
Oracle® Multitenant
Administrator’s Guide

19c
E96136-16
June 2022

Oracle Multitenant Administrator’s Guide, 19c

E96136-16

Copyright © 2017, 2022, Oracle and/or its affiliates.

Primary Authors: Randy Urbano, Lance Ashdown

Contributing Authors: Patricia Huey, Donna Keesling, Roopesh Kumar, Bert Rich, Richard Strohm

Contributors: Penny Avril, Thomas Baby, Hermann Baer, Yasin Baskan, Dominique Djeunot, Andre Kruglikov,
Kishy Kumar, Sue Lee, Siyu Liu, Bryn Llewellyn, Colin McGregor, John McHugh, Valarie Moore, Muthu
Olagappan, Bhavesh Patel, Kumar Rajamani, Giridhar Ravipati, Can Tuzla, Patrick Wheeler

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xx

Documentation Accessibility xx

Related Documents xx

Conventions xxi

 Changes in This Release for Oracle Multitenant Administrator’s Guide

Changes in Oracle Database Release 19c, Version 19.1 xxii

Changes in Oracle Database Release 18c, Version 18.1 xxiii

Part I Multitenant Architecture

1 Introduction to the Multitenant Architecture

About the Multitenant Architecture 1-1

About Containers in a CDB 1-1

About User Interfaces for the Multitenant Architecture 1-4

Benefits of the Multitenant Architecture 1-5

Challenges for a Non-CDB Architecture 1-6

Benefits of the Multitenant Architecture for Database Consolidation 1-7

Benefits of the Multitenant Architecture for Manageability 1-9

Path to Database Consolidation 1-10

Creation of a CDB 1-11

Creation of a PDB 1-12

Creation of a PDB by Cloning 1-12

Creation of a PDB by Plugging In 1-17

Creation of a PDB by Relocating 1-21

Creation of a PDB as a Proxy PDB 1-23

Multitenant Environment Documentation Roadmap 1-25

iii

2 Overview of the Multitenant Architecture

Overview of Containers in a CDB 2-1

The CDB Root and System Container 2-2

PDBs 2-3

Types of PDBs 2-3

Purpose of PDBs 2-4

Proxy PDBs 2-5

Names for PDBs 2-6

Database Links Between PDBs 2-7

Data Dictionary Architecture in a CDB 2-8

Purpose of Data Dictionary Separation 2-8

Metadata and Data Links 2-10

Container Data Objects in a CDB 2-11

Data Dictionary Storage in a CDB 2-13

Current Container 2-14

Cross-Container Operations 2-14

Overview of Commonality in the CDB 2-15

About Commonality in a CDB 2-15

Principles of Commonality 2-16

Namespaces in a CDB 2-16

Overview of Common and Local Users in a CDB 2-17

Common Users in a CDB 2-18

Local Users in a CDB 2-20

Overview of Common and Local Roles in a CDB 2-22

Common Roles in a CDB 2-22

Local Roles in a CDB 2-23

Overview of Privilege and Role Grants in a CDB 2-23

Principles of Privilege and Role Grants in a CDB 2-24

Privileges and Roles Granted Locally in a CDB 2-24

Roles and Privileges Granted Commonly in a CDB 2-26

Grants to PUBLIC in a CDB 2-28

Grants of Privileges and Roles: Scenario 2-29

Overview of Common and Local Objects in a CDB 2-32

Overview of Common Audit Configurations 2-33

Overview of PDB Lockdown Profiles 2-34

Overview of Applications in an Application Container 2-36

About Application Containers 2-36

Purpose of Application Containers 2-37

Application Root 2-40

Application PDBs 2-41

iv

Application Seed 2-41

Application Common Objects 2-42

Creation of Application Common Objects 2-43

Metadata-Linked Application Common Objects 2-43

Data-Linked Application Common Objects 2-45

Extended Data-Linked Application Objects 2-46

Application Maintenance 2-48

About Application Maintenance 2-48

Application Installation 2-49

Application Upgrade 2-50

Application Patch 2-54

Migration of an Existing Application 2-55

Implicitly Created Applications 2-55

Application Synchronization 2-56

Synchronization of a Single Application 2-56

Synchronization of Multiple Applications 2-57

Container Maps 2-57

Overview of Services in a CDB 2-60

Service Creation in a CDB 2-61

Default Services in a CDB 2-62

Nondefault Services in a CDB 2-62

Connections to Containers in a CDB 2-63

Overview of Tablespaces and Database Files in a CDB 2-64

Overview of Availability in a CDB 2-66

Overview of Backup and Recovery in a CDB 2-67

Overview of Flashback PDB in a CDB 2-67

Overview of Oracle Resource Manager in a CDB 2-68

Part II Creating and Configuring a Multitenant Environment

3 Overview of Configuring and Managing a Multitenant Environment

About Configuring and Managing a Multitenant Environment 3-1

Common Users and Local Users 3-2

Separation of Duties in CDB and PDB Administration 3-2

Prerequisites for a Multitenant Environment 3-2

Tasks and Tools for a Multitenant Environment 3-3

Tasks for a Multitenant Environment 3-3

Tools for a Multitenant Environment 3-6

v

4 Creating and Configuring a CDB

About Creating a CDB 4-1

Planning for CDB Creation 4-2

Decide How to Configure the CDB 4-2

Plan the PDBs 4-3

Plan the Physical Layout 4-3

Learn How to Manage Initialization Parameters 4-4

Select the Character Set 4-5

Decide Which Time Zones to Support 4-6

Select the Database and Redo Log Block Sizes 4-6

Plan the SYSTEM and SYSAUX Tablespaces 4-6

Plan the Temporary Tablespaces 4-7

Choose the Undo Mode 4-7

Plan the Services for Your Application 4-8

Learn How to Start Up and Shut Down a CDB 4-8

Plan for Oracle RAC 4-9

Prerequisites for CDB Creation 4-9

Creating a CDB 4-10

About CDB Creation with DBCA 4-10

About CDB Creation with SQL Statements 4-11

About Enabling PDBs 4-12

About the Names and Locations of Files for the CDB Root and PDB$SEED 4-12

About the Attributes of the Data Files for PDB$SEED 4-14

About the CDB Undo Mode 4-15

Creating a CDB with the CREATE DATABASE Statement 4-16

Creating a CDB with the CREATE DATABASE Statement: Examples 4-17

Creating a CDB Without Using Oracle Managed Files 4-18

Creating a CDB Using Oracle Managed Files: Example 4-21

Configuring EM Express for a CDB 4-23

After Creating a CDB 4-24

Part III Creating and Removing PDBs and Application Containers

5 Overview of PDB Creation

Techniques for Creating a PDB 5-1

Current Container and PDB Creation 5-3

Options for Creating a PDB from a Non-CDB 5-4

PDB Storage 5-5

Storage Limits 5-5

vi

Default Tablespace 5-6

User Tablespaces 5-6

PDB File Locations 5-8

FILE_NAME_CONVERT Clause 5-10

CREATE_FILE_DEST Clause 5-11

Restrictions on PDB File Locations 5-12

Service Name Conversion 5-13

Summary of Clauses for Creating a PDB 5-14

General Prerequisites for PDB Creation 5-22

6 Creating a PDB from Scratch

About Creating a PDB from Scratch 6-1

Creating a PDB 6-4

Creating a PDB: Examples 6-5

Creating a PDB Using No Clauses: Example 6-6

Creating a PDB and Granting Predefined Oracle Roles to the PDB Administrator:
Example 6-6

Creating a PDB Using Multiple Clauses: Example 6-7

7 Cloning a PDB or Non-CDB

About Cloning a PDB or Non-CDB 7-1

How Cloning Works 7-2

User Interface for PDB Cloning 7-3

Cloning a Local PDB 7-4

About Cloning a Local PDB 7-5

Cloning a Local PDB: Basic Steps 7-6

After Cloning a Local PDB 7-7

Cloning a Local PDB: Examples 7-8

Cloning a Local PDB Using No Clauses: Example 7-8

Cloning a Local PDB Using DBCA: Example 7-9

Cloning a Local PDB with the PATH_PREFIX Clause: Example 7-10

Cloning a Local PDB Using the STORAGE Clause: Example 7-10

Cloning a Local PDB with the NO DATA Clause: Example 7-11

Cloning a Remote PDB 7-12

About Cloning a Remote PDB 7-12

Cloning a Remote PDB: Basic Steps 7-14

After Cloning a Remote PDB 7-16

Cloning a Remote PDB: Examples 7-17

Cloning a Remote PDB Using No Clauses: Example 7-17

Cloning a Remote PDB Using DBCA: Example 7-18

vii

Cloning a Non-CDB 7-19

About Cloning a Non-CDB 7-19

Cloning a Non-CDB: Basic Steps 7-20

Cloning a Remote Non-CDB: Example 7-23

About Refreshable Clone PDBs 7-24

Purpose of Refreshable Clone PDBs 7-24

Automatic and Manual Refresh Modes 7-25

Requirements for Refreshable Clone PDBs 7-26

Creating a Refreshable Clone PDB: Scenario 7-26

Cloning PDBs from PDB Snapshots 7-27

About Cloning PDBs from PDB Snapshots 7-28

Cloning a PDB from a PDB Snapshot: Scenario 7-28

Creating and Materializing Snapshot Copy PDBs 7-29

About Snapshot Copy PDBs 7-29

Storage Requirements for Snapshot Copy PDBs 7-29

Restrictions for Snapshot Copy PDBs 7-31

Creating a Snapshot Copy PDB: Scenario 7-32

Materializing a Snapshot Copy PDB 7-33

Creating a Split Mirror Clone PDB 7-33

8 Relocating a PDB

About PDB Relocation 8-1

Purpose of PDB Relocation 8-4

How PDB Relocation Works 8-4

Server Session Draining When Relocating or Stopping PDBs 8-4

Stages of PDB Relocation 8-6

PDB Relocation in a Common Listener Network 8-6

PDB Relocation in Isolated Listener Networks 8-7

User Interface for PDB Relocation 8-9

Relocating a PDB Using CREATE PLUGGABLE DATABASE 8-10

Relocating a PDB: Examples 8-13

Relocating a PDB from a Remote CDB 8-13

Relocating a PDB Using DBCA: Example 8-14

9 Plugging In an Unplugged PDB

About PDB Plugin Operations 9-1

About the XML File and Archive File 9-1

Source File Locations When Plugging In an Unplugged PDB 9-4

SOURCE_FILE_NAME_CONVERT Clause 9-4

viii

SOURCE_FILE_DIRECTORY Clause 9-5

About Adopting a Non-CDB as a PDB 9-6

Plugging In an Unplugged PDB 9-8

Adopting a Non-CDB as a PDB 9-11

After Plugging in an Unplugged PDB 9-13

Plugging in an Unplugged PDB: Examples 9-14

10

Creating a PDB as a Proxy PDB

About Creating a Proxy PDB 10-1

Proxy PDBs and SQL Statements 10-4

Proxy PDBs and Database Links 10-4

Proxy PDBs and Authentication 10-5

Proxy PDBs and the Listener 10-5

HOST Clause 10-5

PORT Clause 10-6

Creating a Proxy PDB 10-6

11

Removing a PDB

Unplugging a PDB from a CDB 11-1

About Unplugging a PDB 11-1

Unplugging a PDB 11-4

Dropping a PDB 11-5

12

Creating and Removing Application Containers and Seeds

Creating and Removing Application Containers 12-1

Creating Application Containers 12-2

About Creating an Application Container 12-2

Preparing for Application Containers 12-3

Creating an Application Container 12-4

Unplugging an Application Container from a CDB 12-7

About Unplugging an Application Container 12-7

Unplugging an Application Container 12-8

Dropping an Application Container 12-9

Creating and Removing Application Seeds 12-11

Creating Application Seeds 12-11

About Creating an Application Seed 12-11

Preparing for an Application Seed 12-12

Creating an Application Seed 12-12

Unplugging an Application Seed from an Application Container 12-16

ix

About Unplugging an Application Seed 12-16

Unplugging an Application Seed 12-17

Dropping an Application Seed 12-18

Creating an Application PDB 12-19

Part IV Administering a Multitenant Environment

13

Administering a CDB

About CDB Administration 13-1

About the Current Container 13-2

About Administrative Tasks in a CDB 13-3

About Using Manageability Features in a CDB 13-7

About Managing Tablespaces in a CDB 13-13

About Managing Permanent Tablespaces in a CDB 13-13

About Managing Temporary Tablespaces in a CDB 13-13

About Managing Database Objects in a CDB 13-14

About Flashing Back a PDB 13-15

About Restricting PDB Users for Enhanced Security 13-15

PDB Lockdown Profiles 13-15

The PDB_OS_CREDENTIAL Initialization Parameter 13-17

The PATH_PREFIX and CREATE_FILE_DEST PDB Creation Clauses 13-17

Overview of Oracle Multitenant with Oracle RAC 13-18

Accessing Containers in a CDB 13-19

About Container Access in a CDB 13-19

Services in a CDB 13-20

Session Limits in a CDB 13-20

User Names in a Multitenant Environment 13-21

How the Multitenant Option Affects Password Files for Administrative Users 13-21

Accessing a Container in a CDB 13-21

Connecting to a Container Using the SQL*Plus CONNECT Command 13-22

Switching to a Container Using the ALTER SESSION Statement 13-24

Modifying a CDB at the System Level 13-28

About System-Level Modifications of a CDB 13-28

Modifying a CDB with ALTER SYSTEM 13-29

Modifying Containers When Connected to the CDB Root 13-30

About Container Modification When Connected to CDB Root 13-30

Modifying an Entire CDB Using ALTER DATABASE 13-31

Setting the Undo Mode in a CDB Using ALTER DATABASE 13-32

About the CDB Undo Mode 13-32

Configuring a CDB to Use Local Undo Mode 13-34

x

Configuring a CDB to Use Shared Undo Mode 13-35

Modifying the CDB Root Using ALTER DATABASE 13-36

Executing SQL in a Different Container 13-37

Issuing DML Statements on a Container in a CDB 13-38

About Issuing DML Statements on a Container in a CDB 13-38

Specifying the Default Container for DML Statements in a CDB 13-39

Executing DDL Statements in a CDB 13-39

About Executing DDL Statements in a CDB 13-40

Executing a DDL Statement in the Current Container 13-42

Executing a DDL Statement in All Containers in a CDB 13-42

Running Oracle-Supplied SQL Scripts in a CDB 13-43

About Running Oracle-Supplied SQL Scripts in a CDB 13-43

Syntax and Parameters for catcon.pl 13-44

Running the catcon.pl Script 13-47

Executing Code in Containers Using the DBMS_SQL Package 13-49

Shutting Down a CDB Instance 13-51

14

Administering a CDB Fleet

About CDB Fleets 14-1

Purpose of a CDB Fleet 14-3

Setting the Lead CDB in a CDB Fleet 14-4

Designating a CDB Fleet Member 14-4

15

Administering PDBs

About PDB Administration 15-1

Tasks Common to PDBs and Non-CDBs 15-2

Tasks Specific to CDBs 15-3

Managing Connections to a PDB 15-3

Connecting to a PDB 15-4

Managing Services for PDBs 15-5

About Services for PDBs 15-5

Managing Services for a PDB Using SRVCTL and DBMS_SERVICE 15-8

Modifying the Listener Settings of a Referenced PDB 15-10

Altering the Listener Host Name of a Referenced PDB 15-11

Altering the Listener Port Number of a Referenced PDB 15-12

Modifying a PDB at the System Level 15-13

About System-Level Modifications of a PDB 15-13

Modifying a PDB with ALTER SYSTEM 15-15

Modifying a PDB at the Database Level 15-16

xi

About Database-Level Modifications of a PDB 15-16

Storage Clauses 15-17

Logging and Recovery Clauses 15-17

Miscellaneous Clauses 15-20

Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement 15-21

Changing the Global Database Name of a PDB 15-23

Managing Refreshable Clone PDBs 15-24

Refreshing a PDB 15-25

Switching Over a Refreshable Clone PDB 15-25

Modifying the Open Mode of PDBs 15-29

About the Open Mode of a PDB 15-29

Clauses for Changing the Open State of PDBs 15-31

Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE 15-34

Preserving or Discarding the Open Mode of PDBs When the CDB Restarts 15-37

Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN 15-39

About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command 15-40

Starting Up a PDB Using the STARTUP Command 15-41

Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command 15-42

Shutting Down a PDB Using the SHUTDOWN Command 15-43

Starting and Stopping PDBs in Oracle RAC 15-45

16

Administering a PDB Snapshot Carousel

About PDB Snapshot Carousel 16-1

Purpose of PDB Snapshot Carousel 16-2

How PDB Snapshot Carousel Works 16-5

Contents of a PDB Snapshot 16-5

Contents of a PDB Snapshot Carousel 16-7

User Interface for PDB Snapshot Carousel 16-8

Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel 16-10

Configuring Automatic PDB Snapshots 16-11

Creating PDB Snapshots Manually 16-13

Dropping a PDB Snapshot 16-15

Viewing Metadata for PDB Snapshots 16-15

17

Administering Application Containers

About Application Container Administration 17-1

About Modifying an Application Root 17-4

Managing Applications in an Application Container 17-5

About Application Management 17-6

xii

Basic Steps of Application Maintenance 17-7

Application Versions 17-7

Application Module Names and Service Names 17-8

Installing Applications in an Application Container 17-9

About Installing Applications in an Application Container 17-10

Installing an Application in an Application Container with Automated Propagation 17-10

Upgrading Applications in an Application Container 17-11

About Upgrading Applications in an Application Container 17-11

Upgrading an Application in an Application Container 17-14

Patching Applications in an Application Container 17-15

About Patching Applications in an Application Container 17-16

Patching an Application in an Application Container with Automated Propagation 17-16

Migrating an Existing Application to an Application Container 17-18

About Migrating an Existing Application to an Application Container 17-18

Creating an Application Root Using an Existing PDB 17-19

Creating an Application PDB Using an Existing PDB 17-20

Synchronizing Applications in an Application PDB 17-21

Synchronizing an Application Root Replica with a Proxy PDB 17-22

About Synchronizing an Application Root Replica with a Proxy PDB 17-23

Creating a Proxy PDB That References an Application Root Replica 17-25

Setting the Compatibility Version of an Application 17-31

Performing Bulk Inserts During Application Install, Upgrade, and Patch Operations 17-32

Uninstalling Applications from an Application Container 17-34

About Uninstalling Applications from an Application Container 17-34

Uninstalling an Application from an Application Container 17-35

Managing Application Common Objects 17-36

About Application Common Objects 17-36

Creation of Application Common Objects 17-37

About Metadata-Linked Application Common Objects 17-39

About Extended Data-Linked Application Common Objects 17-39

About Extended Data-Linked Application Common Objects 17-40

Restrictions for Application Common Objects 17-40

Creating Application Common Objects 17-41

Issuing DML Statements on Application Common Objects 17-44

Issuing DML on Metadata-Linked Common Objects 17-44

Issuing DML on Data-Linked Common Objects 17-46

Modifying Application Common Objects with DDL Statements 17-48

Issuing DML Statements on Containers in an Application Container 17-49

About Issuing DML Statements on Containers in an Application Container 17-49

Specifying the Default Container for DML Statements in an Application Container 17-51

Partitioning by PDB with Container Maps 17-51

xiii

About Container Maps 17-51

Map Objects 17-52

List-Partitioned Container Map: Example 17-53

Range-Partitioned Container Map: Example 17-54

Creating a Container Map 17-55

18

Managing Security for a Multitenant Environment

Managing Commonly and Locally Granted Privileges 18-1

How the Oracle Multitenant Option Affects Privileges 18-2

About Commonly and Locally Granted Privileges 18-2

How Commonly Granted System Privileges Work 18-3

How Commonly Granted Object Privileges Work 18-4

Granting or Revoking Privileges to Access a PDB 18-5

Example: Granting a Privilege in a Multitenant Environment 18-5

Enabling Common Users to View CONTAINER_DATA Object Information 18-5

Viewing Data About the Root, CDB, and PDBs While Connected to the Root 18-5

Enabling Common Users to Query Data in Specific PDBs 18-6

Managing Common Roles and Local Roles 18-7

About Common Roles and Local Roles 18-8

How Common Roles Work 18-8

How the PUBLIC Role Works in a Multitenant Environment 18-9

Privileges Required to Create, Modify, or Drop a Common Role 18-9

Rules for Creating Common Roles 18-9

Creating a Common Role 18-10

Rules for Creating Local Roles 18-10

Creating a Local Role 18-10

Role Grants and Revokes for Common Users and Local Users 18-11

Restricting Operations on PDBs Using PDB Lockdown Profiles 18-12

About PDB Lockdown Profiles 18-12

Default PDB Lockdown Profiles 18-13

Creating a PDB Lockdown Profile 18-14

Enabling or Disabling a PDB Lockdown Profile 18-15

Dropping a PDB Lockdown Profile 18-17

Configuring Operating System Users for a PDB 18-18

About Configuring Operating System Users for a PDB 18-18

Configuring an Operating System User for a PDB 18-18

Setting the Default Credential in a PDB 18-20

Using Application Contexts in a Multitenant Environment 18-20

What Is an Application Context? 18-21

Application Contexts in a Multitenant Environment 18-21

xiv

Using Oracle Virtual Private Database in a Multitenant Environment 18-22

What Is Oracle Virtual Private Database? 18-22

Oracle Virtual Private Database in a Multitenant Environment 18-23

Using Transport Layer Security in a Multitenant Environment 18-25

Oracle Data Redaction in a Multitenant Environment 18-25

Overview of Auditing in a Multitenant Environment 18-26

Unified Auditing in a Multitenant Environment 18-26

Example: Auditing the DBA Role in a Multitenant Environment 18-27

Unified Audit Policies or AUDIT Settings in a Multitenant Environment 18-27

About Local, CDB Common, and Application Common Audit Policies 18-27

Traditional Auditing in a Multitenant Environment 18-29

Configuring a Local Unified Audit Policy or Common Unified Audit Policy 18-30

Example: Local Unified Audit Policy 18-31

Example: CDB Common Unified Audit Policy 18-32

Example: Application Common Unified Audit Policy 18-32

How Local or Common Audit Policies or Settings Appear in the Audit Trail 18-33

Fine-Grained Auditing in a Multitenant Environment 18-34

19

Monitoring CDBs and PDBs

About CDB and Container Information in Views 19-2

About Viewing Information When the Current Container Is Not the CDB Root 19-2

About Viewing Information When the Current Container Is the CDB Root 19-3

Views for a CDB 19-4

Determining Whether a Database Is a CDB 19-7

Viewing Information About the Containers in a CDB 19-8

Viewing Information About PDBs 19-9

Viewing the Open Mode of Each PDB 19-9

Querying Container Data Objects 19-10

Querying Across Containers with the CONTAINERS Clause 19-14

About Querying Across Containers with the CONTAINERS Clause 19-14

Querying User-Created Tables and Views Across All Containers 19-16

Querying Application Common Objects Across Application PDBs 19-18

Determining the Current Container ID or Name 19-19

Listing the Modifiable Initialization Parameters in PDBs 19-20

Viewing the History of PDBs 19-21

Viewing Information About Applications in Application Containers 19-22

Viewing Information About Applications 19-23

Viewing Information About Application Status 19-24

Viewing Information About Application Statements 19-25

Viewing Information About Application Versions 19-27

xv

Viewing Information About Application Patches 19-28

Viewing Information About Application Errors 19-29

Listing the Shared Database Objects in an Application Container 19-29

Listing the Extended Data-Linked Objects in an Application Container 19-30

Part V Using Oracle Features in a Multitenant Environment

20

Backing Up and Recovering CDBs and PDBs

Overview of Backing Up and Recovering CDBs and PDBs 20-1

Backup and Complete Recovery of CDBs 20-2

Backup and Complete Recovery of PDBs 20-3

Point-in-Time Recovery in a Multitenant Environment 20-4

Flashback Database in a Multitenant Environment 20-5

21

Using Database Utilities in a Multitenant Environment

Importing and Exporting Data in a CDB 21-1

About Using Data Pump in a Multitenant Environment 21-1

Using Data Pump to Move Data Into a CDB 21-2

Using Data Pump to Move PDBs Within Or Between CDBs 21-4

Using LogMiner in a CDB 21-5

LogMiner V$ Views and DBA Views in a CDB 21-5

The V$LOGMNR_CONTENTS View in a CDB 21-6

Enabling Supplemental Logging in a CDB 21-6

Using a Flat File Dictionary in a CDB 21-7

DBNEWID Considerations for CDBs and PDBs 21-7

22

Using Oracle Resource Manager for PDBs

Overview of Oracle Resource Manager in a Multitenant Environment 22-2

Purpose of Resource Management in a Multitenant Environment 22-3

Overview of Resource Plan Directives 22-4

PDB Performance Profiles 22-4

Resource Plan Directives 22-4

Background and Administrative Tasks and Consumer Groups 22-5

Initialization Parameters for PDB-Level Resources 22-5

CPU-Related Initialization Parameters for PDBs 22-6

Memory-Related Initialization Parameters for PDBs 22-6

Session-Related Initialization Parameters for PDBs 22-9

I/O-Related Initialization Parameters for PDBs 22-9

xvi

Managing CDB Resource Plans 22-11

About CDB Resource Plans 22-11

Shares for Allocating Resources to PDBs 22-12

Utilization Limits for PDBs 22-13

The Default Directive for PDBs 22-15

Creating a CDB Resource Plan for Managing PDBs 22-17

Creating a CDB Resource Plan for Managing PDBs: Scenario 22-17

Creating a CDB Resource Plan with PDB Performance Profiles 22-20

Creating a CDB Resource Plan for PDB Performance Profiles: Scenario 22-21

Enabling a CDB Resource Plan 22-24

Modifying a CDB Resource Plan 22-24

Updating a CDB Resource Plan 22-25

Managing CDB Resource Plan Directives for a PDB 22-26

Managing CDB Resource Plan Directives for a PDB Performance Profile 22-29

Updating the Default Directive for PDBs in a CDB Resource Plan 22-33

Updating the Default Directive for Maintenance Tasks in a CDB Resource Plan 22-34

Deleting a CDB Resource Plan 22-35

Disabling a CDB Resource Plan 22-36

Viewing Information About Plans and Directives in a CDB 22-37

Viewing CDB Resource Plans 22-37

Viewing CDB Resource Plan Directives 22-38

Managing PDB Resource Plans 22-39

About PDB Resource Plans 22-40

CDB Resource Plan Requirements When Creating PDB Resource Plans 22-40

PDB Resource Plan: Example 22-41

Creating a PDB Resource Plan 22-42

Enabling a PDB Resource Plan 22-43

Modifying a PDB Resource Plan 22-44

Disabling a PDB Resource Plan 22-45

Monitoring PDBs Managed by Oracle Database Resource Manager 22-45

About Resource Manager Views for PDBs 22-46

Monitoring CPU Usage for PDBs 22-47

Monitoring Parallel Execution for PDBs 22-48

Monitoring the I/O Generated by PDBs 22-49

Monitoring Memory Usage for PDBs 22-50

23

Using Oracle Scheduler with a CDB

DBMS_SCHEDULER Invocations in a CDB 23-1

Job Coordinator and Slave Processes in a CDB 23-2

DBMS_JOB and DBMS_SCHEDULER 23-3

xvii

Processes to Close a PDB 23-3

New and Changed CDB Views 23-3

24

Using Oracle Database Vault with a CDB

About Oracle Database Vault 24-1

How Oracle Database Vault Works in a Multitenant Environment 24-2

Verifying That Database Vault Is Configured and Enabled 24-3

Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment 24-4

Registering Database Vault in the CDB Root 24-4

Registering Database Vault Common Users to Manage Specific PDBs 24-7

Registering Database Vault Local Users to Manage Specific PDBs 24-9

Plugging in a Database Vault-Enabled PDB 24-11

Manually Installing Oracle Database Vault in a Multitenant Environment 24-12

Configuring Realms 24-13

What Are Realms? 24-13

About Realms 24-13

Realms in a Multitenant Environment 24-14

Realm Authorizations in a Multitenant Environment 24-15

Rule Sets and Rules in a Multitenant Environment 24-16

Command Rules in a Multitenant Environment 24-16

Oracle Database Vault Policies in a Multitenant Environment 24-17

Using Database Vault Operations Control to Restrict Multitenant Common User Access to
Local PDB Data 24-17

About Using Database Vault Operations Control 24-17

Enabling Database Vault Operations Control 24-18

Adding Common Users and Packages to an Exception List 24-19

Deleting Common Users and Packages from an Exception List 24-20

Disabling Database Vault Operations Control 24-20

Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB 24-21

25

Using XStream with a CDB

About XStream 25-1

System-Created Rules and a Multitenant Environment 25-3

System-Created Rules in a CDB and XStream Out 25-4

System-Created Rules in a CDB and XStream In 25-6

XStream Out and a Multitenant Environment 25-7

Configuring XStream Out in a CDB 25-8

Configuring XStream Out with Local Capture in a CDB 25-9

Configuring XStream Out with Downstream Capture in CDBs 25-12

xviii

XStream In and a Multitenant Environment 25-16

Glossary

Index

xix

Preface

This document describes how to create, configure, and administer an Oracle
database.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for database administrators who perform the following
tasks:

• Create and configure one or more Oracle databases

• Monitor and tune Oracle databases

• Oversee routine maintenance operations for Oracle databases

• Create and maintain schema objects, such as tables, indexes, and views

• Schedule system and user jobs

• Diagnose, repair, and report problems

To use this document, you should be familiar with relational database concepts. You
should also be familiar with the operating system environment under which you are
running Oracle Database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

Preface

xx

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database Concepts

• Oracle Database Administrator’s Guide

• Oracle Database 2 Day DBA

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Database VLDB and Partitioning Guide

• Oracle Database Error Messages Reference

• Oracle Database Net Services Administrator's Guide

• Oracle Database Backup and Recovery User’s Guide

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

• Oracle Database Development Guide

• Oracle Database PL/SQL Packages and Types Reference

• SQL*Plus User's Guide and Reference

Many of the examples in this book use the sample schemas. See Oracle Database Sample
Schemas for information about these schemas.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples,
text that appears on the screen, or text that you enter.

Preface

xxi

Changes in This Release for Oracle
Multitenant Administrator’s Guide

There are changes in this document for recent releases of Oracle Database.

• Changes in Oracle Database Release 19c, Version 19.1
Oracle Multitenant Administrator's Guide for Oracle Database release 19c, version
19.1 has the following changes.

• Changes in Oracle Database Release 18c, Version 18.1

Changes in Oracle Database Release 19c, Version 19.1
Oracle Multitenant Administrator's Guide for Oracle Database release 19c, version
19.1 has the following changes.

• New Features
The following major features are new in this release.

New Features
The following major features are new in this release.

• Workload capture and replay in a PDB

A local user can capture, replay, and report on a workload at the PDB level.

See "About Using Manageability Features in a CDB" and Oracle Database Testing
Guide.

• ADDM analysis for PDBs

You can use ADDM to analyze AWR data stored inside the PDB through an AWR
snapshot taken inside the PDB. You can also analyze AWR data of a non-CDB,
CDB root, or PDB imported into the AWR storage of a PDB. Automatic ADDM of a
PDB is disabled by default. You can enable it for a PDB by enabling automatic
AWR snapshots.

See "About Using Manageability Features in a CDB" and Oracle Database
Performance Tuning Guide.

• Database Vault Operations Control for infrastructure database administrators

You can use Oracle Database Vault to block common users (for example,
infrastructure DBAs) from accessing local data in PDBs. Thus, common users are
blocked from accessing local data. Oracle Database Vault enables you to store
sensitive data for your business applications and allow operations to manage the
database infrastructure without having to access sensitive customer data.

See "Using Database Vault Operations Control to Restrict Multitenant Common
User Access to Local PDB Data".

Changes in This Release for Oracle Multitenant Administrator’s Guide

xxii

• Support for multiple PDB shards in the same CDB

A CDB can contain multiple PDBs as shard catalog databases. Also, a CDB can contain
shard PDBs from different sharded databases (SDBs), each managed by its own
separate catalog database.

See Using Oracle Sharding.

• Automated PDB relocation

In Oracle Grid Infrastructure, you can use Oracle Fleet Patching and Provisioning to
automate relocation of a PDB from one CDB to another. Automated relocation enables
you to patch individual PDBs more quickly without exposing other PDBs to the changes
in the patch.

See Oracle Clusterware Administration and Deployment Guide.

• Cloning a remote PDB using DBCA

You can clone a remote PDB using DBCA in silent mode.

See "About Cloning a Remote PDB".

• Remote PDB relocation

You can use Database Configuration Assistant (DBCA) to relocate a PDB from a remote
CDB to a local CDB.

See "Relocating a PDB Using DBCA: Example".

• Cloud object store support for Data Pump Import

The credential parameter of impdb specifies the name of a credential object that
contains the user name and password required to access an object store bucket. You can
also specify a default credential using the database property DEFAULT_CREDENTIAL.

See "Setting the Default Credential in a PDB" and "Using Data Pump to Move Data Into a
CDB".

See Also:

Oracle Database Licensing Information User Manual for details on which features
are supported for different editions and services

Changes in Oracle Database Release 18c, Version 18.1
The following are changes in Oracle Multitenant Administrator's Guide for Oracle Database
release 18c, version 18.1.

• New Features

New Features
The following features are new in this release:

• CDB fleet

A CDB fleet is a collection of different CDBs that can be managed as one logical CDB.

Changes in This Release for Oracle Multitenant Administrator’s Guide

xxiii

See "Administering a CDB Fleet".

• PDB snapshot carousel

A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open
read-only or read/write while the snapshot is created. You can create snapshots
manually using the SNAPSHOT clause of CREATE PLUGGABLE DATABASE (or ALTER
PLUGGABLE DATABASE), or automatically using the EVERY interval clause. When a
PDB is enabled for snapshots, you can create multiple snapshots (point-in-time
copies) of the PDB. The library of snapshots is called a PDB snapshot carousel.
You can quickly clone a new PDB based on any snapshot in the carousel. In this
way, you can perform point-in-time recovery to any snapshot in the carousel, or
rapidly create a PDB by cloning any snapshot.

See "User Interface for PDB Snapshot Carousel" and "Administering a PDB
Snapshot Carousel".

• Logical partitioning

A container map enables a session to issue SQL statements that are routed to the
appropriate PDB, depending on the value of a predicate used in the SQL
statement. The partitioning column in the map table does not need to match a
column in the metadata-linked table. For example, if the table sales is enabled for
the container map pdb_map_tbl, and if sales does not have the column used to
partition pdb_map_tbl, then queries with the predicate CONTAINERS(sales) are still
routed to the PDBs specified in the map table.

See "Container Maps".

• Refreshable PDB switchover

A refreshable clone PDB is a read-only clone that can periodically synchronize
with its source PDB. You can reverse the roles, transforming the source PDB into
the clone and the clone into the source. This technique can be useful for load
balancing. Also, if the source PDB fails, then you can resume operations on the
clone PDB, rendering a CDB-level Oracle Data Guard failover unnecessary.

See "About Refreshable Clone PDBs" and "Switching Over a Refreshable Clone
PDB".

• Lockdown profile enhancements

You can create, alter, or drop lockdown profiles in application containers. Also, you
can create lockdown profiles based on a static or a dynamic base profile.

See "Overview of PDB Lockdown Profiles", "About Restricting PDB Users for
Enhanced Security", and "Restricting Operations on PDBs Using PDB Lockdown
Profiles".

• DBCA enhancements

You can use DBCA to clone a local PDB or duplicate a CDB. Duplication is only
supported in silent mode.

See "About CDB Creation with DBCA" and "About Cloning a Local PDB".

• Usable backups of non-CDBs and relocated PDBs

When you are cloning a non-CDB as a PDB or relocating a PDB, you can use the
DBMS_PDB.EXPORTRMANBACKUP procedure to export RMAN backup metadata into the
PDB dictionary. This metadata enables backups of the source non-CDB or PDB to
be usable for restore and recovery of the target PDB.

See "General Prerequisites for PDB Creation".

Changes in This Release for Oracle Multitenant Administrator’s Guide

xxiv

• RMAN duplication of a PDB to another CDB

You can clone a PDB from a source CDB to an existing CDB that is open read/write.

See "Techniques for Creating a PDB"

• Relocation of sessions during planned maintenance

Application Continuity can drain database sessions during planned maintenance when
the application submits a connection test, at request boundaries, and at good places to
fail over. The relocation is transparent to applications. This feature is on by default for all
maintenance operations invoked at the database service and PDB levels: stop service,
relocate service, relocate PDB, and stop PDB.

See "Managing Services for PDBs", "How PDB Relocation Works", and Oracle Real
Application Clusters Administration and Deployment Guide.

• Copying a PDB in an Oracle Data Guard environment

When performing a remote clone in a primary database, or plugging in a PDB in a
primary database, you can set initialization parameters in a standby database that
automates copying the data files for the newly created PDB.

See "Cloning a Remote PDB: Basic Steps" and "Plugging In an Unplugged PDB".

• Parallel statement queuing at the PDB level

You can configure parallel statement queuing for a PDB just as for a non-PDB using the
PARALLEL_SERVERS_TARGET initialization parameter. At the PDB level, the default is based
on the CPU_COUNT setting for the PDB. At the CDB level, the default value is the value of
the PARALLEL_MAX_SERVERS initialization parameter.

See "Utilization Limits for PDBs".

• Split mirror clone PDBs

When a PDB resides in Oracle ASM, you can use a split mirroring technique to clone a
PDB. The cloned PDB is independent of the original PDB. The principal use case is to
rapidly provision test and development PDBs in an Oracle ASM environment.

See "Creating a Split Mirror Clone PDB".

Changes in This Release for Oracle Multitenant Administrator’s Guide

xxv

Part I
Multitenant Architecture

The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

• Introduction to the Multitenant Architecture
Become familiar with the Oracle Multitenant option.

• Overview of the Multitenant Architecture
This chapter describes the most important components of the multitenant architecture.

1
Introduction to the Multitenant Architecture

Become familiar with the Oracle Multitenant option.

• About the Multitenant Architecture
The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

• Benefits of the Multitenant Architecture
The multitenant architecture solves several problems posed by the traditional non-CDB
architecture.

• Path to Database Consolidation
For the duration of its existence, a database is either a CDB or a non-CDB.

• Multitenant Environment Documentation Roadmap
This topic lists the most important topics for understanding and using CDBs, and includes
cross-references to the appropriate documentation.

About the Multitenant Architecture
The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

A CDB includes zero, one, or many customer-created pluggable databases (PDBs). A PDB is
a portable collection of schemas, schema objects, and nonschema objects that appears to an
Oracle Net client as a non-CDB. All Oracle databases before Oracle Database 12c were non-
CDBs.

• About Containers in a CDB
A container is logical collection of data or metadata within the multitenant architecture.

• About User Interfaces for the Multitenant Architecture
You can use the same administration tools for both CDBs and non-CDBs.

About Containers in a CDB
A container is logical collection of data or metadata within the multitenant architecture.

The following figure represents possible containers in a CDB.

1-1

Figure 1-1 Containers in a CDB

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Container

Application
PDBs

Application
Container

Application
PDBs

Application
Seed

Application Root Application Root

Every CDB has the following containers:

• Exactly one CDB root container (also called simply the root)

The CDB root is a collection of schemas, schema objects, and nonschema objects
to which all PDBs belong (see "Overview of Containers in a CDB"). The root stores
Oracle-supplied metadata and common users. An example of metadata is the
source code for Oracle-supplied PL/SQL packages (see "Data Dictionary
Architecture in a CDB"). A common user is a database user known in every
container (see "Common Users in a CDB"). The root container is named CDB$ROOT.

• Exactly one system container

The system container includes the root CDB and all PDBs in the CDB. Thus, the
system container is the logical container for the CDB itself.

• Zero or more application containers

An application container consists of exactly one application root, and the PDBs
plugged in to this root. Whereas the system container contains the CDB root and
all the PDBs within the CDB, an application container includes only the PDBs
plugged into the application root. An application root belongs to the CDB root and
no other container.

• Zero or more user-created PDBs

A PDB contains the data and code required for a specific set of features (see
"PDBs"). For example, a PDB can support a specific application, such as a human
resources or sales application. No PDBs exist at creation of the CDB. You add
PDBs based on your business requirements.

A PDB belongs to exactly zero or one application container. If a PDB belongs to an
application container, then it is an application PDB. For example, the cust1_pdb
and cust2_pdb application PDBs might belong to the saas_sales_ac application

Chapter 1
About the Multitenant Architecture

1-2

container, in which case they belong to no other application containers. An application
seed is an optional application PDB that acts as a user-created PDB template, enabling
you to create new application PDBs rapidly.

• Exactly one seed PDB

The seed PDB is a system-supplied template that the CDB can use to create new PDBs.
The seed PDB is named PDB$SEED. You cannot add or modify objects in PDB$SEED.

Example 1-1 CDB with No Application Containers

This example shows a simple CDB with five containers: the system container (the entire
CDB), the CDB root, the PDB seed (PDB$SEED), and two PDBs. Each PDB has its own
dedicated application. A different PDB administrator manages each PDB. A common user
exists across a CDB with a single identity. In this example, common user SYS can manage the
root and every PDB. At the physical level, this CDB has a database instance and database
files, just as a non-CDB does.

Figure 1-2 CDB with No Application Containers

10101
10101

10101
10101

10101
101011010110101

101011010110101101011010110101

10101
10101

10101
10101

10101
10101

10101

10101
101011010110101

101011010110101101011010110101

10101
10101

10101

Data
Files

Control
Files

Archived
Redo Log

Flashback
Log

Online
Redo Log

Database

Seed
(PDB$SEED)

Root
(CDB$ROOT)

hrpdb

salespdb

CDB

Physical

Logical

PDB
Administrator
for hrpdb

CDB
Administrator

PDB
Administrator
for salespdb

HR Application

Sales Application

Example 1-2 CDB with an Application Container

In this variation, the CDB contains an application container named saas_sales_ac. Within the
application container, the application PDB cust1_pdb supports an application for one
customer, and the application PDB cust2_pdb supports an application for a different
customer. The CDB also contains a PDB named hrpdb, which supports an HR application,
but does not belong to an application container.

Chapter 1
About the Multitenant Architecture

1-3

Figure 1-3 CDB with an Application Container

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Container

saas_sales_ac

Application
PDBs

Application Roothrpdb

cust1_pdb cust2_pdb

PDB
Administrator
for hrpdb

Application
PDB
Administrator

CDB
Administrator

Application
Container
Administrator

Application
Seed

In this example, multiple DBAs manage the CDB environment:

• A CDB administrator manages the CDB itself.

• An application container administrator manages the saas_sales_ac container,
including application installation and upgrades.

• An application PDB administrator manages the two PDBs in the saas_sales_ac
container: cust1_pdb and cust2_pdb.

• A PDB administrator manages hrpdb.

See Also:

" Overview of Configuring and Managing a Multitenant Environment"

About User Interfaces for the Multitenant Architecture
You can use the same administration tools for both CDBs and non-CDBs.

Table 1-1 Tools in a Multitenant Environment

Interface Description See Also

SQL*Plus and SQL Developer
for command-line access

SQL*Plus is an interactive
and batch query tool that is
installed with Oracle
Database.

SQL*Plus User's Guide and
Reference

Chapter 1
About the Multitenant Architecture

1-4

Table 1-1 (Cont.) Tools in a Multitenant Environment

Interface Description See Also

Oracle Enterprise Manager
Cloud Control (Cloud Control)

Cloud Control is an Oracle
Database administration tool
that provides a graphical user
interface (GUI). Cloud Control
supports Oracle Database
12c targets, including PDBs,
CDBs, and non-CDBs.

The Cloud Control online help

Oracle Enterprise Manager
Database Express (EM
Express)

EM Express is a web-based
management product built into
the Oracle database. EM
Express enables you to
provision and manage PDBs,
including the following
operations:

• Creating and dropping
PDBs

• Plugging in and
unplugging and PDBs

• Cloning PDBs
• Setting resource limits for

PDBs

Oracle Database
Performance Tuning Guide to
learn more about using EM
Express for managing CDBs
and PDBs

Oracle Database Configuration
Assistant (DBCA)

DBCA is a utility with a
graphical user interface that
enables you to create and
duplicate CDBs. It also
enables you to create,
relocate, clone, plug in, and
unplug PDBs.

Oracle Database
Performance Tuning Guide
and Oracle Database
Administrator’s Guide for
more information about
DBCA

See Also:

Oracle Database Concepts for more information about tools for database
administrators

Benefits of the Multitenant Architecture
The multitenant architecture solves several problems posed by the traditional non-CDB
architecture.

• Challenges for a Non-CDB Architecture
Large enterprises may use hundreds or thousands of databases. Often these databases
run on different platforms on multiple physical servers.

• Benefits of the Multitenant Architecture for Database Consolidation
Database consolidation is the process of consolidating data from multiple databases
into one database on one computer. The Oracle Multitenant option enables you to
consolidate data and code without altering existing schemas or applications.

Chapter 1
Benefits of the Multitenant Architecture

1-5

• Benefits of the Multitenant Architecture for Manageability
The multitenant architecture has benefits beyond database consolidation. These
benefits derive from storing the data and metadata specific to a PDB in the PDB
itself rather than storing all dictionary metadata in one place.

Challenges for a Non-CDB Architecture
Large enterprises may use hundreds or thousands of databases. Often these
databases run on different platforms on multiple physical servers.

Because of improvements in hardware technology, especially the increase in the
number of CPUs, servers can handle heavier workloads than before. A database may
use only a fraction of the server hardware capacity. This approach wastes both
hardware and human resources.

For example, 100 servers may have one database each, with each database using
10% of hardware resources and 10% of an administrator's time. A team of DBAs must
manage the SGA, database files, accounts, security, and so on of each database
separately, while system administrators must maintain 100 different computers.

To show the problem in reduced scale, Figure 1-4 depicts 11 databases, each with its
own application and server. A head DBA oversees a team of four DBAs, each of whom
is responsible for two or three databases.

Figure 1-4 Database Environment Before Database Consolidation

Head

DBA

DBAs

Applications

Databases

Typical responses include:

• Use virtual machines (VMs).

In this model, you replicate the operating infrastructure of the physical server—
operating system and database—in a virtual machine. VMs are agile, but use
technical resources inefficiently, and require individual management. Virtual
sprawl, which is just as expensive to manage, replaces the existing physical
sprawl.

• Place multiple databases on each server.

Chapter 1
Benefits of the Multitenant Architecture

1-6

Separate databases eliminate operating system replication, but do not share background
processes, system and process memory, or Oracle metadata. The databases require
individual management.

• Separate the data logically into schemas or virtual private databases (VPDs).

This technique uses technical resources efficiently. You can manage multiple schemas or
VPDs as one. However, this model is less agile than its alternatives, requiring more effort
to manage, secure, and transport. Also, the logical model typically requires extensive
application changes, which discourages adoption.

Benefits of the Multitenant Architecture for Database Consolidation
Database consolidation is the process of consolidating data from multiple databases into
one database on one computer. The Oracle Multitenant option enables you to consolidate
data and code without altering existing schemas or applications.

The PDB/non-CDB compatibility guarantee means that a PDB behaves the same as a non-
CDB as seen from a client connecting with Oracle Net. The installation scheme for an
application definition (for example, tables and PL/SQL packages) that runs against a non-
CDB runs the same against a PDB and produces the same result. Also, the run-time behavior
of client code that connects to the PDB containing the application definition is identical to the
behavior of client code that connected to the non-CDB containing this application definition.

Operations that act on an entire non-CDB act in the same way on an entire CDB, for
example, when using Oracle Data Guard and database backup and recovery. Thus, the
users, administrators, and developers of a non-CDB have substantially the same experience
after the database has been consolidated.

The following graphic depicts the databases in Figure 1-4 after consolidation onto one
computer. The DBA team is reduced from five to three, with one CDB administrator managing
the CDB while two PDB administrators split management of the PDBs.

Chapter 1
Benefits of the Multitenant Architecture

1-7

Figure 1-5 Single CDB

CDB
Administrator
Common User

Account

Local User

Accounts

PDB
Administrators

CDB

PDBs

Applications

Starting in Oracle Database 12c Release 2 (12.2), you can create an application
container that contains application PDBs. This approach enables you to create and
manage an application within this container. Most benefits that apply to consolidation
into a CDB also apply to consolidation within an application container.

Using the multitenant architecture for database consolidation has the following
benefits:

• Cost reduction

By consolidating hardware and database infrastructure to a single set of
background processes, and efficiently sharing computational and memory
resources, you reduce costs for hardware and maintenance. For example, 100
PDBs on a single server share one database instance.

• Easier and more rapid movement of data and code

By design, you can quickly plug a PDB into a CDB, unplug the PDB from the CDB,
and then plug this PDB into a different CDB. You can also clone PDBs while they
remain available. You can plug in a PDB with any character set and access it
without character set conversion. If the character set of the CDB is AL32UTF8,
then PDBs with different database character sets can exist in the same CDB.

• Easier management and monitoring of the physical database

Chapter 1
Benefits of the Multitenant Architecture

1-8

The CDB administrator can manage the environment as an aggregate by executing a
single operation, such as patching or performing an RMAN backup, for all hosted tenants
and the CDB root. Backup strategies and disaster recovery are simplified.

• Separation of data and code

Although consolidated into a single physical database, PDBs mimic the behavior of non-
CDBs. For example, if user error loses critical data, then a PDB administrator can use
Oracle Flashback or point-in-time recovery to retrieve the lost data without affecting other
PDBs.

• Secure separation of administrative duties

A common user can connect to any container on which it has sufficient privileges,
whereas a local user is restricted to a specific PDB. Administrators can divide duties as
follows:

– An administrator uses a common account to manage a CDB or application container.
Because a privilege is contained within the container in which it is granted, a local
user on one PDB does not have privileges on other PDBs within the same CDB.

– An administrator uses a local account to manage an individual PDB.

• Ease of performance tuning

It is easier to collect performance metrics for a single database than for multiple
databases. It is easier to size one SGA than 100 SGAs.

• Fewer database patches and upgrades

It is easier to apply a patch to one database than to 100 databases, and to upgrade one
database than to upgrade 100 databases.

See Also:

• " Overview of Configuring and Managing a Multitenant Environment"

• Oracle Database Security Guide to learn about common users

Benefits of the Multitenant Architecture for Manageability
The multitenant architecture has benefits beyond database consolidation. These benefits
derive from storing the data and metadata specific to a PDB in the PDB itself rather than
storing all dictionary metadata in one place.

By storing its own dictionary metadata, a PDB becomes easier to manage as a distinct unit.
This benefit occurs even when only one PDB resides in a CDB. Grouping PDBs into a
separately managed application container increases manageability even further.

In a CDB, the data dictionary metadata is split between the root and the PDBs. Benefits of
data dictionary separation include the following:

• Easier upgrade of data and code

For example, instead of upgrading a CDB from one database release to another, you can
rapidly unplug a PDB from the existing CDB, and then plug it into a newly created CDB
from a higher release.

Chapter 1
Benefits of the Multitenant Architecture

1-9

• Easier migration between servers

To perform load balancing or to meet SLAs, you can migrate an application
database from an on-premise data center to the cloud, or between two servers in
the same environment.

• Protection against data corruption within a PDB

You can flash back a PDB to an SCN or PDB-specific restore point, without
affecting other PDBs. This feature is analogous to the Flashback Database feature
for a non-CDB.

• Ability to install, administer, and upgrade application-specific data and metadata in
a single place

You can define a set of application-specific PDBs as a single component, called an
application container. You can then define one or more applications within this
container. Each application is a named, versioned set of common metadata and
data shared within this application container.

For example, each customer of a SaaS vendor could have its own application
PDB. Each application PDB might have identically defined tables named
sales_mlt, with different data in each PDB. The PDBs could share a data-linked
common object named countries_olt, which has identical data in each PDB. As
an application administrator, you could manage the master application definition so
that every new customer gets a PDB with the same objects, and every change to
existing schemas (for example, the addition of a new table, or a change in the
definition of a table) applies to all PDBs that share the application definition.

• Integration with Oracle Database Resource Manager

In a multitenant environment, one concern is contention for system resources
among the PDBs running on the same server. Another concern is limiting resource
usage for more consistent, predictable performance. To address such resource
contention, usage, and monitoring issues, use Oracle Database Resource
Manager.

See Also:

• "Overview of Oracle Resource Manager in a CDB"

• "Data Dictionary Architecture in a CDB"

• "Administering Application Containers"

Path to Database Consolidation
For the duration of its existence, a database is either a CDB or a non-CDB.

You must define a database as a CDB at creation, and then create PDBs and
application containers within this CDB. You cannot later transform a non-CDB into a
CDB, or a CDB into a non-CDB.

• Creation of a CDB
The CREATE DATABASE ... ENABLE PLUGGABLE DATABASE SQL statement creates a
new CDB.

Chapter 1
Path to Database Consolidation

1-10

• Creation of a PDB
The CREATE PLUGGABLE DATABASE SQL statement creates a PDB.

Creation of a CDB
The CREATE DATABASE ... ENABLE PLUGGABLE DATABASE SQL statement creates a new CDB.

If you do not specify the ENABLE PLUGGABLE DATABASE clause, then the newly created
database is a non-CDB. In this case, the non-CDB can never contain PDBs.

When you create a CDB, Oracle Database automatically creates a root container (CDB$ROOT)
and a seed PDB (PDB$SEED). The following graphic shows a newly created CDB:

Figure 1-6 CDB with Seed PDB

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Example 1-3 Determining Whether a Database Is a CDB

The following simple query determines whether the database to which an administrative user
is currently connected is a non-CDB, or a container in a CDB:

SQL> SELECT NAME, CDB, CON_ID FROM V$DATABASE;

NAME CDB CON_ID
--------- --- ----------
CDB1 YES 0

See Also:

• " Creating and Configuring a CDB"

• Oracle Database SQL Language Reference for more information about
specifying the clauses and parameter values for the CREATE DATABASE
statement

Chapter 1
Path to Database Consolidation

1-11

Creation of a PDB
The CREATE PLUGGABLE DATABASE SQL statement creates a PDB.

The created PDB automatically includes a full data dictionary including metadata and
internal links to system-supplied objects in the CDB root. You must define every PDB
from a single root: either the CDB root or an application root.

Each PDB has a globally unique identifier (GUID). The PDB GUID is primarily used to
generate names for directories that store the PDB's files, including both Oracle
Managed Files directories and non-Oracle Managed Files directories.

• Creation of a PDB by Cloning
One technique for creating a PDB is called cloning.

• Creation of a PDB by Plugging In
You can create a PDB by plugging in an unplugged PDB, or plugging in a non-
CDB as a PDB.

• Creation of a PDB by Relocating
To relocate a PDB from one CDB to another, use either the CREATE PLUGGABLE
DATABASE ... RELOCATE statement or DBCA.

• Creation of a PDB as a Proxy PDB
A proxy PDB provides access to different PDB, called the referenced PDB, in a
remote CDB.

See Also:

"Creating and Removing PDBs and Application Containers"

Creation of a PDB by Cloning
One technique for creating a PDB is called cloning.

You can clone a PDB from PDB$SEED, an application seed, a remote or local PDB, or a
non-CDB.

• Creation of a PDB from a Seed
You can use the CREATE PLUGGABLE DATABASE statement to create a PDB from a
seed.

• Creation of a PDB by Cloning a PDB or a Non-CDB
To clone a PDB or non-CDB, use the CREATE PLUGGABLE DATABASE statement with
the FROM clause.

Creation of a PDB from a Seed
You can use the CREATE PLUGGABLE DATABASE statement to create a PDB from a seed.

A seed is a PDB that serves as a template for creation of another PDB. Creating a
PDB from a seed copies some or all of the contents of a PDB, and then assigns a new
unique identifier.

Chapter 1
Path to Database Consolidation

1-12

A seed PDB is either of the following:

• The PDB seed (PDB$SEED), which is a system-supplied template for creating PDBs

Every CDB has exactly one PDB$SEED, which cannot be modified or dropped.

• An application seed, which is a user-created PDB for a specified application root

Within an application container, you can create an application seed using the CREATE
PLUGGABLE DATABASE AS SEED statement, which you can then use to accelerate creation
of new application PDBs.

Figure 1-7 Creation from PDB$SEED

Files of the New PDBPDB$SEED Database Files

Copy to New Location

New
PDB

PDBs

CREATE PLUGGABLE DATABASE

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Example 1-4 Creation of a PDB from PDB$SEED

The following SQL statement creates a PDB named hrpdb from PDB$SEED using Oracle
Managed Files:

CREATE PLUGGABLE DATABASE hrpdb
 ADMIN USER dba1 IDENTIFIED BY password;

See Also:

"Creating a PDB from Scratch"

Chapter 1
Path to Database Consolidation

1-13

Creation of a PDB by Cloning a PDB or a Non-CDB
To clone a PDB or non-CDB, use the CREATE PLUGGABLE DATABASE statement with the
FROM clause.

In this technique, the source is either a non-CDB, or a PDB in a local or remote CDB.
The target is the PDB copied from the source. The cloning operation copies the files
associated with the source to a new location, and then assigns a new GUID to create
the PDB.

This technique is useful for quickly creating PDBs for testing and development. For
example, you might test a new or modified application on a cloned PDB before
deploying the application in a production PDB. If a PDB is in local undo mode, then the
source PDB can be open in read/write mode during the operation, referred to as hot
cloning.

Note:

If you clone a PDB from a remote CDB, then you must use a database link.

If you run CREATE PLUGGABLE DATABASE statement in an application root, then the
cloned PDB is created in the application container. In this case, the application name
and version of the source PDB must be compatible with the application name and
version of the application container.

The following graphic illustrates cloning a PDB when both source and target are in the
same CDB.

Figure 1-8 Cloning a PDB

New
PDB

PDBs

CDB

CREATE PLUGGABLE DATABASE ... FROM

Copy

Seed
(PDB$SEED)

Root (CDB$ROOT)

Files of the New

PDB

Files of the Source

PDB

Copy to New Location

Source
PDB

Chapter 1
Path to Database Consolidation

1-14

Starting in Oracle Database 19c, you can clone a remote PDB using DBCA.

Example 1-5 Cloning a PDB

The following SQL statement clones a PDB named salespdb from the plugged-in PDB
named hrpdb:

CREATE PLUGGABLE DATABASE salespdb FROM hrpdb;

• Clones from PDB Snapshots
Create a clone from a PDB snapshot by specifying USING SNAPSHOT clause of the
CREATE PLUGGABLE DATABASE command.

• Snapshot Copy PDBs
A snapshot copy PDB is based on a copy of the underlying storage system. Snapshot
copy PDBs reduce the amount of storage required for testing purposes and reduce
creation time significantly.

• Refreshable Clone PDBs
A refreshable clone PDB is a read-only clone that can periodically synchronize with its
source PDB.

See Also:

• "Cloning a PDB or Non-CDB"

• "Overview of Tablespaces and Database Files in a CDB"

• "Application Maintenance"

Clones from PDB Snapshots

Create a clone from a PDB snapshot by specifying USING SNAPSHOT clause of the CREATE
PLUGGABLE DATABASE command.

Creation of PDB Snapshots with the SNAPSHOT Clause

A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-only or
read/write while the snapshot is created. A PDB snapshot taken while the source PDB is
open is called a hot clone. You can create clones from PDB snapshots. These clone PDBs
are useful in development and testing.

You can create snapshots manually using the SNAPSHOT clause of CREATE PLUGGABLE
DATABASE (or ALTER PLUGGABLE DATABASE), or automatically using the EVERY interval
clause. The following statement creates a PDB snapshot with the name pdb1_wed_4_1201:

ALTER PLUGGABLE DATABASE SNAPSHOT pdb1_wed_4_1201;

If the storage system supports sparse clones, then the preceding command creates a sparse
copy. Otherwise, the command creates a full copy.

Every PDB snapshot is associated with a snapshot name and the SCN and timestamp at
snapshot creation.

Chapter 1
Path to Database Consolidation

1-15

Creation of a PDB Clone with the USING SNAPSHOT Clause

A clone from a PDB snapshot is a full, standalone PDB. Unlike a snapshot copy PDB,
which is based on a storage-managed snapshot, you do not need to materialize a
clone created from a PDB snapshot.

To create a clone from a PDB snapshot, specify the USING SNAPSHOT clause of the
CREATE PLUGGABLE DATABASE statement. For example, the following statement clones
a PDB named pdb1_copy from the PDB-level snapshot named pdb1_wed_4_1201:

CREATE PLUGGABLE DATABASE pdb1_copy FROM pdb1
 USING SNAPSHOT pdb1_wed_4_1201;

See Also:

• "About Cloning PDBs from PDB Snapshots"

• Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Snapshot Copy PDBs

A snapshot copy PDB is based on a copy of the underlying storage system.
Snapshot copy PDBs reduce the amount of storage required for testing purposes and
reduce creation time significantly.

If the file system supports storage snapshots, then CREATE PLUGGABLE DATABASE ...
FROM ... SNAPSHOT COPY copies a PDB from a source PDB, which can be read/write
during the operation. The snapshot copy PDB files use copy-on-write technology. Only
modified blocks require extra storage on disk. If the file system does not support
storage snapshots or use Oracle Exadata sparse files, then the CLONEDB initialization
parameter must be true, and the source PDB must be read-only for as long as the
snapshot copy PDB exists.

Because a snapshot copy PDB depends on storage-managed snapshots, you cannot
unplug a snapshot copy PDB from the CDB root or application root. You cannot drop
the storage snapshot on which a snapshot copy PDB is based.

You can transform a snapshot copy PDB, which uses sparse files, into a full PDB. This
process is known as materializing the snapshot copy PDB. Because a materialized
PDB does not depend on the source PDB, you can drop it. Materialize a PDB by
running the ALTER PLUGGABLE DATABASE MATERIALIZE command.

Chapter 1
Path to Database Consolidation

1-16

Note:

A PDB created with the USING SNAPSHOT clause and a PDB created with the
SNAPSHOT COPY clause have different properties. You cannot specify both clauses in
a single CREATE PLUGGABLE DATABASE command. The CREATE PLUGGABLE DATABASE
… FROM … USING SNAPSHOT clause creates a full, standalone PDB that does not
need to be materialized. The CREATE PLUGGABLE DATABASE … FROM … SNAPSHOT
COPY clause creates a sparse PDB that must be materialized if you want to drop the
storage-level snapshot on which it is based.

Note:

"Creating and Materializing Snapshot Copy PDBs"

Refreshable Clone PDBs

A refreshable clone PDB is a read-only clone that can periodically synchronize with its
source PDB.

Depending on the value specified in the REFRESH MODE clause, synchronization occurs
automatically or manually. For example, if hrpdb_re_clone is a clone of hrpdb, then every
month you could manually refresh hrpdb_re_clone with changes from hrpdb. Alternatively,
you could configure hrpdb to propagate changes to hrpdb_re_clone automatically every 24
hours.

You can switch the roles of a source PDB and its refreshable clone. This switchover can be
useful for load balancing between CDBs, and when the source PDB suffers a failure.

Note:

"About Cloning a PDB or Non-CDB" to learn how to clone a PDB using the REFRESH
MODE clause

Creation of a PDB by Plugging In
You can create a PDB by plugging in an unplugged PDB, or plugging in a non-CDB as a
PDB.

• Creation of a PDB by Plugging In an Unplugged PDB
An unplugged PDB is a self-contained set of data files, and an XML metadata file that
specifies the locations of the PDB files. To plug in an unplugged PDB, use the CREATE
PLUGGABLE DATABASE statement with the USING clause.

• Creation of a PDB from a Non-CDB
You can move a non-CDB into a PDB.

Chapter 1
Path to Database Consolidation

1-17

Creation of a PDB by Plugging In an Unplugged PDB
An unplugged PDB is a self-contained set of data files, and an XML metadata file that
specifies the locations of the PDB files. To plug in an unplugged PDB, use the CREATE
PLUGGABLE DATABASE statement with the USING clause.

When plugging in an unplugged PDB, you have the following options:

• Specify the XML metadata file that describes the PDB and the files associated with
the PDB.

• Specify a PDB archive file, which is a compressed file that contains both the XML
file and PDB data files. You can create a PDB by specifying the archive file, and
thereby avoid copying the XML file and the data files separately.

The following graphic illustrates plugging in an unplugged PDB using the XML file.

