Oracle® Multitenant
Administrator’s Guide

19¢c
E96136-16
June 2022

ORACLE"

Oracle Multitenant Administrator’'s Guide, 19c

E96136-16

Copyright © 2017, 2022, Oracle and/or its affiliates.

Primary Authors: Randy Urbano, Lance Ashdown

Contributing Authors: Patricia Huey, Donna Keesling, Roopesh Kumar, Bert Rich, Richard Strohm

Contributors: Penny Avril, Thomas Baby, Hermann Baer, Yasin Baskan, Dominique Djeunot, Andre Kruglikov,
Kishy Kumar, Sue Lee, Siyu Liu, Bryn Llewellyn, Colin McGregor, John McHugh, Valarie Moore, Muthu
Olagappan, Bhavesh Patel, Kumar Rajamani, Giridhar Ravipati, Can Tuzla, Patrick Wheeler

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XX
Documentation Accessibility XX
Related Documents XX
Conventions XXi

Changes in This Release for Oracle Multitenant Administrator’s Guide

Changes in Oracle Database Release 19c, Version 19.1 XXii
Changes in Oracle Database Release 18c, Version 18.1 xXiii

Part | Multitenant Architecture

1 Introduction to the Multitenant Architecture

About the Multitenant Architecture 1-1
About Containers in a CDB 1-1
About User Interfaces for the Multitenant Architecture 1-4
Benefits of the Multitenant Architecture 1-5
Challenges for a Non-CDB Architecture 1-6
Benefits of the Multitenant Architecture for Database Consolidation 1-7
Benefits of the Multitenant Architecture for Manageability 1-9
Path to Database Consolidation 1-10
Creation of a CDB 1-11
Creation of a PDB 1-12
Creation of a PDB by Cloning 1-12
Creation of a PDB by Plugging In 1-17
Creation of a PDB by Relocating 1-21
Creation of a PDB as a Proxy PDB 1-23
Multitenant Environment Documentation Roadmap 1-25

ORACLE iii

Overview of the Multitenant Architecture

Overview of Containers in a CDB
The CDB Root and System Container
PDBs
Types of PDBs
Purpose of PDBs
Proxy PDBs
Names for PDBs
Database Links Between PDBs
Data Dictionary Architecture in a CDB
Purpose of Data Dictionary Separation
Metadata and Data Links
Container Data Objects in a CDB
Data Dictionary Storage in a CDB
Current Container
Cross-Container Operations
Overview of Commonality in the CDB
About Commonality in a CDB
Principles of Commonality
Namespaces in a CDB
Overview of Common and Local Users in a CDB
Common Users in a CDB
Local Users in a CDB
Overview of Common and Local Roles in a CDB
Common Roles in a CDB
Local Roles in a CDB
Overview of Privilege and Role Grants in a CDB
Principles of Privilege and Role Grants in a CDB
Privileges and Roles Granted Locally in a CDB
Roles and Privileges Granted Commonly in a CDB
Grants to PUBLIC in a CDB
Grants of Privileges and Roles: Scenario
Overview of Common and Local Objects in a CDB
Overview of Common Audit Configurations
Overview of PDB Lockdown Profiles
Overview of Applications in an Application Container
About Application Containers
Purpose of Application Containers
Application Root
Application PDBs

ORACLE

2-1

2-2

2-3

2-3

2-4

2-5

2-6

2-7

2-8

2-8
2-10
2-11
2-13
2-14
2-14
2-15
2-15
2-16
2-16
2-17
2-18
2-20
2-22
2-22
2-23
2-23
2-24
2-24
2-26
2-28
2-29
2-32
2-33
2-34
2-36
2-36
2-37
2-40
2-41

Application Seed 2-41
Application Common Objects 2-42
Creation of Application Common Objects 2-43
Metadata-Linked Application Common Objects 2-43
Data-Linked Application Common Objects 2-45
Extended Data-Linked Application Objects 2-46
Application Maintenance 2-48
About Application Maintenance 2-48
Application Installation 2-49
Application Upgrade 2-50
Application Patch 2-54
Migration of an Existing Application 2-55
Implicitly Created Applications 2-55
Application Synchronization 2-56
Synchronization of a Single Application 2-56
Synchronization of Multiple Applications 2-57
Container Maps 2-57
Overview of Services in a CDB 2-60
Service Creation in a CDB 2-61
Default Services in a CDB 2-62
Nondefault Services in a CDB 2-62
Connections to Containers in a CDB 2-63
Overview of Tablespaces and Database Files in a CDB 2-64
Overview of Availability in a CDB 2-66
Overview of Backup and Recovery in a CDB 2-67
Overview of Flashback PDB in a CDB 2-67
Overview of Oracle Resource Manager in a CDB 2-68
Part || cCreating and Configuring a Multitenant Environment
3 Overview of Configuring and Managing a Multitenant Environment

About Configuring and Managing a Multitenant Environment 3-1
Common Users and Local Users 3-2
Separation of Duties in CDB and PDB Administration 3-2
Prerequisites for a Multitenant Environment 3-2
Tasks and Tools for a Multitenant Environment 3-3
Tasks for a Multitenant Environment 3-3
Tools for a Multitenant Environment 3-6

ORACLE

4 Creating and Configuring a CDB

About Creating a CDB 4-1
Planning for CDB Creation 4-2
Decide How to Configure the CDB 4-2
Plan the PDBs 4-3

Plan the Physical Layout 4-3

Learn How to Manage Initialization Parameters 4-4

Select the Character Set 4-5

Decide Which Time Zones to Support 4-6

Select the Database and Redo Log Block Sizes 4-6

Plan the SYSTEM and SYSAUX Tablespaces 4-6

Plan the Temporary Tablespaces 4-7
Choose the Undo Mode 4-7

Plan the Services for Your Application 4-8

Learn How to Start Up and Shut Down a CDB 4-8

Plan for Oracle RAC 4-9
Prerequisites for CDB Creation 4-9
Creating a CDB 4-10
About CDB Creation with DBCA 4-10
About CDB Creation with SQL Statements 4-11
About Enabling PDBs 4-12

About the Names and Locations of Files for the CDB Root and PDB$SEED 4-12

About the Attributes of the Data Files for PDB$SEED 4-14

About the CDB Undo Mode 4-15
Creating a CDB with the CREATE DATABASE Statement 4-16
Creating a CDB with the CREATE DATABASE Statement: Examples 4-17
Creating a CDB Without Using Oracle Managed Files 4-18
Creating a CDB Using Oracle Managed Files: Example 4-21
Configuring EM Express for a CDB 4-23
After Creating a CDB 4-24

Part Ill Creating and Removing PDBs and Application Containers
5 Overview of PDB Creation

Techniques for Creating a PDB 5-1
Current Container and PDB Creation 5-3
Options for Creating a PDB from a Non-CDB 5-4
PDB Storage 5-5
Storage Limits 5-5

ORACLE

Vi

Default Tablespace 5-6
User Tablespaces 5-6
PDB File Locations 5-8
FILE_NAME_CONVERT Clause 5-10
CREATE_FILE_DEST Clause 5-11
Restrictions on PDB File Locations 5-12
Service Name Conversion 5-13
Summary of Clauses for Creating a PDB 5-14
General Prerequisites for PDB Creation 5-22
6 Creating a PDB from Scratch

About Creating a PDB from Scratch 6-1
Creating a PDB 6-4
Creating a PDB: Examples 6-5
Creating a PDB Using No Clauses: Example 6-6

Creating a PDB and Granting Predefined Oracle Roles to the PDB Administrator:
Example 6-6
Creating a PDB Using Multiple Clauses: Example 6-7

7 Cloning a PDB or Non-CDB

About Cloning a PDB or Non-CDB 7-1
How Cloning Works 7-2
User Interface for PDB Cloning 7-3
Cloning a Local PDB 7-4
About Cloning a Local PDB 7-5
Cloning a Local PDB: Basic Steps 7-6
After Cloning a Local PDB 7-7
Cloning a Local PDB: Examples 7-8
Cloning a Local PDB Using No Clauses: Example 7-8
Cloning a Local PDB Using DBCA: Example 7-9
Cloning a Local PDB with the PATH_PREFIX Clause: Example 7-10
Cloning a Local PDB Using the STORAGE Clause: Example 7-10
Cloning a Local PDB with the NO DATA Clause: Example 7-11
Cloning a Remote PDB 7-12
About Cloning a Remote PDB 7-12
Cloning a Remote PDB: Basic Steps 7-14
After Cloning a Remote PDB 7-16
Cloning a Remote PDB: Examples 7-17
Cloning a Remote PDB Using No Clauses: Example 7-17
Cloning a Remote PDB Using DBCA: Example 7-18

