Oracle® Database

Introduction to Simple Oracle Document
Access (SODA)

E96228-02
March 2019
ORACLE

Oracle Database Introduction to Simple Oracle Document Access (SODA),
E96228-02

Copyright © 2018, 2019, Oracle and/or its affiliates. All rights reserved.
Primary Author: Drew Adams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience viii
Documentation Accessibility viii
Related Documents viii
Conventions iX

Changes in SODA

Changes in Oracle Database Release 18c for SODA X
Changes in Oracle Database Release 12c¢ (12.2.0.1) for SODA X

1 Overview of SODA

1.1 Overview of SODA Documents 1-3
1.2 Overview of SODA Document Collections 1-5
1.3 Default Naming of a Collection Table 1-9

2 Overview of SODA Filter Specifications (QBES)

2.1 Sample JSON Documents 2-3
2.2 Overview of Paths in SODA QBEs 2-4
2.3 Overview of QBE Comparison Operators 2-5
2.4 Overview of QBE Operator $not 2-7
2.5 Overview of QBE Item-Method Operators 2-7
2.6 Overview of QBE Logical Combining Operators 2-9
2.7 Overview of Nested Conditions in QBEs 2-11
2.8 Overview of QBE Operator $id 2-12
2.9 Overview of QBE Operator $orderby 2-12
2.10 Overview of QBE Spatial Operators 2-14

3 Overview of SODA Indexing

ORACLE iii

4 SODA Paths (Reference)

5 SODA Filter Specifications (Reference)

5.1 Composite Filters (Reference) 5-2
5.1.1 Orderby Clause Sorts Selected Objects 5-3

5.2 Filter Conditions (Reference) 5-6
5.2.1 Scalar-Equality Clause (Reference) 5-7
5.2.2 Field-Condition Clause (Reference) 5-8
5.2.2.1 Comparison Clause (Reference) 5-9

5.2.2.2 Not Clause (Reference) 5-13

5.2.2.3 Item-Method Clause (Reference) 5-14

5.2.2.4 1SO 8601 Date and Time Support 5-20

5.2.3 Logical Combining Clause (Reference) 5-21
5.2.3.1 Omitting $and 5-22

5.2.4 Nested-Condition Clause (Reference) 5-23
5.2.5 ID Clause (Reference) 5-24
5.2.6 Special-Criterion Clause (Reference) 5-25
5.2.6.1 Contains Clause (Reference) 5-25

5.2.6.2 Spatial Clause (Reference) 5-27

6 SODA Index Specifications (Reference)

7 SODA Collection Metadata Components (Reference)

7.1 Schema 7-3
7.2 Table or View 7-3
7.3 Key Column Name 7-4
7.4 Key Column Type 7-4
7.5 Key Column Max Length 7-5
7.6 Key Column Assignment Method 7-5
7.7 Key Column Sequence Name 7-6
7.8 Content Column Name 7-7
7.9 Content Column Type 7-7
7.10 Content Column Max Length 7-7
7.11 Content Column JSON Validation 7-8
7.12 Content Column SecureFiles LOB Compression 7-9
7.13 Content Column SecureFiles LOB Cache 7-9
7.14 Content Column SecureFiles LOB Encryption 7-9
7.15 Version Column Name 7-10

ORACLE iv

7.16 Version Column Generation Method 7-10
7.17 Last-Modified Time Stamp Column Name 7-11
7.18 Last-Modified Column Index Name 7-12
7.19 Creation Time Stamp Column Name 7-13
7.20 Media Type Column Name 7-13
7.21 Read Only 7-13
8 SODA Guidelines and Restrictions
8.1 SODA Guidelines 8-1
8.2 SODA Restrictions (Reference) 8-2

Index

ORACLE"

List of Examples

1-1 Default Collection Metadata

2-1 Sample JSON Document 1

2-2 Sample JSON Document 2

2-3 Sample JSON Document 3

2-4 Using $id To Find Documents That Have Given Keys
3-1 Specifying a B-Tree Index

3-2 Specifying a Spatial Index

3-3 Specifying a JSON Search Index

5-1 Filter Specification with Explicit $and Operator

5-2 Filter Specification with Implicit $and Operator

5-3 Use of Operator $id in the Outermost QBE Condition
5-4 QBE With a Spatial Clause

ORACLE

1-8
2-3
2-3
2-3
2-12
3-2
3-2
3-4
5-22
5-23
5-24
5-27

Vi

List of Tables

5-1 Query-By-Example (QBE) Comparison Operators
5-2 Item-Method Operators

7-1 Key Assignment Methods

7-2 Version Generation Methods

ORACLE

5-9
5-16
7-5
7-11

Vii

Preface

Preface

This document provides a conceptual overview of Simple Oracle Document Access
(SODA).

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

This document is intended for users of Simple Oracle Document Access (SODA).
Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=accé&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

» Simple Oracle Document Access (SODA) at Oracle Help Center for complete
information about SODA and each of its implementations

* Oracle Database JSON Developer’s Guide

* Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with SODA

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration.

If you already have a user name and password for OTN then you can go directly to the
documentation section of the OTN Web site at OTN Documentation.

ORACLE viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html

Preface

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLS, code
in examples, text that appears on the screen, or text that you enter.

ORACLE' »

Changes in SODA

Changes in SODA

» Changes in Oracle Database Release 18c for SODA
e Changes in Oracle Database Release 12c (12.2.0.1) for SODA

Changes in Oracle Database Release 18c for SODA

* New Features for Oracle Database Release 18c
New features for Oracle Database Release 18c include new QBE item methods,
new data types for QBE operator $orderby, and B-tree indexing with additional
data types.

New Features for Oracle Database Release 18c¢

New features for Oracle Database Release 18c include new QBE item methods, new
data types for QBE operator $orderby, and B-tree indexing with additional data types.

Note:

Supported features can vary among SODA implementations. The new
features listed here are not necessarily supported by all implementations.

* New item methods: $abs, $date, $size, $timestamp, and $type.
* Use of data types date and timestamp with QBE operator $orderby.

e B-tree indexing with date and timestamp data types.

Changes in Oracle Database Release 12¢ (12.2.0.1) for
SODA

* New Features for Oracle Database Release 12¢ (12.2.0.1)
New features for Oracle Database Release 12c (12.2.0.1) include QBE item
methods, support for indexing, and support for proximity and full-text searching of
JSON documents.

New Features for Oracle Database Release 12¢ (12.2.0.1)

New features for Oracle Database Release 12¢ (12.2.0.1) include QBE item methods,
support for indexing, and support for proximity and full-text searching of JSON
documents.

ORACLE X

ORACLE

Changes in SODA

Note:

Supported features can vary among SODA implementations. The new
features listed here are not necessarily supported by all implementations.

Item methods for QBE — Use QBE item methods
($boolean, $ceiling, $double, $Floor, $length, $lower, $number, $string, Suppe
r) to transform matched data before filtering it further.

GeoJSON proximity search — Use query-by-example (QBE) to select documents
that have a field whose value is a GeoJSON geometry object that is near a
specified position, intersects a specified geometric object, or is within another
specified geometric object.

Full-text search — Use QBE to select documents with fields whose value matches
a given string or number.

Indexing — Index documents in a collection: B-tree, GeoJSON geometry (spatial),
and JSON search.

Xi

Overview of SODA

ORACLE

Simple Oracle Document Access (SODA) is a set of NoSQL-style APIs that let you
create and store collections of documents (in particular JSON) in Oracle Database,
retrieve them, and query them, without needing to know Structured Query Language
(SQL) or how the documents are stored in the database.

There are separate SODA implementations for use with different languages and with
the representational state transfer (REST) architectural style. SODA for REST can
itself be accessed from almost any programming language. It maps SODA operations
to Uniform Resource Locator (URL) patterns.

Note:

This book describes the features that are present in different SODA
implementations. Some features described here may not be available for
some implementations. In addition, different implementations can have
different ways of providing some of the features. Please refer to the
documentation for a particular implementation for detailed information about
it.

SODA APIs are document-centric. You can use any SODA implementation to perform
create, read, update, and delete (CRUD) operations on documents of nearly any kind
(including video, image, sound, and other binary content). You can also use any
SODA implementation to query the content of JavaScript Object Notation (JSON)
documents using pattern-matching: query-by-example (QBE). CRUD operations can
be driven by document keys or by QBEs.

Oracle Database supports storing and querying JSON data natively. SODA document
collections are backed by ordinary database tables and views. Because of this, you
can take advantage of database features for use with the content of SODA
documents.

But you do not need knowledge of SQL, or database administrator (DBA) assistance,
to develop or deploy a SODA application. SODA CRUD and query operations are
automatically mapped to SQL operations on the underlying database tables or views,
and these operations are optimized.

The SQL standard defines a set of SQL/JSON operators that allow direct querying of
JSON data. Database views based on these operators provide schema-on-read
behavior that is immune to changes in the structure of your documents. If needed,
developers with SQL knowledge can use SQL/JSON to perform advanced operations
on your SODA data that make full use of the database. For example, a SQL developer
can apply database analytics and reporting to your JSON data, and can include it in
aggregation and join operations that involve other data. In addition, your SODA
applications can use database transactions.

These SODA abstractions hide the complexities of SQL and client programming:

1-1

ORACLE

Chapter 1

e Collection
e Document

A document collection contains documents. Collections are persisted in an Oracle
Database schema (also known as a database user). In some SODA implementations
a database schema is referred to as a SODA database.

A SODA collection is analogous to an Oracle Database table or view.

SODA is designed primarily for working with JISON documents, but a document can be
of any Multipurpose Internet Mail Extensions (MIME) type.

In addition to its content, a document has other document components, including a
unique identifier, called its key, a version, a media type (type of content), and the date
and time that it was created and last modified. The key is typically assigned by SODA
when a document is created, but client-assigned keys can also be used. Besides the
content and key (if client-assigned), you can set the media type of a document. The
other components are generated and maintained by SODA. All components other than
content and key are optional.

A SODA document is analogous to, and is in fact backed by, a row of a database table
or view. The row has one column for each document component: key, content,
version, and so on.

In addition to the documents it contains, a collection also has associated collection
metadata. This specifies various details about the collection, such as its storage,
whether it should track version and time-stamp document components, how such
components are generated, and whether the collection can contain only JSON
documents.

In some contexts collection metadata is represented as a JSON document. This
metadata document is sometimes called a collection specification. You can supply a
custom collection specification when you create a collection, to provide metadata that
differs from that provided by default.

SODA provides CRUD operations on documents. JSON documents can additionally
be queried, using query-by-example (QBE) patterns, also known as filter
specifications. A filter specification is itself a JSON object.

SODA APIs provide operations for collection management (create, drop, list) and
document management (CRUD).

These are some of the actions you can perform using SODA:

» Create collections

* Open existing collections

* Drop collections

» List all existing collections

» Create documents

* Insert documents into a collection

* Find a document in a collection, by key or by key and version
* Find all documents in a collection

* Find documents in a collection, by keys or by QBE

1-2

Chapter 1
Overview of SODA Documents

* Replace (update) a document in a collection, by key or by key and version
(optimistic locking)

* Remove a document from a collection, by key or by key and version (optimistic
locking)

* Remove documents from a collection, by keys or by QBE

* Index the documents in a collection (to improve query performance)

» Create a JSON data guide for a collection, which summarizes document structural
and type information

Your applications use a database transaction when performing one or more such
actions.!

* Overview of SODA Documents
SODA is designed primarily to manipulate JavaScript Object Notation (JSON)
documents, that is, documents whose content is JSON data, but other kinds of
documents can also be used. A document has other components, besides its
content.

* Overview of SODA Document Collections
A SODA collection is a set of documents that is backed by an Oracle Database
table or view.

e Default Naming of a Collection Table
By default, the name of the database table that underlies a document collection is
derived from the collection name.

¢ See Also:

e Simple Oracle Document Access (SODA) at Oracle Help Center for
complete information about SODA and each of its implementations

e Oracle Database JSON Developer’s Guide for information about using
SQL and PL/SQL with JSON data.

e Introducing JSON for information about JSON.

e Oracle as a Document Store for general information about using JSSON
data in Oracle Database, including with SODA

1.1 Overview of SODA Documents

SODA is designed primarily to manipulate JavaScript Object Notation (JSON)
documents, that is, documents whose content is JSON data, but other kinds of
documents can also be used. A document has other components, besides its content.

Here is a textual representation of the content of a simple JSON document:

{ "name" : "Alexander",
"address" : "1234 Main Street",
"city" > "Anytown™,

1 SODA for REST is an exception in this regard; you cannot use database transactions for its actions.

ORACLE 1-3

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html

Chapter 1
Overview of SODA Documents

"'state" o "CA",
"zip” : "12345" }

You can set the following document components (with an application client, for

example):

° Key

« Content

* Media type

In a collection, each document must have a document key, which is unique for the
collection. By default, collections are configured to automatically generate document
keys for inserted documents. If you want to instead use your own, custom, keys for a
collection then you must provide the key for a document when you create it.

The media type specifies the type of content for a document. For JSON documents the
media type is "application/json".

The following document components are set and maintained automatically by SODA
itself:

* Version
e Creation time stamp
* Last-modified time stamp

A SODA document is an abstract object that encapsulates its components, including
its content — it is a carrier of content. A SODA create-document operation creates
such a programmatic document object, and a document object is returned by some
SODA operations, such as find operations.

A document is stored in Oracle Database as a row in a table or view, with each
component in its own column.

In a client application, a SODA document is represented in a way that is appropriate to
the particular SODA implementation used. For example:

e In SODA for Java, a document is represented as a Java interface.
e In SODA for PL/SQL, a document is represented as a PL/SQL object type.

e In SODA for C, a document is represented as an Oracle Call Interface (OCI)
handle.

In all cases, there are methods or functions to create documents and access their
components.

To write content to SODA collections and read content from them, you use create-
document, write, and read operations:

* You use a SODA create-document operation to create a document object with
content that you provide. (The content can be JSON data or something else.)

2 Because REST is not a programming language, SODA for REST has no programmatic “object” that represents a
document. But SODA for REST operations involve the same concept of a document. For example, when you
read a document you obtain a JSON representation of it, which includes all of the components (key, content,
version, and so on).

ORACLE 1-4

Chapter 1
Overview of SODA Document Collections

* You use a SODA write operation (such as insert), to store the document
persistently in Oracle Database. (The document content is written to a database
table.)

* You use a SODA read operation (such as find), to fetch the document back from
Oracle Database. You use specific getter operations to read specific document
components (such as key and content).

2 See Also:

Introducing JSON for general information about JSON

1.2 Overview of SODA Document Collections

ORACLE

A SODA collection is a set of documents that is backed by an Oracle Database table
or view.

By default, creating a SODA document collection creates the following in Oracle
Database:

* Persistent default collection metadata.

* A table for storing the collection, in the database schema to which your SODA
client is connected.

All SODA implementations provide a get-metadata operation, which returns the
metadata for a collection, represented in JSON. The default collection metadata, which
is returned for a default collection, is shown in Example 1-1.

The default metadata specifies a collection that tracks five components for each
document: key, content, version, last-modified time stamp, and created-on time stamp.
These are specified in JISON by fields keyColumn, contentcolumn, versionColumn,
lastModifiedColumn, and creationTimeColumn, respectively. Each of these
components is stored in a separate column in the table or view that backs the
collection in Oracle Database. The metadata further specifies various details about
these components and the database columns that back them.

In Example 1-1, for the key component: the column name is "ID", the column type is
"VARCHAR2", the maximum key length is 255, and the key generation method used is
"uuiID".

In a client application, a document collection is represented in a way that is
appropriate to the particular SODA implementation used. For example:

* In SODA for Java, a collection is represented as a Java interface.
* In SODA for PL/SQL, a collection is represented as a PL/SQL object type.

* In SODA for C, a collection is represented as an Oracle Call Interface (OCI)
handle.

When a collection is created, the create-collection operation returns a Java or PL/SQL
object or an OCI handle, which you can use to perform various collection read and
write operations.3

1-5

Chapter 1
Overview of SODA Document Collections

Note:

In the SODA for REST URI syntax, after the version component, you can use
custom-actions, metadata-catalog, or a particular collection name. When
you use custom-actions or metadata-catalog, the next segment in the URI,
if there is one, is a collection name.

Because of this syntax flexibility, you cannot have a collection named either
custom-actions or metadata-catalog. An error is raised if you try to create
a collection with either of those names using SODA for REST.

In other SODA implementations, besides SODA for REST, nothing prevents
you from creating and using a collection named custom-actions or
metadata-catalog. But for possible interoperability, best practice calls for not
using these names for collections.

When you create a collection you can specify things such as the following:

Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

The presence or absence of columns for creation time stamp, last-modified time
stamp, and version.

Whether the collection can store only JSON documents.

Methods of document key generation, and whether document keys are client-
assigned or generated automatically.

Methods of version generation.

This configurability also lets you map a new collection to an existing database table or

view.,

To configure a collection in a nondefault way, you must define custom collection
metadata and pass it to the create-collection operation. This metadata is represented
as JSON data.

3 This is the case only for language-based SODA implementations. In SODA for REST a collection is essentially
represented by just a URL.

ORACLE

1-6

Chapter 1
Overview of SODA Document Collections

Note:

You can customize collection metadata to obtain different behavior from that
provided by default. However, changing some components requires
familiarity with Oracle Database concepts, such as SQL data types. Oracle
recommends that you do not change such components unless you have a
compelling reason. Because SODA collections are implemented on top of
Oracle Database tables (or views), many collection configuration
components are related to the underlying table configuration.

For example, if you change the content column type from BLOB (the default
value) to VARCHAR2 then you must understand the implications (content size
for VARCHAR?2 is limited to 32K bytes, character-set conversion can take place,
and so on).

Reasons you might want to use custom metadata include:

e To configure SecureFiles LOB storage.

e To configure a collection to store documents other than JSON (a
heterogeneous collection).

e To map an existing Oracle Database table or view to a new collection.
e To specify that a collection mapping to an existing table is read-only.

e To use a VARCHAR2 column for JSON content, and to increase the default
maximum length of data allowed in the column.

You might want to increase the maximum allowed data length if your
database is configured with extended data types, which extends the
maximum length of these data types to 32767 bytes. For more
information about extended data types, see Oracle Database SQL
Language Reference.

¢ See Also:

SODA Collection Metadata Components (Reference) for information about
the SODA collection metadata components

You can perform read and write operations on a collection only if it is open. Opening a
collection amounts to obtaining an object (in Java and PL/SQL) or a handle (in C) that
represents the collection. Creating a collection opens it automatically: the create-
collection operation returns a collection object or handle. There is also an open
operation, to open an existing collection. It too returns a collection object or handle. If
you try to create a collection, and a collection with the same name already exists, then
that existing collection is simply opened.

