
Oracle® Database
Oracle Text Application Developer's Guide

19c
E96275-08
November 2024

Oracle Database Oracle Text Application Developer's Guide, 19c

E96275-08

Copyright © 2001, 2024, Oracle and/or its affiliates.

Primary Author: Binika Kumar

Contributors: Aleksandra Czarlinska, Asha Makur, Bonnie Xia, Ce Wei, Colin McGregor, Edwin Balthes, Eric Belden,
Drew Adams, Gaurav Yadav, George Krupka, Loic Lefevre, Mohammad Faisal, Nilay Panchal, Paul Lane, Rahul
Kadwe, Rajesh Bhatiya, Rodrigo Fuentes Hernandez, Roger Ford, Sanoop Sethumadhavan, Saurabh Naresh
Netravalkar, Yiming Qi

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiv

Documentation Accessibility xiv

Diversity and Inclusion xiv

Related Documents xv

Conventions xv

1 Understanding Oracle Text Application Development

1.1 Introduction to Oracle Text 1-1

1.2 Document Collection Applications 1-1

1.2.1 About Document Collection Applications 1-1

1.2.2 Flowchart of Text Query Application 1-2

1.3 Catalog Information Applications 1-3

1.3.1 About Catalog Information Applications 1-3

1.3.2 Flowchart for Catalog Query Application 1-4

1.4 Document Classification Applications 1-5

1.5 XML Search Applications 1-6

1.5.1 The CONTAINS Operator with XML Search Applications 1-6

1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search Index) 1-7

1.5.2.1 Using the xml_enable Method for an XML Search Index 1-7

1.5.2.2 Using the Text-on-XML Method 1-8

1.5.2.3 Indexing JSON Data 1-9

2 Getting Started with Oracle Text

2.1 Overview of Getting Started with Oracle Text 2-1

2.2 Creating an Oracle Text User 2-1

2.3 Query Application Quick Tour 2-2

2.3.1 Creating the Text Table 2-2

2.3.2 Using SQL*Loader to Load the Table 2-3

2.4 Catalog Application Quick Tour 2-5

2.4.1 Creating the Table 2-5

2.4.2 Using SQL*Loader to Load the Table 2-6

iii

2.5 Classification Application Quick Tour 2-8

2.5.1 About Classification of a Document 2-8

2.5.2 Creating a Classification Application 2-9

3 Indexing with Oracle Text

3.1 About Oracle Text Indexes 3-1

3.1.1 Types of Oracle Text Indexes 3-2

3.1.2 Structure of the Oracle Text CONTEXT Index 3-4

3.1.3 Oracle Text Indexing Process 3-4

3.1.3.1 Datastore Object 3-5

3.1.3.2 Filter Object 3-5

3.1.3.3 Sectioner Object 3-6

3.1.3.4 Lexer Object 3-6

3.1.3.5 Indexing Engine 3-6

3.1.4 About Updates to Indexed Columns 3-6

3.1.5 Partitioned Tables and Indexes 3-7

3.1.6 Online Indexes 3-7

3.1.7 Parallel Indexing 3-8

3.1.8 Indexing and Views 3-8

3.2 Considerations for Oracle Text Indexing 3-9

3.2.1 Location of Text 3-9

3.2.2 Supported Column Types 3-10

3.2.3 Storing Text in the Text Table 3-10

3.2.4 Storing File Path Names 3-11

3.2.5 Storing URLs 3-11

3.2.6 Storing Associated Document Information 3-11

3.2.7 Format and Character Set Columns 3-12

3.2.8 Supported Document Formats 3-12

3.2.9 Summary of DATASTORE Types 3-12

3.2.10 Document Formats and Filtering 3-13

3.2.10.1 No Filtering for HTML 3-14

3.2.10.2 Mixed-Format Columns Filtering 3-14

3.2.10.3 Custom Filtering 3-14

3.2.11 Bypass Rows 3-15

3.2.12 Document Character Set 3-15

3.3 Document Language 3-15

3.4 Special Characters 3-16

3.5 Case-Sensitive Indexing and Querying 3-17

3.6 Improved Document Services Performance with a Forward Index 3-17

3.6.1 Enabling Forward Index 3-18

3.6.2 Forward Index with Snippets 3-18

iv

3.6.3 Forward Index with Save Copy 3-18

3.6.4 Forward Index Without Save Copy 3-19

3.6.5 Save Copy Without Forward Index 3-19

3.7 Language-Specific Features 3-19

3.7.1 Theme Indexing 3-20

3.7.2 Base-Letter Conversion for Characters with Diacritical Marks 3-20

3.7.3 Alternate Spelling 3-20

3.7.4 Composite Words 3-21

3.7.5 Korean, Japanese, and Chinese Indexing 3-21

3.8 About Entity Extraction and CTX_ENTITY 3-22

3.8.1 Basic Example of Using Entity Extraction 3-22

3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule 3-24

3.9 Fuzzy Matching and Stemming 3-25

3.9.1 Language Attribute Values for index_stems of BASIC_LEXER 3-25

3.9.2 Language Attribute Values for index_stems of AUTO_LEXER 3-27

3.10 Better Wildcard Query Performance 3-28

3.11 Document Section Searches 3-28

3.12 Stopwords and Stopthemes 3-28

3.13 Index Performance 3-29

3.14 Query Performance and Storage of Large Object (LOB) Columns 3-29

3.15 Mixed Query Performance 3-29

4 Creating Oracle Text Indexes

4.1 Summary of the Procedure for Creating an Oracle Text Index 4-1

4.2 Creating Preferences 4-2

4.3 Section Searching Example: Creating HTML Sections 4-2

4.4 Using Stopwords and Stoplists 4-2

4.4.1 Multilanguage Stoplists 4-3

4.4.2 Stopthemes and Stopclasses 4-3

4.4.3 PL/SQL Procedures for Managing Stoplists 4-3

4.5 Creating a CONTEXT Index 4-3

4.5.1 CONTEXT Index and DML 4-4

4.5.2 Default CONTEXT Index Example 4-4

4.5.3 Incrementally Creating a CONTEXT Index 4-5

4.5.4 Custom CONTEXT Index Example: Indexing HTML Documents 4-6

4.5.5 CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY 4-7

4.6 Creating a CTXCAT Index 4-7

4.6.1 CTXCAT Index and DML Operations 4-7

4.6.2 About CTXCAT Subindexes and Their Costs 4-8

4.6.3 Creating CTXCAT Subindexes 4-8

4.6.4 Creating CTXCAT Index 4-10

v

4.7 Creating a CTXRULE Index 4-10

4.8 Creating a Search Index for JSON 4-11

5 Maintaining Oracle Text Indexes

5.1 Viewing Index Errors 5-1

5.2 Dropping an Index 5-1

5.3 Resuming a Failed Index 5-2

5.4 Re-creating an Index 5-2

5.4.1 Re-creating a Global Index 5-2

5.4.2 Re-creating a Local Partitioned Index 5-3

5.5 Rebuilding an Index 5-4

5.6 Dropping a Preference 5-5

5.7 Managing DML Operations for a CONTEXT Index 5-5

5.7.1 Viewing Pending DML Operations 5-5

5.7.2 Synchronizing the Index 5-6

5.7.3 Optimizing the Index 5-7

5.7.3.1 Index Fragmentation 5-8

5.7.3.2 Document Invalidation and Garbage Collection 5-8

5.7.3.3 Single Token Optimization 5-8

5.7.3.4 Viewing Index Fragmentation and Garbage Data 5-9

6 Querying with Oracle Text

6.1 Overview of Queries 6-1

6.1.1 Querying with CONTAINS 6-1

6.1.1.1 CONTAINS SQL Example 6-2

6.1.1.2 CONTAINS PL/SQL Example 6-2

6.1.1.3 Structured Query with CONTAINS Example 6-2

6.1.2 Querying with CATSEARCH 6-3

6.1.2.1 CATSEARCH SQL Query Example 6-3

6.1.2.2 CATSEARCH Example 6-4

6.1.3 Querying with MATCHES 6-4

6.1.3.1 MATCHES SQL Query 6-5

6.1.3.2 MATCHES PL/SQL Examples 6-6

6.1.4 Word and Phrase Queries 6-8

6.1.5 Querying Stopwords 6-8

6.1.6 ABOUT Queries and Themes 6-9

6.2 Oracle Text Query Features 6-10

6.2.1 Query Expressions 6-10

6.2.1.1 CONTAINS Operators 6-10

6.2.1.2 CATSEARCH Operator 6-10

vi

6.2.1.3 MATCHES Operator 6-11

6.2.2 Case-Sensitive Searching 6-11

6.2.3 Query Feedback 6-12

6.2.4 Query Explain Plan 6-12

6.2.5 Using a Thesaurus in Queries 6-13

6.2.6 Document Section Searching 6-13

6.2.7 Using Query Templates 6-13

6.2.7.1 Query Rewrite 6-14

6.2.7.2 Query Relaxation 6-14

6.2.7.3 Query Language 6-15

6.2.7.4 Ordering by SDATA Sections 6-15

6.2.7.5 Alternative and User-Defined Scoring 6-16

6.2.7.6 Alternative Grammar 6-17

6.2.8 Query Analysis 6-17

6.2.9 Other Query Features 6-18

7 Working with CONTEXT and CTXCAT Grammars in Oracle Text

7.1 The CONTEXT Grammar 7-1

7.1.1 ABOUT Query 7-2

7.1.2 Logical Operators 7-2

7.1.3 Section Searching and HTML and XML 7-3

7.1.4 Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators 7-3

7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators 7-4

7.1.6 Using CTXCAT Grammar 7-4

7.1.7 Defined Stored Query Expressions 7-4

7.1.7.1 Defining a Stored Query Expression 7-5

7.1.7.2 SQE Example 7-5

7.1.8 Calling PL/SQL Functions in CONTAINS 7-5

7.1.9 Optimizing for Response Time 7-6

7.1.10 Counting Hits 7-6

7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined Scoring 7-7

7.2 The CTXCAT Grammar 7-7

8 Presenting Documents in Oracle Text

8.1 Highlighting Query Terms 8-1

8.1.1 Text highlighting 8-1

8.1.2 Theme Highlighting 8-1

8.1.3 CTX_DOC Highlighting Procedures 8-1

8.1.3.1 Markup Procedure 8-2

8.1.3.2 Highlight Procedure 8-3

vii

8.1.3.3 Concordance 8-4

8.2 Obtaining Part-of-Speech Information for a Document 8-4

8.3 Obtaining Lists of Themes, Gists, and Theme Summaries 8-4

8.3.1 Lists of Themes 8-5

8.3.2 Gist and Theme Summary 8-5

8.4 Presenting and Highlighting Documents 8-7

9 Classifying Documents in Oracle Text

9.1 Overview of Document Classification 9-1

9.2 Classification Applications 9-1

9.3 Classification Solutions 9-2

9.4 Rule-Based Classification 9-3

9.4.1 Rule-Based Classification Example 9-3

9.4.2 CTXRULE Parameters and Limitations 9-6

9.5 Supervised Classification 9-7

9.5.1 Decision Tree Supervised Classification 9-7

9.5.2 Decision Tree Supervised Classification Example 9-8

9.5.3 SVM-Based Supervised Classification 9-10

9.5.4 SVM-Based Supervised Classification Example 9-11

9.6 Unsupervised Classification (Clustering) 9-12

9.7 Unsupervised Classification (Clustering) Example 9-13

10

Tuning Oracle Text

10.1 Optimizing Queries with Statistics 10-1

10.1.1 Collecting Statistics 10-2

10.1.2 Query Optimization with Statistics Example 10-3

10.1.3 Re-Collecting Statistics 10-3

10.1.4 Deleting Statistics 10-4

10.2 Optimizing Queries for Response Time 10-4

10.2.1 Other Factors That Influence Query Response Time 10-4

10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for ORDER BY
Queries 10-5

10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT Hint 10-6

10.2.4 Improved Response Time Using the Local Partitioned CONTEXT Index 10-6

10.2.5 Improved Response Time with the Local Partitioned Index for Order by Score 10-7

10.2.6 Improved Response Time with the Query Filter Cache 10-7

10.2.7 Improved Response Time Using the BIG_IO Option of CONTEXT Index 10-8

10.2.8 Improved Response Time Using the SEPARATE_OFFSETS Option of the
CONTEXT Index 10-9

viii

10.2.9 Improved Response Time Using the STAGE_ITAB,
STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of
CONTEXT Index 10-11

10.3 Optimizing Queries for Throughput 10-13

10.4 Composite Domain Index in Oracle Text 10-13

10.5 Performance Tuning with CDI 10-14

10.6 Solving Index and Query Bottlenecks by Using Tracing 10-14

10.7 Using Parallel Queries 10-15

10.7.1 Parallel Queries on a Local Context Index 10-15

10.7.2 Parallelizing Queries Across Oracle RAC Nodes 10-16

10.8 Tuning Queries with Blocking Operations 10-16

10.9 Frequently Asked Questions About Query Performance 10-17

10.9.1 What is query performance? 10-17

10.9.2 What is the fastest type of Oracle Text query? 10-18

10.9.3 Should I collect statistics on my tables? 10-18

10.9.4 How does the size of my data affect queries? 10-18

10.9.5 How does the format of my data affect queries? 10-18

10.9.6 What is the difference between an indexed lookup and a functional lookup 10-18

10.9.7 What tables are involved in queries? 10-19

10.9.8 How is the $R table contention reduced? 10-19

10.9.9 Does sorting the results slow a text-only query? 10-20

10.9.10 How do I make an ORDER BY score query faster? 10-20

10.9.11 Which memory settings affect querying? 10-20

10.9.12 Does out-of-line LOB storage of wide base table columns improve
performance? 10-20

10.9.13 How can I speed up a CONTAINS query on more than one column? 10-21

10.9.14 Can I have many expansions in a query? 10-21

10.9.15 How can local partition indexes help? 10-22

10.9.16 Should I query in parallel? 10-22

10.9.17 Should I index themes? 10-23

10.9.18 When should I use a CTXCAT index? 10-23

10.9.19 When is a CTXCAT index NOT suitable? 10-23

10.9.20 What optimizer hints are available and what do they do? 10-23

10.10 Frequently Asked Questions About Indexing Performance 10-24

10.10.1 How long should indexing take? 10-24

10.10.2 Which index memory settings should I use? 10-24

10.10.3 How much disk overhead will indexing require? 10-25

10.10.4 How does the format of my data affect indexing? 10-25

10.10.5 Can parallel indexing improve performance? 10-25

10.10.6 How can I improve index performance when I create a local partitioned index? 10-26

10.10.7 How can I tell how much indexing has completed? 10-26

10.11 Frequently Asked Questions About Updating the Index 10-27

10.11.1 How often should I index new or updated records? 10-27

ix

10.11.2 How can I tell when my indexes are fragmented? 10-27

10.11.3 Does memory allocation affect index synchronization? 10-27

11

Searching Document Sections in Oracle Text

11.1 About Oracle Text Document Section Searching 11-1

11.1.1 Enabling Oracle Text Section Searching 11-1

11.1.1.1 Create a Section Group 11-1

11.1.1.2 Define Your Sections 11-3

11.1.1.3 Index Your Documents 11-4

11.1.1.4 Search Sections with the WITHIN Operator 11-4

11.1.1.5 Search Paths with INPATH and HASPATH Operators 11-4

11.1.1.6 Mark an SDATA Section to Be Searchable 11-4

11.1.2 Oracle Text Section Types 11-5

11.1.2.1 Zone Section 11-5

11.1.2.2 Field Section 11-7

11.1.2.3 Stop Section 11-8

11.1.2.4 MDATA Section 11-8

11.1.2.5 NDATA Section 11-10

11.1.2.6 SDATA Section 11-11

11.1.2.7 Attribute Section 11-14

11.1.2.8 Special Sections 11-14

11.1.3 Oracle Text Section Attributes 11-14

11.2 HTML Section Searching with Oracle Text 11-15

11.2.1 Creating HTML Sections 11-15

11.2.2 Searching HTML Meta Tags 11-16

11.3 XML Section Searching with Oracle Text 11-16

11.3.1 Automatic Sectioning 11-16

11.3.2 Attribute Searching 11-17

11.3.3 Document Type Sensitive Sections 11-17

11.3.4 Path Section Searching 11-18

11.3.4.1 Creating an Index with PATH_SECTION_GROUP 11-19

11.3.4.2 Top-Level Tag Searching 11-19

11.3.4.3 Any-Level Tag Searching 11-19

11.3.4.4 Direct Parentage Searching 11-19

11.3.4.5 Tag Value Testing 11-20

11.3.4.6 Attribute Searching 11-20

11.3.4.7 Attribute Value Testing 11-20

11.3.4.8 Path Testing 11-20

11.3.4.9 Section Equality Testing with HASPATH 11-21

x

12

Using Oracle Text Name Search

12.1 Overview of Name Search 12-1

12.2 Name Search Examples 12-1

13

Working with a Thesaurus in Oracle Text

13.1 Overview of Oracle Text Thesaurus Features 13-1

13.1.1 Oracle Text Thesaurus Creation and Maintenance 13-2

13.1.2 Using a Case-Sensitive Thesaurus 13-2

13.1.3 Using a Case-Insensitive Thesaurus 13-3

13.1.4 Default Thesaurus 13-3

13.1.5 Supplied Thesaurus 13-4

13.2 Defining Terms in a Thesaurus 13-4

13.2.1 Defining Synonyms 13-5

13.2.2 Defining Hierarchical Relations 13-5

13.3 Using a Thesaurus in a Query Application 13-5

13.4 Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries 13-6

13.5 Augmenting the Knowledge Base with a Custom Thesaurus 13-6

13.5.1 Advantages 13-7

13.5.2 Limitations 13-7

13.6 Linking New Terms to Existing Terms 13-7

13.7 Example of Loading a Thesaurus with ctxload 13-8

13.8 Example of Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS
PL/SQL procedure 13-8

13.9 Compiling a Loaded Thesaurus 13-8

13.10 About the Supplied Knowledge Base 13-9

13.10.1 Adding a Language-Specific Knowledge Base 13-9

13.10.2 Limitations for Adding Knowledge Bases 13-10

14

Using Faceted Navigation

14.1 About Faceted Navigation 14-1

14.2 Defining Sections As Facets 14-1

14.3 Querying Facets by Using the Result Set Interface 14-5

14.4 Refining Queries by Using Facets As Filters 14-7

14.5 Multivalued Facets 14-8

15

Using the XML Query Result Set Interface

15.1 Overview of the XML Query Result Set Interface 15-1

15.2 Using the XML Query Result Set Interface 15-1

15.3 Creating XML-Only Applications with Oracle Text 15-4

xi

15.4 Example of a Result Set Descriptor 15-4

15.5 Identifying Collocates 15-5

16

Performing Sentiment Analysis Using Oracle Text

16.1 Overview of Sentiment Analysis 16-1

16.1.1 About Sentiment Analysis 16-1

16.1.2 About Sentiment Classifiers 16-2

16.1.3 About Performing Sentiment Analysis 16-2

16.1.4 Sentiment Analysis Interfaces 16-3

16.2 Creating a Sentiment Classifier Preference 16-3

16.3 Training Sentiment Classifiers 16-4

16.4 Performing Sentiment Analysis with the CTX_DOC Package 16-6

16.5 Performing Sentiment Analysis with the RSI 16-8

17

Administering Oracle Text

17.1 Oracle Text Users and Roles 17-1

17.1.1 CTXSYS User 17-1

17.1.2 CTXAPP Role 17-2

17.1.3 Granting Roles and Privileges to Users 17-2

17.2 DML Queue 17-2

17.3 CTX_OUTPUT Package 17-3

17.4 CTX_REPORT Package 17-3

17.5 Text Manager in Oracle Enterprise Manager 17-6

17.5.1 Using Text Manager 17-7

17.5.2 Viewing General Information for an Oracle Text Index 17-7

17.5.3 Checking Oracle Text Index Health 17-7

17.6 Servers and Indexing 17-8

17.7 Tracking Database Feature Usage in Oracle Enterprise Manager 17-8

17.8 Oracle Text on Oracle Real Application Clusters 17-9

17.9 Configuring Oracle Text in Oracle Database Vault Environment 17-9

17.10 Unsupported Oracle Text Operations in Oracle Database Vault Realm 17-9

18

Migrating Oracle Text Applications

18.1 Performing a Rolling Upgrade with a Logical Standby Database 18-1

18.1.1 CTX_DDL PL/SQL Procedures 18-1

18.1.2 CTX_OUTPUT PL/SQL Procedures 18-2

18.1.3 CTX_DOC PL/SQL Procedures 18-2

18.2 Identifying and Copying Oracle Text Files to a New Oracle Home 18-2

xii

A CONTEXT Query Application

A.1 Web Query Application Overview A-1

A.2 The PL/SQL Server Pages (PSP) Web Application A-2

A.2.1 PSP Web Application Prerequisites A-3

A.2.2 Building the PSP Web Application A-3

A.2.3 PSP Web Application Sample Code A-4

A.2.3.1 loader.ctl A-5

A.2.3.2 loader.dat A-5

A.2.3.3 HTML Files for loader.dat Example A-5

A.2.3.4 search_htmlservices.sql A-9

A.2.3.5 search_html.psp A-11

A.3 The Java Server Pages (JSP) Web Application A-12

A.3.1 JSP Web Application Prerequisites A-12

A.3.2 JSP Web Application Sample Code A-13

B CATSEARCH Query Application

B.1 CATSEARCH Web Query Application Overview B-1

B.2 The JSP Web Application B-1

B.2.1 Building the JSP Web Application B-1

B.2.2 JSP Web Application Sample Code B-3

B.2.2.1 loader.ctl B-4

B.2.2.2 loader.dat B-4

B.2.2.3 catalogSearch.jsp B-4

C Custom Index Preference Examples

C.1 Datastore Examples C-1

C.2 NULL_FILTER Example: Indexing HTML Documents C-3

C.3 PROCEDURE_FILTER Example C-3

C.4 BASIC_LEXER Example: Setting Printjoin Characters C-3

C.5 MULTI_LEXER Example: Indexing a Multilanguage Table C-3

C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing C-4

C.7 BASIC_WORDLIST Example: Enabling Wildcard Index C-5

Glossary

Index

xiii

Preface

Oracle Text Application Developer's Guide provides information for building applications with
Oracle Text.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This document is intended for users who perform the following tasks:

• Develop Oracle Text applications

• Administer Oracle Text installations

To use this document, you must have experience with the Oracle object relational database
management system, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documents
For more information, see these Oracle resources:

• Oracle Text Reference

• Oracle Database Concepts

• Oracle Database Administrator's Guide

• Oracle Database SQL Tuning Guide

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database Development Guide

• Oracle Database Sample Schemas

• Oracle Database PL/SQL Language Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xv

1
Understanding Oracle Text Application
Development

Oracle Text enables you to build text query applications and document classification
applications.

This chapter contains the following topics:

• Introduction to Oracle Text

• Document Collection Applications

• Catalog Information Applications

• Document Classification Applications

• XML Search Applications

1.1 Introduction to Oracle Text
Oracle Text provides indexing, word and theme searching, and viewing capabilities for text in
query applications and document classification applications.

To design an Oracle Text application, first determine the type of queries that you expect to run.
When you know the types, you can choose the most suitable index for the task.

Oracle Text is used for the following categories of applications:

• Document Collection Applications

• Catalog Information Applications

• Document Classification Applications

• XML Search Applications

1.2 Document Collection Applications
A text query application enables users to search document collections, such as websites,
digital libraries, or document warehouses.

This section contains the following topics.

• About Document Collection Applications

• Flowchart of Text Query Application

1.2.1 About Document Collection Applications
The collection is typically static and has no significant change in content after the initial
indexing run. Documents can be any size and format, such as HTML, PDF, or Microsoft Word.
These documents are stored in a document table. Searching is enabled by first indexing the
document collection.

1-1

Queries usually consist of words or phrases. Application users specify logical combinations of
words and phrases by using operators such as OR and AND. Users can apply other query
operations to improve the search results, such as stemming, proximity searching, and
wildcarding.

For this type of application, you should retrieve documents that are most relevant to a query.
The documents must rank high in the result list.

The queries are best served with a CONTEXT index on your document table. To query this index,
the application uses the SQL CONTAINS operator in the WHERE clause of a SELECT statement.

Figure 1-1 Overview of Text Query Application

Context

Index

Database

SQL

CONTAINS

Query

Text Query

Application

DocTable

1.2.2 Flowchart of Text Query Application
A typical text query application on a document collection lets the user enter a query. The
application enters a CONTAINS query and returns a list, called a hitlist, of documents that satisfy
the query. The results are usually ranked by relevance. The application enables the user to
view one or more documents in the hitlist.

For example, an application might index URLs (HTML files) on the web and provide query
capabilities across the set of indexed URLs. Hitlists returned by the query application are
composed of URLs that the user can visit.

Figure 1-2 illustrates the flowchart of user interaction with a simple text query application:

1. The user enters a query.

2. The application runs a CONTAINS query.

3. The application presents a hitlist.

4. The user selects document from the hitlist.

5. The application presents a document to the user for viewing.

Chapter 1
Document Collection Applications

1-2

Figure 1-2 Flowchart of a Text Query Application

Enter Query

Execute CONTAINS Query

Present Hitlist

Select from Hitlist

Present Document
CTX_DOC.HIGHLIGHT

Application Action

User Action

1.3 Catalog Information Applications
Catalog information consists of inventory type information, such as for an online book store or
auction site.

This section contains the following topics.

• About Catalog Information Applications

• Flowchart for Catalog Query Application

1.3.1 About Catalog Information Applications
The stored catalog information consists of text information, such as book titles, and related
structured information, such as price. The information is usually updated regularly to keep the
online catalog up-to-date with the inventory.

Queries are usually a combination of a text component and a structured component. Results
are almost always sorted by a structured component, such as date or price. Good response
time is always an important factor with this type of query application.

Catalog applications are best served by a CTXCAT index. Query this index with the CATSEARCH
operator in the WHERE clause of a SELECT statement.

Figure 1-3 illustrates the relationship of the catalog table, its CTXCAT index, and the catalog
application that uses the CATSEARCH operator to query the index.

Chapter 1
Catalog Information Applications

1-3

Figure 1-3 A Catalog Query Application

CTXCAT
Index

Database

SQL
CATSEARCH

Query

Catalog
Application

Catalog Table

1.3.2 Flowchart for Catalog Query Application
A catalog application enables users to search for specific items in catalogs. For example, an
online store application enables users to search for and purchase items in inventory. Typically,
the user query consists of a text component that searches across the textual descriptions plus
some other ordering criteria, such as price or date.

Figure 1-4 illustrates the flowchart of a catalog query application for an online electronics store.

1. The user enters the query, consisting of a text component (for example, cd player) and a
structured component (for example, order by price).

2. The application executes the CATSEARCH query.

3. The application shows the results ordered accordingly.

4. The user browses the results.

5. The user enters another query or performs an action, such as purchasing the item.

Chapter 1
Catalog Information Applications

1-4

Figure 1-4 Flowchart of a Catalog Query Application

Text Component
'cd player'

Execute CATSEARCH Query

Show Results

User Browses Results

Structured Component
'order by price'

Enter Query

User Purchases Item

Application Action

User Action

New Query

1.4 Document Classification Applications
In a document classification application, an incoming stream or a set of documents is
compared to a predefined set of rules. If a document matches one or more rules, then the
application performs an action.

For example, assume an incoming stream of news articles. You define a rule to represent the
Finance category. The rule is essentially one or more queries that select documents about the
subject of Finance. The rule might have the form of 'stocks or bonds or earnings.'

When a document arrives at a Wall Street earnings forecast and satisfies the rules for this
category, the application takes an action, such as tagging the document as Finance or emailing
one or more users.

To create a document classification application, create a table of rules and then create a
CTXRULE index. To classify an incoming stream of text, use the MATCHES operator in the WHERE
clause of a SELECT statement. See Figure 1-5 for the general flow of a classification
application.

Chapter 1
Document Classification Applications

1-5

Figure 1-5 Overview of a Document Classification Application

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

CTXRULE
Index

Oracle

SQL
MATCHES
Query

Database A Database B

Email
User

Classify
Document

Rules Table

1.5 XML Search Applications
An XML search application performs searches over XML documents. A regular document
search usually searches across a set of documents to return documents that satisfy a text
predicate; an XML search often uses the structure of the XML document to restrict the search.
Typically, only the document part that satisfies the search is returned. For example, instead of
finding all purchase orders that contain the word electric, the user might need only purchase
orders in which the comment field contains electric.

Oracle Text enables you to perform XML searching by using the following approaches:

• The CONTAINS Operator with XML Search Applications

• Combining Oracle Text Features with Oracle XML DB (XML Search Index)

See Also:

Using XML Query Result Set Interface

1.5.1 The CONTAINS Operator with XML Search Applications
The CONTAINS operator is well suited to structured searching, enabling you to perform
restrictive searches with the WITHIN, HASPATH, and INPATH operators. If you use a CONTEXT
index, then you can also benefit from the following characteristics of Oracle Text searches:

• Token-based, whitespace-normalized searches

• Hitlists ranked by relevance

• Case-sensitive searching

• Section searching

Chapter 1
XML Search Applications

1-6

• Linguistic features such as stemming and fuzzy searching

• Performance-optimized queries for large document sets

WARNING:

If you manually uninstall Oracle Text, then drop the DBMS_XDBT package. If you
manually install Oracle Text, then create the DBMS_XDBT package.

Starting with Oracle Database 12c, Oracle XML Database (XML DB) is automatically
installed when you install the new Oracle Database software or when you upgrade.

See Also:

"XML Section Searching with Oracle Text"

1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search
Index)

When you want a full-text retrieval for applications, combine the features of Oracle Text and
Oracle XML DB to create an XML Search Index. In this case, leverage the XML structure by
entering queries such as "find all nodes that contain the word Pentium." Oracle Database 12c
extends Oracle's support for the W3C XQuery specification by adding support for the XQuery
full-text extension. This support lets you perform XML-aware, full-text searches on XML
content that is stored in the database.

The following topics explain how to use Oracle XML DB with Oracle Text applications:

• Using the xml_enable Method for an XML Search Index

• Using the Text-on-XML Method

• Indexing JSON Data

See Also:

• "XML Section Searching with Oracle Text"

• Oracle Text Reference for information about the xml_enable variable of
SET_SEC_GRP_ATTR to enable XML awareness

• Oracle XML DB Developer's Guide for more information about XML full-text
indexing and XML Search Index

1.5.2.1 Using the xml_enable Method for an XML Search Index
An XML Search Index is an XML-enabled Oracle Text index (CTXSYS.CONTEXT). This index
type supports information-retrieval searching and structured searching in one unified index.
XML Search Index also stores a Binary Persistent Document Object Model (PDOM) internally
within an Oracle Text table, so that XML operations can be functionally evaluated over the

Chapter 1
XML Search Applications

1-7

Binary PDOM. This XML Search Index is supported for XMLTYPE datastores. XMLEXISTS is
seamlessly rewritten to a CONTAINS query in the presence of such an XML Search Index.

When you create an XML Search Index, a Binary PDOM of the XML document is materialized
in an internal table of Oracle Text. Post evaluation from the Oracle Text index is redirected to
go against the PDOM stored in this internal table.

See Also:

Oracle Text Reference for information on xml_enable variable of SET_SEC_GRP_ATTR
to enable XML awareness for XML Search Index

The following example creates an Oracle XML Search Index:

exec
CTX_DDL.CREATE_SECTION_GROUP('secgroup','PATH_SECTION_GROUP');
exec
CTX_DDL.SET_SEC_GRP_ATTR('secgroup','xml_enable','t');
CREATE INDEX po_ctx_idx on T(X) indextype is ctxsys.context
parameters (‘section group SECGROUP');

1.5.2.2 Using the Text-on-XML Method
With Oracle Text, you can create a CONTEXT index on a column that contains XML data. The
column type can be XMLType or any supported type, provided that you use the correct index
preference for XML data.

With the Text-on-XML method, use the standard CONTAINS query and add a structured
constraint to limit the scope of a search to a particular section, field, tag, or attribute. That is,
specify the structure inside text operators, such as WITHIN, HASPATH, and INPATH.
For example, set up your CONTEXT index to create sections with XML documents. Consider the
following XML document that defines a purchase order:

<?xml version="1.0"?>
<PURCHASEORDER pono="1">
 <PNAME>Po_1</PNAME>
 <CUSTNAME>John</CUSTNAME>
 <SHIPADDR>
 <STREET>1033 Main Street</STREET>
 <CITY>Sunnyvalue</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
 <ITEMS>
 <ITEM>
 <ITEM_NAME> Dell Computer </ITEM_NAME>
 <DESC> Pentium 2.0 Ghz 500MB RAM </DESC>
 </ITEM>
 <ITEM>
 <ITEM_NAME> Norelco R100 </ITEM_NAME>
 <DESC>Electric Razor </DESC>
 </ITEM>
 </ITEMS>
</PURCHASEORDER>

To query all purchase orders that contain Pentium within the item description section, use the
WITHIN operator:

Chapter 1
XML Search Applications

1-8

SELECT id from po_tab where CONTAINS(doc, 'Pentium WITHIN desc') > 0;

Use the INPATH operator to specify more complex criteria with XPATH expressions:

SELECT id from po_tab where CONTAINS(doc, 'Pentium INPATH (/purchaseOrder/items/item/
desc') > 0;

1.5.2.3 Indexing JSON Data
JavaScript Object Notation (JSON) is a language-independent data format that is used for
serializing structured data and exchanging this data over a network, typically between a server
and web applications. JSON provides a text-based way of representing JavaScript object
literals, arrays, and scalar data.

See Also:

• Oracle Text Reference for information about creating a search index on JSON

• Oracle Database JSON Developer's Guide for more information about JSON

Chapter 1
XML Search Applications

1-9

2
Getting Started with Oracle Text

You can create an Oracle Text developer user account and build simple text query and catalog
applications.

This chapter contains the following topics:

• Overview of Getting Started with Oracle Text

• Creating an Oracle Text User

• Query Application Quick Tour

• Catalog Application Quick Tour

• Classification Application Quick Tour

2.1 Overview of Getting Started with Oracle Text
This chapter provides basic information about how to configure Oracle Text, how to create an
Oracle Text developer user account and how to build simple text query and catalog
applications. It also provides information about basic SQL statements for each type of
application to load, index, and query tables.

More complete application examples are given in the appendixes.

Note:

The SQL> prompt has been omitted in this chapter, in part to improve readability and
in part to make it easier for you to cut and paste text.

See Also:

" Classifying Documents in Oracle Text" to learn more about building document
classification applications

2.2 Creating an Oracle Text User
Before you can create Oracle Text indexes and use Oracle Text PL/SQL packages, you need
to create a user with the CTXAPP role. This role enables you to do the following:

• Create and delete Oracle Text indexing preferences

• Use the Oracle Text PL/SQL packages

To create an Oracle Text application developer user, perform the following steps as the system
administrator user:

2-1

1. Create the user.

The following SQL statement creates a user called MYUSER with a password of password:

CREATE USER myuser IDENTIFIED BY password;
2. Grant roles to the user.

The following SQL statement grants the required roles of RESOURCE, CONNECT, and CTXAPP
to MYUSER:

GRANT RESOURCE, CONNECT, CTXAPP TO MYUSER;
3. Grant EXECUTE privileges on the CTX PL/SQL package.

Oracle Text includes several packages that let you perform actions ranging from
synchronizing an Oracle Text index to highlighting documents. For example, the CTX_DDL
package includes the SYNC_INDEX procedure, which enables you to synchronize your
index. The Oracle Text Reference describes these packages.

To call any of these procedures from a stored procedure, your application requires execute
privileges on the packages. For example, to grant execute privileges to MYUSER on all
Oracle Text packages, enter the following SQL statements:

GRANT EXECUTE ON CTXSYS.CTX_CLS TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_DOC TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_OUTPUT TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_QUERY TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_REPORT TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_THES TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_ULEXER TO myuser;

Note:

These permissions are granted to the CTXAPP role. However, because role
permissions do not always work in PL/SQL procedures, it is safest to explicitly
grant these permissions to the user who already has the CTXAPP role.

2.3 Query Application Quick Tour
In a basic text query application, users enter query words or phrases and expect the
application to return a list of documents that best match the query. Such an application involves
creating a CONTEXT index and querying it with CONTAINS.
Typically, query applications require a user interface. An example of how to build such a query
application using the CONTEXT index type is given in CONTEXT Query Application.

The examples in this section provide the basic SQL statements to load the text table, index the
documents, and query the index.

• Creating the Text Table

• Using SQL*Loader to Load the Table

2.3.1 Creating the Text Table
Perform the following steps to create and load documents into a table.

Chapter 2
Query Application Quick Tour

2-2

1. Connect as the new user.

Before creating any tables, assume the identity of the user that you created.

CONNECT myuser;
2. Create your text table.

The following example creates a table called docs with two columns, id and text, by using
the CREATE TABLE statement. This example makes the id column the primary key. The text
column is VARCHAR2.

CREATE TABLE docs (id NUMBER PRIMARY KEY, text VARCHAR2(200));

Note:

Primary keys of the following type are supported: NUMBER, VARCHAR2, DATE,
CHAR, VARCHAR, and RAW.

3. Load documents into the table.

Use the SQL INSERT statement to load text into a table.

To populate the docs table, use the INSERT statement:

INSERT INTO docs VALUES(1, '<HTML>California is a state in the US.</HTML>');
INSERT INTO docs VALUES(2, '<HTML>Paris is a city in France.</HTML>');
INSERT INTO docs VALUES(3, '<HTML>France is in Europe.</HTML>');

2.3.2 Using SQL*Loader to Load the Table
You can use SQL*Loader to load a table in batches.

Perform the following steps to load your table in batches with SQL*Loader:

1. Create the CONTEXT index.

Index the HTML files by creating a CONTEXT index on the text column as follows. Because
you are indexing HTML, this example uses the NULL_FILTER preference type for no filtering
and the HTML_SECTION_GROUP type. If you index PDF, Microsoft Word, or other formatted
documents, then use the CTXSYS.AUTO_FILTER (the default) as your FILTER preference.

CREATE INDEX idx_docs ON docs(text)
 INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS
 ('FILTER CTXSYS.NULL_FILTER SECTION GROUP CTXSYS.HTML_SECTION_GROUP');

This example also uses the HTML_SECTION_GROUP section group, which is recommended for
indexing HTML documents. Using HTML_SECTION_GROUP enables you to search within
specific HTML tags and eliminate unwanted markup, such as font information, from the
index.

2. Query your table with CONTAINS.
First, set the format of the SELECT statement's output so that it is easily readable. Set the
width of the text column to 40 characters:

COLUMN text FORMAT a40;

Chapter 2
Query Application Quick Tour

2-3

Next, query the table with the SELECT statement with CONTAINS. This query retrieves the
document IDs that satisfy the query. The following query looks for all documents that
contain the word France:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'France', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 3 <HTML>France is in Europe.</HTML>
 4 2 <HTML>Paris is a city in France.</HTML>

3. Present the document.

In a real-world application, you could present the selected document with query terms
highlighted. Oracle Text enables you to mark up documents with the CTX_DOC package.

You can demonstrate HTML document markup with an anonymous PL/SQL block in
SQL*Plus. However, in a real-world application, you could present the document in a
browser.

This PL/SQL example uses the in-memory version of CTX_DOC.MARKUP to highlight the word
France in document 3. It allocates a temporary CLOB (character large object data type) to
store the markup text and reads it back to the standard output. The CLOB is then
deallocated before exiting:

SET SERVEROUTPUT ON;
DECLARE
 2 mklob CLOB;
 3 amt NUMBER := 40;
 4 line VARCHAR2(80);
 5 BEGIN
 6 CTX_DOC.MARKUP('idx_docs','3','France', mklob);
 7 DBMS_LOB.READ(mklob, amt, 1, line);
 8 DBMS_OUTPUT.PUT_LINE('FIRST 40 CHARS ARE:'||line);
 9 DBMS_LOB.FREETEMPORARY(mklob);
 10 END;
 11 /
FIRST 40 CHARS ARE:<HTML><<<France>>> is in Europe.</HTML>

PL/SQL procedure successfully completed.
4. Synchronize the index after data manipulation.

When you create a CONTEXT index, you explicitly synchronize your index to update it with
any inserts, updates, or deletions to the text table.

Oracle Text enables you to do so with the CTX_DDL.SYNC_INDEX procedure.

Add some rows to the docs table:

INSERT INTO docs VALUES(4, '<HTML>Los Angeles is a city in California.</HTML>');
INSERT INTO docs VALUES(5, '<HTML>Mexico City is big.</HTML>');

Because the index is not synchronized, these new rows are not returned with a query on
city:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 2 <HTML>Paris is a city in France.</HTML>

Therefore, synchronize the index with 2 Mb of memory and rerun the query:

Chapter 2
Query Application Quick Tour

2-4

EXEC CTX_DDL.SYNC_INDEX('idx_docs', '2M');

PL/SQL procedure successfully completed.

COLUMN text FORMAT a50;
SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 5 <HTML>Mexico City is big.</HTML>
 4 4 <HTML>Los Angeles is a city in California.</HTML>
 4 2 <HTML>Paris is a city in France.</HTML>

See Also:

"Building the PSP Web Application" for an example of how to use SQL*Loader to
load a text table from a data file

2.4 Catalog Application Quick Tour
The examples in this section provide the basic SQL statements to create a catalog index for an
auction site that sells electronic equipment, such as cameras and CD players. New inventory is
added every day, and item descriptions, bid dates, and prices must be stored together.

The application requires good response time for mixed queries. The key is to determine what
columns users frequently search to create a suitable CTXCAT index. Queries on this type of
index use the CATSEARCH operator.

• Creating the Table

• Using SQL*Loader to Load the Table

Note:

Typically, query applications require a user interface. An example of how to build
such a query application using the CATSEARCH index type is given in CATSEARCH
Query Application .

2.4.1 Creating the Table
Perform the following steps to create and load the table:

1. Connect as the appropriate user.

Connect as the myuser with CTXAPP role:

CONNECT myuser;
2. Create your table.

Set up an auction table to store your inventory:

CREATE TABLE auction(
item_id NUMBER,

Chapter 2
Catalog Application Quick Tour

2-5

title VARCHAR2(100),
category_id NUMBER,
price NUMBER,
bid_close DATE);

3. Populate your table.

Populate the table with various items, each with an id, title, price and bid_date:
INSERT INTO AUCTION VALUES(1, 'NIKON CAMERA', 1, 400, '24-OCT-2002');
INSERT INTO AUCTION VALUES(2, 'OLYMPUS CAMERA', 1, 300, '25-OCT-2002');
INSERT INTO AUCTION VALUES(3, 'PENTAX CAMERA', 1, 200, '26-OCT-2002');
INSERT INTO AUCTION VALUES(4, 'CANON CAMERA', 1, 250, '27-OCT-2002');

2.4.2 Using SQL*Loader to Load the Table
You can use SQL*Loader to load a table in batches.

Perform the following steps to load your table in batches with SQL*Loader:

1. Determine your queries.

Determine what criteria are likely to be retrieved. In this example, you determine that all
queries search the title column for item descriptions, and most queries order by price. Later
on, when you use the CATSEARCH operator, specify the terms for the text column and the
criteria for the structured clause.

2. Create the subindex to order by price.

For Oracle Text to serve these queries efficiently, you need a subindex for the price
column, because your queries are ordered by price.

Therefore, create an index set called auction_set and add a subindex for the price
column:

EXEC CTX_DDL.CREATE_INDEX_SET('auction_iset');
EXEC CTX_DDL.ADD_INDEX('auction_iset','price'); /* subindex A*/

3. Create the CTXCAT index.

Create the combined catalog index on the AUCTION table with the CREATE INDEX statement:

CREATE INDEX auction_titlex ON AUCTION(title) INDEXTYPE IS CTXSYS.CTXCAT PARAMETERS
('index set auction_iset');

The following figure shows how the CTXCAT index and its subindex relate to the columns.

Figure 2-1 Auction table schema and CTXCAT index

Auction Table

item_id

number

title

varchar (100)

category_id

number

price

number

bid_close

date

Subindex A

CTXCAT

Index

A

Chapter 2
Catalog Application Quick Tour

2-6

4. Query your table with CATSEARCH.
After you create the CTXCAT index on the AUCTION table, query this index with the
CATSEARCH operator.

First, set the output format to make the output readable:

COLUMN title FORMAT a40;

Next, run the query:

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by price')>
0;

TITLE PRICE
--------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
NIKON CAMERA 400

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA',
 'price <= 300')>0;

TITLE PRICE
--------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300

5. Update your table.

Update your catalog table by adding new rows. When you do so, the CTXCAT index is
automatically synchronized to reflect the change.

For example, add the following new rows to the table and then rerun the query:

INSERT INTO AUCTION VALUES(5, 'FUJI CAMERA', 1, 350, '28-OCT-2002');
INSERT INTO AUCTION VALUES(6, 'SONY CAMERA', 1, 310, '28-OCT-2002');

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by price')>
0;

TITLE PRICE
----------------------------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
SONY CAMERA 310
FUJI CAMERA 350
NIKON CAMERA 400

6 rows selected.

Note how the added rows show up immediately in the query.

See Also:

"Building the PSP Web Application" for an example of how to use SQL*Loader to
load a text table from a data file

Chapter 2
Catalog Application Quick Tour

2-7

2.5 Classification Application Quick Tour
The function of a classification application is to perform some action based on document
content. These actions can include assigning a category ID to a document or sending the
document to a user. The result is classification of a document.

This section contains the following sections:

• About Classification of a Document

• Steps for Creating a Classification Application

2.5.1 About Classification of a Document
Documents are classified according to predefined rules. These rules select documents for a
category. For instance, a query rule of 'presidential elections' selects documents for a category
about politics.

Oracle Text provides several types of classification. One type is simple, or rule-based
classification, discussed here, where you create document categories and the rules for
categorizing documents. With supervised classification, Oracle Text derives the rules from a
set of training documents that you provide. With clustering, Oracle Text does all the work for
you, deriving both rules and categories.

To create a simple classification application for document content using Oracle Text, you create
rules. Rules are essentially a table of queries that categorize document content. You index
these rules in a CTXRULE index. To classify an incoming stream of text, use the MATCHES
operator in the WHERE clause of a SELECT statement. See the following image for the general
flow of a classification application.

Figure 2-2 Overview of a Document Classification Application

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

CTXRULE
Index

Oracle

SQL
MATCHES
Query

Database A Database B

Email
User

Classify
Document

Rules Table

Chapter 2
Classification Application Quick Tour

2-8

See Also:

"Overview of Document Classification"

2.5.2 Creating a Classification Application
The following example shows how to classify documents by using myuser with the CTXAPP role.
You define simple categories, create a CTXRULE index, and use MATCHES.
1. Connect as the appropriate user.

Connect as the myuser with CTXAPP role:

CONNECT myuser;
2. Create the rule table.

In this example, you create a table called queries. Each row defines a category with an ID
and a rule that is a query string.

CREATE TABLE queries (
 query_id NUMBER,
 query_string VARCHAR2(80)
);

 INSERT INTO queries VALUES (1, 'oracle');
 INSERT INTO queries VALUES (2, 'larry or ellison');
 INSERT INTO queries VALUES (3, 'oracle and text');
 INSERT INTO queries VALUES (4, 'market share');

3. Create your CTXRULE index.

CREATE INDEX queryx ON queries(query_string) INDEXTYPE IS CTXSYS.CTXRULE;
4. Classify with MATCHES.

Use the MATCHES operator in the WHERE clause of a SELECT statement to match documents
to queries and then classify the documents.

 COLUMN query_string FORMAT a35;
 SELECT query_id,query_string FROM queries
 WHERE MATCHES(query_string,
 'Oracle announced that its market share in databases
 increased over the last year.')>0;

 QUERY_ID QUERY_STRING
---------- -----------------------------------
 1 oracle
 4 market share

As shown, the document string matches categories 1 and 4. With this classification, you
can perform an action, such as writing the document to a specific table or emailing a user.

See Also:

Classifying Documents in Oracle Text for more extended classification examples

Chapter 2
Classification Application Quick Tour

2-9

3
Indexing with Oracle Text

Oracle Text provides several types of indexes, which you create depending on the type of
application that you develop.

This chapter contains the following topics:

• About Oracle Text Indexes

• Considerations for Oracle Text Indexing

• Document Language

• Indexing Special Characters

• Case-Sensitive Indexing and Querying

• Document Services Procedures Performance and Forward Index

• Language-Specific Features

• About Entity Extraction and CTX_ENTITY

• Fuzzy Matching and Stemming

• Better Wildcard Query Performance

• Document Section Searching

• Stopwords and Stopthemes

• Index Performance

• Query Performance and Storage of Large Object (LOB) Columns

• Mixed Query Performance

3.1 About Oracle Text Indexes
The discussion of Oracle Text indexes includes the different types of indexes, their structure,
the indexing process, and limitations.

The following topics provide information about Oracle Text indexes:

• Types of Oracle Text Indexes

• Structure of the Oracle Text CONTEXT Index

• The Oracle Text Indexing Process

• Partitioned Tables and Indexes

• Creating an Index Online

• Parallel Indexing

• Indexing and Views

3-1

3.1.1 Types of Oracle Text Indexes
With Oracle Text, you create indexes by using the CREATE INDEX statement. Table 3-1
describes each index type.

Table 3-1 Oracle Text Index Types

Index Type Description Supported
Preferences and
Parameters

Query Operator Notes

CONTEXT Use this index to build a
text retrieval application
when your text consists of
large, coherent documents
in, for example, MS Word,
HTML, or plain text.

You can customize the
index in a variety of ways.

This index type requires
CTX_DDL.SYNC_INDEX
after insert, update, and
delete operations to the
base table.

All CREATE INDEX
preferences and
parameters are
supported, except for
INDEX SET.
Supported parameters:
index partition clause
format, charset, and
language columns

CONTAINS
The CONTEXT grammar
supports a rich set of
operations.

Use the CTXCAT
grammar with query
templating.

Supports all documents
services and query
services.

Supports indexing of
partitioned text tables.

Supports FILTER BY and
ORDER BY clauses of
CREATE INDEX to index
structured column values
for more efficient
processing of mixed
queries.

CTXCAT Use this index for better
mixed query performance
of small documents and
text fragments. To improve
mixed query performance,
include other columns in
the base table, such as
item names, prices, and
descriptions.

This index type is
transactional. It
automatically updates
itself after inserts,
updates, or deletes to the
base table.
CTX_DDL.SYNC_INDEX is
not necessary.

INDEX SET
LEXER
STOPLIST
STORAGE
WORDLIST (The
prefix_index
attribute is supported
only for Japanese
data.)

Not supported: Format,
charset, and language
columns

Table and index
partitioning

CATSEARCH
The CTXCAT grammar
supports logical
operations, phrase
queries, and
wildcarding.

Use the CONTEXT
grammar with query
templating.

Theme querying is
supported.

This index is larger and
takes longer to build than
a CONTEXT index.

The size of a CTXCAT
index is related to the
total amount of text to be
indexed, the number of
indexes in the index set,
and the number of
columns indexed.
Carefully consider your
queries and your
resources before adding
indexes to the index set.

The CTXCAT index does
not support index
partitioning, documents
services (highlighting,
markup, themes, and
gists) or query services
(explain, query feedback,
and browse words.)

Chapter 3
About Oracle Text Indexes

3-2

Table 3-1 (Cont.) Oracle Text Index Types

Index Type Description Supported
Preferences and
Parameters

Query Operator Notes

CTXRULE Use this index to build a
document classification or
routing application. Create
this index on a table of
queries, where the queries
define the classification or
routing criteria..

See "CTXRULE
Parameters and
Limitations".

MATCHES Use the MATCHES
operator to classify
single documents (plain
text, HTML, or XML).
MATCHES turns a
document into a set of
queries and finds the
matching rows in the
index.

To build a document
classification application
by using simple or rule-
based classification,
create an index of type
CTXRULE. This index
classifies plain text,
HTML, or XML
documents by using the
MATCHES operator. Store
your defining query set in
the text table that you
index.

An Oracle Text index is an Oracle Database domain index. To build your query application, you
can create an index of type CONTEXT with a mixture of text and structured data columns, and
query it with the CONTAINS operator.

You create an index from a populated text table. In a query application, the table must contain
the text or pointers to the location of the stored text. Text is usually a collection of documents,
but it can also be small text fragments.

Note:

If you are building a new application that uses XML data, Oracle recommends that
you use XMLIndex, not CTXRULE.

Create an Oracle Text index as a type of extensible index to Oracle Database by using
standard SQL. This means that an Oracle Text index operates like an Oracle Database index.
It has a name by which it is referenced and can be manipulated with standard SQL statements.

The benefit of creating an Oracle Text index is fast response time for text queries with the
CONTAINS, CATSEARCH, and MATCHES operators. These operators query the CONTEXT, CTXCAT, and
CTXRULE index types, respectively.

Chapter 3
About Oracle Text Indexes

3-3

Note:

Because a Transparent Data Encryption-enabled column does not support domain
indexes, do not use it with Oracle Text. However, you can create an Oracle Text index
on a column in a table that is stored in a Transparent Data Encryption-enabled
tablespace.

See Also:

• "Creating Oracle Text Indexes"

• Oracle XML DB Developer's Guide for information about XMLIndex and indexing
XMLType data

3.1.2 Structure of the Oracle Text CONTEXT Index
Oracle Text indexes text by converting all words into tokens. The general structure of an Oracle
Text CONTEXT index is an inverted index, where each token contains the list of documents
(rows) that contain the token.

For example, after a single initial indexing operation, the word DOG might have an entry as
follows:

Word Appears in Document

DOG DOC1 DOC3 DOC5

This means that the word DOG is contained in the rows that store documents one, three, and
five.

Merged Word and Theme Indexing

By default in English and French, Oracle Text indexes theme information with word information.
You can query theme information with the ABOUT operator. You can also enable and disable
theme indexing.

See Also:

"Creating Preferences " to learn more about indexing theme information

3.1.3 Oracle Text Indexing Process
This section describes the Oracle Text indexing process. Initiate the indexing process by using
the CREATE INDEX statement to create an Oracle Text index of tokens, organized according to
your parameters and preferences.

Chapter 3
About Oracle Text Indexes

3-4

Figure 3-1 shows the indexing process. This process is a data stream that is acted upon by the
different indexing objects. Each object corresponds to an indexing preference type or section
group that you can specify in the parameter string of CREATE INDEX or ALTER INDEX.

Figure 3-1 Oracle Text Indexing Process

Oracle Text

Index

Datastore
Documents

Marked-up

Text Text Tokens

Lexer Indexing

Engine

Wordlist

Filter Sectioner

Markup

Stoplist
Internet

O/S file

system

Oracle Text processes the data stream with the following objects and engine:

• Datastore Object

• Filter Object

• Sectioner Object

• Lexer Object

• Indexing Engine

3.1.3.1 Datastore Object
The stream starts with the datastore reading in the documents as they are stored in the system
according to your datastore preference.

For example, if you defined your datastore as DIRECTORY_DATASTORE, then the stream starts by
reading the files from an Oracle directory object. You can also store your documents on the
internet or in Oracle Database. Wherever your files reside physically, a text table in Oracle
Database must always point to the files.

3.1.3.2 Filter Object
The stream then passes through the filter. Your FILTER preference determines what happens.
The stream can be acted upon in one of the following ways:

Chapter 3
About Oracle Text Indexes

3-5

• No filtering takes place when you specify the NULL_FILTER preference type or when the
value of the format column is IGNORE. Documents that are plain text, HTML, or XML need
no filtering.

• Formatted documents (binary) are filtered to marked-up text when you specify the
AUTO_FILTER preference type or when the value of the format column is BINARY.

3.1.3.3 Sectioner Object
After being filtered, the marked-up text passes through the sectioner, which separates the
stream into text and section information. Section information includes where sections begin
and end in the text stream. The type of sections that are extracted is determined by your
section group type.

The text is passed to the lexer. The section information is passed directly to the indexing
engine, which uses it later.

3.1.3.4 Lexer Object
You create a lexer preference by using one of the Oracle Text lexer types to specify the
language of the text to be indexed. The lexer breaks the text into tokens according to your
language. These tokens are usually words. To extract tokens, the lexer uses the parameters
that are defined in your lexer preference. These parameters include the definitions for the
characters that separate tokens, such as whitespace. Parameters also include whether to
convert the text to all uppercase or to leave it in mixed case.

When you enable theme indexing, the lexer analyzes your text to create theme tokens for
indexing.

3.1.3.5 Indexing Engine
The indexing engine creates the inverted index that maps tokens to the documents that contain
them. In this phase, Oracle Text uses the stoplist that you specify to exclude stopwords or
stopthemes from the index. Oracle Text also uses the parameters that are defined in your
WORDLIST preference. Those parameters tell the system how to create a prefix index or
substring index, if enabled.

3.1.4 About Updates to Indexed Columns

In releases prior to Oracle Database 12c Release 2 (12.2), when there is an update to the
column on which an Oracle Text index is based, the document is unavailable for search
operations until the index is synchronized. User queries cannot perform a search of this
document. Starting with Oracle Database 12c Release 2 (12.2), you can specify that
documents must be searchable after updates, without immediately performing index
synchronization. Before the index is synchronized, queries use the old index entries to fetch
the contents of the old document. After index synchronization, user queries fetch the contents
of the updated document.

The ASYNCHRONOUS_UPDATE option for indexes enables you to retain the old contents of a
document after an update and then use this index to answer user queries.

Chapter 3
About Oracle Text Indexes

3-6

See Also:

• ALTER INDEX in the Oracle Text Reference

• CREATE INDEX in the Oracle Text Reference

3.1.5 Partitioned Tables and Indexes
When you create a partitioned CONTEXT index on a partitioned text table, you must partition the
table by range. Hash, composite, and list partitions are not supported.

You can create a partitioned text table to partition your data by date. For example, if your
application maintains a large library of dated news articles, you can partition your information
by month or year. Partitioning simplifies the manageability of large databases, because
querying, insert, update, delete operations, and backup and recovery can act on a single
partition.

On local CONTEXT indexes with multiple table sets, Oracle Text supports the number of
partitions supported by Oracle Database.

Note:

The number of partitions that are supported in Oracle Text is approximately 1024K-1.
This limit, which should be more than adequate, is not applicable to a CONTEXT index
on partitioned tables.

See Also:

Oracle Database Concepts for more information about partitioning

To query a partitioned table, use CONTAINS in the WHERE clause of a SELECT statement as you
query a regular table. You can query the entire table or a single partition. However, if you are
using the ORDER BY SCORE clause, Oracle recommends that you query single partitions unless
you include a range predicate that limits the query to a single partition.

3.1.6 Online Indexes
When it is not practical to lock your base table for indexing because of ongoing updates, you
can create your index online with the ONLINE parameter of CREATE INDEX statement. This way
an application with frequent inserts, updates, or deletes does not have to stop updating the
base table for indexing.

There are short periods, however, when the base table is locked at the beginning and end of
the indexing process.

Chapter 3
About Oracle Text Indexes

3-7

See Also:

Oracle Text Reference to learn more about creating an index online

3.1.7 Parallel Indexing
Oracle Text supports parallel indexing with the CREATE INDEX statement.

When you enter a parallel indexing statement on a nonpartitioned table, Oracle Text splits the
base table into temporary partitions, spawns child processes, and assigns a child to a partition.
Each child then indexes the rows in its partition. The method of slicing the base table into
partitions is determined by Oracle and is not under your direct control. This is true as well for
the number of child processes actually spawned, which depends on machine capabilities,
system load, your init.ora settings, and other factors. Because of these variables, the actual
parallel degree may not match the degree of parallelism requested.