Chapter 1
Path to Database Consolidation

1-18

Figure 1-9 Plugging In an Unplugged PDB

XML

Metadata

File

Database Files

New
PDB

PDBs

CDB

CREATE PLUGGABLE DATABASE ... USING

Seed
(PDB$SEED)

Root (CDB$ROOT)

.PDB

File

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

OR

.PDB File

Example 1-6 Plugging In a PDB

The following SQL statement plugs in a PDB named salespdb based on the metadata stored
in the named XML file, and specifies NOCOPY because the files of the unplugged PDB do not
need to be moved to a new location:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml' NOCOPY;

Chapter 1
Path to Database Consolidation

1-19

See Also:

"Plugging In an Unplugged PDB"

Creation of a PDB from a Non-CDB
You can move a non-CDB into a PDB.

You can accomplish this task in the following ways:

• Executing DBMS_PDB.DESCRIBE on a non-CDB in Oracle Database 12c

You place a non-CDB in a transactionally consistent state, and then run the
DBMS_PDB.DESCRIBE function to generate XML metadata about this database.
While connected to the root in the CDB, you execute the CREATE PLUGGABLE
DATABASE statement to create a PDB from the existing non-CDB. Finally, to convert
the definitions in the PDB data dictionary to references to objects in CDB$ROOT, log
in to the PDB and run the noncdb_to_pdb.sql script.

• Using Oracle Data Pump with or without transportable tablespaces

You can define a data set on a non-CDB using Oracle Data Pump. This non-CDB
can be in the current or a previous Oracle Database release, for example, Oracle
Database 10g. You create an empty PDB in an existing CDB, and then use Oracle
Data Pump to import the data set into the PDB.

A Full Transportable Export using Oracle Data Pump exports all objects and data
necessary to create a complete copy of the database. Oracle Data Pump exports
objects using direct path unload and external tables, and then imports objects
using direct path INSERT and external tables. The Full Transportable dump file
contains all objects in the database, not only table-related objects. Full
Transportable Export is available starting in Oracle Database 11g Release 2
(11.2.0.3) for import into Oracle Database 12c and later.

• Using Oracle GoldenGate replication

You replicate the data from the non-CDB to a PDB. When the PDB becomes
current with the non-CDB, you switch over to the PDB.

The following figure illustrates running the DBMS_PDB.DESCRIBE function on a non-CDB,
and then creating a PDB using the non-CDB files.

Chapter 1
Path to Database Consolidation

1-20

Figure 1-10 Creating a PDB from a Non-CDB

New
PDB

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

Non-CDB

DBMS_PDB.DESCRIBE

See Also:

• "Options for Creating a PDB from a Non-CDB"

• Oracle Database Concepts for information about Oracle GoldenGate

Creation of a PDB by Relocating
To relocate a PDB from one CDB to another, use either the CREATE PLUGGABLE DATABASE ...
RELOCATE statement or DBCA.

This technique has the following advantages:

Chapter 1
Path to Database Consolidation

1-21

• The relocation occurs with minimal downtime.

• The technique keeps the PDB being relocated open in read/write mode during the
relocation, and then brings the PDB online in its new location.

You must create a database link at the target CDB, which is the CDB that will contain
the relocated PDB. Also, the source PDB must use local undo data.

The following graphic depicts a PDB relocation.

Figure 1-11 Relocating a PDB

PDB being
Relocated

Relocated
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Files of the PDBFiles of the PDB

Move to New Location

CREATE PLUGGABLE DATABASE ... FROM ... RELOCATE

Database
Link

Move

Starting in Oracle Database 19c, you can relocate a remote PDB using DBCA in silent
mode.

Chapter 1
Path to Database Consolidation

1-22

Example 1-7 PDB Relocation

The following statement, which is issued at a target CDB, relocates hrpdb from the source
CDB to the target CDB:

CREATE PLUGGABLE DATABASE hrpdb FROM hrpdb@lnk_to_source RELOCATE;

See Also:

• "Overview of Tablespaces and Database Files in a CDB"

• "Relocating a PDB"

Creation of a PDB as a Proxy PDB
A proxy PDB provides access to different PDB, called the referenced PDB, in a remote
CDB.

Proxy PDBs enable you to aggregate data from multiple sources. A SQL statement submitted
for execution in a proxy PDB executes within the referenced PDB.

A typical use case is a proxy PDB that references an application root replica. If multiple CDBs
have the same application definition (for example, same tables and PL/SQL packages), then
you can create a proxy PDB in the application container of the master application root. The
referenced PDB for the proxy PDB is the application root in a different CDB. By running
installation scripts in the master root, the application roots in the other CDBs become replicas
of the master application root.

To create a proxy PDB, use the CREATE PLUGGABLE DATABASE statement with the FROM clause,
which must specify a database link to the referenced PDB in the remote CDB, and the AS
PROXY clause.

Note:

If you plug a proxy PDB directly into CDB$ROOT, then you must have created the
proxy in CDB$ROOT. A proxy of an application PDB must both be plugged in to an
application root.

The following graphic shows the creation of a proxy PDB that references a PDB in a remote
CDB.

Chapter 1
Path to Database Consolidation

1-23

Figure 1-12 Creating a Proxy PDB

Referenced
PDB

Proxy
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Proxy PDB’s SYSTEM
and SYSAUX Files

Referenced PDB’s
SYSTEM and SYSAUX Files

 Copy to New Location

CREATE PLUGGABLE DATABASE ... AS PROXY ... FROM

Reference

Database
Link

Example 1-8 Creation of a Proxy PDB

This example creates a proxy PDB named pdb1. The referenced PDB is specified
using a database link.

CREATE PLUGGABLE DATABASE pdb1 AS PROXY FROM pdb1@pdb1_link;

Chapter 1
Path to Database Consolidation

1-24

Note:

"Creating a PDB as a Proxy PDB"

Multitenant Environment Documentation Roadmap
This topic lists the most important topics for understanding and using CDBs, and includes
cross-references to the appropriate documentation.

Table 1-2 Road map for the Multitenant Architecture Documentation

Category Topic Documentation

Concepts Overview of CDBs and PDBs "Overview of the Multitenant Architecture "

Administration Creating and configuring a CDB " Creating and Configuring a CDB"

Administration Managing a CDB " Administering a CDB"

Administration Creating and configuring PDBs "Creating and Removing PDBs and
Application Containers"

Administration Managing PDBs " Administering PDBs"

Administration Creating and removing application
containers

"Creating and Removing Application
Containers"

Administration Administering application containers "Administering Application Containers"

Performance Troubleshooting PDBs Oracle Database Performance Tuning
Guide

Monitoring Viewing information about CDBs
and PDBs

"Monitoring CDBs and PDBs"

Backup and
Recovery

Performing backup and recovery in
a CDB

Oracle Database Backup and Recovery
User’s Guide

Security Managing common users, roles,
and privileges in a CDB

Oracle Database Security Guide

Miscellaneous All other tasks relating to managing
a CDB or PDB, including Oracle
RAC, resource management, data
transfer, and so on

This guide is the primary task-oriented
intermediate and advanced documentation
for managing CDBs. This guide also
contains See Also links to books that cover
different CDB topics. For example, Oracle
Database Utilities explains concepts and
tasks specific to PDBs when using Oracle
Data Pump.

Chapter 1
Multitenant Environment Documentation Roadmap

1-25

2
Overview of the Multitenant Architecture

This chapter describes the most important components of the multitenant architecture.

• Overview of Containers in a CDB
A container is a collection of schemas, objects, and related structures in a multitenant
container database (CDB). Within a CDB, each container has a unique ID and name.

• Overview of Commonality in the CDB
In a CDB, every user, role, or object is either common or local. Similarly, a privilege is
granted either commonly or locally.

• Overview of Applications in an Application Container
Within an application container, an application is the named, versioned set of common
data and metadata stored in the application root.

• Overview of Services in a CDB
Clients must connect to PDBs or application roots using services.

• Overview of Tablespaces and Database Files in a CDB
A CDB has the same structure as a non-CDB, except that each PDB and application root
has its own set of tablespaces, including its own SYSTEM, SYSAUX, and undo tablespaces.

• Overview of Availability in a CDB
Many availability features that exist for a non-CDB also exist for individual PDBs within a
CDB.

• Overview of Oracle Resource Manager in a CDB
Using Oracle Resource Manager (Resource Manager), you can create CDB resource
plans and set initialization parameters to allocate resources to PDBs.

Overview of Containers in a CDB
A container is a collection of schemas, objects, and related structures in a multitenant
container database (CDB). Within a CDB, each container has a unique ID and name.

• The CDB Root and System Container
The CDB root, also called simply the root, is a collection of schemas, schema objects,
and nonschema objects to which all PDBs belong.

• PDBs
A PDB is a user-created set of schemas, objects, and related structures that appears
logically to a client application as a separate database.

• Data Dictionary Architecture in a CDB
From the user and application perspective, the data dictionary in each container in a CDB
is separate, as it would be in a non-CDB.

• Current Container
For a given session, the current container is the one in which the session is running. The
current container can be the CDB root, an application root, or a PDB.

2-1

• Cross-Container Operations
A cross-container operation is a DDL or DML statement that affects multiple
containers at once.

The CDB Root and System Container
The CDB root, also called simply the root, is a collection of schemas, schema objects,
and nonschema objects to which all PDBs belong.

Every CDB has one and only one root container named CDB$ROOT. The root stores the
system metadata required to manage PDBs. All PDBs belong to the root. The system
container is the CDB root and all PDBs that belong to this root.

The CDB root does not store user data. Oracle recommends that you do not add
common objects to the root or modify Oracle-supplied schemas in the root. However,
you can create common users and roles for database administration. A common user
with the necessary privileges can switch between containers.

Oracle recommends AL32UTF8 for the root character set. PDBs with different
character sets can reside in the same CDB without requiring character set conversion.

Example 2-1 All Containers in a CDB

The following query, issued by an administrative user connected to the CDB root, lists
all containers in the CDB (including the seed and CDB root), ordered by CON_ID.

COL NAME FORMAT A15
SELECT NAME, CON_ID, DBID, CON_UID, GUID
FROM V$CONTAINERS ORDER BY CON_ID;

NAME CON_ID DBID CON_UID GUID
------------- ------ ---------- ----------

CDB$ROOT 1 1895287725 1
2003321EDD4F60D6E0534E40E40A41C5
PDB$SEED 2 2795386505 2795386505
200AC90679F07B55E05396C0E40A23FE
SAAS_SALES_AC 3 1239646423 1239646423
200B4CE0A8DC1D24E05396C0E40AF8EE
SALESPDB 4 3692549634 3692549634
200B4928319C1BCCE05396C0E40A2432
HRPDB 5 3784483090 3784483090
200B4928319D1BCCE05396C0E40A2432

See Also:

• "Common Users in a CDB"

• " Overview of Configuring and Managing a Multitenant Environment"

Chapter 2
Overview of Containers in a CDB

2-2

PDBs
A PDB is a user-created set of schemas, objects, and related structures that appears
logically to a client application as a separate database.

Every PDB is owned by SYS, regardless of which user created the PDB. SYS is a common
user in the CDB.

• Types of PDBs
All PDBs are user-created with the CREATE PLUGGABLE DATABASE statement except for
PDB$SEED, which is Oracle-supplied.

• Purpose of PDBs
For an application, a PDB is a self-contained, fully functional Oracle database. You can
consolidate PDBs into a single CDB to achieve economies of scale, while maintaining
isolation between PDBs.

• Proxy PDBs
A proxy PDB refers to a remote PDB, called the referenced PDB.

• Names for PDBs
Containers in a CDB share the same namespace, which means that they must have
unique names within this namespace.

• Database Links Between PDBs
By default, a user connected to one PDB must use database links to access objects in a
different PDB. This behavior is directly analogous to a user in a non-CDB accessing
objects in a different non-CDB.

Types of PDBs
All PDBs are user-created with the CREATE PLUGGABLE DATABASE statement except for
PDB$SEED, which is Oracle-supplied.

You can create the following types of PDBs.

Standard PDB

This type of PDB results from running CREATE PLUGGABLE DATABASE without specifying the
PDB as a seed, proxy PDB, or application root. Its capabilities depend on the container in
which you create it:

• PDB plugged in to the CDB root

This PDB belongs to the CDB root container and not an application container. This type
of PDB cannot use application common objects. See "Application Common Objects".

• Application PDB

An application PDB belongs to exactly one application container. Unlike PDBs plugged in
to the CDB root, application PDBs can share a master application definition within an
application container. For example, a usa_zipcodes table in an application root might be
a data-linked common object, which means it contains data accessible by all application
PDBs plugged in to this root. PDBs that do not reside within the application container
cannot access its application common objects.

Chapter 2
Overview of Containers in a CDB

2-3

Application Root

Consider an application root as an application-specific root container. It serves as a
repository for a master definition of an application back end, including common data
and metadata. To create an application root, connect to the CDB root and specify the
AS APPLICATION CONTAINER clause in a CREATE PLUGGABLE DATABASE statement. See
"Application Root".

Seed PDBs

Unlike a standard PDB, a seed PDB is not intended to support an application. Rather,
the seed is a template for the creation of PDBs that support applications. A seed can
be either of the following:

• Seed PDB plugged in the CDB root (PDB$SEED)

You can use this system-supplied template to create new PDBs either in an
application container or the system container. The system container contains
exactly one PDB seed. You cannot drop PDB$SEED, or add objects to or modify
objects within it.

• Application seed PDB

To accelerate creation of application PDBs within an application container, you can
create an optional application seed. An application container contains either zero
or one application seed.

You create an application seed by connecting to the application container and
executing the CREATE PLUGGABLE DATABASE ... AS SEED statement. See
"Application Seed".

Proxy PDBs

A proxy PDB is a PDB that uses a database link to reference a PDB in a remote CDB.
When you issue a statement in a proxy PDB while the PDB is open, the statement
executes in the referenced PDB.

You must create a proxy PDB while connected to the CDB root or application root. You
can alter or drop a proxy PDB just as you can a standard PDB.

See Also:

"Overview of PDB Creation"

Purpose of PDBs
For an application, a PDB is a self-contained, fully functional Oracle database. You can
consolidate PDBs into a single CDB to achieve economies of scale, while maintaining
isolation between PDBs.

You can use PDBs to achieve the following specific goals:

• Store data specific to an application

Chapter 2
Overview of Containers in a CDB

2-4

For example, a sales application can have its own dedicated PDB, and a human
resources application can have its own dedicated PDB. Alternatively, you can create an
application container, which is a named collection of PDBs, to store an application back
end containing common data and metadata (see "About Application Containers").

• Move data into a different CDB

A database is "pluggable" because you can package it as a self-contained unit, called an
unplugged PDB, and then move it into another CDB.

• Perform rapid upgrades

You can unplug a PDB from CDB at a lower Oracle Database release, and then plug it in
to a CDB at a higher release.

• Copy data quickly without loss of availability

For testing and development, you can clone a PDB while it remains open, storing the
clone in the same or a different CDB. Optionally, you can specify the PDB as a
refreshable clone PDB. Alternatively, you use the Oracle-supplied seed PDB or a user-
created application seed to copy new PDBs.

• Reference data in a different CDB

You can create a proxy PDB that refers to a different PDB, either in the same CDB or in a
separate CDB. When you issue statements in the proxy PDB, they execute in the
referenced PDB.

• Isolate grants within PDBs

A local or common user with appropriate privileges can grant EXECUTE privileges on a
schema object to PUBLIC within an individual PDB.

See Also:

• "Benefits of the Multitenant Architecture"

• Oracle Database Security Guide to learn how to grant roles and privileges in a
CDB

Proxy PDBs
A proxy PDB refers to a remote PDB, called the referenced PDB.

Although you issue SQL statements in the proxy (referring) PDB, the statements execute in
the referenced PDB. In this respect, a proxy PDB is loosely analogous to a symbolic link file
in Linux.

Proxy PDBs provide the following benefits:

• Aggregate data from multiple application models

Proxy PDBs enable you to build location-transparent applications that can aggregate data
from multiple sources. These sources can be in the same data center or distributed
across data centers.

• Enable an application root in one CDB to propagate application changes to a different
application root

Chapter 2
Overview of Containers in a CDB

2-5

Assume that CDBs cdb_prod and cdb_test have the same application model. You
create a proxy PDB in an application container in cdb_prod that refers to an
application root in cdb_test. When you run installation and upgrade scripts in the
application root in cdb_prod, Oracle Database propagates these statements to the
proxy PDB, which in turn sends them remotely to the application root in cdb_test.
In this way, the application root in cdb_test becomes a replica of the application
root in cdb_prod.

To create a proxy PDB, execute CREATE PLUGGABLE DATABASE with the AS PROXY FROM
clause, where FROM specifies the referenced PDB name and a database link. The
creation statement copies only the data files belonging to the SYSTEM and SYSAUX
tablespaces.

Example 2-2 Creating a Proxy PDB

This example connects to the container saas_sales_ac in a local production CDB. The
sales_admin common user creates a proxy PDB named sales_sync_pdb. This
application PDB references an application root named saas_sales_test_ac in a
remote development CDB, which it accesses using the cdb_dev_rem database link.
When an application upgrade occurs in saas_sales_ac in the production CDB, the
upgrade automatically propagates to the application root saas_sales_test_ac in the
remote development CDB.

CONNECT sales_admin@saas_sales_ac
Password: ***********

CREATE PLUGGABLE DATABASE sales_sync_pdb AS PROXY FROM
saas_sales_test_ac@cdb_dev_rem;

Note:

"Creating a Proxy PDB"

Names for PDBs
Containers in a CDB share the same namespace, which means that they must have
unique names within this namespace.

Names for the following containers must not conflict within the same CDB:

• The CDB root

• PDBs plugged in to the CDB root

• Application roots

• Application PDBs

For example, if the same CDB contains the application containers saas_sales_ac and
saas_sales_test_ac, then two application PDBs that are both named cust1 cannot
simultaneously reside in both containers. The namespace rules also prevent creation
of a PDB named cust1pdb in the CDB root and a PDB named cust1pdb in an
application root.

Chapter 2
Overview of Containers in a CDB

2-6

Names for PDBs and application root containers must follow the same rules as net service
names. Moreover, because a PDB or application root has a service with its own name, the
container name must be unique across all CDBs whose services are exposed through a
specific listener. The first character of a user-created container name must be alphabetic,
with remaining characters either alphanumeric or an underscore (_). Because service names
are case-insensitive, container names are case-insensitive, and are in upper case even if
specified using delimited identifiers.

See Also:

Oracle Database Net Services Reference for the rules for service names

Database Links Between PDBs
By default, a user connected to one PDB must use database links to access objects in a
different PDB. This behavior is directly analogous to a user in a non-CDB accessing objects
in a different non-CDB.

Figure 2-1 Database Link Between PDBs

In this illustration, a PDB administrator is connected to the PDB named hrpdb1. By default,
during this user session, c##dba cannot query the emp2 table in hrpdb2 without specifying a
database link.

Seed
(PDB$SEED)

Root
(CDB$ROOT)

hrpdb1 hrpdb2

CDB

PDB
Administrator
for hrpdb

emp2Link to
emp2

Exceptions to the rule include:

• A data-linked common object, which is accessible by all application PDBs that contain a
data link that points to this object. For example, the application container saas_sales_ac
might contain the data-linked table usa_zipcodes within its application. In this case,
common CDB user c##dba can connect to an application PDB in this container, and then
query usa_zipcodes even though the actual table resides in the application root. In this
case, no database link is required.

Chapter 2
Overview of Containers in a CDB

2-7

• The CONTAINERS() clause in SQL issued from the CDB root or application root.
Using this clause, you can query data across all PDBs plugged in to the root.

When creating a proxy PDB, you must specify a database link name in the FROM clause
of the CREATE PLUGGABLE DATABASE ... AS PROXY statement. If the proxy PDB and
referenced PDB reside in separate CDBs, then the database link must be defined in
the root of the CDB that will contain the proxy PDB. The database link must connect
either to the remote referenced PDB or to the CDB root of the remote CDB.

See Also:

• "Overview of Common and Local Objects in a CDB"

• "About PDB Administration" to learn how to access objects in other
PDBs using database links

Data Dictionary Architecture in a CDB
From the user and application perspective, the data dictionary in each container in a
CDB is separate, as it would be in a non-CDB.

For example, the DBA_OBJECTS view in each PDB can show a different number of rows.
This dictionary separation enables Oracle Database to manage the PDBs separately
from each other and from the root.

• Purpose of Data Dictionary Separation
In a newly created non-CDB that does not yet contain user data, the data
dictionary contains only system metadata. For example, the TAB$ table contains
rows that describe only Oracle-supplied tables, for example, TRIGGER$ and
SERVICE$.

• Metadata and Data Links
The CDB uses an internal linking mechanism to separate data dictionary
information.

• Container Data Objects in a CDB
A container data object is a table or view containing data pertaining to multiple
containers or the whole CDB.

• Data Dictionary Storage in a CDB
The data dictionary that stores the metadata for the CDB as a whole is stored only
in the system tablespaces.

Purpose of Data Dictionary Separation
In a newly created non-CDB that does not yet contain user data, the data dictionary
contains only system metadata. For example, the TAB$ table contains rows that
describe only Oracle-supplied tables, for example, TRIGGER$ and SERVICE$.

The following graphic depicts three underlying data dictionary tables, with the red bars
indicating rows describing the system.

Chapter 2
Overview of Containers in a CDB

2-8

Figure 2-2 Unmixed Data Dictionary Metadata in a Non-CDB

OBJ$ TAB$ SOURCE$

. . .

If users create their own schemas and tables in this non-CDB, then the data dictionary now
contains some rows that describe Oracle-supplied entities, and other rows that describe user-
created entities. For example, the TAB$ dictionary table now has a row describing employees
and a row describing departments.

Figure 2-3 Mixed Data Dictionary Metadata in a Non-CDB

OBJ$ TAB$

Mixed Dictionary Metadata

SOURCE$ employees departments

User Data

.

In a CDB, the data dictionary metadata is split between the root and the PDBs. In the
following figure, the employees and departments tables reside in a PDB. The data dictionary
for this user data also resides in the PDB. Thus, the TAB$ table in the PDB has a row for the
employees table and a row for the departments table.

Figure 2-4 Data Dictionary Architecture in a CDB

OBJ$ TAB$

User Metadata Only

SOURCE$ employees departments

User Data

. . .

PDB

OBJ$ TAB$

Database Metadata Only

SOURCE$

root

Chapter 2
Overview of Containers in a CDB

2-9

The preceding graphic shows that the data dictionary in the PDB contains pointers to
the data dictionary in the root. Internally, Oracle-supplied objects such as data
dictionary table definitions and PL/SQL packages are represented only in the root.
This architecture achieves two main goals within the CDB:

• Reduction of duplication

For example, instead of storing the source code for the DBMS_ADVISOR PL/SQL
package in every PDB, the CDB stores it only in CDB$ROOT, which saves disk
space.

• Ease of database upgrade

If the definition of a data dictionary table existed in every PDB, and if the definition
were to change in a new release, then each PDB would need to be upgraded
separately to capture the change. Storing the table definition only once in the root
eliminates this problem.

Metadata and Data Links
The CDB uses an internal linking mechanism to separate data dictionary information.

Specifically, Oracle Database uses the following automatically managed pointers:

• Metadata links

Oracle Database stores metadata about dictionary objects only in the CDB root.
For example, the column definitions for the OBJ$ dictionary table, which underlies
the DBA_OBJECTS data dictionary view, exist only in the root. As depicted in
Figure 2-4, the OBJ$ table in each PDB uses an internal mechanism called a
metadata link to point to the definition of OBJ$ stored in the root.

The data corresponding to a metadata link resides in its PDB, not in the root. For
example, if you create table mytable in hrpdb and add rows to it, then the rows are
stored in the PDB data files. The data dictionary views in the PDB and in the root
contain different rows. For example, a new row describing mytable exists in the
OBJ$ table in hrpdb, but not in the OBJ$ table in the CDB root. Thus, a query of
DBA_OBJECTS in the CDB root and DBA_OBJECTS in hrdpb shows different results.

• Data links

Note:

Data links were called object links in Oracle Database 12c Release 1
(12.1.0.2).

In some cases, Oracle Database stores the data (not only metadata) for an object
only once in the application root. An application PDB uses an internal mechanism
called a data link to refer to the objects in the application root. The application PDB
in which the data link was created also stores the data link description. A data link
inherits the data type of the object to which it refers.

• Extended data link

An extended data link is a hybrid of a data link and a metadata link. Like a data
link, an extended data link refers to an object in an application root. However, the
extended data link also refers to a corresponding object in the application PDB.

Chapter 2
Overview of Containers in a CDB

2-10

Like a metadata link, the object in the application PDB inherits metadata from the
corresponding object in the application root.

When queried in the application root, an extended data-linked object fetches rows only
from the application root. However, when queried in an application PDB, an extended
data-linked object fetches rows from both the application root and application PDB.

Oracle Database automatically creates and manages metadata and data links to CDB$ROOT.
Users cannot add, modify, or remove these links.

See Also:

• "Application Common Objects"

• Oracle Database Concepts for an overview of the data dictionary

Container Data Objects in a CDB
A container data object is a table or view containing data pertaining to multiple containers or
the whole CDB.

Container data privileges support a general requirement in which multiple PDBs reside in a
single CDB, but with different local administration requirements. For example, if application
DBAs do not want to administer locally, then they can grant container data privileges on
appropriate views to the common users. In this case, the CDB administrator can access the
data for these PDBs. In contrast, PDB administrators who do not want the CDB administrator
accessing their data do not grant container data privileges.

Examples of container data objects are Oracle-supplied views whose names begin with V$
and CDB_. All container data objects have a CON_ID column. The following table shows the
meaning of the values for this column.

Table 2-1 Container ID Values

Container ID Rows pertain to

0 Whole CDB, or non-CDB

1 CDB$ROOT
2 PDB$SEED
All Other IDs User-created PDBs, application roots, or application seeds

In a CDB, for every DBA_ view, a corresponding CDB_ view exists. The owner of a CDB_ view is
the owner of the corresponding DBA_ view. The following graphic shows the relationship
among the different categories of dictionary views:

Chapter 2
Overview of Containers in a CDB

2-11

Figure 2-5 Dictionary Views in a CDB

CDB_ All of the objects in the CDB across all PDBs

DBA_ All of the objects in a container or PDB

ALL_ Objects accessible by the current user

USER_Objects owned by the current user

When the current container is a PDB, a user can view data dictionary information for
the current PDB only. To an application connected to a PDB, the data dictionary
appears as it would for a non-CDB. When the current container is the root, however, a
common user can query CDB_ views to see metadata for the root and for PDBs for
which this user is privileged.

Note:

When queried from the root container, CDB_ and V$ views implicitly convert
data to the AL32UTF8 character set. If a character set needs more bytes to
represent a character when converted to AL32UTF8, and if the view column
width cannot accommodate data from a specific PDB, then data truncation is
possible.

The following table shows a scenario involving queries of CDB_ views. Each row
describes an action that occurs after the action in the preceding row.

Table 2-2 Querying CDB_ Views

Operation Description

SQL> CONNECT SYSTEM
Enter password: ********
Connected.

The SYSTEM user, which is common to all containers in the
CDB, connects to the root (see "Common Users in a CDB").

SQL> SELECT COUNT(*) FROM CDB_USERS
WHERE CON_ID=1;

COUNT(*)

 41

SYSTEM queries CDB_USERS to obtain the number of
common users in the CDB. The output indicates that 41
common users exist.

Chapter 2
Overview of Containers in a CDB

2-12

Table 2-2 (Cont.) Querying CDB_ Views

Operation Description

SQL> SELECT COUNT(DISTINCT(CON_ID))
FROM CDB_USERS;

COUNT(DISTINCT(CON_ID))

 4

SYSTEM queries CDB_USERS to determine the number of
distinct containers in the CDB.

SQL> CONNECT SYSTEM@hrdb
Enter password: ********
Connected.

The SYSTEM user now connects to the PDB named hrpdb.

SQL> SELECT COUNT(*) FROM CDB_USERS;

 COUNT(*)

 45

SYSTEM queries CDB_USERS. The output indicates that 45
users exist. Because SYSTEM is not connected to the root,
the CDB_USERS view shows the same output as
DBA_USERS. Because DBA_USERS only shows the users in
the current container, it shows 45.

See Also:

"About CDB and Container Information in Views" to learn more about container data
objects

Data Dictionary Storage in a CDB
The data dictionary that stores the metadata for the CDB as a whole is stored only in the
system tablespaces.

The data dictionary that stores the metadata for a specific PDB is stored in the self-contained
tablespaces dedicated to this PDB. The PDB tablespaces contain both the data and
metadata for an application back end. Thus, each set of data dictionary tables is stored in its
own dedicated set of tablespaces.

See Also:

• Oracle Database Concepts for an overview of the data dictionary

• "Overview of Tablespaces and Database Files in a CDB"

Chapter 2
Overview of Containers in a CDB

2-13

Current Container
For a given session, the current container is the one in which the session is running.
The current container can be the CDB root, an application root, or a PDB.

Each session has exactly one current container at any point in time. Because the data
dictionary in each container is separate, Oracle Database uses the data dictionary in
the current container for name resolution and privilege authorization.

See Also:

"About the Current Container"

Cross-Container Operations
A cross-container operation is a DDL or DML statement that affects multiple
containers at once.

Only a common user connected to either the CDB root or an application root can
perform cross-container operations. A cross-container operation can affect:

• The CDB itself

• Multiple containers within a CDB

• Multiple phenomena such as common users or common roles that are represented
in multiple containers

• A container to which the user issuing the DDL or DML statement is currently not
connected

Examples of cross-container DDL operations include user SYSTEM granting a privilege
commonly to another common user (see "Roles and Privileges Granted Commonly in
a CDB"), and an ALTER DATABASE . . . RECOVER statement that applies to the entire
CDB.

When you are connected to either the CDB root or an application root, you can
execute a single DML statement to modify tables or views in multiple PDBs within the
container. The database infers the target PDBs from the value of the CON_ID column
specified in the DML statement. If no CON_ID is specified, then the database uses the
CONTAINERS_DEFAULT_TARGET property specified by the ALTER PLUGGABLE DATABASE
CONTAINERS DEFAULT TARGET statement.

Example 2-3 Updating Multiple PDBs in a Single DML Statement

In this example, your goal is to set the country_name column to the value USA in the
sh.sales table. This table exists in two separate PDBs, with container IDs of 7 and 8.
Both PDBs are in the application container named saas_sales_ac. You can connect to
the application root as an administrator, and make the update as follows:

CONNECT sales_admin@saas_sales_ac
Password: *******

Chapter 2
Overview of Containers in a CDB

2-14

UPDATE CONTAINERS(sh.sales) sal
 SET sal.country_name = 'USA'
 WHERE sal.CON_ID IN (7,8);

In the preceding UPDATE statement, sal is an alias for CONTAINERS(sh.sales).

See Also:

• "Common Users in a CDB"

• " Administering a CDB"

Overview of Commonality in the CDB
In a CDB, every user, role, or object is either common or local. Similarly, a privilege is granted
either commonly or locally.

• About Commonality in a CDB
A common phenomenon defined in a CDB or application root is the same in all containers
plugged in to this root.

• Overview of Common and Local Users in a CDB
If a user account owns objects that define the database, then this user account is
common. User accounts that are not Oracle-supplied are either local or common.

• Overview of Common and Local Roles in a CDB
User-created roles are either local or common. Common roles are either common to the
CDB itself or to a specific application container.

• Overview of Privilege and Role Grants in a CDB
Just as in a non-CDB, users in a CDB can grant and be granted roles and privileges.
Roles and privileges in a CDB, however, are either locally or commonly granted.

• Overview of Common and Local Objects in a CDB
A common object is defined in either the CDB root or an application root, and can be
referenced using metadata links or object links. A local object is every object that is not a
common object.

• Overview of Common Audit Configurations
For both mixed mode and unified auditing, a common audit configuration is visible and
enforced across all PDBs.

• Overview of PDB Lockdown Profiles
A PDB lockdown profile is a named set of features that control operations available to
users connected to a PDB. For example, a PDB lockdown profile can disable privileges
that come with the ALTER SYSTEM statement.

About Commonality in a CDB
A common phenomenon defined in a CDB or application root is the same in all containers
plugged in to this root.

Chapter 2
Overview of Commonality in the CDB

2-15

• Principles of Commonality
In a CDB, a phenomenon can be common within either the system container (the
CDB itself), or within a specific application container.

• Namespaces in a CDB
In a CDB, the namespace for every object is scoped to its container.

Principles of Commonality
In a CDB, a phenomenon can be common within either the system container (the CDB
itself), or within a specific application container.

For example, if you create a common user account while connected to CDB$ROOT, then
this user account is common to all PDBs and application roots in the CDB. If you
create an application common user account while connected to an application root,
however, then this user account is common only to the PDBs in this application
container.

Within the context of CDB$ROOT or an application root, the principles of commonality are
as follows:

• A common phenomenon is the same in every existing and future container.

Therefore, a common user defined in the CDB root has the same identity in every
PDB plugged in to the CDB root; a common user defined in an application root has
the same identity in every application PDB plugged in to this application root. In
contrast, a local phenomenon is scoped to exactly one existing container.

• Only a common user can alter the existence of common phenomena.

More precisely, only a common user logged in to either the CDB root or an
application root can create, destroy, or modify attributes of a user, role, or object
that is common to the current container.

Namespaces in a CDB
In a CDB, the namespace for every object is scoped to its container.

The following principles summarize the scoping rules:

• From an application perspective, a PDB is indistinguishable from a non-CDB.

• Local phenomena are created within and restricted to a single container.

Note:

In this topic, the word “phenomenon” means “user account, role, or
database object.”

• Common phenomena are defined in a CDB root or application root, and exist in all
PDBs that are or will be plugged into this root.

The preceding principles have implications for local and common phenomena.

Local Phenomena

A local phenomenon must be uniquely named within a container, but not across all
containers in the CDB. Identically named local phenomena in different containers are

Chapter 2
Overview of Commonality in the CDB

2-16

distinct. For example, local user sh in one PDB does not conflict with local user sh in another
PDB.

CDB$ROOT Common Phenomena

Common phenomena defined in CDB$ROOT exist in multiple containers and must be unique
within each of these namespaces. For example, the CDB root includes predefined common
users such as SYSTEM and SYS. To ensure namespace separation, Oracle Database prevents
creation of a SYSTEM user within another container.

To ensure namespace separation, the name of user-created common phenomena in the CDB
root must begin with the value specified by the COMMON_USER_PREFIX initialization parameter.
The default prefix is c## or C##. The names of all other user-created phenomena must not
begin with c## or C##. For example, you cannot create a local user in hrpdb named c##hr,
nor can you create a common user in the CDB root named hr.

Application Common Phenomena

Within an application container, names for local and application common phenomena must
not conflict.

• Application common users and roles

The same principles apply to application common users as to CDB common users. The
difference is that for CDB common users, the default value for the common user prefix is
c## or C##, whereas in application root the default value for the common user prefix is the
empty string.

The multitenant architecture assumes that you create application PDBs from an
application root, or convert a single-tenant application to a multitenant application.

• Application common objects

The multitenant architecture assumes that you create application common objects in the
application root. Later, you add data locally within the application PDBs. However, Oracle
Database supports creation of local tables within an application PDB. In this case, the
local tables reside in the same namespace as application common objects within the
application PDB.

See Also:

Oracle Database Security Guide to learn more about common users and roles

Overview of Common and Local Users in a CDB
If a user account owns objects that define the database, then this user account is common.
User accounts that are not Oracle-supplied are either local or common.

A CDB common user is a common user that is created in the CDB root. An application
common user is a user that is created in an application root, and is common only within this
application container.

The following graphic shows the possible user account types in a CDB.

Chapter 2
Overview of Commonality in the CDB

2-17

Figure 2-6 User Accounts in a CDB

Common User

Local User

Application Common User

CDB Common User

Same Identity in
Every Container

Identity Restricted
to One PDB

User-Created

Oracle-Supplied

Name must begin with
C## or c##

SYS, SYSTEM

A CDB common user can connect to any container in the CDB to which it has sufficient
privileges. In contrast, an application common user can only connect to the application
root in which it was created, or a PDB that is plugged in to this application root,
depending on its privileges.

• Common Users in a CDB
Within the context of either the system container (CDB) or an application
container, a common user is a database user that has the same identity in the
root and in every existing and future PDB within this container.

• Local Users in a CDB
A local user is a database user that is not common and can operate only within a
single PDB.

See Also:

Oracle Database Security Guide for an overview of common and local users

Common Users in a CDB
Within the context of either the system container (CDB) or an application container, a
common user is a database user that has the same identity in the root and in every
existing and future PDB within this container.

Every common user can connect to and perform operations within the root of its
container, and within any PDB in which it has sufficient privileges. Some administrative
tasks must be performed by a common user. Examples include creating a PDB and
unplugging a PDB.

For example, SYSTEM is a CDB common user with DBA privileges. Thus, SYSTEM can
connect to the CDB root and any PDB in the database. You might create a common

Chapter 2
Overview of Commonality in the CDB

2-18

user saas_sales_admin in the saas_sales application container. In this case, the
saas_sales_admin user could only connect to the saas_sales application root or to an
application PDB within the saas_sales application container.

Every common user is either Oracle-supplied or user-created. Examples of Oracle-supplied
common users are SYS and SYSTEM. Every user-created common user is either a CDB
common user, or an application common user.

Figure 2-7 shows sample users and schemas in two PDBs: hrpdb and salespdb. SYS and
c##dba are CDB common users who have schemas in CDB$ROOT, hrpdb, and salespdb. Local
users hr and rep exist in hrpdb. Local users hr and rep also exist in salespdb.

Figure 2-7 Users and Schemas in a CDB

Seed
(PDB$SEED)

hrpdb salespdb

hr

rep

SYS

c##dba

hr

rep

SYS

c##dba

Root (CDB$ROOT)
SYS

c##dba

Common
Users

Local
Users

hr in
hrpdb

hr in
salespdb

rep in
salespdb

rep in
hrpdb

c##dba

SYS

PUBLICPUBLIC

PUBLIC

PUBLIC

SYS

Common users have the following characteristics:

• A common user can log in to any container (including CDB$ROOT) in which it has the
CREATE SESSION privilege.

A common user need not have the same privileges in every container. For example, the
c##dba user may have the privilege to create a session in hrpdb and in the root, but not to

Chapter 2
Overview of Commonality in the CDB

2-19

create a session in salespdb. Because a common user with the appropriate
privileges can switch between containers, a common user in the root can
administer PDBs.

• An application common user does not have the CREATE SESSION privilege in any
container outside its own application container.

Thus, an application common user is restricted to its own application container.
For example, the application common user created in the saas_sales application
can connect only to the application root and the PDBs in the saas_sales
application container.

• The names of user-created CDB common users must follow the naming rules for
other database users. Additionally, the names must begin with the characters
specified by the COMMON_USER_PREFIX initialization parameter, which are c## or C##
by default. Oracle-supplied common user names and user-created application
common user names do not have this restriction.

No local user name may begin with the characters c## or C##.

• Every common user is uniquely named across all PDBs within the container (either
the system container or a specific application container) in which it was created.

A CDB common user is defined in the CDB root, but must be able to connect to
every PDB with the same identity. An application common user resides in the
application root, and may connect to every application PDB in its container with
the same identity.

See Also:

• Oracle Database Security Guide to learn about common user accounts

• Oracle Database Reference to learn about COMMON_USER_PREFIX

Local Users in a CDB
A local user is a database user that is not common and can operate only within a
single PDB.

Local users have the following characteristics:

• A local user is specific to a PDB and may own a schema in this PDB.

In Figure 2-7, local user hr on hrpdb owns the hr schema. On salespdb, local user
rep owns the rep schema, and local user hr owns the hr schema.

• A local user can administer a PDB, including opening and closing it.

A common user with SYSDBA privileges can grant SYSDBA privileges to a local user.
In this case, the privileged user remains local.

• A local user in one PDB cannot log in to another PDB or to the CDB root.

For example, when local user hr connects to hrpdb, hr cannot access objects in
the sh schema that reside in the salespdb database without using a database link.
In the same way, when local user sh connects to the salespdb PDB, sh cannot

Chapter 2
Overview of Commonality in the CDB

2-20

access objects in the hr schema that resides in hrpdb without using a database link.

• The name of a local user must not begin with the characters c## or C##.

• The name of a local user must only be unique within its PDB.

The user name and the PDB in which that user schema is contained determine a unique
local user. Figure 2-7 shows that a local user and schema named rep exist on hrpdb. A
completely independent local user and schema named rep exist on the salespdb PDB.

The following table describes a scenario involving the CDB in Figure 2-7. Each row describes
an action that occurs after the action in the preceding row. Common user SYSTEM creates
local users in two PDBs.

Table 2-3 Local Users in a CDB

Operation Description

SQL> CONNECT SYSTEM@hrpdb
Enter password: ********
Connected.

SYSTEM connects to the hrpdb container
using the service name hrpdb.

SQL> CREATE USER rep IDENTIFIED BY password;

User created.

SQL> GRANT CREATE SESSION TO rep;

Grant succeeded.

SYSTEM now creates a local user rep and
grants the CREATE SESSION privilege in this
PDB to this user. The user is local because
common users can only be created by a
common user connected to the root.

SQL> CONNECT rep@salespdb
Enter password: *******
ERROR:
ORA-01017: invalid username/password; logon
denied

The rep user, which is local to hrpdb,
attempts to connect to salespdb. The
attempt fails because rep does not exist in
PDB salespdb. This behavior mimics the
behavior of non-CDBs. A user account on one
non-CDB is independent of user accounts on
a different non-CDB.

SQL> CONNECT SYSTEM@salespdb
Enter password: ********
Connected.

SYSTEM connects to the salespdb container
using the service name salespdb.

SQL> CREATE USER rep IDENTIFIED BY password;

User created.

SQL> GRANT CREATE SESSION TO rep;

Grant succeeded.

SYSTEM creates a local user rep in salespdb
and grants the CREATE SESSION privilege in
this PDB to this user. Because the name of a
local user must only be unique within its PDB,
a user named rep can exist in both
salespdb and hrpdb.

Chapter 2
Overview of Commonality in the CDB

2-21

Table 2-3 (Cont.) Local Users in a CDB

Operation Description

SQL> CONNECT rep@salespdb
Enter password: *******
Connected.

The rep user successfully logs in to
salespdb.

See Also:

Oracle Database Security Guide to learn about local user accounts

Overview of Common and Local Roles in a CDB
User-created roles are either local or common. Common roles are either common to
the CDB itself or to a specific application container.

Every Oracle-supplied role is common, for example, the predefined DBA role. In Oracle-
supplied scripts, every privilege or role granted to Oracle-supplied users and roles is
granted commonly, with one exception: system privileges are granted locally to the
common role PUBLIC.

• Common Roles in a CDB
A common role exists either in the CDB root or an application root, and applies to
every PDB within the root container (either the CDB or the application container).

• Local Roles in a CDB
A local role exists only in a single PDB, just as a role in a non-CDB exists only in
the non-CDB.

See Also:

"Grants to PUBLIC in a CDB"

Common Roles in a CDB
A common role exists either in the CDB root or an application root, and applies to
every PDB within the root container (either the CDB or the application container).

Common roles are useful for cross-container operations, ensuring that a common user
has a role in every PDB. Every common role is one of the following types:

• Oracle-supplied

All Oracle-supplied roles, such as DBA and PUBLIC, are common to the CDB.

Chapter 2
Overview of Commonality in the CDB

2-22

• User-created

Create a common role by executing CREATE ROLE ... CONTAINER=ALL in either the CDB
root or application root, which determines the container to which the role is common. The
standard naming conventions apply. Additionally, the names of CDB common roles must
begin with the characters specified by the COMMON_USER_PREFIX initialization parameter,
which are c## or C## by default.

The scope of the role is the scope of the root within which it is defined. If you define the role
in CDB$ROOT, then its scope is the entire CDB. If you define the role within application root,
then its scope is the application container.

See Also:

• "Cross-Container Operations"

• Oracle Database Security Guide to learn how to manage common roles

• Oracle Database SQL Language Reference to learn about the CREATE ROLE
statement

Local Roles in a CDB
A local role exists only in a single PDB, just as a role in a non-CDB exists only in the non-
CDB.

A local role can only contain roles and privileges that apply within the container in which the
role exists. For example, if you create the local role pdbadmin in hrpdb, then the scope of this
role is restricted to this PDB.

PDBs in the same CDB, or in the same application container, may contain local roles with the
same name. For example, the user-created role pdbadmin may exist in both hrpdb and
salespdb. However, these roles are completely independent of each other, just as they would
be in separate non-CDBs.

See Also:

Oracle Database Security Guide to learn how to manage local roles

Overview of Privilege and Role Grants in a CDB
Just as in a non-CDB, users in a CDB can grant and be granted roles and privileges. Roles
and privileges in a CDB, however, are either locally or commonly granted.

A privilege or role granted locally is exercisable only in the PDB in which it was granted. A
privilege or role granted commonly is exercisable in every existing and future PDB in the
container—either the CDB or an application container—in which it was granted.

Users and roles may be common or local. However, a privilege is in itself neither common nor
local. If a user grants a privilege locally using the CONTAINER=CURRENT clause, then the

Chapter 2
Overview of Commonality in the CDB

2-23

grantee has a privilege exercisable only in the current container. If a user connects to
either the CDB root or an application root, and if this user grants a privilege commonly
using the CONTAINER=ALL clause, then the grantee has this privilege in any existing or
future PDB within the current container.

• Principles of Privilege and Role Grants in a CDB
In a CDB, every act of granting, whether local or common, occurs within a
container. The container may be the CDB root, an application root, or a PDB.

• Privileges and Roles Granted Locally in a CDB
Roles and privileges may be granted locally to users and roles regardless of
whether the grantees, grantors, or roles being granted are local or common.

• Roles and Privileges Granted Commonly in a CDB
Privileges and common roles may be granted commonly.

• Grants to PUBLIC in a CDB
In a CDB, PUBLIC is a common role. In a PDB, privileges granted locally to PUBLIC
enable all local and common user account to exercise these privileges in this PDB
only.

• Grants of Privileges and Roles: Scenario
In this scenario, SYSTEM creates common user c##dba and tries to give this user
privileges to query a table in the hr schema in hrpdb.

See Also:

Oracle Database Security Guide to learn how to manage common privileges

Principles of Privilege and Role Grants in a CDB
In a CDB, every act of granting, whether local or common, occurs within a container.
The container may be the CDB root, an application root, or a PDB.

If the current container is the CDB root, then granting commonly means granting to all
containers in the CDB. If the current container is an application root, however, then
granting commonly means granting to all PDBs in the current application container.

The basic principles of granting are as follows:

• Both common and local phenomena may grant and be granted locally.

• Only common phenomena may grant or be granted commonly.

Local users, roles, and privileges are restricted to a particular PDB. Thus, local users
may not grant roles and privileges commonly, and local roles and privileges may not
be granted commonly.

The following sections describe the implications of the preceding principles.

Privileges and Roles Granted Locally in a CDB
Roles and privileges may be granted locally to users and roles regardless of whether
the grantees, grantors, or roles being granted are local or common.

Chapter 2
Overview of Commonality in the CDB

2-24

The following table explains the valid possibilities for locally granted roles and privileges.

Table 2-4 Local Grants

Phenomenon May Grant Locally May Be Granted
Locally

May Receive a Role or
Privilege Granted
Locally

Common User Yes N/A Yes

Local User Yes N/A Yes

Common Role N/A Yes1 Yes

Local Role N/A Yes2 Yes

Privilege N/A Yes N/A

1 Privileges in this role are available to the grantee only in the container in which the role was granted, regardless of
whether the privileges were granted to the role locally or commonly.

2 Privileges in this role are available to the grantee only in the container in which the role was granted and created.

• What Makes a Privilege or Role Grant Local
To grant a role or privilege locally, use the GRANT statement with the CONTAINER=CURRENT
clause, which is the default.

• Roles and Privileges Granted Locally
A user or role may be locally granted a privilege (CONTAINER=CURRENT).

What Makes a Privilege or Role Grant Local
To grant a role or privilege locally, use the GRANT statement with the CONTAINER=CURRENT
clause, which is the default.

Specifically, a role or privilege is granted locally only when the following criteria are met:

• The grantor has the necessary privileges to grant the specified role or privileges.

For system roles and privileges, the grantor must have the ADMIN OPTION for the role or
privilege being granted. For object privileges, the grantor must have the GRANT OPTION for
the privilege being granted.

• The grant applies to only one container.

By default, the GRANT statement includes the CONTAINER=CURRENT clause, which indicates
that the privilege or role is granted locally.

Example 2-4 Granting a Privilege Locally

In this example, both SYSTEM and c##hr_admin are common users. The example connects to
hrpdb as SYSTEM (which has administrator privileges), and then locally grants read privileges
on the employees table to c##hr_admin. This grant applies only to c##hr_admin within hrpdb,
not within any other PDBs.

CONNECT SYSTEM@hrpdb
Enter password: password
Connected.

GRANT READ ON employees TO c##hr_admin CONTAINER=CURRENT;

Chapter 2
Overview of Commonality in the CDB

2-25

See Also:

Oracle Database Security Guide to learn more about granting local roles and
privileges

Roles and Privileges Granted Locally
A user or role may be locally granted a privilege (CONTAINER=CURRENT).

For example, a READ ANY TABLE privilege granted locally to a local or common user in
hrpdb applies only to this user in this PDB. Analogously, the READ ANY TABLE privilege
granted to user hr in a non-CDB has no bearing on the privileges of an hr user that
exists in a separate non-CDB.

A user or role may be locally granted a role (CONTAINER=CURRENT). As shown in
Table 2-4, a common role may receive a privilege granted locally. For example, the
common role c##dba may be granted the READ ANY TABLE privilege locally in hrpdb. If
the c##cdb common role is granted locally, then privileges in the role apply only in the
container in which the role is granted. In this example, a common user who has the
c##cdba role does not, because of a privilege granted locally to this role in hrpdb, have
the right to exercise this privilege in any PDB other than hrpdb.

See Also:

Oracle Database Security Guide to learn how to grant roles and privileges in
a CDB

Roles and Privileges Granted Commonly in a CDB
Privileges and common roles may be granted commonly.

User accounts or roles may be granted roles and privileges commonly only if the
grantees and grantors are both common. If a role is being granted commonly, then the
role itself must be common. The following table explains the possibilities for common
grants.

Table 2-5 Common Grants

Phenomenon May Grant
Commonly

May Be Granted
Commonly

May Receive Roles and
Privileges Granted Commonly

Common User
Account

Yes N/A Yes

Local User
Account

No N/A No

Common Role N/A Yes1 Yes

Local Role N/A No No

Privilege N/A Yes N/A

Chapter 2
Overview of Commonality in the CDB

2-26

1 Privileges that were granted commonly to a common role are available to the grantee across all containers. In
addition, any privilege granted locally to a common role is available to the grantee only in the container in which
that privilege was granted to the common role.

• What Makes a Grant Common
The CONTAINER=ALL clause specifies that the privilege or role is being granted commonly.

• Roles and Privileges Granted Commonly
A common user account or role may be granted a privilege commonly (CONTAINER=ALL).

See Also:

Oracle Database Security Guide to learn more about common grants

What Makes a Grant Common
The CONTAINER=ALL clause specifies that the privilege or role is being granted commonly.

A role or privilege is granted commonly when the following criteria are met:

• The grantor is a common user.

The user that performs the grant is either common to the CDB itself, or common to a
specific application container.

• The grantee is a common user or common role.

The recipient of the grant is either common to the CDB itself, or common to a specific
application container.

• The grantor has the necessary privileges to grant the specified role or privileges.

For system roles and privileges, the grantor must have the ADMIN OPTION for the role or
privilege being granted. For object privileges, the grantor must have the GRANT OPTION for
the privilege being granted.

• The grant applies to all PDBs within the container (either CDB or application container) in
which the grant occurred.

The GRANT statement includes a CONTAINER=ALL clause specifying that the privilege or
role is granted commonly.

• If a role is being granted, then it must be common, and if an object privilege is being
granted, then the object on which the privilege is granted must be common.

Example 2-5 Granting a Privilege Commonly

In this example, both SYSTEM and c##hr_admin are common users. SYSTEM connects to the
CDB root, and then grants the CREATE ANY TABLE privilege commonly to c##hr_admin. In this
case, c##hr_admin can now create a table in any PDB in the CDB.

CONNECT SYSTEM@root
Enter password: password
Connected.

GRANT CREATE ANY TABLE TO c##hr_admin CONTAINER=ALL;

Chapter 2
Overview of Commonality in the CDB

2-27

See Also:

Oracle Database Security Guide to learn how to grant common privileges

Roles and Privileges Granted Commonly
A common user account or role may be granted a privilege commonly
(CONTAINER=ALL).

Within the context of either the CDB root or an application root, the privilege is granted
to this common user account or role in all existing and future PDBs within the current
container. For example, if SYSTEM connects to the CDB root and grants a SELECT ANY
TABLE privilege commonly to CDB common user account c##dba, then the c##dba user
has this privilege in all PDBs in the CDB. A role or privilege granted commonly cannot
be revoked locally.

A user or role may receive a common role granted commonly. As mentioned in a
footnote on Table 2-5, a common role may receive a privilege granted locally. Thus, a
common user can be granted a common role, and this role may contain locally granted
privileges.

For example, the common role c##admin may be granted the SELECT ANY TABLE
privilege that is local to hrpdb. Locally granted privileges in a common role apply only
in the container in which the privilege was granted. Thus, the common user with the
c##admin role does not have the right to exercise an hrpdb-contained privilege in
salespdb or any PDB other than hrpdb.

See Also:

Oracle Database Security Guide to learn how to grant roles and privileges in
a CDB

Grants to PUBLIC in a CDB
In a CDB, PUBLIC is a common role. In a PDB, privileges granted locally to PUBLIC
enable all local and common user account to exercise these privileges in this PDB
only.

Every privilege and role granted to Oracle-supplied users and roles is granted
commonly except for system privileges granted to PUBLIC, which are granted locally.
This exception exists because you may want to revoke some grants included by
default in Oracle Database, such as EXECUTE on the SYS.UTL_FILE package.

Assume that local user account hr exists in hrpdb. This user locally grants the SELECT
privilege on hr.employees to PUBLIC. Common and local users in hrpdb may exercise
the privilege granted to PUBLIC. User accounts in salespdb or any other PDB do not
have the privilege to query hr.employees in hrpdb.

Chapter 2
Overview of Commonality in the CDB

2-28

Privileges granted commonly to PUBLIC enable all local users to exercise the granted privilege
in their respective PDBs and enable all common users to exercise this privilege in the PDBs
to which they have access. Oracle recommends that users do not commonly grant privileges
and roles to PUBLIC.

See Also:

Oracle Database Security Guide to learn how the PUBLIC role works in a multitenant
environment

Grants of Privileges and Roles: Scenario
In this scenario, SYSTEM creates common user c##dba and tries to give this user privileges to
query a table in the hr schema in hrpdb.

The scenario shows how the CONTAINER clause affects grants of roles and privileges. The first
column shows operations in CDB$ROOT. The second column shows operations in hrpdb.

Table 2-6 Granting Roles and Privileges in a CDB

t Operations in CDB$ROOT Operations in hrpdb Explanation

t1
SQL> CONNECT SYSTEM@root
Enter password: *******
Connected.

n/a Common user SYSTEM
connects to the root
container.

t2
SQL> CREATE USER c##dba
IDENTIFIED BY password
CONTAINER=ALL;

n/a SYSTEM creates
common user c##dba.
The clause
CONTAINER=ALL makes
the user a common
user.

t3
SQL> GRANT CREATE SESSION
 TO c##dba;

n/a SYSTEM grants the
CREATE SESSION
system privilege to
c##dba. Because the
clause CONTAINER=ALL
is absent, this privilege
is granted locally and
thus applies only to the
root, which is the
current container.

t4
SQL> CREATE ROLE c##admin
 CONTAINER=ALL;

n/a SYSTEM creates a
common role named
c##admin. The clause
CONTAINER=ALL makes
the role a common role.

Chapter 2
Overview of Commonality in the CDB

2-29

Table 2-6 (Cont.) Granting Roles and Privileges in a CDB

t Operations in CDB$ROOT Operations in hrpdb Explanation

t5
SQL> GRANT SELECT ANY TABLE
 TO c##admin;
Grant succeeded.

n/a SYSTEM grants the
SELECT ANY TABLE
privilege to the
c##admin role. The
absence of the
CONTAINER=ALL clause
makes the privilege
local to the root. Thus,
this common role
contains a privilege that
is exercisable only in
the root.

t6
SQL> GRANT c##admin TO
c##dba;
SQL> EXIT;

n/a SYSTEM grants the
c##admin role to
c##dba. Because the
CONTAINER=ALL clause
is absent, the role
applies only to the
current container, even
though it is a common
role. If c##dba
connects to a PDB,
then c##dba does not
have this role.

t7 n/a
SQL> CONNECT c##dba@hrpdb
Enter password: *******
ERROR: ORA-01045: user c##dba
lacks CREATE SESSION
privilege;
logon denied

c##dba fails to connect
to hrpdb because the
grant at t3 was local to
the root.

t8 n/a
SQL> CONNECT SYSTEM@hrpdb
Enter password: *******
Connected.

SYSTEM connects to
hrpdb.

t9 n/a
SQL> GRANT CONNECT, RESOURCE
TO c##dba;
Grant succeeded.
SQL> EXIT

SYSTEM grants the
CONNECT and
RESOURCE roles to
common user c##dba.
Because the clause
CONTAINER=ALL is
absent, the grant is
local to hrpdb.

Chapter 2
Overview of Commonality in the CDB

2-30

Table 2-6 (Cont.) Granting Roles and Privileges in a CDB

t Operations in CDB$ROOT Operations in hrpdb Explanation

t10 n/a
SQL> CONNECT c##dba@hrpdb
Enter password: *******
Connected.

Common user c##dba
connects to hrpdb.

t11 n/a
SQL> SELECT COUNT(*)
FROM hr.employees;
select * from hr.employees
 *
ERROR at line 1:
ORA-00942: table or view does
not exist

The query of
hr.employees still
returns an error
because c##dba does
not have select
privileges on tables in
hrpdb. The SELECT
ANY TABLE privilege
granted locally at t5 is
restricted to the root
and thus does not apply
to hrpdb.

t12
SQL> CONNECT SYSTEM@root
Enter password: *******
Connected.

n/a Common user SYSTEM
connects to the root
container.

t13
SQL> GRANT SELECT ANY TABLE
 TO c##admin CONTAINER=ALL;
Grant succeeded.

n/a SYSTEM grants the
SELECT ANY TABLE
privilege to the
c##admin role. The
presence of
CONTAINER=ALL
means the privilege is
being granted
commonly.

t14 n/a
SQL> SELECT COUNT(*) FROM
 hr.employees;
select * from hr.employees
 *
ERROR at line 1:
ORA-00942: table or view does
not exist

A query of
hr.employees still
returns an error. The
reason is that at t6 the
c##admin common role
was granted to c##dba
in the root only.

t15
SQL> GRANT c##admin TO
c##dba
 CONTAINER=ALL;
Grant succeeded.

n/a SYSTEM grants the
common role named
c##admin to c##dba,
specifying
CONTAINER=ALL. Now
user c##dba has the
role in all containers,
not just the root.

Chapter 2
Overview of Commonality in the CDB

2-31

Table 2-6 (Cont.) Granting Roles and Privileges in a CDB

t Operations in CDB$ROOT Operations in hrpdb Explanation

t17 n/a
SQL> SELECT COUNT(*)
 FROM hr.employees;

 COUNT(*)

 107

The query succeeds.

See Also:

Oracle Database Security Guide to learn how to manage common and local
roles

Overview of Common and Local Objects in a CDB
A common object is defined in either the CDB root or an application root, and can be
referenced using metadata links or object links. A local object is every object that is not
a common object.

Database-supplied common objects are defined in CDB$ROOT and cannot be changed.
Oracle Database does not support creation of common objects in CDB$ROOT.

You can create most schema objects—such as tables, views, PL/SQL and Java
program units, sequences, and so on—as common objects in an application root. If the
object exists in an application root, then it is called an application common object.

A local user can own a common object. Also, a common user can own a local object,
but only when the object is not data-linked or metadata-linked, and is also neither a
metadata link nor a data link.

See Also:

• "Application Common Objects"

• "About Application Common Objects"

• Oracle Database Security Guide to learn more about privilege
management for common objects

Chapter 2
Overview of Commonality in the CDB

2-32

Overview of Common Audit Configurations
For both mixed mode and unified auditing, a common audit configuration is visible and
enforced across all PDBs.

Audit configurations are either local or common. The scoping rules that apply to other local or
common phenomena, such as users and roles, all apply to audit configurations.

Note:

Audit initialization parameters exist at the CDB level and not in each PDB.

PDBs support the following auditing options:

• Object auditing

Object auditing refers to audit configurations for specific objects. Only common objects
can be part of the common audit configuration. A local audit configuration cannot contain
common objects.

• Audit policies

Audit policies can be local or common:

– Local audit policies

A local audit policy applies to a single PDB. You can enforce local audit policies for
local and common users in this PDB only. Attempts to enforce local audit policies
across all containers result in an error.

In all cases, enforcing of a local audit policy is part of the local auditing framework.

– Common audit policies

A common audit policy applies to all containers. This policy can only contain actions,
system privileges, common roles, and common objects. You can apply a common
audit policy only to common users. Attempts to enforce a common audit policy for a
local user across all containers result in an error.

A common audit configuration is stored in the SYS schema of the root. A local audit
configuration is stored in the SYS schema of the PDB to which it applies.

Audit trails are stored in the SYS or AUDSYS schemas of the relevant PDBs. Operating system
and XML audit trails for PDBs are stored in subdirectories of the directory specified by the
AUDIT_FILE_DEST initialization parameter.

See Also:

• Oracle Database Concepts for information about database auditing

• Oracle Database Security Guide to learn about common audit configurations

Chapter 2
Overview of Commonality in the CDB

2-33

Overview of PDB Lockdown Profiles
A PDB lockdown profile is a named set of features that control operations available
to users connected to a PDB. For example, a PDB lockdown profile can disable
privileges that come with the ALTER SYSTEM statement.

A potential for elevation of privileges exists when PDBs share an identity. For example,
identity can be shared at a network level, or when PDBs access common objects or
connect through database links. To increase security, a CDB administrator may want to
compartmentalize access, thereby restricting the operations that a user can perform in
a PDB.

A use case might be the creation of lockdown profiles at high, medium, and low levels.
The high level might greatly restrict access, whereas the low level might enable
access.

You can restrict the following types of access:

• Network access

For example, restrict access to UTL_HTTP or UTL_MAIL.

• Common user and common object access

For example, restrict operations in which a local user in a PDB can proxy through
a common user or access objects in a common schema.

• Operating system access

For example, restrict access to the UTL_FILE or DBMS_FILE_TRANSFER PL/SQL
packages.

• Connections

For example, you can restrict common users from connecting to the PDB or you
can restrict a local user who has the SYSOPER administrative privilege from
connecting to a PDB that is open in restricted mode.

• Administrative features

For example, you can restrict the use of ALTER SYSTEM, ALTER SESSION, and ALTER
DATABASE.

• Database options

For example, you can use lockdown profiles to disable access to database options
such as Oracle Partitioning or Oracle Database Advanced Queuing.

When logged in to the CDB root or application root, create a lockdown profile by
issuing the CREATE LOCKDOWN PROFILE statement, which supports the following
optional clauses:

• FROM static_base_profile creates a new lockdown profile by using the values
from an existing profile. Any subsequent changes to the existing profile will not
affect the new profile.

• INCLUDING dynamic_base_profile creates a new lockdown profile by using the
values from an existing profile, except that this new lockdown profile inherits the
DISABLE STATEMENT rules that comprise the base profile, and any subsequent
changes to the base profile.

Chapter 2
Overview of Commonality in the CDB

2-34

The user issuing the statement must have the CREATE LOCKDOWN PROFILE system privilege in
the current container. You can add and remove restrictions with the ALTER LOCKDOWN PROFILE
statement. The user must issue the ALTER statement in the CDB root or application root and
must have the have ALTER LOCKDOWN PROFILE system privilege in the current container.

Specify a lockdown profile by using the PDB_LOCKDOWN initialization parameter. This parameter
determines whether the PDB lockdown profile applies to a given PDB. You can set this
parameter at the following levels:

• PDB

The profile applies only to the PDB in which it is set.

