system.
sudo sh -c ''echo user allow other >> /etc/fuse.conf''

4. Optional. By default, the maximum number of file systems that you can mount using FUSE
is 1000. If you are running a large number of PDBs and need to configure a separate file
system for each PDB, then run the following command to increase the number of file
systems that can be mounted using FUSE. The following command increases the number
of file systems that can be mounted using FUSE to 4000.

sudo sh -c ''echo mount max=4000 >> /etc/fuse.conf"'

5. Allow all users to read the fuse.conf file, so that the Oracle process can read this file at
run time.

sudo chmod a+r /etc/fuse.conf

19.5.2 Accessing OFS in Cloud

ORACLE

To access files from an OFS mounted on any Cloud environment, you must perform additional
steps to configure the environment.

To access files in an OFS mount in the Cloud environment, you may need to perform additional
configuration. It may not be possible to export the OFS mount point from database node to
client node due to security reasons. This may hinder client applications from accessing OFS
files through operating system commands and utilities and the OFS mount path may not be
available to access using system calls. In such situations, Oracle recommends that you use

19-4

Chapter 19
OFS Client Interface

the utl file package to access files in the OFS mount. For information about UTL file
package, see Summary of UTL_FILE Subprograms in PL/SQL Packages and Types
Reference.

You can also use the impdp and expdp command-line clients to access files in the OFS mount.
See Oracle Data Pump Import and Oracle Data Pump Export in the Utilities guide.

To configure the environment so that client applications in Cloud can access files in an OFS:
1. Create a directory object using the OFS mount path.
The following sample code displays how you can create a directory object called
pdbl ofsdir when /u03/dbfs/<pdbid>/data is the OFS mount directory on the db node.
CREATE DIRECTORY pdbl ofsdir AS '/u03/dbfs/<pdbid>/data/';

2. Grant access to the user to access the directory object.

For more information on creating a directory object and setting access permissions on it,
see CREATE DIRECTORY in PL/SQL Packages and Types Reference.

Do not access the OFS files by directly querying or modifying the DBFS tables. Do not use
dbfs client when the DBFS file system is mounted through OFS or else it could lead to
metadata and data inconsistency. To access the OFS files, use the UTL FILE package in
addition to the procedures listed in the DBMS FS package.

19.6 OFS Client Interface

The OFS interface includes views and procedures that support OFS operations.
Topics:

- DBMS_FS Package
Use the DBMS_FS package to manage the file systems. Use the procedures in this package
to create, mount, unmount and destroy a file system in the Oracle Database.

* Views for OFS
The views that support OFS operations start with V$0FS.

19.6.1 DBMS_FS Package

Use the DBMS_FS package to manage the file systems. Use the procedures in this package to
create, mount, unmount and destroy a file system in the Oracle Database.

PDBs can submit these jobs using the PL/SQL procedure and they are executed serially by the
OFSD process.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
Oracle OFS procedures.

ORACLE Lo

Chapter 19
OFS Client Interface

The following example illustrates the use of DBMS_FS package.

BEGIN
DBMS_FS.MAKE ORACLE FS (
fstype => 'dbfs',
fsname => 'dbfs fsl',
mount options => 'TABLESPACE=dbfs fsl tbspc');
END;
/
BEGIN
DBMS_FS.MOUNT ORACLE FS (
fstype => 'dbfs',
fsname => 'dbfs fsl',
mount point => '/oracle/dbfs/testfs’,
mount options => 'default permissions, allow other');
END;
/

[**kkkkkkkkkkkk Now you can access the file system. All the FS operations go
here ***************/

BEGIN
DBMS FS.UNMOUNT ORACLE FS (
fsname => 'dbfs fsl',
mount point => '/oracle/dbfs/testfs’,
mount options => 'force');
END;
/
BEGIN
DBMS FS.DESTROY ORACLE FS (
fstype => 'dbfs',
fsname => 'dbfs fsl');
END;
/

19.6.2 Views for OFS

ORACLE

The views that support OFS operations start with V$0FS.

Table 19-2 Fixed Views for OFS

. __|
View Description

VS$OFSMOUNT Query this view to retrieve details about the file systems that are mounted by
Oracle File System. For information about the columns and data types of this
view, see VSOFSMOUNT in Oracle Database Reference.

VSOFS_STATS Query this view to list the number of times each file operation has been called
for a mount point. For information about the columns and data types of this
view, see VSOFS_STATS in Oracle Database Reference.

19-6

Database File System (DBFS)

ORACLE

This part covers issues that you must consider when designing applications that use Database
File System (DBFS) and DBFS content stores. Note: In most situations, the DBFS requires
SecureFiles LOBs, which are discussed in Using Oracle LOB Storage. SecureFiles is the
default storage mechanism for LOBs starting with Oracle Database 12c.

This part contains these chapters:

e Introducing the Database File System
* DBFS SecureFiles Store

* DBFS Hierarchical Store

 DBFS Content API

e Creating Your Own DBFS Store

e Using DBFS

* Introducing the Database File System

» DBFS SecureFiles Store
There are certain procedures for setting up and using a DBFS SecureFiles Store.

» DBFS Hierarchical Store
The DBFS Hierarchical Store and related store wallet management work together to store
less frequently used data.

 DBFS Content API
You can enable applications to use the Database File System (DBFS) in several different
programming environments.

e Creating Your Own DBFS Store
e Using DBFS

Introducing the Database File System

Topics:
e Why a Database File System?
e What Is Database File System (DBFS)?

« What Is a Content Store?

* Why a Database File System?
Conceptually, a database file system is a file system interface placed on top of files and
directories that are stored in database tables.

* What Is Database File System (DBFS)?
Database File System (DBFS) creates a standard file system interface on top of files and
directories that are stored in database tables.

« What Is a Content Store?
A content store is a collection of documents.

20.1 Why a Database File System?

Conceptually, a database file system is a file system interface placed on top of files and
directories that are stored in database tables.

Applications commonly use the standard SQL data types, BLOBS and CLOBS, to store and
retrieve files in the Oracle Database, files such as medical images, invoice images,
documents, videos, and other files. Oracle Database provides much better security, availability,
robustness, transactional capability, and scalability than traditional file systems. Files stored in
the database along with relational data are automatically backed up, synchronized to the
disaster recovery site using Data Guard, and recovered together.

Database File System (DBFS) is a feature of Oracle Database that makes it easier for users to
access and manage files stored in the database. With this interface, access to files in the
database is no longer limited to programs specifically written to use BLOB and CLOB
programmatic interfaces. Files in the database can now be transparently accessed using any
operating system (OS) program that acts on files. For example, ETL (extraction,
transformation, and loading) tools can transparently store staging files in the database and file-
based applications can benefit from database features such as Maximum Availability
Architecture (MAA) without any changes to the applications.

20.2 What Is Database File System (DBFS)?

ORACLE

Database File System (DBFS) creates a standard file system interface on top of files and
directories that are stored in database tables.

Database File System (DBFS) creates a standard file system interface using a server and
clients.

* About DBFS
e DBFS Server

20-1

Chapter 20
What Is Database File System (DBFS)?

DBFS Client

About DBFS
DBFS is similar to NFS in that it provides a shared network file system that looks like a
local file system and has both a server component and a client component.

DBFS Server
In DBFS, the file server is the Oracle database.

DBFS Client
For client systems, the Database File System offers several access methods.

20.2.1 About DBFS

DBFS is similar to NFS in that it provides a shared network file system that looks like a local
file system and has both a server component and a client component.

At the core of DBFS is the DBFS Content API, a PL/SQL interface in the Oracle Database. It
connects to the DBFS Content SPI, a programmatic interface which allows for the support of
different types of storage.

At the programming level, the client calls the DBFS Content API to perform a specific function,
such as delete a file. The DBFS Content API delete file function then calls the DBFS Content
SPI to perform that function.

In a user-defined DBFS, the user must implement a delete function based on the specifications
in the DBFS Content SPI, along with other functions in the specification.

Figure 20-1 Database File System (DBFS)

OcCl
LOB
Interface
A
Java
LOB
Interf
File System DBFS DBFS [rertace
Command
Mount Line Interface PL/SQL
Interface - Client PL/SQL
Client
LOB
* * Interface
‘ DBFS V¥
Links
DBFS Content API —p M
DBFS Content SPI — iEyuE
DBFS DBFS i User
SecureFile Hierarchical| : Defined :
Store Store : Store

i
ﬁ_l

Cloud
Storage

I NN

::

ORACLE 0.2

Chapter 20
What Is Database File System (DBFS)?

20.2.2 DBFS Server

In DBFS, the file server is the Oracle database.

Files are stored as SecureFiles LOBs in database tables. An implementation of a file system in
the database is called a DBFS content store, for example, the DBFS SecureFiles Store. A
DBFS content store allows each database user to create one or more file systems that can be
mounted by clients. Each file system has its own dedicated tables that hold the file system
content.

The DBFS Content SPI supports different types of stores, as follows:

» DBFS SecureFiles Store: A DBFS content store that uses a table with a SecureFiles LOB
column to store the file system data. It implements POSIX-like filesystem capabilities.

« DBFS Hierarchical Store: A DBFS content store that allows files to be written to any tape
storage units supported by Oracle Recovery Manager (RMAN) or to a cloud storage
system.

* User-defined Store: A content store defined by the user. This allows users to program their
own filesystems inside Oracle Database without writing any OS code.

¢ See Also:

e Creating Your Own DBFS Store
« DBFS Content API
e DBFS Hierarchical Store

20.2.3 DBFS Client

ORACLE

For client systems, the Database File System offers several access methods.
The Database File System offers several access methods.

e PL/SQL Client Interface

Database applications can access files in the DBFS store directly, through the PL/SQL
interface. The PL/SQL interface allows database transactions and read consistency to
span relational and file data.

 DBFS Client Command-Line Interface

A client command-line interface named dofs_client runs on each file system client
computer. dbfs client allows users to copy files in and out of the database from any host
on the network. It implements simple file system commands such as list and copy in a
manner that is similar to shell utilities 1s and rcp. The command interface creates a direct
connection to the database without requiring an OS mount of DBFS.

e File System Mount Interface

On Linux and Solaris, the dbfs_client also includes a mount interface that uses the
Filesystem in User Space (FUSE) kernel module to implement a file-system mount point
with transparent access to the files stored in the database. This does not require any
changes to the Linux or Solaris kernels. It receives standard file system calls from the FUSE

20-3

Chapter 20
What Is a Content Store?

kernel module and translates them into OCI calls to the PL/SQL procedures in the DBFS
content store.

« DBFS Links

DBFS Links, Database File System Links, are references from SecureFiles LOB locators to
files stored outside the database.

DBFS Links can be used to migrate SecureFiles from existing tables to other storage.

¢ See Also:

e Using DBFS
e DBFS Mounting Interface (Linux and Solaris Only)
e Database File System Links for information about using DBFS Links

» PL/SQL Packages for LOBs and DBFS for lists of useful DBMS LOB constants and
methods

20.3 What Is a Content Store?

ORACLE

A content store is a collection of documents.

Each content store is identified by a unique absolute path name, represented as a slash (/)
followed by one or more component names that are each separated by a slash. Some stores
may implement only a flat namespace, others might implement directories or folders implicitly,
while still others may implement a comprehensive file system-like collection of entities. These
may include hierarchical directories, files, symbolic links, hard links, references, and so on.
They often include a rich set of metadata associated with documents, and a rich set of
behaviors with respect to security, access control, locking, versioning, content addressing,
retention control, and so on.

Because stores are typically designed and evolve independently of each other, applications
that use a specific store are either written and packaged by the developers of the store or else
require the user to employ a store-specific API. Designers who create a store-specific API
must have a detailed knowledge of the schema of the database tables that are used to
implement the store.

20-4

DBFS SecureFiles Store

There are certain procedures for setting up and using a DBFS SecureFiles Store.

Topics:

Setting Up a SecureFiles Store
Using a DBFS SecureFiles Store File System
About DBFS SecureFiles Store Package_ DBMS_DBFS_SFS

Setting Up a SecureFiles Store
There are several aspects to setting up a SecureFiles Store.

Using a DBFS SecureFiles Store File System
The DBFS Content API provides methods to populate a SecureFiles Store file system and
otherwise manage it.

About DBFS SecureFiles Store Package, DBMS_DBFS_SFS
The DBFS SecureFiles Store package (DBMS DBFS_SFS) is a store provider for
DBMS DBFS_CONTENT that supports SecureFiles LOB storage for DBFS content.

Database File System (DBFS)— POSIX File Locking

21.1 Setting Up a SecureFiles Store

There are several aspects to setting up a SecureFiles Store.

ORACLE

This section shows how to set up a SecureFiles Store.

Topics:

About Managing Permissions

Creating or Setting Permissions

Creating a SecureFiles File System Store

Accessing Tables that Hold SecureFiles System Store Data
Initializing SecureFiles Store File Systems

Comparison of SecureFiles LOBs to BasicFiles LOBs

About Managing Permissions
You must use a regular database user for all operational access to the Content APl and
stores.

Creating or Setting Permissions
You must grant the DBFS_ROLE role to any user that needs to use the DBFS content API.

Creating a SecureFiles File System Store
You must create the SecureFiles file system stores that the DBFS Content API accesses.

Accessing Tables that Hold SecureFiles System Store Data
You should never directly access tables that hold data for a SecureFiles Store file systems,
even through the DBMS DBFS_SFS package methods.

21-1

Chapter 21
Setting Up a SecureFiles Store

e Initializing SecureFiles Store File Systems
You can truncate and re-initialize tables associated with an SecureFiles Store.

e Comparison of SecureFiles LOBs to BasicFiles LOBs
SecureFiles LOBs are only available in Oracle Database 11g Release 1 and higher. They
are not available in earlier releases.

21.1.1 About Managing Permissions

You must use a regular database user for all operational access to the Content API and stores.

Do not use SYS or SYSTEM users or SYSDBA Or SYSOPER system privileges. For better security and
separation of duty, only allow specific trusted users the ability to manage DBFS Content API
operations.

You must grant each user the DBFS_ROLE role. Otherwise, the user is not authorized to use the
DBFS Content API. A user with suitable administrative privileges (or SYSDBA) can grant the role
to additional users as needed.

Because of the way roles, access control, and definer and invoker rights interact in the
database, it may be necessary to explicitly grant various permissions (typically execute
permissions) on DBFS Content API types (SQL types with the DBMS DBFS CONTENT xxx prefix)
and packages (typically only DBMS DBFS CONTENT and DBMS DBFS_ SFS) to users who might
otherwise have the DBFS ROLE role.

These explicit, direct grants are normal and to be expected, and can be provided as needed
and on demand.

21.1.2 Creating or Setting Permissions

You must grant the DBFS_ROLE role to any user that needs to use the DBFS content API.
1. Create or determine DBFS Content API target users.
This example uses this user and password: sfs demo/password

At minimum, this database user must have the CREATE SESSION, CREATE RESOURCE, and
CREATE VIEW privileges.

2. Grantthe DBFS_ROLE role to the user.

CONNECT / as sysdba
GRANT dbfs role TO sfs demo;

This sets up the DBFS Content API for any database user who has the DBFS_ROLE role.

21.1.3 Creating a SecureFiles File System Store

You must create the SecureFiles file system stores that the DBFS Content APl accesses.

The CREATEFILESYSTEM procedure auto-commits before and after its execution (like a DDL).
The method CREATESTORE is a wrapper around CREATEFILESYSTEM.

ORACLE 010

ORACLE

Chapter 21
Setting Up a SecureFiles Store

See Also:

Oracle Database PL/SQL Packages and Types Reference for DBMS DBFS_SFS syntax
details

To create a SecureFiles File System Store:

1. Create the necessary stores to be accessed using the DBFS Content API:

DECLARE
BEGIN
DBMS DBFS SFS.CREATEFILESYSTEM (
store name => 'FS1',
tbl name => 'T1',
tbl tbs => null,
use bf => false
)i
COMMIT;
END;
/

where:
* store name iS any arbitrary, user-unique name.
* tbl name is a valid table name, created in the current schema.

* tbl tbsis avalid tablespace name used for the store table and its dependent
segments, such as indexes, LOBs, or nested tables. The default is NULL and specifies
a tablespace of the current schema.

* use_bf specifies that BasicFiles LOBs should be used, if true, or not used, if false.

2. Register this store with the DBFS Content API as a new store managed by the SecureFiles
Store provider.

CONNECT sfs_ demo
Enter password:password

DECLARE
BEGIN
DBMS_DBFS_CONTENT.REGISTERSTORE (
store name => 'Fsl’',

provider name => 'anything',
provider package => 'dbms_dbfs_ sfs'
)i
COMMIT;
END;
/

where:

* store name is SecureFiles Store Fs1, which uses table SFs DEMO.T1.

* provider name is ignored.

* provider package is DBMS DBFS SFS, for SecureFiles Store reference provider.
This operation associates the SecureFiles Store Fs1 with the DBMS DBFS_SFS provider.

3. Mount the store at suitable a mount-point.

21-3

Chapter 21
Setting Up a SecureFiles Store

CONNECT sfs_demo
Enter password: password

DECLARE
BEGIN
DBMS_DBFS_CONTENT .MOUNTSTORE (
store name => 'Fsl’',
store mount => 'mntl'
)i
COMMIT;
END;
/
where:

* store name is SecureFiles Store Fs1, which uses table SFs_DEMO.T1.

* store mount is the mount point.

[Optional] To see the results of the preceding steps, you can use the following statements.

e To verify SecureFiles Store tables and file systems:

SELECT * FROM TABLE (DBMS DBFS SFS.LISTTABLES) ;
SELECT * FROM TABLE (DBMS DBFS SFS.LISTFILESYSTEMS);

e To verify ContentAPI Stores and mounts:

SELECT * FROM TABLE (DBMS DBFS CONTENT.LISTSTORES) ;
SELECT * FROM TABLE (DBMS DBFS CONTENT.LISTMOUNTS) ;

e To verify SecureFiles Store features:

var fslf number;
exec :fslf := dbms dbfs content.getFeaturesByName ('FS1');
select * from table (dbms dbfs content.decodeFeatures(:fslf));

e To verify resource and property views:

SELECT * FROM DBFS CONTENT;
SELECT * FROM DBFS CONTENT PROPERTIES;

21.1.4 Accessing Tables that Hold SecureFiles System Store Data

You should never directly access tables that hold data for a SecureFiles Store file systems,
even through the DBMS DBFS_SFS package methods.

This is the correct way to access the file systems.

For procedural operations: Use the DBFS Content API (DBMS_DBFS_CONTENT methods).

For SQL operations: Use the resource and property views (DBFS_CONTENT and
DBFS_CONTENT PROPERTIES).

21.1.5 Initializing SecureFiles Store File Systems

ORACLE

You can truncate and re-initialize tables associated with an SecureFiles Store.

Use the procedure INITFS().

The procedure executes like a DDL, auto-committing before and after its execution.

The following example uses file system Fs1 and table SFS_DEMO.T1, which is associated with
the SecureFiles Store store name.

21-4

Chapter 21
Using a DBFS SecureFiles Store File System

CONNECT sfs demo;
Enter password: password
EXEC DBMS DBFS SFS.INITFS(store name => 'FS1');

21.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs

SecureFiles LOBs are only available in Oracle Database 11g Release 1 and higher. They are
not available in earlier releases.

You must use BasicFiles LOB storage for LOB storage in tablespaces that are not managed
with Automatic Segment Space Management (ASSM).

Compatibility must be at least 11.1.0.0 to use SecureFiles LOBs.
Additionally, you need to specify the following in DBMS DBFS SFS.CREATEFILESYSTEM:

* To use SecureFiles LOBs (the default), specify use bf => false.

* To use BasicFiles LOBs, specify use_bf => true.

21.2 Using a DBFS SecureFiles Store File System

The DBFS Content API provides methods to populate a SecureFiles Store file system and
otherwise manage it.

Topics:
e DBFS Content APl Working Example
e Dropping SecureFiles Store File Systems

* DBFS Content APl Working Example
You can create new file and directory elements to populate a SecureFiles Store file
system.

* Dropping SecureFiles Store File Systems
You can use the unmountStore method to drop SecureFiles Store file systems.

21.2.1 DBFS Content API Working Example

ORACLE

You can create new file and directory elements to populate a SecureFiles Store file system.

If you have executed the steps in "Setting Up a SecureFiles Store", set the DBFS Content API
permissions, created at least one SecureFiles Store reference file system, and mounted it
under the mount point /mnt1, then you can create a new file and directory elements as
demonstrated in Example 21-1.

Example 21-1 Working with DBFS Content API

CONNECT tjones
Enter password: password

DECLARE
ret integer;
b blob;
str varchar?2 (1000) =:= "' || chr(10) ||

"#include <stdio.h>' || chr(10) ||

"" || chr(10) ||
'int main(int argc, char** argv)' || chr(10) ||

21-5

Chapter 21
Using a DBFS SecureFiles Store File System

"{" Il chr(10) [
! (void) printf("hello world\n");' || chr(10) ||
' RETURN 0;' || chr(10) [|
"}' Il chr(10) [
BEGIN

ret := dbms_fuse.fs mkdir('/mntl/FS1');
ret := dbms_fuse.fs creat('/mntl/FSl/hello.c', content => b);
dbms_lob.writeappend(b, length(str), utl raw.cast to raw(str));
COMMIT;

END;

/

SHOW ERRORS;

-- verify newly created directory and file
SELECT pathname, pathtype, length(filedata),
utl raw.cast to varchar2(filedata)
FROM dbfs content
WHERE pathname LIKE '/mntl/FS1%'
ORDER BY pathname;

The file system can be populated and accessed from PL/SQL with DBMS DBFS CONTENT. The
file system can be accessed read-only from SQL using the dbfs content and
dbfs content properties Views.

The file system can also be populated and accessed using regular file system APIs and UNIX
utilities when mounted using FUSE, or by the standalone dofs client tool (in environments
where FUSE is either unavailable or not set up).

21.2.2 Dropping SecureFiles Store File Systems

ORACLE

You can use the unmountStore method to drop SecureFiles Store file systems.

This method removes all stores referring to the file system from the metadata tables, and drops
the underlying file system table. The procedure executes like a DDL, auto-committing before
and after its execution.

1. Unmount the store.

CONNECT sfs demo
Enter password: password

DECLARE
BEGIN
DBMS DBFS CONTENT.UNMOUNTSTORE (
store name => 'FSl’',
store mount => 'mntl';
)i
COMMIT;
END;
/
where:

* store name is SecureFiles Store Fs1, which uses table SFs_DEMO.T1.
* store mount is the mount point.
2. Unregister the stores.

CONNECT sfs_demo
Enter password: password

21-6

Chapter 21
About DBFS SecureFiles Store Package, DBMS_DBFS_SFS

EXEC DBMS DBFS CONTENT.UNREGISTERSTORE (store name => 'FS1');
COMMIT;

where store name is SecureFiles Store FS1, which uses table SFs_DEMO.T1.

3. Drop the file system.

CONNECT sfs_demo/******;
EXEC DBMS DBFS SFS.DROPFILESYSTEM(store name => 'FS1');
COMMIT;

where store name is SecureFiles Store Fs1, which uses table SFs_DEMO.T1.

21.3 About DBFS SecureFiles Store Package,
DBMS DBFS _SFS

The DBFS SecureFiles Store package (DBMS DBFS_SFS) is a store provider for
DBMS_ DBFS CONTENT that supports SecureFiles LOB storage for DBFS content.

To use the DBMS_DBFS_SFS package, you must be granted the DBFS_ROLE role.

The SecureFiles Store provider is a default implementation of the DBFS Content API (and is a
standard example of a store provider that conforms to the Provider SPI) that enables
applications that already use LOBs as columns in their schema, to access the BLOB columns.
This enables existing applications to easily add PL/SQL provider implementations and provide
access through the DBFS Content API without changing their schemas or their business logic.

Applications can also read and write content that is stored in other (third party) stores through
the standard DBFS Content API interface.

In a SecureFiles Store, the underlying user data is stored in SecureFiles LOBs and metadata
such as pathnames, IDs, and properties are stored as columns in relational tables.

See Also:

e See Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS DBFS_SFS package.

e Creating Your Own DBFS Store and Oracle Database PL/SQL Packages and
Types Reference for more information about the Provider SPI defined in
DBMS DBFS CONTENT SPI.

e SecureFiles LOB Storagefor advanced features of SecureFiles LOBs.

21.4 Database File System (DBFS)— POSIX File Locking

Starting from Oracle Database 12c¢ Release 2(12.2), Oracle supports the Database File system
POSIX File locking feature. The DBFS provides file locking support for:

* POSIX applications using DBFS CLIENT (in mount mode) as a front-end interface to DBFS.

e Applications using PL/SQL as an interface to DBFS.

ORACLE 21-7

Chapter 21
Database File System (DBFS)— POSIX File Locking

Note:

Oracle supports only Full-file locks in DBFS. Full-file lock implies locking the entire
file from byte zero offset to the end of file.

Topics:

* About Advisory Locking

* About Mandatory Locking

e File Locking Support

e Compatibility and Migration Factors of Database Filesystem—File Locking

« Examples of Database Filesystem—File Locking

e About Advisory Locking
Advisory locking is a file locking mechanism that locks the file for a single process.

e About Mandatory Locking
Mandatory locking is a file locking mechanism that takes support from participating
processes.

e File Locking Support
Enabling the file locking mechanism helps applications to block files for various file system
operations.

e Compatibility and Migration Factors of Database Filesystem—File Locking
e Examples of Database Filesystem—File Locking
e File Locking Behavior

e Scheduling File Locks

21.4.1 About Advisory Locking

Advisory locking is a file locking mechanism that locks the file for a single process.

File locking mechanism cannot independently enforce any form of locking and requires support
from the participating processes. For example, if a process P1 has a write lock on file F1, the
locking API or the operating system does not perform any action to prevent any other process
P2 from issuing a read or write system call on the file F1. This behavior of file locking
mechanism is also applicable to other file system operations. The processes that are involved
(in file locking mechanism) must follow a lock or unlock protocol provided in a suitable APl form
by the user-level library. File locking semantics are guaranteed to work provided, the processes
incorporate the recommended usage of the locking protocol and respect the results of API
calls.

21.4.2 About Mandatory Locking

ORACLE

Mandatory locking is a file locking mechanism that takes support from participating processes.

Mandatory locking is an enforced locking scheme that does not rely on the participating
processes to cooperate and/or follow the locking API. For example, if a process P1 has taken a
write lock on file F1 and if a different process P2 attempts to issue a read/write system call (or
any other file system operation) on file 1 , the request is blocked because the concerned file is
exclusively locked by process P1.

21-8

Chapter 21
Database File System (DBFS)— POSIX File Locking

21.4.3 File Locking Support

Enabling the file locking mechanism helps applications to block files for various file system
operations.

The fcntl (), lockf (), and flock () system calls in UNIX and LINUX provide file locking
support. These system calls enable applications to use the file locking facility through

dbfs client-FUSE callback interface. File Locks provided by fcntl () are widely known as
POSIX file locks and the file locks provided by flock () are known as BSD file locks. The
semantics and behavior of POSIX and BSD file locks differ from each other. The locks placed
on the same file through fcntl () and flock () are orthogonal to each other. The semantics of
file locking functionality designed and implemented in DBFS is similar to POSIX file locks. In
DBFS, semantics of file locks placed through flock () system call will be similar to POSIX file
locks (such as fentl ()) and not BSD file locks. 1ockf () is a library call that is implemented as
a wrapper over fcntl () system call on most of the UNIX systems, and hence, it provides
POSIX file locking semantics. In DBFS, file locks placed through fcntl (), flock (), and
lockf () system-calls provide same kind of behavior and semantics of POSIX file locks.

Note:

BSD file locking semantics are not supported.

21.4.4 Compatibility and Migration Factors of Database Filesystem—File

Locking

The Database Filesystem File Locking feature does not impact the compatibility of DBFS and
SFS store provider with RDBMS.

DBFS_CLIENT is a standalone OCI Client and uses 0CI calls and DBMS FUSE API.

Note:

This feature will be compatible with OraSDK/RSF .

21.4.5 Examples of Database Filesystem—~File Locking

ORACLE

The following examples illustrate the advisory locking and the locking functions available on
UNIX based systems. The following example uses two running processes — Process A and
Process B.

Example 21-2 No locking

Process A opens file:

file desc = open(“/path/to/file”, O RDONLY);
/* Reads data into bufffers */
read (fd, bufl, sizeof (buf));

21-9

ORACLE

Chapter 21
Database File System (DBFS)— POSIX File Locking

read (fd, buf2, sizeof (buf));
close(file desc);

Subjected to OS scheduling, process B can enter any time and issue a write system call
affecting the integrity of file data.

Example 21-3 Advisory locking used but process B does not follow the protocol

Process A opens file:

file desc = open(“/path/to/file”, O RDONLY);
ret = AcquireLock(file desc, RD LOCK);
if (ret)
{
read(fd, bufl, sizeof (buf));
read(fd, buf2, sizeof (buf));
ReleaseLock (file desc);

}

close(file desc);

Subjected to OS scheduling, process B can come in any time and still issue a write system
call ignoring that process A already holds a read lock.

Process B opens file:

file descl = open(“/path/to/file”, O WRONLY);
write(file descl, buf, sizeof (buf));
close(file descl);

The above code is executed and leads to inconsistent data in the file.
Example 21-4 Advisory locking used and processes are following the protocol

Process A opens file:

file desc = open(“/path/to/file”, O RDONLY);
ret = AcquireLock(file desc, RD LOCK);
if (ret)
{
read(fd, bufl, sizeof (buf));
read(fd, buf2, sizeof (buf));
ReleaselLock (file desc);
}

close(file desc);

Process B opens file:

file descl = open(“/path/to/file”, O WRONLY);

ret = AcquireLock(file descl, WR_LOCK);

/* The above call will take care of checking the existence of a lock */
if (ret)

{

write(file descl, buf, sizeof (buf));

21-10

Chapter 21
Database File System (DBFS)— POSIX File Locking

ReleaseLock (file descl);
} close(file descl);

Process B follows the lock API and this APl makes sure that the process does not write to the
file without acquiring a lock.

21.4.6 File Locking Behavior

The DBFS File Locking feature exhibits the following behaviors:

» File locks in DBFs are implemented with idempotent functions. If a process issues “N” read
or write lock calls on the same file, only the first call will have an effect, and the
subsequent “N-1" calls will be treated as redundant and returns No Operation (NOOP).

« File can be unlocked exactly once. If a process issues “N” unlock calls on the same file,
only the first call will have an effect, and the subsequent “N-1" calls will be treated as
redundant and returns NOOP.

e Lock conversion is supported only from read to write. If a process P holds a read lock on
file ¥ (and P is the only process holding the read lock), then a write lock request by P on
file F will convert the read lock to exclusivelwrite lock.

21.4.7 Scheduling File Locks

ORACLE

DBFS File Locking feature supports lock scheduling. This facility is implemented purely on the
DBFS client side. Lock request scheduling is required when client application uses blocking
call semantics in their fentl (), lockf (), and flock() calls.

There are two types of scheduling:

e Greedy Scheduling
e Fair Scheduling

Oracle provides the following command line option to switch the scheduling behavior.

Mount -o lock sched option = lock sched option Value;

Table 21-1 lock_sched option Value Description
L

Value Description
1 Sets the scheduling type to Greedy Scheduling. (Default)
2 Sets the scheduling type to Fair Scheduling.

Note:

Lock Request Scheduling works only on per DBFS Client mount basis. For example,
lock requests are not scheduled across multiple mounts of the same file system.

e Greedy Scheduling
e Fair Scheduling

21-11

Chapter 21
Database File System (DBFS)— POSIX File Locking

21.4.7.1 Greedy Scheduling

In this scheduling technique, the file lock requests does not follow any guaranteed order.

Note:

This is the default scheduling option provided by DBFS Client.

If a file F is read locked by process p1, and if processes P2 and p3 submit blocking write lock
requests on file F, the processes P2 and p3 will be blocked (using a form of spin lock) and
made to wait for its turn to acquire the lock. During the walit, if a process P4 submits a read lock
request (blocking call or a non-blocking call) on file F, P4 will be granted the read lock even if
there are two processes (P2 and P3) waiting to acquire the write lock. Once both P1 and P4
release their respective read locks, one of P2 and P3 will succeed in acquiring the lock. But, the
order in which processes p2 and P3 acquire the lock is not determined. It is possible that
process P2 would have requested first, but the process p3's request might get unblocked and
acquire the lock and the process P2 must wait for P3 to release the lock.

21.4.7.2 Fair Scheduling

ORACLE

This scheduling technique is implemented using a queuing mechanism on per file basis. For
example, if a file r is read locked by process P1, and processes P2 and P3 submit blocking
write lock requests on file F, these two processes will be blocked (using a form of spin lock)
and will wait to acquire the lock. The requests will be queued in the order received by the
DBFS client. If a process P4 submits a read lock request (blocking call or a non-blocking call)
on file F, this request will be queued even though a read lock can be granted to this process.

DBFS Client ensures that after p1 releases its read lock, the order in which lock requests are
honored is P2->P3 -> P4,

This implies that P2 will be the first one to get the lock. Once p2 releases its lock, P3 will get the
lock and so on.

21-12

DBFS Hierarchical Store

The DBFS Hierarchical Store and related store wallet management work together to store less
frequently used data.

Topics:

About the Hierarchical Store Package_ DBMS_DBFS_HS
Ways to Use DBFS Hierarchial Store

Setting up the Store

Using the Hierarchical Store

Database File System Links

The DBMS_DBFS_HS Package

Views for DBFS Hierarchical Store

About the Hierarchical Store Package, DBMS_DBFS_HS
The Oracle DBFS Hierarchical Store package (DBMS_DBFS_HS) is a store provider for
DBMS DBFS_CONTENT that supports hierarchical storage for DBFS content.

Ways to Use DBFS Hierarchial Store

The DBMS DBFS_HS package must be used in conjunction with the DBMS DBFS CONTENT
package to manage Hierarchical Storage Management for SecureFiles LOBs using DBFS
Links.

Setting up the Store
You manage a Hierarchical Store wallet and set up, register, and mount a hierarchical
Store.

Using the Hierarchical Store
The Hierarchical Store can be used as an independent file system or as an archive
solution for SecureFiles LOBs.

Database File System Links
Database File System Links allow for storing SecureFiles LOBs in a different location than
usual.

The DBMS_DBFS_HS Package
The DBMS DBFS_HS package is a service provider that enables use of tape or Amazon S3
Web service as storage for data.

Views for DBFS Hierarchical Store
The BFS Hierarchical Stores have several types of views.

22.1 About the Hierarchical Store Package, DBMS_DBFS HS

The Oracle DBFS Hierarchical Store package (DBMS_DBFS_HS) is a store provider for
DBMS_DBFS_CONTENT that supports hierarchical storage for DBFS content.

ORACLE

The package stores content in two external storage devices: tape and the Amazon S3 web
service, and associated metadata (or properties) in the database. The DBFS HS may cache
frequently accessed content in database tables to improve performance.