Because indexing is an intensive I/O operation, parallel indexing is most effective in decreasing
your indexing time when you have distributed disk access and multiple CPUs. Parallel indexing
can affect the performance of an initial index only with the CREATE INDEX statement. It does not
affect insert, update, and delete operations with ALTER INDEX, and has minimal effect on query
performance.

Because parallel indexing decreases the initial indexing time, it is useful for the following
scenarios:

• Data staging, when your product includes an Oracle Text index

• Rapid initial startup of applications based on large data collections

• Application testing, when you need to test different index parameters and schemas while
developing your application

See Also:

– "Parallel Queries on a Local Context Index"

– "Frequently Asked Questions About Indexing Performance"

3.1.8 Indexing and Views
Oracle SQL standards do not support the creation of indexes on views. If you need to index
documents whose contents are in different tables, create a data storage preference by using
the USER_DATASTORE object. With this object, you can define a procedure that synthesizes
documents from different tables at index time.

See Also:

Oracle Text Reference to learn more about USER_DATASTORE

Chapter 3
About Oracle Text Indexes

3-8

Oracle Text supports the creation of CONTEXT, CTXCAT, and CTXRULE indexes on materialized
views (MVIEW).

3.2 Considerations for Oracle Text Indexing
Use the CREATE INDEX statement to create an Oracle Text index. When you create an index but
do not specify a parameter string, an index is created with default parameters. You can create
a CONTEXT index, a CTXCAT index, or a CTXRULE index.

You can also override the defaults and customize your index to suit your query application. The
parameters and preference types that you use to customize your index with the CREATE INDEX
statement fall into the following general categories.

This section contains the following topics:

• Location of Text

• Supported Column Types

• Storing Text in the Text Table

• Storing File Path Names

• Storing URLs

• Storing Associated Document Information

• Format and Character Set Columns

• Supported Document Formats

• Summary of DATASTORE Types

• Document Formats and Filtering

• Bypass Rows

• Document Character Set

3.2.1 Location of Text
The basic prerequisite for a text query application is a text table that is populated with your
document collection. The text table is required for indexing.

When you create a CONTEXT index, populate rows in your text table with one of the following
elements. CTXCAT and CTXRULE indexes support only the first method.

• Text information (Documents or text fragments. By default, the indexing operation expects
your document text to be directly loaded in your text table.)

• Path names of documents in your file system

• URLs of web documents

Figure 3-2 illustrates these different methods.

Chapter 3
Considerations for Oracle Text Indexing

3-9

Figure 3-2 Different Ways of Storing Text

Text Table

author date text

Text Table

author date text

File 1 /my_path/my_system/doc1.doc

File 2 /my_path/my_system/doc2.doc

Document 1

Document 2

Document Collection

Documents are stored in
the text table.

File paths are stored in
the text column.

Text Table

author date text

URL 1 http://www.mysite.com/mydoc1.html

URL 2 http://www.mysite.com/mydoc1.html
URLs are stored in
the text column.

3.2.2 Supported Column Types
With Oracle Text, you can create a CONTEXT index with columns of type VARCHAR2, CLOB (limited
to 4294967295 bytes), BLOB, CHAR, BFILE, XMLType, and URIType.

Note:

You cannot index the NCLOB, DATE, and NUMBER column types.

3.2.3 Storing Text in the Text Table
For CONTEXT data storage, use these datastore types to store documents in your text table.

• DIRECT_DATASTORE: In one column

Chapter 3
Considerations for Oracle Text Indexing

3-10

• MULTI_COLUMN_DATASTORE: In multiple columns (Oracle Text concatenates the columns into
a virtual document, one document for each row.)

• DETAIL_DATASTORE: Primary-detail relationships (Store one document across a number of
rows.)

• NESTED_DATASTORE: In a nested table

Oracle Text supports the indexing of the XMLType data type, which you use to store XML
documents.

For CTXCAT data storage, you can store short text fragments, such as names, descriptions, and
addresses, over a number of columns. A CTXCAT index improves performance for mixed
queries.

3.2.4 Storing File Path Names
In your text table, store path names to files stored in your file system. During indexing, use the
DIRECTORY_DATASTORE preference type. This method of data storage is supported only for
CONTEXT indexes.

Note:

Starting with Oracle Database 19c, the Oracle Text type FILE_DATASTORE is
deprecated. Use DIRECTORY_DATASTORE instead.

Oracle recommends that you replace FILE_DATASTORE text indexes with the
DIRECTORY_DATASTORE index type, which is available starting with Oracle Database
19c. DIRECTORY_DATASTORE provides greater security because it enables file access
to be based on directory objects.

3.2.5 Storing URLs
Store URL names to index websites. During indexing, use the NETWORK_DATASTORE preference
type. This method of data storage is supported only for CONTEXT indexes.

Note:

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK_DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed
through HTTP or FTP), and for text stored in local file system files (accessed through
the file protocol). It is replaced with NETWORK_DATASTORE, which uses ACLs to allow
access to specific servers. This change aligns Oracle Text more closely with the
standard operating and security model for accessing URLs from the database.

3.2.6 Storing Associated Document Information
In your text table, create additional columns to store structured information that your query
application might need, such as primary key, date, description, or author.

Chapter 3
Considerations for Oracle Text Indexing

3-11

3.2.7 Format and Character Set Columns
If your documents consist of mixed formats or mixed character sets, create the following
additional columns:

• A format column to record the format (TEXT or BINARY) to help filtering during indexing. You
can also use the format column to ignore rows for indexing by setting the format column to
IGNORE. IGNORE is useful for bypassing rows containing data that is incompatible with
Oracle Text indexing, such as images.

• A character set column to record the document character set for each row.

When you create your index, specify the name of the format or character set column in the
parameter clause of the CREATE INDEX statement.

For all rows containing the AUTO or AUTOMATIC keywords in character set or language columns,
Oracle Text applies statistical techniques to determine the character set and language of the
documents and modify document indexing appropriately.

3.2.8 Supported Document Formats
Because the system can index most document formats, including HTML, PDF, Microsoft Word,
and plain text, you can load any supported type into the text column.

When your text column has mixed formats, you can include a format column to help filtering
during indexing, and you can specify whether a document is binary (formatted) or text
(nonformatted, such as HTML). If you mix HTML and XML documents in one index, you might
not be able to configure your index to your needs; you cannot prevent style sheet information
from being added to the index.

See Also:

Oracle Text Reference for more information about the supported document formats

3.2.9 Summary of DATASTORE Types
When you use CREATE INDEX, specify the location that uses the datastore preference. Use an
appropriate datastore according to your application.

These are the different ways that you can store your text with datastore preference types.

Table 3-2 Summary of DATASTORE Types

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in a text column. Each row is indexed as a single
document.

Your text column can be VARCHAR2, CLOB, BLOB, CHAR, or BFILE.
XMLType columns are supported for the context index type.

MULTI_COLUMN_DATASTOR
E

Data is stored in a text table in more than one column. Columns are
concatenated to create a virtual document, one document for each row.

Chapter 3
Considerations for Oracle Text Indexing

3-12

Table 3-2 (Cont.) Summary of DATASTORE Types

Datastore Type Use When

DETAIL_DATASTORE Data is stored internally in a text column. Document consists of one or
more rows stored in a text column in a detail table, with header information
stored in a primary table.

FILE_DATASTORE Data is stored externally in operating system files. File names are stored in
the text column, one for each row.

Note:

Starting with Oracle Database 19c, the Oracle
Text type FILE_DATASTORE is deprecated.
Use DIRECTORY_DATASTORE instead.

DIRECTORY_DATASTORE Data is stored externally in Oracle directory objects. File names are stored
in the text column, one for each row.

NESTED_DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet or the internet. URLs
are stored in the text column.

Note:

Starting with Oracle Database 19c, the Oracle
Text type URL_DATASTORE is deprecated. Use
NETWORK_DATASTORE instead.

NETWORK_DATASTORE Data is stored externally in files located on an intranet or the internet. URLs
are stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a user-defined stored
procedure.

Indexing time and document retrieval time increases for indexing URLs, because the system
must retrieve the document from the network.

Note:

To troubleshoot issues with triggers and MULTI_COLUMN_DATASTORE or
USER_DATASTORE, refer to My Oracle Support document 1613741.1.

3.2.10 Document Formats and Filtering
To index formatted documents, such as Microsoft Word and PDF, you must filter them to text.
The FILTER preference type determines the type of filtering that the system uses. By default,
the system uses the AUTO_FILTER filter type, which automatically detects the format of your
documents and filters them to text.

Chapter 3
Considerations for Oracle Text Indexing

3-13

Oracle Text can index most formats. It can also index columns that contain mixed-format
documents.

• No Filtering for HTML

• Filtering Mixed-Format Columns

• Custom Filtering

See Also:

Oracle Text Reference for information about AUTO_FILTER supported document and
graphics formats

3.2.10.1 No Filtering for HTML
If you are indexing HTML or plain-text files, do not use the AUTO_FILTER type. For best results,
use the NULL_FILTER preference type.

See Also:

"NULL_FILTER Example: Indexing HTML Documents"

3.2.10.2 Mixed-Format Columns Filtering
For a mixed-format column, such as one that contains Microsoft Word, plain text, and HTML
documents, you can bypass filtering for plain text or HTML by including a format column in
your text table. In the format column, tag each row TEXT or BINARY. Rows that are tagged TEXT
are not filtered.

For example, tag the HTML and plain text rows as TEXT and the Microsoft Word rows as
BINARY. You specify the format column in the CREATE INDEX parameter clause.

When you do not want a document to be indexed, you can use a third format column type,
IGNORE. This column type is useful, for example, when a mixed-format table includes plain-text
documents in Japanese and English, but you only want to process the English documents.
This column type is also useful when a mixed-format table includes plain-text documents and
images. Because IGNORE is implemented at the datastore level, you can use it with all filters.

3.2.10.3 Custom Filtering
You can create a custom filter to filter documents for indexing. You can create either an
external filter that is executed from the file system or an internal filter as a PL/SQL or Java-
stored procedure.

For external custom filtering, use the USER_FILTER filter preference type.

For internal filtering, use the PROCEDURE_FILTER filter type.

Chapter 3
Considerations for Oracle Text Indexing

3-14

See Also:

"PROCEDURE_FILTER Example"

3.2.11 Bypass Rows
In your text table, you can bypass rows that you do not want to index, such as rows that
contain image data. To bypass rows, you create a format column, set it to IGNORE, and name
the format column in the parameter clause of the CREATE INDEX statement.

3.2.12 Document Character Set
The indexing engine expects filtered text to be in the database character set. When you use
the AUTO_FILTER filter type, formatted documents are converted to text in the database
character set.

If your source is text and your document character set is not the database character set, then
you can use the AUTO_FILTER filter type to convert your text for indexing.

Character Set Detection

When you set the CHARSET column to AUTO, the AUTO_FILTER filter detects the character set of
the document and converts it from the detected character set to the database character set, if
there is a difference.

Mixed Character Set Columns

If your document set contains documents with different character sets, such as JA16EUC and
JA16SJIS, you can index the documents, provided that you create a CHARSET column, populate
this column with the name of the document character set for each row, and name the column in
the parameter clause of the CREATE INDEX statement.

3.3 Document Language
Oracle Text can index most languages. By default, Oracle Text assumes that the language of
the text to be indexed is the language that you specify in your database setup.

Depending on the language of your documents, use one of the following lexer types:

• AUTO_LEXER: To automatically detect the language being indexed by examining the content,
and apply suitable options (including stemming) for that language. Works best where each
document contains a single-language, and has at least a couple of paragraphs of text to
aid identification.

• BASIC_LEXER: To index whitespace-delimited languages such as English, French, German,
and Spanish. For some of these languages, you can enable alternate spelling, composite
word indexing, and base-letter conversion.

• MULTI_LEXER: To index tables containing documents of different languages such as
English, German, and Japanese.

• CHINESE_VGRAM: To extract tokens from Chinese text.

• CHINESE_LEXER: To extract tokens from Chinese text. This lexer offers the following benefits
over the CHINESE_VGRAM lexer:

Chapter 3
Document Language

3-15

– Generates a smaller index

– Better query response time

– Generates real world tokens resulting in better query precision

– Supports stop words

• JAPANESE_VGRAM: To extract tokens from Japanese text.

• JAPANESE_LEXER: To extract tokens from Japanese text. This lexer offers the following
advantages over the JAPANESE_VGRAM lexer:

– Generates smaller index

– Better query response time

– Generates real world tokens resulting in better precision

• KOREAN_MORPH_LEXER: To extract tokens from Korean text.

• USER_LEXER: To create your own lexer for indexing a particular language.

• WORLD_LEXER: To index tables containing documents of different languages and to
autodetect the languages in the document.

With the BASIC_LEXER preference, Oracle Text provides a lexing solution for most languages.
For the Japanese, Chinese, and Korean languages, you can create your own lexing solution in
the user-defined lexer interface.

• Language Features Outside BASIC_LEXER: The user-defined lexer interface enables
you to create a PL/SQL or Java procedure to process your documents during indexing and
querying. With the user-defined lexer, you can also create your own theme lexing solution
or linguistic processing engine.

• Multilanguage Columns: Oracle Text can index text columns that contain documents in
different languages, such as a column that contains documents written in English, German,
and Japanese. To index a multilanguage column, you add a language column to your text
table and use the MULTI_LEXER preference type. You can also incorporate a multilanguage
stoplist when you index multilanguage columns.

3.4 Special Characters
When you use the BASIC_LEXER preference type, you can specify how nonalphanumeric
characters, such as hyphens and periods, are indexed in relation to the tokens that contain
them. For example, you can specify that Oracle Text include or exclude the hyphen (-) when it
indexes a word such as vice-president.

These characters fall into BASIC_LEXER categories according to the behavior that you require
during indexing. The way you set the lexer to behave for indexing is the way it behaves for
query parsing.

Some of the special characters you can set are as follows:

• Printjoin Characters: Define a nonalphanumeric character as printjoin when you want
this character to be included in the token during indexing. For example, if you want your
index to include hyphens and underscores, define them as printjoins. This means that a
word such as vice-president is indexed as vice-president. A query on vicepresident does
not find vice-president.

• Skipjoin Characters: Define a nonalphanumeric character as skipjoin when you do not
want this character to be indexed with the token that contains it. For example, with the

Chapter 3
Special Characters

3-16

hyphen (-) defined as a skipjoin, vice-president is indexed as vicepresident. A query on
vice-president finds documents containing vice-president and vicepresident.

• Other Characters: You can specify other characters to control other tokenization behavior,
such as token separation (startjoins, endjoins, whitespace), punctuation identification
(punctuations), number tokenization (numjoins), and word continuation after line breaks
(continuation). These categories of characters have modifiable defaults.

See Also:

• "BASIC_LEXER Example: Setting Printjoin Characters"

• Oracle Text Reference to learn more about the BASIC_LEXER type

3.5 Case-Sensitive Indexing and Querying
By default, all text tokens are converted to uppercase and then indexed. This conversion
results in case-insensitive queries. For example, queries on cat, CAT, and Cat return the same
documents.

You can change the default and have the index record tokens as they appear in the text. When
you create a case-sensitive index, you must specify your queries with the exact case to match
documents. For example, if a document contains Cat, you must specify your query as Cat to
match this document. Specifying cat or CAT does not return the document.

To enable or disable case-sensitive indexing, use the mixed_case attribute of the BASIC_LEXER
preference.

See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.6 Improved Document Services Performance with a Forward
Index

When it searches for a word in a document, Oracle Text uses an inverted index and then
displays the results by calculating the snippet from that document. For calculating the snippet,
each document returned as part of the search result is reindexed. The search operation slows
down considerably when a document’s size is very large.

The forward index overcomes the performance problem of very large documents. It uses a $O
mapping table that refers to the token offsets in the $I inverted index table. Each token offset is
translated into the character offset in the original document, and the text surrounding the
character offset is then used to generate the text snippet.

Because the forward index does not use in-memory indexing of the documents while
calculating the snippet, it provides considerable improved performance over the inverted index
while searching for a word in very large documents.

Chapter 3
Case-Sensitive Indexing and Querying

3-17

The forward index improves the performance of the following procedures in the Oracle Text
CTX_DOC package:

• CTX_DOC.SNIPPET
• CTX_DOC.HIGHLIGHT
• CTX_DOC.MARKUP

See Also:

Oracle Text Reference for information about the forward_index parameter clause of
the BASIC_STORAGE indexing type

3.6.1 Enabling Forward Index
The following example enables the forward index feature by setting the forward_index
attribute value of the BASIC_STORAGE storage type to TRUE:
exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore','forward_index','TRUE');

3.6.2 Forward Index with Snippets
In some cases, when you use the forward_index option, generated snippets may be slightly
different from the snippets that are generated when you do not use the forward_index option.
The differences are generally minimal, do not affect snippet quality, and are typically "few extra
white spaces" and "newline."

3.6.3 Forward Index with Save Copy
Using Forward Index with Save Copy

To use the forward index effectively, you should store copies of the documents in the $D table,
either in plain-text format or filtered format, depending upon the CTX_DOC package procedure
that you use. For example, store the document in plain-text when you use the SNIPPET
procedure and store it in the filtered format when you use the MARKUP or HIGHLIGHT procedure.

You should use the Save Copy feature of Oracle Text to store the copies of the documents in
the $D table. Implement the feature by using the save_copy attribute or the save_copy column
parameter.

• save_copy basic storage attribute:

The following example sets the save_copy attribute value of the BASIC_STORAGE storage
type to PLAINTEXT. This example enables Oracle Text to save a copy of the text document
in the $D table while it searches for a word in that document.

exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore','save_copy','PLAINTEXT');

• save_copy column index parameter:

Chapter 3
Improved Document Services Performance with a Forward Index

3-18

The following example uses the save_copy column index parameter to save a copy of a
text document into the $D table. The create index statement creates the $D table and
copies document 1 ("hello world") into the $D table.

create table docs(
 id number,
 txt varchar2(64),
 save varchar2(10)
);

insert into docs values(1, 'hello world', 'PLAINTEXT');

create index idx on docs(txt) indextype is ctxsys.context
 parameters('save_copy column save');

For the save_copy attribute or column parameter, you can specify one of the following values:

• PLAINTEXT saves the copy of the document in a plain-text format in the $D index table. The
plain-text format is defined as the output format of the sectioner. Specify this value when
you use the SNIPPET procedure.

• FILTERED saves a copy of a document in a filtered format in the $D index table. The filtered
format is defined as the output format of the filter. Specify this value when you use the
MARKUP or HIGHLIGHT procedure.

• NONE does not save the copy of the document in the $D index table. Specify this value when
you do not use the SNIPPET, MARKUP, or HIGHLIGHT procedure and when the indexed
column is either VARCHAR2 or CLOB.

3.6.4 Forward Index Without Save Copy
In the following scenarios, you can take advantage of the performance enhancement of
forward index without saving copies of all documents in the $D table (that is, without using the
Save Copy feature):

• The document set contains HTML and plain text: Store all documents in the base table by
using the DIRECT_DATASTORE or the MULTI_COLUMN_DATASTORE datastore type.

• The document set contains HTML, plain text, and binary: Store all documents in the base
table by using the DIRECT_DATASTORE datastore type. Store only the binary documents in
the $D table in the filtered format.

3.6.5 Save Copy Without Forward Index
Even if you do not enable the forward index feature, the Save Copy feature improves the
performance of the following procedures of the CTX_DOC package:

• CTX_DOC.FILTER
• CTX_DOC.GIST
• CTX_DOC.THEMES
• CTX_DOC.TOKENS

3.7 Language-Specific Features
You can enable the following language-specific features:

Chapter 3
Language-Specific Features

3-19

• Indexing Themes

• Base-Letter Conversion for Characters with Diacritical Marks

• Alternate Spelling

• Composite Words

• Korean, Japanese, and Chinese Indexing

3.7.1 Theme Indexing
By default, themes are indexed in English and French, for which you can index document
theme information. A document theme is a concept that is sufficiently developed in the
document.

Search document themes with the ABOUT operator and retrieve document themes
programatically with the CTX_DOC PL/SQL package.

Enable and disable theme indexing with the index_themes attribute of the BASIC_LEXER
preference type.

You can also index theme information in other languages, provided that you loaded and
compiled a knowledge base for the language.

See Also:

• Oracle Text Reference to learn more about the BASIC_LEXER
• "ABOUT Queries and Themes"

3.7.2 Base-Letter Conversion for Characters with Diacritical Marks
Some languages contain characters with diacritical marks, such as tildes, umlauts, and
accents. When your indexing operation converts words containing diacritical marks to their
base-letter form, queries do not have to contain diacritical marks to score matches.

For example, in a Spanish base-letter index, a query of energía matches energía and energia.
However, if you disable base-letter indexing, a query of energía only matches energía.

Enable and disable base-letter indexing for your language with the base_letter attribute of the
BASIC_LEXER preference type.

See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.7.3 Alternate Spelling
Languages such as German, Danish, and Swedish contain words that have more than one
accepted spelling. For example, in German, you can substitute ae for ä. The ae character pair
is known as the alternate form.

Chapter 3
Language-Specific Features

3-20

By default, Oracle Text indexes words in their alternate forms for these languages. Query
terms are also converted to their alternate forms. The result is that you can query these words
with either spelling.

Enable and disable alternate spelling for your language with the alternate_spelling attribute
in the BASIC_LEXER preference type.

See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.7.4 Composite Words
German and Dutch text contains composite words. By default, Oracle Text creates composite
indexes for these languages. The result is that a query on a term returns words that contain the
term as a subcomposite.

For example, in German, a query on the term Bahnhof (train station) returns documents that
contain Bahnhof or any word containing Bahnhof as a subcomposite, such as Hauptbahnhof,
Nordbahnhof, or Ostbahnhof.

Enable and disable composite indexes with the composite attribute of the BASIC_LEXER
preference.

See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.7.5 Korean, Japanese, and Chinese Indexing
Index these languages with specific lexers:

Table 3-3 Lexers for Asian Languages

Language Lexer

Korean KOREAN_MORPH_LEXER
Japanese JAPANESE_LEXER, JAPANESE_VGRAM_LEXER
Chinese CHINESE_LEXER,CHINESE_VGRAM_LEXER

These lexers have their own sets of attributes to control indexing.

See Also:

Oracle Text Reference to learn more about these lexers

Chapter 3
Language-Specific Features

3-21

3.8 About Entity Extraction and CTX_ENTITY
Entity extraction is the identification and extraction of named entities within text. Entities are
mainly nouns and noun phrases, such as names, places, times, coded strings (such as phone
numbers and zip codes), percentages, and monetary amounts. The CTX_ENTITY package
implements entity extraction by means of a built-in dictionary and a set of rules for English text.
You can extend the capabilities for English and other languages with user-provided add-on
dictionaries and rule sets.

See Also:

• CTX_ENTITY Package in Oracle Text Reference

• Entity Extraction User Dictionary Loader (ctxload) in Oracle Text Reference

This section contains the following examples:

• Basic Example of Using Entity Extraction

• Example of Creating a New Entity Type Using a User-defined Rule

3.8.1 Basic Example of Using Entity Extraction
The example in this section provides a very basic example of entity extraction. The example
assumes that a CLOB contains the following text:

New York, United States of America
The Dow Jones Industrial Average climbed by 5% yesterday on news of a new software
release from database giant Oracle Corporation.

The example uses CTX_ENTITY.EXTRACT to find the entities in CLOB value. (For now, do not
worry about how the text got into the CLOB or how we provide the output CLOB.)

Entity extraction requires a new type of policy, an "extract policy," which enables you to specify
options. For now, create a default policy:

ctx_entity.create_extract_policy('mypolicy');

Now you can call extract to do the work. It needs four arguments: the policy name, the
document to process, the language, and the output CLOB (which you should have initialized,
for example, by calling dbms_lob.createtemporary).

ctx_entity.extract('mypolicy', mydoc, 'ENGLISH', outclob)

In the previous example, outclob contains the XML that identifies extracted entities. When you
display the contents (preferably by selecting it as XMLTYPE so that it is formatted nicely), here
is what you see:

<entities>
 <entity id="0" offset="0" length="8" source="SuppliedDictionary">
 <text>New York</text>
 <type>city</type>
 </entity>
 <entity id="1" offset="150" length="18" source="SuppliedRule">
 <text>Oracle Corporation</text>

Chapter 3
About Entity Extraction and CTX_ENTITY

3-22

 <type>company</type>
 </entity>
 <entity id="2" offset="10" length="24" source="SuppliedDictionary">
 <text>United States of America</text>
 <type>country</type>
 </entity>
 <entity id="3" offset="83" length="2" source="SuppliedRule">
 <text>5%</text>
 <type>percent</type>
 </entity>
 <entity id="4" offset="113" length="8" source="SuppliedDictionary">
 <text>software</text>
 <type>product</type>
 </entity>
 <entity id="5" offset="0" length="8" source="SuppliedDictionary">
 <text>New York</text>
 <type>state</type>
 </entity>
</entities>

This display is fine if you process it with an XML-aware program. However, if you want it in a
more "SQL friendly" view, use Oracle XML Database (XML DB) functions to convert it as
follows:

select xtab.offset, xtab.text, xtab.type, xtab.source
from xmltable('/entities/entity'
PASSING xmltype(outclob)
 COLUMNS
 offset number PATH '@offset',
 lngth number PATH '@length',
 text varchar2(50) PATH 'text/text()',
 type varchar2(50) PATH 'type/text()',
 source varchar2(50) PATH '@source'
) as xtab order by offset;

Here is the output:

 OFFSET TEXT TYPE SOURCE
---------- ------------------------- -------------------- --------------------
 0 New York city SuppliedDictionary
 0 New York state SuppliedDictionary
 10 United States of America country SuppliedDictionary
 83 5% percent SuppliedRule
 113 software product SuppliedDictionary
 150 Oracle Corporation company SuppliedRule

If you do not want to fetch all entity types, you can select the types by adding a fourth
argument to the "extract" procedure, with a comma-separated list of entity types. For example:

ctx_entity.extract('mypolicy', mydoc, 'ENGLISH', outclob, 'city, country')

That would give us the XML

<entities>
 <entity id="0" offset="0" length="8" source="SuppliedDictionary">
 <text>New York</text>
 <type>city</type>
 </entity>
 <entity id="2" offset="10" length="24" source="SuppliedDictionary">
 <text>United States of America</text>
 <type>country</type>

Chapter 3
About Entity Extraction and CTX_ENTITY

3-23

 </entity>
</entities>

3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule
The example in this section shows how to create a new entity type with a user-defined rule.
You define rules with a regular-expression-based syntax and add the rules to an extraction
policy. The policy is applied whenever it is used.

The following rule identifies increases in a stock index by matching any of the following
expressions:

 climbed by 5%
 increased by over 30 percent
 jumped 5.5%

Therefore, you must create a new type of entity as well as a regular expression that matches
any of the expressions. Because user-defined entities must start with the letter "x," call your
entity "xPositiveGain" as follows:

 ctx_entity.add_extract_rule('mypolicy', 1,
 '<rule>' ||
 '<expression>' ||
 '((climbed|gained|jumped|increasing|increased|rallied)' ||
 '((by|over|nearly|more than))* \d+(\.\d+)?(percent|%))' ||
 '</expression>' ||
 '<type refid="1">xPositiveGain</type>' ||
 '</rule>');

Notice the use of refid in the example. It tells you which part of the regular expression to
match, by referencing a pair of parentheses within it. For the example, because you want the
entire expression, that is the outermost (and first occurring) parentheses, which is refid=1.

In this case, you must compile the policy with CTX_ENTITY.COMPILE:
 ctx_entity.compile('mypolicy');

Then you can use it as before:

 ctx_entity.extract('mypolicy', mydoc, null, myresults)

Here is the (abbreviated) output:

<entities>
 ...
 <entity id="6" offset="72" length="18" source="UserRule" ruleid="1">
 <text>climbed by over 5%</text>
 <type>xPositiveGain</type>
 </entity>
</entities>

Finally, you add another user-defined entity, but this time it uses a dictionary. You want to
recognize "Dow Jones Industrial Average" as an entity of type xIndex. You also add "S&P
500". To do that, create an XML file containing the following:

<dictionary>
 <entities>
 <entity>
 <value>dow jones industrial average</value>
 <type>xIndex</type>
 </entity>

Chapter 3
About Entity Extraction and CTX_ENTITY

3-24

 <entity>
 <value>S&P 500</value>
 <type>xIndex</type>
 </entity>
 </entities>
</dictionary>

Case is not significant in this file, but notice how the "&" in "S&P" must be specified as the XML
entity &. Otherwise, the XML is not valid.

This XML file is loaded into the system with the CTXLOAD utility. If the file were called dict.load,
you would use the following command:

ctxload -user username/password -extract -name mypolicy -file dict.load

You must compile the policy with CTX_ENTITY.COMPILE.

3.9 Fuzzy Matching and Stemming
Fuzzy matching enables you to match similarly spelled words in queries. Oracle Text provides
entity extraction for multiple languages.

Stemming enables you to match words with the same linguistic root. For example a query
on $speak, expands to search for all documents that contain speak, speaks, spoke, and
spoken.

Fuzzy matching and stemming are automatically enabled in your index if Oracle Text supports
this feature for your language.

Fuzzy matching is enabled with default parameters for its fuzzy score and for its maximum
number of expanded terms. Fuzzy score is a measure of how closely the expanded word
matches the query word. At index time, you can change these default parameters.

To automatically detect the language of a document and to have the necessary transformations
performed, create a stem index by enabling the index_stems attribute of the AUTO_LEXER. Use
the stemmer that corresponds to the document language and always configure the stemmer to
maximize document recall. For compound words in languages such as German, Finnish,
Swedish, and Dutch, if you set index_stems to YES, then compound word stemming is
automatically performed in the documents. Compounds are always separated into their
component stems.

To improve the performance of stem queries, create a stem index by enabling the index_stems
attribute of BASIC_LEXER.
• Values For Language Attribute for index_stems of AUTO_LEXER

• Values For Language Attribute for index_stems of BASIC_LEXER

See Also:

Oracle Text Reference to learn more about fuzzy matching and stemming

3.9.1 Language Attribute Values for index_stems of BASIC_LEXER
You can use the following values with the index_stems attribute of BASIC_LEXER:

Chapter 3
Fuzzy Matching and Stemming

3-25

• ARABIC

• BOKMAL

• CROATIAN

• DANISH

• FINNISH

• HEBREW

• CATALAN

• CZECH

• DERIVATIONAL

• DERIVATIONAL_NEW

• DUTCH

• DUTCH_NEW

• ENGLISH

• ENGLISH_NEW

• FRENCH

• FRENCH_NEW

• GERMAN

• GERMAN_NEW

• GREEK

• NYNORSK

• PERSIAN

• SERBIAN

• SLOVAK

• SLOVENIAN

• THAI

• HUNGARIAN

• ITALIAN

• ITALIAN_NEW

• NONE

• POLISH

• PORTUGUESE

• ROMANIAN

• RUSSIAN

• SPANISH

• SPANISH_NEW

• SWEDISH

• TURKISH

Chapter 3
Fuzzy Matching and Stemming

3-26

3.9.2 Language Attribute Values for index_stems of AUTO_LEXER
The values for the index_stems attribute of AUTO_LEXER is TRUE or FALSE. The index_stems
attribute of AUTO_LEXER supports the following languages:

• ARABIC

• BOKMAL

• CROATIAN

• DANISH

• FINNISH

• HEBREW

• CATALAN

• CZECH

• DUTCH

• ENGLISH

• FRENCH

• GERMAN

• GREEK

• HUNGARIAN

• ITALIAN

• JAPANESE

• NYNORSK

• PERSIAN

• SERBIAN

• SLOVAK

• SLOVENIAN

• THAI

• KOREAN

• POLISH

• PORTUGUESE

• ROMANIAN

• RUSSIAN

• SIMPLIFIED CHINESE

• SPANISH

• SWEDISH

• TRADITIONAL CHINESE

• TURKISH

Chapter 3
Fuzzy Matching and Stemming

3-27

3.10 Better Wildcard Query Performance
Wildcard queries enable you to enter left-truncated, right-truncated, and double-truncated
queries, such as %ing, cos%, or %benz%. With normal indexing, these queries can sometimes
expand into large word lists and degrade your query performance.

Wildcard queries have better response time when token prefixes and substrings are recorded
in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index. If your
query application makes heavy use of wildcard queries, consider indexing token prefixes and
substrings. To do so, use the wordlist preference type. The trade-off is a bigger index for
improved wildcard searching.

See Also:

• "BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing"

• Oracle Text Reference for more information on how to keep wildcard query
performance within an acceptable limit

3.11 Document Section Searches
For documents that have internal structure, such as HTML and XML, you can define and index
document sections. By indexing document sections, you can narrow the scope of your queries
to predefined sections. For example, you can specify a query to find all documents that contain
the term dog within a section defined as Headings.

Before indexing, you must define sections and specify them with the section group preference.

Oracle Text provides section groups with system-defined section definitions for HTML and
XML. You can also specify that the system automatically create sections from XML documents
during indexing.

See Also:

Searching Document Sections in Oracle Text

3.12 Stopwords and Stopthemes
A stopword is a word that you do not want indexed. Stopwords are typically low-information
words in a given language, such as this and that in English.

By default, Oracle Text provides a stoplist for indexing a given language. Modify this list or
create your own with the CTX_DDL package. Specify the stoplist in the parameter string of the
CREATE INDEX statement.

A stoptheme is a word that is prevented from being theme-indexed or that is prevented from
contributing to a theme. Add stopthemes with the CTX_DDL package.

Chapter 3
Better Wildcard Query Performance

3-28

• Language detection and stoplists: At query time, the language of the query is inherited
from the query template or from the session language (if no language is specified through
the query template).

• Multilanguage stoplists: You create multilanguage stoplists to hold language-specific
stopwords. This stoplist is useful when you use MULTI_LEXER to index a table that contains
documents in different languages, such as English, German, and Japanese. At index
creation, the language column of each document is examined, and only the stopwords for
that language are eliminated. At query time, the session language setting determines the
active stopwords, just as it determines the active lexer with the multi-lexer.

3.13 Index Performance
Factors that influence indexing performance include memory allocation, document format,
degree of parallelism, and partitioned tables.

See Also:

"Frequently Asked Questions About Indexing Performance"

3.14 Query Performance and Storage of Large Object (LOB)
Columns

If your table contains large object (LOB) structured columns that are frequently accessed in
queries but rarely updated, you can improve query performance by storing these columns out-
of-line. However, you cannot map attributes to remote LOB columns.

See Also:

"Does out-of-line LOB storage of wide base table columns improve performance?"

3.15 Mixed Query Performance
If your CONTAINS() query also has structured predicates on the nontext columns, then consider
indexing those column values. To do so, specify those columns in the FILTER BY clause of the
CREATE INDEX statement. Oracle Text can then determine whether to have the structured
predicates processed by the Oracle Text index for better performance.

Additionally, if your CONTAINS() query has ORDER BY criteria on one or more structured columns,
then the Oracle Text index can also index those column values. Specify those columns in the
ORDER BY clause of the CREATE INDEX statement. Oracle Text can then determine whether to
push the sort into the Oracle Text index for better query response time.

Chapter 3
Index Performance

3-29

See Also:

"CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY"

Chapter 3
Mixed Query Performance

3-30

4
Creating Oracle Text Indexes

Learn how to create Oracle Text indexes.

This chapter contains the following topics:

• Summary of the Procedure for Creating an Oracle Text Index

• Creating Preferences

• Section Searching Example: Creating HTML Sections

• Using Stopwords and Stoplists

• Creating a CONTEXT Index

• Creating a CTXCAT Index

• Creating a CTXRULE Index

• Creating a Search Index for JSON

• #unique_132

4.1 Summary of the Procedure for Creating an Oracle Text Index
With Oracle Text, you can create indexes of type CONTEXT, CTXCAT, and CTXRULE.

You can choose to keep old index entries to search on original content by using the
ASYNCHRONOUS_UPDATE parameter string option.

By default, the system expects your documents to be stored in a text column. After you satisfy
this requirement, you can create an Oracle Text index by using the CREATE INDEX SQL
statement as an extensible index of type CONTEXT, without explicitly specifying preferences.
The system automatically detects your language, the data type of the text column, and the
format of the documents. Next, the system sets indexing preferences.

To create an Oracle Text index:

1. (Optional) Determine your custom indexing preferences, section groups, or stoplists if you
do not use the defaults. The following table describes these indexing classes:

Class Description

Datastore How are your documents stored?

Filter How can the documents be converted to plaintext?

Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index data be stored?

Stoplist What words or themes are not to be indexed?

Section Group How are document sections defined?

2. (Optional) Create custom preferences, section groups, or stoplists.

4-1

3. Create the Oracle Text index with the CREATE INDEX SQL statement. Name your index and,
if necessary, specify preferences.

4.2 Creating Preferences
If you want, you can create custom index preferences to override the defaults. Use the
preferences to specify index information, such as where your files are stored and how to filter
your documents. You create the preferences and then set the attributes.

See Also:

"Custom Index Preference Examples"

4.3 Section Searching Example: Creating HTML Sections
When documents have internal structure such as in HTML and XML, you can define document
sections by using embedded tags before you index. This approach enables you to query within
the sections by using the WITHIN operator. You define sections as part of a section group.

This example defines a section group called htmgroup of type HTML_SECTION_GROUP. It then
creates a zone section in htmgroup called heading identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

See Also:

Searching Document Sections in Oracle Text

4.4 Using Stopwords and Stoplists
A stopword is a word that is not to be indexed, such as this or that in English.

The system supplies a stoplist for every language. By default during indexing, the system uses
the Oracle Text default stoplist for your language.

You can edit the default CTXSYS.DEFAULT_STOPLIST or create your own with the following
PL/SQL procedures:

• CTX_DDL.CREATE_STOPLIST
• CTX_DDL.ADD_STOPWORD
• CTX_DDL.REMOVE_STOPWORD
You specify your custom stoplists in the parameter clause of CREATE INDEX.
You can also dynamically add stopwords after indexing with the ALTER INDEX statement.

• Multi-Language Stoplists

Chapter 4
Creating Preferences

4-2

• Stopthemes and Stopclasses

• PL/SQL Procedures for Managing Stoplists

4.4.1 Multilanguage Stoplists
You can create multilanguage stoplists to hold language-specific stopwords. This stoplist is
useful when you use MULTI_LEXER to index a table that contains documents in different
languages, such as English, German, and Japanese.

To create a multilanguage stoplist, use the CTX_DDL.CREATE_STOPLIST procedure and specify a
stoplist type of MULTI_STOPLIST. You add language-specific stopwords with
CTX_DDL.ADD_STOPWORD.

4.4.2 Stopthemes and Stopclasses
In addition to defining your own stopwords, you can define stopthemes, which are themes that
are not indexed. This feature is available only for English and French.

You can also specify that numbers are not indexed. A class of alphanumeric characters such a
numbers that is not to be indexed is a stopclass.

You create a single stoplist, to which you add the stopwords, stopthemes, and stopclasses,
and specify the stoplist in the paramstring for CREATE INDEX.

4.4.3 PL/SQL Procedures for Managing Stoplists
Use the following procedures to manage stoplists, stopwords, stopthemes, and stopclasses:

• CTX_DDL.CREATE_STOPLIST
• CTX_DDL.ADD_STOPWORD
• CTX_DDL.ADD_STOPTHEME
• CTX_DDL.ADD_STOPCLASS
• CTX_DDL.REMOVE_STOPWORD
• CTX_DDL.REMOVE_STOPTHEME
• CTX_DDL.REMOVE_STOPCLASS
• CTX_DDL.DROP_STOPLIST

See Also:

Oracle Text Reference to learn more about using these procedures

4.5 Creating a CONTEXT Index
The CONTEXT index type is well suited for indexing large, coherent documents in formats such
as Microsoft Word, HTML, or plain text.

With a CONTEXT index, you can also customize your index in a variety of ways. The documents
must be loaded in a text table.

Chapter 4
Creating a CONTEXT Index

4-3

• CONTEXT Index and DML

• Default CONTEXT Index Example

• Incrementally Creating a CONTEXT Index

• Custom CONTEXT Index Example: Indexing HTML Documents

• CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY

4.5.1 CONTEXT Index and DML
A CONTEXT index is not transactional. When you delete a record, the index is changed
immediately. That is, your session no longer finds the record from the moment you make the
change, and other users cannot find the record after you commit. For inserts and updates, the
new information is not visible to text searches until an index synchronization has occurred.
Therefore, when you perform inserts or updates on the base table, you must explicitly
synchronize the index with CTX_DDL.SYNC_INDEX.

See Also:

"Synchronizing the Index"

4.5.2 Default CONTEXT Index Example
The following statement creates a default CONTEXT index called myindex on the text column in
the docs table:

CREATE INDEX myindex ON docs(text) INDEXTYPE IS CTXSYS.CONTEXT;

When you use the CREATE INDEX statement without explicitly specifying parameters, the
system completes the following actions by default for all languages:

• Assumes that the text to be indexed is stored directly in a text column. The text column can
be of type CLOB, BLOB, BFILE, VARCHAR2, or CHAR.

• Detects the column type and uses filtering for the binary column types of BLOB and BFILE.
Most document formats are supported for filtering. If your column is plain text, the system
does not use filtering.

Note:

For document filtering to work correctly in your system, you must ensure that
your environment is set up correctly to support the AUTO_FILTER filter.

• Assumes that the language of the text to index is the language specified in your database
setup.

• Uses the default stoplist for the language specified in your database setup. Stoplists
identify the words that the system ignores during indexing.

• Enables fuzzy and stemming queries for your language, if this feature is available for your
language.

Chapter 4
Creating a CONTEXT Index

4-4

You can always change the default indexing behavior by customizing your preferences and
specifying those preferences in the parameter string of CREATE INDEX.

See Also:

Oracle Text Reference to learn more about configuring your environment to use the
AUTO_FILTER filter

4.5.3 Incrementally Creating a CONTEXT Index
The ALTER INDEX and CREATE INDEX statements support incrementally creating a CONTEXT
index.

You can incrementally create Oracle Text indexes, which means that the index structure is
immediately created but the data is not populated during the index creation or rebuild process.
You populate the index later at a suitable time. This procedure is useful for creating indexes in
large installations that cannot afford to have the indexing process running continuously. It
provides finer control over the creation of indexes, allowing you to avoid building indexes in a
single operation.

Incremental index creation involves the following steps:

1. Create an empty index:

If you specify the NOPOPULATE keyword at the time of index creation or rebuild, it only
creates metadata for the index tables but does not populate them.

• Global index:

For a global index, use CREATE INDEX to support the NOPOPULATE keyword in the
REPLACE parameter of the REBUILD clause.

• Local index partition:

For a local index partition, modify the ALTER INDEX ... REBUILD partition ...
parameters ('REPLACE ...') parameter string to support the NOPOPULATE keyword.

For a partition on a local index, CREATE INDEX ... LOCAL ... (partition ... parameters
('NOPOPULATE')) is supported. The partition-level POPULATE or NOPOPULATE keywords
override any POPULATE or NOPOPULATE specified at the index level.

2. Place all ROWIDs into the pending queue:

Use the CTX_DDL.POPULATE_PENDING procedure to populate the pending queues with every
ROWID in the base table or table partition.

3. Populate the index:

Use the CTX_DDL.SYNC_INDEX procedure to populate the index with the queued data.

The SYNC_INDEX procedure includes the maxtime argument that indicates a suggested time
limit in minutes for the operation. The indexing process runs in an estimate of the given
maxtime instead of running to completion. You might need to run multiple SYNC_INDEX calls
until the index is fully synced.

You can choose to run both the POPULATE_PENDING and SYNC_INDEX calls separately so that
the population of the pending queue and the population of the index happen at different
times, thereby optimizing system performance.

Chapter 4
Creating a CONTEXT Index

4-5

Example 4-1 Incrementally Build an Empty Global Index

-- Create an empty index

CREATE INDEX ctx_ind ON ctx_tab(doc) INDEXTYPE IS CTXSYS.CONTEXT
 PARAMETERS ('NOPOPULATE');

declare
 n_pending number;
 function get_pending return number is
 n_pending number;

 begin
 execute immediate 'SELECT COUNT(*) FROM CTX_USER_PENDING WHERE
PND_INDEX_NAME = :1'
 into n_pending using 'CTX_IND';
 return n_pending;
 end get_pending;

begin
 -- Fill in the pending queue
 CTX_DDL.POPULATE_PENDING('CTX_IND');
 n_pending := get_pending;
 while (n_pending > 0) loop
 -- Populate the index through sync_index
 CTX_DDL.SYNC_INDEX('CTX_IND', maxtime => 1);
 n_pending := get_pending;
 end loop;
end;
/

4.5.4 Custom CONTEXT Index Example: Indexing HTML Documents
To index an HTML document set located by URLs, specify the system-defined preference for
the NULL_FILTER in the CREATE INDEX statement.

You can also specify your htmgroup section group that uses HTML_SECTION_GROUP and
NETWORK_PREF datastore that uses NETWORK_DATASTORE:

begin
 ctx_ddl.create_preference('NETWORK_PREF','NETWORK_DATASTORE');
 ctx_ddl.set_attribute('NETWORK_PREF','HTTP_PROXY','www-proxy.us.example.com');
 ctx_ddl.set_attribute('NETWORK_PREF','NO_PROXY','us.example.com');
 ctx_ddl.set_attribute('NETWORK_PREF','TIMEOUT','300');
end;

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

You can then index your documents:

CREATE INDEX myindex on docs(htmlfile) indextype is ctxsys.context
parameters(

Chapter 4
Creating a CONTEXT Index

4-6

'datastore NETWORK_PREF filter ctxsys.null_filter section group htmgroup'
);

Note:

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK_DATASTORE instead.

4.5.5 CONTEXT Index Example: Query Processing with FILTER BY and
ORDER BY

To enable more efficient query processing and better response time for mixed queries, use
FILTER BY and ORDER BY clauses as shown in the following example:

CREATE INDEX myindex on docs(text) INDEXTYPE is CTXSYS.CONTEXT
FILTER BY category, publisher, pub_date
ORDER BY pub_date desc;

Because you specified the FILTER BY category, publisher, pub_date clause at query time,
Oracle Text also considers pushing a relational predicate on any of these columns into the
Oracle Text index row source.

Also, when the query has matching ORDER BY criteria, by specifying ORDER BY pub_date desc,
Oracle Text determines whether to push SORT into the Oracle Text index row source for better
response time.

4.6 Creating a CTXCAT Index
The CTXCAT index type is well-suited for indexing small text fragments and related information.
This index type provides better structured query performance than a CONTEXT index.

• CTXCAT Index and DML

• About CTXCAT Sub-Indexes and Their Costs

• Creating CTXCAT Sub-indexes

• Creating CTXCAT Index

4.6.1 CTXCAT Index and DML Operations
A CTXCAT index is transactional. When you perform inserts, updates, and deletes on the base
table, Oracle Text automatically synchronizes the index. Unlike a CONTEXT index, no
CTX_DDL.SYNC_INDEX is necessary.

Note:

Applications that insert without invoking triggers, such as SQL*Loader, do not result
in automatic index synchronization as described in this section.

Chapter 4
Creating a CTXCAT Index

4-7

4.6.2 About CTXCAT Subindexes and Their Costs
A CTXCAT index contains subindexes that you define as part of your index set. You create a
subindex on one or more columns to improve mixed query performance. However, the time
Oracle Text takes to create a CTXCAT index depends on its total size, and the total size of a
CTXCAT index is directly related to the following factors:

• Total text to be indexed

• Number of subindexes in the index set

• Number of columns in the base table that make up the subindexes

Many component indexes in your index set also degrade the performance of insert, update,
and delete operations, because more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index, before
adding it to your index set, carefully consider the query performance benefit that each
component index gives your application.

Note:

You can use I_ROWID_INDEX_CLAUSE of BASIC_STORAGE to speed up creation of a
CTXCAT index. This clause is described in Oracle Text Reference.

4.6.3 Creating CTXCAT Subindexes
An online auction site that must store item descriptions, prices, and bid-close dates for ordered
look-up is a good example for creating a CTXCAT index.

Figure 4-1 Auction Table Schema and CTXCAT Index

Auction Table

item_id
number

title
varchar (100)

category_id
number

price
number

bid_close
date

Subindex A

Subindex B

CTXCAT

Index

B

A

Figure 4-1 shows a table called AUCTION with the following schema:

create table auction(
item_id number,
title varchar2(100),

Chapter 4
Creating a CTXCAT Index

4-8

category_id number,
price number,
bid_close date);

To create your subindexes, create an index set to contain them:

begin
ctx_ddl.create_index_set('auction_iset');
end;

Next, determine the structured queries that you are likely to enter. The CATSEARCH query
operator takes a mandatory text clause and optional structured clause.

In the example, this means that all queries include a clause for the title column, which is the
text column.

Assume that the structured clauses fall into the following categories:

Structured Clauses Subindex Definition to
Serve Query

Category

'price < 200'

'price = 150'

'order by price'

'price' A

'price = 100 order by bid_close'

'order by price, bid_close'

'price, bid_close' B

Structured Query Clause Category A

The structured query clause contains an expression only for the price column as follows:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price < 200')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price = 150')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by price')> 0;

These queries can be served by using subindex B. However, for efficiency, you can also create
a subindex only on price (subindex A):

begin
ctx_ddl.add_index('auction_iset','price'); /* sub-index A */
end;

Structured Query Clause Category B

The structured query clause includes an equivalent expression for price ordered by
bid_close, and an expression for ordering by price and bid_close, in that order:

SELECT FROM auction WHERE CATSEARCH(
 title, 'camera','price = 100
 ORDER BY bid_close')> 0;
SELECT FROM auction
 WHERE CATSEARCH(
 title, 'camera','order by price, bid_close')> 0;

These queries can be served with a subindex defined as follows:

begin
ctx_ddl.add_index('auction_iset','price, bid_close'); /* sub-index B */
end;

Chapter 4
Creating a CTXCAT Index

4-9

Like a combined b-tree index, the column order that you specify with CTX_DDL.ADD_INDEX
affects the efficiency and viability of the index scan which Oracle Text uses to serve specific
queries. For example, if two structured columns p and q have a b-tree index specified as
'p,q', Oracle Text cannot scan this index to sort 'ORDER BY q,p'.

4.6.4 Creating CTXCAT Index
This example combines the previous examples and creates the index set preference with the
two subindexes:

begin
ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','price'); /* sub-index A */
ctx_ddl.add_index('auction_iset','price, bid_close'); /* sub-index B */
end;

Figure 4-1 shows how the subindexes A and B are created from the auction table. Each
subindex is a b-tree index on the text column and the named structured columns. For example,
subindex A is an index on the title column and the bid_close column.

You create the combined catalog index with the CREATE INDEX statement as follows:

CREATE INDEX auction_titlex ON AUCTION(title)
 INDEXTYPE IS CTXSYS.CTXCAT
 PARAMETERS ('index set auction_iset')
;

See Also:

Oracle Text Reference to learn more about creating a CTXCAT index with CREATEINDEX

4.7 Creating a CTXRULE Index
To build a document classification application, use the CTXRULE index on a table or queries. The
stream of incoming documents is classified by content, and the queries define your categories.
You can use the MATCHES operator to classify single documents.

To create a CTXRULE index and a simple document classification application:

1. Create a table of queries.

Create a myqueries table to hold the category name and query text, and then populate the
table with the classifications and the queries that define each classification.

CREATE TABLE myqueries (
queryid NUMBER PRIMARY KEY,
category VARCHAR2(30),
query VARCHAR2(2000)
);

For example, consider a classification for the US Politics, Music, and Soccer subjects:

INSERT INTO myqueries VALUES(1, 'US Politics', 'democrat or republican');
INSERT INTO myqueries VALUES(2, 'Music', 'ABOUT(music)');
INSERT INTO myqueries VALUES(3, 'Soccer', 'ABOUT(soccer)');

Chapter 4
Creating a CTXRULE Index

4-10

Tip:

You can also generate a table of rules (or queries) with the CTX_CLS.TRAIN
procedure, which takes as input a document training set.

2. Create the CTXRULE index.

Use the CREATE INDEX statement to create the CTXRULE index and specify lexer, storage,
section group, and wordlist parameters if needed.

CREATE INDEX myruleindex ON myqueries(query)
 INDEXTYPE IS CTXRULE PARAMETERS
 ('lexer lexer_pref
 storage storage_pref
 section group section_pref
 wordlist wordlist_pref');

3. Classify a document.

Use the MATCHES operator to classify a document.

Assume that incoming documents are stored in the table news:

CREATE TABLE news (
newsid NUMBER,
author VARCHAR2(30),
source VARCHAR2(30),
article CLOB);

If you want, create a "before insert" trigger with MATCHES to route each document to a
news_route table based on its classification:

BEGIN
 -- find matching queries
 FOR c1 IN (select category
 from myqueries
 where MATCHES(query, :new.article)>0)
 LOOP
 INSERT INTO news_route(newsid, category)
 VALUES (:new.newsid, c1.category);
 END LOOP;
END;

See Also:

• Classifying Documents in Oracle Text for more information on document
classification and the CTXRULE index

• Oracle Text Reference for more information on CTX_CLS.TRAIN

4.8 Creating a Search Index for JSON
Oracle Text supports a simpler alternative syntax for creating a search index on JavaScript
Object Notation (JSON). The JSON search index is created on the table column name.

Chapter 4
Creating a Search Index for JSON

4-11

See Also:

Oracle Database JSON Developer's Guide

Chapter 4
Creating a Search Index for JSON

4-12

5
Maintaining Oracle Text Indexes

You can maintain your index for an error or indexing failure.

This chapter contains the following topics:

• Viewing Index Errors

• Dropping an Index

• Resuming Failed Index

• Re-creating an Index

• Rebuilding an Index

• Dropping a Preference

• Managing DML Operations for a CONTEXT Index

5.1 Viewing Index Errors
Sometimes an indexing operation might fail or it might not complete successfully. When the
system encounters an error during row indexing, it logs the error in an Oracle Text view.

You can view errors on your indexes with CTX_USER_INDEX_ERRORS. View errors on all indexes
as CTXSYS with CTX_INDEX_ERRORS.
For example, to view the most recent errors on your indexes, enter the following statement:

SELECT err_timestamp, err_text
 FROM ctx_user_index_errors
 ORDER BY err_timestamp DESC;

To clear the view of errors, enter:

DELETE FROM ctx_user_index_errors;

This view is cleared automatically when you create a new index.

See Also:

Oracle Text Reference to learn more about index error views

5.2 Dropping an Index
You must drop an existing index before you can re-create it with the CREATE INDEX statement.

Drop an index by using the DROP INDEX statement in SQL.

If you try to create an index with an invalid PARAMETERS string, then you still need to drop it
before you can re-create it.

5-1

For example, to drop an index called newsindex, enter the following SQL statement:

DROP INDEX newsindex;

If Oracle Text cannot determine the state of the index (for example, because of an indexing
malfunction), you cannot drop the index. Instead use:

DROP INDEX newsindex FORCE;

See Also:

Oracle Text Reference to learn more about the DROP INDEX statement

5.3 Resuming a Failed Index
You can sometimes resume a failed index by using the ALTER INDEX statement. You typically
resume a failed index after you have investigated and corrected the index failure. You cannot
resume all index failures.

Index optimization commits at regular intervals. Therefore, if an optimization operation fails,
then all optimization work up to the commit point was already saved.

See Also:

Oracle Text Reference to learn more about the ALTER INDEX statement syntax

The following statement resumes the indexing operation on newsindex with 10 megabytes of
memory:

ALTER INDEX newsindex REBUILD PARAMETERS('resume memory 10M');

5.4 Re-creating an Index
This section describes the procedures for re-creating an index. During the re-creation process,
you can query the index normally.

• Re-creating a Global Index

• Re-creating a Local Partitioned Index

5.4.1 Re-creating a Global Index
Oracle Text provides RECREATE_INDEX_ONLINE to re-create a CONTEXT index with new
preferences, while preserving inserts, updates, and deletes on the base table. You can use
RECREATE_INDEX_ONLINE in a single-step procedure to re-create a CONTEXT index online for
global indexes. Because the new index is created alongside the existing index, this operation
requires storage that is roughly equal to the size of the existing index. Also, because the
RECREATE_INDEX_ONLINE operation is performed online, you can perform inserts, updates, and
deletes on the base table during the operation. All insert, update, and delete operations that
occur during the re-creation process are logged into an online pending queue.

Chapter 5
Resuming a Failed Index

5-2

• After the re-creation operation is complete, new information may not be immediately
reflected. As with creating an index online, you should synchronize the index after the re-
creation operation is complete to bring it fully up-to-date.

• Synchronizations issued against the index during the re-creation operation are processed
against the existing data. Synchronizations are blocked when queries return errors.

• Optimize commands issued against the index during the re-creation operation return
immediately without error and without processing.

• During RECREATE_INDEX_ONLINE, you can query the index normally most of the time.
Queries return results based on the existing index and policy until after the final swap.
Also, if you issue insert, update, and delete operations and synchronize them, then you will
be able to see the new rows when you query the existing index.

Note:

Transactional queries are not supported with RECREATE_INDEX_ONLINE.

Re-creating a Global Index with Time Limit for Synch

You can control index re-creation to set a time limit for SYNC_INDEX during nonbusiness hours
and incrementally re-create the index. Use the CREATE_SHADOW_INDEX procedure with
POPULATE_PENDING and maxtime.

Re-creating a Global Index with Scheduled Swap

With CTX_DDL.EXCHANGE_SHADOW_INDEX, you can perform index re-creation during nonbusiness
hours when query failures and DML blocking can be tolerated.

See Also:

• Oracle Text Reference to learn more about the RECREATE_INDEX_ONLINE
procedure

• Oracle Text Reference for information and examples for CREATE_SHADOW_INDEX
• Oracle Text Reference for information and examples for

CTX_DDL.EXCHANGE_SHADOW_INDEX

5.4.2 Re-creating a Local Partitioned Index
If the index is locally partitioned, you cannot re-create the index in one step. You must first
create a shadow policy, and then run the RECREATE_INDEX_ONLINE procedure for every
partition. You can specify SWAP or NOSWAP, which indicates whether re-creating the index for the
partition swaps the index partition data and index partition metadata.

You can also use this procedure to update the metadata (for example, the storage preference)
of each partition when you specify NOPOPULATE in the parameter string. This keyword is useful
for incremental building of a shadow index through time-limited synchronization. If you specify
NOPOPULATE, then NOSWAP is silently enforced.

Chapter 5
Re-creating an Index

5-3

• When all partitions use NOSWAP, the storage requirement is approximately equal to the size
of the existing index. During re-creation of the index partition, because no swapping is
performed, queries on the partition are processed normally. Queries spanning multiple
partitions return consistent results across partitions until the swapping stage is reached.

• When the partitions are rebuilt with SWAP, the storage requirement for the operation is
equal to the size of the existing index partition. Because index partition data and metadata
are swapped after re-creation, queries spanning multiple partitions do not return consistent
results from partition to partition, but they will always be correct with respect to each index
partition.

• If you specify SWAP, then insert, update, and delete operations and synchronization on the
partition are blocked during the swap process.

Re-creating a Local Index with All-at-Once Swap

You can re-create a local partitioned index online to create or change preferences. The
swapping of the index and partition metadata occurs at the end of the process. Queries
spanning multiple partitions return consistent results across partitions when the re-creation is in
process, except at the end when EXCHANGE_SHADOW_INDEX is running.

Scheduling Local Index Re-creation with All-at-Once Swap

With RECREATE_INDEX_ONLINE of the CTX.DDL package, you can incrementally re-create a local
partitioned index, where partitions are all swapped at the end.

Re-creating a Local Index with Per-Partition Swap

Instead of swapping all partitions at once, you can re-create the index online with new
preferences, and each partition is swapped as it is completed. Queries across all partitions
may return inconsistent results during this process. This procedure uses CREATE_SHADOW_INDEX
with RECREATE_INDEX_ONLINE.