ORACLE

Vii

Cloning a Non-CDB 7-19
About Cloning a Non-CDB 7-19
Cloning a Non-CDB: Basic Steps 7-20
Cloning a Remote Non-CDB: Example 7-23

About Refreshable Clone PDBs 7-24
Purpose of Refreshable Clone PDBs 7-24
Automatic and Manual Refresh Modes 7-25
Requirements for Refreshable Clone PDBs 7-26
Creating a Refreshable Clone PDB: Scenario 7-26

Cloning PDBs from PDB Snapshots 7-27
About Cloning PDBs from PDB Snapshots 7-28
Cloning a PDB from a PDB Snapshot: Scenario 7-28

Creating and Materializing Snapshot Copy PDBs 7-29
About Snapshot Copy PDBs 7-29

Storage Requirements for Snapshot Copy PDBs 7-29
Restrictions for Snapshot Copy PDBs 7-31
Creating a Snapshot Copy PDB: Scenario 7-32
Materializing a Snapshot Copy PDB 7-33
Creating a Split Mirror Clone PDB 7-33
8 Relocating a PDB

About PDB Relocation 8-1

Purpose of PDB Relocation 8-4

How PDB Relocation Works 8-4
Server Session Draining When Relocating or Stopping PDBs 8-4
Stages of PDB Relocation 8-6

PDB Relocation in a Common Listener Network 8-6
PDB Relocation in Isolated Listener Networks 8-7

User Interface for PDB Relocation 8-9

Relocating a PDB Using CREATE PLUGGABLE DATABASE 8-10

Relocating a PDB: Examples 8-13
Relocating a PDB from a Remote CDB 8-13
Relocating a PDB Using DBCA: Example 8-14

9 Plugging In an Unplugged PDB

About PDB Plugin Operations 9-1
About the XML File and Archive File 9-1
Source File Locations When Plugging In an Unplugged PDB 9-4

SOURCE_FILE_NAME_CONVERT Clause 9-4

ORACLE

viii

SOURCE_FILE_DIRECTORY Clause

9-5

About Adopting a Non-CDB as a PDB 9-6
Plugging In an Unplugged PDB 9-8
Adopting a Non-CDB as a PDB 9-11
After Plugging in an Unplugged PDB 9-13
Plugging in an Unplugged PDB: Examples 9-14

10 Creating a PDB as a Proxy PDB
About Creating a Proxy PDB 10-1

Proxy PDBs and SQL Statements 10-4

Proxy PDBs and Database Links 10-4

Proxy PDBs and Authentication 10-5

Proxy PDBs and the Listener 10-5

HOST Clause 10-5
PORT Clause 10-6
Creating a Proxy PDB 10-6
11 Removing a PDB
Unplugging a PDB from a CDB 11-1

About Unplugging a PDB 11-1

Unplugging a PDB 11-4
Dropping a PDB 11-5

12 Creating and Removing Application Containers and Seeds

Creating and Removing Application Containers 12-1
Creating Application Containers 12-2

About Creating an Application Container 12-2

Preparing for Application Containers 12-3

Creating an Application Container 12-4

Unplugging an Application Container from a CDB 12-7

About Unplugging an Application Container 12-7

Unplugging an Application Container 12-8

Dropping an Application Container 12-9
Creating and Removing Application Seeds 12-11

Creating Application Seeds 12-11

About Creating an Application Seed 12-11
Preparing for an Application Seed 12-12
Creating an Application Seed 12-12

Unplugging an Application Seed from an Application Container 12-16

ORACLE

About Unplugging an Application Seed 12-16
Unplugging an Application Seed 12-17
Dropping an Application Seed 12-18
Creating an Application PDB 12-19
Part IV Administering a Multitenant Environment
13 Administering a CDB

About CDB Administration 13-1
About the Current Container 13-2
About Administrative Tasks in a CDB 13-3
About Using Manageability Features in a CDB 13-7
About Managing Tablespaces in a CDB 13-13
About Managing Permanent Tablespaces in a CDB 13-13

About Managing Temporary Tablespaces in a CDB 13-13

About Managing Database Objects in a CDB 13-14
About Flashing Back a PDB 13-15
About Restricting PDB Users for Enhanced Security 13-15
PDB Lockdown Profiles 13-15

The PDB_OS CREDENTIAL Initialization Parameter 13-17

The PATH_PREFIX and CREATE_FILE_DEST PDB Creation Clauses 13-17
Overview of Oracle Multitenant with Oracle RAC 13-18
Accessing Containers in a CDB 13-19
About Container Access in a CDB 13-19
Services in a CDB 13-20
Session Limits in a CDB 13-20

User Names in a Multitenant Environment 13-21

How the Multitenant Option Affects Password Files for Administrative Users 13-21
Accessing a Container in a CDB 13-21
Connecting to a Container Using the SQL*Plus CONNECT Command 13-22
Switching to a Container Using the ALTER SESSION Statement 13-24
Modifying a CDB at the System Level 13-28
About System-Level Modifications of a CDB 13-28
Modifying a CDB with ALTER SYSTEM 13-29
Modifying Containers When Connected to the CDB Root 13-30
About Container Modification When Connected to CDB Root 13-30
Modifying an Entire CDB Using ALTER DATABASE 13-31
Setting the Undo Mode in a CDB Using ALTER DATABASE 13-32
About the CDB Undo Mode 13-32
Configuring a CDB to Use Local Undo Mode 13-34

ORACLE

Configuring a CDB to Use Shared Undo Mode 13-35
Modifying the CDB Root Using ALTER DATABASE 13-36
Executing SQL in a Different Container 13-37
Issuing DML Statements on a Container in a CDB 13-38
About Issuing DML Statements on a Container in a CDB 13-38
Specifying the Default Container for DML Statements in a CDB 13-39
Executing DDL Statements in a CDB 13-39
About Executing DDL Statements in a CDB 13-40
Executing a DDL Statement in the Current Container 13-42
Executing a DDL Statement in All Containers in a CDB 13-42
Running Oracle-Supplied SQL Scripts in a CDB 13-43
About Running Oracle-Supplied SQL Scripts in a CDB 13-43

Syntax and Parameters for catcon.pl 13-44
Running the catcon.pl Script 13-47
Executing Code in Containers Using the DBMS_SQL Package 13-49
Shutting Down a CDB Instance 13-51

14 Administering a CDB Fleet
About CDB Fleets 14-1
Purpose of a CDB Fleet 14-3
Setting the Lead CDB in a CDB Fleet 14-4
Designating a CDB Fleet Member 14-4
15 Administering PDBs

About PDB Administration 15-1
Tasks Common to PDBs and Non-CDBs 15-2
Tasks Specific to CDBs 15-3
Managing Connections to a PDB 15-3
Connecting to a PDB 15-4
Managing Services for PDBs 15-5
About Services for PDBs 15-5
Managing Services for a PDB Using SRVCTL and DBMS_SERVICE 15-8
Modifying the Listener Settings of a Referenced PDB 15-10
Altering the Listener Host Name of a Referenced PDB 15-11
Altering the Listener Port Number of a Referenced PDB 15-12
Modifying a PDB at the System Level 15-13
About System-Level Modifications of a PDB 15-13
Modifying a PDB with ALTER SYSTEM 15-15
Modifying a PDB at the Database Level 15-16

ORACLE

Xi

About Database-Level Modifications of a PDB 15-16

Storage Clauses 15-17
Logging and Recovery Clauses 15-17
Miscellaneous Clauses 15-20
Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement 15-21
Changing the Global Database Name of a PDB 15-23
Managing Refreshable Clone PDBs 15-24
Refreshing a PDB 15-25
Switching Over a Refreshable Clone PDB 15-25
Modifying the Open Mode of PDBs 15-29
About the Open Mode of a PDB 15-29
Clauses for Changing the Open State of PDBs 15-31
Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE 15-34
Preserving or Discarding the Open Mode of PDBs When the CDB Restarts 15-37
Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN 15-39
About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command 15-40
Starting Up a PDB Using the STARTUP Command 15-41
Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command 15-42
Shutting Down a PDB Using the SHUTDOWN Command 15-43
Starting and Stopping PDBs in Oracle RAC 15-45