ORACLE r

4

Chapter 1
Overview of SODA Document Collections

Note:

By default, the table name for a collection is derived from the collection
name, but it can also be explicitly provided in the custom collection metadata
that you pass to the create-collection operation. If this table name (derived or
explicitly provided) matches an existing table in the currently connected
database schema (user), the create-collection operation tries to use that
existing table to back the collection.*

You must therefore ensure that the existing table matches the collection
metadata. For example, if the collection metadata specifies that the collection
has three columns, for key, content, and version, then the underlying table
must have these same columns, and the column types must match those
specified in the collection metadata. The create-collection operation performs
minimal validation of the existing table, to check that it matches collection
metadata. If this check determines that the table and metadata do not match
then the create-collection operation raises an error.

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database table. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the table
underlying a collection does not also drop the collection metadata.

Example 1-1 Default Collection Metadata

{
"schemaName" : "mySchemaName',
"tableName" : "myTableName",
"keyColumn™ :
{
"name" : "ID",

}

{

}

"sqlType™ : "VARCHAR2",
"maxLength™ : 255,
"assignmentMethod" : "UUID"

ontentColumn™ :

"name™ : "JSON_DOCUMENT",
"sqlType™ : "BLOB",
"compress'" : "NONE",
""cache" : true,

"encrypt" : "NONE",
"validation™ : "STANDARD"

4 SODA for REST is an exception here. for security reasons, in this context an error is raised for SODA for
REST, to disallow access to existing tables using REST operations.

ORACLE

1-8

Chapter 1
Default Naming of a Collection Table

"versionColumn" :

{
"name" : "VERSION",
"method" : '"SHA256"

-

"lastModifiedColumn™ :

"name" : "LAST_MODIFIED"

creationTimeColumn" :

[

"name" : "CREATED_ON"

[

readonly” : false

Related Topics

* SODA Collection Metadata Components (Reference)
Collection metadata is composed of multiple components. A detailed definition of
the components is presented.

» Default Naming of a Collection Table
By default, the name of the database table that underlies a document collection is
derived from the collection name.

1.3 Default Naming of a Collection Table

By default, the name of the database table that underlies a document collection is
derived from the collection name.

If you want a different table name from that provided by default then use custom
collection metadata to explicitly provide the name.

The default table name is derived from the collection name you provide, as follows:

1. Each ASCII control character and double quotation mark character (*') in the
collection name is replaced by an underscore character ().

2. If all of the following conditions apply, then all letters in the name are converted to
uppercase, to provide the table name. In this case, you need not quote the table
name in SQL code; otherwise, you must quote it.

e The letters in the name are either all lowercase or all uppercase.
* The name begins with an ASCII letter.

» Each character in the name is alphanumeric ASCII, an underscore (_), a dollar
sign ($), or a number sign (#).

" Note:

Oracle recommends that you do not use dollar-sign characters ($) or
number-sign characters (#) in Oracle identifier names.

For example:

ORACLE 1-9

Chapter 1
Default Naming of a Collection Table

* Collection names "col" and "COL" both result in a table named "COL". When used
in SQL, the table name is interpreted case-insensitively, so it need not be
enclosed in double quotation marks ().

e Collection name "myCol" results in a table named "myCol". When used in SQL,
the table name is interpreted case-sensitively, so it must be enclosed in double
guotation marks (*).

Related Topics

e Table or View
The collection metadata component that specifies the name of the table or view to
which the collection is mapped.

ORACLE 1-10

Overview of SODA Filter Specifications

(QBES)

A filter specification is a pattern expressed in JSON. You use it to select, from a
collection, the JSON documents whose content matches it, meaning that the condition
expressed by the pattern evaluates to true for the content of (only) those documents.

A filter specification is also called a query-by-example (QBE), or simply a filter.

Because a QBE selects documents from a collection, you can use it to drive read and
write operations on those documents. For example, you can use a QBE to remove all
matching documents from a collection.

Each SODA implementation that supports query-by-example provides its own way to
guery JSON documents. They all use a SODA filter specification to define the data to
be queried. For example, with SODA for REST you use an HTTP POST request,
passing URI argument action=query, and providing the filter specification in the POST
body.

QBE patterns use operators for this document selection or matching, including
condition operators, which perform operations such as field-value comparison or
testing for field existence, and logical combining operators for union ($or) and
intersection ($and).

A QBE operator occurs in a QBE as a field of a JSON object. The associated field
value is the operand on which the operator acts. SODA operators are predefined
fields whose names start with a dollar sign, $.

For example, in this QBE, the object that is the value of field age has as its only field
the operator $gt, and the associated operand is the numeric value 45:

{ "age" : { "$gt" : 45 } }

< Note:

Query-by-example is not supported on a heterogeneous collection, that is, a
collection that has the media type column. Such a collection is designed for
storing both JISON and non-JSON content. QBE is supported only for
collections that contain only JSON documents.

e Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
guery-by-example (QBE) examples, as well as in some reference descriptions.

ORACLE 2-1

ORACLE

Chapter 2

Overview of Paths in SODA QBEs

A filter specification, or query-by-example (QBE), contains zero or more paths to
fields in JSON documents. A path to a field can have multiple steps, and it can
cross the boundaries of objects and arrays.

Overview of QBE Comparison Operators
A query-by-example (QBE) comparison operator tests whether a given JISON
object field satisfies some conditions.

Overview of QBE Operator $not

Query-by-example (QBE) operator $not negates the behavior of its operand,
which is a JSON object containing one or more comparison clauses, which are
implicitly ANDed.

Overview of QBE Item-Method Operators

A query-by-example (QBE) item-method operator acts on a JSON-object field
value to modify or transform it in some way (or simply to filter it from the query
result set). Other QBE operators that would otherwise act on the field value then
act on the transformed field value instead.

Overview of QBE Logical Combining Operators

You use the query-by-example (QBE) logical combining operators, $and, $or,
and 3$nor, to combine conditions to form more complex QBEs. Each accepts an
array of conditions as its argument.

Overview of Nested Conditions in QBEs

You can use a query-by-example (QBE) with a nested condition to match a
document that has a field with an array value with object elements, where a given
element of the array satisfies multiple criteria.

Overview of QBE Operator $id

Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. Operator $id is an exception in
that it instead matches document keys. It thus matches document metadata, not
document content. You use operator $id in the outermost condition of a QBE.

Overview of QBE Operator $orderby
Query-by-example (QBE) operator $orderby is described. It sorts query results in
ascending or descending order.

Overview of QBE Spatial Operators

You can use query-by-example (QBE) operator $near, $intersects, or $within to
select documents that have a field whose value is a GeoJSON geometry object
that is near a specified position, intersects a specified geometric object, or is within
another specified geometric object, respectively.

Related Topics

SODA Paths (Reference)

SODA filter specifications contain paths, each of which targets a value in a
JavaScript Object Notation (JSON) document. A path is composed of a series of
steps. A detailed definition of SODA paths is presented.

SODA Filter Specifications (Reference)
You can select JSON documents in a collection by pattern-matching. A detailed
definition of SODA filter specifications (QBES) is presented.

Media Type Column Name
The collection metadata component that specifies the name of the column that
stores the media type of the document. A media type column is needed if the

2-2

Chapter 2
Sample JSON Documents

collection is to be heterogeneous, that is, it can store documents other than
JavaScript Object Notation (JSON).

" See Also:

Introducing JSON for information about JSON

2.1 Sample JSON Documents

A few sample JSON documents are presented here. They are referenced in some
guery-by-example (QBE) examples, as well as in some reference descriptions.

Example 2-1 Sample JSON Document 1
"name" : "Jason",
"age" 1 45,
"address™ : [{ "street" : "25 A street",
"city" : "Mono Vista",
"zip" 1 94088,
"state™ : "CA" } 1],
"drinks" : "tea" }
Example 2-2 Sample JSON Document 2
{ "name" : "Mary",
"age" - 50,
"address" : [{ "street" : "15 C street",
"city" : "Mono Vista",
"zip" : 97090,
"state" : "OR" },
{ "street" : "30 ABC avenue",
"city" @ "Markstown",
"zip" - 90001,
"state" : "CA" }]}
Example 2-3 Sample JSON Document 3
{ "name"™ : "Mark",
"age" I 65,

"drinks" : ["soda", "tea"] }

Related Topics

e Field-Condition Clause (Reference)
A field-condition clause specifies that a given object field must satisfy a given set
of criteria. It constrains a field using one or more condition-operator clauses, each
of which is a comparison clause, a not clause, or an item-method clause.

ORACLE

2-3

Chapter 2
Overview of Paths in SODA QBES

2.2 Overview of Paths in SODA QBEs

ORACLE

A filter specification, or query-by-example (QBE), contains zero or more paths to fields
in JSON documents. A path to a field can have multiple steps, and it can cross the
boundaries of objects and arrays.

(In the context of a QBE, the term "path to a field" is sometimes shortened informally to
"field".)

For example, this QBE matches all JSON documents where a zip field exists under
field address and has value 94088:

{ "address.zip" : 94088 }

The path in the preceding QBE is address.zip, which matches Example 2-1.

¢ Note:

A SODA QBE is itself a JSON object. You must use strict JSON syntax in a
QBE. In particular, you must enclose all field names in double quotation
marks (**). This includes field names, such as address.zip, that act as
SODA paths. For example, you must write {"address.zip" : 94088}, not
{address.zip : 94088}.

Paths can target a particular element of an array in a JSON document, by enclosing
the array position of the element in square brackets ([and]).

For example, path address[1] .zip targets all zip fields in the second object of array
addresses. (Array position numbers start at 0, not 1.) The following QBE matches
Example 2-2 because the second object of its address array has a zip field with value
90001.

{ "address[1]-.zip"™ : 90001}

Instead of specifying a single array position, you can specify a list of positions (for
example, [1,2]) or a range of positions (for example, [1 to 3]). The following QBE
matches Example 2-3 because it has "'soda' as the first element (position 0) of array
drinks.

{ "drinks[0,1]" : “soda" }

And this QBE does not match any of the sample documents because they do not have
"soda'" as the second or third array element (position 1 or 2).

{ "drinks[1 to 2]" : "soda" }

If you do not specify an array step then [*] is assumed, which matches any array
element — the asterisk, *, acts as a wildcard. For example, if the value of field drinks

2-4

Chapter 2
Overview of QBE Comparison Operators

is an array then the following QBE matches a document if the value of any array
element is the string ""tea":

{"drinks" : "tea"}

This QBE thus matches sample documents 1 and 2. An equivalent QBE that uses the
wildcard explicitly is the following:

{"drinks[*]" : "tea"}

Related Topics

e SODA Paths (Reference)
SODA filter specifications contain paths, each of which targets a value in a
JavaScript Object Notation (JSON) document. A path is composed of a series of
steps. A detailed definition of SODA paths is presented.

e Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
qguery-by-example (QBE) examples, as well as in some reference descriptions.

¢ See Also:

Oracle Database JSON Developer’s Guide for information about strict and
lax JSON syntax

2.3 Overview of QBE Comparison Operators

ORACLE

A query-by-example (QBE) comparison operator tests whether a given JSON object
field satisfies some conditions.

One of the simplest and most useful filter specifications tests a field for equality to a
specific value. For example, this filter specification matches any document that has a
field name whose value is "Jason". It uses the QBE operator $eq, which tests field-
value equality.

{ "name" : { "$eq" : "Jason" } }

For convenience, for such a scalar-equality QBE you can generally omit operator $eq.
This scalar-equality filter specification is thus equivalent to the preceding one, which
uses $eq:

{ "name" : "Jason" }

Both of the preceding filter specifications match Example 2-1.
The comparison operators are the following:

e $all — whether an array field value contains all of a set of values

2-5

Chapter 2
Overview of QBE Comparison Operators

* $between — whether a field value is between two string or number values
(inclusive)

* $eq — whether a field value is equal to a given scalar

e $exists — whether a given field exists

* $gt — whether a field value is greater than a given scalar value

e $gte — whether a field value is greater than or equal to a given scalar

* $hasSubstring — whether a string field value has a given substring (same
as $instr)

e $in — whether a field value is a member of a given set of scalar values

* $instr — whether a string field value has a given substring (same
as $hasSubstring)

* $like — whether a field value matches a given SQL LIKE pattern

* $1t — whether a field value is less than a given scalar value

+ $lte — whether a field value is less than or equal to a given scalar value

* $ne — whether a field valueis different from a given scalar value

e $nin — whether a field value is not a member of a given set of scalar values
* $regex — whether a string field value matches a given regular expression

e $startsWith — whether a string field value starts with a given substring

You can combine multiple comparison operators in the object that is the value of a
single QBE field. The operators are implicitly ANDed. For example, the following QBE
uses comparison operators $gt and $1t. It matches Example 2-2, because that
document contains an age field with a value (50), which is both greater than 45 and
less than 55.

{ "age" : { "$gt" : 45, "SIt : 55 } }

" Note:

Both the operand of a SODA operator and the data matched in your
documents by a QBE are JSON data. But a comparison operator can in
some cases interpret such JSON values specially before comparing them.
The use of item-method operators can specify that a comparison should first
interpret JSON string data as, for example, uppercase or as a date or a time
stamp (date with time). This is explained in the sections about item-method
operators.

Related Topics

e Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
query-by-example (QBE) examples, as well as in some reference descriptions.

ORACLE 2-6

Chapter 2
Overview of QBE Operator $not

» Overview of QBE Operator $not
Query-by-example (QBE) operator $not negates the behavior of its operand,
which is a JSON object containing one or more comparison clauses, which are
implicitly ANDed.

e Field-Condition Clause (Reference)
A field-condition clause specifies that a given object field must satisfy a given set
of criteria. It constrains a field using one or more condition-operator clauses, each
of which is a comparison clause, a not clause, or an item-method clause.

e Comparison Clause (Reference)
A comparison clause is an object member whose field is a comparison operator.
Example: "$gt*” : 200.

e Overview of QBE Item-Method Operators
A query-by-example (QBE) item-method operator acts on a JSON-object field
value to modify or transform it in some way (or simply to filter it from the query
result set). Other QBE operators that would otherwise act on the field value then
act on the transformed field value instead.

2.4 Overview of QBE Operator $not

Query-by-example (QBE) operator $not negates the behavior of its operand, which is
a JSON object containing one or more comparison clauses, which are implicitly
ANDed.

When any of those clauses evaluates to false, the application of $not to them
evaluates to true. When all of them evaluate to true, it evaluates to false.

For example, this QBE matches Example 2-1 and Example 2-3: document 1 has a
field matching path address.zip and whose value is not "'90001", and document 3 has
no field matching path address.zip.

{"address.zip" : {"$not" : {"$eq" : "90001"}}}

The $not operand in the following QBE has two comparison clauses. It too matches
Example 2-1 and Example 2-3, because each of them has an age field whose value is
not both greater than 46 and less than 65.

{"age" : {"$not" : {"$gt" : 46, "$It" : 65}}}

Related Topics

e Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter
conditions.

e Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
guery-by-example (QBE) examples, as well as in some reference descriptions.

2.5 Overview of QBE Item-Method Operators

A query-by-example (QBE) item-method operator acts on a JSON-object field value to
modify or transform it in some way (or simply to filter it from the query result set). Other

ORACLE 2.7

ORACLE

Chapter 2
Overview of QBE Item-Method Operators

QBE operators that would otherwise act on the field value then act on the transformed
field value instead.

Suppose you want to select documents whose string-valued field name starts with “Jo”,

irrespective of letter case, so that you find matches for name values "Joe", "joe",
"JOE", "joE", "Joey", "joseph", "josé", and so on. You might think of using
operator $startsWith, but that matches string prefixes literally, considering J and j as

different characters, for example.

This is where an item-method operator can come in. Your QBE can use item-method
operator $upper to, in effect, transform the raw field data, whether it is *'Joey" or
"José", to an uppercase string, before operator $startsWith is applied to test it.

The following QBE matches the prefix of the value of field name, but only after
converting it to uppercase. The uppercase value is matched using the condition that it
starts with JO.

{ "name" : { "$upper"” : { "$startsWith” : "J0" } } }

As another example, suppose that you have documents with a string-valued field
deadline that uses an ISO 8601 date-with-time format supported by SODA, and you
want to select those documents whose deadline is prior to 7:00 am, January 31, 2019,
UTC. You can use item-method operator $timestamp to convert the field string values
to UTC time values (not strings), and then perform a time comparison using an
operator such as $lt. This QBE does the job:

{ "deadline" : { "S$timestamp” : { "$It" : "2019-01-31T07:00:00Z" } } }

That matches each of the following deadl ine field values, because each of them
represents a time prior to the one specified in the QBE. (The last two represent the
exact same time, since 7 pm in a time zone that is 3 hours behind UTC is the same as
10 pm UTC.)

e { "deadline" : "2019-01-28T14:59:43Z" }
e { "deadline" : "2019-01-30T22:00:00Z" }
o { "deadline" : "2019-01-30T19:00:00-03:00" }

Not all item-method operators convert data to a given data type. Some perform other
kinds of conversion. Operator $upper, for instance, converts a string value to
uppercase — the result is still a string.

Some item-method operators even return data that is wholly different from the field
values they are applied to. Operator $type, for instance, returns a string value that
names the JSON data type of the field value.

So for example, this QBE selects only Example 2-3 of the three sample documents,
because it is the only one that has a drinks field whose value is an array (["'soda",
"tea']). In particular, it does not match Example 2-1, even though that document has
a field drinks, because the value of that field is the string "tea" — a scalar, not an
array.

{ "drinks" : { "$type" : "array" } }

2-8

Chapter 2
Overview of QBE Logical Combining Operators

Note:

An item-method field (operator) does not, itself, use or act on its associated
value (its operand). Instead, it acts on the value of the JSON data that
matches its parent field.

For example, in the QBE {"birthday" : {'$date" : {"$gt" :
"'2000-01-01"}}}, item-method operator $date acts on the JSON data that
matches its parent field, birthday. It does not use or act on its operand,
which is the JSON object (a comparison clause in this case) {"$gt" :
"2000-01-01"}. The birthday data (a JSON string of format ISO 8601) in
your JSON document is interpreted as a date, and that date is then matched
against the condition that it be greater than the date represented by the (ISO
date) string ""2000-01-01" (later than January 1, 2000).

This can take some getting used to. The operand is used after the item-
method operator does its job. It is matched against the result of the action of
the operator on the value of its parent field. A item-method operator is a filter
of sorts — it stands syntactically between the field (to its left) that matches
the data it acts on and (to its right) some tests that are applied to the result of
that action.

Note:

* To use item method operator $abs, $date, $size, $timestamp, or $Stype
you need Oracle Database Release 18c or later.

e To use any other item method you need Oracle Database Release 12c
(12.2.0.1) or later.

Related Topics

Item-Method Clause (Reference)

An item-method clause is an item-method equality clause or an item-method
modifier clause. It applies an item method to the field of the field-condition clause
in which it appears, typically to modify the field value. It then matches the result
against the operand of the item-method.

ISO 8601 Date and Time Support

International Standards Organization (ISO) standard 8601 describes an
internationally accepted way to represent dates and times. Oracle Database
supports many of the ISO 8601 date and time formats.