See Also:

Oracle Text Reference for complete information about RECREATE_INDEX_ONLINE

5.5 Rebuilding an Index
You can rebuild a valid index by using ALTER INDEX. Rebuilding an index does not allow most
index settings to be changed. You might rebuild an index when you want to index with a new
preference. Generally, there is no advantage in rebuilding an index over dropping it and re-
creating it with the CREATE INDEX statement.

See Also:

"Re-creating an Index" for information about changing index settings

The following statement rebuilds the index and replaces the lexer preference with my_lexer:
ALTER INDEX newsindex REBUILD PARAMETERS('replace lexer my_lexer');

Chapter 5
Rebuilding an Index

5-4

5.6 Dropping a Preference
You might drop a custom index preference when you no longer need it for indexing.

You drop index preferences with the CTX_DDL.DROP_PREFERENCE procedure.

Dropping a preference does not affect the index that is created from the preference.

See Also:

Oracle Text Reference to learn more about the syntax for the
CTX_DDL.DROP_PREFERENCE procedure

The following code drops the my_lexer preference:

begin
ctx_ddl.drop_preference('my_lexer');
end;

5.7 Managing DML Operations for a CONTEXT Index
DML operations refer to when documents are inserted, updated, or deleted from the base
table. This section describes how you can view, synchronize, and optimize the Oracle Text
CONTEXT index for DML operations. This section contains the following topics:

• Viewing Pending DML Operations

• Synchronizing the Index

• Optimizing the Index

Note:

CTXCAT indexes are transactional and are updated immediately when the base table
changes. The manual synchronization as described in this section is not necessary
for a CTXCAT index.

5.7.1 Viewing Pending DML Operations
When you insert or update documents in the base table, their rowids are held in a DML queue
until you synchronize the index. You can view this queue in the CTX_USER_PENDING view.

For example, to view pending DML operations on your indexes, enter the following statement:

SELECT pnd_index_name, pnd_rowid, to_char(
 pnd_timestamp, 'dd-mon-yyyy hh24:mi:ss'
) timestamp FROM ctx_user_pending;

This statement gives output in the following form:

Chapter 5
Dropping a Preference

5-5

PND_INDEX_NAME PND_ROWID TIMESTAMP
------------------------------ ------------------ --------------------
MYINDEX AAADXnAABAAAS3SAAC 06-oct-1999 15:56:50

See Also:

Oracle Text Reference to learn more about the CTX_USER_PENDING view

5.7.2 Synchronizing the Index
When you synchronize the index, you process all pending updates and inserts to the base
table. You can do this in PL/SQL with the CTX_DDL.SYNC_INDEX procedure. You can also control
the duration and locking behavior for index synchronization with the CTX_DDL.SYNC_INDEX
procedure.

Synchronizing the Index with SYNC_INDEX

The following example synchronizes the index with 2 megabytes of memory:

begin

ctx_ddl.sync_index('myindex', '2M');

end;

Starting with Oracle Database 12c Release 2 (12.2.0.1), you automatically merge rows from
STAGE_ITAB back to the $I table by using SYNC_INDEX. This merging of rows happens when the
number of rows in STAGE_ITAB ($G) exceeds the STAGE_ITAB_MAX_ROWS parameter (1 million
by default). Therefore, you do not have to run merge optimization explicitly or schedule an auto
optimize job.

Maxtime Parameter for SYNC_INDEX

The SYNC_INDEX procedure includes a maxtime parameter that, like OPTIMIZE_INDEX, indicates
a suggested time limit in minutes for the operation. The SYNC_INDEX procedure processes as
many documents in the queue as possible within the given time limit.

• NULL maxtime is equivalent to CTX_DDL.MAXTIME_UNLIMITED.
• The time limit is approximate. The actual time may be less than, or greater than, what you

specify.

• The ALTER INDEX... sync command has no changes because it is deprecated.

• The maxtime parameter is ignored when SYNC_INDEX is invoked without an index name.

• The maxtime parameter cannot be communicated for automatic synchronizations (for
example, sync on commit or sync every).

Locking Parameter for SYNC_INDEX

The locking parameter of SYNC_INDEX enables you to configure how the synchronization works
when another synchronization is already running on the index.

• The locking parameter is ignored when SYNC_INDEX is invoked without an index name.

Chapter 5
Managing DML Operations for a CONTEXT Index

5-6

• The locking parameter cannot be communicated for automatic synchronizations (that is,
sync on commit or sync every).

• When the locking mode is LOCK_WAIT, the mode waits forever and ignores the maxtime
setting if it cannot get a lock.

The options are as follows:

Option Description

CTX_DDL.LOCK_WAIT If another SYNC_INDEX is running, wait until the
running synchronization is complete, and then begin
the new synchronization.

CTX_DDL.LOCK_NOWAIT If another SYNC_INDEX is running, immediately return
without error.

CTX_DDL.LOCK_NOWAIT_ERROR If another SYNC_INDEX is running, immediately
generate an error (DRG-51313: timeout while waiting
for inserts, updates, or deletes or optimize lock).

See Also:

Oracle Text Reference to learn more about the CTX_DDL.SYNC_INDEX statement
syntax

5.7.3 Optimizing the Index
The CONTEXT index is an inverted index where each word contains the list of documents that
contain that word. For example, after a single initial indexing operation, the word DOG might
have the following entry:

DOG DOC1 DOC3 DOC5

Frequent index synchronization ultimately causes fragmentation of your CONTEXT index. Index
fragmentation can adversely affect query response time. Therefore, to reduce fragmentation
and index size and to ensure optimal query performance, allow time to optimize your CONTEXT
index.

To schedule an auto optimize job, you must explicitly set STAGE_ITAB_MAX_ROWS to 0 to disable
the automatic merging that now happens with SYNC_INDEX.
To optimize an index, Oracle recommends that you use CTX_DDL.OPTIMIZE_INDEX. To
understand index optimization, you must understand the structure of the index and what
happens when it is synchronized. This section contains the following topics:

• Index Fragmentation

• Document Invalidation and Garbage Collection

• Single Token Optimization

• Viewing Index Fragmentation and Garbage Data

Chapter 5
Managing DML Operations for a CONTEXT Index

5-7

See Also:

Oracle Text Reference for the CTX_DDL.OPTIMIZE_INDEX statement syntax and
examples

5.7.3.1 Index Fragmentation
When you add new documents to the base table, the index is synchronized by adding new
rows. For example, if you add the DOC 7 document with the word dog and synchronize the
index, you now have:

DOG DOC1 DOC3 DOC5
DOG DOC7

Subsequent inserts, updates, or deletes also create new rows, as follows:

DOG DOC1 DOC3 DOC5
DOG DOC7
DOG DOC9
DOG DOC11

Index fragmentation occurs when you add new documents and synchronize the index. In
particular, background inserts, updates, or deletes, which synchronize the index frequently,
generally produce more fragmentation than batch mode synchronization.

When you perform batch processing less frequently, you reduce fragmentation because you
produce longer document lists with a reduced number of rows in the index.

You can reduce index fragmentation by optimizing the index in either FULL or FAST mode with
CTX_DDL.OPTIMIZE_INDEX.

5.7.3.2 Document Invalidation and Garbage Collection
When you remove documents from the base table, Oracle Text marks the document as
removed but does not immediately alter the index.

Because the old information takes up space and can cause extra overhead at query time, you
must remove the old information from the index by optimizing it in FULL mode. This process is
called garbage collection. Optimizing in FULL mode for garbage collection is necessary when
you perform frequent updates or deletes to the base table.

5.7.3.3 Single Token Optimization
In addition to optimizing the entire index, you can optimize single tokens. You can use token
mode to optimize index tokens that are frequently searched, without spending time on
optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if you know
that this token is updated and queried frequently.

An optimized token can improve query response time for the token.

To optimize an index in token mode, use CTX_DDL.OPTIMIZE_INDEX.

Chapter 5
Managing DML Operations for a CONTEXT Index

5-8

5.7.3.4 Viewing Index Fragmentation and Garbage Data
With the CTX_REPORT.INDEX_STATS procedure, you can create a statistical report on your index.
The report includes information on optimal row fragmentation, a list of most fragmented tokens,
and the amount of garbage data in your index. Although this report might take a long time to
run for large indexes, it can help you decide whether to optimize your index.

See Also:

Oracle Text Reference to learn more about using the CTX_REPORT.INDEX_STATS
procedure

Chapter 5
Managing DML Operations for a CONTEXT Index

5-9

6
Querying with Oracle Text

Become familiar with Oracle Text querying and associated features.

This chapter contains the following topics:

• Overview of Queries

• Oracle Text Query Features

6.1 Overview of Queries
The basic Oracle Text query takes a query expression, usually a word with or without
operators, as input. Oracle Text returns all documents (previously indexed) that satisfy the
expression along with a relevance score for each document. You can use the scores to order
the documents in the result set.

To enter an Oracle Text query, use the SQL SELECT statement. Depending on the type of index,
you use either the CONTAINS or CATSEARCH operator in the WHERE clause. You can use these
operators programatically wherever you can use the SELECT statement, such as in PL/SQL
cursors.

Use the MATCHES operator to classify documents with a CTXRULE index.

• Querying with CONTAINS

• Querying with CATSEARCH

• Querying with MATCHES

• Word and Phrase Queries

• Querying Stopwords

• ABOUT Queries and Themes

6.1.1 Querying with CONTAINS
When you create an index of type CONTEXT, you must use the CONTAINS operator to enter your
query. This index is suitable for indexing collections of large coherent documents.

With the CONTAINS operator, you can use a number of operators to define your search criteria.
These operators enable you to enter logical, proximity, fuzzy, stemming, thesaurus, and
wildcard searches. With a correctly configured index, you can also enter section searches on
documents that have internal structure such as HTML and XML.

With CONTAINS, you can also use the ABOUT operator to search on document themes.

• CONTAINS SQL Example

• CONTAINS PL/SQL Example

• Structured Query with CONTAINS

6-1

6.1.1.1 CONTAINS SQL Example
In the SELECT statement, specify the query in the WHERE clause with the CONTAINS operator. Also
specify the SCORE operator to return the score of each hit in the hitlist. The following example
shows how to enter a query:

SELECT SCORE(1), title from news WHERE CONTAINS(text, 'oracle', 1) > 0;

You can order the results from the highest scoring documents to the lowest scoring documents
by using the ORDER BY clause as follows:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 ORDER BY SCORE(1) DESC;

The CONTAINS operator must always be followed by the > 0 syntax, which specifies that the
score value returned by the CONTAINS operator must be greater than zero for the row to be
returned.

When the SCORE operator is called in the SELECT statement, the CONTAINS operator must
reference the score label value in the third parameter, as shown in the previous example.

6.1.1.2 CONTAINS PL/SQL Example
In a PL/SQL application, you can use a cursor to fetch the results of the query.

The following example enters a CONTAINS query against the NEWS table to find all articles that
contain the word oracle. The titles and scores of the first ten hits are output.

declare
 rowno number := 0;
begin
 for c1 in (SELECT SCORE(1) score, title FROM news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 ORDER BY SCORE(1) DESC)
 loop
 rowno := rowno + 1;
 dbms_output.put_line(c1.title||': '||c1.score);
 exit when rowno = 10;
 end loop;
end;

This example uses a cursor FOR loop to retrieve the first ten hits. An alias score is declared for
the return value of the SCORE operator. The score and title are shown as output by using the
cursor dot notation.

6.1.1.3 Structured Query with CONTAINS Example
A structured query, also called a mixed query, is a query that has one CONTAINS predicate to
query a text column and another predicate to query a structured data column.

To enter a structured query, specify the structured clause in the WHERE condition of the SELECT
statement.

For example, the following SELECT statement returns all articles that contain the word oracle
written on or after October 1, 1997:

Chapter 6
Overview of Queries

6-2

SELECT SCORE(1), title, issue_date from news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 AND issue_date >= ('01-OCT-97')
 ORDER BY SCORE(1) DESC;

Note:

Although you can enter structured queries with CONTAINS, consider creating a CTXCAT
index and issuing the query with CATSEARCH, which offers better structured query
performance.

6.1.2 Querying with CATSEARCH
When you create an index of type CTXCAT, you must use the CATSEARCH operator to enter your
query. This index is suitable when your application stores short text fragments in the text
column and associated information in related columns.

For example, an application serving an online auction site includes a table that stores item
descriptions in a text column and date and price information in other columns. With a CTXCAT
index, you can create b-tree indexes on one or more columns, so that query performance is
generally faster for mixed queries.

The operators available for CATSEARCH queries are limited to logical operations such as AND or
OR. To define your structured criteria, use the following operators : greater than, less than,
equality, BETWEEN, and IN.
• CATSEARCH SQL Query

• CATSEARCH Example

6.1.2.1 CATSEARCH SQL Query Example
A typical query with CATSEARCH includes the following structured clause to find all rows that
contain the word camera ordered by the bid_close date:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close desc')> 0;

The type of structured query tht you can enter depends on how you create your sub-indexes.

See Also:

"Creating a CTXCAT Index"

As shown in the previous example, you specify the structured part of a CATSEARCH query with
the third structured_query parameter. The columns in the structured expression must have a
corresponding subindex.

For example, assuming that category_id and bid_close have a subindex in the ctxcat index
for the AUCTION table, enter the following structured query:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'category_id=99 order by bid_close
desc')> 0;

Chapter 6
Overview of Queries

6-3

6.1.2.2 CATSEARCH Example
The following example shows a field section search against a CTXCAT index. It uses CONTEXT
grammar by means of a query template in a CATSEARCH query.

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values(1, '<author>NOAM CHOMSKY</author><subject>CIVIL
 RIGHTS</subject><language>ENGLISH</language><publisher>MIT
 PRESS</publisher>', '01-NOV-2003');

insert into BOOKS values(2, '<author>NICANOR PARRA</author><subject>POEMS
 AND ANTIPOEMS</subject><language>SPANISH</language>
 <publisher>VASQUEZ</publisher>', '01-JAN-2001');

insert into BOOKS values(1, '<author>LUC SANTE</author><subject>XML
 DATABASE</subject><language>FRENCH</language><publisher>FREE
 PRESS</publisher>', '15-MAY-2002');

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set('BOOK_INDEX_SET');
exec ctx_ddl.add_index('BOOK_INDEX_SET','PUBDATE');

exec ctx_ddl.create_section_group('BOOK_SECTION_GROUP',
 'BASIC_SECTION_GROUP');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','AUTHOR','AUTHOR');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','SUBJECT','SUBJECT');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','LANGUAGE','LANGUAGE');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','PUBLISHER','PUBLISHER');

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
 parameters('index set book_index_set section group book_section_group');

-- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
-- We need to use query template with CONTEXT grammar to access field
-- sections with CATSEARCH

select id, info from books
where catsearch(info,
'<query>
 <textquery grammar="context">
 NOAM within author and english within language
 </textquery>
 </query>',
'order by pubdate')>0;

6.1.3 Querying with MATCHES
When you create an index of type CTXRULE, you must use the MATCHES operator to classify your
documents. The CTXRULE index is essentially an index on the set of queries that define your
classifications.

Chapter 6
Overview of Queries

6-4

For example, if you have an incoming stream of documents that need to be routed according to
content, you can create a set of queries that define your categories. You create the queries as
rows in a text column. You can create this type of table with the CTX_CLS.TRAIN procedure.

You then index the table to create a CTXRULE index. When documents arrive, you use the
MATCHES operator to classify each document

• MATCHES SQL Query

• MATCHES PL/SQL Example

See Also:

Classifying Documents in Oracle Text

6.1.3.1 MATCHES SQL Query
A MATCHES query finds all rows in a query table that match a given document. Assuming that a
querytable table is associated with a CTXRULE index, enter the following query:

SELECT classification FROM querytable WHERE MATCHES(query_string,:doc_text) > 0;

The :doc_text bind variable contains the CLOB document to be classified.

Here is a simple example:

 create table queries (
 query_id number,
 query_string varchar2(80)
);

 insert into queries values (1, 'oracle');
 insert into queries values (2, 'larry or ellison');
 insert into queries values (3, 'oracle and text');
 insert into queries values (4, 'market share');

 create index queryx on queries(query_string)
 indextype is ctxsys.ctxrule;

 select query_id from queries
 where matches(query_string,
 'Oracle announced that its market share in databases
 increased over the last year.')>0

This query returns queries 1 (the word oracle appears in the document) and 4 (the phrase
market share appears in the document), but not 2 (neither the word larry nor the word ellison
appears, and not 3 (there is no text in the document, so it does not match the query).

In this example, the document was passed in as a string for simplicity. Your document is
typically passed in a bind variable.

The document text used in a MATCHES query can be VARCHAR2 or CLOB. It does not accept BLOB
input, so you cannot match filtered documents directly. Instead, you must filter the binary
content to CLOB by using AUTO_FILTER. The following example makes two assumptions:

• The document data is in the :doc_blob bind variable.

• You have already defined my_policy that CTX_DOC.POLICY_FILTER can use.

Chapter 6
Overview of Queries

6-5

For example:

 declare
 doc_text clob;
 begin
 -- create a temporary CLOB to hold the document text
 doc_text := dbms_lob.createtemporary(doc_text, TRUE, DBMS_LOB.SESSION);

 -- create a simple policy for this example
 ctx_ddl.create_preference(preference_name => 'fast_filter',
 object_name => 'AUTO_FILTER');
 ctx_ddl.set_attribute(preference_name => 'fast_filter',
 attribute_name => 'OUTPUT_FORMATTING',
 attribute_value => 'FALSE');
 ctx_ddl.create_policy(policy_name => 'my_policy',
 filter => 'fast_filter);

 -- call ctx_doc.policy_filter to filter the BLOB to CLOB data
 ctx_doc.policy_filter('my_policy', :doc_blob, doc_text, FALSE);

 -- now do the matches query using the CLOB version
 for c1 in (select * from queries where matches(query_string, doc_text)>0)
 loop
 -- do what you need to do here
 end loop;

 dbms_lob.freetemporary(doc_text);
 end;

The CTX_DOC.POLICY_FILTER procedure filters the BLOB into the CLOB data, because you must
get the text into a CLOB to enter a MATCHES query. It takes, as one argument, the name of a
policy that you already created with CTX_DDL.CREATE_POLICY.

See Also:

Oracle Text Reference for information on CTX_DOC.POLICY_FILTER

If your file is text in the database character set, then you can create a BFILE and load it to a
CLOB by using the DBMS_LOB.LOADFROMFILE function, or you can use UTL_FILE to read the file
into a temp CLOB locator.

If your file needs AUTO_FILTER filtering, then you can load the file into a BLOB instead and call
CTX_DOC.POLICY_FILTER, as previously shown.

See Also:

Classifying Documents in Oracle Text for more extended classification examples

6.1.3.2 MATCHES PL/SQL Examples
The following example assumes that the profiles table of queries is associated with a
CTXRULE index. It also assumes that the newsfeed table contains a set of news articles to be
categorized.

Chapter 6
Overview of Queries

6-6

This example loops through the newsfeed table, categorizing each article by using the MATCHES
operator. The results are stored in the results table.

PROMPT Populate the category table based on newsfeed articles
PROMPT
set serveroutput on;
declare
 mypk number;
 mytitle varchar2(1000);
 myarticles clob;
 mycategory varchar2(100);
 cursor doccur is select pk,title,articles from newsfeed;
 cursor mycur is select category from profiles where matches(rule, myarticles)>0;
 cursor rescur is select category, pk, title from results order by category,pk;

begin
 dbms_output.enable(1000000);
 open doccur;
 loop
 fetch doccur into mypk, mytitle, myarticles;
 exit when doccur%notfound;
 open mycur;
 loop
 fetch mycur into mycategory;
 exit when mycur%notfound;
 insert into results values(mycategory, mypk, mytitle);
 end loop;
 close mycur;
 commit;
 end loop;
 close doccur;
 commit;

end;

The following example displays the categorized articles by category.

PROMPT display the list of articles for every category
PROMPT
set serveroutput on;

declare
 mypk number;
 mytitle varchar2(1000);
 mycategory varchar2(100);
 cursor catcur is select category from profiles order by category;
 cursor rescur is select pk, title from results where category=mycategory order by pk;

begin
 dbms_output.enable(1000000);
 open catcur;
 loop
 fetch catcur into mycategory;
 exit when catcur%notfound;
 dbms_output.put_line('********** CATEGORY: '||mycategory||' *************');
open rescur;
 loop
 fetch rescur into mypk, mytitle;
 exit when rescur%notfound;
dbms_output.put_line('** ('||mypk||'). '||mytitle);
 end loop;
 close rescur;

Chapter 6
Overview of Queries

6-7

 dbms_output.put_line('**');
dbms_output.put_line('***');
 end loop;
 close catcur;
end;

See Also:

Classifying Documents in Oracle Text for more extended classification examples

6.1.4 Word and Phrase Queries
A word query is a query on a word or phrase. For example, to find all the rows in your text table
that contain the word dog, enter a query specifying dog as your query term.

You can enter word queries with both CONTAINS and CATSEARCH SQL operators. However,
phrase queries are interpreted differently.

• CONTAINS Phrase Queries: If multiple words are contained in a query expression,
separated only by blank spaces (no operators), the string of words is considered a phrase.
Oracle Text searches for the entire string during a query. For example, to find all
documents that contain the phrase international law, enter your query with the phrase
international law.

• CATSEARCH Phrase Queries: With the CATSEARCH operator, you insert the AND operator
between words in phrases. For example, a query such as international law is interpreted as
international AND law.

6.1.5 Querying Stopwords
Stopwords are words for which Oracle Text does not create an index entry. They are usually
common words in your language that are unlikely to be searched.

Oracle Text includes a default list of stopwords for your language. This list is called a stoplist.
For example, in English, the words this and that are defined as stopwords in the default
stoplist. You can modify the default stoplist or create new stoplists with the CTX_DDL package.
You can also add stopwords after indexing with the ALTER INDEX statement.

You cannot query on a stopword itself or on a phrase composed of only stopwords. For
example, a query on the word this returns no hits when this is defined as a stopword.

Because the Oracle Text index records the position of stopwords even though it does not
create an index entry for them, you can query phrases that contain stopwords as well as
indexable words, such as this boy talks to that girl.

When you include a stopword within your query phrase, the stopword matches any word. For
example, the following query assumes that was is a stopword. It matches phrases such as
Jack is big and Jack grew big. It also matches grew, even though it is not a stopword.

'Jack was big'

Starting with Oracle Database 12c Release 2 (12.2), stopwords and unary operators on
stopwords are ignored at the initial stages of a query result in different query results than

Chapter 6
Overview of Queries

6-8

earlier releases. For example, the following query does not return documents because the is a
stopword and the $ operator and the stopword are ignored during query processing:

SQL> select count(1) from tabx where contains(text,'$the')>0;
 .
 COUNT(1)

 0

The next query returns documents containing first because the the stopword and the $
operator are ignored.

SQL> select count(1) from tabx where contains(text,'first and $the')>0;
 .
 COUNT(1)

 2

6.1.6 ABOUT Queries and Themes
An ABOUT query is a query on a document theme. A document theme is a concept that is
sufficiently developed in the text. For example, an ABOUT query on US politics might return
documents containing information about US presidential elections and US foreign policy.
Documents need not contain the exact phrase US politics to be returned.

During indexing, document themes are derived from the knowledge base, which is a
hierarchical list of categories and concepts that represents a view of the world. Some
examples of themes in the knowledge catalog are concrete concepts such as jazz music,
football, or Nelson Mandela. Themes can also be abstract concepts such as happiness or
honesty.

During indexing, the system can also identify and index document themes that are sufficiently
developed in the document but that do not exist in the knowledge base.

You can augment the knowledge base to define concepts and terms specific to your industry or
query application. When you do so, ABOUT queries are more precise for the added concepts.

ABOUT queries perform best when you create a theme component in your index. Theme
components are created by default for English and French.

See Also:

Oracle Text Reference

Querying Stopthemes

Oracle Text enables you to query on themes with the ABOUT operator. A stoptheme is a theme
that is not to be indexed. You can add and remove stopthemes with the CTX_DDL package. You
can add stopthemes after indexing with the ALTER INDEX statement.

Chapter 6
Overview of Queries

6-9

6.2 Oracle Text Query Features
Oracle Text has various query features. You can use these query features in your query
application.

• Query Expressions

• Case-Sensitive Searching

• Query Feedback

• Query Explain Plan

• Using a Thesaurus in Queries

• About Document Section Searching

• Using Query Templates

• Query Analysis

• Other Query Features

6.2.1 Query Expressions
A query expression is everything in between the single quotes in the text_query argument of
the CONTAINS or CATSEARCH operator. The contents of a query expression in a CONTAINS query
differs from the contents of a CATSEARCH operator.

• CONTAINS Operators

• CATSEARCH Operator

• MATCHES Operator

6.2.1.1 CONTAINS Operators
A CONTAINS query expression can contain query operators that enable logical, proximity,
thesaural, fuzzy, and wildcard searching. Querying with stored expressions is also possible.
Within the query expression, you can use grouping characters to alter operator precedence.
This book refers to these operators as the CONTEXT grammar.

With CONTAINS, you can also use the ABOUT query to query document themes.

See Also:

"The CONTEXT Grammar"

6.2.1.2 CATSEARCH Operator
With the CATSEARCH operator, you specify your query expression with the text_query argument
and your optional structured criteria with the structured_query argument. The text_query
argument enables you to query words and phrases. You can use logical operations, such as
logical and, or, and not. This book refers to these operators as the CTXCAT grammar.

Chapter 6
Oracle Text Query Features

6-10

If you want to use the much richer set of operators supported by the CONTEXT grammar, you
can use the query template feature with CATSEARCH.
With structured_query argument, you specify your structured criteria. You can use the
following SQL operations:

• =
• <=
• >=
• >
• <
• IN
• BETWEEN
You can also use the ORDER BY clause to order your output.

See Also:

"The CTXCAT Grammar"

6.2.1.3 MATCHES Operator
Unlike CONTAINS and CATSEARCH, MATCHES does not take a query expression as input.

Instead, the MATCHES operator takes a document as input and finds all rows in a query (rule)
table that match it. As such, you can use MATCHES to classify documents according to the rules
they match.

See Also:

"Querying with MATCHES"

6.2.2 Case-Sensitive Searching
Oracle Text supports case-sensitivity for word and ABOUT queries.

Word queries are not case-insensitive by default. This means that a query on the term dog
returns the rows in your text table that contain the word dog, but not Dog or DOG.

You can enable or disable case-sensitive searching with the MIXED_CASE attribute in your
BASIC_LEXER index preference. With a case-sensitive index, your queries must be entered in
exact case. For example, a query on Dog matches only documents with Dog. Documents with
dog or DOG are not returned as hits.

To enable case-insensitive searching, set the MIXED_CASE attribute in your BASIC_LEXER index
preference to NO.

Chapter 6
Oracle Text Query Features

6-11

Note:

If you enable case-sensitivity for word queries and you query a phrase containing
stopwords and indexable words, then you must specify the correct case for the
stopwords. For example, a query on the dog does not return text that contains The
Dog, assuming that the is a stopword.

ABOUT queries give the best results when your query is formulated with proper case because
the normalization of your query is based on the knowledge catalog. The knowledge catalog is
case-sensitive. Attention to case is required, especially for words that have different meanings
depending on case, such as turkey the bird and Turkey the country.

However, you do not have to enter your query in exact case to obtain relevant results from an
ABOUT query. The system does its best to interpret your query. For example, if you enter a
query of ORACLE and the system does not find this concept in the knowledge catalog, the
system might use Oracle as a related concept for lookup.

6.2.3 Query Feedback
Feedback provides broader-term, narrower term, and related term information for a specified
query with a CONTEXT index. You obtain this information programatically with the
CTX_QUERY.HFEEDBACK procedure.

Broader term, narrower term, and related term information is useful for suggesting other query
terms to the user in your query application.

The returned feedback information is obtained from the knowledge base and contains only
those terms that are also in the index. This process increases the chances that terms returned
from HFEEDBACK produce hits over the currently indexed document set.

See Also:

Oracle Text Reference for more information about using CTX_QUERY.HFEEDBACK

6.2.4 Query Explain Plan
Explain plan information provides a graphical representation of the parse tree for a CONTAINS
query expression. You can obtain this information programatically with the CTX_QUERY.EXPLAIN
procedure.

Explain plan information tells you how a query is expanded and parsed without having the
system execute the query. Obtaining explain information is useful for knowing the expansion
for a particular stem, wildcard, thesaurus, fuzzy, soundex, or ABOUT query. Parse trees also
show the following information:

• Order of execution

• ABOUT query normalization

• Query expression optimization

• Stopword transformations

Chapter 6
Oracle Text Query Features

6-12

• Breakdown of composite-word tokens for supported languages

See Also:

Oracle Text Reference for more information about using CTX_QUERY.EXPLAIN

6.2.5 Using a Thesaurus in Queries
Oracle Text enables you to define a thesaurus for your query application and process queries
more intelligently.

Because users might not know which words represent a topic, you can define synonyms or
narrower terms for likely query terms. You can use the thesaurus operators to expand your
query to include thesaurus terms.

See Also:

Working With a Thesaurus in Oracle Text

6.2.6 Document Section Searching
Section searching enables you to narrow text queries down to sections within documents.

You can implement section searching when your documents have internal structure, such as
HTML and XML documents. For example, you can define a section for the <H1> tag that
enables you to query within this section by using the WITHIN operator.

You can set the system to automatically create sections from XML documents.

You can also define attribute sections to search attribute text in XML documents.

Note:

Section searching is supported for only word queries with a CONTEXT index.

See Also:

Searching Document Sections in Oracle Text

6.2.7 Using Query Templates
Query templates are an alternative to the existing query languages. Rather than passing a
query string to CONTAINS or CATSEARCH, you pass a structured document that contains the query
string in a tagged element. Within this structured document, or query template, you can enable
additional query features.

Chapter 6
Oracle Text Query Features

6-13

• Query Rewrite

• Query Relaxation

• Query Language

• Ordering By SDATA Sections

• Alternative and User-defined Scoring

• Alternative Grammar

6.2.7.1 Query Rewrite
Query applications sometimes parse end-user queries, interpreting a query string in one or
more ways by using different operator combinations. For example, if a user enters a query of
kukui nut, your application enters the {kukui nut} and {kukui or nut} queries to increase recall.

The query rewrite feature enables you to submit a single query that expands the original query
into the rewritten versions. The results are returned with no duplication.

You specify your rewrite sequences with the query template feature. The rewritten versions of
the query are executed efficiently with a single call to CONTAINS or CATSEARCH.
The following template defines a query rewrite sequence. The query of {kukui nut} is rewritten
as follows:

{kukui} {nut}

{kukui} ; {nut}

{kukui} AND {nut}

{kukui} ACCUM {nut}

The following is the query rewrite template for these transformations:

select id from docs where CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite></seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

6.2.7.2 Query Relaxation
The query relaxation feature enables your application to execute the most restrictive version of
a query first and progressively relax the query until the required number of hits are obtained.

For example, your application searches first on green pen and then the query is relaxed to
green NEAR pen to obtain more hits.

The following query template defines a query relaxation sequence. The query of green pen is
entered in sequence.

{green} {pen}

{green} NEAR {pen}

Chapter 6
Oracle Text Query Features

6-14

{green} AND {pen}

{green} ACCUM {pen}

The following is the query relaxation template for these transformations:

select id from docs where CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>{green} {pen}</seq>
 <seq>{green} NEAR {pen}</seq>
 <seq>{green} AND {pen}</seq>
 <seq>{green} ACCUM {pen}</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Query hits are returned in this sequence with no duplication as long as the application needs
results.

Query relaxation is most effective when your application needs the top-N hits to a query, which
you can obtain with the DOMAIN_INDEX_SORT hint or in a PL/SQL cursor.

Using query templating to relax a query is more efficient than reexecuting a query.

6.2.7.3 Query Language
When you use MULTI_LEXER to index a column containing documents in different languages,
you can specify which language lexer to use during querying. You do so by using the lang
parameter in the query template, which specifies the document-level lexer.

select id from docs where CONTAINS (text,
'<query><textquery lang="french">bon soir</textquery></query>')>0;

See Also:

Oracle Text Reference for information on LANGUAGE and lang with ALTER INDEX and
document sublexer

6.2.7.4 Ordering by SDATA Sections
You can order the query results according to the content of SDATA sections by using the
<order> and <orderkey> elements of the query template.

In the following example, the first level of ordering is performed on the SDATA price section,
which is sorted in ascending order. The second and third level of ordering are performed by the
SDATA pub_date section and score, both of which are sorted in descending order.

select id from docs where CONTAINS (text, '
<query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> Oracle </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
 <order>
 <orderkey> SDATA(price) ASC </orderkey>
 <orderkey> SDATA(pub_date) DESC </orderKey>

Chapter 6
Oracle Text Query Features

6-15

 <orderkey> Score DESC </orderkey>
 </order>
</query>', 1)>0;

Note:

• You can add additional SDATA sections to an index. Refer to the ADD SDATA
SECTION parameter string under ALTER INDEX in Oracle Text Reference.

• Documents that were indexed before adding an SDATA section do not reflect this
new preference. Rebuild the index in this case.

See Also:

Oracle Text Reference for syntax of <order> and <orderkey> elements of the query
template

6.2.7.5 Alternative and User-Defined Scoring
You can use query templating to specify alternative scoring algorithms. Those algorithms help
you customize how CONTAINS is scored. They also enable SDATA to be used as part of the
scoring expressions. In this way, you can mathematically define the scoring expression by
using not only predefined scoring components, but also SDATA components.

With alternative user-defined scoring, you can specify:

• Scoring expressions of terms by defining arithmetic expressions that define how the query
should be scored, using

– predefined scoring algorithms: DISCRETE, OCCURRENCE, RELEVANCE, and COMPLETION
– arithmetic operations: plus, minus, multiply, divide

– arithmetic functions: ABS(n), finding the absolute value of n ; LOG(n), finding the
base-10 logarithmic value of n

– Numeric literals

• Scoring expressions at the term level

• Terms that should not be taken into account when calculating the score

• How the score from child elements of OR and AND operators should be merged

• Use

You can also use the SDATA that stores numeric or DATETIME values to affect the final score of
the document.

The following example specifies an alternative scoring algorithm:

select id from docs where CONTAINS (text,
'<query>
 <textquery grammar="CONTEXT" lang="english"> mustang </textquery>
 <score datatype="float" algorithm="DEFAULT"/>
</query>')>0

Chapter 6
Oracle Text Query Features

6-16

The following query templating example includes SDATA values as part of the final score:

select id from docs where CONTAINS (text,
'<query>
<textquery grammar="CONTEXT" lang="english"> mustang </textquery>
<score datatype="float" algorithm="DEFAULT" normalization_expr
="doc_score+SDATA(price)"/>
</query>')>0"

See Also:

"Using DEFINESCORE and DEFINEMERGE for User-defined Scoring"

6.2.7.6 Alternative Grammar
Query templating enables you to use the CONTEXT grammar with CATSEARCH queries and vice
versa.

select id from docs where CONTAINS (text,
'<query>
 <textquery grammar="CTXCAT">San Diego</textquery>
 <score datatype="integer"/>
</query>')>0;

6.2.8 Query Analysis
Oracle Text enables you to create a log of queries and to analyze the queries. For example,
suppose you have an application that searches a database of large animals, and your analysis
of its queries shows that users search for the word mouse. This analysis shows you that you
should rewrite your application to avoid returning an unsuccessful search. Instead, a search for
mouse redirects users to a database of small animals.

With query analysis, you can find out:

• Which queries were made

• Which queries were successful

• Which queries were unsuccessful

• How many times each query was made

You can combine these factors in various ways, such as determining the 50 most frequent
unsuccessful queries made by your application.

You start query logging with CTX_OUTPUT.START_QUERY_LOG. The query log contains all queries
made to all CONTEXT indexes that the program is using until a CTX_OUTPUT.END_QUERY_LOG
procedure is entered. Use CTX_REPORT.QUERY_LOG_SUMMARY to get a report of queries.

See Also:

Oracle Text Reference for syntax and examples for these procedures

Chapter 6
Oracle Text Query Features

6-17

6.2.9 Other Query Features
In your query application, you can use other query features such as proximity searching.
Table 6-1 lists some of these features.

Table 6-1 Other Oracle Text Query Features

Feature Description Implement With

Case-Sensitive Searching Enables you to search on words or
phrases exactly as they are entered in
the query. For example, a search on
Roman returns documents that contain
Roman and not roman.

BASIC_LEXER when you create
the index

Base-Letter Conversion Queries words with or without
diacritical marks such as tildes,
accents, and umlauts. For example,
with a Spanish base-letter index, a
query of energía matches documents
containing both energía and energia.

BASIC_LEXER when you create
the index

Word Decompounding

(German and Dutch)

Enables searching on words that
contain the specified term as
subcomposite.

BASIC_LEXER when you create
the index

Alternate Spelling

(German, Dutch, and
Swedish)

Searches on alternate spellings of
words.

BASIC_LEXER when you create
the index

Proximity Searching Searches for words near one another. NEAR operator when you enter
the query

Expanded operator
containing the functionality of
PHRASE, NEAR and AND
operators.

Breaks a document into clumps based
on the given query. Each clump is
classified based on a primary feature,
and is scored based on secondary
features. The final document score
adds clump scores such that the
ordering of primary features
determines the initial ordering of
document scores.

NEAR2 operator when you enter
the query

Stemming Searches for words with the same root
as the specified term.

$ operator at when you enter the
query

Fuzzy Searching Searches for words that have a similar
spelling as the specified term.

FUZZY operator when you enter
the query

Query Explain Plan Generates query parse information. CTX_QUERY.EXPLAIN PL/SQL
procedure after you index

Hierarchical Query Feedback Generates broader term, narrower term
and related term information for a
query.

CTX_QUERY.HFEEDBACK
PL/SQL procedure after you
index

Browse index Browses the words around a seed
word in the index.

CTX_QUERY.BROWSE_WORDS
PL/SQL after you index

Count hits Counts the number of hits in a query. CTX_QUERY.COUNT_HITS
PL/SQL procedure after you
index

Chapter 6
Oracle Text Query Features

6-18

Table 6-1 (Cont.) Other Oracle Text Query Features

Feature Description Implement With

Stored Query Expression Stores the text of a query expression
for later reuse in another query.

CTX_QUERY.STORE_SQE
PL/SQL procedure after you
index

Thesaural Queries Uses a thesaurus to expand queries. Thesaurus operators such as
SYN and BT as well as the
ABOUT operator

(Use CTX_THES package to
maintain the thesaurus.)

Chapter 6
Oracle Text Query Features

6-19

7
Working with CONTEXT and CTXCAT
Grammars in Oracle Text

Become familiar with CONTEXT and CTXCAT grammars.

This chapter contains the following topics:

• The CONTEXT Grammar

• The CTXCAT Grammar

7.1 The CONTEXT Grammar
The CONTEXT grammar is the default grammar for CONTAINS. With this grammar, you can add
complexity to your searches with operators. You use the query operators in your query
expression. For example, the AND logical operator enables you to search for all documents that
contain two different words. The ABOUT operator enables you to search on concepts.

You can also use the WITHIN operator for section searches; the NEAR operator for proximity
searches; and the stem, fuzzy, and thesaurus operators for expanding a query expression.

With CONTAINS, you can also use the CTXCAT grammar with the query template feature.

The following sections describe some of the Oracle Text operators:

• ABOUT Query

• Logical Operators

• Section Searching and HTML and XML

• Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators

• Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators

• Using CTXCAT Grammar

• Stored Query Expressions

• Calling PL/SQL Functions in CONTAINS

• Optimizing for Response Time

• Counting Hits

• Using DEFINESCORE and DEFINEMERGE for User-defined Scoring

See Also:

Oracle Text Reference for complete information about using query operators

7-1

7.1.1 ABOUT Query
Use the ABOUT operator in English or French to query on a concept. The query string is usually
a concept or theme that represents the idea to be searched on. Oracle Text returns the
documents that contain the theme.

Word information and theme information are combined into a single index. To enter a theme
query in your index, you must include that is created by default in English and French.

Enter a theme query by using the ABOUT operator inside the query expression. For example, to
retrieve all documents that are about politics, write your query as follows:

SELECT SCORE(1), title FROM news
 WHERE CONTAINS(text, 'about(politics)', 1) > 0
 ORDER BY SCORE(1) DESC;

See Also:

Oracle Text Reference for more information about using the ABOUT operator

7.1.2 Logical Operators
Use logical operators to limit your search criteria in a number of ways. Table 7-1 describes
some of these operators.

Table 7-1 Logical Operators

Operator Symbol Description Example Expression

AND & Use to search for documents
that contain at least one
occurrence of each of the
query terms.

The returned score is the
minimum of the operands.

'cats AND dogs'
'cats & dogs'

OR | Use to search for documents
that contain at least one
occurrence of any of the
query terms.

The returned score is the
maximum of the operands.

'cats | dogs'
'cats OR dogs'

NOT ~ Use to search for documents
that contain one query term
and not another.

To obtain the documents that contain the
term animals but not dogs, use the following
expression:

'animals ~ dogs'

Chapter 7
The CONTEXT Grammar

7-2

Table 7-1 (Cont.) Logical Operators

Operator Symbol Description Example Expression

ACCUM , Use to search for documents
that contain at least one
occurrence of any of the
query terms. The
accumulate operator ranks
documents according to the
total term weight of a
document.

The following query returns all documents
that contain the terms dogs, cats, and
puppies, giving the highest scores to the
documents that contain all three terms:

'dogs, cats, puppies'

EQUIV = Use to specify an acceptable
substitution for a word in a
query.

The following example returns all
documents that contain either the phrase
alsatians are big dogs or German
shepherds are big dogs:

'German shepherds=alsatians are big
dogs'

7.1.3 Section Searching and HTML and XML
Section searching is useful when your document set is HTML or XML. For HTML, you can
define sections by using embedded tags and then use the WITHIN operator to search these
sections.

For XML, you can have the system automatically create sections. You can query with the
WITHIN operator or with the INPATH operator for path searching.

See Also:

Searching Document Sections in Oracle Text

7.1.4 Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators
Use the NEAR operator to search for terms that are near to one another in a document.

For example, to find all the documents where dog is within 6 words of cat, enter the following
query:

'near((dog, cat), 6)'

The NEAR operator is now modified to change how the distance is measured between phrases
in NESTED NEAR.
The NEAR_ACCUM operator combines the functionality of the NEAR operator with that of the ACCUM
operator. Like NEAR, it returns terms that are within a given proximity of each other; however, if
one term is not found, it ranks documents according to the frequency of the occurrence of the
term that is found.

The NEAR2 operator combines the functionality of PHRASE, NEAR, and AND operators. In addition,
the NEAR2 operator can use position information to boost the scores of its hits. That is, if one

Chapter 7
The CONTEXT Grammar

7-3

phrase hit occurs at the beginning of a document and another at the end of the document, then
a higher weight is given to the first hit as compared to the second hit.

See Also:

Oracle Text Reference for more information about using the NEAR, NEAR_ACCUM, and
NEAR2 operators

7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
Expand your queries into longer word lists with operators such as wildcard, fuzzy, stem,
soundex, and thesaurus.

See Also:

• Oracle Text Reference for more information about using these operators

• "Is it OK to have many expansions in a query?"

7.1.6 Using CTXCAT Grammar
Use the CTXCAT grammar in CONTAINS queries. To do so, use a query template specification in
the text_query parameter of CONTAINS.
Take advantage of the CTXCAT grammar when you need an alternative and simpler query
grammar.

See Also:

Oracle Text Reference for more information about using these operators

7.1.7 Defined Stored Query Expressions
Use the CTX_QUERY.STORE_SQE procedure to store the definition of a query without storing any
results.

Referencing the query with the CONTAINS SQL operator references the definition of the query.
In this way, you can use the stored query expressions to define long or frequently used query
expressions.

Stored query expressions are not attached to an index. When you call CTX_QUERY.STORE_SQE,
you specify only the name of the stored query expression and the query expression.

The query definitions are stored in the Text data dictionary. Any user can reference a stored
query expression.

Chapter 7
The CONTEXT Grammar

7-4

7.1.7.1 Defining a Stored Query Expression
To define and use a stored query expression:

1. Call CTX_QUERY.STORE_SQE to store the queries for the text column. With STORE_SQE, you
specify a name for the stored query expression and a query expression.

2. Use the SQE operator to call the stored query expression in a query expression. Oracle Text
returns the results of the stored query expression in the same way that it returns the results
of a regular query. The query is evaluated when the stored query expression is called.

You can delete a stored query expression by using REMOVE_SQE.

7.1.7.2 SQE Example
The following example creates a stored query expression called disaster that searches for
documents containing the words tornado, hurricane, or earthquake:

begin
ctx_query.store_sqe('disaster', 'tornado | hurricane | earthquake');
end;

To execute this query in an expression, write your query as follows:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, 'SQE(disaster)', 1) > 0
 ORDER BY SCORE(1);

See Also:

Oracle Text Reference to learn more about the syntax of CTX_QUERY.STORE_SQE

7.1.8 Calling PL/SQL Functions in CONTAINS
You can call user-defined functions directly in the CONTAINS clause as long as the function
satisfies the requirements for being named in a SQL statement. The caller must also have
EXECUTE privilege on the function.

For example, if the french function returns the French equivalent of an English word, you can
search on the French word for cat by writing:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, french('cat'), 1) > 0
 ORDER BY SCORE(1);

See Also:

Oracle Database SQL Language Reference for more information about creating user
functions and calling user functions from SQL

Chapter 7
The CONTEXT Grammar

7-5

7.1.9 Optimizing for Response Time
A CONTAINS query optimized for response time provides a fast solution when you need the
highest scoring documents from a hitlist.

The following example returns the first twenty hits as output. This example uses the
FIRST_ROWS(n) hint and a cursor.

declare
cursor c is
 select /*+ FIRST_ROWS(20) */ title, score(1) score
 from news where contains(txt_col, 'dog', 1) > 0 order by score(1) desc;
begin
 for c1 in c
 loop
 dbms_output.put_line(c1.score||':'||substr(c1.title,1,50));
 exit when c%rowcount = 21;
 end loop;
end;
/

The following factors can also influence query response time:

• Collection of table statistics

• Memory allocation

• Sorting

• Presence of large object columns in your base table

• Partitioning

• Parallelism

• Number of term expansions in your query

See Also:

"Frequently Asked Questions About Query Performance"

7.1.10 Counting Hits
Use CTX_QUERY.COUNT_HITS in PL/SQL or COUNT(*) in a SQL SELECT statement to count the
number of hits returned from a query with only a CONTAINS predicate.

If you want a rough hit count, use CTX_QUERY.COUNT_HITS in estimate mode (EXACT parameter
set to FALSE). With respect to response time, this is the fastest count you can get.

Use the COUNT(*) function in a SELECT statement to count the number of hits returned from a
query that contains a structured predicate.

To find the number of documents that contain the word oracle, enter the query with the SQL
COUNT function.

SELECT count(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0;

Chapter 7
The CONTEXT Grammar

7-6

To find the number of documents returned by a query with a structured predicate, use
COUNT(*).
SELECT COUNT(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0 and author = 'jones';

To find the number of documents that contain the word oracle, use COUNT_HITS.
declare count number;
begin
 count := ctx_query.count_hits(index_name => my_index, text_query => 'oracle', exact =>
TRUE);
 dbms_output.put_line('Number of docs with oracle:');
 dbms_output.put_line(count);
end;

See Also:

Oracle Text Reference to learn more about the syntax of CTX_QUERY.COUNT_HITS

7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined
Scoring

Use the DEFINESCORE operator to define how the score for a term or phrase is to be calculated.
The DEFINEMERGE operator defines how to merge scores of child elements of AND and OR
operators. You can also use the alternative scoring template with SDATA to affect the final
scoring of the document.

See Also:

• "Alternative and User-defined Scoring" for information about the alternative
scoring template

• Oracle Text Reference to learn more about the syntax of DEFINESCORE and
DEFINEMERGE

7.2 The CTXCAT Grammar
The CTXCAT grammar is the default grammar for CATSEARCH. This grammar supports logical
operations, such as AND and OR, as well as phrase queries.

The CATSEARCH query operators have the following syntax:

Table 7-2 CATSEARCH Query Operator Syntax

Operation Syntax Description of Operation

Logical AND a b c Returns rows that contain a, b and c.

Logical OR a | b | c Returns rows that contain a, b, or c.

Logical NOT a - b Returns rows that contain a and not b.

Chapter 7
The CTXCAT Grammar

7-7

Table 7-2 (Cont.) CATSEARCH Query Operator Syntax

Operation Syntax Description of Operation

hyphen with no space a-b Hyphen treated as a regular character.

For example, if you define the hyphen as a skipjoin,
then words such as vice-president are treated as
the single query term vicepresident.

Likewise, if you define the hyphen as a printjoin,
then words such as vice-president are treated as
vice president with the space in the CTXCAT query
language.

" " "a b c" Returns rows that contain the phrase "a b c."

For example, entering "Sony CD Player" means
return all rows that contain this sequence of words.

() (A B) | C Parentheses group operations. This query is
equivalent to the CONTAINS query (A &B) | C.

To use the CONTEXT grammar in CATSEARCH queries, use a query template specification in the
text_query parameter.

You might use the CONTAINS grammar as such when you need to enter proximity, thesaurus, or
ABOUT queries with a CTXCAT index.

See Also:

Oracle Text Reference for more information about using these operators

Chapter 7
The CTXCAT Grammar

7-8

8
Presenting Documents in Oracle Text

Oracle Text provides various methods for presenting documents in results for query
applications.

This chapter contains the following topics:

• Highlighting Query Terms

• Obtaining Part-of-Speech Information for a Document

• Obtaining Lists of Themes, Gists, and Theme Summaries

• Document Presentation and Highlighting

8.1 Highlighting Query Terms
In text query applications, you can present selected documents with query terms highlighted
for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting:

• A marked-up version of the document

• Query offset information for the document

• A concordance of the document, in which occurrences of the query term are returned with
their surrounding text

This section contains the following topics:

• Text highlighting

• Theme Highlighting

• CTX_DOC Highlighting Procedures

8.1.1 Text highlighting
For text highlighting, you supply the query, and Oracle Text highlights words in the document
that satisfy the query. You can obtain plain-text or HTML highlighting.

8.1.2 Theme Highlighting
For ABOUT queries, the CTX_DOC procedures highlight and mark up words or phrases that best
represent the ABOUT query.

8.1.3 CTX_DOC Highlighting Procedures
These are the highlighting procedures in CTX_DOC:

• CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP
• CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT

8-1

• CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET
The POLICY and non-POLICY versions of the procedures are equivalent, except that the POLICY
versions do not require an index.

Note:

SNIPPET can also be generated using the Result Set Interface.

See Also:

Oracle Text Reference for information on CTX_QUERY.RESULT_SET

This section contains these topics:

• Markup Procedure

• Highlight Procedure

• Concordance

8.1.3.1 Markup Procedure
The CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP procedures take a document reference and
a query, and return a marked-up version of the document. The output can be either marked-up
plain text or marked-up HTML. For example, specify that a marked-up document be returned
with the query term surrounded by angle brackets (<<<tansu>>>) or HTML (tansu).

CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP are equivalent, except that
CTX_DOC.POLICY_MARKUP does not require an index.

You can customize the markup sequence for HTML navigation.

CTX_DOC.MARKUP Example

The following example is taken from the web application described in CONTEXT Query
Application. The showDoc procedure takes an HTML document and a query, creates the
highlight markup—in this case, the query term is displayed in red—and outputs the result to an
in-memory buffer. It then uses htp.print to display it in the browser.

procedure showDoc (p_id in varchar2, p_query in varchar2) is

 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 v_query varchar(2000);
 v_cursor integer;

 begin
 htp.p('<html><title>HTML version with highlighted terms</title>');
 htp.p('<body bgcolor="#ffffff">');
 htp.p('HTML version with highlighted terms');

 begin

Chapter 8
Highlighting Query Terms

8-2

 ctx_doc.markup (index_name => 'idx_search_table',
 textkey => p_id,
 text_query => p_query,
 restab => v_clob_selected,
 starttag => '<i>',
 endtag => '</i>');

 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;

 exception
 when others then
 null; --showHTMLdoc(p_id);
 end;
end showDoc;
end;
/
show errors
set define on

See Also:

Oracle Text Reference for more information about CTX_DOC.MARKUP and
CTX_DOC.POLICY_SNIPPET

8.1.3.2 Highlight Procedure
CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT take a query and a document and return
offset information for the query in plain text or HTML format. You can use this offset information
to write your own custom routines for displaying documents.

CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT are equivalent, except that
CTX_DOC.POLICY_HIGHLIGHT does not require an index.

With offset information, you can display a highlighted version of a document (such as different
font types or colors) instead of the standard plain-text markup obtained from CTX_DOC.MARKUP.

See Also:

Oracle Text Reference for more information about using CTX_DOC.HIGHLIGHT and
CTX_DOC.POLICY_HIGHLIGHT

Chapter 8
Highlighting Query Terms

8-3

8.1.3.3 Concordance
CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET produce a concordance of the document, in
which occurrences of the query term are returned with their surrounding text. This result is
sometimes known as Key Word in Context (KWIC) because, instead of returning the entire
document (with or without the query term highlighted), it returns the query term in text
fragments, allowing a user to see it in context. You can control how the query term is
highlighted in the returned fragments.

CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET are equivalent, except that
CTX_DOC.POLICY_SNIPPET does not require an index. CTX_DOC.POLICY_SNIPPET and
CTX_DOC.SNIPPET include two new attributes: radius specifies the approximate desired length
of each segment, whereas, max_length puts an upper bound on the length of the sum of all
segments.

See Also:

Oracle Text Reference for more information about CTX_DOC.SNIPPET and
CTX_DOC.POLICY_SNIPPET

8.2 Obtaining Part-of-Speech Information for a Document
The CTX_DOC package contains procedures to create policies for obtaining part-of-speech
information for a given document. This approach is described under POLICY_NOUN_PHRASES in
Oracle Text Reference and POLICY_PART_OF_SPEECH in Oracle Text Reference.

8.3 Obtaining Lists of Themes, Gists, and Theme Summaries
The following table describes lists of themes, gists, and theme summaries.

Table 8-1 Lists of Themes, Gists, and Theme Summaries

Output Type Description

List of Themes A list of the main concepts of a document.

Each theme is a single word, a single phrase, or a hierarchical list of parent
themes.

Gist Text in a document that best represents what the document is about as a whole.

Theme Summary Text in a document that best represents a given theme in the document.

To obtain lists of themes, gists, and theme summaries, use procedures in the CTX_DOC package
to:

• Identify documents by ROWID in addition to primary key

• Store results in-memory for improved performance

Chapter 8
Obtaining Part-of-Speech Information for a Document

8-4

8.3.1 Lists of Themes
A list of themes is a list of the main concepts in a document. Use the CTX_DOC.THEMES
procedure to generate lists of themes.

See Also:

Oracle Text Reference to learn more about the command syntax for CTX_DOC.THEMES

The following in-memory theme example generates the top 10 themes for document 1 and
stores them in an in-memory table called the_themes. The example then loops through the
table to display the document themes.

declare
 the_themes ctx_doc.theme_tab;

begin
 ctx_doc.themes('myindex','1',the_themes, numthemes=>10);
 for i in 1..the_themes.count loop
 dbms_output.put_line(the_themes(i).theme||':'||the_themes(i).weight);
 end loop;
end;

The following example create a result table theme:

create table ctx_themes (query_id number,
 theme varchar2(2000),
 weight number);

In this example, you obtain a list of themes where each element in the list is a single theme:

begin
ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => FALSE);
end;

In this example, you obtain a list of themes where each element in the list is a hierarchical list
of parent themes:

begin
ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => TRUE);
end;

8.3.2 Gist and Theme Summary
A gist is the text in a document that best represents what the document is about as a whole. A
theme summary is the text in a document that best represents a single theme in the document.

Use the CTX_DOC.GIST procedure to generate gists and theme summaries. You can specify the
size of the gist or theme summary when you call the procedure.

Chapter 8
Obtaining Lists of Themes, Gists, and Theme Summaries

8-5

See Also:

Oracle Text Reference to learn about the command syntax for CTX_DOC.GIST

In-Memory Gist Example

The following example generates a nondefault size generic gist of at most 10 paragraphs. The
result is stored in memory in a CLOB locator. The code then de-allocates the returned CLOB
locator after using it.

declare
 gklob clob;
 amt number := 40;
 line varchar2(80);

begin
 ctx_doc.gist('newsindex','34','gklob',1,glevel => 'P',pov => 'GENERIC',
numParagraphs => 10);
 -- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
 -- CLOB for us and place the results there.

 dbms_lob.read(gklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(gklob);
 end;

Result Table Gists Example

To create a gist table, enter the following:

create table ctx_gist (query_id number,
 pov varchar2(80),
 gist CLOB);

The following example returns a default-sized paragraph gist for document 34:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1,'PARAGRAPH', pov =>'GENERIC');
end;

The following example generates a nondefault size gist of 10 paragraphs:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1,'PARAGRAPH', pov =>'GENERIC',
numParagraphs => 10);
end;

The following example generates a gist whose number of paragraphs is 10 percent of the total
paragraphs in the document:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1, 'PARAGRAPH', pov =>'GENERIC', maxPercent =>
10);
end;

Chapter 8
Obtaining Lists of Themes, Gists, and Theme Summaries

8-6

Theme Summary Example

The following example returns a theme summary on the theme of insects for document with
textkey 34. The default gist size is returned.

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1, 'PARAGRAPH', pov => 'insects');
end;

8.4 Presenting and Highlighting Documents
Typically, a query application enables the user to view the documents returned by a query. The
user selects a document from the hitlist, and then the application presents the document in
some form.

With Oracle Text, you can display a document in different ways, such as highlighting either the
words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from documents with the
CTX_DOC PL/SQL package.

Table 8-2 describes the different output you can obtain and which procedure to use to obtain
each type.

Table 8-2 CTX_DOC Output

Output Procedure

Plain-text version, no highlights CTX_DOC.FILTER
HTML version of document, no highlights CTX_DOC.FILTER
Highlighted document, plain-text version CTX_DOC.MARKUP
Highlighted document, HTML version CTX_DOC.MARKUP
Highlighted offset information for plain-text version CTX_DOC.HIGHLIGHT
Highlighted offset information for HTML version CTX_DOC.HIGHLIGHT
Theme summaries and gist of document CTX_DOC.GIST
List of themes in document CTX_DOC.THEMES

See Also:

Oracle Text Reference

Chapter 8
Presenting and Highlighting Documents

8-7

9
Classifying Documents in Oracle Text

Oracle Text offers various approaches to document classification.

This chapter contains the following topics:

• Overview of Document Classification

• Classification Applications

• Classification Solutions

• Rule-Based Classification

• Supervised Classification

• Unsupervised Classification (Clustering)

• Unsupervised Classification (Clustering) Example

9.1 Overview of Document Classification
Each theme is a single word, a single phrase, or a hierarchical list of parent themes.

To sift through numerous documents you can use keyword search engines. However, keyword
searches have limitations. One major drawback is that keyword searches do not discriminate
by context. In many languages, a word or phrase may have multiple meanings, so a search
may result in many matches that are not about the specific topic. For example, a query on the
phrase river bank might return documents about the Hudson River Bank & Trust Company,
because the word bank has two meanings.

Alternatively, you can sort through documents and classify them by content. This approach is
not feasible for very large volumes of documents.

Oracle Text offers various approaches to document classification. Under rule-based
classification (sometimes called simple classification), you write the classification rules
yourself. With supervised classification, Oracle Text creates classification rules based on a set
of sample documents that you preclassify. Finally, with unsupervised classification (also known
as clustering), Oracle Text performs all steps, from writing the classification rules to classifying
the documents, for you.