22-1

Chapter 22
Ways to Use DBFS Hierarchial Store

22.2 Ways to Use DBFS Hierarchial Store

The DBMS_DBFS_HS package must be used in conjunction with the DBMS DBFS CONTENT package
to manage Hierarchical Storage Management for SecureFiles LOBs using DBFS Links.

Using this package, data that is less frequently used can be migrated to a cheaper external
device such as tape, achieving significant reduction in storage costs.

The DBMS_DBFS_HS package can also be plugged into the DBMS DBFS_CONTENT package, as a
store provider, to implement a tape file system, if the associated external storage device is
tape, or a cloud file system, if the associated external storage device is the Amazon S3 storage
service.

The DBMS_DBFS HS package provides you the ability to use tape as a storage tier when
implementing Information Lifecycle Management (ILM) for database tables or content. The
package also supports other forms of storage targets including Web Services like Amazon S3.
This service enables users to store data in the database on tape and other forms of storage.
The data on tape or Amazon S3 is part of the Oracle Database and all standard APIs can
access it, but only through the database.

DBMS DBFS_HS has additional interfaces needed to manage the external storage device and the
cache associated with each store.

To use the package DBMS DBFS_HS, you must be granted the DBF'S ROLE role.

See Also:

Oracle Database PL/SQL Packages and Types Reference, for details of the
DBMS_DBFS_HS Package

22.3 Setting up the Store

You manage a Hierarchical Store wallet and set up, register, and mount a hierarchical Store.
Topics:

e Managing a HS Store Wallet

e Creating_ Registering_ and Mounting the Store

e Managing a HS Store Wallet
Use the command-line utility mkstore to create and manage wallets.

e Creating, Registering, and Mounting the Store
Setting up a hierarchical file system store requires creating, registering, and mounting the
store.

22.3.1 Managing a HS Store Wallet

Use the command-line utility mkstore to create and manage wallets.
Use the following commands to create wallets:

e Create a wallet

ORACLE 95

Chapter 22
Setting up the Store

mkstore -wrl wallet location -create
Add a XEY alias
Specify the access_key and secret key aliases by enclosing them within single quotes.

mkstore -wrl wallet location -createCredential alias 'access key' 'secret key'

For example:
mkstore -wrl /home/userl/mywallet -createCredential mykey 'abc' 'xyz'
Delete a KEY alias

mkstore -wrl wallet location -deleteCredential alias

For example:

mkstore -wrl /home/userl/mywallet -deleteCredential mykey

¢ See Also:

* Oracle Database Advanced Security Guide for more about creation and
management of wallets

22.3.2 Creating, Registering, and Mounting the Store

Setting up a hierarchical file system store requires creating, registering, and mounting the
store.

ORACLE

Creating, registering, and mounting the store.

1.

Call createStore.

DBMS DBFS HS.createStore(store name, store type, tbl name, tbs name, cache size,
lob cache quota, optimal tarball size, schema name);

Set mandatory and optional properties using the following interface:

DBMS DBFS HS.setStoreProperty(StoreName, PropertyName, PropertyValue);

For store type = STORETYPE TAPE, mandatory properties are:

PROPNAME DEVICELIBRARY, PROPNAME MEDIAPOOL, PROPNAME CACHESIZE.

PROPNAME CACHESIZE is already set by createStore.

You can change the value of PROPNAME CACHESIZE using reconfigCache.
Optional properties are:

PROPNAME OPTTARBALLSIZE, PROPNAME READCHUNKSIZE, PROPNAME WRITECHUNKSIZE,
PROPNAME STREAMABLE.

For store type = STORETYPE AMAZONS3 mandatory properties are:

PROPNAME DEVICELIBRARY, PROPNAME CACHESIZE, PROPNAME S3HOST, PROPNAME BUCKET,
PROPNAME LICENSEID, PROPNAME WALLET.

22-3

Chapter 22
Using the Hierarchical Store

PROPNAME CACHESIZE is set by createStore. You can change the value of
PROPNAME CACHESIZE uSing reconfigCache.

Optional properties are:

PROPNAME OPTTARBALLSIZE, PROPNAME READCHUNKSIZE, PROPNAME WRITECHUNKSIZE,
PROPNAME STREAMABLE, PROPNAME HTTPPROXY.

Register the store with DBFS Content API using:

DBMS DBFS CONTENT.registerStore(store name, provider name, provider package);

Note: provider package is the dbms_dbfs hs package.
Mount the stores for access using:

DBMS DBFS CONTENT.mountStore(store name, store mount, singleton,principal,
owner, acl, asof, read only);

22.4 Using the Hierarchical Store

The Hierarchical Store can be used as an independent file system or as an archive solution for
SecureFiles LOBs.

Topics:

Using Hierarchical Store as a File System

Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
Dropping a Hierarchical Store

Compression to Use with the Hierarchical Store

Program Example Using Tape

Program Example Using Amazon S3

Using Hierarchical Store as a File System
Use the DBMS DBFS CONTENT package to create, update, read, and delete file system
entries in the store.

Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
Use the DBMS LOB package to archive SecureFiles LOBs in a tape or S3 store.

Dropping a Hierarchical Store
You can drop a hierarchical store.

Compression to Use with the Hierarchical Store
The DBFS hierarchical store can store its files in compressed forms.

Program Example Using Tape
This example program configures and uses a tape store.

Program Example Using Amazon S3
This example program configures and uses an Amazon S3 store.

22.4.1 Using Hierarchical Store as a File System

Use the DBMS_DBFS_CONTENT package to create, update, read, and delete file system entries in
the store.

ORACLE

22-4

Chapter 22
Using the Hierarchical Store

See Also:

DBFS Content API

22.4.2 Using Hierarchical Store as an Archive Solution For SecureFiles

LOBSs

Use the DBMS_LOB package to archive SecureFiles LOBs in a tape or S3 store.

The DBMS_LOB package archives SecureFiles LOBs in a tape or S3 store, as described in
"PL/SQL Packages for LOBs and DBFS".

To free space in the cache or to force cache resident contents to be written to external storage
device, call:

DBMS DBFS_HS.storePush(store name);

22.4.3 Dropping a Hierarchical Store

You can drop a hierarchical store.

To drop a hierarchical store, call:

DBMS DBFS HS.dropStore(store name, opt flags);

22.4.4 Compression to Use with the Hierarchical Store

ORACLE

The DBFS hierarchical store can store its files in compressed forms.

The DBFS hierarchical store has the ability to store its files in compressed form using the
SETPROPERTY method and the property PROPNAME COMPRESSLVL to specify the compression
level.

Valid values are:

¢ PROPVAL COMPLVL NONE: No compression

¢ PROPVAL COMPLVL LOW: LOW compression

¢ PROPVAL COMPLVL MEDIUM: MEDIUM compression
¢ PROPVAL COMPLVL HIGH: HIGH compression

Generally, the compression level Low performs best and still provides a good compression
ratio. Compression levels MEDIUM and HIGH provide significantly better compression ratios, but
compression times can be correspondingly longer. Oracle recommends using NONE or LOW
when write performance is critical, such as when files in the DBFS HS store are updated
frequently. If space is critical and the best possible compression ratio is desired, use MEDIUM or
HIGH.

Files are compressed as they are paged out of the cache into the staging area (before they are
subsequently pushed into the back end tape or S3 storage). Therefore, compression also
benefits by storing smaller files in the staging area and effectively increasing the total available
capacity of the staging area.

22-5

Chapter 22
Using the Hierarchical Store

22.4.5 Program Example Using Tape

ORACLE

This example program configures and uses a tape store.

In the example, you must substitute valid values in some places, as indicated by <...>, for the
program to run successfully.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference DBMS DBFS HS
documentation for complete details about the methods and their parameters

Rem Example to configure and use a Tape store.

Rem

Rem hsuser should be a valid database user who has been granted
Rem the role dbfs role.

connect hsuser/hsuser

Rem The following block sets up a STORETYPE TAPE store with
Rem DBMS DBFS HS acting as the store provider.

declare

storename varchar2(32) ;
tblname varchar2 (30) ;

tbsname varchar2 (30) ;

lob cache quota number := 0.8 ;
cachesz number ;

ots number ;

begin

cachesz := 50 * 1048576 ;

ots := 1048576 ;

storename := 'tapestorell' ;
tblname := 'tapetbllO' ;
tbsname := '<TBS_3>' ; -- Substitute a valid tablespace name

-- Create the store.
-- Here tbsname is the tablespace used for the store,
-- tblname is the table holding all the store entities,
-- cachesz is the space used by the store to cache content
-- in the tablespace,
-- lob cache quota is the fraction of cachesz allocated
-- to level-1 cache and
-- ots is minimum amount of content that is accumulated
-- in level-2 cache before being stored on tape
dbms dbfs hs.createStore (

storename,

dbms_dbfs_hs.STORETYPE TAPE,

tblname, tbsname, cachesz,

lob cache quota, ots) ;

dbms dbfs hs.setstoreproperty (
storename,
dbms_dbfs_hs.PROPNAME_SBTLIBRARY,
'<ORACLE_HOME/work/libobkunig.so>') ;
-- Substitute your ORACLE HOME path

22-6

ORACLE

dbms dbfs hs.setstoreproperty(

storename,
dbms_dbfs hs.PROPNAME MEDIAPOOL,
'<0>') ; -- Substitute valid value

dbms dbfs hs.setstoreproperty(
storename,
dbms_dbfs hs.PROPNAME COMPRESSLEVEL,
'NONE'") ;

-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms_dbfs content.registerstore(

storename,

'tapeprvderl0',

'doms dbfs hs') ;

-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method

dbms dbfs content.mountstore (storename, 'tapemntl10')
end ;

/

Rem The following code block does file operations
Rem using DBMS DBFS CONTENT on the store configured
Rem in the previous code block

connect hsuser/hsuser

declare
path varchar2(256) ;
path pre varchar2(256) ;
mount point varchar2(32) ;
store name varchar2(32) ;
propl dbms dbfs content properties t ;
prop2 dbms dbfs content properties t ;
mycontent blob := empty blob() ;
buffer varchar2 (1050) ;
rawbuf raw(1050) ;
outcontent blob := empty blob() ;
itemtype integer ;
pflag integer ;
filecnt integer ;
iter integer ;
offset integer ;
rawlen integer ;

begin
mount point := '/tapemntlO' ;
store name := 'tapestorell’' ;

path pre := mount point ||'/file' ;

-- We create 10 empty files in the following loop
filecnt := 0 ;
loop
exit when filecnt = 10 ;
path := path pre || to_char(filecnt) H
mycontent := empty blob() ;
propl := null ;

-- Please refer to DBMS DBFS CONTENT documentation

Chapter 22
Using the Hierarchical Store

22-7

ORACLE

-- for details about this method
dbms_dbfs content.createFile(

path, propl, mycontent) ; -- Create the file
commit ;
filecnt := filecnt + 1 ;
end loop ;

-- We populate the newly created files with content
-- in the following loop
pflag := dboms dbfs content.prop data +

dbms _dbfs content.prop std +

dbms_dbfs content.prop opt ;

buffer := 'Oracle provides an integrated management '

'solution for managing Oracle database with '||

'a unique top-down application management '
'approach. With new self-managing '
'capabilities, Oracle eliminates time-'
'consuming, error-prone administrative '
'tasks, so database administrators can '
'focus on strategic business objectives '
'instead of performance and availability '
'fire drills. Oracle Management Packs for '

'Database provide signifiCant cost and time-'||

'saving capabilities for managing Oracle '

'Databases. Independent studies demonstrate '||

'that Oracle Database is 40 percent easier '

'to manage over DB2 and 38 percent over '
'SQL Server.';

rawbuf := utl raw.cast to raw(buffer) ;
rawlen := utl raw.length (rawbuf) ;
offset := 1 ;

filecnt := 0 ;

loop

exit when filecnt = 10 ;
path := path pre || to_char(filecnt) H
propl := null;

-- Append buffer to file
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms_dbfs content.putpath (
path, propl, rawlen,
offset, rawbuf) ;

commit ;
filecnt := filecnt + 1 ;
end loop ;

-- Clear out level 1 cache
dbms_dbfs hs.flushCache (store name) ;
commit ;

-- Do write operation on even-numbered files.
-- Do read operation on odd-numbered files.
filecnt := 0 ;
loop

exit when filecnt = 10;

path := path pre || to_char(filecnt) H

if mod(filecnt, 2) = 0 then

Chapter 22
Using the Hierarchical Store

22-8

Chapter 22
Using the Hierarchical Store

-- Get writable file
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms dbfs content.getPath(
path, prop2, outcontent, itemtype,
pflag, null, true) ;

buffer := 'Agile businesses want to be able to ' |
'quickly adopt new technologies, whether '||
'operating systems, servers, or ' [
'software, to help them stay ahead of ' |
'the competition. However, change often ' ||
'introduces a period of instability into '|[|
'mission-critical IT systems. Oracle ' |
'Real Application Testing-with Oracle ' |
'Database 1lg Enterprise Edition-allows ' ||
'businesses to quickly adopt new ' |
'technologies while eliminating the ' |
'risks associated with change. Oracle ' |
'Real Application Testing combines a ' |
'workload capture and replay feature ' |
'with an SQL performance analyzer to ' |
'help you test changes against real-life '||
'workloads, and then helps you fine-tune '||
'the changes before putting them into' |
'production. Oracle Real Application ' |
'Testing supports older versions of ' |
'Oracle Database, so customers running ' |
'Oracle Database 9i and Oracle Database ' ||
'10g can use it to accelerate their ' |
'database upgrades. ';

rawbuf := utl raw.cast to raw(buffer) ;
rawlen := utl raw.length(rawbuf) ;

-- Modify file content
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms lob.write (outcontent, rawlen, 10, rawbuf);
commit ;

else
-- Read the file
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms dbfs content.getPath(

path, prop2, outcontent, itemtype, pflag) ;
end if ;
filecnt := filecnt + 1 ;
end loop ;

-- Delete the first 2 files
filecnt := 0;

loop
exit when filecnt = 2 ;
path := path pre || to_char(filecnt) H
-- Delete file
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms_dbfs_content.deleteFile(path) ;
commit ;
filecnt := filecnt + 1 ;

ORACLE 29.9

Chapter 22
Using the Hierarchical Store

end loop ;

-- Move content staged in database to the tape store
dbms_dbfs hs.storePush(store name) ;
commit ;

end ;

/

22.4.6 Program Example Using Amazon S3

This example program configures and uses an Amazon S3 store.

Valid values must be substituted in some places, indicated by <...>, for the program to run
successfully.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference DBMS DBFS HS
documentation for complete details about the methods and their parameters

Rem Example to configure and use an Amazon S3 store.

Rem

Rem hsuser should be a valid database user who has been granted
Rem the role dbfs role.

connect hsuser/hsuser

Rem The following block sets up a STORETYPE AMAZONS3 store with
Rem DBMS DBFS HS acting as the store provider.

declare

storename varchar2(32) ;
tblname varchar2 (30) ;

tbsname varchar2 (30) ;

lob cache quota number := 0.8 ;
cachesz number ;

ots number ;

begin

cachesz := 50 * 1048576 ;

ots := 1048576 ;

storename := 's3storell' ;
tblname := 's3tbll0' ;
tbsname := '<TBS_3>' ; -- Substitute a valid tablespace name

-- Create the store.
-- Here tbsname is the tablespace used for the store,
-- tblname is the table holding all the store entities,
-- cachesz is the space used by the store to cache content
-- in the tablespace,
-- lob cache quota is the fraction of cachesz allocated
- to level-1 cache and
-- ots is minimum amount of content that is accumulated
-- in level-2 cache before being stored in AmazonS3
dbms dbfs hs.createStore (

storename,

dbms dbfs hs.STORETYPE AMAZONS3,

ORACLE 9510

Chapter 22
Using the Hierarchical Store

tblname, tbsname, cachesz,
lob cache quota, ots) ;

dbms dbfs hs.setstoreproperty (storename,
doms_dbfs hs.PROPNAME SBTLIBRARY,
'<ORACLE_HOME/work/libosbwsll.so>');
-- Substitute your ORACLE HOME path

dbms dbfs hs.setstoreproperty (
storename,
dbms_dbfs hs.PROPNAME S3HOST,
's3.amazonaws.com') ;

dbms dbfs hs.setstoreproperty(
storename,
dbms_dbfs hs.PROPNAME BUCKET,
'oras3bucketl10') ;

dbms dbfs hs.setstoreproperty(
storename,
dbms_dbfs hs.PROPNAME WALLET,
'LOCATION=file:<ORACLE HOME>/work/wlt CREDENTIAL ALIAS=a key') ;
-- Substitute your ORACLE HOME path

dbms dbfs hs.setstoreproperty(

storename,
dbms_dbfs_hs.PROPNAME LICENSEID,
TCXXXXXXKKXXKXXKXXXX>") ; —-- Substitute a valid SBT license id

dbms dbfs hs.setstoreproperty (
storename,
dbms_dbfs hs.PROPNAME HTTPPROXY,
'<http://www-proxy.mycompany.com:80/>"') ;
-- Substitute valid value. If a proxy is not used,
-- then this property need not be set.

dbms dbfs hs.setstoreproperty (
storename,
dbms_dbfs hs.PROPNAME COMPRESSLEVEL,
'NONE'") ;

dbms dbfs hs.createbucket (storename) ;

-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms dbfs content.registerstore

storename,

's3prvderl0’,

'doms dbfs hs') ;

-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms dbfs content.mountstore (
storename,
's3mnt10') ;
end ;

/

Rem The following code block does file operations
Rem using DBMS DBFS CONTENT on the store configured
Rem in the previous code block

ORACLE 29.11

ORACLE

connect hsuser/hsuser

declare

path varchar2(256) ;

path pre varchar2(256) ;

mount point varchar2(32) ;

store name varchar2(32) ;

propl dbms dbfs content properties t ;
prop2 dbms dbfs content properties t ;
mycontent blob := empty blob() ;
buffer varchar2 (1050) ;

rawbuf raw(1050) ;

outcontent blob := empty blob() ;
itemtype integer ;

pflag integer ;

filecnt integer ;

iter integer ;

offset integer ;

rawlen integer ;

begin
mount point := '/s3mntl0' ;
store name := 's3storel(' ;

path pre := mount point ||'/file' ;

-- We create 10 empty files in the following loop
filecnt := 0 ;
loop
exit when filecnt = 10 ;
path := path pre || to_char(filecnt) H
mycontent := empty blob() ;
propl := null ;

-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms_dbfs content.createFile(

path, propl, mycontent) ; -- Create the file
commit ;
filecnt := filecnt + 1 ;
end loop ;

-- We populate the newly created files with content
-- in the following loop
pflag := dboms dbfs content.prop data +

dbms_dbfs content.prop std +

dbms_dbfs content.prop opt ;

buffer := 'Oracle provides an integrated management '
'solution for managing Oracle database with
'a unique top-down application management '
'approach. With new self-managing '
'capabilities, Oracle eliminates time-'
'consuming, error-prone administrative '
'tasks, so database administrators can '
'focus on strategic business objectives '
'instead of performance and availability '
'fire drills. Oracle Management Packs for '

'Database provide signifiCant cost and time-'|]|

'saving capabilities for managing Oracle '
'Databases. Independent studies demonstrate

'that Oracle Database is 40 percent easier '

[l
"
[l

Chapter 22
Using the Hierarchical Store

22-12

Chapter 22
Using the Hierarchical Store

'to manage over DB2 and 38 percent over ' ||
'SQL Server.';

rawbuf := utl raw.cast to raw(buffer) ;
rawlen := utl raw.length (rawbuf) ;
offset := 1 ;

filecnt := 0 ;

loop

exit when filecnt = 10 ;
path := path pre || to_char(filecnt) H
propl := null;

-- Append buffer to file
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms_dbfs content.putpath (
path, propl, rawlen,
offset, rawbuf) ;

commit ;
filecnt := filecnt + 1 ;
end loop ;

-- Clear out level 1 cache
dbms_dbfs hs.flushCache (store name) ;
commit ;

-- Do write operation on even-numbered files.
-- Do read operation on odd-numbered files.
filecnt := 0 ;
loop
exit when filecnt = 10;
path := path pre || to_char(filecnt) H
if mod(filecnt, 2) = 0 then
-- Get writable file
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms dbfs content.getPath(
path, prop2, outcontent, itemtype,
pflag, null, true) ;

buffer := 'Agile businesses want to be able to ' |
'quickly adopt new technologies, whether '||
'operating systems, servers, or ' [
'software, to help them stay ahead of ' |
'the competition. However, change often ' ||
'introduces a period of instability into '[|
'mission-critical IT systems. Oracle ' |
'Real Application Testing-with Oracle ' |
'Database 1lg Enterprise Edition-allows ' ||
'businesses to quickly adopt new ' |
'technologies while eliminating the ' |
'risks associated with change. Oracle ' |
'Real Application Testing combines a ' |
'workload capture and replay feature ' [
'with an SQL performance analyzer to ' |
'help you test changes against real-life '||
'workloads, and then helps you fine-tune '||
'the changes before putting them into' |
'production. Oracle Real Application ' |
'Testing supports older versions of ' |
'Oracle Database, so customers running ' |

ORACLE 29.13

'Oracle Database 91 and Oracle Database '
'10g can use it to accelerate their '
'database upgrades. ';

rawbuf := utl raw.cast to raw(buffer) ;
rawlen := utl raw.length(rawbuf) ;

-- Modify file content
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms lob.write (outcontent, rawlen, 10, rawbuf);
commit ;

else
-- Read the file
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms dbfs content.getPath(

path, prop2, outcontent, itemtype, pflag) ;
end if ;
filecnt := filecnt + 1 ;
end loop ;

-- Delete the first 2 files
filecnt := 0;

loop
exit when filecnt = 2 ;
path := path pre || to_char(filecnt) H
-- Delete file
-- Please refer to DBMS DBFS CONTENT documentation
-- for details about this method
dbms_dbfs_content.deleteFile(path) ;
commit ;
filecnt := filecnt + 1 ;
end loop ;

-- Move content staged in database to Amazon S3 store
dbms_dbfs hs.storePush(store name) ;
commit ;

end ;

/

22.5 Database File System Links

Chapter 22
Database File System Links

Database File System Links allow for storing SecureFiles LOBs in a different location than

usual.

Topics:

e About Database File System Links

* Ways to Create Database File System Links
* Database File System Links Copy

e Copying a Linked LOB Between Tables

* Online Redefinition and DBFS Links

e Transparent Read

ORACLE

22-14

Chapter 22
Database File System Links

* About Database File System Links
DBFS Links allows storing SecureFiles LOBs transparently in a location separate from the
segment where the LOB is normally stored. Instead, you store a link to the LOB in the
segment.

e Ways to Create Database File System Links
Database File System Links require the creation of a Database File System through the
use of the DBFS Content package, DBMS DBFS CONTENT.

» Database File System Links Copy
The API DBMS_LOB.COPY DBFS LINK(DSTLOB, SRCLOB, FLAGS) provides the ability to copy a
linked SecureFiles LOB.

e Copying a Linked LOB Between Tables
You can copy DBFS links from source tables to destination tables.

e Online Redefinition and DBFS Links
Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in the
table being redefined.

e Transparent Read
DBFS Links can read from a linked SecureFiles LOB even if the data is not cached in the
database.

22.5.1 About Database File System Links

ORACLE

DBFS Links allows storing SecureFiles LOBs transparently in a location separate from the
segment where the LOB is normally stored. Instead, you store a link to the LOB in the
segment.

The link in the segment must reference a path that uses DBFS to locate the LOB when
accessed. This means that the LOB could be stored on another file system, on a tape system,
in the cloud, or any other location that can be accessed using DBFS.

When a user or application tries to access a SecureFiles LOB that has been stored outside the
segment using a DBFS Link, the behavior can vary depending on the attempted operation and
the characteristics of the DBFS store that holds the LOB:

 Read:

If the LOB is not already cached in a local area in the database, then it can be read directly
from the DBFS content store that holds it, if the content store allows streaming access
based on the setting of the PROPNAME STREAMABLE parameter. If the content store does not
allow streaming access, then the entire LOB will first be read into a local area in the
database, where it will be stored for a period of time for future access.

« Write:

If the LOB is not already cached in a local area in the database, then it will first be read into
the database, modified as needed, and then written back to the DBFS content store
defined in the DBFS Link for the LOB in question.

e Delete:

When a SecureFiles LOB that is stored through a DBFS Link is deleted, the DBFS Link is
deleted from the table, but the LOB itself is NOT deleted from the DBFS content store. Or it
is more complex, based on the characteristics/settings, of the DBFS content store in
question.

DBFS Links enable the use of SecureFiles LOBs to implement Hierarchical Storage
Management (HSM) in conjunction with the DBFS Hierarchical Store (DBFS HS). HSM is a

22-15

Chapter 22
Database File System Links

process by which the database moves rarely used or unused data from faster, more expensive
and smaller storage to slower, cheaper, and higher capacity storage

Figure 22-1 Database File System Link

SecureFiles LOB column

I

DBFS Link | /table1/lob1
v

Content
API

/table1 |

v oR l
F—\
[28

-~

\

25

22.5.2 Ways to Create Database File System Links

Database File System Links require the creation of a Database File System through the use of
the DBFS Content package, DBMS DBFS_CONTENT

Oracle provides several methods for creating a DBFS Link

Move SecureFiles LOB data into a specified DBFS pathname and store the reference to
the new location in the LOB.

Call DBMS LOB.MOVE TO DBFS LINK ()with LOB and DBFS path name arguments, and the
system creates the specified DBFS HSM Store if it does not exist, copies data from the

SecureFiles LOB into the specified DBFS HSM Store, removes data from the SecureFiles
LOB, and stores the file path name for subsequent access through this LOB

Copy or create a reference to an existing file

Call DBMS LOB.COPY DBFS LINK() to copy a link from an existing DBFS Link. If there is any

data in the destination SecureFiles LOB, the system removes this data and stores a copy
of the reference to the link in the destination SecureFiles LOB

ORACLE

22-16

Chapter 22
Database File System Links

« Call DBMS LOB.SET DBFS LINK(), which assumes that the data for the link is stored in the
specified DBFS path name.

The system removes data in the specified SecureFiles LOB and stores the link to the
DBFS path name.

Creating a DBFS Link impacts which operations may be performed and how. Any DBMS LOB
operations that modify the contents of a LOB will throw an exception if the underlying LOB has
been moved into a DBFS Link. The application must explicitly replace the DBFS Link with a
LOB by calling DBMS LOB.COPY FROM LINK() before making these calls.

When it is completed, the application can move the updated LOB back to DBFS using
DBMS LOB.MOVE TO DBFS LINK(), if needed. Other DBMS LOB operations that existed before
Oracle Database 11g Release 2 work transparently if the DBFS Link is in a file system that
supports streaming. Note that these operations fail if streaming is either not supported or
disabled.

If the DBFS Link file is modified through DBFS interfaces directly, the change is reflected in
subsequent reads of the SecureFiles LOB. If the file is deleted through DBFS interfaces, then
an exception occurs on subsequent reads.

For the database, it is also possible that a DBA may not want to store all of the data stored in a
SecureFiles LOB HSM during export and import. Oracle has the ability to export and import
only the Database File System Links. The links are fully qualified identifiers that provide access
to the stored data, when entered into a SecureFiles LOB or registered on a SecureFiles LOB in
a different database. This ability to export and import a link is similar to the common file system
functionality of symbolic links.

The newly imported link is only available as long as the source, the stored data, is available, or
until the first retrieval occurs on the imported system. The application is responsible for stored
data retention. If the application system removes data from the store that still has a reference
to it, the database throws an exception when the referencing SecureFiles LOB(s) attempt to
access the data. Oracle also supports continuing to keep the data in the database after
migration out to a DBFS store as a cached copy. It is up to the application to purge these
copies in compliance with its retention policies.

22.5.3 Database File System Links Copy

The API DBMS_LOB.COPY DBFS LINK(DSTLOB, SRCLOB, FLAGS) provides the ability to copy a
linked SecureFiles LOB.

sBy default, the LOB is not obtained from the DBFS HSM Store during this operation; this is a
copy-by-reference operation that exports the DBFS path name (at source side) and imports it
(at destination side). The flags argument can dictate that the destination has a local copy in
the database and references the LOB data in the DBFS HSM Store.

22.5.4 Copying a Linked LOB Between Tables

ORACLE

You can copy DBFS links from source tables to destination tables.

Use the following code to copy any DBFS Links that are stored in any SecureFiles LOBs in the
source table to the destination table.

CREATE TABLE ... AS SELECT (CTAS) and INSERT TABLE ... AS SELECT (ITAS)

22-17

Chapter 22
The DBMS_DBFS_HS Package

22.5.5 Online Redefinition and DBFS Links

Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in the table
being redefined.

Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in the table
being redefined.

22.5.6 Transparent Read

DBFS Links can read from a linked SecureFiles LOB even if the data is not cached in the
database.

You can read data from the content store where the data is currently stored and stream that
data back to the user application as if it were being read from the SecureFiles LOB segment.
This allows seamless access to the DBFS Linked data without the prerequisite first call to
DBMS LOB.COPY FROM DBFS LINK().

Whether or not transparent read is available for a particular SecureFiles LOB is determined by
the DBFS_CONTENT store where the data resides. This feature is always enabled for DBFS_SFS
stores, and by default for DBFS_HS stores. To disable transparent read for DBFS_HS store, set the
PROPNAME STREAMABLE parameter to FALSE.

¢ See Also:
Oracle Database PL/SQL Packages and Types Reference

22.6 The DBMS_DBFS_HS Package

The DBMS DBFS HS package is a service provider that enables use of tape or Amazon S3 Web
service as storage for data.

Topics:
e Constants for DBMS_DBFS_HS Package
e Methods for DBMS_DBFS_HS Package

e Constants for DBMS_DBFS_HS Package
The DBMS DBFS HS PL/SQL package constants are very detailed.

e Methods for DBMS_DBFS_HS Package
There are many methods in the DBMS DBFS_HSpackage.

22.6.1 Constants for DBMS_DBFS_HS Package

The DBMS DBFS HS PL/SQL package constants are very detailed.

ORACLE 9918

See Also:

Chapter 22
The DBMS_DBFS_HS Package

See Oracle Database PL/SQL Packages and Types Reference for details of
constants used by DBMS DBFS_HS PL/SQL package

22.6.2 Methods for DBMS _DBFS_HS Package

There are many methods in the DBMS DBFS_HSpackage.

ORACLE

Table 22-1 summarizes the DBMS DBFS HS PL/SQL package methods.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Table 22-1 Methods of the DBMS_DBFS_HS PL/SQL Packages
|

Method

Description

CLEANUPUNUSEDBACKUPFILES

CREATEBUCKET

CREATESTORE

DEREGSTORECOMMAND

DROPSTORE

FLUSHCACHE

GETSTOREPROPERTY

RECONFIGCACHE

REGISTERSTORECOMMAND

SENDCOMMAND

SETSTOREPROPERTY

Removes files that are created on the external storage device if they
have no current content.

Oracle Database PL/SQL Packages and Types Reference

Creates an AWS bucket, for use with the STORETYPE AMAZON3 store.
Oracle Database PL/SQL Packages and Types Reference

Creates a DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

Removes a command (message) that was associated with a store.
Oracle Database PL/SQL Packages and Types Reference

Deletes a previously created DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

Flushes out level 1 cache to level 2 cache, increasing space in level 1.
Oracle Database PL/SQL Packages and Types Reference

Retrieves the values of a property of a store in the database.

Oracle Database PL/SQL Packages and Types Reference
Reconfigures the parameters of the database cache used by the store.
Oracle Database PL/SQL Packages and Types Reference

Registers commands (messages) for a store so they are sent to the
Media Manager of an external storage device.

Oracle Database PL/SQL Packages and Types Reference .

Sends a command (message) to the Media Manager of an external
storage device.

Oracle Database PL/SQL Packages and Types Reference

Associates name/value properties with a registered Hierarchical Store.
Oracle Database PL/SQL Packages and Types Reference

22-19

Chapter 22
Views for DBFS Hierarchical Store

Table 22-1 (Cont.) Methods of the DBMS_DBFS_HS PL/SQL Packages

. ___|
Method Description

STOREPUSH Pushes locally cached data to an archive store.

Oracle Database PL/SQL Packages and Types Reference

22.7 Views for DBFS Hierarchical Store

The BFS Hierarchical Stores have several types of views.

There are several types of view for DBFS Hierarchical Stores.

See Also:

Oracle Database Reference for the columns and data types of these views

Topics:

DBA Views

User Views

DBA Views
There are several views available for DBFS Hierarchical Store.

User Views
There are several views available for the DBFS Hierarchical Store.

22.7.1 DBA Views

There are several views available for DBFS Hierarchical Store.

These views for DBFS Hierarchical Store are available:

ORACLE

DBA DBFS HS
This view shows all Database File System (DBFS) hierarchical stores
DBA DBFS HS PROPERTIES

This view shows modifiable properties of all Database File System (DBFS) hierarchical
stores.

DBA_DBFS HS FIXED PROPERTIES

This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores.

DBA_DBFS_HS COMMANDS

This view shows all the registered store commands for all Database File System (DBFS)
hierarchical stores.

22-20

Chapter 22
Views for DBFS Hierarchical Store

22.7.2 User Views

There are several views available for the DBFS Hierarchical Store.

ORACLE

USER_DBFS_HS

This view shows all Database File System (DBFS) hierarchical stores owned by the current
user.

USER_DBFS_HS PROPERTIES

This view shows modifiable properties of all Database File System (DBFS) hierarchical
stores owned by current user.

USER DBFS HS FIXED PROPERTIES

This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores owned by current user.

USER DBFS HS COMMANDS

This view shows all the registered store commands for all Database File system (DBFS)
hierarchical stores owned by current user.

USER DBFS HS FILES

This view shows files in the Database File System (DBFS) hierarchical store owned by the
current user and their location on the backend device.

22-21

DBFS Content API

ORACLE

You can enable applications to use the Database File System (DBFS) in several different
programming environments.

Topics:

Overview of DBFS Content API

Stores and DBFS Content API

Getting Started with DBMS_DBFS_CONTENT Package
Administrative and Query APIs

Querying DBFS Content API Space Usage

DBFS Content API Session Defaults

DBFS Content API Interface Versioning

Notes on DBFS Content API Path Names

DBFS Content API Creation Operations

DBFS Content API Deletion Operations

DBFS Content API Path Get and Put Operations
DBFS Content APl Rename and Move Operations
Directory Listings

DBFS Content API Directory Navigation and Search
DBFS Content API Locking Operations

DBFS Content API Access Checks

DBFS Content API Abstract Operations

DBFS Content API Path Normalization

DBFS Content API Statistics Support

DBFS Content API Tracing Support

Resource and Property Views

Overview of DBFS Content API
You can enable applications to use DBFS using the DBFS Content API
(DBMS_DBFS_CONTENT), which is a client-side programmatic API package.

Stores and DBFS Content API

The DBFS Content API takes the common features of various stores and forms them into a
simple interface that can be used to build portable client applications, while allowing
different stores to implement the set of features they choose.