16 Administering a PDB Snapshot Carousel

About PDB Snapshot Carousel 16-1
Purpose of PDB Snapshot Carousel 16-2
How PDB Snapshot Carousel Works 16-5

Contents of a PDB Snapshot 16-5
Contents of a PDB Snapshot Carousel 16-7
User Interface for PDB Snapshot Carousel 16-8

Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel 16-10

Configuring Automatic PDB Snapshots 16-11

Creating PDB Snapshots Manually 16-13

Dropping a PDB Snapshot 16-15

Viewing Metadata for PDB Snapshots 16-15

17 Administering Application Containers

About Application Container Administration 17-1
About Modifying an Application Root 17-4
Managing Applications in an Application Container 17-5

About Application Management 17-6

ORACLE Xii

Basic Steps of Application Maintenance
Application Versions
Application Module Names and Service Names
Installing Applications in an Application Container
About Installing Applications in an Application Container
Installing an Application in an Application Container with Automated Propagation
Upgrading Applications in an Application Container
About Upgrading Applications in an Application Container
Upgrading an Application in an Application Container
Patching Applications in an Application Container
About Patching Applications in an Application Container
Patching an Application in an Application Container with Automated Propagation
Migrating an Existing Application to an Application Container
About Migrating an Existing Application to an Application Container
Creating an Application Root Using an Existing PDB
Creating an Application PDB Using an Existing PDB
Synchronizing Applications in an Application PDB
Synchronizing an Application Root Replica with a Proxy PDB
About Synchronizing an Application Root Replica with a Proxy PDB
Creating a Proxy PDB That References an Application Root Replica
Setting the Compatibility Version of an Application
Performing Bulk Inserts During Application Install, Upgrade, and Patch Operations
Uninstalling Applications from an Application Container
About Uninstalling Applications from an Application Container
Uninstalling an Application from an Application Container
Managing Application Common Objects
About Application Common Objects
Creation of Application Common Objects
About Metadata-Linked Application Common Objects
About Extended Data-Linked Application Common Objects
About Extended Data-Linked Application Common Objects
Restrictions for Application Common Objects
Creating Application Common Objects
Issuing DML Statements on Application Common Objects
Issuing DML on Metadata-Linked Common Objects
Issuing DML on Data-Linked Common Objects
Modifying Application Common Objects with DDL Statements
Issuing DML Statements on Containers in an Application Container
About Issuing DML Statements on Containers in an Application Container
Specifying the Default Container for DML Statements in an Application Container
Partitioning by PDB with Container Maps

ORACLE

17-7
17-7
17-8
17-9

17-10

17-10

17-11

17-11

17-14

17-15

17-16

17-16

17-18

17-18

17-19

17-20

17-21

17-22

17-23

17-25

17-31

17-32

17-34

17-34

17-35

17-36

17-36

17-37

17-39

17-39

17-40

17-40

17-41

17-44

17-44

17-46

17-48

17-49

17-49

17-51

17-51

Xiii

About Container Maps 17-51

Map Objects 17-52
List-Partitioned Container Map: Example 17-53
Range-Partitioned Container Map: Example 17-54
Creating a Container Map 17-55

18 Managing Security for a Multitenant Environment

Managing Commonly and Locally Granted Privileges 18-1
How the Oracle Multitenant Option Affects Privileges 18-2
About Commonly and Locally Granted Privileges 18-2
How Commonly Granted System Privileges Work 18-3
How Commonly Granted Object Privileges Work 18-4
Granting or Revoking Privileges to Access a PDB 18-5
Example: Granting a Privilege in a Multitenant Environment 18-5
Enabling Common Users to View CONTAINER_DATA Object Information 18-5

Viewing Data About the Root, CDB, and PDBs While Connected to the Root 18-5
Enabling Common Users to Query Data in Specific PDBs 18-6

Managing Common Roles and Local Roles 18-7
About Common Roles and Local Roles 18-8
How Common Roles Work 18-8
How the PUBLIC Role Works in a Multitenant Environment 18-9
Privileges Required to Create, Modify, or Drop a Common Role 18-9
Rules for Creating Common Roles 18-9
Creating a Common Role 18-10
Rules for Creating Local Roles 18-10
Creating a Local Role 18-10
Role Grants and Revokes for Common Users and Local Users 18-11

Restricting Operations on PDBs Using PDB Lockdown Profiles 18-12
About PDB Lockdown Profiles 18-12
Default PDB Lockdown Profiles 18-13
Creating a PDB Lockdown Profile 18-14
Enabling or Disabling a PDB Lockdown Profile 18-15
Dropping a PDB Lockdown Profile 18-17

Configuring Operating System Users for a PDB 18-18
About Configuring Operating System Users for a PDB 18-18
Configuring an Operating System User for a PDB 18-18
Setting the Default Credential in a PDB 18-20

Using Application Contexts in a Multitenant Environment 18-20
What Is an Application Context? 18-21
Application Contexts in a Multitenant Environment 18-21

ORACLE Xiv

Using Oracle Virtual Private Database in a Multitenant Environment 18-22

What Is Oracle Virtual Private Database? 18-22
Oracle Virtual Private Database in a Multitenant Environment 18-23
Using Transport Layer Security in a Multitenant Environment 18-25
Oracle Data Redaction in a Multitenant Environment 18-25
Overview of Auditing in a Multitenant Environment 18-26
Unified Auditing in a Multitenant Environment 18-26
Example: Auditing the DBA Role in a Multitenant Environment 18-27
Unified Audit Policies or AUDIT Settings in a Multitenant Environment 18-27
About Local, CDB Common, and Application Common Audit Policies 18-27
Traditional Auditing in a Multitenant Environment 18-29
Configuring a Local Unified Audit Policy or Common Unified Audit Policy 18-30
Example: Local Unified Audit Policy 18-31
Example: CDB Common Unified Audit Policy 18-32
Example: Application Common Unified Audit Policy 18-32

How Local or Common Audit Policies or Settings Appear in the Audit Trail 18-33
Fine-Grained Auditing in a Multitenant Environment 18-34

19 Monitoring CDBs and PDBs

About CDB and Container Information in Views 19-2
About Viewing Information When the Current Container Is Not the CDB Root 19-2
About Viewing Information When the Current Container Is the CDB Root 19-3
Views for a CDB 19-4

Determining Whether a Database Is a CDB 19-7

Viewing Information About the Containers in a CDB 19-8

Viewing Information About PDBs 19-9

Viewing the Open Mode of Each PDB 19-9

Querying Container Data Objects 19-10

Querying Across Containers with the CONTAINERS Clause 19-14
About Querying Across Containers with the CONTAINERS Clause 19-14
Querying User-Created Tables and Views Across All Containers 19-16
Querying Application Common Objects Across Application PDBs 19-18

Determining the Current Container ID or Name 19-19

Listing the Modifiable Initialization Parameters in PDBs 19-20

Viewing the History of PDBs 19-21

Viewing Information About Applications in Application Containers 19-22
Viewing Information About Applications 19-23
Viewing Information About Application Status 19-24
Viewing Information About Application Statements 19-25
Viewing Information About Application Versions 19-27

ORACLE XV

Viewing Information About Application Patches 19-28
Viewing Information About Application Errors 19-29
Listing the Shared Database Objects in an Application Container 19-29
Listing the Extended Data-Linked Objects in an Application Container 19-30
Part V. Using Oracle Features in a Multitenant Environment
20 Backing Up and Recovering CDBs and PDBs
Overview of Backing Up and Recovering CDBs and PDBs 20-1
Backup and Complete Recovery of CDBs 20-2
Backup and Complete Recovery of PDBs 20-3
Point-in-Time Recovery in a Multitenant Environment 20-4
Flashback Database in a Multitenant Environment 20-5
21 Using Database Utilities in a Multitenant Environment
Importing and Exporting Data in a CDB 21-1
About Using Data Pump in a Multitenant Environment 21-1
Using Data Pump to Move Data Into a CDB 21-2
Using Data Pump to Move PDBs Within Or Between CDBs 21-4
Using LogMiner in a CDB 21-5
LogMiner V$ Views and DBA Views in a CDB 21-5
The VSLOGMNR_CONTENTS View in a CDB 21-6
Enabling Supplemental Logging in a CDB 21-6
Using a Flat File Dictionary in a CDB 21-7
DBNEWID Considerations for CDBs and PDBs 21-7
272 Using Oracle Resource Manager for PDBs
Overview of Oracle Resource Manager in a Multitenant Environment 22-2
Purpose of Resource Management in a Multitenant Environment 22-3
Overview of Resource Plan Directives 22-4
PDB Performance Profiles 22-4
Resource Plan Directives 22-4
Background and Administrative Tasks and Consumer Groups 22-5
Initialization Parameters for PDB-Level Resources 22-5
CPU-Related Initialization Parameters for PDBs 22-6
Memory-Related Initialization Parameters for PDBs 22-6
Session-Related Initialization Parameters for PDBs 22-9
I/O-Related Initialization Parameters for PDBs 22-9
ORACLE XVi