9.2 Classification Applications
Oracle Text enables you to build document classification applications that perform some action
based on document content. Actions include assigning category IDs to a document for future
lookup or sending a document to a user. The result is a set or stream of categorized
documents. Figure 9-1 illustrates how the classification process works.

Oracle Text enables you to create document classification applications in different ways. This
chapter defines a typical classification scenario and shows how you can use Oracle Text to
build a solution.

9-1

Figure 9-1 Overview of a Document Classification Application

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

CTXRULE
Index

Oracle

SQL
MATCHES
Query

Database A Database B

Email
User

Classify
Document

Rules Table

9.3 Classification Solutions
Oracle Text enables you to classify documents in the following ways:

• Rule-Based Classification. For this solution, you group your documents, choose
categories, and formulate the rules that define those categories; these rules are actually
query phrases. You then index the rules and use the MATCHES operator to classify
documents.

Advantages: This solution is very accurate for small document sets. Results are always
based on what you define, because you write the rules.

Disadvantages: Defining rules can be tedious for large document sets with many
categories. As your document set grows, you may need to write correspondingly more
rules.

• Supervised Classification. This solution is similar to rule-based classification, but the rule-
writing step is automated with CTX_CLS.TRAIN. This procedure formulates a set of
classification rules from a sample set of preclassified documents that you provide. As with
rule-based classification, you use the MATCHES operator to classify documents.

Oracle Text offers two versions of supervised classification, one using the
RULE_CLASSIFIER preference and one using the SVM_CLASSIFIER preference. These
preferences are discussed in "Supervised Classification".

Advantages: Rules are written for you automatically. This method is useful for large
document sets.

Disadvantages: You must assign documents to categories before generating the rules.
Rules may not be as specific or accurate as those you write yourself.

• Unsupervised Classification (Clustering). All steps, from grouping your documents to
writing the category rules, are automated with CTX_CLS.CLUSTERING. Oracle Text
statistically analyzes your document set and correlates them with clusters according to
content.

Chapter 9
Classification Solutions

9-2

Advantages:

– You do not need to provide the classification rules or the sample documents as a
training set.

– This solution helps to discover overlooked patterns and content similarities in your
document set.

In fact, you can use this solution when you do not have a clear idea of rules or
classifications. For example, use it to provide an initial set of categories and to build on
the categories through supervised classification.

Disadvantages:

– Clustering is based on an internal solution. It might result in unexpected groupings,
because the clustering operation is not user-defined.

– You do not see the rules that create the clusters.

– The clustering operation is CPU-intensive and can take at least the same time as
indexing.

9.4 Rule-Based Classification
Rule-based classification is the basic solution for creating an Oracle Text classification
application.

The basic steps for rule-based classification are as follows. Specific steps are explored in
greater detail in the example.

1. Create a table for the documents to be classified, and then populate it.

2. Create a rule table (also known as a category table). The rule table consists of categories
that you name, such as "medicine" or "finance," and the rules that sort documents into
those categories.

These rules are actually queries. For example, you define the "medicine" category as
documents that include the words "hospital," "doctor," or "disease." Therefore, you would
set up a rule in the form of "hospital OR doctor OR disease."

3. Create a CTXRULE index on the rule table.

4. Classify the documents.

See Also:

"CTXRULE Parameters and Limitations" for information on which operators are
allowed for queries

9.4.1 Rule-Based Classification Example
In this example, you gather news articles about different subjects and then classify them. After
you create the rules, you can index them and then use the MATCHES statement to classify
documents.

To classify documents:

1. Create the schema to store the data.

Chapter 9
Rule-Based Classification

9-3

The news_table stores the documents to be classified. The news_categories table stores
the categories and rules that define the categories. The news_id_cat table stores the
document IDs and their associated categories after classification.

create table news_table (
 tk number primary key not null,
 title varchar2(1000),
 text clob);

create table news_categories (
 queryid number primary key not null,
 category varchar2(100),
 query varchar2(2000));

create table news_id_cat (
 tk number,
 category_id number);

2. Load the documents with SQLLDR.

Use the SQLLDR program to load the HTML news articles into the news_table. The file
names and titles are read from loader.dat.
LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE news_table
 REPLACE
 FIELDS TERMINATED BY ';'
 (tk INTEGER EXTERNAL,
 title CHAR,
 text_file FILLER CHAR,
 text LOBFILE(text_file) TERMINATED BY EOF)

3. Create the categories and write the rules for each category.

The defined categories are Asia, Europe, Africa, Middle East, Latin America, United
States, Conflicts, Finance, Technology, Consumer Electronics, World Politics, U.S. Politics,
Astronomy, Paleontology, Health, Natural Disasters, Law, and Music News.

A rule is a query that selects documents for the category. For example, the 'Asia' category
has a rule of 'China or Pakistan or India or Japan'. Insert the rules in the news_categories
table.

insert into news_categories values
 (1,'United States','Washington or George Bush or Colin Powell');

insert into news_categories values
 (2,'Europe','England or Britain or Germany');

insert into news_categories values
 (3,'Middle East','Israel or Iran or Palestine');

insert into news_categories values(4,'Asia','China or Pakistan or India or Japan');

insert into news_categories values(5,'Africa','Egypt or Kenya or Nigeria');

insert into news_categories values
 (6,'Conflicts','war or soldiers or military or troops');

insert into news_categories values(7,'Finance','profit or loss or wall street');
insert into news_categories values
 (8,'Technology','software or computer or Oracle
 or Intel or IBM or Microsoft');

Chapter 9
Rule-Based Classification

9-4

insert into news_categories values
 (9,'Consumer electronics','HDTV or electronics');

insert into news_categories values
 (10,'Latin America','Venezuela or Colombia
 or Argentina or Brazil or Chile');

insert into news_categories values
 (11,'World Politics','Hugo Chavez or George Bush
 or Tony Blair or Saddam Hussein or United Nations');

insert into news_categories values
 (12,'US Politics','George Bush or Democrats or Republicans
 or civil rights or Senate');

insert into news_categories values
 (13,'Astronomy','Jupiter or Earth or star or planet or Orion
 or Venus or Mercury or Mars or Milky Way
 or Telescope or astronomer
 or NASA or astronaut');

insert into news_categories values
 (14,'Paleontology','fossils or scientist
 or paleontologist or dinosaur or Nature');

insert into news_categories values
 (15,'Health','stem cells or embryo or health or medical
 or medicine or World Health Organization
 or virus or centers for disease control or vaccination');

insert into news_categories values
 (16,'Natural Disasters','earthquake or hurricane or tornado');

insert into news_categories values
 (17,'Law','Supreme Court or legislation');

insert into news_categories values
 (18,'Music News','piracy or anti-piracy
 or Recording Industry Association of America
 or copyright or copy-protection or CDs
 or music or artist or song');

commit;
4. Create the CTXRULE index on the news_categories query column.

create index news_cat_idx on news_categories(query)
indextype is ctxsys.ctxrule;

5. To classify the documents, use the CLASSIFIER.THIS PL/SQL procedure (a simple
procedure designed for this example).

The procedure scrolls through the news_table, matches each document to a category,
and writes the categorized results into the news_id_cat table.

create or replace package classifier as procedure this;end;/

show errors

create or replace package body classifier as

 procedure this
 is

Chapter 9
Rule-Based Classification

9-5

 v_document clob;
 v_item number;
 v_doc number;
 begin

 for doc in (select tk, text from news_table)
 loop
 v_document := doc.text;
 v_item := 0;
 v_doc := doc.tk;
 for c in (select queryid, category from news_categories
 where matches(query, v_document) > 0)
 loop
 v_item := v_item + 1;
 insert into news_id_cat values (doc.tk,c.queryid);
 end loop;
 end loop;

 end this;

end;
/
show errors
exec classifier.this

9.4.2 CTXRULE Parameters and Limitations
The following considerations apply to indexing a CTXRULE index:

• If you use the SVM_CLASSIFIER classifier, then you may use the BASIC_LEXER,
CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexers. If you do not use
SVM_CLASSIFIER, then you can use only the BASIC_LEXER lexer type to index your query
set.

• Filter, memory, datastore, and [no]populate parameters are not applicable to the CTXRULE
index type.

• The CREATE INDEX storage clause is supported for creating the index on the queries.

• Wordlists are supported for stemming operations on your query set.

• Queries for CTXRULE are similar to the CONTAINS queries. Basic phrasing ("dog house") is
supported, as are the following CONTAINS operators: ABOUT, AND, NEAR, NOT, OR, STEM,
WITHIN, and THESAURUS. Section groups are supported for using the MATCHES operator to
classify documents. Field sections are also supported; however, CTXRULE does not directly
support field queries, so you must use a query rewrite on a CONTEXT query.

• You must drop the CTXRULE index before exporting or downgrading the database.

See Also:

• Oracle Text Reference for more information on lexer and classifier preferences

• "Creating a CTXRULE Index"

Chapter 9
Rule-Based Classification

9-6

9.5 Supervised Classification
With supervised classification, you use the CTX_CLS.TRAIN procedure to automate the rule-
writing step. CTX_CLS.TRAIN uses a training set of sample documents to deduce classification
rules. This training set is the major advantage over rule-based classification, where you must
write the classification rules.

However, before you can run the CTX_CLS.TRAIN procedure, you must manually create
categories and assign each document in the sample training set to a category.

See Also:

Oracle Text Reference for more information on CTX_CLS.TRAIN

When the rules are generated, you index them to create a CTXRULE index. You can then use the
MATCHES operator to classify an incoming stream of new documents.

You can select one of the following classification algorithms for supervised classification:

• Decision Tree Supervised Classification

The advantage of this classification is that the generated rules are easily observed (and
modified).

• SVM-Based Supervised Classification

This classification uses the Support Vector Machine (SVM) algorithm for creating rules.
The advantage of this classification is that it is often more accurate than the Decision Tree
classification. The disadvantage is that it generates binary rules, so the rules themselves
are opaque.

See Also:

• "Decision Tree Supervised Classification Example"

• "SVM-Based Supervised Classification Example"

9.5.1 Decision Tree Supervised Classification
To use Decision Tree classification, you set the preference argument of CTX_CLS.TRAIN to
RULE_CLASSIFIER.
This form of classification uses a decision tree algorithm for creating rules. Generally speaking,
a decision tree is a method of deciding between two (or more, but usually two) choices. In
document classification, the choices are "the document matches the training set" or "the
document does not match the training set."

A decision tree has a set of attributes that can be tested. In this case, the attributes include:

• words from the document

• stems of words from the document (for example, the stem of running is run)

Chapter 9
Supervised Classification

9-7

• themes from the document (if themes are supported for the language in use)

The learning algorithm in Oracle Text builds one or more decision trees for each category
provided in the training set. These decision trees are then coded into queries that are suitable
for use by a CTXRULE index. For example, one category has a training document for "Japanese
beetle," and another category has a document for "Japanese currency." The algorithm may
create decision trees based on "Japanese," "beetle," and "currency," and then classify
documents accordingly.

The decision trees include the concept of confidence. Each generated rule is allocated a
percentage value that represents the accuracy of the rule, given the current training set. In
trivial examples, the accuracy is almost always 100 percent, but this percentage merely
represents the limitations of the training set. Similarly, the rules generated from a trivial training
set may seem to be less than what you might expect, but they sufficiently distinguish the
different categories in the current training set.

The advantage of the Decision Tree classification is that it can generate rules that users can
easily inspect and modify. The Decision Tree classification makes sense when you want to the
computer to generate the bulk of the rules, but you want to fine-tune them afterward by editing
the rule sets.

9.5.2 Decision Tree Supervised Classification Example
The following SQL example steps through creating your document and classification tables,
classifying the documents, and generating the rules. It then goes on to generate rules with
CTX_CLS.TRAIN.

Rules are then indexed to create CTXRULE index and new documents are classified with
MATCHES.

The CTX_CLS.TRAIN procedure requires an input training document set. A training set is a set of
documents that have already been assigned a category.

After you generate the rules, you can test them by first indexing them and then using MATCHES
to classify new documents.

To create and index the category rules:

1. Create and load a table of training documents.

This example uses a simple set of three fast food documents and three computer
documents.

create table docs (
 doc_id number primary key,
 doc_text clob);

insert into docs values
(1, 'MacTavishes is a fast-food chain specializing in burgers, fries and -
shakes. Burgers are clearly their most important line.');
insert into docs values
(2, 'Burger Prince are an up-market chain of burger shops, who sell burgers -
and fries in competition with the likes of MacTavishes.');
insert into docs values
(3, 'Shakes 2 Go are a new venture in the low-cost restaurant arena,
specializing in semi-liquid frozen fruit-flavored vegetable oil products.');
insert into docs values
(4, 'TCP/IP network engineers generally need to know about routers,
firewalls, hosts, patch cables networking etc');
insert into docs values

Chapter 9
Supervised Classification

9-8

(5, 'Firewalls are used to protect a network from attack by remote hosts,
 generally across TCP/IP');

2. Create category tables, category descriptions and IDs.

--

-- Create category tables
-- Note that "category_descriptions" isn't really needed for this demo -
-- it just provides a descriptive name for the category numbers in
-- doc_categories
--

create table category_descriptions (
 cd_category number,
 cd_description varchar2(80));

create table doc_categories (
 dc_category number,
 dc_doc_id number,
 primary key (dc_category, dc_doc_id))
 organization index;

-- descriptions for categories

insert into category_descriptions values (1, 'fast food');
insert into category_descriptions values (2, 'computer networking');

3. Assign each document to a category.

In this case, the fast food documents all go into category 1, and the computer documents
go into category 2.

insert into doc_categories values (1, 1);
insert into doc_categories values (1, 2);
insert into doc_categories values (1, 3);
insert into doc_categories values (2, 4);
insert into doc_categories values (2, 5);

4. Create a CONTEXT index to be used by CTX_CLS.TRAIN.
To experiment with the effects of turning themes on and off, create an Oracle Text
preference for the index.

exec ctx_ddl.create_preference('my_lex', 'basic_lexer');
exec ctx_ddl.set_attribute ('my_lex', 'index_themes', 'no');
exec ctx_ddl.set_attribute ('my_lex', 'index_text', 'yes');

create index docsindex on docs(doc_text) indextype is ctxsys.context
parameters ('lexer my_lex');

5. Create the rules table that will be populated by the generated rules.

create table rules(
 rule_cat_id number,
 rule_text varchar2(4000),
 rule_confidence number
);

6. Generate category rules.

All arguments are the names of tables, columns, or indexes previously created in this
example. The rules table now contains the rules, which you can view.

begin
 ctx_cls.train(

Chapter 9
Supervised Classification

9-9

 index_name => 'docsindex',
 docid => 'doc_id',
 cattab => 'doc_categories',
 catdocid => 'dc_doc_id',
 catid => 'dc_category',
 restab => 'rules',
 rescatid => 'rule_cat_id',
 resquery => 'rule_text',
 resconfid => 'rule_confidence'
);
end;
/

7. Fetch the generated rules, viewed by category.

For convenience's sake, the rules table is joined with category_descriptions so that you
can see the category that each rule applies to.

select cd_description, rule_confidence, rule_text from rules,
category_descriptions where cd_category = rule_cat_id;

8. Use the CREATE INDEX statement to create the CTXRULE index on the previously generated
rules.

create index rules_idx on rules (rule_text) indextype is ctxsys.ctxrule;
9. Test an incoming document by using MATCHES.

set serveroutput on;

declare
 incoming_doc clob;
begin
 incoming_doc
 := 'I have spent my entire life managing restaurants selling burgers';
 for c in
 (select distinct cd_description from rules, category_descriptions
 where cd_category = rule_cat_id
 and matches (rule_text, incoming_doc) > 0) loop
 dbms_output.put_line('CATEGORY: '||c.cd_description);
 end loop;
end;
/

9.5.3 SVM-Based Supervised Classification
The second method that you can use for training purposes is Support Vector Machine (SVM)
classification. SVM is a type of machine learning algorithm derived from statistical learning
theory. A property of SVM classification is the ability to learn from a very small sample set.

Using the SVM classifier is much the same as using the Decision Tree classifier, except for the
following differences:

• In the call to CTX_CLS.TRAIN, use the SVM_CLASSIFIER preference instead of the
RULE_CLASSIFIER preference. (If you do not want to modify any attributes, use the
predefined CTXSYS.SVM_CLASSIFIER preference.)

• Use the NOPOPULATE keyword if you do not want to populate the CONTEXT index on the table.
The classifier uses it only to find the source of the text, by means of datastore and filter
preferences, and to determine how to process the text through lexer and sectioner
preferences.

Chapter 9
Supervised Classification

9-10

• In the generated rules table, use at least the following columns:

cat_id number,
type number,
rule blob;

As you can see, the generated rule is written into a BLOB column. It is therefore opaque to the
user, and unlike Decision Tree classification rules, it cannot be edited or modified. The trade-off
here is that you often get considerably better accuracy with SVM than with Decision Tree
classification.

With SVM classification, allocated memory has to be large enough to load the SVM model;
otherwise, the application built on SVM incurs an out-of-memory error. Here is how to calculate
the memory allocation:

Minimum memory request (in bytes) = number of unique categories x number of features
 example: (value of MAX_FEATURES attributes) x 8

If necessary to meet the minimum memory requirements, increase one of the following
memories:

• SGA (if in shared server mode)

• PGA (if in dedicated server mode)

9.5.4 SVM-Based Supervised Classification Example
This example uses SVM-based classification. The steps are essentially the same as the
Decision Tree example, except for the following differences:

• Set the SVM_CLASSIFIER preference with CTX_DDL.CREATE_PREFERENCE rather than setting it
in CTX_CLS.TRAIN. (You can do it either way.)

• Include category descriptions in the category table. (You can do it either way.)

• Because rules are opaque to the user, use fewer arguments in CTX_CLS.TRAIN.
To create a SVM-based supervised classification:

1. Create and populate the training document table.

create table doc (id number primary key, text varchar2(2000));
insert into doc values(1,'1 2 3 4 5 6');
insert into doc values(2,'3 4 7 8 9 0');
insert into doc values(3,'a b c d e f');
insert into doc values(4,'g h i j k l m n o p q r');
insert into doc values(5,'g h i j k s t u v w x y z');

2. Create and populate the category table.

create table testcategory (
 doc_id number,
 cat_id number,
 cat_name varchar2(100)
);
insert into testcategory values (1,1,'number');
insert into testcategory values (2,1,'number');
insert into testcategory values (3,2,'letter');
insert into testcategory values (4,2,'letter');
insert into testcategory values (5,2,'letter');

3. Create the CONTEXT index on the document table without populating it.

Chapter 9
Supervised Classification

9-11

create index docx on doc(text) indextype is ctxsys.context
 parameters('nopopulate');

4. Set the SVM_CLASSIFIER.
You can also set it in CTX.CLS_TRAIN.
exec ctx_ddl.create_preference('my_classifier','SVM_CLASSIFIER');
exec ctx_ddl.set_attribute('my_classifier','MAX_FEATURES','100');

5. Create the result (rule) table.

create table restab (
 cat_id number,
 type number(3) not null,
 rule blob
);

6. Perform the training.

exec ctx_cls.train('docx', 'id','testcategory','doc_id','cat_id',
 'restab','my_classifier');

7. Create a CTXRULE index on the rules table.

exec ctx_ddl.create_preference('my_filter','NULL_FILTER');
create index restabx on restab (rule)
 indextype is ctxsys.ctxrule
 parameters ('filter my_filter classifier my_classifier');

Now you can classify two unknown documents, as follows:

select cat_id, match_score(1) from restab
 where matches(rule, '4 5 6',1)>50;

select cat_id, match_score(1) from restab
 where matches(rule, 'f h j',1)>50;

drop table doc;
drop table testcategory;
drop table restab;
exec ctx_ddl.drop_preference('my_classifier');
exec ctx_ddl.drop_preference('my_filter');

9.6 Unsupervised Classification (Clustering)
With Rule-Based Classification, you write the rules for classifying documents yourself. With
Supervised Classification, Oracle Text writes the rules for you, but you must provide a set of
training documents that you preclassify. With unsupervised classification (also known as
clustering), you do not have to provide a training set of documents.

Clustering is performed with the CTX_CLS.CLUSTERING procedure. CTX_CLS.CLUSTERING creates
a hierarchy of document groups, known as clusters, and, for each document, returns relevancy
scores for all leaf clusters.

For example, suppose that you have a large collection of documents about animals.
CTX_CLS.CLUSTERING creates one leaf cluster about dogs, another about cats, another about
fish, and a fourth about bears. (The first three might be grouped under a node cluster about
pets.) Suppose further that you have a document about one breed of dogs, such as
Chihuahuas. CTX_CLS.CLUSTERING assigns the dog cluster to the document with a very high
relevancy score, whereas the cat cluster is assigned a lower score and the fish and bear
clusters are still assigned lower scores. After scores for all clusters are assigned to all
documents, an application can then take action based on the scores.

Chapter 9
Unsupervised Classification (Clustering)

9-12

As noted in "Decision Tree Supervised Classification", attributes used for determining clusters
may consist of simple words (or tokens), word stems, and themes (where supported).

CTX_CLS.CLUSTERING assigns output to two tables (which may be in-memory tables):

• A document assignment table showing the document’s similarity to each leaf cluster. This
information takes the form of document identification, cluster identification, and a similarity
score between the document and a cluster.

• A cluster description table containing information about a generated cluster. This table
contains cluster identification, cluster description text, a suggested cluster label, and a
quality score for the cluster.

CTX_CLS.CLUSTERING uses a K-MEAN algorithm to perform clustering. Use the
KMEAN_CLUSTERING preference to determine how CTX_CLS.CLUSTERING works.

See Also:

Oracle Text Reference for more information on cluster types and hierarchical
clustering

9.7 Unsupervised Classification (Clustering) Example
This SQL example creates a small collection of documents in the collection table and creates a
CONTEXT index. It then creates a document assignment and cluster description table, which are
populated with a call to the CLUSTERING procedure. The output is then viewed with a select
statement:

set serverout on

/* collect document into a table */
create table collection (id number primary key, text varchar2(4000));
insert into collection values (1, 'Oracle Text can index any document or textual content.');
insert into collection values (2, 'Ultra Search uses a crawler to access documents.');
insert into collection values (3, 'XML is a tag-based markup language.');
insert into collection values (4, 'Oracle Database 11g XML DB treats XML
as a native datatype in the database.');
insert into collection values (5, 'There are three Oracle Text index types to cover
all text search needs.');
insert into collection values (6, 'Ultra Search also provides API
for content management solutions.');

create index collectionx on collection(text)
 indextype is ctxsys.context parameters('nopopulate');

/* prepare result tables, if you omit this step, procedure will create table automatically */
create table restab (
 docid NUMBER,
 clusterid NUMBER,
 score NUMBER);

create table clusters (
 clusterid NUMBER,
 descript varchar2(4000),
 label varchar2(200),
 size number,
 quality_score number,

Chapter 9
Unsupervised Classification (Clustering) Example

9-13

 parent number);

/* set the preference */
exec ctx_ddl.drop_preference('my_cluster');
exec ctx_ddl.create_preference('my_cluster','KMEAN_CLUSTERING');
exec ctx_ddl.set_attribute('my_cluster','CLUSTER_NUM','3');

/* do the clustering */
exec ctx_output.start_log('my_log');
exec ctx_cls.clustering('collectionx','id','restab','clusters','my_cluster');
exec ctx_output.end_log;

See Also:

Oracle Text Reference for CTX_CLS.CLUSTERING syntax and examples

Chapter 9
Unsupervised Classification (Clustering) Example

9-14

10
Tuning Oracle Text

Oracle Text provides ways to improve your query and indexing performance.

This chapter contains the following topics:

• Optimizing Queries with Statistics

• Optimizing Queries for Response Time

• Optimizing Queries for Throughput

• Composite Domain Index in Oracle Text

• Performance Tuning with CDI

• Solving Index and Query Bottlenecks by Using Tracing

• Using Parallel Queries

• Tuning Queries with Blocking Operations

• Frequently Asked Questions About Query Performance

• Frequently Asked Questions About Indexing Performance

• Frequently Asked Questions About Updating the Index

10.1 Optimizing Queries with Statistics
Query optimization with statistics uses the collected statistics on the tables and indexes in a
query to select an execution plan that can process the query in the most efficient manner. As a
general rule, Oracle recommends that you collect statistics on your base table if you are
interested in improving your query performance. Optimizing with statistics enables a more
accurate estimation of the selectivity and costs of the CONTAINS predicate and thus a better
execution plan.

The optimizer attempts to choose the best execution plan based on the following parameters:

• The selectivity on the CONTAINS predicate

• The selectivity of other predicates in the query

• The CPU and I/O costs of processing the CONTAINS predicates

The following topics discuss how to use statistics with the extensible query optimizer:

• Collecting Statistics

• Query Optimization with Statistics Example

• Re-Collecting Statistics

• Deleting Statistics

10-1

Note:

Importing and exporting statistics on domain indexes, including Oracle Text indexes,
is not supported with the DBMS_STATS package. For more information on importing
and exporting statistics, see the Oracle Database PL/SQL Packages and Types
Reference.

See Also:

Oracle Text Reference for information on the CONTAINS query operator

10.1.1 Collecting Statistics
By default, Oracle Text uses the cost-based optimizer (CBO) to determine the best execution
plan for a query.

To enable the optimizer to better estimate costs, calculate the statistics on the table you
queried table:

ANALYZE TABLE <table_name> COMPUTE STATISTICS;

Alternatively, estimate the statistics on a sample of the table:

ANALYZE TABLE <table_name> ESTIMATE STATISTICS 1000 ROWS;

or

ANALYZE TABLE <table_name> ESTIMATE STATISTICS 50 PERCENT;

You can also collect statistics in parallel with the DBMS_STATS.GATHER_TABLE_STATS procedure:

begin

DBMS_STATS.GATHER_TABLE_STATS('owner', 'table_name',
 estimate_percent=>50,
 block_sample=>TRUE,
 degree=>4) ;

end ;

These statements collect statistics on all objects associated with table_name, including the
table columns and any indexes (b-tree, bitmap, or Text domain) associated with the table.

To re-collect the statistics on a table, enter the ANALYZE statement as many times as necessary
or use the DBMS_STATS package.

By collecting statistics on the Text domain index, the CBO in Oracle Database can perform the
following tasks:

• Estimate the selectivity of the CONTAINS predicate

• Estimate the I/O and CPU costs of using the Oracle Text index (that is, the cost of
processing the CONTAINS predicate by using the domain index)

• Estimate the I/O and CPU costs of each invocation of CONTAINS

Chapter 10
Optimizing Queries with Statistics

10-2

Knowing the selectivity of a CONTAINS predicate is useful for queries that contain more than one
predicate, such as in structured queries. This way the CBO can better decide whether to use
the domain index to evaluate CONTAINS or to apply the CONTAINS predicate as a post filter.

See Also:

• Oracle Database SQL Language Reference for more information about the
ANALYZE statement

• Oracle Database PL/SQL Packages and Types Reference for information about
DBMS_STATS package

10.1.2 Query Optimization with Statistics Example
The following structured query provides an example for optimizing statistics:

select score(1) from tab where contains(txt, 'freedom', 1) > 0 and author = 'King' and
year > 1960;

Assume the following:

• The author column is of type VARCHAR2 and the year column is of type NUMBER.
• A b-tree index on the author column.

• The structured author predicate is highly selective with respect to the CONTAINS predicate
and the year predicate. That is, the structured predicate (author = 'King') returns a much
smaller number of rows with respect to the year and CONTAINS predicates individually, say
5 rows returned versus 1000 and 1500 rows, respectively.

In this situation, Oracle Text can execute this query more efficiently by first scanning a b-tree
index range on the structured predicate (author = 'King'), then accessing a table by rowid, and
then applying the other two predicates to the rows returned from the b-tree table access.

Note:

When statistics are not collected for a Oracle Text index, the CBO assumes low
selectivity and index costs for the CONTAINS predicate.

10.1.3 Re-Collecting Statistics
After synchronizing your index, you can re-collect statistics on a single index to update the cost
estimates.

If your base table was reanalyzed before the synchronization, it is sufficient to analyze the
index after the synchronization without reanalyzing the entire table.

To re-collect statistics, enter one of the following statements:

ANALYZE INDEX <index_name> COMPUTE STATISTICS;

ANALYZE INDEX <index_name> ESTIMATE STATISTICS SAMPLE 50 PERCENT;

Chapter 10
Optimizing Queries with Statistics

10-3

10.1.4 Deleting Statistics
Delete the statistics associated with a table:

ANALYZE TABLE <table_name> DELETE STATISTICS;

Delete statistics on one index:

ANALYZE INDEX <index_name> DELETE STATISTICS;

10.2 Optimizing Queries for Response Time
By default, Oracle Text optimizes queries for throughput so that queries return all rows in the
shortest time possible.

However, in many cases, especially in a web application, you must optimize queries for
response time, because you are only interested in obtaining the first few hits of a potentially
large hitlist in the shortest time possible.

The following sections describe some ways to optimize CONTAINS queries for response time:

• Other Factors that Influence Query Response Time

• Improved Response Time with FIRST_ROWS(n) Hint for ORDER BY Queries

• Improved Response Time Using the DOMAIN_INDEX_SORT Hint

• Improved Response Time using Local Partitioned CONTEXT Index

• Improved Response Time with Local Partitioned Index for Order by Score

• Improved Response Time with Query Filter Cache

• Improved Response Time using BIG_IO Option of CONTEXT Index

• Improved Response Time using SEPARATE_OFFSETS Option of CONTEXT Index

• Improved Response Time Using the STAGE_ITAB, STAGE_ITAB_MAX_ROWS, and
STAGE_ITAB_PARALLEL Options of CONTEXT Index

10.2.1 Other Factors That Influence Query Response Time
The following factors can influence query response time:

• Collection of table statistics

• Memory allocation

• Sorting

• Presence of large object (LOB) columns in your base table

• Partitioning

• Parallelism

• The number term expansions in your query

Chapter 10
Optimizing Queries for Response Time

10-4

See Also:

"Frequently Asked Questions About Query Performance"

10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for ORDER
BY Queries

When you need the first rows of an ORDER BY query, Oracle recommends that you use the cost-
based FIRST_ROWS(n) hint.

Note:

As the FIRST_ROWS(n) hint is cost-based, Oracle recommends that you collect
statistics on your tables before you use this hint.

You use the FIRST_ROWS(n) hint in cases where you want the first n number of rows in the
shortest possible time. For example, consider the following PL/SQL block that uses a cursor to
retrieve the first 10 hits of a query and the FIRST_ROWS(n) hint to optimize the response time:

declare
cursor c is

select /*+ FIRST_ROWS(10) */ article_id from articles_tab
 where contains(article, 'Omophagia')>0 order by pub_date desc;

begin

for i in c
loop
insert into t_s values(i.pk, i.col);
exit when c%rowcount > 11;
end loop;

end;
/

The c cursor is a SELECT statement that returns the rowids that contain the word omophagia in
sorted order. The code loops through the cursor to extract the first 10 rows. These rows are
stored in the temporary t_s table.

With the FIRST_ROWS(n) hint, the optimizer instructs the Oracle Text index to return rowids in
score-sorted order when the cost of returning the top-N hits is lower.

Without the hint, Oracle Database sorts the rowids after the Oracle Text index returns all rows
in unsorted order that satisfy the CONTAINS predicate. Retrieving the entire result set takes time.

Because only the first 10 hits are needed in this query, using the hint results in better
performance.

Chapter 10
Optimizing Queries for Response Time

10-5

Note:

Use the FIRST_ROWS(n) hint when you need only the first few hits of a query. When
you need the entire result set, do not use this hint as it might result in poor
performance.

10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT Hint
You can also optimize for response time by using the related DOMAIN_INDEX_SORT hint. Like
FIRST_ROWS(n), when queries are optimized for response time, Oracle Text returns the first
rows in the shortest time possible.

For example, you can use this hint:

select /*+ DOMAIN_INDEX_SORT */ pk, score(1), col from ctx_tab
 where contains(txt_col, 'test', 1) > 0 order by score(1) desc;

However, this hint is only rule-based. This means that Oracle Text always chooses the index
which satisfies the ORDER BY clause. This hint might result in suboptimal performance for
queries where the CONTAINS clause is very selective. In these cases, Oracle recommends that
you use the FIRST_ROWS(n) hint, which is fully cost-based.

10.2.4 Improved Response Time Using the Local Partitioned CONTEXT
Index

Partitioning your data and creating local partitioned indexes can improve your query
performance. On a partitioned table, each partition has its own set of index tables. Effectively,
there are multiple indexes, but the results are combined as necessary to produce the final
result set.

Create the CONTEXT index with the LOCAL keyword:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context
PARAMETERS ('...')
LOCAL

With partitioned tables and indexes, you can improve performance of the following types of
queries:

• Range Search on Partition Key Column: This query restricts the search to a particular
range of values on a column that is also the partition key. For example, consider a query
on a date range:

SELECT storyid FROM storytab WHERE CONTAINS(story, 'oliver')>0 and pub_date BETWEEN
'1-OCT-93' AND '1-NOV-93';

If the date range is quite restrictive, it is very likely that the query can be satisfied by only
looking in a single partition.

• ORDER BY Partition Key Column: This query requires only the first n hits, and the ORDER
BY clause names the partition key. Consider an ORDER BY query on a price column to fetch
the first 20 hits:

SELECT * FROM (

Chapter 10
Optimizing Queries for Response Time

10-6

SELECT itemid FROM item_tab WHERE CONTAINS(item_desc, 'cd player')
 >0 ORDER BY price)
 WHERE ROWNUM < 20;

In this example, with the table partitioned by price, the query might only need to get hits
from the first partition to satisfy the query.

10.2.5 Improved Response Time with the Local Partitioned Index for Order
by Score

The DOMAIN_INDEX_SORT hint on a local partitioned index might result in poor performance,
especially when you order by score. All hits to the query across all partitions must be obtained
before the results can be sorted.

Instead, use an inline view when you use the DOMAIN_INDEX_SORT hint. Specifically, use the
DOMAIN_INDEX_SORT hint to improve query performance on a local partitioned index under the
following conditions:

• The Oracle Text query itself, including the order by SCORE() clause, is expressed as an in-
line view.

• The Oracle Text query inside the in-line view contains the DOMAIN_INDEX_SORT hint.

• The query on the in-line view has a ROWNUM predicate that limits the number of rows to fetch
from the view.

For example, the following Oracle Text query and local Oracle Text index are created on a
partitioned doc_tab table:

 select doc_id, score(1) from doc_tab
 where contains(doc, 'oracle', 1)>0
 order by score(1) desc;

If you are interested in fetching only the top 20 rows, you can rewrite the query as follows:

 select * from
 (select /*+ DOMAIN_INDEX_SORT */ doc_id, score(1) from doc_tab
 where contains(doc, 'oracle', 1)>0 order by score(1) desc)
 where rownum < 21;

See Also:

Oracle Database SQL Language Reference for more information about the EXPLAIN
PLAN statement

10.2.6 Improved Response Time with the Query Filter Cache
Oracle Text provides a cache layer called the query filter cache that you can use to cache the
query results. The query filter cache is sharable across queries. Multiple queries can reuse
cached query results to improve the query response time.

Use the ctxfiltercache operator to specify which query results to cache. The following
example uses the operator to store the results of the common_predicate query in the cache:

select * from docs where contains(txt, 'ctxfiltercache((common_predicate), FALSE)')>0;

Chapter 10
Optimizing Queries for Response Time

10-7

In this example, the cached results of the common_predicate query are reused by the
new_query query, to improve the query response time.

select * from docs where contains(txt, 'new_query & ctxfiltercache((common_predicate),
FALSE)')>0;

Note:

• You can specify the size of the query filter cache by using the basic
query_filter_cache_size storage attribute.

• The ctx_filter_cache_statistics view provides various statistics about the
query filter cache.

See Also:

Oracle Text Reference for more information about:

• ctxfiltercache operator

• query_filter_cache_size basic storage attribute

• ctx_filter_cache_statistics view

10.2.7 Improved Response Time Using the BIG_IO Option of CONTEXT
Index

Oracle Text provides the BIG_IO option for improving the query performance for the CONTEXT
indexes that extensively use IO operations. The query performance improvement is mainly for
data stored on rotating disks, not for data stored on solid state disks.

When you enable the BIG_IO option, a CONTEXT index creates token type pairs with one large
object (LOB) data type for each unique token text. Tokens with the same text but different
token types correspond to different rows in the $I table.

The indexes with the BIG_IO option enabled should have the token LOBs created as
SecureFile LOBs, so that the data is stored sequentially in multiple blocks. This method
improves the response time of the queries, because the queries can now perform longer
sequential reads instead of many short reads.

Note:

If you use SecureFiles, you must set the COMPATIBLE setting to 11.0 or higher. In
addition, you must create the LOB on an automatic segment space management
(ASSM) tablespace. When you migrate the existing Oracle Text indexes to
SecureFiles, use an ASSM tablespace. To help migrate the existing indexes to
SecureFiles, you can extend ALTER INDEX REBUILD to provide storage preferences
that only affect the $I table.

Chapter 10
Optimizing Queries for Response Time

10-8

To create a CONTEXT index with the BIG_IO index option, first create a basic storage preference
by setting the value of its BIG_IO storage attribute to YES, and then specify this storage
preference while creating the CONTEXT index.

The following example creates a basic mystore storage preference and sets the value of its
BIG_IO storage attribute to YES:
exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore', 'BIG_IO', 'YES');

To disable the BIG_IO option, update the existing storage preference (mystore) by setting the
value of its BIG_IO storage attribute to NO, and then rebuild the index.

exec ctx_ddl.set_attribute('mystore', 'BIG_IO', 'NO');
alter index idx rebuild('replace storage mystore');

WARNING:

Do not use the replace metadata operation to disable the BIG_IO index option. It can
leave the index in an inconsistent state.

To enable the BIG_IO option for a partitioned index without rebuilding the index, modify the
basic storage preference by setting the value of its BIG_IO storage attribute to YES, replace the
global index metadata using ctx_ddl.replace_index_metadata, and then call
optimize_index in REBUILD mode for each partition of the partitioned index table.

The following example enables the BIG_IO option for the idx partitioned index:

exec ctx_ddl.set_attribute('mystore', 'BIG_IO', 'YES');
exec ctx_ddl.replace_index_metadata('idx', 'replace metadata storage mystore');
exec ctx_ddl.optimize_index('idx', 'rebuild', part_name=>'part1');

Note:

If a procedure modifies the existing index tables with only the BIG_IO option enabled,
then it will not result in reindexing of the data.

Note:

Because the BIG_IO index option performs longer sequential reads, the queries that
use the BIG_IO index option require a large program global area (PGA) memory.

10.2.8 Improved Response Time Using the SEPARATE_OFFSETS Option
of the CONTEXT Index

Oracle Text provides the SEPARATE_OFFSETS option to improve the query performance for the
CONTEXT indexes that use IO operations, and whose queries are mainly single-word or Boolean
queries.

Chapter 10
Optimizing Queries for Response Time

10-9

The SEPARATE_OFFSETS option creates a different postings list structure for the tokens of type
TEXT. Instead of interspersing docids, frequencies, info-length (length of the offsets
information), and the offsets in the postings list, the SEPARATE_OFFSETS option stores all docids
and frequencies at the beginning of the postings list, and all info-lengths and offsets at the end
of the postings list. The header at the beginning of the posting contains the information about
the boundary points between docids and offsets. Because separation of docids and offsets
reduces the time for the queries to read the data, it improves the query response time.

Performance of the SEPARATE_OFFSETS option is best realized when you use it in conjunction
with the BIG_IO option and for tokens with a very long posting.

To create a CONTEXT index with the SEPARATE_OFFSETS option, first create a basic storage
preference by setting the value of its SEPARATE_OFFSETS storage attribute to T. Next, specify
this storage preference when you create the CONTEXT index.

The following example creates a basic mystore storage preference and sets the value of its
SEPARATE_OFFSETS storage attribute to T:
exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore', 'SEPARATE_OFFSETS', 'T');

To disable the SEPARATE_OFFSETS option, update the existing storage preference (mystore) by
setting the value of its SEPARATE_OFFSETS storage attribute to F, and then rebuild the index.

exec ctx_ddl.set_attribute('mystore', 'SEPARATE_OFFSETS', 'F');
alter index idx rebuild('replace storage mystore');

WARNING:

Do not use replace metadata operation to disable the SEPARATE_OFFSETS index
option, as it can leave the index in an inconsistent state.

To enable the SEPARATE_OFFSETS option for a partitioned index without rebuilding the index,
modify the basic storage preference by setting the value of its SEPARATE_OFFSETS storage
attribute to T, replace the global index metadata by using ctx_ddl.replace_index_metadata,
and then call optimize_index in REBUILD mode for each partition in the partitioned index
table.

The following example enables the SEPARATE_OFFSETS option for the partitioned idx index:

exec ctx_ddl.set_attribute('mystore', 'SEPARATE_OFFSETS', 'T');
exec ctx_ddl.replace_index_metadata('idx', 'replace storage mystore');
exec ctx_ddl.optimize_index('idx', 'rebuild', part_name=>'part1');

Note:

If a procedure modifies the existing index tables with only the SEPARATE_OFFSETS
option enabled, then the data is not reindexed.

Chapter 10
Optimizing Queries for Response Time

10-10

10.2.9 Improved Response Time Using the STAGE_ITAB,
STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of
CONTEXT Index

Oracle Text provides the STAGE_ITAB option for improving the query performance for the
CONTEXT indexes that extensively use insert, update, and delete operations for near real-time
indexing.

If you do not use the STAGE_ITAB index option, then when you add a new document to the
CONTEXT index, SYNC_INDEX is called to make the documents searchable. This call creates new
rows in the $I table, and increases the fragmentation in the $I table. The result is deterioration
of the query performance.

When you enable the STAGE_ITAB index option, the following happens:

• Information about the new documents is stored in the $G staging table, not in the $I table.
This storage ensures that the $I table is not fragmented and does not deteriorate the
query performance.

• The $H b-tree index is created on the $G table. The $G table and $H b-tree index are
equivalent to the $I table and $X b-tree index.

Use the MERGE optimization mode to optimize the rows in the $G table and move them to the $I
table.

Note:

The $G table is stored in the KEEP pool. To improve query performance, you should
allocate sufficient KEEP pool memory and maintain a large enough $G table size by
using the new stage_itab_max_rows option.

To create a CONTEXT index with the STAGE_ITAB index option, first create a basic storage
preference by setting the value of its STAGE_ITAB storage attribute to YES. Next, specify this
storage preference when you create the CONTEXT index.

The following example creates a basic mystore storage preference and sets the value of its
STAGE_ITAB storage attribute to YES:
exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore', 'STAGE_ITAB', 'YES');

You can also enable the STAGE_ITAB index option for an existing nonpartitioned CONTEXT index
by using the rebuild option of the ALTER INDEX statement.

alter index IDX rebuild parameters('replace storage mystore');

To disable the STAGE_ITAB option for a nonpartitioned CONTEXT index, update the existing
storage preference (mystore) by setting the value of its STAGE_ITAB storage attribute to NO,
and then rebuild the index.

exec ctx_ddl.set_attribute('mystore', 'STAGE_ITAB', 'NO');
alter index idx rebuild parameters('replace storage mystore');

Chapter 10
Optimizing Queries for Response Time

10-11

This operation runs the optimization process by using the MERGE optimization mode and then
drops the $G table.

The rebuild option of the ALTER INDEX statement does not work with the partitioned CONTEXT
index for enabling and disabling the STAGE_ITAB option.

The following example enables the STAGE_ITAB option for the partitioned CONTEXT idx index:

alter index idx parameters('add stage_itab');

The following example disables the STAGE_ITAB option for the partitioned CONTEXT idx index:

alter index idx parameters('remove stage_itab');

Starting with Oracle Database 12c Release 2 (12.2), the contents of $G are automatically
moved to $I during index synchronization when $G has more than 1 million rows. This value is
controlled by the STAGE_ITAB_MAX_ROWS attribute of the STORAGE preference.

Note:

If an occasional index synchronization takes a long time, you can either reduce the
value of the STAGE_ITAB_MAX_ROWS parameter or increase the degree of parallelism
by using the STAGE_ITAB_PARALLEL attribute of the STORAGE preference. If you set the
value of STAGE_ITAB_MAX_ROWS to a very small value, then the contents of $G are
moved to $I frequently. So, do not be set it to a very low value.

Note:

To use the STAGE_ITAB index option for a CONTEXT index, you must specify the
g_index_clause and g_table_clause BASIC_STORAGE preferences.

The query performance is deteriorated when $G table is too fragmented. To avoid deterioration,
starting with Oracle Database Release 18c, Oracle Text provides automatic background
optimize merge for every index or partition. To enable automatic background optimize merge,
you must set the STAGE_ITAB and STAGE_ITAB_AUTO_OPT storage preference attributes to TRUE,
and you must create the index with a storage preference.

By default, if you had enabled STAGE_ITAB in indexes before you upgraded to Oracle Database
Release 18c, then STAGE_ITAB_AUTO_OPT is not enabled. If STAGE_ITAB and AUTO_OPTIMIZE are
enabled in existing indexes, then you must disable AUTO_OPTIMIZE before you enable
STAGE_ITAB_AUTO_OPT.

The following example creates a basic mystore storage preference and sets the value of its
STAGE_ITAB_AUTO_OPT storage attribute to TRUE:

exec ctx_ddl.create_preference('mystore', 'basic_storage');
exec ctx_ddl.set_attribute('mystore', 'stage_itab', 'TRUE');
exec ctx_ddl.set_attribute('mystore', 'stage_itab_auto_opt', 'TRUE');
exec ctx_ddl.set_attribute(‘mystore’, 'stage_itab_parallel', 16);

Chapter 10
Optimizing Queries for Response Time

10-12

10.3 Optimizing Queries for Throughput
When you optimize a query for throughput, the default behavior returns all hits in the shortest
time possible.

Here is how you can explicitly optimize queries for throughput:

• CHOOSE and ALL ROWS Modes: By default, you optimize queries with the CHOOSE and
ALL_ROWS modes. Oracle Text returns all rows in the shortest time possible.

• FIRST_ROWS(n) Mode: In FIRST_ROWS(n) mode, the optimizer in Oracle Database
optimizes for fast response time by having the Text domain index return score-sorted rows,
if possible. This is the default behavior when you use the FIRST_ROWS(n) hint.

If you want to optimize throughput with FIRST_ROWS(n), then use the
DOMAIN_INDEX_NO_SORT hint. Better throughput means that you are interested in getting all
query rows in the shortest time possible.

The following example achieves better throughput by not using the Text domain index to
return score-sorted rows. Instead, Oracle Text sorts the rows after all rows that satisfy the
CONTAINS predicate are retrieved from the index:

select /*+ FIRST_ROWS(10) DOMAIN_INDEX_NO_SORT */ pk, score(1), col from ctx_tab
 where contains(txt_col, 'test', 1) > 0 order by score(1) desc;

See Also:

Oracle Database SQL Tuning Guide for more information about the query optimizer
and using hints such as FIRST_ROWS(n) and CHOOSE

10.4 Composite Domain Index in Oracle Text
The Composite Domain Index (CDI) feature of the Extensibility Framework in Oracle Database
enables structured columns to be indexed by Oracle Text. Therefore, both text and one or
more structured criteria can be satisfied by one single Oracle Text index row source.
Performance for the following types of queries is improved:

• Oracle Text query with structured criteria in the SQL WHERE clause

• Oracle Text query with structured ORDER BY criteria

• A combination of the previous two query types

As with concatenated b-tree indexes or bitmap indexes, applications experience a slowdown in
data manipulation language (DML) performance as the number of FILTER BY and ORDER BY
columns increases. Where SCORE-sort pushdown is optimized for response time, the structured
sort or combination of SCORE and structured sort pushdown is also optimized for response time,
but not for throughput. However, using DOMAIN_INDEX_SORT or FIRST_ROWS(n) hints to force the
sort to be pushed into the CDI while fetching the entire hitlist may result in poor query response
time.

Chapter 10
Optimizing Queries for Throughput

10-13

10.5 Performance Tuning with CDI
Because you can map a FILTER BY column to MDATA, you can optimize query performances for
equality searches by restricting the supported functionality of RANGE and LIKE. However,
Oracle does not recommend mapping a FILTER BY column to MDATA if the FILTER BY column
contains sequential values or has very high cardinality. Doing so can result in a very long and
narrow $I table and reduced $X performance. One example of such a sequential column might
be one that uses the DATE stamp. For such sequential columns, mapping to SDATA is
recommended.

Use the following hints to push or not push the SORT and FILTER BY predicates into the CDI:

• DOMAIN_INDEX_SORT: The query optimizer tries to push the applicable sorting criteria into
the specified CDI.

• DOMAIN_INDEX_NO_SORT: The query optimizer tries not to push sorting criteria into the
specified CDI.

• DOMAIN_INDEX_FILTER(table name index name): The query optimizer tries to push the
applicable FILTER BY predicates into the specified CDI.

• DOMAIN_INDEX_NO_FILTER(table name index name): The query optimizer does not try to
push the applicable FILTER BY predicate(s) into the specified CDI.

Note:

The domain_index_filter hint does not force the query optimizer to use CDI.
Instead, if the CBO chooses to use the CDI, then it should also push the filter
predicate into the index. To force the query optimizer to choose the CDI index, you
additionally need to use the INDEX hint.

Example 10-1 Performance Tuning an Oracle Text Query with CDI Hints

The following example performs an optimized query on the books table.

SELECT bookid, pub_date, source FROM
 (SELECT /*+ domain_index_sort domain_index_filter(books books_ctxcdi) */ bookid,
pub_date, source
 FROM books
 WHERE CONTAINS(text, 'aaa',1)>0 AND bookid >= 80
 ORDER BY PUB_DATE desc nulls last, SOURCE asc nulls last, score(1) desc)
 WHERE rownum < 20;

10.6 Solving Index and Query Bottlenecks by Using Tracing
Tracing enables you to identify bottlenecks in indexing and querying. Oracle Text provides a
set of predefined traces.

Each trace is identified by a unique number. CTX_OUTPUT includes a symbol for this number.
Each trace measures a specific numeric quantity, such as the number of $I rows selected
during text queries.

Traces are cumulative counters, so usage is as follows:

Chapter 10
Performance Tuning with CDI

10-14

1. The user enables a trace.

2. The user performs one or more operations. Oracle Text measures activities and
accumulates the results in the trace.

3. The user retrieves the trace value, which is the total value across all operations done in
step 2.

4. The user resets the trace to 0.

5. The user starts over at Step 2.

So, for instance, if in step 2 the user runs two queries, and query 1 selects 15 rows from $I,
and query 2 selects 17 rows from $I, then in step 3 the value of the trace is 32 (15 + 17).

Traces are associated with a session—they can measure operations that take place within a
single session, and, conversely, cannot make measurements across sessions.

During parallel synchronization or optimization, the trace profile is copied to the secondary
sessions if and only if tracing is currently enabled. Each secondary session accumulates its
own traces and implicitly writes all trace values to its logfile before termination.

10.7 Using Parallel Queries
In general, parallel queries are optimal for Decision Support System (DSS) and Online
Analysis Processing (OLAP). They are also optimal for analytical systems that have large data
collections, multiple CPUs with a low number of concurrent users, or Oracle Real Application
Clusters (Oracle RAC) nodes.

Oracle Text supports the following parallel queries:

• Parallel Queries on a Local Context Index

• Parallelizing Queries Across Oracle RAC Nodes

10.7.1 Parallel Queries on a Local Context Index
Parallel query refers to the parallelized processing of a local CONTEXT index.

Based on the parallel degree of the index and various system attributes, Oracle determines the
number of parallel query workers to be spawned to process the index. Each parallel query
worker processes one or more index partitions. This default query behavior applies to local
indexes that are created in parallel.

However, for heavily loaded systems with a high number of concurrent users, query throughput
is usually not effective with parallel query; if the query is run serially, the top-N hits can usually
be satisfied by the first few partitions. For example, take the typical top-N text queries with an
ORDER BY partition key column:

select * from (
 select story_id from stories_tab where contains(...)>0 order by
publication_date desc)
 where rownum <= 10;

These text queries generally do not perform well with a parallel query.

You can disable parallel querying after a parallel index operation with an ALTER INDEX
statement:

Alter index <text index name> NOPARALLEL;
Alter index <text index name> PARALLEL 1;

Chapter 10
Using Parallel Queries

10-15

You can also enable or increase the parallel degree:

Alter index <text index name> parallel < parallel degree >;

10.7.2 Parallelizing Queries Across Oracle RAC Nodes
Oracle Real Application Clusters (Oracle RAC) enables you to improve query throughput and
scalability as the query load increases.

You can achieve further improvements in Oracle Text performance by physically partitioning
the text data and Oracle Text indexes (using local partitioned indexes) and ensuring that
partitions are handled by separate Oracle RAC nodes. This way, you avoid duplication of the
cache contents across multiple nodes and, therefore, maximize the benefit of Oracle RAC
cache fusion.

Oracle supports database object-level affinity, which makes it much easier to allocate index
objects ($I and $R tables) to particular nodes.

Although Oracle RAC offers solutions for improving query throughput and performance, it does
not necessarily enable you to continue to get the same performance improvements as you
scale up the data volumes. You are more likely to see improvements by increasing the amount
of memory available to the system global area (SGA) cache or by partitioning your data so that
queries do not have to hit all table partitions in order to provide the required set of query
results.

10.8 Tuning Queries with Blocking Operations
If you issue a query with more than one predicate, you can cause a blocking operation in the
execution plan. For example, consider the following mixed query:

select docid from mytab where contains(text, 'oracle', 1) > 0
 AND colA > 5
 AND colB > 1
 AND colC > 3;

Assume that all predicates are unselective and colA, colB, and colC have bitmap indexes. The
CBO in Oracle Database chooses the following execution plan:

TABLE ACCESS BY ROWIDS
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP INDEX COLA_BMX
 BITMAP INDEX COLB_BMX
 BITMAP INDEX COLC_BMX
 BITMAP CONVERSION FROM ROWIDS
 SORT ORDER BY
 DOMAIN INDEX MYINDEX

Because BITMAP AND is a blocking operation, Oracle Text must temporarily save the rowid and
score pairs returned from the Oracle Text domain index before it runs the BITMAP AND
operation.

Oracle Text attempts to save these rowid and score pairs in memory. However, when the size
of the result set exceeds the SORT_AREA_SIZE initialization parameter, Oracle Text spills these
results to temporary segments on disk.

Because saving results to disk causes extra overhead, you can improve performance by
increasing the SORT_AREA_SIZE parameter.

Chapter 10
Tuning Queries with Blocking Operations

10-16

alter session set SORT_AREA_SIZE = <new memory size in bytes>;

For example, set the buffer to approximately 8 megabytes.

alter session set SORT_AREA_SIZE = 8300000;

See Also:

Oracle Database Performance Tuning Guide and Oracle Database Reference for
more information on SORT_AREA_SIZE

10.9 Frequently Asked Questions About Query Performance
This section answers some of the frequently asked questions about query performance.

• What is Query Performance?

• What is the fastest type of text query?

• Should I collect statistics on my tables?

• How does the size of my data affect queries?

• How does the format of my data affect queries?

• What is a functional versus an indexed lookup?

• What tables are involved in queries?

• How is $R contention reduced?

• Does sorting the results slow a text-only query?

• How do I make an ORDER BY score query faster?

• Which memory settings affect querying?

• Does out-of-line LOB storage of wide base table columns improve performance?

• How can I make a CONTAINS query on more than one column faster?

• Is it OK to have many expansions in a query?

• How can local partition indexes help?

• Should I query in parallel?

• Should I index themes?

• When should I use a CTXCAT index?

• When is a CTXCAT index NOT suitable?

• What optimizer hints are available and what do they do?

10.9.1 What is query performance?
Answer: There are two measures of query performance:

• Response time: The time to get an answer to an individual query

• Throughput: The number of queries that can be run in any given time period; for example,
queries each second

Chapter 10
Frequently Asked Questions About Query Performance

10-17

These two measures are related, but they are not the same. In a heavily loaded system, you
want maximum throughput, whereas in a relatively lightly loaded system, you probably want
minimum response time. Also, some applications require a query to deliver all hits to the user,
whereas others only require the first 20 hits from an ordered set. It is important to distinguish
between these two scenarios.

10.9.2 What is the fastest type of Oracle Text query?
Answer: The fastest type of query meets the following conditions:

• Single CONTAINS clause

• No other conditions in the WHERE clause

• No ORDER BY clause

• Returns only the first page of results (for example, the first 10 or 20 hits)

10.9.3 Should I collect statistics on my tables?
Answer: Yes. Collecting statistics on your tables enables Oracle Text to do cost-based
analysis. This helps Oracle Text choose the most efficient execution plan for your queries.

If your queries are always pure text queries (no structured predicate and no joins), you should
delete statistics on your Oracle Text index.

10.9.4 How does the size of my data affect queries?
Answer: The speed at which the Oracle Text index can deliver rowids is not affected by the
actual size of the data. Oracle Text query speed is related to the number of rows that must be
fetched from the index table, the number of hits requested, the number of hits produced by the
query, and the presence or absence of sorting.

10.9.5 How does the format of my data affect queries?
Answer: The format of the documents (plain ASCII text, HTML, or Microsoft Word) should
make no difference to query speed. The documents are filtered to plain text at indexing time,
not query time.

The cleanliness of the data makes a difference. Spell-checked and subedited text for
publication tends to have a much smaller total vocabulary (and therefore size of the index
table) than informal text such as email, which contains spelling errors and abbreviations. For a
given index memory setting, the extra text takes up memory, creates more fragmented rows,
and adversely affects query response time.

10.9.6 What is the difference between an indexed lookup and a functional
lookup

Answer: The kernel can query the Oracle Text index with an indexed lookup and a functional
lookup. In the indexed lookup, the first and most common case, the kernel asks the Oracle Text
index for all rowids that satisfy a particular text search. These rowids are returned in batches.

In the functional lookup, the kernel passes individual rowids to the Oracle Text index and asks
whether that particular rowid satisfies a certain text criterion. The functional lookup is most
commonly used with a very selective structured clause, so that only a few rowids must be

Chapter 10
Frequently Asked Questions About Query Performance

10-18

checked against the Oracle Text index. Here is an example of a search where a functional
lookup is useful:

SELECT ID, SCORE(1), TEXT FROM MYTABLE

WHERE START_DATE = '21 Oct 1992' <- highly selective
AND CONTAINS (TEXT, 'commonword') > 0 <- unselective

Functional invocation is also used for an Oracle Text query that is ordered by a structured
column (for example date, price) and if the Oracle Text query contains unselective words.

10.9.7 What tables are involved in queries?
Answer: All queries look at the index token table. The table’s name has the form of
DR$indexname$I and contains the list of tokens (TOKEN_TEXT column) and the information about
the row and word positions where the token occurs (TOKEN_INFO column).

The row information is stored as internal docid values that must be translated into external
rowid values. The table that you use depends on the type of lookup:

• For functional lookups, use the $K table, DR$indexname$K. This simple Index Organized
Table (IOT) contains a row for each docid/rowid pair.

• For indexed lookups, use the $R table, DR$indexname$R. This table holds the complete list
of rowids in a BLOB column.

Starting with Oracle Database 12c Release 2 (12.2), a new storage attribute, SMALL_R_ROW,
was introduced to reduce the size of the $R row. It populates $R rows on demand instead of
creating 22 static rows, thereby reducing the Data Manipulation Language contention. The
contention happens when parallel insert, update, and delete operations try to lock the same $R
row.

You can easily find out whether a functional or indexed lookup is being used by examining a
SQL trace and looking for the $K or $R tables.

Note:

These internal index tables are subject to change from release to release. Oracle
recommends that you do not directly access these tables in your application.