Getting Started with DBMS_DBFS_CONTENT Package
DBMS DBFS_CONTENT is part of the Oracle Database, starting with Oracle Database 11g
Release 2, and does not need to be installed.

23-1

Chapter 23

e Administrative and Query APIs
Administrative clients and content providers are expected to register content stores with
the DBFS Content API. Additionally, administrative clients are expected to mount stores
into the top-level namespace of their choice.

* Querying DBFS Content API Space Usage
You can query file system space usage statistics.

* DBFS Content API Session Defaults
Normal client access to the DBFS Content API executes with an implicit context that
consists of certain objects.

* DBFS Content API Interface Versioning
To allow for the DBFS Content API itself to evolve, an internal numeric API version
increases with each change to the public API.

* Notes on DBFS Content API Path Names
Clients of the DBFS Content API refer to store items through absolute path names.

« DBFS Content API Creation Operations
You must implement the provider SPI so that when clients invoke the DBFS Content API, it
causes the SPI to create directory, file, link, and reference elements (subject to store
feature support).

* DBFS Content API Deletion Operations
You must implement the provider SPI so that when clients invoke the DBFS Content API, it
causes the SPI to delete directory, file, link, and reference elements (subject to store
feature support).

* DBFS Content API Path Get and Put Operations
You can query existing path items or update them using simple GETxxx () and PUTXXX ()
methods.

e DBFS Content APl Rename and Move Operations
You can rename or move path names, possibly across directory hierarchies and mount
points, but only within the same store.

» Directory Listings
Directory listings are handled several different ways.

« DBFS Content API Directory Navigation and Search
Clients of the DBFS Content API can list or search the contents of directory path names,
with optional modes.

- DBFS Content API Locking Operations
DBFS Content API clients can apply user-level locks,depending on certain criteria.

e DBFS Content API Access Checks
The DBFS Content API checks the access of specific path names by operations.

e DBFS Content API Abstract Operations
All of the operations in the DBFS Content API are represented as abstract opcodes.

» DBFS Content API Path Normalization
There is a process for performing API path normalization.

e DBFS Content API Statistics Support
DBFS provides support to reduce the expense of collecting DBFS Content API statistics.

e DBFS Content API Tracing Support
Any DBFS Content API user (both clients and providers) can use DBFS Content API
tracing, a generic tracing facility.

ORACLE 30

Chapter 23
Overview of DBFS Content API

* Resource and Property Views
You can see descriptions of Content API structure and properties in certain views.

23.1 Overview of DBFS Content API

You can enable applications to use DBFS using the DBFS Content API (DBMS_DBFS_CONTENT),
which is a client-side programmatic API package.

You can write applications in SQL, PL/SQL, JDBC, OCI, and other programming environments.

The DBFS Content API is a collection of methods that provide a file system-like abstraction. It
is backed by one or more DBFS Store Providers. The Content in the DBFS Content interface
refers to a file, including metadata, and it can either map to a SecureFiles LoB (and other
columns) in a table or be dynamically created by user-written plug-ins in Java or PL/SQL that
run inside the database. The plug-in form is referred to as a provider.

Note:

The DBFS Content API includes the SecureFiles Store Provider, DBMS DBFS SFS, a
default implementation that enables applications that already use LOBs as columns
in their schema, to access the 1.0B columns as files.

¢ See Also:
DBFS SecureFiles Store

Examples of possible providers include:

« Packaged applications that want to surface data through files.

e Custom applications developers use to leverage the file system interface, such as an
application that stores medical images.

23.2 Stores and DBFS Content API

ORACLE

The DBFS Content API takes the common features of various stores and forms them into a
simple interface that can be used to build portable client applications, while allowing different
stores to implement the set of features they choose.

The DBFS Content API aggregates the path namespace of one or more stores into a single
unified namespace, using the first component of the path name to disambiguate the
namespace and then presents it to client applications. This allows clients to access the
underlying documents using either a full absolute path name represented by a single string, in
this form:

/store-name/store-specific-path-name

or a store-qualified path name as a string 2-tuple, in this form:

["store-name","/store-specific-path-name"]

23-3

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

The DBFS Content API then takes care of correctly dispatching various operations on path
names to the appropriate stores and integrating the results back into the client-desired
namespace.

Store providers must conform to the store provider interface (SPI) as declared by the package
DBMS DBFS CONTENT SPI.

e Creating Your Own DBFS Store

* Oracle Database PL/SQL Packages and Types Reference for DBMS DBFS CONTENT
package syntax reference

23.3 Getting Started with DBMS_DBFS_CONTENT Package

ORACLE

DBMS DBFS_CONTENT is part of the Oracle Database, starting with Oracle Database 11g Release
2, and does not need to be installed.

* DBFS Content API Role
Access to the content operational and administrative API (packages, types, tables, and so
on) is available through DBFS ROLE.

« Path Name Constants and Types
Path name constants are modeled after their SecureFiles LOBs store counterparts.

e Path Properties
Every path name in a store is associated with a set of properties.

e Content IDs
Content IDs are unique identifiers that represent a path in the store.

e Path Name Types
Stores can store and provide access to four types of entities.

» Store Features
In order to provide a common programmatic interface to as many different types of stores
as possible, the DBFS Content API leaves some of the behavior of various operations to
individual store providers to define and implement.

e Lock Types
Stores that support locking should implement three types of locks.

e Standard Properties

e Optional Properties
Optional properties are well-defined but non-mandatory properties associated with all
content path names that all stores are free to support (but only in the manner described by
the DBFS Content API).

e User-Defined Properties
You can define your own properties for use in your application.

* Property Access Flags
DBFS Content API methods to get and set properties can use combinations of property
access flags to fetch properties from different namespaces in a single API call.

e Exceptions
DBFS Content API operations can raise any one of the top-level exceptions.

e Property Bundles
Property bundles are discussed as property t record type and properties_t.

23-4

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

e Store Descriptors
Store descriptors are discussed as store t and mount_t records.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more information

23.3.1 DBFS Content API Role

Access to the content operational and administrative API (packages, types, tables, and so on)
is available through DBFS ROLE.

The DBFS_ROLE can be granted to all users as needed.

23.3.2 Path Name Constants and Types

Path name constants are modeled after their SecureFiles LOBs store counterparts.

See Also:

Oracle Database PL/SQL Packages and Types Reference for path name constants
and their types

23.3.3 Path Properties

ORACLE

Every path name in a store is associated with a set of properties.

For simplicity and generality, each property is identified by a string name, has a string value
(possibly null if not set or undefined or unsupported by a specific store implementation), and a
value typecode, a numeric discriminant for the actual type of value held in the value string.

Coercing property values to strings has the advantage of making the various interfaces uniform
and compact (and can even simplify implementation of the underlying stores), but has the
potential for information loss during conversions to and from strings.

It is expected that clients and stores use well-defined database conventions for these
conversions and use the typecode field as appropriate.

PL/SQL types path t and name t are portable aliases for strings that can represent
pathnames and component names,

A typecode is a numeric value representing the true type of a string-coerced property value.
Simple scalar types (numbers, dates, timestamps, etc.) can be depended on by clients and
must be implemented by stores.

Since standard RDBMS typecodes are positive integers, the DBMS DBFS CONTENT interface
allows negative integers to represent client-defined types by negative typecodes. These
typecodes do not conflict with standard typecodes, are maintained persistently and returned to
the client as needed, but need not be interpreted by the DBFS content API or any particular
store. Portable client applications should not use user-defined typecodes as a back door way
of passing information to specific stores.

23-5

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT constants and properties and the
DBMS DBFS CONTENT PROPERTY T package

23.3.4 Content IDs

Content IDs are unique identifiers that represent a path in the store.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT Content ID constants and properties

23.3.5 Path Name Types

Stores can store and provide access to four types of entities.

The four types of entities are: type file, type directory, type directory, and
type reference.

Not all stores must implement all directories, links, or references.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS_CONTENT constants and path name types

23.3.6 Store Features

ORACLE

In order to provide a common programmatic interface to as many different types of stores as
possible, the DBFS Content API leaves some of the behavior of various operations to
individual store providers to define and implement.

The DBFS Content API remains rich and conducive to portable applications by allowing
different store providers (and different stores) to describe themselves as a feature set. A
feature set is a bit mask indicating which features they support and which ones they do not.
With this, it is possible, although tricky, for client applications to compensate for the feature
deficiencies of specific stores by implementing additional logic on the client side, and deferring
complex operations to stores capable of supporting them.

23-6

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the store
features and constants

23.3.7 Lock Types

Stores that support locking should implement three types of locks.
The three types of locks are: lock read only, lock write only, lock read write.

User locks (any of these types) can be associated with user-supplied lock data. The store
does not interpret the data, but client applications can use it for their own purposes (for
example, the user data could indicate the time at which the lock was placed, and the client
application might use this later to control its actions.

In the simplest locking model, a 1lock_read only prevents all explicit modifications to a path
name (but allows implicit modifications and changes to parent/child path names). A

lock write only prevents all explicit reads to the path name, but allows implicit reads and
reads to parent/child path names. A lock read write allows both.

All locks are associated with a principal user who performs the locking operation; stores that
support locking are expected to preserve this information and use it to perform read/write lock
checking (see opt locker).

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the lock
types and constants.

23.3.8 Standard Properties

Standard properties are well-defined, mandatory properties associated with all content path
names, which all stores must support, in the manner described by the DBFS Content API.
Stores created against tables with a fixed schema may choose reasonable defaults for as
many of these properties as needed, and so on.

All standard properties informally use the std namespace. Clients and stores should avoid
using this namespace to define their own properties to prevent conflicts in the future.

See Also:

See Oracle Database PL/SQL Packages and Types Reference for details of the
standard properties and constants

ORACLE 23-7

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

23.3.9 Optional Properties

Optional properties are well-defined but non-mandatory properties associated with all content
path names that all stores are free to support (but only in the manner described by the DBFS
Content API).

Clients should be prepared to deal with stores that support none of the optional properties.

All optional properties informally use the opt namespace. Clients and stores must avoid using
this namespace to define their own properties to prevent conflicts in the future.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the optional
properties and constants

23.3.10 User-Defined Properties

You can define your own properties for use in your application.

Ensure that the namespace prefixes do not conflict with each other or with the DBFS standard
or optional properties.

23.3.11 Property Access Flags

DBFS Content API methods to get and set properties can use combinations of property access
flags to fetch properties from different namespaces in a single API call.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the property
access flags and constants

23.3.12 Exceptions

DBFS Content API operations can raise any one of the top-level exceptions.

Clients can program against these specific exceptions in their error handlers without worrying
about the specific store implementations of the underlying error signalling code.

Store service providers, should try to trap and wrap any internal exceptions into one of the
exception types, as appropriate.

ORACLE a8

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
Exceptions

23.3.13 Property Bundles

Property bundles are discussed as property t record type and properties_t.

* The property t record type describes a single (value, typecode) property value tuple; the
property name is implied.

* properties tis a name-indexed hash table of property tuples. The implicit hash-table
association between the index and the value allows the client to build up the full
doms_dbfs content property t tuples for a properties t.

There is an approximate correspondence between doms dbfs content property t and
property t. The former is a SQL object type that describes the full property tuple, while the
latter is a PL/SQL record type that describes only the property value component.

There is an approximate correspondence between doms_dbfs content properties t and
properties t. The formeris a SQL nested table type, while the latter is a PL/SQL hash table
type.

Dynamic SQL calling conventions force the use of SQL types, but PL/SQL code may be
implemented more conveniently in terms of the hash-table types.

DBFS Content API provides convenient utility functions to convert between
doms_dbfs content properties t and properties t.

The function DBMS DBFS CONTENT.PROPERTIEST2H converts a

DBMS_DBFS_CONTENT PROPERTIES T value to an equivalent properties_t value, and the
function DBMS DBFS CONTENT.PROPERTIESH2T converts a properties_t value to an equivalent
DBMS_DBFS_CONTENT PROPERTIES T value.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
PROPERTY T record type

23.3.14 Store Descriptors

Store descriptors are discussed as store t and mount_t records.

* Astore tis arecord that describes a store registered with, and managed by the DBFS
Content API .

* Amnount tis arecord that describes a store mount point and its properties.

Clients can query the DBFS Content API for the list of available stores, determine which store
handles accesses to a given path name, and determine the feature set for the store.

ORACLE 3.9

Chapter 23
Administrative and Query APIs

See Also:

e Administrative and Query APIs

e Oracle Database PL/SQL Packages and Types Reference for details of the
STORE_T record type

23.4 Administrative and Query APIs

Administrative clients and content providers are expected to register content stores with the
DBFS Content API. Additionally, administrative clients are expected to mount stores into the
top-level namespace of their choice.

The registration and unregistration of a store is separated from the mount and unmount of a
store because it is possible for the same store to be mounted multiple times at different mount
points (and this is under client control).

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for the summary of
DBMS DBFS_CONTENT package methods

This section covers the following topics:

* Registering a Content Store

* Unregistering a Content Store

* Mounting a Registered Store

e Unmounting a Previously Mounted Store

e Listing all Available Stores and Their Features
e Listing all Available Mount Points

e Looking Up Specific Stores and Their Features

* Registering a Content Store

* Unregistering a Content Store

* Mounting a Registered Store

* Unmounting a Previously Mounted Store

e Listing all Available Stores and Their Features
e Listing all Available Mount Points

* Looking Up Specific Stores and Their Features

23.4.1 Registering a Content Store

ORACLE

You can register a new store that is backed by a provider that uses the provider package
procedure as the store service provider. The method of registration conforms to the
DBMS DBFS CONTENT SPI package signature.

23-10

Chapter 23
Administrative and Query APIs

e Use the REGISTERSTORE () procedure.

This method is designed for use by service providers after they have created a new store.
Store names must be unique.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
REGISTERSTORE () method

23.4.2 Unregistering a Content Store

You can unregister a previously registered store, which invalidates all mount points associated
with it. Once the store is unregistered, access to the store and its mount points is no longer
guaranteed, although a consistent read may provide a temporary illusion of continued access.

e Use the UNREGISTERSTORE () procedure.

If the ignore unknown argument is true, attempts to unregister unknown stores do not raise an
exception.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNREGISTERSTORE () method

23.4.3 Mounting a Registered Store

ORACLE

You can mount a registered store and bind it to the mount point.
e Use the MOUNTSTORE () procedure.

After you mount the store, access to the path names in the form /store_mount/xyz is redirected
to store name and its content provider.

Store mount points must be unique, and a syntactically valid path name component (that is, a
name_t with no embedded /).

If you do not specify a mount point and therefore, it is null, the DBFS Content API attempts to
use the store name itself as the mount point name (subject to the uniqueness and syntactic
constraints).

A special empty mount point is available for single stores, that is in a scenario where the DBFS
Content API manages a single back-end store. Then, the client can directly deal with full path
names of the form /xyz because there is no ambiguity in how to redirect these accesses.

The same store can be mounted multiple times, obviously at different mount points.

You can use mount properties to specify the DBFS Content API execution environment, that is,
the default values of the principal, owner, ACL, and asof, for a particular mount point. You can
also use mount properties to specify a read-only store.

23-11

Chapter 23
Administrative and Query APIs

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
MOUNTSTORE () method

23.4.4 Unmounting a Previously Mounted Store

You can unmount a previously mounted store, either by name or by mount point. You can only
unmount single stores by store name because they have no mount points. Attempting to
unmount a store by name unmounts all mount points associated with the store.

e Use the UNMOUNTSTORE () procedure.

Once unmounted, access to the store or mount-point is no longer guaranteed to work although
a consistent read may provide a temporary illusion of continued access. If the ignore unknown
argument is true, attempts to unregister unknown stores or mounts does not raise an
exception.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNMOUNTSTORE method

23.4.5 Listing all Available Stores and Their Features

You can list all the available stores. The store mount field of the returned records is set to null
because mount points are separate from stores themselves.

e Use the LISTSTORES () function.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LISTSTORES Function

23.4.6 Listing all Available Mount Points

You can list all available mount points, their backing stores, and the store features. A single
mount returns a single row, with the store mount field set to null.

e Use the LISTMOUNTS () function.

ORACLE 9310

Chapter 23
Querying DBFS Content API Space Usage

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LISTMOUNTS () method

23.4.7 Looking Up Specific Stores and Their Features

You can look up the path name, store name, or mount point of a store.

e Use GETSTOREBYXXX () Or GETFEATUREBYXXX () functions.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

23.5 Querying DBFS Content APl Space Usage

You can query file system space usage statistics.

Providers are expected to support this method for their stores and to make a best effort
determination of space usage, especially if the store consists of multiple tables, indexes, LOBs,
and so on.

¢ Use the SPACEUSAGE () method
where:

° Dblksize is the natural tablespace block size that holds the store; if multiple tablespaces
with different block sizes are used, any valid block size is acceptable.

e tbytes is the total size of the store in bytes, and fbytes is the free or unused size of the
store in bytes. These values are computed over all segments that comprise the store.

e nfile, ndir, nlink, and nref count the number of currently available files, directories,
links, and references in the store.

Database objects can grow dynamically, so it is not easy to estimate the division between free
space and used space.

A space usage query on the top level root directory returns a combined summary of the space
usage of all available distinct stores under it. If the same store is mounted multiple times, it is
counted only once.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
SPACEUSAGE () method

ORACLE 9313

Chapter 23
DBFS Content API Session Defaults

23.6 DBFS Content API Session Defaults

Normal client access to the DBFS Content API executes with an implicit context that consists
of certain objects.

e The principal invoking the current operation.
e The owner for all new elements created (implicitly or explicitly) by the current operation.
e The ACL for all new elements created (implicitly or explicitly) by the current operation.

e The ASOF timestamp at which the underlying read-only operation (or its read-only sub-
components) execute.

All of this information can be passed in explicitly through arguments to the various DBFS
Content API method calls, allowing the client fine-grained control over individual operations.

The DBFS Content API also allows clients to set session duration defaults for the context that
are automatically inherited by all operations for which the defaults are not explicitly overridden.

All of the context defaults start out as null and can be cleared by setting them to null.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT methods

23.7 DBFS Content API Interface Versioning

To allow for the DBFS Content API itself to evolve, an internal numeric API version increases
with each change to the public API.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
GETVERSION () method

23.8 Notes on DBFS Content APl Path Names

ORACLE

Clients of the DBFS Content API refer to store items through absolute path names.
Absolute path names may be:

« fully qualified (a single string of the form /mount point/pathname)

» store-qualified (a tuple of the form (store name, pathname), where the path name is
rooted within the store namespace)

Clients may use either naming scheme and can use both naming methods within their
programs.

23-14

Chapter 23
DBFS Content API Creation Operations

If path names are returned by DBFS Content API calls, the exact values being returned
depend on the naming scheme used by the client in the call. For example, a listing or search
on a fully qualified directory name returns items with their fully qualified path names, while a
listing or search on a store-qualified directory name returns items whose path names are store-
specific, and the store-qualification is implied.

The implementation of the DBFS Content API internally manages the normalization and inter-
conversion between these two naming schemes.

23.9 DBFS Content API Creation Operations

You must implement the provider SPI so that when clients invoke the DBFS Content AP, it
causes the SPI to create directory, file, link, and reference elements (subject to store feature
support).

All of the creation methods require a valid path name and can optionally specify properties to
be associated with the path name as it is created. It is also possible for clients to fetch back
item properties after the creation completes, so that automatically generated properties, such
as std creation time, are immediately available to clients. The exact set of properties
fetched back is controlled by the various prop xxx bit masks in prop flags.

Links and references require an additional path name associated with the primary path name.
File path names can optionally specify a BLOB value to initially populate the underlying file
content, and the provided BL.OB may be any valid LOB, either temporary or permanent. On
creation, the underlying LOB is returned to the client if prop data is specified in prop flags.

Non-directory path names require that their parent directory be created first. Directory path
names themselves can be recursively created. This means that the path name hierarchy
leading up to a directory can be created in one call.

Attempts to create paths that already exist produce an error, except for path names that are
soft-deleted. In these cases, the soft-deleted item is implicitly purged, and the new item
creation is attempted.

Stores and their providers that support contentlD-based access accept an explicit store name
and a NULL path to create a new content element. The contentID generated for this element is
available by means of the OPT CONTENT ID property. The PROP_OPT property in the prop flags
parameter automatically implies contentlD-based creation.

The newly created element may also have an internally generated path name if the
FEATURE LAZY PATH property is not supported and this path is available by way of the
STD CANONICAL PATH property.

Only file elements are candidates for contentID-based access.

¢ See Also:

* Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS_CONTENT () methods, DBMS DBFS CONTENT () Constants - Optional
Properties, and DBMS DBFS_CONTENT Constants - Standard Properties

ORACLE 9315

Chapter 23
DBFS Content API Deletion Operations

23.10 DBFS Content API Deletion Operations

You must implement the provider SPI so that when clients invoke the DBFS Content API, it
causes the SPI to delete directory, file, link, and reference elements (subject to store feature
support).

By default, the deletions are permanent, and remove successfully deleted items on transaction
commit. However, repositories may also support soft-delete features. If requested by the client,
soft-deleted items are retained by the store. They are not, however, typically visible in normal
listings or searches. Soft-deleted items may be restored or explicitly purged.

Directory path names may be recursively deleted; the path name hierarchy below a directory
may be deleted in one call. Non-recursive deletions can be performed only on empty
directories. Recursive soft-deletions apply the soft-delete to all of the items being deleted.

Individual path names or all soft-deleted path names under a directory may be restored or
purged using the RESTOREXXX () and PURGEXXX () methods.

Providers that support filtering can use the provider filter to identify subsets of items to delete;
this makes most sense for bulk operations such as deleteDirectory (), RESTOREALL (), and
PURGEALL (), but all of the deletion-related operations accept a filter argument.

Stores and their providers that support contentiD-based access can also allow deleting file
items by specifying their contentlD.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT () methods

23.11 DBFS Content API Path Get and Put Operations

ORACLE

You can query existing path items or update them using simple GETxxx () and PUTXXX ()
methods.

All path names allow their metadata to be read and modified. On completion of the call, the
client can request that specific properties be fetched through prop flags.

File path names allow their data to be read and modified. On completion of the call, the client
can request a new BLOB locator through the prop data bit masks in prop flags; these may be
used to continue data access.

Files can also be read and written without using BLOB locators, by explicitly specifying logical
offsets, buffer amounts, and a suitably sized buffer.

Update accesses must specify the forUpdate flag. Access to link path names may be implicitly
and internally dereferenced by stores, subject to feature support, if the deref flag is specified.
Oracle does not recommend this practice because symbolic links are not guaranteed to
resolve.

The read method GETPATH () where forUpdate is false accepts a valid asof timestamp
parameter that can be used by stores to implement flashback-style queries.

23-16

Chapter 23
DBFS Content APl Rename and Move Operations

Mutating versions of the GETPATH () and the PUTPATH () methods do not support asof modes of
operation.

The DBFS Content API does not have an explicit COPY () operation because a copy is easily
implemented as a combination of a GETPATH () followed by a CREATEXXX () with appropriate
data or metadata transfer across the calls. This allows copies across stores, while an
internalized copy operation cannot provide this facility.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS_CONTENT methods

23.12 DBFS Content APl Rename and Move Operations

You can rename or move path names, possibly across directory hierarchies and mount points,
but only within the same store.

Non-directory path names previously accessible by o1dPath can be renamed as a single item
subsequently accessible by newPath, assuming that newPath does not exist.

If newPath exists and is not a directory, the rename implicitly deletes the existing item before
renaming oldPath. If newPath exists and is a directory, o1dPath is moved into the target
directory.

Directory path names previously accessible by o1dpath can be renamed by moving the
directory and all of its children to newPath (if it does not exist) or as children of newPath (if it
exists and is a directory).

Because the semantics of rename and move is complex with respect to non-existent or
existent and non-directory or directory targets, clients may choose to implement complex
rename and move operations as sequences of simpler moves or copies.

Stores and their providers that support contentID-based access and lazy path name binding
also support the Oracle Database PL/SQL Packages and Types Reference SETPATH procedure

that associates an existing contentID with a new "path".

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT.RENAMEPATH () methods

23.13 Directory Listings

Directory listings are handled several different ways.

* Alist item tis atuple of path name, component name, and type representing a single
element in a directory listing.

ORACLE 23-17

Chapter 23
DBFS Content API Directory Navigation and Search

* Apath item tis a tuple describing a store, mount qualified path in a content store, with all

standard and optional properties associated with it.

* Aprop item tis a tuple describing a store, mount qualified path in a content store, with all

user-defined properties associated with it, expanded out into individual tuples of name,
value, and type.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of data
structures

23.14 DBFS Content API Directory Navigation and Search

Clients of the DBFS Content API can list or search the contents of directory path names, with
optional modes.

Optional Modes:

e searching recursively in sub-directories

e seeing soft-deleted items

e using flashback asof a provided timestamp

« filtering items in and out within the store based on list or search predicates.

The DBFS Content API currently only returns list items; clients explicitly use one of the
getPath () methods to access the properties or content associated with an item, as
appropriate.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT methods

23.15 DBFS Content API Locking Operations

ORACLE

DBFS Content API clients can apply user-level locks,depending on certain criteria.

Clients of the DBFS Content API can apply user-level locks to any valid path name, subject to
store feature support, associate the lock with user data, and subsequently unlock these path
names. The status of locked items is available through various optional properties.

If a store supports user-defined lock checking, it is responsible for ensuring that lock and
unlock operations are performed in a consistent manner.

23-18

Chapter 23
DBFS Content API Access Checks

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS CONTENT methods

23.16 DBFS Content API Access Checks

The DBFS Content API checks the access of specific path names by operations.

Function CHECKACCESS () checks if a given path name (path, pathtype, store name) can be
manipulated by an operation, such as the various op_xxx opcodes) by principal, as described
in "DBFS Content API Locking Operations"

This is a convenience function for the client; a store that supports access control still internally
performs these checks to guarantee security.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT methods

23.17 DBFS Content API Abstract Operations

All of the operations in the DBFS Content API are represented as abstract opcodes.

Clients can useopcodes to directly and explicitly invoke the CHECKACCESS () method which
verifies if a particular operation can be invoked by a given principal on a particular path name.

An op_acl() is an implicit operation invoked during an op_create () or op_put () call, which
specifies a std_acl property. The operation tests to see if the principal is allowed to set or
change the ACL of a store item.

op_delete () represents the soft-deletion, purge, and restore operations.

The source and destination operations of a rename or move operation are separated, although
stores are free to unify these opcodes and to also treat a rename as a combination of delete
and create.

op_store is a catch-all category for miscellaneous store operations that do not fall under any of
the other operational APlIs.

¢ See Also:

« DBFS Content API Access Checks

e Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS DBFS CONTENT Constants - Operation Codes.

ORACLE 9319

Chapter 23
DBFS Content API Path Normalization

23.18 DBFS Content API Path Normalization

There is a process for performing API path normalization.
Function NORMALIZEPATH () performs the following steps:

1. \Verifies that the path name is absolute (starts with a /).
2. Collapses multiple consecutive /s into a single /.

3. Strips trailing /s.
4

Breaks store-specific normalized path names into two components: the parent path name
and the trailing component name.

5. Breaks fully qualified normalized path names into three components: store name, parent
path name, and trailing component name.

Note that the root path / is special: its parent path name is also /, and its component name is
null. In fully qualified mode, it has a null store name unless a singleton mount has been
created, in which case the appropriate store name is returned.

The return value is always the completely normalized store-specific or fully qualified path
name.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT.RENAMEPATH () methods

23.19 DBFS Content API Statistics Support

DBFS provides support to reduce the expense of collecting DBFS Content API statistics.

DBFS Content API statistics are expensive to collect and maintain persistently. DBFS has
support for buffering statistics in memory for a maximum of flush time centiseconds or a
maximum of flush_count operations, whichever limit is reached first), at which time the buffers
are implicitly flushed to disk.

Clients can also explicitly invoke a flush using f1ushStats. An implicit flush also occurs when
statistics collection is disabled.

setStats is used to enable and disable statistics collection; the client can optionally control the
flush settings by specifying non-null values for the time and count parameters.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

ORACLE 9390

Chapter 23
DBFS Content API Tracing Support

23.20 DBFS Content API Tracing Support

Any DBFS Content API user (both clients and providers) can use DBFS Content API tracing, a
generic tracing facility.

The DBFS Content API dispatcher itself uses the tracing facility.

Trace information is written to the foreground trace file, with varying levels of detail as specified
by the trace level arguments. The global trace level consists of two components: severity and
detail. These can be thought of as additive bit masks.

The severity component allows the separation of top-level as compared to low-level tracing of
different components, and allows the amount of tracing to be increased as needed. There are
no semantics associated with different levels, and users are free to set the trace level at any
severity they choose, although a good rule of thumb would be to use severity 1 for top-level
API entry and exit traces, severity 2 for internal operations, and severity 3 or greater for very
low-level traces.

The detail component controls how much additional information the trace reports with each
trace record: timestamps, short-stack, and so on.

¢ See Also:
e Example 23-1 for more information about how to enable tracing using the DBFS
Content APIs.

e Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS DBFS CONTENT methods

Example 23-1 DBFS Content Tracing

function getTrace
return integer;
procedure setTrace (

trclvl in integer);
function traceEnabled (
sev in integer)

return integer;
procedure trace (

sev in integer,

msg0 in varchar2,

msgl in varchar default '',
msg2 in varchar default '',
msg3 in varchar default '',
msg4 in varchar default '',
msg5 in varchar default '',
msg6 in varchar default '',
msg7 in varchar default '',
msg8 in varchar default '',
msg9 in varchar default '',
msgl0 in varchar default ''");

ORACLE 9301

Chapter 23
Resource and Property Views

23.21 Resource and Property Views

You can see descriptions of Content API structure and properties in certain views.

Certain views describe the structure and properties of Content API.

See Also:

* Oracle Database Reference for more information about DBFS_CONTENT views

e Oracle Database Reference for more information about
DBFS CONTENT PROPERTIES Views

ORACLE 399

Creating Your Own DBFS Store

You can create your own DBFS Store using DBFS Content SPI (DBMS _DBFS_CONTENT SPI).
Topics:
» Overview of DBFS Store Creation and Use

* DBFS Content Store Provider Interface (DBFS Content SPI)

e Creating a Custom Provider

e Overview of DBFS Store Creation and Use
In order to customize a DBFS store, you must implement the DBFS Content SPI
(DBMS_DBFS CONTENT SPI). Itis the basis for existing stores such as the DBFS SecureFiles
Store and the DFFS Hierarchical Store, as well as any user-defined DBFS stores that you
create.

e DBFS Content Store Provider Interface (DBFS Content SPI)
The DBFS Content SPI (Store Provider Interface) is a specification only and has no
package body.

e Creating a Custom Provider
You can use this example store provider for DBFS, TaBleFileSystem Store Provider
("tbfs"), as a skeleton for custom providers or as a learning tool, to become familiar with
the DBFS and its SPI.

24.1 Overview of DBFS Store Creation and Use

In order to customize a DBFS store, you must implement the DBFS Content SPI
(DBMS_DBFS CONTENT SPI). Itis the basis for existing stores such as the DBFS SecureFiles
Store and the DFFS Hierarchical Store, as well as any user-defined DBFS stores that you
create.

Client-side applications, such the PL/SQL interface, invoke functions and procedures in the
DBFS Content API. The DBFS Content API then invokes corresponding subprograms in the
DBFS Content SPI to create stores and perform other related functions.

Once you create your DBFS store, you run it much the same way that you would a SecureFiles
Store.
¢ See Also:

e DBFS Content API
 DBFS SecureFiles Store

ORACLE a1

Chapter 24
DBFS Content Store Provider Interface (DBFS Content SPI)

Figure 24-1 Database File System (DBFS)

OCI
LOB
Interface
A
Java
LOB
. DBFS Interface
F“ﬁn%ﬁttem Command PII).|/BSF§L
Line Interface .
Interface Client Client Pt/é‘o(BlL
* * Interface
i \

DBFS V¥
Links

DBFS Content API | > M
(O
DBFS Content SPI L

N T

DBFS DBFS i User
SecureFile Hierarchical| : Defined
Store Store : Store

T
e

=

Cloud
Storage

24.2 DBFS Content Store Provider Interface (DBFS Content SPI)

ORACLE

The DBFS Content SPI (Store Provider Interface) is a specification only and has no package
body.

You must implement the package body in order to respond to calls from the DBFS Content
API. In other words, DBFS Content SPI is a collection of required program specifications which
you must implement using the method signatures and semantics indicated.

You may add additional functions and procedures to the DBFS Content SPI package body as
needed. Your implementation may implement other methods and expose other interfaces, but
the DBFS Content API will not use these interfaces.

The DBFS Content SPI references various elements such as constants, types, and exceptions
defined by the DBFS Content API (package DBMS DBFS CONTENT).

24-2

Chapter 24
Creating a Custom Provider

Note that all path name references must be store-qualified, that is, the notion of mount points
and full absolute path names has been normalized and converted to store-qualified path
names by the DBFS Content API before it invokes any of the Provider SPI methods.

Because the DBFS Content API and Provider SPI is a one-to-many pluggable architecture, the
DBFS Content API uses dynamic SQL to invoke methods in the Provider SPI; this may lead to
run time errors if your Provider SPI implementation does not follow the Provider SPI
specification in this document.

There are no explicit initial or final methods to indicate when the DBFS Content API plugs and
unplugs a particular Provider SPI. Provider SPIs must be able to auto-initialize themselves at
any SPI entry wpoint.

See Also:

* Oracle Database PL/SQL Packages and Types Reference for syntax of the
DBMS DBFS CONTENT SPI package

* See the file SORACLE HOME/rdbms/admin/dbmscapi.sql for more information

24.3 Creating a Custom Provider

ORACLE

You can use this example store provider for DBFS, TaBleFileSystem Store Provider ("tbfs"), as
a skeleton for custom providers or as a learning tool, to become familiar with the DBFS and its
SPI.

This example store provider for DBFS, exposes a relational table containing a BLOB column as
a flat, non-hierarchical filesystem, that is, a collection of named files.

To use this example, it is assumed that you have installed the Oracle Database 12c and are
familiar with DBFS concepts, and have installed and used dbfs client and FUSE to mount and
access filesystems backed by the standard SFS store provider.

The TaBleFileSystem Store Provider ("tbfs") does not aim to be feature-rich or even complete,
it does however provide a sufficient demonstration of what it takes for users of DBFS to write
their own custom providers that expose their table(s) through dofs client to traditional
filesystem programs.

Topics:

« Mechanics

e TBFS.SQL
« TBL.SQL

e spec.sql

* body.sql

e capi.sql

* Mechanics
These are the mechanics of the example store provider for DBFS, TaBleFileSystem Store
Provider ("tbfs").

24-3

Chapter 24
Creating a Custom Provider

e TBFS.SQL
The TBFS.SQL script is the top level driver script.

e TBL.SQL
The TBL.SQL script creates a test user, a tablespace, the table that backs the filesystem
and so on.

e spec.sql

The spec.sqgl script provide the SPI specification of the tbfs.

e body.sql
The body.sqgl script provides the SPI implementation of the tbfs.

e capi.sql
The capi.sqgl script registers and mounts the DBFS.