• Application container

The profile applies to all application PDBs in the application container. The value can be
modified only by an application common user who has application common SYSDBA or
common ALTER SYSTEM privileges or a CDB common user who has common SYSDBA or
common ALTER SYSTEM privileges.

• CDB

The profile applies to all PDBs. A common user who has common SYSDBA or common
ALTER SYSTEM privileges can override a CDB-wide setting for a specific PDB.

If the PDB_LOCKDOWN parameter in a PDB is set to the name of a lockdown profile different
from the container for this PDB (CDB or application container), then a set of rules govern the
interaction between restrictions.

Example 2-6 Creating a PDB Lockdown Profile

In this example, you connect to the CDB root as a common user with the CREATE LOCKDOWN
PROFILE privilege. You create a profile called medium that disables all ALTER SYSTEM
statements except for ALTER SYSTEM FLUSH SHARED POOL:

CREATE LOCKDOWN PROFILE medium;
ALTER LOCKDOWN PROFILE medium DISABLE STATEMENT=('ALTER SYSTEM');
ALTER LOCKDOWN PROFILE medium ENABLE STATEMENT=('ALTER SYSTEM')
CLAUSE=('FLUSH SHARED POOL');

You can connect as the same common user to each PDB that requires this profile, and then
use ALTER SYSTEM to set the PDB_LOCKDOWN initialization parameter to medium. For example,
you could set PDB_LOCKDOWN to medium for hrpdb, but not salespdb.

The following example creates a medium2 profile from medium:

CREATE LOCKDOWN PROFILE medium2 FROM medium;

Note:

• "About Restricting PDB Users for Enhanced Security" to learn more about PDB
lockdown profiles

• Oracle Database Security Guide to learn how to create, enable, and drop PDB
lockdown profiles

Chapter 2
Overview of Commonality in the CDB

2-35

Overview of Applications in an Application Container
Within an application container, an application is the named, versioned set of
common data and metadata stored in the application root.

In this context of an application container, the term “application” means “master
application definition.” For example, the application might include definitions of tables,
views, and packages.

• About Application Containers
An application container is an optional, user-created CDB component that stores
data and metadata for one or more application back ends. A CDB includes zero or
more application containers.

• Application Common Objects
An application common object is a common object created within an application
in an application root. Common objects are either data-linked or metadata-linked.

• Application Maintenance
In this context, application maintenance refers to installing, uninstalling,
upgrading, or patching an application.

• Migration of an Existing Application
You can migrate an application that is installed in a PDB to either an application
root or to an application PDB.

• Implicitly Created Applications
In addition to user-created applications, application containers can also contain
implicitly created applications.

• Application Synchronization
Within an application PDB, synchronization is the user-initiated update of the
application to the latest version and patch in the application root.

• Container Maps
A container map enables a session connected to application root to issue SQL
statements that are routed to the appropriate PDB, depending on the value of a
predicate used in the SQL statement.

See Also:

• "Overview of Common and Local Objects in a CDB" to learn about
application common objects

• "Creating and Removing Application Containers and Seeds"

• "Administering Application Containers"

About Application Containers
An application container is an optional, user-created CDB component that stores
data and metadata for one or more application back ends. A CDB includes zero or
more application containers.

Chapter 2
Overview of Applications in an Application Container

2-36

For example, you might create multiple sales-related PDBs within one application container,
with these PDBs sharing an application back end that consists of a set of common tables and
table definitions. You might store multiple HR-related PDBs within a separate application
container, with their own common tables and table definitions.

The CREATE PLUGGABLE DATABASE statement with the AS APPLICATION CONTAINER clause
creates the application root of the application container, and thus implicitly creates the
application container itself. When you first create the application container, it contains no
PDBs. To create application PDBs, you must connect to the application root, and then
execute the CREATE PLUGGABLE DATABASE statement.

In the CREATE PLUGGABLE DATABASE statement, you must specify a container name (which is
the same as the application root name), for example, saas_sales_ac. The application
container name must be unique within the CDB, and within the scope of all the CDBs whose
instances are reached through a specific listener. Every application container has a default
service with the same name as the application container.

• Purpose of Application Containers
In some ways, an application container functions as an application-specific CDB within a
CDB. An application container, like the CDB itself, can include multiple PDBs, and
enables these PDBs to share metadata and data.

• Application Root
An application container has exactly one application root, which is the parent of the
application PDBs in the container.

• Application PDBs
An application PDB is a PDB that resides in an application container. Every PDB in a
CDB resides in either zero or one application containers.

• Application Seed
An application seed is an optional, user-created PDB within an application container. An
application container has either zero or one application seed.

See Also:

• "Overview of Applications in an Application Container"

• "Creating and Removing Application Containers and Seeds"

• "Administering Application Containers"

Purpose of Application Containers
In some ways, an application container functions as an application-specific CDB within a
CDB. An application container, like the CDB itself, can include multiple PDBs, and enables
these PDBs to share metadata and data.

The application root enables application PDBs to share an application, which in this context
means a named, versioned set of common metadata and data. A typical application installs
application common users, metadata-linked common objects, and data-linked common
objects.

Chapter 2
Overview of Applications in an Application Container

2-37

• Key Benefits of Application Containers
Application containers provide several benefits over storing each application in a
separate PDB.

• Application Container Use Case: SaaS
A SaaS deployment can use multiple application PDBs, each for a separate
customer, that share metadata and data.

• Application Containers Use Case: Logical Data Warehouse
A customer can use multiple application PDBs to address data sovereignty issues.

Key Benefits of Application Containers
Application containers provide several benefits over storing each application in a
separate PDB.

• The application root stores metadata and data that all application PDBs can share.

For example, all application PDBs can share data in a central table, such as a
table listed default application roles. Also, all PDBs can share a table definition to
which they add PDB-specific rows.

• You maintain your master application definition in the application root, instead of
maintaining a separate copy in each PDB.

If you upgrade the application in the application root, then the changes are
automatically propagated to all application PDBs. The application back end might
contain the data-linked common object app_roles, which is a table that list default
roles: admin, manager, sales_rep, and so on. A user connected to any application
PDB can query this table.

• An application container can include an application seed, application PDBs, and
proxy PDBs (which refer to PDBs in other CDBs).

• You can rapidly create new application PDBs from the application seed.

• You can query views that report on all PDBs in the application container.

• While connected to the application root, you can use the CONTAINERS function to
perform DML on objects in multiple PDBs.

For example, if the products table exists in every application PDB, then you can
connect to the application root and query the products in all application PDBs
using a single SELECT statement.

• You can unplug a PDB from an application root, and then plug it in to an
application root in a higher Oracle database release. Thus, PDBs are useful in an
Oracle database upgrade.

See Also:

"Overview of Applications in an Application Container"

Application Container Use Case: SaaS
A SaaS deployment can use multiple application PDBs, each for a separate customer,
that share metadata and data.

Chapter 2
Overview of Applications in an Application Container

2-38

In a pure SaaS environment, the master application definition resides in the application root,
but the customer-specific data resides in its own application PDB. For example, sales_app is
the application model in the application root. The application PDB named cust1_pdb contains
sales data only for customer 1, whereas the application PDB named cust2_pdb contains
sales data only for customer 2. Plugging, unplugging, cloning, and other PDB-level
operations are available for individual customer PDBs.

Figure 2-8 SaaS Use Case

CDB

Seed
(PDB$SEED)

Application
Container

cust1_pdb

cust2_pdbApplication
Seed

sales_app
Application Root

Application
PDBs

Root (CDB$ROOT)

A pure SaaS configuration provides the following benefits:

• Performance

• Security

• Support for multiple customers

The data for each customer resides in its own container, but is consolidated so that you
can manage many customers collectively. This model extends the economies of scale of
managing many as one to the application administrator, not only the DBA.

Application Containers Use Case: Logical Data Warehouse
A customer can use multiple application PDBs to address data sovereignty issues.

In a sample use case, a company puts data specific to each financial quarter in a separate
PDB. For example, the application container named sales_ac includes q1_2016_pdb,
q2_2016_pdb, q3_2016_pdb, and q4_2016_pdb. You define each transaction in the PDB

Chapter 2
Overview of Applications in an Application Container

2-39

corresponding to the associated quarter. To generate a report that aggregates
performance across a year, you aggregate across the four PDBs using the
CONTAINERS() clause.

Benefits of this logical warehouse design include:

• ETL for data specific to a single PDB does not affect the other PDBs.

• Execution plans are more efficient because they are based on actual data
distribution.

Application Root
An application container has exactly one application root, which is the parent of the
application PDBs in the container.

The property of being an application root is established at creation time, and cannot be
changed. The only container to which an application root belongs is the CDB root. An
application root is like the CDB root in some ways, and like a PDB in other ways:

• Like the CDB root, an application root serves as parent container to the PDBs
plugged into it. When connected to the application root, you can manage common
users and privileges, create application PDBs, switch containers, and issue DDL
that applies to all PDBs in the application container.

• Like a PDB, you create an application root with
the CREATE PLUGGABLE DATABASE statement, alter it with ALTER PLUGGABLE
DATABASE, and change its availability with STARTUP and SHUTDOWN. You can use
DDL to plug, unplug, and drop application roots. The application root has its own
service name, and users can connect to the application root in the same way that
they connect to a PDB.

An application root differs from both the CDB root and standard PDB because it can
store user-created common objects, which are called application common objects.
Application common objects are accessible to the application PDBs plugged in to the
application root. Application common objects are not visible to the CDB root, other
application roots, or PDBs that do not belong to the application root.

See Also:

• "Creating and Removing Application Containers and Seeds"

• "Administering Application Containers"

Example 2-7 Creating an Application Root

In this example, you log in to the CDB root as administrative common user c##system.
You create an application container named saas_sales_ac, and then open the
application root, which has the same name as the container.

-- Create the application container called saas_sales_ac
CREATE PLUGGABLE DATABASE saas_sales_ac AS APPLICATION CONTAINER
 ADMIN USER saas_sales_ac_adm IDENTIFIED BY manager;

Chapter 2
Overview of Applications in an Application Container

2-40

-- Open the application root
ALTER PLUGGABLE DATABASE saas_sales_ac OPEN;

You set the current container to saas_sales_ac, and then verify that this container is the
application root:

-- Set the current container to saas_sales_ac
ALTER SESSION SET CONTAINER = saas_sales_ac;

COL NAME FORMAT a15
COL ROOT FORMAT a4
SELECT CON_ID, NAME, APPLICATION_ROOT AS ROOT,
 APPLICATION_PDB AS PDB,
FROM V$CONTAINERS;

 CON_ID NAME ROOT PDB
---------- --------------- ---- ---
 3 SAAS_SALES_AC YES NO

Application PDBs
An application PDB is a PDB that resides in an application container. Every PDB in a CDB
resides in either zero or one application containers.

For example, the saas_sales_ac application container might support multiple customers, with
each customer application storing its data in a separate PDB. The application PDBs
cust1_sales_pdb and cust2_sales_pdb might reside in saas_sales_ac, in which case they
belong to no other application container (although as PDBs they necessarily belong also to
the CDB root).

Create an application PDB by executing CREATE PLUGGABLE DATABASE while connected to the
application root. You can either create the application PDB from a seed, or clone a PDB or
plug in an unplugged PDB. Like a PDB that is plugged in to CDB root, you can clone, unplug,
or drop an application PDB. However, an application PDB must always belong to an
application root.

See Also:

"Creating and Removing Application Containers and Seeds"

Application Seed
An application seed is an optional, user-created PDB within an application container. An
application container has either zero or one application seed.

An application seed enables you to create application PDBs quickly. It serves the same role
within the application container as PDB$SEED serves within the CDB itself.

The application seed name is always application_container_name$SEED, where
application_container_name is the name of the application container. For example, use the

Chapter 2
Overview of Applications in an Application Container

2-41

CREATE PDB ... AS SEED statement to create saas_sales_ac$SEED in the
saas_sales_ac application container.

See Also:

"Creating and Removing Application Seeds"

Application Common Objects
An application common object is a common object created within an application in
an application root. Common objects are either data-linked or metadata-linked.

For a data-linked common object, application PDBs share a single set of data. For
example, an application for the saas_sales_ac application container is named
saas_sales_app, has version 1.0, and includes a data-linked usa_zipcodes table. In
this case, the rows are stored once in the table in the application root, but are visible in
all application PDBs.

For a metadata-linked common object, application PDBs share only the metadata, but
contain different sets of data. For example, a metadata-linked products table has the
same definition in every application PDB, but the rows themselves are specific to the
PDB. The application PDB named cust1pdb might have a products table that contains
books, whereas the application PDB named cust2pdb might have a products table
that contains auto parts.

• Creation of Application Common Objects
To create common objects, connect to an application root, and then execute a
CREATE statement that specifies a sharing attribute.

• Metadata-Linked Application Common Objects
A metadata link is a dictionary object that supports referring to, and granting
privileges on, common metadata shared by all PDBs in the application container.

• Data-Linked Application Common Objects
A data-linked object is an object whose metadata and data reside in an
application root, and are accessible from all application PDBs in this application
container.

• Extended Data-Linked Application Objects
An extended data-linked object is a hybrid of a data-linked object and metadata-
linked object.

See Also:

• "Overview of Common and Local Objects in a CDB" to learn about
common objects

• "About Application Common Objects"

Chapter 2
Overview of Applications in an Application Container

2-42

Creation of Application Common Objects
To create common objects, connect to an application root, and then execute a CREATE
statement that specifies a sharing attribute.

You can only create or change application common objects as part of an application
installation, upgrade, or patch. You can specify sharing in the following ways:

• DEFAULT_SHARING initialization parameter

The setting is the default sharing attribute for all database objects of a supported type
created in the root.

• SHARING clause

You specify this clause in the CREATE statement itself. When a SHARING clause is included
in a SQL statement, it takes precedence over the value specified in the DEFAULT_SHARING
initialization parameter. Possible values are METADATA, DATA, EXTENDED DATA, and NONE.

The following table shows the types of application common objects, and where the data and
metadata is stored.

Table 2-7 Application Common Objects

Object Type SHARING Value Metadata Storage Data Storage

Data-Linked DATA Application root Application root

Extended Data-Linked EXTENDED DATA Application root Application root and
application PDB

Metadata-Linked METADATA Application root Application PDB

See Also:

• "Creating Application Common Objects"

• Oracle Database Security Guide to learn how to manage privileges for common
objects

Metadata-Linked Application Common Objects
A metadata link is a dictionary object that supports referring to, and granting privileges on,
common metadata shared by all PDBs in the application container.

Specifying the METADATA value in either the SHARING clause or the DEFAULT_SHARING
initialization parameter specifies a link to an object’s metadata, called a metadata-linked
common object. The metadata for the object is stored once in the application root.

Tables, views, and code objects (such as PL/SQL procedures) can share metadata. In this
context, “metadata” includes column definitions, constraints, triggers, and code. For example,
if sales_mlt is a metadata-linked common table, then all application PDBs access the same
definition of this table, which is stored in the application root, by means of a metadata link.

Chapter 2
Overview of Applications in an Application Container

2-43

The rows in sales_mlt are different in every application PDB, but the column
definitions are the same.

Typically, most objects in an application will be metadata-linked. Thus, you need only
maintain one master application definition. This approach centralizes management of
the application in multiple application PDBs.

Example 2-8 Creating a Metadata-Linked Common Object

In this example, the SYSTEM user logs in to the saas_sales_ac application container.
SYSTEM installs an application named saas_sales_app at version 1.0 (see "Application
Maintenance"). This application creates a common user account named
saas_sales_adm. The schema contains a metadata-linked common table named
sales_mlt.

-- Begin the install of saas_sales_app
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app BEGIN INSTALL
'1.0';

-- Create the tablespace for the app
CREATE TABLESPACE saas_sales_tbs DATAFILE SIZE 100M AUTOEXTEND ON NEXT
10M MAXSIZE 200M;

-- Create the user account saas_sales_adm, which will own the app
CREATE USER saas_sales_adm IDENTIFIED BY ****** CONTAINER=ALL;

-- Grant necessary privileges to this user account
GRANT CREATE SESSION, DBA TO saas_sales_adm;

-- Makes the tablespace that you just created the default for
saas_sales_adm
ALTER USER saas_sales_adm DEFAULT TABLESPACE saas_sales_tbs;

-- Now connect as the application owner
CONNECT saas_sales_adm/******@saas_sales_ac

-- Create a metadata-linked table
CREATE TABLE saas_sales_adm.sales_mlt SHARING=METADATA
(YEAR NUMBER(4),
 REGION VARCHAR2(10),
 QUARTER VARCHAR2(4),
 REVENUE NUMBER);

-- End the application installation
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END INSTALL '1.0';

You can use the ALTER PLUGGABLE DATABASE APPLICATION ... SYNC statement to
synchronize the application PDBs to use the same master application definition. In this
way, every application PDB has a metadata link to the saas_sales_adm.sales_mlt
common table. The middle-tier code that updates sales_mlt within the PDB named
cust1_pdb adds rows to this table in cust1_pdb, whereas the middle-tier code that
updates sales_mlt in cust2_pdb adds rows to the copy of this table in cust2_pdb.
Only the table metadata, which is stored in the application root, is shared.

Chapter 2
Overview of Applications in an Application Container

2-44

Note:

• "About Application Common Objects"

• Oracle Database Security Guide to learn more about how commonly granted
object privileges work

• Metadata Links
For metadata-linked application common objects, the metadata for the object is stored
once in the application root. A metadata link is a dictionary object whose object type is
the same as the metadata it is sharing.

Metadata Links
For metadata-linked application common objects, the metadata for the object is stored once
in the application root. A metadata link is a dictionary object whose object type is the same as
the metadata it is sharing.

The description of a metadata link is stored in the data dictionary of the PDB in which it is
created. A metadata link must be owned by an application common user. You can only use
metadata links to share metadata of common objects owned by their creator in the CDB root
or an application root.

Unlike a data link, a metadata link depends only on common data. For example, if an
application contains the local tables dow_close_lt and nasdaq_close_lt in the application
root, then a common user cannot create metadata links to these objects. However, an
application common table named sales_mlt may be metadata-linked.

If a privileged common user changes the metadata for sales_mlt, for example, adds a
column to the table, then this change propagates to the metadata links. Application PDB
users may not change the metadata in the metadata link. For example, a DBA who manages
the application PDB named cust1_pdb cannot add a column to sales_mlt in this PDB only:
such metadata changes can be made only in the application root.

See Also:

"About Application Common Objects"

Data-Linked Application Common Objects
A data-linked object is an object whose metadata and data reside in an application root, and
are accessible from all application PDBs in this application container.

Specifying the DATA value in either the SHARING clause or the DEFAULT_SHARING initialization
parameter specifies a link to a common object, called a data-linked common object.
Dimension tables in a data warehouse are often good candidates for data-linked common
tables.

A data link is a dictionary object that functions much like a synonym. For example, if
countries is an application common table, then all application PDBs access the same copy

Chapter 2
Overview of Applications in an Application Container

2-45

of this table by means of a data link. If a row is added to this table, then this row is
visible in all application PDBs.

A data link must be owned by an application common user. The link inherits the object
type from the object to which it is pointing. The description of a data link is stored in
the dictionary of the PDB in which it is created. For example, if an application container
contains 10 application PDBs, and if every PDB contains a link to the countries
application common table, then all 10 PDBs contain dictionary definitions for this link.

Example 2-9 Creating a Data-Linked Object

In this example, SYSTEM connects to the saas_sales_ac application container. SYSTEM
upgrades the application named saas_sales_app from version 1.0 to 2.0. This
application upgrade logs in to the container as common user saas_sales_adm, creates
a data-linked table named countries_dlt, and then inserts rows into it.

-- Begin an upgrade of the application
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app BEGIN UPGRADE
'1.0' to '2.0';

-- Connect as application owner to application root
CONNECT saas_sales_adm/manager@saas_sales_ac

-- Create data-linked table named countries_dlt
CREATE TABLE countries_dlt SHARING=DATA
(country_id NUMBER,
 country_name VARCHAR2(20));

-- Insert records into countries_dlt
INSERT INTO countries_dlt VALUES(1, 'USA');
INSERT INTO countries_dlt VALUES(44, 'UK');
INSERT INTO countries_dlt VALUES(86, 'China');
INSERT INTO countries_dlt VALUES(91, 'India');

-- End application upgrade
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END UPGRADE TO
'2.0';

Use the ALTER PLUGGABLE DATABASE APPLICATION ... SYNC statement to synchronize
application PDBs with the application root (see "Application Synchronization"). In this
way, every synchronized application PDB has a data link to the
saas_sales_adm.countries_dlt data-linked table.

Note:

"About Application Common Objects"

Extended Data-Linked Application Objects
An extended data-linked object is a hybrid of a data-linked object and metadata-
linked object.

Chapter 2
Overview of Applications in an Application Container

2-46

In an extended data-linked object, the data stored in the application root is common to all
application PDBs, and all PDBs can access this data. However, each application PDB can
create its own, PDB-specific data while sharing the common data in application root. Thus,
the PDBs supplement the common data with their own data.

For example, a sales application might support several application PDBs. All application
PDBs need the postal codes for the United States. In this case, you might create a
zipcodes_edt extended data-linked table in the application root. The application root stores
the United States postal codes, so all application PDBs can access them. However, one
application PDB requires the postal codes for the United States and Canada. This application
PDB can store the postal codes for Canada in the extended data-linked object in the
application PDB instead of in the application root.

Create an extended data-linked object by connecting to the application root and specifying
the SHARING=EXTENDED DATA keyword in the CREATE statement.

Example 2-10 Creating an Extended-Data Object

In this example, SYSTEM connects to the saas_sales_ac application container, and then
upgrades the application named saas_sales_app (created in "Example 2-8") from version 2.0
to 3.0. This application logs in to the container as common user saas_sales_adm, creates an
extended data-linked table named zipcodes_edt, and then inserts rows into it.

-- Begin an upgrade of the app
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app BEGIN UPGRADE '2.0' to
'3.0';

-- Connect as app owner to app root
CONNECT saas_sales_adm/manager@saas_sales_ac

-- Create a common-data table named zipcodes_edt
CREATE TABLE zipcodes_edt SHARING=EXTENDED DATA
(code VARCHAR2(5),
 country_id NUMBER,
 region VARCHAR2(10));

-- Load rows into zipcodes_edt
INSERT INTO zipcodes_edt VALUES ('08820','1','East');
INSERT INTO zipcodes_edt VALUES ('10005','1','East');
INSERT INTO zipcodes_edt VALUES ('44332','1','North');
INSERT INTO zipcodes_edt VALUES ('94065','1','West');
INSERT INTO zipcodes_edt VALUES ('73301','1','South');
COMMIT;

-- End app upgrade
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END UPGRADE TO '3.0';

Use the ALTER PLUGGABLE DATABASE APPLICATION ... SYNC statement to synchronize
application PDBs with the application (see "Application Synchronization"). In this way, every
synchronized application PDB has a data link to the saas_sales_adm.zipcodes_edt data-
linked table. Applications that connect to these PDBs can see the postal codes that were
inserted into zipcodes_edt during the application upgrade, but can also insert their own
postal codes into this table.

Chapter 2
Overview of Applications in an Application Container

2-47

Note:

"About Application Common Objects"

Application Maintenance
In this context, application maintenance refers to installing, uninstalling, upgrading,
or patching an application.

An application must have a name and version number. This combination of properties
determines which maintenance operations you can perform. In all maintenance
operations, you perform the following steps:

1. Begin by executing the ALTER PLUGGABLE DATABASE ... APPLICATION statement
with the BEGIN INSTALL, BEGIN UPGRADE, or BEGIN PATCH clauses.

2. Execute statements to alter the application.

3. End by executing the ALTER PLUGGABLE DATABASE ... APPLICATION statement
with the END INSTALL, END UPGRADE, or END PATCH clauses.

As the application evolves, the application container maintains all versions and patch
changes.

Note:

"About Application Management"

• About Application Maintenance
Perform application installation, upgrade, and patching operations using an ALTER
PLUGGABLE DATABASE APPLICATION statement.

• Application Installation
An application installation is the initial creation of a master application definition.
A typical installation creates user accounts, tables, and PL/SQL packages.

• Application Upgrade
An application upgrade is a major change to an installed application.

• Application Patch
An application patch is a minor change to an application.

About Application Maintenance
Perform application installation, upgrade, and patching operations using an ALTER
PLUGGABLE DATABASE APPLICATION statement.

The basic steps for application maintenance are as follows:

1. Log in to the application root.

2. Begin the operation with an ALTER PLUGGABLE DATABASE APPLICATION ... BEGIN
statement in the application root.

Chapter 2
Overview of Applications in an Application Container

2-48

3. Execute the application maintenance statements.

4. End the operation with an ALTER PLUGGABLE DATABASE APPLICATION ... END statement.

Perform the maintenance using scripts, SQL statements, or GUI tools.

See Also:

"About Application Management"

Application Installation
An application installation is the initial creation of a master application definition. A typical
installation creates user accounts, tables, and PL/SQL packages.

To install the application, specify the following in the ALTER PLUGGABLE DATABASE
APPLICATION statement:

• Name of the application

• Application version number

Example 2-11 Installing an Application

This example assumes that you are logged in to the application container named
saas_sales_ac as. The example installs an application named saas_sales_app at version
1.0. Note that you specify the version with a string rather than a number. The application
creates an application common user named saas_sales_adm, grants necessary privileges,
and then connects to the application root as this user. This user creates a metadata-linked
table named sales_mlt.

-- Begin the install of saas_sales_app
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app BEGIN INSTALL '1.0';

-- Create the tablespace for the app
CREATE TABLESPACE saas_sales_tbs DATAFILE SIZE 100M AUTOEXTEND ON NEXT 10M
MAXSIZE 200M;

-- Create the user account saas_sales_adm, which will own the application
CREATE USER saas_sales_adm IDENTIFIED BY manager CONTAINER=ALL;

-- Grant necessary privileges to this user account
GRANT CREATE SESSION, DBA TO saas_sales_adm;

-- Make the tablespace that you just created the default for saas_sales_adm
ALTER USER saas_sales_adm DEFAULT TABLESPACE saas_sales_tbs;

-- Now connect as the application owner
CONNECT saas_sales_adm/manager@saas_sales_ac

-- Create a metadata-linked table
CREATE TABLE saas_sales_adm.sales_mlt SHARING=METADATA
(YEAR NUMBER(4),
 REGION VARCHAR2(10),

Chapter 2
Overview of Applications in an Application Container

2-49

 QUARTER VARCHAR2(4),
 REVENUE NUMBER);

-- End the application installation
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END INSTALL '1.0';

PDB synchronization is the user-initiated update of an application PDB with the
application in the application root. After you synchronize the application PDBs with the
saas_sales_app application, each application PDB will contain an empty table named
products_mlt. An application can connect to an application PDB, and then insert
PDB-specific rows into this table.

See Also:

• "Application Synchronization"

• "Installing an Application in an Application Container with Automated
Propagation"

Application Upgrade
An application upgrade is a major change to an installed application.

Typically, an upgrade changes the physical architecture of the application. For
example, an upgrade might add new user accounts, tables, and packages, or alter the
definitions of existing objects.

To upgrade the application, you must specify the following in the ALTER PLUGGABLE
DATABASE APPLICATION statement:

• Name of the application

• Old application version number

• New application version number

Example 2-12 Upgrading an Application Using the Automated Technique

In this example, you connect to the application root as an administrator, and then
upgrade the application saas_sales_app from version 1.0 to version 2.0. The upgrade
creates a data-linked table named countries_dlt, and then adds rows to it. It also
creates an extended data-linked table named zipcodes_edt, and then adds rows to it.

-- Begin an upgrade of the app
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app
 BEGIN UPGRADE '1.0' to '2.0';

-- Connect as app owner to app root
CONNECT saas_sales_adm/manager@saas_sales_ac

-- Create data-linked table named countries_dlt
CREATE TABLE countries_dlt SHARING=DATA
(country_id NUMBER,

Chapter 2
Overview of Applications in an Application Container

2-50

 country_name VARCHAR2(20));

-- Insert records into countries_dlt
INSERT INTO countries_dlt VALUES(1, 'USA');
INSERT INTO countries_dlt VALUES(44, 'UK');
INSERT INTO countries_dlt VALUES(86, 'China');
INSERT INTO countries_dlt VALUES(91, 'India');

-- Create an extended data-linked table named zipcodes_edt
CREATE TABLE zipcodes_edt SHARING=EXTENDED DATA
(code VARCHAR2(5),
 country_id NUMBER,
 region VARCHAR2(10));

-- Load rows into zipcodes_edt
INSERT INTO zipcodes_edt VALUES ('08820','1','East');
INSERT INTO zipcodes_edt VALUES ('10005','1','East');
INSERT INTO zipcodes_edt VALUES ('44332','1','North');
INSERT INTO zipcodes_edt VALUES ('94065','1','West');
INSERT INTO zipcodes_edt VALUES ('73301','1','South');
COMMIT;

-- End app upgrade
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END UPGRADE TO '2.0';

• How an Application Upgrade Works
During an application upgrade, the application remains available. To make this availability
possible, Oracle Database clones the application root.

• Applications at Different Versions
Different application PDBs might use different versions of the application.

See Also:

"Upgrading Applications in an Application Container"

How an Application Upgrade Works
During an application upgrade, the application remains available. To make this availability
possible, Oracle Database clones the application root.

The following figure gives an overview of the application upgrade process.

Chapter 2
Overview of Applications in an Application Container

2-51

Figure 2-9 Application Upgrade

Application Root v1.0

Application Root v1.0 Application Root Clone v1.0

Application Root Clone v1.0Application Root v2.0

Application Root Clone v1.0Application Root v2.0

Application PDBs

Application PDBs

Application PDBs

Application PDB
at v1.0

Synchronized
Application PDBs

1

2

3

4

Before upgrade

End upgrade

After synchronization

Begin upgrade

An upgrade occurs as follows:

1. In the initial state, the application root has an application in a specific version.

Chapter 2
Overview of Applications in an Application Container

2-52

2. The user executes the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE
statement, and then issues the application upgrade statements.

During the upgrade, the database automatically does the following:

• Clones the application root

For example, if the saas_sales_app application is at version 1.0 in the application
root, then the clone is also at version 1.0

• Points the application PDBs to the application root clone

The clone is in read-only mode. The application remains available to the application
PDBs.

3. The user executes the ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE
statement.

At this stage, the application PDBs are still pointing to the application root clone, and the
original application root is at a new version. For example, if the saas_sales_app
application is at version 1.0 in the application root, then the upgrade might bring it to
version 2.0. The application root clone, however, remains at version 1.0.

4. Optionally, the user synchronizes the application PDBs with the upgraded application root
by issuing ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

For example, after the synchronization, some application PDBs are plugged in to the
application root at version 2.0. However, the application root clone continues to support
application PDBs that must stay on version 1.0, or any new application PDBs that are
plugged in to the application root at version 1.0.

See Also:

• "Application Synchronization"

• "Upgrading Applications in an Application Container"

Applications at Different Versions
Different application PDBs might use different versions of the application.

For example, one application PDB might have version 1.0 of the saas_sales_app. In the
same application container, another application PDB has version 2.0 of this application.

A use case is a SaaS application provided to different customers. If each customer has its
own application PDB, then some customers might wait longer to upgrade the application. In
this case, some application PDBs may use the latest version of the application, whereas
other application PDBs use an older version.

See Also:

"Upgrading Applications in an Application Container" to learn more about
applications at different versions

Chapter 2
Overview of Applications in an Application Container

2-53

Application Patch
An application patch is a minor change to an application.

Typical examples of application patching include bug fixes and security patches. New
functions and packages are permitted within a patch.

In general, destructive operations are not permitted. For example, a patch cannot
include DROP statements, or ALTER TABLE statements that drop a column or change a
data type.

Just as the Oracle Database patching process restricts the kinds of operations
permitted in an Oracle Database patch, the application patching process restricts the
operations permitted in an application patch. If a fix includes an operation that raises
an “operation not supported in an application patch” error, then perform an application
upgrade instead.

Note:

You cannot patch an application when another application patch or upgrade
is in progress.

To patch the application, specify the application name and patch number in the ALTER
PLUGGABLE DATABASE APPLICATION statement. Optionally, you can specify an
application minimum version.

Example 2-13 Patching an Application Using the Automated Technique

In this example, SYSTEM logs in to the application root, and then patches the application
saas_sales_app at version 1.0 or greater. Patch 101 logs in to the application
container as saas_sales_adm, and then creates a metadata-linked PL/SQL function
named get_total_revenue.

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app BEGIN PATCH 101
MINIMUM VERSION '1.0';

-- Connect to the saas_sales_ac container as saas_sales_adm, who owns
the application
CONNECT saas_sales_adm/*******@saas_sales_ac

-- Now install the get_total_revenue() function
CREATE FUNCTION get_total_revenue SHARING=METADATA (p_year IN NUMBER)
RETURN SYS_REFCURSOR
AS
c1_cursor SYS_REFCURSOR;
BEGIN
OPEN c1_cursor FOR
 SELECT a.year,sum(a.revenue)
 FROM containers(sales_data) a
 WHERE a.year = p_year
 GROUP BY a.year;
RETURN c1_cursor;

Chapter 2
Overview of Applications in an Application Container

2-54

END;
/

-- End the patch
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END PATCH 101;

See Also:

"Patching Applications in an Application Container"

Migration of an Existing Application
You can migrate an application that is installed in a PDB to either an application root or to an
application PDB.

Typical reasons for migrating a preexisting application include the following:

• Applications that use an installation program

Some applications use an installation program rather than a script. In this case, you can
run the installation program in a new application root, and then use the
DBMS_PDB_ALTER_SHARING package to set the objects to the appropriate sharing mode:
METADATA, DATA, or EXTENDED DATA. The root automatically propagates the changes to the
application PDBs. Oracle Database creates a statement log of the installation, so PDBs
with previous application versions can be plugged into the application root.

• Applications that are defined separately in each PDB

Some applications are defined in each PDB, but no application container exists. In this
case, you can update the installation script to set the appropriate sharing mode. You
create an application root, and then create the master application definition in this root.
You can adopt the existing PDBs as application PDBs by plugging them into the
application root, and then running a SQL script to replace the full definitions with
references to the common definitions.

For example, you can migrate an application installed in a PDB plugged into an Oracle
Database 12c CDB to an application container in an Oracle Database 18c CDB.

See Also:

• "About Application Management" to learn how to migrate an existing application

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_PDB_ALTER_SHARING package

Implicitly Created Applications
In addition to user-created applications, application containers can also contain implicitly
created applications.

Chapter 2
Overview of Applications in an Application Container

2-55

An application is created implicitly in an application root when an application common
user operation is issued with a CONTAINER=ALL clause without being preceded by an
ALTER PLUGGABLE DATABASE BEGIN statement.

Application common user operations include operations such as creating a common
user with a CREATE USER statement or altering a common user with an ALTER USER
statement. The database automatically names an implicit application APP$guid, where
guid is the global unique ID of the application root. An implicit application is created
when the application root is opened for the first time.

See Also:

"Synchronizing Applications in an Application PDB" to learn more about
implicitly created applications

Application Synchronization
Within an application PDB, synchronization is the user-initiated update of the
application to the latest version and patch in the application root.

When an application is installed, upgraded, patched, or uninstalled in an application
root, the changes do not automatically propagate to the application PDBs. You must
synchronize the PDBs manually. When connected to an application PDB, you can
synchronize one or more applications by issuing ALTER PLUGGABLE DATABASE
APPLICATION ... SYNC.

• Synchronization of a Single Application
If you specify one application name before SYNC, then the database synchronizes
only the specified application.

• Synchronization of Multiple Applications
You can synchronize multiple applications by specifying the ALL keyword.

Synchronization of a Single Application
If you specify one application name before SYNC, then the database synchronizes only
the specified application.

The following statement, executed in an application PDB, synchronizes apexapp with
the application PDB:

ALTER PLUGGABLE DATABASE APPLICATION apexapp SYNC;

You can use the SYNC TO PATCH patchnum clause to synchronize the application to a
specific patch number. This following statement synchronizes an application named
saas_sales_app to patch 100 in the application PDB:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC TO PATCH 100;

Chapter 2
Overview of Applications in an Application Container

2-56

To synchronize the application to a specific application version, use SYNC TO version. This
following statement synchronizes an application named saas_sales_app to version 2.0 in the
application PDB:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC TO '2.0';

Synchronization of Multiple Applications
You can synchronize multiple applications by specifying the ALL keyword.

If you specify ALL SYNC, then the database synchronizes all applications, including those
implicitly created. Note that ALL does not support the SYNC TO PATCH patchno and SYNC TO
version clauses. The following statement synchronizes all applications:

ALTER PLUGGABLE DATABASE APPLICATION ALL SYNC;

During the synchronization, the replay order for application BEGIN and END blocks is the same
as the capture order.

See Also:

"Synchronizing Applications in an Application PDB"

Container Maps
A container map enables a session connected to application root to issue SQL statements
that are routed to the appropriate PDB, depending on the value of a predicate used in the
SQL statement.

A map table specifies a column in a metadata-linked common table, and uses partitions to
associate different application PDBs with different column values. In this way, container maps
enable the partitioning of data at the PDB level when the data is not physically partitioned at
the table level.

The key components for using container maps are:

• Metadata-linked table

This table is intended to be queried using the container map. For example, you might
create a metadata-linked table named countries_mlt that stores different data in each
application PDB. In amer_pdb, the countries_mlt.cname column stores North American
country names; in euro_pdb, the countries_mlt.cname column stores European country
names; and in asia_pdb, the countries_mlt.cname column stores Asian country names.

• Map table

In the application root, you create a single-column map table partitioned by list, hash, or
range. The map table enables the metadata-linked table to be queried using the
partitioning strategy that is enabled by the container map. The names of the partitions in
the map object table must match the names of the application PDBs in the application
container.

Chapter 2
Overview of Applications in an Application Container

2-57

For example, the map table named pdb_map_tbl may partition by list on the cname
column. The partitions named amer_pdb, euro_pdb, and asia_pdb correspond to
the names of the application PDBs. The values in each partition are the names of
the countries, for example, PARTITION amer_pdb VALUES
('US','MEXICO','CANADA').

Starting in Oracle Database 18c, for a CONTAINERS() query to use a map, the
partitioning column in the map table does not need to match a column in the
metadata-linked table. Assume that the table sh.sales is enabled for the container
map pdb_map_tbl, and cname is the partitioning column for the map table. Even
though sh.sales does not include a cname column, the map table routes the
following query to the appropriate PDB: SELECT * FROM CONTAINERS(sh.sales)
WHERE cname = 'US' ORDER BY time_id.

• Container map

A container map is a database property that specifies a map table. To set the
property, you connect to the application root and execute the ALTER PLUGGABLE
DATABASE SET CONTAINER_MAP=map_table statement, where map_table is the
name of the map table.

Example 2-14 Creating a Metadata-Linked Table, Map Table, and Container
Map: Part 1

In this example, you log in as an application administrator to the application root.
Assume that an application container has three application PDBs: amer_pdb, euro_pdb,
and asia_pdb. Each application PDB stores country names for a different region. A
metadata-linked table named oe.countries_mlt has a cname column that stores the
country name. For this partitioning strategy, you use partition by list to create a map
object named salesadm.pdb_map_tbl that creates a partition for each region. The
country name determines the region.

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app BEGIN INSTALL
'1.0';

-- Create the metadata-linked table.
CREATE TABLE oe.countries_mlt SHARING=METADATA (
 region VARCHAR2(30),
 cname VARCHAR2(30));

-- Create the partitioned map table, which is list partitioned on the
-- cname column. The names of the partitions are the names of the
-- application PDBs.
CREATE TABLE salesadm.pdb_map_tbl (cname VARCHAR2(30) NOT NULL)
 PARTITION BY LIST (cname) (
 PARTITION amer_pdb VALUES ('US','MEXICO','CANADA'),
 PARTITION euro_pdb VALUES ('UK','FRANCE','GERMANY'),
 PARTITION asia_pdb VALUES ('INDIA','CHINA','JAPAN'));

-- Set the CONTAINER_MAP database property to the map object.
ALTER PLUGGABLE DATABASE SET CONTAINER_MAP='salesadm.pdb_map_tbl';

-- Enable the container map for the metadata-linked table to be
queried.
ALTER TABLE oe.countries_mlt ENABLE CONTAINER_MAP;

Chapter 2
Overview of Applications in an Application Container

2-58

-- Ensure that the table to be queried is enabled for the
-- CONTAINERS clause.
ALTER TABLE oe.countries_mlt ENABLE CONTAINERS_DEFAULT;

-- End the application installation.
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app END INSTALL '1.0';

Note:

Although you create container maps using partitioning syntax, the database does
not use partitioning functionality. Defining a container map does not require Oracle
Partitioning.

In the preceding script, the ALTER TABLE oe.countries_mlt ENABLE CONTAINERS_DEFAULT
statement specifies that queries and DML statements issued in the application root must use
the CONTAINERS() clause by default for the database object.

Example 2-15 Synchronizing the Application, and Adding Data: Part 2

This example continues from the previous example. While connected to the application root,
you switch the current container to each PDB in turn, synchronize the saas_sales_app
application, and then add PDB-specific data to the oe.countries_mlt table.

ALTER SESSION SET CONTAINER=amer_pdb;
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;
INSERT INTO oe.countries_mlt VALUES ('AMER','US');
INSERT INTO oe.countries_mlt VALUES ('AMER','MEXICO');
INSERT INTO oe.countries_mlt VALUES ('AMER','CANADA');
COMMIT;

ALTER SESSION SET CONTAINER=euro_pdb;
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;
INSERT INTO oe.countries_mlt VALUES ('EURO','UK');
INSERT INTO oe.countries_mlt VALUES ('EURO','FRANCE');
INSERT INTO oe.countries_mlt VALUES ('EURO','GERMANY');
COMMIT;

ALTER SESSION SET CONTAINER=asia_pdb;
ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;
INSERT INTO oe.countries_mlt VALUES ('ASIA','INDIA');
INSERT INTO oe.countries_mlt VALUES ('ASIA','CHINA');
INSERT INTO oe.countries_mlt VALUES ('ASIA','JAPAN');
COMMIT;

Example 2-16 Querying the Metadata-Linked Table: Part 3

This example continues from the previous example. You connect to the application root, and
then query oe.countries_mlt multiple times, specifying different countries in the WHERE
clause. The query returns the correct value from the oe.countries_mlt.region column.

ALTER SESSION SET CONTAINER=saas_sales_ac;

Chapter 2
Overview of Applications in an Application Container

2-59

SELECT region FROM oe.countries_mlt WHERE cname='MEXICO';

REGION

AMER

SELECT region FROM oe.countries_mlt WHERE cname='GERMANY';

REGION

EURO

SELECT region FROM oe.countries_mlt WHERE cname='JAPAN';

REGION

ASIA

See Also:

"Partitioning by PDB with Container Maps"

Overview of Services in a CDB
Clients must connect to PDBs or application roots using services.

A connection using a service name starts a new session in a PDB or application root.
A foreground process, and therefore a session, at every moment of its lifetime, has a
uniquely defined current container.

The following graphic shows two clients connecting to PDBs using two different
listeners.

Chapter 2
Overview of Services in a CDB

2-60

Figure 2-10 Services in a CDB

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

erppdb

salespdb

Other Services

Default Services

hrpdb

Listener Listener

Application Server,
SQL*Plus, Tools

Application Server,
SQL*Plus, Tools

• Service Creation in a CDB
When you execute the CREATE PLUGGABLE DATABASE statement to create a PDB, the
database automatically creates and starts a service inside the CDB.

• Connections to Containers in a CDB
Typically, a CDB administrator must have appropriate privileges to provision PDBs and
connect to various containers. CDB administrators are common users.

See Also:

"Managing Services for PDBs"

Service Creation in a CDB
When you execute the CREATE PLUGGABLE DATABASE statement to create a PDB, the
database automatically creates and starts a service inside the CDB.

The default service has a property that identifies the PDB as the initial current container for
the service. The property is shown in the DBA_SERVICES.PDB column.

• Default Services in a CDB
The default service has the same name as the PDB. The PDB name must be a valid
service name, which must be unique within the CDB.

• Nondefault Services in a CDB
You can create additional services for each PDB, up to a per-CDB maximum of 10,000.
Each additional service denotes its PDB as the initial current container.

Chapter 2
Overview of Services in a CDB

2-61

See Also:

"Managing Services for PDBs"

Default Services in a CDB
The default service has the same name as the PDB. The PDB name must be a valid
service name, which must be unique within the CDB.

When you create an application container, which requires specifying the AS
APPLICATION CONTAINER clause, Oracle Database automatically creates a new default
service for the application root. The service has the same name as the application
container. Oracle Net Services must be configured properly for clients to access this
service. Similarly, every application PDB has its own default service name, and an
application seed PDB has its own default service name.

Example 2-17 Switching to a PDB Using a Default Service

This example switches to the PDB names salespdb using the default service, which
has the same name as the PDB:

ALTER SESSION SET CONTAINER = salespdb;

See Also:

• Oracle Database Concepts for information about service names

• "Managing Services for PDBs"

Nondefault Services in a CDB
You can create additional services for each PDB, up to a per-CDB maximum of
10,000. Each additional service denotes its PDB as the initial current container.

In Figure 2-10, nondefault services exist for erppdb and hrpdb. Create, maintain, and
drop additional services using the same techniques that you use in a non-CDB.

For example, in Figure 2-10 the PDB named hrpdb has a default service named hrpdb.
The default service cannot be dropped.

When you switch to a container using ALTER SESSION SET CONTAINER, the session
uses the default service for the container. Optionally, you can use a different service
for the container by specifying SERVICE = service_name, where service_name is the
name of the service. You might want to use a particular service so that the session can
take advantage of its service attributes and features, such as service metrics, load
balancing, Resource Manager settings, and so on.

Chapter 2
Overview of Services in a CDB

2-62

Example 2-18 Switching to a PDB Using a Nondefault Service

In this example, the default service for hrpdb does not support all the service attributes and
features such as service metrics, FAN, load balancing, Oracle Database Resource Manager,
Transaction Guard, Application Continuity, and so on. You switch to a nondefault service as
follows:

ALTER SESSION SET CONTAINER = hrpdb SERVICE = hrpdb_full;

Connections to Containers in a CDB
Typically, a CDB administrator must have appropriate privileges to provision PDBs and
connect to various containers. CDB administrators are common users.

The CDB administrator can use either of the following techniques:

• Connect directly to a PDB or application root.

The user requires the CREATE SESSION privilege in the container.

• Use the ALTER SESSION SET CONTAINER statement, which is useful for both connection
pooling and advanced CDB administration, to switch between containers. The syntax is
ALTER SESSION SET CONTAINER = container_name [SERVICE = service_name].

For example, a CDB administrator can connect to the root in one session, and then in the
same session switch to a PDB. In this case, the user requires the SET CONTAINER system
privilege in the container.

The following table describes a scenario involving the CDB in Figure 2-10. Each row
describes an action that occurs after the action in the preceding row. Common user SYSTEM
queries the name of the current container and the names of PDBs in the CDB.

Table 2-8 Services in a CDB

Operation Description

SQL> CONNECT SYSTEM@prod
Enter password: ********
Connected.

The SYSTEM user, which is common
to all containers in the CDB,
connects to the root using service
named prod.

SQL> SHOW CON_NAME

CON_NAME

CDB$ROOT

SYSTEM uses the SQL*Plus
command SHOW CON_NAME to list the
name of the container to which the
user is currently connected.
CDB$ROOT is the name of the root
container.

Chapter 2
Overview of Services in a CDB

2-63

Table 2-8 (Cont.) Services in a CDB

Operation Description

SQL> SELECT NAME, PDB FROM V$SERVICES
 2 ORDER BY PDB, NAME;

NAME PDB
---------------------- --------
SYS$BACKGROUND CDB$ROOT
SYS$USERS CDB$ROOT
prod.example.com CDB$ROOT
erppdb.example.com ERPPDB
erp.example.com ERPPDB
hr.example.com HRPDB
hrpdb.example.com HRPDB
salespdb.example.com SALESPDB

8 rows selected.

A query of V$SERVICES shows that
three PDBs exist with service names
that match the PDB name. Both
hrpdb and erppdb have an
additional service.

SQL> ALTER SESSION SET CONTAINER = hrpdb;

Session altered.

SYSTEM uses ALTER SESSION to
connect to hrpdb.

SQL> SELECT SYS_CONTEXT
 2 ('USERENV', 'CON_NAME')
 3 AS CUR_CONTAINER FROM DUAL;

CUR_CONTAINER

HRPDB

A query confirms that the current
container is now hrpdb.

See Also:

• "Connecting to a PDB"

• Oracle Database SQL Language Reference for the syntax and
semantics of ALTER SESSION SET CONTAINER

Overview of Tablespaces and Database Files in a CDB
A CDB has the same structure as a non-CDB, except that each PDB and application
root has its own set of tablespaces, including its own SYSTEM, SYSAUX, and undo
tablespaces.

Chapter 2
Overview of Tablespaces and Database Files in a CDB

2-64

A CDB contains the following files:

• One control file

• One online redo log

• One or more undo tablespaces

Only a common user who has the appropriate privileges and whose current container is
the root can create an undo tablespace. At any given time, a CDB is either in either of the
following undo modes:

– Local undo mode

In this case, each PDB has its own undo tablespace. If a CDB is using local undo
mode, then the database automatically creates an undo tablespace in every PDB.
Local undo provides advantages such as the ability to perform a hot clone of a PDB,
and speed the relocation of a PDB. Also, local undo provides level of isolation and
enables faster unplug and point-in-time recovery operations.

A local undo tablespace is required for each node in an Oracle Real Application
Clusters (RAC) cluster in which the PDB is open. For example, if you move a PDB
from a two-node cluster to a four-node cluster, and if the PDB is open in all nodes,
then the database automatically creates the additional required undo tablespaces. If
you move the PDB back again, then you can drop the redundant undo tablespaces.

Note:

By default, Database Configuration Assistant (DBCA) creates new CDBs
with local undo enabled.

– Shared undo mode

In a single-instance CDB, only one active undo tablespace exists. For an Oracle RAC
CDB, one active undo tablespace exists for every instance. All undo tablespaces are
visible in the data dictionaries and related views of all containers.

The undo mode applies to the entire CDB, which means that every container uses shared
undo, or every container uses local undo. You can switch between undo modes in a CDB,
which necessitates re-starting the database.

• SYSTEM and SYSAUX tablespaces for every container

The primary physical difference between CDBs and non-CDBs is the data files in SYSTEM
and SYSAUX. A non-CDB has only one SYSTEM tablespace and one SYSAUX tablespace. In
contrast, the CDB root, each application root, and each PDB in a CDB has its own
SYSTEM and SYSAUX tablespaces. Each container also has its own set of dictionary tables
describing the objects that reside in the container.

• Zero or more user-created tablespaces

In a typical use case, each PDB has its own set of non-system tablespaces. These
tablespaces contain the data for user-defined schemas and objects in the PDB.

Within a PDB, you manage permanent and temporary tablespaces in the same way that
you manage them in a non-CDB. You can also limit the amount of storage used by the
data files for a PDB by using the STORAGE clause in a CREATE PLUGGABLE DATABASE or
ALTER PLUGGABLE DATABASE statement.

Chapter 2
Overview of Tablespaces and Database Files in a CDB

2-65

The storage of the data dictionary within the PDB enables it to be portable. You
can unplug a PDB from a CDB, and plug it in to a different CDB.

• A set of temp files for every container

One default temporary tablespace exists for the CDB root, and one for each
application root, application PDB, and PDB.

Example 2-19 CDB in Local Undo Mode

This example shows aspects of the physical storage architecture of a CDB with two
PDBs: hrpdb and salespdb. In this example, the database uses local undo mode, and
so has undo data files in the CDB root, hrpdb, and salespdb.

Figure 2-11 Physical Architecture of a CDB in Local Undo Mode

Database Instance

1010110101
Control
File

Online
Redo Log

SYSTEM
Data
File

SYSAUX
Data
File

UNDO
Data
File

HRPDB
Data
File

HRPDB Pluggable Database HRPDB Pluggable Database

SYSTEM
Data
File

SYSAUX
Data
File

UNDO
Data
File

ROOT Container

SALESPDB Pluggable Database

TEMP
Temp
File

SYSTEM
Data
File

SYSAUX
Data
File

UNDO
Data
File

SALESPDB
Data
File

TEMP
Temp
File

TEMP
Temp
File

See Also:

• "Data Dictionary Architecture in a CDB"

• "After Creating a CDB" to learn about the state of a CDB after creation

Overview of Availability in a CDB
Many availability features that exist for a non-CDB also exist for individual PDBs within
a CDB.

Chapter 2
Overview of Availability in a CDB

2-66

• Overview of Backup and Recovery in a CDB
RMAN and Oracle Enterprise Manager Cloud Control provide full support for backup and
recovery in a multitenant environment.

• Overview of Flashback PDB in a CDB
You can rewind a PDB using the FLASHBACK PLUGGABLE DATABASE command in SQL or
Recovery Manager. This command is analogous to FLASHBACK DATABASE in a non-CDB.

Overview of Backup and Recovery in a CDB
RMAN and Oracle Enterprise Manager Cloud Control provide full support for backup and
recovery in a multitenant environment.

You can back up and recover a whole CDB, the root only, or one or more PDBs. You can also
back up and recover individual tablespaces and data files within a PDB.

From the perspective of recovery, separately backing up the root and all PDBs is equivalent
to backing up the whole CDB. The main difference is in the number of RMAN commands that
you must enter and the time to recover. Recovering a whole CDB requires less time than
recovering the CDB root plus all PDBs.

You can perform complete recovery of one or more PDBs without affecting operations of
other open PDBs. RMAN also provides support for point-in-time recovery at the PDB level.
The procedure is similar to the procedure for point-in-time recovery of a non-CDB.

See Also:

Oracle Database Backup and Recovery User’s Guide to learn about the state of a
CDB after creation

Overview of Flashback PDB in a CDB
You can rewind a PDB using the FLASHBACK PLUGGABLE DATABASE command in SQL or
Recovery Manager. This command is analogous to FLASHBACK DATABASE in a non-CDB.

Flashback PDB protects an individual PDB against data corruption, widespread user errors,
and redo corruption. The operation does not rewind data in other PDBs in the CDB.

In releases prior to Oracle Database 12c Release 2 (12.2), you could create a restore point—
an alias for an SCN—only when connected to the root. Now you can use CREATE RESTORE
POINT ... FOR PLUGGABLE DATABASE to create a PDB restore point, which is only usable
within a specified PDB. As with CDB restore points, PDB restore points can be normal or
guaranteed. A guaranteed restore point never ages out of the control file and must be
explicitly dropped. If you connect to the root, and if you do not specify the FOR PLUGGABLE
DATABASE clause, then you create a CDB restore point, which is usable by all PDBs.

A special type of PDB restore point is a clean restore point, which you can only create when
a PDB is closed. For PDBs with shared undo, rewinding the PDB to a clean restore point
preserves database consistency and improves performance. The database avoids using the
automatic infrastructure, which can reduce performance.

Chapter 2
Overview of Availability in a CDB

2-67

See Also:

Oracle Database Backup and Recovery User’s Guide to learn about using
FLASHBACK PLUGGABLE DATABASE

Overview of Oracle Resource Manager in a CDB
Using Oracle Resource Manager (Resource Manager), you can create CDB resource
plans and set initialization parameters to allocate resources to PDBs.

In a non-CDB, you can use Resource Manager to manage multiple workloads that are
contending for system and database resources. Therefore, in a CDB, multiple
workloads within multiple PDBs can also complete for system and CDB resources.

In a CDB, Resource Manager can manage resources on two levels: CDB and PDB.

CDB Resource Plans

A CDB resource plan allocates resources to its PDBs according to its set of resource
plan directives (directives). A parent-child relationship exists between a CDB resource
plan and its directives. Each resource plan directive references either a set of PDBs or
an individual PDB.

A performance profile specifies shares of system resources for a set of PDBs. PDB
performance profiles enable you to manage resources for large numbers of PDBs by
specifying Resource Manager directives for profiles instead of individual PDBs.

The directives control allocation of CPU and parallel execution servers. A directive can
control the allocation of resources to PDBs based on the share value that you specify
for each PDB or PDB performance profile. A higher share value results in more
guaranteed resources. For PDBs and PDB performance profiles, you can also set
utilization limits for CPU and parallel servers.

You can create a CDB resource plan by using the CREATE_CDB_PLAN procedure in the
DBMS_RESOURCE_MANAGER PL/SQL package, and set a CDB resource plan using the
RESOURCE_MANAGER_PLAN parameter. You create directives for a CDB resource plan by
using the CREATE_CDB_PLAN_DIRECTIVE procedure.

PDB Resource Plans

A CDB resource plan allocates a portion of the system resources to a PDB. A PDB
resource plan determines how this portion is allocated within the PDB.

Create a PDB resource plan in the same way that you create a resource plan for a
non-CDB: by using procedures in the DBMS_RESOURCE_MANAGER package to create the
plan.

You can create a PDB resource plan by using the CREATE_PLAN procedure in the
DBMS_RESOURCE_MANAGER PL/SQL package, and set a PDB resource plan using the
RESOURCE_MANAGER_PLAN parameter. You create directives for a PDB resource plan by
using the CREATE_PLAN_DIRECTIVE procedure.

Chapter 2
Overview of Oracle Resource Manager in a CDB

2-68

PDB-Level Memory Controls

In a CDB, PDBs may contend for SGA or PGA memory. Several initialization parameters can
control the memory usage of a PDB, either guaranteeing memory or limiting memory. When
you set the following initialization parameters with the PDB as the current container, the
parameters control the memory usage of the current PDB.

Examples of important parameters include:

• SGA_MIN_SIZE sets the minimum guaranteed SGA size of the PDB.

• SGA_TARGET specifies the maximum SGA that the PDB can use at any time.

• PGA_AGGREGATE_LIMIT sets the maximum PGA that the PDB can use at any time.

See Also:

"Memory-Related Initialization Parameters for PDBs" for more information about
setting the initialization parameters

PDB-Level I/O Controls

Intensive disk I/O can cause poor performance. Several factors can result in excess disk I/O,
such as poorly designed SQL or index and table scans in high-volume transactions. If one
PDB generates excessive disk I/O, then it can degrade the performance of other PDBs in the
same CDB.

On non-Engineered Systems, use one or both of the following initialization parameters to limit
the I/O generated by a particular PDB:

• MAX_IOPS limits the number of I/O operations for each second.

• MAX_MBPS limits the MB/s for I/O operations.

For Engineered Systems, manage PDB I/Os with I/O Resource Management.

See Also:

• Oracle Database Concepts for information about Database Resource Manager

• "Using Oracle Resource Manager for PDBs"

• Oracle Database Reference to learn more about DB_CACHE_SIZE and other
initialization parameters

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_RESOURCE_MANAGER package

• Oracle Exadata Storage Server Software User's Guide to learn more about I/O
Resource Management

Chapter 2
Overview of Oracle Resource Manager in a CDB

2-69

Part II
Creating and Configuring a Multitenant
Environment

You can create and configure a multitenant environment.

• Overview of Configuring and Managing a Multitenant Environment
Become familiar with basic concepts related to configuring and managing a multitenant
environment.

• Creating and Configuring a CDB
Creating and configuring a multitenant container database (CDB) includes tasks such as
planning, creating the CDB, and optionally configuring EM Express.

3
Overview of Configuring and Managing a
Multitenant Environment

Become familiar with basic concepts related to configuring and managing a multitenant
environment.

• About Configuring and Managing a Multitenant Environment
You can use the Oracle Multitenant option to configure and manage a multitenant
environment.

• Prerequisites for a Multitenant Environment
Prerequisites must be met for a multitenant environment.

• Tasks and Tools for a Multitenant Environment
There are common tasks you perform for a multitenant environment, and you use tools to
complete the tasks.

About Configuring and Managing a Multitenant Environment
You can use the Oracle Multitenant option to configure and manage a multitenant
environment.

You must meet certain prerequisites before configuring and managing a multitenant
environment. To do so, you complete some common tasks and use a set of tools to complete
those tasks.

The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB) that includes zero, one, or many customer-created pluggable
databases (PDBs). A PDB is a portable collection of schemas, schema objects, and
nonschema objects that appears to an Oracle Net client as a non-CDB. All Oracle databases
before Oracle Database 12c were non-CDBs.

• Common Users and Local Users
A common user is a user that has the same identity in the root and in every existing and
future PDB.

• Separation of Duties in CDB and PDB Administration
Some database administrators manage an entire CDB, while others manage individual
PDBs.

See Also:

• "Introduction to the Multitenant Architecture "

• "Overview of the Multitenant Architecture "

3-1

Common Users and Local Users
A common user is a user that has the same identity in the root and in every existing
and future PDB.

A common user can log in to the root and any container in which it has been granted
CREATE SESSION privilege. The operations that a common user can perform depend on
the privileges granted to the common user. Some administrative tasks, such as
creating a PDB or unplugging a PDB, must be performed by a common user.

A CDB also supports local users. A local user is a user that exists in exactly one PDB.

See Also:

• "Overview of Commonality in the CDB"

• Oracle Database Security Guide for more information about common
users and local users

Separation of Duties in CDB and PDB Administration
Some database administrators manage an entire CDB, while others manage individual
PDBs.

DBAs who manage an entire CDB connect to the CDB as common users, and manage
attributes of the entire CDB and the root, as well as some attributes of PDBs. For
example, these DBAs can create, unplug, plug in, and drop PDBs. They can also
specify the temporary tablespace and the default tablespace for the root, and they can
change the open mode of PDBs.

DBAs can also connect to a specific PDB as a local PDB administrator and then
perform a subset of management tasks on the PDB that a DBA performs on a non-
CDB. The subset includes tasks required for the PDB to support an application. For
example, tasks can include management of tablespaces and schemas in a PDB,
specification of storage parameters for that PDB, changing the open mode of the
current PDB, and setting PDB-level initialization parameters.

Prerequisites for a Multitenant Environment
Prerequisites must be met for a multitenant environment.

The following minimum prerequisites must be met before you can create and use a
multitenant environment:

• You must install or upgrade to Oracle Database 12c or later releases. Oracle
Multitenant is not supported in Oracle Database 11g and earlier releases.

The installation includes setting various environment variables unique to your
operating system and establishing the directory structure for software and
database files.

• The database compatibility level must be set to 12.0.0 or later.

Chapter 3
Prerequisites for a Multitenant Environment

3-2

• Sufficient memory must be available to start the Oracle Database instance.

Size the memory required by a CDB to accommodate the workload of each of its
containers and the number of containers.

• Sufficient disk storage space must be available for the planned PDBs on the computer
that runs Oracle Database. In an Oracle RAC environment, sufficient shared storage
must be available.

The disk storage space required by a CDB is the sum of the space requirements for all
PDBs that will reside in the CDB.

These prerequisites are discussed in the Oracle Database Installation Guide or Oracle Grid
Infrastructure Installation and Upgrade Guide specific to your operating system. If you use the
Oracle Universal Installer, then it will guide you through your installation and provide help in
setting environment variables and establishing directory structure and authorizations.

See Also:

• Oracle Database Installation Guide specific to your operating system

• Oracle Database Upgrade Guide for information about the database
compatibility level

Tasks and Tools for a Multitenant Environment
There are common tasks you perform for a multitenant environment, and you use tools to
complete the tasks.

• Tasks for a Multitenant Environment
A multitenant environment enables you to achieve several goals. You can complete
general tasks to configure and use a multitenant environment.

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

Tasks for a Multitenant Environment
A multitenant environment enables you to achieve several goals. You can complete general
tasks to configure and use a multitenant environment.

These goals are described in "Benefits of the Multitenant Architecture". To do so, you must
complete the following general tasks:

Task 1 Plan for the Multitenant Environment
Creating and configuring any database requires careful planning. A CDB requires special
considerations. For example, consider the following factors when you plan for a CDB:

• The number of PDBs that will be plugged into each CDB

• The resources required to support the planned CDB

• Container management policies executed as an aggregate on the entire CDB or
executed locally on individual PDBs

Chapter 3
Tasks and Tools for a Multitenant Environment

3-3

• Container database topology, which could consist of application containers with
application PDBs or a CDB with PDBs, or a combination of both

See "Planning for CDB Creation" for detailed information about planning for a CDB.