10.9.8 How is the $R table contention reduced?
The $R contention during base table delete and update operations has become a recurring
theme over the past few years. Currently, each $R index table has 22 static rows, and each row
can contain up to 200 million rowids. The contention happens when the parallel insert, update,
and delete operations try to lock the same $R row for insert or delete operations. The following
enhancements made during this release reduce the contention:

• The maximum number of rowids that each $R row can contain is 70,000, which translates
to 1 MB of data stored on each row. To use this feature, you must set the SMALL_R_ROW
storage attribute.

• The $R rows are created on demand instead of just populating a pre-determined number of
rows.

Chapter 10
Frequently Asked Questions About Query Performance

10-19

10.9.9 Does sorting the results slow a text-only query?
Answer: Yes, it certainly does.

If Oracle Text does not sort, then it can return results as it finds them. This approach is quicker
when the application needs to display only a page of results at a time.

10.9.10 How do I make an ORDER BY score query faster?
Answer: Sorting by relevance (SCORE(n)) can be fast if you use the FIRST_ROWS(n) hint. In this
case, Oracle Text performs a high-speed internal sort when fetching from the Oracle Text index
tables.

Here is an example of this query:

 SELECT /*+ FIRST_ROWS(10) */ ID, SCORE(1), TEXT FROM mytable
 WHERE CONTAINS (TEXT, 'searchterm', 1) > 0
 ORDER BY SCORE(1) DESC;

It is important to note that, there must be no other criteria in the WHERE clause, other than a
single CONTAINS.

10.9.11 Which memory settings affect querying?
Answer: For querying, you want to strive for a large system global area (SGA). You can set
these SGA parameters in your Oracle Database initialization file. You can also set these
parameters dynamically.

The SORT_AREA_SIZE parameter controls the memory that is available for sorting ORDER BY
queries. You should increase the size of this parameter if you frequently order by structured
columns.

See Also:

• Oracle Database Administrator's Guide for more information on setting SGA
related parameters

• Oracle Database Performance Tuning Guide for more information on memory
allocation

• Oracle Database Reference for more information on setting the SORT_AREA_SIZE
parameter

10.9.12 Does out-of-line LOB storage of wide base table columns improve
performance?

Answer: Yes. Typically, a SELECT statement selects more than one column from your base
table. Because Oracle Text fetches columns to memory, it is more efficient to store wide base
table columns such as large objects (LOBs) out of line, especially when these columns are
rarely updated but frequently selected.

Chapter 10
Frequently Asked Questions About Query Performance

10-20

When LOBs are stored out of line, only the LOB locators need to be fetched to memory during
querying. Out-of-line storage reduces the effective size of the base table. It makes it easier for
Oracle Text to cache the entire table to memory, and so reduces the cost of selecting columns
from the base table, and speeds up text queries.

In addition, smaller base tables cached in memory enables more index table data to be cached
during querying, which improves performance.

10.9.13 How can I speed up a CONTAINS query on more than one column?
Answer: The fastest type of query is one where there is only a single CONTAINS clause and no
other conditions in the WHERE clause.

Consider the following multiple CONTAINS query:

 SELECT title, isbn FROM booklist
 WHERE CONTAINS (title, 'horse') > 0
 AND CONTAINS (abstract, 'racing') > 0

You can get the same result with section searching and the WITHIN operator:

 SELECT title, isbn FROM booklist
 WHERE CONTAINS (alltext,
 'horse WITHIN title AND racing WITHIN abstract')>0

This query is completed more quickly than the single CONTAINS clause. To use a query like this,
you must copy all data into a single text column for indexing, with section tags around each
column's data. You can do that with PL/SQL procedures before indexing, or you can use the
USER_DATASTORE datastore during indexing to synthesize structured columns with the text
column into one document.

10.9.14 Can I have many expansions in a query?
Answer: Each distinct word used in a query requires at least one row to be fetched from the
index table. It is therefore best to keep the number of expansions down as much as possible.

You should not use expansions such as wild cards, thesaurus, stemming, and fuzzy matching
unless they are necessary to the task. In general, a few expansions (for example, 10 to 20)
does not cause difficulty, but avoid a large number of expansions (80 or 100) in a query. Use
the query feedback mechanism to determine the number of expansions for any particular query
expression.

For wildcard and stem queries, you can avoid term expansion from query time to index time by
creating prefix, substring, or stem indexes. Query performance increases at the cost of longer
indexing time and added disk space.

Prefix and substring indexes can improve wildcard performance. You enable prefix and
substring indexing with the BASIC_WORDLIST preference. The following example sets the
wordlist preference for prefix and substring indexing. For prefix indexing, it specifies that
Oracle Text creates token prefixes between 3 and 4 characters long:

begin

ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH', '3');
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', '4');
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');

Chapter 10
Frequently Asked Questions About Query Performance

10-21

end

Enable stem indexing with the BASIC_LEXER preference:

begin

ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute ('mylex', 'index_stems', 'ENGLISH');

end;

10.9.15 How can local partition indexes help?
Answer: You can create local partitioned CONTEXT indexes on partitioned tables. This means
that, on a partitioned table, each partition has its own set of index tables. Effectively, the results
from the multiple indexes are combined as necessary to produce the final result set.

Use the LOCAL keyword to create the index:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context
PARAMETERS ('...')
LOCAL

With partitioned tables and local indexes, you can improve performance of the following types
of CONTAINS queries:

• Range Search on Partition Key Column: This query restricts the search to a particular
range of values on a column that is also the partition key.

• ORDER BY Partition Key Column: This query requires only the first n hits, and the ORDER
BY clause names the partition key.

See Also:

"Improved Response Time using Local Partitioned CONTEXT Index"

10.9.16 Should I query in parallel?
Answer: It depends on system load and server capacity. Even though parallel querying is the
default behavior for indexes created in parallel, it usually degrades the overall query
throughput on heavily loaded systems.

Parallel queries are optimal for Decision Support System (DSS) and Online Analysis
Processing (OLAP). They are also optimal for analytical systems that have large data
collections, multiple CPUs with a low number of concurrent users, or Oracle Real Application
Clusters (Oracle RAC) nodes.

See Also:

"Using Parallel Queries"

Chapter 10
Frequently Asked Questions About Query Performance

10-22

10.9.17 Should I index themes?
Answer: Indexing theme information with a CONTEXT index takes longer and also increases the
size of your index. However, theme indexes enable ABOUT queries to be more precise by using
the knowledge base. If your application uses many ABOUT queries, it might be worthwhile to
create a theme component to the index, despite the extra indexing time and extra storage
space required.

See Also:

"ABOUT Queries and Themes"

10.9.18 When should I use a CTXCAT index?
Answer: CTXCAT indexes work best when the text is in small chunks (just a few lines), and you
want searches to restrict or sort the result set according to certain structured criteria, such as
numbers or dates.

For example, consider an online auction site. Each item for sale has a short description, a
current bid price, and start and end dates for the auction. You want to see all records with
antique cabinet in the description, with a current bid price less than $500. Because you are
particularly interested in newly posted items, you want the results sorted by auction start time.

This search is not always efficient with a CONTAINS structured query on a CONTEXT index. The
response time can vary significantly depending on the structured and CONTAINS clauses,
because the intersection of structured and CONTAINS clauses or the Oracle Text query ordering
is computed during query time.

By including structured information within the CTXCAT index, you ensure that the query
response time is always in an optimal range regardless of search criteria. Because the
interaction between text and structured query is precomputed during indexing, query response
time is optimum.

10.9.19 When is a CTXCAT index NOT suitable?
Answer: There are differences in the time and space needed to create the index. CTXCAT
indexes take a bit longer to create, and they use considerably more disk space than CONTEXT
indexes. If you are tight on disk space, consider carefully whether CTXCAT indexes are
appropriate for you.

With query operators, you can use the richer CONTEXT grammar in CATSEARCH queries with
query templates. The older restriction of a single CATSEARCH query grammar no longer holds.

10.9.20 What optimizer hints are available and what do they do?
Answer: To drive the query with a text or b-tree index, you can use the INDEX(table column)
optimizer hint in the usual way.

You can also use the NO_INDEX(table column) hint to disable a specific index.

The FIRST_ROWS(n) hint has a special meaning for text queries. Use it when you need the first
n hits to a query. When you use the DOMAIN_INDEX_SORT hint in conjunction with ORDER BY

Chapter 10
Frequently Asked Questions About Query Performance

10-23

SCORE(n) DESC, you tell the Oracle optimizer to accept a sorted set from the Oracle Text index
and to sort no farther.

See Also:

"Optimizing Queries for Response Time"

10.10 Frequently Asked Questions About Indexing Performance
This section answers some of the frequently asked questions about indexing performance.

• How long should indexing take?

• Which index memory settings should I use?

• How much disk overhead will indexing require?

• How does the format of my data affect indexing?

• Can parallel indexing improve performance?

• How can I improve index performance for creating local partitioned index?

• How can I tell how much indexing has completed?

10.10.1 How long should indexing take?
Answer: Indexing text is a resource-intensive process. The speed of indexing depends on the
power of your hardware. Indexing speed depends on CPU and I/O capacity. With sufficient I/O
capacity to read in the original data and write out index entries, the CPU is the limiting factor.

Tests with Intel x86 (Core 2 architecture, 2.5GHz) CPUs have shown that Oracle Text can
index around 100 GB of text per CPU core, per day. This speed would be expected to increase
as CPU clock speeds increase and CPU architectures become more efficient.

Other factors, such as your document format, location of your data, and the calls to user-
defined datastores, filters, and lexers, can affect your indexing speed.

10.10.2 Which index memory settings should I use?
Answer: You can set your index memory with the DEFAULT_INDEX_MEMORY and
MAX_INDEX_MEMORY system parameters. You can also set your index memory at runtime with
the CREATE INDEX memory parameter in the parameter string.

You should aim to set the DEFAULT_INDEX_MEMORY value as high as possible, without causing
paging.

You can also improve indexing performance by increasing the SORT_AREA_SIZE system
parameter.

Oracle recommends that you use a large index memory setting. Large settings, even up to
hundreds of megabytes, can improve the speed of indexing and reduce fragmentation of the
final indexes. However, if you set the index memory setting too high, then memory paging
reduces indexing speed.

With parallel indexing, each stream requires its own index memory. When dealing with very
large tables, you can tune your database system global area (SGA) differently for indexing and

Chapter 10
Frequently Asked Questions About Indexing Performance

10-24

retrieval. For querying, you want to get as much information cached in the SGA block buffer
cache as possible. So you should allocate a large amount of memory to the block buffer cache.
Because this approach does not make any difference to indexing, you would be better off
reducing the size of the SGA to make more room for large index memory settings during
indexing.

You set the size of SGA in your Oracle Database initialization file.

See Also:

• Oracle Text Reference to learn more about Oracle Text system parameters

• Oracle Database Administrator's Guide for more information on setting SGA
related parameters

• Oracle Database Performance Tuning Guide for more information on memory
allocation

• Oracle Database Reference for more information on setting the SORT_AREA_SIZE
parameter

10.10.3 How much disk overhead will indexing require?
Answer: The overhead, the amount of space needed for the index tables, varies between
about 50 and 200 percent of the original text volume. Generally, larger amounts of text result in
smaller overhead, but many small records use more overhead than fewer large records. Also,
clean data (such as published text) requires less overhead than dirty data such as emails or
discussion notes, because the dirty data is likely to include many misspelled and abbreviated
words.

A text-only index is smaller than a combined text and theme index. A prefix and substring index
makes the index significantly larger.

10.10.4 How does the format of my data affect indexing?
Answer: You can expect much lower storage overhead for formatted documents such as
Microsoft Word files because the documents tend to be very large compared to the actual text
held in them. So 1 GB of Word documents might only require 50 MB of index space, whereas 1
GB of plain text might require 500 MB, because there is ten times as much plain text in the
latter set.

Indexing time is less clear-cut. Although the reduction in the amount of text to be indexed has
an obvious effect, you must balance this against the cost of filtering the documents with the
AUTO_FILTER filter or other user-defined filters.

10.10.5 Can parallel indexing improve performance?
Answer: Parallel indexing can improve index performance when you have a large amount of
data and multiple CPUs.

Use the PARALLEL keyword to create an index with up to three separate indexing processes,
depending on your resources.

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context PARAMETERS ('...') PARALLEL 3;

Chapter 10
Frequently Asked Questions About Indexing Performance

10-25

You can also use parallel indexing to create local partitioned indexes on partitioned tables.
However, indexing performance improves only with multiple CPUs.

Note:

Using PARALLEL to create a local partitioned index enables parallel queries. (Creating
a nonpartitioned index in parallel does not turn on parallel query processing.)

Parallel querying degrades query throughput especially on heavily loaded systems.
Because of this, Oracle recommends that you disable parallel querying after parallel
indexing. To do so, use ALTER INDEX NOPARALLEL.

10.10.6 How can I improve index performance when I create a local
partitioned index?

Answer: When you have multiple CPUs, you can improve indexing performance by creating a
local index in parallel.

You can create a local partitioned index in parallel in the following ways:

• Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX statement. In this
case, the maximum parallel degree is limited to the number of partitions.

• Create an unusable index, and then run the DBMS_PCLXUTIL.BUILD_PART_INDEX utility. This
method can result in a higher degree of parallelism, especially if you have more CPUs than
partitions.

The following is an example of the second method. The base table has three partitions. You
create a local partitioned unusable index first, and then run the
DBMS_PCLUTIL.BUILD_PART_INDEX, to build the three partitions in parallel (inter-partition
parallelism). Inside each partition, index creation occurs in parallel (intra-partition parallelism)
with a parallel degree of 2.

create index tdrbip02bx on tdrbip02b(text)
indextype is ctxsys.context local (partition tdrbip02bx1,
 partition tdrbip02bx2,
 partition tdrbip02bx3)
unusable;

exec dbms_pclxutil.build_part_index(3,2,'TDRBIP02B','TDRBIP02BX',TRUE);

10.10.7 How can I tell how much indexing has completed?
Answer: You can use the CTX_OUTPUT.START_LOG procedure to log output from the indexing
process. The filename is normally written to $ORACLE_HOME/ctx/log, but you can change the
directory by using the LOG_DIRECTORY parameter in CTX_ADM.SET_PARAMETER.

See Also:

Oracle Text Reference to learn more about the CTX_OUTPUT package

Chapter 10
Frequently Asked Questions About Indexing Performance

10-26

10.11 Frequently Asked Questions About Updating the Index
This section answers some of the frequently asked questions about updating your index and
related performance issues.

• How often should I index new or updated records?

• How can I tell when my indexes are getting fragmented?

• Does memory allocation affect index synchronization?

10.11.1 How often should I index new or updated records?
Answer: If you run reindexing with CTX_DDL.SYNC_INDEX less often, your indexes will be less
fragmented, and you will not have to optimize them as often.

However, your data becomes progressively more out-of-date, and that may be unacceptable to
your users.

Overnight indexing is acceptable for many systems. In this case, data that is less than a day
old is not searchable. Other systems use hourly, 10-minute, or 5-minute updates.

See Also:

• Oracle Text Reference to learn more about using CTX_DDL.SYNC_INDEX
• "Managing DML Operations for a CONTEXT Index"

10.11.2 How can I tell when my indexes are fragmented?
Answer: The best way is to time some queries, run index optimization, and then time the same
queries (restarting the database to clear the SGA each time, of course). If the queries speed
up significantly, then optimization was worthwhile. If they do not, then you can wait longer next
time.

You can also use CTX_REPORT.INDEX_STATS to analyze index fragmentation.

See Also:

• Oracle Text Reference to learn more about using the CTX_REPORT package

• "Optimizing the Index"

10.11.3 Does memory allocation affect index synchronization?
Answer: Yes, the same way as for normal indexing. There are often far fewer records to be
indexed during a synchronize operation, so it is not usually necessary to provide hundreds of
megabytes of indexing memory.

Chapter 10
Frequently Asked Questions About Updating the Index

10-27

11
Searching Document Sections in Oracle Text

You can use document sections in a text query application.

This chapter contains the following topics:

• About Oracle Text Document Section Searching

• HTML Section Searching with Oracle Text

• XML Section Searching with Oracle Text

11.1 About Oracle Text Document Section Searching
Section searching enables you to narrow text queries down to blocks of text within documents.
Section searching is useful when your documents have internal structure, such as HTML and
XML documents.

You can also search for text at the sentence and paragraph level.

This section contains these topics:

• Enabling Oracle Text Section Searching

• Oracle Text Section Types

• Oracle Text Section Attributes

11.1.1 Enabling Oracle Text Section Searching
The steps for enabling section searching for your document collection are:

1. Create a Section Group

2. Define Your Sections

3. Index Your Documents

4. Section Searching with the WITHIN Operator

5. Path Searching with INPATH and HASPATH Operators

6. Marking an SDATA Section to be Searchable

11.1.1.1 Create a Section Group
You enable section searching by defining section groups. Use one of the system-defined
section groups to create an instance of a section group.

You use section groups to specify the type of document set that you have and implicitly
indicate the tag structure. Choose a section group that is appropriate for your document
collection. For instance, to index HTML tagged documents, use HTML_SECTION_GROUP.
Likewise, to index XML tagged documents, use XML_SECTION_GROUP.

11-1

Table 11-1 Types of Section Groups

Section Group Preference Description

NULL_SECTION_GROUP This is the default. Use this group type when you define no
sections or when you define only SENTENCE or PARAGRAPH
sections.

BASIC_SECTION_GROUP Use this group type for defining sections where the start and end
tags are of the form <A> and .

Note: This group type does not support input such as unbalanced
parentheses, comments tags, and attributes. Use
HTML_SECTION_GROUP for this type of input.

HTML_SECTION_GROUP Use this group type to index HTML documents and for defining
sections in HTML documents.

XML_SECTION_GROUP Use this group type to index XML documents and for defining
sections in XML documents.

AUTO_SECTION_GROUP Use this group type to automatically create a zone section for each
start-tag/end-tag pair in an XML document. As in XML, the section
names derived from XML tags are case-sensitive.

Attribute sections are created automatically for XML tags that have
attributes. Attribute sections are named in the form tag@attribute.

Stop sections, empty tags, processing instructions, and comments
are not indexed.

The following limitations apply to automatic section groups:

• You cannot add zone, field, or special sections to an
automatic section group.

• Automatic sectioning does not index XML document types
(root elements.)

• The length of the indexed tags, including prefix and
namespace, cannot exceed 64 bytes. Tags longer than 64
bytes are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. This preference
behaves like AUTO_SECTION_GROUP.
The difference is that you can search paths with the INPATH and
HASPATH operators. Queries are also case-sensitive for tag and
attribute names.

NEWS_SECTION_GROUP Use this group to define sections in newsgroup-formatted
documents according to RFC 1036.

Notes

• Documents sent to the HTML, XML, AUTO, and PATH sectioners must begin with \s*<. The
\s* represents zero or more whitespace characters. Otherwise, the document is treated as
a plain-text document, and no sections are recognized.

• Do not use left-angle-brackets within a section data. If a left-angle-bracket is followed by a
non-blank character, then the section parser treats the free text (between the left-angle and
right-angle brackets) as a tag name.

For example:

<DOCUMENT> <BODYTEXT> ABC
< R1 NOMISS

Chapter 11
About Oracle Text Document Section Searching

11-2

<R2 MISSED1 </BODYTEXT> <FIELDS> DEF
<R3 MISSED2 </FIELDS> </DOCUMENT> GHI FALSEPOSITIVE JKL

In the preceding example, the section parser treats R2 MISSED1 </BODYTEXT and R3
MISSED2 </FIELDS as tag names. This may result in false-positive hits or missed hits,
which may cause the following issues:

– Any word in the R2 MISSED1 </BODYTEXT and R3 MISSED2 </FIELDS phrases are not
searchable within a section.

– Any text outside a section, such as GHI, FALSEPOSITIVE, and JKL are wrongly included
in a section if it is not closed.

• You use the CTX_DDL package to create section groups and define sections as part of
section groups. For example, to index HTML documents, create a section group with
HTML_SECTION_GROUP:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
end;

• Starting with Oracle Database 18c, use of NEWS_SECTION_GROUP is deprecated in Oracle
Text. Use external processing instead.
If you want to index USENET posts, then preprocess the posts to use
BASIC_SECTION_GROUP or HTML_SECTION_GROUP within Oracle Text. USENET is rarely used
commercially.

11.1.1.2 Define Your Sections
You define sections as part of the section group. The following example defines a zone section
called heading for all text within the HTML < H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

Note:

If you are using AUTO_SECTION_GROUP or PATH_SECTION_GROUP to index an XML
document collection, then you do not have to explicitly define sections. The system
defines the sections during indexing.

See Also:

• "Oracle Text Section Types" for more information about sections

• "XML Section Searching with Oracle Text" for more information about section
searching with XML

Chapter 11
About Oracle Text Document Section Searching

11-3

11.1.1.3 Index Your Documents
When you index your documents, you specify your section group in the parameter clause of
CREATE INDEX.
create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

11.1.1.4 Search Sections with the WITHIN Operator
When your documents are indexed, you can query within sections by using the WITHIN
operator. For example, to find all documents that contain the word Oracle within their headings,
enter the following query:

'Oracle WITHIN heading'

See Also:

Oracle Text Reference to learn more about using the WITHIN operator

11.1.1.5 Search Paths with INPATH and HASPATH Operators
When you use PATH_SECTION_GROUP, the system automatically creates XML sections. In
addition to using the WITHIN operator to enter queries, you can enter path queries with the
INPATH and HASPATH operators.

See Also:

• "XML Section Searching with Oracle Text" to learn more about using these
operators

• Oracle Text Reference to learn more about using the INPATH operator

11.1.1.6 Mark an SDATA Section to Be Searchable
To mark an SDATA section to be searchable and have a $Sdatatype table created, use the
CTX_DDL.SET_SECTION_ATTRIBUTE API.
The following tables are created:

• $SN – NUMBER
• $SD – DATE
• $SV – VARCHAR2, CHAR
• $SR – RAW
• $SBD – BINARY DOUBLE
• $SBF – BINARY FLOAT
• $ST – TIMESTAMP

Chapter 11
About Oracle Text Document Section Searching

11-4

• $STZ – TIMESTAMP WITH TIMEZONE
The following example creates a $SV table for this SDATA section to allow efficient searching on
that section.

ctx_ddl.add_sdata_section('sec_grp', 'sdata_sec', 'mytag', 'varchar');
ctx_ddl.set_section_attribute('sec_grp', 'sdata_sec', 'optimized_for',
'search');

The default value of this attribute is FALSE.

11.1.2 Oracle Text Section Types
All section types are blocks of text in a document. However, sections can differ in the way that
they are delimited and the way that they are recorded in the index. Sections can be one of the
following types:

• Zone Section

• Field Section

• Stop Section

• MDATA Section

• NDATA Section

• SDATA Section

• Attribute Section (for XML documents)

• Special Sections (sentence or paragraphs)

Table 11-2 shows which section types may be used with each kind of section group.

Table 11-2 Section Types and Section Groups

Section Group ZONE FIELD STOP MDATA NDATA SDATA ATTRIBUTE SPECIAL

NULL NO NO NO NO NO NO NO YES

BASIC YES YES NO YES YES YES NO YES

HTML YES YES NO YES YES YES NO YES

XML YES YES NO YES YES YES YES YES

NEWS YES YES NO YES YES YES NO YES

AUTO NO NO YES NO NO NO NO NO

PATH NO NO NO NO NO NO NO NO

11.1.2.1 Zone Section
A zone section is a body of text delimited by start and end tags in a document. The positions of
the start and end tags are recorded in the index so that any words in between the tags are
considered to be within the section. Any instance of a zone section must have a start and an
end tag.

For example, define the text between the <TITLE> and </TITLE> tags as a zone section as
follows:

Chapter 11
About Oracle Text Document Section Searching

11-5

<TITLE>Tale of Two Cities</TITLE>
It was the best of times...

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the WITHIN operator to search for a term across all
sections. Oracle Text returns those documents that contain the term within the defined section.

Zone sections are well suited for defining sections in HTML and XML documents. To define a
zone section, use CTX_DDL.ADD_ZONE_SECTION.
For example, assume you define the booktitle section as follows:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'booktitle', 'TITLE');
end;

After you index, you can search for all documents that contain the term Cities within the
booktitle section as follows:

'Cities WITHIN booktitle'

With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle Text returns those
documents that contain cat and dog within the same instance of a booktitle section.

Repeated Zone Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For example, if
<H1> denotes a heading section, the heading can be repeated in the same documents as
follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading, a query of Brown WITHIN Heading
returns this document. However, a query of (Brown and Gray) WITHIN Heading does not.

Overlapping Zone Sections

Zone sections can overlap each other. For example, if and <I> denote two different zone
sections, they can overlap in a document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Zone Sections

Zone sections can be nested, as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within sections.
For example, assume that the BOOK1, BOOK2, and AUTHOR zone sections occur as follows in the
doc1 and doc2 documents:

doc1:

<book1> <author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Chapter 11
About Oracle Text Document Section Searching

11-6

Consider the nested query. It returns only doc1.

'(Scott within author) within book1'

11.1.2.2 Field Section
A field section is similar to a zone section in that it is a region of text delimited by start and end
tags. Field sections are more efficient from zone sections and are different than zone sections
in that the region is indexed separately from the rest of the document. You can create an
unlimited number of field sections.

Because field sections are indexed differently, you can also get better query performance over
zone sections when a large number of documents are indexed.

Field sections are more suited to a single occurrence of a section in a document, such as a
field in a news header. Field sections can also be made visible to the rest of the document.

Unlike zone sections, field sections have the following restrictions:

• They cannot overlap.

• They cannot repeat.

• They cannot nest.

Visible and Invisible Field Sections

By default, field sections are indexed as a sub-document separate from the rest of the
document. As such, field sections are invisible to the surrounding text and can only be queried
by explicitly naming the section in the WITHIN clause.

You can make field sections visible if you want the text within the field section to be indexed as
part of the enclosing document. You can query text within a visible field section with or without
the WITHIN operator.

The following example shows the difference using invisible and visible field sections. The code
defines a basicgroup section group of the BASIC_SECTION_GROUP type. It then creates a field
section in basicgroup called Author for the <A> tag. It also sets the visible flag to FALSE to
create an invisible section.

begin
ctx_ddl.create_section_group('basicgroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', FALSE);
end;

Because the Author field section is not visible, to find text within the Author section, you must
use the WITHIN operator.

'(Martin Luther King) WITHIN Author'

A query of Martin Luther King without the WITHIN operator does not return instances of this
term in field sections. If you want to query text within field sections without specifying WITHIN,
you must set the visible flag to TRUE when you create the section, as follows:

begin
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', TRUE);
end;

Chapter 11
About Oracle Text Document Section Searching

11-7

Nested Field Sections

You cannot nest field sections. For example, if you define a field section to start with <TITLE>
and define another field section to start with <FOO>, you cannot nest the two sections as
follows:

<TITLE> dog <FOO> cat </FOO> </TITLE>

To work with nested sections, define them as zone sections.

Repeated Field Sections

Repeated field sections are allowed, but WITHIN queries treat them as a single section. Here is
an example of a repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query dog and cat within title returns the document, even though these words occur in
different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

11.1.2.3 Stop Section
When you add a stop section to an automatic section group, the automatic section indexing
operation ignores the specified section in XML documents.

Note:

Adding a stop section causes no section information to be created in the index.
However, the text within a stop section is always searchable.

Adding a stop section is useful when your documents contain many low-information tags.
Adding stop sections also improves indexing performance with the automatic section group.

You can add an unlimited number of stop sections.

Stop sections do not have section names and are not recorded in the section views.

11.1.2.4 MDATA Section
You use an MDATA section to reference user-defined metadata for a document.

MDATA sections can speed up mixed queries, and there is no limit to the number of MDATA
sections that can be returned in a query.

Consider the case where you want to query according to text content and document type
(magazine, newspaper, or novel). You can create an index with a column for text and a column
for the document type, and then perform a mixed query of this form. In this case, search for all
novels with the phrase Adam Thorpe (author of the novel Ulverton):

SELECT id FROM documents
 WHERE doctype = 'novel'
 AND CONTAINS(text, 'Adam Thorpe')>0;

Chapter 11
About Oracle Text Document Section Searching

11-8

However, it is usually faster to incorporate the attribute (in this case, the document type) in a
field section, rather than using a separate column, and then using a single CONTAINS query.

SELECT id FROM documents
 WHERE CONTAINS(text, 'Adam Thorpe AND novel WITHIN doctype')>0;

This approach has two drawbacks:

• Each time the attribute is updated, the entire text document must be reindexed, resulting in
increased index fragmentation and slower rates of data manipulation language (DML)
processing.

• Field sections tokenize the section value. Tokenization has several effects. Special
characters in metadata, such as decimal points or currency characters, are not easily
searchable; value searching (searching for John Smith but not John Smith, Jr.) is difficult;
multiword values are queried by phrase, which is slower than single-token searching; and
multiword values do not show up in browsed words, making author browsing or subject
browsing impossible.

For these reasons, using MDATA sections instead of field sections may be worthwhile. MDATA
sections are indexed like field sections, but you can add and remove metadata values from
documents without the need to reindex the document text. Unlike field sections, MDATA values
are not tokenized. Additionally, MDATA section indexing generally takes up less disk space than
field section indexing.

Starting with Oracle Database 12c Release 2 (12.2), the MDATA section can be updatable or
nonupdatable depending on the value of its read-only tag, which can be set to either FALSE or
TRUE.

Use CTX_DDL.ADD_MDATA_SECTION to add an MDATA section to a section group. By default, the
value of a read-only MDATA section is FALSE. It implies that you want to permit calling
CTX_DDL.ADD_MDATA() and CTX_DDL.REMOVE_MDATA() for this MDATA section, otherwise you can
set it to TRUE. When set to FALSE, the queries on the MDATA section run less efficiently because
a cursor must be opened on the index table to track the deleted values for that MDATA section.
This example adds an MDATA section called AUTHOR and gives it the value Soseki Natsume
(author of the novel Kokoro).

ctx_ddl.create.section.group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_mdata_section('htmgroup', 'author', 'Soseki Natsume');

You can change MDATA values with CTX_DDL.ADD_MDATA, and you can remove them with
CTX_DDL.REMOVE_MDATA. Also, MDATA sections can have multiple values. Only the owner of the
index may call CTX_DDL.ADD_MDATA and CTX_DDL.REMOVE_MDATA.
Neither CTX_DDL.ADD_MDATA nor CTX_DDL.REMOVE_MDATA is supported for CTXCAT and CTXRULE
indexes.

MDATA values are not passed through a lexer. Instead, all values undergo the following
simplified normalization:

• Leading and trailing whitespace on the value is removed.

• The value is truncated to 255 bytes.

• The value is indexed as a single value; if the value consists of multiple words, it is not
broken up.

• Case is preserved. If the document is dynamically generated, you can implement case-
insensitivity by uppercasing MDATA values and making sure to search only in uppercase.

Chapter 11
About Oracle Text Document Section Searching

11-9

After you add MDATA metadata to a document, you can query for that metadata by using the
CONTAINS query operator:

SELECT id FROM documents
 WHERE CONTAINS(text, 'Tokyo and MDATA(author, Soseki Natsume)')>0;

This query is only successful if an AUTHOR tag has the exact value Soseki Natsume (after
simplified tokenization). Soseki or Natsume Soseki returns no rows.

The following are considerations for MDATA:

• MDATA values are not highlightable, do not appear in the output of CTX_DOC.TOKENS, and do
not appear when you enable FILTER PLAINTEXT.

• MDATA sections must be unique within section groups. For example, do not use FOO as the
name of an MDATA section and a zone or field section in the same section group.

• Like field sections, MDATA sections cannot overlap or nest. An MDATA section is implicitly
closed by the first tag encountered. In this example:

<AUTHOR>Dickens Shelley Keats</AUTHOR>

The tag closes the AUTHOR MDATA section; as a result, this document has an AUTHOR of
'Dickens', but not of 'Shelley' or 'Keats'.

• To prevent race conditions, each call to ADD_MDATA and REMOVE_MDATA locks out other calls
on that rowid for that index for all values and sections. However, because ADD_MDATA and
REMOVE_MDATA do not commit, it is possible for an application to deadlock when calling
them both. It is the application's responsibility to prevent deadlocking.

See Also:

• "ALTER INDEX" in Oracle Text Reference

• "ADD_MDATA_SECTION" in Oracle Text Reference

• The "CONTAINS" query operators chapter of the Oracle Text Reference for
information on the MDATA operator

• The "CTX_DDL" package chapter of Oracle Text Reference for information on
adding and removing MDATA sections

11.1.2.5 NDATA Section
For fields containing data to be indexed for name searching, you can specify them exclusively
by adding NDATA sections to section groups of type BASIC_SECTION_GROUP,
HTML_SECTION_GROUP, or XML_SECTION_GROUP.
Users can synthesize textual documents, which contain name data, by using two possible
datastores: MULTI_COLUMN_DATASTORE or USER_DATASTORE. The following example uses
MULTI_COLUMN_DATASTORE to pick up relevant columns containing the name data for indexing:

create table people(firstname varchar2(80), surname varchar2(80));
 insert into people values('John', 'Smith');
 commit;
 begin
 ctx_ddl.create_preference('nameds', 'MULTI_COLUMN_DATASTORE');
 ctx_ddl.set_attribute('nameds', 'columns', 'firstname,surname');

Chapter 11
About Oracle Text Document Section Searching

11-10

 end;
 /

This example produces the following virtual text for indexing:

<FIRSTNAME>
John
</FIRSTNAME>
<SURNAME>
Smith
</SURNAME>

You can then create NDATA sections for FIRSTNAME and SURNAME sections:

begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'FIRSTNAME', 'FIRSTNAME');
 ctx_ddl.add_ndata_section('namegroup', 'SURNAME', 'SURNAME');
end;
/

Next, create the index by using the datastore preference and section group preference that you
created earlier:

create index peopleidx on people(firstname) indextype is ctxsys.context
parameters('section group namegroup datastore nameds');

NDATA sections support both single- and multibyte data with character- and term-based
limitations. NDATA section data that is indexed is constrained as follows:

• The number of characters in a single, whitespace-delimited term: 511

• The number of whitespace-delimited terms: 255

• The total number of characters, including whitespaces: 511

11.1.2.6 SDATA Section
The value of an SDATA section is extracted from the document text like other sections, but it is
indexed as structured data, also referred to as SDATA. SDATA sections support operations such
as projection, range searches, and ordering. SDATA sections also enable SDATA indexing of
section data (such as embedded tags) and detail table or function invocations. You can
perform various combinations of text and structured searches in one single SQL statement.

Use SDATA operators only as descendants of AND operators that also have non-SDATA children.
SDATA operators are meant to be used as secondary (checking or non-driving) criteria. For
example, "find documents with DOG that also have price > 5", rather than "find documents with
rating > 4".

Use CTX_DDL.ADD_SDATA_SECTION to add an SDATA section to a section group. Use
CTX_DDL.UPDATE_SDATA to update the values of an existing SDATA section. When querying
within an SDATA section, you must use the CONTAINS operator. The following example creates a
table called items, adds an SDATA section called my_sec_group, and then queries SDATA in the
section.

After you create an SDATA section, you can further modify the attributes of the SDATA section by
using CTX_DDL.SET_SECTION_ATTRIBUTE.

Create the items table:

Chapter 11
About Oracle Text Document Section Searching

11-11

CREATE TABLE items
(id NUMBER PRIMARY KEY,
 doc VARCHAR2(4000));

INSERT INTO items VALUES (1, '<description> Honda Pilot </description>
 <category> Cars & Trucks </category>
 <price> 27000 </price>');
INSERT INTO items VALUES (2, '<description> Toyota Sequoia </description>
 <category> Cars & Trucks </category>
 <price> 35000 </price>');
INSERT INTO items VALUES (3, '<description> Toyota Land Cruiser </description>
 <category> Cars & Trucks </category>
 <price> 45000 </price>');
INSERT INTO items VALUES (4, '<description> Palm Pilot </description>
 <category> Electronics </category>
 <price> 5 </price>');
INSERT INTO items VALUES (5, '<description> Toyota Land Cruiser Grill </description>
 <category> Parts & Accessories </category>
 <price> 100 </price>');
COMMIT;

Add the my_sec_group SDATA section:

BEGIN
 CTX_DDL.CREATE_SECTION_GROUP('my_sec_group', 'BASIC_SECTION_GROUP');
 CTX_DDL.ADD_SDATA_SECTION('my_sec_group', 'category', 'category', 'VARCHAR2');
 CTX_DDL.ADD_SDATA_SECTION('my_sec_group', 'price', 'price', 'NUMBER');
END;

Create the CONTEXT index:

CREATE INDEX items$doc
 ON items(doc)
 INDEXTYPE IS CTXSYS.CONTEXT
 PARAMETERS('SECTION GROUP my_sec_group');

Run a query:

SELECT id, doc
 FROM items
 WHERE contains(doc, 'Toyota
 AND SDATA(category = ''Cars & Trucks'')
 AND SDATA(price <= 40000)') > 0;

Return the results:

 ID DOC
---- --
 2 <description> Toyota Sequoia </description>
 <category> Cars & Trucks </category>
 <price> 35000 </price>

Consider a document whose rowid is 1. This example updates the value of the price SDATA
section to a new value of 30000:

BEGIN
 SELECT ROWID INTO rowid_to_update FROM items WHERE id=1;

 CTX_DDL.UPDATE_SDATA('items$doc',
 'price',
 SYS.ANYDATA.CONVERTVARCHAR2('30000'),

Chapter 11
About Oracle Text Document Section Searching

11-12

 rowid_to_update);
END;

After executing the query, the price of Honda Pilot is changed from 27000 to 30000.

Note:

• You can also add an SDATA section to an existing index. Use the ADD SDATA
SECTION parameter of the ALTER INDEX PARAMETERS statement. See the "ALTER
INDEX" section of the Oracle Text Reference for more information.

• Documents that were indexed before adding an SDATA section do not reflect this
new preference. Rebuild the index in this case.

See Also:

• The "CONTAINS" query section of the Oracle Text Reference for information on the
SDATA operator

• The "CTX_DDL" package section of the Oracle Text Reference for information on
adding and updating the SDATA sections and changing their attributes by using
the ADD_SDATA_SECTION, SET_SECTION_ATTRIBUTE, and the UPDATE_SDATA
procedures

Storage

For optimized_for search SDATA sections, use CTX_DDL.SET_ATTRIBUTE to specify the storage
preferences for the $Sdatatype tables and the indexes on these tables.

By default, large object (LOB) caching is turned on for $S* tables and off for $S* indexes.
These attributes are valid only on SDATA sections.

Query Operators

optimized_for search SDATA supports the following query operators:

• =

• <>

• between

• not between

• <=

• <

• >=

• >

• is null

• is not null

• like

Chapter 11
About Oracle Text Document Section Searching

11-13

• not like

11.1.2.7 Attribute Section
You can define attribute sections to query on XML attribute text. You can also have the system
automatically define and index XML attributes for you.

See Also:

"XML Section Searching with Oracle Text"

11.1.2.8 Special Sections
Special sections are not recognized by tags. Currently, sentence and paragraph are the only
supported special sections, and they enable you to search for a combination of words within
sentences or paragraphs.

The sentence and paragraph boundaries are determined by the lexer. For example,
BASIC_LEXER recognizes sentence and paragraph section boundaries as follows:

Table 11-3 Sentence and Paragraph Section Boundaries for BASIC_LEXER

Special Section Boundary

SENTENCE • WORD/PUNCT/WHITESPACE
• WORD/PUNCT/NEWLINE

PARAGRAPH • WORD/PUNCT/NEWLINE/WHITESPACE
• WORD/PUNCT/NEWLINE/NEWLINE

If the lexer cannot recognize the boundaries, then no sentence or paragraph sections are
indexed.

To add a special section, use the CTX_DDL.ADD_SPECIAL_SECTION procedure. For example, the
following code enables searches within sentences in HTML documents:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
end;

To enable zone and sentence searches, add zone sections to the group. The following
example adds the Headline zone section to the htmgroup section group:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
ctx_ddl.add_zone_section('htmgroup', 'Headline', 'H1');
end;

11.1.3 Oracle Text Section Attributes
Section attributes are the attributes that can be specified at the section level rather than at the
index level. Currently, the visible section attribute is supported for sections of field type.

Chapter 11
About Oracle Text Document Section Searching

11-14

You can set the visible section attribute for field sections using the
CTX_DDL.ADD_FIELD_SECTION API directly. You can set this attribute to one of the following
values:

• FALSE: This is the default value. The text in the field section is indexed separately from the
rest of the document.

• TRUE: You can set this value if you want to make the text visible within a document. The
text in the field section is indexed as part of the enclosing document.

The syntax is as follows:

CTX_DDL.ADD_FIELD_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,
 visible IN BOOLEAN default FALSE
);

The following example enables the visible attribute for a field section:

begin
ctx_ddl.create_section_group(‘fieldgroup', ‘BASIC_SECTION_GROUP');
ctx_ddl.add_field_section(‘fieldgroup', ‘author', ‘AUTHOR', TRUE);
end;

Alternatively, you can use the ALTER INDEX REBUILD syntax to add a new field section and
enable the visible section attribute, as follows:

ALTER INDEX index_name REBUILD parameters(‘ADD FIELD SECTION section_name tag
tag [(VISIBLE | INVISIBLE)]’);

11.2 HTML Section Searching with Oracle Text
HTML has internal structure in the form of tagged text that you can use for section searching.
For example, define a section called headings for the <H1> tag, and then search for terms only
within these tags across your document set.

To query, you use the WITHIN operator. Oracle Text returns all documents that contain your
query term within the headings section. For example, if you want to find all documents that
contain the word oracle within headings, enter the following query:

'oracle within headings'

This section contains these topics:

• Creating HTML Sections

• Searching HTML Meta Tags

11.2.1 Creating HTML Sections
The following code defines a section group called htmgroup of type HTML_SECTION_GROUP. It
then creates a zone section in htmgroup called heading identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

Chapter 11
HTML Section Searching with Oracle Text

11-15

You can then index your documents as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

After indexing with the htmgroup section group, you can query within the heading section by
issuing this query:

'Oracle WITHIN heading'

11.2.2 Searching HTML Meta Tags
With HTML documents, you can also create sections for NAME/CONTENT pairs in <META> tags.
When you do so, you can limit your searches to text within CONTENT.
Consider an HTML document that has the following META tag:

<META NAME="author" CONTENT="ken">

Create a zone section that indexes all CONTENT attributes for the META tag whose NAME value is
author:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'author', 'meta@author');
end

After indexing with the htmgroup section group, you can query the document:

'ken WITHIN author'

11.3 XML Section Searching with Oracle Text
Like HTML documents, XML documents have tagged text that you can use to define blocks of
text for section searching. You can search the contents of a section with the WITHIN or INPATH
operators.

The following sections describe the different types of XML searching:

• Automatic Sectioning

• Attribute Searching

• Document Type Sensitive Sections

• Path Section Searching

11.3.1 Automatic Sectioning
To set up your indexing operation to automatically create sections from XML documents, use
the AUTO_SECTION_GROUP section group. The system creates zone sections for XML tags.
Attribute sections are created for the tags that have attributes and for the sections named in
the form tag@attribute.
For example, the following statement uses the AUTO_SECTION_GROUP to create the myindex
index on a column containing the XML files:

CREATE INDEX myindex
ON xmldocs(xmlfile)
 INDEXTYPE IS ctxsys.context

Chapter 11
XML Section Searching with Oracle Text

11-16

PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group ctxsys.auto_section_group'
);

11.3.2 Attribute Searching
You can search XML attribute text in one of two ways:

• Creating Attribute Sections

Create attribute sections with CTX_DDL.ADD_ATTR_SECTION and then index with
XML_SECTION_GROUP. If you use AUTO_SECTION_GROUP when you index, attribute sections
are created automatically. You can query attribute sections with the WITHIN operator.

Consider an XML file that defines the BOOK tag with a TITLE attribute:

<BOOK TITLE="Tale of Two Cities">
 It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP and define
the attribute section:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');
end;

To index:

CREATE INDEX myindex
ON xmldocs(xmlfile)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group myxmlgroup'
);

To query the booktitle XML attribute section:

'Cities within booktitle'
• Searching Attributes with the INPATH Operator

Index with the PATH_SECTION_GROUP and query attribute text with the INPATH operator.

See Also:

"Path Section Searching"

11.3.3 Document Type Sensitive Sections
For an XML document set that contains the <book> tag declared for different document types,
you may want to create a distinct book section for each document type to improve search
capability. The following scenario shows you how to create book sections for each document
type.

Chapter 11
XML Section Searching with Oracle Text

11-17

Assume that mydocname1 is declared as an XML document type (root element):

<!DOCTYPE mydocname1 ... [...

Within mydocname1,, the <book> element is declared. For this tag, you can create a section
named mybooksec1 that is sensitive to the tag's document type:

begin

ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec1', 'mydocname1(book)');

end;

Assume that mydocname2 is declared as another XML document type (root element):

<!DOCTYPE mydocname2 ... [...

Within mydocname2,, the <book> element is declared. For this tag, you can create a section
named mybooksec2 that is sensitive to the tag's document type:

begin

ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec2', 'mydocname2(book)');

end;

To query within the mybooksec1 section, use WITHIN:

'oracle within mybooksec1'

11.3.4 Path Section Searching
XML documents can have parent-child tag structures such as:

<A> <C> dog </C>

In this scenario, tag C is a child of tag B, which is a child of tag A.

With Oracle Text, you can search paths with PATH_SECTION_GROUP. This section group enables
you to specify direct parentage in queries, such as to find all documents that contain the term
dog in element C, which is a child of element B, and so on.

With PATH_SECTION_GROUP, you can also perform attribute value searching and attribute
equality testing.

The new operators associated with this feature are

• INPATH
• HASPATH
This section contains the following topics.

• Creating an Index with PATH_SECTION_GROUP

• Top-Level Tag Searching

• Any-Level Tag Searching

• Direct Parentage Searching

• Tag Value Testing

Chapter 11
XML Section Searching with Oracle Text

11-18

• Attribute Searching

• Attribute Value Testing

• Path Testing

• Section Equality Testing with HASPATH

11.3.4.1 Creating an Index with PATH_SECTION_GROUP
To enable path section searching, index your XML document set with PATH_SECTION_GROUP.
For example:

Create the preference.

begin
ctx_ddl.create_section_group('xmlpathgroup', 'PATH_SECTION_GROUP');
end;

Create the index.

CREATE INDEX myindex
ON xmldocs(xmlfile)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group xmlpathgroup'
);

When you create the index, you can use the INPATH and HASPATH operators.

11.3.4.2 Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:
dog INPATH (/A)

or

dog INPATH(A)

11.3.4.3 Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

<C><A>dog</C>

11.3.4.4 Direct Parentage Searching
To find all documents that contain the term dog in a B element that is a direct child of a top-
level A element:

dog INPATH(A/B)

Chapter 11
XML Section Searching with Oracle Text

11-19

This query finds the following XML document:

<A>My dog is friendly.

but it does not find:

<C>My dog is friendly.</C>

11.3.4.5 Tag Value Testing
You can test the value of tags. For example, the query:

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

11.3.4.6 Attribute Searching
You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document:

<C> </C>

11.3.4.7 Attribute Value Testing
You can test the value of attributes. For example, the query:

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA

But it does not find:

San Francisco, California, USA

11.3.4.8 Path Testing
You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Chapter 11
XML Section Searching with Oracle Text

11-20

11.3.4.9 Section Equality Testing with HASPATH
You can use the HASPATH operator for section quality tests. For example, consider the following
query:

dog INPATH A

It finds:

<A>dog

but it also finds:

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality test with the
HASPATH operator. For example,

HASPATH(A="dog")

finds and returns a score of 100 only for the first document, not for the second document.

See Also:

Oracle Text Reference to learn more about using the INPATH and HASPATH operators

Chapter 11
XML Section Searching with Oracle Text

11-21

12
Using Oracle Text Name Search

Oracle Text provides a name search feature to handle inaccurate data and misspelled names.

This chapter contains the following topics:

• Overview of Name Search

• Examples of Using Name Search

12.1 Overview of Name Search
Someone accustomed to the spelling rules of one culture can have difficulty applying those
same rules to a name from a different culture. Name searching (also called name matching)
provides a solution to match proper names that might differ in spelling due to orthographic
variation. It also enables you to search for somewhat inaccurate data, such as might occur
when a record's first name and surname are not properly segmented. The main advantage of
name searching is the ability to handle somewhat inaccurate data.

12.2 Name Search Examples
These examples illustrate how to use NDATA sections to search on names.

drop table people;

create table people (
 full_name varchar2(2000)
);

insert into people values
('John Doe Smith');

-- multi_column datastore is a convenient way of adding section tags around our data
exec ctx_ddl.drop_preference('name_ds')
begin
 ctx_ddl.create_preference('name_ds', 'MULTI_COLUMN_DATASTORE');
 ctx_ddl.set_attribute('name_ds', 'COLUMNS', 'full_name');
end;
/

exec ctx_ddl.drop_section_group('name_sg');
begin
 ctx_ddl.create_section_group('name_sg', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('name_sg', 'full_name', 'full_name');
end;
/
-- You can optionally load a thesaurus of nicknames
-- HOST ctxload -thes -name nicknames -file nicknames.txt

exec ctx_ddl.drop_preference('name_wl');
begin
 ctx_ddl.create_preference('name_wl', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('name_wl', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
 ctx_ddl.set_attribute('name_wl', 'NDATA_BASE_LETTER', 'TRUE');

12-1

 -- Include the following line only if you have loaded the thesaurus
 -- file nicknames.txt:
 -- ctx_ddl.set_attribute('name_wl', 'NDATA_THESAURUS', 'nicknames');
 ctx_ddl.set_attribute('name_wl', 'NDATA_JOIN_PARTICLES',
 'de:di:la:da:el:del:qi:abd:los:la:dos:do:an:li:yi:yu:van:jon:un:sai:ben:al');
end;
/

create index people_idx on people(full_name) indextype is ctxsys.context
 parameters ('datastore name_ds section group name_sg wordlist name_wl');

-- Now you can do name searches with the following SQL:

var name varchar2(80);
exec :name := 'Jon Doesmith'

select /*+ FIRST_ROWS */ full_name, score(1)
 from people
 where contains(full_name, 'ndata(full_name, '||:name||') ',1)>0
 order by score(1) desc
/

The following example illustrates a more complicated version of using NDATA sections to search
on names:

create table emp (
 first_name varchar2(30),
 middle_name varchar2(30),
 last_name varchar2(30),
 email varchar2(30),
 phone varchar2(30));

insert into emp values
('John', 'Doe', 'Smith', 'john.smith@example.org', '123-456-7890');

-- user datastore procedure
create or replace procedure empuds_proc
 (rid in rowid, tlob in out nocopy clob) is
 tag varchar2(30);
 phone varchar2(30);
begin
 for c1 in (select FIRST_NAME, MIDDLE_NAME, LAST_NAME, EMAIL, PHONE
 from emp
 where rowid = rid)
 loop
 tag :='<email>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 if (c1.EMAIL is not null) then
 dbms_lob.writeappend(tlob, length(c1.EMAIL), c1.EMAIL);
 end if;
 tag :='</email>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 tag :='<phone>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 if (c1.PHONE is not null) then
 phone := nvl(REGEXP_SUBSTR(c1.PHONE, '\d\d\d\d($|\s)'), ' ');
 dbms_lob.writeappend(tlob, length(phone), phone);
 end if;
 tag :='</phone>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 tag :='<fullname>';
 dbms_lob.writeappend(tlob, length(tag), tag);

Chapter 12
Name Search Examples

12-2

 if (c1.FIRST_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.FIRST_NAME), c1.FIRST_NAME);
 dbms_lob.writeappend(tlob, length(' '), ' ');
 end if;
 if (c1.MIDDLE_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.MIDDLE_NAME), c1.MIDDLE_NAME);
 dbms_lob.writeappend(tlob, length(' '), ' ');
 end if;
 if (c1.LAST_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.LAST_NAME), c1.LAST_NAME);
 end if;
 tag :='</fullname>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 end loop;
 end;
 /

--list
show errors

exec ctx_ddl.drop_preference('empuds');
begin
 ctx_ddl.create_preference('empuds', 'user_datastore');
 ctx_ddl.set_attribute('empuds', 'procedure', 'empuds_proc');
 ctx_ddl.set_attribute('empuds', 'output_type', 'CLOB');
end;
/

exec ctx_ddl.drop_section_group('namegroup');
begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'fullname', 'fullname');
 ctx_ddl.add_ndata_section('namegroup', 'phone', 'phone');
 ctx_ddl.add_ndata_section('namegroup', 'email', 'email');
end;
/

-- Need to load nicknames thesaurus
-- ctxload -thes -name nicknames -file dr0thsnames.txt
-- You can find sample nicknames thesaurus file, dr0thsnames.txt, under
-- $ORACLE_HOME/ctx/sample/thes directory.

exec ctx_ddl.drop_preference('ndata_wl');
begin
 ctx_ddl.create_preference('NDATA_WL', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_BASE_LETTER', 'TRUE');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_THESAURUS', 'NICKNAMES');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_JOIN_PARTICLES',
 'de:di:la:da:el:del:qi:abd:los:la:dos:do:an:li:yi:yu:van:jon:un:sai:ben:al');
end;
/

exec ctx_output.start_log('emp_log');
create index name_idx on emp(first_name) indextype is ctxsys.context
parameters ('datastore empuds section group namegroup wordlist ndata_wl
 memory 500M');

exec ctx_output.end_log;

-- Now you can do name searches with the following SQL:
var name varchar2(80);

Chapter 12
Name Search Examples

12-3

exec :name := 'Jon Doesmith'

select first_name, middle_name, last_name, phone, email, scr from
 (select /*+ FIRST_ROWS */
 first_name, middle_name, last_name, phone, email, score(1) scr
 from emp
 where contains(first_name,
 'ndata(phone, '||:name||') OR ndata(email,'||:name||') OR
 ndata(fullname, '||:name||') ',1)>0
 order by score(1) desc
) where rownum <= 10;

Chapter 12
Name Search Examples

12-4

13
Working with a Thesaurus in Oracle Text

You can improve your query application with a thesaurus.

This chapter contains the following topics:

• Overview of Oracle Text Thesaurus Features

• Defining Terms in a Thesaurus

• Using a Thesaurus in a Query Application

• Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries

• Augmenting the Knowledge Base with a Custom Thesaurus

• Linking New Terms to Existing Terms

• Example of Loading a Thesaurus with ctxload

• Example of Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS PL/SQL
procedure

• Compiling a Loaded Thesaurus

• About the Supplied Knowledge Base

13.1 Overview of Oracle Text Thesaurus Features
Users of your query application looking for information on a given topic might not know which
words have been used in documents that refer to that topic.

Oracle Text enables you to create case-sensitive or case-insensitive thesauruses that define
synonym and hierarchical relationships between words and phrases. You can then retrieve
documents that contain relevant text by expanding queries to include similar or related terms
as defined in the thesaurus.

You can create a thesaurus and load it into the system.

This section contains the following topics.

• Oracle Text Thesaurus Creation and Maintenance

• Using a Case-sensitive Thesaurus

• Using a Case-insensitive Thesaurus

• Default Thesaurus

• Supplied Thesaurus

Note:

Oracle Text thesaurus formats and functionality are compliant with both the ISO-2788
and ANSI Z39.19 (1993) standards.

13-1

13.1.1 Oracle Text Thesaurus Creation and Maintenance
If you have the CTXAPP role, you can create, modify, delete, import, and export thesauruses and
thesaurus entries.

This section contains the following topics.

• CTX_THES Package: To maintain and browse your thesaurus programatically, you can
use the CTX_THES PL/SQL package. With this package, you can browse terms and
hierarchical relationships, add and delete terms, add and remove thesaurus relations, and
import and export thesauruses in and out of the thesaurus tables.

• Thesaurus Operators: To expand query terms according to your loaded thesaurus, you
can use the thesaurus operators in the CONTAINS clause. For example, use the SYN
operator to expand a term such as dog to its synonyms:

'syn(dog)'
• ctxload Utility: You can use the ctxload utility to load thesauruses from a plain-text file

into the thesaurus tables, and to dump thesauruses from the tables into output (or dump)
files.

You can print the thesaurus dump files, you can use them as input for other applications,
and you can use them to load a thesaurus into the thesaurus tables (useful when you want
to use an existing thesaurus as the basis for a new thesaurus).

WARNING:

To ensure sound security practices, Oracle recommends that you enter the
password for ctxload by using the interactive mode, which prompts you for the
user password. Oracle strongly recommends that you do not enter a password
on the command line.

Note:

You can also programatically import and export thesauruses in and out of the
thesaurus tables using the PL/SQL package CTX_THES procedures
IMPORT_THESAURUS and EXPORT_THESAURUS.

Refer to Oracle Text Reference for more information about these procedures.

13.1.2 Using a Case-Sensitive Thesaurus
In a case-sensitive thesaurus, terms (words and phrases) are stored exactly as you enter
them. For example, if you enter a term in mixed case (using either the CTX_THES package or a
thesaurus load file), then the thesaurus stores the entry in mixed case.

Chapter 13
Overview of Oracle Text Thesaurus Features

13-2

Note:

To take full advantage of query expansions that result from a case-sensitive
thesaurus, your index must also be case-sensitive.

When loading a thesaurus, you can specify a case-sensitive thesaurus by using the -thescase
parameter.

When creating a thesaurus with either CTX_THES.CREATE_THESAURUS or
CTX_THES.IMPORT_THESAURUS, you can specify a case-sensitive thesaurus.

In addition, when you specify a case-sensitive thesaurus in a query, the thesaurus lookup uses
the query terms exactly as you enter them in the query. Therefore, queries that use case-
sensitive thesauruses allow for a higher level of precision in the query expansion, which helps
lookup when and only when you have a case-sensitive index.

For example, a case-sensitive thesaurus is created with different entries for the distinct
meanings of the terms Turkey (the country) and turkey (the type of bird). Using the thesaurus,
a query for Turkey expands to include only the entries associated with Turkey.

13.1.3 Using a Case-Insensitive Thesaurus
In a case-insensitive thesaurus, terms are stored in all uppercase, regardless of the case in
which they were originally entered.

The ctxload program loads a thesaurus in case-insensitive mode by default.

When creating a thesaurus with either CTX_THES.CREATE_THESAURUS or
CTX_THES.IMPORT_THESAURUS, the thesaurus is created as case-insensitive by default.

In addition, when you specify a case-insensitive thesaurus in a query, the query terms are
converted to all uppercase for thesaurus lookup. As a result, Oracle Text is unable to
distinguish between terms that have different meanings when they are in mixed case.

For example, a case-insensitive thesaurus is created with different entries for the two distinct
meanings of the term TURKEY (the country or the type of bird). Using the thesaurus, a query
for either Turkey or turkey is converted to TURKEY for thesaurus lookup and then expanded to
include all the entries associated with both meanings.

13.1.4 Default Thesaurus
If you do not specify a thesaurus by name in a query, by default, the thesaurus operators use a
thesaurus named DEFAULT. However, Oracle Text does not provide a DEFAULT thesaurus.

As a result, if you want to use a default thesaurus for the thesaurus operators, you must create
a thesaurus named DEFAULT. You can create the thesaurus through any of the thesaurus
creation methods supported by Oracle Text:

• CTX_THES.CREATE_THESAURUS (PL/SQL)

• CTX_THES.IMPORT_THESAURUS (PL/SQL)

• ctxload utility

Chapter 13
Overview of Oracle Text Thesaurus Features

13-3

See Also:

Oracle Text Reference to learn more about using ctxload and the CTX_THES
package

13.1.5 Supplied Thesaurus
Although Oracle Text does not provide a default thesaurus, Oracle Text does supply a
thesaurus, in the form of a file that you load with ctxload, you can use to create a general-
purpose, English-language thesaurus.