Managing CDB Resource Plans

22-11

About CDB Resource Plans 22-11
Shares for Allocating Resources to PDBs 22-12
Utilization Limits for PDBs 22-13
The Default Directive for PDBs 22-15

Creating a CDB Resource Plan for Managing PDBs 22-17

Creating a CDB Resource Plan for Managing PDBs: Scenario 22-17

Creating a CDB Resource Plan with PDB Performance Profiles 22-20

Creating a CDB Resource Plan for PDB Performance Profiles: Scenario 22-21

Enabling a CDB Resource Plan 22-24

Modifying a CDB Resource Plan 22-24
Updating a CDB Resource Plan 22-25
Managing CDB Resource Plan Directives for a PDB 22-26
Managing CDB Resource Plan Directives for a PDB Performance Profile 22-29
Updating the Default Directive for PDBs in a CDB Resource Plan 22-33
Updating the Default Directive for Maintenance Tasks in a CDB Resource Plan 22-34
Deleting a CDB Resource Plan 22-35

Disabling a CDB Resource Plan 22-36

Viewing Information About Plans and Directives in a CDB 22-37
Viewing CDB Resource Plans 22-37
Viewing CDB Resource Plan Directives 22-38

Managing PDB Resource Plans 22-39

About PDB Resource Plans 22-40
CDB Resource Plan Requirements When Creating PDB Resource Plans 22-40
PDB Resource Plan: Example 22-41

Creating a PDB Resource Plan 22-42

Enabling a PDB Resource Plan 22-43

Modifying a PDB Resource Plan 22-44

Disabling a PDB Resource Plan 22-45

Monitoring PDBs Managed by Oracle Database Resource Manager 22-45

About Resource Manager Views for PDBs 22-46

Monitoring CPU Usage for PDBs 22-47

Monitoring Parallel Execution for PDBs 22-48

Monitoring the 1/0 Generated by PDBs 22-49

Monitoring Memory Usage for PDBs 22-50

23 Using Oracle Scheduler with a CDB
DBMS_SCHEDULER Invocations in a CDB 23-1
Job Coordinator and Slave Processes in a CDB 23-2
DBMS_JOB and DBMS_SCHEDULER 23-3

ORACLE

XVii

Processes to Close a PDB 23-3
New and Changed CDB Views 23-3

24 Using Oracle Database Vault with a CDB

About Oracle Database Vault 24-1
How Oracle Database Vault Works in a Multitenant Environment 24-2
Verifying That Database Vault Is Configured and Enabled 24-3
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment 24-4
Registering Database Vault in the CDB Root 24-4
Registering Database Vault Common Users to Manage Specific PDBs 24-7
Registering Database Vault Local Users to Manage Specific PDBs 24-9
Plugging in a Database Vault-Enabled PDB 24-11
Manually Installing Oracle Database Vault in a Multitenant Environment 24-12
Configuring Realms 24-13
What Are Realms? 24-13
About Realms 24-13
Realms in a Multitenant Environment 24-14
Realm Authorizations in a Multitenant Environment 24-15
Rule Sets and Rules in a Multitenant Environment 24-16
Command Rules in a Multitenant Environment 24-16
Oracle Database Vault Policies in a Multitenant Environment 24-17
Using Database Vault Operations Control to Restrict Multitenant Common User Access to
Local PDB Data 24-17
About Using Database Vault Operations Control 24-17
Enabling Database Vault Operations Control 24-18
Adding Common Users and Packages to an Exception List 24-19
Deleting Common Users and Packages from an Exception List 24-20
Disabling Database Vault Operations Control 24-20
Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB 24-21

25 Using XStream with a CDB

About XStream 25-1
System-Created Rules and a Multitenant Environment 25-3
System-Created Rules in a CDB and XStream Out 25-4
System-Created Rules in a CDB and XStream In 25-6
XStream Out and a Multitenant Environment 25-7
Configuring XStream Out in a CDB 25-8
Configuring XStream Out with Local Capture in a CDB 25-9
Configuring XStream Out with Downstream Capture in CDBs 25-12

ORACLE Xviii

XStream In and a Multitenant Environment 25-16

Glossary

Index

ORACLE" XixX

Preface

Preface

This document describes how to create, configure, and administer an Oracle
database.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

This document is intended for database administrators who perform the following
tasks:

» Create and configure one or more Oracle databases

* Monitor and tune Oracle databases

* Oversee routine maintenance operations for Oracle databases

» Create and maintain schema objects, such as tables, indexes, and views
* Schedule system and user jobs

» Diagnose, repair, and report problems

To use this document, you should be familiar with relational database concepts. You
should also be familiar with the operating system environment under which you are
running Oracle Database.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

ORACLE XX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

ORACLE

Preface

Oracle Database Concepts

Oracle Database Administrator’s Guide

Oracle Database 2 Day DBA

Oracle Database SQL Language Reference

Oracle Database Reference

Oracle Database PL/SQL Packages and Types Reference
Oracle Automatic Storage Management Administrator's Guide
Oracle Database VLDB and Partitioning Guide

Oracle Database Error Messages Reference

Oracle Database Net Services Administrator's Guide
Oracle Database Backup and Recovery User’s Guide
Oracle Database Performance Tuning Guide

Oracle Database SQL Tuning Guide

Oracle Database Development Guide

Oracle Database PL/SQL Packages and Types Reference

SOQL*Plus User's Guide and Reference

Many of the examples in this book use the sample schemas. See Oracle Database Sample
Schemas for information about these schemas.

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an action,

or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you

supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples,

text that appears on the screen, or text that you enter.

XXi

Changes in This Release for Oracle Multitenant Administrator’s Guide

Changes in This Release for Oracle
Multitenant Administrator’'s Guide

There are changes in this document for recent releases of Oracle Database.

e Changes in Oracle Database Release 19c, Version 19.1
Oracle Multitenant Administrator's Guide for Oracle Database release 19c, version
19.1 has the following changes.

e Changes in Oracle Database Release 18c, Version 18.1

Changes in Oracle Database Release 19c, Version 19.1

Oracle Multitenant Administrator's Guide for Oracle Database release 19c, version
19.1 has the following changes.

* New Features
The following major features are new in this release.

New Features

The following major features are new in this release.

» Workload capture and replay in a PDB
A local user can capture, replay, and report on a workload at the PDB level.

See "About Using Manageability Features in a CDB" and Oracle Database Testing
Guide.

* ADDM analysis for PDBs

You can use ADDM to analyze AWR data stored inside the PDB through an AWR
snapshot taken inside the PDB. You can also analyze AWR data of a non-CDB,
CDB root, or PDB imported into the AWR storage of a PDB. Automatic ADDM of a
PDB is disabled by default. You can enable it for a PDB by enabling automatic
AWR snapshots.

See "About Using Manageability Features in a CDB" and Oracle Database
Performance Tuning Guide.

» Database Vault Operations Control for infrastructure database administrators

You can use Oracle Database Vault to block common users (for example,
infrastructure DBAS) from accessing local data in PDBs. Thus, common users are
blocked from accessing local data. Oracle Database Vault enables you to store
sensitive data for your business applications and allow operations to manage the
database infrastructure without having to access sensitive customer data.

See "Using Database Vault Operations Control to Restrict Multitenant Common
User Access to Local PDB Data".

ORACLE XXii

Changes in This Release for Oracle Multitenant Administrator’s Guide

* Support for multiple PDB shards in the same CDB

A CDB can contain multiple PDBs as shard catalog databases. Also, a CDB can contain
shard PDBs from different sharded databases (SDBs), each managed by its own
separate catalog database.