2.6 Overview of QBE Logical Combining Operators

You use the query-by-example (QBE) logical combining operators, $and, $or,
and $nor, to combine conditions to form more complex QBEs. Each accepts an array
of conditions as its argument.

ORACLE

QBE logical combining operator $and matches a document if each condition in its array
argument matches it. For example, this QBE matches Example 2-1, because that

2-9

ORACLE

Chapter 2
Overview of QBE Logical Combining Operators

document contains a field name whose value starts with "'Ja", and it contains a field
drinks whose value is "tea".

{'$and” : [{'name" : {"$startsWith” : "Ja"}}, {"drinks" : "tea"} 1}

Often you can omit operator $and — it is implicit. For example, the following query is
equivalent to the previous one:

{"name" : {"$startsWith" : "Ja"}, "drinks" : "tea"}

QBE logical combining operator $or matches a document if at least one of the
conditions in its array argument matches it.

For example, the following QBE matches Example 2-2 and Example 2-3, because
those documents contain a field drinks whose value is "soda™ or they contain a field
zip under a field address, where the value of address.zip is less than 94000, or they
contain both:

{'$or" : [{'drinks" : "soda"}, {'address.zip" : {"$le" : 94000}} 1}

QBE logical combining operator $nor matches a document if no condition in its array
argument matches it. (Operators $nor and $or are logical complements.)

The following query matches sample document 1, because in that document there is
neither a field drinks whose value is "'soda" nor a field zip under a field address,
where the value of address.zip is less than 94000:

{'$nor" : [{'drinks" : "soda"}, {"address.zip" : {"$le" : 94000}} 1}

Each element in the array argument of a logical combining operator is a condition.

For example, the following condition has a single logical combining clause, with
operator $and. The array value of $and has two conditions: the first condition restricts
the value of field age. The second condition has a single logical combining clause
with $or, and it restricts either the value of field name or the value of field drinks.

{ "$and" : [{ "age" : {"$gte" : 60} },
{ "$or" : [{"name" : "Jason"},
{"drinks" : {"$in" : ["tea", "soda"]}} 11} 1}

* The condition with the comparison for field age matches sample document 3.

e The condition with logical combining operator $or matches sample documents 1
and 3.

* The overall condition matches only sample document 3, because that is the only
document that satisfies both the condition on age and the condition that uses $or.

The following condition has two conditions in the array argument of operator $or. The
first of these has a single logical combining clause with $and, and it restricts the values

2-10

Chapter 2
Overview of Nested Conditions in QBEs

of fields name and drinks. The second has a single logical combining clause with $nor,
and it restricts the values of fields age and name.

{ "$or" : [{ "$and" : [{"name"™ : "Jason"},
{"drinks" : {"$in" : ["tea", "soda"1}}] },
{ "$nor” : [{"age" : {"$It" : 65}},
{"name" : "Jason"} 1} 1}

* The condition with operator $and matches sample document 1.
* The condition with operator $nor matches sample document 3.

e The overall condition matches both sample documents 1 and 3, because each of
these documents satisfies at least one condition in the $or argument.

Related Topics

e Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter
conditions.

e Omitting $and
Sometimes you can omit the use of $and.

e Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
guery-by-example (QBE) examples, as well as in some reference descriptions.

2.7 Overview of Nested Conditions in QBES

ORACLE

You can use a query-by-example (QBE) with a nested condition to match a document
that has a field with an array value with object elements, where a given element of the
array satisfies multiple criteria.

The following condition matches documents that have both a city value of ""Mono
Vista" and a state value of"'CA" in the same object under array address.

{"address" : { "city" : "Mono Vista", "state" : "CA"}}

It specifies that there must be a parent field address, and if the value of that field is an
array then at least one object in the array must have a city field with value ""Mono
Vista" and a state field with value "CA". Of the three sample JSON documents, this
QBE matches only Example 2-1.

The following QBE also matches sample document 1, but it matches Example 2-2 as
well:

{"address.city" : "Mono Vista", "address.state" : "CA"}

Unlike the preceding QBE, nothing here constrains the city and state to belong to the
same address. Instead, this QBE specifies only that matching documents must have a
city field with value "Mono Vista" in some object of an address array and a state
field with value "CA™ in some object of an address array. It does not specify that fields
address.city and address.state must reside within the same object.

2-11

Chapter 2
Overview of QBE Operator $id

Related Topics

* Nested-Condition Clause (Reference)
A nested-condition clause consists of a parent field followed by a single, non-
empty filter condition. All fields contained in this nested condition are scoped to
the parent field.

e Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
guery-by-example (QBE) examples, as well as in some reference descriptions.

2.8 Overview of QBE Operator $id

Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. Operator $id is an exception in that it
instead matches document keys. It thus matches document metadata, not document
content. You use operator $id in the outermost condition of a QBE.

Example 2-4 shows three QBEs that use operator $id.

Example 2-4 Using $id To Find Documents That Have Given Keys

// Find the unique document that has key "keyl".
{"$id" : "keyl"}

// Find the documents that have any of the keys "keyl", "key2", and "key3".
{"$id" : ["keyl","key2","key3"]}

// Find the documents that have at |east one of the keys "keyl" and "key2",
// and that have an object with a field address.zip whose value is at
least 94000.
{"$and" : [{$id : ["keyl", "key2"]},

{"address.zip" : { "$gte" : 94000 }}1}

Related Topics

e ID Clause (Reference)
Other query-by-example (QBE) operators generally look for particular JSON fields
within the content of documents and try to match their values. An ID clause, which
uses operator $id, instead matches document keys. It thus matches document
metadata, not document content.

2.9 Overview of QBE Operator $orderby

ORACLE

Query-by-example (QBE) operator $orderby is described. It sorts query results in
ascending or descending order.

You can specify the sort order for individual fields and the relative sort order among
fields.

Operator $orderby can be used with two alternative syntaxes: array and abbreviated.

Regardless of the syntax choice, when you use $orderby in a filter specification
together with one or more filter conditions, you must wrap those conditions with
operator $query. In the queries shown here, the returned documents are restricted to

2-12

ORACLE

Chapter 2
Overview of QBE Operator $orderby

those that satisfy a filter condition that specifies that field age must have a value
greater than 40.

Using the Orderby Clause Array Syntax

The array syntax is the more straightforward of the two. You follow $orderby by an
array of the fields to sort, in their relative sort order: the first array element specifies
the first field to sort by, the second element specifies the second field to sort by, and
S0 on.

The array syntax also lets you specify the SQL data type to use for sorting a given
field, that is, how to interpret the field values, for sorting purposes.

For example, you can specify whether a field that has numeric codes (as a string or as
a number) should be sorted lexicographically (as a string of digit characters) or
numerically as a sequence of digits interpreted as a number). With “varchar2" as the
sort data type, 100" sorts, in ascending order, before ""9". With "number' as the sort
type, ""9" sorts, in ascending order, before *"100", since the number 9 is smaller than
the number 100.

" Note:

To use a datatype value of date or timestamp you need Oracle Database
Release 18c or later.

Finally, the array syntax also lets you specify, for a string-valued field, a maximum
number of characters at the start of the string. An error is raised if a string value for the
targeted field is too long.

The following QBE selects objects in which field salary is between 10,000 and
20,000, inclusive. It sorts the objects first by descending age, interpreted as a number,
then by ascending name, interpreted as a string. An error is raised if the string value of
field name is longer than 100 characters in any matching document. The default error
handling also applies: raise an error if the value of any of the specified fields is not
convertible to the specified datatype, but do not raise an error just because some of
the specified fields are missing.

{ "$query” : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
"$orderby" : [{ "path" : "age",
"datatype" : ‘"number",
"order" : "desc" },
{ "path" : "name"’,
"datatype" : ‘"varchar2",
"order" : "asc",

"maxLength™ - 100 }] }

The following QBE is the same, except that it specifies scalarRequired = true, to
require that field name be present in each matching document (as well as requiring that
its value be convertible to a string). Otherwise, an error is raised at query time.

{ "$query” @ { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
"$orderby” : { "$fields"” :

2-13

Chapter 2
Overview of QBE Spatial Operators

[{ "path” : "age",
"datatype”™ : "number",
"order" : "desc" },

{ "path" : "name"’,
"datatype™ : ‘"varchar2",
"order" : "asc",

"maxLength" : 100 }],
"$scalarRequired” : true } }

Using the Orderby Clause Abbreviated Syntax

The abbreviated syntax lets you list the fields to sort by and their relative sort order in
a succinct way. You cannot use it to specify how to interpret the values of a given field
for sorting purposes, that is, which data type to interpret the values as. And you cannot
specify a maximum number of characters to take into account when sorting a string
field.

The following QBE specifies the order of fields age and name when sorting documents
where the salary is between 10,000 and 20,000. A value of —1 specifies descending
order for age. A value of 2 specifies ascending order for name. Sorting is done first by
age and then by name, because the absolute value of -1 is less than the absolute value
of 2 — not because -1 is less than 2, and not because field age appears before field
name in the $orderby object.

{ "$query"” : { "salary" : { $between [10000, 20000] } },
"$orderby" - { "age" : -1, "name™ : 2 } }

Related Topics

e Orderby Clause Sorts Selected Objects
A filter specification (query-by-example, or QBE) with an orderby clause returns
the selected JSON documents in sorted order.

2.10 Overview of QBE Spatial Operators

ORACLE

You can use query-by-example (QBE) operator $near, $intersects, or $within to
select documents that have a field whose value is a GeoJSON geometry object that is
near a specified position, intersects a specified geometric object, or is within another
specified geometric object, respectively.

Note:

To use QBE spatial operators you need Oracle Database Release 12c¢
(12.2.0.1) or later.

The following QBE selects only documents that have a location field whose value is a
Point GeoJSON geometry object that represents a position within 50 kilometers of the
coordinates [34.0162, -118.2019].

{ "location" :
{ "$near" :

2-14

Chapter 2
Overview of QBE Spatial Operators

{ "$geometry” : { "type" : "Point", "coordinates" : [34.0162,

-118.2019] },
"$distance" : 50,
ll$unitll : IIKMII } } }

It can retrieve a document that has an object such as this one, for example:

{ "location" : { "type" : "Point", "coordinates": [33.7243, -118.1579] } }

Any document that does not contain a location field is ignored (skipped) without
error. But if the queried collection contains a document with a location field that does
not have as value a (single) GeoJSON geometry object then an error is raised. A
document with this object, for example, raises an error:

{ "location™ : "1600 Pennsylvania Ave NW, Washington, DC 20500" }

You can provide different (non-default) error-handling behavior for your QBE by
including a true-valued $scalarRequired or $lax field (but not both together) in the
object that is the value of spatial operator $near, $Sintersects, or $within.

e A true value for field $scalarRequired means raise an error if any document does
not have a location field. (An error is still also raised for a location field whose
value is not a geometry object.)

* A true value for field $lax means ignore not only a missing location field but also
a location field whose value is not a GeoJSON geometry object.

For example, this QBE raises an error if any document has no location field or if any
document has a location field whose value is not a geometry object:

{ "location" :
{ "$near" :
{ "$geometry” : { "type" : "Point", "coordinates" : [34.0162,
-118.2019] },
"$distance" : 50,
"$unit” A (T
"$scalarRequired : true } } }

And this QBE does not raise an error for a document that has no location field or for
a document that has a location field whose value is not a geometry object:

{ "location" :
{ "$near" :
{ "$geometry” : { "type" : "Point", "coordinates" : [34.0162,
-118.2019] },
"$distance" : 50,
"$unit” R
"$lax" D true } } }

ORACLE 2-15

Chapter 2
Overview of QBE Spatial Operators

Note:

If you have created a SODA spatial index, for a field whose value is a
GeoJSON geometry object, and you use a QBE that targets that field, the
index can be picked up for the QBE only if both index and QBE specify the
same error-handling behavior for that field. Both must specify the same one
of these:

e scalarRequired : true
e« lax : true

e Neither scalarRequired : true nor lax : true

Related Topics

» Spatial Clause (Reference)
GeoJSON objects are JSON objects that represent geographic data. You can use
a SODA QBE spatial clause to match GeoJSON geometry objects in your
documents.

* SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

ORACLE 2-16

Overview of SODA Indexing

ORACLE

The performance of SODA QBEs can sometimes be improved by using indexes. You
define a SODA index with an index specification, which is a JSON object that specifies
how particular QBE patterns are to be indexed for quicker matching.

Suppose that you often use a query such as {"dateField" : {"$date" : DATE-
STRI NG}}, where DATE- STRI NGis a string in an 1SO 8601 format supported by SODA.
Here, item method $date transforms DATE- STRI NGto a SQL value of data type DATE.
You can typically improve the performance of queries on a field such as "dateField"
by creating a B-tree index for it.

Or suppose that you want to query spatial data in a GeoJSON geometry object. You
can improve the performance of such queries by creating a SODA spatial index for
that data.

Or suppose that you want to be able to perform full-text queries using QBE
operator $contains. You can enable such queries by creating a JSON search index
for your data.

Or suppose that you want to perform metadata queries on a JSON data guide, which
is a summary of the structural and type information about a set of JSON documents.
You can create a JSON search index that holds and automatically updates such data-
guide information.

In all such cases you specify the index you want by creating a SODA index
specification and then using it to create the specified index.

Each SODA implementation that supports indexing provides a way to create an index.
They all use a SODA index specification to define the index to be created. For
example, with SODA for REST you use an HTTP POST request, passing URI
argument action=index, and providing the index specification in the POST body.

Note:

e To create a B-tree index you need Oracle Database Release 12c
(12.2.0.1) or later.

To create a B-tree index that indexes a DATE or a TIMESTAMP value you
need Oracle Database Release 18c (18.1) or later.

e To create a spatial index you need Oracle Database Release 12¢
(12.2.0.1) or later.

e To create a search index you need Oracle Database Release 12c
(12.2.0.1) or later.

3-1

ORACLE

Chapter 3

Example 3-1 Specifying a B-Tree Index

This example specifies a B-tree non-unique index for numeric field address.zip.

{ "name"™ : “ZIPCODE_IDX",
"fields" : [{ "path" : "address.zip",
"datatype" : "number",
"order" "asc" }+ 1}

This indexes the field at path address.zip in Example 2-1 and Example 2-2.
Example 2-3 has no such field, so that document is skipped during indexing.

You can specify that the index requires that all indexed fields be scalar by including
scalarRequired : true in the index specification:

{ "name" > "ZIPCODE_IDX",
"fields" : [{ "path" : "address.zip",
"datatype" : "number",
"order" : "asc" } 1,

"scalarRequired" : true }

If a specification includes scalarRequired : true, and if the collection contains a
document that is missing one or more of the specified fields (just address.zip in this
case), or if any of them has a non-scalar value, then an error is raised when creating
the index. In addition, if such an index exists when you try to write a document that
lacks that one of the indexed fields then an error is raised for the write operation.

Regardless of the value of scalarRequired, an error is raised if you try to write a
document that has the targeted field but with a value that is not convertible to the
specified data type. For example, for the index defined in Example 3-1, if a document
contains field address.zip, but the field value is not convertible to a number, then an
error is raised. This would be the case, for instance, for a zip field whose value is an
object.

Example 3-2 Specifying a Spatial Index

This example specifies an Oracle Spatial and Graph index named
LOCATION_LONG_LAT_IDX, which indexes the GeoJSON geometry object that is the
value of field location in your documents:

{ "name" > "LOCATION_LONG_LAT_IDX",
"spatial"™ : "location" }

This index specification applies to all documents that have a location field whose
value is a GeoJSON geometry object, and only to such documents. Here's an example
of an object with such a location field, whose value is a geometry object of type
Point:

{ "location" : { "type" : "Point",
"coordinates" : [33.7243, 118.1579] } }

That location value is indexed, because its value is a GeoJSON geometry object.

3-2

ORACLE

Chapter 3

Because neither scalarRequired : true nor lax : true is specified in the index
specification, a document that has no location field is silently skipped (not indexed)
during indexing.

And if the collection that is queried has a document with an object such as one of the
following, whose location values are not GeoJSON geometry objects, then an error is
raised during indexing.

{ "location"™ : [33.7243, 118.1579] }
{ "location" : "1600 Pennsylvania Ave NW, Washington, DC 20500" }

In addition, if such an index exists, and you try to write a document that has location
field with such a non-geometry value, then an error is raised for the write operation.

You can specify that the index requires that all indexed fields be scalar by including
scalarRequired : true in the index specification:

{ "name" > "LOCATION_LONG_LAT_IDX",
"spatial” : "location",
"scalarRequired" : true }

With scalarRequired : true, if the collection contains a document that has no
location field, then an error is raised when creating the index. In addition, if such an
index exists, and you try to write a document that lacks the indexed field (location),
then an error is raised for the write operation. (An error is still also raised, for index
creation or a write operation, for a location field whose value is not a geometry
object.)

Alternatively you can specify that the index does not require indexed fields to be
present and have GeoJSON geometry values by including lax : true in the index
specification:

{ "name" : "LOCATION_LONG_LAT_IDX",
"spatial™ : "location”,
"lax™ : true }

With lax : true, no error is raised for a document that lacks a location field or for a
document with a location field value (such as {""location™ : [33.7243,
118.1579]}) that is not a GeoJSON geometry object. The index simply ignores such
documents.

3-3

ORACLE

Chapter 3

Note:

If you have created a SODA spatial index, for a field whose value is a
GeoJSON geometry object, and you use a QBE that targets that field, the
index can be picked up for the QBE only if both index and QBE specify the
same error-handling behavior for that field. Both must specify the same one
of these:

e scalarRequired : true
o lax : true

e Neither scalarRequired : true nor lax : true

Example 3-3 Specifying a JSON Search Index
This example specifies a JSON search index. The index does both of these things:

e Enables you to perform ad hoc full-word and full-number queries on your JSON
documents.

e Automatically accumulates and updates aggregate structural and type information
about your JSON documents.

"name™ : "SEARCH_AND_DATA_ GUIDE_IDX" }

This index specification is equivalent. It just makes explicit the default values.

{ "name" : "SEARCH_AND_DATA GUIDE_IDX",
"dataguide" : "on",
"search_on" : "text value" }

Related Topics

* SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

¢ See Also:

e Oracle Database JSON Developer’s Guide for information about using
SQL to create json_value B-tree indexes

e Oracle Spatial and Graph Developer's Guide for information about
Oracle Spatial and Graph indexes

e Oracle Database JSON Developer’s Guide for information about JSON
search indexes

3-4

SODA Paths (Reference)

ORACLE

SODA filter specifications contain paths, each of which targets a value in a JavaScript
Object Notation (JSON) document. A path is composed of a series of steps. A detailed
definition of SODA paths is presented.

" Note:

A SODA QBE is itself a JSON object. You must use strict JSON syntax in a
QBE. In particular, you must enclose all field names in double quotation
marks (**). This includes field names, such as address.zip, that act as
SODA paths. For example, you must write {"'address.zip" : 94088}, not
{address.zip : 94088}.