You can use the thesaurus load file to create a default thesaurus for Oracle Text, or you can
use it as the basis for thesauruses tailored to a specific subject or range of subjects.

• Supplied Thesaurus Structure and Content: The supplied thesaurus is similar to a
traditional thesaurus, such as Roget's Thesaurus, in that it provides a list of synonymous
and semantically related terms.

It provides additional value by organizing the terms into a hierarchy that defines real-world,
practical relationships between narrower terms and their broader terms.

Additionally, cross-references are established between terms in different areas of the
hierarchy.

• Supplied Thesaurus Location: The exact name and location of the thesaurus load file
depends on the operating system; however, the file is generally named dr0thsus (with an
appropriate extension for text files) and is generally located in the following directory
structure:

<Oracle_home_directory>
 <Oracle_Text_directory>
 sample
 thes

See Also:

• Oracle Database Installation Guide for the installation documentation specific to
your operating system for more information about the directory structure of
Oracle Text

• Oracle Text Reference to learn more about using ctxload and the CTX_THES
package

13.2 Defining Terms in a Thesaurus
You can create synonyms, related terms, and hierarchical relationships with a thesaurus.

This section contains the following topics.

• Defining Synonyms

• Defining Hierarchical Relations

Chapter 13
Defining Terms in a Thesaurus

13-4

13.2.1 Defining Synonyms
If you have a thesaurus of computer science terms, then you might define a synonym for the
term XML as extensible markup language. This synonym enables queries on either of these
terms to return the same documents.

XML

SYN Extensible Markup Language

You can use the SYN operator to expand XML into its synonyms:

'SYN(XML)'

is expanded to:

'XML, Extensible Markup Language'

13.2.2 Defining Hierarchical Relations
If your document set consists of news articles, you can use a thesaurus to define a hierarchy of
geographical terms. Consider the following that describes a geographical hierarchy for the
state of California:

California
 NT Northern California
 NT San Francisco
 NT San Jose
 NT Central Valley
 NT Fresno
 NT Southern California
 NT Los Angeles

You can use the NT operator to expand a query on California:

'NT(California)'

is expanded to:

'California, Northern California, San Francisco, San Jose, Central Valley,
 Fresno, Southern California, Los Angeles'

The resulting hitlist shows all documents related to the state of California regions and cities.

13.3 Using a Thesaurus in a Query Application
When you define a custom thesaurus, you can process queries more intelligently. Because
users of your application might not know which words represent a topic, you can define
synonyms or narrower terms for likely query terms. You can use the thesaurus operators to
expand your query into your thesaurus terms.

There are two ways that you can enhance your query application with a custom thesaurus so
that you can process queries more intelligently. Each approach has its advantages and
disadvantages.

• Load your custom thesaurus and enter queries with thesaurus operators

• Augment the knowledge base with your custom thesaurus (English only) and use the
ABOUT operator to expand your query.

Chapter 13
Using a Thesaurus in a Query Application

13-5

13.4 Loading a Custom Thesaurus and Issuing Thesaurus-Based
Queries

You can build and load a custom thesaurus.

The advantage of this method is that you can modify the thesaurus after indexing.

The limitation of this method is that you must use thesaurus expansion operators in your query.
Long queries can cause extra overhead in the thesaurus expansion and slow your query down.

To build a custom thesaurus:

1. Create your thesaurus. See "Defining Terms in a Thesaurus".

2. Load the thesaurus with ctxload. The following example imports a thesaurus named
tech_doc from an import file named tech_thesaurus.txt:
ctxload -thes -name tech_doc -file tech_thesaurus.txt

3. At the prompt, enter your user name and password. To ensure security, do not enter a
password at the command line.

4. Use THES operators to query. For example, you can find all documents that contain XML
and its synonyms as defined in tech_doc:
'SYN(XML, tech_doc)'

13.5 Augmenting the Knowledge Base with a Custom Thesaurus
You can add your custom thesaurus to a branch in the existing knowledge base. The
knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT queries, and
derived themes for document services.

When you augment the existing knowledge base with your new thesaurus, you query with the
ABOUT operator. The query implicitly expands to synonyms and narrower terms. You do not
query with the thesaurus operators.

To augment the existing knowledge base with your custom thesaurus:

1. Create your custom thesaurus, linking new terms to existing knowledge base terms.

2. Load the thesaurus one of the following ways:

• Using the ctxload utility. See "Example of Loading a Thesaurus with ctxload".

• Using the PL/SQL procedure CTX_THES.IMPORT_THESAURUS. See "Example of Loading
a Thesaurus with the CTX_THES.IMPORT_THESAURUS PL/SQL procedure".

3. Compile the loaded thesaurus with the ctxkbtc compiler.

4. Index your documents. By default the system creates a theme component for your index.

5. Use the ABOUT operator to query. For example, to find all documents that are related to the
term politics, including any synonyms or narrower terms as defined in the knowledge base,
enter this query:

'about(politics)'

Chapter 13
Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries

13-6

See Also:

• "Defining Terms in a Thesaurus" and "Linking New Terms to Existing Terms"

• "Compiling a Loaded Thesaurus"

13.5.1 Advantages
Compiling your custom thesaurus with the existing knowledge base before indexing enables
faster and simpler queries with the ABOUT operator. Document services can also take full
advantage of the customized information to create theme summaries and gists.

13.5.2 Limitations
Use of the ABOUT operator requires a theme component in the index, which requires slightly
more disk space. You must also define the thesaurus before indexing your documents. If you
change the thesaurus, you must recompile your thesaurus and reindex your documents.

13.6 Linking New Terms to Existing Terms
When you add terms to the knowledge base, for best results in theme proving, Oracle
recommends that you links new terms to one of the categories in the knowledge base.

See Also:

Oracle Text Reference for more information about the supplied English knowledge
base

If you keep new terms separate from existing categories, fewer themes from new terms are
proven. The result is poor precision and recall with ABOUT queries, as well as poor quality of
gists and theme highlighting.

You link new terms to existing terms by making an existing term the broader term for the new
terms.

Consider the example: You purchase a medthes medical thesaurus containing a hierarchy of
medical terms. The following are the top four terms in the thesaurus:

• Anesthesia and Analgesia

• Anti-Allergic and Respiratory System Agents

• Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators

• Antineoplastic and Immunosuppressive Agents

To map these terms to the existing health and medicine branch in the knowledge base, add the
following entries to the medical thesaurus:

health and medicine
 NT Anesthesia and Analgesia
 NT Anti-Allergic and Respiratory System Agents

Chapter 13
Linking New Terms to Existing Terms

13-7

 NT Anti-Inflamammatory Agents, Antirheumatic Agents, and Inflamation Mediators
 NT Antineoplastic and Immunosuppressive Agents

13.7 Example of Loading a Thesaurus with ctxload
Assuming the medical thesaurus is in the med.thes file, you load the thesaurus as medthes
with ctxload as follows:

ctxload -thes -thescase y -name medthes -file med.thes -user ctxsys

When you enter the ctxload command line, you are prompted for the user password. For best
security practices, never enter the password at the command line. Alternatively, you may omit
-user and let ctxload prompt you for your user name and password.

13.8 Example of Loading a Thesaurus with the
CTX_THES.IMPORT_THESAURUS PL/SQL procedure

This example creates a case-sensitive thesaurus named mythesaurus and imports the
thesaurus content in myclob into the Oracle Text thesaurus tables:

declare
 myclob clob;
begin
 myclob := to_clob('peking SYN beijing BT capital country NT beijing tokyo');
 ctx_thes.import_thesaurus(‘mythesaurus', myclob, ‘Y');
end;

The format of the thesaurus to be imported (myclob in this example) should be the same as the
format in the ctxload utility. If the format of the thesaurus to be imported is not correct, then
IMPORT_THESAURUS raises an exception.

13.9 Compiling a Loaded Thesaurus
To link the loaded medthes thesaurus to the knowledge base, use ctxkbtc as follows:

ctxkbtc -user ctxsys -name medthes

When you enter the ctxkbtc command line, you are prompted for the user password. As with
ctxload, for best security practices, do not enter the password at the command line.

WARNING:

To ensure sound security practices, Oracle recommends that you enter the password
for ctxload and ctxkbtc in the interactive mode. This mode prompts you for the user
password. Oracle strongly recommends that you do not enter a password on the
command line.

Chapter 13
Example of Loading a Thesaurus with ctxload

13-8

13.10 About the Supplied Knowledge Base
Oracle Text supplies a knowledge base for English and French. The supplied knowledge
contains the information used to perform theme analysis. Theme analysis includes theme
indexing, ABOUT queries, and theme extraction with the CTX_DOC package.

The knowledge base is a hierarchical tree of concepts and categories. It has six main
branches:

• Science and technology

• Business and economics

• Government and military

• Social environment

• Geography

• Abstract ideas and concepts

The supplied knowledge base is like a thesaurus in that it is hierarchical and contains broader
terms, narrower terms, and related terms. As such, to improve the accuracy of theme analysis,
augment the knowledge base with your industry-specific thesaurus by linking new terms to
existing terms.

See Also:

"Augmenting Knowledge Base with Custom Thesaurus"

You can also extend theme functionality to other languages by compiling a language-specific
thesaurus into a knowledge base.

See Also:

"Adding a Language-Specific Knowledge Base"

Knowledge bases can be in any single-byte character set. Supplied knowledge bases are in
WE8ISO8859P1. You can store an extended knowledge base in another character set such as
US7ASCII.

This section contains the following topics:

• Adding a Language-Specific Knowledge Base

• Limitations for Adding Knowledge Bases

13.10.1 Adding a Language-Specific Knowledge Base
You can extend theme functionality to languages other than English or French by loading your
own knowledge base for any single-byte whitespace-delimited language, including Spanish.

You can extend theme functionality to languages other than English or French by loading your
own knowledge base for any single-byte whitespace-delimited language, including Spanish.

Chapter 13
About the Supplied Knowledge Base

13-9

Theme functionality includes theme indexing, ABOUT queries, theme highlighting, and the
generation of themes, gists, and theme summaries with CTX_DOC.
You extend theme functionality by adding a user-defined knowledge base. For example, you
can create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base:

1. Load your custom thesaurus by using ctxload.
2. Set NLS_LANG so that the language portion is the target language. The charset portion must

be a single-byte character set.

3. Compile the loaded thesaurus by using ctxkbtc and then enter the password for -user
when you are prompted. This statement compiles your language-specific knowledge base
from the loaded thesaurus.

ctxkbtc -user ctxsys -name my_lang_thes

To use this knowledge base for theme analysis during indexing and ABOUT queries, specify the
NLS_LANG language as the THEME_LANGUAGE attribute value for the BASIC_LEXER preference.

See Also:

• "Example of Loading a Thesaurus with ctxload"

• "Compiling a Loaded Thesaurus"

13.10.2 Limitations for Adding Knowledge Bases
Here are the limitations for adding knowledge bases:

• Oracle supplies knowledge bases only in English and French. You must provide your own
thesaurus for any other language.

• You can add knowledge bases only for languages with single-byte character sets. You
cannot create a knowledge base for languages that can be expressed only in multibyte
character sets. If the database is a multibyte universal character set, such as UTF-8, you
must still set the NLS_LANG parameter to a compatible single-byte character set when you
compile the thesaurus.

• Adding a knowledge base works best for whitespace-delimited languages.

• Only one knowledge base is allowed for each NLS_LANG language.

• Obtaining hierarchical query feedback information (for example, broader terms, narrower
terms, and related terms) does not work in languages other than English and French. In
other languages, the knowledge bases are derived entirely from your thesauruses. In such
cases, Oracle recommends that you obtain hierarchical information directly from your
thesauruses.

Chapter 13
About the Supplied Knowledge Base

13-10

See Also:

Oracle Text Reference for more information about theme indexing, ABOUT
queries, using the CTX_DOC package, and the supplied English knowledge base

Chapter 13
About the Supplied Knowledge Base

13-11

14
Using Faceted Navigation

Become familiar with the faceted navigation feature.

• About Faceted Navigation

• Defining Sections As Facets

• Refining Queries by Using Facets As Filters

• Multivalued Facets

14.1 About Faceted Navigation
This feature implements group counts, also known as facets, which are frequently used in e-
commerce or catalog applications. In various applications, it is preferable not only to display
the list of hits returned by a query, but also to categorize the results.

For example, an e-commerce application wants to display all products matching a query for the
term management along with faceting information. The facets include ‘type of product’ (books
or DVDs), ‘author’, and ‘date’. For each facet, the application displays the unique values
(books or DVDs) and their counts. You can quickly assess that most of the product offerings of
interest fall under the ‘books’ category. You can further refine the search by selecting the
‘books’ value under ‘type of product’.

A group count is defined as the number of documents that have a certain value. If a value is
repeated within the same document, the document contributes a count of 1 to the total group
count for the value. Group counts or facets are supported for SDATA sections that use
optimized_for search SDATA. To request a computation of facets for a query, use the Result
Set Interface.

14.2 Defining Sections As Facets
SDATA refers to structured data. Group counts or facets are supported for SDATA sections that
you create with the optimized_for attribute set to either ‘search’ or ‘sort and search’. In the
MULTI_COLUMN_DATASTORE preference, when data appears between tags or columns that are
specified as optimized_for search SDATA, the data is automatically indexed as the facet
data. Any data that does not match its declared type is handled according to the same
framework that currently handles indexing errors for a specific row.

Examples

In the following statements, some tagged data is inserted into a VARCHAR2 column of a table.
You can later define SDATA sections to collect the data based on the tags used here.

• Binary float or binary double with tag price:

insert into mytab values (1, 'red marble' <price>1.23</price>');
• Time stamp with tag T:

insert into mytab values (1,'blue marbles <T>2012-12-05T05:20:00</T>');

14-1

In the following statements, a section group is created and various SDATA section groups are
added. The section definition includes the section group to which it belongs, the name of the
section, the tag to be looked for, and the data type.

exec ctx_ddl.create_section_group('sg','BASIC_SECTION_GROUP')
exec ctx_ddl.add_SDATA_section('sg','sec01','name', 'varchar2')
exec ctx_ddl.add_SDATA_section('sg','sec02','count', 'number')
exec ctx_ddl.add_SDATA_section('sg','sec03','date', 'date')
exec ctx_ddl.add_SDATA_section('sg','sec04','timestamp', 'timestamp')
exec ctx_ddl.add_SDATA_section('sg','sec05','new price', 'binary_double')
exec ctx_ddl.add_SDATA_section('sg','sec06','old price','binary_float')
exec ctx_ddl.add_SDATA_section('sg','sec07','timestamp','timestamp with time
zone')

The name given to the facet is ‘sec01’ and the ‘name’ tag is the actual tag name that occurs
inside the document that is to be indexed. The ‘date’, ‘timestamp’, and ‘timestamp with
time zone’ data types require the input data to be in the standard ISO format.

See Also:

Oracle Database Globalization Support Guide for more information about the
standard ISO formats

Example 14-1 Using Faceted Navigation

The following statements create a table named products:

drop table products;

create table products(name varchar2(60), vendor varchar2(60), rating number,
price number, mydate date);

The following statement inserts values into products:

insert all
 into products values ('cherry red shoes', 'first vendor', 5, 129, sysdate)
 into products values ('bright red shoes', 'first vendor', 4, 109, sysdate)
 into products values ('more red shoes', 'second vendor', 5, 129, sysdate)
 into products values ('shoes', 'third vendor', 5, 109, sysdate)
select * from dual;

The following statements create a MULTI_COLUMN_DATASTORE preference named ds to bring
various other columns into the index (name) to be used as facets:

/*A MULTI_COLUMN_DATASTORE automatically adds tags by default so that the
text to be indexed looks like
'<name>cherry red shoes</name><vendor>first vendor</vendor><rating> '*/

exec ctx_ddl.drop_preference ('ds')
exec ctx_ddl.create_preference('ds', 'MULTI_COLUMN_DATASTORE')

Chapter 14
Defining Sections As Facets

14-2

exec ctx_ddl.set_attribute ('ds', 'COLUMNS', 'name, vendor, rating, price,
mydate')

Note:

Oracle does not allow table columns with binary_float, binary_double,
timestamp, and timestamp with timezone data types. It is therefore difficult to use
such data types with MULTI_COLUMN_DATASTORE. You can still create facets if the
document contains tagged data for these data types. Alternatively, you can convert
'timestamp' columns to 'date' and you can store binary_float and binary_double as
'number'.

The following statements create a section group named sg and enable the optimized_for
search attribute for each column to be treated as a facet:

/* A Section Group is created to specify the data type of each column
(varchar2 is the default) and
how each column that is brought into the index should be used.*/

exec ctx_ddl.drop_section_group ('sg')
exec ctx_ddl.create_section_group ('sg', 'BASIC_SECTION_GROUP')

exec ctx_ddl.add_sdata_section ('sg', 'vendor', 'vendor', 'VARCHAR2')
exec ctx_ddl.add_sdata_section ('sg', 'rating', 'rating', 'NUMBER')
exec ctx_ddl.add_sdata_section ('sg', 'price', 'price', 'NUMBER')
exec ctx_ddl.add_sdata_section ('sg', 'mydate', 'mydate', 'DATE')

exec ctx_ddl.set_section_attribute('sg', 'vendor', 'optimized_for', 'SEARCH')
exec ctx_ddl.set_section_attribute('sg', 'rating', 'optimized_for', 'SEARCH')
exec ctx_ddl.set_section_attribute('sg', 'price', 'optimized_for', 'SEARCH')
exec ctx_ddl.set_section_attribute('sg', 'mydate', 'optimized_for', 'SEARCH')

The following statement creates an index on name and specifies the preferences by using the
PARAMETERS clause:

CREATE INDEX product_index ON products (name)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ds section group sg');

The following statements query for a product name, ‘red shoes’ and the facets for computation
can be specified. The count attribute shows the total number of items that match the query for
the product. The Result Set Interface specifies various requirements, such as the top vendors
that have the largest number of matching items, the lowest available prices, and the latest
arrivals:

set long 500000
set pagesize 0

variable displayrs clob;

Chapter 14
Defining Sections As Facets

14-3

declare
 rs clob;
begin
 ctx_query.result_set('product_index', 'red shoes',
'<ctx_result_set_descriptor>
 <count/>
 <group sdata="vendor" topn="5" sortby="count" order="desc">
 <count exact="true"/>
 </group>
 <group sdata="price" topn="3" sortby="value" order="asc">
 <count exact="true"/>
 </group>
 <group sdata="mydate" topn="3" sortby="value" order="desc">
 <count exact="true"/>
 </group>
 </ctx_result_set_descriptor>',
 rs);

/* Pretty-print the result set (rs) for display purposes.
It is not required if you are going to manipulate it in XML.*/

 select xmlserialize(Document XMLType(rs) as clob indent size=2)
into :displayrs from dual;
 dbms_lob.freetemporary(rs);
end;
/
select :displayrs from dual;

The following is output:

<ctx_result_set>

 <count>3</
count>

 <groups
sdata="VENDOR">
 <group value="first
vendor">
 <count>2</
count>
 </
group>
 <group value="second
vendor">
 <count>1</
count>
 </
group>
 </
groups>

 <groups
sdata="PRICE">
 <group

Chapter 14
Defining Sections As Facets

14-4

value="109">
 <count>1</
count>
 </
group>
 <group
value="129">
 <count>2</
count>
 </
group>
 </
groups>

 <groups
sdata="MYDATE">
 <group value="2017-12-06
05:44:54">
 <count>3</
count>
 </
group>
 </
groups>
</ctx_result_set>

14.3 Querying Facets by Using the Result Set Interface
Starting with Oracle Database Release 18c, the group-counting operation for a specified list of
facets is provided. You can obtain the group counts for each single value by using the
bucketby attribute with its value set to single. The topn, sortby, and order attributes are
also supported.

bucketby Attribute

• The only valid attribute is single in this release.

• The 'single' mode produces a list of all unique values for the facet and a document count
for each value.

topn Attribute

• Valid attribute values are non-negative numbers greater than zero.

• This attribute specifies that only top n facet values and their counts are returned.

• Group count determines the top n values to return unless the sortby attribute is set to
value. In that case, the values are sorted according to the data type and the top n results
of the sort are returned. The order attribute is respected for the sort.

• By default, the results are sorted by the group count in descending order.

• If a tie occurs in the count, the ordering of the facet values within this tie is not guaranteed.

Single Count

Chapter 14
Querying Facets by Using the Result Set Interface

14-5

The following statements insert a few rows into the table mytab. Some rows have two values
for the facet , and some rows have a single value.

begin
 insert into mytab values (1, '1.2345');
 insert into mytab values (2, '1.432');
 insert into mytab values (3, '2.4326');
 insert into mytab values (4, '2.432');
end;

Single counts show each unique value and the number of documents that have this value:

<ctx_result_set>
 <groups sdata="SEC01">
 <group value="2.432"><count>2</count></group>
 <group value="1.234"><count>1</count></group>
 <group value="5"><count>1</count></group>
 <group value="6"><count>1</count></group>
 <group value="1.432"><count>1</count></group>
 </groups>
</ctx_result_set>

If document 1 is deleted, you see the following result:

<ctx_result_set>
 <groups sdata="SEC01">
 <group value="2.432"><count>2</count></group>
 <group value="6"><count>1</count></group>
 <group value="1.432"><count>1</count></group>
 </groups>
</ctx_result_set>

sortby and order Attributes

• sortby supports the “count” and “value” attribute values.

– count sorts by group counts (numbers). This is the default.

– value sorts by value depending on the data type.

• order supports ASC (ascending order) and DESC (descending order), which is the default.

• If there is no selection, the default is count DESC.
This example shows the grouping of a number facet if bucketby is set to single, where
mytab_idx is the name of the index, text is the query, and group SDATA requests the facets:

begin
 ctx_query.result_set('mytab_idx', 'text',
 '<ctx_result_set_descriptor>
 <group sdata="sec01" topn = "4" sortby = "value" order="asc"
bucketby="single">
 <count/>
 </group>
 </ctx_result_set_descriptor>'

Chapter 14
Querying Facets by Using the Result Set Interface

14-6

 :rs);
end;

The following is a sample output showing that the values are listed in alphabetical order
because the sortby attribute is set to value instead of count. The values are also displayed in
ascending order (ABC to XYZ) because the order attribute is set to asc. Only four values are
displayed because the topn attribute is set to 4.

<ctx_result_set>
 <group SDATA="SEC01">
 <group value="ABC"><count>2</count>
 </group>
 <group value="DEF"><count>1</count>
 </group>
 <group value="GHI"><count>10</count>
 </group>
 <group value="XYZ"><count>1</count>
 </group>
</ctx_result_set>

14.4 Refining Queries by Using Facets As Filters
The facet implementation now supports CONTAINS queries with the standard set of database
comparison operators available for SDATA. The following example is based on the ‘name’
varchar2 section. When you use it with numbers, do not use quotation marks around the
numeric term to be searched.

contains (text, 'SDATA(sec01 = "run")', 1) > 0
contains (text, 'SDATA(sec01 > "run")', 1) > 0
contains (text, 'SDATA(sec01 >= "run")', 1) > 0
contains (text, 'SDATA(sec01 < "run")', 1) > 0
contains (text, 'SDATA(sec01 <= "run")', 1) > 0
contains (text, 'SDATA(sec01 <> "run")', 1) > 0
contains (text, 'SDATA(sec01 != "run")', 1) > 0
contains (text, 'SDATA(sec01 between "run1" and "run2")', 1) > 0
contains (text, 'SDATA(sec01 not between "run1" and "run2")', 1) > 0
contains (text, 'SDATA(sec01 is null)', 1) > 0
contains (text, 'SDATA(sec01 is not null)', 1) > 0
contains (text, 'SDATA(sec01 like "%run")', 1) > 0
contains (text, 'SDATA(sec01 like "run%")', 1) > 0
contains (text, 'SDATA(sec01 like "%run%")', 1) > 0
contains (text, 'SDATA(sec01 not like "%run")', 1) > 0
contains (text, 'SDATA(sec01 not like "run%")', 1) > 0
contains (text, 'SDATA(sec01 not like "%run%")', 1) > 0

contains (text, 'SDATA(sec02 = 9)', 1) > 0
contains (text, 'SDATA(sec02 < 10)', 1) > 0
contains (text, 'SDATA(sec02 between 2 and 20)', 1) > 0

The comparison operators behave according to the current optimized_for search SDATA
behavior for the various data types.

Chapter 14
Refining Queries by Using Facets As Filters

14-7

14.5 Multivalued Facets
If multiple values are in an optimized for search SDATA section within the same document,
then each value is indexed if the value is enclosed in its own tag corresponding to the SDATA
section. Values that are not enclosed within separate section tags, but that appear together
within the same section tag, are treated as a single value.

For example, in a document, <car>First Car, Second Car</car> is treated as a single string
of value ‘First Car, Second Car’. However, <car>First Car</car><car>Second Car</car> is
treated as two separate values for the document.

Chapter 14
Multivalued Facets

14-8

15
Using the XML Query Result Set Interface

The CTX_QUERY.RESULT_SET procedure executes an XML query and generates a result set in
XML.

Note:

The Oracle Text Result Set Interface queries are not supported on shard catalog
instances.

• Overview of the XML Query Result Set Interface

• Using the XML Query Result Set Interface

• Creating XML-Only Applications with Oracle Text

• Example of a Result Set Descriptor

• Identifying Collocates

15.1 Overview of the XML Query Result Set Interface
The XML Query Result Set Interface (RSI) enables you to perform queries in XML and return
results as XML, avoiding the SQL layer and requirement to work within SELECT semantics. The
RSI uses a simple Oracle Text query and an XML result set descriptor, where the hitlist is
returned in XML according to the result set descriptor. The XML Query RSI uses SDATA
sections for grouping and counting.

In applications, a page of search results can consist of many disparate elements, such as
metadata of the first few documents, total hit counts, and per-word hit counts. Each extra call
takes time to reparse the query and look up index metadata. Additionally, some search
operations, such as iterative query refinement, are difficult for SQL. If it is even possible to
construct a SQL statement to produce the desired results, such SQL is usually suboptimal.

The XML Query RSI is able to produce the various kinds of data needed for a page of search
results all at once, thus improving performance by sharing overhead. The RSI can also return
data views that are difficult to express in SQL.

15.2 Using the XML Query Result Set Interface
The CTX_QUERY.RESULT_SET() and CTX_QUERY.RESULT_SET_CLOB_QUERY() APIs enable you to
obtain query results with a single query, rather than running multiple CONTAINS() queries to
achieve the same result. The two APIs are identical except that one uses a VARCHAR2 query
parameter, and the other uses a CLOB query parameter to allow for longer queries.

For example, to display a search result page, you must first get the following information:

• Top 20 hit list sorted by date and relevancy

• Total number of hits for the given Oracle Text query

15-1

• Counts group by publication date

• Counts group by author

Assume the following table definition for storing documents to be searched:

create table docs (
 docid number,
 author varchar2(30),
 pubdate date,
 title varchar2(60), doc clob);

Assume the following Oracle Text Index definition:

create index docidx on docs(doc) indextype is ctxsys.context
filter by author, pubdate, title
order by pubdate;

With these definitions, you can issue four SQL statements to obtain the four pieces of
information needed for displaying the search result page:

-- Get top 20 hits sorted by date and relevancy
select * from
 (select /*+ first_rows */ rowid, title, author, pubdate
 from docs where contains(doc, 'oracle',1)>0
 order by pubdate desc, score(1) desc)
where rownum < 21;

-- Get total number of hits for the given Oracle Text query
select count(*) from docs where contains(doc, 'oracle',1)>0;

-- Get counts group by publication date
select pubdate, count(*) from docs where contains(doc, 'oracle',1)>0
group by pubdate;

-- Get counts group by author
select author, count(*) from docs where contains(doc, 'oracle',1)>0 group by author;

As you can see, using separate SQL statements results in a resource-intensive query, because
you run the same query four times. However, if you use CTX_QUERY.RESULT_SET(), then you
can enter all of the information in one single Oracle Text query:

declare
 rs clob;
begin
 dbms_lob.createtemporary(rs, true, dbms_lob.session);
 ctx_query.result_set('docidx', 'oracle text performance tuning', '
 <ctx_result_set_descriptor>
 <count/>
 <hitlist start_hit_num="1" end_hit_num="20" order="pubDate desc,
 score desc">
 <score/>
 <rowid/>
 <sdata name="title"/>
 <sdata name="author"/>
 <sdata name="pubDate"/>
 </hitlist>
 <group sdata="pubDate">
 <count/>
 </group>
 <group sdata="author">
 <count/>
 </group>

Chapter 15
Using the XML Query Result Set Interface

15-2

 </ctx_result_set_descriptor>
 ', rs);

-- Put in your code here to process the Output Result Set XML
 dbms_lob.freetemporary(rs);
exception
 when others then
 dbms_lob.freetemporary(rs);
 raise;
end;
/

The result set output is XML that as the information required to construct the search result
page:

<ctx_result_set>
 <hitlist>
 <hit>
 <score>90</score>
 <rowid>AAAPoEAABAAAMWsAAC</rowid>
 <sdata name="TITLE"> Article 8 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>86</score>
 <rowid>AAAPoEAABAAAMWsAAG</rowid>
 <sdata name="TITLE"> Article 20 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>78</score>
 <rowid>AAAPoEAABAAAMWsAAK</rowid>
 <sdata name="TITLE"> Article 17 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>77</score>
 <rowid>AAAPoEAABAAAMWsAAO</rowid>
 <sdata name="TITLE"> Article 37 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
...
 <hit>
 <score>72</score>
 <rowid>AAAPoEAABAAAMWsAAS</rowid>
 <sdata name="TITLE"> Article 56 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 </hitlist>

 <count>100</count>

 <groups sdata="PUBDATE">
 <group value="2001-01-01 00:00:00"><count>25</count></group>
 <group value="2001-01-02 00:00:00"><count>50</count></group>
 <group value="2001-01-03 00:00:00"><count>25</count></group>
 </groups>

Chapter 15
Using the XML Query Result Set Interface

15-3

 <groups sdata="AUTHOR">
 <group value="John"><count>50</count></group>
 <group value="Mike"><count>25</count></group>
 <group value="Steve"><count>25</count></group>
 </groups>

</ctx_result_set>

See Also:

Oracle Text Reference for syntax details and more information on
CTX_QUERY.RESULT_SET

15.3 Creating XML-Only Applications with Oracle Text
Although it is common to create applications by using SQL SELECT statements with the
CONTAINS clause, it is not the most efficient method. An alternative method is to use the XML-
based RSI. With this method, you can obtain summary information (such as the total number of
hits) without fetching all results of the query.
To use the RSI, you specify a Result Set Descriptor (RSD). The RSD declares the information
to be returned, which can consist of:

• Total result count of the query

• Hitlist

• Summary information over SDATA fields

In turn, the hitlist consists of repeating elements, each of which may contain:

• Rowid of the hit

• SDATA fields from the hit

15.4 Example of a Result Set Descriptor
This example shows how to use an RSD. The following example requests a hitlist with the top
10 hits (ordered by score) and the count of the total number of results.

<ctx_result_set_descriptor>
 <hitlist start_hit_num="1" end_hit_num="10" order="SCORE DESC">
 <rowid />
 <sdata name="title" />
 <sdata name="author" />
 <sdata name="articledate" />
 <snippet radius="20" max_length="160" starttag="" endtag="" />
 </hitlist>
 <count />
</ctx_result_set_descriptor>

For each hit, you are requesting the rowid (which you could use to fetch further information
about the row, if necessary), the contents of the SDATA fields or the title, author, and
articledate columns, and a snippet (which is a short summary with keywords highlighted, in
this case by ...).

Chapter 15
Creating XML-Only Applications with Oracle Text

15-4

15.5 Identifying Collocates
Collocates are a group of words that frequently co-occur in a document. They provide a quick
summary of other keywords or concepts that are related to a specified keyword. You can then
use the other keywords in queries to fetch more relevant results.

You identify collocates based on a search query. For each document that is returned by the
query, snippets of text around the search keyword are automatically extracted. Next, the words
in these snippets are correlated to the query keyword by using statistical measures and,
depending on how frequently the extracted words occur in the overall document set, a score is
assigned to each returned co-occurring word.

Use the RSI to identify collocates. You can specify the number of co-occurring words that must
be returned by the query. You can also specify whether to identify collocates that are common
nouns or collocates that emphasize uniqueness. Synonyms of the specified search keyword
can also be returned.

Note:

Collocates are supported only for BASIC_LEXER.

To identify collocates:

1. Create the document set table for the query.

2. Create an Oracle Text index on the document set table.

3. Use the XML Query RSI to define and input a query that identifies collocates. Include the
collocates element with the required attributes.

Example 15-1 Identifying Collocates Within a Document Set

In this example, the keyword used to query documents in a data set is ‘Nobel.’ Oracle Text
searches for occurrences of this keyword in the document set. In addition to the result set, use
collocates to search for five common words that co-occur with ‘Nobel.’ Use the max_words
attribute to identify the number of collocates to be generated. Set the use_tscore attribute to
TRUE to specify that common words must be identified for the collocates. The number of words
to pick on either side of the keyword in order to identify collocates is 10.

The following is the input RSI descriptor that is used to determine collocates:

declare
rsd varchar2(32767);
 begin
 ctx_query.result_set('tdrbnbsan01idx', 'nobel',
 <ctx_result_set_descriptor>
 <collocates radius = "10" max_words="5" use_tscore="TRUE"/>
 </ctx_result_set_descriptor>',
 :rs);
 end;
/

Chapter 15
Identifying Collocates

15-5

Here is the output result set for the query:

<ctx_result_set>
<collocates>
 <collocation>
 <word>PRIZE</word>
 <score>82</score>
 </collocation>
 <collocation>
 <word>LAUREATE</word>
 <score>70</score>
 </collocation>
 <collocation>
 <word>NOBELPRIZE</word>
 <score>44</score>
 </collocation>
 <collocation>
 <word>AWARD</word>
 <score>42</score>
 </collocation>
 <collocation>
 <word>ORG</word>
 <score>41</score>
 </collocation
</collocates>
</ctx_result_set>

For ‘Nobel,’ the top five common collocates, in order, are Prize, Laureate, Nobelprize, award,
and org. Each word is assigned a score that indicates the frequency of occurrence. Collocates
are always returned after any hitlist elements are returned.

If you set use_tscore to FALSE in the same example, then less common (unique) words are
identified. Here is the output result set:

<ctx_result_set>
<collocates>
 <collocation>
 <word>MOLA</word>
 <score>110</score>
 </collocation>
 <collocation>
 <word>BISMARCK</word>
 <score>89</score>
 </collocation>
 <collocation>
 <word>COLONNA</word>
 <score>67</score>
 </collocation>
 <collocation>
 <word>LYNEN</word>
 <score>55</score>
 </collocation>
 <collocation>
 <word>TIMBERGEN</word>
 <score>25</score>

Chapter 15
Identifying Collocates

15-6

 </collocation>
 </collocates>
</ctx_result_set>

See Also:

Oracle Text Reference for information about attributes used with collocates

Chapter 15
Identifying Collocates

15-7

16
Performing Sentiment Analysis Using Oracle
Text

Sentiment analysis enables you to identify a positive or negative sentiment in a search topic.

This chapter contains the following topics:

• Overview of Sentiment Analysis

• Creating a Sentiment Classifier Preference

• Training Sentiment Classifiers

• Performing Sentiment Analysis with the CTX_DOC Package

• Performing Sentiment Analysis with the RSI

16.1 Overview of Sentiment Analysis
Sentiment analysis uses trained sentiment classifiers to provide sentiment information for
documents or topics within documents.

This section contains the following topics:

• About Sentiment Analysis

• About Sentiment Classifiers

• About Performing Sentiment Analysis

• Sentiment Analysis Interfaces

16.1.1 About Sentiment Analysis
Oracle Text enables you to perform sentiment analysis for a topic or document by using
sentiment classifiers that are trained to identify sentiment metadata.

With growing amounts of data, organizations must gain more insights about their data rather
than just obtaining hits in response to a search query. The insight could be in the form of
answering certain basic types of queries (such as weather queries or queries about recent
events) or providing opinions about user-specified topics. Keyword searches provide a list of
results containing the search term. However, to identify a sentiment or opinion about the
search term, must browse through the results and then manually locate the required sentiment
information. Sentiment analysis provides a one-step process to identify sentiment information
within a set of documents.

Sentiment analysis is the process of identifying and extracting sentiment metadata about a
specified topic or entity from a set of documents. Trained sentiment classifiers identify the
sentiment. When you run a query with sentiment analysis, in addition to the search results,
sentiment metadata is also identified and displayed. Sentiment analysis provides answers to
questions such as “Is a product review positive or negative?” or “Is the customer satisfied or
dissatisfied?” For example, from a document set consisting of multiple reviews for a particular
product, you can determine an overall sentiment that indicates if the product is good or bad.

16-1

16.1.2 About Sentiment Classifiers
A sentiment classifier is a type of document classifier that is used to extract sentiment
metadata about a topic or document.

To perform sentiment analysis by using a sentiment classifier, you must first associate a
sentiment classifier preference with the sentiment classifier and then train the sentiment
classifier.

You can associate user-defined sentiment classifiers with a sentiment classifier preference of
type SENTIMENT_CLASSIFIER. A sentiment classifier preference specifies the parameters that
are used to train a sentiment classifier. These parameters are defined as attributes of the
sentiment classifier preference. You can either create a sentiment classifier preference or use
the default CTXSYS.DEFAULT_SENTIMENT_CLASSIFIER. To create a user-defined sentiment
classifier preference, use the CTX_DDL.CREATE_PREFERENCE procedure to define a sentiment
classifier preference and the CTX_DDL.SET_ATTRIBUTE procedure to define its parameters.

To train a sentiment classifier, you need to provide an associated sentiment classifier
preference, a training set of documents, and the sentiment categories. If you do not specify a
classifier preference, then Oracle Text uses default values for the training parameters. You
train the sentiment classifier by using the set of sample documents and the specified
preference. You assign each sample document to a category. Oracle Text uses this sentiment
classifier to deduce a set of classification rules that define how sentiment analysis must be
performed. Use the CTX_CLS.SA_TRAIN procedure to train a sentiment classifier.

Typically, you define and train separate sentiment classifiers for different categories of
documents, such as finance, product reviews, and music. If you do not want to create your own
sentiment classifier or if suitable training data is not available to train your classifier, you can
use the default sentiment classifier provided by Oracle Text. The default sentiment classifier is
unsupervised.

Note:

The default sentiment classifier works only with AUTO_LEXER. Do not use AUTO_LEXER
with user-defined sentiment classifiers.

See Also:

• Creating a Sentiment Classifier Preference

• Training Sentiment Classifiers

16.1.3 About Performing Sentiment Analysis
To perform sentiment analysis, you run a sentiment query that includes the sentiment classifier
which must be used to identify sentiment information. The classifier can be the default or a
user-defined sentiment classifier.

You can perform sentiment analysis only as part of a search operation. Oracle Text searches
for the specified keywords and generates a result set. Then, sentiment analysis is performed

Chapter 16
Overview of Sentiment Analysis

16-2

on the result set to identify a sentiment score for each result. If you do not explicitly specify a
sentiment classifier in your query, the default classifier is used.

You can either identify one single sentiment for the entire document or separate sentiments for
each topic within a document. Most often, a document contains multiple topics and the author’s
sentiment toward each topic may be different. In such cases, document-level sentiment scores
may not be useful because they cannot identify sentiment scores associated with different
topics in the document. Identifying topic-level sentiment scores provides the required answers.
For example, when searching through a set of documents containing reviews for a camera, a
document-level sentiment tells you whether the camera is good or not. Assume that you want
the general opinion about the picture quality of a camera. Performing a topic-level sentiment
analysis, with “picture quality” as one of the topics provides the required information.

Note:

If you do not specify a topic of interest for sentiment analysis, then Oracle Text
returns the overall sentiment for the entire document.

See Also:

• Performing Sentiment Analysis with the CTX_DOC Package

• Performing Sentiment Analysis with the RSI

16.1.4 Sentiment Analysis Interfaces
Oracle Text supports multiple interfaces for performing sentiment analysis.

Use one of the following interfaces to run a sentiment query:

• Procedures in the CTX_DOC package

• XML Query Result Set Interface (RSI)

See Also:

• Performing Sentiment Analysis with the CTX_DOC Package

• Performing Sentiment Analysis with the RSI

16.2 Creating a Sentiment Classifier Preference
Use the CTX_DDL.CREATE_PREFERENCE procedure to create a sentiment classifier preference
and the CTX_DDL.SET_ATTRIBUTE procedure to define its attributes. The classifier type
associated with a user-defined sentiment classifier preference is SENTIMENT_CLASSIFIER.

To create a sentiment classifier preference:

Chapter 16
Creating a Sentiment Classifier Preference

16-3

1. To define a sentiment classifier preference, use the CTX_DDL.CREATE_PREFERENCE
procedure. The classifier must be of type SENTIMENT_CLASSIFIER.

2. To define attributes for the sentiment classifier preference, use the
CTX_DDL.SET_ATTRIBUTE procedure. The attributes define the parameters that are used to
train the sentiment classifier.

Example 16-1 Creating a Sentiment Classifier Preference

The following example creates a sentiment classifier preference named clsfier_camera. This
preference is used to classify a set of documents that contain reviews for SLR cameras.

1. Define a sentiment classifier preference named clsfier_camera with type
SENTIMENT_CLASSIFIER.
exec ctx_ddl.create_preference('clsfier_camera','SENTIMENT_CLASSIFIER');

2. Define the attributes of the clsfier_camera sentiment classifier preference. Set 1000 for
the maximum number of features to be extracted. Set 600 for the number of iterations for
which the classifier runs.

exec ctx_ddl.set_attribute('clsfier_camera','MAX_FEATURES','1000');
exec ctx_ddl.set_attribute('clsfier_camera','NUM_ITERATIONS','600');

For attributes that are not explicitly defined, the default values are used.

See Also:

• Oracle Text Reference

• About Sentiment Classifiers

16.3 Training Sentiment Classifiers
Training a sentiment classifier generates the classification rules that are used to provide a
positive or negative sentiment for a search keyword.

The following example trains a sentiment classifier that can perform sentiment analysis on user
reviews of cameras:

1. Create and populate the training document table. This table contains the actual text of the
training set documents or the file names (if the documents are present externally).

Ensure that the training documents are randomly selected to avoid any possible bias in the
trained sentiment classifier. The distribution of positive and negative documents must not
be skewed. Oracle Text checks for the distribution while training the sentiment classifier.

create table training_camera (review_id number primary key, text
varchar2(2000));
insert into training_camera values(1,'/sa/reviews/cameras/review1.txt');
insert into training_camera values(2,'/sa/reviews/cameras/review2.txt');
insert into training_camera values(3,'/sa/reviews/cameras/review3.txt');
insert into training_camera values(4,'/sa/reviews/cameras/review4.txt');

2. Create and populate the category table.

Chapter 16
Training Sentiment Classifiers

16-4

This table specifies training labels for the documents present in the document table. It tells
the classifier the true sentiment of the training set documents.

The primary key of the document table must have a foreign key relationship with the
unique key of the category table. The names of these columns must be passed to the
CTX_CLS.SA_TRAIN procedure so that the sentiment label can be associated with the
corresponding document.

Oracle Text validates the parameters specified for the classifier preference and the
category values. The category values are restricted to 1 for positive, 2 for negative, and 0
for neutral sentiment. Documents with a category of 0 (neutral documents) are not used
while training the classifier. Additional columns in the category table, other than document
ID and category, are also not used by the classifier.

create table train_category (doc_id number, category number, category_desc
varchar2(100));

insert into train_category values (1,0,'neutral');
insert into train_category values (2,1,'positive');
insert into train_category values (3,2,'negative');
insert into train_category values (4,2,'negative');

3. Create the context index on the training document table. This index is used to extract
metadata for training documents while training the sentiment classifier.

In this example, create an index without populating it.

exec ctx_ddl.create_preference('fds','DIRECTORY_DATASTORE');
create index docx on training_camera(text) indextype is ctxsys.context
parameters ('datastore fds nopopulate');

4. (Optional) Create a clsfier_camera sentiment classifier preference that performs
sentiment analysis on a document set consisting of camera reviews.

5. Train the sentiment classifier clsfier_camera.
During training, Oracle Text determines the ratio of positive to negative documents. If this
ratio is not in the range of 0.4 to 0.6, then a warning written to the CTX log indicates that
the sentiment classifier is skewed. After the sentiment classifier is trained, it is ready to be
used in sentiment queries to perform sentiment analysis.

In the following example, clsfier_camera is the name of the sentiment classifier that is
being trained, review_id is the name of the document ID column in the document training
set, train_category is the name of the category table that contains the labels for the
training set documents, doc_id is the document ID column in the category table, category
is the category column in the category table, and clsfier is the name of the sentiment
classifier preference that is used to train the classifier.

exec
ctx_cls.sa_train_model('clsfier_camera','docx','review_id','train_category'
,'doc_id','category','clsfier');

Chapter 16
Training Sentiment Classifiers

16-5

Note:

If you do not specify a sentiment classifier preference when running the
CTX_CLS.SA_TRAIN_MODEL procedure, then Oracle Text uses the default
preference CTXSYS.DEFAULT_SENTIMENT_CLASSIFIER.

16.4 Performing Sentiment Analysis with the CTX_DOC Package
Use the procedures in the CTX_DOC package to perform sentiment analysis on a single
document within a document set. For each document, you can either determine a single
sentiment score for the entire document or individual sentiment scores for each topic within the
document.

Before you perform sentiment analysis, you must create a context index on the document set.
The following command creates a camera_revidx context index on the document set in the
camera_reviews table:

create index camera_revidx on camera_reviews(review_text) indextype is
ctxsys.context parameters ('lexer mylexer stoplist ctxsys.default_stoplist');

To perform sentiment analysis with the CTX_DOC package, use one of the following methods:

• Run the CTX_DOC.SENTIMENT_AGGREGATE procedure with the required parameters.

This procedure provides a single consolidated sentiment score for the entire document.

The sentiment score is a value in the range of -100 to 100, and it indicates the strength of
the sentiment. A negative score represents a negative sentiment and a positive score
represents a positive sentiment. Based on the sentiment scores, you can group scores into
labels such as Strongly Negative (–80 to –100), Negative (–80 to –50), Neutral (-50 to
+50), Positive (+50 to +80), and Strongly Positive (+80 to +100).

• Run the CTX_DOC.SENTIMENT procedure with the required parameters.

This procedure returns the individual segments within the document that contain the
search term, and provides an associated sentiment score for each segment.

Example 16-2 Obtaining a Single Sentiment Score for a Document

The following example uses the clsfier_camera sentiment classifier to provide a single
aggregate sentiment score for the entire document. The sentiment classifier was created and
trained. The table containing the document set has a camera_revidx context index. The
doc_id of the document within the document table for which sentiment analysis must be
performed is 49. The topic for which a sentiment score is being generated is ‘Nikon.’

select
ctx_doc.sentiment_aggregate('camera_revidx','49','Nikon','clsfier_camera')
from dual;

CTX_DOC.SENTIMENT_AGGREGATE('CAMERA_REVIDX','49','NIKON','CLSFIER_CAMERA')
--
 74
1 row selected.

Chapter 16
Performing Sentiment Analysis with the CTX_DOC Package

16-6

Example 16-3 Obtaining a Single Sentiment Score with the Default Classifier

The following example uses the default sentiment classifier to provide an aggregate sentiment
score for the entire document. The table containing the document set has a camera_revidx
context index. The doc_id of the document within the document table for which sentiment
analysis must be performed is 1.

select ctx_doc.sentiment_aggregate('camera_revidx','1') from dual;

CTX_DOC.SENTIMENT_AGGREGATE('CAMERA_REVIDX','1')
--
 2

1 row selected.

Example 16-4 Obtaining Sentiment Scores for Each Topic Within a Document

The following example uses the clsfier_camera sentiment classifier to generate sentiment
scores for each segment within the document. The sentiment classifier was created and
trained. The table containing the document set has a camera_revidx context index . The
doc_id of the document within the document table for which sentiment analysis must be
performed is 49. The topic for which a sentiment score is being generated is ‘Nikon.’ The
restab result table, which will be populated with the analysis results, was created with the
columns snippet (CLOB) and score (NUMBER).

exec
ctx_doc.sentiment('camera_revidx','49','Nikon','restab','clsfier_camera',
starttag=>'<<', endtag=>'>>');

SQL> select * from restab;
SNIPPET
--
--
 SCORE

It took <<Nikon>> a while to produce a superb compact 85mm lens, but this
time they finally got it right.
 65

Without a doubt, this is a fine portrait lens for photographing head-and-
shoulder portraits (The only lens which is optically better is
<<Nikon>>'s legendary 10
5mm f2.5 Nikkor lens, and its close optical twin, the 105mm f2.8 Micro Nikkor.
 75

Since the 105mm f2.5 Nikkor lens doesn't have an autofocus version, then this
might be the perfect moderate telephoto lens for owners of
<<Nikon>> autofocus
SLR cameras.
 84
3 rows selected.

Chapter 16
Performing Sentiment Analysis with the CTX_DOC Package

16-7

Example 16-5 Obtaining a Sentiment Score for a Topic Within a Document

The following example uses the tdrbrtsent03_cl sentiment classifier to generate a sentiment
score for each segment within the document. The sentiment classifier was created and trained.
The table containing the document set has a tdrbrtsent03_idx context index. The doc_id of
the document within the document table for which sentiment analysis must be performed is 1.
The topic for which a sentiment score is being generated is ‘movie.’ The tdrbrtsent03_rtab
result table, which will be populated with the analysis results was created with the columns
snippet and score.

SQL> exec
ctx_doc.sentiment('tdrbrtsent03_idx','1','movie','tdrbrtsent03_rtab','tdrbrtse
nt03_cl');
PL/SQL procedure successfully completed.

SQL> select * from tdrbrtsent03_rtab;
SNIPPET
--
--
SCORE

the movie is a bit overlong , but nicholson is such good fun that the
running time passes by pretty quickly
 -62

1 row selected.

See Also:

• CTX_DOC.SENTIMENT_AGGREGATE in the Oracle Text Reference

• CTX_DOC.SENTIMENT in the Oracle Text Reference

16.5 Performing Sentiment Analysis with the RSI
The XML Query Result Set Interface (RSI) enables you to perform sentiment analysis on a set
of documents by using either the default sentiment classifier or a user-defined sentiment
classifier. The documents on which sentiment analysis must be performed are stored in a
document table.

Use the sentiment element in the input RSI to indicate that sentiment analysis, in addition to
other operations specified in the Result Set Descriptor (RSD), must be performed at query
time. If you specify a value for the classifier attribute of the sentiment element, then the
specified sentiment classifier is used to perform the sentiment analysis. If the classifier
attribute is omitted, then Oracle Text performs sentiment analysis by using the default
sentiment classifier. The sentiment element contains a child element called item that specifies
the topic or concept about which a sentiment must be generated during sentiment analysis.

You can generate either a single sentiment score for each document or separate sentiment
scores for each topic within the document. Use the agg attribute of the item element to
generate a single aggregated sentiment score for each document.

Chapter 16
Performing Sentiment Analysis with the RSI

16-8

You can perform sentiment classification by using a keyword query or the ABOUT operator.
When you use the ABOUT operator, the result set includes synonyms of the keyword that are
identified by using the thesaurus.

To perform sentiment analysis by using RSI:

1. Create and train the sentiment classifier you will use to perform sentiment analysis.

2. Create the document table that contains the documents to be analyzed and a context
index on the document table.

3. Use the required elements and attributes within a query to perform sentiment analysis.

The RSI must contain the sentiment element.

Example 16-6 Input the RSD to Perform Sentiment Analysis

The following example performs sentiment analysis and generates a sentiment for the ‘lens’
topic. The driving query is a keyword query for ‘camera.’ The sentiment element specifies that
sentiment analysis must be performed by using the clsfier_camera sentiment classifier. This
classifier was previously created and trained by using the CTX_CLS.SA_TRAIN_MODEL procedure.
The camera_revidx context index is on the document set table.

The sentiment score ranges from -100 to 100. A positive score indicates positive sentiment,
whereas a negative score indicates negative sentiment. The absolute value of the score is
indicative of the magnitude of positive and negative sentiment.

To perform sentiment analysis and obtain a sentiment score for each topic within the
document:

1. Create the rs result set table that will store the results of the search operation.

SQL> var rs clob;
SQL> exec dbms_lob.createtemporary(:rs, TRUE, DBMS_LOB.SESSION);

2. Perform sentiment analysis as part of a search query.

The keyword being searched for is ‘camera.’ The topic for which sentiment analysis is
performed is ‘lens.’

begin
ctx_query.result_set('camera_revidx','camera','
 <ctx_result_set_descriptor>
 <hitlist start_hit_num="1" end_hit_num="10" order="score desc">
 <sentiment classifier="clsfier_camera">
 <item topic="lens" />
 <item topic="picture quality" agg="true" />
 </sentiment> </hitlist>
 </ctx_result_set_descriptor>',:rs);
end;
/

3. View the results stored in the result table.

Chapter 16
Performing Sentiment Analysis with the RSI

16-9

Other applications can use the XML result set for further processing. For brevity, some
output was removed. For each segment within the document, a score represents the
sentiment score for the segment.

SQL> select xmltype(:rs) from dual;
XMLTYPE(:RS)

<ctx_result_set>
 <hitlist>
 <hit>
 <sentiment>
 <item topic="lens">
 <segment>
 <segment_text>The first time it was sent in was because the
lens door failed to turn on the camera
and it was almost to come off of its track . Eight months later, the flash
quit working in all modes AND the door was
failing AGAIN!</segment_text>
 <segment_score>-81</segment_score>
 </segment>
 </item>
 <item topic="picture quality"> <score> -75 </score>
 </item>
 </sentiment>
 </hit>
 <hit>
 <sentiment>
 <item topic="lens">
 <segment>
 <segment_text>I was actually quite impressed with it.
Powerful zoom , sharp lens, decent picture
quality. I also played with some other Panasonic models in various stores
just to get a better feel for them, as well as
spent a few hours on </segment_text>
 <segment_score> 67 </segment_score>
 </segment>
 </item>
 <item topic="picture quality"> <score>-1</score> </item>
 </sentiment>
 </hit>
 . . .
 . . .
 </hitlist>
</ctx_result_set>

See Also:

Oracle Text Reference

Chapter 16
Performing Sentiment Analysis with the RSI

16-10

17
Administering Oracle Text

Become familiar with Oracle Text administration.

This chapter contains the following topics:

• Oracle Text Users and Roles

• DML Queue

• CTX_OUTPUT Package

• CTX_REPORT Package

• Text Manager in Oracle Enterprise Manager

• Servers and Indexing

• Tracking Database Feature Usage in Oracle Enterprise Manager

• Oracle Text on Oracle Real Application Clusters

• Configuring Oracle Text in Oracle Database Vault Environment

• Unsupported Oracle Text Operations in Oracle Database Vault Realm

17.1 Oracle Text Users and Roles
While any user can create an Oracle Text index and enter a CONTAINS query, Oracle Text
provides the CTXSYS user for administration and the CTXAPP role for application developers.

This section contains the following sections:

• CTXSYS User

• CTXAPP Role

• Granting Roles and Privileges to Users

17.1.1 CTXSYS User
The CTXSYS user is created during installation and can:

• View all indexes

• Sync all indexes

• Run ctxkbtc, the knowledge base extension compiler

• Query all system-defined views

• Perform all tasks of a user with the CTXAPP role

17-1

Note:

In earlier releases of Oracle Text, CTXSYS had SYSDBA privileges, and only CTXSYS
users could perform certain functions, such as modifying system-defined preferences
or setting system parameters.

Starting with Oracle Database Release 19c, the CTXSYS user is a schema only user. To use the
CTXSYS schema, run the following statements:

connect / as sysdba;

alter session set CURRENT_SCHEMA=CTXSYS;

17.1.2 CTXAPP Role
The CTXAPP role is a system-defined role that enables users to:

• Create and delete Oracle Text preferences

• Use the Oracle Text PL/SQL packages

17.1.3 Granting Roles and Privileges to Users
The system uses the standard SQL model for granting roles to users. To grant an Oracle Text
role to a user, use the GRANT statement.

In addition, to allow application developers to call procedures in the Oracle Text PL/SQL
packages, you must explicitly grant EXECUTE privileges for the Oracle Text package to each
user.

See Also:

"Creating an Oracle Text User"

17.2 DML Queue
When you make inserts, updates, or deletes to documents in your base table, the data
manipulation language (DML) queue stores the requests for documents waiting to be indexed.
When you synchronize the index with CTX_DDL.SYNC_INDEX, requests are removed from this
queue.

You can query pending insert, update, and delete operations with the CTX_PENDING and
CTX_USER_PENDING views.

You can query insert, update, and delete errors with the CTX_INDEX_ERRORS or
CTX_USER_INDEX_ERRORS view.

Chapter 17
DML Queue

17-2

See Also:

Oracle Text Reference for more information about these views

17.3 CTX_OUTPUT Package
Use the CTX_OUTPUT PL/SQL package to log indexing and document service requests.

See Also:

Oracle Text Reference for more information about this package

17.4 CTX_REPORT Package
Use the CTX_REPORT package to produce reports on indexes and queries. These reports can
help you fine-tune or troubleshoot your applications.

See Also:

Oracle Text Reference for more information about this package

The CTX_REPORT package contains the following procedures:

CTX_REPORT.DESCRIBE_INDEX and CTX_REPORT.DESCRIBE_POLICY

These procedures create reports that describe an existing index or policy, including the settings
of the index metadata, the indexing objects, the settings of the attributes of the objects, and
(for CTX_REPORT.DESCRIBE_INDEX) the index partition information, if any. These procedures are
especially useful for diagnosing index-related problems.

This is sample output from DESCRIBE_INDEX, run on a simple context index:

===
 INDEX DESCRIPTION
===
index name: "DR_TEST"."TDRBPRX0"
index id: 1160
index type: context
base table: "DR_TEST"."TDRBPR"
primary key column: ID
text column: TEXT2
text column type: VARCHAR2(80)
language column:
format column:
charset column:
===
 INDEX OBJECTS
===
datastore: DIRECT_DATASTORE

Chapter 17
CTX_OUTPUT Package

17-3

filter: NULL_FILTER
section group: NULL_SECTION_GROUP
lexer: BASIC_LEXER
wordlist: BASIC_WORDLIST
 stemmer: ENGLISH
 fuzzy_match: GENERIC
stoplist: BASIC_STOPLIST
 stopword: teststopword
storage: BASIC_STORAGE
 r_table_clause: lob (data) store as (cache)
 i_index_clause: compress 2

CTX_REPORT.CREATE_INDEX_SCRIPT and CTX_REPORT.CREATE_POLICY_SCRIPT

CREATE_INDEX_SCRIPT creates a SQL*Plus script that can create a duplicate of a given Oracle
Text index. Use this when you have an index but you do not have the original script (if any) that
was used to create this index, and you want to be able to re-create the index. For example, if
you accidentally drop a script, CREATE_INDEX_SCRIPT can re-create it. Likewise,
CREATE_INDEX_SCRIPT can be useful if you have inherited indexes from another user but not
the scripts that created them.

CREATE_POLICY_SCRIPT does the same thing as CREATE_INDEX_SCRIPT, except that it enables
you to re-create a policy instead of an index.