24.3.1 Mechanics

These are the mechanics of the example store provider for DBFS, TaBleFileSystem Store
Provider ("tbfs").

Topics:

e Installation and Setup
« TBFS Use

e TBFS Internals

e Installation and Setup
You will need certain files for installation and setup of the DBFS TaBleFileSystem Store
Provider (“tbfs").

e TBFS Use
Once the example store provider for DBFS, TaBleFileSystem Store Provider ("tbfs") is
installed, files can be added or removed in several different ways and other changes can
be made to the TBFS.

e TBFS Internals
The TBFS is simple because its primary purpose is to serve as a teaching and learning
example.

24.3.1.1 Installation and Setup

ORACLE

You will need certain files for installation and setup of the DBFS TaBleFileSystem Store
Provider (“tbfs").

The TBFS consists of the following SQL files:
tbfs.sql top-level driver script

tbl.sql script to create a test user, tablespace, the table backing the filesystem, and so
on.

spec.sql the SPI specification of the tbfs
body.sql the SPI implementation of the tbfs
capi.sql DBFS register/mount script

To install the TBFS, just run tbfs.sql as SYSDBA, in the directory that contains all of the above
files. tbfs.sql will load the other SQL files in the proper sequence.

24-4

Chapter 24
Creating a Custom Provider

Ignoring any name conflicts, all of the SQL files should load without any compilation errors. All
SQL files should also load without any run time errors, depending on the value of the
"plsqgl_warnings" init.ora parameter, you may see various innocuous warnings.

If there are any name conflicts (tablespace name TBFS, datafile name"tbfs.f", user name
TBFS, package name TBFS), the appropriate references in the various SQL files must be
changed consistently.

24.3.1.2 TBFS Use

Once the example store provider for DBFS, TaBleFileSystem Store Provider (“tbfs") is installed,
files can be added or removed in several different ways and other changes can be made to the
TBFS.

A dbfs client connected as user TBFS will see a simple, non-hierarchical, filesystem backed
by an RDBMS table (TBFS.TBFST).

Files can be added or removed from this filesystem through SQL (that is, through DML on the
underlying table), through Unix utilities (mediated by dbfs client), or through PL/SQL (using
the DBFS APIs).

Changes to the filesystem made through any of the access methods will be visible, in a
transactionally consistent manner (that is, at commit/rollback boundaries) to all of the other
access methods.

24.3.1.3 TBFS Internals

ORACLE

The TBFS is simple because its primary purpose is to serve as a teaching and learning
example.

However, the implementation shows the path towards a robust, production-quality custom SPI
that can plug into the DBFS, and expose existing relational data as Unix filesystems.

The TBFS makes various simplifications in order to remain concise (however, these should not
be taken as inviolable limitations of DBFS or the SPI):

e The TBFS SPI package handles only a single table with a hard-coded name
(TBFS.TBFST). It is possible to use dynamic SQL and additional configuration information
to have a single SPI package support multiple tables, each as a separate filesystem (or
even to unify data in multiple tables into a single filesystem).

e The TBFS does not support filesystem hierarchies; it imposes a flat namespace: a
collection of files, identified by a simple item name, under a virtual "/" root directory.
Implementing directory hierarchies is significantly more complex because it requires the
store provider to manage parent/child relationships in a consistent manner.

Moreover, existing relational data (the kind of data that TBFS is attempting to expose as a
filesystem) does not typically have inter-row relationships that form a natural directory/file
hierarchy.

e Because the TBFS supports only a flat namespace, most methods in the SPI are
unimplemented, and the method bodies raise a
doms_dbfs content.unsupported operation exception. This exception is also a good
starting point for you to write your own custom SPI. You can start with a simple SPI
skeleton cloned from the DBMS DBFS_CONTENT SPI package, default all method bodies to
ones that raise this exception, and subsequently fill in more realistic implementations
incrementally.

* The table underlying the TBFS is close to being the simplest possible structure (a key/
name column and a LOB column). This means that various properties used or expected by

24-5

Chapter 24
Creating a Custom Provider

DBFS and dbfs_client must be generated dynamically (the TBFS implementation shows
how this is done for the std:quid property).

Other properties (such as Unix-style timestamps) are not implemented at all. This still
allows a surprisingly functional filesystem to be implemented, but when you write your own
custom SPIs, you can easily incorporate support for additional DBFS properties by
expanding the structure of their underlying table(s) to include additional columns as
needed, or by using existing columns in their existing tables to provide the values for these
DBFS properties.

The TBFS does not implement a rename/move method; adding support for this (a suitable
UPDATE statement in the renamePath method) is left as an exercise for the user.

The TBFS example uses the string "tbfs" in multiple places (tablespace, datafile, user,
package, and even filesystem name). All these uses of "thfs" belong in different
namespaces—identifying which namespace corresponds to a specific occurrence of the
string. "tbfs" in these examples is also a good learning exercise to make sure that the
DBFS concepts are clear in your mind.

24.3.2 TBFS.SQL

ORACLE

The
The

set

@tbl
@spe

TBFS.SQL script is the top level driver script.
TBFS.SQL script:

echo on;

C

@body
@capi

quit;

24.3.3 TBL.SQL

The

TBL.SQL script creates a test user, a tablespace, the table that backs the filesystem and

SO on.

The

TBL.SQL script :

connect / as sysdba

create tablespace tbfs datafile 'tbfs.f' size 100m

reuse autoextend on
extent management local
segment space management auto;

create user tbfs identified by tbfs;

alte

r user tbfs default tablespace tbfs;

grant connect, resource, dbfs role to tbfs;

conn

drop

ect tbfs/tbfs;

table tbfst;

purge recyclebin;

Crea

te table tbfst(
key varchar? (256)
primary key

24-6

Chapter 24

Creating a Custom Provider

check (instr(key, '/') = 0),

data blob)

tablespace tbfs

lob (data)

grant
grant
grant
grant

24.3.4 spec.sql

store as securefile
(tablespace tbfs);

select on tbfst to dbfs role;
insert on tbfst to dbfs role;
delete on tbfst to dbfs role;
update on tbfst to dbfs role;

The spec.sqgl script provide the SPI specification of the tbfs.

The spec.sqgl script:

connect / as sysdba;

create or replace package tbfs
authid current user

as

fu

fu

fu

/*

*

ORACLE

Lookup store features (see dbms dbfs content.feature XXX). Lookup
store id.

A store ID identifies a provider-specific store, across
registrations and mounts, but independent of changes to the store
contents.

I.e. changes to the store table(s) should be reflected in the
store ID, but re-initialization of the same store table(s) should
preserve the store ID.

Providers should also return a "version" (either specific to a
provider package, or to an individual store) based on a standard
<a.b.c> naming convention (for <major>, <minor>, and <patch>
components) .

/
nction getFeatures (
store name in varchar?)
return integer;
nction getStoreld(
store name in varchar?)
return number;
nction getVersion (
store name in varchar?)
return varchar?2;

Lookup pathnames by (store name, std guid) or (store mount,
std guid) tuples.

24-7

ORACLE

Chapter 24
Creating a Custom Provider

If the underlying "std guid" is found in the underlying store,
this function returns the store-qualified pathname.

If the "std guid" is unknown, a "null" value is returned. Clients
are expected to handle this as appropriate.

function getPathByStoreId (

store name in varchar2,
guid in integer)
return varchar?2;

DBFS SPI: space usage.

Clients can query filesystem space usage statistics via the
"spaceUsage ()" method. Providers are expected to support this
method for their stores (and to make a best effort determination
of space usage---esp. if the store consists of multiple
tables/indexes/lobs, etc.).

"blksize" is the natural tablespace blocksize that holds the
store---if multiple tablespaces with different blocksizes are
used, any valid blocksize is acceptable.

"tbytes" is the total size of the store in bytes, and "fbytes" is
the free/unused size of the store in bytes. These values are
computed over all segments that comprise the store.

"nfile", "ndir", "nlink", and "nref" count the number of
currently available files, directories, links, and references in
the store.

Since database objects are dynamically growable, it is not easy
to estimate the division between "free" space and "used" space.

procedure spaceUsage (

/*

*

*

*

store name in varchar2,
blksize out integer,
tbytes out integer,
fbytes out integer,
nfile out integer,
ndir out integer,
nlink out integer,
nref out integer);

DBFS SPI: notes on pathnames.
All pathnames used in the SPI are store-qualified, i.e. a 2-tuple

of the form (store name, pathname) (where the pathname is rooted
within the store namespace).

24-8

Chapter 24
Creating a Custom Provider

* Stores/providers that support contentID-based access (see

* "feature content id") also support a form of addressing that is

* not based on pathnames. Items are identified by an explicit store
* name, a "null" pathname, and possibly a contentID specified as a
* parameter or via the "opt content id" property.

* Not all operations are supported with contentID-based access, and
* applications should depend only on the simplest create/delete
* functionality being available.

* DBFS SPI: creation operations

* The SPI must allow the DBFS API to create directory, file, link,
* and reference elements (subject to store feature support).

* All of the creation methods require a valid pathname (see the

* special exemption for contentID-based access below), and can

* optionally specify properties to be associated with the pathname
* as it is created. It is also possible for clients to fetch-back

* item properties after the creation completes (so that

* automatically generated properties (e.g. "std creation time") are
* immediately available to clients (the exact set of properties

* fetched back is controlled by the various "prop xxx" bitmasks in
* "prop flags").

* Links and references require an additional pathname to associate
* with the primary pathname.

* File pathnames can optionally specify a BLOB value to use to

* initially populate the underlying file content (the provided BLOB
* may be any valid lob: temporary or permanent). On creation, the

* underlying lob is returned to the client (if "prop data" is

* specified in "prop flags").

* Non-directory pathnames require that their parent directory be

* created first. Directory pathnames themselves can be recursively
* created (i.e. the pathname hierarchy leading up to a directory

* can be created in one call).

* Attempts to create paths that already exist is an error; the one
* exception is pathnames that are "soft-deleted" (see below for

* delete operations)---in these cases, the soft-deleted item is

* implicitly purged, and the new item creation is attempted.

* Stores/providers that support contentID-based access accept an

* explicit store name and a "null" path to create a new element.

* The contentID generated for this element is available via the

* "opt content id" property (contentID-based creation automatically
* implies "prop opt" in "prop flags").

* The newly created element may also have an internally generated
* pathname (if "feature lazy path" is not supported) and this path
* is available via the "std canonical path" property.

ORACLE 24-9

ORACLE

*

*

*

*/

Chapter 24
Creating a Custom Provider

Only file elements are candidates for contentID-based access.

procedure createFile(

store name in varchar2,

path in varchar2,

properties in out nocopy dbms dbfs content properties t,
content in out nocopy blob,

prop flags in integer,

ctx in dbms dbfs content context t);

procedure createlLink(

store name in varchar2,

srcPath in varchar?2,

dstPath in varchar?2,

properties in out nocopy dbms dbfs content properties t,
prop flags in integer,

ctx in dbms dbfs content context t);

procedure createReference (

store name in varchar2,

srcPath in varchar?2,

dstPath in varchar?2,

properties in out nocopy dbms dbfs content properties t,
prop flags in integer,

ctx in dbms dbfs content context t);

procedure createDirectory (

store name in varchar2,

path in varchar2,

properties in out nocopy dbms dbfs content properties t,
prop flags in integer,

recurse in integer,

ctx in dbms dbfs content context t);

DBFS SPI: deletion operations

The SPI must allow the DBFS API to delete directory, file, link,
and reference elements (subject to store feature support).

By default, the deletions are "permanent" (get rid of the
successfully deleted items on transaction commit), but stores may
also support "soft-delete" features. If requested by the client,
soft-deleted items are retained by the store (but not typically
visible in normal listings or searches).

Soft-deleted items can be "restore"d, or explicitly purged.

Directory pathnames can be recursively deleted (i.e. the pathname
hierarchy below a directory can be deleted in one call).
Non-recursive deletions can be performed only on empty
directories. Recursive soft-deletions apply the soft-delete to
all of the items being deleted.

24-10

ORACLE

Chapter 24
Creating a Custom Provider

Individual pathnames (or all soft-deleted pathnames under a
directory) can be restored or purged via the restore and purge
methods.

Providers that support filtering can use the provider "filter" to
identify subsets of items to delete---this makes most sense for
bulk operations (deleteDirectory, restoreAll, purgeAll), but all
of the deletion-related operations accept a "filter" argument.

Stores/providers that support contentID-based access can also
allow file items to be deleted by specifying their contentID.

procedure deleteFile(

store name in varchar2,
path in varchar2,
filter in varchar?2,
soft delete in integer,
ctx in dbms dbfs content context t);

procedure deleteContent (

store name in varchar2,

contentID in raw,

filter in varchar?2,

soft delete in integer,

ctx in dbms dbfs content context t);

procedure deleteDirectory(

store name in varchar2,
path in varchar2,
filter in varchar?2,
soft delete in integer,
recurse in integer,
ctx in dbms dbfs content context t);

procedure restorePath (

store name in varchar2,
path in varchar2,
filter in varchar?2,
ctx in dbms dbfs content context t);

procedure purgePath (

store name in varchar2,
path in varchar2,
filter in varchar?2,
ctx in dbms dbfs content context t);

procedure restoreAll (

store name in varchar2,
path in varchar2,
filter in varchar?2,
ctx in dbms dbfs content context t);

procedure purgeAll (

store name in varchar2,
path in varchar2,
filter in varchar?2,
ctx in dbms dbfs content context t);

24-11

ORACLE

*

*

Chapter 24
Creating a Custom Provider

DBFS SPI: path get/put operations.

Existing path items can be accessed (for query or for update) and
modified via simple get/put methods.

All pathnames allow their metadata (i.e. properties) to be
read/modified. On completion of the call, the client can request
(via "prop flags") specific properties to be fetched as well.

File pathnames allow their data (i.e. content) to be
read/modified. On completion of the call, the client can request
(via the "prop data" bitmaks in "prop flags") a new BLOB locator
that can be used to continue data access.

Files can also be read/written without using BLOB locators, by
explicitly specifying logical offsets/buffer-amounts and a
suitably sized buffer.

Update accesses must specify the "forUpdate" flag. Access to link
pathnames can be implicitly and internally deferenced by stores
(subject to feature support) if the "deref" flag is
specified---however, this is dangerous since symbolic links are
not always resolvable.

The read methods (i.e. "getPath" where "forUpdate" is "false"
also accepts a valid "asof" timestamp parameter that can be used
by stores to implement "as of" style flashback queries. Mutating
versions of the "getPath" and the "putPath" methods do not
support as-of modes of operation.

"getPathNowait" implies a "forUpdate", and, if implemented (see
"feature nowait"), allows providers to return an exception
(ORA-54) rather than wait for row locks.

*/
procedure getPath(
store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
content out nocopy blob,
item type out integer,
prop flags in integer,
forUpdate in integer,
deref in integer,
ctx in dbms dbfs content context t);
procedure getPathNowait (
store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
content out nocopy blob,
item type out integer,
prop flags in integer,
deref in integer,
ctx in dbms dbfs content context t);

24-12

ORACLE

procedure getPath(

store name in

path in
properties in out
amount in out
offset in
buffer out
prop flags in
ctx in

procedure getPath(

store name in

path in
properties in out
amount in out
offset in
buffers out
prop flags in
ctx in

procedure putPath (

store name in

path in
properties in out
content in out

item type out
prop flags in
ctx in

procedure putPath (

store name in

path in
properties in out
amount in
offset in
buffer in
prop flags in
ctx in

procedure putPath (

store name in

path in
properties in out
written out
offset in
buffers in
prop flags in
ctx in

nocopy

nocopy

nocopy

nocopy

nocopy

nocopy

nocopy

nocopy

Chapter 24
Creating a Custom Provider

varchar?2,

varchar?2,

dbms dbfs content properties t,
number,

number,

raw,

integer,

dbms dbfs content context t);

varchar?2,

varchar?2,
dbms_dbfs content properties t,
number,

number,

dbms_dbfs content raw t,
integer,

dbms dbfs content context t);

varchar?2,

varchar?2,
dbms_dbfs content properties t,
blob,

integer,

integer,

dbms dbfs content context t);

varchar?2,

varchar?2,
dbms_dbfs content properties t,
number,

number,

raw,

integer,

dbms dbfs content context t);

varchar?2,

varchar?2,
dbms_dbfs content properties t,
number,

number,

dbms_dbfs content raw t,
integer,

dbms dbfs content context t);

DBFS SPI: rename/move operations.

Pathnames can be renamed or moved, possibly across directory
hierarchies and mount-points, but within the same store.

Non-directory pathnames previously accessible via "oldPath" are
renamed as a single item subsequently accessible via "newPath";
assuming that "newPath" does not already exist.

24-13

Chapter 24
Creating a Custom Provider

* If "newPath" exists and is not a directory, the rename implicitly
* deletes the existing item before renaming "oldPath". If "newPath"
* exists and is a directory, "oldPath" is moved into the target

* directory.

* Directory pathnames previously accessible via "oldPath" are
* renamed by moving the directory and all of its children to
* "newPath" (if it does not already exist) or as children of
* "newPath" (if it exists and is a directory).

* Stores/providers that support contentID-based access and lazy
* pathname binding also support the "setPath" method that
* associates an existing "contentID" with a new "path".

*/
procedure renamePath (
store name in varchar2,
oldPath in varchar?2,
newPath in varchar?2,
properties in out nocopy dbms dbfs content properties t,
ctx in dbms dbfs content context t);

procedure setPath (

store name in varchar2,

contentID in raw,

path in varchar2,

properties in out nocopy dbms dbfs content properties t,
ctx in dbms dbfs content context t);

* DBFS SPI: directory navigation and search.

* The DBFS API can list or search the contents of directory

* pathnames, optionally recursing into sub-directories, optionally
* seeing soft-deleted items, optionally using flashback "as of" a
* provided timestamp, and optionally filtering items in/out within
* the store based on list/search predicates.

*/
function list(
store name in varchar2,
path in varchar2,
filter in varchar?2,
recurse in integer,
ctx in dbms_dbfs content context t)
return dbms dbfs content list items t
pipelined;
function search (
store name in varchar2,
path in varchar2,
filter in varchar?2,
recurse in integer,
ctx in dbms_dbfs content context t)

return dbms dbfs content list items t

ORACLE 2414

ORACLE

end;

/

Chapter 24
Creating a Custom Provider

pipelined;

DBFS SPI: locking operations.

Clients of the DBFS API can apply user-level locks to any valid
pathname (subject to store feature support), associate the lock
with user-data, and subsequently unlock these pathnames.

The status of locked items is available via various optional
properties (see "opt lock*" above).

It is the responsibility of the store (assuming it supports
user-defined lock checking) to ensure that lock/unlock operations
are performed in a consistent manner.

procedure lockPath (

store name in varchar2,
path in varchar2,
lock type in integer,
lock data in varchar2,
ctx in dbms dbfs content context t);

procedure unlockPath (

store name in varchar2,
path in varchar2,
ctx in dbms dbfs content context t);

DBFS SPI: access checks.

Check if a given pathname (store name, path, pathtype) can be
manipulated by "operation (see the various
"dbms dbfs content.op xxx" opcodes) by "principal".

This is a convenience function for the DBFS API; a store that
supports access control still internally performs these checks to
guarantee security.

*/

function checkAccess (
store name in varchar2,
path in varchar2,
pathtype in integer,
operation in varchar2,
principal in varchar?)

return integer;

show errors;

create or replace public synonym tbfs
for sys.tbfs;

24-15

ORACLE

Chapter 24
Creating a Custom Provider

grant execute on tbfs
to dbfs role;

24.3.5 body.sq

The body.sqgl script provides the SPI implementation of the tbfs.

The body. sql script:

connect / as sysdba;

create or replace package body tbfs

as
/%
* Lookup store features (see dbms dbfs content.feature XXX). Lookup
* store id.
*
* A store ID identifies a provider-specific store, across
* registrations and mounts, but independent of changes to the store
* contents.
*
* I.e. changes to the store table(s) should be reflected in the
* store ID, but re-initialization of the same store table(s) should
* preserve the store ID.
*
* Providers should also return a "version" (either specific to a
* provider package, or to an individual store) based on a standard
* <a.b.c> naming convention (for <major>, <minor>, and <patch>
* components) .
*
*/
function getFeatures (
store name in varchar?)
return integer
is
begin
return dbms dbfs content.feature locator;
end;
function getStoreld(
store name in varchar?)
return number
is
begin
return 1;
end;
function getVersion (
store name in varchar?)
return varchar?
is
begin
return '1.0.0"';
end;
/%

24-16

ORACLE

Chapter 24
Creating a Custom Provider

* Lookup pathnames by (store name, std guid) or (store mount,
* std guid) tuples.

* If the underlying "std guid" is found in the underlying store,
* this function returns the store-qualified pathname.

* If the "std guid" is unknown, a "null" value is returned. Clients
* are expected to handle this as appropriate.

*/

function getPathByStoreId (

store name in varchar2,

guid in integer)

return varchar2

is
begin

raise dbms_dbfs content.unsupported operation;
end;
/%

* DBFS SPI: space usage.

* Clients can query filesystem space usage statistics via the

* "spaceUsage ()" method. Providers are expected to support this

* method for their stores (and to make a best effort determination
* of space usage---esp. 1f the store consists of multiple

* tables/indexes/lobs, etc.).

* "plksize" is the natural tablespace blocksize that holds the
* store---if multiple tablespaces with different blocksizes are
* used, any valid blocksize is acceptable.

* "tbytes" is the total size of the store in bytes, and "fbytes" is
* the free/unused size of the store in bytes. These values are
* computed over all segments that comprise the store.

* "nfile", "ndir", "nlink", and "nref" count the number of
* currently available files, directories, links, and references in
* the store.

* Since database objects are dynamically growable, it is not easy
* to estimate the division between "free" space and "used" space.

*/

procedure spaceUsage (
store name in varchar2,
blksize out integer,
tbytes out integer,
fbytes out integer,
nfile out integer,
ndir out integer,
nlink out integer,
nref out integer)

is
nblks number;

begin

select count (*) into nfile
from tbfs.tbfst;

24-17

Chapter 24
Creating a Custom Provider

ndir := 0;
nlink := 0;
nref := 0;

select sum(bytes) into tbytes
from user segments;
select sum(blocks) into nblks
from user segments;
blksize := tbytes/nblks;
fbytes := 0; /* change as needed */
end;

* DBFS SPI: notes on pathnames.

* All pathnames used in the SPI are store-qualified, i.e. a 2-tuple
* of the form (store name, pathname) (where the pathname is rooted
* within the store namespace).

* Stores/providers that support contentID-based access (see

* "feature content id") also support a form of addressing that is

* not based on pathnames. Items are identified by an explicit store
* name, a "null" pathname, and possibly a contentID specified as a
* parameter or via the "opt content id" property.

* Not all operations are supported with contentID-based access, and
* applications should depend only on the simplest create/delete
* functionality being available.

* DBFS SPI: creation operations

* The SPI must allow the DBFS API to create directory, file, link,
* and reference elements (subject to store feature support).

* All of the creation methods require a valid pathname (see the

* special exemption for contentID-based access below), and can

* optionally specify properties to be associated with the pathname
* as it is created. It is also possible for clients to fetch-back

* item properties after the creation completes (so that

* automatically generated properties (e.g. "std creation time") are
* immediately available to clients (the exact set of properties

* fetched back is controlled by the various "prop xxx" bitmasks in
* "prop flags").

* Links and references require an additional pathname to associate
* with the primary pathname.

* File pathnames can optionally specify a BLOB value to use to

* initially populate the underlying file content (the provided BLOB
* may be any valid lob: temporary or permanent). On creation, the

* underlying lob is returned to the client (if "prop data" is

* specified in "prop flags").

ORACLE 24-18

Chapter 24
Creating a Custom Provider

* Non-directory pathnames require that their parent directory be

* created first. Directory pathnames themselves can be recursively
* created (i.e. the pathname hierarchy leading up to a directory

* can be created in one call).

* Attempts to create paths that already exist is an error; the one
* exception is pathnames that are "soft-deleted" (see below for

* delete operations)---in these cases, the soft-deleted item is

* implicitly purged, and the new item creation is attempted.

* Stores/providers that support contentID-based access accept an

* explicit store name and a "null" path to create a new element.

* The contentID generated for this element is available via the

* "opt content id" property (contentID-based creation automatically
* implies "prop opt" in "prop flags").

* The newly created element may also have an internally generated
* pathname (if "feature lazy path" is not supported) and this path

* is available via the "std canonical path" property.

* Only file elements are candidates for contentID-based access.

*/
procedure createFile(
store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
content in out nocopy blob,
prop flags in integer,
ctx in dbms_dbfs content context t)
is
guid number;
begin

if (path = '/') then
raise dbms_dbfs content.invalid path;
end if;

if content is null then
content := empty blob();
end if;

begin
insert into tbfs.tbfst values (substr(path,2), content)
returning data into content;
exception
when dup val on index then
raise dbms_dbfs content.path exists;
end;

select ora hash(path) into guid from dual;

properties := dbms dbfs content properties t(
dbms dbfs content property t(
'std:length',
to char (dbms_ lob.getlength(content)),
dbms_types.TYPECODE_NUMBER),
dbms dbfs content property t(
'std:guid',

ORACLE 24-19

ORACLE

Chapter 24
Creating a Custom Provider

to_char(guid),
dbms types.TYPECODE NUMBER)) ;
end;

procedure createlLink (

store name in varchar2,
srcPath in varchar?2,
dstPath in varchar?2,
properties in out nocopy dbms dbfs content properties t,
prop flags in integer,
ctx in dbms dbfs content context t)
is
begin

raise dbms_dbfs content.unsupported operation;
end;

procedure createReference (

store name in varchar2,
srcPath in varchar?2,
dstPath in varchar?2,
properties in out nocopy dbms dbfs content properties t,
prop flags in integer,
ctx in dbms_dbfs content context t)
is
begin

raise dbms_dbfs content.unsupported operation;
end;

procedure createDirectory (

store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
prop flags in integer,
recurse in integer,
ctx in dbms_dbfs content context t)
is
begin
raise dbms_dbfs content.unsupported operation;
end;
/%

* DBFS SPI: deletion operations

* The SPI must allow the DBFS API to delete directory, file, link,
* and reference elements (subject to store feature support).

* By default, the deletions are "permanent" (get rid of the

* successfully deleted items on transaction commit), but stores may
* also support "soft-delete" features. If requested by the client,
* soft-deleted items are retained by the store (but not typically

* visible in normal listings or searches).

* Soft-deleted items can be "restore"d, or explicitly purged.
* Directory pathnames can be recursively deleted (i.e. the pathname
* hierarchy below a directory can be deleted in one call).

* Non-recursive deletions can be performed only on empty
* directories. Recursive soft-deletions apply the soft-delete to

24-20

ORACLE

Chapter 24
Creating a Custom Provider

all of the items being deleted.

Individual pathnames (or all soft-deleted pathnames under a
directory) can be restored or purged via the restore and purge
methods.

Providers that support filtering can use the provider "filter" to
identify subsets of items to delete---this makes most sense for
bulk operations (deleteDirectory, restoreAll, purgeAll), but all
of the deletion-related operations accept a "filter" argument.

Stores/providers that support contentID-based access can also
allow file items to be deleted by specifying their contentID.

*/
procedure deleteFile(
store name in varchar2,
path in varchar2,
filter in varchar?2,
soft delete in integer,
ctx in dbms_dbfs content context t)
is
begin

if (path = '/') then
raise dbms_dbfs content.invalid path;

end if;
if ((soft delete <> 0) or

(filter is not null)) then

raise dbms_dbfs content.unsupported operation;
end if;

delete from tbfs.tbfst t
where ('/' || t.key) = path;

if sgl%rowcount <> 1 then
raise dbms_dbfs content.invalid path;

end if;
end;
procedure deleteContent (
store name in varchar2,
contentID in raw,
filter in varchar?2,
soft delete in integer,
ctx in dbms dbfs content context t)
is
begin
raise dbms_dbfs content.unsupported operation;
end;
procedure deleteDirectory(
store name in varchar2,
path in varchar2,
filter in varchar?2,
soft delete in integer,
recurse in integer,
ctx in dbms_dbfs content context t)

24-21

ORACLE

Chapter 24
Creating a Custom Provider

is
begin

raise dbms_dbfs content.unsupported operation;
end;

procedure restorePath (

store name in varchar2,

path in varchar2,

filter in varchar?2,

ctx in dbms_dbfs content context t)
is
begin

raise dbms_dbfs content.unsupported operation;
end;

procedure purgePath (

store name in varchar2,

path in varchar2,

filter in varchar?2,

ctx in dbms_dbfs content context t)
is
begin

raise dbms_dbfs content.unsupported operation;
end;

procedure restoreAll (

store name in varchar2,

path in varchar2,

filter in varchar?2,

ctx in dbms_dbfs content context t)
is
begin

raise dbms_dbfs content.unsupported operation;
end;

procedure purgeAll (

store name in varchar2,
path in varchar2,
filter in varchar?2,
ctx in dbms_dbfs content context t)
is
begin
raise dbms_dbfs content.unsupported operation;
end;
/%

* DBFS SPI: path get/put operations.

* Existing path items can be accessed (for query or for update) and
* modified via simple get/put methods.

* All pathnames allow their metadata (i.e. properties) to be
* read/modified. On completion of the call, the client can request
* (via "prop flags") specific properties to be fetched as well.

* File pathnames allow their data (i.e. content) to be

* read/modified. On completion of the call, the client can request
* (via the "prop data" bitmaks in "prop flags") a new BLOB locator
* that can be used to continue data access.

24-22

ORACLE

Chapter 24
Creating a Custom Provider

* Files can also be read/written without using BLOB locators, by
* explicitly specifying logical offsets/buffer-amounts and a
* suitably sized buffer.

* Update accesses must specify the "forUpdate" flag. Access to link
* pathnames can be implicitly and internally deferenced by stores

* (subject to feature support) if the "deref" flag is

* specified---however, this is dangerous since symbolic links are

* not always resolvable.

* The read methods (i.e. "getPath" where "forUpdate" is "false"

* also accepts a valid "asof" timestamp parameter that can be used
* by stores to implement "as of" style flashback queries. Mutating
* versions of the "getPath" and the "putPath" methods do not

* support as-of modes of operation.

* "getPathNowait" implies a "forUpdate", and, if implemented (see
* "feature nowait"), allows providers to return an exception

* (ORA-54) rather than wait for row locks.
*

*/
procedure getPath(
store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
content out nocopy blob,
item type out integer,
prop flags in integer,
forUpdate in integer,
deref in integer,
ctx in dbms_dbfs content context t)
is
guid number;
begin

if (deref <> 0) then
raise dbms_dbfs content.unsupported operation;
end if;

select ora hash(path) into guid from dual;
if (path = '/') then

if (forUpdate <> 0) then
raise dbms_dbfs content.unsupported operation;

end if;
content := null;
item type := dbms dbfs content.type directory;
properties := dbms dbfs content properties t(
dbms dbfs content property t(

'std:guid',

to_char(guid),
dbms types.TYPECODE NUMBER)) ;

return;
end if;

begin
if (forUpdate <> 0) then

24-23

ORACLE

Chapter 24
Creating a Custom Provider

select t.data into content from tbfs.tbfst t

where ('/' || t.key) = path
for update;
else
select t.data into content from tbfs.tbfst t
where ('/' || t.key) = path;
end if;
exception

when no data found then
raise dbms_dbfs content.invalid path;

end;
item type := dbms dbfs content.type file;
properties := dbms dbfs content properties t(

dbms dbfs content property t(
'std:length',
to char (dbms_ lob.getlength(content)),
dbms_types.TYPECODE NUMBER),

dbms dbfs content property t(
'std:guid',
to_char(guid),
dbms_types.TYPECODE NUMBER)) ;

end;

procedure getPathNowait (

store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
content out nocopy blob,
item type out integer,
prop flags in integer,
deref in integer,
ctx in dbms_dbfs content context t)
is
begin
raise dbms_dbfs content.unsupported operation;
end;

procedure getPath(

store name in varchar2,

path in varchar2,

properties in out nocopy dbms dbfs content properties t,

amount in out number,

offset in number,

buffer out nocopy raw,

prop flags in integer,

ctx in dbms_dbfs content context t)
is

content blob;

guid number;
begin

if (path = '/') then
raise dbms_dbfs content.unsupported operation;

end if;
begin
select t.data into content from tbfs.tbfst t
where ('/' || t.key) = path;
exception

when no data found then
raise dbms_dbfs content.invalid path;
end;

24-24

ORACLE

Chapter 24
Creating a Custom Provider

select ora hash(path) into guid from dual;
dbms_lob.read(content, amount, offset, buffer);

properties := dbms dbfs content properties t(

dbms dbfs content property t(
'std:length’,
to char (dbms_ lob.getlength(content)),
dbms_types.TYPECODE_NUMBER),

dbms dbfs content property t(
'std:guid',
to_char(guid),
dbms_types.TYPECODE_NUMBER)) ;

end;

procedure getPath(

store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
amount in out number,
offset in number,
buffers out nocopy dbms dbfs content raw t,
prop flags in integer,
ctx in dbms dbfs content context t)
is
begin
raise dbms_dbfs content.unsupported operation;
end;

procedure putPath (

store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
content in out nocopy blob,
item type out integer,
prop flags in integer,
ctx in dbms_dbfs content context t)
is
guid number;
begin

if (path = '/') then
raise dbms_dbfs content.unsupported operation;
end if;

if content is null then
content := empty blob();
end if;

update tbfs.tbfst t
set t.data = content
where ('/' || t.key) = path
returning t.data into content;

if sqgl%rowcount <> 1 then

raise dbms_dbfs content.invalid path;
end if;
select ora hash(path) into guid from dual;
item type := dbms dbfs content.type file;

properties := dbms dbfs content properties t(
dbms dbfs content property t(

24-25

Chapter 24
Creating a Custom Provider

'std:length’,
to char (dbms_lob.getlength(content)),
dbms_types.TYPECODE NUMBER),
dbms dbfs content property t(
'std:guid',
to_char(guid),
dbms_types.TYPECODE NUMBER)) ;
end;

procedure putPath (

store name in varchar2,

path in varchar2,

properties in out nocopy dbms dbfs content properties t,

amount in number,

offset in number,

buffer in raw,

prop flags in integer,

ctx in dbms_dbfs content context t)
is

content blob;

guid number;
begin

if (path = '/') then
raise dbms_dbfs content.unsupported operation;

end if;
begin
select t.data into content from tbfs.tbfst t
where ('/' || t.key) = path
for update;
exception

when no data found then
raise dbms_dbfs content.invalid path;
end;

select ora hash(path) into guid from dual;
dbms_lob.write(content, amount, offset, buffer);

properties := dbms dbfs content properties t(

dbms dbfs content property t(
'std:length',
to char (dbms lob.getlength(content)),
dbms_types.TYPECODE_NUMBER),

dbms dbfs content property t(
'std:guid',
to_char(guid),
dbms_types.TYPECODE _NUMBER)) ;

end;

procedure putPath (

store name in varchar2,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
written out number,
offset in number,
buffers in dbms_dbfs content raw t,
prop flags in integer,
ctx in dbms_dbfs content context t)
is
begin

raise dbms_dbfs content.unsupported operation;
end;

ORACLE 24-26

Chapter 24
Creating a Custom Provider

* DBFS SPI: rename/move operations.