See Using Oracle Sharding.
* Automated PDB relocation

In Oracle Grid Infrastructure, you can use Oracle Fleet Patching and Provisioning to
automate relocation of a PDB from one CDB to another. Automated relocation enables
you to patch individual PDBs more quickly without exposing other PDBs to the changes
in the patch.

See Oracle Clusterware Administration and Deployment Guide.
» Cloning a remote PDB using DBCA

You can clone a remote PDB using DBCA in silent mode.

See "About Cloning a Remote PDB".
* Remote PDB relocation

You can use Database Configuration Assistant (DBCA) to relocate a PDB from a remote
CDB to a local CDB.

See "Relocating a PDB Using DBCA: Example".
e Cloud object store support for Data Pump Import

The credential parameter of impdb specifies the name of a credential object that
contains the user name and password required to access an object store bucket. You can
also specify a default credential using the database property DEFAULT CREDENTIAL.

See "Setting the Default Credential in a PDB" and "Using Data Pump to Move Data Into a
cDB".

¢ See Also:

Oracle Database Licensing Information User Manual for details on which features
are supported for different editions and services

Changes in Oracle Database Release 18c, Version 18.1

The following are changes in Oracle Multitenant Administrator's Guide for Oracle Database
release 18c, version 18.1.

* New Features

New Features

The following features are new in this release:

e CDB fleet

A CDB fleet is a collection of different CDBs that can be managed as one logical CDB.

ORACLE XXiii

ORACLE

Changes in This Release for Oracle Multitenant Administrator’s Guide

See "Administering a CDB Fleet".
PDB snapshot carousel

A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open
read-only or read/write while the snapshot is created. You can create snapshots
manually using the SNAPSHOT clause of CREATE PLUGGABLE DATABASE (or ALTER
PLUGGABLE DATABASE), or automatically using the EVERY interval clause. When a
PDB is enabled for snapshots, you can create multiple snapshots (point-in-time
copies) of the PDB. The library of snapshots is called a PDB shapshot carousel.
You can quickly clone a new PDB based on any snapshot in the carousel. In this
way, you can perform point-in-time recovery to any snapshot in the carousel, or
rapidly create a PDB by cloning any shapshot.

See "User Interface for PDB Snapshot Carousel" and "Administering a PDB
Snapshot Carousel".

Logical partitioning

A container map enables a session to issue SQL statements that are routed to the
appropriate PDB, depending on the value of a predicate used in the SQL
statement. The partitioning column in the map table does not need to match a
column in the metadata-linked table. For example, if the table sales is enabled for
the container map pdo _map tbl, and if sales does not have the column used to
partition pdb_map_tbl, then queries with the predicate CONTAINERS (sales) are still
routed to the PDBs specified in the map table.

See "Container Maps".
Refreshable PDB switchover

A refreshable clone PDB is a read-only clone that can periodically synchronize
with its source PDB. You can reverse the roles, transforming the source PDB into
the clone and the clone into the source. This technique can be useful for load
balancing. Also, if the source PDB fails, then you can resume operations on the
clone PDB, rendering a CDB-level Oracle Data Guard failover unnecessary.

See "About Refreshable Clone PDBs" and "Switching Over a Refreshable Clone
PDB".

Lockdown profile enhancements

You can create, alter, or drop lockdown profiles in application containers. Also, you
can create lockdown profiles based on a static or a dynamic base profile.

See "Overview of PDB Lockdown Profiles”, "About Restricting PDB Users for
Enhanced Security”, and "Restricting Operations on PDBs Using PDB Lockdown
Profiles".

DBCA enhancements

You can use DBCA to clone a local PDB or duplicate a CDB. Duplication is only
supported in silent mode.

See "About CDB Creation with DBCA" and "About Cloning a Local PDB".
Usable backups of non-CDBs and relocated PDBs

When you are cloning a non-CDB as a PDB or relocating a PDB, you can use the
DBMS_PDB.EXPORTRMANBACKUP procedure to export RMAN backup metadata into the
PDB dictionary. This metadata enables backups of the source non-CDB or PDB to
be usable for restore and recovery of the target PDB.

See "General Prerequisites for PDB Creation".

XXIV

ORACLE

Changes in This Release for Oracle Multitenant Administrator’s Guide

RMAN duplication of a PDB to another CDB

You can clone a PDB from a source CDB to an existing CDB that is open read/write.
See "Techniques for Creating a PDB"

Relocation of sessions during planned maintenance

Application Continuity can drain database sessions during planned maintenance when
the application submits a connection test, at request boundaries, and at good places to
fail over. The relocation is transparent to applications. This feature is on by default for all
maintenance operations invoked at the database service and PDB levels: stop service,
relocate service, relocate PDB, and stop PDB.

See "Managing Services for PDBs", "How PDB Relocation Works", and Oracle Real
Application Clusters Administration and Deployment Guide.

Copying a PDB in an Oracle Data Guard environment

When performing a remote clone in a primary database, or plugging in a PDB in a
primary database, you can set initialization parameters in a standby database that
automates copying the data files for the newly created PDB.

See "Cloning a Remote PDB: Basic Steps" and "Plugging In an Unplugged PDB".
Parallel statement queuing at the PDB level

You can configure parallel statement queuing for a PDB just as for a non-PDB using the
PARALLEL SERVERS TARGET initialization parameter. At the PDB level, the default is based
on the CPU_COUNT setting for the PDB. At the CDB level, the default value is the value of
the PARALLEL MAX SERVERS initialization parameter.

See "Utilization Limits for PDBs".
Split mirror clone PDBs

When a PDB resides in Oracle ASM, you can use a split mirroring technique to clone a
PDB. The cloned PDB is independent of the original PDB. The principal use case is to
rapidly provision test and development PDBs in an Oracle ASM environment.

See "Creating a Split Mirror Clone PDB".

XXV

Multitenant Architecture

The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

e Introduction to the Multitenant Architecture
Become familiar with the Oracle Multitenant option.

e Overview of the Multitenant Architecture
This chapter describes the most important components of the multitenant architecture.

ORACLE

Introduction to the Multitenant Architecture

Become familiar with the Oracle Multitenant option.

* About the Multitenant Architecture
The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

» Benefits of the Multitenant Architecture
The multitenant architecture solves several problems posed by the traditional non-CDB
architecture.

e Path to Database Consolidation
For the duration of its existence, a database is either a CDB or a non-CDB.

e Multitenant Environment Documentation Roadmap
This topic lists the most important topics for understanding and using CDBs, and includes
cross-references to the appropriate documentation.

About the Multitenant Architecture

The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

A CDB includes zero, one, or many customer-created pluggable databases (PDBs). A PDB is
a portable collection of schemas, schema objects, and nonschema objects that appears to an
Oracle Net client as a non-CDB. All Oracle databases before Oracle Database 12c¢ were non-
CDBs.

* About Containers in a CDB
A container is logical collection of data or metadata within the multitenant architecture.

» About User Interfaces for the Multitenant Architecture
You can use the same administration tools for both CDBs and non-CDBs.

About Containers in a CDB

A container is logical collection of data or metadata within the multitenant architecture.

The following figure represents possible containers in a CDB.

ORACLE 1-1

Chapter 1
About the Multitenant Architecture

Figure 1-1 Containers in a CDB

cbB

Application Application
Container Container

Root (CDB$ROOT)

Bl

e
%

Application Root Application Root

Seed T -

(PDB$SEED)
App“catlon/% @ @ @ @ @
Seed

Appllcatlon Appllcatlon
PDBs PDBs

I
PDBs and Application Containers

Every CDB has the following containers:

ORACLE

Exactly one CDB root container (also called simply the root)

The CDB root is a collection of schemas, schema objects, and nonschema objects
to which all PDBs belong (see "Overview of Containers in a CDB"). The root stores
Oracle-supplied metadata and common users. An example of metadata is the
source code for Oracle-supplied PL/SQL packages (see "Data Dictionary
Architecture in a CDB"). A common user is a database user known in every
container (see "Common Users in a CDB"). The root container is named CDBSROOT.

Exactly one system container

The system container includes the root CDB and all PDBs in the CDB. Thus, the
system container is the logical container for the CDB itself.

Zero or more application containers

An application container consists of exactly one application root, and the PDBs
plugged in to this root. Whereas the system container contains the CDB root and
all the PDBs within the CDB, an application container includes only the PDBs
plugged into the application root. An application root belongs to the CDB root and
no other container.