This is sample output from CREATE_INDEX_SCRIPT, run on a simple context index (not a
complete listing):

begin
 ctx_ddl.create_preference('"TDRBPRX0_DST"','DIRECT_DATASTORE');
end;
/
...
/
begin
 ctx_ddl.create_section_group('"TDRBPRX0_SGP"','NULL_SECTION_GROUP');
end;
/
...
begin
 ctx_ddl.create_preference('"TDRBPRX0_WDL"','BASIC_WORDLIST');
 ctx_ddl.set_attribute('"TDRBPRX0_WDL"','STEMMER','ENGLISH');
 ctx_ddl.set_attribute('"TDRBPRX0_WDL"','FUZZY_MATCH','GENERIC');
end;
/
begin
 ctx_ddl.create_stoplist('"TDRBPRX0_SPL"','BASIC_STOPLIST');
 ctx_ddl.add_stopword('"TDRBPRX0_SPL"','teststopword');
end;
/
...
/
begin
 ctx_output.start_log('TDRBPRX0_LOG');
end;
/
create index "DR_TEST"."TDRBPRX0"
 on "DR_TEST"."TDRBPR"
 ("TEXT2")
 indextype is ctxsys.context
 parameters('
 datastore "TDRBPRX0_DST"
 filter "TDRBPRX0_FIL"

Chapter 17
CTX_REPORT Package

17-4

 section group "TDRBPRX0_SGP"
 lexer "TDRBPRX0_LEX"
 wordlist "TDRBPRX0_WDL"
 stoplist "TDRBPRX0_SPL"
 storage "TDRBPRX0_STO"
 ')
/

CTX_REPORT.INDEX_SIZE

This procedure creates a report of the names of the internal index objects, along with their
tablespaces, allocated sizes, and used sizes. It is useful for DBAs who may need to monitor
the size of their indexes (for example, when disk space is at a premium).

Sample output from this procedure looks like this (partial listing):

===
 INDEX SIZE FOR DR_TEST.TDRBPRX10
===
TABLE: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 4
BLOCKS USED: 1
BYTES ALLOCATED: 8,192 (8.00 KB)
BYTES USED: 2,048 (2.00 KB)

INDEX (LOB): DR_TEST.SYS_IL0000023161C00006$$
TABLE NAME: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 5
BLOCKS USED: 2
BYTES ALLOCATED: 10,240 (10.00 KB)
BYTES USED: 4,096 (4.00 KB)

INDEX (NORMAL): DR_TEST.DR$TDRBPRX10$X
TABLE NAME: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 4
BLOCKS USED: 2
BYTES ALLOCATED: 8,192 (8.00 KB)
BYTES USED: 4,096 (4.00 KB)

CTX_REPORT.INDEX_STATS

INDEX_STATS produces a variety of calculated statistics about an index, such as how many
documents are indexed, how many unique tokens in the index, average size of its tokens, and
fragmentation information for the index. Optimizing stoplists is an example of a use for
INDEX_STATS.

CTX_REPORT.QUERY_LOG_SUMMARY

This procedure creates a report of logged queries, which you can use to perform simple
analyses. With query analysis, you can find out:

• Which queries were made

• Which queries were successful

• Which queries were unsuccessful

• How many times each query was made

Chapter 17
CTX_REPORT Package

17-5

You can combine these factors in various ways, such as determining the 50 most frequent
unsuccessful queries made by your application.

CTX_REPORT.TOKEN_INFO

TOKEN_INFO helps you diagnose query problems. For example, use it to check that index data
is not corrupted and to find out which documents are producing unexpected or bad tokens.

CTX_REPORT.TOKEN_TYPE

TOKEN_TYPE is a lookup function that is used mainly as input to other functions
(CTX_DDL.OPTIMIZE_INDEX, CTX_REPORT.TOKEN_INFO, and so on).

See Also:

• Oracle Text Reference for an example of the output of CTX_REPORT.INDEX_STATS
procedure

• Oracle Text Reference for an example of the output of
CTX_REPORT.QUERY_LOG_SUMMARY procedure

17.5 Text Manager in Oracle Enterprise Manager
Oracle Enterprise Manager provides Text Manager for configuring, maintaining, and
administering Oracle Text indexes. With Text Manager, you can perform all of the basic
configuration and administration tasks for Oracle Text indexes. You can monitor the overall
health of Oracle Text indexes for a single Oracle Database instance or for the Oracle Real
Application Clusters environment. Text Manager provides summaries of critical information and
enables you to drill down to the level of detail that you want, to resolve issues, and to
understand any actions that you need to take.

The Text Indexes page shows the jobs that are in progress, that are scheduled within the last
seven days, or that are experiencing problems. From this page, you can go to the Job
Scheduler to see a summary of all jobs for this database instance and to manage selected
jobs. The online help in Oracle Enterprise Manager provides details and procedures for using
each Text Manager feature.

This section contains the following sections:

• Using Text Manager

• Viewing General Information for an Oracle Text Index

• Checking Oracle Text Index Health

Note:

You cannot create an Oracle Text index with Text Manager. Use the CREATE INDEX
statement to create an Oracle Text index as described in Indexing with Oracle Text
under Creating Oracle Text Indexes.

Chapter 17
Text Manager in Oracle Enterprise Manager

17-6

17.5.1 Using Text Manager
You can access Text Manager to manage Oracle Text indexes or schedule jobs for a specific
index.

On the main Text Manager page, you can perform the following actions on the selected index
from the Actions list:

• Synchronize

• Optimize

• Rebuild

• Resume Failed Operation

• Show Logs

• Show Errors

1. Sign in to the database with a user account that is authorized to access Cloud Control. For
example, use SYS or SYSTEM and the password that you specified during database
installation.

2. On the Database Home page, click the Schema tab.

3. In the Text Manager group, select Text Indexes.

The Text Indexes page displays a list of Oracle Text indexes for this database instance.

When you select an Oracle Text index from the Text Indexes page, edit and action options
become available for that index. For example, to configure attributes for searching, click Edit
for the selected index. On the Edit Text Index page, you can set such attributes as Wild Card
Maximum Term, Fuzzy Score, and Number of Fuzzy Expansions. You can also change index
and partition names, and specify settings for NETWORK_DATASTORE.

17.5.2 Viewing General Information for an Oracle Text Index
Use the View Text Index page to see general information about a specific index, such as index
type, parallel degree, synchronization mode, wild card limit, fuzzy score, fuzzy numeric result,
and datastore. Information about any partitions on the index is also available.

To view general information for an Oracle Text index, on the Text Indexes page, in the list of
indexes, click the name of the index. The View Text Index page opens and the General tab is
selected. From here, you can select actions to perform maintenance tasks.

17.5.3 Checking Oracle Text Index Health
In Text Manager, the Text Indexes page displays the Oracle Text indexes for the database
instance. Use that page to help you understand the critical actions that are necessary to make
sure that the entire application is performing properly.

Use the Text Indexes page to see:

• The status of the indexes and jobs submitted during the last seven days.

• The number of Oracle Text indexes that contain invalid partitions, and which are, therefore,
invalid. The number of partitions that are invalid, if any, for all Oracle Text indexes is also
shown.

• The number of indexes and partitions that are in an in-progress state.

Chapter 17
Text Manager in Oracle Enterprise Manager

17-7

• The number of indexes where all partitions are valid, and no activity is in progress.

• The sum total of the Oracle Text indexes found for this database instance.

• The index type for each Oracle Text index, the owner, the number of documents that are
not synchronized, total number of documents, and percentage of fragmentation.

After you select an Oracle Text index from the list, options become available for editing or
performing actions.

17.6 Servers and Indexing
You index documents and enter queries with standard SQL. No server is needed for
performing batch insert, update, and delete operations. You can synchronize the CONTEXT index
with the CTX_DDL.SYNC_INDEX procedure, or from Text Manager in Oracle Enterprise Manager.

See Also:

Indexing with Oracle Text for more information about indexing and index
synchronization

17.7 Tracking Database Feature Usage in Oracle Enterprise
Manager

In Oracle Enterprise Manager, Database Feature Usage statistics provide an approximation of
how often various database features are used. Tracking this information is useful for
application development and for auditing.

To access Database Feature Usage, in Oracle Enterprise Manager, click the Server tab, and
then select Database Feature Usage under Database Configuration.

Database Feature Usage captures the following information for Oracle Text:

• Index Usage Statistics: The number of existing indexes in the database for the CONTEXT,
CTXCAT, and CTXRULE index types

• SQL Operator Usage Statistics: Whether the user has ever used the CONTAINS,
CATSEARCH, and MATCHES operators

• Package Usage Statistics: How often, if ever, and when the following packages were
used:

– CTX_ADM
– CTX_CLS
– CTX_DDL
– CTX_DOC
– CTX_OUTPUT
– CTX_QUERY
– CTX_REPORT
– CTX_THES

Chapter 17
Servers and Indexing

17-8

– CTX_ULEXER

Note:

The feature usage tracking statistics might not be 100 percent accurate.

17.8 Oracle Text on Oracle Real Application Clusters
For maximum throughput and performance for OLAP applications, you can parallelize Oracle
Text queries across Oracle Real Application Clusters (Oracle RAC) nodes. You can manage
Oracle Text indexes on Oracle RAC nodes with Text Manager in Oracle Enterprise Manager,
as described in "Text Manager in Oracle Enterprise Manager".

See Also:

"Parallelizing Queries Across Oracle RAC Nodes"

17.9 Configuring Oracle Text in Oracle Database Vault
Environment

In an Oracle Database Vault environment, you can create a CTXSYS user if you have the
DV_ACCTMGR role.

To create a CTXSYS user, run the @$ORACLE_HOME/ctx/admin/catctx_user.sql SQL script.
Then, connect as SYS user and run the @$ORACLE_HOME/ctx/admin/catctx_schema.sql SQL
script.

Note:

If the SYS user also has the DV_ACCTMGR role, then you can run the
@$ORACLE_HOME/ctx/admin/catctx.sql SQL script which installs both,
catctx_user.sql and catctx_schema.sql scripts.

17.10 Unsupported Oracle Text Operations in Oracle Database
Vault Realm

Oracle Database Vault realms place restrictions on DDL operations within a realm. For this
reason, once you are added to a realm but if you are not authorized in the realm, then you
cannot create, alter, or drop an Oracle Text index. You also cannot use any DDL operations
contained in the CTX_DDL package.

The DDL error messages and query error messages on indexes that could not be created
within the realm might indicate insufficient privileges as the cause. The insufficient privilege
message is specific to DDL operations not being allowed within the realm.

Chapter 17
Oracle Text on Oracle Real Application Clusters

17-9

18
Migrating Oracle Text Applications

You can migrate Oracle Text applications into a new Oracle Database release.

When you upgrade to a new release of Oracle Database, you may have difficulty migrating
your applications from earlier releases of Oracle Text. Where applicable, Oracle provides
information about the migration steps to move Oracle Text applications into the new release.

This chapter contains the following topics:

• Oracle Text and Rolling Upgrade with Logical Standby

• Identifying and Copying Oracle Text Files to a New Oracle Home

See Also:

Oracle Database Upgrade Guide for information on upgrading Oracle Database and
topics about migrating applications

18.1 Performing a Rolling Upgrade with a Logical Standby
Database

You can use a logical standby database to perform a rolling upgrade of Oracle Database. To
incur minimal downtime on the primary database, you can run different releases of Oracle
Database on the primary and logical standby databases while you upgrade your databases,
one at a time. Oracle Text takes full advantage of upgrading Oracle Text indexes.

All CTX PL/SQL procedures are fully replicated to the standby database and are upgraded,
except with certain limitations for these procedures:

• CTX_DDL PL/SQL Procedures

• CTX_OUTPUT PL/SQL Procedures

• CTX_DOC PL/SQL Procedures

See Also:

Oracle Data Guard Concepts and Administration for information on creating a logical
standby database to perform rolling upgrades

18.1.1 CTX_DDL PL/SQL Procedures
Oracle Database uses rowids internally for the construction of indexes. The following CTX_DDL
procedures are not fully replicated to the standby:

18-1

• ADD_MDATA
• REMOVE_MDATA

18.1.2 CTX_OUTPUT PL/SQL Procedures
Only CTX_OUTPUT.ENABLE_QUERY_STATS and CTX_OUTPUT.DISABLE_QUERY_STATS are replicated.
If you enable Oracle Text logging on the primary database before you run an operation that
causes logging, then the operation runs with logging on the primary database and without
logging on the secondary database.

18.1.3 CTX_DOC PL/SQL Procedures
When you use the following CTX_DOC procedures with Oracle Text Result Tables, the data
stored in the tables is replicated. When these procedures are used without Result Tables, they
are not replicated.

• CTX_DOC.SET_KEY_TYPE
• CTX_DOC.FILTER
• CTX_DOC.GIST
• CTX_DOC.MARKUP
• CTX_DOC.TOKENS
• CTX_DOC.THEMES
• CTX_DOC.HIGHLIGHT
• CTX_DOC.FILTER_CLOB_QUERY
• CTX_DOC.MARKUP_CLOB_QUERY
• CTX_DOC.HIGHLIGHT_CLOB_QUERY

See Also:

Oracle Data Guard Concepts and Administration for information on performing a
rolling upgrade for minimal downtime on the primary database

18.2 Identifying and Copying Oracle Text Files to a New Oracle
Home

To upgrade Oracle Text, use this procedure to identify and copy required files from your
existing Oracle home to the new release Oracle home. Complete this task after you upgrade
Oracle Database.

Certain Oracle Text features rely on files under the Oracle home that you have configured.
After manually upgrading to a new Oracle Database release, or after any process that changes
the Oracle home, you must identify and move these files manually. These files include user
filters, mail filter configuration files, and all knowledge base extension files. After you identify
the files, copy the files from your existing Oracle home to the new Oracle home.

Chapter 18
Identifying and Copying Oracle Text Files to a New Oracle Home

18-2

To identify and copy required files from your existing Oracle home to the new release Oracle
home:

1. Log in with the SYS, SYSTEM, or CTXSYS system privileges for the upgraded database.

2. Under the Oracle home of the upgraded database, run the $ORACLE_HOME/ctx/admin/
ctx_oh_files.sql SQL script.

For example:

sqlplus / as sysdba
connected
SQL> @?/ctx/admin/ctx_oh_files

3. Review the output of the ctx_oh_files.sql command, and copy the files to the new
Oracle home.

Chapter 18
Identifying and Copying Oracle Text Files to a New Oracle Home

18-3

A
CONTEXT Query Application

This appendix describes how to build a simple web search application by using the CONTEXT
index type.

This appendix contains the following topics:

• Web Query Application Overview

• The PL/SQL Server Pages (PSP) Web Application

• The Java Server Pages (JSP) Web Application

A.1 Web Query Application Overview
A common use of Oracle Text is to index HTML files on websites and provide search
capabilities to users. The sample application in this appendix indexes a set of HTML files
stored in the database. It also uses a web server connected to Oracle Database to provide the
search service.

This appendix describes two versions of the Web query application:

• One using PL/SQL Server Pages (PSP)

• One using Java Server Pages (JSP)

Figure A-1 shows the JSP version of the text query application.

Figure A-1 The Text Query Application

Figure A-2 shows the results of the text query.

A-1

Figure A-2 Text Query Application with Results

The application returns links to documents containing the search term. Each document has
four links:

• The HTML link displays the document.

Graphics are not displayed in the filtered document.

• The Highlight link displays the document with the search term highlighted.

• The Theme link shows the top 50 themes associated with the document.

The Gist link displays a short summary of the document.

A.2 The PL/SQL Server Pages (PSP) Web Application
The PSP web application is based on PL/SQL server pages. Figure A-3 illustrates how the
browser calls the PSP-stored procedure on Oracle Database through a web server.

This section contains the following topics:

• PSP Web Application Prerequisites

• Building the PSP Web Application

• PSP Web Application Sample Code

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-2

Figure A-3 The PSP Web Application

Browser

Browser calls

PSP stored

procedure

with URL

Web Server maps

URLs to PSP

stored procedure

Database

PSP

Stored

Procedure

PL/SQL

Gateway

Database stores
compiled PSP files
as PL/SQL Stored
Procedures

http://mymachine:7777 / mypath / search_html

idx_search_table

search_table

A.2.1 PSP Web Application Prerequisites
The PSP web application has the following requirements.

• Your Oracle Database must be up and running.

For a connection example, see Oracle Database SQLJ Developer's Guide.

• The SCOTT account is unlocked with its password, and the account has CREATE, RESOURCE,
and CTXAPP privileges.

• The Oracle PL/SQL gateway must be running.

For complete information about setting up the PL/SQL gateway and developing PL/SQL
web applications, see Oracle Database Development Guide.

• A web server such as Apache is up and running and is correctly configured to send
requests to Oracle Database.

For information about installing Apache HTTP Server, see Oracle Database 2 Day + PHP
Developer's Guide.

A.2.2 Building the PSP Web Application
To create PSP web application:

1. Create your text tables.

You must create text tables with the CREATE TABLE command to store your HTML files.
These examples create the output_table, gist_table, and theme_table tables:

CREATE TABLE output_table (query_id NUMBER, document CLOB);
CREATE TABLE gist_table (query_id NUMBER, pov VARCHAR2(80), gist CLOB);
CREATE TABLE theme_table (query_id NUMBER, theme VARCHAR2(2000), weight NUMBER);

2. Load HTML documents into the table by using SQL*Loader.

You must load the text tables with the HTML files. This example uses the loader.ctl control
file to load the files named in loader.dat. The SQL*Loader statement is as follows:

% sqlldr userid=scott/password control=loader.ctl

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-3

3. Create the CONTEXT index.

Index the HTML files by creating a CONTEXT index on the text column, as shown here.
Because you are indexing HTML, this example uses the NULL_FILTER preference type for
no filtering, and it uses the HTML_SECTION_GROUP type, as follows:

create index idx_search_table on search_table(text)
 indextype is ctxsys.context parameters
 ('filter ctxsys.null_filter section group CTXSYS.HTML_SECTION_GROUP');

4. Compile the search_htmlservices package in Oracle Database.

The application must present selected documents to the user. To do so, Oracle Database
must read the documents from the character large object (CLOB) in search_table and
output the result for viewing. To do that, call procedures in the search_htmlservices
package. Compile the file search_htmlservices.sql file at the SQL*Plus prompt as follows:

SQL> @search_htmlservices.sql

Package created.
5. Compile the search_html PSP page with loadpsp.

The search page is invoked by calling search_html.psp from a browser. You compile
search_html in Oracle Database with the loadpsp command-line program as follows:

% loadpsp -replace -user scott/password search_html.psp

The output appears as:

"search_html.psp": procedure "search_html" created.

See Also:

Oracle Database 11g Release 2 (11.2) of Oracle Database Development Guide
for more information about using PSP

6. Configure your web server.

You must configure your web server to accept client PSP requests as a URL. Your web
server forwards these requests to Oracle Database and returns server output to the
browser. See Figure A-3.

You can use the Oracle WebDB web listener or Oracle Application Server, which includes
the Apache web server.

7. Enter the query from a browser.

You can access the query application from a browser by using a URL. You configure the
URL with your web server. An example URL might look like the following:

http://server.example.com:7777/mypath/search_html

The application displays a query entry box in your browser and returns the query results as
a list of HTML links, as shown in Figure A-1 and Figure A-2.

A.2.3 PSP Web Application Sample Code
This section lists the code used to build the example Web application. It includes the following
files:

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-4

• loader.ctl

• loader.dat

• search_htmlservices.sql

• search_html.psp

A.2.3.1 loader.ctl
This example shows a sample loader.ctl file. It is used by sqlldr to load the loader.dat
data file.

LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE search_table
 REPLACE
 FIELDS TERMINATED BY ';'
 (tk INTEGER,
 title CHAR,
 text_file FILLER CHAR,
 text LOBFILE(text_file) TERMINATED BY EOF)

A.2.3.2 loader.dat
This example shows a sample loader.dat file. Each row contains three fields: a reference
number for the document, a label (or "title"), and the name of the HTML document to load into
the text column of search_table. The file has been truncated for this example.

1; Pizza Shredder;Pizza.html
2; Refrigerator w/ Front-Door Auto Cantaloupe Dispenser;Cantaloupe.html
3; Self-Tipping Couch;Couch.html
4; Home Air Dirtier;Mess.html
5; Set of Pet Magnets;Pet.html
6; Esteem-Building Talking Pillow;Snooze.html

A.2.3.3 HTML Files for loader.dat Example
The HTML files that are named and loaded into loader.dat are included here for your
reference.

• Pizza.html

• Cantaloupe.html

• Couch.html

• Mess.html

• Pet.html

• Snooze.html

Pizza.html

<html>
<header>
<title>The Pizza Shredder</title>
</header>
<body>

<h2>The Pizza Shredder</h2>
<h4>Keeping your pizza preferences secure</h4>

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-5

So it's the end of a long evening. Beer has been drunk, pizza has been eaten.
<p>
But there's leftover pizza - what are you going to do with it?

<p>
You could save it for the morning, or you could feed it to your pet. But if neither of
those appeal (maybe you don't have a pet?) then
you'll be throwing it in the trash.

<p>
But wait a minute - anybody could look through your trash, and figure out what kind of
pizza you've been eating! "No big deal," I hear you
say. But it is! After they've figured out that your favorite pizza is pepperoni, then
it's only a short step to figuring out that
your top-secret online banking password is "pepperoni_pizza."

<p>
Get one over the dumpster-divers with our new patent-pending "Mk III Pizza Shredder."
Cross-cut blades ensure that your pizza will be rendered
unreadable, and nobody will be able to identify the original toppings. Also doubles as a
lettuce-shredder and may also be used for removing
unwanted fingertips.

<h2>Model Comparison</h2>

<table border="1">
 <tr><th>Model</th><th>Blades0</th><th>Pizza Thickness</th><th>Price</th></tr>
 <tr><td>Mk I</td><td>Plastic</td><td>1/2 inch (Thin Crust)</td><td>$69.99</td></tr>
 <tr><td>Mk II</td><td>Brass</td><td>1 inch (Deep Pan)</td><td>$99.99</td></tr>
 <tr><td>Mk III</td><td>Carbon Steel</td><td>2 inch (Calzoni)</td><td>$129.99</td></tr>
</table>

</body>
</html>

Cantaloupe.html

<html>
<header>
<title>The Fridge with a Cantaloupe Dispenser</title>
</header>
<body>
<h2>The Fridge with a Cantaloupe Dispenser</h2>
<h4>A nice cold melon at the touch of a button</h4>

Does your refrigerator only have a boring water dispenser in the door?

<p>
When you're hungry for a cantaloupe, do you have to expend valuable energy opening the
fridge door and fishing around amongst the half-used
 packets of pet food?

<p>
Do your friends complain that they wish there was an effortless way to get cantaloupes
from your fridge? Do you overhear them saying they're
tired of always having to rummage through your moldy leftovers and seal-a-meals to get
to the cold melons?

<p>
What you need is the convenience of a built-in cantaloupe dispenser.

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-6

<p>
Impress your friends. Win praise from your neighbors. Become a legendary host!

<p>
Try our new <i>Melonic 2000</i> model!

<p>
Works with honeydews and small crenshaws too.

<p>
Let the <i>Melonic 2000</i> go to work for you. Order one now at your local store.

</body>
</html>

Couch.html

<html>
<header>
<title>The Self-Tipping Couch</title>
</header>
<body>
<h2>The Self-Tipping Couch</h2>

<h4>Sometimes it's hard work to get off the couch</h4>

<p>
Sometimes it's hard work to get your partner, or your pet, off the couch.

<p>
The Self-Tipping Couch solves these problems for you. At the touch of a button it
will deposit the contents of the couch onto the
 floor in front of it.

<p>
The Self-Tipping Couch has been proven to boost communication with stubborn
spouses, children, and relatives.

<p>
You will never again need to yell, "Get off the couch!" Simply press a button and all
those couch hoggers are gently
dumped onto your carpet.

<p>
Get your own Self-Tipping Couch TODAY!

</body>
</html>

Mess.html

<html>
<header>
<title>Home Air Dirtier</title>
</header>
<body>
<h2>Home Air Dirtier</h2>
<h4>Missing your home in the middle of the city?</h4>

<p>
Like many ex-city-dwellers, you might be finding that the air in the countryside is just
too clean.

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-7

<p>
You can remedy this right now with the <i>UltraAppliance</i> Home Air Dirtier.

<p>
Simply insert our patented <i>CityFilth</i> cartridge,
and soon you'll be enjoying the aromas of vehicle fumes and decaying garbage that you're
used to from home.

<p>
Please note: Decaying garbage smells may confuse your pet.
We recommend adding genuine garbage to your environment if this is a concern.

</body>
</html>

Pet.html

<html>
<header>
<title>The Pet Magnet</title>
</header>
<body>
<h2>The Pet Magnet</h2>

<h4>Every pet owner loves to let the pet run free, but that's not always possible</h4>

<p>
Sometimes local laws require pets to be on leashes. Sometimes a free-roaming pet will
ruin a flower bed, leave a "calling card" on the
sidewalk, or chew through another pet. In the case of extremely smart pets, like
chimpanzees or dolphins, the unattended pet may get
away and run up hundreds of dollars of long-distance charges on your phone.

<p>
But leashes aren't always a practical answer. They can be too confining, or too big, or
can tug uncomfortably at the pet's neck. They
may get tangled, or wrapped around poles or passersby. Pets may chew through the leash,
or, again, in the case of extremely smart pets,
burn through it with an acetylene torch. In the case of cats, leashes simply look
ridiculous, as though the pet owner really wanted to
own a dog but got confused at the pet store.

<p>
The Hold 'Em 2000 Pet Magnet from <i>UltraAppliance</i> is the answer. Instead of
old-fashioned leashes, the
Hold 'Em 2000 Pet Magnet keeps your pet under control in a simple way.

<p>
Here's how it works. Dozens of small magnets are placed underneath the coat of your pet,
where they remain painlessly invisible. Any time
you need to recall your animal, you merely activate the handy, massive Hold 'Em 2000 Pet
Magnet electromagnet (fits inside any extremely
oversized purse) and your pet is gently and painlessly dragged to you from up to 100
yards. It's a must-have for any pet owner!

<p>

<blockquote>
<i>
"The Hold 'Em 2000 Pet Magnet not only keeps my dog from running away, but the
electromagnet also comes in very handy if I need to

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-8

find a needle in a haystack"</i>
-- Anonymous Celebrity
</blockquote>
</body>
</html>

Snooze.html

<html>
<header>
<title>Esteem-building Talking Pillow</title>
</header>
<body>
<h2>Esteem-building Talking Pillow</h2>
<h4>Do you feel less than your true potential when you wake up in the morning?</h4>

<p>
We searched for a way to capture the wasted time spent sleeping and to use this precious
time to build motivation, character, and self-esteem.

<p>
We are proud to announce the Esteem-building Talking Pillow. Our pride in this
wonderful invention glows even more because:
<i>We use our own invention every night!</i>

<p>
Only you will know that you are sleeping with the Esteem-building Talking Pillow
because only you can hear the soothing
affirmations that gently enter your brain through the discreet speaker.

<p>
You will wake up refreshed and raring to go with a new sense of pride and enthusiasm for
any task the day may bring.

<p>
Be the first to own the Esteem-building Talking Pillow! Your friends and fellow
workers will be amazed when you no longer
cower in the corner. Now you will join in every conversation.

<p>
Disclaimer: Not responsible for narcissism and hyberbolic statements. May cause
extreme behavior with overuse.

</body>
</html>

A.2.3.4 search_htmlservices.sql
set define off

create or replace package search_htmlServices as
 procedure showHTMLDoc (p_id in numeric);
 procedure showDoc (p_id in varchar2, p_query in varchar2);
end search_htmlServices;
/
show errors;

create or replace package body search_htmlServices as

 procedure showHTMLDoc (p_id in numeric) is
 v_clob_selected CLOB;
 v_read_amount integer;

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-9

 v_read_offset integer;
 v_buffer varchar2(32767);
 begin

 select text into v_clob_selected from search_table where tk = p_id;
 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;
 end showHTMLDoc;

procedure showDoc (p_id in varchar2, p_query in varchar2) is

 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 v_query varchar(2000);
 v_cursor integer;

 begin
 htp.p('<html><title>HTML version with highlighted terms</title>');
 htp.p('<body bgcolor="#ffffff">');
 htp.p('HTML version with highlighted terms');

 begin
 ctx_doc.markup (index_name => 'idx_search_table',
 textkey => p_id,
 text_query => p_query,
 restab => v_clob_selected,
 starttag => '<i>',
 endtag => '</i>');

 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;

 exception
 when others then
 null; --showHTMLdoc(p_id);
 end;
end showDoc;
end search_htmlServices;

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-10

/
show errors

set define on

A.2.3.5 search_html.psp
<%@ plsql procedure="search_html" %>
<%@ plsql parameter="query" default="null" %>
<%! v_results number := 0; %>

<html>
<head>
 <title>search_html Search </title>
</head>
<body>

<%

IF query IS NULL THEN
%>

 <center>
 <form method="post" action="search_html">
 Search for:
 <input type="text" name="query" size="30">
 <input type="submit" value="Search">
 </center>
<hr>

<%
 ELSE
%>

 <p>
 <%!
 color varchar2(6) := 'ffffff';
 %>

 <center>
 <form method="post" action="search_html">
 Search for:
 <input type="text" name="query" size="30" value="<%= query %>">
 <input type="submit" value="Search">
 </form>
 </center>
 <hr>
 <p>

 <%
 -- select statement
 FOR DOC IN (
 SELECT /*+ DOMAIN_INDEX_SORT */ rowid, tk, title, score(1) scr
 FROM search_table
 WHERE CONTAINS(text, query,1) >0
 ORDER BY score(1) DESC
)
 LOOP
 v_results := v_results + 1;
 IF v_results = 1 THEN

 %>

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-11

 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Score</th>
 <th>Title</th>
 </tr>

 <% END IF; %>
 <tr bgcolor="#<%= color %>">
 <td> <%= doc.scr %>% </td>
 <td> <%= doc.title %>
 [<a href="search_htmlServices.showHTMLDoc?p_id=
 <%= doc.tk %>">HTML]
 [<a href="search_htmlServices.showDoc?p_id=
 <%= doc.tk %>&p_query=<%= query %>">Highlight]
 </td>
 </tr>

 <%
 IF (color = 'ffffff') THEN
 color := 'eeeeee';
 ELSE
 color := 'ffffff';
 END IF;

 END LOOP;
 %>

 </table>
 </center>

<%
 END IF;
%>
</body>
</html>

A.3 The Java Server Pages (JSP) Web Application
Creating the JSP-based web application involves most of the same steps as those used in
building the PSP-based application. See "Building the PSP Web Application" for more
information. You can use the same loader.dat and loader.ctl files. However, with the JSP-
based application, you do not need to do the following:

• Compile the search_htmlservices package

• Compile the search_html PSP page with loadpsp
This section contains the following topics:

• JSP Web Application Prerequisites

• JSP Web Application Sample Code

A.3.1 JSP Web Application Prerequisites
The JSP web application has the following requirements:

• Your Oracle Database must be up and running.

Appendix A
The Java Server Pages (JSP) Web Application

A-12

• You have a web server such as Apache Tomcat, which can run JavaServer Pages (JSP)
scripts that connect to the Oracle Database by using Java Database Connectivity (JDBC).

See Also:

Oracle Database 2 Day + PHP Developer's Guide for information about installing
Apache HTTP Server

A.3.2 JSP Web Application Sample Code
This section lists the Java code used to build the example web application, as shown in the
TextSearchApp.jsp file.

<%@page language="java" pageEncoding="utf-8" contentType="text/html; charset=utf-8" %>
<%@ page import="java.sql.*, java.util.*, java.net.*,
 oracle.jdbc.*, oracle.sql.*, oracle.jsp.dbutil.*" %>

<%
// Change these details to suit your database and user details

String connStr = "jdbc:oracle:thin:@//servername:1521/pdb1";
String dbUser = "scott";
String dbPass = "tiger";

// The table we're running queries against is called SEARCH_TABLE.
// It must have columns:
// tk number primary key, (primary key is important for document services)
// title varchar2(2000),
// text clob
// There must be a CONTEXT index called IDX_SEARCH_TABLE on the text column

request.setCharacterEncoding("UTF-8");

java.util.Properties info=new java.util.Properties();
Connection conn = null;
ResultSet rset = null;
OracleCallableStatement callStmt = null;
Statement stmt = null;
String userQuery = null;
String myQuery = null;
String action = null;
String theTk = null;
URLEncoder myEncoder;
int count=0;
int loopNum=0;
int startNum=0;

userQuery = request.getParameter("query");
action = request.getParameter("action");
theTk = request.getParameter("tk");

if (action == null) action = "";

// Connect to database

try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", dbUser);
 info.put ("password", dbPass);
 conn = DriverManager.getConnection(connStr,info);
}
 catch (SQLException e) {
%> Error: <%= e %><p> <%

Appendix A
The Java Server Pages (JSP) Web Application

A-13

 }

if (action.equals("doHTML")) {
 // Directly display the text of the document
 try {

 // not attempting to share the output table for this example, we'll truncate it each time
 conn.createStatement().execute("truncate table OUTPUT_TABLE");

 String sql = "{ call ctx_doc.filter(index_name=>'IDX_SEARCH_TABLE', textkey=> '" + theTk + "',
restab=>'OUTPUT_TABLE',
 plaintext=>false) }";
 PreparedStatement s = conn.prepareCall(sql);
 s.execute();

 sql = "select document from output_table where rownum = 1";
 stmt = conn.createStatement();
 rset = stmt.executeQuery(sql);

 rset.next();
 oracle.sql.CLOB res = (oracle.sql.CLOB) rset.getClob(1);
 // should fetch from clob piecewise, but to keep it simple we'll just fetch 32K to a string
 String txt = res.getSubString(1, 32767);
 out.println(txt);
 }
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }
}
else if (action.equals("doHighlight")) {
 // Display the text of the document with highlighting from the "markup" function
 try {

 // not attempting to share the output table for this example, we'll truncate it each time
 conn.createStatement().execute("truncate table OUTPUT_TABLE");

 String sql = "{ call ctx_doc.markup(index_name=>'IDX_SEARCH_TABLE', textkey=> '" + theTk + "',
text_query => '" + userQuery + "',
 restab=>'OUTPUT_TABLE', plaintext=>false, starttag => '<i>',
endtag => '</i>') }";
 PreparedStatement s = conn.prepareCall(sql);
 s.execute();

 sql = "select document from output_table where rownum = 1";
 stmt = conn.createStatement();
 rset = stmt.executeQuery(sql);

 rset.next();
 oracle.sql.CLOB res = (oracle.sql.CLOB) rset.getClob(1);
 // should fetch from clob piecewise, but to keep it simple we'll just fetch 32K to a string
 String txt = res.getSubString(1, 32767);
 out.println(txt);
 }
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }
}

else if (action.equals("doThemes")) {
 // Display the text of the document with highlighting from the "markup" function
 try {

 // not attempting to share the output table for this example, we'll truncate it each time
 conn.createStatement().execute("truncate table THEME_TABLE");

 String sql = "{ call ctx_doc.themes(index_name=>'IDX_SEARCH_TABLE', textkey=> '" + theTk + "',
restab=>'THEME_TABLE') }";
 PreparedStatement s = conn.prepareCall(sql);
 s.execute();

Appendix A
The Java Server Pages (JSP) Web Application

A-14

 sql = "select * from (select theme, weight from theme_table order by weight desc) where
rownum <= 20";
 stmt = conn.createStatement();
 rset = stmt.executeQuery(sql);
 int weight = 0;
 String theme = "";
%>
 <h2>The top 20 themes of the document</h2>
 <table BORDER=1 CELLSPACING=0 CELLPADDING=0"
 <tr bgcolor="#CCCC99">
 <th>Theme</th>
 <th>Weight</th>
 </tr>
<%
 while (rset.next()) {

 theme = rset.getString(1);
 weight = (int)rset.getInt(2);
%>
 <tr bgcolor="ffffe0">
 <td align="center"> <%= theme %> </td>
 <td align="center"> <%= weight %></td>
 </tr>
<%
 }

%>
</table>
<%
 }
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }
}
else if (action.equals("doGists")) {
 // Display the text of the document with highlighting from the "markup" function
 try {

 // not attempting to share the output table for this example, we'll truncate it each time
 conn.createStatement().execute("truncate table GIST_TABLE");

 String sql = "{ call ctx_doc.gist(index_name=>'IDX_SEARCH_TABLE', textkey=> '" + theTk + "',
restab=>'GIST_TABLE', query_id=>1) }";
 PreparedStatement s = conn.prepareCall(sql);
 s.execute();

 sql = "select pov, gist from gist_table where pov = 'GENERIC' and query_id = 1";
 stmt = conn.createStatement();
 rset = stmt.executeQuery(sql);
 String pov = "";
 String gist = "";

 while (rset.next()) {

 pov = rset.getString(1);
 oracle.sql.CLOB gistClob = (oracle.sql.CLOB) rset.getClob(2);

 out.println("<h3>Document Gist for Point of View: " + pov + "</h3>");
 gist = gistClob.getSubString(1, 32767);
 out.println(gist);

 }

%>
</table>
<%
 }
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }

Appendix A
The Java Server Pages (JSP) Web Application

A-15

}

if ((action.equals("")) && ((userQuery == null) || (userQuery.length() == 0))) {
%>
 <html>
 <title>Text Search</title>
 <body>
 <table width="100%">
 <tr bgcolor="#336699">
 <td><font face="arial" align="left"
 color="#CCCC99" size="+2">Text Search</td>
 </tr>
 </table>
 <center>
 <form method = post>
 Search for:
 <input type="text" name="query" size = "30">
 <input type="submit" value="Search">
 </form>
 </center>
 </body>
 </html>
<%
}
else if (action.equals("")) {
%>
 <html>
 <title>Text Search Result Page</title>
 <body text="#000000" bgcolor="#FFFFFF" link="#663300"
 vlink="#996633" alink="#ff6600">
 <table width="100%">
 <tr bgcolor="#336699">
 <td><font face="arial" align="left"
 color="#CCCC99" size=+2>Text Search</td>
 </tr>
 </table>
 <center>
 <form method = post action="TextSearchApp.jsp">
 Search for:
 <input type=text name="query" value="<%= userQuery %>" size = 30>
 <input type=submit value="Search">
 </form>
 </center>
<%
 myQuery = URLEncoder.encode(userQuery);
 try {

 stmt = conn.createStatement();

 String numStr = request.getParameter("sn");
 if(numStr!=null)
 startNum=Integer.parseInt(numStr);
 String theQuery = translate(userQuery);

 callStmt =(OracleCallableStatement)conn.prepareCall("begin "+
 "?:=ctx_query.count_hits(index_name=>'IDX_SEARCH_TABLE', "+
 "text_query=>?"+
 "); " +
 "end; ");
 callStmt.setString(2,theQuery);
 callStmt.registerOutParameter(1, OracleTypes.NUMBER);
 callStmt.execute();
 count=((OracleCallableStatement)callStmt).getNUMBER(1).intValue();
 if(count>=(startNum+20)){
%>
 Results
 <%=startNum+1%> - <%=startNum+20%> of <%=count%> matches
<%
 }
 else if(count>0){

Appendix A
The Java Server Pages (JSP) Web Application

A-16

%>
 Results
 <%=startNum+1%> - <%=count%> of <%=count%> matches
<%
 }
 else {
%>
 No match found
<%
 }
%>
 <table width="100%">
 <TR ALIGN="RIGHT">
<%
 if((startNum>0)&(count<=startNum+20))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum==0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum+20
 %>&query=<%=myQuery %>">next20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum>0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%
 }
%>
 </TR>
 </table>
<%
 String ctxQuery =
 " select /*+ FIRST_ROWS */ " +
 " tk, TITLE, score(1) scr, " +
 " ctx_doc.snippet ('IDX_SEARCH_TABLE', tk, '" + theQuery + "') " +
 " from search_table " +
 " where contains(TEXT, '"+theQuery+"',1) > 0 " +
 " order by score(1) desc";
 rset = stmt.executeQuery(ctxQuery);
 String tk = null;
 String[] colToDisplay = new String[1];
 int myScore = 0;
 String snippet = "";
 int items = 0;
 while (rset.next()&&items< 20) {
 if(loopNum>=startNum)
 {
 tk = rset.getString(1);
 colToDisplay[0] = rset.getString(2);
 myScore = (int)rset.getInt(3);
 snippet = rset.getString(4);
 items++;
 if (items == 1) {
%>

Appendix A
The Java Server Pages (JSP) Web Application

A-17

 <center>
 <table BORDER=1 CELLSPACING=0 CELLPADDING=0 width="100%"
 <tr bgcolor="#CCCC99">
 <th>Score</th>
 <th>TITLE</th>
 <th>Snippet</th>
 <th> <font face="arial"
 color="#336699">Document Services</th>
 </tr>
<% } %>
 <tr bgcolor="#FFFFE0">
 <td ALIGN="CENTER"> <%= myScore %>%</td>
 <td> <%= colToDisplay[0] %> </td>
 <td> <%= snippet %> </td>
 <td>
 <a href="TextSearchApp.jsp?action=doHTML&tk=<%= tk %>">HTML
 <a href="TextSearchApp.jsp?action=doHighlight&tk=<%= tk %>&query=<%= theQuery
%>">Highlight
 <a href="TextSearchApp.jsp?action=doThemes&tk=<%= tk %>&query=<%= theQuery %>">Themes

 <a href="TextSearchApp.jsp?action=doGists&tk=<%= tk %>">Gist
 </td>
 </tr>
<%
 }
 loopNum++;
 }
} catch (SQLException e) {
%>
 Error: <%= e %><p>
<%
} finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }
%>
 </table>
 </center>
 <table width="100%">
 <TR ALIGN="RIGHT">
<%
 if((startNum>0)&(count<=startNum+20))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum==0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum>0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%

Appendix A
The Java Server Pages (JSP) Web Application

A-18

 }
%>
 </TR>
 </table>
 </body></html>
<%}

%>
<%!
 public String translate (String input)
 {
 Vector reqWords = new Vector();
 StringTokenizer st = new StringTokenizer(input, " '", true);
 while (st.hasMoreTokens())
 {
 String token = st.nextToken();
 if (token.equals("'"))
 {
 String phrase = getQuotedPhrase(st);
 if (phrase != null)
 {
 reqWords.addElement(phrase);
 }
 }
 else if (!token.equals(" "))
 {
 reqWords.addElement(token);
 }
 }
 return getQueryString(reqWords);
 }

 private String getQuotedPhrase(StringTokenizer st)
 {
 StringBuffer phrase = new StringBuffer();
 String token = null;
 while (st.hasMoreTokens() && (!(token = st.nextToken()).equals("'")))
 {
 phrase.append(token);
 }
 return phrase.toString();
 }

 private String getQueryString(Vector reqWords)
 {
 StringBuffer query = new StringBuffer("");
 int length = (reqWords == null) ? 0 : reqWords.size();
 for (int ii=0; ii < length; ii++)
 {
 if (ii != 0)
 {
 query.append(" & ");
 }
 query.append("{");
 query.append(reqWords.elementAt(ii));
 query.append("}");
 }
 return query.toString();
 }
%>

Appendix A
The Java Server Pages (JSP) Web Application

A-19

B
CATSEARCH Query Application

This appendix describes how to build a simple web search application by using the CATSEARCH
index type.

This appendix contains the following topics:

• CATSEARCH Web Query Application Overview

• The JSP Web Application

B.1 CATSEARCH Web Query Application Overview
The CTXCAT index type is well suited for merchandise catalogs that have short, descriptive text
fragments and associated structured data. This appendix describes how to build a browser-
based bookstore catalog that users can search to find titles and prices.

This application is written in JavaServer Pages (JSP).

B.2 The JSP Web Application
This application is based on JavaServer pages (JSP) and has the following requirements:

• Your Oracle Database must be up and running.

• A web server such as Apache Tomcat, which is can run JSP scripts that connect to the
Oracle Database by using Java Database Connectivity (JDBC).

See Also:

Oracle Database 2 Day + PHP Developer's Guide for information about installing
Apache HTTP Server

This section contains the following topics:

• Building the JSP Web Application

• JSP Web Application Sample Code

B.2.1 Building the JSP Web Application
This application models an online bookstore, where you can look up book titles and prices.

To create the JavaServer Pages (JSP) web application:

1. Create your table.

You must create the table to store such book information as title, publisher, and price.
From SQL*Plus:

B-1

sqlplus>create table book_catalog (
 id numeric,
 title varchar2(80),
 publisher varchar2(25),
 price numeric)

2. Load data by using SQL*Loader.

Load the book data from the operating system command line with SQL*Loader:

% sqlldr userid=ctxdemo/ctxdemo control=loader.ctl
3. Create the index set.

You can create the index set from SQL*Plus:

sqlplus>begin
 ctx_ddl.create_index_set('bookset');
 ctx_ddl.add_index('bookset','price');
 ctx_ddl.add_index('bookset','publisher');
 end;
/

4. Create the CTXCAT index.

You can create the CTXCAT index from SQL*Plus as follows:

sqlplus>create index book_idx on book_catalog (title)
 indextype is ctxsys.ctxcat
 parameters('index set bookset');

5. Try a simple search by using CATSEARCH.
You can test the newly created index in SQL*Plus as follows:

sqlplus>select id, title from book_catalog
 where catsearch(title,'Java','price > 10 order by price') > 0

6. Copy the catalogSearch.jsp file to your JSP directory.

When you do so, you can access the application from a browser. The URL is http://
localhost:port/path/catalogSearch.jsp.
The application displays a query field in your browser and returns the query results as a list
of HTML links. See Figure B-1.

Appendix B
The JSP Web Application

B-2

Figure B-1 Screenshot of the Web Query Application

B.2.2 JSP Web Application Sample Code
This section lists the code used to build the example web application. It includes the following
files:

• loader.ctl

• loader.dat

• catalogSearch.jsp

See Also:

http://www.oracle.com/technetwork/indexes/downloads/index.html

Appendix B
The JSP Web Application

B-3

http://www.oracle.com/technetwork/indexes/downloads/index.html

B.2.2.1 loader.ctl
 LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE book_catalog
 REPLACE
 FIELDS TERMINATED BY ';'
 (id, title, publisher, price)

B.2.2.2 loader.dat
1; A History of Goats; SPINDRIFT BOOKS; 50
2; Robust Recipes Inspired by Eating Too Much; SPINDRIFT BOOKS; 28
3; Atlas of Greenland History; SPINDRIFT BOOKS; 35
4; Bed and Breakfast Guide to Greenland; SPINDRIFT BOOKS; 37
5; Quitting Your Job and Running Away; SPINDRIFT BOOKS; 25
6; Best Noodle Shops of Omaha; SPINDRIFT BOOKS; 28
7; Complete Book of Toes; SPINDRIFT BOOKS; 16
8; Complete Idiot's Guide to Nuclear Technology; SPINDRIFT BOOKS; 28
9; Java Programming for Woodland Animals; BIG LITTLE BOOKS; 10
10; Emergency Surgery Tips and Tricks; SPOT-ON PUBLISHING; 10
11; Programming with Your Eyes Shut; KLONDIKE BOOKS; 10
12; English in Twelve Minutes; WRENCH BOOKS 11
13; Spanish in Twelve Minutes; WRENCH BOOKS 11
14; C++ Programming for Woodland Animals; CALAMITY BOOKS; 12
15; Oracle Internet Application Server, Enterprise Edition; KANT BOOKS; 12
16; Oracle Internet Developer Suite; SPAMMUS BOOK CO;13
17; Telling the Truth to Your Pets; IBEX BOOKS INC; 13
18; Go Ask Alice's Restaurant; HUMMING BOOKS; 13
19; Life Begins at 93; CALAMITY BOOKS; 17
20; Python Programming for Snakes; BALLAST BOOKS; 14
21; The Second-to-Last Mohican; KLONDIKE BOOKS; 14
22; Eye of Horus; An Oracle of Ancient Egypt; BIG LITTLE BOOKS; 15
23; Introduction to Sitting Down; IBEX BOOKS INC; 15

B.2.2.3 catalogSearch.jsp
<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>
<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
<jsp:setProperty name="name" property="value" param="v_query" />
</jsp:useBean>

<%
 String connStr="jdbc:oracle:thin:@machine-domain-name:1521:dev";

 java.util.Properties info = new java.util.Properties();

 Connection conn = null;
 ResultSet rset = null;
 Statement stmt = null;

 if (name.isEmpty()) {

%>
 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post>
 Search for book title:
 <input type=text name="v_query" size=10>

Appendix B
The JSP Web Application

B-4

 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="HUMMING BOOKS">HUMMING BOOKS
 <option value="WRENCH BOOKS">WRENCH BOOKS
 <option value="SPOT-ON PUBLISHING">SPOT-ON PUBLISHING
 <option value="SPINDRIFT BOOKS">SPINDRIFT BOOKS
 <option value="KLONDIKE BOOKS">KLONDIKE BOOKS
 <option value="CALAMITY BOOKS">CALAMITY BOOKS
 <option value="IBEX BOOKS INC">IBEX BOOKS INC
 <option value="BIG LITTLE BOOKS">BIG LITTLE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" size=2>
 <input type=submit value="Search">
 </form>
 </center>
 <hr>
 </body>
 </html>

<%
 }
 else {

 String v_query = request.getParameter("v_query");
 String v_publisher = request.getParameter("v_publisher");
 String v_price = request.getParameter("v_price");
 String v_op = request.getParameter("v_op");
%>

 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post action="catalogSearch.jsp">
 Search for book title:
 <input type=text name="v_query" value=
 <%= v_query %>
 size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="HUMMING BOOKS">HUMMING BOOKS
 <option value="WRENCH BOOKS">WRENCH BOOKS
 <option value="SPOT-ON PUBLISHING">SPOT-ON PUBLISHING
 <option value="SPINDRIFT BOOKS">SPINDRIFT BOOKS
 <option value="KLONDIKE BOOKS">KLONDIKE BOOKS
 <option value="CALAMITY BOOKS">CALAMITY BOOKS
 <option value="IBEX BOOKS INC">IBEX BOOKS INC
 <option value="BIG LITTLE BOOKS">BIG LITTLE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" value=
 <%= v_price %> size=2>
 <input type=submit value="Search">
 </form>
 </center>

<%

Appendix B
The JSP Web Application

B-5

 try {

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", "ctxdemo");
 info.put ("password","ctxdemo");
 conn = DriverManager.getConnection(connStr,info);

 stmt = conn.createStatement();
 String theQuery = request.getParameter("v_query");
 String thePrice = request.getParameter("v_price");

 // select id,title
 // from book_catalog
 // where catsearch (title,'Java','price >10 order by price') > 0

 // select title
 // from book_catalog
 // where catsearch(title,'Java','publisher = ''CALAMITY BOOKS''
 and price < 40 order by price')>0

 String myQuery = "select title, publisher, price from book_catalog
 where catsearch(title, '"+theQuery+"',
 'publisher = ''"+v_publisher+"'' and price "+v_op+thePrice+"
 order by price') > 0";
 rset = stmt.executeQuery(myQuery);

 String color = "ffffff";

 String myTitle = null;
 String myPublisher = null;
 int myPrice = 0;
 int items = 0;

 while (rset.next()) {
 myTitle = (String)rset.getString(1);
 myPublisher = (String)rset.getString(2);
 myPrice = (int)rset.getInt(3);
 items++;

 if (items == 1) {
%>
 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Title</th>
 <th>Publisher</th>
 <th>Price</th>
 </tr>
<%
 }
%>
 <tr bgcolor="#<%= color %>">
 <td> <%= myTitle %></td>
 <td> <%= myPublisher %></td>
 <td> $<%= myPrice %></td>
 </tr>
<%
 if (color.compareTo("ffffff") == 0)
 color = "eeeeee";
 else
 color = "ffffff";

 }

 } catch (SQLException e) {

%>

 Error: <%= e %><p>

Appendix B
The JSP Web Application

B-6

<%

 } finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }

%>
 </table>
 </center>
 </body>
 </html>
<%
 }
%>

Appendix B
The JSP Web Application

B-7

C
Custom Index Preference Examples

This appendix describes a few custom index preference examples.

This appendix contains the following topics:

• Datastore Examples

• NULL_FILTER Example: Indexing HTML Documents

• PROCEDURE_FILTER Example

• BASIC_LEXER Example: Setting Printjoin Characters

• MULTI_LEXER Example: Indexing a Multi-Language Table

• BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

• BASIC_WORDLIST Example: Enabling Wildcard Index

C.1 Datastore Examples
You can use datastore preferences to specify how your text is stored. These are the examples
for setting some of the datastore preference types.

Specifying DIRECT_DATASTORE

This example creates a table with a CLOB column to store text data. It then populates two rows
with text data and indexes the table by using the system-defined CTXSYS.DEFAULT_DATASTORE
preference, which uses the DIRECT_DATASTORE preference type.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555,'this text will be indexed');
insert into mytable values(111556,'this is a default datastore example');
commit;

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('DATASTORE CTXSYS.DEFAULT_DATASTORE');

Specifying MULTI_COLUMN_DATASTORE

This example creates a MULTI_COLUMN_DATASTORE datastore preference called my_multi on the
three text columns to be concatenated and indexed:

begin
ctx_ddl.create_preference('my_multi', 'MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('my_multi', 'columns', 'column1, column2, column3');
end;

Specifying FILE_DATASTORE

This example creates a data storage preference by using FILE_DATASTORE to specify that the
files to be indexed are stored in the operating system. The example uses
CTX_DDL.SET_ATTRIBUTE to set the PATH attribute to the /docs directory.

C-1

begin
ctx_ddl.create_preference('mypref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('mypref', 'PATH', '/docs');
end;

Note:

Starting with Oracle Database 19c, the Oracle Text type FILE_DATASTORE is
deprecated. Use DIRECTORY_DATASTORE instead.

Specifying DIRECTORY_DATASTORE

This example creates a DIRECTORY_DATASTORE preference called MYDS. The example uses
CTX_DDL.SET_ATTRIBUTE to set the DIRECTORY attribute to myhome, which is the Oracle directory
object.

exec ctx_ddl.create_preference('MYDS','DIRECTORY_DATASTORE')
exec ctx_ddl.set_attribute('MYDS','DIRECTORY','myhome')

Specifying URL_DATASTORE

This example creates a URL_DATASTORE preference called my_url to which the HTTP_PROXY,
NO_PROXY, and TIMEOUT attributes are set. The TIMEOUT attribute is set to 300 seconds. The
defaults are used for the attributes that are not set.

begin
 ctx_ddl.create_preference('my_url','URL_DATASTORE');
 ctx_ddl.set_attribute('my_url','HTTP_PROXY','www-proxy.us.example.com');
 ctx_ddl.set_attribute('my_url','NO_PROXY','us.example.com');
 ctx_ddl.set_attribute('my_url','TIMEOUT','300');
end;

Note:

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK_DATASTORE instead.

Specifying NETWORK_DATASTORE

This example creates a NETWORK_DATASTORE preference called NETWORK_PREF to which the
HTTP_PROXY, NO_PROXY, and TIMEOUT attributes are set. The TIMEOUT attribute is set to 300
seconds. The defaults are used for the attributes that are not set.

begin
 ctx_ddl.create_preference('NETWORK_PREF','NETWORK_DATASTORE');
 ctx_ddl.set_attribute('NETWORK_PREF','HTTP_PROXY','www-
proxy.us.example.com');
 ctx_ddl.set_attribute('NETWORK_PREF','NO_PROXY','us.example.com');
 ctx_ddl.set_attribute('NETWORK_PREF','TIMEOUT','300');
end;
/

Appendix C
Datastore Examples

C-2

C.2 NULL_FILTER Example: Indexing HTML Documents
If your document set is entirely in HTML, then Oracle recommends that you use NULL_FILTER
in your filter preference because it does no filtering.

For example, to index an HTML document set, specify the system-defined preferences for
NULL_FILTER and HTML_SECTION_GROUP:
create index myindex on docs(htmlfile) indextype is ctxsys.context
 parameters('filter ctxsys.null_filter
 section group ctxsys.html_section_group');

C.3 PROCEDURE_FILTER Example
Consider a CTXSYS.NORMALIZE filter procedure that you define with the following signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, set up your filter preference:

begin
ctx_ddl.create_preference('myfilt', 'procedure_filter');
ctx_ddl.set_attribute('myfilt', 'procedure', 'normalize');
ctx_ddl.set_attribute('myfilt', 'input_type', 'clob');
ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('myfilt', 'rowid_parameter', 'TRUE');
ctx_ddl.set_attribute('myfilt', 'charset_parameter', 'TRUE');
end;

C.4 BASIC_LEXER Example: Setting Printjoin Characters
Printjoin characters are nonalphanumeric characters that are to be included in index tokens, so
that words such as vice-president are indexed as vice-president.

The following example sets printjoin characters to be the hyphen and underscore with
BASIC_LEXER:
begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
end;

Create the index with printjoins characters set as previously shown:

create index myindex on mytable (docs)
 indextype is ctxsys.context
 parameters ('LEXER mylex');

C.5 MULTI_LEXER Example: Indexing a Multilanguage Table
Use the MULTI_LEXER preference type to index a column containing documents in different
languages. For example, use this preference type when your text column stores documents in
English, German, and French.

The first step is to create the multilanguage table with a primary key, a text column, and a
language column:

Appendix C
NULL_FILTER Example: Indexing HTML Documents

C-3

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with some German and Japanese
documents. To handle the three languages, you must create three sub-lexers, one for English,
one for German, and one for Japanese:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribute('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default by using
CTX_DDL.ADD_SUB_LEXER:
ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Add the German and Japanese lexers in their respective languages with the
CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is expressed in the
standard ISO 639-2 language codes, and add those codes as alternate values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Create the globalx index, specifying the multi-lexer preference and the language column in
the parameter clause:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix
Indexing

This example improves performance for wildcard queries by setting the wordlist preference for
prefix and substring indexing. For prefix indexing, the example creates token prefixes between
three and four characters long.

begin
ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH', '3');
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', '4');
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');
end;

Appendix C
BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

C-4

C.7 BASIC_WORDLIST Example: Enabling Wildcard Index
Wildcard indexing supports fast and efficient wildcard search for all wildcard expressions.

This example creates a wordlist preference and enables the wildcard (“K-gram”) index. By
default, the K-grams have a K value of 3:
begin
 ctx_ddl.create_preference('mywordlist','BASIC_WORDLIST');
 ctx_ddl.set_attribute('mywordlist','WILDCARD_INDEX','TRUE');
end;

See Also:

Oracle Text Reference for more information about the BASIC_WORDLIST attributes
table and the WILDCARD_INDEX and WILDCARD_INDEX_K attributes

Appendix C
BASIC_WORDLIST Example: Enabling Wildcard Index

C-5

Glossary

alternate spelling
The use of spelling variations in German, Swedish, and Dutch; you can index these variations
if you specify the BASIC_LEXER attribute named ALTERNATE_SPELLING.

attribute
An optional parameter associated with a preference. For example, the BASIC_LEXER preference
includes the base_letter attribute, which can have either the value of YES (perform base-letter
conversions) or NO (do not perform such conversions). Set attributes with the
CTX_DDL.SET_ATTRIBUTE procedure or with the ALTER INDEX statement. See also: preference,
base-letter conversion.

attribute section
A user-defined section, that represents an attribute of an XML document, such as AUTHOR or
TITLE. Add attribute sections to section groups with CTX_DDL.ADD_ATTR_SECTION or with the
ALTER INDEX statement. See also: AUTO_SECTION_GROUP, section,
XML_SECTION_GROUP.

AUTO_SECTION_GROUP
A section group used to automatically crate a zone section for each start-tag and end-tag pair
in an XML document; attribute sections are automatically created for XML tags that have
attributes. See also: attribute section, section, section group, XML_SECTION_GROUP, zone
section.

base-letter conversion
The conversion of a letter with alternate forms (such as accents, umlauts, or cedillas) to its
basic form (for example, without an accent).

BASIC_SECTION_GROUP
A section group used to define sections where the start and end tags are of the form <tag> and
</tag>. It does not support nonbasic tags, such as comment tags or those with attributes or
unbalanced parentheses. See also: HTML_SECTION_GROUP, section, section group.