The following characters can have special syntactic meaning in some SODA path
steps, in which case their use in that context is called syntactic (they are used
syntactically):

» Brackets ([and]) delimit a JSON array
« Comma (,) separates array elements or array index components

* Wildcard (*) is a placeholder that matches any array index in an array step or any
field name in a field step (defined below)

» Period (.) separates a parent-object field name (or *) from a child-object field
name (or *)

In any other path-expression context than those just listed, these same characters
have no special syntactic meaning. For example, outside of its use in array syntax a
comma is not used syntactically.

A character that is not used syntactically in a given context is ordinary in that context.
For example, a comma is ordinary outside of its use in array syntax, and the character
d is always ordinary.

There are two kinds of steps in a path: field steps and array steps.

A field step is one of the following:

* The wildcard character * (by itself)

» A sequence of characters that are always ordinary — for example, cat

* A sequence of any characters that is enclosed in backquote characters (*) — for
example, “dog™ and “cat.dog”

Characters within a field step that is enclosed in backquote characters are not used
syntactically; they are treated literally. If you intend for a character not to be used
syntactically where it normally would be then you must enclose its step in backquote
characters.

4-1

ORACLE

Chapter 4

All of the characters in field name dog are always ordinary, so backquote characters
are optional in “dog". But the following field steps must be enclosed in backquote
characters because each contains one or more characters that would otherwise be
used syntactically:

“cat.dog”
“cat[dog]”

S~k

In the path a.*.b, the asterisk acts as a wildcard; it is a placeholder for a field name.
But in the path a.™*" .b the asterisk does not act as a wildcard. Because it is escaped
by backquotes it acts as an ordinary character — a field named *. (In both cases the
unescaped periods are used syntactically.)

Besides using backquotes to inhibit special syntactic meaning, you can use them to
escape a dollar-sign character ($) at the beginning of a field name, where it would
otherwise be interpreted as introducing a SODA operator name. For example,
because of the backquote characters, the field step ~$eq” does not represent SODA
operator $eq; it represents an ordinary JSON field that has the same name. (Needing
to query data that has field names that begin with $ is rare.)

If a step that you enclose in backquote characters contains a backquote character,
then you must represent that character using two consecutive backquote characters.
For example: ~Customer™"s Comment’.

An unescaped period (.) must be followed by a field step. After the first step in a path,
each field step must be preceded by a period.

An array step is delimited by brackets ([and]). Inside the brackets can be either:

e The wildcard character * (by itself)
* One or more of these array index (position) components:
— A single array index, which is an integer greater than or equal to zero

— An array index range, which has this syntax:

X toy

x and y are integers greater than or equal to zero, and x is less than or equal
toy. There must be at least one whitespace character between x and to and
between to and y.

Multiple components must be separated by commas (,). In a list of multiple
components, array indexes must be in ascending order, and ranges cannot
overlap.

For example, these are valid array steps:

[

[1]

[1,2,3]

[1 to 3]
[1, 3 to 5]

4-2

ORACLE

Chapter 4

The following are not valid array steps:

[*. 6]

[3, 2, 1]

[3 to 1]

[1 to 3, 2 to 4]

Related Topics

e Overview of Paths in SODA QBEs
A filter specification, or query-by-example (QBE), contains zero or more paths to
fields in JSON documents. A path to a field can have multiple steps, and it can
cross the boundaries of objects and arrays.

e SODA Filter Specifications (Reference)
You can select JSON documents in a collection by pattern-matching. A detailed
definition of SODA filter specifications (QBES) is presented.

" See Also:

e Oracle Database JSON Developer’s Guide for information about strict
and lax JSON syntax

e Introducing JSON for information about JSON

4-3

SODA Filter Specifications (Reference)

You can select JSON documents in a collection by pattern-matching. A detailed
definition of SODA filter specifications (QBES) is presented.

A filter specification, also known as a query-by-example (QBE) or simply a filter, is
a SODA query that uses a pattern expressed in JSON. A QBE is itself a JSON object.
SODA query operations use a QBE to select all JISON documents in a collection that
satisfy it, meaning that the filter evaluates to true for only those documents. A QBE
thus specifies characteristics that the documents that satisfy it must possess.

A filter can use QBE operators, which are predefined JSON fields whose names start
with a dollar-sign character ($). The JSON value associated with an operator field is
called its operand or its argument.*

Although a SODA operator is itself a JSON field, for ease of exposition in the context
of filter specification descriptions, the term “field” generally refers here to a JSON field
that is not a SODA operator. Also, in the context of a QBE, “field” is often used
informally to mean “path to a field”.

Note:

You must use strict JSON syntax in a SODA filter specification, enclosing
each nonnumeric, non-Boolean, and non-null JSON value in double
quotation marks (**). In particular, the names of all JSON fields, including
SODA operators, must be enclosed in double quotation marks.

A filter specification is a JSON object. There are two kinds of filter specification:

e Composite filter.
* Filter-condition filter.

A filter specification (QBE) can appear only at the top (root) level of a query. However,
a filter condition can be used either (a) on its own, as a filter-condition filter (a QBE), or
(b) at a lower level, in the query clause of a composite filter.

Note:

Query-by-example is not supported on a heterogeneous collection, that is, a
collection that has the media type column. Such a collection is designed for
storing both JSON and non-JSON content. QBE is supported only for
collections that contain only JSON documents.

1 A syntax error is raised if the argument to a QBE operator is not of the required type (for example, if operator $gt
is passed an argument that is not a string or a number).

ORACLE

5-1

Chapter 5
Composite Filters (Reference)

» Composite Filters (Reference)
A composite filter specification (query-by-example, or QBE) can appear only at the
top level. That is, you cannot nest a composite filter inside another composite filter
or inside a filter condition.

» Filter Conditions (Reference)
A filter condition can be used either on its own, as a filter specification, or at a
lower level, in the query clause of a composite filter specification.

Related Topics

* Overview of SODA Filter Specifications (QBES)
A filter specification is a pattern expressed in JSON. You use it to select, from a
collection, the JISON documents whose content matches it, meaning that the
condition expressed by the pattern evaluates to true for the content of (only) those
documents.

* Media Type Column Name
The collection metadata component that specifies the name of the column that
stores the media type of the document. A media type column is needed if the
collection is to be heterogeneous, that is, it can store documents other than
JavaScript Object Notation (JSON).

" See Also:

Oracle Database JSON Developer’s Guide for information about strict and
lax JSON syntax

5.1 Composite Filters (Reference)

A composite filter specification (query-by-example, or QBE) can appear only at the top
level. That is, you cannot nest a composite filter inside another composite filter or
inside a filter condition.

A composite filter consists of at most one of each of these clauses:2
* Query clause

It has the form $query filter_condition.
e Orderby clause

It has the form $orderby or der by_spec.

The order of the clauses is not significant. Absence of a clause has the same effect as
applying its operator to an operand that is an empty object: Absence of a query clause
selects all documents; absence of an orderby clause imposes no order.

The following composite filter contains a query clause and an orderby clause. The
guery clause selects documents that have a salary field whose value is greater than

2 SODA for REST provides additional clauses for use in a composite filter.

ORACLE

5-2

Chapter 5
Composite Filters (Reference)

10,000. The orderby clause sorts the selected documents first by descending age and
then by ascending zip code.

{ "$query"” : { "salary" : { "gt" : 10000 } },
"$orderby" : { "age™ : -1, "zip" : 2} }

e Orderby Clause Sorts Selected Objects
A filter specification (query-by-example, or QBE) with an orderby clause returns
the selected JSON documents in sorted order.

Related Topics

» Filter Conditions (Reference)
A filter condition can be used either on its own, as a filter specification, or at a
lower level, in the query clause of a composite filter specification.

5.1.1 Orderby Clause Sorts Selected Objects

ORACLE

A filter specification (query-by-example, or QBE) with an orderby clause returns the
selected JSON documents in sorted order.

There are two ways of controlling the ordering behavior, with different orderby-clause
syntaxes:

* An array syntax lets you specify the SQL data types used and provides simple
control over the field order. Sorting is by the first field specified, then by the
second, and so on.

There are two variants of this syntax, depending on whether you need to change
the default behavior for handling of errors or empty fields.

* An abbreviated syntax does not let you specify the SQL data types used. In its
most abbreviated form it also does not provide control over the order of the fields
used for sorting.

Orderby Clause Array Syntax

The simplest orderby array syntax is operator $orderby followed by an array of
objects, each of which has a path field, which targets a particular field from the root of
the candidate object, followed by at most one of each of these fields:

- datatype, which specifies the SQL data type to use — one of: "varchar2"
(default), "number", ""date", "timestamp", "string" or "varchar". (Values
"string" and "varchar" are synonyms for "'varchar2".)

These values correspond to SQL data types VARCHAR2, NUMBER, DATE, and
TIMESTAMP, respectively.

Note:

To use a datatype value of date or timestamp you need Oracle
Database Release 18c or later.

« order, which specifies whether the field values are to be in ascending (*'asc') or
descending ("'desc") order (default: ""asc™)

5-3

Chapter 5
Composite Filters (Reference)

» maxLength, which is a positive integer that specifies the maximum length, in
characters, of a targeted string value. If a string exceeds this limit then raise an
error. The use of $lax (see below) inhibits raising the error and ignores the
overlong string for sorting purposes. Field maxLength applies only when datatype
is "'varchar2".

For example, this filter specification selects objects in which field salary has a value
greater than 10,000 and less than or equal to 20,000. It sorts the objects first by
descending age, interpreted as a number, then by ascending name, interpreted as a

string.
{ "$query” : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
"$orderby" :
[{ "path™ : "age™, "datatype" : "number”, "order™ : "desc" },
{ "path™ : "name", "datatype" : "varchar2", "order" : "asc" }] }

The following SQL SELECT statement fragment is analogous:

WHERE (salary > 10000) AND (salary <= 20000) ORDER BY age DESC, name ASC

This syntax serves most purposes. No error is raised just because the targeted field is
absent, and any other error encountered is raised.?

If you need to specify special handling of missing fields or errors then you need to use
the more elaborate array syntax. This wraps the array in a $fields object, which lets
you add another field, $scalarRequired or $lax, to the $orderby object. You cannot
specify a true value for both $lax and $scalarRequired, or else a syntax error is
raised at query time.

* $scalarRequired — Boolean. Optional. When set to true the targeted field must
be present, and its value must be a JSON scalar that is convertible to data type
datatype. Raise an error at query time if, for any matched document, that is not
the case.*

» $lax — Boolean. Optional. When set to true the targeted field need not be
present or have a value that is a JSON scalar convertible to data type datatype.
Do not raise an error at query time if, for any matched document, that is the case.®

If neither scalarRequired nor lax is specified as true then the default error-handling
behavior applies (no error is raised just because the targeted field is absent, and any
other error encountered is raised).

For example, this filter specification has the same behavior as the preceding one,
except that it raises an error if any of the targeted fields is missing.

{ "$query” : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
"$orderby" :
{ "$fields” : [{ "path" : "age",
"datatype" : "number",

3 The default error-handling behavior corresponds to the SQL/JSON semantics ERROR ON ERROR NULL ON
EMPTY.

4 A true value of $scalarRequired corresponds to the use of SQL clause ERROR ON ERROR for a json_value
expression.

5 A true value of $lax corresponds to the use of SQL clause NULL ON ERROR for a functional index created on a
Json_value expression.

ORACLE 5-4

ORACLE

Chapter 5
Composite Filters (Reference)

"order™ : "desc" },

{ "path"™ : "name",
"datatype" : "varchar2",
"order"™ : "asc",

"maxLength" : 100 }],
"$scalarRequired” : true } }

Note:

If you use Oracle Database Release 12c¢ (12.1.0.2) then you must specify
either $scalarRequired or $lax; otherwise a syntax error is raised.

" Note:

If you have defined a B-tree index for any of the fields targeted by a QBE that
has an orderby clause then that index must be specified with a true value of
indexNulls for it to be picked up for that query.

¢ See Also:
e Oracle Database JSON Developer’s Guide for information about SQL/
JSON error-handling values ERROR ON ERROR and NULL ON ERROR

e Oracle Database JSON Developer’s Guide for information about SQL/
JSON empty field-handling values NULL ON EMPTY and ERROR ON EMPTY

Orderby Clause Abbreviated Syntax

The abbreviated $orderby syntax specifies the fields to use for sorting, along with their
individual directions and the order of sorting among the fields. It does not specify the
SQL data types to use when interpreting field values for sorting, and it does not let you
limit string sorting to the first N characters.

The orderby abbreviated syntax is $orderby followed by an object with one or more
members, whose fields are used for sorting:

"$orderby" : { fieldl : directionl, field2 : direction2, ... }

Each fi el d is a string that is interpreted as a path from the root of the candidate
object.

Each di recti on is a non-zero integer. The returned documents are sorted by the
fi el d value in ascending or descending order, depending on whether the value is
positive or negative, respectively.

The fields in the $orderby operand are sorted in the order of their magnitudes
(absolute values), smaller magnitudes before larger ones. For example, a field with

5-5

Chapter 5
Filter Conditions (Reference)

value -1 sorts before a field with value 2, which sorts before a field with value 3. As
usual, the order of the fields in the object value of $orderby is immaterial.

If the absolute values of two or more sort directions are equal then the order in which
the fields are sorted is determined by the order in which they appear in the serialized
JSON content that you use to create the JSON document.

Oracle recommends that you use sort directions that have unequal absolute values, to
precisely govern the order in which the fields are used, especially if you use an
external tool or library to create the JSON content and you are unsure of the order in
which the resulting content is serialized.

This query acts like the one in Orderby Clause Array Syntax, except that interpretation
of data types is not specified here, and (assuming that field name has string values) all
characters in the name are used for sorting here. Note that the order of the object
members is irrelevant here. In particular, it does not specify which field is sorted first —
that is determined by the value magnitudes.

{ "$query” : { "salary" : { $between [10000, 20000] } },
"$orderby" : { "age" : -1, "name" : 2 } }

The following SQL SELECT statement fragment is analogous:

WHERE (salary >= 10000) AND (salary <= 20000) ORDER BY age DESC, name ASC

Related Topics

e Overview of QBE Operator $orderby
Query-by-example (QBE) operator $orderby is described. It sorts query results in
ascending or descending order.

e SODA Paths (Reference)
SODA filter specifications contain paths, each of which targets a value in a
JavaScript Object Notation (JSON) document. A path is composed of a series of
steps. A detailed definition of SODA paths is presented.

e SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

5.2 Filter Conditions (Reference)

ORACLE

A filter condition can be used either on its own, as a filter specification, or at a lower
level, in the query clause of a composite filter specification.

A filter condition is a JSON object whose members form one or more of these
clauses:

e scalar-equality clause
» field-condition clause
* logical combining clause
* nested-condition clause

 ID clause

5-6

Chapter 5
Filter Conditions (Reference)

* special-criterion clause

A filter condition is true if and only if all of its clauses are true. A filter condition can be
empty (the empty object, {}), in which case all of its (zero) clauses are vacuously true
(the filter condition is satisfied).

For example, if a QBE involves only one filter condition and it is empty then all
documents of the collection are selected. In this case, a find operation returns all of the
documents, and a remove operation removes them all.

e Scalar-Equality Clause (Reference)
A scalar-equality clause tests whether a given object field is equal to a given
scalar value.

» Field-Condition Clause (Reference)
A field-condition clause specifies that a given object field must satisfy a given set
of criteria. It constrains a field using one or more condition-operator clauses, each
of which is a comparison clause, a not clause, or an item-method clause.

e Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter
conditions.

» Nested-Condition Clause (Reference)
A nested-condition clause consists of a parent field followed by a single, non-
empty filter condition. All fields contained in this nested condition are scoped to
the parent field.

e ID Clause (Reference)
Other query-by-example (QBE) operators generally look for particular JSON fields
within the content of documents and try to match their values. An ID clause, which
uses operator $id, instead matches document keys. It thus matches document
metadata, not document content.

» Special-Criterion Clause (Reference)
A special criterion clause is a contains clause (operator $contains) or a spatial
clause (operator $near, $intersects, or $within).

5.2.1 Scalar-Equality Clause (Reference)

ORACLE

A scalar-equality clause tests whether a given object field is equal to a given scalar
value.

A scalar-equality clause is an object member with a scalar value. It tests whether the
value of the field is equal to the scalar.

field : scalar

(Reminder: a JSON scalar is a value other than an object or an array; that is, it is a
JSON number, string, true, false, or null.)

A scalar-equality clause is equivalent in behavior to a field-condition clause with a
comparison clause that tests the same field value using operator $eq. That is, fiel d :
scal ar is equivalenttofield - { "$eq" : scalar }.

Though the behavior is equivalent, a scalar-equality clause cannot be used in some
contexts where the corresponding "$eq" : fi el d member can be used. For example,

5-7

Chapter 5
Filter Conditions (Reference)

a scalar-equality clause cannot be used in a not clause. The array elements in the
argument array of a not clause must be comparison clauses.

5.2.2 Field-Condition Clause (Reference)

A field-condition clause specifies that a given object field must satisfy a given set of
criteria. It constrains a field using one or more condition-operator clauses, each of
which is a comparison clause, a not clause, or an item-method clause.

A field-condition clause is JSON-object member whose field is not an operator and
whose value is an object with one or more members, each of which is a condition-
operator clause:

field - { condition-operator-clause ... }

A field-condition clause tests whether the field satisfies all of the condition-operator
clauses, which are thus implicitly ANDed.

A condition-operator clause is any of these:

* A comparison clause
* Anotclause

* Anitem-method clause

" Note:

When a path that does not end in an array step uses a comparison clause or
a not clause, and the path targets an array, the test applies to each element
of the array.

For example, the QBE {"animal" : {"$eq" : "cat"}} matches the JSON
data {"animal™ : ["dog", '"cat'']}, even though "cat" is an array element.
The QBE {"animal" : {$not : {"$eq" : "frog"}}} matches the same
data, because each of the array elements is tested for equality with "frog"
and this test fails.

e Comparison Clause (Reference)
A comparison clause is an object member whose field is a comparison operator.
Example: "$gt™ : 200.

* Not Clause (Reference)
A not clause logically negates the truth value of a set of comparison clauses.
When any of the comparison clauses is true, the not clause evaluates to false;
when all of them are false, the not clause evaluates to true.

e Item-Method Clause (Reference)
An item-method clause is an item-method equality clause or an item-method
maodifier clause. It applies an item method to the field of the field-condition clause
in which it appears, typically to modify the field value. It then matches the result
against the operand of the item-method.

ORACLE 5-8

Chapter 5
Filter Conditions (Reference)

ISO 8601 Date and Time Support

International Standards Organization (ISO) standard 8601 describes an
internationally accepted way to represent dates and times. Oracle Database
supports many of the ISO 8601 date and time formats.

Related Topics

Nested-Condition Clause (Reference)

A nested-condition clause consists of a parent field followed by a single, non-
empty filter condition. All fields contained in this nested condition are scoped to
the parent field.

Composite Filters (Reference)

A composite filter specification (query-by-example, or QBE) can appear only at the
top level. That is, you cannot nest a composite filter inside another composite filter
or inside a filter condition.

Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
guery-by-example (QBE) examples, as well as in some reference descriptions.

5.2.2.1 Comparison Clause (Reference)

A comparison clause is an object member whose field is a comparison operator.
Example: "$gt" : 200.

Table 5-1 describes the comparison operators. See Sample JSON Documents for
the documents used in the examples in column Description.

Table 5-1 Query-By-Example (QBE) Comparison Operators
]

Operator Description
$exists Tests whether the field exists. Matches document if either:
* The field exists and the operand represents true, meaning that it is any scalar value
except false, null, or 0.
* The field does not exist and the operand represents false, meaning that it is false,
null, or 0.
Operand
JSON scalar.
Example
{drinks : { "$exists" : true }}
matches sample document 3.
{drinks : { "$exists" : false }}
matches sample documents 1 and 2.
ORACLE 5-9

Chapter 5
Filter Conditions (Reference)

Table 5-1 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator Description
$eq Matches document only if field value equals operand value.
Operand
JSON scalar.
Example
{"name" : { "$eq" : "Jason" }}
matches sample document 1.
$ne Matches document only if field value does not equal operand value or there is no such field
in the document.
Operand
JSON scalar.
Example
"name" : { "$ne" : "Jason" }}
matches sample documents 2 and 3.
$gt Matches document only if field value is greater than operand value.
Operand
JSON number or string.
Example
{uagen - { n$gtu - 50 }}
matches sample document 2.
it Matches document only if field value is less than operand value.
Operand
JSON number or string.
Example
{"age" : { "$It" : 50 }}
matches sample document 1.
$gte Matches document only if field value is greater than or equal to operand value.

Operand
JSON number or string.
Example

{"age" : { "$gte" : 45 }}

matches sample documents 1, 2, and 3.

ORACLE

5-10

Chapter 5
Filter Conditions (Reference)

Table 5-1 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator

Description

$lte

Matches document only if field value is less than or equal to operand value.
Operand

JSON number or string.

Example

{"age" : { "$lte" : 45 }}

matches sample document 1.

$bhetween

Matches document only if string or number field value is between the two operand array
elements or equal to one of them.

Operand

JSON array of two scalar elements. The first must be the smaller of the two. (For string
values, smaller means first, lexicographically.)

At most one of the elements can be null, which means no limit. An error is raised if both
are nul'l or if there are not exactly two array elements.
Example

{"age" : { "$between" : [49, 70] }}

matches sample documents 2 and 3.

{"age" : { "$between"™ : [45, null] }}

matches sample documents 1, 2, and 3. It is equivalent to

{"age" : { "$gte" : 45 }}

$startsWith

Matches document only if field value starts with operand value.
Operand

JSON string.

Example

"name" : {"$startsWith" : "J"}}

matches sample document 1.

$hasSubstring
or $instr

Matches document only if field value is a string with a substring equal to the operand.
Operand

Non-empty JSON string.

Example

{"street" : { "$hasSubstring" : "street" }}

matches sample documents 1 and 2.

ORACLE

5-11

Chapter 5
Filter Conditions (Reference)

Table 5-1 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator

Description

$regex

Matches document only if field value matches operand regular expression.
Operand

SQL regular expression, as a JSON string.

See Oracle Database SQL Language Reference.

Example

{"name"™ : { "$regex" : ".*son"}}

matches sample document 1.

Matches document only if field value matches operand pattern.
Operand

SQL LIKE condition pattern, as a JSON string.

See Oracle Database SQL Language Reference.

Example

{"city" : { "$like" : "Mar_" }}

matches sample documents 2 and 3.

Matches document only if field exists and its value equals at least one value in the operand
array.

Operand
Non-empty JSON array of scalars.?
Example

{"address.zip" : { "$in" : [94088, 90001] }}

matches sample documents 1 and 2.

$nin

Matches document only if one of these is true:

* Field exists, but its value is not equal to any value in the operand array.
e Field does not exist.

Operand

Non-empty JSON array of scalars.!

Example

{"address.zip" : { "$nin" : [90001] }}

matches sample documents 1 and 2.

ORACLE

5-12

Chapter 5
Filter Conditions (Reference)

Table 5-1 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator

Description

$all

Matches document only if one of these is true:

« Field value is an array that contains all values in the operand array.

« Field value is a scalar value and the operand array contains a single matching value.
Operand

Non-empty JSON array of scalars.!
Example

{"drinks" : { "$all" : [“"soda", "tea"]1}}
matches sample document 2.
{"drinks": { "$all" : ["tea"]}}

matches sample documents 1 and 2.

1 A syntax error is raised if the array does not contain at least one element.

Related Topics

* Overview of QBE Comparison Operators
A query-by-example (QBE) comparison operator tests whether a given JSON
object field satisfies some conditions.

5.2.2.2 Not Clause (Reference)

ORACLE

A not clause logically negates the truth value of a set of comparison clauses. When
any of the comparison clauses is true, the not clause evaluates to false; when all of
them are false, the not clause evaluates to true.

A not clause is an object member whose field is operator $not and whose value is an
object whose members are comparison clauses, which are implicitly ANDed before
negating the truth value of that conjunction.

"$not" : { conparison-clause ... }

Example: "$not" : {"$eq" : 200, "$It" : 40}.

The following field-condition clause matches documents that have no field
address.zip, as well as documents that have such a field but whose value is a scalar
other than ""90001" or an array that has no elements equal to ""90001";

"address.zip" : {"$not" : {"$eq" : "90001"}}

5-13

Chapter 5
Filter Conditions (Reference)

In contrast, the following field-condition clause has the complementary effect: it
matches documents that have a field address.zip whose value is either the scalar
"90001" or an array that contains that scalar value.

"address.zip” : {"$eq" : "90001"}}

Here is an example of a field-condition clause with field salary and with value a not
clause whose operand object has more than one comparison clause. It matches salary
values that are not both greater than 20,000 and less than 100,000. That is, it
matches salary values that are either less than or equal to 20,000 or greater than or
equal to 100,000.

"salary”™ @ {"$not™ : {"$gt":20000, "$It":100000}}

Related Topics

e Overview of QBE Operator $not
Query-by-example (QBE) operator $not negates the behavior of its operand,
which is a JSON object containing one or more comparison clauses, which are
implicitly ANDed.

5.2.2.3 ltem-Method Clause (Reference)

ORACLE

An item-method clause is an item-method equality clause or an item-method modifier
clause. It applies an item method to the field of the field-condition clause in which it
appears, typically to modify the field value. It then matches the result against the
operand of the item-method.

For example, item-method operator $timestamp interprets as a time stamp a string-
valued field that is in one of the supported ISO 8601 date formats. After the operator is
applied to the value of the targeted field, other processing takes place, including the
evaluation of any not clause and comparison clauses that make up the item-method
modifier clause. The QBE uses the modified data in place of the raw field data that is
in your JSON documents.

In some cases, the application of an item-method operator acts only as a filter,
removing targeted data from the QBE result set. For example, if item-

method $timestamp is applied to a string value that is not in one of the supported ISO
8601 date formats then there is no match — the query treats that field occurrence as if
it were not present in the document.

5-14

Chapter 5
Filter Conditions (Reference)

Note:

An item-method field (operator) does not, itself, use or act on its associated
value (its operand). Instead, it acts on the value of the JSON data that
matches its parent field.

For example, in the QBE {"birthday" : {'$date" : {"$gt" :
"'2000-01-01"}}}, item-method operator $date acts on the JSON data that
matches its parent field, birthday. It does not use or act on its operand,
which is the JSON object (a comparison clause in this case) {"$gt" :
"2000-01-01"}. The birthday data (a JSON string of format ISO 8601) in
your JSON document is interpreted as a date, and that date is then matched
against the condition that it be greater than the date represented by the (ISO
date) string ""2000-01-01" (later than January 1, 2000).

This can take some getting used to. The operand is used after the item-
method operator does its job. It is matched against the result of the action of
the operator on the value of its parent field. A item-method operator is a filter
of sorts — it stands syntactically between the field (to its left) that matches
the data it acts on and (to its right) some tests that are applied to the result of
that action.

Item-Method Equality Clause

An item-method equality clause is an object member whose field is an item-method
operator and whose value is a JSON scalar.b

i tem net hod- operator : scalar

The clause first applies the item method to the field of the field-condition clause. It then
tests whether the result is equal to the scalar value (operand).

Example: "$upper” : "john"

(An item-method equality clause is equivalent to an item-method modifier clause (see
next) whose field value (operand) is an object with a single comparison clause with
comparison operator $eq. For example, "$upper™ : "john" is equivalent to
"$upper” : {"$eq" : "john"}.)

Item-Method Modifier Clause

An item-method modifier clause is an object member whose field is an item-method
operator and whose value (operand) is an object whose members are comparison
clauses or at most one not clause. The operand of the item-method operator cannot
be an empty object.

i tem met hod- operator : { conparison-or-not-clause ... }

6 Reminder: a JSON scalar is a value other than an object or an array; that is, it is a JSON number, string, true,
false, or null.
7 At most one not clause is allowed in the operand.

ORACLE 5-15

Chapter 5
Filter Conditions (Reference)

The clause first applies the item method to the field of the field-condition clause. It then
tests whether the result of that operation satisfies all of the comparison clauses and
not clause in its object value.

Example: "$upper” : { "$between"™ : ["ALPHA", "LAMBDA"], "$not" :
{ "$startsWith” : "BE" } }

Item-Method Operators

Here is a brief description of each item-method operator. The target of the operator is
the data matched by the field of the field-condition clause in which the item-method
clause appears — the parent field of the operator. It is not the operand of the operator.

Table 5-2 Item-Method Operators

Operator Description
1
$abs Absolute value of the targeted JSON number.
Target of Operator
JSON number
Example

{"ordinate" : {"$abs" : {"$gt" : 1.0}}} matches a negative or positive
ordinate value whose magnitude is greater than 1.0. It matches, for example, —1.3 and
1.3

$boolean A Boolean interpretation of the targeted JSON value.
Target of Operator

JSON Boolean value (true or false) or a string that when converted to lowercase is either
“true” or "false"

Example

{"retired" : {"$boolean"™ : true}} matches (only) a retired value of true or a
string that matches ""true' case-insensitively.

$ceiling The targeted JSON number, rounded up to the nearest integer.
Target of Operator
JSON number
Example

{"age" : {"$ceiling"” : {"$It" : 65}}} matches an age value of 63.9. It does not
match a value of 64.1, because 64.1 rounds up to 65.

$date? A date interpretation of the targeted JSON string.
Target of Operator
JSON string in supported ISO 8601 format
Example
{"birthday" : {"$date" : "2018-06-30"}} matches a "birthday" value of

"'2018-06-30" or ""'2018-06—-30T17:29:08Z", because they are supported ISO 8601
formats for the same date.

ORACLE 5-16

Chapter 5
Filter Conditions (Reference)

Table 5-2 (Cont.) Item-Method Operators

Operator ll)escription
$double A SQL BINARY_DOUBLE interpretation of the targeted JSON number or numeric string
value.
Target of Operator
JSON number or numeric string
Example
{"thickness"™ : {"$double™ : {"$It" : 1.0}}} matches a thickness value of
""0.999999999".
$floor The targeted JSON number, rounded down to the nearest integer.
Target of Operator
JSON number
Example
{"age" : {"$floor" : {"$le" : 65}}} matches an age value of 65.2. It does not
match a value of 66.3, because 66.3 rounds down to 66.
$length The number of characters in the targeted JSON string.
Target of Operator
JSON string
Example
{"name" : {"$length” : {"$gt" : 4}}} matches "Jason". It does not match
""Mary' because that string has only 4 characters.
$lower The lowercase string that corresponds to the characters in the targeted JSON string.
Target of Operator
JSON string
Example
{"name" : {"$lower" : "mary"}} matches "Mary".
$number A SQL NUMBER interpretation of the targeted JSON number or numeric string value.
Using $number is equivalent to specifying a numeric constant.
Target of Operator
JSON number or numeric string
Example
{"thickness"™ : {"$number" : {"$It" : 1.0}}} matches a thickness value of
"0.9999".
{"thickness"™ : {"$number" : {"$It" : 1.0}}}is equivalent to {"thickness" :
{"$1t" : 1.0}}
$size The number of elements in an array, or 1 for a scalar or an object.
Target of Operator
JSON value of any kind
Example
{"drinks" : {"$size" : {"$gt" : 1}}} matches a drinks value of ["'soda",
"coffee™] because the value is an array with more than one element.
{"address" : {"$size" : 1}} matches an address value that is a JSON object.
ORACLE 5-17

Chapter 5
Filter Conditions (Reference)

Table 5-2 (Cont.) Item-Method Operators

Operator

Description
1

$string

A SQL VARCHAR2(4000) interpretation of the targeted JSON scalar.

Using $string is equivalent to specifying a string constant (literal).

Target of Operator

JSON scalar other than null

Example

{"age" : {"$string" : {"$It" : "45"}}} matches a numeric age value of 100,
because the string 100" is lexicographically less than the string ""45".

{"age" : {"$string" : {"$It" : "45"}}}is equivalent to {"'age" : {"$It" :
"45"}}

$timestamp?

A date-with-time interpretation of the targeted JSON string.

Target of Operator

JSON string in supported ISO 8601 format

Example

{"meeting-time" : {"$timestamp" : VALUE}}, where VALUE is any of the following,
matches any of the same values:

e "2016-07-26T02:06:01Z"

e "2016-07-26T02:06:01" (UTC by default)

"2016-07-26T01:06:01-01:00" (1:00 am in a time zone that is one hour behind
UTC is equivalent to 2:00 am UTC.)

If VALUE is a date-only ISO 8601 string then its equivalent date-with-time value is used. For

example, a date value of ""'2016-07-26"" is treated as the date-with-time zone value

""2016-07-26T00:00:00Z".

$type

The name of the JSON data type of the targeted data, as a lowercase JSON string.
e "null" for a value of null.

* "boolean" for a value of true or false

* "number" for a number.

* "string" for a string.

e "array" for an array.

* "object" for an object.

Target of Operator

JSON value of any kind

Example

{"address" : {"$type" : "object"}} matches an address value that is a JSON
object.

Supper

The uppercase string that corresponds to the characters in the targeted JSON string.
Target of Operator
JSON string
Example
"name" : {"$upper" : "MARY"}} matches "Mary".

1 The scalar-equality abbreviation {fi el d - {operator : val ue}}isused everywhere in examples here, in place of the
equivalent {fi el d - {operator : {"$eq" : val ue}}}
2 The operand of operator $date must be a JSON string that has a supported ISO 8601 format. Otherwise, no match is found.

ORACLE

5-18

Chapter 5
Filter Conditions (Reference)

3 The operand of operator $timestamp must be a JSON string that has a supported ISO 8601 format. Otherwise, no match is

found.

ORACLE

Note:

* If an item-method conversion fails for any reason, such as the operand
being of the wrong type, then the path cannot be matched (it refers to no
data), and no error is raised.

« If an item-method operator is applied to an array then it is in effect
applied to each of the array elements.

For example, QBE {"color™ : {"$upper™ : "RED"}} matches data
{"color" : ["Red", "Blue"]} because the array has an element that
when converted to uppercase matches "RED". The QBE is equivalent to
{"color[*]" : {"$upper" : "RED"}} — operator $upper is applied to
each array element of the target data.

" Note:

« To use item method operator $abs, $date, $size, $timestamp, or $type
you need Oracle Database Release 18c or later.

e To use any other item method you need Oracle Database Release 12c
(12.2.0.1) or later.

Related Topics

Overview of QBE Item-Method Operators

A query-by-example (QBE) item-method operator acts on a JISON-object field
value to modify or transform it in some way (or simply to filter it from the query
result set). Other QBE operators that would otherwise act on the field value then
act on the transformed field value instead.

SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

ISO 8601 Date and Time Support

International Standards Organization (ISO) standard 8601 describes an
internationally accepted way to represent dates and times. Oracle Database
supports many of the ISO 8601 date and time formats.

See Also:

Oracle Database JSON Developer’s Guide

5-19

Chapter 5
Filter Conditions (Reference)

5.2.2.41S0 8601 Date and Time Support

ORACLE

International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates and times. Oracle Database supports many of the
ISO 8601 date and time formats.

International Standards Organization (ISO) standard 8601 describes an internationally
accepted way to represent dates and times. You can manipulate strings that are in the
most common ISO 8601 date and time formats as proper Oracle Database date and
time values. The ISO 8601 formats that are supported are essentially those that are
numeric-only, language-neutral, and unambiguous.

This is the allowed syntax for dates and times:

* Date (only): YYYY-MW-DD

e Date with time: YYYY-MWDDThh:mm:ss[.s[s[s[s[s[s11111[Z] (+]-)hh:nm]
where:

* YYYY specifies the year, as four decimal digits.

* MMspecifies the month, as two decimal digits, 00 to 12.

- DD specifies the day, as two decimal digits, 00 to 31.

* hh specifies the hour, as two decimal digits, 00 to 23.

e mmspecifies the minutes, as two decimal digits, 00 to 59.

e ss[-s[s[s[sI[s1111] specifies the seconds, as two decimal digits, 00 to 59,
optionally followed by a decimal point and 1 to 6 decimal digits (representing the
fractional part of a second).

e Zspecifies UTC time (time zone 0). (It can also be specified by +00:00, but not by
—-00:00.)

* (+]-)hh:mm specifies the time-zone as difference from UTC. (One of + or —is
required.)

For a time value, the time-zone part is optional. If it is absent then UTC time is
assumed.

No other ISO 8601 date-time syntax is supported. In particular:

* Negative dates (dates prior to year 1 BCE), which begin with a hyphen (e.g. -
2018-10-26T21:32:52), are not supported.

* Hyphen and colon separators are required: so-called “basic” format,
YYYYMMDDThhmmss, is not supported.

* Ordinal dates (year plus day of year, calendar week plus day number) are not
supported.

* Using more than four digits for the year is not supported.
Supported dates and times include the following:

« 2018-10-26T21:32:52

e 2018-10-26T21:32:52+02:00

e 2018-10-26T19:32:52Z

5-20

Chapter 5
Filter Conditions (Reference)

* 2018-10-26T19:32:52+00:00
e 2018-10-26T21:32:52.12679

Unsupported dates and times include the following:

e 2018-10-26T21:32 (if a time is specified then all of its parts must be present)
e 2018-10-26T25:32:52+02:00 (the hours part, 25, is out of range)
e 18-10-26T21:32 (the year is not specified fully)

Related Topics

e Item-Method Clause (Reference)
An item-method clause is an item-method equality clause or an item-method
modifier clause. It applies an item method to the field of the field-condition clause
in which it appears, typically to modify the field value. It then matches the result
against the operand of the item-method.

¢ See Also:

« |SO 8601 standard
e ISO 8601 at Wikipedia

5.2.3 Logical Combining Clause (Reference)

A logical combining clause combines the effects of multiple non-empty filter conditions.