Zero or more user-created PDBs

A PDB contains the data and code required for a specific set of features (see
"PDBs"). For example, a PDB can support a specific application, such as a human
resources or sales application. No PDBs exist at creation of the CDB. You add
PDBs based on your business requirements.

A PDB belongs to exactly zero or one application container. If a PDB belongs to an
application container, then it is an application PDB. For example, the custl pdb
and cust2_ pdb application PDBs might belong to the saas sales ac application

1-2

ORACLE

Chapter 1
About the Multitenant Architecture

container, in which case they belong to no other application containers. An application
seed is an optional application PDB that acts as a user-created PDB template, enabling
you to create new application PDBs rapidly.

» Exactly one seed PDB

The seed PDB is a system-supplied template that the CDB can use to create new PDBs.
The seed PDB is named PDBS$SEED. You cannot add or modify objects in PDBSSEED.

Example 1-1 CDB with No Application Containers

This example shows a simple CDB with five containers: the system container (the entire
CDB), the CDB root, the PDB seed (PDB$SEED), and two PDBs. Each PDB has its own
dedicated application. A different PDB administrator manages each PDB. A common user
exists across a CDB with a single identity. In this example, common user SYS can manage the
root and every PDB. At the physical level, this CDB has a database instance and database
files, just as a non-CDB does.

Figure 1-2 CDB with No Application Containers

cDB i
PDB

Administrator Root CDB
for hrpdb (CDB$ROOT) Administrator

—| Sales Application
HR Application

" Seed
PDB | (PDBSSEED)

Administrator N
for salespdb

Logical
Physical
! Database
Data Control
Files Files

Example 1-2 CDB with an Application Container

In this variation, the CDB contains an application container named saas_sales_ac. Within the
application container, the application PDB custl pdb supports an application for one
customer, and the application PDB cust2_pdb supports an application for a different
customer. The CDB also contains a PDB named hrpdb, which supports an HR application,
but does not belong to an application container.

1-3

Chapter 1
About the Multitenant Architecture

Figure 1-3 CDB with an Application Container

CDB Application

Container
saas_sales_ac

©

CDB
Administrator

Root (CDB$ROOT)

L

L |

Application Root

Seed

(PDB$SEED) il Ifil |i

Appllcatlon custl_pdb cust2 pdb‘

Application
Container
Administrator

©

Appl|cat|on
PDBs

Application
PDB

[
Egrﬁinistrator PDBs and Application Containers

for hrpdb

Administrator

In this example, multiple DBAs manage the CDB environment:

* A CDB administrator manages the CDB itself.

* An application container administrator manages the saas_sales_ac container,
including application installation and upgrades.

* An application PDB administrator manages the two PDBs in the saas sales ac
container: custl pdb and cust2 pdb.

* A PDB administrator manages hrpdb.

¢ See Also:

" Overview of Configuring and Managing a Multitenant Environment"

About User Interfaces for the Multitenant Architecture

You can use the same administration tools for both CDBs and non-CDBs.

Table 1-1 Tools in a Multitenant Environment

Interface Description See Also
SQL*Plus and SQL Developer | SQL*Plus is an interactive SQL*Plus User's Guide and
for command-line access and batch query tool that is Reference

installed with Oracle

Database.

ORACLE 1-4

Table 1-1 (Cont.) Tools in a Multitenant Environment

Chapter 1
Benefits of the Multitenant Architecture

Interface

Description

See Also

Oracle Enterprise Manager
Cloud Control (Cloud Control)

Cloud Control is an Oracle
Database administration tool
that provides a graphical user
interface (GUI). Cloud Control
supports Oracle Database
12c targets, including PDBs,
CDBs, and non-CDBs.

The Cloud Control online help

Oracle Enterprise Manager
Database Express (EM
Express)

EM Express is a web-based

management product built into

the Oracle database. EM

Express enables you to

provision and manage PDBs,

including the following

operations:

* Creating and dropping
PDBs

e Plugging in and
unplugging and PDBs

e Cloning PDBs

e Setting resource limits for
PDBs

Oracle Database
Performance Tuning Guide to
learn more about using EM
Express for managing CDBs
and PDBs

Oracle Database Configuration

DBCA is a utility with a

Oracle Database

administrators

Assistant (DBCA) graphical user interface that Performance Tuning Guide
enables you to create and and Oracle Database
duplicate CDBs. It also Administrator’s Guide for
enables you to create, more information about
relocate, clone, plug in, and DBCA
unplug PDBs.

¢ See Also:

Benefits of the Multitenant Architecture

The multitenant architecture solves several problems posed by the traditional non-CDB

ORACLE

architecture.

* Challenges for a Non-CDB Architecture
Large enterprises may use hundreds or thousands of databases. Often these databases

run on different platforms on multiple physical servers.

Oracle Database Concepts for more information about tools for database

» Benefits of the Multitenant Architecture for Database Consolidation

Database consolidation is the process of consolidating data from multiple databases

into one database on one computer. The Oracle Multitenant option enables you to
consolidate data and code without altering existing schemas or applications.

1-5

Chapter 1
Benefits of the Multitenant Architecture

» Benefits of the Multitenant Architecture for Manageability
The multitenant architecture has benefits beyond database consolidation. These
benefits derive from storing the data and metadata specific to a PDB in the PDB
itself rather than storing all dictionary metadata in one place.

Challenges for a Non-CDB Architecture

Large enterprises may use hundreds or thousands of databases. Often these
databases run on different platforms on multiple physical servers.

Because of improvements in hardware technology, especially the increase in the
number of CPUs, servers can handle heavier workloads than before. A database may
use only a fraction of the server hardware capacity. This approach wastes both
hardware and human resources.

For example, 100 servers may have one database each, with each database using
10% of hardware resources and 10% of an administrator's time. A team of DBAs must
manage the SGA, database files, accounts, security, and so on of each database
separately, while system administrators must maintain 100 different computers.

To show the problem in reduced scale, Figure 1-4 depicts 11 databases, each with its
own application and server. A head DBA oversees a team of four DBAs, each of whom
is responsible for two or three databases.

Figure 1-4 Database Environment Before Database Consolidation

HEIK
Yt
i1

Applications

UETR)
Lh}
UETE)
|t
HETR)
L1}
UEE)

il
L1}
HEIR
L1}
LETR)
"t
HEK
L1}
i
L1}

Databases

ORACLE

© 0
¥

In this model, you replicate the operating infrastructure of the physical server—
operating system and database—in a virtual machine. VMs are agile, but use
technical resources inefficiently, and require individual management. Virtual
sprawl, which is just as expensive to manage, replaces the existing physical
sprawl.

© ©
Head' DBAs '
PeA S <

Typical responses include:

* Use virtual machines (VMs).

* Place multiple databases on each server.

1-6

Chapter 1
Benefits of the Multitenant Architecture

Separate databases eliminate operating system replication, but do not share background
processes, system and process memory, or Oracle metadata. The databases require
individual management.

e Separate the data logically into schemas or virtual private databases (VPDSs).

This technique uses technical resources efficiently. You can manage multiple schemas or
VPDs as one. However, this model is less agile than its alternatives, requiring more effort
to manage, secure, and transport. Also, the logical model typically requires extensive
application changes, which discourages adoption.

Benefits of the Multitenant Architecture for Database Consolidation

ORACLE

Database consolidation is the process of consolidating data from multiple databases into
one database on one computer. The Oracle Multitenant option enables you to consolidate
data and code without altering existing schemas or applications.

The PDB/non-CDB compatibility guarantee means that a PDB behaves the same as a non-
CDB as seen from a client connecting with Oracle Net. The installation scheme for an
application definition (for example, tables and PL/SQL packages) that runs against a non-
CDB runs the same against a PDB and produces the same result. Also, the run-time behavior
of client code that connects to the PDB containing the application definition is identical to the
behavior of client code that connected to the non-CDB containing this application definition.

Operations that act on an entire non-CDB act in the same way on an entire CDB, for
example, when using Oracle Data Guard and database backup and recovery. Thus, the
users, administrators, and developers of a non-CDB have substantially the same experience
after the database has been consolidated.

The following graphic depicts the databases in Figure 1-4 after consolidation onto one
computer. The DBA team is reduced from five to three, with one CDB administrator managing
the CDB while two PDB administrators split management of the PDBs.