Glossary-1

case
The capitalization of a word or letter, where uppercase letters are capitals (M instead of m, for
example). Not all languages have case. Mixed-case indexing is supported for some languages,
notably those of Western Europe.

classification
Also known as document classification. The conceptual separation of source documents into
groups, or clusters, based on their content. For example, a group of documents might be
separated into clusters for medicine, finance, and sports.

Oracle Text includes rule-based classification, in which a person writes the rules for classifying
documents (in the form of queries), and Oracle Text performs the document classification
according to the rules; supervised classification, in which Oracle Text creates classification
rules based on a set of sample documents; and clustering (also known as unsupervised
classification), in which the clusters and rules are both created by Oracle Text.

clustering
Also known as unsupervised classification. See: classification.

composite domain index
Also known as CDI type of index. An Oracle Text index that not only indexes and processes a
specified text column, but also indexes and processes FILTER BY and ORDER BY structured
columns that are specified during index creation. See also: domain index.

CONTEXT index
The basic type of Oracle Text index; an index on a text column. A CONTEXT index is useful when
your source text consists of many large, coherent documents. Applications making use of
CONTEXT indexes use the CONTAINS query operator to retrieve text.

CTXAPP role
A role for application developers that enables a user to create Oracle Text indexes and index
preferences and to use PL/SQL packages. This role must be granted to Oracle Text users.

CTXCAT index
A combined index on a text column and one or more other columns. Typically used to index
small documents or text fragments, such as item names, prices, and descriptions typically
found in catalogs. The CTXCAT index typically has better mixed-query performance than the
CONTEXT index.

Glossary

Glossary-2

Applications query this index with the CATSEARCH operator. This index is transactional, which
means that it automatically updates itself when you make inserts, updates, or deletes to the
base table.

CTXRULE index
Used to build a document classification application. The CTXRULE index is an index created on
a table of queries, where the queries serve as rules to define the classification criteria. This
index is queried with the MATCHES operator.

CTXSYS user
Created at install time. The CTXSYS user can view all indexes; synchronize all indexes; run
ctxkbtc, the knowledge base extension compiler; query all system-defined views; and perform
all tasks of a user with the CTXAPP role.

datastore
The method of storing text. The method is determined by specifying a storage preference of a
particular type. For example, the DIRECT_DATASTORE type stores data directly into the text
column, whereas the URL_DATASTORE specifies that data is stored externally in a location
specified by a URL.

document services
Services that work at the document level, such as highlighting query terms in a document,
marking up a document, or producing a document snippet during the query operation. The
CTX_DOC PL/SQL package provides procedures and functions for requesting document
services. See also: knowledge base.

domain index
An Oracle Database domain index that indexes and processes a specified text column. See
also: composite domain index.

endjoin
One or more nonalphanumeric characters that, when encountered as the last character in a
token, explicitly identify the end of the token. The characters, as well as any startjoin
characters that immediately follow it, are included in the Oracle Text index entry for the token.
For example, if you specify ++ as an endjoin, then C++ is recognized and indexed as a single
token. See also: printjoin, skipjoin, startjoin.

entity extraction
The identification and extraction of named entities within a text. Entities are mainly nouns and
noun phrases, such as names, places, times, coded strings (such as phone numbers and zip
codes), percentages, and monetary amounts. The CTX_ENTITY package implements entity

Glossary

Glossary-3

extraction with a built-in dictionary and set of rules for English text. You can use user-provided
add-on dictionaries and rule sets to extend the capabilities for English or for other languages.

field section
Similar to a zone section, with the main difference being that you can index the content
between the start and end tags of a field section separately from the rest of the document. This
separate indexing enables field section content to be "hidden" from a normal query. (The
INPATH and WITHIN operators may be used to find the term in such a section.) Field sections
are useful when a section occurs once in a document, such as a field in a news header. Add
field sections to section groups with the CTX_DDL.ADD_FIELD_SECTION procedure or with the
ALTER INDEX statement. See also: INPATH operator, section, WITHIN operator, zone section.

filtering
A step in the Oracle Text index-creation process. Depending on the filtering preferences
associated with the creation of the index, one of three things happens during filtering:
Formatted documents are filtered into marked-up text; text is converted from a non-database
character set to a database character set; or no filtering takes place (HTML, XML, and plain-
text documents are not filtered).

fuzzy matching
Expanded query that includes words which are spelled similarly to the specified term. This type
of expansion is helpful for finding more accurate results when there are frequent misspellings
in a document set. Invoke fuzzy matching with the FUZZY query operator.

HASPATH operator
A CONTAINS query operator used to find XML documents that contain a section path exactly as
specified in the query. See also: PATH_SECTION_GROUP.

highlighting
A generated version of a document or document fragments, with query terms displayed or
called out in a special way.

Highlighting takes three forms. The CTX_DOC.MARKUP procedure returns a document with the
query term surrounded by plain-text or HTML tags. The CTX_DOC.HIGHLIGHT procedure returns
offsets for the query terms, so that the user can mark up the document. The CTX_DOC.SNIPPET
procedure produces a concordance, with the query term displayed in fragments of surrounding
text. See also: markup.

HTML_SECTION_GROUP
A section group type used for defining sections in HTML documents. See also:
BASIC_SECTION_GROUP, section, section group.

Glossary

Glossary-4

INPATH operator
A CONTAINS query operator used to search within tags, or paths, of an XML document. It
enables more generic path denomination than the WITHIN operator. See also: WITHIN
operator.

Key Word in Context (KWIC)
A presentation of a query term with the text that surrounds it in the source document. This
presentation may consist of a single instance of the query term, several instances, or every
instance in the source document. The CTX_DOC.SNIPPET procedure produces such a
presentation.

knowledge base
A hierarchical tree of concepts used for theme indexing, ABOUT queries, and derived themes for
document services. You can create your own knowledge base or you can extend the standard
Oracle Text knowledge base.

lexer
A software program that breaks source text into tokens—usually words—in accordance with a
specified language. To extract tokens, the lexer uses parameters as defined by a lexer
preference. These parameters include the definitions for the characters that separate tokens,
such as whitespace, and to the rules for converting text to all uppercase or not. When you
enable theme indexing, the lexer analyzes text to create theme tokens.

When an application needs to index a table containing documents in more than one language,
it can use MULTI_LEXER (the multilingual lexer) and create sub-lexers to handle each language.
Add each sub-lexer to the main multi-lexer with the CTX_DDl.ADD_SUB_LEXER procedure. See
also: sub-lexer.

markup
A form of highlighting. The CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP procedures take a
query term and a document, and return the document with the query terms marked up; that is,
surrounded either by plain-text characters or HTML tags. You can use predefined markup tags
or specify your own. In comparison, CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT
return offsets for query terms, so that you can add your own highlighting tags. See also:
highlighting.

MDATA
See: metadata.

Glossary

Glossary-5

MDATA section
User-defined index metadata. Using this metadata can speed up mixed CONTAINS queries. See
also: metadata, mixed query, section.

metadata
Information about a document that is not part of a document's regular content. For example, if
an HTML document contains <author>Smith</author>, author is considered the metadata
type and Smith is considered the value for author.

Use the CTX_DDL.ADD_MDATA_SECTION procedure to add sections containing metadata, known
as MDATA sections, to a document. Metadata can speed up mixed queries. Such queries can be
made with the MDATA operator. See also: mixed query, section.

mixed query
A query that searches for two different types of information; for example, text content and
document type. For example, a search for Jones in <title> metadata is a mixed query.

name search
A solution to match proper names that might differ in spelling due to orthographic variation. It
also enables you to search for somewhat inaccurate data, such as might occur when a record's
first name and surname are not properly segmented. Also called name matching.

NEWS_SECTION_GROUP
A section group type used for defining sections in newsgroup-formatted documents as defined
by RFC 1036. See also: section, section group.

normalized word
The form of a word after it has been transformed for indexing, according to the transformational
rules in effect. Depending on the rules in effect, the normalized form of a word may be the
same as the form found in the source document. The normalized form of a word may also
include both the original and transformed versions. For example, if you specify New German
Spelling, then the word Potential is normalized to both Potenzial and Potential.

NULL_SECTION_GROUP
The default section group type when no sections are defined or when only SENTENCE or
PARAGRAPH sections are defined. See also: section, section group, special section.

PATH_SECTION_GROUP
A section group type used for indexing XML documents. It is similar to the
AUTO_SECTION_GROUP type, except that it enables the use of the HASPATH and INPATH operators.

Glossary

Glossary-6

See also: AUTO_SECTION_GROUP, HASPATH operator, INPATH operator, section, section
group.

preference
An optional parameter that affects how Oracle Text creates an index. For example, a lexer
preference specifies the lexer to use when processing documents, such as
JAPANESE_VGRAM_LEXER. There are preferences for storage, filtering, lexers, classifiers,
wordlists, section types, and more. A preference may or may not be associated with attributes.
Set preferences with the CTX_DDL.CREATE_PREFERENCE procedure. See also: attribute.

printjoin
One or more nonalphanumeric characters that, whether they appear in the beginning, middle,
or end of a word, are processed alphanumerically and are included with the token in an Oracle
Text index. Also includes consecutive printjoins.

For example, if you define the hyphen (-) and underscore (_) characters as printjoins, terms
such as pseudo-intellectual and _file_ are stored in the Oracle Text index as pseudo-
intellectual and _file_.

Printjoins differ from endjoins and startjoins in that position does not matter. For example, $35
is indexed as one token if $ is defined as a startjoin or a printjoin, but as two tokens if it is
defined as an endjoin. See also: endjoin, printjoin, startjoin.

result set
An interface that improves performance by sharing overhead. It enables you to produce, all at
once, the disparate elements (such as metadata of the first few documents, total hit counts,
and per-word hit counts) needed for a page of search results. You can also return data views
that are difficult to express in SQL.

Generating these results in earlier versions of Oracle Text required several queries and calls.
Each extra call takes time to reparse the query and look up index metadata. Moreover, some
search operations, such as iterative query refinement are difficult for SQL.

rule-based classification
See: classification.

structured/sort data (SDATA) section
A section type that supports equality and range searches. By default, all FILTER BY and ORDER
BY columns are mapped as SDATA sections. An SDATA section contains user-defined index
metadata. Use of this type of section can speed up mixed CONTAINS queries. See also: mixed
query, section.

Glossary

Glossary-7

section
A subdivision of a document; for example, everything within an <a>... section of an
HTML page. The various section types include attribute, field, HTML, MDATA, special, stop,
XML, and zone sections.

By dividing a document into sections and then searching within sections, you can to narrow
text queries down to blocks of text within documents. Section searching is useful when your
documents have internal structure, such as HTML and XML documents. You can also search
for text at the sentence and paragraph level.

Perform section searching with the HASPATH, ISPATH, or WITHIN operator. When indexing, use
the section group to enable section searching. See Also: section group.

section group
A group that identifies a type of document set and implicitly indicates the tag structure for
indexing. For instance, to index HTML-tagged documents, use the HTML_SECTION_GROUP
section group type. Likewise, to index XML-tagged documents, the XML_SECTION_GROUP section
group type. Declare section groups with the CTX_DDL.CREATE_SECTION_GROUP procedure or with
the ALTER INDEX statement. See also: section.

skipjoin
A non-alphanumeric character that, when it appears within a word, identifies the word as a
single token; however, the character is not stored with the token in the Oracle Text index. For
example, if you define the hyphen character (-) as a skipjoin, then the word pseudo-intellectual
is stored in the Oracle Text index as pseudointellectual. See also: endjoin, printjoin, startjoin.

startjoin
One or more non-alphanumeric characters that, when encountered as the first character in a
token, explicitly identify the start of the token. The characters, as well as any other
startjoins characters that immediately follow it, are included in the Oracle Text index entry
for the token. For example, if you define '$' as a startjoin, then $35 is indexed as a single
token. In addition, the first startjoins character in a string of startjoins characters
implicitly ends the previous token. See also: endjoin, printjoin, skipjoin.

stemming
The expansion of a query term to include all terms having the same root word. For example,
stemming the verb talk yields talking, talks, and talked, as well as talk (but not talkie).
Stemming is distinct from wildcard expansion, in which results are related only through
spelling, not through morphology. See also: wildcard expansion.

special section
A document section that is not bounded by tags. Instead, sections are formed by plaintext
document structures such as sentences and paragraphs. Special sections are added to a

Glossary

Glossary-8

section group with the CTX_DDL.ADD_SPECIAL_SECTION procedure. See also: section, section
group.

stop section
A section that, when added to AUTO_SECTION_GROUP, causes the information for document
sections of that type to be ignored during indexing; however, the section content may still be
searched. Add stop sections to section groups with the CTX_DDL.ADD_STOP_SECTION procedure.
See also: AUTO_SECTION_GROUP, section, section group.

stopclass
A class of tokens, such as NUMBERs, that are to be skipped over during indexing. To specify
stopclasses, add them to stoplists with CTX_DDL.ADD_STOPCLASS. See also: stoplist.

stoplist
A list of words, known as stopwords, themes (stopthemes), and data classes (stopclasses) that
are not to be indexed. By default, the system indexes text by using the system-supplied stoplist
that corresponds to a given database language.

Oracle Text provides default stoplists for most common languages, including English, French,
German, Spanish, Chinese, Dutch, and Danish. These default stoplists contain only stopwords.
Create stoplists with the CTX_DDL.CREATE_STOPLIST procedure or with the ALTER INDEX
statement. See also: stopclass, stoptheme, stopword.

stoptheme
A theme to be skipped over during indexing. Specify stopthemes by adding them to stoplists
with the CTX_DDL.ADD_STOPTHEMES procedure. See also: stoplist.

stopword
A word to be skipped during indexing. Specify stopwords by adding them to stoplists with the
CTX_DDL.ADD_STOPWORD procedure. You can also dynamically add them to an index by using
the ALTER INDEX statement. See also: stoplist.

sub-lexer
See: lexer.

supervised classification
See: classification.

Glossary

Glossary-9

theme
A topic associated with a given document. A document may have many themes. A theme does
not have to appear in a document; for example, a document containing the words San
Francisco may have California as one of its themes.

Add theme components to indexes with the INDEX_THEMES attribute of the BASIC_LEXER
preference; extract them from a document with the CTX_DOC.THEMES procedure and query them
with the ABOUT operator.

unsupervised classification
Also known as clustering. See: classification.

wildcard expansion
The expansion of a query term to return words that fit a given pattern. For example, expansion
of the query term %rot% returns both trot and rotten. Wildcard expansion is distinct from
stemming. See also: stemming.

whitespace
Characters that are treated as blank spaces between tokens. The predefined default values for
whitespace are 'space' and 'tab'. The BASIC_LEXER uses whitespace characters (in conjunction
with punctuations and newline characters) to identify character strings that serve as
sentence delimiters for sentence and paragraph searching.

WITHIN operator
A CONTAINS query operator used to search for query terms within a given XML document
section. It is similar to the INPATH operator, but less generic. See also: INPATH operator.

wordlist
An Oracle Text preference that enables features such as fuzzy, stemming, and prefix indexing
for better wildcard searching, as well as substring and prefix indexing. The wordlist preference
improves performance for wildcard queries with CONTAINS and CATSEARCH. Create wordlists
with the CTX_DDL.ADD_WORDLIST procedure or with the ALTER INDEX statement. See also:
preference.

XML section
A section that is defined by XML tags, enabling XML section searching. Indexing with XML
sections allows automatic sectioning and creating document-type-sensitive sections. XML
section searching includes attribute searching and path section searching with the INPATH,
HASPATH, and WITHIN operators. See also: section.

Glossary

Glossary-10

XML_SECTION_GROUP
A section group used to identify XML documents for indexing. See also: section, section group.

zone section
The basic type of document section; a body of text delimited by start and end tags in a
document. Zone sections are well suited for defining sections in HTML and XML documents.
Add zone sections to section groups with the CTX_DDL.ADD_ZONE_SECTION procedure or with
the ALTER INDEX statement. See also: field section, section, section group.

Glossary

Glossary-11

Index

A
ABOUT operator, 3-4, 3-20
ABOUT query, 7-2

adding for your language, 13-9
case-sensitivity, 6-11
definition, 6-9

accents
indexing characters with, 3-20

ADD_SUB_LEXER procedure
example, C-3

administration tool, 17-6
all-at-once swap, 5-3
ALTER INDEX statement

rebuilding index, 5-4
alternate spelling, 3-20
alternate_spelling attribute, 3-20
alternative grammar, 6-17
alternative grammar template, 6-17
alternative scoring, 6-16
alternative scoring template, 6-16
application

sample, A-1, B-1
applications, updating, 18-1
attribute

searching XML, 11-17
attribute sections, 11-14
auction table schema example, 4-8
AUTO keyword

character sets and, 3-12
AUTO_FILTER filter, 10-25
AUTO_LEXER with fuzzy matching and

stemming, 3-25
AUTOMATIC keyword

character sets and, 3-12
automatic sections, 11-16

B
b-tree index, 4-10
background DML, 17-8
base_letter attribute, 3-20
base-letter conversion, 3-20
BASIC_LEXER preference type, 3-16
BFILE column, 3-10

indexing, 4-4

BIG_IO index option, 10-8
BINARY format column value, 3-14
BLOB column, 3-10

indexing, 4-4
blocking operations

tuning queries with, 10-16
bypassing rows, 3-15

C
cantaloupe dispenser, A-1
case-insensitive queries, 3-17
case-sensitive

ABOUT query, 6-11
indexing, 3-17
queries, 6-11
thesaurus, 13-2

catalog application
example, 2-5

catalog information application, 1-3
flowchart, 1-4

catalog table relationships, 1-3
CATSEARCH, 6-3

operators, 7-7
SQL example, 6-3

CATSEARCH operator, 1-3, 2-7
CATSEARCH queries, 2-7
CHAR column, 3-10
Character Large Object (CLOB), 2-4
character set

detection, 3-15
indexing, 3-15
indexing mixed, 3-15

character set column, 3-12
charset column, 3-15
Chinese indexing, 3-21
classification

Decision Tree (supervised), 9-7
rule-based, 9-3
simple, see rule-based classification, 9-3
supervised, 9-7
SVM (supervised), 9-10
unsupervised, 9-12

classification application
creating, 2-9
example, 2-8

Index-1

classification application (continued)
overview illustration, 2-8

CLOB (Character Large Object) data type, 2-4
CLOB column, 3-10

indexing, 4-4
CLOB data type, 2-4
clustering with classification, 2-8
clustering, see unsupervised classification, 9-12
collocates, 15-5
column types

supported for indexing, 3-10
column types that cannot be indexed, 3-10
combined catalog index, 4-10
composite attribute, 3-21
composite words

indexing, 3-21
concordance, 8-4
CONNECT role, 2-2
CONTAINS

operators, 7-1
PL/SQL example, 6-2
query, 6-1
SQL example, 6-2
structured query, 6-2

CONTAINS operator, 3-3
XML search applications and, 1-6

CONTAINS query, 2-4
CONTEXT data storage, 3-10
CONTEXT grammar, 7-1
CONTEXT index, 1-2, 3-2

creating, 4-1, 4-3
HTML example, 4-6, A-4
structure, 3-4
XML search applications and, 1-6

continuation, 3-17
cost for indexing, 4-8
couch, self-tipping, A-1
counting hits, 7-6
CREATE INDEX statement, 3-9
CREATE_INDEX_SCRIPT, 17-3
CREATE_POLICY_SCRIPT, 17-3
CTX_CLS.TRAIN procedure, 9-7
CTX_DDL package, 3-28
CTX_DDL.ADD_STOPWORD procedure, 4-3
CTX_DDL.CREATE_STOPLIST procedure, 4-3
CTX_DDL.EXCHANGE_SHADOW_INDEX

procedure, 5-3
CTX_DDL.MAXTIME_UNLIMITED procedure, 5-6
CTX_DDL.SYNC_INDEX procedure, 2-4, 4-4, 5-6
CTX_DOC package, 2-4
CTX_DOC.MARKUP procedure, 2-4
CTX_DOC.POLICY_SNIPPET procedure, 8-4
CTX_DOC.SNIPPET procedure, 8-4
CTX_FILTER_CACHE_STATISTICS view, 10-8
CTX_INDEX_ERRORS view, 5-1, 17-2
CTX_PENDING view, 17-2

CTX_QUERY.RESULT_SET procedure, 15-1
CTX_QUERY.RESULT_SET_CLOB_QUERY

procedure, 15-1
CTX_REPORT, 5-9
CTX_REPORT package, 17-3
CTX_REPORT_TOKEN_TYPE, 17-3
CTX_REPORT.CREATE_INDEX_SCRIPT, 17-3
CTX_REPORT.CREATE_POLICY_SCRIPT, 17-3
CTX_REPORT.DESCRIBE_INDEX, 17-3
CTX_REPORT.DESCRIBE_POLICY, 17-3
CTX_REPORT.INDEX_SIZE, 17-3
CTX_REPORT.INDEX_STATS, 17-3
CTX_REPORT.QUERY_LOG_SUMMARY, 17-3
CTX_REPORT.TOKEN_INFO, 17-3
CTX_THES package

about, 13-2
CTX_THES.IMPORT_THESAURUS

load thesaurus example, 13-8
CTX_USER_INDEX_ERRORS view, 5-1, 17-2
CTX_USER_PENDING view, 17-2
CTXAPP role, 2-1, 17-1

granting, 2-2
CTXCAT data storage, 3-10
CTXCAT grammar, 7-7
CTXCAT index, 1-3, 3-2

about performance, 10-23
automatic synchronization, 2-7
example, 4-7
subindex, 2-6

CTXFILTERCACHE operator, 10-7
ctxkbtc

example, 13-8
ctxload

load thesaurus example, 13-2, 13-6, 13-8
CTXRULE index, 1-5, 9-6

allowable queries, 9-6
creating, 4-10
lexer types, 9-6
limitations, 9-6
parameters, 9-6

CTXSYS user, 17-1
CTXSYS.AUTO_FILTER filter type, 2-3
custom CONTEXT index example, 4-6
custom filtering, 3-14

D
data staging, 3-8
data storage

CONTEXT data, 3-10
CTXCAT data, 3-10
index default, 4-4
preference example, C-1

datastore
about, 3-5, 4-1

Index

Index-2

DATASTORE types
summary of, 3-12

DATE column, 4-4
Decision Tree supervised classification, 9-7
decreasing indexing time, 3-8
default thesaurus, 13-3
DEFAULT_INDEX_MEMORY, 10-24
defaults

index, 4-4
DEFINEMERGE operator, 7-7
DEFINESCORE operator, 7-7
degree of parallelism, 3-29
DESCRIBE_INDEX, 17-3
diacritical marks

characters with, 3-20
DIRECT_DATASTORE

example, C-1
DML

view pending, 5-5
DML processing

background, 17-8
DML queue, 17-2
document

classification, 4-10, 9-1
document classification application, 1-5

overview illustration, 1-5
document collections, 1-1
document filtering, 4-4
document format

affect on index performance, 10-25
affect on performance, 10-18

document formats
filtering, 3-13
supported, 3-12

document invalidation, 5-8
document presentation

about, 8-7
document section

searching, 3-28
document sections, 4-2
document services

about, 8-7
document theme, 3-20
domain index, 3-3
DOMAIN_INDEX_NO_SORT hint

better throughput example, 10-13
DOMAIN_INDEX_SORT hint

better response time example, 10-6
double-truncated query, 3-28
drop index example, 5-2
dropping an index, 5-1

E
endjoin, 3-17
entity extraction, 3-25

errors
DML, 17-2
viewing, 5-1

EXCHANGE_SHADOW_INDEX procedure, 5-4
execute privileges

granting, 2-2
explain plan, 6-12

F
faceted navigation

about, 14-1
facets using Result Set Interface

querying, 14-5
failed index

resuming, 5-2
FAST mode, 5-8
feedback

query, 6-12
field section

definition, 11-7
nested, 11-7
repeated, 11-7
visible and invisible, 11-7

filter
about, 3-5, 4-1

filtering
custom, 3-14
index default, 4-4
to plain text and HTML, 8-7

filtering documents, 3-13
FIRST_ROWS hint, 7-6

better throughput example, 10-13
FIRST_ROWS(n) hint, 10-5
flowchart of a simple text query application, 1-2
format column, 3-12, 3-14, 3-15
formats

filtering, 3-13
supported, 3-12

forward index, 3-17
forward_index attribute, 3-18
fragmentation of index, 5-8, 10-27

viewing, 5-9
FULL mode, 5-8
full themes

obtaining, 8-5
functional lookup, 10-18
fuzzy matching, 3-25

default, 4-4
fuzzy operator, 7-4

G
garbage collection, 5-8
German

alternate spelling, 3-20

Index

Index-3

German (continued)
composite words, 3-21

gist
definition, 8-4
example, 8-5

grammar
alternative, 6-17
CTXCAT, 7-7

grammar CONTEXT, 7-1
granting roles, 17-2

H
HASPATH operator, 11-18
HASPATH operators

examples, 11-20
highlighting

about, 8-7
overview, 8-1

highlighting documents, 2-4
highlighting text, 8-1
highlighting themes, 8-1
hit count, 7-6
home air dirtier, A-1
HTML

filtering to, 8-7
indexing, C-3
indexing example, A-4
searching META tags, 11-16
zone section example, 4-2, 11-15

HTML section example, 4-2
HTML_SECTION_GROUP object, 4-2, 11-15

with NULL_FILTER, A-4, C-3
HTML_SECTION_GROUP type, 2-3

I
IGNORE

format column value, 3-15
IGNORE format column type, 3-14
IGNORE format column value, 3-14
IGNORE value, 3-6
index

about, 3-1
creating, 4-1
dropping, 5-1
fragmentation, 5-8
getting report on, 17-3
maintenance, 5-1
online recreation, 5-2
optimizing, 5-7
rebuilding, 5-4
statistics on, 17-3
structure, 3-4, 5-7
synchronizing, 5-6, 17-8
viewing information on, 17-3

index defaults
general, 4-4

index engine
about, 3-6

index errors
viewing, 5-1

index fragmentation, 10-27
reducing, 5-8

index memory, 10-24
index synchronization, 2-4
index types

choosing, 3-2
INDEX_SIZE, 17-3
INDEX_STATS, 17-3
INDEX_STATS procedure, 5-9
index_themes attribute, 3-20
indexed columns

updating, 3-6
indexed lookup, 10-18
indexing

bypassing rows, 3-15
considerations, 3-9
languages, 3-15
overview of process, 3-4
parallel, 3-8, 10-25
resuming failed, 5-2
special characters, 3-16
views and, 3-8

indexing HTML, 3-14
indexing performance

FAQs, 10-24
parallel, 10-26

indexing plain text, 3-14
indexing time, 10-24

decreasing, 3-8
init.ora setting, 3-8
INPATH operator, 11-18

examples, 11-19
INSERT statement

example, 2-3
inverted index, 3-17

J
JA16EUC character set, 3-15
JA16SJIS character set, 3-15
Japanese indexing, 3-21
Jdeveloper

Text wizard, A-1, B-1

K
knowledge base

about, 13-9
augmenting, 13-6
linking new terms, 13-7

Index

Index-4

knowledge base (continued)
user-defined, 13-9

Korean indexing, 3-21

L
language

default setting for indexing, 4-4
language specific features, 3-19
language-specific knowledge base, 13-9
languages

indexing, 3-15
left-truncated query, 3-28
lexer

about, 3-6, 4-1
and CTXRULE, 9-6

list of themes
definition, 8-4
obtaining, 8-5

loading text
about, 3-9

LOB column storage, 3-29
LOB columns

improving query performance, 10-20
indexing, 4-4

local partitioned index, 10-22
improved response time, 10-6

location of text, 3-9
locked base table, 3-7
locking parameter for sync_index, 5-6
logical operators, 7-2
low information words, 3-28

M
maintaining the index, 5-1
mapping table

forward index and, 3-17
marked-up document

obtaining, 8-2
MARKUP procedure, 2-4
MATCHES

about, 6-4
PL/SQL example, 6-6
SQL example, 6-5

MATCHES operator, 1-5, 2-8, 2-9, 3-2, 9-3
classifying with, 2-9

materialized views, indexes on, 3-9
MAX_INDEX_MEMORY, 10-24
maxtime parameter for sync_index, 5-6
MDATA operators, 11-8
MDATA section, 11-8
memory allocation, 3-29

index synchronization, 10-27
indexing, 10-24
querying, 10-20

merged word and theme index, 3-4
META tag

creating zone section for, 11-16
metadata

adding, 11-8
removing, 11-8
section, 11-8

Microsoft Word support, 3-12, 3-13
migrating from previous releases, 18-1
mixed character set columns, 3-15
mixed character sets, 3-12
mixed formats, 3-12

filtering, 3-14
mixed query, 11-8, 11-11
mixed query performance, 3-29
mixed_case attribute, 3-17
mixed-format column, 3-14
MULTI_COLUMN_DATASTORE

example, C-1
MULTI_LEXER

example, C-3
MULTI_LEXER preference type, 3-15
multi-valued facets, 14-8
multilanguage columns

indexing, 3-16
multilanguage stoplist

about, 4-3
multiple CONTAINS

improving performance, 10-21
MVIEW see materialized views, 3-9

N
name matching

See name search
name search, 12-1

examples using NDATA sections, 12-2
NCLOB column, 4-4
NDATA sections

in name search example, 12-2
NEAR operator, 7-3
NEAR_ACCUM operator, 7-3
NEAR2 operator, 7-3
nested zone sections, 11-5
NOPOPULATE keyword

incremental rebuild and, 4-5
replace parameter and, 4-5

nopopulate with RECREATE_INDEX_ONLINE,
5-3

NULL maxtime, 5-6
NULL_FILTER

example, A-4, C-3
NULL_FILTER filter type, 2-3
NULL_FILTER preference type, 3-14
NUMBER column, 4-4
number tokenization, 3-17

Index

Index-5

O
offset information

highlight, 8-3
online

recreating a CONTEXT indextype, 5-2
online index, 3-7
ONLINE parameter, 3-7
operators

CATSEARCH, 7-7
CONTAINS, 7-1
logical, 7-2
MDATA, 11-8
SDATA, 11-11
thesaurus, 13-2

optimizing index, 5-7
example, 5-7
single token, 5-8

optimizing queries, 7-6
FAQs, 10-17
response time, 10-4
throughput, 10-13
with blocking operations, 10-16

Oracle Enterprise Manager, 17-6
Oracle Enterprise Manager and Oracle Text, 17-6
Oracle Text

Upgrading, 18-2
Oracle Text pages in OEM, 17-6
Oracle Text user, 2-1

creating, 2-1
Oracle XML DB, 1-6
out of line LOB storage

improving performance, 10-20

P
parallel indexing, 3-8, 10-25

partitioned table, 10-26
parallel queries, 10-15, 10-22

across Real Application Clusters (RAC)
nodes, 10-15

paramstring string, 4-3
partitioned index, 10-22

improved response time, 10-6
partitioned table

querying, 3-7
partitions limit, 3-7
path section searching, 11-18
PATH_SECTION_GROUP

example, 11-19
PDF support, 3-12, 3-13
pending DML

viewing, 5-5
pending queue, 4-5
pending updates, 17-2
per-partition swap, 5-3

performance, 3-29
performance tuning

indexing, 10-24
querying, 10-17
updating index, 10-27

pet magnet, A-1
phrase query, 6-8
pizza shredder, A-1
PL/SQL functions

calling in contains, 7-5
plain text

indexing with NULL_FILTER, C-3
plain-text filtering, 8-7
PLAINTEXT value, 3-18
POPULATE keyword, 4-5
preferences

creating (examples), 4-2, C-1
creating with admin tool, 17-6
dropping, 5-5

prefix indexing example, C-4
previous releases, migrating from, 18-1
printjoin character, 3-16
printjoin characters example, C-3
PROCEDURE_FILTER example, C-3
PSP application, A-2, B-1
punctuation identification, 3-17

Q
queries using facets as filters

refining, 14-7
query

ABOUT, 7-2
analysis, 6-17
blocking operations, 10-16
case-sensitive, 3-17, 6-11
CATSEARCH, 6-3
CONTAINS, 6-1
counting hits, 7-6
CTXRULE, 9-6
getting report on, 17-3
log, 6-17
MATCHES, 6-4
mixed, 11-8, 11-11
optimizing for throughput, 10-13
overview, 6-1
parallel, 10-15
speeding up with MDATA, 11-8
speeding up with SDATA, 11-11
viewing information on, 17-3
viewing log of, 17-3

query analysis, 6-17
query application, 1-1

example, 2-2
query explain plan, 6-12
query expressions, 6-10

Index

Index-6

query features, 6-10, 6-18
query feedback, 6-12
query language, 6-15
query log, 6-17, 17-3
query optimization, 7-6

FAQs, 10-17
response time, 10-4

Query Parallelized Across Oracle RAC Nodes,
10-16

query performance
FAQs, 10-17

query processing with FILTER BY and ORDER
BY example, 4-7

query relaxation, 6-14
query relaxation template, 6-15
query rewrite, 6-14
query rewrite template, 6-14
query template, 7-4, 7-8

lang parameter and, 6-15
Query Templates, 6-13
query_filter_cache_size basic storage attribute,

10-8
QUERY_LOG_SUMMARY, 17-3
queue

DML, 17-2

R
Real Application Clusters (RAC) and parallel

queries, 10-15
rebuilding an index, 5-4
RECREATE_INDEX_ONLINE, 5-2

and DML, 5-2
RECREATE_INDEX_ONLINE procedure

no populate with, 5-3
swap and noswap with, 5-3

recreating a local partitioned index online, 5-3
recreating an index, 5-2
recreating an index online, 5-2
relaxing queries, 6-14
RESOURCE role, 2-2
response time

improving, 10-4
optimizing for, 7-6

result buffer size
increasing, 10-16

Result Set Interface, 15-1
result sets, 15-1
resuming failed index, 5-2
rewriting queries, 6-14
right-truncated query, 3-28
roles

granting, 17-2
system-defined, 17-1

rowid, 5-5

rule table
creating, 2-9

rule-based classification, 2-8, 3-2, 9-3
rules

about for simple classification, 2-8

S
sample application, A-1, B-1
save_copy attribute, 3-18
scheduled swap, 5-2
scheduling local index re-creation with all-at-once

swap, 5-3
scoring

alternative, 6-16
SDATA operators, 11-11
SDATA section, 11-11
searching

XML, 1-6
section

attribute, 11-14
field, 11-7
groups and types, 11-5
HTML example, 4-2
MDATA, 11-8
nested, 11-5
overlapping, 11-5
repeated zone, 11-5
SDATA, 11-11
special, 11-14
stop section, 11-8
types and groups, 11-5
zone, 11-5

section group
about, 4-1
and section types, 11-5
creating with admin tool, 17-6

section searching, 7-3
about, 6-13, 11-1
enabling, 11-1
HTML, 11-15

sectioner
about, 3-6

sectioning
automatic, 11-16
path, 11-18

sections as facets
defining, 14-1

See also rule-based classification, 2-8
See also simple classification, 2-8
SELECT statement, 1-2

with CONTAINS, 2-4
self-tipping couch, A-1
sentiment analysis

about, 16-1
creating classifiers, 16-3

Index

Index-7

sentiment analysis (continued)
interfaces, 16-3
sentiment classifiers, 16-2
training sentiment models, 16-4
using CTX_DOC package, 16-6
using XML Query RSI, 16-8

sentiment classifiers
about, 16-2
creating, 16-3

SEPARATE_OFFSETS index option, 10-9, 10-11
SGA memory allocation, 10-24
simple classification, 2-8, 3-2

rules and, 2-8
simple classification, see rule-based classification,

9-3
single themes

obtaining, 8-5
size of index, viewing, 17-3
skipjoin character, 3-16
SORT_AREA_SIZE, 10-16, 10-20, 10-24
special characters, 3-16

indexing, 3-16
special sections, 11-14
spelling

alternate, 3-20
searching different, 12-1

SQE operator, 7-4
SQL CONTAINS operator, 1-2
SQL*Loader, 2-3, 2-6
startjoin, 3-17
stem operator, 3-25, 7-4
stemming

default, 4-4
improving performance, 10-21

stop section, 11-8
stopclass, 4-3
stoplist, 4-2

about, 4-1
creating with admin tool, 17-6
default, 4-4
multi-language, 3-28
multilanguage, 4-3
PL/SQL procedures for, 4-3

stoptheme, 4-3
about, 3-28
definition, 6-9

stopword, 4-2, 4-3
about, 3-28, 6-8
case-sensitive, 6-11

storage
about, 4-1

stored query expression, defining, 7-5
stored query expressions, 7-4
storing

file path names, 3-11
structured document information, 3-11

storing text, 3-9
about, 3-10
different methods illustration, 3-9

structure
CONTEXT index, 3-4

structure of index, 5-7
structured data

adding, 11-11
removing, 11-11
section, 11-11

structured query
example, 4-7

structured query clause, 4-9
subindex, 2-6
substring indexing example, C-4
supervised classification, 2-8, 9-7

Decision Tree, 9-7
SVM supervised classification, 9-10

memory requirements, 9-11
swap and noswap with

RECREATE_INDEX_ONLINE, 5-3
SYN operator, 13-5
sync_index locking parameter, 5-6
sync_index maxtime parameter, 5-6
SYNC_INDEX procedure, 2-2, 2-4
synchronization, 5-3
synchronize index, 2-4
synchronizing index, 5-6, 17-8

improving performance, 10-27
synonyms

defining, 13-5

T
talking pillow, A-1
template queries, 7-4, 7-8
templates, 6-13

query rewrite, 6-14
text column

supported types, 3-10
TEXT format column value, 3-14
text fragments, 3-9
text highlighting, 8-1
text query application

flowchart, 1-2
sample, 1-2

text storage, 3-9
Text-on-XML Method, 1-8
that stopword, 3-28
theme functionality

adding, 13-9
theme highlighting, 8-1
theme summary

definition, 8-4
themes

indexing, 3-20

Index

Index-8

thesaural queries
about, 6-13

thesaurus
about, 13-1
adding to knowledge base, 13-6
case-sensitive, 13-2
default, 13-3
DEFAULT, 13-3
defining terms, 13-4
hierarchical relations, 13-5
loading custom, 13-6
operators, 13-2
supplied, 13-4
using in application, 13-5

thesaurus operator, 7-4
this stopword, 3-28
throughput

improving query, 10-13
tildes

indexing characters with, 3-20
time limit

setting for synchronizing, 5-3
token prefix, 3-28
token separation, 3-17
TOKEN_INFO, 17-3
TOKEN_TYPE, 17-3
tokenization behavior, 3-17
tokens, 3-4
tracing, 10-14
TRAIN procedure, 9-7
transactional, 4-4, 4-7, 5-5
Transparent Data Encryption

enabled column and,enabled tablespace and,
3-4

tuning queries
for response time, 10-4
for throughput, 10-13
increasing result buffer size, 10-16

U
umlauts

indexing characters with, 3-20
unsupervised classification, 9-12
updating index performance

FAQs, 10-27
updating your applications, 18-1
URLs

storing, 3-11
user

creating Oracle Text, 2-1
system-defined, 17-1

user (continued)
USER_LEXER preference type, 3-16
user-defined lexer interface, 3-16

V
VARCHAR2 column, 3-10
viewing information on indexes and queries, 17-3
viewing size of index, 17-3
views

indexing and, 3-8
materialized, 3-9

W
WHERE clause, 1-2
whitespace, 3-17
whitespace-delimited language, 3-15
wildcard indexing example, C-5
wildcard operator, 7-4

improving performance, 10-21
wildcard queries, 3-28
WITHIN operator, 4-2
wizard

Oracle Text addin, A-1, B-1
word continuation, 3-17
word query, 6-8

case-sensitivity, 6-11
wordlist

about, 4-1
WORDLIST preference, 3-6
wordlist preference type, 3-28
WORLD_LEXER preference type, 3-16

X
XML DB, 1-6
XML documents

attribute searching, 11-17
doctype sensitive sections, 11-17
section searching, 11-16

XML search application, 1-6
XML searching, 1-6
XMLType data type, 3-10

Z
zone section

definition, 11-5
nested, 11-5
overlapping, 11-5
repeating, 11-5

Index

Index-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Understanding Oracle Text Application Development
	1.1 Introduction to Oracle Text
	1.2 Document Collection Applications
	1.2.1 About Document Collection Applications
	1.2.2 Flowchart of Text Query Application

	1.3 Catalog Information Applications
	1.3.1 About Catalog Information Applications
	1.3.2 Flowchart for Catalog Query Application

	1.4 Document Classification Applications
	1.5 XML Search Applications
	1.5.1 The CONTAINS Operator with XML Search Applications
	1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search Index)
	1.5.2.1 Using the xml_enable Method for an XML Search Index
	1.5.2.2 Using the Text-on-XML Method
	1.5.2.3 Indexing JSON Data

	2 Getting Started with Oracle Text
	2.1 Overview of Getting Started with Oracle Text
	2.2 Creating an Oracle Text User
	2.3 Query Application Quick Tour
	2.3.1 Creating the Text Table
	2.3.2 Using SQL*Loader to Load the Table

	2.4 Catalog Application Quick Tour
	2.4.1 Creating the Table
	2.4.2 Using SQL*Loader to Load the Table

	2.5 Classification Application Quick Tour
	2.5.1 About Classification of a Document
	2.5.2 Creating a Classification Application

	3 Indexing with Oracle Text
	3.1 About Oracle Text Indexes
	3.1.1 Types of Oracle Text Indexes
	3.1.2 Structure of the Oracle Text CONTEXT Index
	3.1.3 Oracle Text Indexing Process
	3.1.3.1 Datastore Object
	3.1.3.2 Filter Object
	3.1.3.3 Sectioner Object
	3.1.3.4 Lexer Object
	3.1.3.5 Indexing Engine

	3.1.4 About Updates to Indexed Columns
	3.1.5 Partitioned Tables and Indexes
	3.1.6 Online Indexes
	3.1.7 Parallel Indexing
	3.1.8 Indexing and Views

	3.2 Considerations for Oracle Text Indexing
	3.2.1 Location of Text
	3.2.2 Supported Column Types
	3.2.3 Storing Text in the Text Table
	3.2.4 Storing File Path Names
	3.2.5 Storing URLs
	3.2.6 Storing Associated Document Information
	3.2.7 Format and Character Set Columns
	3.2.8 Supported Document Formats
	3.2.9 Summary of DATASTORE Types
	3.2.10 Document Formats and Filtering
	3.2.10.1 No Filtering for HTML
	3.2.10.2 Mixed-Format Columns Filtering
	3.2.10.3 Custom Filtering

	3.2.11 Bypass Rows
	3.2.12 Document Character Set

	3.3 Document Language
	3.4 Special Characters
	3.5 Case-Sensitive Indexing and Querying
	3.6 Improved Document Services Performance with a Forward Index
	3.6.1 Enabling Forward Index
	3.6.2 Forward Index with Snippets
	3.6.3 Forward Index with Save Copy
	3.6.4 Forward Index Without Save Copy
	3.6.5 Save Copy Without Forward Index

	3.7 Language-Specific Features
	3.7.1 Theme Indexing
	3.7.2 Base-Letter Conversion for Characters with Diacritical Marks
	3.7.3 Alternate Spelling
	3.7.4 Composite Words
	3.7.5 Korean, Japanese, and Chinese Indexing

	3.8 About Entity Extraction and CTX_ENTITY
	3.8.1 Basic Example of Using Entity Extraction
	3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule

	3.9 Fuzzy Matching and Stemming
	3.9.1 Language Attribute Values for index_stems of BASIC_LEXER
	3.9.2 Language Attribute Values for index_stems of AUTO_LEXER

	3.10 Better Wildcard Query Performance
	3.11 Document Section Searches
	3.12 Stopwords and Stopthemes
	3.13 Index Performance
	3.14 Query Performance and Storage of Large Object (LOB) Columns
	3.15 Mixed Query Performance

	4 Creating Oracle Text Indexes
	4.1 Summary of the Procedure for Creating an Oracle Text Index
	4.2 Creating Preferences
	4.3 Section Searching Example: Creating HTML Sections
	4.4 Using Stopwords and Stoplists
	4.4.1 Multilanguage Stoplists
	4.4.2 Stopthemes and Stopclasses
	4.4.3 PL/SQL Procedures for Managing Stoplists

	4.5 Creating a CONTEXT Index
	4.5.1 CONTEXT Index and DML
	4.5.2 Default CONTEXT Index Example
	4.5.3 Incrementally Creating a CONTEXT Index
	4.5.4 Custom CONTEXT Index Example: Indexing HTML Documents
	4.5.5 CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY

	4.6 Creating a CTXCAT Index
	4.6.1 CTXCAT Index and DML Operations
	4.6.2 About CTXCAT Subindexes and Their Costs
	4.6.3 Creating CTXCAT Subindexes
	4.6.4 Creating CTXCAT Index

	4.7 Creating a CTXRULE Index
	4.8 Creating a Search Index for JSON

	5 Maintaining Oracle Text Indexes
	5.1 Viewing Index Errors
	5.2 Dropping an Index
	5.3 Resuming a Failed Index
	5.4 Re-creating an Index
	5.4.1 Re-creating a Global Index
	5.4.2 Re-creating a Local Partitioned Index

	5.5 Rebuilding an Index
	5.6 Dropping a Preference
	5.7 Managing DML Operations for a CONTEXT Index
	5.7.1 Viewing Pending DML Operations
	5.7.2 Synchronizing the Index
	5.7.3 Optimizing the Index
	5.7.3.1 Index Fragmentation
	5.7.3.2 Document Invalidation and Garbage Collection
	5.7.3.3 Single Token Optimization
	5.7.3.4 Viewing Index Fragmentation and Garbage Data

	6 Querying with Oracle Text
	6.1 Overview of Queries
	6.1.1 Querying with CONTAINS
	6.1.1.1 CONTAINS SQL Example
	6.1.1.2 CONTAINS PL/SQL Example
	6.1.1.3 Structured Query with CONTAINS Example

	6.1.2 Querying with CATSEARCH
	6.1.2.1 CATSEARCH SQL Query Example
	6.1.2.2 CATSEARCH Example

	6.1.3 Querying with MATCHES
	6.1.3.1 MATCHES SQL Query
	6.1.3.2 MATCHES PL/SQL Examples

	6.1.4 Word and Phrase Queries
	6.1.5 Querying Stopwords
	6.1.6 ABOUT Queries and Themes

	6.2 Oracle Text Query Features
	6.2.1 Query Expressions
	6.2.1.1 CONTAINS Operators
	6.2.1.2 CATSEARCH Operator
	6.2.1.3 MATCHES Operator

	6.2.2 Case-Sensitive Searching
	6.2.3 Query Feedback
	6.2.4 Query Explain Plan
	6.2.5 Using a Thesaurus in Queries
	6.2.6 Document Section Searching
	6.2.7 Using Query Templates
	6.2.7.1 Query Rewrite
	6.2.7.2 Query Relaxation
	6.2.7.3 Query Language
	6.2.7.4 Ordering by SDATA Sections
	6.2.7.5 Alternative and User-Defined Scoring
	6.2.7.6 Alternative Grammar

	6.2.8 Query Analysis
	6.2.9 Other Query Features

	7 Working with CONTEXT and CTXCAT Grammars in Oracle Text
	7.1 The CONTEXT Grammar
	7.1.1 ABOUT Query
	7.1.2 Logical Operators
	7.1.3 Section Searching and HTML and XML
	7.1.4 Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators
	7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
	7.1.6 Using CTXCAT Grammar
	7.1.7 Defined Stored Query Expressions
	7.1.7.1 Defining a Stored Query Expression
	7.1.7.2 SQE Example

	7.1.8 Calling PL/SQL Functions in CONTAINS
	7.1.9 Optimizing for Response Time
	7.1.10 Counting Hits
	7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined Scoring

	7.2 The CTXCAT Grammar

	8 Presenting Documents in Oracle Text
	8.1 Highlighting Query Terms
	8.1.1 Text highlighting
	8.1.2 Theme Highlighting
	8.1.3 CTX_DOC Highlighting Procedures
	8.1.3.1 Markup Procedure
	8.1.3.2 Highlight Procedure
	8.1.3.3 Concordance

	8.2 Obtaining Part-of-Speech Information for a Document
	8.3 Obtaining Lists of Themes, Gists, and Theme Summaries
	8.3.1 Lists of Themes
	8.3.2 Gist and Theme Summary

	8.4 Presenting and Highlighting Documents

	9 Classifying Documents in Oracle Text
	9.1 Overview of Document Classification
	9.2 Classification Applications
	9.3 Classification Solutions
	9.4 Rule-Based Classification
	9.4.1 Rule-Based Classification Example
	9.4.2 CTXRULE Parameters and Limitations

	9.5 Supervised Classification
	9.5.1 Decision Tree Supervised Classification
	9.5.2 Decision Tree Supervised Classification Example
	9.5.3 SVM-Based Supervised Classification
	9.5.4 SVM-Based Supervised Classification Example

	9.6 Unsupervised Classification (Clustering)
	9.7 Unsupervised Classification (Clustering) Example

	10 Tuning Oracle Text
	10.1 Optimizing Queries with Statistics
	10.1.1 Collecting Statistics
	10.1.2 Query Optimization with Statistics Example
	10.1.3 Re-Collecting Statistics
	10.1.4 Deleting Statistics

	10.2 Optimizing Queries for Response Time
	10.2.1 Other Factors That Influence Query Response Time
	10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for ORDER BY Queries
	10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT Hint
	10.2.4 Improved Response Time Using the Local Partitioned CONTEXT Index
	10.2.5 Improved Response Time with the Local Partitioned Index for Order by Score
	10.2.6 Improved Response Time with the Query Filter Cache
	10.2.7 Improved Response Time Using the BIG_IO Option of CONTEXT Index
	10.2.8 Improved Response Time Using the SEPARATE_OFFSETS Option of the CONTEXT Index
	10.2.9 Improved Response Time Using the STAGE_ITAB, STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of CONTEXT Index

	10.3 Optimizing Queries for Throughput
	10.4 Composite Domain Index in Oracle Text
	10.5 Performance Tuning with CDI
	10.6 Solving Index and Query Bottlenecks by Using Tracing
	10.7 Using Parallel Queries
	10.7.1 Parallel Queries on a Local Context Index
	10.7.2 Parallelizing Queries Across Oracle RAC Nodes

	10.8 Tuning Queries with Blocking Operations
	10.9 Frequently Asked Questions About Query Performance
	10.9.1 What is query performance?
	10.9.2 What is the fastest type of Oracle Text query?
	10.9.3 Should I collect statistics on my tables?
	10.9.4 How does the size of my data affect queries?
	10.9.5 How does the format of my data affect queries?
	10.9.6 What is the difference between an indexed lookup and a functional lookup
	10.9.7 What tables are involved in queries?
	10.9.8 How is the ⁠$R table contention reduced?
	10.9.9 Does sorting the results slow a text-only query?
	10.9.10 How do I make an ORDER BY score query faster?
	10.9.11 Which memory settings affect querying?
	10.9.12 Does out-of-line LOB storage of wide base table columns improve performance?
	10.9.13 How can I speed up a CONTAINS query on more than one column?
	10.9.14 Can I have many expansions in a query?
	10.9.15 How can local partition indexes help?
	10.9.16 Should I query in parallel?
	10.9.17 Should I index themes?
	10.9.18 When should I use a CTXCAT index?
	10.9.19 When is a CTXCAT index NOT suitable?
	10.9.20 What optimizer hints are available and what do they do?

	10.10 Frequently Asked Questions About Indexing Performance
	10.10.1 How long should indexing take?
	10.10.2 Which index memory settings should I use?
	10.10.3 How much disk overhead will indexing require?
	10.10.4 How does the format of my data affect indexing?
	10.10.5 Can parallel indexing improve performance?
	10.10.6 How can I improve index performance when I create a local partitioned index?
	10.10.7 How can I tell how much indexing has completed?

	10.11 Frequently Asked Questions About Updating the Index
	10.11.1 How often should I index new or updated records?
	10.11.2 How can I tell when my indexes are fragmented?
	10.11.3 Does memory allocation affect index synchronization?

	11 Searching Document Sections in Oracle Text
	11.1 About Oracle Text Document Section Searching
	11.1.1 Enabling Oracle Text Section Searching
	11.1.1.1 Create a Section Group
	11.1.1.2 Define Your Sections
	11.1.1.3 Index Your Documents
	11.1.1.4 Search Sections with the WITHIN Operator
	11.1.1.5 Search Paths with INPATH and HASPATH Operators
	11.1.1.6 Mark an SDATA Section to Be Searchable

	11.1.2 Oracle Text Section Types
	11.1.2.1 Zone Section
	11.1.2.2 Field Section
	11.1.2.3 Stop Section
	11.1.2.4 MDATA Section
	11.1.2.5 NDATA Section
	11.1.2.6 SDATA Section
	11.1.2.7 Attribute Section
	11.1.2.8 Special Sections

	11.1.3 Oracle Text Section Attributes

	11.2 HTML Section Searching with Oracle Text
	11.2.1 Creating HTML Sections
	11.2.2 Searching HTML Meta Tags

	11.3 XML Section Searching with Oracle Text
	11.3.1 Automatic Sectioning
	11.3.2 Attribute Searching
	11.3.3 Document Type Sensitive Sections
	11.3.4 Path Section Searching
	11.3.4.1 Creating an Index with PATH_SECTION_GROUP
	11.3.4.2 Top-Level Tag Searching
	11.3.4.3 Any-Level Tag Searching
	11.3.4.4 Direct Parentage Searching
	11.3.4.5 Tag Value Testing
	11.3.4.6 Attribute Searching
	11.3.4.7 Attribute Value Testing
	11.3.4.8 Path Testing
	11.3.4.9 Section Equality Testing with HASPATH

	12 Using Oracle Text Name Search
	12.1 Overview of Name Search
	12.2 Name Search Examples

	13 Working with a Thesaurus in Oracle Text
	13.1 Overview of Oracle Text Thesaurus Features
	13.1.1 Oracle Text Thesaurus Creation and Maintenance
	13.1.2 Using a Case-Sensitive Thesaurus
	13.1.3 Using a Case-Insensitive Thesaurus
	13.1.4 Default Thesaurus
	13.1.5 Supplied Thesaurus

	13.2 Defining Terms in a Thesaurus
	13.2.1 Defining Synonyms
	13.2.2 Defining Hierarchical Relations

	13.3 Using a Thesaurus in a Query Application
	13.4 Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries
	13.5 Augmenting the Knowledge Base with a Custom Thesaurus
	13.5.1 Advantages
	13.5.2 Limitations

	13.6 Linking New Terms to Existing Terms
	13.7 Example of Loading a Thesaurus with ctxload
	13.8 Example of Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS PL/SQL procedure
	13.9 Compiling a Loaded Thesaurus
	13.10 About the Supplied Knowledge Base
	13.10.1 Adding a Language-Specific Knowledge Base
	13.10.2 Limitations for Adding Knowledge Bases

	14 Using Faceted Navigation
	14.1 About Faceted Navigation
	14.2 Defining Sections As Facets
	14.3 Querying Facets by Using the Result Set Interface
	14.4 Refining Queries by Using Facets As Filters
	14.5 Multivalued Facets

	15 Using the XML Query Result Set Interface
	15.1 Overview of the XML Query Result Set Interface
	15.2 Using the XML Query Result Set Interface
	15.3 Creating XML-Only Applications with Oracle Text
	15.4 Example of a Result Set Descriptor
	15.5 Identifying Collocates

	16 Performing Sentiment Analysis Using Oracle Text
	16.1 Overview of Sentiment Analysis
	16.1.1 About Sentiment Analysis
	16.1.2 About Sentiment Classifiers
	16.1.3 About Performing Sentiment Analysis
	16.1.4 Sentiment Analysis Interfaces

	16.2 Creating a Sentiment Classifier Preference
	16.3 Training Sentiment Classifiers
	16.4 Performing Sentiment Analysis with the CTX_DOC Package
	16.5 Performing Sentiment Analysis with the RSI

	17 Administering Oracle Text
	17.1 Oracle Text Users and Roles
	17.1.1 CTXSYS User
	17.1.2 CTXAPP Role
	17.1.3 Granting Roles and Privileges to Users

	17.2 DML Queue
	17.3 CTX_OUTPUT Package
	17.4 CTX_REPORT Package
	17.5 Text Manager in Oracle Enterprise Manager
	17.5.1 Using Text Manager
	17.5.2 Viewing General Information for an Oracle Text Index
	17.5.3 Checking Oracle Text Index Health

	17.6 Servers and Indexing
	17.7 Tracking Database Feature Usage in Oracle Enterprise Manager
	17.8 Oracle Text on Oracle Real Application Clusters
	17.9 Configuring Oracle Text in Oracle Database Vault Environment
	17.10 Unsupported Oracle Text Operations in Oracle Database Vault Realm

	18 Migrating Oracle Text Applications
	18.1 Performing a Rolling Upgrade with a Logical Standby Database
	18.1.1 CTX_DDL PL/SQL Procedures
	18.1.2 CTX_OUTPUT PL/SQL Procedures
	18.1.3 CTX_DOC PL/SQL Procedures

	18.2 Identifying and Copying Oracle Text Files to a New Oracle Home

	A CONTEXT Query Application
	A.1 Web Query Application Overview
	A.2 The PL/SQL Server Pages (PSP) Web Application
	A.2.1 PSP Web Application Prerequisites
	A.2.2 Building the PSP Web Application
	A.2.3 PSP Web Application Sample Code
	A.2.3.1 loader.ctl
	A.2.3.2 loader.dat
	A.2.3.3 HTML Files for loader.dat Example
	A.2.3.4 search_htmlservices.sql
	A.2.3.5 search_html.psp

	A.3 The Java Server Pages (JSP) Web Application
	A.3.1 JSP Web Application Prerequisites
	A.3.2 JSP Web Application Sample Code

	B CATSEARCH Query Application
	B.1 CATSEARCH Web Query Application Overview
	B.2 The JSP Web Application
	B.2.1 Building the JSP Web Application
	B.2.2 JSP Web Application Sample Code
	B.2.2.1 loader.ctl
	B.2.2.2 loader.dat
	B.2.2.3 catalogSearch.jsp

	C Custom Index Preference Examples
	C.1 Datastore Examples
	C.2 NULL_FILTER Example: Indexing HTML Documents
	C.3 PROCEDURE_FILTER Example
	C.4 BASIC_LEXER Example: Setting Printjoin Characters
	C.5 MULTI_LEXER Example: Indexing a Multilanguage Table
	C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing
	C.7 BASIC_WORDLIST Example: Enabling Wildcard Index

	Glossary
	alternate spelling
	attribute
	attribute section
	AUTO_SECTION_GROUP
	base-letter conversion
	BASIC_SECTION_GROUP
	case
	classification
	clustering
	composite domain index
	CONTEXT index
	CTXAPP role
	CTXCAT index
	CTXRULE index
	CTXSYS user
	datastore
	document services
	domain index
	endjoin
	entity extraction
	field section
	filtering
	fuzzy matching
	HASPATH operator
	highlighting
	HTML_SECTION_GROUP
	INPATH operator
	Key Word in Context (KWIC)
	knowledge base
	lexer
	markup
	MDATA
	MDATA section
	metadata
	mixed query
	name search
	NEWS_SECTION_GROUP
	normalized word
	NULL_SECTION_GROUP
	PATH_SECTION_GROUP
	preference
	printjoin
	result set
	rule-based classification
	structured/sort data (SDATA) section
	section
	section group
	skipjoin
	startjoin
	stemming
	special section
	stop section
	stopclass
	stoplist
	stoptheme
	stopword
	sub-lexer
	supervised classification
	theme
	unsupervised classification
	wildcard expansion
	whitespace
	WITHIN operator
	wordlist
	XML section
	XML_SECTION_GROUP
	zone section

	Index