Task 2 Create One or More CDBs
When you have completed the necessary planning, you can create one or more CDBs
using either the Database Configuration Assistant (DBCA) or the CREATE DATABASE
statement. In either case, you must specify the configuration details for each CDB.
See "About CDB Creation with DBCA" and "Creating a CDB" for detailed information
about creating a CDB.
After a CDB is created, it consists of the root and PDB$SEED, as shown in Figure 3-1.
The CDB root contains only Oracle maintained objects and data structures, and
PDB$SEED is a generic seed database for cloning purposes.

Figure 3-1 A Newly Created CDB

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Task 3 Optionally, Create Application Containers
An application container is an optional component of a CDB that consists of an
application root and the application PDBs associated with it. An application container
stores data for one or more applications.
The following graphic shows a CDB with one empty application container.

Figure 3-2 An Application Container

CDB

Seed
(PDB$SEED)

Application
Container

Application Root

Root (CDB$ROOT)

Chapter 3
Tasks and Tools for a Multitenant Environment

3-4

See "Overview of Applications in an Application Container".

Task 4 Create, Plug In, and Unplug PDBs
PDBs contain user data. After creating a CDB, you can create PDBs, plug unplugged PDBs
into it, and unplug PDBs from it whenever necessary. You can unplug a PDB from a CDB
and plug this PDB into a different CDB. You might move a PDB from one CDB to another if,
for example, you want to move the workload for the PDB from one server to another.
See "Creating and Removing PDBs and Application Containers" for information about
creating PDBs, plugging in PDBs, and unplugging PDBs.
Figure 3-3 shows a CDB with several PDBs.

Figure 3-3 A CDB with PDBs

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Figure 3-4 shows a CDB with PDBs, application containers, and application PDBs.

Chapter 3
Tasks and Tools for a Multitenant Environment

3-5

Figure 3-4 A CDB with PDBs, Application Containers, and Application PDBs

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Container

Application
PDBs

Application
Container

Application
PDBs

Application
Seed

Application Root Application Root

Task 5 Administer and Monitor the CDB and Application Containers
Administering and monitoring a CDB involves managing the entire CDB, the root, and
some attributes of PDBs. Some management tasks are the same for CDBs and non-
CDBs, and some are different.
Administering and monitoring an application container is similar to administering and
monitoring a CDB, but your actions only affect the application root and the application
PDBs that are part of the application container.
See "After Creating a CDB" for descriptions of tasks that are similar and tasks that are
different. Also, see " Administering a CDB" and "Monitoring CDBs and PDBs".
You can use Oracle Resource Manager to allocate and manage resources among
PDBs hosted in a CDB, and you can use it to allocate and manage resource use
among user processes within a PDB. See "Using Oracle Resource Manager for
PDBs".
You can also use Oracle Scheduler to schedule jobs in a CDB and in individual PDBs.
See " Using Oracle Scheduler with a CDB".

Task 6 Administer and Monitor PDBs and Application PDBs
Administering and monitoring a PDB or an application PDB is similar to administering
and monitoring a non-CDB, but there are some differences. See " Administering
PDBs" and "Monitoring CDBs and PDBs".

Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

Chapter 3
Tasks and Tools for a Multitenant Environment

3-6

Table 3-1 Tools for a Multitenant Environment

Tool Description See Also

SQL*Plus SQL*Plus is a command-line tool that
enables you to create, manage, and monitor
CDBs and PDBs. You use SQL statements
and Oracle-supplied PL/SQL packages to
complete these tasks in SQL*Plus.

SQL*Plus User's Guide and Reference

Oracle Database
Configuration
Assistant (DBCA)

DBCA is a utility with a graphical user
interface that enables you to create and
duplicate CDBs. It also enables you to
create, relocate, clone, plug in, and unplug
PDBs.

Oracle Database 2 Day DBA, Oracle
Database Installation Guide, and the DBCA
online help

Oracle Enterprise
Manager Cloud
Control

Cloud Control is a system management tool
with a graphical user interface that enables
you to manage and monitor a CDB and its
PDBs.

Cloud Control online help

Oracle SQL Developer Oracle SQL Developer is a client application
with a graphical user interface that enables
you to configure a CDB, create PDBs, plug
and unplug PDBs, modify the state of a
PDB, clone a PDB to the Oracle Cloud, hot
clone/refresh a PDB, relocate a PDB
between application roots, and more.

Additionally, Oracle SQL Developer has
graphical interfaces for resource
management, storage, security,
configuration, and reporting of performance
metrics on containers and pluggable
databases in a CDB.

Oracle SQL Developer User's Guide

The Server Control
(SRVCTL) utility

The SRVCTL utility can create and manage
services for PDBs.

"Managing Services for PDBs"

EM Express EM Express is a management and
monitoring tool with a graphical user
interface which ships with Oracle Database.
It can be configured for the CDB, individual
hosted PDBs, or both. This tool is intended
for PDB administrative use, in the context of
the PDB, to manage and monitor application
development as an application DBA.

Oracle Database 2 Day DBA

Oracle Multitenant
Self-Service
Provisioning
application

This application enables the self-service
provisioning of PDBs. CDB administrators
control access to this self-service
application and manage quotas on PDBs.

http://www.oracle.com/goto/
multitenant
To access the application, click the
Downloads tab, and select Oracle
Pluggable Database Self-Service
Provisioning application in the
Downloads for Oracle Multitenant section.

Chapter 3
Tasks and Tools for a Multitenant Environment

3-7

http://www.oracle.com/goto/multitenant
http://www.oracle.com/goto/multitenant

4
Creating and Configuring a CDB

Creating and configuring a multitenant container database (CDB) includes tasks such as
planning, creating the CDB, and optionally configuring EM Express.

• About Creating a CDB
The procedure for creating a multitenant container database (CDB) is similar to the
procedure for creating a non-CDB.

• Planning for CDB Creation
CDB creation prepares several operating system files to work together as a CDB.

• Creating a CDB
You can create a CDB using DBCA or by manually issuing the CREATE DATABASE SQL
statement.

• Configuring EM Express for a CDB
For a CDB, you can configure Oracle Enterprise Manager Database Express (EM
Express) for the root and for each PDB by setting a global HTTPS port, or you can set a
different port for every container in the CDB.

• After Creating a CDB
After creation, a CDB consists of the root and the PDB seed.

About Creating a CDB
The procedure for creating a multitenant container database (CDB) is similar to the procedure
for creating a non-CDB.

The procedure for creating a non-CDB is described in Oracle Database Administrator’s
Guide. Before creating a CDB, you must understand the concepts and tasks described in this
documentation.

This chapter describes special considerations for creating a CDB. This chapter also
describes differences between the procedure for creating a non-CDB in Oracle Database
Administrator’s Guide and the procedure for creating a CDB.

After you plan your CDB using some of the guidelines presented in "Planning for CDB
Creation", you can create the CDB either during or after Oracle Database software
installation. The following are typical reasons to create a CDB after installation:

• You used Oracle Universal Installer (OUI) to install software only, and did not create a
CDB.

• You want to create another CDB on the same host as an existing CDB or an existing non-
CDB. In this case, this chapter assumes that the new CDB uses the same Oracle home
as the existing database. You can also create the CDB in a new Oracle home by running
OUI again.

The specific methods for creating a CDB are:

• With the Database Configuration Assistant (DBCA), a graphical tool.

See "About CDB Creation with DBCA".

4-1

• With the CREATE DATABASE SQL statement.

See "Creating a CDB".

Planning for CDB Creation
CDB creation prepares several operating system files to work together as a CDB.

Note:

Before planning for CDBs, review the conceptual information about CDBs
and PDBs in "Introduction to the Multitenant Architecture ".

• Decide How to Configure the CDB
Prepare to create the CDB by research and careful planning.

• Prerequisites for CDB Creation
You must complete prerequisites before creating a new CDB.

Decide How to Configure the CDB
Prepare to create the CDB by research and careful planning.

As a first step, consult the Oracle Database Release Notes, which includes a list of
Oracle Database features that are currently not supported in a CDB. If you must use
one or more of these features, then create a non-CDB.

The following sections describe recommended actions and considerations that apply
to CDBs:

• Plan the PDBs
Plan the tables and indexes for the pluggable databases (PDBs) and estimate the
amount of space they require.

• Plan the Physical Layout
Plan the layout of the underlying operating system files your CDB will comprise.

• Learn How to Manage Initialization Parameters
Familiarize yourself with the initialization parameters that can be included in an
initialization parameter file.

• Select the Character Set
You must choose a character set for the CDB.

• Decide Which Time Zones to Support
Consider which time zones your CDB must support.

• Select the Database and Redo Log Block Sizes
Select the standard database block size for the CDB.

• Plan the SYSTEM and SYSAUX Tablespaces
There is a separate SYSAUX and SYSTEM tablespace for the CDB root and for each
PDB.

• Plan the Temporary Tablespaces
Plan to use default temporary tablespaces.

Chapter 4
Planning for CDB Creation

4-2

• Choose the Undo Mode
Plan to use an undo tablespace to manage your undo data.

• Plan the Services for Your Application
Plan for the database services required to meet the needs of your applications.

• Learn How to Start Up and Shut Down a CDB
Familiarize yourself with the principles and options of starting up and shutting down a
database instance and mounting and opening a CDB.

• Plan for Oracle RAC
If you plan to use Oracle RAC, then plan for an Oracle RAC environment.

Plan the PDBs
Plan the tables and indexes for the pluggable databases (PDBs) and estimate the amount of
space they require.

In a CDB, most user data resides in the PDBs. The root contains no user data or minimal
user data. Plan for the PDBs that will be part of the CDB. The disk storage space requirement
for a CDB is the space required for the Oracle Database installation plus the sum of the
space requirements for all PDBs that will be part of the CDB.

The MAX_PDBS initialization parameter specifies a limit on the total number of PDBs that you
can create in a CDB root or application root. The default value and maximum value for
MAX_PDBS depend on your Oracle Database offering. See Oracle Database Licensing
Information User Manual for details on which features are supported for different editions and
services.

You can also create application containers in a CDB. An application container is a collection
of application PDBs that store the data for one or more applications. In addition, application
containers support user-created application common objects that can be shared by the
application PDBs in the application container.

See Also:

• "Creating and Removing PDBs and Application Containers"

• "Overview of Applications in an Application Container"

• Oracle Database Administrator’s Guide to learn more about database structure
and storage and schema objects

• Oracle Database Reference to learn more about MAX_PDBS

Plan the Physical Layout
Plan the layout of the underlying operating system files your CDB will comprise.

There are separate data files for the CDB root, PDB$SEED, each PDB, each application root,
and each application PDB.

There is one redo log for a single-instance CDB, or one redo log for each instance of an
Oracle Real Application Clusters (Oracle RAC) CDB. Also, for Oracle RAC, all data files and
redo log files must be on shared storage.

Chapter 4
Planning for CDB Creation

4-3

See Also:

• Oracle Database Administrator’s Guide for information about using
Oracle Managed Files

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Database Performance Tuning Guide

• Oracle Database Backup and Recovery User’s Guide

• Oracle Grid Infrastructure Installation and Upgrade Guide for information
about configuring storage for Oracle RAC

• Your Oracle operating system–specific documentation, including the
appropriate Oracle Database installation guide.

Learn How to Manage Initialization Parameters
Familiarize yourself with the initialization parameters that can be included in an
initialization parameter file.

Before creating a CDB, ensure that you are familiar with the concept and operation of
a server parameter file (SPFILE). An SPFILE file lets you store and manage your
initialization parameters persistently in a server-side binary file.

A CDB uses a single SPFILE or a single text initialization parameter file (PFILE).
Values of initialization parameters set for the root can be inherited by PDBs. You can
set some initialization parameters for a PDB by using the ALTER SYSTEM statement.

The CDB root must be the current container when you operate on an SPFILE. The
user who creates or modifies the SPFILE must be a common user with SYSDBA,
SYSOPER, or SYSBACKUP administrative privilege, and the user must exercise the
privilege by connecting AS SYSDBA, AS SYSOPER, or AS SYSBACKUP respectively.

The following initialization parameters are important:

• To create a CDB, the ENABLE_PLUGGABLE_DATABASE initialization parameter must be
set to TRUE.

• Create the global database name for the CDB root by setting both the DB_NAME and
DB_DOMAIN initialization parameters. The global database name of the root is the
global database name of the CDB. The global database name of a PDB is defined
by the PDB name and the DB_DOMAIN initialization parameter.

Chapter 4
Planning for CDB Creation

4-4

See Also:

• "About the Current Container"

• "Modifying a CDB with ALTER SYSTEM"

• "Listing the Modifiable Initialization Parameters in PDBs"

• Oracle Database Administrator’s Guide for information about schema objects

• Oracle Database Administrator’s Guide for information about determining the
global database name

• Oracle Database Reference

Select the Character Set
You must choose a character set for the CDB.

When selecting the database character set for the CDB, you must consider the current
character sets of the databases that you want to consolidate (plug) into this CDB. Oracle
recommends AL32UTF8 for the CDB database character set and AL16UTF6 for the CDB
national character set because they provide the most flexibility.

When the character set of the CDB root is AL32UTF8, PDBs that are plugged into the CDB
can have a different character set from the CDB root. PDBs that are created from PDB$SEED
inherit the AL32UTF8 character set from it, but you can migrate the PDB to a different
character set. When the character set of the root is not AL32UTF8, all PDBs in the CDB use
the character set of the CDB root.

Note:

Oracle Multitenant does not support a LOB in one container from being accessed
by a container with a different character set using data links, extended data links, or
the CONTAINERS() clause. For example, if the CDB root and salespdb have different
character sets, then a CONTAINERS() query run in the CDB root should not access
LOBs stored in salespdb.

When moving a non-CDB to a CDB, it is best to migrate the non-CDB to AL32UTF8 first. You
can use Oracle Database Migration Assistant for Unicode (DMU) to migrate a non-CDB to
AL32UTF8. After a CDB is created, you cannot migrate the character set of the CDB using
DMU.

See Also:

Oracle Database Globalization Support Guide

Chapter 4
Planning for CDB Creation

4-5

Decide Which Time Zones to Support
Consider which time zones your CDB must support.

You can set the time zones for the entire CDB (including all PDBs). You can also set
the time zones individually for each PDB.

See Also:

Oracle Database Administrator’s Guide for information about specifying the
database time zone and time zone file

Select the Database and Redo Log Block Sizes
Select the standard database block size for the CDB.

This is specified at CDB creation by the DB_BLOCK_SIZE initialization parameter and
cannot be changed after the CDB is created. The standard block size applies to the
entire CDB.

If you plan to store online redo log files on disks with a 4K byte sector size, then
determine whether you must manually specify the online redo log block size.

• Oracle Database Administrator’s Guide for information about specifying database
block sizes

• Oracle Database Administrator’s Guide for information about planning the block
size of redo log files

Plan the SYSTEM and SYSAUX Tablespaces
There is a separate SYSAUX and SYSTEM tablespace for the CDB root and for each PDB.

You must determine the appropriate initial sizing for the SYSAUX tablespace. Also, plan
to use a default tablespace for non-SYSTEM users to prevent inadvertently saving
database objects in the SYSTEM tablespace. You can specify a separate default
tablespace for the CDB root and for each PDB.

See Also:

• Oracle Database Administrator’s Guide for information about the SYSAUX
tablespace

• Oracle Database Administrator’s Guide for information about creating a
default permanent tablespace

• "About Container Modification When Connected to CDB Root"

Chapter 4
Planning for CDB Creation

4-6

Plan the Temporary Tablespaces
Plan to use default temporary tablespaces.

A default temporary tablespace exists for every container in the CDB. Therefore, the CDB
root and every PDB, application root, and application PDB has its own default temporary
tablespace.

Oracle Database uses the shared temporary tablespace for recursive SQL only. Hosted PDB
tenants do not use this tablespace directly.

See Also:

• "About Container Modification When Connected to CDB Root"

• Oracle Database Administrator’s Guide for information about creating a default
temporary tablespace

Choose the Undo Mode
Plan to use an undo tablespace to manage your undo data.

A CDB can run in different undo modes. You can configure a CDB to have one active undo
tablespace for the entire CDB or a separate undo tablespace for each container in the CDB.
You can specify the undo mode during CDB creation, and you can change the undo mode
after the CDB is created.

When you choose to have one active undo tablespace for the entire CDB, shared undo is
used, and local undo is disabled. In this configuration, there is one active undo tablespace for
a single-instance CDB. When local undo is enabled, there is one undo tablespace for each
container in a single instance configuration. For an Oracle RAC CDB, each PDB has one
undo tablespace in each node in which it is open. With shared undo, only a common user
who has the appropriate privileges and whose current container is the root can create an
undo tablespace.

The best practice is to use local undo for a CDB. Shared undo is supported primarily for
upgrade and transitional purposes only. Although there is minor overhead associated with
local undo when compared with shared undo, the benefits of local undo make it preferable in
most environments. Local undo makes unplug operations and point in time recovery faster,
and it is required for some features, such as relocating a PDB. By default, DBCA creates new
CDBs with local undo enabled.

In a CDB, the UNDO_MANAGEMENT initialization parameter must be set to AUTO, and an undo
tablespace is required to manage the undo data.

When local undo is not enabled, undo tablespaces are visible in static data dictionary views
and dynamic performance (V$) views when the current container is the root. Undo
tablespaces are visible only in dynamic performance views when the current container is a
PDB.

Also, when local undo is disabled, Oracle Database silently ignores undo tablespace and
rollback segment operations when the current container is a PDB.

Chapter 4
Planning for CDB Creation

4-7

See Also:

• "Setting the Undo Mode in a CDB Using ALTER DATABASE"

• "About the Current Container"

• Oracle Database Administrator’s Guide for information about managing
undo

Plan the Services for Your Application
Plan for the database services required to meet the needs of your applications.

The root and each PDB might require several services. You can create services for the
root or for individual PDBs.

Database services have an optional PDB property. You can create services and
associate them with a particular PDB by specifying the PDB property. Services with a
null PDB property are associated with the CDB root.

You can also use the DBMS_SERVICE supplied PL/SQL package to create services and
associate them with PDBs. When you run CREATE_SERVICE procedure, the service is
associated with the current container.

You can manage services with the SRVCTL utility, Oracle Enterprise Manager Cloud
Control, and the DBMS_SERVICE supplied PL/SQL package.

When you create a PDB, a new default service for the PDB is created automatically.
The service has the same name as the PDB. You cannot manage this service with the
SRVCTL utility. However, you can create user-defined services and customize them
for your applications.

See Also:

• "Managing Services for PDBs"

• Oracle Database Administrator’s Guide to learn about database services
and using SRVCTL with a single-instance database

• Oracle Real Application Clusters Administration and Deployment Guide
for information about using the SRVCTL utility with an Oracle RAC
database

Learn How to Start Up and Shut Down a CDB
Familiarize yourself with the principles and options of starting up and shutting down a
database instance and mounting and opening a CDB.

In a CDB, the CDB root and all containers share a single database instance, or, when
using Oracle RAC, multiple concurrent instances. You can start up and shut down an
entire CDB, which in turn determines the state of hosted PDBs. When the CDB is
open, you can control the open mode of PDBs by using either an ALTER PLUGGABLE

Chapter 4
Planning for CDB Creation

4-8

DATABASE statement in the context of the CDB or PDB to open or close hosted PDBs. To
maintain backward compatibility, the ALTER DATABASE OPEN statement is supported when it is
executed and a PDB is the current container. You can also use the SQL*Plus STARTUP
command and the SQL*Plus SHUTDOWN command when a PDB is the current container.
However, the SQL*Plus STARTUP MOUNT command is a CDB-only operation and cannot be
used when a PDB is the current container.

See Also:

• "Modifying the Open Mode of PDBs"

• "Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement"

• Oracle Database Administrator’s Guide for information about starting up a
database

Plan for Oracle RAC
If you plan to use Oracle RAC, then plan for an Oracle RAC environment.

The Oracle RAC documentation describes special considerations for a CDB in an Oracle
RAC environment. See your platform-specific Oracle RAC installation guide for information
about creating a CDB in an Oracle RAC environment.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Prerequisites for CDB Creation
You must complete prerequisites before creating a new CDB.

Before you can create a new CDB, the following prerequisites must be met:

• Ensure that the prerequisites described in "Prerequisites for a Multitenant Environment"
are met.

• Sufficient memory must be available to start the Oracle Database instance.

Size the memory required by a CDB to accommodate the workload of each of its
containers and the number of containers.

• Sufficient disk storage space must be available for the planned PDBs on the computer
that runs Oracle Database. In an Oracle RAC environment, sufficient shared storage
must be available.

The disk storage space required by a CDB is the sum of the space requirements for all
PDBs that will reside in the CDB.

These prerequisites are discussed in the Oracle Database Installation Guide or Oracle Grid
Infrastructure Installation and Upgrade Guide specific to your operating system. If you use the

Chapter 4
Planning for CDB Creation

4-9

Oracle Universal Installer, then it will guide you through your installation and provide
help in setting environment variables and establishing directory structure and
authorizations.

Creating a CDB
You can create a CDB using DBCA or by manually issuing the CREATE DATABASE SQL
statement.

Note:

Oracle strongly recommends using the Database Configuration Assistant
(DBCA) template deployment instead of the CREATE DATABASE SQL
statement to create a CDB, because using DBCA is a more automated
approach, and your CDB is ready to use when DBCA completes.

• About CDB Creation with DBCA
Oracle strongly recommends using the Database Configuration Assistant (DBCA)
to create a CDB.

• About CDB Creation with SQL Statements
Creating a CDB using the CREATE DATABASE SQL statement is similar to creating a
non-CDB.

• Creating a CDB with the CREATE DATABASE Statement
When you use the CREATE DATABASE statement to create a CDB, you must
complete additional actions before you have an operational CDB.

• Creating a CDB with the CREATE DATABASE Statement: Examples
These examples create a CDB named newcdb.

About CDB Creation with DBCA
Oracle strongly recommends using the Database Configuration Assistant (DBCA) to
create a CDB.

DBCA offers the following advantages over alternative techniques:

• Creation is largely automated.

• DBCA enables you to specify the number of PDBs in the CDB when it is created.

• When DBCA completes, the CDB is ready to use.

• After a CDB is created, you can use DBCA to do the following:

– Clone local PDBs

– Plug in and unplug PDBs

– Duplicate a CDB (silent mode only)

Depending on the type of install that you select, Oracle Universal Installer (OUI) can
launch DBCA. You can also launch DBCA as a standalone tool at any time after
Oracle Database installation.

You can use DBCA to create a CDB in either of the following modes:

Chapter 4
Creating a CDB

4-10

• Interactive mode

This mode provides a graphical interface and guided workflow for creating and
configuring a CDB.

• Noninteractive mode (also called silent mode)

This mode enables you to script a preconfigured CDB template deployment with
customized PDB seed databases that are suitable for cloning. Run DBCA in silent mode
by specifying command-line arguments, a response file, or both.

See Also:

• Oracle Database Administrator’s Guide to learn how to create a database with
DBCA

• Oracle Database 2 Day DBA

• The DBCA online help

About CDB Creation with SQL Statements
Creating a CDB using the CREATE DATABASE SQL statement is similar to creating a non-CDB.

This section describes additional requirements for creating a CDB. When you create a CDB
using CREATE DATABASE, you must do the following:

• Enable PDBs

• Specify the names and locations of the CDB root files

• Specify the names and locations of the PDB$SEED files

Note:

Using the CREATE DATABASE SQL statement is a more manual approach to creating
a CDB than using DBCA.

• About Enabling PDBs
To create a CDB, the CREATE DATABASE statement must include the ENABLE PLUGGABLE
DATABASE clause.

• About the Names and Locations of Files for the CDB Root and PDB$SEED
To create the CDB, Oracle Database must know the names and locations of the files for
the CDB root and PDB$SEED.

• About the Attributes of the Data Files for PDB$SEED
You can use the PDB seed (PDB$SEED) as a template to create new containers.

• About the CDB Undo Mode
Shared undo is the default. You can use the undo_mode_clause to an ENABLE PLUGGABLE
DATABASE clause to specify the undo mode of the CDB.

Chapter 4
Creating a CDB

4-11

See Also:

Oracle Database Concepts for information about the files in a CDB

About Enabling PDBs
To create a CDB, the CREATE DATABASE statement must include the ENABLE PLUGGABLE
DATABASE clause.

This clause affects the CREATE DATABASE statement as follows:

• ENABLE PLUGGABLE DATABASE is included

The statement creates a CDB with the root and PDB$SEED. You can never change
the CDB into a non-CDB.

• ENABLE PLUGGABLE DATABASE is not included

The newly created database is a non-CDB, which means that it does not include
the CDB root or PDB$SEED. The non-CDB can never contain PDBs.

About the Names and Locations of Files for the CDB Root and PDB$SEED
To create the CDB, Oracle Database must know the names and locations of the files
for the CDB root and PDB$SEED.

After the CREATE DATABASE statement completes successfully, you can use PDB$SEED
and its files to create new PDBs. You cannot modify the PDB seed after it is created.

You must specify the names and locations of the files for PDB$SEED in one of the
following ways:

1. The ENABLE PLUGGABLE DATABASE SEED FILE_NAME_CONVERT clause of CREATE
DATABASE

2. Oracle Managed Files

3. The PDB_FILE_NAME_CONVERT initialization parameter

If you use more than one technique, then the CREATE DATABASE statement uses one
technique in the order of precedence of the list. For example, if you use all techniques,
then the CREATE DATABASE statement only uses the specifications in the ENABLE
PLUGGABLE DATABASE SEED FILE_NAME_CONVERT clause because it is first in the list.

• The SEED FILE_NAME_CONVERT Clause
The SEED FILE_NAME_CONVERT clause of the CREATE DATABASE statement specifies
how to generate the names of the PDB$SEED files using the names of the CDB root
files.

• Oracle Managed Files
When Oracle Managed Files is enabled, it can determine the names and locations
of the PDB$SEED files.

• The PDB_FILE_NAME_CONVERT Initialization Parameter
The PDB_FILE_NAME_CONVERT initialization parameter can specify the names and
locations of the seed's files.

Chapter 4
Creating a CDB

4-12

See Also:

"Creating a PDB from Scratch"

The SEED FILE_NAME_CONVERT Clause
The SEED FILE_NAME_CONVERT clause of the CREATE DATABASE statement specifies how to
generate the names of the PDB$SEED files using the names of the CDB root files.

You can use this clause to specify one of the following options:

• One or more file name patterns and replacement file name patterns, in the following form:

'string1' , 'string2' , 'string3' , 'string4' , ...

The string2 file name pattern replaces the string1 file name pattern, and the string4 file
name pattern replaces the string3 file name pattern. You can use as many pairs of file
name pattern and replacement file name pattern strings as required.

If you specify an odd number of strings (the last string has no corresponding replacement
string), then an error is returned. Do not specify more than one pattern/replace string that
matches a single file name or directory.

File name patterns cannot match files or directories managed by Oracle Managed Files.

• NONE when no file names should be converted. Omitting the SEED FILE_NAME_CONVERT
clause is the same as specifying NONE.

Example 4-1 SEED FILE_NAME_CONVERT Clause

This SEED FILE_NAME_CONVERT clause generates file names for the PDB$SEED files in the /
oracle/pdbseed/ directory using file names in the /oracle/dbs directory.

SEED FILE_NAME_CONVERT = ('/oracle/dbs/', '/oracle/pdbseed/')

See Also:

Oracle Database SQL Language Reference for the syntax of the SEED
FILE_NAME_CONVERT clause

Oracle Managed Files
When Oracle Managed Files is enabled, it can determine the names and locations of the
PDB$SEED files.

Chapter 4
Creating a CDB

4-13

See Also:

Oracle Database Administrator’s Guide

The PDB_FILE_NAME_CONVERT Initialization Parameter
The PDB_FILE_NAME_CONVERT initialization parameter can specify the names and
locations of the seed's files.

To use this technique, ensure that the PDB_FILE_NAME_CONVERT initialization parameter
is included in the initialization parameter file when you create the CDB.

File name patterns specified in this initialization parameter cannot match files or
directories managed by Oracle Managed Files.

See Also:

Oracle Database Reference

About the Attributes of the Data Files for PDB$SEED
You can use the PDB seed (PDB$SEED) as a template to create new containers.

The attributes of the data files for the CDB root SYSTEM and SYSAUX tablespaces might
not be suitable for the PDB seed. In this case, you can specify different attributes for
the PDB seed data files by using the tablespace_datafile clauses. Use these
clauses to specify attributes for all data files comprising the SYSTEM and SYSAUX
tablespaces in the PDB seed. The values inherited from the root are used for any
attributes whose values have not been provided.

The syntax of the tablespace_datafile clauses is the same as the syntax for a data
file specification, excluding the name and location of the data file and the REUSE
attribute. You can use the tablespace_datafile clauses with any of the methods for
specifying the names and locations of the PDB seed's data files described in "About
the Names and Locations of Files for the CDB Root and PDB$SEED".

The tablespace_datafile clauses do not specify the names and locations of the PDB
seed's data files. Instead, they specify the attributes of SYSTEM and SYSAUX data files in
the PDB seed that differ from those in the root. If SIZE is not specified in the
tablespace_datafile clause for a tablespace, then data file size for the tablespace is
set to a predetermined fraction of the size of a corresponding root data file.

Example 4-2 Using the tablespace_datafile Clauses

Assume the following CREATE DATABASE clauses specify the names, locations, and
attributes of the data files that comprise the SYSTEM and SYSAUX tablespaces in the
root.

DATAFILE '/u01/app/oracle/oradata/newcdb/system01.dbf'
 SIZE 325M REUSE

Chapter 4
Creating a CDB

4-14

SYSAUX DATAFILE '/u01/app/oracle/oradata/newcdb/sysaux01.dbf'
 SIZE 325M REUSE

You can use the following tablespace_datafile clauses to specify different attributes for
these data files:

SEED
 SYSTEM DATAFILES
 SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES
 SIZE 100M

In this example, the data files for the PDB seed's SYSTEM and SYSAUX tablespaces inherit the
REUSE attribute from the root's data files. However, the following attributes of the PDB seed's
data files differ from the root's:

• The data file for the SYSTEM tablespace is 125 MB for the PDB seed and 325 MB for the
root.

• AUTOEXTEND is enabled for the PDB seed's SYSTEM data file, and it is disabled by default
for the root's SYSTEM data file.

• The data file for the SYSAUX tablespace is 100 MB for the PDB seed and 325 MB for the
root.

See Also:

Oracle Database SQL Language Reference for information about data file
specifications

About the CDB Undo Mode
Shared undo is the default. You can use the undo_mode_clause to an ENABLE PLUGGABLE
DATABASE clause to specify the undo mode of the CDB.

The undo_mode_clause specifies whether the CDB undo mode is local or shared. Local undo
mode means that every container in the CDB uses local undo. To configure local undo mode
for the CDB, specify LOCAL UNDO ON.

Shared undo mode means that there is one active undo tablespace for a single-instance
CDB, or for an Oracle RAC CDB, there is one active undo tablespace for each instance. To
configure shared undo mode for the CDB, either do not specify undo_mode_clause, or
specify LOCAL UNDO OFF.

Chapter 4
Creating a CDB

4-15

Creating a CDB with the CREATE DATABASE Statement
When you use the CREATE DATABASE statement to create a CDB, you must complete
additional actions before you have an operational CDB.

These actions include building views on the data dictionary tables and installing
standard PL/SQL packages in the root. Perform these actions by running the supplied
catcdb.sql script, which installs all components required by a CDB.

Prerequisites

Note the following prerequisites:

• The instructions in this section apply to single-instance database installations only.
See the Oracle Real Application Clusters (Oracle RAC) installation guide for your
platform for instructions for creating an Oracle RAC CDB.

• If you are using Oracle ASM to manage your disk storage, then you must start the
Oracle ASM instance and configure your disk groups before performing these
steps.

• The ENABLE_PLUGGABLE_DATABASE initialization parameter must be set to true.

To create a CDB with the CREATE DATABASE statement:

1. Complete steps 1 - 8 in the “Creating a Database with the CREATE DATABASE
Statement” topic in Oracle Database Administrator’s Guide.

In a CDB, the DB_NAME initialization parameter specifies the name of the root. Also,
it is common practice to set the SID to the name of the root. The maximum
number of characters for this name is 8. For more information, see the discussion
of the DB_NAME initialization parameter in Oracle Database Reference.

2. Use the CREATE DATABASE statement to create a new CDB.

See the examples in "Creating a CDB Using Oracle Managed Files: Example" and
"Creating a CDB Without Using Oracle Managed Files".

Tip:

If your CREATE DATABASE statement fails, and if you did not complete
Step 7 in the “Creating a Database with the CREATE DATABASE Statement”
topic in Oracle Database Administrator’s Guide, then ensure that there is
not a preexisting server parameter file (SPFILE) for this instance that is
setting initialization parameters in an unexpected way. For example, an
SPFILE contains a setting for the complete path to all control files, and
the CREATE DATABASE statement fails if those control files do not exist.
Ensure that you shut down and restart the instance (with STARTUP
NOMOUNT) after removing an unwanted SPFILE.

3. Run the catcdb.sql SQL script.

Enter the following in SQL*Plus to run the script:

@?/rdbms/admin/catcdb.sql

Chapter 4
Creating a CDB

4-16

4. When prompted by the script, enter the log file directory for parameter 1 and the log file
name for parameter 2.

For following example enters /tmp for the first prompt and create_cdb.log for the second
prompt:

SQL> host perl -I &&rdbms_admin &&rdbms_admin_catcdb --logDirectory &&1 --
logFilename &&2
Enter value for 1: /tmp
Enter value for 2: create_cdb.log

5. When prompted by the script, enter any other required information.

For example, the scripts prompts for administrator passwords and the temporary
tablespace name:

Enter new password for SYS: ********
Enter new password for SYSTEM: ********
Enter temporary tablespace name: TEMP

6. After catcdb.sql completes, perform steps 12 - 14 in the “Creating a Database with the
CREATE DATABASE Statement” topic in Oracle Database Administrator’s Guide.

See Also:

• Oracle Database Administrator’s Guide to learn more about CREATE DATABASE
clauses and Oracle Managed Files

• Oracle Real Application Clusters Administration and Deployment Guide for
more information on Oracle RAC

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Database SQL Language Reference to learn more about the clauses
and parameter values for the CREATE DATABASE statement

Creating a CDB with the CREATE DATABASE Statement: Examples
These examples create a CDB named newcdb.

The examples assume that you completed steps 1 - 8 in the “Creating a Database with the
CREATE DATABASE Statement” topic in Oracle Database Administrator’s Guide.

• Creating a CDB Without Using Oracle Managed Files
The following statement creates a CDB named newcdb. This name must agree with the
DB_NAME parameter in the initialization parameter file.

• Creating a CDB Using Oracle Managed Files: Example
This example illustrates creating a CDB with Oracle Managed Files, which enables you to
use a much simpler CREATE DATABASE statement.

Chapter 4
Creating a CDB

4-17

Creating a CDB Without Using Oracle Managed Files
The following statement creates a CDB named newcdb. This name must agree with the
DB_NAME parameter in the initialization parameter file.

Assumptions

This example assumes the following:

• The initialization parameter file specifies the number and location of control files
with the CONTROL_FILES parameter.

• The directory /u01/app/oracle/oradata/newcdb exists.

• The directory /u01/app/oracle/oradata/pdbseed exists.

• The directories /u01/logs/my and /u02/logs/my exist.

This example includes the ENABLE PLUGGABLE DATABASE clause to create a CDB with
the root and the PDB seed. This example also includes the SEED FILE_NAME_CONVERT
clause to specify the names and locations of the PDB seed's files. This example also
includes tablespace_datafile clauses that specify attributes of the PDB seed data
files for the SYSTEM and SYSAUX tablespaces that differ from the root data files. This
example includes the undo_mode_clause to specify that the CDB undo mode is local.

CREATE DATABASE newcdb
 USER SYS IDENTIFIED BY sys_password
 USER SYSTEM IDENTIFIED BY system_password
 LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/my/redo01b.log')
 SIZE 100M BLOCKSIZE 512,
 GROUP 2 ('/u01/logs/my/redo02a.log','/u02/logs/my/redo02b.log')
 SIZE 100M BLOCKSIZE 512,
 GROUP 3 ('/u01/logs/my/redo03a.log','/u02/logs/my/redo03b.log')
 SIZE 100M BLOCKSIZE 512
 MAXLOGHISTORY 1
 MAXLOGFILES 16
 MAXLOGMEMBERS 3
 MAXDATAFILES 1024
 CHARACTER SET AL32UTF8
 NATIONAL CHARACTER SET AL16UTF16
 EXTENT MANAGEMENT LOCAL
 DATAFILE '/u01/app/oracle/oradata/newcdb/system01.dbf'
 SIZE 700M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 SYSAUX DATAFILE '/u01/app/oracle/oradata/newcdb/sysaux01.dbf'
 SIZE 550M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 DEFAULT TABLESPACE deftbs
 DATAFILE '/u01/app/oracle/oradata/newcdb/deftbs01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE tempts1
 TEMPFILE '/u01/app/oracle/oradata/newcdb/temp01.dbf'
 SIZE 20M REUSE AUTOEXTEND ON NEXT 640K MAXSIZE UNLIMITED
 UNDO TABLESPACE undotbs1
 DATAFILE '/u01/app/oracle/oradata/newcdb/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE UNLIMITED
 ENABLE PLUGGABLE DATABASE
 SEED

Chapter 4
Creating a CDB

4-18

 FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/newcdb/',
 '/u01/app/oracle/oradata/pdbseed/')
 SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES SIZE 100M
 USER_DATA TABLESPACE usertbs
 DATAFILE '/u01/app/oracle/oradata/pdbseed/usertbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 LOCAL UNDO ON;

A CDB is created with the following characteristics:

• The CDB is named newcdb. Its global database name is newcdb.us.example.com, where
the domain portion (us.example.com) is taken from the initialization parameter file. See
Oracle Database Administrator’s Guide for information about determining the global
database name.

• Three control files are created as specified by the CONTROL_FILES initialization parameter,
which was set before CDB creation in the initialization parameter file. See Oracle
Database Administrator’s Guide for a sample initialization parameter file and Oracle
Database Administrator’s Guide for information about specifying control files.

• The passwords for user accounts SYS and SYSTEM are set to the values that you specified.
The passwords are case-sensitive. The two clauses that specify the passwords for SYS
and SYSTEM are not mandatory in this release of Oracle Database. However, if you specify
either clause, then you must specify both clauses. For further information about the use
of these clauses, see Oracle Database Administrator’s Guide for information about
specifying passwords for users SYS and SYSTEM.

• The new CDB has three online redo log file groups, each with two members, as specified
in the LOGFILE clause. MAXLOGFILES, MAXLOGMEMBERS, and MAXLOGHISTORY define limits for
the redo log. See Oracle Database Administrator’s Guide for information about choosing
the number of redo log files. The block size for the redo logs is set to 512 bytes, the same
size as physical sectors on disk. The BLOCKSIZE clause is optional if block size is to be
the same as physical sector size (the default). Typical sector size and thus typical block
size is 512. Permissible values for BLOCKSIZE are 512, 1024, and 4096. For newer disks
with a 4K sector size, optionally specify BLOCKSIZE as 4096. See Oracle Database
Administrator’s Guide for more information about planning the block size of redo log files.

• MAXDATAFILES specifies the maximum number of data files that can be open in the CDB.
This number affects the initial sizing of the control file. For a CDB, set MAXDATAFILES to a
high number that anticipates the aggregate number of data files for all containers, in
addition to the CDB root files.

Chapter 4
Creating a CDB

4-19

Note:

You can set several limits during CDB creation. Some of these limits are
limited by and affected by operating system limits. For example, if you
set MAXDATAFILES, then Oracle Database allocates enough space in the
control file to store MAXDATAFILES file names, even if the CDB has only
one data file initially. However, because the maximum control file size is
limited and operating system dependent, you might not be able to set all
CREATE DATABASE parameters at their theoretical maximums.

For more information about setting limits during CDB creation, see the
Oracle Database SQL Language Reference and your operating system–
specific Oracle documentation.

• The AL32UTF8 character set is used to store data in this CDB.

• The AL16UTF16 character set is specified as the NATIONAL CHARACTER SET used to
store data in columns specifically defined as NCHAR, NCLOB, or NVARCHAR2.

• The SYSTEM tablespace, consisting of the operating system file /u01/app/oracle/
oradata/newcdb/system01.dbf, is created as specified by the DATAFILE clause. If
a file with that name already exists, then it is overwritten.

• The SYSTEM tablespace is created as a locally managed tablespace. See Oracle
Database Administrator’s Guide for information about creating a locally managed
SYSTEM tablespace.

• A SYSAUX tablespace is created, consisting of the operating system file /u01/app/
oracle/oradata/newcdb/sysaux01.dbf as specified in the SYSAUX DATAFILE
clause. See Oracle Database Administrator’s Guide for information about the
SYSAUX tablespace.

• The DEFAULT TABLESPACE clause creates and names a default permanent
tablespace for this CDB.

• The DEFAULT TEMPORARY TABLESPACE clause creates and names a default
temporary tablespace for the root of this CDB. See Oracle Database
Administrator’s Guide for information about creating a default temporary
tablespace.

• The UNDO TABLESPACE clause creates and names an undo tablespace that is used
to store undo data for this CDB. In a CDB, an undo tablespace is required to
manage the undo data, and the UNDO_MANAGEMENT initialization parameter must be
set to AUTO. If you omit this parameter, then it defaults to AUTO. See Oracle
Database Administrator’s Guide for information about creating an undo
tablespace.

• Redo log files will not initially be archived, because the ARCHIVELOG clause is not
specified in this CREATE DATABASE statement. This is customary during CDB
creation. You can later use an ALTER DATABASE statement to switch to ARCHIVELOG
mode. The initialization parameters in the initialization parameter file for newcdb
relating to archiving are LOG_ARCHIVE_DEST_1 and LOG_ARCHIVE_FORMAT. See
Oracle Database Administrator’s Guide for information about managing archived
redo log files.

• The ENABLE PLUGGABLE DATABASE clause creates a CDB with the root and the PDB
seed.

Chapter 4
Creating a CDB

4-20

• SEED is required for the FILE_NAME_CONVERT clause and the tablespace_datafile
clauses.

• The FILE_NAME_CONVERT clause generates file names for the PDB seed's files in
the /u01/app/oracle/oradata/pdbseed directory using file names in the /u01/app/
oracle/oradata/newcdb directory.

• The SYSTEM DATAFILES clause specifies attributes of the PDB seed SYSTEM tablespace
data file(s) that differ from the root's.

• The SYSAUX DATAFILES clause specifies attributes of the PDB seed SYSAUX tablespace
data file(s) that differ from the root's.

• The USER_DATA TABLESPACE clause creates and names the PDB seed's tablespace for
storing user data and database options such as Oracle XML DB. PDBs created using the
PDB seed include this tablespace and its data file. The tablespace and data file specified
in this clause are not used by the root.

• The LOCAL UNDO ON clause sets the CDB undo mode to local, which means that each
container in the CDB uses local undo.

When the CDB is created in local undo mode, the PDB seed includes an undo
tablespace so that any new PDB created from the PDB seed has an undo tablespace.
When a PDB is created by plugging it in or cloning a remote PDB, and the source PDB
was in shared undo mode, an undo tablespace is created for the PDB automatically the
first time the PDB is opened.

Note:

• Ensure that all directories used in the CREATE DATABASE statement exist. The
CREATE DATABASE statement does not create directories.

• If you are not using Oracle Managed Files, then every tablespace clause must
include a DATAFILE or TEMPFILE clause.

• If CDB creation fails, then you can look at the alert log to determine the reason
for the failure and to determine corrective actions. See Oracle Database
Administrator’s Guide for information about viewing the alert log. If you receive
an error message that contains a process number, then examine the trace file
for that process. Look for the trace file that contains the process number in the
trace file name. See Oracle Database Administrator’s Guide for more
information.

• To resubmit the CREATE DATABASE statement after a failure, you must first shut
down the instance and delete any files created by the previous CREATE
DATABASE statement.

Creating a CDB Using Oracle Managed Files: Example
This example illustrates creating a CDB with Oracle Managed Files, which enables you to
use a much simpler CREATE DATABASE statement.

To use Oracle Managed Files, the initialization parameter DB_CREATE_FILE_DEST must be set.
This parameter defines the base directory for the various CDB files that the CDB creates and
automatically names.

Chapter 4
Creating a CDB

4-21

The following statement is an example of setting this parameter in the initialization
parameter file:

DB_CREATE_FILE_DEST='/u01/app/oracle/oradata'

This example sets the parameter Oracle ASM storage:

DB_CREATE_FILE_DEST = +data

This example includes the ENABLE PLUGGABLE DATABASE clause to create a CDB with
the root and the PDB seed. This example does not include the SEED
FILE_NAME_CONVERT clause because Oracle Managed Files determines the names and
locations of the PDB seed's files. However, this example does include
tablespace_datafile clauses that specify attributes of the PDB seed data files for the
SYSTEM and SYSAUX tablespaces that differ from the root data files.

With Oracle Managed Files and the following CREATE DATABASE statement, the CDB
creates the SYSTEM and SYSAUX tablespaces, creates the additional tablespaces
specified in the statement, and chooses default sizes and properties for all data files,
control files, and redo log files. Note that these properties and the other default CDB
properties set by this method might not be suitable for your production environment, so
it is recommended that you examine the resulting configuration and modify it if
necessary.

CREATE DATABASE newcdb
USER SYS IDENTIFIED BY sys_password
USER SYSTEM IDENTIFIED BY system_password
EXTENT MANAGEMENT LOCAL
DEFAULT TABLESPACE users
DEFAULT TEMPORARY TABLESPACE temp
UNDO TABLESPACE undotbs1
ENABLE PLUGGABLE DATABASE
 SEED
 SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES SIZE 100M;

A CDB is created with the following characteristics:

• The CDB is named newcdb. Its global database name is newcdb.us.example.com,
where the domain portion (us.example.com) is taken from the initialization
parameter file. See Oracle Database Administrator’s Guide for information about
determining the global database name.

• The passwords for user accounts SYS and SYSTEM are set to the values that you
specified. The passwords are case-sensitive. The two clauses that specify the
passwords for SYS and SYSTEM are not mandatory in this release of Oracle
Database. However, if you specify either clause, then you must specify both
clauses. For further information about the use of these clauses, see Oracle
Database Administrator’s Guide for information about specifying passwords for
users SYS and SYSTEM.

• The DEFAULT TABLESPACE clause creates and names a default permanent
tablespace for this CDB.

Chapter 4
Creating a CDB

4-22

• The DEFAULT TEMPORARY TABLESPACE clause creates and names a default temporary
tablespace for the root of this CDB. See Oracle Database Administrator’s Guide for
information about creating a default temporary tablespace.

• The UNDO TABLESPACE clause creates and names an undo tablespace that is used to
store undo data for this CDB. In a CDB, an undo tablespace is required to manage the
undo data, and the UNDO_MANAGEMENT initialization parameter must be set to AUTO. If you
omit this parameter, then it defaults to AUTO. See Oracle Database Administrator’s Guide
for information about creating an undo tablespace.

• Redo log files will not initially be archived, because the ARCHIVELOG clause is not
specified in this CREATE DATABASE statement. This is customary during CDB creation. You
can later use an ALTER DATABASE statement to switch to ARCHIVELOG mode. The
initialization parameters in the initialization parameter file for newcdb relating to archiving
are LOG_ARCHIVE_DEST_1 and LOG_ARCHIVE_FORMAT. See Oracle Database Administrator’s
Guide for information about managing archived redo log files.

• The ENABLE PLUGGABLE DATABASE clause creates a CDB with the root and the PDB seed.

• SEED is required for the tablespace_datafile clauses.

• The SYSTEM DATAFILES clause specifies attributes of the PDB seed's SYSTEM tablespace
data file(s) that differ from the root's.

• The SYSAUX DATAFILES clause specifies attributes of the PDB seed's SYSAUX tablespace
data file(s) that differ from the root's.

Configuring EM Express for a CDB
For a CDB, you can configure Oracle Enterprise Manager Database Express (EM Express)
for the root and for each PDB by setting a global HTTPS port, or you can set a different port
for every container in the CDB.

You can set a global port, which enables you to use EM Express to connect to all PDBs in the
CDB using the HTTPS port for the CDB. Alternatively, you can set a different HTTPS port for
every container in a CDB.

To configure EM Express for a CDB:

1. In SQL*Plus, access a container in a CDB.

The user must have common SYSDBA administrative privilege, and you must exercise this
privilege using AS SYSDBA at connect time. The container can be the root or a PDB.

See "About Container Access in a CDB".

2. Set the port in one of the following ways:

• To set the global port, connect to the CDB$ROOT, and issue the following SQL
statement to configure the global port for the CDB:

EXEC DBMS_XDB_CONFIG.SETGLOBALPORTENABLED(TRUE);

• To set the HTTPS port for the current container, run the following procedure:

exec DBMS_XDB_CONFIG.SETHTTPSPORT(https_port_number);

Replace https_port_number with the appropriate HTTPS port number.

Chapter 4
Configuring EM Express for a CDB

4-23

3. Access EM Express in one of the following ways:

• To use the global port, enter the EM Express URL provided by Database
Configuration Assistant (DBCA) when it configured the CDB that includes the
PDB. When the EM Express login screen appears, specify your administrator
credentials, and enter the name of the PDB that you want to connect to in the
Container Name field.

• The URL for the HTTPS port for a container:

https://database_hostname:https_port_number/em/

Replace database_hostname with the host name of the computer on which the
database instance is running, and replace https_port_number with the
appropriate HTTPS port number.

When connected to the root, EM Express displays data and enables actions that
apply to the entire CDB. When connected to a PDB, EM Express displays data
and enables actions that apply to the PDB only.

Note:

If the listener is not configured on port 1521, then you must manually
configure the port for EM Express. See Oracle Database 2 Day DBA for
instructions.

See Also:

Oracle Database 2 Day DBA for more information about EM Express

After Creating a CDB
After creation, a CDB consists of the root and the PDB seed.

The root contains system-supplied metadata and common users that can administer
the PDBs. The PDB seed is a template that you can use to create new PDBs. The
following graphic shows a newly created CDB.

Chapter 4
After Creating a CDB

4-24

Figure 4-1 A Newly Created CDB

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

In a CDB, the root contains minimal user data or no user data. User data resides in the
PDBs. Therefore, after creating a CDB, one of the first tasks is to add the PDBs that will
contain the user data.

The following graphic shows a CDB with PDBs.

Figure 4-2 CDB with PDBs

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

You have the option of creating one or more application containers. An application container
consists of an application root and application PDBs, and it stores data for one or more
applications. An application container can store application common objects, which contain
user data that can be shared by the application PDBs in the application container. It can also
contain an application seed for fast creation of application PDBs in an application container.

Chapter 4
After Creating a CDB

4-25

Figure 4-3 Application Containers in a CDB

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Container

Application
PDBs

Application
Container

Application
PDBs

Application
Seed

Application Root Application Root

When you have added the PDBs and application containers to the CDB, the physical
structure of a CDB is very similar to the physical structure of a non-CDB. A CDB
contains the following files:

• One control file

• One active online redo log for a single-instance CDB, or one active online redo log
for each instance of an Oracle RAC CDB

• Sets of temp files

There is one default temporary tablespace for the root of the CDB and one for
each PDB, application root, and application PDB.

• Sets of system data files

The primary physical difference between a CDB and a non-CDB is in the data
files. A non-CDB has only one set of system data files. In contrast, a CDB includes
one set of system data files for each container in the CDB, including a set of
system data files for each PDB, application root, and application PDB. In addition,
a CDB has one set of user-created data files for each container. If the CDB is in
local undo mode, then each container also has its own undo tablespace and
associated data files.

• Sets of user-created data files

Each PDB has its own set of non-system data files. These data files contain the
user-defined schemas and database objects for the PDB.

For backup and recovery of a CDB, Recovery Manager (RMAN) is recommended.
PDB point-in-time recovery (PDB PITR) must be performed with RMAN. By default,
RMAN turns on control file autobackup for a CDB. It is strongly recommended that
control file autobackup is enabled for a CDB, to ensure that PDB PITR can undo data
file additions or deletions.

Chapter 4
After Creating a CDB

4-26

Because the physical structure of a CDB and a non-CDB are similar, most management
tasks are the same for a CDB and a non-CDB. However, some administrative tasks are
specific to CDBs. The following chapters describe these tasks:

• "Creating and Removing PDBs and Application Containers"

This chapter documents the following tasks:

– Creating a PDB using the PDB seed

– Creating a PDB by cloning an existing PDB or Non-CDB

– Creating a PDB by relocating it

– Creating a PDB as a proxy PDB

– Plugging in a PDB

– Unplugging a PDB

– Dropping a PDB

• "Creating and Removing Application Containers and Seeds"

This chapter documents the following tasks:

– Creating application containers

– Creating application seeds

– Unplugging application containers

– Unplugging application seeds

– Dropping application containers

– Dropping application seeds

• " Administering a CDB"

This chapter documents the following tasks:

– Connecting to a container

– Switching into a container

– Modifying a CDB

– Modifying the root

– Changing the open mode of a PDB

– Executing DDL statements in a CDB

– Shutting down the CDB instance

• " Administering PDBs"

This chapter documents the following tasks:

– Connecting to a PDB

– Modifying a PDB

– Managing services associated with PDBs

• "Administering Application Containers"

This chapter documents the following tasks:

– Managing applications in an application container, including installing, upgrading, and
patching applications

Chapter 4
After Creating a CDB

4-27

– Managing application common objects

– Issuing DML statements on containers in an application container

– Partitioning by PDB with container maps

• "Monitoring CDBs and PDBs"

This chapter documents the following tasks:

– Querying views for monitoring a CDB and its PDBs

– Running sample queries that provide information about a CDB and its PDBs

• "Using Oracle Resource Manager for PDBs"

This chapter documents the following tasks:

– Creating resource plans in a CDB

– Managing resource plans in a CDB

• " Using Oracle Scheduler with a CDB"

This chapter documents the following topics:

– DBMS_SCHEDULER invocations in a CDB

– Job coordinator and slave processes in a CDB

– Using DBMS_JOB
– Processes to close a PDB

– New and changed views

See Also:

• Oracle Database Concepts for a multitenant architecture documentation
roadmap

• Oracle Database Backup and Recovery User’s Guide for information
about RMAN

Chapter 4
After Creating a CDB

4-28

Part III
Creating and Removing PDBs and Application
Containers

You can create PDBs, application containers, and application seeds using a variety of
techniques.

For example, you can create a PDB from scratch, cloning an existing PDB or non-CDB, or
plug in an unplugged PDB. You can also remove PDBs from a CDB.

Note:

You can complete the tasks in this part using SQL*Plus or Oracle SQL Developer.

• Overview of PDB Creation
A CDB supports multiple techniques for creating PDBs.

• Creating a PDB from Scratch
Use the CREATE PLUGGABLE DATABASE statement to create a PDB in a CDB using the files
of the PDB seed (PDB$SEED).

• Cloning a PDB or Non-CDB
You can create a PDB by cloning a local PDB, a remote PDB, or a non-CDB.

• Relocating a PDB
You can move a PDB to a different CDB or application container.

• Plugging In an Unplugged PDB
You can create a PDB by plugging an unplugged PDB into a CDB.

• Creating a PDB as a Proxy PDB
You can create a PDB as a proxy PDB by referencing it in a remote CDB.

• Removing a PDB
You can remove a plugged-in PDB from a CDB by unplugging it, dropping it, or relocating
it.

• Creating and Removing Application Containers and Seeds
You can create application containers and application seeds in several different ways.
You can also remove application containers from a CDB, and you can remove application
seeds from application containers.

Related Topics

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

5
Overview of PDB Creation

A CDB supports multiple techniques for creating PDBs.

The created PDB automatically includes a full data dictionary including metadata and internal
links to system-supplied objects in the CDB root. You must define every PDB from a single
root: either the CDB root or an application root.

Each PDB has a globally unique identifier (GUID). The PDB GUID is primarily used to
generate names for directories that store the PDB's files, including both Oracle Managed
Files directories and non-Oracle Managed Files directories.

• Techniques for Creating a PDB
You can create a PDB with various techniques, all of which require the CREATE PLUGGABLE
DATABASE statement.

• PDB Storage
However you choose to create a PDB, you must decide on the tablespaces and files that
will store the data.

• Service Name Conversion
An important aspect of PDB creation is managing the renaming of database services.

• Summary of Clauses for Creating a PDB
When you create a PDB with the CREATE PLUGGABLE DATABASE statement, various
clauses are available based on different factors.

• General Prerequisites for PDB Creation
Before creating a PDB, you must meet certain prerequisites.

Techniques for Creating a PDB
You can create a PDB with various techniques, all of which require the CREATE PLUGGABLE
DATABASE statement.

Creating a PDB is the process of associating it with a CDB or an application container.

The following graphic depicts the options for creating a PDB.

5-1

Figure 5-1 Options for Creating a PDB

Adopting a
Non-CDB as a

PDB

Plugging in an
Unplugged PDB

From a Non-CDBFrom a PDB

RemotelyLocally

Creating a PDB

Referencing as a
Proxy PDB

Plugging InRelocationCloningCreating from
Scratch

The following table describes the creation techniques. An additional technique, which
is not covered in this manual, is to use the DUPLICATE command in Recovery Manager
to copy a PDB from one CDB to another CDB.

Table 5-1 Techniques for Creating a PDB

Technique Description More Information

Create a PDB from scratch Create a PDB in a CDB using the files of the
PDB seed or application seed. This
technique copies the files associated with
the seed to a new location and associates
the copied files with the new PDB. This is
the default creation mechanism. The other
techniques require either a source database
(PDB or non-CDB) or XML.

"Creating a PDB from Scratch"

Clone an existing PDB or non-
CDB

Create a PDB by cloning a source PDB or
non-CDB. A source can be a PDB in the
local CDB, a PDB in a remote CDB, a PDB
in a local or remote application container, or
a non-CDB. This technique copies the files
associated with the source to a new location
and associates the copied files with the new
PDB.

"Cloning a PDB or Non-CDB"

Relocate a PDB to a different
CDB

Create a PDB by relocating it from one CDB
to another. This technique moves the files
associated with the PDB to a new location.

"Relocating a PDB"

Plug an unplugged PDB into a
CDB

Create a PDB by using the XML metadata
file that describes the PDB and the files
associated with the PDB to plug it into the
CDB.

"Plugging In an Unplugged
PDB"

Reference a PDB as a proxy PDB Create a PDB as a proxy PDB by
referencing a different PDB with a database
link. The referenced PDB can be in the
same CDB as the proxy PDB, or it can be in
a different CDB.

"Creating a PDB as a Proxy
PDB"

Chapter 5
Techniques for Creating a PDB

5-2

Table 5-1 (Cont.) Techniques for Creating a PDB

Technique Description More Information

Create a PDB from a non-CDB,
and then plug the PDB into a CDB

Create a PDB by adopting a non-CDB into a
PDB. You can use the DBMS_PDB package to
create an unplugged PDB from an Oracle
Database 12c non-CDB. You can then plug
the unplugged PDB into the CDB.

"Options for Creating a PDB
from a Non-CDB"

You can unplug a PDB when you want to plug it into a different CDB. You can unplug or drop
a PDB when you no longer need it. An unplugged PDB is not usable until it is plugged into a
CDB.

• Current Container and PDB Creation
You can use the CREATE PLUGGABLE DATABASE statement to create PDBs, application
containers, application seeds, and application PDBs.

• Options for Creating a PDB from a Non-CDB
You have multiple options for moving a non-CDB into a PDB.

See Also:

• "Creating and Removing Application Containers"

• "Unplugging a PDB from a CDB"

• "Dropping a PDB"

• Oracle Database Backup and Recovery User’s Guide to learn how to copy a
PDB using the DUPLICATE command

• Oracle Database SQL Language Reference for more information about the
CREATE PLUGGABLE DATABASE statement

Current Container and PDB Creation
You can use the CREATE PLUGGABLE DATABASE statement to create PDBs, application
containers, application seeds, and application PDBs.

When you create a PDB, the current container—CDB root or application root—determines
the association of the PDB. The SQL statements that create PDBs and application PDBs are
the same. For example, when you run CREATE PLUGGABLE DATABASE statement in the CDB
root, the PDB belongs to the CDB root. When you run CREATE PLUGGABLE DATABASE
statement in an application root, the application PDB belongs to the application root.

When the CDB root is the current container, create an application root by running a CREATE
PLUGGABLE DATABASE statement with the AS APPLICATION CONTAINER clause. When cloning,
relocating, or plugging in a PDB to an application container, the application name and version
of the PDB must match the application name and version of the application container.

Chapter 5
Techniques for Creating a PDB

5-3

Options for Creating a PDB from a Non-CDB
You have multiple options for moving a non-CDB into a PDB.

You can accomplish this task in the following ways:

• Clone a non-CDB

This is the simplest way to create a PDB using a non-CDB, but it requires copying
the files of the non-CDB to a new location.

Both the CDB and the non-CDB must be running Oracle Database 12c Release 1
(12.1.0.2) or later. If your current non-CDB uses an Oracle Database release
before Oracle Database 12c Release 1 (12.1.0.2), then you must upgrade the non-
CDB to a later release to use this technique.

• Generate an XML metadata file by using the DBMS_PDB package

The XML metadata file describes the database files of the non-CDB so that you
can plug it into a CDB.

This method requires more steps than creating a PDB by cloning a non-CDB, but it
enables you to create a PDB using a non-CDB without moving the non-CDB files
in some situations.

To use this technique, the non-CDB must run Oracle Database 12c or later. If your
current non-CDB uses a release before Oracle Database 12c, then you must
upgrade to a later release.

• Export the data from the non-CDB and import it into a PDB using Oracle Data
Pump

When you import, specify the connect identifier for the PDB after the user name.
For example, if the connect identifier for the PDB is hrpdb, then enter the following
when you run the Oracle Data Pump Import utility:

impdp user_name@hrpdb ...

If the Oracle Database release of the non-CDB is Oracle Database 11g Release 2
(11.2.0.3) or later, then you can use full transportable export/import to move the
data. When transporting a non-CDB from an Oracle Database 11g Release 2
(11.2.0.3) or later Oracle Database 11g database to Oracle Database 12c or later,
the VERSION Data Pump export parameter must be set to 12.0.0.0.0 or higher.

If the Oracle Database release of the non-CDB is before Oracle Database 11g
Release 2 (11.2.0.3), then you can use transportable tablespaces to move the
data, or you can perform a full database export/import.

• Replicate data from the non-CDB to a PDB using GoldenGate

When the PDB catches up with the non-CDB, you fail over to the PDB.

See the Oracle GoldenGate documentation.

Chapter 5
Techniques for Creating a PDB

5-4

See Also:

• "Cloning a PDB or Non-CDB"

• "Adopting a Non-CDB as a PDB"

• Oracle Database Upgrade Guide for information about upgrading

• Oracle Database Administrator’s Guide for information about transporting data

PDB Storage
However you choose to create a PDB, you must decide on the tablespaces and files that will
store the data.

• Storage Limits
The optional STORAGE clause of the CREATE PLUGGABLE DATABASE statement specifies
storage limits for PDBs.

• Default Tablespace
The DEFAULT TABLESPACE clause of the CREATE PLUGGABLE DATABASE statement specifies
the default tablespace for the new PDB.

• User Tablespaces
The USER_TABLESPACES clause of the CREATE PLUGGABLE DATABASE statement specifies
which tablespaces are available in the new PDB.

• PDB File Locations
In the CREATE PLUGGABLE DATABASE statement, you can specify the locations of files used
by the new PDB.

Storage Limits
The optional STORAGE clause of the CREATE PLUGGABLE DATABASE statement specifies storage
limits for PDBs.

The STORAGE clause specifies the following limits:

• The amount of storage that can be used by all tablespaces that belong to the PDB

Use MAXSIZE and a size clause to specify a limit, or set MAXSIZE to UNLIMITED to indicate
no limit.

• The amount of storage that can be used by unified audit OS spillover (.bin format) files in
the PDB

Use MAX_AUDIT_SIZE and a size clause to specify a limit, or set MAX_AUDIT_SIZE to
UNLIMITED to indicate no limit.