* Pathnames can be renamed or moved, possibly across directory
* hierarchies and mount-points, but within the same store.

* Non-directory pathnames previously accessible via "oldPath" are
* renamed as a single item subsequently accessible via "newPath";
* assuming that "newPath" does not already exist.

* If "newPath" exists and is not a directory, the rename implicitly
* deletes the existing item before renaming "oldPath". If "newPath"
* exists and is a directory, "oldPath" is moved into the target

* directory.

* Directory pathnames previously accessible via "oldPath" are
* renamed by moving the directory and all of its children to
* "newPath" (if it does not already exist) or as children of
* "newPath" (if it exists and is a directory).

* Stores/providers that support contentID-based access and lazy
* pathname binding also support the "setPath" method that
* associates an existing "contentID" with a new "path".

*/

procedure renamePath (
store name in varchar2,
oldPath in varchar?2,
newPath in varchar?2,
properties in out nocopy dbms dbfs content properties t,
ctx in dbms_dbfs content context t)

is

begin

raise dbms_dbfs content.unsupported operation;
end;

procedure setPath (

store name in varchar2,
contentID in raw,
path in varchar2,
properties in out nocopy dbms dbfs content properties t,
ctx in dbms_dbfs content context t)
is
begin
raise dbms_dbfs content.unsupported operation;
end;
/%

* DBFS SPI: directory navigation and search.

* The DBFS API can list or search the contents of directory
* pathnames, optionally recursing into sub-directories, optionally
* seeing soft-deleted items, optionally using flashback "as of" a

ORACLE 24-27

ORACLE

Chapter 24
Creating a Custom Provider

* provided timestamp, and optionally filtering items in/out within

* the store based on list/search predicates.
*

*/
function list(
store name in varchar2,
path in varchar2,
filter in varchar?2,
recurse in integer,
ctx in dbms dbfs content context t)
return dbms dbfs content list items t
pipelined
is
begin
for rws in (select * from tbfs.tbfst)
loop
pipe row(dbms dbfs content list item t(
'/'" || rws.key, rws.key, dbms_dbfs_content.type_file));
end loop;
end;
function search (
store name in varchar2,
path in varchar2,
filter in varchar?2,
recurse in integer,
ctx in dbms_dbfs content context t)
return dbms dbfs content list items t
pipelined
is
begin
raise dbms_dbfs content.unsupported operation;
end;
/%

* DBFS SPI: locking operations.

* Clients of the DBFS API can apply user-level locks to any valid
* pathname (subject to store feature support), associate the lock
* with user-data, and subsequently unlock these pathnames.

* The status of locked items is available via various optional
* properties (see "opt lock*" above).

* It is the responsibility of the store (assuming it supports
* user-defined lock checking) to ensure that lock/unlock operations
* are performed in a consistent manner.

*/
procedure lockPath (
store name in varchar2,
path in varchar2,
lock type in integer,
lock data in varchar2,
ctx in dbms_dbfs content context t)
is
begin

24-28

Chapter 24
Creating a Custom Provider

raise dbms_dbfs content.unsupported operation;
end;

procedure unlockPath (

store name in varchar2,
path in varchar2,
ctx in dbms_dbfs content context t)
is
begin
raise dbms_dbfs content.unsupported operation;
end;
/%

* DBFS SPI: access checks.

* Check if a given pathname (store name, path, pathtype) can be
* manipulated by "operation (see the various
* "dbms_dbfs content.op xxx" opcodes) by "principal".

* This i1s a convenience function for the DBFS API; a store that
* supports access control still internally performs these checks to
* guarantee security.

*/
function checkAccess (
store name in varchar2,
path in varchar2,
pathtype in integer,
operation in varchar2,
principal in varchar?)
return integer
is
begin
return 1;
end;
end;
/

show errors;

24.3.6 capi.sql

The capi.sqgl script registers and mounts the DBFS.

The capi.sqgl script:

connect tbfs/tbfs;

exec dbms dbfs content.registerStore('MY TBFS', 'table', 'TBFS');

exec dbms dbfs content.mountStore('MY TBFS', singleton => true);
commit;

ORACLE 24-29

Using DBFS

The DBFS File System implementation includes creating and accessing the file system and
managing it.

Topics:

* DBFS Installation

e Creating a DBFS File System

* DBFS File System Access

* DBFS Administration

e Shrinking and Reorganizing DBFS Filesystems

* DBFS Installation
DBFS is a part of the Oracle database installation and is installed under ORACLE HOME.

e Creating a DBFS File System
A DBFS File system can be partitioned or non-partitioned. It may require users to have
certain privileges.

e DBFS File System Access
You access a DBFS file system by means of prerequisites, access interfaces, the DBFS
security model, and XML DB server protocols.

e DBFS Administration
e Shrinking and Reorganizing DBFS Filesystems

25.1 DBFS Installation

DBFS is a part of the Oracle database installation and is installed under ORACLE HOME.
$ORACLE HOME/rdbms/admin contains these DBFS utility scripts:

e Content API (CAPI)
e SecureFiles Store (SFS)

$ORACLE HOME/bin contains:

* dbfs client executable

$ORACLE HOME/rdbms/admin contains:

e SQL (.plb extension) scripts for the content store

25.2 Creating a DBFS File System

A DBFS File system can be partitioned or non-partitioned. It may require users to have certain
privileges.

Topics:

ORACLE e 1

Chapter 25
Creating a DBFS File System

* Privileges Required to Create a DBFS File System

* Advantages of Non-Partitioned Versus Partitioned DBFS File Systems
* Creating a Non-Partitioned File System

* Creating a Partitioned File System

* Dropping a File System

e Privileges Required to Create a DBFS File System

Database users must have a minimum set of privileges to create a file system.

e Advantages of Non-Partitioned Versus Partitioned DBFS File Systems

You can create either non-partitioned or partitioned file systems. Partitioning is the best
performing and most scalable way to create a file system in DBFS and is the default.

e Creating a Non-Partitioned File System

You can create a file system by running DBFS_CREATE FILESYSTEM.SQL while logged in as a
user with DBFS administrator privileges.

e Creating a Partitioned File System
Files in DBFS are hash partitioned. Partitioning creates multiple physical segments in the
database, and files are distributed randomly in these partitions.

e Dropping a File System
You can drop a file system by running DBFS_DROP FILESYSTEM. SQL.

25.2.1 Privileges Required to Create a DBFS File System

Database users must have a minimum set of privileges to create a file system.
Users must have these privileges:

* GRANT CONNECT

* CREATE SESSION

° RESOURCE, CREATE TABLE

° CREATE PROCEDURE

° DBFS ROLE

25.2.2 Advantages of Non-Partitioned Versus Partitioned DBFS File

Systems

ORACLE

You can create either non-partitioned or partitioned file systems. Partitioning is the best
performing and most scalable way to create a file system in DBFS and is the default.

Space cannot be shared between partitions, so it is possible for one partition to run out of
space even when other partitions have space. This is usually not an issue if the file system
size is big compared to the size of the individual files. However, if file sizes are a big
percentage of the file system size, it may result in the ENOSPC error even if the file system is not
full.

Another implication of partitioning is that a rename operation can require rewriting the file,
which can be expensive if the file is big.

25-2

Chapter 25
Creating a DBFS File System

25.2.3 Creating a Non-Partitioned File System

You can create a file system by running DBFS_CREATE FILESYSTEM.SQL while logged in as a
user with DBFS administrator privileges.

These steps enable you to create a file system.

1. Log in to the database instance:
$ sqlplus dbfs user/@db server
2. Enter the following command:

@SORACLE HOME/rdbms/admin/dbfs create filesystem.sql tablespace name
file system name

For example, to create a file system called staging area in an existing tablespace
dbfs_ tbspc:

$ sqlplus dbfs user/db server
@SORACLE HOME/rdbms/admin/dbfs create filesystem.sql
dbfs tbspc staging area

25.2.4 Creating a Partitioned File System

ORACLE

Files in DBFS are hash partitioned. Partitioning creates multiple physical segments in the
database, and files are distributed randomly in these partitions.

You can create a partitioned file system by running DBFS CREATE FILESYSTEM ADVANCED.SQL
while logged in as a user with DBFS administrator privileges.

While creating a partitioned file system, you can specify any one of the following values as the
hash key.

e partition and partition-by-itemname: uses the item name as the partition key. The item
name is the last component in the path name. Use this option to partition files based on the
last component in the file path. For example, if /directoryl/subdirectory2/
filename.txt is the entire path, then filename. txt is the last component in the path and
filename.txt is used as the partition key. If you use the partition option, then the file
system is partitioned using the item name as the partition key.

e partition-by-guid: uses the globally unique identifier (GUID) assigned to the file by
DBFS as the partition key. DBFS assigns a GUID to each file. Use this option to partition
the files based on the internally-generated GUID.

e partition-by-path: uses the entire path of the file as the partition key. For example, if the
fileis /directoryl/subdirectory2/filename.txt, then the entire /directoryl/
subdirectory2/filename.txt is considered as the partition key.

1. Log in to the database instance:
$ sqlplus dbfs user/@db_server

2. Enter one of the following commands to create the file system based on your requirement.
The tablespace in which the file system is created should be an ASSM tablespace to
support Securefile store.

* Syntax

@SORACLE _HOME/rdbms/admin/dbfs create filesystem advanced.sql tablespace name
file system name nocompress nodeduplicate noencrypt <partition |
partition-by-itemname | partition-by-guid | partition-by-path>

25-3

Chapter 25
DBFS File System Access

For example, to create a partitioned file system called staging area in an existing
ASSM tablespace dbfs_tbspc:

$ sqlplus dbfs user/@db server
@SORACLE_HOME/rdbms/admin/dbfs create filesystem advanced.sql dbfs tbspc
staging area nocompress nodeduplicate noencrypt partition

25.2.5 Dropping a File System

You can drop a file system by running DBFS_DROP FILESYSTEM. SQL.

1.

Log in to the database instance:
$ sqglplus dbfs user/@db_server
Enter the following command:

@SORACLE_HOME/rdbms/admin/dbfs drop filesystem.sql file system name

25.3 DBFS File System Access

You access a DBFS file system by means of prerequisites, access interfaces, the DBFS
security model, and XML DB server protocols.

Topics:

DBFES Client Prerequisites

DBFS Client Command-Line Interface Operations
DBFS Mounting Interface (Linux and Solaris Only)
File System Security Model

HTTP_ WebDAV_ and FTP Access to DBFS

DBFS Client Prerequisites
The DBFS File System Client, which is named dbfs_client, runs on each system that will
access DBFS filesystems, using certain prerequisites.

DBFS Client Command-Line Interface Operations
The DBFS client command-line interface allows you to directly access files stored in DBFS.

DBFS Mounting Interface (Linux and Solaris Only)
You can mount DBFS using the dbofs_client in Linux and Solaris only.

File System Security Model
HTTP, WebDAYV, and FTP Access to DBFS

25.3.1 DBFS Client Prerequisites

The DBFS File System Client, which is named dbfs_client, runs on each system that will
access DBFS filesystems, using certain prerequisites.

ORACLE

The prerequisites for the DBFS File System Client, dofs_client, are:

The dbfs_client host must have the Oracle client libraries installed.

The dbfs_client can be used as a direct RDBMS client using the DBFS Command
Interface on Linux, Linux.X64, Solaris, Solaris64, AlX, HPUX and Windows platforms.

25-4

Chapter 25
DBFS File System Access

The dbfs_client can only be used as a mount client on Linux, Linux.X64, and Solaris 11
platforms. This requires the following:

— dbfs client host must have the FUSE Linux package or the Solaris 1ibfuse package
installed.

— Agroup named fuse must be created, with the user name that runs the dofs client
as a member.

See Also:

DBFS Mounting Interface (Linux and Solaris Only) for further details.

25.3.2 DBFS Client Command-Line Interface Operations

The DBFS client command-line interface allows you to directly access files stored in DBFS.

Topics:

About the DBFS Client Command-Line Interface
Creating Content Store Paths

Creating a Directory

Listing a Directory

Copying Files and Directories

Removing Files and Directories

About the DBFS Client Command-Line Interface

The DBFS client command-line interface allows you to perform many pre-defined
commands, such as copy files in and out of the DBFS filesystem from any host on the
network.

Creating Content Store Paths
You can create a content store path by providing a path name

Creating a Directory
You can use the mkdir command to create a new directory.

Listing a Directory
You can use the 1s command to list the contents of a directory.

Copying Files and Directories
You can use the cp command to copy files or directories from the source location to the
destination location.

Removing Files and Directories
You can use the command rm to delete a file or directory.

25.3.2.1 About the DBFS Client Command-Line Interface

The DBFS client command-line interface allows you to perform many pre-defined commands,
such as copy files in and out of the DBFS filesystem from any host on the network.

ORACLE

25-5

Chapter 25
DBFS File System Access

The command-line interface has slightly better performance than the DBFS client mount
interface because it does not mount the file system, thus bypassing the user space file system.
However, it is not transparent to applications.

The DBFS client mount interface allows DBFS to be mounted through a file system mount
point thus providing transparent access to files stored in DBFS with generic file system
operations.

To run DBFS commands, specify --command to the DBFS client.

25.3.2.2 Creating Content Store Paths

You can create a content store path by providing a path name

All DBFS content store paths must be preceded by dbfs: .This is an example: dbfs:/
staging area/filel. All database path names specified must be absolute paths.

dbfs client db user@db server --command command [switches] [arguments]

where:

* command is the executable command, such as 1s, cp, mkdir, or rm.

e switches are specific for each command.

e arguments are file names or directory names, and are specific for each command.

Note that dbfs client returns a nonzero value in case of failure.

25.3.2.3 Creating a Directory
You can use the mkdir command to create a new directory.
Use this syntax:
dbfs client db user@db server --command mkdir directory name
where:

* directory name is the name of the directory created. For example:

$ dbfs client ETLUser@DBConnectString --command mkdir dbfs:/staging area/dirl

25.3.2.4 Listing a Directory

You can use the 1s command to list the contents of a directory.

Use this syntax:

dbfs_client db user@db server --command ls [switches] target

where
* target is the listed directory.
e switches is any combination of the following:
— -ashows all files, including "."and '. .".
— -1 shows the long listing format: name of each file, the file type, permissions, and size.

— -Rlists subdirectories recursively.

ORACLE e 6

Chapter 25
DBFS File System Access

For example:

$ dbfs client ETLUser@DBConnectString --command 1ls dbfs:/staging area/dirl

or

$ dbfs client ETLUser@DBConnectString --command 1s -1 -a -R dbfs:/staging area/dirl

25.3.2.5 Copying Files and Directories

You can use the cp command to copy files or directories from the source location to the
destination location.

The cp command also supports recursive copy of directories.

dbfs client db user@db server --command cp [switches] source destination

where:
e source is the source location.
e destination is the destination location.

e switches is either -R or -r, the options to recursively copy all source contents into the
destination directory.

The following example copies the contents of the local directory, 01-01-10-dump recursively
into a directory in DBFS:

$ dbfs client ETLUser@DBConnectString --command cp -R 01-01-10-dump dbfs:/staging area/

The following example copies the file hello.txt from DBFS to a local file Hi. txt:

$ dbfs client ETLUser@DBConnectString --command cp dbfs:/staging area/hello.txt Hi.txt

25.3.2.6 Removing Files and Directories

You can use the command rm to delete a file or directory.

The command rm also supports recursive delete of directories.
dbfs client db user@db server --command rm [switches] target
where:

* target is the listed directory.
° switches is either -R or -r, the options to recursively delete all contents.
For example:

$ dbfs client ETLUser@DBConnectString --command rm dbfs:/staging area/srcdir/hello.txt

or

$ dbfs client ETLUser@DBConnectString --command rm -R dbfs:/staging area/dirl

25.3.3 DBFS Mounting Interface (Linux and Solaris Only)

You can mount DBFS using the dbofs_client in Linux and Solaris only.
The instructions indicate the different requirements for the Linux and Solaris platforms.

Topics:

ORACLE 25-7

Chapter 25
DBFS File System Access

e Installing FUSE on Solaris 11 SRU7 and Later

* Mounting the DBFS Store

e Solaris-Specific Privileges

* About the Mount Command for Solaris and Linux

* Mounting a File System with a Wallet

* Mounting a File System with Password at Command Prompt
* Mounting a File System with Password Read from a File

e Unmounting a File System

* Mounting DBFS Through fstab Utility for Linux

* Mounting DBFS Through the vfstab Utility for Solaris

* Restrictions on Mounted File Systems

e Installing FUSE on Solaris 11 SRU7 and Later
You can use dbfs_client as a mount client in Solaris 11 SRU7 and later, if you install FUSE

e Mounting the DBFS Store
You can mount the DBFS store by running the dbfs client program.

e Solaris-Specific Privileges
On Solaris, the user must have the Solaris privilege PRIV _SYS MOUNT to perform mount and
unmount operations on DBFS filesystems.

e About the Mount Command for Solaris and Linux
The dbfs_client mount command for Solaris and Linux uses specific syntax.

e Mounting a File System with a Wallet
You can mount a file system with a wallet after configuring various environment variables.

* Mounting a File System with Password at Command Prompt
You can mount a file system using dbfs_client.

e Mounting a File System with Password Read from a File
You can mount a file system with a password read from a file.

* Unmounting a File System
In Linux, you can run fusermount to unmount file systems.

e Mounting DBFS Through fstab Utility for Linux
In Linux, you can configure fstab utility to use dofs client to mount a DBFS filesystem.

e Mounting DBFS Through the vfstab Utility for Solaris

e Restrictions on Mounted File Systems

25.3.3.1 Installing FUSE on Solaris 11 SRU7 and Later

You can use dbfs_client as a mount client in Solaris 11 SRU7 and later, if you install FUSE
Install FUSE to use dbfs client as a mount client in Solaris 11 SRU7 and later.

e Run the following package as root.

pkg install libfuse

ORACLE e g

Chapter 25
DBFS File System Access

25.3.3.2 Mounting the DBFS Store

You can mount the DBFS store by running the dbfs _client program.
To run the dbfs client program.

1. Ensure that LD LIBRARY PATH has the correct path to the Oracle client libraries.
2. Runthe dbfs client program.

The dbfs_client program does not return until the file system is unmounted.

See Also:

Using Oracle Wallet with DBFS Client for the most secure method of specifying the
password

25.3.3.3 Solaris-Specific Privileges

On Solaris, the user must have the Solaris privilege PRIV_SYS MOUNT to perform mount and
unmount operations on DBFS filesystems.

Give the user the Solaris privilege PRIV_SYS MOUNT .
1. Edit /etc/user attr.

2. Add or modify the user entry (assuming the user is Oracle) as follows:

oracle::::type=normal;project=group.dba;defaultpriv=basic,priv_sys mount;;auth
s=solaris.smf.*

25.3.3.4 About the Mount Command for Solaris and Linux

The dbfs_client mount command for Solaris and Linux uses specific syntax.

Syntax:

dbfs_client db user@db server [-0 option 1 -o option 2 ...] mount point

where the mandatory parameters are:
* db user is the name of the database user who owns the DBFS content store file system.

* db serveris a valid connect string to the Oracle Database server, such as
hrdb host:1521/hrservice.

* mount point is the path where the Database File System is mounted. Note that all file
systems owned by the database user are visible at the mount point.

The options are:

* direct io: To bypass the OS page cache and provide improved performance for large
files. Programs in the file system cannot be executed with this option. Oracle recommends
this option when DBFS is used as an ETL staging area.

e wallet: To run the DBFS client in the background. The Wallet must be configured to get its
credentials.

ORACLE e g

Chapter 25
DBFS File System Access

failover: To fail over the DBFS client to surviving database instances without data loss.
Expect some performance cost on writes, especially for small files.

allow_root: To allow the root user to access the filesystem. You must set the
user allow other parameter in the /etc/fuse.conf configuration file.

allow other: To allow other users to access the filesystem. You must set the
user_allow other parameter in the /etc/fuse.conf configuration file.

rw: To mount the filesystem as read-write. This is the default setting.
ro: To mount the filesystem as read-only. Files cannot be modified.
trace level=n sets the trace level. Trace levels are:

1 DEBUG

2 INFO

3 WARNING

4 ERROR: The default tracing level. It outputs diagnostic information only when an error
happens. It is recommended that this tracing level is always enabled.

— 5 CRITICAL

trace file=STR: Specifies the tracing log file, where STR can be either a file name or
syslog.

trace size=trcfile size: Specifies size of the trace file in MB. By default, dbfs client
rotates tracing output between two 10MB files. Specifying 0 for trace size sets the
maximum size of the trace file to unlimited.

25.3.3.5 Mounting a File System with a Wallet

You can mount a file system with a wallet after configuring various environment variables.

ORACLE

You must first configure the LD_LIBRARY PATH and ORACLE HOME environment variables
correctly before mounting a file system with a wallet.

1
2.

Login as admin user.

Mount the DBFS store. (Oracle recommends that you do not perform this step as root
user.)

% dbfs client @/dbfsdb -o wallet,rw,user,direct io /mnt/dbfs
[Optional] To test if the previous step was successful, as admin user, list the dbfs directory.

S 1s /mnt/tdbfs

¢ See Also:
Using Oracle Wallet with DBFS Client

25-10

Chapter 25
DBFS File System Access

25.3.3.6 Mounting a File System with Password at Command Prompt

You can mount a file system using dofs_client.

You must enter a password on the command prompt to mount a file system using
dbfs client.

* Run the following:

$ dofs_client ETLUser@DBConnectString /mnt/dbfs
password: XXXXXXX

25.3.3.7 Mounting a File System with Password Read from a File

You can mount a file system with a password read from a file.

The following example mounts a file system and frees the terminal. It reads the password from
a file:

* Run the following:

$ nohup dbfs client ETLUser@DBConnectString /mnt/dbfs < passwordfile.f &
$ 1s -1 /mnt/dbfs
drwxrwxrwx 10 root root 0 Feb 9 17:28 staging area

25.3.3.8 Unmounting a File System

In Linux, you can run fusermount to unmount file systems.
To run fusermount in Linux, do the following:

* Run the following:

$ fusermount -u <mount point>
In Solaris, you can run umount to unmount file systems.
* Run the following:

$ umount -u <mount point>

25.3.3.9 Mounting DBFS Through fstab Utility for Linux

ORACLE

In Linux, you can configure fstab utility to use dofs client to mount a DBFS filesystem.
To mount DBFS through /etc/fstab, you must use Oracle Wallet for authentication.

1. Login as root user.
2. Change the user and group of dbfs client to user root and group fuse.
chown root.fuse $SORACLE HOME/bin/dbfs client

3. Setthe setuid biton dbfs client and restrict execute privileges to the user and group
only.

chmod utrwxs,g+rx-w,o-rwx dbfs client
4. Create a symbolic link to dbfs client in /sbin as "mount.dbfs".

$ 1n -s SORACLE HOME/bin/dbfs client /sbin/mount.dbfs

25-11

Chapter 25
DBFS File System Access

5. Create a new Linux group called "fuse".
6. Add the Linux user that is running the DBFS Client to the fuse group.
7. Add the following line to /etc/fstab:

/sbin/mount.dbfs#db user@db server mount point fuse rw,user,noauto 0 0

For example:
/sbin/mount.dbfs#/@DBConnectString /mnt/dbfs fuse rw,user,noauto 0 0

8. The Linux user can mount the DBFS file system using the standard Linux mount command.
For example:

S mount /mnt/dbfs

Note that FUSE does not currently support automount.

25.3.3.10 Mounting DBFS Through the vfstab Utility for Solaris

On Solaris, file systems are commonly configured using the vfstab utility.

1. Create a mount shell script mount dbfs.sh to use to start dofs client. All the
environment variables that are required for Oracle RDBMS must be exported. These
environment variables include TNS ADMIN, ORACLE HOME, and LD LIBRARY PATH. For
example:

#!/bin/ksh

export TNS ADMIN=/export/home/oracle/dbfs/tnsadmin

export ORACLE HOME=/export/home/oracle/11.2.0/dbhome 1

export DBFS USER=dbfs user

export DBFS PASSWD=/tmp/passwd.f

export DBFS DB CONN=dbfs db

export O=$ORACLE HOME

export LD LIBRARY PATH=$0/1ib:$0/rdbms/lib:/usr/lib:/1lib:SLD LIBRARY PATH
export NOHUP_LOG=/tmp/dbfs.nohup

(nohup $ORACLE HOME/bin/dbfs client $DBFS USER@SDBFS DB CONN < $DBFS PASSWD
2>61 &) &

2. Add an entry for DBFS to /etc/vEstab. Specify the mount dbfs.sh script for the
device to mount. Specify uvfs for the FS_type. Specify no formount at boot. Specify
mount options as needed. For example:

/usr/local/bin/mount dbfs.sh - /mnt/dbfs uvfs - no rw,allow other

3. User can mount the DBFS file system using the standard Solaris mount command. For
example:

$ mount /mnt/dbfs

4. User can unmount the DBFS file system using the standard Solaris umount command. For
example:

$ umount /mnt/dbfs

25.3.3.11 Restrictions on Mounted File Systems
DBFS supports most file system operations with exceptions. Exceptions are:
e ioctl

e range locking (file locking is supported)

ORACLE e 1o

Chapter 25
DBFS File System Access

e asynchronous I/O through libaio
* O _DIRECT file opens

e hard links, pipes

e other special file modes

Memory-mapped files are supported except in shared-writable mode. For performance
reasons, DBFS does not update the file access time every time file data or the file data
attributes are read.

You cannot run programs from a DBFS-mounted file system if the direct io option is
specified.

Oracle does not support exporting DBFS file systems using NFS or Samba.

25.3.4 File System Security Model

The database manages security in DBFS. It does not use the operating system security model.

e About the File System Security Model

e Enabling Shared Root Access

e About DBFS Access Among Multiple Database Users

e Establishing DBFS Access Sharing Across Multiple Database Users

e About the File System Security Model

e Enabling Shared Root Access

e About DBFS Access Among Multiple Database Users

» Establishing DBFS Access Sharing Across Multiple Database Users

25.3.4.1 About the File System Security Model

ORACLE

DBFS operates under a security model where all file systems created by a user are private to
that user, by default.

Oracle recommends maintaining this model. Because operating system users and Oracle
Database users are different, it is possible to allow multiple operating system users to mount a
single DBFS filesystem. These mounts may potentially have different mount options and
permissions. For example, userl may mount a DBFS filesystem as READ ONLY, and user2 may
mount it as READ WRITE. However, Oracle Database views both users as having the same
privileges because they would be accessing the filesystem as the same database user.

Access to a database file system requires a database login as a database user with privileges
on the tables that underlie the file system.The database administrator grants access to a file
system to database users, and different database users may have different READ or UPDATE
privileges to the file system. The database administrator has access to all files stored in the
DBFS file system.

On each client computer, access to a DBFS mount point is limited to the operating system user
that mounts the file system. This, however, does not limit the number of users who can access
the DBFS file system, because many users may separately mount the same DBFS file system.

DBFS only performs database privilege checking. Linux performs operating system file-level
permission checking when a DBFS file system is mounted. DBFS does not perform this check
either when using the command interface or when using the PL/SQL interface directly.

25-13

Chapter 25
DBFS File System Access

25.3.4.2 Enabling Shared Root Access

As an operating system user who mounts the file system, you can allow root access to the file
system by specifying the allow root option. This option requires that the /etc/fuse.conf file
contain the user_allow other field, as demonstrated in Example 25-1.

Example 25-1 Enabling Root Access for Other Users

Allow users to specify the 'allow root' mount option.
user allow other

25.3.4.3 About DBFS Access Among Multiple Database Users

Some circumstances may require that multiple database users access the same filesystem.
For example, the database user that owns the filesystem may be a privileged user and sharing
its user credentials may pose a security risk. To mitigate this, DBFS allows multiple database
users to share a subset of the filesystem state.

While DBFS registrations and mounts made through the DBFS content API are private to each
user, the underlying filesystem and the tables on which they rely may be shared across users.
After this is done, the individual filesystems may be independently mounted and used by
different database users, either through SQL/PLSQL, or through dbfs client APIs.

25.3.4.4 Establishing DBFS Access Sharing Across Multiple Database Users

ORACLE

You can share DBFS across multiple database users.

In the following example, user userl is able to modify the filesystem, and user user2 can see
these changes. Here, userl is the database user that creates a filesystem, and user? is the
database user that eventually uses dbfs client to mount and access the filesystem. Both
userl and user2 must have the DBFS_ROLE privilege.

1. Connect as the user who creates the filesystem.

sys@tank as sysdba> connect userl
Connected.

2. Create the filesystem userl FS, register the store, and mount it as userl mt.

userl@tank> exec dbms dbfs sfs.createFilesystem('userl FS');

userl@tank> exec dbms dbfs content.registerStore('userl FS', 'posix',
'DBMS DBFS_SFS');
userl@tank> exec dbms dbfs content.mountStore('userl FS', 'userl mnt');

userl@tank> commit;

3. [Optional] You may check that the previous step has completed successfully by viewing all

mounts.

userl@tank> select * from table(dbms dbfs content.listMounts);

STORE_NAME | STORE_ID|PROVIDER NAME

_____________________ ‘ _ e — ’ e
PROVIDER PKG | PROVIDER ID|PROVIDER VERSION | STORE_FEATURES
————————————————————— e B B
STORE_GUID

25-14

ORACLE

10.

Chapter 25
DBFS File System Access

MOUNT PROPERTIES (PROPNAME, PROPVALUE, TYPECODE)

userl FS | 1362968596 |posix
"DBMS DBFS SFS" | 3350646887(0.5.0 | 12714135 141867344
userl mnt

01-FEB-10 09.44.25.357858 PM

DBMS_DBFS_CONTENT PROPERTIES T (
DBMS DBFS_CONTENT PROPERTY T('principal', (null), 9),
DBMS_DBFS_CONTENT PROPERTY T ('owner', (null), 9),
DBMS DBFS_CONTENT PROPERTY T('acl', (null), 9),
DBMS_DBFS_CONTENT PROPERTY T('asof', (null), 187),
DBMS_DBFS_CONTENT PROPERTY T('read only', '0', 2))

[Optional] Connect as the user who will use the dofs client.

userl@tank> connect user2
Connected.

[Optional] Note that user2 cannot see userl's DBFS state, as he has no mounts.
user2@tank> select * from table(dbms dbfs content.listMounts);

While connected as userl, export filesystem userl FS for access to any user with
DBFS_ROLE privilege.

userl@tank> exec dbms dbfs sfs.exportFilesystem('userl FS');
userl@tank> commit;

Connect as the user who will use the dbfs client.

userl@tank> connect user2
Connected.

As user2, view all available tables.

user2@tank> select * from table(dbms dbfs sfs.listTables);

SCHEMA NAME | TABLE_NAME | PTABLE NAME
___________________________ ‘ ——— | ———
VERSION#

———————————————————————————————— CREATED

FORMATTED

|SFS$ _FST 11 |SFS$_FSTP 11
0.5.0

01-FEB-10 09.43.53.497856 PM

01-FEB-10 09.43.53.497856 PM

(null)

As user2, register and mount the store, but do not re-create the userl Fs filesystem.

user2@tank> exec dbms_dbfs sfs.registerFilesystem(
'user2 FS', 'userl', 'SFS$ FST 11');

user2@tank> exec dbms_dbfs content.registerStore (
'user2 FS', 'posix', 'DBMS DBFS SFS');

user2@tank> exec dbms_dbfs content.mountStore (
'user2 FS', 'user2 mnt');

user2@tank> commit;

[Optional] As user2, you may check that the previous step has completed successfully by
viewing all mounts.

25-15

ORACLE

11.

12.

Chapter 25
DBFS File System Access

user2@tank> select * from table(dbms dbfs content.listMounts);

STORE_NAME | STORE_ID|PROVIDER NAME

_____________________ ‘ _ e — = I e
PROVIDER PKG | PROVIDER ID|PROVIDER VERSION | STORE_FEATURES

————————————————————— e B B
STORE_GUID

user2 FS | 1362968596 |posix
"DBMS DBFS SFS" | 3350646887(0.5.0 | 12714135 141867344
userl mnt

01-FEB-10 09.46.16.013046 PM

DBMS_DBFS_CONTENT PROPERTIES T (
DBMS_DBFS_CONTENT PROPERTY T('principal', (null), 9),
DBMS_DBFS_CONTENT PROPERTY T('owner', (null), 9),
DBMS DBFS_CONTENT PROPERTY T('acl', (null), 9),
DBMS_DBFS_CONTENT PROPERTY T('asof', (null), 187),
DBMS_DBFS_CONTENT PROPERTY T('read only', '0', 2))

[Optional] List path names for user2 and userl. Note that another mount, user2 mnt, for
store user2 FS, is available for user2. However, the underlying filesystem data is the
same for user2 as for userl.

user2@tank> select pathname from dbfs content;

PATHNAME

/user2 mnt

/user2 mnt/.sfs/tools
/user2 mnt/.sfs/snapshots
/user2 mnt/.sfs/content
/user2 mnt/.sfs/attributes
/user2 mnt/.sfs/RECYCLE
/user2 mnt/.sfs

user2@tank> connect userl
Connected.

userl@tank> select pathname from dbfs content;

PATHNAME

/userl mnt

/userl mnt/.sfs/tools
/userl mnt/.sfs/snapshots
/userl mnt/.sfs/content
/userl mnt/.sfs/attributes
/userl mnt/.sfs/RECYCLE
/userl mnt/.sfs

In filesystem userl FS, userl creates file xxx.

userl@tank> var ret number;

userl@tank> var data blob;

userl@tank> exec :ret := dbms fuse.fs create('/userl mnt/xxx', content =>
userl@tank> select :ret from dual;

:data);

25-16

Chapter 25
DBFS File System Access

13. [Optional] Write to file xxx, created in the previous step.

userl@tank> var buf varchar2(100);

userl@tank> exec :buf := 'hello world';

userl@tank> exec dbms lob.writeappend(:data, length(:buf),
utl raw.cast to raw(:buf));

userl@tank> commit;

14. [Optional] Show that file xxx exists, and contains the appended data.

userl@tank> select pathname, utl raw.cast to varchar2(filedata)
from dbfs content where filedata is not null;

PATHNAME

/userl mnt/xxx
hello world

15. User user2 sees the same file in their own DBFS-specific path name and mount prefix.

userl@tank> connect user2
Connected.

user2@tank> select pathname, utl raw.cast to varchar2(filedata) from
dbfs content where filedata is not null;

PATHNAME

/user2 mnt/xxx
hello world

After the export and register pairing completes, both users behave as equals with regard to
their usage of the underlying tables. The exportFilesystem() procedure manages the
necessary grants for access to the same data, which is shared between schemas. After userl
calls exportFilesystem(), filesystem access may be granted to any user with DBFS_ROLE. Note
that a different role can be specified.

