27.3 例: 優良顧客の分析
この項の例では、アフィニティ・カードを使用する顧客またはアフィニティ・カードを使用しそうな顧客に関する情報がわかります。
例27-2 優良顧客に関する人口統計データ情報の検出
この問合せでは、典型的なアフィニティ・カード保有者の性別、年齢および居住期間が戻されます。異常検出モデル(SVMO_SH_Clas_sample
)は、一般的なケースの場合には1
を、異常なケースの場合には0
を戻します。人口統計データは、典型的な顧客のみについて予測されます(外れ値はサンプルに含まれません)。
SELECT cust_gender, round(avg(age)) age, round(avg(yrs_residence)) yrs_residence, count(*) cnt FROM mining_data_one_class_v WHERE PREDICTION(SVMO_SH_Clas_sample using *) = 1 GROUP BY cust_gender ORDER BY cust_gender; CUST_GENDER AGE YRS_RESIDENCE CNT ------------ ---------- ------------- ---------- F 40 4 36 M 45 5 304
例27-3 優良顧客と共通点のある顧客の動的な特定
この問合せでは、現在はアフィニティ・カードを持っていないが、アフィニティ・カード保有者と多くの特徴を共有する顧客を特定します。PREDICTION
関数およびPREDICTION_PROBABILITY
関数では、事前定義のモデルのかわりにOVER
句を使用して顧客を分類します。予測と確率は動的に計算されます。
SELECT cust_id, pred_prob FROM (SELECT cust_id, affinity_card, PREDICTION(FOR TO_CHAR(affinity_card) USING *) OVER () pred_card, PREDICTION_PROBABILITY(FOR TO_CHAR(affinity_card),1 USING *) OVER () pred_prob FROM mining_data_build_v) WHERE affinity_card = 0 AND pred_card = 1 ORDER BY pred_prob DESC; CUST_ID PRED_PROB ---------- --------- 102434 .96 102365 .96 102330 .96 101733 .95 102615 .94 102686 .94 102749 .93 . . . . 102580 .52 102269 .52 102533 .51 101604 .51 101656 .51 226 rows selected.
例27-4 新規顧客が優良顧客になる可能性の予測
この問合せでは、新規顧客が優良顧客(アフィニティ・カード保有者)になる確率を計算します。この問合せは、販売時にリアルタイムで実行できます。
新規顧客は、44歳のアメリカ人重役で、学士の学位を持ち、年収は$300,000です。結婚していて、3人家族で暮らしており、過去6年間同じ住宅に住んでいます。この顧客が典型的なアフィニティ・カード保有者になる確立はわずか5.8%です。
SELECT PREDICTION_PROBABILITY(SVMO_SH_Clas_sample, 1 USING 44 AS age, 6 AS yrs_residence, 'Bach.' AS education, 'Married' AS cust_marital_status, 'Exec.' AS occupation, 'United States of America' AS country_name, 'M' AS cust_gender, 'L: 300,000 and above' AS cust_income_level, '3' AS houshold_size ) prob_typical FROM DUAL; PROB_TYPICAL ------------ 5.8
例27-5 予測分析を使用した最上位の予測子の検出
DBMS_PREDICTIVE_ANALYTICS
PL/SQLパッケージには、事前定義のモデルなしで簡単なデータ・マイニング操作を実行するルーチンが含まれています。この例では、EXPLAIN
ルーチンによって、アフィニティ・カードの所有に関する最上位の予測子が計算されます。結果には、世帯規模、未婚/既婚および年齢が、最上位となる3つの予測子であることが示されます。
BEGIN DBMS_PREDICTIVE_ANALYTICS.EXPLAIN( data_table_name => 'mining_data_test_v', explain_column_name => 'affinity_card', result_table_name => 'cust_explain_result'); END; / SELECT * FROM cust_explain_result WHERE rank < 4; ATTRIBUTE_NAME ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK ------------------------ -------------------- ----------------- ---------- HOUSEHOLD_SIZE .209628541 1 CUST_MARITAL_STATUS .199794636 2 AGE .111683067 3