• The amount of diagnostics (trace files and incident dumps) in the Automatic Diagnostic
Repository (ADR) that can be used by the PDB

Use MAX_DIAG_SIZE and a size clause to specify a limit, or set MAX_DIAG_SIZE to
UNLIMITED to indicate no limit.

If STORAGE UNLIMITED is set, or if there is no STORAGE clause, then there are no storage limits
for the PDB.

Chapter 5
PDB Storage

5-5

The following are examples that use the STORAGE clause.

Example 5-1 STORAGE Clause That Specifies a Storage Limit

This STORAGE clause specifies that the storage used by all tablespaces that belong to
the PDB must not exceed 2 gigabytes.

STORAGE (MAXSIZE 2G)

Example 5-2 STORAGE Clause That Specifies Unlimited Storage

This STORAGE clause specifies unlimited storage for all tablespaces that belong to the
PDB.

STORAGE (MAXSIZE UNLIMITED)

See Also:

Oracle Database SQL Language Reference for the syntax of the STORAGE
clause

Default Tablespace
The DEFAULT TABLESPACE clause of the CREATE PLUGGABLE DATABASE statement
specifies the default tablespace for the new PDB.

Oracle Database will assign the default tablespace to any non-SYSTEM users who do
not have a different permanent tablespace specified.

When you create the PDB from the PDB seed or an application seed and specify the
DEFAULT TABLESPACE clause, Oracle Database creates a smallfile tablespace and sets
it as the default tablespace for the PDB. When you create the PDB using a method
other than the using the PDB seed or application seed, such as cloning a PDB or
plugging in an unplugged PDB, the default tablespace must be a tablespace that
already exists in the source PDB.

Example 5-3 DEFAULT TABLESPACE Clause

DEFAULT TABLESPACE sales

User Tablespaces
The USER_TABLESPACES clause of the CREATE PLUGGABLE DATABASE statement specifies
which tablespaces are available in the new PDB.

You can use this clause to separate the data for multiple schemas into different PDBs.
For example, when you move a non-CDB to a PDB, and the non-CDB had several
schemas that each supported a different application, you can use this clause to
separate the data belonging to each schema into a separate PDB. This technique
assumes that each schema used a separate tablespace in the non-CDB.

Chapter 5
PDB Storage

5-6

You can use this clause to specify one of the following options:

• List one or more tablespaces to include.

• Specify ALL, the default, to include all tablespaces.

• Specify ALL EXCEPT to include all tablespaces, except for the tablespaces listed.

• Specify NONE to exclude all tablespaces.

• If the creation mode of the user tablespaces must be different from the creation mode for
the Oracle-supplied tablespaces (such as SYSTEM and SYSAUX), then specify one of the
following in the USER_TABLESPACES clause:

– COPY: The files of the tablespaces are copied to a new location.

– MOVE: The files of the tablespaces are moved to a new location.

– NOCOPY: The files of the tablespaces are not copied or moved.

– SNAPSHOT COPY: The tablespaces are cloned with storage snapshots.

– NO DATA: The data model definition of the tablespaces is cloned but not the
tablespaces’ data.

When the compatibility level of the CDB is 12.2.0 or higher, the tablespaces that are excluded
by this clause are created offline in the new PDB, and they have no data files associated with
them. When the compatibility level of the CDB is lower than 12.2.0, the tablespaces that are
excluded by this clause are offline in the new PDB, and all data files that belong to these
tablespaces are unnamed and offline.

This clause does not apply to the SYSTEM, SYSAUX, or TEMP tablespaces. Do not include these
tablespaces in a tablespace list for this clause.

The following are examples that use the USER_TABLESPACES clause.

Example 5-4 USER_TABLESPACES Clause That Includes One Tablespace

Assume that the non-CDB or PDB from which a PDB is being created includes the following
tablespaces: tbs1, tbs2, and tbs3. This USER_TABLESPACES clause includes the tbs2
tablespace, but excludes the tbs1 and tbs3 tablespaces.

USER_TABLESPACES=('tbs2')

Example 5-5 USER_TABLESPACES Clause That Includes a List of Tablespaces

Assume that the non-CDB or PDB from which a PDB is being created includes the following
tablespaces: tbs1, tbs2, tbs3, tbs4, and tbs5. This USER_TABLESPACES clause includes the
tbs1, tbs4, and tbs5 tablespaces, but excludes the tbs2 and tbs3 tablespaces.

USER_TABLESPACES=('tbs1','tbs4','tbs5')

Chapter 5
PDB Storage

5-7

Example 5-6 USER_TABLESPACES Clause That Includes All Tablespaces
Except for Listed Ones

Assume that the non-CDB or PDB from which a PDB is being created includes the
following tablespaces: tbs1, tbs2, tbs3, tbs4, and tbs5. This USER_TABLESPACES
clause includes the tbs2 and tbs3 tablespaces, but excludes the tbs1, tbs4, and tbs5
tablespaces.

USER_TABLESPACES=ALL EXCEPT('tbs1','tbs4','tbs5')

Example 5-7 USER_TABLESPACES in a Different Creation Mode

This example shows a full CREATE PLUGGABLE DATABASE statement that plugs in a non-
CDB and only includes the tbs3 user tablespace from the non-CDB. The example
copies the files for Oracle-supplied tablespaces (such as SYSTEM and SYSAUX) to a new
location, but moves the files of the tbs3 user tablespace.

CREATE PLUGGABLE DATABASE ncdb USING '/disk1/oracle/ncdb.xml'
 COPY
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/', '/disk2/oracle/ncdb/')
 USER_TABLESPACES=('tbs3') MOVE;

PDB File Locations
In the CREATE PLUGGABLE DATABASE statement, you can specify the locations of files
used by the new PDB.

The term "file name" means both the name and the location of a file. The CREATE
PLUGGABLE DATABASE statement has the following clauses that indicate the file names
of the new PDB being created:

• The FILE_NAME_CONVERT clause specifies the names of the PDB's files after the
PDB is created.

Use this clause when the files are not yet at their ultimate destination, and you
want to copy or move them during PDB creation. You can use this clause in any
CREATE PLUGGABLE DATABASE statement.

• The CREATE_FILE_DEST clause specifies the default Oracle Managed Files file
system directory or Oracle ASM disk group for the PDB's files.

Use this clause to enable Oracle Managed Files for the new PDB, independent of
any Oracle Managed Files default location specified in the root for the CDB. You
can use this clause in any CREATE PLUGGABLE DATABASE statement.

When necessary, you can use both clauses in the same CREATE PLUGGABLE DATABASE
statement. In addition, the following initialization parameters can control the location of
the new PDB files:

• The DB_CREATE_FILE_DEST initialization parameter set in the root

This initialization parameter specifies the default location for Oracle Managed Files
for the CDB. When this parameter is set in a PDB, it specifies the default location
for Oracle Managed Files for the PDB.

• The PDB_FILE_NAME_CONVERT initialization parameter

Chapter 5
PDB Storage

5-8

This initialization parameter maps names of existing files to new file names when
processing a CREATE PLUGGABLE DATABASE statement.

The following table shows the precedence order when both clauses are used in the same
CREATE PLUGGABLE DATABASE statement, and both initialization parameters are set. For each
clause and initialization parameter, the table also shows whether the files created by the
CREATE PLUGGABLE DATABASE statement will use Oracle Managed Files or not.

Table 5-2 Summary of File Location Clauses and Initialization Parameters

Clause or Initialization
Parameter

Precedence Order Will the Files Created by
CREATE PLUGGABLE
DATABASE Use Oracle
Managed Files?

FILE_NAME_CONVERT clause 1 No

CREATE_FILE_DEST clause 2 Yes

DB_CREATE_FILE_DEST
initialization parameter

3 Yes

PDB_FILE_NAME_CONVERT
initialization parameter

4 No

Regarding the use of Oracle Managed Files, the table only applies to files created by the
CREATE PLUGGABLE DATABASE statement. Files created for the PDB after the PDB has been
created might or might not use Oracle Managed Files.

In addition, if FILE_NAME_CONVERT and CREATE_FILE_DEST are both specified in the CREATE
PLUGGABLE DATABASE statement, then the FILE_NAME_CONVERT setting is used for the files
being placed during PDB creation, and the CREATE_FILE_DEST setting is used to set the
DB_CREATE_FILE_DEST initialization parameter in the PDB. In this case, Oracle Managed Files
controls the location of the files for the PDB after PDB creation.

Note:

The PATH_PREFIX clause does not affect files created by Oracle Managed Files.

• FILE_NAME_CONVERT Clause
If the PDB will not use Oracle Managed Files, then the FILE_NAME_CONVERT clause of the
CREATE PLUGGABLE DATABASE statement specifies how to generate the names of files
(such as data files) using the names of existing files.

• CREATE_FILE_DEST Clause
The CREATE_FILE_DEST clause of the CREATE PLUGGABLE DATABASE statement enables
Oracle Managed Files for the PDB and specifies the default file system directory or
Oracle ASM disk group for the PDB files.

• Restrictions on PDB File Locations
The PATH_PREFIX clause of the CREATE PLUGGABLE DATABASE statement ensures that all
directory object paths associated with the PDB are restricted to the specified directory or
its subdirectories.

Chapter 5
PDB Storage

5-9

See Also:

Oracle Database Reference to learn more about DB_CREATE_FILE_DEST and
PDB_FILE_NAME_CONVERT

FILE_NAME_CONVERT Clause
If the PDB will not use Oracle Managed Files, then the FILE_NAME_CONVERT clause of
the CREATE PLUGGABLE DATABASE statement specifies how to generate the names of
files (such as data files) using the names of existing files.

You can use this clause to specify one of the following options:

• One or more file name patterns and replacement file name patterns, in the
following form:

'string1' , 'string2' , 'string3' , 'string4' , ...

The string2 file name pattern replaces the string1 file name pattern, and the
string4 file name pattern replaces the string3 file name pattern. You can use as
many pairs of file name pattern and replacement file name pattern strings as
required.

If you specify an odd number of strings (the last string has no corresponding
replacement string), then an error is returned. Do not specify more than one
pattern/replace string that matches a single file name or directory.

• NONE when no files should be copied or moved during PDB creation. Omitting the
FILE_NAME_CONVERT clause is the same as specifying NONE.

You can use the FILE_NAME_CONVERT clause in any CREATE PLUGGABLE DATABASE
statement.

When the FILE_NAME_CONVERT clause is not specified in a CREATE PLUGGABLE
DATABASE statement, either Oracle Managed Files or the PDB_FILE_NAME_CONVERT
initialization parameter specifies how to generate the names of the files. If you use
both Oracle Managed Files and the PDB_FILE_NAME_CONVERT initialization parameter,
then Oracle Managed Files takes precedence. The FILE_NAME_CONVERT clause takes
precedence when it is specified.

File name patterns specified in the FILE_NAME_CONVERT clause cannot match files or
directories managed by Oracle Managed Files.

Example 5-8 FILE_NAME_CONVERT Clause

This FILE_NAME_CONVERT clause generates file names for the new PDB in the /oracle/
pdb5 directory using file names in the /oracle/dbs directory.

FILE_NAME_CONVERT = ('/oracle/dbs/', '/oracle/pdb5/')

Chapter 5
PDB Storage

5-10

See Also:

• "Example 19-7"

• Oracle Database Administrator’s Guide

• Oracle Database SQL Language Reference for the syntax of the
FILE_NAME_CONVERT clause

• Oracle Database Reference for information about the PDB_FILE_NAME_CONVERT
initialization parameter

CREATE_FILE_DEST Clause
The CREATE_FILE_DEST clause of the CREATE PLUGGABLE DATABASE statement enables Oracle
Managed Files for the PDB and specifies the default file system directory or Oracle ASM disk
group for the PDB files.

The PDB data files and temp files are restricted to the specified directory and its
subdirectories. If a file system directory is specified as the default location in this clause, then
the directory must exist. Also, the user who runs the CREATE PLUGGABLE DATABASE statement
must have the appropriate privileges to create files in the specified directory. Alternatively,
you can specify the name of a directory object that exists in the CDB root (CDB$ROOT). The
directory object points to the file system directory used by CREATE_FILE_DEST.

If there is a default Oracle Managed Files location for the CDB set in the CDB root, then the
CREATE_FILE_DEST setting overrides the CDB root’s setting, and the specified
CREATE_FILE_DEST setting is used for the PDB.

If CREATE_FILE_DEST=NONE is specified, then Oracle Managed Files is disabled for the PDB.

When the CREATE_FILE_DEST clause is set to a value other than NONE, the
DB_CREATE_FILE_DEST initialization parameter is set implicitly in the PDB with SCOPE=SPFILE.

If the CDB root uses Oracle Managed Files, and this clause is not specified, then the PDB
inherits the Oracle Managed Files default location from the CDB root.

Note:

This feature is available starting with Oracle Database 12c Release 1 (12.1.0.2).

Example 5-9 CREATE_FILE_DEST Clause

This CREATE_FILE_DEST clause specifies /oracle/pdb2/ as the default Oracle Managed Files
file system directory for the new PDB.

CREATE_FILE_DEST = '/oracle/pdb2/'

Chapter 5
PDB Storage

5-11

See Also:

Oracle Database Administrator’s Guide

Restrictions on PDB File Locations
The PATH_PREFIX clause of the CREATE PLUGGABLE DATABASE statement ensures that
all directory object paths associated with the PDB are restricted to the specified
directory or its subdirectories.

This clause also ensures that the following files associated with the PDB are restricted
to the specified directory: the Oracle XML repository for the PDB, files created with a
CREATE PFILE statement, and the export directory for Oracle wallets. Use this clause
when you want to ensure that a PDB's files reside in a specific directory and its
subdirectories.

You can use this clause to specify one of the following options:

• An absolute path that is used as a prefix for all file paths associated with the PDB.

• The name of a directory object that exists in the CDB root (CDB$ROOT). The
directory object points to the absolute path to be used for PATH_PREFIX.

• NONE to indicate that there are no restrictions for the file paths. Omitting the
PATH_PREFIX clause is the same as specifying NONE.

After a PDB is created, its PATH_PREFIX setting cannot be modified.

You can use the PATH_PREFIX clause in any CREATE PLUGGABLE DATABASE statement.

Example 5-10 PATH_PREFIX Clause

This PATH_PREFIX clause ensures that all file paths associated with the PDB are
restricted to the /disk1/oracle/dbs/salespdb/ directory.

PATH_PREFIX = '/disk1/oracle/dbs/salespdb/'

Be sure to specify the path name so that it is properly formed when file names are
appended to it. For example, on UNIX systems, be sure to end the path name with a
forward slash (/).

Chapter 5
PDB Storage

5-12

Note:

• After the PATH_PREFIX clause is specified for a PDB, existing directory objects
might not work as expected, since the PATH_PREFIX string is always added as a
prefix to all local directory objects in the PDB.

• The PATH_PREFIX clause does not affect files created by Oracle Managed Files.

• The PATH_PREFIX clause only applies to user-created directory objects. It does
not apply to Oracle-supplied directory objects.

• The PATH_PREFIX clause does not apply to data files or temporary files. If you
are using Oracle Managed Files, then use the CREATE_FILE_DEST clause to
restrict the locations of data files and temporary files.

See Also:

• "About a Multitenant Environment"

• "Viewing Information About the Containers in a CDB"

Service Name Conversion
An important aspect of PDB creation is managing the renaming of database services.

When the service name of a new PDB conflicts with an existing service name in the CDB,
plug-in violations can result. The SERVICE_NAME_CONVERT clause of the CREATE PLUGGABLE
DATABASE statement renames the user-defined services of the new PDB based on the service
names of the source PDB. Using this clause, you can rename services and avoid plug-in
violations.

You can use this clause to specify one of the following options:

• One or more service names and replacement service names, in the following form:

'string1' , 'string2' , 'string3' , 'string4' , ...

The string2 service name replaces the string1 service name, and the string4 service
name replaces the string3 service name. You can use as many pairs of service names
and replacement service names as required.

If you specify an odd number of strings (the last string has no corresponding replacement
string), then an error is returned.

• NONE when no service names need to be renamed. Omitting the SERVICE_NAME_CONVERT
clause is the same as specifying NONE.

You can use the SERVICE_NAME_CONVERT clause in any CREATE PLUGGABLE DATABASE
statement, except for a CREATE PLUGGABLE DATABASE statement that creates a PDB from the
PDB seed. The PDB seed cannot have user-defined services. However, you can use this

Chapter 5
Service Name Conversion

5-13

statement for a CREATE PLUGGABLE DATABASE statement that creates an application
PDB from an application seed in an application container.

Note:

This clause does not apply to the default service for the PDB. The default
service has the same name as the PDB.

Example 5-11 SERVICE_NAME_CONVERT Clause

This SERVICE_NAME_CONVERT clause uses renames the salesrep service to
salesperson.

SERVICE_NAME_CONVERT = ('salesrep','salesperson')

See Also:

Oracle Database SQL Language Reference

Summary of Clauses for Creating a PDB
When you create a PDB with the CREATE PLUGGABLE DATABASE statement, various
clauses are available based on different factors.

One factor is the technique you are using to create the PDB. You can determine which
clauses to use by answering a series of questions.

The following table describes which CREATE PLUGGABLE DATABASE clauses to specify
based on different factors.

Table 5-3 Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to create an
application container
instead of a PDB?

Specify the AS APPLICATION
CONTAINER clause.

Omit the AS APPLICATION
CONTAINER clause.

Creating an
application
container in a CDB

Are you plugging a PDB
into a CDB that contains
one or more PDBs that
were created by plugging in
the same PDB?

Specify the AS CLONE clause to
ensure that Oracle Database
generates a unique PDB DBID,
GUID, and other identifiers
expected for the new PDB. The
PDB is plugged in as a clone of
the unplugged PDB to ensure
that all of its identifiers are
unique.

Omit the AS CLONE clause. Plugging in an
unplugged PDB

Chapter 5
Summary of Clauses for Creating a PDB

5-14

Table 5-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to create an
application seed in an
application container?

Specify the AS SEED clause. Omit the AS SEED clause. Creating an
application seed in
an application
container

Do you want to use a
CREATE_FILE_DEST
clause to specify the
Oracle Managed Files
default location for the PDB
files?

When creating a PDB from
the PDB seed or an
application seed, the
source files are the files
associated with the seed.

Include a CREATE_FILE_DEST
clause that specifies the default
file system directory or Oracle
ASM disk group for the PDB's
files.

Omit the
CREATE_FILE_DEST clause.

Use one of these techniques
to specify the target locations
of the files:

• FILE_NAME_CONVERT
clause

• Enable Oracle Managed
Files for the CDB for it to
determine the target
locations.

• Specify the target
locations in the
PDB_FILE_NAME_CONVE
RT initialization
parameter.

See "PDB File Locations".

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to specify a
default permanent
tablespace for the PDB?

Specify a DEFAULT
TABLESPACE clause with the
appropriate limits.

Oracle Database will assign to
this tablespace any non-SYSTEM
users for whom you do not
specify a different permanent
tablespace.

When creating a PDB from the
PDB seed or an application
seed, Oracle Database creates
a smallfile tablespace and sets it
as the default tablespace. When
using a technique other than
creation from the PDB seed or
an application seed, the
specified tablespace must exist
in the source PDB.

Omit the DEFAULT
TABLESPACE clause.

If you do not specify this
clause, then the SYSTEM
tablespace is the default
permanent tablespace for
non-SYSTEM users. Using the
SYSTEM tablespace for non-
SYSTEM users is not
recommended.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Chapter 5
Summary of Clauses for Creating a PDB

5-15

Table 5-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to use a
FILE_NAME_CONVERT
clause to specify the target
locations of the files?

When creating a PDB from
the PDB seed or an
application seed, the
source files are the files
associated with the seed.

Include a FILE_NAME_CONVERT
clause that specifies the target
locations of the files based on
the names of the source files.

Omit the
FILE_NAME_CONVERT
clause.

Use one of these techniques
to specify the target locations
of the files:

• CREATE_FILE_DEST
clause

• Enable Oracle Managed
Files for the CDB for it to
determine the target
locations.

• Specify the target
locations in the
PDB_FILE_NAME_CONVE
RT initialization
parameter.

See "PDB File Locations".

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Creating a proxy
PDB (Only applies
to data files in the
SYSTEM and
SYSAUX
tablespaces.)

Plugging in an
unplugged PDB

Is the PDB a reference
PDB with a dependent
proxy PDB, and is the host
name of its listener
changing?

Include a HOST clause and
specify the host name of the
listener for the PDB being
created.

For example, you might have a
listener network for the physical
host name and default port and
configure a second listener
bound to a virtual host name
and virtual IP address with a
nondefault port number.

Omit the HOST clause. Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to specify the
logging attribute of the
tablespaces in the new
PDB?

Include the logging_clause. Omit the logging_clause. Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Plugging in an
unplugged PDB

Chapter 5
Summary of Clauses for Creating a PDB

5-16

Table 5-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to copy or
move the files to a new
location?

Specify COPY to copy the files to
a new location. COPY is the
default. Specify MOVE to move
the files to a new location. Use
one of these techniques to
specify the target location:

• Include a
FILE_NAME_CONVERT
clause that specifies the
target locations based on
the names of the source
files.

• Include a
CREATE_FILE_DEST clause
that specifies the Oracle
Managed Files default
location for the PDB's files.

• Enable Oracle Managed
Files for it to determine the
target locations.

• Specify the target locations
in the
PDB_FILE_NAME_CONVERT
initialization parameter.

See "PDB File Locations".

Specify NOCOPY. Plugging in an
unplugged PDB

Do you want to specify that
the data model definition of
the source PDB is cloned
but not the data of the
source PDB?

Include the NO DATA clause. Omit the NO DATA clause. Cloning a PDB

Do you want to use multiple
parallel execution servers
to parallelize PDB
creation?

To let the CDB choose the
degree of parallelism, include or
omit the PARALLEL clause.

To specify the degree of
parallelism, specify the
PARALLEL clause with an
integer. For example, specify
PARALLEL 4 to indicate a
degree of parallelism of 4.

Specify PARALLEL 0 or
PARALLEL 1.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Chapter 5
Summary of Clauses for Creating a PDB

5-17

Table 5-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to use a
PATH_PREFIX clause to
restrict file paths for the
PDB for the following:
directory objects, the
Oracle XML repository for
the PDB, files created with
a CREATE PFILE
statement, and the export
directory for Oracle
wallets?

The PATH_PREFIX clause
does not affect files created
by Oracle Managed Files.

Include a PATH_PREFIX clause
that specifies an absolute path.

Set the PATH_PREFIX clause
to NONE or omit it.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Is the PDB a reference
PDB with a dependent
proxy PDB, and is the port
number of its listener
changing to a value other
than 1521?

Include a PORT clause and
specify the port number of the
listener for the PDB being
created.

For example, you might have a
listener network for the physical
host name and default port and
configure a second listener
bound to a virtual host name
and virtual IP address with a
nondefault port number.

Omit the PORT clause. Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to be able to
refresh the PDB to
propagate changes from
the source PDB to the
clone PDB?

A refreshable PDB must be
opened in read-only mode.

Include a REFRESH MODE
MANUAL or REFRESH MODE
EVERY minutes clause.

Omit the REFRESH MODE
clause or include a REFRESH
MODE NONE clause.

Cloning a PDB

Do you want to grant
predefined Oracle roles to
the PDB_DBA role locally in
the PDB?

The new administrator for
the PDB is granted the
PDB_DBA common role
locally in the PDB. By
default, the CREATE
PLUGGABLE DATABASE
statement does not grant
the administrator or the role
any privileges.

Include the ROLES clause and
specify the predefined Oracle
roles to grant to the PDB_DBA
role. The specified roles are
granted to the PDB_DBA role
locally in the PDB. The user who
runs the CREATE PLUGGABLE
DATABASE statement does not
need to be granted the specified
roles. See Oracle Database
Security Guide for information
about predefined Oracle roles.

Omit the ROLES clause. Creating a PDB
from the PDB seed
or an application
seed

Creating a proxy
PDB

Chapter 5
Summary of Clauses for Creating a PDB

5-18

Table 5-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to use a
SERVICE_NAME_CONVERT
clause to rename the user-
defined services of the new
PDB based on the service
names of the source PDB?

Include a
SERVICE_NAME_CONVERT
clause that specifies the new
name of a service and the
service name it is replacing.
Specify multiple service names
and replacement service names
if necessary.

Omit the
SERVICE_NAME_CONVERT
clause.

Creating a PDB
from the application
seed, but not a
PDB seed

Cloning a PDB

Relocating a PDB

Creating a proxy
PDB (Only applies
to data files in the
SYSTEM and
SYSAUX
tablespaces.)

Plugging in an
unplugged PDB

Do you want to clone a
PDB using a storage-
managed snapshot (not a
snapshot generated by
ALTER PLUGGABLE
DATABASE SNAPSHOT)?

Specify a SNAPSHOT COPY
clause to clone a PDB using
storage-managed snapshots.
SNAPSHOT COPY is supported
only if the underlying file system
supports storage snapshots.

A snapshot copy is nearly
instantaneous because it does
not require copying the full data
files of the source PDB.
However, you cannot unplug a
snapshot copy PDB from the
CDB root or application root.
Also, if a snapshot copy PDB
exists, then you cannot drop the
storage snapshot on which the
snapshot copy PDB is based.

The process of materializing
transforms a snapshot copy
PDB, which uses sparse files,
into a full PDB. Materialize a
PDB by running the ALTER
PLUGGABLE DATABASE
MATERIALIZE command.

Omit the SNAPSHOT COPY
clause.

Cloning a PDB

Chapter 5
Summary of Clauses for Creating a PDB

5-19

Table 5-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to enable
PDB-level snapshots using
ALTER PLUGGABLE
DATABASE SNAPSHOT?

Specify a SNAPSHOT MODE
clause in the ALTER
PLUGGABLE DATABASE
SNAPSHOT command, and
specify MANUAL or EVERY
snapshot_interval
[MINUTES|HOURS].

Omit the SNAPSHOT MODE
clause or specify SNAPSHOT
MODE NONE.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Creating a proxy
PDB (Only applies
to data files in the
SYSTEM and
SYSAUX
tablespaces.)

Plugging in an
unplugged PDB

Are all source files in a
single directory with new
file names that would
require multiple
SOURCE_FILE_NAME_CONV
ERT entries?

Specify the
SOURCE_FILE_DIRECTORY with
the full absolute path to the
source files.

Omit the
SOURCE_FILE_DIRECTORY
clause.

Plugging in an
unplugged PDB
using an XML file
directly.

This clause does
not apply to
plugging in an
unplugged PDB
with a .pdb archive
file.

Do the contents of the XML
file accurately describe the
locations of the source
files?

Omit the
SOURCE_FILE_NAME_CONVERT
clause.

Use the
SOURCE_FILE_NAME_CONVE
RT clause to specify the
source file locations.

Plugging in an
unplugged PDB
using an XML file
directly.

This clause does
not apply to
plugging in an
unplugged PDB
with a .pdb archive
file.

Do you want to include the
new PDB in one or more
standby CDBs?

Specify ALL, ALL EXCEPT, or a
list of standby CDBs.

When creating a remote clone,
you can set the initialization
parameter
STANDBY_PDB_SOURCE_FILE_D
BLINK to the name of the
database link that points to the
source PDB data files. The
operation copies the data files
only if the source PDB is open
read-only.

Omit the STANDBYS clause or
specify NONE.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Chapter 5
Summary of Clauses for Creating a PDB

5-20

Table 5-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to limit the
amount of storage that the
PDB can use?

Specify a STORAGE clause with
the appropriate limits.

Omit the STORAGE clause, or
specify unlimited storage
using the STORAGE clause.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to reuse the
temp file if a temp file exists
in the target location?

Include the TEMPFILE REUSE
clause.

Omit the TEMPFILE REUSE
clause.

Ensure that there is no file
with the same name as the
new temp file in the target
location.

Creating a PDB
from the PDB seed
or an application
seed

Cloning a PDB

Relocating a PDB

Plugging in an
unplugged PDB

Do you want to specify
which tablespaces are
included in the new PDB
and which tablespaces are
excluded from the new
PDB?

Include the USER_TABLESPACES
clause and specify the
tablespaces that are included in
the new PDB.

Omit the
USER_TABLESPACES clause.

Plugging in an
unplugged PDB

Do you want to plug an
unplugged PDB into a
CDB?

Include the USING filename
clause.

If you are plugging in a PDB to a
primary CDB in a Data Guard
scenario, then set the
STANDBY_PDB_SOURCE_FILE_D
IRECTORY initialization
parameter to a standby location
that contains the source data
files for instantiating the PDB. If
not found, then the standby
database tries to locate the files
in the OMF location. If not found
in the OMF location, then copy
the data files to the OMF
location, and restart redo apply
on the standby database.

Omit the USING filename
clause.

Plugging in an
unplugged PDB

Chapter 5
Summary of Clauses for Creating a PDB

5-21

Table 5-3 (Cont.) Clauses for Creating a PDB

Question Yes No Clause Can Be
Used Only When

Do you want to create a
new PDB based on a PDB
snapshot?

Include the USING SNAPSHOT
clause and specify either the
PDB snapshot name, SCN, or
timestamp. The result is a full,
standalone PDB.

A PDB snapshot is a point-in-
time copy of a PDB. The source
PDB can be open read-only or
read/write while the snapshot is
created. To create PDB-level
snapshots manually, specify the
SNAPSHOT clause of CREATE
PLUGGABLE DATABASE (or
ALTER PLUGGABLE DATABASE).
Specifying the EVERY
interval clause configures the
PDB to create snapshots
automatically.

Note: PDB-level snapshots are
different from storage-managed
snapshots.

Exclude the USING
SNAPSHOT clause.

Cloning a PDB
snapshot

Do you want to clone a
PDB that resides in Oracle
ASM by splitting a mirror?

Include the USING MIRROR
COPY clause and specify the
name of the mirror copy and the
source PDB.

Omit the USING MIRROR
COPY clause.

Cloning a PDB that
uses Oracle ASM
storage

General Prerequisites for PDB Creation
Before creating a PDB, you must meet certain prerequisites.

Ensure that the following prerequisites are met before creating a PDB.

Table 5-4 Prerequisites for Creating PDBs

Prerequisite See Also

The CDB must exist. " Creating and Configuring a CDB"

The CDB must be in read/write mode. "Modifying the Open Mode of PDBs"

The current user must be a common user
whose current container is the CDB root or an
application container.

"Common Users in a CDB"

The current user must have the CREATE
PLUGGABLE DATABASE system privilege.

"How Commonly Granted System Privileges
Work"

Chapter 5
General Prerequisites for PDB Creation

5-22

Table 5-4 (Cont.) Prerequisites for Creating PDBs

Prerequisite See Also

You must decide on a unique container name
for each container. Each container name must
be unique in a single CDB, and each container
name must be unique within the scope of all the
CDBs whose instances are reached through a
specific listener.

The PDB name distinguishes a PDB from other
PDBs in the CDB. PDB names follow the same
rules as service names, which includes being
case-insensitive.

Oracle Database Net Services Reference to
learn the rules for service names

If you are creating a PDB in an Oracle Data
Guard configuration with a physical standby
database, then you must complete additional
tasks before creating a PDB.

Oracle Data Guard Concepts and
Administration for more information

If you are creating a PDB that includes data that
was encrypted with Transparent Data
Encryption, then you must complete additional
tasks.

Oracle Database Advanced Security Guide
for instructions

If you are creating a Database Vault-enabled
PDB, then you must complete additional tasks.

Oracle Database Vault Administrator’s Guide
for instructions

If you are creating a PDB by cloning a non-
CDB, and if you want the ability to recover the
new PDB using backups of the source non-
CDB, then you must execute
DBMS_PDB.EXPORTRMANBACKUP before cloning.
When the source database is opened in read-
write mode, execute the procedure as the last
step before cloning. This procedure captures all
backup metadata in the data dictionary.

When relocating a PDB to a different CDB,
executing DBMS_PDB.EXPORTRMANBACKUP is
not necessary. Unplugging the PDB
automatically exports the backup metadata.

Oracle Database Backup and Recovery
User’s Guide for instructions

See Also:

• "About the Current Container"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_PDB.EXPORTRMANBACKUP

Chapter 5
General Prerequisites for PDB Creation

5-23

6
Creating a PDB from Scratch

Use the CREATE PLUGGABLE DATABASE statement to create a PDB in a CDB using the files of
the PDB seed (PDB$SEED).

You can also use this statement to create an application PDB in an application container
using the files of an application seed or the PDB seed.

• About Creating a PDB from Scratch
Use the CREATE PLUGGABLE DATABASE statement to create a new PDB by using the files of
the PDB seed or an application PDB from the files of an application seed or the PDB
seed.

• Creating a PDB
Using the CREATE PLUGGABLE DATABASE statement, you can create a PDB from the PDB
seed, and you can create an application PDB from an application seed or the PDB seed.

• Creating a PDB: Examples
These examples create a new PDB named salespdb and a salesadm local administrator
given different factors.

See Also:

Oracle Database SQL Language Reference for more information about the CREATE
PLUGGABLE DATABASE statement

About Creating a PDB from Scratch
Use the CREATE PLUGGABLE DATABASE statement to create a new PDB by using the files of the
PDB seed or an application PDB from the files of an application seed or the PDB seed.

The statement copies these files to a new location and associates them with the new PDB.
The following figure illustrates how this technique creates a new PDB in a CDB with the CDB
root as the current container.

6-1

Figure 6-1 Create a PDB in the CDB Root Using the PDB$SEED Files

Files of the New PDBPDB$SEED Database Files

Copy to New Location

New
PDB

PDBs

CREATE PLUGGABLE DATABASE

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

The following figure illustrates how this technique creates a new application PDB in an
application container with the application root as the current container.

Chapter 6
About Creating a PDB from Scratch

6-2

Figure 6-2 Create a PDB in an Application Root Using the Application Seed Files

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Application
PDBs

Application
Seed

Files of the New
Application PDB

Application Seed
Database Files

Copy to New
Location

CREATE PLUGGABLE DATABASE

New
Application
PDB

Application Root

Application
Container

Root (CDB$ROOT)

See Also:

When an application container includes an application seed, and a CREATE PLUGGABLE
DATABASE statement is run in the application root to create an application PDB from the seed,
the application PDB is created using the application seed. However, when an application
container does not include an application seed, and a CREATE PLUGGABLE DATABASE
statement is run in the application root to create an application PDB from the seed, the
application PDB is created using the PDB seed (PDB$SEED).

When you create a new PDB or application PDB from the seed, you must specify an
administrator for the PDB or application PDB in the CREATE PLUGGABLE DATABASE statement.
The statement creates the administrator as a local user in the PDB and grants the PDB_DBA
role locally to the administrator.

Before creating a PDB using the PDB seed or an application seed, address the questions
that apply to creating a PDB from the seed in Table 5-3. The table describes which CREATE
PLUGGABLE DATABASE clauses you must specify based on different factors.

Chapter 6
About Creating a PDB from Scratch

6-3

See Also:

• "PDB Storage"

• "Creating an Application PDB"

Creating a PDB
Using the CREATE PLUGGABLE DATABASE statement, you can create a PDB from the
PDB seed, and you can create an application PDB from an application seed or the
PDB seed.

Prerequisites

Before creating a PDB from the PDB seed (PDB$SEED) or an application PDB from an
application seed or the PDB seed, complete the prerequisites described in "General
Prerequisites for PDB Creation".

To create a PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or an application
root.

When the current container is the CDB root, the PDB is created in the CDB using
the files of the PDB seed.

When the current container is an application root, the application PDB is created in
the application container using the files of the application seed. If there is no
application seed in the application container, then the application PDB is created in
the application container using the files of the PDB seed.

2. Run the CREATE PLUGGABLE DATABASE statement, and specify a local administrator
for the PDB. Specify other clauses when they are required.

After you create the PDB, it is in mounted mode, and its status is NEW. You can
view the open mode of a PDB by querying the OPEN_MODE column in the V$PDBS
view. You can view the status of a PDB by querying the STATUS column of the
CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as
the PDB and can be used to access the PDB. Oracle Net Services must be
configured properly for clients to access this service.

3. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

4. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

A local user with the name of the specified local administrator is created and granted
the PDB_DBA common role locally in the PDB. If this user was not granted administrator

Chapter 6
Creating a PDB

6-4

privileges during PDB creation, then use the SYS and SYSTEM common users to administer to
the PDB.

Note:

If an error is returned during PDB creation, then the PDB being created might be in
an UNUSABLE state. You can check a PDB's state by querying the CDB_PDBS or
DBA_PDBS view, and you can learn more about PDB creation errors by checking the
alert log. An unusable PDB can only be dropped, and it must be dropped before a
PDB with the same name as the unusable PDB can be created.

See Also:

• "About Container Access in a CDB"

• "Modifying the Open Mode of PDBs" for more information

• Oracle Database Backup and Recovery User’s Guide for information about
backing up a PDB

Creating a PDB: Examples
These examples create a new PDB named salespdb and a salesadm local administrator
given different factors.

In addition to creating the salespdb PDB, this statement grants the PDB_DBA role to the PDB
administrator salesadm and grants the specified predefined Oracle roles to the PDB_DBA role
locally in the PDB.

In each example, the root to which the new PDB belongs depends on the current container
when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB root.

• When the current container is an application root in an application container, the new
PDB is created as an application PDB in the application root.

• Creating a PDB Using No Clauses: Example
This example shows the simplest way to create a PDB.

• Creating a PDB and Granting Predefined Oracle Roles to the PDB Administrator:
Example
This example uses the ROLES parameter to grant a predefined role.

• Creating a PDB Using Multiple Clauses: Example
This example creating a PDB using the STORAGE, DEFAULT TABLESPACE, PATH_PREFIX, and
FILE_NAME_CONVERT clauses.

Chapter 6
Creating a PDB: Examples

6-5

Creating a PDB Using No Clauses: Example
This example shows the simplest way to create a PDB.

This example assumes the following factors:

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• The PDB does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled for the CDB, or the
PDB_FILE_NAME_CONVERT initialization parameter is set. The files associated with
the PDB seed or application seed will be copied to a new location based on the
Oracle Managed Files configuration or the initialization parameter setting.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• No predefined Oracle roles need to be granted to the PDB_DBA role.

The following statement creates the PDB:

CREATE PLUGGABLE DATABASE salespdb ADMIN USER salesadm IDENTIFIED BY
pwd;

See Also:

• Oracle Database Administrator’s Guide for information about using
Oracle Managed Files

• Oracle Database Reference for information about the
PDB_FILE_NAME_CONVERT initialization parameter

• Oracle Database Security Guide for guidelines about choosing
passwords

Creating a PDB and Granting Predefined Oracle Roles to the PDB
Administrator: Example

This example uses the ROLES parameter to grant a predefined role.

This example assumes the following factors:

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• The PDB does not require a default tablespace.

Chapter 6
Creating a PDB: Examples

6-6

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. The files associated with the PDB seed or application seed will be
copied to a new location based on the Oracle Managed Files configuration or the
initialization parameter setting.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

• The PDB_DBA role should be granted the following predefined Oracle role locally: DBA.

The following statement creates the PDB:

CREATE PLUGGABLE DATABASE salespdb
 ADMIN USER salesadm IDENTIFIED BY password
 ROLES=(DBA);

See Also:

• Oracle Database Administrator’s Guide for information about using Oracle
Managed Files

• Oracle Database Reference for information about the PDB_FILE_NAME_CONVERT
initialization parameter

• Oracle Database Security Guide for guidelines about choosing passwords

Creating a PDB Using Multiple Clauses: Example
This example creating a PDB using the STORAGE, DEFAULT TABLESPACE, PATH_PREFIX, and
FILE_NAME_CONVERT clauses.

This example assumes the following factors:

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is required.
Specifically, all tablespaces that belong to the PDB must not exceed 2 gigabytes.

• A default permanent tablespace is required for any non-administrative users for which
you do not specify a different permanent tablespace. Specifically, this example creates a
default permanent tablespace named sales with the following characteristics:

– The single data file for the tablespace is sales01.dbf, and the statement creates it in
the /disk1/oracle/dbs/salespdb directory.

– The SIZE clause specifies that the initial size of the tablespace is 250 megabytes.

– The AUTOEXTEND clause enables automatic extension for the file.

• The path prefix must be added to the PDB directory object paths. Therefore, the
PATH_PREFIX clause is required. In this example, the path prefix /disk1/oracle/dbs/
salespdb/ is added to the PDB’s directory object paths.

Chapter 6
Creating a PDB: Examples

6-7

• The CREATE_FILE_DEST clause will not be used, Oracle Managed Files is not
enabled, and the PDB_FILE_NAME_CONVERT initialization parameter is not set.
Therefore, the FILE_NAME_CONVERT clause is required. Specify the location of the
data files for the PDB seed or application seed on your system. In this example,
Oracle Database copies the files from /disk1/oracle/dbs/pdbseed to /disk1/
oracle/dbs/salespdb.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• No predefined Oracle roles need to be granted to the PDB_DBA role.

The following statement creates the PDB:

CREATE PLUGGABLE DATABASE salespdb
 ADMIN USER salesadm IDENTIFIED BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE sales
 DATAFILE '/disk1/oracle/dbs/salespdb/sales01.dbf' SIZE 250M
 AUTOEXTEND ON
 PATH_PREFIX = '/disk1/oracle/dbs/salespdb/'
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/salespdb/');

See Also:

• "Example 19-7" to learn how to view the location of the data files for the
PDB seed or application seed

• Oracle Database SQL Language Reference for more information about
the DEFAULT TABLESPACE clause

• Oracle Database Security Guide for guidelines about choosing
passwords

Chapter 6
Creating a PDB: Examples

6-8

7
Cloning a PDB or Non-CDB

You can create a PDB by cloning a local PDB, a remote PDB, or a non-CDB.

• About Cloning a PDB or Non-CDB
Cloning means creating a new PDB from a source PDB or from a non-CDB.

• Cloning a Local PDB
You can clone a local PDB by running a CREATE PLUGGABLE DATABASE statement and
specifying a local PDB in the FROM statement.

• Cloning a Remote PDB
You can clone a local PDB by running a CREATE PLUGGABLE DATABASE statement, and
specifying a database link to the remote PDB in the FROM statement.

• Cloning a Non-CDB
The procedure for cloning a non-CDB is very similar to the procedure for cloning a
remote PDB.

• About Refreshable Clone PDBs
The CREATE PLUGGABLE DATABASE ... REFRESH MODE statement clones a source PDB
and configures the clone to be refreshable. Refreshing the clone PDB updates it with
redo accumulated since the last redo log apply.

• Cloning PDBs from PDB Snapshots
You can create PDBs from PDB snapshots by executing the CREATE PLUGGABLE
DATABASE … USING SNAPSHOT statement.

• Creating and Materializing Snapshot Copy PDBs
You can clone a PDB from snapshots of the underlying storage. The PDB files are
sparse, but you can materialize the files to create a standalone PDB.

• Creating a Split Mirror Clone PDB
In Oracle ASM, a split mirror is the process of detaching a point-in-time media copy from
a parent copy. After the split, updates to the parent do not affect the child copy.

About Cloning a PDB or Non-CDB
Cloning means creating a new PDB from a source PDB or from a non-CDB.

A typical use case is development testing. You can create one or more clones of a PDB or
non-CDB and safely test them in isolation. For example, you might test a new or modified
application on a cloned PDB before using the application with a production PDB.

• How Cloning Works
This technique creates a new PDB from a source PDB or non-CDB. The process
automatically plugs the new PDB into the CDB.

• User Interface for PDB Cloning
All forms of PDB cloning use the CREATE PLUGGABLE DATABASE statement.

7-1

See Also:

Oracle Database Advanced Security Guide to learn about cloning a source
with encrypted data or a keystore set

How Cloning Works
This technique creates a new PDB from a source PDB or non-CDB. The process
automatically plugs the new PDB into the CDB.

To use this technique, you must specify the source in a CREATE PLUGGABLE DATABASE
statement. The source can be any of the following:

• Local PDB

• PDB in a remote CDB

• Non-CDB

The target PDB is the copy of the source PDB or non-CDB. The copy is called a clone
PDB.

The CREATE PLUGGABLE DATABASE statement copies the files associated with the
source to a new location and associates the files with the target PDB. When the CDB
is in ARCHIVELOG mode and local undo mode, the source PDB can be open in read/
write mode and operational during the cloning process. This technique is known as
hot cloning.

Note:

If you clone a PDB, and if the source database has encrypted data or a
keystore set, then you must provide the keystore password by including the
keystore identified by keystore_password clause in the CREATE PLUGGABLE
DATABASE ... FROM SQL statement. You must provide this password even if
the source database is using an auto-login software keystore. You can
determine whether the source database has encrypted data or a keystore by
querying the DBA_ENCRYPTED_COLUMNS data dictionary view.

In all cloning scenarios, when you run the CREATE PLUGGABLE DATABASE statement in
the application root, the clone PDB is created in the application container. The
application name and version of the source PDB must match the application name and
version of the application container.

The following graphic illustrates how this technique creates a new application PDB in
an application container by cloning a local source application PDB. The source PDB
can also be a PDB plugged into the local CDB root, a PDB plugged into a remote CDB
root, or an application PDB plugged into a remote application root.

Chapter 7
About Cloning a PDB or Non-CDB

7-2

Figure 7-1 Clone a PDB in an Application Container

PDBs and Application Containers

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Container

Application
PDBs

Application
Seed

Files of the New
Application PDB

Files of the
Source PDB

Copy to New
Location

CREATE PLUGGABLE DATABASE ... FROM

New
Application
PDB

Application Root

Source
PDB

Copy

See Also:

"PDB Storage"

User Interface for PDB Cloning
All forms of PDB cloning use the CREATE PLUGGABLE DATABASE statement.

Cloning requires specifying the source PDB in a FROM clause. The following table summarizes
the most important clauses.

Chapter 7
About Cloning a PDB or Non-CDB

7-3

Table 7-1 CREATE PLUGGABLE DATABASE Options for PDB Cloning

Clause Cloning Operation See Also

USING SNAPSHOT Creates a clone from a PDB-level snapshot (ALTER PLUGGABLE
DATABASE SNAPSHOT). Specify the PDB snapshot name, SCN, or
timestamp.

Note: You cannot create a snapshot copy PDB that is based on a
PDB snapshot by including both the USING SNAPSHOT clause and
the SNAPSHOT COPY clause. However, you can create a clone
based on a PDB snapshot with USING SNAPSHOT, and then create
a SNAPSHOT COPY PDB from the clone.

"Clones from PDB
Snapshots"

REFRESH MODE Creates a refreshable clone PDB. "Refreshable Clone
PDBs"

SNAPSHOT COPY Creates a snapshot copy PDB from a storage-managed snapshot
(not ALTER PLUGGABLE DATABASE SNAPSHOT). Storage-managed
snapshots are only supported on specific file systems.

A snapshot copy PDB does not include a complete copy of the
source data files. Rather, Oracle Database creates a storage-level
snapshot of the underlying file system, and then creates the clone
PDB from the snapshot.

Unlike a standard clone PDB, the snapshot copy PDB is dependent
on the storage snapshot. Therefore, you cannot unplug a snapshot
copy PDB from the CDB root or plug it in to an application root. Also,
you cannot drop the storage snapshot on which the PDB is based.
Instead, you must materialize the snapshot copy PDB, which
converts it into a full PDB with non-sparse files.

"Snapshot Copy
PDBs"

USING MIRROR
COPY

Creates a new PDB by splitting the ASM storage mirror specified by
mirror_name. You can only split one PDB from a prepared mirror
copy. If you want to create additional splits, you must prepare a new
mirror copy.

"Creating a Split
Mirror Clone PDB"

See Also:

• "Materializing a Snapshot Copy PDB"

• Oracle Database SQL Language Reference to learn more about CREATE
PLUGGABLE DATABASE clauses

Cloning a Local PDB
You can clone a local PDB by running a CREATE PLUGGABLE DATABASE statement and
specifying a local PDB in the FROM statement.

• About Cloning a Local PDB
The simplest form of cloning copies a PDB from a CDB into the same CDB.

• Cloning a Local PDB: Basic Steps
You can clone a local PDB by executing CREATE PLUGGABLE DATABASE and specify
the source PDB in the FROM clause.

Chapter 7
Cloning a Local PDB

7-4

• After Cloning a Local PDB
Certain rules regarding users and tablespaces apply after cloning a local PDB.

• Cloning a Local PDB: Examples
The following examples clone a local source PDB named pdb1 to a target PDB named
pdb2 given different factors.

About Cloning a Local PDB
The simplest form of cloning copies a PDB from a CDB into the same CDB.

Note:

You cannot use the FROM clause in the CREATE PLUGGABLE DATABASE statement to
create a PDB from the PDB seed (PDB$SEED) or from an application seed.

The following figure illustrates how to clone a local PDB.

Figure 7-2 Clone a Local PDB

New
PDB

PDBs

CDB

CREATE PLUGGABLE DATABASE ... FROM

Copy

Seed
(PDB$SEED)

Root (CDB$ROOT)

Files of the New

PDB

Files of the Source

PDB

Copy to New Location

Source
PDB

Before cloning a PDB, address the questions that apply to cloning a PDB in "Table 5-3". The
table describes which CREATE PLUGGABLE DATABASE clauses to specify based on different
factors.

Starting in Oracle Database 18c, you can clone a local PDB using DBCA.

Chapter 7
Cloning a Local PDB

7-5

See Also:

• "Determining the Current Container ID or Name"

• "Creating a PDB from Scratch" to learn how to create a PDB from the
seed

• "Cloning a Local PDB Using DBCA: Example"

• "Creating an Application PDB"

Cloning a Local PDB: Basic Steps
You can clone a local PDB by executing CREATE PLUGGABLE DATABASE and specify the
source PDB in the FROM clause.

Prerequisites

You must meet the following prerequisites:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

• The current user must have the CREATE PLUGGABLE DATABASE system privilege in
both the root and the source PDB.

• The source PDB cannot be closed.

• If the CDB is not in local undo mode, then the source PDB must be in open read-
only mode. This requirement does not apply if the CDB is in local undo mode.

• If the CDB is not in ARCHIVELOG mode, then the source PDB must be in open read-
only mode. This requirement does not apply if the CDB is in ARCHIVELOG mode.

• If you are creating an application PDB, then the application PDB must have the
same character set and national character set as the application container.

If the database character set of the CDB is AL32UTF8, then the character set and
national character set of the application container can be different from the CDB.
However, all application PDBs in an application container must have same
character set and national character set, matching that of the application container.

Note:

You can use the REFRESH MODE clause to create a refreshable clone of a local
PDB, but only if the database link loops back to the same CDB.

To clone a local PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or an application
root.

When the current container is the CDB root, the PDB is created in the CDB. When
the current container is an application root, the application PDB is created in the
application container.

Chapter 7
Cloning a Local PDB

7-6

2. Run the CREATE PLUGGABLE DATABASE statement, and specify the source PDB in the FROM
clause. Specify other clauses when required.

After cloning a local PDB, the source and target PDBs are in the same CDB. The new
PDB is in mounted mode, and its status is NEW. You can view the open mode of a PDB by
querying the OPEN_MODE column in the V$PDBS view. You can view the status of a PDB by
querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as the
PDB and can be used to access the PDB. Oracle Net Services must be configured
properly for clients to access this service.

3. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete the
integration of the new PDB into the CDB. An error is returned if you attempt to open the
PDB in read-only mode. After the PDB is opened in read/write mode, its status is NORMAL.

4. Back up the new PDB.

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during PDB creation, then the PDB being created might be in
an UNUSABLE state. You can check the PDB state by querying the CDB_PDBS or
DBA_PDBS view. You can learn more about PDB creation errors by checking the alert
log. An unusable PDB can only be dropped, and it must be dropped before you can
create a PDB with the same name as the unusable PDB.

See Also:

• "About the Current Container" and "About Container Access in a CDB"

• "About the CDB Undo Mode"

• "Modifying the Open Mode of PDBs"

• Oracle Database Backup and Recovery User’s Guide to learn how to back up a
PDB

After Cloning a Local PDB
Certain rules regarding users and tablespaces apply after cloning a local PDB.

Users in the new PDB who used the default temporary tablespace of the source PDB use the
default temporary tablespace of the new PDB. Users who used nondefault temporary
tablespaces in the PDB continue to use the same local temporary tablespaces in the cloned
PDB.

Chapter 7
Cloning a Local PDB

7-7

See Also:

"About Managing Tablespaces in a CDB"

Cloning a Local PDB: Examples
The following examples clone a local source PDB named pdb1 to a target PDB named
pdb2 given different factors.

In each example, the root to which the new PDB belongs depends on the current
container when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the database creates the PDB in the
CDB root.

• When the current container is an application root in an application container, the
database creates an application PDB in the application root.

• Cloning a Local PDB Using No Clauses: Example
This example shows the simplest way to clone a PDB.

• Cloning a Local PDB Using DBCA: Example
This example clones a PDB using the silent mode of DBCA. Hot cloning is
supported.

• Cloning a Local PDB with the PATH_PREFIX Clause: Example
This example explains how to clone a local PDB with the PATH_PREFIX,
FILE_NAME_CONVERT, and SERVICE_NAME_CONVERT clauses.

• Cloning a Local PDB Using the STORAGE Clause: Example
This example clones a local PDB using the FILE_NAME_CONVERT, STORAGE, and
SERVICE_NAME_CONVERT clauses.

• Cloning a Local PDB with the NO DATA Clause: Example
This example clones the data model definition of the PDB, but does not clone the
data in the PDB.

Cloning a Local PDB Using No Clauses: Example
This example shows the simplest way to clone a PDB.

This example assumes the following factors:

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. Therefore, the FILE_NAME_CONVERT clause is not
required. The files will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

Chapter 7
Cloning a Local PDB

7-8

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

The following statement clones the pdb2 PDB from the pdb1 PDB:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1;

See Also:

• Oracle Database Administrator’s Guide for more information about Oracle
Managed Files

• Oracle Database Reference for information about the PDB_FILE_NAME_CONVERT
initialization parameter

Cloning a Local PDB Using DBCA: Example
This example clones a PDB using the silent mode of DBCA. Hot cloning is supported.

This example assumes the following factors:

• The source CDB is a single-instance database with the SID orcl.

• The source PDB is pdb1. You intend for pdb1 to remain open during the cloning operation,
which means that local undo and ARCHIVELOG mode are enabled in the CDB. Otherwise,
DBCA closes the PDB during the clone operation, and after receiving confirmation, opens
the source PDB in read-only mode.

• The new PDB is pdb2.

• You are running DBCA in noninteractive mode.

The following command clones the pdb2 PDB from the pdb1 PDB:

./dbca -silent
 -createpluggabledatabase
 -sourcedb orcl
 -createpdbfrom PDB
 -pdbName pdb2
 -sourcepdb pdb1

See Also:

Oracle Database Administrator’s Guide for the DBCA command reference

Chapter 7
Cloning a Local PDB

7-9

Cloning a Local PDB with the PATH_PREFIX Clause: Example
This example explains how to clone a local PDB with the PATH_PREFIX,
FILE_NAME_CONVERT, and SERVICE_NAME_CONVERT clauses.

This example assumes the following factors:

• The path prefix must be added to the PDB's directory object paths. Therefore, the
PATH_PREFIX clause is required. In this example, the path prefix /disk2/oracle/
pdb2/ is added to the PDB’s directory object paths.

• The FILE_NAME_CONVERT clause is required to specify the target locations of the
copied files. In this example, the files are copied from /disk1/oracle/pdb1 to /
disk2/oracle/pdb2.

The CREATE_FILE_DEST clause is not used, and neither Oracle Managed Files nor
the PDB_FILE_NAME_CONVERT initialization parameter is used to specify the target
locations of the copied files.

To view the location of the data files for a PDB, run the query in "Example 19-7".

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• The PDB that is being cloned (pdb1) has two user-defined services: salesrep_ca
and orders_ca for the sales representatives and order entry personnel in
California. The new services will be for the sales representatives and order entry
personnel in Oregon, and the service names will be renamed to salesrep_or and
orders_or, respectively, in the cloned PDB (pdb2).

• Future tablespaces created within the PDB will be created with the NOLOGGING
attribute by default. This feature is available starting with Oracle Database 12c
Release 1 (12.1.0.2).

The following statement clones the pdb2 PDB from the pdb1 PDB:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1
 PATH_PREFIX = '/disk2/oracle/pdb2/'
 FILE_NAME_CONVERT = ('/disk1/oracle/pdb1/', '/disk2/oracle/pdb2/')
 SERVICE_NAME_CONVERT =
('salesrep_ca','salesrep_or','orders_ca','orders_or')
 NOLOGGING;

Cloning a Local PDB Using the STORAGE Clause: Example
This example clones a local PDB using the FILE_NAME_CONVERT, STORAGE, and
SERVICE_NAME_CONVERT clauses.

This example assumes the following factors:

• The PATH_PREFIX clause is not required.

Chapter 7
Cloning a Local PDB

7-10

• The FILE_NAME_CONVERT clause is required to specify the target locations of the copied
files. In this example, the files are copied from /disk1/oracle/pdb1 to /disk2/oracle/pdb2.

The CREATE_FILE_DEST clause is not used, and neither Oracle Managed Files nor the
PDB_FILE_NAME_CONVERT initialization parameter is used to specify the target locations of
the copied files.

To view the location of the data files for a PDB, run the query in Example 19-7.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is required.
Specifically, all tablespaces that belong to the PDB must not exceed 2 gigabytes.

• The source PDB (pdb1) has two user-defined services: salesrep_ca and orders_ca for
the sales representatives and order entry personnel in California. The new services will
be for the sales representatives and order entry personnel in Oregon, and the service
names will be renamed to salesrep_or and orders_or, respectively, in the cloned PDB
(pdb2).

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

The following statement clones the pdb2 PDB from the pdb1 PDB:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1
 FILE_NAME_CONVERT = ('/disk1/oracle/pdb1/', '/disk2/oracle/pdb2/')
 STORAGE (MAXSIZE 2G)
 SERVICE_NAME_CONVERT =
('salesrep_ca','salesrep_or','orders_ca','orders_or');

Cloning a Local PDB with the NO DATA Clause: Example
This example clones the data model definition of the PDB, but does not clone the data in the
PDB.

This example assumes the following factors:

• The NO DATA clause is required because the goal is to clone the data model definition of
the source PDB without cloning its data.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. Therefore, the FILE_NAME_CONVERT clause is not required. The process
copies the files to a new location based on the Oracle Managed Files configuration or the
initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

Assume that the source PDB pdb1 has a large amount of data. The following steps illustrate
how the clone does not contain the data of the source PDB when the operation is complete:

Chapter 7
Cloning a Local PDB

7-11

1. With the source PDB pdb1 as the current container, query a table with a large
amount of data:

SELECT COUNT(*) FROM tpch.lineitem;

 COUNT(*)

 60001215

The table has over sixty million rows.

2. Clone the source PDB with the NO DATA clause:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1 NO DATA;

3. Open the cloned PDB:

ALTER PLUGGABLE DATABASE pdb2 OPEN;

4. With the cloned PDB pdb2 as the current container, query the table that has a
large amount of data in the source PDB:

SELECT COUNT(*) FROM tpch.lineitem;

 COUNT(*)

 0

The table in the cloned PDB has no rows.

Cloning a Remote PDB
You can clone a local PDB by running a CREATE PLUGGABLE DATABASE statement, and
specifying a database link to the remote PDB in the FROM statement.

• About Cloning a Remote PDB
When the source is a PDB is in a remote CDB, you must use a database link to
clone the PDB into the local CDB.

• Cloning a Remote PDB: Basic Steps
You can create a PDB by cloning a remote PDB. After the cloning operation, the
source and the target PDB are in different locations.

• After Cloning a Remote PDB
Certain rules regarding users and tablespaces apply after cloning a remote PDB.

• Cloning a Remote PDB: Examples
These examples clone a remote PDB or non-CDB given different factors.

About Cloning a Remote PDB
When the source is a PDB is in a remote CDB, you must use a database link to clone
the PDB into the local CDB.

Chapter 7
Cloning a Remote PDB

7-12

The database link must exist in the local CDB (not the remote CDB). When you issue the
CREATE PLUGGABLE DATABASE statement from the root of the local CDB, you must specify a
database link to the remote CDB that contains the PDB being cloned in the FROM clause. The
database link connects from the local CDB to either to the root of the remote CDB or to the
remote source PDB.

The following figure illustrates how this technique creates a new PDB when the source PDB
is remote.

Figure 7-3 Creating a PDB by Cloning a Remote PDB

Source
PDB

New
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Files of the

New PDB

Files of the

Source PDB

Copy to New Location

CREATE PLUGGABLE DATABASE ... FROM

Database
Link

Copy

Starting in Oracle Database 19c, you can clone a remote PDB using DBCA in silent mode.

Chapter 7
Cloning a Remote PDB

7-13

Cloning a Remote PDB: Basic Steps
You can create a PDB by cloning a remote PDB. After the cloning operation, the
source and the target PDB are in different locations.

General Prerequisites

The following prerequisites must be met:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

• The current user must have the CREATE PLUGGABLE DATABASE system privilege in
the root of the CDB that will contain the target PDB.

• The source and target platforms must meet the following requirements:

– They must have the same endianness.

– The database options installed on the source platform must be the same as, or
a subset of, the database options installed on the target platform.

• If you are creating an application PDB, then the application name and version of
the source PDB must match the application name and version of the target
application container.

Prerequisites for Character Sets

• If the character set of the CDB to which the PDB is being cloned is not AL32UTF8,
then the source and target must have compatible character sets and national
character sets. If the character set of the CDB to which the PDB is being cloned is
AL32UTF8, then this requirement does not apply.

• If you are creating an application PDB, then the application PDB must have the
same character set and national character set as the application container.

If the database character set of the CDB is AL32UTF8, then the character set and
national character set of the application container can different from the CDB.
However, all application PDBs in an application container must have same
character set and national character set, matching that of the application container.

Note:

Oracle Multitenant does not support a LOB in one container from being
accessed by a container with a different character set using data links,
extended data links, or the CONTAINERS() clause. For example, if the CDB
root and salespdb have different character sets, then a CONTAINERS() query
run in the CDB root should not access LOBs stored in salespdb.

Prerequisites for the Open Mode of the Source PDB

• The source PDB must not be closed.

• If the remote CDB is not in local undo mode, then the source PDB must be open in
read-only mode.

See "About the CDB Undo Mode".

Chapter 7
Cloning a Remote PDB

7-14

• If the remote CDB is not in ARCHIVELOG mode, then the source PDB must be open in
read-only mode.

• If you are creating a refreshable PDB, then the source PDB must be in ARCHIVELOG mode
and local undo mode.

Prerequisites for the Database Link

The following prerequisites must be met:

• A database link must enable a connection from the destination CDB (the CDB to which
the PDB is being cloned) to the PDB in the source CDB.

• The database link can connect as a common user to the root of the source CDB, or as a
common or local user to the source PDB. The source PDB can be either a standard PDB
or application PDB.

• The user account specified in the database link must have either of the following
privileges:

– The CREATE PLUGGABLE DATABASE privilege, granted either commonly or locally, on
the source PDB

– The SYSOPER privilege

• In an Oracle Data Guard environment, if you are performing a remote clone of a PDB into
a primary CDB, then on the standby CDB set the STANDBY_PDB_SOURCE_FILE_DBLINK
initialization parameter. This parameter specifies the name of the database link used in
CREATE PLUGGABLE DATABASE ... FROM dblink. The standby CDB attempts to copy the
data files from the source PDB referenced in the database link, but only if the source
PDB is open in read-only mode. Otherwise, you must copy data files to the Oracle
Managed Files location on the standby CDB.

To clone a remote PDB:

1. In SQL*Plus, ensure that the current container is the root of the target CDB or the
application root of the target application container.

2. Run the CREATE PLUGGABLE DATABASE statement, and specify the source PDB in the FROM
clause. Specify other clauses when required.

After you create the PDB, it is in mounted mode, and its status is NEW. You can view the
open mode of a PDB by querying the OPEN_MODE column in the V$PDBS view. You can view
the status of a PDB by querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as the
PDB and can be used to access the PDB. Oracle Net Services must be configured
properly for clients to access this service.

Note:

If an error is returned during PDB creation, then the PDB being created might
be in an UNUSABLE state. You can check the PDB state by querying the
CDB_PDBS or DBA_PDBS view, and you can learn more about PDB creation errors
by checking the alert log. An unusable PDB can only be dropped, and it must
be dropped before a PDB with the same name as the unusable PDB can be
created.