Subsequently, user2 may create a new DBFS filesystem that shares the same underlying
storage as the userl Fs filesystem, by invoking doms dbfs sfs.registerFilesystem(),
doms_dbfs sfs.registerStore(), and dmbs dbfs sfs.mountStore () procedure calls.

When multiple database users share a filesystem, they must ensure that all database users
unregister their interest in the filesystem before the owner (here, user1) drops the filesystem.

Oracle does not recommend that you run the DBFS as root.

25.3.5 HTTP, WebDAV, and FTP Access to DBFS

ORACLE

Components that enable HTTP, WebDAV, and FTP access to DBFS over the Internet use
various XML DB server protocols.

Topics:

e Internet Access to DBFS Through XDB

25-17

Chapter 25
DBFS File System Access

* Web Distributed Authoring and Versioning (WebDAV) Access
* FTP Access to DBFS

* HTTP Access to DBFS

e Internet Access to DBFS Through XDB

e Web Distributed Authoring and Versioning (WebDAV) Access
* FTP Access to DBFS

* HTTP Access to DBFS

25.3.5.1 Internet Access to DBFS Through XDB

To provide database users who have DBFS authentication with a hierarchical file system-like
view of registered and mounted DBFS stores, stores are displayed under the path /dbfs.

The /dbfs folder is a virtual folder because the resources in its subtree are stored in DBFS
stores, not the XDB repository. XDB issues a dbms_dbfs content.list () command for the
root path name "/" (with invoker rights) and receives a list of store access points as subfolders
in the /dbfs folder. The list is comparable to store mount parameters passed to

doms_dbfs content.mountStore (). FTP and WebDAV users can navigate to these stores,
while HTTP and HTTPS users access URLs from browsers.

Note that features implemented by the XDB repository, such as repository events, resource
configurations, and ACLs, are not available for the /dbfs folder.

DBFS Content API for guidelines on DBFS store creation, registration, deregistration, mount,
unmount and deletion

25.3.5.2 Web Distributed Authoring and Versioning (WebDAV) Access

ORACLE

WebDAV is an IETF standard protocol that provides users with a file-system-like interface to a
repository over the Internet.

WebDAV server folders are typically accessed through Web Folders on Microsoft Windows
(2000/NT/XP/Vista/7, and so on). You can access a resource using its fully qualified name, for
example, /dbfs/sfsl/dirl/filel.txt, where sfsl is the name of a DBFS store.

You need to set up WebDAV on Windows to access the DBFS filesystem.

¢ See Also:
Oracle XML DB Developer's Guide

The user authentication required to access the DBFS virtual folder is the same as for the XDB
repository.

When a WebDAV client connects to a WebDAV server for the first time, the user is typically
prompted for a username and password, which the client uses for all subsequent requests.
From a protocol point-of-view, every request contains authentication information, which XDB
uses to authenticate the user as a valid database user. If the user does not exist, the client
does not get access to the DBFS store or the XDB repository. Upon successful authentication,
the database user becomes the current user in the session.

25-18

Chapter 25
DBFS File System Access

XDB supports both basic authentication and digest authentication. For security reasons, it is
highly recommended that HTTPS transport be used if basic authentication is enabled.

25.3.5.3 FTP Access to DBFS

FTP access to DBFS uses the standard FTP clients found on most Unix-based distributions.
FTP is a file transfer mechanism built on client-server architecture with separate control and
data connections.

FTP users are authenticated as database users. The protocol, as outlined in RFC 959, uses
clear text user name and password for authentication. Therefore, FTP is not a secure protocol.

The following commands are supported for DBFS:

ORACLE

USER: Authentication username

PASS: Authentication password

cwWp: Change working directory

CcDUP: Change to Parent directory

QUIT: Disconnect

PORT: Specifies an address and port to which the server should connect
PASV: Enter passive mode

TYPE: Sets the transfer mode, such as, ASCII or Binary

RETR: Transfer a copy of the file

STOR: Accept the data and store the data as a file at the server site
RNFR: Rename From

RNTO: Rename To

DELE: Delete file

RMD: Remove directory

MKD: Make a directory

PWD: Print working directory

LIST: Listing of a file or directory. Default is current directory.

NLST: Returns file names in a directory

HELP: Usage document

SYST: Return system type

FEAT: Gets the feature list implemented by the server

NOOP: No operation (used for keep-alives)

EPRT: Extended address (IPv6) and port to which the server should connect

EPSV: Enter extended passive mode (IPv6)

25-19

Chapter 25
DBFS Administration

25.3.5.4 HTTP Access to DBFS

Users have read-only access through HTTP/HTTPS protocols. Users point their browsers to a
DBFS store using the XDB HTTP server with a URL such as https://hostname:port/dbfs/
sfsl where sfsl is a DBFS store name.

25.4 DBFS Administration

DBFS administration includes tools that perform diagnostics, manage failover, perform backup
and so on.

Topics:

e Using Oracle Wallet with DBFS Client

- DBFS Diagnostics

* Preventing Data Loss During Failover Events

e Bypassing Client-Side Write Caching

e Backing up DBFS

e Small File Performance of DBFS

* Enabling Advanced SecureFiles LOB Features for DBFS

e Using Oracle Wallet with DBFS Client
- DBFS Diagnostics

e Preventing Data Loss During Failover Events
The dbfs_client program can failover to one of the other existing database instances if
one of the database instances in an Oracle RAC cluster fails.

e Bypassing Client-Side Write Caching

e Backing up DBFS

* Small File Performance of DBFS

e Enabling Advanced SecureFiles LOB Features for DBFS

25.4.1 Using Oracle Wallet with DBFS Client

ORACLE

An Oracle Wallet allows the DBFS client to mount a DBFS store without requiring the user to
enter a password.

¢ See Also:

Oracle Database Enterprise User Security Administrator's Guide for more information
about creation and management of wallets

The "/@" syntax means to use the wallet, as shown in Step 7.

1. Create a directory for the wallet. For example:

mkdir $ORACLE HOME/oracle/wallet

25-20

Chapter 25
DBFS Administration

2. Create an auto-login wallet.
mkstore -wrl SORACLE HOME/oracle/wallet -create
3. Add the wallet location in the client's sqlnet.ora file:

WALLET LOCATION = (SOURCE = (METHOD = FILE) (METHOD DATA = (DIRECTORY =
SORACLE HOME/oracle/wallet)))

4. Add the following parameter in the client's sqlnet.ora file:
SQLNET .WALLET OVERRIDE = TRUE
5. Create credentials:

mkstore -wrl wallet location -createCredential db connect string username password

For example:

mkstore -wrl SORACLE HOME/oracle/wallet -createCredential DBConnectString scott
password

6. Add the connection alias to your tnsnames.ora file.
7. Use dbfs client with Oracle Wallet.
For example:

$ dbfs client -o wallet /@DBConnectString /mnt/dbfs

25.4.2 DBFS Diagnostics

The dbfs client program supports multiple levels of tracing to help diagnose problems. It can
either output traces to a file or to /var/log/messages using the syslog daemon on Linux.

When you trace to a file, the dbfs_client program keeps two trace files on disk. dbfs client,
rotates the trace files automatically, and limits disk usage to 20 MB.

By default, tracing is turned off except for critical messages which are always logged
to /var/log/messages.

If dbfs client cannot connect to the Oracle Database, enable tracing using the trace level
and trace file options. Tracing prints additional messages to log file for easier debugging.

DBFS uses Oracle Database for storing files. Sometimes Oracle server issues are propagated
to dbfs client as errors. If there is a dofs_client error, please view the Oracle server logs to
see if that is the root cause.

25.4.3 Preventing Data Loss During Failover Events

The dbfs_client program can failover to one of the other existing database instances if one of
the database instances in an Oracle RAC cluster fails.

For dbfs client failover to work correctly, you must modify the Oracle database service and
specify failover parameters. Run the DBMS SERVICE.MODIFY SERVICE procedure to modify the
service as shown Example 25-2

Example 25-2 Enabling DBFS Client Failover Events

exec DBMS SERVICE.MODIFY SERVICE (service name => 'service name',
aq_ha notifications => true,
failover method => 'BASIC',
failover type => 'SELECT',

ORACLE S

Chapter 25
DBFS Administration

failover retries => 180,
failover delay => 1);

Once you have completed the prerequisite, you can prevent data loss during a failover of the
DBFS connection after a failure of the back-end Oracle database instance. In this case,
cached writes may be lost if the client loses the connection. However, back-end failover to
other Oracle RAC instances or standby databases does not cause lost writes.

e Specify the -o failover mount option:

$ dbfs client database user@database server -o failover /mnt/dbfs

25.4.4 Bypassing Client-Side Write Caching

The sharing and caching semantics for dbfs client are similar to NFS in using the close-to-
open cache consistency behavior. This allows multiple copies of dofs client to access the
same shared file system. The default mode caches writes on the client and flushes them after
a timeout or after the user closes the file. Also, writes to a file only appear to clients that open
the file after the writer closed the file.

You can bypass client-side write caching.

» Specify 0 _SYNC when the file is opened.

To force writes in the cache to disk call fsync.

25.4.5 Backing up DBFS

You have two alternatives for backing up DBFS. You can back up the tables that underlie the
file system at the database level or use a file system backup utility, such as Oracle Secure
Backup, through a mount point.

Topics:
 DBFS Backup at the Database Level
e DBFS Backup Through a File System Utility

» DBFS Backup at the Database Level
e DBFS Backup Through a File System Utility

25.4.5.1 DBFS Backup at the Database Level

An advantage of backing up the tables at the database level is that the files in the file system
are always consistent with the relational data in the database. A full restore and recover of the
database also fully restores and recovers the file system with no data loss. During a point-in-
time recovery of the database, the files are recovered to the specified time. As usual with
database backup, modifications that occur during the backup do not affect the consistency of a
restore. The entire restored file system is always consistent with respect to a specified time
stamp.

25.4.5.2 DBFS Backup Through a File System Utility

The advantage of backing up the file system using a file system backup utility is that individual
files can be restored from backup more easily. Any changes made to the restored files after the
last backup are lost.

ORACLE o5 29

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

Specify the allow root mount option if backups are scheduled using the Oracle Secure
Backup Administrative Server.

25.4.6 Small File Performance of DBFS

Like any shared file system, the performance of DBFS for small files lags the performance of a
local file system.

Each file data or metadata operation in DBFS must go through the FUSE user mode file system
and then be forwarded across the network to the database. Therefore, each operation that is
not cached on the client takes a few milliseconds to run in DBFS.

For operations that involve an input/output (10) to disk, the time delay overhead is masked by
the wait for the disk 10. Naturally, larger IOs have a lower percentage overhead than smaller
I0s. The network overhead is more noticeable for operations that do not issue a disk 10.

When you compare the operations on a few small files with a local file system, the overhead is
not noticeable, but operations that affect thousands of small files incur a much more noticeable
overhead. For example, listing a single directory or looking at a single file produce near
instantaneous response, while searching across a directory tree with many thousands of files
results in a larger relative overhead.

25.4.7 Enabling Advanced SecureFiles LOB Features for DBFS

DBFS offers advanced features available with SecureFiles LOBs: compression, deduplication,
encryption, and patrtitioning.

For example, DBFS can be configured as a compressed file system with partitioning. At the
time of creating a DBFS file system, you must specify the set of enabled features for the file
system.

See Also:

Using Oracle LOB Storage and Creating a Partitioned File System for more
information about the features of SecureFiles LOBs.

Example 25-3 Enabling Advanced Secure Files LOB Features for DBFS

$ sqglplus @dbfs create filesystem advanced tablespace name file systemname
[compress-high | compress-medium | compress-low | nocompress]
[deduplicate | nodeduplicate]
[encrypt | noencrypt]
[partition | non-partition]

25.5 Shrinking and Reorganizing DBFS Filesystems

ORACLE

A DBFS Filesystem uses Online Filesystem Reorganization to shrink itself, enabling the
release of allocated space back to the containing tablespace.

Topics:
e About Changing DBFS Filesystems

* Advantages of Online Filesystem Reorganization

25-23

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

e Determining Availability of Online Filesystem Reorganization
e Invoking Online Filesystem Reorganization
e About Changing DBFS Filesystems

e Advantages of Online Filesystem Reorganization

DBFS Online Filesystem Reorganization is a powerful data movement facility with these
certain advantages.

e Determining Availability of Online Filesystem Reorganization

e Invoking Online Filesystem Reorganization
You can perform an Online Filesystem Reorganization by creating a temporary DBFS
filesystem.

25.5.1 About Changing DBFS Filesystems

DBFS filesystems, like other database segments, grow dynamically with the addition or
enlargement of files and directories. Growth occurs with the allocation of space from the
tablespace that holds the DBFS filesystem to the various segments that make up the
filesystem.

However, even if files and directories in the DBFS filesystem are deleted, the allocated space
is not released back to the containing tablespace, but continues to exist and be available for
other DBFS entities. A process called Online Filesystem Reorganization solves this problem by
shrinking the DBFS Filesystem.

The DBFS Online Filesystem Reorganization utility internally uses the Oracle Database online
redefinition facility, with the original filesystem and a temporary placeholder corresponding to
the base and interim objects in the online redefinition model.

¢ See Also:

Oracle Database Administrator's Guide for further information about online
redefinition

25.5.2 Advantages of Online Filesystem Reorganization

ORACLE

DBFS Online Filesystem Reorganization is a powerful data movement facility with these
certain advantages.

These are:

e Itis online: When reorganization is taking place, the filesystem remains fully available for
read and write operations for all applications.

« It can reorganize the structure: The underlying physical structure and organization of the
DBFS filesystem can be changed in many ways, such as:

— A non-partitioned filesystem can be converted to a partitioned filesystem and vice-
versa.

— Special SecureFiles LOB properties can be selectively enabled or disabled in any
combination, including the compression, encryption, and deduplication properties.

— The data in the filesystem can be moved across tablespaces or within the same
tablespace.

25-24

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

* It can reorganize multiple filesystems concurrently: Multiple different filesystems can
be reorganized at the same time, if no temporary filesystems have the same name and the
tablespaces have enough free space, typically, twice the space requirement for each
filesystem being reorganized.

25.5.3 Determining Availability of Online Filesystem Reorganization

DBFS for Oracle Database 12¢ and later supports online filesystem reorganization. Some
earlier versions also support the facility. To determine if your version does, query for a specific
function in the DBFS PL/SQL packages, as shown below:

e Query for a specific function in the DBFS PL/SQL packages.

$ sqglplus / as sysdba

SELECT * FROM dba procedures

WHERE owner = 'SYS'
and object name = 'DBMS DBFS SFS'
and procedure name = 'REORGANIZEFS';

If this query returns a single row similar to the one in this output, the DBFS installation supports
Online Filesystem Reorganization. If the query does not return any rows, then the DBFS
installation should either be upgraded or requires a patch for bug-10051996.

OBJECT ID|SUBPROGRAM ID|OVERLOAD |OBJECT TYPE |AGG|PIP

e R | == | =mmmmm - === 1---
IMPLTYPEOWNER

PAR|INT|DET |AUTHID
e B
SYS
DBMS DBFS_SFS
REORGANIZEFS
11424 52| (null) | PACKAGE [NO |NO
(null)
(null)
NO |NO [NO \CURRENT_USER

25.5.4 Invoking Online Filesystem Reorganization

ORACLE

You can perform an Online Filesystem Reorganization by creating a temporary DBFS
filesystem.

< Note:

Ensure that you don't create the temporary DBFS filesystem in the SYS schema.
DBFS Online Filesystem Reorganization will not work if you create the temporary
DBFS filesystem in the SYS schema.

25-25

ORACLE

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

1. Create a temporary DBFS filesystem with the desired new organization and structure:
including the desired target tablespace (which may be the same tablespace as the
filesystem being reorganized), desired target SecureFiles LOB storage properties
(compression, encryption, or deduplication), and so on.

2. Invoke the PL/SQL procedure to reorganize the DBFS filesystem using the newly-created
temporary filesystem for data movement.

3. Once the reorganization procedure completes, drop the temporary filesystem.

The example below reorganizes DBFS filesystem Fs1 in tablespace Ts1 into a new tablespace
TS2, using a temporary filesystem named TMP_FS, where all filesystems belong to database
user dofs user:

$ cd $ORACLE HOME/rdbms/admin
$ sqlplus dbfs_user/***

@dbfs_create filesystem TS2 TMP FS

EXEC DBMS DBFS SFS.REORGANIZEFS('FS1', 'TMP FS');
@dbfs_drop filesystem TMP_FS

QUIT;

where:

* TMP_FS can have any valid name. It is intended as a temporary placeholder and can be
dropped (as shown in the example above) or retained as a fully materialized point-in-time
snapshot of the original filesystem.

e FS1isthe original filesystem and is unaffected by the attempted reorganization. It remains
usable for all DBFS operations, including SQL, PL/SQL, and dbfs_client mounts and
commandline, during the reorganization. At the end of the reorganization, FS1 has the new
structure and organization used to create TMP_FS and vice versa (TMP_FS will have the
structure and organization originally used for Fs1). If the reorganization fails for any reason,
DBFS attempts to clean up the internal state of FS1.

* TS2 needs enough space to accommodate all active (non-deleted) files and directories in
FSl.

e TSI needs at least twice the amount of space being used by Fs1 if the filesystem is moved
within the same tablespace as part of a shrink.

25-26

LOB Demonstration Files

This appendix describes files distributed with the database that demonstrate how LOBs are
used in supported programmatic environments. This appendix contains these topics:

PL/SQL LOB Demonstration Files
OCI LOB Demonstration Files
Java LOB Demonstration Files
PL/SQL LOB Demonstration Files
OCI LOB Demonstration Files

Java LOB Demonstration Files

A.1 PL/SQL LOB Demonstration Files

The following table lists PL/SQL demonstration files. These files are installed in $ORACLE_HOME/
rdbms/demo/lobs/plsqgl/. A driver program, lobdemo. sql, that calls these files is found in the
same directory.

Table A-1 PL/SQL Demonstration Examples

File Name

Description

Usage Information

fclose c.sql
fclose f.sql

fclosea.sql

fcompare.sql
fcopyloc.sql
fdisplay.sqgl
fexists.sqgl

ffilopen.sqgl
ffisopen.sql

fgetdir.sqgl
finsert.sql
fisopen.sql

flength.sqgl
floadlob.sql
fopen.sql

ORACLE

Closing a BFILE with CLOSE
Closing a BFILE with FILECLOSE
Closing all open BFILES

Comparing all or parts of two BFILES

Copying a LOB locator for a BFILE

Displaying BFILE data

Checking if a BFILE exists

Opening a BFILE with FILEOPEN

Checking if the BFILE is OPEN with FILEISOPEN

Getting the directory object name and filename of a
BFILE

Inserting row containing a BFILE by initializing a
BFILE locator

Checking if the BFILE is open with ISOPEN

Getting the length of a BFILE
Loading a LOB with BFILE data
Opening a BFILE with OPEN

Closing a BFILE with CLOSE
Closing a BFILE with FILECLOSE

Closing All Open BFILEs with
FILECLOSEALL

Comparing All or Parts of Two BFILES
About Assigning a BFILE Locator

About Displaying BFILE Data
Determining Whether a BFILE Exists
About Opening a BFILE with FILEOPEN

About Determining Whether a BFILE Is Open
with FILEISOPEN

Getting Directory Object Name and File
Name of a BFILE

About Inserting a Row Containing a BFILE

About Determining Whether a BFILE Is Open
Using ISOPEN

Getting the Length of a BFILE
About Loading a LOB with BFILE Data
About Opening a BFILE with OPEN

Table A-1 (Cont.) PL/SQL Demonstration Examples
|

File Name

Description

Appendix A
PL/SQL LOB Demonstration Files

Usage Information

fpattern.sql

fread.sql
freadprt.sql

fupdate.sql

lappend.sql
lcompare.sql

lcopy.sql

lcopyloc.sqgl

ldisplay.sqgl
lerase.sql

linsert.sql

linstr.sql

lisopen.sql

listemp.sqgl

11ldblobf.sql

1ldclobf.sqgl

lldclobs.sqgl

llength.sqgl
lloaddat.sql

lobuse.sql

lread.sql
lsubstr.sqgl
ltrim.sql
lwrite.sql
lwriteap.sql

Checking if a pattern exists in a BFILE using instr

Reading data from a BFILE

Reading portion of a BFILE data using substr
Updating a BFILE by initializing a BFILE locator

Appending one LOB to another
Comparing all or part of LOB
Copying all or part of a LOB to another LOB

Copying a LOB locator

Displaying LOB data
Erasing part of a LOB

Inserting a row by initializing LOB locator bind variable

Seeing if pattern exists in LOB (instr)

Seeing if LOB is open
Seeing if LOB is temporary

Using DBMS LOB.LOADBLOBFROMFILE to load a BLOB

with data from a BFILE

Using DBMS_LOB.LOADCLOBFROMFILE to load a CLOB

or NCLOB with data from a BFILE

Using DBMS LOB.LOADCLOBFROMFILE to load
segments of a stream of data from a BFILE into
different CLOBs

Getting the length of a LOB
Loading a LOB with BFILE data
Examples of LOB API usage.

Reading data from LOB

Reading portion of LOB (substr)
Trimming LOB data

Writing data to a LOB

Writing to the end of LOB (write append)

Checking If a Pattern Exists in a BFILE Using
INSTR

About Reading Data from a BFILE

About Reading a Portion of BFILE Data
Using SUBSTR

About Updating a BFILE by Initializing a
BFILE Locator

About Appending One LOB to Another
Comparing All or Part of Two LOBs

Copying All or Part of One LOB to Another
LOB

Copying All or Part of One LOB to Another
LOB

About Displaying LOB Data
About Erasing Part of a LOB

Inserting a Row by Initializing a LOB Locator
Bind Variable

Patterns: Checking for Patterns in a LOB
Using INSTR

Determining Whether a LOB is Open

Determining Whether a LOB instance Is
Temporary

About Loading a BLOB with Data from a
BFILE

Loading a CLOB or NCLOB with Data from a
BFILE

Loading a CLOB or NCLOB with Data from a
BFILE

Length: Determining the Length of a LOB
Loading a LOB with Data from a BFILE

Creating Persistent and Temporary LOBs in
PL/SQL

About Reading Data from a LOB
Reading a Portion of a LOB (SUBSTR)
About Trimming LOB Data

About Writing Data to a LOB

About Appending to a LOB

ORACLE

A.2 OCI LOB Demonstration Files

The following table lists OCI demonstration files. These files are installed in $ORACLE_HOME/
rdbms/demo/lobs/oci/. A driver program, lobdemo.c, that calls these files is found in the same

directory, as is the header file 1obdemo.h.

Table A-2 OCI Demonstration Examples

Appendix A
OCI LOB Demonstration Files

File Name

Description

Usage Information

fclose c.c
fclose f.c
fclosea.c
fcopyloc.c
fdisplay.c
fexists.c
ffilopen.c

ffisopen.c

fgetdir.c

finsert.c

fisopen.c

flength.c
floadlob.c
fopen.c
fread.c

fupdate.c

lappend.c
lcopy.c

lcopyloc.c

ldisplay.c

lequal.c

lerase.c
lgetchar.c
lgetchfm.c

linit.c

ORACLE

Closing a BFILE with CLOSE
Closing a BFILE with FILECLOSE
Closing all open BFILES

Copying a LOB locator for a BFILE
Displaying BFILE data

Checking if a BFILE exists
Opening a BFILE with FILEOPEN

Checking if the BFILE is OPEN with
FILEISOPEN

Getting the directory object name and
filename of a BFILE

Inserting row containing a BFILE by
initializing a BFILE locator

Checking if the BFILE is open with
ISOPEN

Getting the length of a BFILE
Loading a LOB with BFILE data
Opening a BFILE with OPEN
Reading data from a BFILE

Updating a BFILE by initializing a BFILE
locator

Appending one LOB to another

Copying all or part of a LOB to another
LOB

Copying a LOB locator

Displaying LOB data

Seeing if one LOB locator is equal to
another

Erasing part of a LOB
Getting character set id

Getting character set form of the foreign
language ad text, ad fltextn

Seeing if a LOB locator is initialized

Closing a BFILE with CLOSE

Closing a BFILE with FILECLOSE

Closing All Open BFILEs with FILECLOSEALL
About Assigning a BFILE Locator

About Displaying BFILE Data

Determining Whether a BFILE Exists

About Opening a BFILE with FILEOPEN

About Determining Whether a BFILE Is Open
with FILEISOPEN

Getting Directory Object Name and File Name
of a BFILE

About Inserting a Row Containing a BFILE

About Determining Whether a BFILE Is Open
Using ISOPEN

Getting the Length of a BFILE

About Loading a LOB with BFILE Data
About Opening a BFILE with OPEN
About Reading Data from a BFILE

About Updating a BFILE by Initializing a BFILE
Locator

About Appending One LOB to Another

Copying All or Part of One LOB to Another
LOB

Copying All or Part of One LOB to Another
LOB

About Displaying LOB Data

Equality: Checking If One LOB Locator Is
Equal to Another

About Erasing Part of a LOB
About Determining Character Set ID

About Determining Character Set Form

About Determining Whether LOB Locator Is
Initialized

Table A-2 (Cont.) OCI Demonstration Examples
|

Appendix A
Java LOB Demonstration Files

File Name Description Usage Information
linsert.c Inserting a row by initializing LOB locator Inserting a Row by Initializing a LOB Locator
bind variable Bind Variable
lisopen.c Seeing if LOB is open Determining Whether a LOB is Open
listemp.c Seeing if LOB is temporary Determining Whether a LOB instance Is
Temporary
llength.c Getting the length of a LOB Length: Determining the Length of a LOB
lloaddat.c Loading a LOB with BFILE data Loading a LOB with Data from a BFILE
lread.c Reading data from LOB About Reading Data from a LOB
lreadarr.c Reading data from an array of LOB About LOB Array Read
locators
ltrim.c Trimming LOB data About Trimming LOB Data
lwrite.c Writing data to a LOB About Writing Data to a LOB
lwritearr.c Writing data into an array of LOB locators LOB Array Write
lwriteap.c Writing to the end of LOB (write append) About Appending to a LOB

A.3 Java LOB Demonstration Files

The following table lists Java demonstration files. These files are installed in $ORACLE HOME/
rdbms/demo/lobs/java/.

Table A-3 Java Demonstration Examples

File Name

Description

Usage Information

Readme. txt

LobDemoConnectionFactory.java

fclose c.java

fclose f.java

fclosea.java

fcompare.java

fexists.java

ffilopen.java

ffisopen.java

ORACLE

Closing a BFILE with CLOSE

Closing a BFILE with
FILECLOSE

Closing all open BFILES

Comparing all or parts of
two BFILES

Checking if a BFILE exists

Opening a BFILE with
FILEOPEN

Checking if the BFILE is
OPEN with FILEISOPEN

See Oracle Database JDBC Developer's Guide for
information on setting up your system to be able to
compile and run JDBC programs with the Oracle
Driver

As written LobDemoConnectionFactory uses the
JDBC OCI driver with a local connection. You should
edit the URL "jdbc:oracle:oci8:@" to match your
setup. Again see Oracle Database JDBC Developer's
Guide.

Closing a BFILE with CLOSE
Closing a BFILE with FILECLOSE

Closing All Open BFILEs with FILECLOSEALL
Comparing All or Parts of Two BFILES

Determining Whether a BFILE Exists
About Opening a BFILE with FILEOPEN

About Determining Whether a BFILE Is Open with
FILEISOPEN

Table A-3 (Cont.) Java Demonstration Examples

Appendix A
Java LOB Demonstration Files

File Name

Description

Usage Information

fgetdir.java

finsert.java

fisopen.java

flength.java

fopen.java

fprattern.java

fread.java

fupdate.java

lappend.java

lcompare.java

lcopy.java

lerase.java

linsert.java

linstr.java

lisopen.java
listempb.java
listempc.java
llength.java
lloaddat.java

lread.java

lsubstr.java

ltrim.java
lwrite.java

lwriteap.java

Getting the directory object
name and filename of a

BFILE

Inserting row containing a
BFILE by initializing a

BFILE locator

Checking if the BFILE is

open with ISOPEN

Getting the length of a

BFILE

Opening a BFILE with OPEN

Checking if a pattern exists
ina BFILE using instr

Reading data from a BFILE

Updating a BFILE by
initializing a BFILE locator

Appending one LOB to

another

Comparing all or part of

LOB

Copying all or part of a LOB

to another LOB

Erasing part of a LOB

Inserting a row by initializing
LOB locator bind variable

Seeing if pattern exists in

LOB (instr)

Seeing if LOB is open

Seeing if LOB is temporary
Seeing if LOB is temporary
Getting the length of a LOB
Loading a LOB with BFILE

data

Reading data from LOB
Reading portion of LOB

(substr)

Trimming LOB data
Writing data to a LOB
Writing to the end of LOB

(write append)

Getting Directory Object Name and File Name of a
BFILE

About Inserting a Row Containing a BFILE

About Determining Whether a BFILE Is Open Using
ISOPEN

Getting the Length of a BFILE

About Opening a BFILE with OPEN
Checking If a Pattern Exists in a BFILE Using INSTR

About Reading Data from a BFILE

About Updating a BFILE by Initializing a BFILE
Locator

About Appending One LOB to Another

Comparing All or Part of Two LOBs

Copying All or Part of One LOB to Another LOB

About Erasing Part of a LOB

Inserting a Row by Initializing a LOB Locator Bind
Variable

Patterns: Checking for Patterns in a LOB Using
INSTR

Determining Whether a LOB is Open

Determining Whether a LOB instance Is Temporary
Determining Whether a LOB instance Is Temporary
Length: Determining the Length of a LOB

Loading a LOB with Data from a BFILE

About Reading Data from a LOB
Reading a Portion of a LOB (SUBSTR)

About Trimming LOB Data
About Writing Data to a LOB
About Appending to a LOB

ORACLE

Glossary

ORACLE

BFILE

A Large Object datatype that is a binary file residing in the file system, outside of the database
data files and tablespace. Note that the BFILE datatype is also referred to as an external LOB
in some documentation.

Binary Large Object (BLOB)

A Large Object datatype that has content consisting of binary data and is typically used to hold
unstructured data. The BLOB datatype is included in the category Persistent LOBs because it
resides in the database.

BLOB
See Binary Large Object (BLOB) .

Character Large Object (CLOB)

The LOB data type that has content consisting of character data in the database character set.
A CLOB can be indexed and searched by the Oracle Text search engine.

CLOB
See Character Large Object (CLOB).

data interface

Data interface is a generic term referring to whichever interface is in use, to query the
database or to update the database.

deduplication

Deduplication enables Oracle Database to automatically detect duplicate LOB data and
conserve space by only storing one copy (if storage parameter is SECUREFILE).

Glossary-1

ORACLE

Glossary

DBFS

The Database Filesystem, which is visible to end-users as the client-side API
(doms_dbfs content).

DBFS Link

Database File System Links (DBFS Links) are references from SecureFiles LOBs to data
stored outside the segment where the SecureFiles LOB resides.

external LOB

A Large Object datatype that is stored outside of the database tablespace. The BFILE datatype
is the only external LOB datatype. See also BFILE.

internal persistent LOB
A large object (LOB) that is stored in the database in a BLOB/CLOB/NCLOB column.

introspect
To examine attributes or value of an object.

Large Objects (LOBs)

Large Objects include the following SQL datatypes: BLOB, CLOB, NCLOB, and BFILE. These
datatypes are designed for storing data that is large in size. See also BFILE, Binary Large
Object, Character Large Object, and National Character Large Object.

LOB
See Large Objects (LOBs)

LOB attribute

A large object datatype that is a field of an object datatype. For example a CL0B field of an
object type.

LOB value

The actual data stored by the Large Object. For example, if a BLOB stores a picture, then the
value of the BLOB is the data that makes up the image.

mount point

The path where the Database File System is mounted. Note that all file systems owned by the
database user are seen at the mount point.

Glossary-2

ORACLE

Glossary

National Character Large Object

The LOB data type that has content consisting of Unicode character data in the database
national character set. An NCLOB can be indexed and searched by the Oracle Text search
engine.

NCLOB
See National Character Large Object.

persistent LOB

A BLOB, CLOB, Or NCLOB that is stored in the database. A persistent LOB instance can be
selected out of a table and used within the scope of your application. The ACID (atomic,
consistent, isolated, durable) properties of the instance are maintained just as for any other
column type. Persistent LOBs are sometimes also referred to as internal persistent LOBs or
just, internal LOBs.

A persistent LOB can exist as a field of an object data type and an instance in a LOB-type
column. For example a CLOB attribute of an instance of type object.

See also temporary LOB and external LOB.

SECUREFILE

LOB storage parameter that allows deduplication, encryption, and compression. The opposite
parameter, that does not allow these features, is BASICFILE.

SPI

The DBFS Store Provider Interface, visible to end-users as the server-side SPI
(doms_dbfs content spi).

Store

A unified content repository, visible to the DBFS, and managed by a single store provider. The
store itself may be a single relational table, a collection of tables, or even a collection of
relational and non-relational entities (e.g., hierarchical stores like tapes and the cloud,
elements inside an XML file, components of HDF-style documents, and so on.

Store Provider
An entity, embodied as a P L/SQL package, that implements the DBFS SPI.

tablespace
A database storage unit that groups related logical structures together.

Glossary-3

Glossary

temporary LOB

A BLOB, CLOB, Or NCLOB that is accessible and persists only within the application scope in which
it is declared. A temporary LOB does not exist in database tables.