1-7

ORACLE

Chapter 1
Benefits of the Multitenant Architecture

Figure 1-5 Single CDB

CDB
CDB) Administrator

Common User
Account

PDB
Administrators

Local User
Accounts

Wl
Wl
wl)
wl
™
wl
‘wlipo wliPpo wliPo

— Applications

1
li)

i l‘ l‘

i I‘ l‘

i1
I

l‘ l‘ (‘
i

1gn?
1gn?
I‘ (‘!
LT}
I‘ l‘l
LT}

Starting in Oracle Database 12c Release 2 (12.2), you can create an application
container that contains application PDBs. This approach enables you to create and
manage an application within this container. Most benefits that apply to consolidation
into a CDB also apply to consolidation within an application container.

Using the multitenant architecture for database consolidation has the following
benefits:

Cost reduction

By consolidating hardware and database infrastructure to a single set of
background processes, and efficiently sharing computational and memory
resources, you reduce costs for hardware and maintenance. For example, 100
PDBs on a single server share one database instance.

Easier and more rapid movement of data and code

By design, you can quickly plug a PDB into a CDB, unplug the PDB from the CDB,
and then plug this PDB into a different CDB. You can also clone PDBs while they
remain available. You can plug in a PDB with any character set and access it
without character set conversion. If the character set of the CDB is AL32UTFS8,
then PDBs with different database character sets can exist in the same CDB.

Easier management and monitoring of the physical database

1-8

Chapter 1
Benefits of the Multitenant Architecture

The CDB administrator can manage the environment as an aggregate by executing a
single operation, such as patching or performing an RMAN backup, for all hosted tenants
and the CDB root. Backup strategies and disaster recovery are simplified.

» Separation of data and code

Although consolidated into a single physical database, PDBs mimic the behavior of non-
CDBs. For example, if user error loses critical data, then a PDB administrator can use
Oracle Flashback or point-in-time recovery to retrieve the lost data without affecting other
PDBs.

* Secure separation of administrative duties

A common user can connect to any container on which it has sufficient privileges,
whereas a local user is restricted to a specific PDB. Administrators can divide duties as
follows:

— An administrator uses a common account to manage a CDB or application container.
Because a privilege is contained within the container in which it is granted, a local
user on one PDB does not have privileges on other PDBs within the same CDB.

— An administrator uses a local account to manage an individual PDB.

» Ease of performance tuning

It is easier to collect performance metrics for a single database than for multiple
databases. It is easier to size one SGA than 100 SGAs.

* Fewer database patches and upgrades

It is easier to apply a patch to one database than to 100 databases, and to upgrade one
database than to upgrade 100 databases.

See Also:

e " Overview of Configuring and Managing a Multitenant Environment"

e Oracle Database Security Guide to learn about common users

Benefits of the Multitenant Architecture for Manageability

ORACLE

The multitenant architecture has benefits beyond database consolidation. These benefits
derive from storing the data and metadata specific to a PDB in the PDB itself rather than
storing all dictionary metadata in one place.

By storing its own dictionary metadata, a PDB becomes easier to manage as a distinct unit.
This benefit occurs even when only one PDB resides in a CDB. Grouping PDBs into a
separately managed application container increases manageability even further.

In a CDB, the data dictionary metadata is split between the root and the PDBs. Benefits of
data dictionary separation include the following:

» Easier upgrade of data and code

For example, instead of upgrading a CDB from one database release to another, you can
rapidly unplug a PDB from the existing CDB, and then plug it into a newly created CDB
from a higher release.

1-9

Chapter 1
Path to Database Consolidation

» Easier migration between servers

To perform load balancing or to meet SLAS, you can migrate an application
database from an on-premise data center to the cloud, or between two servers in
the same environment.

» Protection against data corruption within a PDB

You can flash back a PDB to an SCN or PDB-specific restore point, without
affecting other PDBs. This feature is analogous to the Flashback Database feature
for a non-CDB.

» Ability to install, administer, and upgrade application-specific data and metadata in
a single place

You can define a set of application-specific PDBs as a single component, called an
application container. You can then define one or more applications within this
container. Each application is a named, versioned set of common metadata and
data shared within this application container.

For example, each customer of a SaaS vendor could have its own application
PDB. Each application PDB might have identically defined tables named
sales_mlt, with different data in each PDB. The PDBs could share a data-linked
common object named countries olt, which has identical data in each PDB. As
an application administrator, you could manage the master application definition so
that every new customer gets a PDB with the same objects, and every change to
existing schemas (for example, the addition of a new table, or a change in the
definition of a table) applies to all PDBs that share the application definition.

* Integration with Oracle Database Resource Manager

In a multitenant environment, one concern is contention for system resources
among the PDBs running on the same server. Another concern is limiting resource
usage for more consistent, predictable performance. To address such resource
contention, usage, and monitoring issues, use Oracle Database Resource
Manager.

¢ See Also:

e "Overview of Oracle Resource Manager in a CDB"
e "Data Dictionary Architecture in a CDB"

e "Administering Application Containers"

Path to Database Consolidation

ORACLE

For the duration of its existence, a database is either a CDB or a non-CDB.

You must define a database as a CDB at creation, and then create PDBs and
application containers within this CDB. You cannot later transform a non-CDB into a
CDB, or a CDB into a non-CDB.

e Creation of a CDB
The CREATE DATABASE ... ENABLE PLUGGABLE DATABASE SQL statement creates a
new CDB.

1-10

Chapter 1
Path to Database Consolidation

e Creation of a PDB
The CREATE PLUGGABLE DATABASE SQL statement creates a PDB.

Creation of a CDB

ORACLE

The CREATE DATABASE ... ENABLE PLUGGABLE DATABASE SQL statement creates a new CDB.

If you do not specify the ENABLE PLUGGABLE DATABASE clause, then the newly created
database is a non-CDB. In this case, the non-CDB can never contain PDBs.

When you create a CDB, Oracle Database automatically creates a root container (CDBSROOT)
and a seed PDB (PDBSSEED). The following graphic shows a newly created CDB:

Figure 1-6 CDB with Seed PDB

CcDB

Root (CDB$ROOT)

Seed
(PDB$SEED)

Example 1-3 Determining Whether a Database Is a CDB

The following simple query determines whether the database to which an administrative user
is currently connected is a non-CDB, or a container in a CDB:

SQL> SELECT NAME, CDB, CON ID FROM V$DATABASE;

NAME CDB CON_ID
CDB1 YES 0
¢ See Also:

e " Creating and Configuring a CDB"

e Oracle Database SQL Language Reference for more information about
specifying the clauses and parameter values for the CREATE DATABASE
statement

1-11

Chapter 1
Path to Database Consolidation

Creation of a PDB

The CREATE PLUGGABLE DATABASE SQL statement creates a PDB.

The created PDB automatically includes a full data dictionary including metadata and
internal links to system-supplied objects in the CDB root. You must define every PDB
from a single root: either the CDB root or an application root.

Each PDB has a globally unique identifier (GUID). The PDB GUID is primarily used to
generate names for directories that store the PDB's files, including both Oracle
Managed Files directories and non-Oracle Managed Files directories.

e Creation of a PDB by Cloning
One technique for creating a PDB is called cloning.

e Creation of a PDB by Plugging In
You can create a PDB by plugging in an unplugged PDB, or plugging in a non-
CDB as a PDB.

e Creation of a PDB by Relocating
To relocate a PDB from one CDB to another, use either the CREATE PLUGGABLE
DATABASE ... RELOCATE statement or DBCA.

* Creation of a PDB as a Proxy PDB
A proxy PDB provides access to different PDB, called the referenced PDB, in a
remote CDB.

" See Also:

"Creating and Removing PDBs and Application Containers"

Creation of a PDB by Cloning

One technique for creating a PDB is called cloning.

You can clone a PDB from PDBSSEED, an application seed, a remote or local PDB, or a
non-CDB.

e Creation of a PDB from a Seed
You can use the CREATE PLUGGABLE DATABASE statement to create a PDB from a
seed.

* Creation of a PDB by Cloning a PDB or a Non-CDB
To clone a PDB or non-CDB, use the CREATE PLUGGABLE DATABASE statement with
the FrROM clause.

Creation of a PDB from a Seed

ORACLE

You can use the CREATE PLUGGABLE DATABASE statement to create a PDB from a seed.

A seed is a PDB that serves as a template for creation of another PDB. Creating a
PDB from a seed copies some or all of the contents of a PDB, and then assigns a new
unique identifier.