A logical combining clause is a logical combining operator — $and, $or, or $nor
— followed by a non-empty array of one or more non-empty filter conditions.

This logical combining clause uses operator $or. It is satisfied if either of its conditions
is true (or if both are true). That is, it is satisfied if the document contains a field name
whose value is ""Joe", or if it contains a field salary whose value is 10000.

"$or" : [{"name" : "Joe"}, {"salary" : 10000}]

The following logical combining clause uses operator $and. Its array operand has two
filter conditions as its members. The second of these is a condition with a logical
combining clause that uses operator $or. This logical combining clause is satisfied if
both of its conditions are true. That is, it is satisfied if the document contains a field age
whose value is at least 60, and either it contains a field name whose value is "Jason" or
it contains a field drinks whose value is "tea".

"$and" : [{"age" : {"$gte" : 60}},
{"$or" : [{"name"™ : "Jason"}, {"drinks" : "tea"}]1} 1

e Omitting $and
Sometimes you can omit the use of $and.

8 A syntax error is raised if the array does not contain at least one element.

ORACLE

5-21

https://en.wikipedia.org/wiki/ISO_8601

Chapter 5
Filter Conditions (Reference)

5.2.3.1 Omitting $and

ORACLE

Sometimes you can omit the use of $and.

A filter condition is true if and only if all of its clauses are true. And a field-condition
clause can contain multiple condition clauses, all of which must be true for the field-
condition clause as whole to be true. In each of these, logical conjunction (AND) is
implied. Because of this you can often omit the use of $and, for brevity.

This is illustrated by Example 5-1 and Example 5-2, which are equivalent in their
effect. Operator $and is explicit in Example 5-1 and implicit (omitted) in Example 5-2.

The filter specifies objects for which the name starts with "Fred" and the salary is
greater than 10,000 and less than or equal to 20,000 and either address.city is
"Bedrock" or address.zip is 12345 and married is true.

A rule of thumb for $and omission is this: If you omit $and, make sure that no field or
operator in the resulting filter appears multiple times at the same level in the same
object.

This rule precludes using a QBE such as this, where field salary appears twice at the
same level in the same object:

{ "salary” : { "$gt" : 10000 },
"age" o { "$gt" 40 },
"salary" : { "$It" : 20000 } }

And it precludes using a QBE such as this, where the same condition
operator, $regex, is applied more than once to field name in the same condition clause:

{ "name"™ : { "$regex" : "son", "$regex" : "Jas" } }

The behavior here is not that the field condition is true if and only if both of the $regex
criteria are true. To be sure to get that effect, you would use a QBE such as this one:

{ $and : [{ "name" : { "$regex" : "son" }, { "name" : { "$regex" :

"as" } 1}

If you do not follow the rule of thumb for $and omission then only one of the conflicting
condition clauses that use the same field or operator is evaluated; the others are
ignored, and no error is raised. For the salary example, only one of the salary field-
condition clauses is evaluated; for the name example, only one of the $regex condition
clauses is evaluated. Which one of the set of multiple condition clauses gets evaluated
is undefined.

Example 5-1 Filter Specification with Explicit $and Operator

{ "$and" : [{ "name" : { "$startsWith” : "Fred” } },
{ "salary” : { "$gt" : 10000, "$lte" : 20000 } },
{ "$or" : [{ "address.city” > "Bedrock™ },

{ "address.zip™ : 12345 }] },
{ "married” : true }]}

5-22

Chapter 5
Filter Conditions (Reference)

Example 5-2 Filter Specification with Implicit $and Operator

{ "name" : { "$startsWith” : "Fred" },
"salary™ : { "$gt" : 10000, "$lte" : 20000 },
"$or" : [{ "address.city" : "Bedrock" },

{ "address.zip" : 12345 }],
"married" : true }

5.2.4 Nested-Condition Clause (Reference)

ORACLE

A nested-condition clause consists of a parent field followed by a single, non-empty
filter condition. All fields contained in this nested condition are scoped to the parent
field.

parent field - filter-condition

Note:

Since the condition of a nested-condition clause follows a field, it cannot
contain an ID clause or a special-criterion clause. Those clauses can occur
only at root level.

For example, suppose that field address has child fields city and state. The following
nested-condition clause tests whether field address.city has the value "Boston" and
field address.state has the value "MA":

"address" : { "city" : "Boston", "state" : "MA" }

Similarly, this nested-condition clause tests whether the value of address.city starts
with Bos and address.state has the value "MA":

"address" : { “"city" : { "$startsWith : "Bos" }, "state" : "MA" }

Suppose that you have this document:

{ "address" : [{ “"city" : "Boston", "state" : "MA" },
{ "city" : "Los Angeles", "state" : "CA" }]}

The following query matches each path in the document independently. Each object
element of an address array is matched independently to see if it has a city value of
"Boston" or a state value of "CA".

{ "address.city" : "Boston", "address.state" : "CA" }

This query without a nested condition thus matches the preceding document, which
has no single object with both city "Boston" and state "CA".

5-23

Chapter 5
Filter Conditions (Reference)

The following query, with a nested-condition clause for parent field address, does not
match the preceding document, because that document has no single object in an
address array with both a field city of value "Boston" and a field state of value "CA".

{ "address" : { "city" : "Boston", "state" : "CA" } }

Related Topics

e Overview of Nested Conditions in QBEs
You can use a query-by-example (QBE) with a nested condition to match a
document that has a field with an array value with object elements, where a given
element of the array satisfies multiple criteria.

e Special-Criterion Clause (Reference)
A special criterion clause is a contains clause (operator $contains) or a spatial
clause (operator $near, $intersects, or $within).

5.2.5 ID Clause (Reference)

ORACLE

Other query-by-example (QBE) operators generally look for particular JSON fields
within the content of documents and try to match their values. An ID clause, which
uses operator $id, instead matches document keys. It thus matches document
metadata, not document content.

A document key uniquely identifies a given document. It is metadata, like the creation
time stamp, last-modified time stamp, and version. It pertains to the document as a
whole and is not part of the document content.

The syntax of an ID clause is QBE operator $id followed by either a scalar key
(document identifier) or a non-empty array of scalar keys.'2 The scalar key must be
either an integer or a string. The array elements must be either all integers or all
strings. For example:

"$id" @ "USA™
"$id" : [1001,1002,1003]

Like a special-criterion clause, you can use operator $id only in the outermost
condition of a QBE, that is, in a condition used in a composite filter or in a filter-
condition filter. More precisely, if a QBE also uses other operators, in addition to $id,
then the outermost condition must have operator $and, and the sole occurrence of

a $id condition must be an element of the array argument to that $and occurrence.

Example 5-3 illustrates this. It finds documents that have at least one of the keys keyl
and key? and that have a color field with value "red".

Example 5-3 Use of Operator $id in the Outermost QBE Condition

{ "$and" : [{ $id : ["keyl", "key2" 1}, { "color" : "red" }]}

Related Topics

e Overview of QBE Operator $id
Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. Operator $id is an exception in

5-24

Chapter 5
Filter Conditions (Reference)

that it instead matches document keys. It thus matches document metadata, not
document content. You use operator $id in the outermost condition of a QBE.

e Special-Criterion Clause (Reference)
A special criterion clause is a contains clause (operator $contains) or a spatial
clause (operator $near, $intersects, or $within).

5.2.6 Special-Criterion Clause (Reference)

A special criterion clause is a contains clause (operator $contains) or a spatial clause
(operator $near, $intersects, or $within).

Like an ID clause, you can use a special-criterion clause only in the outermost
condition of a QBE, that is, in a condition used in a composite filter or in a filter-
condition filter. More precisely, if a QBE also uses other operators, in addition to the
operators for a special-criterion clause, then the outermost condition must have
operator $and, and the special-criterion clauses must be elements of the array
argument to that $and occurrence.

e Contains Clause (Reference)
A contains clause is a field followed by an object with one $contains operator,
whose value is a string. It matches a document only if a string or number in the
field value matches the string operand somewhere, including in array elements.
Matching is Oracle Text full-text.

e Spatial Clause (Reference)
GeoJSON objects are JSON objects that represent geographic data. You can use
a SODA QBE spatial clause to match GeoJSON geometry objects in your
documents.

Related Topics

» |ID Clause (Reference)
Other query-by-example (QBE) operators generally look for particular JSON fields
within the content of documents and try to match their values. An ID clause, which
uses operator $id, instead matches document keys. It thus matches document
metadata, not document content.

5.2.6.1 Contains Clause (Reference)

A contains clause is a field followed by an object with one $contains operator, whose
value is a string. It matches a document only if a string or number in the field value
matches the string operand somewhere, including in array elements. Matching is
Oracle Text full-text.

For example, $contains operand "beth" matches the string "Beth Smith", but not the
string "Elizabeth Smith". Operand 10" matches the number 10 or the string 10
Main Street", but not the number 110 or the string 102 Main Street".

Note:

To use operator $contains you need Oracle Database Release 12¢
(12.2.0.1) or later.

ORACLE 5-25

ORACLE

Chapter 5
Filter Conditions (Reference)

Oracle Text technology underlies SODA QBE operator $contains. This means, for
instance, that you can query for text that is near some other text, or query use fuzzy
pattern-matching.

For details about the behavior of a SODA QBE contains clause see the Oracle
Database documentation for SQL condition json_textcontains.

To be able to use operator $contains you first must create a JSON search index;
otherwise, a QBE with $contains raises a SQL error.

You can use a contains clause only in the outermost condition of a QBE. You can
have multiple contains clauses at the top level, provided their fields are different
(objects in QBEs must not have duplicate fields). For example, this QBE checks for a
"name" field that contains the word "beth" and an "address" field that contains the
number 10 or the string "'10" as a word:

{ "name" : { "$contains" : "beth" }
"address™ : { "$contains" : "10" } }

To have the effect of multiple contains clauses for the same field (search the same
field for multiple word or number patterns), the outermost condition must have
operator $and, and the contains clauses must occur in object elements of the array
argument to that $and occurrence.

For example, this QBE checks for an "address" field that contains both the word
"street" and either the number 10 or the word "'10™":

{"$and" : [{ "address" : { "$contains" : "street" },
{ "address" : { "$contains™ : "10" } } } 1}

Related Topics

* Logical Combining Clause (Reference)
A logical combining clause combines the effects of multiple non-empty filter
conditions.

e Overview of SODA Indexing
The performance of SODA QBEs can sometimes be improved by using indexes.
You define a SODA index with an index specification, which is a JSON object that
specifies how particular QBE patterns are to be indexed for quicker matching.

* SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

¢ See Also:
e Oracle Database SQL Language Reference for reference information
about SQL condition json_textcontains

e Oracle Database JSON Developer’s Guide for information about full-text
search of JSON documents using SQL condition json_textcontains

5-26

Chapter 5
Filter Conditions (Reference)

5.2.6.2 Spatial Clause (Reference)

ORACLE

GeoJSON objects are JSON objects that represent geographic data. You can use a
SODA QBE spatial clause to match GeoJSON geometry objects in your documents.

Note:

To use QBE spatial operators you need Oracle Database Release 12c¢
(12.2.0.1) or later.

A spatial QBE clause is a field followed by an object with a spatial

operator: $near, $intersects, or $within. It matches the field only if it contains
GeoJSON geographic data that is near a specified position, intersects a specified
geometric object, or is within a specified geometric object, respectively.

Each of the spatial QBE operators is followed by a JSON object whose fields must
include $geometry. Operator $near must also include field $distance, and it can
include $unit. A compile-time error is raised if $geometry is missing or if $distance
or $unit is present with operator $intersects or $within.

The value of field $geometry is interpreted as a GeoJSON geometry object (other than
a geometry collection), such as a point or a polygon. Each such object has a type
field, with the geometry type, such as "Point" or "Polygon" as value, and a
coordinates field, which defines the shape and location of the object, respectively.

(For a single position, such as an object of type "Point", field coordinates is an array
of numbers, the first three of which generally represent longitude, latitude, and altitude,
in that order.)

The value of field $distance must be a positive number, the distance from the field
preceding spatial operator $near to the geometry object specified by $geometry. For
non-point geometry objects, such as lines and polygons, the distance is the minimum
distance between them. The distance between two adjacent polygons is zero.

The value of field $unit is a string such as "mile" that specifies the GeoJSON unit to
use for the $distance value. The available units are defined in database table
SDO_UNITS_OF MEASURE. The default unit is "mile".

Example 5-4 QBE With a Spatial Clause

This example matches a location field whose value is GeoJSON geometry object of
type Point, and which is within 60 miles of the coordinates [-122.417, 37.783] (San
Francisco, California). It would match data with a "'location™ value of [-122.236,
37.483] (Redwood City, California). (Note that the first element of array
"coordinates" is the longitude, and the second is the /atitude.)

{"location” : { "$near” : { "$geometry” : { "type" : "Point",
"coordinates" : [-122.417,
37.783] },
"$distance" : 60,
"$unit” :"mile" } } }

5-27

Chapter 5
Filter Conditions (Reference)

The default error-handling behavior for a QBE spatial clause is that the targeted field
need not be present, but if it is present then its value must be a single GeoJSON
geometry object. An error is raised at query time if, for any matching document, that is
not the case.®

A spatial clause can specify an alternative error-handling behavior from the default by
including one of the following Boolean fields with a true value in the object that a
spatial operator ($near, $within, $intersects) applies to. (Only one of these error-
handling fields can be specified as true; otherwise, a syntax error is raised at query
time.)

» $scalarRequired — Boolean. Optional. The targeted field must be present and
have a GeoJSON geometry object as its value. Raise an error at query time if, for
any matched document, that is not the case.

» $lax — Boolean. Optional. The targeted field need not be present or have a
GeoJSON geometry object as its value. Do not raise an error at query time if, for
any matched document, that is the case.!?

" Note:

If you have created a SODA spatial index, for a field whose value is a
GeoJSON geometry object, and you use a QBE that targets that field, the
index can be picked up for the QBE only if both index and QBE specify the
same error-handling behavior for that field. Both must specify the same one
of these:

e scalarRequired : true
e lax : true

e Neither scalarRequired : true nor lax : true

Related Topics

* Overview of QBE Spatial Operators
You can use query-by-example (QBE) operator $near, $intersects, or $within to
select documents that have a field whose value is a GeoJSON geometry object
that is near a specified position, intersects a specified geometric object, or is within
another specified geometric object, respectively.

* SODA Index Specifications (Reference)
You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

9 The default error-handling behavior corresponds to to the use of SQL clauses ERROR ON ERROR and NULL ON
EMPTY for a json_value expression.

A true value of $scalarRequired corresponds to the use of SQL clause ERROR ON ERROR for a json_value
expression.

A true value of $lax corresponds to the use of SQL clause NULL ON ERROR for a functional index created on a
Json_value expression.

=

ORACLE 5-28

Chapter 5
Filter Conditions (Reference)

" See Also:

e Oracle Spatial and Graph Developer's Guide for information about using
GeoJSON data with Oracle Spatial and Graph

e Oracle Spatial and Graph Developer's Guide for information about
Oracle Spatial and Graph and SDO_GEOMETRY object type

e GeoJSON.org for information about GeoJSON
e The GeoJSON Format Specification for details about GeoJSON data

e Oracle Database JSON Developer’s Guide for information about using
GeoJSON geographic data with SQL/JSON functions

ORACLE 5-29

SODA Index Specifications (Reference)

ORACLE

You can index the data in JSON documents using index specifications. A detailed
definition of SODA index specifications is presented.

" Note:

e To create a B-tree index you need Oracle Database Release 12c
(12.2.0.1) or later. To create a B-tree index that indexes a DATE or a
TIMESTAMP value you need Oracle Database Release 18c (18.1) or later.

e To create a spatial index or a search index you need Oracle Database
Release 12c (12.2.0.1) or later.

An index specification is a JSON object that specifies a particular kind of database
index, which is used for operations on JSON documents. You can specify these kinds
of index:

» B-tree: Used to index scalar JSON values. It is identified by the presence of field
fields. (Only a B-tree index has this field.)

» Spatial: Used to index GeoJSON geographic data. It is identified by the presence
of field spatial. (Only a spatial index has this field.)

e Search: Used for one or both of the following:

— Ad hoc structural queries or full-text searches

— JSON data guide

A search index specification is identified by the lack of fields fields and spatial.
Each kind of index specification requires a name field, which is a string that names the

index.

B-Tree Index Specifications

A SODA B-tree index specification specifies a B-tree function-based index on SQL/
JSON function json_value, which is used by SODA to query JSON documents for
scalar values. A B-tree index specification can have the following fields. Field fields is
required for a B-tree index specification. The other fields are optional.

o TFields — Array of objects, each of which targets a field in the indexed documents
that has a scalar JSON value.

Each object in the array can have the following fields:

— path — String specifying the path to the targeted field, whose value is
expected to be a scalar. Required.

If there are any array steps in the path then only the first element of each such
array is used for indexing. In your documents, only scalar values for the

6-1

ORACLE

Chapter 6

targeted field are handled by the index — any non-scalar values for the field
are ignored by the index.

datatype — String naming the data type of the targeted-field value, for
indexing purposes. Optional. Possible values (all are interpreted case-

insensitively): "varchar2" (default), "number", "date", "timestamp", and the
"varchar2" synonyms "'string" and "varchar".

An index can be used to improve performance when evaluating a QBE filter
criterion if the effective type of the input data matched by QBE filter criteria
matches the index datatype value.

For an index to be picked up, to evaluate a given QBE, it is sufficient that the
scalar JSON value targeted by the QBE be interpreted as being of the same
SQL data type as the value of index-specification field datatype. This is the
case for a JSON number value or string value and an index datatype of
"number" or "varchar2" (or a "'varchar2" synonym or no datatype),
respectively.

For other datatype values there is no directly corresponding JSON scalar data
type, so for a QBE to pick up the index it needs to use an item-method
operator, to transform the JSON value to a SQL value of the appropriate data

type.

For example, in a QBE such as {"dateField" : {"$date" : "2017-07-25"}}
the input string value "2017-07-25" (which has one of the supported ISO 8601
date formats) is converted by QBE item-method operator $date to data type
"date". An index specified with a datatype value of "date" can be picked up
to evaluate the QBE.

A QBE that does not explicitly use item-method operator $number or $string
can pick up an index whose datatype is "number" or "'varchar2" (or one of its
synonyms), respectively, because of the direct correspondence between
JSON and SQL data types for such values. For example:

* Using QBE {"numField" : 20}, like using {"numField" : {"$number" :
20}}, can pick up an index created with datatype value "number™.

* Using QBE {"stringField” : "my string"}, like using
{"stringField" : {"$string" : "my string"}}, can pick up an index
created with datatype value "varchar2" (or one of its synonyms).

maxlength — Number specifying the maximum length of the value to index.
Optional. Ignored if the datatype is one (such as number) that has no length. If
maxlength is not specified then the length of the value indexed is 4000 divided
by the number of string fields that are indexed.

order — Index sorting order, for datatype varchar2 (or one of its synonyms)
or number. Optional. The value of field order can be the string "asc" or the
number 1, meaning ascending order, or the string "'desc’ or the number -1,
meaning descending order. Default: ascending order.