Chapter 7
Cloning a Remote PDB

7-15

3. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

4. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

See Also:

• "Refreshing a PDB"

• "Modifying the Open Mode of PDBs"

• Oracle Database Backup and Recovery User’s Guide for information
about backing up a PDB

• Oracle Data Guard Concepts and Administration to learn more about
plugging in a PDB in an Oracle Data Guard environment

• Oracle Database Globalization Support Guide to learn about the
requirements for the compatibility of character sets

• Oracle Database Reference for information about the
PDB_FILE_NAME_CONVERT initialization parameter

After Cloning a Remote PDB
Certain rules regarding users and tablespaces apply after cloning a remote PDB.

The following applies after cloning a remote PDB:

• Users in the new PDB who used the default temporary tablespace of the source
PDB use the default temporary tablespace of the new PDB. Users who used
nondefault temporary tablespaces in the PDB continue to use the same local
temporary tablespaces in the cloned PDB.

• User-created common user accounts that existed in the source CDB but not in the
target CDB do not have privileges granted commonly. However, if the target CDB
has a common user account with the same name as a common user account in
the PDB, then the latter is linked to the former and has the privileges granted to
this common user account in the target CDB.

If the cloned or plugged-in PDB has a common user account that does not exist in
the target CDB, and if this user does not own objects in the PDB, then Oracle
Database drops the user during the synchronization step; otherwise, the user
account is locked in the target PDB. You have the following options regarding
locked accounts:

– Close the PDB, connect to the root, and create a common user account with
the same name. When the PDB is opened in read/write mode, differences in
roles and privileges granted commonly to the user account are resolved, and
you can unlock the account. Privileges and roles granted locally to the user
account remain unchanged during this process.

Chapter 7
Cloning a Remote PDB

7-16

– Create a new local user account in the PDB and use Data Pump to export/import the
locked user's data into the new local user's schema.

– Leave the user account locked.

– Drop the user account.

See Also:

• "About Managing Tablespaces in a CDB"

• Oracle Database Security Guide for information about creating a local user

• Oracle Database Utilities for information about using Oracle Data Pump with a
CDB

Cloning a Remote PDB: Examples
These examples clone a remote PDB or non-CDB given different factors.

In each example, the root to which the new PDB belongs depends on the current container
when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB root.

• When the current container is an application root in an application container, the new
PDB is created as an application PDB in the application root.

• Cloning a Remote PDB Using No Clauses: Example
This example clones a remote source PDB named pdb1 to a target PDB named pdb2
given different factors.

• Cloning a Remote PDB Using DBCA: Example
This example uses DBCA to clone a PDB named pdb1 from a remote CDB to the local
CDB, where it will be renamed clonepdb1.

Cloning a Remote PDB Using No Clauses: Example
This example clones a remote source PDB named pdb1 to a target PDB named pdb2 given
different factors.

This example assumes the following factors:

• The database link name to the remote PDB is pdb1_link.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. The files will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

Chapter 7
Cloning a Remote PDB

7-17

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

The following statement clones the pdb2 PDB from the pdb1 remote PDB:

CREATE PLUGGABLE DATABASE pdb2 FROM pdb1@pdb1_link;

See Also:

• Oracle Database Administrator’s Guide for more information about
Oracle Managed Files

• Oracle Database Reference for information about the
PDB_FILE_NAME_CONVERT initialization parameter

Cloning a Remote PDB Using DBCA: Example
This example uses DBCA to clone a PDB named pdb1 from a remote CDB to the local
CDB, where it will be renamed clonepdb1.

Prerequisites

This scenario assumes the following:

• The user in the local database has the CREATE PLUGGABLE DATABASE privilege in
the root container.

• The remote CDB is in local undo mode.

• The remote and local CDBs are in ARCHIVELOG mode.

• The common user in the remote CDB to whom the database link connects has the
CREATE PLUGGABLE DATABASE, SESSION, and SYSOPER privilege.

• The local and remote CDBs have the same options installed.

Assumptions

This scenario assumes the following:

• You are running DBCA on the host of the CDB that will contain the cloned PDB.
The local CDB is named loccdb1.

• The remote (source) CDB is named remcdb1 and resides on host remcdb1host.
The instance name for the remote CDB is reminst.

• The remote PDB, which is the PDB to be cloned, is named rempdb1.

• The common user c##adminuser_remcdb1 resides in remcdb1.

• The administrative user locSYS has SYSDBA privileges on loccdb1, which is the
CDB to which the PDB is being cloned.

• The administrative user remSYS has SYSDBA privileges on remcdb1, which is the
CDB that contains the PDB to be cloned.

Chapter 7
Cloning a Remote PDB

7-18

• After cloning to loccdb1, the PDB will be renamed clonepdb1.

This following silent command clones rempdb1 to loccdb1:

./dbca -silent
 -createPluggableDatabase
 -createFromRemotePDB
 -sourceDB remcdb1
 -remotePDBName rempdb1
 -remoteDBConnString remcdb1host:1521/reminst
 -remoteDBSYSDBAUserName remSYS
 -remoteDBSYSDBAUserPassword remsyspwd
 -dbLinkUsername c##adminuser_remcdb1
 -dbLinkUserPassword pwd4dblinkusr
 -sysDBAUserName locSYS
 -sysDBAPassword locsyspwd
 -pdbName clonepdb1

See Also:

Oracle Database Administrator’s Guide for syntax and semantics of DBCA
commands

Cloning a Non-CDB
The procedure for cloning a non-CDB is very similar to the procedure for cloning a remote
PDB.

• About Cloning a Non-CDB
When the source is a non-CDB, you must specify a database link to the non-CDB in the
FROM clause.

• Cloning a Non-CDB: Basic Steps
You can create a PDB by cloning a non-CDB.

• Cloning a Remote Non-CDB: Example
This example creates a new PDB by cloning a remote source non-CDB named mydb to a
target PDB named pdb2 given different factors.

About Cloning a Non-CDB
When the source is a non-CDB, you must specify a database link to the non-CDB in the FROM
clause.

The following figure illustrates how this technique creates a new PDB when the source is a
remote non-CDB.

Chapter 7
Cloning a Non-CDB

7-19

Figure 7-4 Creating a PDB by Cloning a Non-CDB

New
PDB

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Files of the

New PDB

Files of the

Source Non-CDB

Copy to New Location

CREATE PLUGGABLE DATABASE ... FROM

Database
Link

Copy

Non-CDB

Cloning a Non-CDB: Basic Steps
You can create a PDB by cloning a non-CDB.

General Prerequisites

The following prerequisites must be met:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

Note:

If you want to be able to recover the new PDB using backups of the
source non-CDB, then you must use DBMS_PDB.EXPORTRMANBACKUP
before cloning.

Chapter 7
Cloning a Non-CDB

7-20

• The current user must have the CREATE PLUGGABLE DATABASE system privilege in the root
of the CDB that will contain the target PDB.

• The source and target platforms must meet the following requirements:

– They must have the same endianness.

– The database options installed on the source platform must be the same as, or a
subset of, the database options installed on the target platform.

• The CDB and the non-CDB must be running Oracle Database 12c Release 1 (12.1.0.2)
or later.

• The CDB and the non-CDB must be running the same Oracle Database release.

• The data block size of the newly created PDB must match the CDB.

• If the non-CDB is in NOARCHIVELOG mode, then it must be open in read-only mode. If the
non-CDB is in ARCHIVELOG mode, then it can be open read-only or read/write.

Prerequisites for Character Sets

• If the character set of the CDB is not AL32UTF8, then the source and target must have
compatible character sets and national character sets. If the character set of the CDB to
which the PDB is being cloned is AL32UTF8, then this requirement does not apply.

• If you are creating an application PDB, then the application PDB must have the same
character set and national character set as the application container.

If the database character set of the CDB is AL32UTF8, then the character set and
national character set of the application container can different from the CDB. However,
all application PDBs in an application container must have same character set and
national character set, matching that of the application container.

Note:

Oracle Multitenant does not support a LOB in one container from being accessed
by a container with a different character set using data links, extended data links, or
the CONTAINERS() clause. For example, if the CDB root and salespdb have different
character sets, then a CONTAINERS() query run in the CDB root should not access
LOBs stored in salespdb.

Prerequisites for the Database Link

The following prerequisites must be met:

• A database link must enable a connection from the target CDB to the source CDB. The
database link can connect to either the root of the CDB, to an application PDB if the
source is an application PDB, or to the PDB.

• The user that the database link connects with must have the CREATE PLUGGABLE
DATABASE system privilege.

• If the database link connects to the root in the CDB of the source PDB, then the user that
the database link connects with must be a common user.

• In an Oracle Data Guard environment, if you are performing a remote clone of a PDB into
a primary CDB, then on the standby CDB set the STANDBY_PDB_SOURCE_FILE_DBLINK
initialization parameter. This parameter specifies the name of the database link used in

Chapter 7
Cloning a Non-CDB

7-21

CREATE PLUGGABLE DATABASE ... FROM dblink. The standby CDB attempts to
copy the data files from the source PDB referenced in the database link, but only if
the source PDB is open in read-only mode. Otherwise, you must copy data files to
the Oracle Managed Files location on the standby CDB.

To clone a remote non-CDB:

1. In SQL*Plus, ensure that the current container is the root of the target CDB or the
application root of the target application container.

2. Run the CREATE PLUGGABLE DATABASE statement, and specify the source non-CDB
in the FROM clause. Specify other clauses when required.

After you create the PDB, it is in mounted mode, and its status is NEW. You can
view the open mode of a PDB by querying the OPEN_MODE column in the V$PDBS
view. You can view the status of a PDB by querying the STATUS column of the
CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as
the PDB and can be used to access the PDB. Oracle Net Services must be
configured properly for clients to access this service.

Note:

If an error is returned during PDB creation, then the PDB being created
might be in an UNUSABLE state. You can check the PDB state by querying
the CDB_PDBS or DBA_PDBS view, and you can learn more about PDB
creation errors by checking the alert log. An unusable PDB can only be
dropped, and it must be dropped before a PDB with the same name as
the unusable PDB can be created.

3. Run the ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql script. This script must be
run before the PDB can be opened for the first time.

To run the noncdb_to_pdb.sql script, complete the following steps:

a. Set the container to the newly created PDB.

The current user must have SYSDBA administrative privilege, and the privilege
must be either commonly granted or locally granted in the PDB. The user must
exercise the privilege using AS SYSDBA at connect time.

b. Run the noncdb_to_pdb.sql script:

@$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql

The script opens the PDB, performs changes, and then closes the PDB.

4. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

5. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

Chapter 7
Cloning a Non-CDB

7-22

See Also:

• My Oracle Support Note 1928653.1 for a detailed example of cloning a PDB
from a non-CDB

• "Refreshing a PDB"

• "Modifying the Open Mode of PDBs"

• Oracle Database Backup and Recovery User’s Guide for information about
backing up a PDB

• Oracle Database Globalization Support Guide to learn about the requirements
for the compatibility of character sets

• Oracle Database Reference for information about the PDB_FILE_NAME_CONVERT
initialization parameter

Cloning a Remote Non-CDB: Example
This example creates a new PDB by cloning a remote source non-CDB named mydb to a
target PDB named pdb2 given different factors.

This example assumes the following factors:

• The database link name to the remote non-CDB is mydb_link.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. The files will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

The following statement creates the pdb2 PDB from the remote non-CDB named mydb:

CREATE PLUGGABLE DATABASE pdb2 FROM mydb@mydb_link;

When the source database is a non-CDB, you can substitute NON$CDB for the name of the
non-CDB. For example, the following statement is equivalent to the previous example:

CREATE PLUGGABLE DATABASE pdb2 FROM NON$CDB@mydb_link;

Chapter 7
Cloning a Non-CDB

7-23

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1928653.1

See Also:

Oracle Database Administrator’s Guide for more information about Oracle
Managed Files

About Refreshable Clone PDBs
The CREATE PLUGGABLE DATABASE ... REFRESH MODE statement clones a source PDB
and configures the clone to be refreshable. Refreshing the clone PDB updates it with
redo accumulated since the last redo log apply.

• Purpose of Refreshable Clone PDBs
The cloning operation for production PDBs can take significant time.

• Automatic and Manual Refresh Modes
You can configure the clone PDB to refresh automatically at set intervals, or you
can refresh it manually with the ALTER PLUGGABLE DATABASE REFRESH statement.

• Requirements for Refreshable Clone PDBs
Creation of a refreshable clone PDB requires a database link. The database link
can point to the same CDB or a different CDB.

• Creating a Refreshable Clone PDB: Scenario
This scenario creates a refreshable clone named pdb1_ref_cln from a remote
PDB named pdb1.

Purpose of Refreshable Clone PDBs
The cloning operation for production PDBs can take significant time.

If PDBs are cloned infrequently to avoid a drag on the system, then the cloned data
becomes stale. A refreshable clone PDB solves this problem. When a refreshable
clone PDB is stale, you can close it and then refresh it with recent redo. When not
being refreshed, a refreshable clone PDB can be open read-only. A typical practice is
to maintain a “golden master” refreshable clone of a production PDB, take PDB-level
snapshots, and then create clones from the PDB snapshots for development and
testing.

You can reverse the roles for source and clone PDBs using an ALTER PLUGGABLE
DATABASE ... SWITCHOVER statement. This capability is useful in the following
situations:

• Planned switchover

The CDB hosting the source PDB may experience significantly more overhead
than the CDB hosting the clone PDB. To achieve load balancing, you can reverse
the roles, making the clone the new source PDB, and the source PDB the new
clone.

• Unplanned switchover

The source PDB may suffer an unplanned failure. In this case, you can make the
clone PDB the new source PDB, and resume normal operations.

Chapter 7
About Refreshable Clone PDBs

7-24

See Also:

• "Managing Refreshable Clone PDBs"

• Oracle Database SQL Language Reference to learn more about ALTER
PLUGGABLE DATABASE ... SWITCHOVER

Automatic and Manual Refresh Modes
You can configure the clone PDB to refresh automatically at set intervals, or you can refresh it
manually with the ALTER PLUGGABLE DATABASE REFRESH statement.

The REFRESH MODE clause is supported only in a CREATE PLUGGABLE DATABASE ... FROM
statement. You can use this clause to specify one of the following options:

• Specify REFRESH MODE NONE, the default, to create a PDB that is not refreshable.

You can change a refreshable clone PDB into an ordinary PDB by including the REFRESH
MODE NONE clause in an ALTER PLUGGABLE DATABASE statement and then opening the
PDB in read/write mode. You cannot change an ordinary PDB into a refreshable clone
PDB. After a refreshable clone PDB is converted to an ordinary PDB, you cannot change
it back into a refreshable clone PDB.

• Specify REFRESH MODE MANUAL to create a refreshable PDB that must be refreshed
manually.

• Specify REFRESH MODE EVERY number_of_minutes MINUTES to create a refreshable PDB
that is refreshed automatically after the specified number of minutes has passed. A
refreshable PDB that uses automatic refresh can also be refreshed manually.

Note:

• When you create a refreshable PDB, you can set the
REMOTE_RECOVERY_FILE_DEST initialization parameter in the PDB. This
initialization parameter specifies a directory from which to read archive log files
during refresh operations if the source PDB is not available over its database
link.

• If new data files are created in the source PDB, then the
PDB_FILE_NAME_CONVERT initialization parameter must be set in the CDB to
convert the data file paths from the source PDB to the clone PDB.

• A change to a tablespace encryption algorithm (for example, from AES128 to
AES256) is not applied to a refreshable PDB after the algorithm has been
changed in the source PDB. After you create the refreshable PDB, you must
update its tablespace encryption algorithm manually.

Chapter 7
About Refreshable Clone PDBs

7-25

Example 7-1 A REFRESH MODE Clause That Specifies Automatic Refresh

This refresh mode clause specifies that a refreshable PDB is refreshed automatically
every two hours (120 minutes):

REFRESH MODE EVERY 120 MINUTES

See Also:

• "Cloning a Remote PDB: Basic Steps"

• "Refreshing a PDB"

Requirements for Refreshable Clone PDBs
Creation of a refreshable clone PDB requires a database link. The database link can
point to the same CDB or a different CDB.

A refreshable clone PDB must be in either of the following states:

• Closed

A refreshable PDB must be closed when a refresh is performed. If it is not closed
when automatic refresh is attempted, then the refresh is deferred until the next
scheduled refresh. If it is not closed when a user attempts to perform manual
refresh, then an error is reported.

• Open in read-only mode

The refreshable PDB must be kept in read-only mode to prevent out-of-sync
changes on the refreshable PDB which do not occur on the source PDB. The
refreshable PDB is intended to serve as a clone master and as such must
accurately reflect the source PDB at the refreshed point in time.

Creating a Refreshable Clone PDB: Scenario
This scenario creates a refreshable clone named pdb1_ref_cln from a remote PDB
named pdb1.

The clone PDB is a copy of the source PDB. You can refresh the clone PDB
periodically to update it with any changes made to the source PDB.

Assumptions

This scenario assumes the following factors:

• The database link name to the remote PDB is pdb1_link.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Chapter 7
About Refreshable Clone PDBs

7-26

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. The files will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

• The refreshable clone will be refreshed automatically every 60 minutes.

Note:

To create a refreshable PDB, the source PDB must be in ARCHIVELOG mode and
local undo mode.

To create a refreshable clone PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or an application root.

When the current container is the CDB root, the PDB is created in the CDB. When the
current container is an application root, the application PDB is created in the application
container.

2. Execute the CREATE PLUGGABLE DATABASE statement.

The following statement creates pdb1_ref_cln from pdb1:

CREATE PLUGGABLE DATABASE pdb1_ref_cln FROM pdb1@pdb1_link REFRESH MODE
EVERY 60 MINUTES;

See Also:

"Managing Refreshable Clone PDBs"

Cloning PDBs from PDB Snapshots
You can create PDBs from PDB snapshots by executing the CREATE PLUGGABLE DATABASE …
USING SNAPSHOT statement.

• About Cloning PDBs from PDB Snapshots
A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-
only or read/write while the snapshot is created. A clone from a PDB snapshot is a full,
standalone PDB.

• Cloning a PDB from a PDB Snapshot: Scenario
This scenario creates a new PDB from a PDB snapshot by executing CREATE PLUGGABLE
DATABASE ... USING SNAPSHOT.

Chapter 7
Cloning PDBs from PDB Snapshots

7-27

About Cloning PDBs from PDB Snapshots
A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-
only or read/write while the snapshot is created. A clone from a PDB snapshot is a full,
standalone PDB.

Cloning a PDB from a PDB Snapshot: Scenario
This scenario creates a new PDB from a PDB snapshot by executing CREATE
PLUGGABLE DATABASE ... USING SNAPSHOT.

Assumptions

This example assumes the following factors:

• A PDB snapshot carousel exists with 8 daily snapshots of source PDB salespdb,
named after the weekday, day of the month, and time when they were created:
pdb1_mon_2_1201, pdb1_tue_3_1201, pdb1_wed_4_1201, and so on.

• All snapshots were created when the source salespdb was in read/write mode.

• The new PDB will be a clone of a snapshot named pdb1_wed_4_1201, which is a
snapshot of pdb1 taken last Wednesday on the 4th of the month at 12:01 a.m.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. Therefore, the FILE_NAME_CONVERT clause is not
required. The files will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

To clone a PDB from a PDB snapshot:

1. In SQL*Plus, ensure that the current container is the CDB root or an application
root.

When the current container is the CDB root, the PDB is created in the CDB. When
the current container is an application root, the application PDB is created in the
application container.

2. Execute the CREATE PLUGGABLE DATABASE ... USING SNAPSHOT statement.

The following statement clones the pdb1_copy PDB from the PDB snapshot
named pdb1_wed_4_1201:

CREATE PLUGGABLE DATABASE pdb1_copy FROM pdb1
 USING SNAPSHOT pdb1_wed_4_1201;

Chapter 7
Cloning PDBs from PDB Snapshots

7-28

See Also:

• "Configuring Automatic PDB Snapshots"

• Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Creating and Materializing Snapshot Copy PDBs
You can clone a PDB from snapshots of the underlying storage. The PDB files are sparse,
but you can materialize the files to create a standalone PDB.

• About Snapshot Copy PDBs
You can create a snapshot copy PDB by executing a CREATE PLUGGABLE DATABASE ...
FROM ... SNAPSHOT COPY statement. The source PDB is specified in the FROM clause.

• Creating a Snapshot Copy PDB: Scenario
This scenario create a snapshot copy PDB by specify the SNAPSHOT COPY clause in
CREATE PLUGGABLE DATABASE.

• Materializing a Snapshot Copy PDB
You can materialize a snapshot copy PDB by running an ALTER PLUGGABLE DATABASE
statement with the MATERIALIZE clause. Materializing a snapshot copy PDB copies all
data blocks.

About Snapshot Copy PDBs
You can create a snapshot copy PDB by executing a CREATE PLUGGABLE DATABASE ...
FROM ... SNAPSHOT COPY statement. The source PDB is specified in the FROM clause.

A snapshot copy reduces the time required to create the clone because it does not include a
complete copy of the source data files. Furthermore, the snapshot copy PDB occupies a
fraction of the space of the source PDB.

Storage clones are named and tagged using the GUID of the target PDB. To view clone tags
for storage clones, query the DBA_PDB_HISTORY.CLONETAG column.

• Storage Requirements for Snapshot Copy PDBs
If you use CREATE PLUGGABLE DATABASE ... FROM srcpdb ... SNAPSHOT COPY, then the
source PDB data files must reside in the same storage type.

• Restrictions for Snapshot Copy PDBs
You cannot drop the storage snapshot on which a snapshot copy PDB is based.

Storage Requirements for Snapshot Copy PDBs
If you use CREATE PLUGGABLE DATABASE ... FROM srcpdb ... SNAPSHOT COPY, then the
source PDB data files must reside in the same storage type.

The behavior of the CREATE PLUGGABLE DATABASE ... FROM ... SNAPSHOT COPY command
depends on the following rules:

1. If the file system supports storage-managed snapshots, then the snapshot copy PDB is
based on a storage-level copy of the underlying file system. The snapshot copy PDB

Chapter 7
Creating and Materializing Snapshot Copy PDBs

7-29

contains sparse files. The copy-on-write technology means that only modified
blocks require additional storage on disk.

2. If the file system does not support storage snapshots, then the algorithm is as
follows:

• If the storage system uses Oracle Exadata sparse disk groups, then Oracle
Database creates a snapshot copy PDB. However, the source PDB must
remain read/only for the lifetime of the snapshot copy PDB.

• If the storage system does not use Oracle Exadata sparse disk groups, then
the behavior is as follows:

– If CLONEDB=true, then the underlying file system for the source PDB files
can be any local file system, network file system (NFS), or a clustered file
system such as Oracle ACFS. If using a network file system, Direct NFS
should be enabled for the CDB. The file system should support sparse
files. Most UNIX systems meet these requirements.

When CLONEDB=true, the open mode of the source PDB has the following
effects:

* If the source PDB is open in read-only mode, then Oracle Database
creates a snapshot copy PDB using copy-on-write technology. The
snapshot copy PDB contains sparse files, not full copies.

* If the source PDB is not open in read-write mode, then Oracle
Database issues an error.

– If CLONEDB=false, then Oracle Database issues an error.

Direct NFS Client enables an Oracle database to access network attached storage
(NAS) devices directly, rather than using the operating system kernel NFS client. If the
files of the source PDB are stored on Direct NFS Client storage, then the following
additional requirements must be met:

• The source PDB files must be located on an NFS volume.

• Storage credentials must be stored in a Transparent Data Encryption keystore.

• The storage user must have the privileges required to create and destroy
snapshots on the volume that hosts the files of the source PDB.

• Credentials must be stored in the keystore using an ADMINISTER KEY MANAGEMENT
ADD SECRET SQL statement.

The following example configures an Oracle Database secret in a software
keystore:

ADMINISTER KEY MANAGEMENT
 ADD SECRET 'secret' FOR CLIENT 'client_name'
 USING TAG 'storage_user'
 IDENTIFIED BY keystore_password WITH BACKUP;

Run this statement to add a separate entry for each storage server in the
configuration. In the previous example, the following values must be specified:

– secret is the storage password.

– client_name is the storage server. On a Linux or UNIX platform, it is the name
entered in /etc/hosts or the IP address of the storage server.

Chapter 7
Creating and Materializing Snapshot Copy PDBs

7-30

– tag is the user name passed to the storage server.

– keystore_password is the password for the keystore.

Note:

Snapshot copy behavior and efficiency are vendor specific and may vary between
vendors.

See Also:

• Oracle Automatic Storage Management Cluster File System Administrator's
Guide for more information about Oracle ACFS

• Oracle Grid Infrastructure Installation and Upgrade Guide for your operating
system for information about Direct NFS Client

• Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption

• My Oracle Support Note 1597027.1 for more information about supported
platforms for snapshot cloning of PDBs

• Oracle Exadata System Software User's Guide for information about Exadata
support for PDB clones created using the SNAPSHOT COPY clause

Restrictions for Snapshot Copy PDBs
You cannot drop the storage snapshot on which a snapshot copy PDB is based.

You cannot unplug snapshot copy PDBs from the CDB root or application container.
Attempting to unplug a snapshot copy PDB results in an error. However, you can materialize
the snapshot copy PDB, which turns it into a standalone PDB, and then drop it.

Note:

A PDB created with the USING SNAPSHOT clause and a PDB created with the
SNAPSHOT COPY clause have different properties. You cannot specify both clauses in
a single CREATE PLUGGABLE DATABASE command. The CREATE PLUGGABLE DATABASE
… FROM … USING SNAPSHOT clause creates a full, standalone PDB that does not
need to be materialized. The CREATE PLUGGABLE DATABASE … FROM … SNAPSHOT
COPY clause creates a sparse PDB that must be materialized if you want to drop the
storage-level snapshot on which it is based.

Chapter 7
Creating and Materializing Snapshot Copy PDBs

7-31

Creating a Snapshot Copy PDB: Scenario
This scenario create a snapshot copy PDB by specify the SNAPSHOT COPY clause in
CREATE PLUGGABLE DATABASE.

Assumptions

This scenario assumes the following factors:

• The new snapshot copy PDB will be created from a PDB named pdb1.

• The underlying file system supports storage snapshots. Thus, you do not need to
set the CLONEDB initialization parameter.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. Therefore, the FILE_NAME_CONVERT clause is not
required. The files will be copied to a new location based on the Oracle Managed
Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

To create a snapshot copy PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or an application
root.

When the current container is the CDB root, the PDB is created in the CDB. When
the current container is an application root, the application PDB is created in the
application container.

2. Execute the CREATE PLUGABBLE DATABASE … SNAPSHOT COPY statement.

The following statement clones the pdb1_snap_copy PDB from pdb1:

CREATE PLUGGABLE DATABASE pdb1_snap_copy FROM pdb1 SNAPSHOT COPY;

As long as pdb1_snap_copy exists, you cannot drop the storage snapshot on which
pdb1_snap_copy is based.

See Also:

"Materializing a Snapshot Copy PDB"

Chapter 7
Creating and Materializing Snapshot Copy PDBs

7-32

Materializing a Snapshot Copy PDB
You can materialize a snapshot copy PDB by running an ALTER PLUGGABLE DATABASE
statement with the MATERIALIZE clause. Materializing a snapshot copy PDB copies all data
blocks.

Materializing a snapshot copy PDB transforms the snapshot copy PDB, which uses sparse
files, into a full PDB, which does not use sparse files. The materialized PDB is no longer
dependent on the source PDB, which can be dropped or changed to a different open mode.

For example, if pd1_snap_copy is a snapshot copy PDB, then you can materialize it into a
standalone PDB by running an ALTER PLUGGABLE DATABASE MATERIALIZE command. After
materialization, pdb1_snap_copy no longer depends on the storage-level snapshot, enabling
you to drop it.

To materialize a PDB snapshot:

1. In SQL*Plus, ensure that the current container is the snapshot copy PDB that is being
materialized.

2. Run an ALTER PLUGGABLE DATABASE statement with the MATERIALIZE clause.

Example 7-2 Materializing a Snapshot Copy PDB

The following SQL statement materializes a snapshot copy PDB:

ALTER PLUGGABLE DATABASE MATERIALIZE;

See Also:

• "About Snapshot Copy PDBs" to learn more about snapshot copy PDBs

• "Creating a Snapshot Copy PDB: Scenario"

• My Oracle Support Note 2627975.1 to learn how to revert the source PDB data
file permissions after removing all snapshot clone PDBs

Creating a Split Mirror Clone PDB
In Oracle ASM, a split mirror is the process of detaching a point-in-time media copy from a
parent copy. After the split, updates to the parent do not affect the child copy.

Starting in Oracle Database 18c, the parent copy can be a PDB rather than a storage
volume. The split mirror clone PDB resides on the same media as the parent. The principal
use case is to rapidly provision test and development PDBs in an Oracle ASM environment.

Note:

Oracle ASM flex and extended disk groups are required for split mirror clone PDBs.

Chapter 7
Creating a Split Mirror Clone PDB

7-33

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2627975.1

Mirror refresh is refreshing a split mirror clone PDB with changes from the parent PDB.
In effect, this operation is equivalent to deleting the mirror split, and then taking a new
mirror split.

To drop a split mirror clone PDB, enter ALTER PLUGGABLE DATABASE ... DROP MIRROR
COPY.

To create a split mirror clone PDB:

1. Start SQL*Plus, and connect to the CDB root.

2. Prepare the source PDB by issuing the ALTER PLUGGABLE DATABASE ... PREPARE
MIRROR COPY statement.

3. Create a clone PDB from the source PDB by issuing the CREATE PLUGGABLE
DATABASE ... FROM ... USING MIRROR COPY statement.

4. Optionally, query V$ASM_DBCLONE_INFO view to see the relationship between the
source PDB, the cloned PDB, and their file groups.

See Also:

• Oracle Automatic Storage Management Administrator's Guide to learn
how to create or drop a split mirror clone PDB

• Oracle Database Reference to learn more about V$ASM_DBCLONE_INFO

Chapter 7
Creating a Split Mirror Clone PDB

7-34

8
Relocating a PDB

You can move a PDB to a different CDB or application container.

• About PDB Relocation
During relocation, the source PDB can be open in read/write mode and fully functional.

• Purpose of PDB Relocation
This technique is the fastest way to move a PDB with minimal or no down time.
Otherwise, unplugging the source PDB requires a PDB outage until the PDB is plugged
in to the target CDB.

• How PDB Relocation Works
The operation moves the files associated with the PDB to a new location, adds the PDB
to the target CDB, and then opens the PDB.

• User Interface for PDB Relocation
You can relocate PDBs on the command line using SQL, the DBCA utility, or the Fleet
Patching and Provisioning utility.

• Relocating a PDB Using CREATE PLUGGABLE DATABASE
The CREATE PLUGGABLE DATABASE ... RELOCATE statement moves a PDB to a different
container.

• Relocating a PDB: Examples
The examples in this section demonstration relocation using SQL and DBCA.

About PDB Relocation
During relocation, the source PDB can be open in read/write mode and fully functional.

PDB relocation executes an online block level copy of the source PDB data files, redo, and
undo while the source PDB is open with active sessions. When the target PDB comes online
because of an ALTER PLUGGABLE DATABASE OPEN statement, Oracle Database terminates the
active sessions and closes the source PDB.

The following graphic shows the relocation of a common PDB (that is, not an application
PDB) to a new single-instance CDB. The source PDB is plugged in to the CDB root, and the
target PDB is plugged in to the CDB root. Note that the CREATE PLUGGABLE DATABASE ...
RELOCATE statement copies the data blocks, undo blocks, and redo blocks to the new location.
A database link is required.

8-1

Figure 8-1 Relocate a PDB into the Root Container

PDB being
Relocated

Relocated
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Files of the PDBFiles of the PDB

Move to New Location

CREATE PLUGGABLE DATABASE ... FROM ... RELOCATE

Database
Link

Move

When the target PDB is an application PDB or application root, you have the following
options:

• You can relocate a PDB into an application container as an application PDB. The
target PDB can be in the same CDB or a different CDB.

• You can relocate an application PDB from one application root to another. The
target PDB must be in a different CDB.

• You can relocate an empty application root from one CDB to another, but the
application root must not have any hosted application PDBs.

The following graphic illustrates how this technique creates a new application PDB in
an application container.

Chapter 8
About PDB Relocation

8-2

Figure 8-2 Relocate a PDB into an Application Container

CDB

Move

PDBs and Application Containers

Seed
(PDB$SEED)

Application
Container

Application PDBs

Application
Seed

Relocated
Applicaton
PDB

Application Root

Root (CDB$ROOT)

CDB

PDBs and Application Containers

Seed
(PDB$SEED)

Application
Container

Application PDBs

Application
Seed

Applicaton PDB
being relocated

Application Root

Root (CDB$ROOT)

Files of the PDBFiles of the PDB

Move to New Location

CREATE PLUGGABLE DATABASE ... FROM ... RELOCATE

Database
Link

When you open the relocated PDB for the first time, Oracle Database drains active sessions
on the source PDB and redirects client connections to the relocated PDB services. Opening
the relocated PDB initiates the shutdown of the original source PDB. The source and
relocated PDBs are never open at the same time.

Chapter 8
About PDB Relocation

8-3

See Also:

"PDB Storage"

Purpose of PDB Relocation
This technique is the fastest way to move a PDB with minimal or no down time.
Otherwise, unplugging the source PDB requires a PDB outage until the PDB is
plugged in to the target CDB.

When moving a PDB between data centers, or from an on-premises environment to a
cloud environment, all the data must physically move. For large PDBs, this process
may take considerable time, possibly violating availability components of an SLA. PDB
relocation eliminates the outage completely. You can relocate the PDB without taking
the application offline, changing the application, or changing network connection
strings.

How PDB Relocation Works
The operation moves the files associated with the PDB to a new location, adds the
PDB to the target CDB, and then opens the PDB.

• Server Session Draining When Relocating or Stopping PDBs
A key requirement of planned maintenance is draining or failing over PDB
sessions so that application work is not interrupted.

• Stages of PDB Relocation
The details of PDB relocation vary depending on the listener networks.

Server Session Draining When Relocating or Stopping PDBs
A key requirement of planned maintenance is draining or failing over PDB sessions so
that application work is not interrupted.

Automatic Session Failover

In database-generic session draining, active sessions can exit gracefully under a timer.
After the timer has expired, Oracle Database terminates all active sessions, and then
reconnects them to the relocated PDB.

Starting in Oracle Database 19c, during planned maintenance, the database may
decide that a session is unlikely to drain in the drain window. In this case, the database
invokes Application Continuity and fails over the session automatically. The draining
feature is enabled by default for all maintenance operations invoked at the database
service and PDB levels: stop service, relocate service, relocate PDB, and stop PDB.

Chapter 8
Purpose of PDB Relocation

8-4

Note:

If your application server user a Purge Pool property, then disable this property
because it disrupts sessions that are not ready to drain.

Rules for Session Draining

The database uses an extensible set of rules to determine when to drain a database session,
which persists until a rule is satisfied. The rules include the following:

• Standard application server tests for validity

• Custom SQL tests for validity

• Request boundaries are in use and no request is active

• Request boundaries are in use and the current request has ended

• The session has one or more session states that are recoverable, and can be recreated
at failover

A typical use case is application servers and pooled applications that test connections when
borrowing from connection pools, returning connections to the pool, and at batch commits.
When draining sessions, the database automatically intercepts the connection test, closes
the connection, and then returns a failed status for the test. After receiving the failed status,
the application layer can request a different connection. In this way, the application is not
disrupted.

Application Continuity with FAN on Oracle RAC

For an optimal configuration that minimizes the impact on the client, consider configuring
Application Continuity with FAN on the Oracle RAC database. In Oracle Clusterware, the
Fleet Patching and Provisioning feature automates PDB relocation. An example of finer-
grained relocation in an Oracle RAC environment is service relocation between PDB
instances. Oracle RAC and Oracle Clusterware offer a rich high availability environment that
further minimizes the impact on connected clients during relocation. For example, shared
storage may minimize or remove the necessity to copy data files. Transparent Application
Continuity, a mode of Application Continuity, is enabled by default in Oracle Cloud.

Note:

In an Oracle Clusterware environment, when relocating a PDB between different
CDBs, you must create non-database services using SRVCTL.

See Also:

Oracle Clusterware Administration and Deployment Guide to learn about
Application Continuity, SRVCTL, and Fleet Patching and Provisioning

Chapter 8
How PDB Relocation Works

8-5

Stages of PDB Relocation
The details of PDB relocation vary depending on the listener networks.

• PDB Relocation in a Common Listener Network
When the source and target location share a common listener network, forwarding
client connections is not necessary because the SQL*Net layer forwards client
connections implicitly.

• PDB Relocation in Isolated Listener Networks
When independent listeners do not use cross-registration, the listener in the target
CDB and source CDB have no knowledge of each other or of their respective
published services.

PDB Relocation in a Common Listener Network
When the source and target location share a common listener network, forwarding
client connections is not necessary because the SQL*Net layer forwards client
connections implicitly.

AVAILABILITY NORMAL

When the listener network is common, specify the AVAILABILITY NORMAL clause in
CREATE PLUGGABLE DATABASE ... RELOCATE. This option is the default. The following
situations are typical use cases for AVAILABILITY NORMAL:

• Shared listener

If you use the same listener for the PDB in its old and new locations, then new
connections are automatically routed to the new location when relocation
completes. This situation is typical of a relocation between CDBs in the same host.
In this case, the PDB is re-registered with the listener in its new location.
Additional connection handling is not required.

• Cross-registered listeners

If the PDBs use different listeners, and if you employ cross-registration of their
respective listeners through configuration of the local_listener and
remote_listener parameters, then relocation is seamless. The availability and
location of the PDB’s services are automatically registered with both listeners. This
situation is typical of relocation between hosts within a data center, perhaps for
load balancing purposes.

In shared and cross registered listener environments, services from all databases are
published to the common listener network. For this reason, services for relocated
PDBs are immediately known to the common listener network. To avoid service name
space collisions, PDB service definitions must be unique in the common listener
network.

Stages of Relocation in a Common Listener Network

1. The user issues CREATE PLUGGABLE DATABASE ... RELOCATE AVAILABILITY
NORMAL.

This step executes a hot clone of the source PDB from its original location to its
target location. The source PDB copies data files, undo blocks, and redo blocks to
the target PDB as of an implicit begin SCN marker.

Chapter 8
How PDB Relocation Works

8-6

When this step completes, two transactionally consistent copies of this PDB exist: one in
the source container and one in the target container. For the duration of the operation,
processing continues uninterrupted on the source PDB. Users of an application or
applications connected to the source PDB are unaware that a relocation is underway.

All existing application connections, and new connections created during this step,
continue to connect to the source PDB.

2. The user issues ALTER PLUGGABLE DATABASE OPEN.

The following actions occur in the background:

a. The target PDB implicitly sets the end SCN marker, and applies any redo or undo
required to complete media recovery to satisfy the implicit end SCN marker.

b. When media recovery occurs on the target PDB, Oracle Database initiates active
session draining on the source PDB.

c. PDB services are registered with the listener and are available on the target CDB.

d. The source PDB is closed.

e. The target PDB opens in read/write mode.

This step completes the relocation of the PDB to the target CDB. At the end of the
operation, connections point to the newly relocated PDB.

After the PDB is opened in read/write mode, its status is NORMAL. The database
returns an error if you attempt to open the PDB in read-only mode.

See Also:

• Oracle Database Net Services Administrator's Guide for more information about
listener redirects

• Oracle Real Application Clusters Administration and Deployment Guide to learn
more about using Application Continuity to drain and migration sessions before
planned maintenance

PDB Relocation in Isolated Listener Networks
When independent listeners do not use cross-registration, the listener in the target CDB and
source CDB have no knowledge of each other or of their respective published services.

AVAILABILITY MAX

The AVAILABILITY MAX clause in CREATE PLUGGABLE DATABASE ... RELOCATE implicitly
instructs the SQL*Net layer to reconfigure the original listener. This situation may be common
when relocating a PDB between data centers. This configuration is intended to be temporary
while the Oracle Internet Directory (OID) or LDAP server is updated or the client connections
are modified.

If a local listener redirects to a Single Client Access Name (SCAN) listener in an Oracle RAC
configuration, then this listener may need to further redirect the client connection request to
another cluster node. Multiple redirects are not supported by Oracle Net listeners by default.
Because any SCAN listener can route the connection request to any node, set the
ALLOW_MULTIPLE_REDIRECTS_listener_name parameter to the listener_name of every SCAN

Chapter 8
How PDB Relocation Works

8-7

listener, and set it in every listener.ora file in the cluster. For example, if the SCAN
listeners are named listener_scan1, listener_scan2, and listener_scan3, then the
listener.ora file on every destination host should have the following settings:

ALLOW_MULTIPLE_REDIRECTS_LISTENER_SCAN1=YES
ALLOW_MULTIPLE_REDIRECTS_LISTENER_SCAN2=YES
ALLOW_MULTIPLE_REDIRECTS_LISTENER_SCAN3=YES

Caution:

Do not set the ALLOW_MULTIPLE_REDIRECTS_listener_name parameter for
node listeners because it may allow infinite redirection loops in certain
network configurations.

Stages of Relocation in an Isolated Listener Network

1. The user issues CREATE PLUGGABLE DATABASE ... RELOCATE AVAILABILITY MAX.

This step executes a hot clone of the source PDB from its original location to its
target location. The source PDB copies data files, undo blocks, and redo blocks to
the target PDB as of an implicit begin SCN marker.

2. The user issues ALTER PLUGGABLE DATABASE OPEN.

The following actions occur in the background:

a. The target PDB implicitly sets the end SCN marker, and applies any redo or
undo required to complete media recovery to satisfy the implicit end SCN
marker.

b. When media recovery occurs on the target PDB, Oracle Database initiates
active session draining on the source PDB.

c. The LISTENER_NETWORKS initialization parameter is implicitly updated in the
source PDB with the forwarding address, and the listener PDB services for the
source CDB are updated with the forwarding address.

d. The target PDB opens in read-only mode while media recovery completes.

At this stage, only queries of the target PDB are permitted. Queries behave
exactly as if they had been run on the source PDB. However, connections
attempting DML do not complete.

e. Read-only connections are immediately forwarded to the new hosting listener,
and new read/write connections are forwarded to the new hosting listener,
where they spin until the target PDB is opened in a consistent state.

f. The source PDB executes a SHUTDOWN IMMEDIATE, terminating persistent
connections.

g. The target PDB opens in read/write mode.

This step completes the relocation of the PDB to the target CDB. At the end of
the operation, connections point to the newly relocated PDB.

After the PDB is opened in read/write mode, its status is NORMAL. The database
returns an error if you attempt to open the PDB in read-only mode.

Chapter 8
How PDB Relocation Works

8-8

Note:

An artifact known as a tombstone PDB remains in the source CDB to protect the
PDB’s namespace and preserve the listener forwarding configuration until the
updates are complete. In the root of the source CDB, the tombstone PDB is visible
in V$CONTAINERS with a status of RELOCATED. When you change the application
connect strings to provide direct connections to the target PDB, you can drop the
tombstone PDB from the source CDB.

See Also:

• "Creating an Application PDB"

• Oracle Database Net Services Administrator's Guide for more information about
listener redirects

• Oracle Real Application Clusters Administration and Deployment Guide to learn
more about using Application Continuity to drain and migration sessions before
planned maintenance

User Interface for PDB Relocation
You can relocate PDBs on the command line using SQL, the DBCA utility, or the Fleet
Patching and Provisioning utility.

SQL Statement

The form of the SQL statement is as follows:

CREATE PLUGGABLE DATABASE ... FROM src_pdb_name@link2src ... RELOCATE
AVAILABILITY [MAX | NORMAL]

The FROM clause identifies the location of the source PDB. For src_pdb_name, specify the
name of the source PDB. For link2src, specify a database link that indicates the location of
the source PDB. The database link must have been created in the target CDB, which is the
CDB to which the PDB will be relocated. The link can connect either to the root of the remote
CDB or to the remote PDB.

The AVAILABILITY clause determines how the database handles client connections.

DBCA

You can relocate a PDB by running DBCA in silent mode. The relocatePDB command
performs the relocation.

Chapter 8
User Interface for PDB Relocation

8-9

Table 8-1 relocatePDB Parameters

Parameter Description

-remotePDBName remote_pdb_name The name of the PDB that you intend to
relocate.

-remoteDBConnString
remote_db_conn_string

The net service connection to the remote
CDB.

-sysDBAUserName sysdbusername The name of the SYS user in the local CDB.

-sysDBAPassword sysdbapassowrd The password of the SYS user in the local
CDB.

-remoteDBSYSDBAUserName
sysdbusername

The name of the SYS user in the remote CDB.

-remoteDBSYSDBAPassword
sysdbapassowrd

The password of the SYS user in the remote
CDB.

-dbLinkUsername
dblink_common_user_name

The name of the common user in the remote
CDB.

-dbLinkUserPassword
dblink_common_username_pwd

The password of the common user in the
remote CDB.

-sourceDB dbname_pdb_toberelocated The name of the source PDB.

-pdbName pdbtoberecreated The name of the PDB after relocation.

Fleet Patching and Provisioning Control (RHPCTL)

In Oracle Grid Infrastructure, you can use Fleet Patching and Provisioning to automate
relocation of a PDB from one CDB to another.

See Also:

• Oracle Database SQL Language Reference for CREATE PLUGGABLE
DATABASE syntax and semantics

• Oracle Database Administrator’s Guide for the DBCA command
reference for silent mode

• Oracle Clusterware Administration and Deployment Guide to learn more
about Fleet Patching and Provisioning

Relocating a PDB Using CREATE PLUGGABLE DATABASE
The CREATE PLUGGABLE DATABASE ... RELOCATE statement moves a PDB to a
different container.

The target CDB (also called the destination CDB) is the CDB to which the PDB is
being relocated. The target PDB is the PDB being relocated. After the CREATE
PLUGGABLE DATABASE ... RELOCATE operation completes, Oracle Database moves the
PDB from the source CDB to the destination CDB.

Chapter 8
Relocating a PDB Using CREATE PLUGGABLE DATABASE

8-10

General Prerequisites

Address the questions that apply to relocating a PDB in "Table 5-3". The table describes
which CREATE PLUGGABLE DATABASE clauses you must specify based on different factors.
Also, complete the prerequisites described in "General Prerequisites for PDB Creation".

Database Mode and State Prerequisites

You must meet the following prerequisites:

• The source CDB must be in local undo mode.

• In the source CDB, you must save the service and open state of the PDBs in all database
instances. Log in to the CDB root as an administrator and issue the following statement:

ALTER PLUGGABLE DATABASE ALL SAVE STATE INSTANCES=ALL;

This step ensures that the PDB relocation operation automatically starts the PDB
services in the target CDB.

• If the target CDB is not in ARCHIVELOG mode, then the target PDB must be opened read-
only during the operation. This requirement does not apply if the target CDB is in
ARCHIVELOG mode.

User Privilege Prerequisites

You must meet the following prerequisites:

• In the target CDB, the current user must have the CREATE PLUGGABLE DATABASE system
privilege in the CDB root.

• The following prerequisites apply to the database link:

– A database link must enable a connection from the destination CDB to the source
CDB.

– If the target is a standard PDB, then the database link must connect to the root of the
source CDB. If the target PDB is an application PDB, then the database link must
connect to its application root.

– If the database link user connects to the CDB root in the source CDB, then this user
must be a common user. If the database link connects to the application root, then
this user can be either a CDB-wide common user or an application common user.

– The database link user must have either the CREATE PLUGGABLE DATABASE system
privilege or the SYSOPER administrative privilege.

Platform and Character Set Prerequisites

You must meet the following prerequisites:

• The platforms of the source CDB and the destination CDB must meet the following
requirements:

– They must have the same endianness.

– The database options installed on the source platform must be the same as, or a
subset of, the database options installed on the destination platform.

Chapter 8
Relocating a PDB Using CREATE PLUGGABLE DATABASE

8-11

• If the character set of the destination CDB is not AL32UTF8, then the source CDB
and destination CDB must have compatible character sets and national character
sets.

If the character set of the destination CDB is AL32UTF8, then this requirement
does not apply.

Note:

Oracle Multitenant does not support a LOB in one container from being
accessed by a container with a different character set using data links,
extended data links, or the CONTAINERS() clause. For example, if the
CDB root and salespdb have different character sets, then a
CONTAINERS() query run in the CDB root should not access LOBs stored
in salespdb.

Application Name and Version Prerequisites

If you are creating an application PDB, then the source PDB and target application
container must have the same application name and version.

To relocate a PDB:

1. In SQL*Plus, log in to the target CDB as a user with the CREATE PLUGGABLE
DATABASE system privilege.

2. Ensure that the current container is the root of the target CDB or target application
container.

3. Run the CREATE PLUGGABLE DATABASE ... RELOCATE statement with the FROM
clause.

Specify the source PDB in the FROM clause, and include the RELOCATE clause. To
redirect connections from the old location of the PDB to the new location, specify
the AVAILABILITY MAX clause. Specify other clauses when they are required.

After you relocate the PDB, it is in mounted mode, and its status is RELOCATING.
You can view the open mode of a PDB by querying the OPEN_MODE column in the
V$PDBS view. You can view the status of a PDB by querying the STATUS column of
the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as
the PDB and can be used to access the PDB. Oracle Net Services must be
configured properly for clients to access this service.

4. Optionally, to determine the status of the file copy operation, query
V$SESSION_LONGOPS.

The OPNAMES column shows kpdbfCopyTaskCbk for the data file copy and
kcrfremnoc for the redo file copy.

5. Open the new PDB in read/write mode.

This step is required to complete the integration of the new PDB into the CDB.
After the PDB is opened in read/write mode, its status is NORMAL. An error is
returned if you attempt to open the PDB in read-only mode.

6. Back up the PDB.

Chapter 8
Relocating a PDB Using CREATE PLUGGABLE DATABASE

8-12

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during PDB relocation, then the PDB being created might
be in an UNUSABLE state. You can check the PDB state by querying the
CDB_PDBS or DBA_PDBS view, and you can learn more about PDB creation errors
by checking the alert log. An unusable PDB can only be dropped, and it must
be dropped before a PDB with the same name as the unusable PDB can be
created.

See Also:

• "About the CDB Undo Mode"

• "Modifying the Open Mode of PDBs"

• Oracle Database Globalization Support Guide for the compatibility requirements
for character sets and national character sets

• Oracle Database Backup and Recovery User’s Guide for information about
backing up a PDB

Relocating a PDB: Examples
The examples in this section demonstration relocation using SQL and DBCA.

• Relocating a PDB from a Remote CDB
This example relocates a PDB named pdb1 from a remote CDB to the current CDB.

• Relocating a PDB Using DBCA: Example
This example uses DBCA to relocate a PDB named pdb1 from a remote CDB to the local
CDB, where it will be renamed relpdb1.

Relocating a PDB from a Remote CDB
This example relocates a PDB named pdb1 from a remote CDB to the current CDB.

In this example, the root to which the new PDB belongs depends on the current container
when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB root.

• When the current container is an application root in an application container, the new
PDB is created as an application PDB in the application root.

This example relocates a PDB named pdb1 from a remote CDB given different factors. This
example assumes the following factors:

• The current user has the CREATE PLUGGABLE DATABASE system privilege in the root of the
target CDB.

Chapter 8
Relocating a PDB: Examples

8-13

• The database link name to the source CDB is lnk2src. This database link was
created with the following SQL statement:

CREATE PUBLIC DATABASE LINK lnk2src CONNECT TO c##myadmin IDENTIFIED
BY password USING 'MYCDB';
The common user c##myadmin has SYSOPER administrative privilege and CREATE
PLUGGABLE DATABASE system privilege in the source CDB.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. The files will be moved to a new location based on
the Oracle Managed Files configuration or the initialization parameter setting.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• Connections should be relocated automatically from the source PDB to the
relocated PDB. Therefore, the AVAILABILITY MAX clause is included.

The following statement relocates the pdb1 PDB from the source CDB to the current
CDB:

CREATE PLUGGABLE DATABASE pdb1 FROM pdb1@lnk2src RELOCATE AVAILABILITY
MAX;

Relocating a PDB Using DBCA: Example
This example uses DBCA to relocate a PDB named pdb1 from a remote CDB to the
local CDB, where it will be renamed relpdb1.

Prerequisites

This scenario assumes the following:

• The user in the local database has the CREATE PLUGGABLE DATABASE privilege in
the root container.

• The remote CDB is in local undo mode.

• The remote and local CDBs are in ARCHIVELOG mode.

• The common user in the remote CDB to whom the database link connects has the
CREATE PLUGGABLE DATABASE, SESSION, and SYSOPER privilege.

• The local and remote CDBs have the same options installed.

Assumptions

This scenario assumes the following:

• You are running DBCA on the host of the CDB that will contain the relocated PDB.
The local CDB is named loccdb1.

Chapter 8
Relocating a PDB: Examples

8-14

• The remote (source) CDB is named remcdb1 and resides on host remcdb1host. The
instance name for the remote CDB is reminst.

• The remote PDB, which is the PDB to be relocated, is named rempdb1.

• The common user c##adminuser_remcdb1 resides in remcdb1.

• The administrative user locSYS has SYSDBA privileges on loccdb1, which is the CDB to
which the PDB is being relocated.

• The administrative user remSYS has SYSDBA privileges on remcdb1, which is the CDB that
contains the PDB to be relocated.

• After relocation to loccdb1, the PDB will be renamed relpdb1.

This following silent command relocates rempdb1 to loccdb1:

./dbca -silent
 -relocatePDB
 -sourceDB remcdb1
 -remotePDBName rempdb1
 -remoteDBConnString remcdb1host:1521/reminst
 -remoteDBSYSDBAUserName remSYS
 -remoteDBSYSDBAUserPassword remsyspwd
 -dbLinkUsername c##adminuser_remcdb1
 -dbLinkUserPassword pwd4dblinkusr
 -sysDBAUserName locSYS
 -sysDBAPassword locsyspwd
 -pdbName relpdb1

See Also:

Oracle Database Administrator’s Guide for syntax and semantics of DBCA
commands

Chapter 8
Relocating a PDB: Examples

8-15

9
Plugging In an Unplugged PDB

You can create a PDB by plugging an unplugged PDB into a CDB.

• About PDB Plugin Operations
To plug in a PDB, specify the USING clause of CREATE PLUGGABLE DATABASE. This clause
specifies a XML metadata file or a compressed archive file (.pdb file).

• Plugging In an Unplugged PDB
Plug in a PDB with the CREATE PLUGGABLE DATABASE ... USING statement.

• Adopting a Non-CDB as a PDB
You can adopt (move) a non-CDB into a PDB by using the DBMS_PDB.DESCRIBE
procedure.

• After Plugging in an Unplugged PDB
Certain rules regarding users and tablespaces apply after plugging in an unplugged PDB.

• Plugging in an Unplugged PDB: Examples
These examples plug in an unplugged PDB named salespdb using the /disk1/usr/
salespdb.xml file or the /disk1/usr/sales.pdb file given different factors.

About PDB Plugin Operations
To plug in a PDB, specify the USING clause of CREATE PLUGGABLE DATABASE. This clause
specifies a XML metadata file or a compressed archive file (.pdb file).

• About the XML File and Archive File
An XML metadata file describes the unplugged PDB and the files associated with the
PDB (such as the data files and wallet file). An archive file includes both the XML
metadata file and the PDB files.

• Source File Locations When Plugging In an Unplugged PDB
Use the CREATE PLUGGABLE DATABASE ... USING statement to plug an unplugged PDB
into a CDB.

• About Adopting a Non-CDB as a PDB
To generate an XML file that describes a non-CDB, use the DBMS_PDB.DESCRIBE
procedure. Afterward, plug in the non-CDB just as you would an unplugged PDB.

About the XML File and Archive File
An XML metadata file describes the unplugged PDB and the files associated with the PDB
(such as the data files and wallet file). An archive file includes both the XML metadata file and
the PDB files.

When the XML metadata file is specified, the XML file includes the full paths of the PDB files.
When the .pdb archive file is specified, the XML metadata file contains the relative file names
only.

The following figure illustrates how to plug in an unplugged PDB.

9-1

Figure 9-1 Plugging an Unplugged PDB Into a CDB Root

XML

Metadata

File

Database Files

New
PDB

PDBs

CDB

CREATE PLUGGABLE DATABASE ... USING

Seed
(PDB$SEED)

Root (CDB$ROOT)

.PDB

File

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

OR

.PDB File

The following figure illustrates how this technique creates a new application PDB in an
application container.

Chapter 9
About PDB Plugin Operations

9-2

Figure 9-2 Plugging an Unplugged PDB Into an Application Root

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

.PDB

File

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

OR

.PDB File

PDBs and Application Containers

Application
Container

Application PDBs

New Application
PDB

Application Root

Chapter 9
About PDB Plugin Operations

9-3

Note:

Automatic downgrade of a PDB is not supported. Therefore, you cannot plug
in a PDB if the source CDB is a higher Oracle Database release than the
target CDB.

When you plug in an unplugged PDB, you must address the questions that apply to
plugging in an unplugged PDB in Table 5-3. The table describes which CREATE
PLUGGABLE DATABASE clauses you must specify based on different factors.

See Also:

• "PDB Storage"

• "Creating an Application PDB"

Source File Locations When Plugging In an Unplugged PDB
Use the CREATE PLUGGABLE DATABASE ... USING statement to plug an unplugged
PDB into a CDB.

When you use a .pdb archive file when plugging in a PDB, Oracle Database extracts
this file when you plug in the PDB, and places the PDB files in the same directory as
the .pdb archive file. Therefore, the clauses that specify the source file locations are
not required when you use a .pdb archive file.

When you specify an XML metadata file when plugging in a PDB, this file describes
the names and locations of an unplugged PDB source files. The XML file might not
describe the locations of these files accurately if you transported the unplugged files
from one storage system to a different one. The files are in a new location, but the file
paths in the XML file still indicate the old location.

When plugging in an unplugged PDB using an XML metadata file (not a .pdb archive
file), use either the SOURCE_FILE_NAME_CONVERT clause or the SOURCE_FILE_DIRECTORY
clause. These clauses are mutually exclusive.

• SOURCE_FILE_NAME_CONVERT Clause
The SOURCE_FILE_NAME_CONVERT clause specifies how to locate PDB files when
they reside in a location different from that specified in the XML file.

• SOURCE_FILE_DIRECTORY Clause
The SOURCE_FILE_DIRECTORY clause specifies the source directory of the files that
will be used to create the new PDB.

SOURCE_FILE_NAME_CONVERT Clause
The SOURCE_FILE_NAME_CONVERT clause specifies how to locate PDB files when they
reside in a location different from that specified in the XML file.

You can use this clause to specify one of the following options:

Chapter 9
About PDB Plugin Operations

9-4

• One or more file name patterns and replacement file name patterns, in the following form:

'string1' , 'string2' , 'string3' , 'string4' , ...

The string2 file name pattern replaces the string1 file name pattern, and the string4 file
name pattern replaces the string3 file name pattern. You can use as many pairs of file
name pattern and replacement file name pattern strings as required.

When you use this clause, ensure that the files you want to use for the PDB reside in the
replacement file name patterns. Move or copy the files to these locations if necessary.

• NONE when no file names need to be located because the PDB's XML file describes the
file names accurately. Omitting the SOURCE_FILE_NAME_CONVERT clause is the same as
specifying NONE.

You can use the SOURCE_FILE_NAME_CONVERT clause only in a CREATE PLUGGABLE DATABASE
statement with a USING clause that specifies an XML metadata file. Therefore, you can use
this clause only when you are plugging in an unplugged PDB with an XML metadata file. You
cannot use this clause when you are plugging in a PDB with a .pdb archive file.

Example 9-1 SOURCE_FILE_NAME_CONVERT Clause

This SOURCE_FILE_NAME_CONVERT clause uses the files in the /disk2/oracle/pdb7 directory
instead of the /disk1/oracle/pdb7 directory. In this case, the XML file describing a PDB
specifies the /disk1/oracle/pdb7 directory, but the PDB should use the files in the /disk2/
oracle/pdb7 directory.

SOURCE_FILE_NAME_CONVERT = ('/disk1/oracle/pdb7/', '/disk2/oracle/pdb7/')

See Also:

• Plugging In an Unplugged PDB

• Oracle Database SQL Language Reference for the syntax of the
SOURCE_FILE_NAME_CONVERT clause

SOURCE_FILE_DIRECTORY Clause
The SOURCE_FILE_DIRECTORY clause specifies the source directory of the files that will be
used to create the new PDB.

The clause specifies a directory that contains all of the files listed in the XML file. Using this
clause is convenient when you have many data files and specifying a
SOURCE_FILE_NAME_CONVERT pattern for each file is not feasible.

When you plug in a PDB, if the source files are all present in a single directory, then you can
specify the directory name in this clause. The directory is scanned to find the appropriate files
based on the unplugged PDB’s XML file.

You can use this clause to specify one of the following options:

• The absolute path of the source file directory.

• NONE when no files should be copied or moved during PDB creation. Omitting the
SOURCE_FILE_DIRECTORY clause is the same as specifying NONE.

Chapter 9
About PDB Plugin Operations

9-5

You can use the SOURCE_FILE_DIRECTORY clause only in a CREATE PLUGGABLE
DATABASE statement with a USING clause that specifies an XML metadata file.
Therefore, you can use this clause only when you are plugging in an unplugged PDB
with an XML metadata file. You cannot use this clause when you are plugging in a
PDB with a .pdb archive file.

You can specify this clause for configurations that use Oracle Managed Files and for
configurations that do not use Oracle Managed Files.

Example 9-2 SOURCE_FILE_DIRECTORY Clause

This SOURCE_FILE_DIRECTORY clause generates file names for the new PDB by using
the source files in the /oracle/pdb5/ directory.

SOURCE_FILE_DIRECTORY = '/oracle/pdb5/'

See Also:

• Plugging In an Unplugged PDB

• Oracle Database SQL Language Reference for the syntax of the
SOURCE_FILE_DIRECTORY clause

About Adopting a Non-CDB as a PDB
To generate an XML file that describes a non-CDB, use the DBMS_PDB.DESCRIBE
procedure. Afterward, plug in the non-CDB just as you would an unplugged PDB.

Create the PDB with the CREATE PLUGGABLE DATABASE ... USING statement. When
the non-CDB is plugged in to a CDB, it is a PDB.

Chapter 9
About PDB Plugin Operations

9-6

Figure 9-3 Plug In a Non-CDB Using the DBMS_PDB.DESCRIBE Procedure

New
PDB

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

Non-CDB

DBMS_PDB.DESCRIBE

You can use the same technique to create a new application PDB in an application container.

Note:

To use this technique, the non-CDB must be at release Oracle Database 12c or
later.

See Also:

"Plugging In an Unplugged PDB"

Chapter 9
About PDB Plugin Operations

9-7

Plugging In an Unplugged PDB
Plug in a PDB with the CREATE PLUGGABLE DATABASE ... USING statement.

General Prerequisites

To plug in an unplugged PDB, the following prerequisites must be met:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

• Either the XML file that describes the PDB or the .pdb archive file must exist in a
location that is accessible to the CDB.

The USING clause must specify the XML file or the .pdb archive file. If the PDB's
XML file is unusable or cannot be located, then use the DBMS_PDB.RECOVER
procedure to generate an XML file using the PDB's data files.

• If an XML file (not a .pdb file) is specified in the USING clause, then the files
associated with the PDB (such as the data files and wallet file) must exist in a
location that is accessible to the CDB.

• If the target database for the plugin operation is the primary database in an Oracle
Data Guard configuration, then ensure that the standby database can locate the
files for the plugged-in PDB.

On the standby database, set the STANDBY_PDB_SOURCE_FILE_DIRECTORY
initialization parameter to a location that contains the source data files for
instantiating the PDB. If the files are not found, then the standby database tries to
locate the files in the OMF location. If not found in the OMF location, then you
must copy the data files to the OMF location on the standby database, and restart
redo apply on the standby database.

• The source and target CDB platforms must meet the following requirements:

– They must have the same endianness.

– The database options installed on the source platform must be the same as, or
a subset of, the database options installed on the target platform.

• If you are creating an application PDB, then the application name and version of
the unplugged PDB must match the application name and version of the
application container into which the application PDB is being plugged.