ORACLE Glossary-4

Index

A

access statistics for LOBs, 15-6
accessing a LOB
using the LOB APIs, 2-8
accessing external LOBs, 11-3
accessing LOBs, 7-1
administrative APls, 23-10
Advanced LOB compression, 3-3
Advanced LOB Deduplication, 3-3
ALTER TABLE parameters for SecureFiles LOBs,
3-17
amount, 11-18
amount parameter
used with BFILEs, 11-11
appending
writing to the end of a LOB, 12-26
array read, 12-15
array write, 12-30
assigning OClLobLocator pointers, 10-12
ASSM tablespace, 3-2, 3-8, 3-24, 13-11, 17-7
available LOB methods, 10-4, 10-5

B

BASICFILE
LOB storage parameter, 3-8
BasicFiles LOB Storage, 3-2
BasicFiles LOBs and SecureFiles LOBs, 1-8
BFILE class, See JDBC, 10-29
BFILE-streaming, See JDBC, 10-35
BFILENAME function, 2-7, 11-5
BFILEs, 1-5
accessing, 11-3
converting to CLOB or NCLOB, 11-11
creating an object in object cache, 14-16
DBMS_LOB read-only procedures, 10-9
DBMS_LOB, offset and amount parameters in
bytes, 10-6
locators, 2-4
maximum number of open, 11-22, 16-7
maximum size, 14-17
multithreaded server mode, 2-10, 11-10
not affected by LOB storage properties, 13-7
OCI functions to read/examine values, 10-14,
10-21

ORACLE

BFILEs (continued)
OCl read-only functions, 10-14, 10-21
opening and closing using JDBC, 10-39
Pro*C/C++ precompiler statements, 10-24
Pro*COBOL precompiler embedded SQL
statements, 10-27
reading with DBMS_LOB, 10-8
security, 11-7
storage devices, 1-5
streaming APlIs, 10-45
using JDBC to read/examine, 10-34
using Pro*C/C++ precompiler to open and
close, 10-25
bind variables, used with LOB locators in OCI,
10-13
binds
See also INSERT statements and UPDATE
statements, 9-7
BLOB-streaming, See JDBC, 10-33
BLOBs
class, 10-17, 10-29
DBMS_LOB, offset and amount parameters in
bytes, 10-6
maximum size, 14-17
modify using DBMS_LOB, 10-8
using JDBC to modify, 10-33
using JDBC to read/examine BLOB values,
10-33
using oracle.sqgl.BLOB methods to modify,
10-33
body.sql script, 24-16
built-in functions, remote, 5-5

C

C, See OCl, 10-2
C++, See Pro*C/C++ precompiler, 10-2
CACHE / NOCACHE, 13-12
caches
object cache, 14-17
callback, 11-18, 12-13, 12-26
capi.sql script, 24-29
catalog views
v$temporary_lobs, 16-6
character data
varying width, 13-5

Index-1

character set ID, 10-7, 10-10

See CSID parameter, 10-10
character set ID, getting

persistent LOBs, 12-5
charactersets

multibyte, LONG and LOB datatypes, 9-13
CHECKACCESS, 23-19
CHUNK, 3-8, 13-14
chunk size, 12-28

and LOB storage properties, 13-7

multiple of, to improve performance, 12-13
CLOB

session collation settings, 7-6
CLOB-streaminng, See JDBC, 10-34
CLOBs

class, See JDBC, 10-29

columns

varying- width character data, 13-5
datatype
varying-width columns, 13-5

DBMS_LOB, offset and amount parameters in

characters, 10-6
modify using DBMS_LOB, 10-8
opening and closing using JDBC, 10-38
reading/examining with JDBC, 10-34
using JDBC to modify, 10-33
closing
all open BFILEs, 11-27
BFILEs with CLOSE, 11-26
BFILEs with FILECLOSE, 11-25
clustered tables, 17-10
COBOL, See Pro*COBOL precompiler, 10-2
codepoint semantics, 7-7
comparing
all or parts of two BFILEs, 11-20
comparing, all or part of two LOBs
persistent LOBs, 12-21
COMPRESS, 3-11, 3-19
compression
Advanced LOB, 3-3
content store
listing, 23-12
looking up, 23-13
registering, 23-10
unmounting, 23-12
conventional path load, 16-2
conversion
explicit functions for PL/SQL, 8-2
conversion, implicit from CLOB to character type,
7-3
conversions
character set, 11-11
from binary data to character set, 11-11
implicit, between CLOB and VARCHAR?2, 8-1
converting
to CLOB, 8-2

ORACLE

Index

copy semantics, 1-6
internal LOBSs, 6-5
copying
directories, 25-7
files, 25-7
LOB locator
persistent LOBs, 12-24
LOB locator for BFILE, 11-23
copying, all or part of a LOB to another LOB
persistent LOBs, 12-23
CREATE TABLE and SecureFiles LOB features,
3-11
CREATE TABLE parameters for SecureFiles
LOBs, 34
CREATE TABLE syntax and notes, 3-4
creating
a directory, 25-6
partitioned file system, 25-3
creating a non-partitioned file system, 25-3
creating SecureFiles File System Store, 21-2
CSID parameter
setting OCILobRead and OCILobWrite to
OCIl_UCs2ID, 10-10

D

data interface for persistent LOBs, 9-1, 17-9
multibyte charactersets, 9-13
data interface for remote LOBs, 9-25
data interface in Java, 9-25
Data Pump
SecureFiles LOBs, 16-5
Data Pumping
transferring LOB data, 16-5
database file system links, 22-14
db_securefile init.ora parameter, 3-24
DBFS
administration, 25-20
backing up, 25-22
body.sql script, 24-16
caching, 25-22
capi.sql script, 24-29
client, 20-3
command-Line interface, 25-5
Content SPI (Store Provider Interface), 24-2
content store, 20-4
creating a custom provider, 24-3
creating a custom provider, mechanics, 24-4
creating SecureFiles File System Store, 21-2
custom provider sample installation and
setup, 24-4
DBFS Server, 20-3
diagnostics, 25-21
example store provider, 24-3
FTP access, 25-19
hierachical store, setting up, 22-2

Index-2

DBFS (continued)
Hierarchical Store Package,
DBMS_DBFS_HS, 22-1
hierarchical store, dropping, 22-5
hierarchical store, setting up, 22-3
hierarchical store, using, 22-4
hierarchical store, using compression, 22-5
hierarchical store, using tape, 22-6
HS store wallet, setting up, 22-2
HTTP access to, 25-20
internet access, 25-18
managing client failover, 25-21
Online Filesystem Reorganization, 25-23
overview, 20-1
RAC cluster, 25-21
reorganizing file systemsDBFS
online redefinition, 25-23
SecureFiles LOB advanced features, 25-23
SecureFiles Store
setting up, 21-1
SecureFiles Store File Systems, dropping,
21-6
SecureFiles Store File Systems, initializing,
21-4
sharing, 25-22
shrinking file systems, 25-23
small file performance, 25-23
spec.sql script, 24-7
store creation, 24-1
TaBleFileSystem Store Provider ("tbfs"), 24-3
TBFS.SQL script, 24-6
TBL.SQL script, 24-6
using a SecureFiles Store File System, 21-5
using Oracle Wallet, 25-20
XDB internet access, 25-18
DBFS Content API
abstract operations, 23-19
access checks, 23-19
and stores, 23-3
content IDs, 23-6
creation operations, 23-15
deletion operations, 23-16
directory listings, 23-17
exceptions, 23-8
get operations, 23-16
getting started, 23-4
interface versioning, 23-14
lock types, 23-7
locking operations, 23-18
move operations, 23-17
navigation, 23-18
optional properties, 23-8
overview, 23-3
path name types, 23-6
path names, 23-14
path normalization, 23-20

ORACLE

Index

DBFS Content API (continued)
path properties, 23-5
property access flags, 23-8
property bundles, 23-9
put operations, 23-16
rename operations, 23-17
role, 23-5
search, 23-18
session defaults, 23-14
space usage, 23-13
standard properties, 23-7
statistics support, 23-20
store descriptors, 23-9
store features, 23-6
structure, properties, 23-22
tracing support, 23-21
types and constants, 23-5
user-defined properties, 23-8
using, 21-5
DBFS content store path
creating, 25-6
DBFS file system
accessing, 25-4
client prerequisites, 25-4
creating, 25-2
creating a DBFS file system, 25-1
dropping, 25-4
partitioned versus non-partitioned, 25-2
DBFS installation, 25-1
DBFS links, 22-14
DBFS mounting interface
Linux and Solaris, 25-7
DBFS Mounting Interface (Linux Only), 25-7
DBFS SecureFiles Store
setting up permissions, 21-2
DBFS SecureFiles Store Package,
DBMS DBFS_SFS, 21-7
DBFS SPI (DBMS_DBFS_CONTENT_SPI), 24-1
DBFS Store
mounting, 25-9
DBMS_DBFS_CONTENT_SPI, 24-1
DBMS _DBFS_HS, 22-1
DBMS_DBFS_HS package, 22-18
methods, 22-19
views, 22-20
DBMS LOB
deleting LOB with bind variable, 14-11
updating LOB with bind variable, 14-9
DBMS_LOB functions on a NULL LOB restriction,
13-2
DBMS_LOB package
available LOB procedures/functions,
10-2-10-5
for temporary LOBs, 10-9
functions/procedures to modify BLOB, CLOB,
and NCLOB, 10-8

Index-3

DBMS_LOB package (continued)
functions/procedures to read/examine internal
and external LOBs, 10-8
multithreaded server, 2-10
multithreaded server mode, 11-10
offset and amount parameter guidelines, 10-6
open and close, JDBC replacements for,
10-36
opening/closing internal and external LOBS,
10-9
provide LOB locator before invoking, 10-5
read-only functions/procedures for BFILES,
10-9
to work with LOBSs, using, 10-5
using with SecureFiles and DBFS, 3-28
WRITE()
guidelines, 12-28
DBMS _LOB.GET_STORAGE_LIMIT, 14-19
DBMS_LOB.GETCHUNKSIZE, 14-18
DBMS_LOB.GETLENGTH return value, 7-8
DBMS_LOB.LOADCLOBFROMFILE, 10-6
DBMS_LOB.WRITE()
passing hexadecimal string to, 12-29
DBMS_REDEFINITION package, 3-17
DBMS_SPACE package, 3-35
DECRYPT, 3-11, 3-19
DEDUPLICATE, 3-11, 3-19
deduplication
Advanced LOB, 3-3
deleting
LOB with PL/SQL bind variable, 14-11
deleting a LOB, 14-11
diagnostics
DBFS, 25-21
direct-path load, 16-2
directories
catalog views, 11-9
creating, 25-6
guidelines for usage, 11-9
listing, 25-6
ownership and privileges, 11-7
DIRECTORY object, 11-4
catalog views, 11-9
getting the alias and filename, 11-23
guidelines for usage, 11-9
name specification, 11-6
names on Windows platforms, 11-7
READ permission on object not individual
files, 11-7
rules for using, 16-6
symbolic links, and, 16-6
DISABLE STORAGE IN ROW, 13-7
displaying
LOB data for persistent LOBs, 12-12
domain indexing on LOB columns, 13-17

ORACLE

Index

E

embedded SQL statements, See Pro*C/C++
precompiler and Pro*xCOBOL
precompiler, 10-23
empty LOBs
creating using JDBC, 10-48
JDBC, 10-48
EMPTY_BLOB() and EMPTY_CLOB, LOB
storage properties for, 13-7
EMPTY_CLOB()/BLOB()
to initialize internal LOB, 2-5
ENABLE STORAGE IN ROW, 13-7
ENCRYPT, 3-11, 3-19
encryption
SecureFiles, 3-3
equal, one LOB locator to another
persistent LOBs, 12-25
erasing, part of LOB
persistent LOBs, 12-36
examples
deleting a LOB with a PL/SQL variable, 14-11
repercussions of mixing SQL DML with
DBMS LOB, 14-6
updated LOB locators, 14-8
updating a LOB with a PL/SQL variable, 14-9
examples, LOB access statistics, 15-7
existence
check for BFILE, 11-21
extensible indexes, 13-18
external LOBs (BFILESs), 1-5
See BFILEs, 1-5
external LOBs (BFILES), See BFILEs, 1-5

F

file system

links, 22-14

security model, 25-13
FILESYSTEM_LIKE_LOGGING

LOB storage parameter, 3-10
FOR UPDATE clause

LOB locator, 14-3
FREELIST GROUPS, 3-11
FREELISTS, 3-11
FREEPOOLS, 3-9, 3-11
FTP

access to DBFS, 25-17
function-based indexes, 13-18

on LOB columns, 13-18
FUSE

installing, 25-8

G

getting started with DBFS Content API, 23-4

Index-4

getting started with DBMS_DBFS_CONTENT,
23-4

H

hexadecimal string
passing to DBMS_LOB.WRITE(), 12-29
hierarchical store
dropping, 22-5
setting up, 22-3
using, 22-4
using compression, 22-5
using tape, 22-6
Hierarchical Store Package, DBMS_DBFS_HS,
22-1
HS store wallet, 22-2
HTTP
access to DBFS, 25-17
HTTP access to DBFS, 25-20

implicit assignment and parameter passing for
LOB columns, 9-5
implicit conversion of CLOB to character type, 7-3
improved LOB usability, 7-1
index-organized tables, restrictions for LOB
columns, 13-23
indexes
function-based, 13-18
rebuilding after LONG-to-LOB migration,
17-10
restrictions, 17-10
indexes on LOB columns
B-tree index not supported, 13-17
bitmap index not supported, 13-17
domain indexing, 13-17
restriction, 13-17
Information Lifecycle Management (ILM), 22-1
init.ora parameter db_securefile, 3-24
INITFS, 21-4
initialization parameters for SecureFiles LOBs,
3-24
initializing
during CREATE TABLE or INSERT, 6-6
using EMPTY_CLOB(), EMPTY_BLOBY(), 2-5
initializing a LOB column to a non-NULLvalue,
13-2
inline storage, 13-7
maximum size, 13-7
INSERT statements
binds of greater than 4000 bytes, 9-7
inserting
a row by initializing a LOB locator
internal persistent LOBs, 6-6
a row by initializing BFILE locator, 11-27

ORACLE

Index

installing

DBFS, 25-1

FUSE, 25-8

Oracle Database, 25-1
interfaces for LOBs, see programmatic

environments, 10-2

ioctl, 25-12
IS NULL return value for LOBs, 7-13
IS NULL usage with LOBs, 7-12
ISNULL usage with LOBs, 7-12

J

Java, See JDBC, 10-2
JDBC
available LOB methods/properties, 10-4, 10-5
BFILE class, 10-29
BFILE streaming APls, 10-45
BFILE-streaming, 10-35
BLOB and CLOB classes, 10-29
calling DBMS_LOB package, 10-30
checking if BLOB is temporary, 12-38
CLOB streaming APlIs, 10-44
empty LOBs, 10-48
encapsulating locators, 10-29
methods/properties for BLOB-streaming,
10-33
methods/properties for CLOBs
streaming, 10-34
modifying BLOB values, 10-33
modifying CLOB values, 10-33
modifyng internal LOBs with Java using
oracle.sql.BLOB/CLOB, 10-29
newStreamLob.java, 10-45
opening and closing BFILEs, 10-39
opening and closing CLOBSs, 10-38
opening and closing LOBs, 10-36
reading internal LOBs and external LOBs
(BFILES) with Java, 10-29
reading/examining BLOB values, 10-33
reading/examining CLOB values, 10-34
reading/examining external LOB (BFILE)
values, 10-34
referencing LOBs, 10-31
streaming APIs for LOBs, 10-43
syntax references, 10-32
trimming LOBs, 10-42
using OracleResultSet to reference LOBSs,
10-31
using OUT parameter from
OraclePreparedStatement to
reference LOBs, 10-31
writing to empty LOBs, 10-49
JDBC 3.0, 10-29
JDBC and Empty LOBs, 10-48

Index-5

K

KEEP_DUPLICATES, 3-11, 3-19

L

length
getting BFILE, 11-22
persistent LOB, 12-23
LENGTH return value for LOBSs, 7-8
libaio
asynchronous I/O through, 25-12
Linux
DBFS mounting interface, 25-7
listing
a directory, 25-6
loading
a LOB with BFILE data, 11-11
LOB with data from a BFILE, 12-6
loading BEFILES
using SQL*Loader, 16-3
loading data into LOBs
utilities, 16-1
LOB column cells
accessing, 2-2
LOB column states, 2-2
LOB columns
initializing to contain locator, 2-5
initializing to NULL or Empty, 13-2
LOB locator
copy semantics, 1-6
external LOBs (BFILES), 1-6
internal LOBs, 1-6
out-bind variables in OCI, 10-13
reference semantics, 1-6
LOB locators, 1-6
LOB locators, always stored in row, 13-7
LOB prefetching
JDBC, 10-30
LOB reads, 15-7
LOB restrictions, 2-9
LOB storage

format of varying width character data, 13-5
inline and out-of-line storage properties, 13-7

LOB streaming
BLOB-streaming with JDBC, 10-33

LOB writes, 15-7

LOB writes unaligned, 15-7

LOBs
accesing with SQL, 2-8
accessing, 2-7
accessing using the data interface, 2-8
accessing using the locator interface, 2-8
attributes and object cache, 14-16
changing default tablespace storage, 16-7
data types versus LONG, 1-4

ORACLE

Index

LOBs (continued)
external (BFILEs), 1-5
in the object cache, 14-16
interfaces, See programmatic environments,
10-2
internal
creating an object in object cache, 14-16
internal LOBs
CACHE / NOCACHE, 13-12
CHUNK, 13-14
ENABLE | DISABLE STORAGE IN ROW,
13-16
initializing, 11-18
introduced, 1-4
locators, 2-4
locking before updating, 12-4, 12-24,
12-27, 12-29, 12-35, 12-37
LOGGING / NOLOGGING, 13-12
PCTVERSION, 13-10
setting to empty, 13-2
tablespace and LOB index, 13-9
tablespace and storage characteristics,
13-8
transactions, 1-4
loading data into, using SQL*Loader, 16-2
locator, 2-3
locators, 2-4, 14-3
locking rows, 2-2
maximum sizes allowed, 14-17
object cache, 14-17
piecewise operations, 14-6
read-consistent locators, 14-3
reason for using, 1-2
setting to contain a locator, 2-5
setting to NULL, 13-2
tables
creating indexes, 13-21
moving partitions, 13-21
splitting partitions, 13-21
unstructured data, 1-3
updated LOB locators, 14-5
value, 2-3
varying-width character data, 13-5
LOBS
opening and closing, 2-2
LOBs, data interface for remote, 9-25
LOBs, data interface in Java, 9-25
locators, 2-4
BFILE guidelines, 11-11
BFILEs, 11-10
BFILEs, two rows can refer to the same file,
11-10
deleted, 14-11
external LOBs (BFILES), 2-4
LOB, 1-6
LOB, cannot span transactions, 14-15

Index-6

locators (continued)
multiple, 14-4
OCIl functions, 10-15, 10-21
Pro*COBOL precompiler statements, 10-28
providing in Pro*COBOL precompiler, 10-25
read consistent, updating, 14-3
read-consistent, 14-3, 14-9, 14-15
reading and writing to a LOB using, 14-13
selecting within a transaction, 14-14
selecting without current transaction, 14-13
setting column to contain, 2-5
transaction boundaries, 14-12
updated, 14-5, 14-9
updating, 14-15
locators, see if LOB locator is initialized
persistent LOBs, 12-26
locking, 25-12
locking a row containing a LOB, 2-2
LOGGING
LOB storage parameter, 3-10
migrating LONG-to-LOBs, 17-2
LOGGING / NOLOGGING, 13-12
LONG versus LOB data types, 1-4
LONG-to-LOB migration
ALTER TABLE, 174
benefits and concepts, 17-1
clustered tables, 17-10
LOGGING, 17-2
NULLs, 17-11
rebuilding indexes, 17-10
triggers, 17-10

M

Index

N

NCLOB
session collation settings, 7-6
NCLOBs
DBMS_LOB, offset and amount parameters in
characters, 10-6
modify using DBMS_LOB, 10-8
NewStreamLob.java, 10-45
NOCOMPRESS, 3-11, 3-19
NOCOPY, using to pass temporary LOB
parameters by reference, 15-4
NOLOGGING
LOB storage parameter, 3-10
non-partitioned file system
creating, 25-3
NORMALIZEPATH, 23-20
NULL LOB value, LOB storage for, 13-7
NULL LOB values, LOB storage properties for,
13-7
NULL LOB, restrictions calling OCI and
DBMS_LOB functions, 13-2

O

MAXSIZE, 3-9
migrating
LONG to LOBSs, see LONG-to-LOB, 17-1
LONG-to-LOB using ALTER TABLE, 17-4
LONG-to-LOBs, constraints maintained, 17-3
LONG-to-LOBs, indexing, 17-10
migrating to SecureFiles LOBs, 3-25, 3-26
migration of LONG to LOB in parallel, 17-5
mount points
listing, 23-12
mounted file systems
restrictions, 25-12
mounting
DBFS through fstab for Linux, 25-11
DBFS through fstab for Solaris, 25-12
the DBFS store, 25-9
multibyte character sets, using with the data
interface for LOBs, 9-13
multithreaded server
BFILEs, 2-10, 11-10

ORACLE

object cache, 14-16
creating an object in, 14-16
LOBs, 14-17
OCcClI
compared to other interfaces, 10-2, 10-3
LOB functionality, 10-16
OCCI Blob class
read, 10-18
write, 10-18
OCCI Clob class
read, 10-18
write, 10-18
OCl
available LOB functions, 10-2, 10-3
character set rules, fixed-width and varying-
width, 10-11
functions for BFILEs, 10-14, 10-21
functions for temporary LOBSs, 10-14, 10-21
functions to modify internal LOB values,
10-13, 10-20
functions to open/close internal and external
LOBs, 10-15, 10-22
functions to read or examine internal and
external LOB values, 10-14, 10-21
LOB locator functions, 10-15, 10-21
NCLOB parameters, 10-12, 10-19
OCILobFileGetLength
CLOB and NCLOB input and output
length, 10-11

Index-7

OCI (continued)
OCILobRead?2()
varying-width CLOB and NCLOB input
and amount amounts, 10-11
OCILobWrite2()
varying-width CLOB and NCLOB input
and amount amounts, 10-11,
10-18
offset and amount parameter rules
fixed-width character sets, 10-18
setting OCILobRead2(), OCILobWrite2() to
OCl_ucCs2ID, 10-10
using to work LOBs, 10-10
OCI functions on a NULL LOB restriction, 13-2
OCILobArrayRead(), 12-15
OCILobArrayWrite(), 12-30
OCILobGetChunkSize(), 14-18
OClLobLocator in assignment "=" operations,
10-12
OClLobLocator, out-bind variables, 10-13
ODP.NET, 10-4, 10-5
offset parameter, in DBMS_LOB operations, 10-6
OLEDB, 10-49
Online Filesystem Reorganization, 25-23
online redefinition
DBFS, 25-23
open
checking for open BFILEs with
FILEISOPENY(), 11-16
checking if BFILE is open with ISOPEN, 11-15
open, determining whether a LOB is open, 12-11
OpenCloselLob.java example, 10-40
opening
BFILEs using FILEOPEN, 11-14
BFILEs with OPEN, 11-13
opening and closing LOBs, 2-2
using JDBC, 10-36
ORA-17098
empty LOBs and JDBC, 10-49
ORA-22992, 2-9
Oracle Call Interface, See OCI, 10-10
Oracle Database Installation, 25-1
oracle.sql.BFILE
BFILE-streaming, 10-35
JDBC methods to read/examine BFILES,
10-34
oracle.sql.BLOB
for modifying BLOB values, 10-33
reading/examining BLOB values, 10-33
See JDBC, 10-29
oracle.sql.BLOBs
BLOB-streaming, 10-33
oracle.sql.CLOB
CLOBs
streaming, 10-34

ORACLE

Index

oracle.sql.CLOB (continued)

JDBC methods to read/examine CLOB

values, 10-34

modifying CLOB values, 10-33
oracle.sql.CLOBs

See JDBC, 10-29
OraclePreparedStatement, See JDBC, 10-31
OracleResultSet, See JDBC, 10-31
OraOLEDB, 10-49
out-of-line storage, 13-7

P

parallel DML support, 9-8
parallel LONG-to-LOB migration, 17-5
Parallel Online Redefinition, 3-27
partitioned DBFS file system
versus non-partitioned, 25-2
partitioned file system
creating, 25-3
partitioned index-organized tables
restrictions for LOB columns, 13-23
pattern
check if it exists in BFILE using instr, 11-21
pattern, if it exists IN LOB using (instr)
persistent LOBs, 12-22
PCTVERSION, 3-11, 13-10
performance
guidelines
reading/writing large data chunks,
temporary LOBs, 15-4
performance guidelines, 15-3
reading/writing large data chunks, 15-3
persistent LOBs, 12-26, 12-28
pipes, 25-12
PL/SQL, 10-2
and LOBs, semantics changes, 8-1
changing locator-data linkage, 8-3
CLOB variables in, 8-3
CLOB variables in PL/SQL, 8-3
CLOBs passed in like VARCHARZs, 8-3
defining a CLOB Variable on a VARCHAR,
8-1
freeing temporary LOBs automatically and
manually, 8-3
PL/SQL functions, remote, 5-7, 8-5
PL/SQL packages for SecureFiles LOB, 3-27
PM schema, 2-4
polling, 11-18, 12-13, 12-26
prefetching data, 10-10
prerequisites
DBFS file system client, 25-4
print_media creation, 6-1
print_media table definition, 2-4
privileges
to create DBFS file system, 25-2

Index-8

Pro*C/C++ precompiler
available LOB functions, 10-2, 10-3
locators, 10-25
modifying internal LOB values, 10-23
opening and closing internal LOBs and
external LOBs (BFILEs), 10-25
providing an allocated input locator pointer,
10-23
reading or examining internal and external
LOB values, 10-24
statements for BFILEs, 10-24
statements for temporary LOBs, 10-24
Pro*COBOL precompiler
available LOB functions, 10-2, 10-3
locators, 10-28
modifying internal LOB values, 10-27
providing an allocated input locator, 10-25
reading or examining internal and external
LOBs, 10-27
statements for BFILEs, 10-27
temporary LOBs, 10-27
programmatic environments
available functions, 10-2
compared, 10-2
programmatic environments for LOBs, 10-1

Q

Query APIs, 23-10

R

read consistency
LOBs, 14-3
read-consistent locators, 14-2, 14-3, 14-9, 14-15
reading
large data chunks, 15-3
large data chunks, temporary LOBs, 15-4
portion of BFILE data using substr, 11-19
reading, data from a LOB
persistent LOBs, 12-13
reading, portion of LOB using substr
persistent LOBs, 12-21
reference semantics, 6-5
BFILEs enables multiple BFILE columns for
each record, 11-6
registered store
mounting, 23-11
unregistering, 23-11
remote built-in functions, 5-5
remote LOBs, 2-9
remote PL/SQL functions, 5-7, 8-5
removing
directories, 25-7
files, 25-7

ORACLE

Index

restrictions
binds of more than 4000 bytes, 9-8
cannot call OCI or DBMS_LOB functions on a
NULL LOB, 13-2
clustered tables, 17-10
index-organized tables and LOBs, 13-23
indexes, 17-10
LOBs, 2-9
triggers, 17-10
restrictions on mounted file systems, 25-12
restrictions on remote LOBs, 2-9
RETENTION, 3-9, 3-19
RETENTION ignored in an MSSM tablespace,
13-11
retrieving LOB access statistics, 15-7
RETURNING clause, using with INSERT to
initialize a LOB, 13-3

S

Samba, 25-12
sample schema for examples, 6-1
SECUREFILE

ALTER TABLE parameters, 3-17

LOB storage parameter, 3-8
SecureFiles Encryption, 3-3
SecureFiles LOB

CREATE TABLE parameter, 3-4

PL/SQL, 3-27
SecureFiles LOB Storage, 3-2
SecureFiles LOBs

initialization parameters, 3-24
SecureFiles LOBs and BasicFiles LOBs, 1-8
SecureFiles Store

setting up, 21-1
security

BFILEs, 11-7

BFILEs using SQL DDL, 11-8

BFILEs using SQL DML, 11-8
SELECT statement

read consistency, 14-3
semantics

copy-based for internal LOBS, 6-5

copying and referencing, 1-6

for internal and external LOBs, 1-6

reference based for BFILES, 11-6
semistructured data, 1-2
session collation settings

CLOB and NCLOB, 7-6
SESSION_MAX_OPEN_FILES parameter, 16-7
setting

internal LOBs to empty, 13-2

LOBs to NULL, 13-2

overrides for NLS_LANG variable, 10-10
simple structured data, complex structured data,

1-2

Index-9

Solaris
mounting interface, 25-7
Solaris-Specific privileges, 25-9
Solaris 11 SRU7
installing FUSE, 25-8
spec.sql script, 24-7
SQL
character functions, improved, 7-1
features where LOBs cannot be used, 7-10
SQL DDL
BFILE security, 11-8
SQL DML
BFILE security, 11-8
SQL functions on LOBs
return type, 7-8
return value, 7-8
temporary LOBs returned, 7-8
SQL semantics and LOBs, 7-10
SQL semantics supported for use with LOBs, 7-2
SQL*Loader, 16-3
conventional path load, 16-2
direct-path load, 16-2
LOBs
loading data into, 16-2
statistics, access, 15-6
streaming
write, 12-28
streaming APIs
NewStreamLob.java, 10-45
using JDBC and BFILEs, 10-45
using JDBC and CLOBs, 10-44
using JDBC and LOBs, 10-43
symbolic links, rules with DIRECTORY objects
and BFILEs, 16-6
system owned object, See DIRECTORY object,
11-7

T

TaBleFileSystem Store Provider ("tbfs"), 24-3
tablespace storage
changing, 16-7
TBFS.SQL script, 24-6
TBL.SQL script, 24-6
TDE, 3-3
temporary BLOB
checking if temporary using JDBC, 12-38
temporary LOBs, 16-6
checking if LOB is temporary, 12-37
DBMS_LOB available functions/procedures,
10-9
OCI functions, 10-14, 10-21
Pro*C/C++ precompiler embedded SQL
statements, 10-24
Pro*COBOL precompiler statements, 10-27
returned from SQL functions, 7-8

ORACLE

Index

TO_BLOB(),TO_CHAR(), TO_NCHAR(), 8-2
TO_CLOB()
converting VARCHAR2,NVARCHAR2,NCLOB
to CLOB, 8-2
TO_NCLOBY(), 8-2
transaction boundaries
LOB locators, 14-12
transaction IDs, 14-13
transactions
external LOBs do not participate in, 1-6
IDs of locators, 14-13
internal LOBs participate in database
transactions, 1-4
LOB locators cannot span, 14-15
locators with non-serializable, 14-13
locators with serializable, 14-13
transferring LOB data, 16-5
Transparent Data Encryption (TDE), 3-3
transparent read, 22-18
triggers
LONG-to-LOB migration, 17-10
trimming LOB data
persistent LOBs, 12-35
trimming LOBs using JDBC, 10-42

U

UCS2 Unicode character set
varying width character data, 13-5
UNICODE
VARCHAR?2 and CLOBs support, 7-6
unmounting
a file system, 25-11
unstructured data, 1-2, 1-3
UPDATE statements
binds of greater than 4000 bytes, 9-7
updated locators, 14-5, 14-9
updating
avoid the LOB with different locators, 14-8
LOB values using one locator, 14-8
LOB values, read consistent locators, 14-3
LOB with PL/SQL bind variable, 14-9
LOBs using SQL and DBMS_LOB, 14-6
locators, 14-15
locking before, 12-23
locking prior to, 12-4, 12-35, 12-36
using SQL character functions, 7-1

V

VSNLS_VALID_VALUES, 10-7
VARCHAR2
accessing CLOB data when treated as, 8-1
also RAW, applied to CLOBs and BLOBs,
7-11
defining CLOB variable on, 8-1

Index-10

VARCHAR?2, using SQL functions and operators
with LOBs, 7-2
VARRAY
LOB restriction, 2-9
VARRAYs
stored as LOBs, 1-8
varying-width character data, 13-5
views on DIRECTORY object, 11-9

wW

wallet
HS store wallet, 22-2

ORACLE

Index

Wallet,Oracle, 25-20
WebDAV
access to DBFS, 25-17
WHERE Clause Usage with LOBs, 7-13
writing
data to a LOB, 12-28
large data chunks, temporary LOBs, 15-4
singly or piecewise, 12-26

Z

Zero-copy Input/Output for SecureFiles LOBS,
10-30

Index-11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in Oracle Database
	New Features
	Deprecated Features
	Desupported Features

	Part I Getting Started
	1 Introduction to Large Objects and SecureFiles
	1.1 What Are Large Objects?
	1.2 Why Use Large Objects?
	1.2.1 Data Types that Use Large Objects
	1.2.2 LOBs Used for Semistructured Data
	1.2.3 LOBs Used for Unstructured Data

	1.3 Why Not Use LONGs?
	1.4 Different Kinds of LOBs
	1.4.1 Internal LOBs
	1.4.2 External LOBs and the BFILE Data Type

	1.5 LOB Locators
	1.6 Database Semantics for Internal and External LOBs
	1.7 Large Object Data Types
	1.8 About Object Data Types and LOBs
	1.9 Storage and Creation of Other Data Types with LOBs
	1.9.1 VARRAYs Stored as LOBs

	1.10 BasicFiles and SecureFiles LOBs
	1.11 Database File System (DBFS)

	2 Working with LOBs
	2.1 LOB Column States
	2.2 Locking a Row Containing a LOB
	2.3 LOB Open and Close Operations
	2.4 LOB Locator and LOB Value
	2.4.1 Using the Data Interface for LOBs
	2.4.2 Use the LOB Locator to Access and Modify LOB Values

	2.5 LOB Locators and BFILE Locators
	2.5.1 Table for LOB Examples: The PM Schema print_media Table
	2.5.2 LOB Column Initialization
	2.5.2.1 Initializing a Persistent LOB Column
	2.5.2.2 Initializing BFILEs

	2.6 LOB Access
	2.6.1 Accessing a LOB Using SQL
	2.6.2 Accessing a LOB Using the Data Interface
	2.6.3 Accessing a LOB Using the Locator Interface

	2.7 LOB Rules and Restrictions
	2.7.1 Rules for LOB Columns
	2.7.2 Restrictions for LOB Operations

	3 Using Oracle LOB Storage
	3.1 LOB Storage
	3.1.1 BasicFiles LOB Storage
	3.1.2 SecureFiles LOB Storage
	3.1.2.1 About Advanced LOB Compression
	3.1.2.2 About Advanced LOB Deduplication
	3.1.2.3 About SecureFiles Encryption

	3.2 CREATE TABLE with LOB Storage
	3.2.1 CREATE TABLE LOB Storage Parameters
	3.2.2 CREATE TABLE and SecureFiles LOB Features
	3.2.2.1 CREATE TABLE with Advanced LOB Compression
	3.2.2.1.1 Usage Notes for Advanced LOB Compression
	3.2.2.1.2 Examples of CREATE TABLE and Advanced LOB Compression

	3.2.2.2 CREATE TABLE with Advanced LOB Deduplication
	3.2.2.2.1 Usage Notes for Advanced LOB Deduplication
	3.2.2.2.2 Examples of CREATE TABLE and Advanced LOB Deduplication

	3.2.2.3 CREATE TABLE with SecureFiles Encryption
	3.2.2.3.1 Usage Notes for SecureFiles Encryption
	3.2.2.3.2 Examples of CREATE TABLE and SecureFiles Encryption

	3.3 ALTER TABLE with LOB Storage
	3.3.1 About ALTER TABLE and LOB Storage
	3.3.2 BNF for the ALTER TABLE Statement
	3.3.3 ALTER TABLE LOB Storage Parameters
	3.3.4 ALTER TABLE SecureFiles LOB Features
	3.3.4.1 ALTER TABLE with Advanced LOB Compression
	3.3.4.1.1 Usage Notes for Advanced LOB Compression
	3.3.4.1.2 Examples of ALTER TABLE and Advanced LOB Compression

	3.3.4.2 ALTER TABLE with Advanced LOB Deduplication
	3.3.4.2.1 Usage Notes for Advanced LOB Deduplication
	3.3.4.2.2 Examples of ALTER TABLE and Advanced LOB Deduplication

	3.3.4.3 ALTER TABLE with SecureFiles Encryption
	3.3.4.3.1 Usage Notes for SecureFiles Encryption
	3.3.4.3.2 Examples of ALTER TABLE and SecureFiles Encryption

	3.4 Initialization, Compatibility, and Upgrading
	3.4.1 Compatibility and Upgrading
	3.4.2 Initialization Parameter for SecureFiles LOBs