Index sorting order is particularly relevant for a specification that indexes
multiple, related fields, that is, where the result is a composite B-tree index.
The order of the elements in array fields specifies the primary indexing order,
that is, the order among the targeted fields, with the field of the first array
element having the highest priority. The value of field order specifies the index
sorting order for a single targeted field (specified by path).

6-2

Chapter 6

* unique — Boolean. Optional. Whether the index is unique. Default: nonunique
(false).

e indexNulls — Boolean. Optional. Whether to index NULL values for the selected
columns (by appending the numeric value 1 to the list of columns to index).
Default: do not index NULL values (false).

" Note:

You must specify a true value for indexNulls, for the index to be picked
up for the orderby clause of a QBE.

The default error-handling behavior is that the targeted field need not be present, but if
it is present then its value must be a a JSON scalar that is convertible to data type
datatype. An error is raised at query time if, for any document, that is not the case. In
addition, if such an index exists, and you try to write a document where that is not the
case, then an error is raised for the write operation.?

A B-tree index specification can specify an alternative error-handling behavior from the
default by including field scalarRequired with a true value. That requires that the
targeted field be present and have a value convertible to data type datatype. If, for
any document to be indexed, that is not the case then an error is raised at indexing
time. In addition, if such an index exists, and you try to write a document where that is
not the case, then raise an error for the write operation.?

Note:

A JSON null value in your data is always convertible to the data type
specified for the index. That data is simply not indexed. (This is true
regardless of the value of scalarRequired.)

Spatial Index Specifications

A SODA spatial index specification specifies an Oracle Spatial and Graph index, which
indexes GeoJSON data. A spatial index specification has a spatial field, whose value
is a string specifying the path to the JSON field to be indexed. The value of that
targeted JSON field is expected to be a single GeoJSON geometry object, that is, a
JSON scalar that is also a GeoJSON geometry object.

The default error-handling behavior is that the targeted field need not be present, but if
it is present then its value must be a single GeoJSON geometry object. An error is
raised at indexing time if, for any document to be indexed, that is not the case. In
addition, if such an index exists, and you try to write a document where that is not the
case, then an error is raised for the write operation.3

1 The default error-handling behavior corresponds to the use of SQL clauses ERROR ON ERROR and NULL ON
EMPTY for a functional index created on a json_value expression.

2 A true value of scalarRequired corresponds to the use of SQL clause ERROR ON ERROR for a functional index
created on a json_value expression.

3 The default error-handling behavior corresponds to the use of SQL clauses ERROR ON ERROR and NULL ON
EMPTY for a functional index created on a json_value expression.

ORACLE 6-3

Chapter 6

A spatial index specification can specify an alternative error-handling behavior from
the default by including one of the following Boolean fields with a true value. (Only
one of these error-handling fields can be specified as true; otherwise, a syntax error is
raised at index-creation time.)

« scalarRequired — Boolean. Optional. The targeted field must be present and
have a GeoJSON geometry object as its value. Raise an error at indexing time if,
for any document to be indexed, that is not the case. In addition, if such an index
exists, and you try to write a document where that is not the case, then raise an
error for the write operation.

« lax — Boolean. Optional. The targeted field need not be present or have a
GeoJSON geometry object as its value. Do not raise an error at indexing time for
any document to be indexed that lacks the field or for which the field value is not
geometry. In addition, if such an index exists, and you try to write a document
where that is the case, do not raise an error for the write operation.®

Note:

If you have created a SODA spatial index, for a field whose value is a
GeoJSON geometry object, and you use a QBE that targets that field, the
index can be picked up for the QBE only if both index and QBE specify the
same error-handling behavior for that field. Both must specify the same one
of these:

e scalarRequired : true
 lax : true

e Neither scalarRequired : true nor lax : true

Search Index Specifications

A SODA search index specification specifies a JSON search index, which indexes
the textual context of your JSON documents in a general way. A search index can
improve the performance of both (1) ad hoc structural queries, that is, queries that you
might not anticipate or use regularly, and (2) queries that make use of full-text search.
It is an Oracle Text index that is designed specifically for use with JSON data.

A JSON search index can also accumulate and update aggregate information about
your documents. In this it provides a JSON data guide, which is a summary of the
structural and type information contained in a set of JSON documents. It records
metadata about the fields used in those documents.

You can use data-guide information to:

* Generate a JSON Schema document that describes the set of JSON documents.

» Create database views that you can use to perform SQL operations on the data in
the documents.

4 A true value of scalarRequired corresponds to the use of SQL clause ERROR ON ERROR for a functional index
created on a json_value expression.

5 A true value of lax corresponds to the use of SQL clause NULL ON ERROR for a functional index created on a
Json_value expression.

ORACLE 6-4

ORACLE

Chapter 6

* Automatically add or update virtual database columns that correspond to added or
changed fields in the documents.

The data-guide information contained in a JSON search index is updated automatically
as new JSON content is added.

By default, a search index specification creates an index that provides both of these
features: a general index and a data guide. These features are specified by fields
search_on (string) and dataguide (string), respectively.

If field search_on is present with value ""none" then the index provides only the data-
guide functionality (no general search index). If field dataguide is present with value
"off" then only the general search-index functionality is provided (no data-guide
support). (A dataguide value of ""on™, or no field dataguide, specifies data-guide
support).

Besides none, field search_on can also have value "text" or "text_value". Both of
these support full-text queries, which use QBE operator $contains, and they both
support ad hoc queries that make of other QBE operators, such as $eq, $ne, and $gt.

In addition, search_on value "text_value' indexes numeric ranges. This is a separate
value because it has an added performance cost. If you do not need range indexing
then you can save some index maintenance time and some disk space by specifying
value text instead of text_value. The default value of search_on is text_value.

Related Topics

e Overview of SODA Indexing
The performance of SODA QBEs can sometimes be improved by using indexes.
You define a SODA index with an index specification, which is a JSON object that
specifies how particular QBE patterns are to be indexed for quicker matching.

e ltem-Method Clause (Reference)
An item-method clause is an item-method equality clause or an item-method
maodifier clause. It applies an item method to the field of the field-condition clause
in which it appears, typically to modify the field value. It then matches the result
against the operand of the item-method.

e Orderby Clause Sorts Selected Objects
A filter specification (query-by-example, or QBE) with an orderby clause returns
the selected JSON documents in sorted order.

6-5

ORACLE

Chapter 6

" See Also:

Oracle Database JSON Developer’s Guide for information about using
SQL to create json_value B-tree indexes

Oracle Database JSON Developer’s Guide for information about using
SQL to index multiple JSON fields with a composite json_value B-tree
index

Oracle Database Performance Tuning Guide and Oracle Database SQL
Language Reference, section ASC | DESC, for information about
indexing order

Oracle Database JSON Developer’s Guide for information about the use
of a NULL ON EMPTY clause for a B-tree index created on a json_value
expression

Oracle Database JSON Developer’s Guide for information about JSON
search indexes

ISO 8601 for information about the ISO date formats

Oracle Spatial and Graph Developer's Guide for information about
spatial indexes

6-6

SODA Collection Metadata Components
(Reference)

Collection metadata is composed of multiple components. A detailed definition of the
components is presented.

" Note:

The identifiers used for collection metadata components (schema name,
table name, view name, database sequence name, and column names) must
be valid Oracle quoted identifiers. Some characters and words that are
allowed in Oracle quoted identifiers are strongly discouraged. For details,
see Oracle Database SQL Language Reference.

* Schema
The collection metadata component that specifies the name of the Oracle
Database schema that owns the table or view to which the collection is mapped.

e Table or View
The collection metadata component that specifies the name of the table or view to
which the collection is mapped.

* Key Column Name
The collection metadata component that specifies the name of the column that
stores the document key.

e Key Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document key.

* Key Column Max Length
The collection metadata component that specifies the maximum length of the key
column in bytes. This component applies only to keys of type VARCHAR2.

* Key Column Assignment Method
The collection metadata component that specifies the method used to assign keys
to objects that are inserted into the collection.

* Key Column Sequence Name
The collection metadata component that specifies the name of the database
sequence that generates keys for documents that are inserted into a collection if
the key assignment method is SEQUENCE.

e Content Column Name
The collection metadata component that specifies the name of the column that
stores the database content.

1 Reminder: letter case is significant for a quoted SQL identifier; it is interpreted case-sensitively.

ORACLE 7-1

Chapter 7

* Content Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document content.

e Content Column Max Length
The collection metadata component that specifies the maximum length of the
content column in bytes. This component applies only to content of type VARCHAR2.

* Content Column JSON Validation
The collection metadata component that specifies the syntax to which JavaScript
Object Notation (JSON) content must conform—strict or lax.

e Content Column SecureFiles LOB Compression
The collection metadata component that specifies the SecureFiles LOB
compression setting.

* Content Column SecureFiles LOB Cache
The collection metadata component that specifies the SecureFiles LOB cache
setting.

e Content Column SecureFiles LOB Encryption
The collection metadata component that specifies the SecureFiles LOB encryption
setting.

e Version Column Name
The collection metadata component that specifies the name of the column that
stores the document version.

* Version Column Generation Method
The collection metadata component that specifies the method used to compute
version values for objects when they are inserted into a collection or replaced.

e Last-Modified Time Stamp Column Name
The collection metadata component that specifies the name of the column that
stores the last-modified time stamp of the document.

* Last-Modified Column Index Name
The collection metadata component that specifies the name of the index on the
last-modified column.

e Creation Time Stamp Column Name
The collection metadata component that specifies the name of the column that
stores the creation time stamp of the document. This time stamp is generated
during the insert, insertAndGet, save, or saveAndGet operation.

* Media Type Column Name
The collection metadata component that specifies the name of the column that
stores the media type of the document. A media type column is needed if the
collection is to be heterogeneous, that is, it can store documents other than
JavaScript Object Notation (JSON).

* Read Only
The collection metadata component that specifies whether the collection is read-
only.

ORACLE 7-2

7.1 Schema

Chapter 7
Schema

The collection metadata component that specifies the name of the Oracle Database
schema that owns the table or view to which the collection is mapped.

Property

Value

Default value

Allowed values

JSON collection metadata document path

None

Valid Oracle quoted identifier®. If this value
contains double quotation marks (**) or control
characters, SODA replaces them with underscore
characters ().

schemaName

" See Also:

Oracle quoted identifiers

7.2 Table or View

Oracle Database SQL Language Reference for information about valid

The collection metadata component that specifies the name of the table or view to

which the collection is mapped.

Property

Value

Default value

Allowed values

JSON collection metadata document path

None

Valid Oracle quoted identifier®. If this value
contains double quotation marks (**) or control
characters, SODA replaces them with underscore
characters ().

tableName or viewName

See Also:

Oracle quoted identifiers

ORACLE

Oracle Database SQL Language Reference for information about valid

7-3

Chapter 7
Key Column Name

7.3 Key Column Name

The collection metadata component that specifies the name of the column that stores
the document key.

Property Value
Default value 1D
Allowed values Valid Oracle quoted identifier! (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (**) or
control characters, SODA replaces them with
underscore characters ().

JSON collection metadata document path ~ keyColumn.name

7.4 Key Column Type

The collection metadata component that specifies the SQL data type of the column
that stores the document key.

Property Value

Default value VARCHAR2

Allowed values VARCHAR2
NUMBER
RAW(16)

JSON collection metadata document path keyColumn.sqlType

Caution:

If client-assigned keys are used and the key column type is VARCHAR2 then
Oracle recommends that the database character set be AL32UTF8. This
ensures that conversion of the keys to the database character set is lossless.

Otherwise, if client-assigned keys contain characters that are not supported
in your database character set then conversion of the key into the database
character set during a read or write operation is lossy. This can lead to
duplicate-key errors during insert operations. More generally, it can lead to
unpredictable results. For example, a read operation could return a value
that is associated with a different key from the one you expect.

ORACLE 7-4

Chapter 7
Key Column Max Length

7.5 Key Column Max Length

The collection metadata component that specifies the maximum length of the key
column in bytes. This component applies only to keys of type VARCHAR2.

Property Value

Default value 255

Allowed values At least 32 bytes if key assignment method is
UUID or GUID. See Key Column Assignment
Method.

JSON collection metadata document path keyColumn.maxLength

Related Topics

e Key Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document key.

7.6 Key Column Assignment Method

The collection metadata component that specifies the method used to assign keys to
objects that are inserted into the collection.

Property Value
Default value uuiID

Allowed values uuiID
GUID
SEQUENCE
CLIENT

For descriptions of these methods, see
Table 7-1.

JSON collection metadata document path keyColumn.assignmentMethod

Table 7-1 Key Assignment Methods

Method Description

GUID Keys are generated in Oracle Database by SQL function SYS_GUID,
described in Oracle Database SQL Language Reference.

SEQUENCE Keys are generated in Oracle Database by a database sequence. If you
specify the key assignment method as SEQUENCE then you must also
specify the name of that sequence — see Key Column Sequence Name.

CLIENT Keys are assigned by the client application.
UUID (default) Keys are generated by SODA, based on the UUID.

ORACLE' 7.5

Chapter 7
Key Column Sequence Name

7.7 Key Column Sequence Name

ORACLE

The collection metadata component that specifies the name of the database sequence
that generates keys for documents that are inserted into a collection if the key
assignment method is SEQUENCE.

If you specify the key assignment method as SEQUENCE then you must also specify the
name of that sequence. If the specified sequence does not exist then SODA creates it.

Property Value
Default value None
Allowed values Valid Oracle quoted identifier! (as defined in

Oracle Database SQL Language Reference). If
this value contains double guotation marks (') or
control characters, SODA replaces them with
underscore characters ().

JSON collection metadata document path keyColumn.sequenceName

< Note:

If you drop a collection using SODA, the sequence used for key generation is
not dropped. This is because it might not have been created using SODA. To
drop the sequence, use SQL command DROP SEQUENCE, after first dropping
the collection.

Related Topics

e Key Column Assignment Method
The collection metadata component that specifies the method used to assign keys
to objects that are inserted into the collection.

" See Also:

e Oracle Database SQL Language Reference for information about DROP
SEQUENCE

e Oracle Database Concepts for information about database sequences

7-6

Chapter 7
Content Column Name

7.8 Content Column Name

The collection metadata component that specifies the name of the column that stores
the database content.

Property Value
Default value JSON_DOCUMENT
Allowed values Valid Oracle quoted identifier! (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (**) or
control characters, SODA replaces them with
underscore characters ().

JSON collection metadata document path contentColumn.name

7.9 Content Column Type

The collection metadata component that specifies the SQL data type of the column
that stores the document content.

Property Value

Default value BLOB

Allowed values VARCHAR2
BLOB
CLOB

JSON collection metadata document path contentColumn.sqlType

7.10 Content Column Max Length

The collection metadata component that specifies the maximum length of the content
column in bytes. This component applies only to content of type VARCHAR2.

Property Value

Default value 4000

Allowed values 32767 if extended data types are enabled.
Otherwise, 4000 if content column type is
VARCHAR2.

JSON collection metadata document path contentColumn.maxLength

Related Topics

e Content Column Type
The collection metadata component that specifies the SQL data type of the column
that stores the document content.

ORACLE' 7.7

Chapter 7
Content Column JSON Validation

" See Also:

Oracle Database SQL Language Reference for information about extended
data types

7.11 Content Column JSON Validation

The collection metadata component that specifies the syntax to which JavaScript
Object Notation (JSON) content must conform—strict or lax.

Property Value

Default value STANDARD

Allowed values STANDARD
STRICT

LAX (default for SQL condition IS json)

JSON collection metadata document path contentColumn.validation

e STANDARD validates according to the JSON RFC 4627 standard. (It corresponds to
the strict syntax defined for Oracle SQL condition is json.)

» STRICT is the same as STANDARD, except that it also verifies that the document
does not contain duplicate JSON field names. (It corresponds to the strict syntax
defined for Oracle SQL condition is json when the SQL keywords WITH UNIQUE
KEYS are also used.)

e LAX validates more loosely. (It corresponds to the lax syntax defined for Oracle
SQL condition is json.) Some of the relaxations that LAX allows include the
following:

— It does not require JSON field names to be enclosed in double quotation
marks (*').

— It allows uppercase, lowercase, and mixed case versions of true, false, and
null.

— Numerals can be represented in additional ways.

" See Also:

e Oracle Database JSON Developer’s Guide for information about strict
and lax JSON syntax

e The application/json Media Type for JavaScript Object Notation (JSON)
for the JSON RFC 4627 standard

ORACLE 7-8

Chapter 7
Content Column SecureFiles LOB Compression

7.12 Content Column SecureFiles LOB Compression

The collection metadata component that specifies the SecureFiles LOB compression

setting.
Property Value
Default value NONE
Allowed values NONE
HIGH
MED IUM
LOW

JSON collection metadata document path

contentColumn.compress

¢ See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

7.13 Content Column SecureFiles LOB Cache

The collection metadata component that specifies the SecureFiles LOB cache setting.

Property Value

Default value TRUE

Allowed values TRUE
FALSE

JSON collection metadata document path

contentColumn.cache

" See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

7.14 Content Column SecureFiles LOB Encryption

The collection metadata component that specifies the SecureFiles LOB encryption

ORACLE

setting.

Before you create a collection that uses SecureFiles LOB encryption you must set up

an encryption wallet.

7-9

Chapter 7
Version Column Name

Property Value
Default value NONE

Allowed values NONE
3DES168
AES128
AES192
AES256

JSON collection metadata document path contentColumn.encrypt

¢ See Also:

e Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

e Oracle Database SQL Language Reference for information about how to
set up an encryption wallet using the SET ENCRYPTION WALLET clause of
the ALTER SYSTEM statement

7.15 Version Column Name

The collection metadata component that specifies the name of the column that stores
the document version.

Property Value
Default value VERSION
Allowed values Valid Oracle quoted identifier! (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (*") or
control characters, SODA replaces them with
underscore characters ().

JSON collection metadata document path versionColumn.name

7.16 Version Column Generation Method

The collection metadata component that specifies the method used to compute
version values for objects when they are inserted into a collection or replaced.

Property Value
Default value SHA256

ORACLE 7-10

Chapter 7
Last-Modified Time Stamp Column Name

Property

Value

Allowed values

uuID
TIMESTAMP
MD5

SHA256
SEQUENTIAL
NONE

JSON collection metadata document path versionColumn.method

Table 7-2 describes the version generation methods.

Table 7-2 Version Generation Methods

Method

Description

uuID

Ignoring object content, SODA generates a universally unique
identifier (UUID) when the document is inserted and for every
replace operation. Efficient, but the version changes even if the
original and replacement documents have identical content.

Version column type value is VARCHAR2(255).

TIMESTAMP

Ignoring object content, SODA generates a value from the time
stamp and coverts it to LONG. This method might require a round
trip to the database instance to get the time stamp. As with
UUID, the version changes even if the original and replacement
documents have identical content.