Character Set Prerequisites

You must meet the following prerequisites for matching the character sets:

• If the character set of the CDB into which the PDB is being plugged is not
AL32UTF8, then the CDB that contained the unplugged PDB and the target CDB
must have compatible character sets and national character sets. To be
compatible, the character sets and national character sets must meet the
requirements specified in Oracle Database Globalization Support Guide.

If the character set of the CDB into which the PDB is being plugged is AL32UTF8,
then this requirement does not apply.

Chapter 9
Plugging In an Unplugged PDB

9-8

Note:

Oracle Multitenant does not support a LOB in one container from being
accessed by a container with a different character set using data links,
extended data links, or the CONTAINERS() clause. For example, if the CDB root
and salespdb have different character sets, then a CONTAINERS() query run in
the CDB root should not access LOBs stored in salespdb.

• If you are creating an application PDB, then the application PDB must have the same
character set and national character set as the application container.

If the database character set of the CDB is AL32UTF8, then the character set and
national character set of the application container can be different from the CDB.
However, all application PDBs in an application container must have same character set
and national character set, matching that of the application container.

To determine whether the preceding requirements are met, use the
DBMS_PDB.CHECK_PLUG_COMPATIBILITY function. Step 2 in the following procedure describes
using this function.

To plug in a PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or application root of the
target CDB.

When the current container is the CDB root, the PDB is created in the CDB. When the
current container is an application root, the application PDB is created in the application
container.

2. (Optional) Run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function to determine whether
the unplugged PDB is compatible with the CDB.

a. If the PDB is not yet unplugged, then run the DBMS_PDB.DESCRIBE procedure to
produce an XML file that describes the PDB.

If the PDB is already unplugged, then proceed to Step 2b.

For example, to generate an XML file named salespdb.xml in the /disk1/oracle
directory, run the following procedure:

BEGIN
 DBMS_PDB.DESCRIBE(
 pdb_descr_file => '/disk1/oracle/salespdb.xml',
 pdb_name => 'SALESPDB');
END;
/

If the PDB is in a remote CDB, then you can include @database_link_name in the
pdb_name parameter, where database_link_name is the name of a valid database link
to the remote CDB or to the PDB. For example, if the database link name to the
remote CDB is rcdb, then set the pdb_name value to SALESPDB@rcdb.

b. Run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function.

When you run the function, set the following parameters:

• pdb_descr_file - Set this parameter to the full path to the XML file.

Chapter 9
Plugging In an Unplugged PDB

9-9

• pdb_name - Specify the name of the new PDB. If this parameter is omitted,
then the PDB name in the XML file is used.

For example, to determine whether a PDB described by the /disk1/usr/
salespdb.xml file is compatible with the current CDB, run the following
PL/SQL block:

SET SERVEROUTPUT ON
DECLARE
 compatible CONSTANT VARCHAR2(3) :=
 CASE DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => '/disk1/usr/salespdb.xml',
 pdb_name => 'SALESPDB')
 WHEN TRUE THEN 'YES'
 ELSE 'NO'
END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(compatible);
END;
/

If the output is YES, then the PDB is compatible, and you can continue with the
next step. If the output is NO, then the PDB is not compatible: check the
PDB_PLUG_IN_VIOLATIONS view to see why it is not compatible.

Note:

You can specify a .pdb archive file in the pdb_descr_file parameter.

3. If the PDB is not unplugged, then unplug it.

4. Run the CREATE PLUGGABLE DATABASE ... USING statement, specifying the XML
file or the .pdb archive file in the USING clause. Specify other clauses when they
are required.

After you create the PDB, it is in mounted mode, and its status is NEW. You can
view the open mode of a PDB by querying the OPEN_MODE column in the V$PDBS
view. You can view the status of a PDB by querying the STATUS column of the
CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as
the PDB and can be used to access the PDB. Oracle Net Services must be
configured properly for clients to access this service.

5. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

6. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

Chapter 9
Plugging In an Unplugged PDB

9-10

Note:

If an error is returned during PDB creation, then the PDB being created might be in
an UNUSABLE state. You can check a PDB's state by querying the CDB_PDBS or
DBA_PDBS view, and you can learn more about PDB creation errors by checking the
alert log. An unusable PDB can only be dropped, and it must be dropped before a
PDB with the same name as the unusable PDB can be created.

See Also:

• "Unplugging a PDB from a CDB"

• "Modifying the Open Mode of PDBs" for more information.

• Oracle Database Backup and Recovery User’s Guide for information about
backing up a PDB.

• Oracle Data Guard Concepts and Administration to learn more about plugging
in a PDB in an Oracle Data Guard environment

• Oracle Database Reference for information about the PDB_FILE_NAME_CONVERT
initialization parameter

• Oracle Database PL/SQL Packages and Types Reference for more information
about this procedure.

Adopting a Non-CDB as a PDB
You can adopt (move) a non-CDB into a PDB by using the DBMS_PDB.DESCRIBE procedure.

To adopt a non-CDB as a PDB using the DBMS_PDB package:

1. Create the CDB if it does not exist.

2. Ensure that the non-CDB is in a transactionally consistent state.

3. Place the non-CDB in read-only mode.

4. Connect to the non-CDB, and run the DBMS_PDB.DESCRIBE procedure to construct an XML
file that describes the non-CDB.

The current user must have SYSDBA administrative privilege. The user must exercise the
privilege using AS SYSDBA at connect time.

For example, to generate an XML file named ncdb.xml in the /disk1/oracle directory,
run the following procedure:

BEGIN
 DBMS_PDB.DESCRIBE(
 pdb_descr_file => '/disk1/oracle/ncdb.xml');
END;
/

Chapter 9
Adopting a Non-CDB as a PDB

9-11

After the procedure completes successfully, you can use the XML file and the non-
CDB database files to plug the non-CDB into a CDB.

5. Run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function to determine whether the
non-CDB is compatible with the CDB.

When you run the function, set the following parameters:

• pdb_descr_file - Set this parameter to the full path to the XML file.

• pdb_name - Specify the name of the new PDB. If this parameter is omitted,
then the PDB name in the XML file is used.

For example, to determine whether a non-CDB described by the /disk1/oracle/
ncdb.xml file is compatible with the current CDB, run the following PL/SQL block:

SET SERVEROUTPUT ON
DECLARE
 compatible CONSTANT VARCHAR2(3) :=
 CASE DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => '/disk1/oracle/ncdb.xml',
 pdb_name => 'NCDB')
 WHEN TRUE THEN 'YES'
 ELSE 'NO'
END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(compatible);
END;
/

If the output is YES, then the non-CDB is compatible, and you can continue with the
next step. If the output is NO, then the non-CDB is not compatible, and you can
check the PDB_PLUG_IN_VIOLATIONS view to see why it is not compatible. All
violations must be corrected before you continue. For example, any version or
patch mismatches should be resolved by running an upgrade or the datapatch
utility. After correcting the violations, run DBMS_PDB.CHECK_PLUG_COMPATIBILITY
again to ensure that the non-CDB is compatible with the CDB.

6. Shut down the non-CDB.

7. Plug in the non-CDB.

For example, the following SQL statement plugs in a non-CDB, copies its files to a
new location, and includes only the tbs3 user tablespace from the non-CDB:

CREATE PLUGGABLE DATABASE ncdb USING '/disk1/oracle/ncdb.xml'
 COPY
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/', '/disk2/oracle/ncdb/')
 USER_TABLESPACES=('tbs3');

If there are no violations, then do not open the new PDB. You will open it in the
following step.

The USER_TABLESPACES clause enables you to separate data that was used for
multiple tenants in a non-CDB into different PDBs. You can use multiple CREATE
PLUGGABLE DATABASE statements with this clause to create other PDBs that include
the data from other tablespaces that existed in the non-CDB.

Chapter 9
Adopting a Non-CDB as a PDB

9-12

8. Run the ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql script. This script must be run
before the PDB can be opened for the first time.

If the PDB was not a non-CDB, then running the noncdb_to_pdb.sql script is not
required. To run the noncdb_to_pdb.sql script, complete the following steps:

a. Access the PDB.

The current user must have SYSDBA administrative privilege, and the privilege must be
either commonly granted or locally granted in the PDB. The user must exercise the
privilege using AS SYSDBA at connect time.

b. Run the noncdb_to_pdb.sql script:

@$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql

The script opens the PDB, performs changes, and closes the PDB when the changes are
complete.

9. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete the
integration of the new PDB into the CDB. An error is returned if you attempt to open the
PDB in read-only mode. After the PDB is opened in read/write mode, its status is NORMAL.

10. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during PDB creation, then the PDB being created might be in
an UNUSABLE state. You can check the PDB state by querying the CDB_PDBS or
DBA_PDBS view, and you can learn more about PDB creation errors by checking the
alert log. An unusable PDB can only be dropped, and you must drop it before a
PDB with the same name as the unusable PDB can be created.

Related Topics

• Plugging In an Unplugged PDB
Plug in a PDB with the CREATE PLUGGABLE DATABASE ... USING statement.

• Creating and Configuring a CDB
Creating and configuring a multitenant container database (CDB) includes tasks such as
planning, creating the CDB, and optionally configuring EM Express.

• After Plugging in an Unplugged PDB
Certain rules regarding users and tablespaces apply after plugging in an unplugged PDB.

• Oracle Database Backup and Recovery User’s Guide

After Plugging in an Unplugged PDB
Certain rules regarding users and tablespaces apply after plugging in an unplugged PDB.

The following applies after plugging in an unplugged PDB:

Chapter 9
After Plugging in an Unplugged PDB

9-13

• User accounts in the PDB who used the default temporary tablespace of the
source PDB use the default temporary tablespace of the target PDB. User
accounts who used nondefault temporary tablespaces in the source PDB continue
to use the same local temporary tablespaces in the target PDB.

• Manually created common user accounts that existed in the source CDB but not in
the target CDB do not have privileges granted commonly. However, if the target
CDB has a common user with the same name as a common user in the PDB, then
the latter is linked to the former and has the privileges granted to this common
user in the target CDB.

If the cloned or plugged-in PDB has a common user account that does not exist in
the target CDB, and if this user does not own objects in the PDB, then Oracle
Database drops the user during the synchronization step; otherwise, the user
account is locked in the target PDB. You have the following options regarding
locked accounts:

– Close the PDB, connect to the root, and create a common user account with
the same name. When the PDB is opened in read/write mode, differences in
roles and privileges granted commonly to the user account are resolved, and
you can unlock the account. Privileges and roles granted locally to the user
account remain unchanged during this process.

– Create a new local user account in the PDB and use Data Pump to export/
import the locked user's data into the new local user's schema.

– Leave the user account locked.

– Drop the user account.

See Also:

• "Managing Services for PDBs"

• "About Managing Tablespaces in a CDB"

• Oracle Database Concepts for information about common users and
local users

• Oracle Database Security Guide for information about creating common
users and local users in a CDB

• Oracle Database Utilities for information about using Oracle Data Pump
with a CDB

Plugging in an Unplugged PDB: Examples
These examples plug in an unplugged PDB named salespdb using the /disk1/usr/
salespdb.xml file or the /disk1/usr/sales.pdb file given different factors.

In each example, the root to which the new PDB belongs depends on the current
container when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB.

• When the current container is an application root, the new application PDB is
created in the application root’s application container.

Chapter 9
Plugging in an Unplugged PDB: Examples

9-14

Example 9-3 Plugging In an Unplugged PDB Using the NOCOPY Clause

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file accurately describes the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is not required.

• The files are in the correct location. Therefore, NOCOPY is included.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• A file with the same name as the temp file specified in the XML file exists in the target
location. Therefore, the TEMPFILE REUSE clause is required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 NOCOPY
 TEMPFILE REUSE;

Example 9-4 Plugging In an Unplugged PDB Using the AS CLONE and NOCOPY
Clauses

This example assumes the following factors:

• The new PDB is based on the same unplugged PDB that was used to create an existing
PDB in the CDB. Therefore, the AS CLONE clause is required. The AS CLONE clause
ensures that the new PDB has unique identifiers.

• The PATH_PREFIX clause is not required.

• The XML file accurately describes the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is not required.

• The files are in the correct location. Therefore, NOCOPY is included.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• A file with the same name as the temp file specified in the XML file exists in the target
location. Therefore, the TEMPFILE REUSE clause is required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb AS CLONE USING '/disk1/usr/salespdb.xml'
 NOCOPY
 TEMPFILE REUSE;

Example 9-5 Plugging In an Unplugged PDB Using the
SOURCE_FILE_NAME_CONVERT, NOCOPY, and STORAGE Clauses

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

Chapter 9
Plugging in an Unplugged PDB: Examples

9-15

• The PATH_PREFIX clause is not required.

• The XML file does not accurately describe the current locations of the files.
Therefore, the SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY
clause is required. In this example, the XML file indicates that the files are in /
disk1/oracle/sales, but the files are in /disk2/oracle/sales, and the
SOURCE_FILE_NAME_CONVERT clause is used.

• The files are in the correct location. Therefore, NOCOPY is included.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is
required. Specifically, all tablespaces that belong to the PDB must not exceed 2
gigabytes.

• A file with the same name as the temp file specified in the XML file exists in the
target location. Therefore, the TEMPFILE REUSE clause is required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 SOURCE_FILE_NAME_CONVERT = ('/disk1/oracle/sales/', '/disk2/oracle/
sales/')
 NOCOPY
 STORAGE (MAXSIZE 2G)
 TEMPFILE REUSE;

Example 9-6 Plugging In an Unplugged PDB With the COPY, PATH_PREFIX,
and FILE_NAME_CONVERT Clauses

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create
an existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The path prefix must be added to the PDB's directory object paths. Therefore, the
PATH_PREFIX clause is required. In this example, the path prefix /disk2/oracle/
sales/ is added to the PDB’s directory object paths.

• The XML file accurately describes the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is not
required.

• The files are not in the correct location. Therefore, COPY or MOVE must be included.
In this example, the files are copied.

The CREATE_FILE_DEST clause is not used, Oracle Managed Files is not enabled,
and the PDB_FILE_NAME_CONVERT initialization parameter is not set. Therefore, the
FILE_NAME_CONVERT clause is required. In this example, the files are copied from /
disk1/oracle/sales to /disk2/oracle/sales.

• Storage limits are not required for the PDB. Therefore, the STORAGE clause is not
required.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 COPY

Chapter 9
Plugging in an Unplugged PDB: Examples

9-16

 PATH_PREFIX = '/disk2/oracle/sales/'
 FILE_NAME_CONVERT = ('/disk1/oracle/sales/', '/disk2/oracle/sales/');

Example 9-7 Plugging In an Unplugged PDB Using the
SOURCE_FILE_NAME_CONVERT, MOVE, FILE_NAME_CONVERT, and STORAGE
Clauses

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file does not accurately describe the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is required. In this
example, the XML file indicates that the files are in /disk1/oracle/sales, but the files are
in /disk2/oracle/sales, and the SOURCE_FILE_NAME_CONVERT clause is used.

• The files are not in the correct final location for the PDB. Therefore, COPY or MOVE must be
included. In this example, MOVE is specified to move the files.

The CREATE_FILE_DEST clause is not used, Oracle Managed Files is not enabled, and the
PDB_FILE_NAME_CONVERT initialization parameter is not set. Therefore, the
FILE_NAME_CONVERT clause is required. In this example, the files are moved from /disk2/
oracle/sales to /disk3/oracle/sales.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is required.
Specifically, all tablespaces that belong to the PDB must not exceed 2 gigabytes.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 SOURCE_FILE_NAME_CONVERT = ('/disk1/oracle/sales/', '/disk2/oracle/sales/')
 MOVE
 FILE_NAME_CONVERT = ('/disk2/oracle/sales/', '/disk3/oracle/sales/')
 STORAGE (MAXSIZE 2G);

Example 9-8 Plugging In an Unplugged PDB Using the SOURCE_FILE_DIRECTORY,
MOVE, FILE_NAME_CONVERT, and STORAGE Clauses

This example assumes the following factors:

• The new PDB is not based on the same unplugged PDB that was used to create an
existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file does not accurately describe the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY clause is required. In this
example, the XML file indicates that the files are in /disk1/oracle/sales, but the files are
in /disk2/oracle/sales, and the SOURCE_FILE_DIRECTORY clause is used.

• The files are not in the correct final location for the PDB. Therefore, COPY or MOVE must be
included. In this example, MOVE is specified to move the files.

Chapter 9
Plugging in an Unplugged PDB: Examples

9-17

The CREATE_FILE_DEST clause is not used, Oracle Managed Files is not enabled,
and the PDB_FILE_NAME_CONVERT initialization parameter is not set. Therefore, the
FILE_NAME_CONVERT clause is required. In this example, the files are moved from /
disk2/oracle/sales to /disk3/oracle/sales.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is
required. Specifically, all tablespaces that belong to the PDB must not exceed 2
gigabytes.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/salespdb.xml'
 SOURCE_FILE_DIRECTORY = '/disk2/oracle/sales/'
 MOVE
 FILE_NAME_CONVERT = ('/disk2/oracle/sales/', '/disk3/oracle/sales/')
 STORAGE (MAXSIZE 2G);

Example 9-9 Plugging In an Unplugged PDB Using an Archive File

This example assumes the following factors:

• The unplugged PDB is in a .pdb archive file named sales.pdb. The archive file
includes the XML metadata file and the PDB’s files (such as the data files and
wallet file) in compressed form, and these files are extracted to the current
directory of the .pdb archive file when the CREATE PLUGGABLE DATABASE statement
is run.

• The new PDB is not based on the same unplugged PDB that was used to create
an existing PDB in the CDB. Therefore, the AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• Storage limits must be enforced for the PDB. Therefore, the STORAGE clause is
required. Specifically, all tablespaces that belong to the PDB must not exceed 2
gigabytes.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement plugs in the PDB using an archive
file:

CREATE PLUGGABLE DATABASE salespdb USING '/disk1/usr/sales.pdb'
 STORAGE (MAXSIZE 2G);

Chapter 9
Plugging in an Unplugged PDB: Examples

9-18

10
Creating a PDB as a Proxy PDB

You can create a PDB as a proxy PDB by referencing it in a remote CDB.

• About Creating a Proxy PDB
A proxy PDB provides access to a PDB in a remote CDB. It is analogous to a symbolic
link.

• Creating a Proxy PDB
Create a proxy PDB by referencing a PDB in a different CDB.

About Creating a Proxy PDB
A proxy PDB provides access to a PDB in a remote CDB. It is analogous to a symbolic link.

The CREATE PLUGGABLE DATABASE statement creates a proxy PDB by referencing a PDB in a
different CDB, which is called the referenced PDB. You can use a proxy PDB when you want
a local context for a remote PDB. In addition, when application containers in different CDBs
have the same application, you can keep their application roots synchronized with a proxy
PDB.

To use this technique, run the CREATE PLUGGABLE DATABASE statement in the CDB that will
contain the proxy PDB. You must include:

• The AS PROXY clause to specify that you are creating a proxy PDB.

• A FROM clause that specifies the PDB that the proxy PDB is referencing.

• A database link to the current location of the referenced PDB in the FROM clause. The
database link must be created in the root of the CDB that will contain the proxy PDB, and
the database link connects either to the root of remote CDB or to the remote referenced
PDB.

The following figure illustrates how this technique creates a proxy PDB that references a PDB
in a remote CDB.

10-1

Figure 10-1 Create a Remote Proxy PDB

Referenced
PDB

Proxy
PDB

PDBs

CDB

PDBs

CDB

Seed
(PDB$SEED)

Seed
(PDB$SEED)

Root (CDB$ROOT)

Root (CDB$ROOT)

Proxy PDB’s SYSTEM
and SYSAUX Files

Referenced PDB’s
SYSTEM and SYSAUX Files

 Copy to New Location

CREATE PLUGGABLE DATABASE ... AS PROXY ... FROM

Reference

Database
Link

You can create a proxy PDB in an application container. To do so, the referenced PDB
must be an application root or an application PDB in an application container in a
different CDB. The database link must be created in the root of the application
container that will contain the proxy PDB, and the database link connects either to the
root of remote application container or to the remote referenced application PDB.

The following graphic illustrates how this technique creates a proxy PDB in an
application container based on a remote referenced PDB in an application container.

Chapter 10
About Creating a Proxy PDB

10-2

Figure 10-2 Create a Remote Proxy PDB in an Application Container

Proxy PDB’s SYSTEM
and SYSAUX Files

Referenced PDB’s SYSTEM
and SYSAUX Files

Copy to New Location

CREATE PLUGGABLE DATABASE ... AS PROXY ... FROM

Database
Link

Reference

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Referenced
PDB

Application Root

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Proxy
PDB

Application Root

Chapter 10
About Creating a Proxy PDB

10-3

Before creating a proxy PDB, address the questions that apply to creating a proxy
PDB in "Table 5-3". The table describes which CREATE PLUGGABLE DATABASE clauses
you must specify based on different factors.

• Proxy PDBs and SQL Statements
As a rule, when the proxy PDB is the current container, SQL statements submitted
for execution in the proxy PDB are executed in the referenced PDB.

• Proxy PDBs and Database Links
A database link is required when you create a proxy PDB.

• Proxy PDBs and Authentication
Only password authentication is supported for sessions in a proxy PDB.

• Proxy PDBs and the Listener
The host name and port number settings for a PDB are important only if proxy
PDBs will reference the PDB.

See Also:

• "PDB Storage"

• "Synchronizing an Application Root Replica with a Proxy PDB"

Proxy PDBs and SQL Statements
As a rule, when the proxy PDB is the current container, SQL statements submitted for
execution in the proxy PDB are executed in the referenced PDB.

The results of the remote execution are returned to the proxy PDB. For example, data
definition language (DDL) statements, data manipulation language (DML) statements,
and queries executed in the proxy PDB are sent to the referenced PDB for execution,
and the results are returned to the proxy PDB.

There is one exception to the rule. When the proxy PDB is the current container, and
when you execute ALTER PLUGGABLE DATABASE and ALTER DATABASE statements, these
statements only affect the proxy PDB. They are not sent to the referenced PDB for
execution. Similarly, when the current container is the root to which the proxy PDB
belongs, ALTER PLUGGABLE DATABASE statements only affect the proxy PDB. For
example, an ALTER PLUGGABLE DATABASE statement executed in a CDB root,
application root, or proxy PDB can open or close a proxy PDB, but this statement does
not open or close the referenced PDB.

Proxy PDBs and Database Links
A database link is required when you create a proxy PDB.

After the proxy PDB is created, the database link specified during creation is no longer
used by the proxy PDB. Instead, the proxy PDB communicates directly with the
referenced PDB.

This direct communication requires the port number and host name of the listener of
the CDB that contains the referenced PDB. During proxy PDB creation, the proxy PDB
uses the following values by default:

Chapter 10
About Creating a Proxy PDB

10-4

• Listener port number: 1521

If the referenced PDB’s listener does not use the default port number, then you must use
the PORT clause to specify the listener’s port number. You can specify the port number
when you create the proxy PDB, or you can alter the proxy PDB to change the port
number.

• Listener host name: The host name of the CDB that contains the referenced PDB

If the referenced PDB’s listener does not use the default host name, then you must use
the HOST clause to specify the listener’s host name. You can specify the host name when
you create the proxy PDB, or you can alter the proxy PDB to change the host name.

Related Topics

• Proxy PDBs and the Listener
The host name and port number settings for a PDB are important only if proxy PDBs will
reference the PDB.

• Modifying the Listener Settings of a Referenced PDB
A PDB that is referenced by a proxy PDB is called a referenced PDB.

Proxy PDBs and Authentication
Only password authentication is supported for sessions in a proxy PDB.

Proxy PDBs and the Listener
The host name and port number settings for a PDB are important only if proxy PDBs will
reference the PDB.

• HOST Clause
The HOST clause of the CREATE PLUGGABLE DATABASE statement specifies the host name
of the listener for the PDB being created.

• PORT Clause
The PORT clause of the CREATE PLUGGABLE DATABASE statement specifies the port number
of the listener for the PDB being created.

HOST Clause
The HOST clause of the CREATE PLUGGABLE DATABASE statement specifies the host name of
the listener for the PDB being created.

By default, the host name of the listener is the same as the host name of the PDB being
created. Specify the HOST clause when both of the following conditions are true:

• The host name of the listener is different from the host name of the PDB being created.

• You plan to create proxy PDBs that reference the PDB being created.

A proxy PDB uses a database link to establish communication with its referenced PDB. After
communication is established, the proxy PDB communicates directly with the referenced PDB
without using a database link. The host name of the listener must be correct for the proxy
PDB to function properly.

Chapter 10
About Creating a Proxy PDB

10-5

Example 10-1 HOST Clause

HOST='myhost.example.com'

See Also:

• "About Creating a Proxy PDB"

• "Altering the Listener Host Name of a Referenced PDB"

• Oracle Database SQL Language Reference to learn more about the
HOST clause

PORT Clause
The PORT clause of the CREATE PLUGGABLE DATABASE statement specifies the port
number of the listener for the PDB being created.

By default, the port number of the listener for the PDB being created is 1521. Specify
the PORT clause when both of the following conditions are true:

• The port number of the listener is not 1521.

• You plan to create proxy PDBs that reference the PDB being created.

A proxy PDB uses a database link to establish communication with its referenced
PDB. After communication is established, the proxy PDB communicates directly with
the referenced PDB without using a database link. The port number of the listener
must be correct for the proxy PDB to function properly.

Example 10-2 PORT Clause

PORT=1599

Note:

• "About Creating a Proxy PDB"

• "Altering the Listener Host Name of a Referenced PDB"

• Oracle Database SQL Language Reference to learn more about the
PORT clause

Creating a Proxy PDB
Create a proxy PDB by referencing a PDB in a different CDB.

Chapter 10
Creating a Proxy PDB

10-6

Prerequisites

The following prerequisites must be met:

• Complete the prerequisites described in "General Prerequisites for PDB Creation".

• The current user must have the CREATE PLUGGABLE DATABASE system privilege in the root
of the CDB in which the proxy PDB is being created.

• The CDB that contains the referenced PDB must be in local undo mode.

• The CDB that contains the referenced PDB must be in ARCHIVELOG mode.

• The referenced PDB must be in open read/write mode when the proxy PDB is created.
The open mode of the referenced PDB can be changed after the proxy PDB is created.

• A database link must enable a connection from the root of the CDB in which the proxy
PDB is being created to the location of the referenced PDB. The database link can
connect to either the root of the remote CDB or to the remote PDB.

• If the database link connects to the root in a remote CDB that contains the referenced
PDB, then the user that the database link connects with must be a common user.

• If the database link connects to the referenced PDB, then the user that the database link
connects with in the referenced PDB must have the CREATE PLUGGABLE DATABASE system
privilege.

• If you are creating a proxy PDB in an application container, then the following
prerequisites apply:

– The referenced PDB must be an application root or an application PDB in an
application container.

– The application name and version of the proxy PDB’s application container must
match the application name and version of the referenced PDB.

– When the proxy PDB is being created in an application container, a database link
must enable a connection from the root of the application container in which the
proxy PDB is being created to the location of the referenced PDB. The database link
can connect to either the root of the remote application container or to the remote
application PDB.

– If the database link connects to the root in a remote application container that
contains the referenced PDB, then the user that the database link connects with must
be an application common user.

– If the database link connects to the referenced application PDB, then the user that
the database link connects with in the referenced application PDB must have the
CREATE PLUGGABLE DATABASE system privilege.

Note:

You can create a proxy PDB in a CDB root that is based on a referenced PDB
in an application container.

To create a proxy PDB:

1. In SQL*Plus, ensure that the current container is the CDB root or application root in
which the proxy PDB is being created.

Chapter 10
Creating a Proxy PDB

10-7

When the current container is the CDB root, the proxy PDB is created in the CDB.
When the current container is an application root, the proxy PDB is created in the
application container.

2. Run the CREATE PLUGGABLE DATABASE statement. Specify the AS PROXY clause,
and specify the referenced PDB with the database link name in the FROM clause.
Specify other clauses when they are required.

After you create the proxy PDB, it is in mounted mode, and its status is NEW. You
can view the open mode of a PDB by querying the OPEN_MODE column in the
V$PDBS view. You can view the status of a PDB by querying the STATUS column of
the CDB_PDBS or DBA_PDBS view.

A new default service is created for the PDB. The service has the same name as
the PDB and can be used to access the PDB. Oracle Net Services must be
configured properly for clients to access this service.

3. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

4. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during creation of the proxy PDB, then the PDB being
created might be in an UNUSABLE state. You can check a PDB's state by
querying the CDB_PDBS or DBA_PDBS view, and you can learn more about PDB
creation errors by checking the alert log. An unusable PDB can only be
dropped, and it must be dropped before a PDB with the same name as the
unusable PDB can be created.

Example 10-3 Creating a Remote Proxy PDB

In this example, the root to which the new PDB belongs depends on the current
container when the CREATE PLUGGABLE DATABASE statement is run:

• When the current container is the CDB root, the new PDB is created in the CDB
root.

• When the current container is an application root in an application container, the
new PDB is created as an application PDB in the application root.

This example creates a remote proxy PDB named pdb1 given different factors. This
example assumes the following factors:

• The database link name to the referenced PDB’s CDB is pdb1_link.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Chapter 10
Creating a Proxy PDB

10-8

Either Oracle Managed Files is enabled, or the PDB_FILE_NAME_CONVERT initialization
parameter is set. The SYSTEM and SYSAUX files will be copied to a new location based on
the Oracle Managed Files configuration or the initialization parameter setting.

Given the preceding factors, the following statement creates the pdb1 proxy PDB:

CREATE PLUGGABLE DATABASE pdb1 AS PROXY FROM pdb1@pdb1_link;

See Also:

• "About the CDB Undo Mode"

• "About Container Access in a CDB"

• "Modifying the Open Mode of PDBs"

• Oracle Database Backup and Recovery User's Guide for information about
backing up a PDB

Chapter 10
Creating a Proxy PDB

10-9

11
Removing a PDB

You can remove a plugged-in PDB from a CDB by unplugging it, dropping it, or relocating it.

• Unplugging a PDB from a CDB
Just as you can plug a PDB into a CDB, you can unplug a PDB from a CDB.

• Dropping a PDB
Drop a PDB when you want to move the PDB to a new CDB or when you no longer need
it.

See Also:

"Relocating a PDB"

Unplugging a PDB from a CDB
Just as you can plug a PDB into a CDB, you can unplug a PDB from a CDB.

• About Unplugging a PDB
Unplugging a PDB disassociates the PDB from a CDB. A PDB is usable only when it is
plugged into a CDB.

• Unplugging a PDB
Unplug a PDB with a ALTER PLUGGABLE DATABASE ... UNPLUG INTO statement.

About Unplugging a PDB
Unplugging a PDB disassociates the PDB from a CDB. A PDB is usable only when it is
plugged into a CDB.

Unplug a PDB when you want to do any of the following:

• Move the PDB to a different CDB

• Archive the PDB for later use

• Make the PDB unavailable for use

To unplug a PDB, connect to its CDB root or application root and use the ALTER PLUGGABLE
DATABASE statement to specify either of the following:

• XML file

An XML file (.xml extension) contains metadata about the PDB after it is unplugged. This
metadata contains the required information to enable a CREATE PLUGGABLE DATABASE
statement on a target CDB to plug in the PDB.

• .pdb file

11-1

A .pdb file contains a compressed archive of the XML file that describes the PDB
and the files used by the PDB (such as the data files and wallet file). A .pdb file
enables you to copy a single, compressed file (instead of multiple files) to a new
location to plug the PDB into a CDB.

Figure 11-1 Unplug a PDB

PDB
Being
Unplugged

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

XML

Metadata

File

Database Files

ALTER PLUGGABLE DATABASE ... UNPLUG INTO

.PDB

File

XML

Metadata

File

Database Files

ALTER PLUGGABLE DATABASE ... UNPLUG INTO

OR

.PDB File

The following illustration shows how this technique unplugs an application PDB from
an application container.

Chapter 11
Unplugging a PDB from a CDB

11-2

XML

Metadata

File

Database Files

ALTER PLUGGABLE DATABASE ... UNPLUG INTO

.PDB

File

XML

Metadata

File

Database Files

ALTER PLUGGABLE DATABASE ... UNPLUG INTO

OR

.PDB File

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Application Root

PDB
Being
Unplugged

Root (CDB$ROOT)

The PDB must be closed before it can be unplugged. When you unplug a PDB, the
unplugged PDB is in mounted mode. The unplug operation makes some changes in the
PDB's data files to record, for example, that the PDB was successfully unplugged. Because it
is still part of the CDB, the unplugged PDB is included in an RMAN backup of the entire CDB.

Chapter 11
Unplugging a PDB from a CDB

11-3

Such a backup provides a convenient way to archive the unplugged PDB in case it is
needed in the future.

To completely remove the PDB from the CDB, drop the PDB. The only operation
supported on an unplugged PDB is dropping the PDB. The PDB must be dropped from
the CDB before it can be plugged back into the same CDB.

Note:

You can unplug an application container only if no application PDBs belong
to it.

See Also:

• "Dropping a PDB"

• "Modifying the Open Mode of PDBs" for information about closing a PDB

• "Modifying a PDB at the System Level" for information about initialization
parameters and unplugged PDBs

• Oracle Database Security Guide for information about common users
and local users

Unplugging a PDB
Unplug a PDB with a ALTER PLUGGABLE DATABASE ... UNPLUG INTO statement.

Prerequisites

The following prerequisites must be met:

• The current user must have SYSDBA or SYSOPER administrative privilege, and the
privilege must be either commonly granted or locally granted in the PDB. The user
must exercise the privilege using AS SYSDBA or AS SYSOPER at connect time.

• The PDB must have been opened at least once.

Note:

If you are unplugging a PDB that includes data that was encrypted with
Transparent Data Encryption, then follow the instructions in Oracle Database
Advanced Security Guide.

To unplug a PDB:

1. In SQL*Plus, ensure that the current container is the root of the PDB.

Chapter 11
Unplugging a PDB from a CDB

11-4

If the PDB is plugged into the CDB root, then the current container must be the CDB root.
If the PDB is plugged into an application root, then the current container must be the
application root.

If you are unplugging an application container, then the current container must be the
CDB root, and the application container must not have any application PDBs plugged into
it.

2. Close the PDB.

In an Oracle Real Application Clusters (Oracle RAC) environment, the PDB must be
closed on all instances.

3. Run the ALTER PLUGGABLE DATABASE statement with the UNPLUG INTO clause, and specify
the PDB to unplug and the name and location of the PDB's XML metadata file or .pdb file.

Example 11-1 Unplugging PDB salespdb Into an XML Metadata File

This ALTER PLUGGABLE DATABASE statement unplugs the PDB salespdb and creates the
salespdb.xml metadata file in the /oracle/data/ directory:

ALTER PLUGGABLE DATABASE salespdb UNPLUG INTO '/oracle/data/salespdb.xml';

Example 11-2 Unplugging PDB salespdb Into an Archive File

This ALTER PLUGGABLE DATABASE statement unplugs the PDB salespdb and creates the
sales.pdb archive file in the /oracle/data/ directory. The sales.pdb archive file is a
compressed file that includes the XML metadata file and the PDB’s files (such as the data
files and wallet file).

ALTER PLUGGABLE DATABASE salespdb UNPLUG INTO '/oracle/data/sales.pdb';

Dropping a PDB
Drop a PDB when you want to move the PDB to a new CDB or when you no longer need it.

When you drop a PDB, the control file of the CDB is modified to eliminate all references to
the dropped PDB. Archived redo log files and backups associated with the PDB are not
removed, but you can use Oracle Recovery Manager (RMAN) to remove them.

When dropping a PDB, you can either keep or delete the PDB's data files by using one of the
following clauses of the DROP PLUGGABLE DATABASE statement:

• KEEP DATAFILES, the default, retains the data files.

The PDB temp file is removed even when KEEP DATAFILES is specified because the temp
file is no longer needed.

When KEEP DATAFILES is specified, the PDB must be unplugged.

• INCLUDING DATAFILES removes the data files from disk.

If a PDB was created with the SNAPSHOT COPY clause, then you must specify INCLUDING
DATAFILES when you drop the PDB.

Prerequisites

The following prerequisites must be met:

Chapter 11
Dropping a PDB

11-5

• The PDB must be in mounted mode, or it must be unplugged.

See "Modifying the Open Mode of PDBs".

See "Unplugging a PDB from a CDB".

• The current user must have SYSDBA or SYSOPER administrative privilege, and the
privilege must be either commonly granted or locally granted in the PDB. The user
must exercise the privilege using AS SYSDBA or AS SYSOPER at connect time.

Note:

This operation is destructive.

To drop a PDB:

1. In SQL*Plus, ensure that the current container is the CDB root, or, for an
application PDB, the application root that contains the application PDB.

If the PDB is plugged into the CDB root, then the current container must be the
CDB root. If the PDB is plugged into an application root, then the current container
must be that application root or the CDB root.

If you are dropping an application container, then the current container must be the
CDB root, and the application container must not have any application PDBs
plugged into it.

2. Run the DROP PLUGGABLE DATABASE statement and specify the PDB to drop.

Example 11-3 Dropping PDB salespdb While Keeping Its Data Files

DROP PLUGGABLE DATABASE salespdb
 KEEP DATAFILES;

Example 11-4 Dropping PDB salespdb and Its Data Files

DROP PLUGGABLE DATABASE salespdb
 INCLUDING DATAFILES;

See Also:

• "Unplugging a PDB from a CDB"

• "Storage Requirements for Snapshot Copy PDBs"

• Oracle Database SQL Language Reference

• Oracle Database Backup and Recovery User’s Guide for information
about RMAN

Chapter 11
Dropping a PDB

11-6

12
Creating and Removing Application
Containers and Seeds

You can create application containers and application seeds in several different ways. You
can also remove application containers from a CDB, and you can remove application seeds
from application containers.

• Creating and Removing Application Containers
You can create application containers in several different ways, including using the PDB
seed, cloning an existing PDB or non-CDB, and plugging in an unplugged PDB. You can
also remove application containers from a CDB.

• Creating and Removing Application Seeds
You can create application seeds in several different ways, including using the PDB seed,
cloning an existing PDB or non-CDB, and plugging in an unplugged PDB. You can also
remove application seeds from application containers.

• Creating an Application PDB
You create an application PDB by running the CREATE PLUGGABLE DATABASE statement
with an application root as the current container.

See Also:

• "About Application Containers"

• "Administering Application Containers"

Creating and Removing Application Containers
You can create application containers in several different ways, including using the PDB
seed, cloning an existing PDB or non-CDB, and plugging in an unplugged PDB. You can also
remove application containers from a CDB.

• Creating Application Containers
You can use the CREATE PLUGGABLE DATABASE statement to create an application
container in a CDB.

• Unplugging an Application Container from a CDB
You can unplug an application container from a CDB.

• Dropping an Application Container
You can drop an application container when you want to move the application container
from one CDB to another or when you no longer need the application container.

12-1

Creating Application Containers
You can use the CREATE PLUGGABLE DATABASE statement to create an application
container in a CDB.

• About Creating an Application Container
The CREATE PLUGGABLE DATABASE ... AS APPLICATION CONTAINER statement
creates a new application container.

• Preparing for Application Containers
Prerequisites must be met before creating an application container.

• Creating an Application Container
You can create an application container using the CREATE PLUGGABLE DATABASE
statement with the AS APPLICATION CONTAINER clause.

About Creating an Application Container
The CREATE PLUGGABLE DATABASE ... AS APPLICATION CONTAINER statement creates
a new application container.

An application container consists of an application root and a collection of application
PDBs that store data for one or more applications. The application PDBs are plugged
into the application root, and you can optionally create an application seed for quick
and easy creation of new application PDBs. The application PDBs and application root
can share application common objects.

There are three types of application common objects:

• Metadata-linked application common objects store the metadata for specific
objects, such as tables, so that the containers that share the application common
object have the same structure but different data.

• Data-linked application common objects are defined once in the application root
and shared as read-only objects in the context of hosted application PDBs.

• Extended data-linked application common objects store shared data in the
application root but also allow application PDBs to store data appended to that
object. The appended data is local data that is unique to each application PDB.

You create an application container by including the AS APPLICATION CONTAINER
clause in the CREATE PLUGGABLE DATABASE statement. You can use the following
techniques to create an application container:

• Using the PDB seed

• Cloning an existing PDB or non-CDB

• Relocating a PDB

• Plugging in an unplugged PDB

To create an application container, the current container must be the CDB root and you
must specify the AS APPLICATION CONTAINER clause in
the CREATE PLUGGABLE DATABASE statement. You must create the application container
using Oracle Managed Files.

Chapter 12
Creating and Removing Application Containers

12-2

Note:

An application container cannot be unplugged or dropped if any application PDBs
belong to it.

Migrating Existing Applications to an Application Container

You can migrate an application to an application root by creating an application root using an
existing PDB. You must complete additional tasks when you are migrating an existing
application to an application container. The PDBs that you plug in must contain the
application objects, including their data, and you must run procedures in the DBMS_PDB
package to specify which objects are shared. Also, when application common users, roles, or
profiles exist in the application root, you must run procedures in the DBMS_PDB package to
specify that they are common.

After the application is migrated to the application root, you can create application PDBs in
the application root, and create application PDBs using existing PDBs.

See Also:

"Migrating an Existing Application to an Application Container"

Preparing for Application Containers
Prerequisites must be met before creating an application container.

• The CDB must exist.

• The CDB must be in read/write mode.

• The current user must be a common user whose current container is the CDB root.

• The current user must have the CREATE PLUGGABLE DATABASE system privilege.

• You must decide on a unique application container name for every application container.
Every application container name must be unique with respect to all containers in a single
CDB, and every application container name must be unique within the scope of all the
CDBs whose database instances are reached through a specific listener.

The application container name is used to distinguish an application container from other
containers in the CDB. Application container names follow the same rules as service
names, which includes being case-insensitive.

• You must create the containing using Oracle Managed Files.

• If you are creating an application container in an Oracle Data Guard configuration with a
physical standby database, then additional tasks must be completed before creating an
application container.

• If you are migrating an existing application to an application container using installation
scripts, then the scripts must be available to run.

Chapter 12
Creating and Removing Application Containers

12-3

• If you are migrating an existing application to an application container using a
PDB, then it must be possible to clone the PDB to the application root or plug in
the PDB into the application root.

See Also:

• "About the Current Container"

• "Migrating an Existing Application to an Application Container"

• Oracle Data Guard Concepts and Administration

Creating an Application Container
You can create an application container using the CREATE PLUGGABLE DATABASE
statement with the AS APPLICATION CONTAINER clause.

Before creating an application container, complete the prerequisites described in
"Preparing for Application Containers".

1. In SQL*Plus, ensure that the current container is the CDB root.

2. Run the CREATE PLUGGABLE DATABASE statement, and include the AS APPLICATION
CONTAINER clause. Specify other clauses when they are required.

After you create the application container, it is in mounted mode, and its status is
NEW. You can view the open mode of an application container by querying the
OPEN_MODE column in the V$PDBS view. You can view the status of an application
container by querying the STATUS column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the application container. The service has the
same name as the application container and can be used to access the application
container. Oracle Net Services must be configured properly for clients to access
this service.

3. Open the new application container in read/write mode.

You must open the new application container in read/write mode for Oracle
Database to complete the integration of the new application container into the
CDB. An error is returned if you attempt to open the application container in read-
only mode. After the application container is opened in read/write mode, its status
is NORMAL.

4. Back up the application container.

A application container cannot be recovered unless it is backed up.

Chapter 12
Creating and Removing Application Containers

12-4

Note:

If an error is returned during application container creation, then the application
container being created might be in an UNUSABLE state. You can check an
application container's state by querying the CDB_PDBS or DBA_PDBS view, and
you can learn more about application container creation errors by checking the
alert log. An unusable application container can only be dropped, and it must be
dropped before an application container or PDB with the same name as the
unusable application container can be created.

5. If you are migrating an existing application to the application container, then follow the
instructions in "Migrating an Existing Application to an Application Container".

The application container is created with an application root. You can create application PDBs
in the application container.

Example 12-1 Creating an Application Container Using the PDB seed

This example assumes the following factors:

• Storage limits are not required for the application container. Therefore, the STORAGE
clause is not required.

• The application container does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled for the CDB, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. The files associated with the PDB seed will be copied to a
new location based on the Oracle Managed Files configuration or the initialization
parameter setting.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

• No predefined Oracle roles need to be granted to the PDB_DBA role.

The following statement creates the application container from the PDB seed:

CREATE PLUGGABLE DATABASE salesact AS APPLICATION CONTAINER
 ADMIN USER salesadm IDENTIFIED BY password;

Example 12-2 Creating an Application Container by Cloning a Local PDB

This example assumes the following factors:

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause is required to specify the target locations of the copied
files. In this example, the files are copied from /disk1/oracle/pdb1/ to /disk2/
oracle/hract/.

The CREATE_FILE_DEST clause is not used, and neither Oracle Managed Files nor the
PDB_FILE_NAME_CONVERT initialization parameter is used to specify the target locations of
the copied files.

To view the location of the data files for a PDB, run the query in "Example 19-7".

Chapter 12
Creating and Removing Application Containers

12-5

• Storage limits must be enforced for the application root. Therefore, the STORAGE
clause is required. Specifically, all tablespaces that belong to the application root
must not exceed 2 gigabytes. This storage limit does not apply to the application
PDBs that are plugged into the application root.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement clones hract as an application
container from pdb1:

CREATE PLUGGABLE DATABASE hract AS APPLICATION CONTAINER FROM pdb1
 FILE_NAME_CONVERT = ('/disk1/oracle/pdb1/', '/disk2/oracle/hract/')
 STORAGE (MAXSIZE 2G);

Note:

If you are migrating an existing application to the new application container,
then follow the instructions in "Migrating an Existing Application to an
Application Container".

Example 12-3 Creating an Application Container by Plugging In an Unplugged
PDB

This example assumes the following factors:

• The new application container is not based on the same unplugged PDB that was
used to create an existing PDB or application container in the CDB. Therefore, the
AS CLONE clause is not required.

• The PATH_PREFIX clause is not required.

• The XML file does not accurately describe the current locations of the files.
Therefore, the SOURCE_FILE_NAME_CONVERT clause or SOURCE_FILE_DIRECTORY
clause is required. In this example, the XML file indicates that the files are in /
disk1/oracle/payroll/, but the files are in /disk2/oracle/payroll/, and the
SOURCE_FILE_NAME_CONVERT clause is used.

• The files are in the correct location. Therefore, NOCOPY is included.

• Storage limits must be enforced for the application container. Therefore, the
STORAGE clause is required. Specifically, all tablespaces that belong to the
application container must not exceed 2 gigabytes.

• A file with the same name as the temp file specified in the XML file exists in the
target location. Therefore, the TEMPFILE REUSE clause is required.

The following statement plugs in the PDB:

CREATE PLUGGABLE DATABASE payrollact AS APPLICATION CONTAINER
 USING '/disk1/usr/payrollpdb.xml'
 SOURCE_FILE_NAME_CONVERT = ('/disk1/oracle/payroll/',
 '/disk2/oracle/payroll/')
 NOCOPY

Chapter 12
Creating and Removing Application Containers

12-6

 STORAGE (MAXSIZE 2G)
 TEMPFILE REUSE;

Note:

If you are migrating an existing application to the new application container, then
follow the instructions in "Migrating an Existing Application to an Application
Container".

Related Topics

• About the Current Container
The data dictionary in each container in a CDB is separate, and the current container is
the container whose data dictionary is used for name resolution and for privilege
authorization.

• Administering Application Containers
You can administer application containers, including application roots and application
PDBs. You can also administer the applications installed in application containers.

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Modifying the Open Mode of PDBs
You can modify the open mode of a PDB by using the ALTER PLUGGABLE DATABASE SQL
statement or the SQL*Plus STARTUP command.

Unplugging an Application Container from a CDB
You can unplug an application container from a CDB.

• About Unplugging an Application Container
Unplugging an application container disassociates the application container from a CDB.

• Unplugging an Application Container
Unplug an application container by using an ALTER PLUGGABLE DATABASE ... UNPLUG
INTO statement.

About Unplugging an Application Container
Unplugging an application container disassociates the application container from a CDB.

Typically, you unplug an application container when you want to move the application
container to a different CDB. Also, you can unplug the application container when you no
longer want it to be available.

Unplugging an application container is similar to unplugging a PDB. To unplug an application
container, connect to its CDB root and use the ALTER PLUGGABLE DATABASE statement to
specify an XML file or a .pdb file. When you specify an XML file (.xml extension), it will
contain metadata about the application container after it is unplugged. The SQL statement
creates the XML file, and it contains the required information to enable a CREATE PLUGGABLE
DATABASE statement on a target CDB to plug in the application container. When you specify
a .pdb file, it contains a compressed archive of the XML file that describes the application

Chapter 12
Creating and Removing Application Containers

12-7

container and the files used by the application container (such as the data files and
wallet file). A .pdb file enables you to copy a single, compressed file (instead of
multiple files) to a new location to plug the application container into a CDB.

Before it can be unplugged, the application container must not have any application
PDBs plugged into it, and it must be closed. When you unplug an application
container, the unplugged application container is in mounted mode. The unplug
operation makes some changes in the application container’s data files to record, for
example, that the application container was successfully unplugged. Because it is still
part of the CDB, the unplugged application container is included in an RMAN backup
of the entire CDB. Such a backup provides a convenient way to archive the unplugged
application container in case it is needed in the future.

To completely remove the application container from the CDB, you can drop it. The
only operation supported on an unplugged application container is dropping the
application container. The application container must be dropped from the CDB before
it can be plugged back into the same CDB. An application container is usable only
when it is plugged into a CDB.

See Also:

• "Unplugging a PDB from a CDB"

• "Dropping an Application Container"

• "Modifying the Open Mode of PDBs" for information about closing a PDB

• "Modifying a PDB at the System Level" for information about initialization
parameters and unplugged PDBs

• Oracle Database Security Guide for information about common users
and local users

Unplugging an Application Container
Unplug an application container by using an ALTER PLUGGABLE DATABASE ... UNPLUG
INTO statement.

Prerequisites

You must meet the following prerequisites:

• The current user must have SYSDBA or SYSOPER administrative privilege, and the
privilege must be either commonly granted or locally granted in the PDB. The user
must exercise the privilege using AS SYSDBA or AS SYSOPER at connect time.

• The application container must have been opened at least once.

• The application container must not have any application PDBs plugged into it.

• The application container must not have an application seed plugged into it.

Chapter 12
Creating and Removing Application Containers

12-8

Note:

If you are unplugging an application container that includes data that was encrypted
with Transparent Data Encryption, then follow the instructions in Oracle Database
Advanced Security Guide.

To unplug an application container:

1. In SQL*Plus, ensure that the current container is the root of the CDB.

2. Close the application container.

In an Oracle Real Application Clusters (Oracle RAC) environment, the application
container must be closed on all instances.

3. Run the ALTER PLUGGABLE DATABASE statement with the UNPLUG INTO clause, and specify
the application container to unplug and the name and location of the application
container’s XML metadata file or .pdb file.

Example 12-4 Unplugging Application Container salesact

This ALTER PLUGGABLE DATABASE statement unplugs the application container salesact and
creates the salesact.xml metadata file in the /oracle/data/ directory:

ALTER PLUGGABLE DATABASE salesact UNPLUG INTO '/oracle/data/saleact.xml';

Dropping an Application Container
You can drop an application container when you want to move the application container from
one CDB to another or when you no longer need the application container.

Dropping an application container is very similar to dropping a PDB. When you drop an
application container, the control file of the CDB is modified to eliminate all references to the
dropped application container. Archived redo log files and backups associated with the
application container are not removed, but you can use Oracle Recovery Manager (RMAN) to
remove them.

When dropping an application container, you can either keep or delete the application
container’s data files by using one of the following clauses in the DROP PLUGGABLE DATABASE
statement:

• KEEP DATAFILES, the default, retains the data files.

The application container’s temp file is removed even when KEEP DATAFILES is specified
because the temp file is no longer needed.

• INCLUDING DATAFILES removes the data files from disk.

If an application container was created with the SNAPSHOT COPY clause, then you must
specify INCLUDING DATAFILES when you drop the application container.

The following prerequisites must be met:

• The application container must be in mounted mode, or it must be unplugged.

See "Modifying the Open Mode of PDBs".

See "Unplugging an Application Container".

Chapter 12
Creating and Removing Application Containers

12-9

• The current user must have SYSDBA or SYSOPER administrative privilege, and the
privilege must be either commonly granted or locally granted in the application
container. The user must exercise the privilege using AS SYSDBA or AS SYSOPER at
connect time.

• The application container must not have any application PDBs plugged into it.

• The application container must not have an application seed plugged into it.

Note:

This operation is destructive.

To drop an application container:

1. In SQL*Plus, ensure that the current container is the CDB root.

See "About the Current Container" and "Accessing a Container in a CDB with
SQL*Plus".

2. Run the DROP PLUGGABLE DATABASE statement and specify the application container
to drop.

Example 12-5 Dropping Application Container salesact While Keeping Its Data
Files

DROP PLUGGABLE DATABASE salesact
 KEEP DATAFILES;

Example 12-6 Dropping Application Container salesact and Its Data Files

DROP PLUGGABLE DATABASE saleact
 INCLUDING DATAFILES;

See Also:

• "Unplugging an Application Container"

• "Dropping a PDB"

• "Storage Requirements for Snapshot Copy PDBs"

• Oracle Database SQL Language Reference

• Oracle Database Backup and Recovery User’s Guide for information
about RMAN

Chapter 12
Creating and Removing Application Containers

12-10

Creating and Removing Application Seeds
You can create application seeds in several different ways, including using the PDB seed,
cloning an existing PDB or non-CDB, and plugging in an unplugged PDB. You can also
remove application seeds from application containers.

• Creating Application Seeds
You can use the CREATE PLUGGABLE DATABASE statement to create an application seed in
an application container.

• Unplugging an Application Seed from an Application Container
You can unplug an application seed from an application container.

• Dropping an Application Seed
You can use the DROP PLUGGABLE DATABASE statement to drop an application seed. You
can drop an application seed when you no longer need it.

Creating Application Seeds
You can use the CREATE PLUGGABLE DATABASE statement to create an application seed in an
application container.

• About Creating an Application Seed
To create a new application seed in an application container, use the CREATE PLUGGABLE
DATABASE statement with the AS SEED clause.

• Preparing for an Application Seed
Prerequisites must be met before creating an application seed.

• Creating an Application Seed
You create an application seed by including the AS SEED clause in
the CREATE PLUGGABLE DATABASE statement.

About Creating an Application Seed
To create a new application seed in an application container, use the CREATE PLUGGABLE
DATABASE statement with the AS SEED clause.

You can use an application seed to provision an application container with application PDBs
that have the application root’s applications installed. Typically, the application container’s
applications are installed in the application root before seed creation. After the application
seed is created, it is synchronized with the application root so that the applications are
installed in the application seed. When that is complete, any PDBs created using the
application seed have the applications installed. When an application in the application root is
upgraded or patched, the application seed must be synchronized with the application root to
apply these changes.

An application container can have zero or one application seeds. When you create an
application seed using the AS SEED clause of CREATE PLUGGABLE DATABASE, you do not
specify its name. The application seed name is always application_container_name$SEED,
where application_container_name is the name of the application seed’s application
container. For example, an application seed in the salesact application container must be
named salesact$SEED.

Chapter 12
Creating and Removing Application Seeds

12-11

When you create a new application seed, you must specify an administrator for the
application container in the CREATE PLUGGABLE DATABASE statement. The statement
creates the administrator as a local user in the application container and grants the
PDB_DBA role locally to the administrator.

See Also:

• "Creating a PDB from Scratch"

• "Managing Applications in an Application Container"

• "Synchronizing Applications in an Application PDB"

• Oracle Database SQL Language Reference for syntax and semantics of
the AS SEED clause

Preparing for an Application Seed
Prerequisites must be met before creating an application seed.

Ensure that the following prerequisites are met before creating an application seed:

• The CDB must exist.

See Creating and Configuring a CDB.

• The CDB must be in read/write mode.

• The application container to which the application seed will belong must be in
read/write mode.

• The current user must be a common user whose current container is the
application root to which the application seed will belong.

• The current user must have the CREATE PLUGGABLE DATABASE system privilege.

• For the application seed to include the application for the application container, the
application must be installed in the application root.

See Also:

• "About the Current Container"

• Managing Applications in an Application Container

Creating an Application Seed
You create an application seed by including the AS SEED clause in
the CREATE PLUGGABLE DATABASE statement.

An application seed in an application container is similar to the seed in a CDB. An
application seed enables you to create application PDBs that meet the requirements of
an application container quickly and easily.

Chapter 12
Creating and Removing Application Seeds

12-12

Before creating an application seed, complete the prerequisites described in "Preparing for
an Application Seed".

1. In SQL*Plus, ensure that the current container is the application root.

2. Run the CREATE PLUGGABLE DATABASE statement, and include the AS SEED clause, to
create the application seed. Specify other clauses when they are required.

After you create the application seed, it is in mounted mode, and its status is NEW. You
can view the open mode of an application seed by querying the OPEN_MODE column in the
V$PDBS view. You can view the status of an application seed by querying the STATUS
column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the application seed. The service has the same name
as the application seed and can be used to access the application seed. Oracle Net
Services must be configured properly for clients to access this service.

3. Open the new application seed in read/write mode.

4. You must open the new application seed in read/write mode for Oracle Database to
complete the integration of the new application seed into the application container. An
error is returned if you attempt to open the application seed in read-only mode. After the
application seed is opened in read/write mode, its status is NORMAL.

5. Perform one or more of the following actions:

• If the application seed was created from the PDB seed, then switch container to the
application seed, and use an ALTER PLUGGABLE DATABASE statement with the SYNC
clause to synchronize the application seed. Synchronizing with the application root
instantiates one or more of the application root’s applications in the application seed.

• If the application seed was created from an application root, then switch container to
the application seed, and run the pdb_to_apppdb.sql script to convert the application
root to an application PDB.

These actions are not required when the application seed is created by cloning an
application PDB.

6. Close the application seed, and then open it in open read-only mode.

7. Back up the application seed.

An application seed cannot be recovered unless it is backed up.

Note:

• If an error is returned during application seed creation, then the application
seed being created might be in an UNUSABLE state. You can check an
application seed’s state by querying the CDB_PDBS or DBA_PDBS view, and
you can learn more about application seed creation errors by checking the
alert log. An unusable application seed can only be dropped.

• When an application in the application root is upgraded or patched in the
application root, the application seed must synchronize with the application
root to include the changes.

Example 12-7 Creating an Application Seed from the PDB seed

This example assumes the following factors:

Chapter 12
Creating and Removing Application Seeds

12-13

• The application seed is being created in an application container named salesact.

• Storage limits are not required for the application seed. Therefore, the STORAGE
clause is not required.

• The application seed does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not
required.

Either Oracle Managed Files is enabled for the CDB, or the
PDB_FILE_NAME_CONVERT initialization parameter is set. The files associated with
the PDB seed will be copied to a new location based on the Oracle Managed Files
configuration or the initialization parameter setting.

• There is no file with the same name as the new temp file that will be created in the
target location. Therefore, the TEMPFILE REUSE clause is not required.

• No predefined Oracle roles need to be granted to the PDB_DBA role.

The following statement creates the application seed from the PDB seed, opens the
application seed, switches containers to the application seed, synchronizes the
application seed with the applications in the application root, closes the application
seed, and then opens the application seed in open read-only mode:

CREATE PLUGGABLE DATABASE AS SEED
 ADMIN USER actseedadm IDENTIFIED BY password;
ALTER PLUGGABLE DATABASE salesact$SEED OPEN;
ALTER SESSION SET CONTAINER=salesact$SEED;
ALTER PLUGGABLE DATABASE APPLICATION ALL SYNC;
ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE OPEN READ ONLY;

Because the application container name is salesact, the application seed name is
salesact$SEED.

A local user with the name of the specified local administrator is created and granted
the PDB_DBA common role locally in the application seed. If this user was not granted
administrator privileges during application seed creation, then use the
SYS and SYSTEM common users to administer to the application seed.

The application seed was synchronized with the application root when it was created.
Therefore, the application seed includes the applications installed in the application
root and the application common objects that are part of those applications. When a
new application PDB is created using the application seed, the application PDB also
includes the installed applications and application common objects.

Example 12-8 Creating an Application Seed From an Application PDB

This example assumes the following factors:

• The application seed is being created in an application container named salesact.

• The application seed is being created in an application PDB in the application
container named salesapppdb.

• Storage limits are not required for the application seed. Therefore, the STORAGE
clause is not required.

Chapter 12
Creating and Removing Application Seeds

12-14

• The application seed does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled for the CDB, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. The files associated with the application root will be copied
to a new location based on the Oracle Managed Files configuration or the initialization
parameter setting.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement creates the application seed from the
application root, opens the application seed, closes the application seed, and opens the
application seed in open read-only mode:

CREATE PLUGGABLE DATABASE AS SEED FROM salesapppdb;
ALTER PLUGGABLE DATABASE salesact$SEED OPEN;
ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE OPEN READ ONLY;

Because the application container name is salesact, the application seed name is
salesact$SEED.

The application seed was created from an application PDB. Therefore, the application seed
includes the applications installed in the application root and the application common objects
that are part of those applications. When a new application PDB is created using the
application seed, the application PDB also includes the installed applications and application
common objects.

Example 12-9 Creating an Application Seed From an Application Root

This example assumes the following factors:

• The application seed is being created in an application container named salesact. The
application seed is cloned from the root of the application container.

• Storage limits are not required for the application seed. Therefore, the STORAGE clause is
not required.

• The application seed does not require a default tablespace.

• The PATH_PREFIX clause is not required.

• The FILE_NAME_CONVERT clause and the CREATE_FILE_DEST clause are not required.

Either Oracle Managed Files is enabled for the CDB, or the PDB_FILE_NAME_CONVERT
initialization parameter is set. The files associated with the application root will be copied
to a new location based on the Oracle Managed Files configuration or the initialization
parameter setting.

• There is no file with the same name as the new temp file that will be created in the target
location. Therefore, the TEMPFILE REUSE clause is not required.

Given the preceding factors, the following statement creates the application seed from the
application root, opens the application seed, switches containers to the application seed, runs

Chapter 12
Creating and Removing Application Seeds

12-15

the pdb_to_apppdb.sql script to convert the application root to an application PDB,
closes the application seed, and opens the application seed in open read-only mode:

CREATE PLUGGABLE DATABASE AS SEED FROM salesact;
ALTER PLUGGABLE DATABASE salesact$SEED OPEN;
ALTER SESSION SET CONTAINER=salesact$SEED;
@$ORACLE_HOME/rdbms/admin/pdb_to_apppdb.sql
ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE OPEN READ ONLY;

Because the application container name is salesact, the application seed name is
salesact$SEED.

The application seed was created from the application root. Therefore, the application
seed includes the applications installed in the application root and the application
common objects that are part of those applications. When a new application PDB is
created using the application seed, the application PDB also includes the installed
applications and application common objects.

Unplugging an Application Seed from an Application Container
You can unplug an application seed from an application container.

• About Unplugging an Application Seed
Unplugging an application seed disassociates the application seed from an
application container. You unplug an application seed when you no longer want
the application seed to be available.

• Unplugging an Application Seed
To unplug an application seed, run the ALTER PLUGGABLE DATABASE ... UNPLUG
INTO statement.

About Unplugging an Application Seed
Unplugging an application seed disassociates the application seed from an application
container. You unplug an application seed when you no longer want the application
seed to be available.

Unplugging an application seed is similar to unplugging a PDB. To unplug an
application seed, connect to its application root and use the ALTER PLUGGABLE
DATABASE statement to specify an XML file or a .pdb file. When you specify an XML file
(.xml extension), it will contain metadata about the application seed after it is
unplugged. The SQL statement creates the XML file, and it contains the required
information to enable a CREATE PLUGGABLE DATABASE statement on a target CDB to
plug it in as a PDB or an application PDB. When you specify a .pdb file, it contains a
compressed archive of the XML file that describes the application seed and the files
used by the application seed (such as the data files and wallet file). A .pdb file enables
you to copy a single, compressed file (instead of multiple files) to a new location to
plug in as a PDB or an application PDB.

Before it can be unplugged, the application seed must be closed. When you unplug an
application seed, the unplugged application seed is in mounted mode. The unplug
operation makes some changes in the application seed’s data files to record, for
example, that the application seed was successfully unplugged. Because it is still part
of the application container, the unplugged application seed is included in an RMAN

Chapter 12
Creating and Removing Application Seeds

12-16

backup of the entire CDB. Such a backup provides a convenient way to archive the
unplugged application seed in case it is needed in the future.