1-12

ORACLE

Chapter 1
Path to Database Consolidation

A seed PDB is either of the following:

 The PDB seed (PDBSSEED), which is a system-supplied template for creating PDBs
Every CDB has exactly one PDBSSEED, which cannot be modified or dropped.

e An application seed, which is a user-created PDB for a specified application root

Within an application container, you can create an application seed using the CREATE
PLUGGABLE DATABASE AS SEED statement, which you can then use to accelerate creation
of new application PDBs.

Figure 1-7 Creation from PDB$SSEED

CDB
Root (CDB$ROOT)
L—, e
s — New
ChATK 758
Seed | I "=
(PDB$SEED) PDBs
CREATE PLUGGABLE DATABASE
T S Copy to New Location T T T
PDBS$SEED Database Files Files of the New PDB

Example 1-4 Creation of a PDB from PDB$SEED

The following SQL statement creates a PDB named hrpdb from PDBSSEED using Oracle
Managed Files:

CREATE PLUGGABLE DATABASE hrpdb
ADMIN USER dbal IDENTIFIED BY password;

¢ See Also:

"Creating a PDB from Scratch”

1-13

Chapter 1
Path to Database Consolidation

Creation of a PDB by Cloning a PDB or a Non-CDB

To clone a PDB or non-CDB, use the CREATE PLUGGABLE DATABASE statement with the
FROM clause.

In this technique, the source is either a non-CDB, or a PDB in a local or remote CDB.
The target is the PDB copied from the source. The cloning operation copies the files
associated with the source to a new location, and then assigns a new GUID to create
the PDB.

This technique is useful for quickly creating PDBs for testing and development. For
example, you might test a new or modified application on a cloned PDB before
deploying the application in a production PDB. If a PDB is in local undo mode, then the
source PDB can be open in read/write mode during the operation, referred to as hot
cloning.

¢ Note:

If you clone a PDB from a remote CDB, then you must use a database link.

If you run CREATE PLUGGABLE DATABASE statement in an application root, then the
cloned PDB is created in the application container. In this case, the application name
and version of the source PDB must be compatible with the application name and
version of the application container.

The following graphic illustrates cloning a PDB when both source and target are in the
same CDB.

Figure 1-8 Cloning a PDB

CDB

Root (CDB$ROOT)

Bl] | ™ ™ ™

K — New
iy PDB

-
Seed | vl
PDB$SEED ' ¢
($) PDBs Source \—
PDB Copy
CREATE PLUGGABLE DATABASE ... FROM
~| Copy to New Location T T
Files of the Source Files of the New
PDB PDB

ORACLE 1-14

Chapter 1
Path to Database Consolidation

Starting in Oracle Database 19c, you can clone a remote PDB using DBCA.
Example 1-5 Cloning a PDB

The following SQL statement clones a PDB named salespdb from the plugged-in PDB
named hrpdb:

CREATE PLUGGABLE DATABASE salespdb FROM hrpdb;

e Clones from PDB Snapshots
Create a clone from a PDB snhapshot by specifying USING SNAPSHOT clause of the
CREATE PLUGGABLE DATABASE command.

* Snapshot Copy PDBs
A snapshot copy PDB is based on a copy of the underlying storage system. Snapshot
copy PDBs reduce the amount of storage required for testing purposes and reduce
creation time significantly.

* Refreshable Clone PDBs
A refreshable clone PDB is a read-only clone that can periodically synchronize with its
source PDB.

See Also:

e "Cloning a PDB or Non-CDB"
e "Overview of Tablespaces and Database Files in a CDB"

e "Application Maintenance"

Clones from PDB Snapshots

ORACLE

Create a clone from a PDB snapshot by specifying USING SNAPSHOT clause of the CREATE
PLUGGABLE DATABASE command.

Creation of PDB Snapshots with the SNAPSHOT Clause

A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-only or
read/write while the snapshot is created. A PDB snapshot taken while the source PDB is
open is called a hot clone. You can create clones from PDB snapshots. These clone PDBs
are useful in development and testing.

You can create snapshots manually using the SNAPSHOT clause of CREATE PLUGGABLE
DATABASE (Or ALTER PLUGGABLE DATABASE), or automatically using the EVERY interval
clause. The following statement creates a PDB snapshot with the name pdbl wed 4 1201:

ALTER PLUGGABLE DATABASE SNAPSHOT pdbl wed 4 1201;

If the storage system supports sparse clones, then the preceding command creates a sparse
copy. Otherwise, the command creates a full copy.

Every PDB snapshot is associated with a snapshot name and the SCN and timestamp at
snapshot creation.

1-15

Chapter 1
Path to Database Consolidation

Creation of a PDB Clone with the USING SNAPSHOT Clause

A clone from a PDB snapshot is a full, standalone PDB. Unlike a snapshot copy PDB,
which is based on a storage-managed snapshot, you do not need to materialize a
clone created from a PDB snapshot.

To create a clone from a PDB shapshot, specify the USING SNAPSHOT clause of the
CREATE PLUGGABLE DATABASE statement. For example, the following statement clones
a PDB named pdbl copy from the PDB-level snapshot named pdbl wed 4 1201:

CREATE PLUGGABLE DATABASE pdbl copy FROM pdbl
USING SNAPSHOT pdbl wed 4 1201;

¢ See Also:

e "About Cloning PDBs from PDB Snapshots"

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Snapshot Copy PDBs

A snapshot copy PDB is based on a copy of the underlying storage system.
Snapshot copy PDBs reduce the amount of storage required for testing purposes and
reduce creation time significantly.

If the file system supports storage snapshots, then CREATE PLUGGABLE DATABASE ...
FROM ... SNAPSHOT COPY copies a PDB from a source PDB, which can be read/write
during the operation. The snapshot copy PDB files use copy-on-write technology. Only
modified blocks require extra storage on disk. If the file system does not support
storage snapshots or use Oracle Exadata sparse files, then the CLONEDB initialization
parameter must be true, and the source PDB must be read-only for as long as the
shapshot copy PDB exists.

Because a snapshot copy PDB depends on storage-managed snapshots, you cannot
unplug a snapshot copy PDB from the CDB root or application root. You cannot drop
the storage snapshot on which a snapshot copy PDB is based.

You can transform a snapshot copy PDB, which uses sparse files, into a full PDB. This
process is known as materializing the snapshot copy PDB. Because a materialized
PDB does not depend on the source PDB, you can drop it. Materialize a PDB by
running the ALTER PLUGGABLE DATABASE MATERIALIZE command.

ORACLE 1-16

Chapter 1
Path to Database Consolidation

< Note:

A PDB created with the USING SNAPSHOT clause and a PDB created with the
SNAPSHOT COPY clause have different properties. You cannot specify both clauses in
a single CREATE PLUGGABLE DATABASE command. The CREATE PLUGGABLE DATABASE
. FROM .. USING SNAPSHOT clause creates a full, standalone PDB that does not
need to be materialized. The CREATE PLUGGABLE DATABASE .. FROM .. SNAPSHOT
COPY clause creates a sparse PDB that must be materialized if you want to drop the
storage-level snapshot on which it is based.

Note:

"Creating and Materializing Snapshot Copy PDBs"

Refreshable Clone PDBs

A refreshable clone PDB is a read-only clone that can periodically synchronize with its
source PDB.

Depending on the value specified in the REFRESH MODE clause, synchronization occurs
automatically or manually. For example, if hrpdb_re clone is a clone of hrpdb, then every
month you could manually refresh hrpdb_re clone with changes from hrpdb. Alternatively,
you could configure hrpdb to propagate changes to hrpdb re clone automatically every 24
hours.

You can switch the roles of a source PDB and its refreshable clone. This switchover can be
useful for load balancing between CDBs, and when the source PDB suffers a failure.

Note:

"About Cloning a PDB or Non-CDB" to learn how to clone a PDB using the REFRESH
MODE clause

Creation of a PDB by Plugging In

ORACLE

You can create a PDB by plugging in an unplugged PDB, or plugging in a non-CDB as a
PDB.

» Creation of a PDB by Plugging In an Unplugged PDB
An unplugged PDB is a self-contained set of data files, and an XML metadata file that
specifies the locations of the PDB files. To plug in an unplugged PDB, use the CREATE
PLUGGABLE DATABASE statement with the USING clause.

* Creati