	3.5 Migrating Columns from BasicFiles LOBs to SecureFiles LOBs
	3.5.1 Preventing Generation of REDO Data When Migrating to SecureFiles LOBs
	3.5.2 Online Redefinition for BasicFiles LOBs
	3.5.3 Online Redefinition Example for Migrating Tables with BasicFiles LOBs
	3.5.4 Redefining a SecureFiles LOB in Parallel

	3.6 PL/SQL Packages for LOBs and DBFS
	3.6.1 The DBMS_LOB Package Used with SecureFiles LOBs and DBFS
	3.6.2 DBMS_LOB Constants Used with SecureFiles LOBs and DBFS
	3.6.3 DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS
	3.6.4 DBMS_SPACE Package
	3.6.4.1 DBMS_SPACE.SPACE_USAGE()

	4 Operations Specific to Persistent and Temporary LOBs
	4.1 Persistent LOB Operations
	4.1.1 Inserting a LOB into a Table
	4.1.2 Selecting a LOB from a Table

	4.2 Temporary LOB Operations
	4.2.1 Creating and Freeing a Temporary LOB

	4.3 Creating Persistent and Temporary LOBs in PL/SQL
	4.4 Freeing Temporary LOBs in OCI

	5 Distributed LOBs
	5.1 Working with Remote LOBs
	5.1.1 Working with Remote LOB Columns
	5.1.1.1 Create table as select or insert as select
	5.1.1.2 Functions on remote LOBs returning scalars
	5.1.1.3 Data Interface for remote LOBs

	5.1.2 Working with Remote Locator
	5.1.2.1 Using Local and Remote locators as bind with queries and DML on remote tables
	5.1.2.2 Restrictions when using remote LOB locators

	5.2 SQL Semantics with LOBs in Remote Tables
	5.2.1 Built-in Functions for Remote LOBs and BFILEs
	5.2.2 Passing Remote Locator to Built in SQL Functions

	5.3 Working with Remote LOBs in PL/SQL
	5.3.1 PL/SQL Functions for Remote LOBs and BFILEs
	5.3.1.1 Restrictions on Remote User-Defined Functions
	5.3.1.2 Remote Functions in PL/SQL, OCI, and JDBC

	5.3.2 Using Remote Locator in PL/SQL
	5.3.3 Using Remote Locators with DBMS_LOB
	5.3.3.1 Restrictions on Using Remote Locators with DBMS_LOB

	5.4 Using Remote Locators with OCILOB API

	6 DDL and DML Statements with LOBs
	6.1 Creating a Table Containing One or More LOB Columns
	6.2 Creating a Nested Table Containing a LOB
	6.3 Inserting a Row by Selecting a LOB From Another Table
	6.4 Inserting a LOB Value Into a Table
	6.5 Inserting a Row by Initializing a LOB Locator Bind Variable
	6.5.1 About Inserting Rows with LOB Locator Bind Variables
	6.5.2 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
	6.5.3 C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable
	6.5.4 COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
	6.5.5 C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
	6.5.6 Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

	6.6 Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	6.7 Updating a Row by Selecting a LOB From Another Table

	Part II Value Semantics LOBs
	7 SQL Semantics and LOBs
	7.1 About Using LOBs in SQL
	7.2 SQL Functions and Operators Supported for Use with LOBs
	7.2.1 About SQL Functions and Operators for LOBs
	7.2.2 Implicit Conversion of CLOB to CHAR Types
	7.2.3 CLOBs and NCLOBs Do Not Follow Session Collation Settings
	7.2.4 UNICODE Support
	7.2.5 Codepoint Semantics
	7.2.6 Return Values for SQL Semantics on LOBs
	7.2.7 LENGTH Return Value for LOBs

	7.3 Implicit Conversion of LOB Data Types in SQL
	7.3.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL

	7.4 Unsupported Use of LOBs in SQL
	7.5 VARCHAR2 and RAW Semantics for LOBs
	7.5.1 About VARCHAR2 and RAW Semantics for LOBs
	7.5.2 LOBs Returned from SQL Functions
	7.5.3 IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs
	7.5.4 WHERE Clause Usage with LOBs

	7.6 Built-in Functions for Remote LOBs and BFILEs

	8 PL/SQL Semantics for LOBs
	8.1 PL/SQL Statements and Variables
	8.2 Implicit Conversions Between CLOB and VARCHAR2
	8.3 Explicit Conversion Functions
	8.3.1 VARCHAR2 and CLOB in PL/SQL Built-In Functions

	8.4 PL/SQL Functions for Remote LOBs and BFILEs

	9 Data Interface for Persistent LOBs
	9.1 Overview of the Data Interface for Persistent LOBs
	9.2 Benefits of Using the Data Interface for Persistent LOBs
	9.3 Using the Data Interface for Persistent LOBs in PL/SQL
	9.3.1 About Using the Data Interface for Persistent LOBs in PL/SQL
	9.3.2 Guidelines for Accessing LOB Columns Using the Data Interface in SQL and PL/SQL
	9.3.3 Implicit Assignment and Parameter Passing
	9.3.4 Passing CLOBs to SQL and PL/SQL Built-In Functions
	9.3.5 Explicit Conversion Functions
	9.3.6 Calling PL/SQL and C Procedures from SQL
	9.3.7 Calling PL/SQL and C Procedures from PL/SQL
	9.3.8 Binds of All Sizes in INSERT and UPDATE Operations
	9.3.9 4000 Byte Limit on Results of a SQL Operator
	9.3.10 Example of 4000 Byte Result Limit of a SQL Operator
	9.3.11 Restrictions on Binds of More Than 4000 Bytes
	9.3.12 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on LOBs
	9.3.13 Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and UPDATE
	9.3.14 Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT Operations
	9.3.15 Using the Data Interface for LOBs in Assignments and Parameter Passing
	9.3.16 Using the Data Interface for LOBs with PL/SQL Built-In Functions

	9.4 The Data Interface Used for Persistent LOBs in OCI
	9.4.1 LOB Data Types Bound in OCI
	9.4.2 LOB Data Types Defined in OCI
	9.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs
	9.4.4 OCI Functions Used to Perform INSERT or UPDATE on LOB Columns
	9.4.4.1 Performing Simple INSERTs or UPDATEs in One Piece
	9.4.4.2 Using Piecewise INSERTs and UPDATEs with Polling
	9.4.4.3 Performing Piecewise INSERTs and UPDATEs with Callback
	9.4.4.4 Array INSERT and UPDATE Operations

	9.4.5 The Data Interface Used to Fetch LOB Data in OCI
	9.4.5.1 Simple Fetch in One Piece
	9.4.5.2 Performing a Piecewise Fetch with Polling
	9.4.5.3 Performing a Piecewise with Callback
	9.4.5.4 Array Fetch

	9.4.6 PL/SQL and C Binds from OCI
	9.4.7 Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE
	9.4.8 Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs
	9.4.9 Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes
	9.4.10 Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling
	9.4.11 Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback
	9.4.12 Binding LONG Data to LOB Columns Using an Array INSERT
	9.4.13 Selecting a LOB Column into a LONG Buffer Using a Simple Fetch
	9.4.14 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling
	9.4.15 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback
	9.4.16 Selecting a LOB Column into a LONG Buffer Using an Array Fetch

	9.5 The Data Interface Used with Persistent LOBs in Java
	9.6 The Data Interface Used with Remote LOBs
	9.6.1 About the Data Interface with Remote LOBs
	9.6.2 Non-Supported Syntax
	9.6.3 Remote Data Interface Example in PL/SQL
	9.6.4 Remote Data Interface Example in OCI
	9.6.5 Remote Data Interface Examples in JDBC

	Part III Reference Semantics LOBs
	10 Overview of Supplied LOB APIs
	10.1 Programmatic Environments That Support LOBs
	10.2 Comparing the LOB Interfaces
	10.3 Using PL/SQL (DBMS_LOB Package) to Work With LOBs
	10.3.1 Provide a LOB Locator Before Running the DBMS_LOB Routine
	10.3.2 Guidelines for Offset and Amount Parameters in DBMS_LOB Operations
	10.3.3 Determining Character Set ID
	10.3.4 PL/SQL Functions and Procedures for LOBs
	10.3.5 PL/SQL Functions and Procedures to Modify LOB Values
	10.3.6 PL/SQL Functions and Procedures for Introspection of LOBs
	10.3.7 PL/SQL Operations on Temporary LOBs
	10.3.8 PL/SQL Read-Only Functions and Procedures for BFILEs
	10.3.9 PL/SQL Functions and Procedures to Open and Close Internal and External LOBs

	10.4 Using OCI to Work With LOBs
	10.4.1 Prefetching of LOB Data, Length, and Chunk Size
	10.4.2 Setting the CSID Parameter for OCI LOB APIs
	10.4.3 Fixed-Width and Varying-Width Character Set Rules for OCI
	10.4.3.1 Other Operations
	10.4.3.2 NCLOBs in OCI

	10.4.4 OCILobLoadFromFile2() Amount Parameter
	10.4.5 OCILobRead2() Amount Parameter
	10.4.6 OCILobLocator Pointer Assignment
	10.4.7 LOB Locators in Defines and Out-Bind Variables in OCI
	10.4.8 OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	10.4.9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
	10.4.10 OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE) Values
	10.4.11 OCI Functions for Temporary LOBs
	10.4.12 OCI Read-Only Functions for BFILEs
	10.4.13 OCI LOB Locator Functions
	10.4.14 OCI Functions to Open and Close Internal and External LOBs
	10.4.15 OCI LOB Examples
	10.4.16 Further Information About OCI

	10.5 Using C++ (OCCI) to Work With LOBs
	10.5.1 OCCI Classes for LOBs
	10.5.1.1 Clob Class
	10.5.1.2 Blob Class
	10.5.1.3 Bfile Class

	10.5.2 Fixed-Width Character Set Rules
	10.5.3 Varying-Width Character Set Rules
	10.5.4 Offset and Amount Parameters for Other OCCI Operations
	10.5.4.1 NCLOBs in OCCI

	10.5.5 Amount Parameter for OCCI LOB copy() Methods
	10.5.6 Amount Parameter for OCCI read() Operations
	10.5.7 Further Information About OCCI
	10.5.8 OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
	10.5.9 OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
	10.5.10 OCCI Methods to Read or Examine Persistent LOB and BFILE Values
	10.5.11 OCCI Read-Only Methods for BFILEs
	10.5.12 Other OCCI LOB Methods
	10.5.13 OCCI Methods to Open and Close Internal and External LOBs

	10.6 Using C/C++ (Pro*C) to Work With LOBs
	10.6.1 Providing an Allocated Input Locator Pointer That Represents LOB
	10.6.2 Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	10.6.3 Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values
	10.6.4 Pro*C/C++ Embedded SQL Statements for Introspection of LOBs
	10.6.5 Pro*C/C++ Embedded SQL Statements for Temporary LOBs
	10.6.6 Pro*C/C++ Embedded SQL Statements for BFILEs
	10.6.7 Pro*C/C++ Embedded SQL Statements for LOB Locators
	10.6.8 Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

	10.7 Using COBOL (Pro*COBOL) to Work With LOBs
	10.7.1 Providing an Allocated Input Locator Pointer That Represents LOB
	10.7.2 Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	10.7.3 Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values
	10.7.4 Pro*COBOL Embedded SQL Statements for Introspection of LOBs
	10.7.5 Pro*COBOL Embedded SQL Statements for Temporary LOBs
	10.7.6 Pro*COBOL Embedded SQL Statements for BFILEs
	10.7.7 Pro*COBOL Embedded SQL Statements for LOB Locators
	10.7.8 Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and BFILEs

	10.8 Using Java (JDBC) to Work With LOBs
	10.8.1 Modifying Internal Persistent LOBs Using Java
	10.8.2 Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java
	10.8.2.1 BLOB, CLOB, and BFILE Classes

	10.8.3 Calling DBMS_LOB Package from Java (JDBC)
	10.8.4 Prefetching LOBs to Improve Performance
	10.8.5 Zero-Copy Input/Output for SecureFiles to Improve Performance
	10.8.5.1 Zero-Copy Input/Output on the Server
	10.8.5.2 Zero-Copy Input/Output in the JDBC Thin Driver
	10.8.5.3 JDBC-OCI Driver Considerations

	10.8.6 Referencing LOBs Using Java (JDBC)
	10.8.6.1 Using OracleResultSet: BLOB and CLOB Objects Retrieved

	10.8.7 JDBC Syntax References and Further Information
	10.8.8 JDBC Methods for Operating on LOBs
	10.8.9 JDBC oracle.sql.BLOB Methods to Modify BLOB Values
	10.8.10 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values
	10.8.11 JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data
	10.8.12 JDBC oracle.sql.CLOB Methods to Modify CLOB Values
	10.8.13 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value
	10.8.14 JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data
	10.8.15 JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
	10.8.16 JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data
	10.8.17 JDBC Temporary LOB APIs
	10.8.18 JDBC: Opening and Closing LOBs
	10.8.19 JDBC: Opening and Closing BLOBs
	10.8.19.1 Opening the BLOB Using JDBC
	10.8.19.2 Checking If the BLOB Is Open Using JDBC
	10.8.19.3 Closing the BLOB Using JDBC

	10.8.20 JDBC: Opening and Closing CLOBs
	10.8.20.1 Opening the CLOB Using JDBC
	10.8.20.2 Checking If the CLOB Is Open Using JDBC
	10.8.20.3 Closing the CLOB Using JDBC

	10.8.21 JDBC: Opening and Closing BFILEs
	10.8.21.1 Opening BFILEs
	10.8.21.2 Checking If the BFILE Is Open
	10.8.21.3 Closing the BFILE
	10.8.21.4 Usage Example (OpenCloseLob.java)

	10.8.22 Truncating LOBs Using JDBC
	10.8.22.1 JDBC: Truncating BLOBs
	10.8.22.2 JDBC: Truncating CLOBs

	10.8.23 JDBC BLOB Streaming APIs
	10.8.24 JDBC CLOB Streaming APIs
	10.8.25 BFILE Streaming APIs
	10.8.25.1 JDBC BFILE Streaming Example (NewStreamLob.java)

	10.8.26 JDBC and Empty LOBs

	10.9 Oracle Provider for OLE DB (OraOLEDB)
	10.10 Overview of Oracle Data Provider for .NET (ODP.NET)

	11 LOB APIs for BFILE Operations
	11.1 Supported Environments for BFILE APIs
	11.2 About Accessing BFILEs
	11.3 Directory Objects
	11.3.1 Initializing a BFILE Locator
	11.3.2 How to Associate Operating System Files with a BFILE

	11.4 BFILENAME and Initialization
	11.5 Characteristics of the BFILE Data Type
	11.5.1 DIRECTORY Name Specification
	11.5.1.1 On Windows Platforms

	11.6 BFILE Security
	11.6.1 Ownership and Privileges
	11.6.2 Read Permission on a DIRECTORY Object
	11.6.3 SQL DDL for BFILE Security
	11.6.4 SQL DML for BFILE Security
	11.6.5 Catalog Views on Directories
	11.6.6 Guidelines for DIRECTORY Usage
	11.6.7 BFILEs in Shared Server (Multithreaded Server) Mode
	11.6.8 External LOB (BFILE) Locators
	11.6.8.1 When Two Rows in a BFILE Table Refer to the Same File
	11.6.8.2 BFILE Locator Variable
	11.6.8.3 Guidelines for BFILEs

	11.7 About Loading a LOB with BFILE Data
	11.8 About Opening a BFILE with OPEN
	11.9 About Opening a BFILE with FILEOPEN
	11.10 About Determining Whether a BFILE Is Open Using ISOPEN
	11.11 About Determining Whether a BFILE Is Open with FILEISOPEN
	11.12 About Displaying BFILE Data
	11.13 About Reading Data from a BFILE
	11.14 About Reading a Portion of BFILE Data Using SUBSTR
	11.15 Comparing All or Parts of Two BFILES
	11.16 Checking If a Pattern Exists in a BFILE Using INSTR
	11.17 Determining Whether a BFILE Exists
	11.18 Getting the Length of a BFILE
	11.19 About Assigning a BFILE Locator
	11.20 Getting Directory Object Name and File Name of a BFILE
	11.21 About Updating a BFILE by Initializing a BFILE Locator
	11.22 Closing a BFILE with FILECLOSE
	11.23 Closing a BFILE with CLOSE
	11.24 Closing All Open BFILEs with FILECLOSEALL
	11.25 About Inserting a Row Containing a BFILE

	12 Using LOB APIs
	12.1 Supported Environments
	12.2 About Appending One LOB to Another
	12.3 About Determining Character Set Form
	12.4 About Determining Character Set ID
	12.5 Loading a LOB with Data from a BFILE
	12.6 About Loading a BLOB with Data from a BFILE
	12.7 Loading a CLOB or NCLOB with Data from a BFILE
	12.7.1 About PL/SQL: Loading Character Data from a BFILE into a LOB
	12.7.2 About PL/SQL: Loading Segments of Character Data into Different LOBs

	12.8 Determining Whether a LOB is Open
	12.8.1 Java (JDBC): Checking If a LOB Is Open
	12.8.1.1 Checking If a CLOB Is Open
	12.8.1.2 Checking If a BLOB Is Open

	12.9 About Displaying LOB Data
	12.10 About Reading Data from a LOB
	12.11 About LOB Array Read
	12.12 Reading a Portion of a LOB (SUBSTR)
	12.13 Comparing All or Part of Two LOBs
	12.14 Patterns: Checking for Patterns in a LOB Using INSTR
	12.15 Length: Determining the Length of a LOB
	12.16 Copying All or Part of One LOB to Another LOB
	12.17 Copying a LOB Locator
	12.18 Equality: Checking If One LOB Locator Is Equal to Another
	12.19 About Determining Whether LOB Locator Is Initialized
	12.20 About Appending to a LOB
	12.21 About Writing Data to a LOB
	12.22 LOB Array Write
	12.23 About Trimming LOB Data
	12.24 About Erasing Part of a LOB
	12.25 Determining Whether a LOB instance Is Temporary
	12.25.1 Java (JDBC): Determining Whether a BLOB Is Temporary

	12.26 Converting a BLOB to a CLOB
	12.27 Converting a CLOB to a BLOB
	12.28 Ensuring Read Consistency

	Part IV Application Design with LOBs
	13 LOB Storage with Applications
	13.1 Tables That Contain LOBs
	13.1.1 Persistent LOBs Initialized to NULL or Empty
	13.1.1.1 Setting a Persistent LOB to NULL
	13.1.1.2 Setting a Persistent LOB to Empty

	13.1.2 Initializing LOBs
	13.1.3 Initializing Persistent LOB Columns and Attributes to a Value
	13.1.4 Initializing BFILEs to NULL or a File Name
	13.1.5 Restriction on First Extent of a LOB Segment

	13.2 Data Types for LOB Columns
	13.2.1 LOBs Compared to LONG and LONG RAW Types
	13.2.2 Varying-Width Character Data Storage in LOBs
	13.2.3 Converting Character Sets Implicitly with LOBs

	13.3 LOB Storage Parameters
	13.3.1 Inline and Out-of-Line LOB Storage
	13.3.2 Defining Tablespace and Storage Characteristics for Persistent LOBs
	13.3.2.1 Assigning a LOB Data Segment Name

	13.3.3 LOB Storage Characteristics for LOB Column or Attribute
	13.3.4 TABLESPACE and LOB Index
	13.3.4.1 Tablespace for LOB Index in Non-Partitioned Table

	13.3.5 PCTVERSION
	13.3.6 RETENTION Parameter for BasicFiles LOBs
	13.3.7 RETENTION Parameter for SecureFiles LOBs
	13.3.8 CACHE / NOCACHE / CACHE READS
	13.3.8.1 CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache

	13.3.9 LOGGING / NOLOGGING Parameter for BasicFiles LOBs
	13.3.9.1 LOBs Always Generate Undo for LOB Index Pages
	13.3.9.2 When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages
	13.3.9.2.1 NOLOGGING is Useful for Bulk Loads or Inserts.

	13.3.10 LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs
	13.3.10.1 CACHE Implies LOGGING
	13.3.10.2 SecureFiles and an Efficient Method of Generating REDO and UNDO
	13.3.10.3 FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts

	13.3.11 CHUNK
	13.3.11.1 The Value of CHUNK
	13.3.11.1.1 Space Considerations
	13.3.11.1.2 Performance Considerations

	13.3.11.2 Set INITIAL and NEXT to Larger than CHUNK

	13.3.12 ENABLE or DISABLE STORAGE IN ROW Clause
	13.3.13 Guidelines for ENABLE or DISABLE STORAGE IN ROW

	13.4 LOB Columns Indexing
	13.4.1 Domain Indexing on LOB Columns
	13.4.2 Text Indexes on LOB Columns
	13.4.3 Function-Based Indexes on LOBs
	13.4.4 Extensible Indexing on LOB Columns
	13.4.4.1 Extensible Optimizer

	13.4.5 Oracle Text Indexing Support for XML

	13.5 LOB Manipulation in Partitioned Tables
	13.5.1 About Manipulating LOBs in Partitioned Tables
	13.5.2 Partitioning a Table Containing LOB Columns
	13.5.3 Creating an Index on a Table Containing Partitioned LOB Columns
	13.5.4 Moving Partitions Containing LOBs
	13.5.5 Splitting Partitions Containing LOBs
	13.5.6 Merging Partitions Containing LOBs

	13.6 LOBs in Index Organized Tables
	13.7 Restrictions on Index Organized Tables with LOB Columns
	13.8 Restrictions for LOBs in Partitioned Index-Organized Tables
	13.9 Updating LOBs in Nested Tables

	14 Advanced Design Considerations
	14.1 Opening Persistent LOBs with the OPEN and CLOSE Interfaces
	14.1.1 Index Performance Benefits of Explicitly Opening a LOB
	14.1.2 Closing Explicitly Open LOB Instances

	14.2 Read-Consistent Locators
	14.2.1 A Selected Locator Becomes a Read-Consistent Locator
	14.2.2 Example of Updating LOBs and Read-Consistency
	14.2.3 Example of Updating LOBs Through Updated Locators
	14.2.4 Example of Updating a LOB Using SQL DML and DBMS_LOB
	14.2.5 Example of Using One Locator to Update the Same LOB Value
	14.2.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
	14.2.7 Example of Deleting a LOB Using Locator

	14.3 LOB Locators and Transaction Boundaries
	14.3.1 About LOB Locators and Transaction Boundaries
	14.3.2 Read and Write Operations on a LOB Using Locators
	14.3.3 Selecting the Locator Outside of the Transaction Boundary
	14.3.4 Selecting the Locator Within a Transaction Boundary
	14.3.5 LOB Locators Cannot Span Transactions
	14.3.6 Example of Locator Not Spanning a Transaction

	14.4 LOBs in the Object Cache
	14.5 Terabyte-Size LOB Support
	14.5.1 About Terabyte-Size LOB Support
	14.5.2 Maximum Storage Limit for Terabyte-Size LOBs
	14.5.3 Using Terabyte-Size LOBs with JDBC
	14.5.4 Using Terabyte-Size LOBs with the DBMS_LOB Package
	14.5.5 Using Terabyte-Size LOBs with OCI

	14.6 Guidelines for Creating Gigabyte LOBs
	14.6.1 Creating a Tablespace and Table to Store Gigabyte LOBs

	15 Performance Guidelines
	15.1 LOB Performance Guidelines
	15.1.1 All LOBs
	15.1.1.1 Chunk Size
	15.1.1.2 LOB Pre-fetching
	15.1.1.3 Small LOBs
	15.1.1.4 Large LOBs

	15.1.2 Persistent LOBs
	15.1.2.1 Performance Guidelines for Small BasicFiles LOBs
	15.1.2.2 General Performance Guidelines for BasicFiles LOBs

	15.1.3 Temporary LOBs

	15.2 Moving Data to LOBs in a Threaded Environment
	15.3 LOB Access Statistics
	15.3.1 Example of Retrieving LOB Access Statistics

	Part V LOB Administration
	16 Managing LOBs: Database Administration
	16.1 Database Utilities for Loading Data into LOBs
	16.1.1 About Using SQL*Loader to Load LOBs
	16.1.2 About Using SQL*Loader to Populate a BFILE Column
	16.1.3 About Using Oracle Data Pump to Transfer LOB Data

	16.2 Temporary LOB Management
	16.3 BFILEs Management
	16.3.1 Rules for Using Directory Objects and BFILEs
	16.3.2 Setting Maximum Number of Open BFILEs

	16.4 Changing Tablespace Storage for a LOB
	16.5 Managing LOB Signatures

	17 Migrating Columns from LONGs to LOBs
	17.1 Benefits of Migrating LONG Columns to LOB Columns
	17.2 Preconditions for Migrating LONG Columns to LOB Columns
	17.2.1 Dropping a Domain Index on a LONG Column Before Converting to a LOB
	17.2.2 Preventing Generation of Redo Space on Tables Converted to LOB Data Types

	17.3 Determining how to Optimize the Application Using utldtree.sql
	17.4 Converting Tables from LONG to LOB Data Types
	17.4.1 Migration Issues
	17.4.2 Using ALTER TABLE to Convert LONG Columns to LOB Columns
	17.4.3 Copying a LONG to a LOB Column Using the TO_LOB Operator
	17.4.4 Online Redefinition of Tables with LONG Columns
	17.4.5 Migrating LOBs with Data Pump

	17.5 Migrating Applications from LONGs to LOBs
	17.5.1 About Migrating Applications from Longs to LOBs
	17.5.2 LOB Columns Are Not Allowed in Clustered Tables
	17.5.3 LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers
	17.5.4 Rebuilding Indexes on Columns Converted from LONG to LOB Data Types
	17.5.5 Empty LOBs Compared to NULL and Zero Length LONGs
	17.5.6 Overloading with Anchored Types
	17.5.7 Some Implicit Conversions Are Not Supported for LOB Data Types

	Part VI Oracle File System (OFS) Server
	18 Introducing Network File System (NFS)
	18.1 Accessing OFS with an NFS Account
	18.2 Prerequisites to Access Storage Through NFS Server
	18.3 NFS Security
	18.3.1 About Kerberos
	18.3.2 Configuring Kerberos Server

	19 Using OFS
	19.1 About OFS
	19.2 About Oracle File Server Process
	19.3 Limitations of using OFS
	19.4 OFS Configuration Parameters
	19.5 Managing DBFS Locally Using FUSE
	19.5.1 Configuring FUSE
	19.5.2 Accessing OFS in Cloud

	19.6 OFS Client Interface
	19.6.1 DBMS_FS Package
	19.6.2 Views for OFS

	Part VII Database File System (DBFS)
	20 Introducing the Database File System
	20.1 Why a Database File System?
	20.2 What Is Database File System (DBFS)?
	20.2.1 About DBFS
	20.2.2 DBFS Server
	20.2.3 DBFS Client

	20.3 What Is a Content Store?

	21 DBFS SecureFiles Store
	21.1 Setting Up a SecureFiles Store
	21.1.1 About Managing Permissions
	21.1.2 Creating or Setting Permissions
	21.1.3 Creating a SecureFiles File System Store
	21.1.4 Accessing Tables that Hold SecureFiles System Store Data
	21.1.5 Initializing SecureFiles Store File Systems
	21.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs

	21.2 Using a DBFS SecureFiles Store File System
	21.2.1 DBFS Content API Working Example
	21.2.2 Dropping SecureFiles Store File Systems

	21.3 About DBFS SecureFiles Store Package, DBMS_DBFS_SFS
	21.4 Database File System (DBFS)— POSIX File Locking
	21.4.1 About Advisory Locking
	21.4.2 About Mandatory Locking
	21.4.3 File Locking Support
	21.4.4 Compatibility and Migration Factors of Database Filesystem—File Locking
	21.4.5 Examples of Database Filesystem—File Locking
	21.4.6 File Locking Behavior
	21.4.7 Scheduling File Locks
	21.4.7.1 Greedy Scheduling
	21.4.7.2 Fair Scheduling

	22 DBFS Hierarchical Store
	22.1 About the Hierarchical Store Package, DBMS_DBFS_HS
	22.2 Ways to Use DBFS Hierarchial Store
	22.3 Setting up the Store
	22.3.1 Managing a HS Store Wallet
	22.3.2 Creating, Registering, and Mounting the Store

	22.4 Using the Hierarchical Store
	22.4.1 Using Hierarchical Store as a File System
	22.4.2 Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
	22.4.3 Dropping a Hierarchical Store
	22.4.4 Compression to Use with the Hierarchical Store
	22.4.5 Program Example Using Tape
	22.4.6 Program Example Using Amazon S3

	22.5 Database File System Links
	22.5.1 About Database File System Links
	22.5.2 Ways to Create Database File System Links
	22.5.3 Database File System Links Copy
	22.5.4 Copying a Linked LOB Between Tables
	22.5.5 Online Redefinition and DBFS Links
	22.5.6 Transparent Read

	22.6 The DBMS_DBFS_HS Package
	22.6.1 Constants for DBMS_DBFS_HS Package
	22.6.2 Methods for DBMS_DBFS_HS Package

	22.7 Views for DBFS Hierarchical Store
	22.7.1 DBA Views
	22.7.2 User Views

	23 DBFS Content API
	23.1 Overview of DBFS Content API
	23.2 Stores and DBFS Content API
	23.3 Getting Started with DBMS_DBFS_CONTENT Package
	23.3.1 DBFS Content API Role
	23.3.2 Path Name Constants and Types
	23.3.3 Path Properties
	23.3.4 Content IDs
	23.3.5 Path Name Types
	23.3.6 Store Features
	23.3.7 Lock Types
	23.3.8 Standard Properties
	23.3.9 Optional Properties
	23.3.10 User-Defined Properties
	23.3.11 Property Access Flags
	23.3.12 Exceptions
	23.3.13 Property Bundles
	23.3.14 Store Descriptors

	23.4 Administrative and Query APIs
	23.4.1 Registering a Content Store
	23.4.2 Unregistering a Content Store
	23.4.3 Mounting a Registered Store
	23.4.4 Unmounting a Previously Mounted Store
	23.4.5 Listing all Available Stores and Their Features
	23.4.6 Listing all Available Mount Points
	23.4.7 Looking Up Specific Stores and Their Features

	23.5 Querying DBFS Content API Space Usage
	23.6 DBFS Content API Session Defaults
	23.7 DBFS Content API Interface Versioning
	23.8 Notes on DBFS Content API Path Names
	23.9 DBFS Content API Creation Operations
	23.10 DBFS Content API Deletion Operations
	23.11 DBFS Content API Path Get and Put Operations
	23.12 DBFS Content API Rename and Move Operations
	23.13 Directory Listings
	23.14 DBFS Content API Directory Navigation and Search
	23.15 DBFS Content API Locking Operations
	23.16 DBFS Content API Access Checks
	23.17 DBFS Content API Abstract Operations
	23.18 DBFS Content API Path Normalization
	23.19 DBFS Content API Statistics Support
	23.20 DBFS Content API Tracing Support
	23.21 Resource and Property Views

	24 Creating Your Own DBFS Store
	24.1 Overview of DBFS Store Creation and Use
	24.2 DBFS Content Store Provider Interface (DBFS Content SPI)
	24.3 Creating a Custom Provider
	24.3.1 Mechanics
	24.3.1.1 Installation and Setup
	24.3.1.2 TBFS Use
	24.3.1.3 TBFS Internals

	24.3.2 TBFS.SQL
	24.3.3 TBL.SQL
	24.3.4 spec.sql
	24.3.5 body.sql
	24.3.6 capi.sql

	25 Using DBFS
	25.1 DBFS Installation
	25.2 Creating a DBFS File System
	25.2.1 Privileges Required to Create a DBFS File System
	25.2.2 Advantages of Non-Partitioned Versus Partitioned DBFS File Systems
	25.2.3 Creating a Non-Partitioned File System
	25.2.4 Creating a Partitioned File System
	25.2.5 Dropping a File System

	25.3 DBFS File System Access
	25.3.1 DBFS Client Prerequisites
	25.3.2 DBFS Client Command-Line Interface Operations
	25.3.2.1 About the DBFS Client Command-Line Interface
	25.3.2.2 Creating Content Store Paths
	25.3.2.3 Creating a Directory
	25.3.2.4 Listing a Directory
	25.3.2.5 Copying Files and Directories
	25.3.2.6 Removing Files and Directories

	25.3.3 DBFS Mounting Interface (Linux and Solaris Only)
	25.3.3.1 Installing FUSE on Solaris 11 SRU7 and Later
	25.3.3.2 Mounting the DBFS Store
	25.3.3.3 Solaris-Specific Privileges
	25.3.3.4 About the Mount Command for Solaris and Linux
	25.3.3.5 Mounting a File System with a Wallet
	

	25.3.3.6 Mounting a File System with Password at Command Prompt
	25.3.3.7 Mounting a File System with Password Read from a File
	25.3.3.8 Unmounting a File System
	25.3.3.9 Mounting DBFS Through fstab Utility for Linux
	25.3.3.10 Mounting DBFS Through the vfstab Utility for Solaris
	25.3.3.11 Restrictions on Mounted File Systems

	25.3.4 File System Security Model
	25.3.4.1 About the File System Security Model
	25.3.4.2 Enabling Shared Root Access
	25.3.4.3 About DBFS Access Among Multiple Database Users
	25.3.4.4 Establishing DBFS Access Sharing Across Multiple Database Users

	25.3.5 HTTP, WebDAV, and FTP Access to DBFS
	25.3.5.1 Internet Access to DBFS Through XDB
	25.3.5.2 Web Distributed Authoring and Versioning (WebDAV) Access
	25.3.5.3 FTP Access to DBFS
	25.3.5.4 HTTP Access to DBFS

	25.4 DBFS Administration
	25.4.1 Using Oracle Wallet with DBFS Client
	25.4.2 DBFS Diagnostics
	25.4.3 Preventing Data Loss During Failover Events
	25.4.4 Bypassing Client-Side Write Caching
	25.4.5 Backing up DBFS
	25.4.5.1 DBFS Backup at the Database Level
	25.4.5.2 DBFS Backup Through a File System Utility

	25.4.6 Small File Performance of DBFS
	25.4.7 Enabling Advanced SecureFiles LOB Features for DBFS

	25.5 Shrinking and Reorganizing DBFS Filesystems
	25.5.1 About Changing DBFS Filesystems
	25.5.2 Advantages of Online Filesystem Reorganization
	25.5.3 Determining Availability of Online Filesystem Reorganization
	25.5.4 Invoking Online Filesystem Reorganization

	A LOB Demonstration Files
	A.1 PL/SQL LOB Demonstration Files
	A.2 OCI LOB Demonstration Files
	A.3 Java LOB Demonstration Files

	Glossary
	BFILE
	Binary Large Object (BLOB)
	BLOB
	Character Large Object (CLOB)
	CLOB
	data interface
	deduplication
	DBFS
	DBFS Link
	external LOB
	internal persistent LOB
	introspect
	Large Objects (LOBs)
	LOB
	LOB attribute
	LOB value
	mount point
	National Character Large Object
	NCLOB
	persistent LOB
	SECUREFILE
	SPI
	Store
	Store Provider
	tablespace
	temporary LOB

	Index