Version column type value is NUMBER.

MDS

SODA uses the MD5 algorithm to compute a hash value of the
document content. This method is less efficient than UUID, but
the version changes only if the document content changes.

Version column type value is VARCHAR2(255).

SHA256 (default)

SODA uses the SHA256 algorithm to compute a hash value of
the document content. This method is less efficient than UUID,
but the version changes only if the document content changes.

Version column type value is VARCHAR2(255).

SEQUENTIAL

Ignoring object content, SODA assigns version 1 when the
object is inserted and increments the version value every time
the object is replaced. Version values are easily understood by
human users, but the version changes even if the original and
replacement documents have identical content.

Version column type value is NUMBER.

NONE

If the version column is present, NONE means that the version is
generated outside SODA (for example, by a database trigger).

7.17 Last-Modified Time Stamp Column Name

The collection metadata component that specifies the name of the column that stores
the last-modified time stamp of the document.

ORACLE

7-11

Chapter 7
Last-Modified Column Index Name

Property Value
Default value LAST_MODIFIED
Allowed values Valid Oracle quoted identifier! (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (**) or
control characters, SODA replaces them with
underscore characters ().

JSON collection metadata document path lastModifiedColumn.name

7.18 Last-Modified Column Index Name

ORACLE

The collection metadata component that specifies the name of the index on the last-
modified column.

The value of this component is the name of a nonunique index on the last-modified
time-stamp column. The index is created if a name is specified. This index can
improve the performance of read and write operations that are driven by last-modified
time stamps.

Only SODA for REST provides such an operation (operation GET collection with time-
stamp parameters since and until). Other implementations do not use this
component, since they do not provide any read or write operations that are driven by
last-modified time stamps. Even for SODA for REST, it is typically better not to set this
component if you are sure that your application does not use any read or write
operations that are driven by time stamps, because creating and maintaining an index
carries a cost.

Property Value
Default value None
Allowed values Valid Oracle quoted identifier! (as defined in

Oracle Database SQL Language Reference). If
this value contains double quotation marks (**) or
control characters, SODA replaces them with
underscore characters ().

JSON collection metadata document path lastModifiedColumn. index

¢ See Also:
Oracle REST Data Services SODA for REST Developer's Guide

7-12

Chapter 7
Creation Time Stamp Column Name

7.19 Creation Time Stamp Column Name

The collection metadata component that specifies the name of the column that stores
the creation time stamp of the document. This time stamp is generated during the
insert, insertAndGet, save, or saveAndGet operation.

Property

Value

Default value

Allowed values

JSON collection metadata document path

CREATED_ON

Valid Oracle quoted identifier! (as defined in
Oracle Database SQL Language Reference). If
this value contains double guotation marks (") or
control characters, SODA replaces them with
underscore characters ().

creationTimeColumn.name

7.20 Media Type Column Name

The collection metadata component that specifies the name of the column that stores
the media type of the document. A media type column is needed if the collection is to
be heterogeneous, that is, it can store documents other than JavaScript Object

Notation (JSON).

" Note:

You cannot use query-by-example (QBE) with a heterogeneous collection.
An error is raised if you try to do so.

Property

Value

Default value

Allowed values

JSON collection metadata document path

None

Valid Oracle quoted identifier! (as defined in
Oracle Database SQL Language Reference). If
this value contains double quotation marks (") or
control characters then SODA replaces them with
underscore characters ().

mediaTypeColumn.name

7.21 Read Only

The collection metadata component that specifies whether the collection is read-only.

ORACLE

Property Value

Default value FALSE

Allowed values TRUE
FALSE

7-13

Chapter 7
Read Only

Property Value

JSON collection metadata document path readOnly

ORACLE 7-14

SODA Guidelines and Restrictions

General guidelines and restrictions that apply across SODA implementations are
presented.

* SODA Guidelines
Guidelines that apply across SODA implementations are described.

* SODA Restrictions (Reference)
Restrictions that apply across SODA implementations are described.

8.1 SODA Guidelines

Guidelines that apply across SODA implementations are described.

» AL32UTF8 database character set — Oracle recommends? that you use
AL32UTF8 (Unicode) for your database character set. Otherwise:

— Data can be altered by SODA when documents are written to a collection,
because of lossy conversion to the database character set. (This affects only
collections stored as VARCHAR2 and CLOB data; collections stored as BLOB data
do not depend on the database character set.

— Query-by-example (QBE) can return unpredictable results.

« Re-creating a collection? — Do not drop a collection and then re-create it with
different metadata if there is any application running that uses the collection in any
way. Shut down any such applications before re-creating the collection, so that all
live SODA objects are released.

There is no problem just dropping a collection. Any read or write operation on a
dropped collection raises an error. And there is no problem dropping a collection
and then re-creating it with the same metadata. But if you re-create a collection
with different metadata, and if there are any live applications using SODA obijects,
then there is a risk that a stale collection is accessed, and no error is raised in this
case.

¢ Note:

In SODA implementations that allow collection metadata caching, such
as SODA for Java, this risk is increased if such caching is enabled. In
that case, a cache can return an entry for a stale collection object even if
the collection has been dropped.

1 SODA for C requires that you use AL32UTF8 as the database character set.
2 Day-to-day use of a typical application that makes use of SODA does not require that you drop and re-create
collections. But if you need to do that for any reason then this guideline applies.

ORACLE 8-1

Chapter 8
SODA Restrictions (Reference)

" See Also:

« Key Column Type for information about the importance of using
AL32UTF8 with client-assigned document keys

e Oracle Database SODA for Java Developer's Guide for information
about collection metadata caching

8.2 SODA Restrictions (Reference)

Restrictions that apply across SODA implementations are described.

e Document size:
— For SODA for REST and SODA for Java the limit is approximately 2 gigabytes.
— For SODA for PL/SQL the size is limited by the maximum possible LOB size.

" See Also:

Oracle Database SQL Language Reference for information about the
maximum size for BLOB and CLOB

Note:

You must ensure that you have sufficient RAM to support your workload.

e JSON document content: In SODA, JSON content must conform to RFC 4627.

In particular, JSON content must be either an object or an array; it cannot be a
scalar value. For example, according to RFC 4627, the string value "hello" is not,
by itself, valid JSON content.

In addition, SODA JSON content can be UTF-8 or UTF-16 (big endian (BE) or little
endian (LE)). Although RFC 4627 also allows UTF-32 (BE and LE) encodings,
SODA does not support them. Some implementations may support additional,
non-Unicode, encodings.

ORACLE 8-2

Index

Symbols

, character (comma), path syntax, 4-1
. character (period), path syntax, 4-1
[and] characters (brackets), path syntax, 4-1
* character (asterisk), path syntax, 4-1
* character (backquote), path syntax, 4-1
$ character (dollar sign)
escaping in QBE path, 4-1
in operator names, 5-1
$, prefix for QBE operator names, 2-1
$abs operator, 5-14
$all operator, 5-9
$and operator, 5-21
omitting, 2-9, 5-22
overview, 2-9
$between operator, 5-9
$boolean operator, 5-14
$ceiling operator, 5-14
$contains operator, 5-25
$date operator, 5-14
$double operator, 5-14
$eq operator, 5-9
omitting, 5-9
$exists operator, 5-9
$floor operator, 5-14
$gt operator, 5-9
$gte operator, 5-9
$id operator, 5-24
overview, 2-12
$in operator, 5-9
$intersects operator, 5-27
$length operator, 5-14
$lower operator, 5-14
$lt operator, 5-9
$lte operator, 5-9
$ne operator, 5-9
$near operator, 5-27
$nin operator, 5-9
$nor operator, 5-21
overview, 2-9
$not operator, 5-13
$not QBE operator
overview, 2-7
$number operator, 5-14

ORACLE

$or operator, 5-21
overview, 2-9
$orderby operator, 5-2
overview, 2-12
$query operator, 5-2
$regex operator, 5-9
$size operator, 5-14
$startswith operator, 5-9
$string operator, 5-14
$timestamp operator, 5-14
$type operator, 5-14
Supper operator, 5-14
$within operator, 5-27

A

array index (position), 4-1
array step (QBE path), definition, 4-1
asterisk character, path syntax, 4-1

B

B-tree index

details, 6-1

overview, 3-1
backquote character, path syntax, 4-1
bracket characters, path syntax, 4-1

C

collection, 1-5
heterogeneous, 2-1
definition, 1-5
media type column name, 7-13
collection configuration, 7-1
collection metadata
components of, 7-1
content column JSON validation, 7-8
content column max length, 7-7
content column name, 7-7
content column SecureFiles LOB cache, 7-9
content column SecureFiles LOB
compression, 7-9

Index-1

collection metadata (continued)
content column SecureFiles LOB encryption,
7-9
content column type, 7-7
creation time stamp column name, 7-13
default and custom, 1-1
key column assignment method, 7-5
key column max length, 7-5
key column name, 7-4
key column sequence name, 7-6
key column type, 7-4
last-modified column index name, 7-12
last-modified time stamp column name, 7-11
media type column name, 7-13
read only, 7-13
schema, 7-3
table or view, 7-3
version column name, 7-10
version generation method, 7-10
collection table name, 1-9
comma character, path syntax, 4-1
comparison clause
definition, 5-9
comparison operator
definition, 5-9
comparison QBE operators
overview, 2-5
components, document, 1-1
composite filter specification, 5-2
condition
definition, 5-6
condition-operator clause
definition, 5-8
contains clause
definition, 5-25
content column JSON validation collection
metadata component, 7-8
content column max length collection metadata
component, 7-7
content column name collection metadata
component, 7-7
content column SecureFiles LOB cache
collection metadata component, 7-9
content column SecureFiles LOB compression
collection metadata component, 7-9
content column SecureFiles LOB encryption
collection metadata component, 7-9
content column type collection metadata
component, 7-7
creation time stamp column name collection
metadata component, 7-13
CRUD operations, 1-1

ORACLE

D

Index

data guide

details, 6-1

overview, 3-1
database, SODA, 1-1
date and time formats, 1SO 8601, 5-20
document, 1-3
document collection, 1-5
document components, 1-1
document key, 1-1

matching in QBE, 5-24
document metadata, 1-1
dollar sign, for QBE operator, 2-1
dollar-sign character

escaping in QBE path, 4-1

in operator names, 5-1

E

empty filter condition ({}), 5-6
empty query, 5-1
equality, scalar, 5-7

F

field step (QBE path), definition, 4-1
field-condition clause
definition, 5-8
filter
definition, 5-1
filter condition
definition, 5-6
filter specification, 1-1, 2-1
definition, 5-1
details, 5-1
full-text index,
details, 6-1
overview, 3-1

G

guidelines, 8-1

H

heterogeneous collection, 2-1
definition, 1-5
media type column name, 7-13

ID clause, 5-24
implicit $and operator, 5-22

Index-2

index (position), array, 4-1
index specification
details, 6-1
index specifications
overview, 3-1
ISO 8601 date and time formats, 5-20
item-method clause
definition, 5-14
item-method equality clause
definition, 5-14
item-method modifier clause
definition, 5-14
item-method QBE operators, 5-14
$abs, 5-14
$boolean, 5-14
$ceiling, 5-14
$date, 5-14
$double, 5-14
$floor, 5-14
$length, 5-14
$Slower, 5-14
$number, 5-14
$size, 5-14
$string, 5-14
$timestamp, 5-14
$type, 5-14
Supper, 5-14
overview, 2-7

K

Index

logical combining clause
definition, 5-21

logical combining operator
definition, 5-21

logical combining operators
overview, 2-9

M

media type column name collection metadata
component, 7-13
metadata, collection and document, 1-1
modifiers
See item-method QBE operators

N

nested conditions, 2-11
nested-condition clause, 5-23
not clause

definition, 5-13

O

key column assignment method collection
metadata component, 7-5

key column max length collection metadata
component, 7-5

key column name collection metadata
component, 7-4

key column sequence name collection metadata
component, 7-6

key column type collection metadata component,
7-4

key, document, 1-1

matching in QBE, 5-24

L

last-modified column index name collection
metadata component, 7-12
last-modified time stamp column name collection
metadata component, 7-11
lax field, spatial index specification
details, 6-1
overview, 3-1
limitations, 8-2

ORACLE

omitting $and operator, 5-22
omitting $eq operator, 5-9
operand, for QBE operator
definition, 5-1
operand, QBE, 2-1, 5-1
operator
$abs, 5-14
$all, 5-9
$and, 5-21
omitting, 2-9
overview, 2-9
$between, 5-9
$boolean, 5-14
$ceiling, 5-14
$contains, 5-25
$date, 5-14
$double, 5-14
$eq, 5-9
omitting, 5-9
$exists, 5-9
$floor, 5-14
$ot, 5-9
$gte, 5-9
$id, 5-24
overview, 2-12
$in, 5-9
$intersects, 5-27
$length, 5-14
$lower, 5-14
$lt, 5-9
$lte, 5-9

operator (continued)
$ne, 5-9
$near, 5-27
$nin, 5-9
$nor, 5-21
overview, 2-9
$not, 5-13
overview, 2-7
$number, 5-14
$or, 5-21
overview, 2-9
Sorderby, 5-2
overview, 2-12
$query, 5-2
$regex, 5-9
$size, 5-14
Pstartswith, 5-9
$string, 5-14
$timestamp, 5-14
$type, 5-14
Supper, 5-14
$within, 5-27
operator, QBE, 2-1, 5-1
orderby clause, 5-3
ordinary characters, definition, 4-1

P

path, QBE, 2-4, 4-1
period character, path syntax, 4-1

Q

QBE
definition, 5-1
operand, 2-1, 5-1
operator, 2-1, 5-1
QBE (query by example), 1-1
QBE (query-by-example), 2-1
QBE operators
$all, 5-9
$and, 5-21
$between, 5-9
$eq, 5-9
$exists, 5-9
$gt, 5-9
$ote, 5-9
$id, 5-24
overview, 2-12
$in, 5-9
$intersects, 5-27
$lax
for $orderby, 5-3
for QBE spatial clause, 5-27
$It, 5-9

ORACLE

Index

QBE operators (continued)
$lte, 5-9
$ne, 5-9
$near, 5-27
$nin, 5-9
$nor, 5-21
$not, 5-13
overview, 2-7
$or, 5-21
Sorderby, 5-2, 5-3
overview, 2-12
$query, 5-2
$regex, 5-9
$scalarRequired
for $orderby, 5-3
for QBE spatial clause, 5-27
Pstartswith, 5-9
$within, 5-27
comparison
overview, 2-5
item-method, 5-14
overview, 2-7
spatial
overview, 2-14
QBE path, 2-4, 4-1
qguery by example (QBE), 1-1
guery-by-example, 2-1
guery-by-example (QBE)
definition, 5-1

R

read only collection metadata component, 7-13
restrictions, 8-2

S

sample JSON documents used in examples, 2-3
scalar-equality clause
definition, 5-7
scalarRequired field, index specification
details, 6-1
scalarRequired field, index specifications
overview, 3-1
schema collection metadata component, 7-3
scoping fields to a parent field in QBE, 5-23
search index
details, 6-1
overview, 3-1
SODA database, 1-1
SODA guidelines, 8-1
SODA implementations, 1-1
SODA limitations, 8-2
SODA operator
definition, 5-1

Index-4

SODA restrictions, 8-2
sorting JSON data returned by a QBE, 5-3
spatial clause
definition, 5-27
spatial index
details, 6-1
overview, 3-1
spatial operator
Sintersects, 5-27
$near, 5-27
$within, 5-27
spatial QBE operators
overview, 2-14
special-criterion clause, 5-24
specification
filter
details, 5-1
index
details, 6-1
specifications
index
overview, 3-1

ORACLE

Index

specifications (continued)
index (continued)
SQL/JSON operators, 1-1
square bracket characters, path syntax, 4-1
syntactic characters, definition, 4-1
syntax, QBE path, 4-1

T

table name, collection, 1-9
table or view collection metadata component, 7-3
time and date formats, 1ISO 8601, 5-20

V

version column name collection metadata
component, 7-10

version generation method collection metadata
component, 7-10

W

wildcard character, path syntax, 4-1

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in SODA
	Changes in Oracle Database Release 18c for SODA
	New Features for Oracle Database Release 18c

	Changes in Oracle Database Release 12c (12.2.0.1) for SODA
	New Features for Oracle Database Release 12c (12.2.0.1)

	1 Overview of SODA
	1.1 Overview of SODA Documents
	1.2 Overview of SODA Document Collections
	1.3 Default Naming of a Collection Table

	2 Overview of SODA Filter Specifications (QBEs)
	2.1 Sample JSON Documents
	2.2 Overview of Paths in SODA QBEs
	2.3 Overview of QBE Comparison Operators
	2.4 Overview of QBE Operator ⁠$not
	2.5 Overview of QBE Item-Method Operators
	2.6 Overview of QBE Logical Combining Operators
	2.7 Overview of Nested Conditions in QBEs
	2.8 Overview of QBE Operator ⁠$id
	2.9 Overview of QBE Operator ⁠$orderby
	2.10 Overview of QBE Spatial Operators

	3 Overview of SODA Indexing
	4 SODA Paths (Reference)
	5 SODA Filter Specifications (Reference)
	5.1 Composite Filters (Reference)
	5.1.1 Orderby Clause Sorts Selected Objects

	5.2 Filter Conditions (Reference)
	5.2.1 Scalar-Equality Clause (Reference)
	5.2.2 Field-Condition Clause (Reference)
	5.2.2.1 Comparison Clause (Reference)
	5.2.2.2 Not Clause (Reference)
	5.2.2.3 Item-Method Clause (Reference)
	5.2.2.4 ISO 8601 Date and Time Support

	5.2.3 Logical Combining Clause (Reference)
	5.2.3.1 Omitting ⁠$and

	5.2.4 Nested-Condition Clause (Reference)
	5.2.5 ID Clause (Reference)
	5.2.6 Special-Criterion Clause (Reference)
	5.2.6.1 Contains Clause (Reference)
	5.2.6.2 Spatial Clause (Reference)

	6 SODA Index Specifications (Reference)
	7 SODA Collection Metadata Components (Reference)
	7.1 Schema
	7.2 Table or View
	7.3 Key Column Name
	7.4 Key Column Type
	7.5 Key Column Max Length
	7.6 Key Column Assignment Method
	7.7 Key Column Sequence Name
	7.8 Content Column Name
	7.9 Content Column Type
	7.10 Content Column Max Length
	7.11 Content Column JSON Validation
	7.12 Content Column SecureFiles LOB Compression
	7.13 Content Column SecureFiles LOB Cache
	7.14 Content Column SecureFiles LOB Encryption
	7.15 Version Column Name
	7.16 Version Column Generation Method
	7.17 Last-Modified Time Stamp Column Name
	7.18 Last-Modified Column Index Name
	7.19 Creation Time Stamp Column Name
	7.20 Media Type Column Name
	7.21 Read Only

	8 SODA Guidelines and Restrictions
	8.1 SODA Guidelines
	8.2 SODA Restrictions (Reference)

	Index