To completely remove the application seed from the application container, you can drop it.
The only operation supported on an unplugged application seed is dropping the application
seed. The application seed must be dropped from the application container before it can be
plugged back into the same application container. An application seed is usable only when it
is plugged into an application container.

See Also:

• "Unplugging a PDB from a CDB"

• "Dropping an Application Seed"

• "Modifying the Open Mode of PDBs" for information about closing a PDB

• "Modifying a PDB at the System Level" for information about initialization
parameters and unplugged PDBs

• Oracle Database Security Guide for information about common users and local
users

Unplugging an Application Seed
To unplug an application seed, run the ALTER PLUGGABLE DATABASE ... UNPLUG INTO
statement.

Prerequisites

The following prerequisites must be met:

• The current user must have SYSDBA or SYSOPER administrative privilege, and the privilege
must be either commonly granted or locally granted in the application container. The user
must exercise the privilege using AS SYSDBA or AS SYSOPER at connect time.

• The application seed must have been opened at least once.

Note:

If you are unplugging an application seed that includes data that was encrypted with
Transparent Data Encryption, then follow the instructions in Oracle Database
Advanced Security Guide.

To unplug an application seed:

1. In SQL*Plus, ensure that the current container is the application root of the application
container to which the application seed belongs.

2. Close the application seed.

In an Oracle Real Application Clusters (Oracle RAC) environment, the application seed
must be closed on all instances.

Chapter 12
Creating and Removing Application Seeds

12-17

3. Run the ALTER PLUGGABLE DATABASE statement with the UNPLUG INTO clause, and
specify the application seed to unplug and the name and location of the application
seed’s XML metadata file or .pdb file.

Example 12-10 Unplugging Application Seed salesact$SEED

This ALTER PLUGGABLE DATABASE statement unplugs the application seed
salesact$SEED and creates the salesact$SEED.xml metadata file in the /oracle/
data/ directory:

ALTER PLUGGABLE DATABASE salesact$SEED
 UNPLUG INTO '/oracle/data/saleact$SEED.xml';

Dropping an Application Seed
You can use the DROP PLUGGABLE DATABASE statement to drop an application seed. You
can drop an application seed when you no longer need it.

When you drop an application seed, the control file of the CDB is modified to eliminate
all references to the dropped application seed. Archived redo log files and backups
associated with the application seed are not removed, but you can use Oracle
Recovery Manager (RMAN) to remove them.

When dropping an application seed, you can either keep or delete the application
seed’s data files by using one of the following clauses:

• KEEP DATAFILES, the default, retains the data files.

The application seed’s temp file is removed even when KEEP DATAFILES is
specified because the temp file is no longer needed.

• INCLUDING DATAFILES removes the data files from disk.

If an application seed was created with the SNAPSHOT COPY clause, then you must
specify INCLUDING DATAFILES when you drop the application seed.

The following prerequisites must be met:

• The application seed must be in mounted mode, or it must be unplugged.

• The current user must have SYSDBA or SYSOPER administrative privilege, and the
privilege must be either commonly granted or locally granted in the application
container. The user must exercise the privilege using AS SYSDBA or AS SYSOPER at
connect time.

Note:

This operation is destructive.

To drop an application seed:

1. In SQL*Plus, ensure that the current container is the application root of the
application container to which the application seed belongs.

2. Run the DROP PLUGGABLE DATABASE statement and specify the application seed.

Chapter 12
Creating and Removing Application Seeds

12-18

Example 12-11 Dropping Application Seed salesact$SEED While Keeping Its Data
Files

DROP PLUGGABLE DATABASE salesact$SEED
 KEEP DATAFILES;

Example 12-12 Dropping Application Seed salesact$SEED and Its Data Files

DROP PLUGGABLE DATABASE saleact$SEED
 INCLUDING DATAFILES;

See Also:

• "About Container Access in a CDB"

• "Modifying the Open Mode of PDBs"

• "Unplugging an Application Seed"

• "Storage Requirements for Snapshot Copy PDBs"

• Oracle Database SQL Language Reference

• Oracle Database Backup and Recovery User’s Guide for information about
RMAN

Creating an Application PDB
You create an application PDB by running the CREATE PLUGGABLE DATABASE statement with
an application root as the current container.

You can create application PDBs using the same SQL statements that you use to create
PDBs in the CDB root. The newly created PDB is an application PDB when the
CREATE PLUGGABLE DATABASE statement is run in an application root. The statement must be
run in an application root and has an explicit dependency on the application database defined
in that application root.

Before creating an application PDB, complete the prerequisites described in "General
Prerequisites for PDB Creation". You must also complete the prerequisites for the specific
type of PDB you are creating. For example, if you are cloning a PDB, then you must meet the
prerequisites PDB cloning.

1. In SQL*Plus, ensure that the current container is the application root.

2. Run a CREATE PLUGGABLE DATABASE statement.

After you create the application PDB, it is in mounted mode, and its status is NEW. You can
view the open mode of an application PDB by querying the OPEN_MODE column in the
V$PDBS view. You can view the status of an application PDB by querying the STATUS
column of the CDB_PDBS or DBA_PDBS view.

A new default service is created for the application PDB. The service has the same name
as the application PDB and can be used to access the application PDB. Oracle Net
Services must be configured properly for clients to access this service.

Chapter 12
Creating an Application PDB

12-19

3. Open the new application PDB in read/write mode.

4. You must open the new application PDB in read/write mode for Oracle Database
to complete the integration of the new application PDB into the application
container. An error is returned if you attempt to open the application PDB in read-
only mode. After the application PDB is opened in read/write mode, its status is
NORMAL.

5. Switch container to the application PDB.

6. Use an ALTER PLUGGABLE DATABASE statement with the SYNC clause to synchronize
the application PDB.

Synchronizing with the application PDB instantiates one or more of the application
root’s applications in the application PDB.

7. Close the application PDB, and then open it in open read-only mode.

8. Back up the application PDB.

An application PDB cannot be recovered unless it is backed up.

Note:

• If an error is returned during application PDB creation, then the
application PDB being created might be in an UNUSABLE state. You
can check an application PDB’s state by querying the CDB_PDBS or
DBA_PDBS view, and you can learn more about application PDB
creation errors by checking the alert log. An unusable application
PDB can only be dropped.

• When an application in the application root is upgraded or patched in
the application root, the application PDB must synchronize with the
application root to include the changes.

Related Topics

• Creating and Removing PDBs and Application Containers
You can create PDBs, application containers, and application seeds using a
variety of techniques.

• Administering Application Containers
You can administer application containers, including application roots and
application PDBs. You can also administer the applications installed in application
containers.

Chapter 12
Creating an Application PDB

12-20

Part IV
Administering a Multitenant Environment

You can administer a multitenant environment using SQL*Plus or Enterprise Manager Cloud
Control (Cloud Control).

• Administering a CDB
Administering a multitenant container database (CDB) includes tasks such as accessing
a container, modifying a CDB, executing DDL statements, and running Oracle-supplied
SQL scripts.

• Administering a CDB Fleet
A CDB fleet is a collection of CDBs and hosted PDBs that you can manage as one
logical CDB.

• Administering PDBs
Administering PDBs includes tasks such as connecting to a PDB, modifying a PDB, and
managing services associated with PDBs.

• Administering a PDB Snapshot Carousel
You can configure a PDB snapshot carousel for a specified PDB, create snapshots
manually or automatically, and set the maximum number of snapshots.

• Administering Application Containers
You can administer application containers, including application roots and application
PDBs. You can also administer the applications installed in application containers.

• Managing Security for a Multitenant Environment
You can manage common and local users and roles for a multitenant environment by
using SQL*Plus and Oracle Enterprise Manager.

• Monitoring CDBs and PDBs
You can view information about CDBs and PDBs using SQL*Plus or SQL Developer.

13
Administering a CDB

Administering a multitenant container database (CDB) includes tasks such as accessing a
container, modifying a CDB, executing DDL statements, and running Oracle-supplied SQL
scripts.

Note:

You can complete the tasks in this chapter using SQL*Plus or Oracle SQL
Developer.

• About CDB Administration
Administering a CDB is similar to administering a non-CDB, with some differences.

• Accessing Containers in a CDB
You can connect to a container by using the SQL*Plus CONNECT command. Alternatively,
you can switch into a container with an ALTER SESSION SET CONTAINER SQL statement.

• Modifying a CDB at the System Level
You can set initialization parameters at the CDB level. In some cases, you can override
these parameters at the PDB level.

• Modifying Containers When Connected to the CDB Root
You can modify the entire CDB or the root with the ALTER DATABASE statement.

• Executing SQL in a Different Container
To execute SQL in a different container, use the CONTAINERS clause for DML or the
CONTAINER clause for DDL.

• Shutting Down a CDB Instance
You can shut down a CDB instance in the same way that you shut down a non-CDB
instance.

See Also:

"Tools for a Multitenant Environment"

About CDB Administration
Administering a CDB is similar to administering a non-CDB, with some differences.

Most differences occur because some administrative tasks apply to the entire CDB, whereas
others apply to specific containers.

13-1

• About the Current Container
The data dictionary in each container in a CDB is separate, and the current
container is the container whose data dictionary is used for name resolution and
for privilege authorization.

• About Administrative Tasks in a CDB
Common users perform administrative tasks for a CDB.

• About Using Manageability Features in a CDB
For each of Oracle Database's manageability features in a CDB, it is important to
understand the data location and the data visibility.

• About Managing Tablespaces in a CDB
A tablespace is a logical storage container for database objects, such as tables
and indexes, that consume storage space.

• About Managing Database Objects in a CDB
In a CDB, different containers can contain different database objects.

• About Flashing Back a PDB
You can use the FLASHBACK PLUGGABLE DATABASE statement to return a PDB to a
past time or system change number (SCN).

• About Restricting PDB Users for Enhanced Security
There are several ways to restrict PDB users for enhanced security.

• Overview of Oracle Multitenant with Oracle RAC
Oracle Multitenant is an option with Oracle Database 12c that simplifies
consolidation, provisioning, upgrades, and more.

About the Current Container
The data dictionary in each container in a CDB is separate, and the current container
is the container whose data dictionary is used for name resolution and for privilege
authorization.

The current container can be the CDB root, an application root, a PDB, or an
application PDB. Each session has exactly one current container at any point in time.
However, a session can switch from one container to another.

Each container has a unique ID and name in a CDB. You can use the CON_ID and
CON_NAME parameters in the USERENV namespace to determine the current container ID
and name with the SYS_CONTEXT function. For example, the following query returns the
current container name:

SELECT SYS_CONTEXT ('USERENV', 'CON_NAME') FROM DUAL;

You can access a container in various ways. For example, you can use the SQL*Plus
CONNECT command, and you can use an ALTER SESSION SET CONTAINER statement to
switch the container of the current session.

The following rules apply to the current container in a CDB:

• The current container can be CDB$ROOT (CDB root) only for common users.

• The current container can be a specific PDB for common users and local users.

• The current container can be an application root only for common users or for
application common users created in the application root.

Chapter 13
About CDB Administration

13-2

• The current container can be a specific application PDB for common users, application
common users, and local users.

• The current container must be the CDB root or an application root when a SQL statement
includes CONTAINER = ALL.

You can include the CONTAINER clause in several SQL statements, such as the CREATE
USER, ALTER USER, CREATE ROLE, GRANT, REVOKE, and ALTER SYSTEM statements. Note the
following rules about CONTAINER = ALL:

– When a SQL statement includes CONTAINER = ALL and the current container is the
CDB root, the SQL statement affects all containers in the CDB, including all PDBs,
application roots, and application PDBs.

– When a SQL statement includes CONTAINER = ALL and the current container is an
application root, the SQL statement affects all containers in the application container,
including the application root and all the application PDBs that belong to the
application root. The SQL statement does not affect the CDB root or any PDBs or
application PDBs that do not belong to the current application root.

– Only a common user or application common user with the commonly granted SET
CONTAINER privilege can run a SQL statement that includes CONTAINER = ALL.

See Also:

• "About Container Access in a CDB"

• "Executing Code in Containers Using the DBMS_SQL Package"

• "Determining the Current Container ID or Name"

• "Namespaces in a CDB"

• Oracle Database SQL Language Reference

• Oracle Database Security Guide

About Administrative Tasks in a CDB
Common users perform administrative tasks for a CDB.

A common user has a single identity and can log in to the CDB root, any application root,
PDB, or application PDB in which it has privileges. Some tasks, such as starting up a CDB
instance, can be performed only by a common user.

Other administrative tasks are the same for a CDB and a non-CDB. The following table
describes some of these tasks and provides pointers to the relevant documentation.

Chapter 13
About CDB Administration

13-3

Table 13-1 Administrative Tasks Common to CDBs and Non-CDBs

Task Description Additional Information

Starting up a CDB instance To start a CDB instance, the current
user must be a common user whose
current container is the CDB root.

When you open a CDB, the CDB root
is opened, but its other containers are
mounted. Use the ALTER PLUGGABLE
DATABASE statement to modify the
open mode of one or more containers.

Oracle Database Administrator’s Guide
for information about starting up a
database

"Modifying the Open Mode of PDBs"

"Modifying a PDB with the ALTER
PLUGGABLE DATABASE Statement"

"About the Current Container"

Managing processes A CDB has one set of background
processes shared by the CDB root
and all containers.

Oracle Database Administrator’s Guide
for information about managing
processes

Managing memory A CDB has a single system global
area (SGA) and a single aggregate
program global area (PGA). The
memory required by a CDB is the sum
of the memory requirements for all
containers that will be part of the CDB.

Oracle Database Administrator’s Guide
for information about managing
memory

Managing security You can create and drop common
users, application common users, and
local users in a CDB. You can also
grant privileges to and revoke
privileges from these users. You can
also manage the CONTAINER_DATA
attributes of common users and
application common users.

In addition, grant the following roles to
the appropriate users:

• Grant the CDB_DBA role to CDB
administrators.

• Grant the PDB_DBA role to
application container
administrators and PDB
administrators.

Oracle Database Security Guide

Monitoring errors and alerts A CDB has one alert log for the entire
CDB. The name of an application
container, PDB, or application PDB is
included in records in trace files, when
appropriate.

Oracle Database Administrator’s Guide
for information about monitoring errors
and alerts

Managing diagnostic data In a CDB, you can use the Oracle
Database fault diagnosability
infrastructure and the Automatic
Diagnostic Repository (ADR).

Oracle Database Administrator’s Guide
for information about managing
diagnostic data

Managing control files A CDB has one control file. Oracle Database Administrator’s Guide
for information about managing control
files

Chapter 13
About CDB Administration

13-4

Table 13-1 (Cont.) Administrative Tasks Common to CDBs and Non-CDBs

Task Description Additional Information

Managing the online redo log
and the archived redo log files

A CDB has one online redo log and
one set of archived redo log files.

Oracle Database Administrator’s Guide
for information about managing the
redo log

Oracle Database Administrator’s Guide
for information about managing
archived redo log files

Managing tablespaces You can create, modify, and drop
tablespaces and temporary
tablespaces for the CDB root and for
individual containers. You can also
specify a default tablespace, default
tablespace type, and a default
temporary tablespace for the CDB
root. The CDB root has its own set of
Oracle-supplied tablespaces, such as
the SYSTEM tablespace, and other
containers have their own set of
Oracle-supplied tablespaces.

Oracle Database Administrator’s Guide
for information about managing
tablespaces

"About Container Modification When
Connected to CDB Root"

Managing data files and temp
files

The CDB root has its own data files,
and other containers have their own
data files. In a CDB, you can manage
data files and temp files in basically
the same way you would manage
them for a non-CDB. However, the
following exceptions apply to CDBs:

• You can limit the amount of
storage used by the data files for
a container by using the STORAGE
clause in a CREATE PLUGGABLE
DATABASE or ALTER PLUGGABLE
DATABASE statement.

• There is a default temporary
tablespace for the CDB root and
for individual containers.

Oracle Database Administrator’s Guide
for information about managing data
files and temp files

"About Container Modification When
Connected to CDB Root"

"Storage Limits"

"Modifying a PDB at the Database
Level"

Managing undo A CDB can run in local undo mode or
shared undo mode. Local undo mode
means that every container in the
CDB uses local undo. Shared undo
mode means that there is one active
undo tablespace for a single-instance
CDB, or for an Oracle RAC CDB,
there is one active undo tablespace
for each instance.

In a CDB, the UNDO_MANAGEMENT
initialization parameter must be set to
AUTO, and an undo tablespace is
required to manage the undo data.

"Setting the Undo Mode in a CDB
Using ALTER DATABASE"

Oracle Database Administrator’s Guide
for information about managing undo

"About the Current Container"

Chapter 13
About CDB Administration

13-5

Table 13-1 (Cont.) Administrative Tasks Common to CDBs and Non-CDBs

Task Description Additional Information

Moving data between containers You can move data between
containers using the same methods
that you would use to move data
between non-CDBs. For example, you
can transport the data or use Data
Pump export/import to move the data.

Oracle Database Administrator’s Guide
for information about transporting data

Oracle Database Utilities

Using Oracle Managed Files Using Oracle Managed files can
simplify administration for both a CDB
and a non-CDB.

Oracle Database Administrator’s Guide
for information about using Oracle
Managed Files

Using Transparent Data
Encryption

Transparent Data Encryption is a
feature that enables encryption of
individual table columns before storing
them in the data file, or enables
encryption of entire tablespaces. In a
CDB, each container has its own
master key for Transparent Data
Encryption, and, where applicable, the
ADMINISTER KEY MANAGEMENT SQL
statement enables key management
at the CDB level and for individual
containers.

Oracle Database Advanced Security
Guide

"About the Current Container"

Using a standby database Oracle Data Guard can configure a
physical standby or a logical standby
of a CDB. Data Guard operates on the
entire CDB, not on individual
containers in a CDB.

Oracle Data Guard Concepts and
Administration

Using Oracle Database Vault Oracle Database Vault common
realms can be scoped to an
application root on common objects.
Database Vault common command
rules can be scoped to either the CDB
or an application root. Local realms
and command rules can be locally
scoped to individual PDBs or
application PDBs. When Oracle
Database Vault security objects are in
the CDB root or an application root,
enforcement of the security objects
only applies to the containers that
have Oracle Database Vault enabled.

Oracle Database Vault Administrator’s
Guide

Dropping a database When you drop a CDB, all containers
in the CDB are dropped along with
their data. These containers include
the CDB root and PDB seed and all
application containers, application
seeds, PDBs, and application PDBs.

You can also drop individual
application containers, application
seeds, PDBs, and application PDBs
with the DROP PLUGGABLE DATABASE
statement.

Oracle Database Administrator’s Guide
for information about dropping a
database

"Dropping a PDB"

Chapter 13
About CDB Administration

13-6

See Also:

"Overview of the Multitenant Architecture " for more information about the
architecture of a CDB

About Using Manageability Features in a CDB
For each of Oracle Database's manageability features in a CDB, it is important to understand
the data location and the data visibility.

When feature data resides in the CDB root, the data is not included when a PDB is
unplugged. When the data resides in a PDB, however, the data remains both when the PDB
is unplugged and when it is plugged in.

Generally, in a CDB, a common user can view data for the CDB root and for multiple PDBs
when the common user's current container is the CDB root. A common user can view this
data by querying container data objects. The specific data that is visible varies for the
manageability features. A user whose current container is a PDB can view data for that PDB
only.

The following table describes how the manageability features work in a CDB.

Table 13-2 Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Active Session History
(ASH)

ASH collects information
about active database
sessions. You can use this
information to analyze and
identify performance
issues.

Most of the ASH data is
stored in memory. A small
percentage of the ASH
data samples are stored in
the CDB root.

ASH data related to a PDB
is not included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view ASH
data for the CDB root and
for PDBs.

A user whose current
container is a PDB can
view ASH data for the PDB
only.

Oracle Database 2 Day +
Performance Tuning Guide

Oracle Database
Performance Tuning Guide

Alerts

An alert is a notification of
a possible problem.

Threshold settings that
pertain to a PDB are stored
in the PDB.

Alerts posted when
thresholds are violated are
enqueued into the alert
queue in the CDB root.

Threshold settings that
pertain to a PDB are
included if the PDB is
unplugged. Alerts related to
a PDB are not included if
the PDB is unplugged.

A common user whose
current container is the
CDB root can view alerts
for the CDB root and for
PDBs.

A user whose current
container is a PDB can
view alert thresholds and
alerts for the PDB only.

Oracle Database
Administrator’s Guide for
information about
monitoring errors and
alerts

Chapter 13
About CDB Administration

13-7

Table 13-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Automated Database
Maintenance Tasks

Automated database
maintenance tasks are
tasks that are started
automatically at regular
intervals to perform
maintenance operations on
the database. Automated
tasks include automatic
optimizer statistics
collection, Automatic
Segment Advisor tasks,
and Automatic SQL Tuning
Advisor tasks.

The
ENABLE_AUTOMATIC_MAIN
TENANCE_PDB initialization
parameter can enable or
disable the running of
automated maintenance
tasks for all the PDBs in a
CDB or for individual PDBs
in a CDB.

The
AUTOTASK_MAX_ACTIVE_P
DBS initialization parameter
limits the number of PDBs
that can schedule
automated maintenance
tasks at the same time
(during a maintenance
window).

A user can schedule
maintenance windows and
enable or disable
maintenance tasks for the
current container only. If
the current container is the
CDB root, then the
changes only apply to the
CDB root. If the current
container is a PDB, then
the changes only apply to
the PDB.

Data related to a PDB is
stored in the PDB for
automatic optimizer
statistics collection and the
Automatic Segment
Advisor. This data is
included if the PDB is
unplugged.

Automatic SQL Tuning
Advisor runs only in the
CDB root. See the SQL
Tuning Advisor row in this
table for information about
data collected by Automatic
SQL Tuning Advisor.

See the appropriate row in
this table for data visibility
information about the
following manageability
features: automatic
optimizer statistics
collection, Optimizer
Statistics Advisor,
Automatic Segment
Advisor, and Automatic
SQL Tuning Advisor.

Oracle Database
Administrator’s Guide for
information about
managing automated
database maintenance
tasks

Oracle Database
Reference for information
about the
ENABLE_AUTOMATIC_MAIN
TENANCE_PDB initialization
parameter

Oracle Database
Reference for information
about the
AUTOTASK_MAX_ACTIVE_P
DBS initialization parameter

Chapter 13
About CDB Administration

13-8

Table 13-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Automatic Database
Diagnostic Monitor (ADDM)

ADDM can diagnose the
performance of a CDB or
PDB and determine how
identified problems can be
resolved.

ADDM executions occur in
a PDB or in the CDB root.
ADDM analyzes data using
one of the following
sources:

• AWR data stored
inside the PDB
through an AWR
snapshot taken inside
the PDB

• AWR data from a non-
CDB, CDB root, or
PDB that is imported
into the AWR storage
of a PDB

• AWR data stored in
the root container
through an AWR
snapshot taken in root

Before the start of the
analysis, ADDM
determines the source of
the AWR data (PDB or
CDB root) and applies the
rules applicable to each
data type.

Note: Automatic ADDM for
a PDB is enabled only
when automatic snapshots
are enabled for the PDB.

A common user whose
current container is the
CDB root can review
results for the entire CDB.
The ADDM results can
include information about
multiple PDBs. ADDM
results related to a PDB
are not included if the PDB
is unplugged. The ADDM
results cannot be viewed
when the current container
is a PDB.

A user whose current
container is a PDB can
view ADDM results data for
the current PDB only. The
results exclude findings
that apply to the CDB as a
whole, for example, I/O
problems relating to the
buffer cache size.

Oracle Database 2 Day
DBA

Oracle Database
Performance Tuning Guide

Automatic Optimizer
Statistics Collection

Automatic optimizer
statistics collection gathers
optimizer statistics for all
schema objects in the
database for which there
are no statistics or only
stale statistics. The
statistics gathered by this
task are used by the SQL
query optimizer to improve
the performance of SQL
execution.

When an automatic
optimizer statistics
collection task gathers data
for a PDB, it stores this
data in the PDB. This data
is included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view
optimizer statistics data for
PDBs.

A user whose current
container is a PDB can
view optimizer statistics
data for the PDB only.

"Using Oracle Resource
Manager for PDBs"

Oracle Database SQL
Tuning Guide

Chapter 13
About CDB Administration

13-9

Table 13-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Automatic Segment
Advisor

The Automatic Segment
Advisor identifies segments
that have space available
for reclamation and makes
recommendations on how
to defragment those
segments.

When Automatic Segment
Advisor gathers data for a
PDB, it stores this data in
the PDB. This data is
included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view
Automatic Segment
Advisor data for PDBs.

A user whose current
container is a PDB can
view the Automatic
Segment Advisor data for
the PDB only.

Oracle Database
Administrator’s Guide for
information about
reclaiming unused space

"Using Oracle Resource
Manager for PDBs"

Automatic Workload
Repository (AWR)

The AWR collects,
processes, and maintains
performance statistics for
problem detection and self-
tuning purposes. This data
is stored in the database.
The gathered data can be
displayed in both reports
and views.

AWR reports can be
generated in the CDB root
or in any PDB. AWR
reports generated in the
CDB root pertain to the
entire CDB, while AWR
reports generated when a
PDB is the current
container only pertain to
that PDB.

AWR data generated in the
CDB root is stored in the
CDB root. AWR data
generated in a PDB is
stored in the PDB.

When a PDB is unplugged,
AWR data stored in the
CDB root is not included.

When a PDB is unplugged,
AWR data stored in the
PDB is included.

A common user whose
current container is the
CDB root can view AWR
data for the CDB root and
for PDBs.

A user whose current
container is a PDB can
view AWR data for the PDB
only.

Oracle Database
Performance Tuning Guide

Database Replay

Database Replay is a
feature of Oracle Real
Application Testing.
Database Replay captures
the workload for a CDB or
PDB and replays it exactly
on a test database.

Capture files are always
stored in operating system
files, regardless of whether
the capture and replay is at
the CDB level or PDB level.

For CDB-level workloads, a
common user whose
current container is the
CDB root can view
database capture and
replay information. For
PDB-level workloads, a
local or common PDB
administrator with the
SELECT_CATALOG_ROLE
privilege can view this
information in
DBA_WORKLOAD_CAPTURES
and
DBA_WORKLOAD_REPLAYS.

Oracle Database Testing
Guide

Chapter 13
About CDB Administration

13-10

Table 13-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

Optimizer Statistics Advisor

Optimizer Statistics Advisor
analyzes how statistics are
being gathered and
suggests changes that can
be made to fine tune
statistics collection.

Data related to a PDB is
stored in the PDB for
Optimizer Statistics
Advisor. This data is
included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view
Optimizer Statistics Advisor
data for PDBs.

A user whose current
container is a PDB can
view the Optimizer
Statistics Advisor data for
the PDB only.

Oracle Database SQL
Tuning Guide

SQL Management Base
(SMB)

SMB stores statement logs,
plan histories, SQL plan
baselines, and SQL profiles
in the data dictionary.

SMB data related to a PDB
is stored in the PDB. The
SMB data related to a PDB
is included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view SMB
data for PDBs.

A user whose current
container is a PDB can
view the SMB data for the
PDB only.

Oracle Database SQL
Tuning Guide

SQL Performance Analyzer
(SPA)

SPA can analyze the SQL
performance impact of SQL
tuning and other system
changes. SPA is often used
with Database Replay.

A common user whose
current container is the
CDB root can run SPA for
any PDB. In this case, the
SPA results data is stored
in the CDB root and is not
included if the PDB is
unplugged.

A user whose current
container is a PDB can run
SPA on the PDB. In this
case, the SPA results data
is stored in the PDB and is
included if the PDB is
unplugged.

A common user whose
current container is the
CDB root can view SPA
results data for PDBs.

A user whose current
container is a PDB can
view the SPA results data
for the PDB only.

Oracle Database Testing
Guide

SQL Tuning Sets (STS)

An STS is a database
object that includes one or
more SQL statements
along with their execution
statistics and execution
context, and could include
a user priority ranking.

You can use an STS to
tune a group of SQL
statements or test their
performance using SPA.

An STS can be stored in
the CDB root or in any
PDB. If it is stored in the
CDB root, then you can
load SQL statements from
any PDB into it.

When a PDB is unplugged,
an STS stored in the CDB
root is not included, even if
the STS contains SQL
statements from the PDB.

When a PDB is unplugged,
an STS stored in the PDB
is included.

A common user whose
current container is the
CDB root can view STS
data stored in the CDB root
only.

A user whose current
container is a PDB can
view STS data for the PDB
only.

Oracle Database SQL
Tuning Guide

Chapter 13
About CDB Administration

13-11

Table 13-2 (Cont.) Manageability Features in a CDB

Manageability Feature Data Location Data Visibility Additional Information

SQL Tuning Advisor

SQL Tuning Advisor
optimizes SQL statements
that have been identified as
high-load SQL statements.

Automatic SQL Tuning
Advisor data is stored in
the CDB root. It might have
results about SQL
statements executed in a
PDB that were analyzed by
the advisor, but these
results are not included if
the PDB is unplugged.

A common user whose
current container is the
CDB root can run SQL
Tuning Advisor manually for
SQL statements from any
PDB. When a statement is
tuned, it is tuned in any
container that runs the
statement.

A user whose current
container is a PDB can
also run SQL Tuning
Advisor manually for SQL
statements from the PDB.
When SQL Tuning Advisor
is run manually from a
PDB, the results are stored
in the PDB from which it is
run. In this case, a
statement is tuned only for
the current PDB, and the
results related to a PDB
are included if the PDB is
unplugged.

When SQL Tuning Advisor
is run automatically, the
results are visible only to a
common user whose
current container is the
CDB root. These results
cannot be viewed when the
current container is a PDB.

When SQL Tuning Advisor
is run manually by a user
whose current container is
a PDB, the results are only
visible to a user whose
current container is that
PDB.

Oracle Database 2 Day +
Performance Tuning Guide

Oracle Database SQL
Tuning Guide

To run SPA or SQL Tuning Advisor for SQL statements from a PDB, a common user
must have the following privileges:

• Common SET CONTAINER privilege or local SET CONTAINER privilege in the PDB

• The privileges required to execute the SQL statements in the PDB

See Also:

• "About the Current Container"

• "About CDB and Container Information in Views" for an overview of
container data objects

• Oracle Database Security Guide for detailed information about container
data objects

Chapter 13
About CDB Administration

13-12

About Managing Tablespaces in a CDB
A tablespace is a logical storage container for database objects, such as tables and indexes,
that consume storage space.

At the physical level, a tablespace stores data in one or more data files or temp files. You can
use the ALTER DATABASE statement to manage tablespaces in a CDB.

The following are considerations for tablespaces in a CDB:

• A permanent tablespace can be associated with exactly one container.

• When you create a tablespace in a container, the tablespace is associated with that
container.

• When local undo is disabled for a CDB, the CDB has only one active undo tablespace, or
one active undo tablespace for each instance of an Oracle RAC CDB. When local undo is
enabled for a CDB, each container in the CDB has its own undo tablespace.

• A local undo tablespace is required for each node in an Oracle Real Application Clusters
(Oracle RAC) cluster in which the PDB is open.

• There is one default temporary tablespace each container in the CDB, including the CDB
root, each PDB, each application root, and each application PDB.

• About Managing Permanent Tablespaces in a CDB
A permanent tablespace can be associated with only one container. Therefore, a
permanent tablespace can be associated with the root or with one PDB.

• About Managing Temporary Tablespaces in a CDB
Each container in a CDB has its own default temporary tablespace (or tablespace group).

About Managing Permanent Tablespaces in a CDB
A permanent tablespace can be associated with only one container. Therefore, a permanent
tablespace can be associated with the root or with one PDB.

Each container in a CDB must have its own default permanent tablespace, and default
permanent tablespaces cannot be shared between containers. Users connected to the
container who are not explicitly assigned a tablespace use the default permanent tablespace
for the container.

About Managing Temporary Tablespaces in a CDB
Each container in a CDB has its own default temporary tablespace (or tablespace group).

You also can create additional temporary tablespaces for individual containers, and you can
assign specific users in containers to these temporary tablespaces. When you unplug a PDB,
its temporary tablespaces are also unplugged.

When a user is not assigned a temporary tablespace explicitly in a container, the user’s
temporary tablespace is the default temporary tablespace for the container.

Chapter 13
About CDB Administration

13-13

See Also:

• Oracle Database Administrator’s Guide for information about managing
tablespaces

• "Unplugging a PDB from a CDB"

• "Modifying an Entire CDB Using ALTER DATABASE"

• "Modifying the CDB Root Using ALTER DATABASE"

About Managing Database Objects in a CDB
In a CDB, different containers can contain different database objects.

An Oracle database stores database objects, such as tables, indexes, and directories.
Database objects that are owned by a schema are called schema objects, while
database objects that are not owned by a schema are called nonschema objects. The
root and PDBs contain schemas, and schemas contain schema objects. The root and
PDBs can also contain nonschema objects, such as users, roles, tablespaces,
directories, and editions.

In a CDB, the root contains Oracle-supplied schemas and database objects. Oracle-
supplied common users, such as SYS and SYSTEM, own these schemas and common
database objects. They can also own local objects, both in the root and in a PDB.

You can create common users in the root to administer containers in the CDB. User-
created common users can create database objects in the root. Oracle recommends
that, in the root, schemas owned by user-created common users contain only
database triggers and the objects used in their definitions. A user-created common
user can also own any type of local object in a PDB.

You can create local users in a PDB. A local user in a PDB can create schema objects
and nonschema objects in the PDB. You cannot create local users in the root.

Name resolution in a CDB is similar to name resolution in a non-CDB, except that
names are resolved in the context of the dictionary of the user's current container.

See Also:

• "About the Current Container"

• "Overview of Common and Local Users in a CDB"

• Oracle Database Administrator’s Guide for information about managing
schema objects

• Oracle Database SQL Language Reference for information about
schema objects and nonschema objects

• Oracle Database Security Guide for information about creating common
users and local users

Chapter 13
About CDB Administration

13-14

About Flashing Back a PDB
You can use the FLASHBACK PLUGGABLE DATABASE statement to return a PDB to a past time or
system change number (SCN).

You can create restore points for a PDB and flash back the PDB to the restore point without
affecting the CDB or other PDBs.

Note:

Oracle Database Backup and Recovery User’s Guide

About Restricting PDB Users for Enhanced Security
There are several ways to restrict PDB users for enhanced security.

A PDB lockdown profile restricts the features and options available to users in a PDB. The
PDB_OS_CREDENTIAL initialization parameter can specify a unique operating system user for a
PDB to limit operating system access. Also, when the PATH_PREFIX and CREATE_FILE_DEST
clauses are specified during PDB creation, they limit file system access.

• PDB Lockdown Profiles
When identities are shared between PDBs, elevated privileges might exist. You can use
lockdown profiles to prevent this elevation of privileges.

• The PDB_OS_CREDENTIAL Initialization Parameter
When the database accesses an external procedure with the extproc agent, the
PDB_OS_CREDENTIAL initialization parameter determines the identity of the operating
system user employed when interacting with the operating system from a PDB.

• The PATH_PREFIX and CREATE_FILE_DEST PDB Creation Clauses
The PATH_PREFIX clause of CREATE PLUGGABLE DATABASE ensures that all directory object
paths associated with the PDB are restricted to the specified directory or its
subdirectories.

PDB Lockdown Profiles
When identities are shared between PDBs, elevated privileges might exist. You can use
lockdown profiles to prevent this elevation of privileges.

Identities can be shared in the following situations:

• At the operating system level, when the database interacts with operating system
resources such as files or processes

• At the network level, when the database communicates with other systems

• Inside the database, as PDBs access or create common objects or communicate across
container boundaries using features such as database links

To increase security, a CDB administrator can use PDB lockdown profiles to restrict users in
particular PDBs. A PDB lockdown profile can disable users from running specified SQL
statements, such as ALTER SYSTEM statements, or disable access to a package that can
access the network, such as UTL_SMTP. A PDB lockdown profile can also restrict access to

Chapter 13
About CDB Administration

13-15

common users, common objects, administrative tools such as Oracle XML DB,
administrative features such as cursor sharing, and database options such as Oracle
Database Advanced Queuing. PDB lockdown profiles can prohibit the use of the XDB
protocols (FTP, HTTP, HTTPS) by a PDB with the XDB_PROTOCOLS feature.

When logged in to the CDB root or application root, create a lockdown profile by
issuing the CREATE LOCKDOWN PROFILE statement, which supports the following
optional clauses:

• FROM static_base_profile creates a new lockdown profile by using the values
from an existing profile. Any subsequent changes to the existing profile will not
affect the new profile.

• INCLUDING dynamic_base_profile creates a new lockdown profile by using the
values from an existing profile, except that this new lockdown profile inherits the
DISABLE STATEMENT rules that comprise the base profile, and any subsequent
changes to the base profile.

The user issuing the statement must have the CREATE LOCKDOWN PROFILE system
privilege in the current container. You can add and remove restrictions with the ALTER
LOCKDOWN PROFILE statement. The user must issue the ALTER statement in the CDB
root or application root and must have the have ALTER LOCKDOWN PROFILE system
privilege in the current container.

Specify a lockdown profile by using the PDB_LOCKDOWN initialization parameter. This
parameter determines whether the PDB lockdown profile applies to a given PDB. You
can set this parameter at the following levels:

• PDB

The profile applies only to the PDB in which it is set.

• Application container

The profile applies to all application PDBs in the application container. The value
can be modified only by an application common user who has application common
SYSDBA or common ALTER SYSTEM privileges or a CDB common user who has
common SYSDBA or common ALTER SYSTEM privileges.

• CDB

The profile applies to all PDBs. A common user who has common SYSDBA or
common ALTER SYSTEM privileges can override a CDB-wide setting for a specific
PDB.

If the PDB_LOCKDOWN parameter in a PDB is set to the name of a lockdown profile
different from the container for this PDB (CDB or application container), then a set of
rules govern the interaction between restrictions.

Chapter 13
About CDB Administration

13-16

See Also:

• Oracle Database Security Guide for complete information about lockdown
profiles

• Oracle Database SQL Language Reference for more information about the
CREATE LOCKDOWN PROFILE statement

• Oracle Database Reference for more information about the
PDB_LOCKDOWN initialization parameter

The PDB_OS_CREDENTIAL Initialization Parameter
When the database accesses an external procedure with the extproc agent, the
PDB_OS_CREDENTIAL initialization parameter determines the identity of the operating system
user employed when interacting with the operating system from a PDB.

Using an OS user described by a credential whose name is specified as a value of the
PDB_OS_CREDENTIAL initialization parameter can ensure that operating system interactions are
performed as a less powerful user. In this way, the feature protects data belonging to one
PDB from being accessed by users connected to another PDB. A credential is an object that
is created using the CREATE_CREDENTIAL procedure in the DBMS_CREDENTIAL package.

The Oracle OS user is usually a highly privileged user. Using this account for operating
system interactions is not recommended. Also, using the same OS user for operating system
interactions from different PDBs might compromise data belonging to a given PDB.

See Also:

• Oracle Database Administrator’s Guide for information about managing
processes for external procedures

• Oracle Database Reference for more information about the PDB_OS_CREDENTIAL
initialization parameter

• Oracle Database PL/SQL Packages and Types Reference

The PATH_PREFIX and CREATE_FILE_DEST PDB Creation Clauses
The PATH_PREFIX clause of CREATE PLUGGABLE DATABASE ensures that all directory object
paths associated with the PDB are restricted to the specified directory or its subdirectories.

PATH_PREFIX also ensures that the following files associated with the PDB are restricted to
specified directory:

• The Oracle XML repository for the PDB

• Files created with a CREATE PFILE statement

• The export directory for Oracle wallets

• Library object created with a CREATE LIBRARY statement

Chapter 13
About CDB Administration

13-17

Note:

The library must use a directory object. If a PDB uses a predefined
PATH_PREFIX, attempts to use a library object that does not use a directory
object result in an ORA-65394 error. The library object is not invalidated, but to
make it usable you must recreate it using a directory object.

The CREATE_FILE_DEST clause of the CREATE PLUGGABLE DATABASE statement ensures
that all the database files belonging to the PDB are restricted to the specified directory
and its subdirectories. The clause enables Oracle Managed Files for the PDB and
specifies the default file system directory or Oracle ASM disk group for the PDB files.

See Also:

• "Restrictions on PDB File Locations"

• "CREATE_FILE_DEST Clause"

Overview of Oracle Multitenant with Oracle RAC
Oracle Multitenant is an option with Oracle Database 12c that simplifies consolidation,
provisioning, upgrades, and more.

It is based on an architecture that allows a multitenant container database (CDB) to
hold several pluggable databases (PDBs). You can adopt an existing database as a
PDB without having to change the application tier. In this architecture, Oracle RAC
provides the local high availability that is required when consolidating various
business-critical applications on one system.

When using PDBs with Oracle RAC, the multitenant CDB is based on Oracle RAC.
You can make each PDB available on either every instance of the Oracle RAC CDB or
a subset of instances. In either case, access to and management of the PDBs are
regulated using dynamic database services, which will also be used by applications to
connect to the respective PDB, as they would in a single instance Oracle database
using Oracle Net Services for connectivity.

You can isolate PDBs to prevent certain operations from being performed on or within
a particular PDB that may interfere with other PDBs sharing the same Oracle RAC
database or database instance. PDB isolation allows for a higher degree of
consolidation using Oracle Multitenant.

If you create an Oracle RAC database as a CDB and plug one or more PDBs into the
CDB, then, by default, a PDB is not started automatically on any instance of the Oracle
RAC CDB. With the first dynamic database service assigned to the PDB (other than
the default database service which has the same name as the database name), the
PDB is made available on those instances on which the service runs.

Whether a PDB is available on more than one instance of an Oracle RAC CDB, the
CDB is typically managed by the services running on the PDB. You can manually

Chapter 13
About CDB Administration

13-18

enable PDB access on each instance of an Oracle RAC CDB by starting the PDB manually
on that instance.

Related Topics

• Oracle Real Application Clusters Administration and Deployment Guide

Accessing Containers in a CDB
You can connect to a container by using the SQL*Plus CONNECT command. Alternatively, you
can switch into a container with an ALTER SESSION SET CONTAINER SQL statement.

• About Container Access in a CDB
You can use SQL*Plus to access the root or a PDB in a CDB.

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

About Container Access in a CDB
You can use SQL*Plus to access the root or a PDB in a CDB.

Note:

This section assumes that you understand how to connect to a non-CDB in
SQL*Plus.

• Services in a CDB
Clients access the root or a PDB through database services.

• Session Limits in a CDB
The setting for the SESSIONS initialization parameter limits the total number of sessions
available in a CDB, including the sessions connected to PDBs.

• User Names in a Multitenant Environment
Within each PDB, a user name must be unique with respect to other user names and
roles in that PDB.

• How the Multitenant Option Affects Password Files for Administrative Users
In a multitenant environment, the password information for the local and common
administrative users is stored in different locations.

See Also:

• Oracle Database Administrator’s Guide for information about submitting
commands and SQL to the database

• Oracle Database Net Services Administrator's Guide for information about
configuring Oracle Net Services

Chapter 13
Accessing Containers in a CDB

13-19

Services in a CDB
Clients access the root or a PDB through database services.

Database services have an optional PDB property. When a PDB is created, a new
default service for the PDB is created automatically. The service has the same name
as the PDB. With the service name, you can access the PDB using the easy connect
syntax or the net service name from the tnsnames.ora file. Oracle Net Services must
be configured properly for clients to access this service.

When a user connects using a service with a non-null PDB property, the user name is
resolved in the context of the specified PDB. When a user connects without specifying
a service or using a service name with a null PDB property, the user name is resolved in
the context of the root. You can view the PDB property for a service by querying the
CDB_SERVICES data dictionary view or by running the config service command in the
SRVCTL utility.

Note:

When two or more CDBs on the same computer system use the same
listener and two or more PDBs have the same service name in these CDBs,
a connection that specifies this service name connects randomly to one of
the PDBs with the service name. To avoid incorrect connections, ensure that
all service names for PDBs are unique on the computer system, or configure
a separate listener for each CDB on the computer system.

See Also:

• "Overview of Services in a CDB"

• "Managing Services for PDBs"

• "Example 19-9"

Session Limits in a CDB
The setting for the SESSIONS initialization parameter limits the total number of sessions
available in a CDB, including the sessions connected to PDBs.

If the limit is reached for the CDB, then users cannot connect to PDBs. To ensure that
one PDB does not use too many sessions, you can limit the number of sessions
available to a PDB by setting the SESSIONS initialization parameter in the PDB.

Chapter 13
Accessing Containers in a CDB

13-20

See Also:

"Listing the Modifiable Initialization Parameters in PDBs"

User Names in a Multitenant Environment
Within each PDB, a user name must be unique with respect to other user names and roles in
that PDB.

Note the following restrictions:

• For common user names, names for user-created common users must begin with a
common user prefix. By default, for CDB common users, this prefix is C##. For application
common users, this prefix is an empty string. This means that there are no restrictions on
the name that can be assigned to an application common user other than that it cannot
start with the prefix reserved for CDB common users. For example, you could name a
CDB common user c##hr_admin and an application common user hr_admin.

The COMMON_USER_PREFIX parameter in CDB$ROOT defines the common user prefix. You
can change this setting, but do so only with great care.

• For local user names, the name cannot start with C## (or c##).

• A user and a role cannot have the same name.

Related Topics

• Oracle Database Security Guide

How the Multitenant Option Affects Password Files for Administrative Users
In a multitenant environment, the password information for the local and common
administrative users is stored in different locations.

• For CDB administrative users: The password information (hashes of the password) for
the CDB common administrative users to whom administrative privileges were granted in
the CDB root is stored in the password file.

• For all users in a CDB to whom administrative privileges were granted outside the
CDB root: To view information about the password hash information of these users,
query the $PWFILE_USERS dynamic view.

Related Topics

• Oracle Database Security Guide

Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Connecting to a Container Using the SQL*Plus CONNECT Command
You can use the SQL*Plus CONNECT command to connect to the root or to a PDB.

• Switching to a Container Using the ALTER SESSION Statement
When you are connected to a container as a common user, you can switch to a different
container and application service using the ALTER SESSION statement.

Chapter 13
Accessing Containers in a CDB

13-21

Connecting to a Container Using the SQL*Plus CONNECT Command
You can use the SQL*Plus CONNECT command to connect to the root or to a PDB.

• Connecting to the Root Using the SQL*Plus CONNECT Command
You can connect to the root in the same way that you connect to a non-CDB.

• Connecting to a PDB Using the SQL*Plus CONNECT Command
To connect to a PDB with the SQL*Plus CONNECT command, you can use easy
connect or a net service name.

Connecting to the Root Using the SQL*Plus CONNECT Command
You can connect to the root in the same way that you connect to a non-CDB.

Specifically, you can use the following techniques to connect to the root with the
SQL*Plus CONNECT command:

• Local connection

• Local connection with operating system authentication

• Database connection using easy connect

• Database connection using a net service name

• Remote database connection using external authentication

The following prerequisites must be met for the user connecting to the root:

• The user must be a common user.

• The user must be granted CREATE SESSION privilege in the root.

To connect to the root using the SQL*Plus CONNECT command:

1. Configure your environment so that you can open SQL*Plus.

2. Start SQL*Plus with the /NOLOG argument:

sqlplus /nolog

3. Issue a SQL*Plus CONNECT command to connect to the root, as shown in the
following examples.

Example 13-1 Connecting to the Root with a Local Connection

This example connects to the root in the local CDB as user SYSTEM. SQL*Plus prompts
for the SYSTEM user password.

connect system

Example 13-2 Connecting to the Root with Operating System Authentication

This example connects locally to the root with the SYSDBA administrative privilege with
operating system authentication.

connect / as sysdba

Chapter 13
Accessing Containers in a CDB

13-22

Example 13-3 Connecting to the Root with a Net Service Name

Assume that clients are configured to have a net service name for the root in the CDB. For
example, the net service name can be part of an entry in a tnsnames.ora file.

This example connects as common user c##dba to the database service designated by the
net service name mycdb. SQL*Plus prompts for the c##dba user password.

connect c##dba@mycdb

See Also:

Oracle Database Administrator’s Guide for information about submitting commands
and SQL to the database

Connecting to a PDB Using the SQL*Plus CONNECT Command
To connect to a PDB with the SQL*Plus CONNECT command, you can use easy connect or a
net service name.

To connect to a PDB, a user must be one of the following:

• A common user with a CREATE SESSION privilege granted commonly or granted locally in
the PDB

• A local user defined in the PDB with CREATE SESSION privilege

Only a user with SYSDBA, SYSOPER, SYSBACKUP, or SYSDG privilege can connect to a PDB that is
in mounted mode. To change the open mode of a PDB, see "Modifying the Open Mode of
PDBs".

To connect to a PDB using the SQL*Plus CONNECT command:

1. Configure your environment so that you can open SQL*Plus.

2. Start SQL*Plus with the /NOLOG argument:

sqlplus /nolog

3. Issue a SQL*Plus CONNECT command using easy connect or a net service name to
connect to the PDB.

Example 13-4 Connecting to a PDB

Assume that clients are configured to have a net service name for each PDB that matches
each PDB name. For example, the net service name can be part of an entry in a
tnsnames.ora file.

The following command connects to the sh local user in the salespdb PDB:

CONNECT sh@salespdb

Chapter 13
Accessing Containers in a CDB

13-23

The following command connects to the SYSTEM common user in the salespdb PDB:

CONNECT system@salespdb

See Also:

Oracle Database Administrator’s Guide for information about submitting the
SQL*Plus CONNECT command

Switching to a Container Using the ALTER SESSION Statement
When you are connected to a container as a common user, you can switch to a
different container and application service using the ALTER SESSION statement.

You can use the following statement to switch to a different container and application
service:

ALTER SESSION SET CONTAINER = container_name [SERVICE = service_name]

For container_name, specify one of the following:

• CDB$ROOT to switch to the CDB root

• PDB$SEED to switch to the PDB seed

• A PDB name to switch to the PDB

When the current container is the root, you can view the names of the PDBs in a
CDB by querying the DBA_PDBS view.

For service_name, specify a service that is running in the PDB. You can list the
services running in the containers of a CDB, excluding the CDB root, by issuing the
following query with the CDB root as the current container:

COL NAME FORMAT A30
COL CON_NAME FORMAT A20

SELECT NAME,CON_NAME, CON_ID
 FROM V$ACTIVE_SERVICES
 WHERE UPPER(NAME) != CON_NAME
 AND CON_ID !=1
 ORDER BY CON_ID;

By default, when you switch to a container, the session uses the default service for the
container. However, the default PDB service does not support all service attributes and
features such as service metrics, Fast Application Notification (FAN), load balancing,
Resource Manager, Transaction Guard, Application Continuity, and so on. It is best
practice to use a nondefault service for the container by specifying SERVICE =
service_name, where service_name is the name of the service.

With this new capability, connection pools can switch the service, and, when needed
the PDB, on a connection when a connection is borrowed from the pool. Starting with

Chapter 13
Accessing Containers in a CDB

13-24

Oracle Database 12c Release 2 (12.2.0.1), connection pools support more than one
database service with universal connection pools (UCPs). It can also be used standalone.

When switching to a service, applications can consolidate to a CDB, while keeping the
database services identified, prioritized, measured, and highly available. Switching to a
nondefault service provides the following benefits:

• It preserves the service attributes and features.

• It eliminates too many connection pools with too many connections serving these
tenants.

• It allows applications to use more database services for workload control without
consuming too many connection pools. Customers can identify and prioritize workloads
using services without over sizing the database connections.

The following are considerations for using the ALTER SESSION SET CONTAINER statement:

• After the statement completes successfully, the current schema of the session is set to
the schema owned by the common user in the specified container.

• After the statement completes successfully, the security context is reset to that of the
schema owned by the common user in the specified container.

• After the statement completes successfully, login triggers for the specified container do
not fire.

If you require a trigger, then you can define a before or after SET CONTAINER trigger in a
PDB to fire before or after the ALTER SESSION SET CONTAINER statement is executed.

• After the statement completes successfully and the SERVICE clause specifies a nondefault
service for the PDB, the session is using a new service with attributes set, including
metrics, FAN, TAF, Application Continuity, Transaction Guard, drain_timeout, and
stop_option for the new service.

• Package states are not shared across containers.

• When closing a PDB, sessions that switched into the PDB and sessions that connected
directly to the PDB are handled identically.

• A transaction cannot span multiple containers. If you start a transaction and use ALTER
SESSION SET CONTAINER to switch to a different container, then you cannot issue DML,
DDL, COMMIT, or ROLLBACK statements until you switch back to the container in which you
started the transaction.

• If you open a cursor and use ALTER SESSION SET CONTAINER to switch to different
container, then you cannot fetch data from that cursor until you switch back to the
container in which the cursor was opened.

• You can use the ALTER SESSION SET CONTAINER statement with the SERVICE clause for
connection pooling as well as advanced CDB administration.

For example, you can use this statement for connection pooling with PDBs for a
multitenant application. A multitenant application uses a single instance of the software
on a server to serve multiple customers (tenants). In a non-CDB, multitenant is typically
supported by adding an extra column that identifies the tenant to every table used by the
application, and tenants check out connections from a connection pool. In a CDB with
PDBs, each tenant can have its own PDB, and you can use the ALTER SESSION SET
CONTAINER statement in a connection pooling configuration.

• When working with connection pools that serve applications, the applications may be
using data sources with different services. Using the ALTER SESSION SET CONTAINER

Chapter 13
Accessing Containers in a CDB

13-25

statement with the SERVICE clause enables the connection pool to use the same
connections for many applications, sharing the services.

The following prerequisites must be met to use the ALTER SESSION SET CONTAINER
statement:

• The current user must be a common user. The initial connection must be made
using the SQL*Plus CONNECT command.

• When altering a session to switch to a PDB as a common user that was not
supplied with Oracle Database, the current user must be granted the SET
CONTAINER privilege commonly or must be granted this privilege locally in the PDB.

Note:

When an ALTER SESSION SET CONTAINER statement is used to switch to the
current container, these prerequisites are not enforced, and no error
message is returned if they are not met.

Before issuing an ALTER SESSION SET CONTAINER statement with the SERVICE clause,
the following prerequisites must be met:

• The service switched to must be active. You cannot switch to a service that is not
running.

• When switching between services, the service attributes of the service being
switched from and the service being switched to must match. For example, the
services switched from and to must all have TAF, or must all use Application
Continuity, or must all have drain_timeout set.

To switch to a container using the ALTER SESSION statement:

1. In SQL*Plus, connect to a container as a common user with the required
privileges.

2. Check the current open mode of the container to which you are switching.

To check the current open mode of the root or a PDB, query the OPEN_MODE column
in the V$CONTAINERS view when the current container is the root.

If the open mode of the root should be changed, then follow the instructions in
Oracle Database Administrator’s Guide about altering database availability to
change the open mode.

If the open mode of the PDB should be changed, then follow the instructions in
"Modifying the Open Mode of PDBs" to change the open mode.

The open mode of the root imposes limitations on the open mode of PDBs. For
example, the root must be open before any PDBs can be open. Therefore, you
might need to change the open mode of the root before changing the open mode
of a PDB.

3. If you are switching to a specific service, then ensure that the service is running.

To check the active status of the service, query the V$ACTIVE_SERVICES view when
the current container is the CDB root.

Chapter 13
Accessing Containers in a CDB

13-26

If the service is not running, then use the SRVCTL utility or the DBMS_SERVICE package to
start the service.

4. Run the ALTER SESSION SET CONTAINER statement and specify the container to which
you want to switch.

Include the SERVICE clause to switch to a specific application service.

The following examples switch to various containers using ALTER SESSION.

Example 13-5 Switching to the PDB salespdb and Using the salesrep Service

ALTER SESSION SET CONTAINER = salespdb SERVICE = salesrep;

Example 13-6 Switching to the PDB salespdb and Using the Default Service

ALTER SESSION SET CONTAINER = salespdb;

Example 13-7 Switching to the CDB Root

ALTER SESSION SET CONTAINER = CDB$ROOT;

Example 13-8 Switching to the PDB Seed

ALTER SESSION SET CONTAINER = PDB$SEED;

Example 13-9 Switching Services Using a Dummy Service in the CDB Root

To design connection pooling that switches the container and the service, one method is to
create a dummy service in the CDB root and set all required service attributes on this dummy
service (for example, drain_timeout, TAF or Application Continuity). The service attributes
must match across the CDB root and the PDB. To use this method, complete the following
steps:

1. Connect to the dummy service when first creating the connection pool and when creating
new connections.

2. As services are added to each PDB, set the same attributes on these real services.

3. When an application requires a connection, complete one of the following actions:

• Create a new connection to the dummy service, and switch to the PDB and service.

• Borrow a free connection in the pool and switch to the PDB and service.

You do not need to return to the CDB root when switching across PDBs.

You do not need to return to the CDB root when switching across PDBs.

See Also:

Oracle Database Administrator’s Guide for information about database resident
connection pooling

Chapter 13
Accessing Containers in a CDB

13-27

Modifying a CDB at the System Level
You can set initialization parameters at the CDB level. In some cases, you can
override these parameters at the PDB level.

• About System-Level Modifications of a CDB
The ALTER SYSTEM SET statement dynamically sets an initialization parameter in
one or more containers.

• Modifying a CDB with ALTER SYSTEM
To modify a CDB at the system level, use the ALTER SYSTEM statement.

About System-Level Modifications of a CDB
The ALTER SYSTEM SET statement dynamically sets an initialization parameter in one or
more containers.

A CDB uses an inheritance model for initialization parameters in which PDBs inherit
initialization parameter values from the root. In this case, inheritance means that the
value of a specific parameter in the root applies to a specific PDB.

A PDB can override the root setting for some parameters. In such cases, a PDB has
an inheritance property for each initialization parameter that is either true or false. The
inheritance property is true for a parameter when the PDB inherits the root's value for
the parameter; otherwise, the property is false.

The inheritance property for some parameters must be true. For other parameters,
when the current container is the PDB, you can change the inheritance property by
running the ALTER SYSTEM SET statement. If V$SYSTEM_PARAMETER.ISPDB_MODIFIABLE
is TRUE for an initialization parameter, then the inheritance property can be false for the
parameter.

When the current container is the root, the CONTAINER clause of the ALTER SYSTEM SET
statement controls which PDBs inherit the parameter value being set. The CONTAINER
clause has the following syntax:

CONTAINER = { CURRENT | ALL }

The following settings are possible:

• CURRENT
The parameter setting applies only to the current container. This is the default
setting for CONTAINER. When the current container is the root, the parameter
setting applies to the root and to any PDB with an inheritance property of true for
the parameter.

• ALL
The parameter setting applies to all containers in the CDB, including the root and
all PDBs. Specifying ALL sets the inheritance property to true for the parameter in
all PDBs.

Chapter 13
Modifying a CDB at the System Level

13-28

See Also:

"About the Current Container" for more information about the CONTAINER clause and
rules that apply to it

Modifying a CDB with ALTER SYSTEM
To modify a CDB at the system level, use the ALTER SYSTEM statement.

Prerequisites

The current user must have the commonly granted ALTER SYSTEM privilege.

To use ALTER SYSTEM SET in the root in a CDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Run the ALTER SYSTEM SET statement.

Note:

To change the inheritance property for a parameter in a PDB from false to true, run
the ALTER SYSTEM RESET statement to reset the parameter when the current
container is the PDB. The following sample statement resets the OPEN_CURSORS
parameter:

ALTER SYSTEM RESET OPEN_CURSORS SCOPE = SPFILE;

Example 13-10 Setting an Initialization Parameter for All Containers

This ALTER SYSTEM SET statement sets the OPEN_CURSORS initialization parameter to 200 for
the all containers and sets the inheritance property to TRUE in each PDB.

ALTER SYSTEM SET OPEN_CURSORS = 200 CONTAINER = ALL;

Example 13-11 Setting an Initialization Parameter for the Root

This ALTER SYSTEM SET statement sets the OPEN_CURSORS initialization parameter to 200 for
the root and for PDBs with an inheritance property of true for the parameter.

ALTER SYSTEM SET OPEN_CURSORS = 200 CONTAINER = CURRENT;

Chapter 13
Modifying a CDB at the System Level

13-29

See Also:

• "Modifying a PDB at the System Level"

• Oracle Database SQL Language Reference for more information about
the ALTER SYSTEM SET statement

Modifying Containers When Connected to the CDB Root
You can modify the entire CDB or the root with the ALTER DATABASE statement.

• About Container Modification When Connected to CDB Root
The ALTER DATABASE statement modifies a CDB. When you are connected to the
CDB root, the ALTER PLUGGABLE DATABASE statement can modify the open mode of
one or more PDBs.

• Modifying an Entire CDB Using ALTER DATABASE
You can use the ALTER DATABASE statement to modify an entire CDB, including the
root and all PDBs. Most ALTER DATABASE statements modify the entire CDB.

• Setting the Undo Mode in a CDB Using ALTER DATABASE
When local undo is enabled, each container has its own undo tablespace for every
instance in which it is open. When local undo is disabled, there is one undo
tablespace for the entire CDB.

• Modifying the CDB Root Using ALTER DATABASE
To modify only the root of a CDB, use the ALTER DATABASE statement.

About Container Modification When Connected to CDB Root
The ALTER DATABASE statement modifies a CDB. When you are connected to the CDB
root, the ALTER PLUGGABLE DATABASE statement can modify the open mode of one or
more PDBs.

The behavior of ALTER DATABASE and ALTER PLUGGABLE DATABASE depends on which
container you are connected to when you use the statement:

• Connected as a common user to CDB root

In this case, the ALTER DATABASE statement works the same as in a non-CDB.
When an ALTER DATABASE statement with the RENAME GLOBAL_NAME clause
modifies the domain of a CDB, it affects the domain of each PDB with a domain
that defaults to that of the CDB. The ALTER PLUGGABLE DATABASE statement with
the pdb_change_state clause modifies the open mode of one or more PDBs.

• Connected to a PDB

In this case, the ALTER DATABASE and ALTER PLUGGABLE DATABASE statements
modify the current PDB only.

The following table lists which containers are modified by clauses in ALTER DATABASE
and ALTER PLUGGABLE DATABASE statements.

Chapter 13
Modifying Containers When Connected to the CDB Root

13-30

Table 13-3 Statements That Modify Containers in a CDB

Modify Entire CDB Modify Root Only Modify One or More PDBs

When connected as a common user
whose current container is the root,
ALTER DATABASE statements with
the following clauses modify the
entire CDB:

• startup_clauses
• recovery_clauses
• logfile_clauses
• controlfile_clauses
• standby_database_clauses
• instance_clauses
• security_clause
• RENAME GLOBAL_NAME clause

• ENABLE BLOCK CHANGE
TRACKING clause

• DISABLE BLOCK CHANGE
TRACKING clause

When connected as a common user
whose current container is the root,
ALTER DATABASE statements with
the following clauses modify the root
only:

• database_file_clauses
• DEFAULT EDITION clause

• DEFAULT TABLESPACE clause

• DEFAULT TEMPORARY
TABLESPACE clause

ALTER DATABASE statements with
the following clauses modify the root
and set default values for PDBs:

• flashback_mode_clause
• SET DEFAULT {BIGFILE|

SMALLFILE} TABLESPACE
clause

• set_time_zone_clause
You can use these clauses to set
nondefault values for specific PDBs.

When connected as a common user
whose current container is the root,
ALTER PLUGGABLE DATABASE
statements with the following clause
can modify the open mode of one or
more PDBs:

• pdb_change_state
When the current container is a
PDB, ALTER PLUGGABLE
DATABASE statements with this
clause can modify the open mode of
the current PDB.

When connected as a common user
whose current container is the root,
ALTER PLUGGABLE DATABASE
statements with the following clause
can preserve or discard the open
mode a PDB when the CDB
restarts:

• pdb_save_or_discard_state

See Also:

• "About the Current Container"

• "Modifying a PDB at the Database Level"

• Oracle Database SQL Language Reference

Modifying an Entire CDB Using ALTER DATABASE
You can use the ALTER DATABASE statement to modify an entire CDB, including the root and
all PDBs. Most ALTER DATABASE statements modify the entire CDB.

For a list of statements that modify the entire CDB rather than the root or individual PDBs,
see the "Modify Entire CDB" column of "About Container Modification When Connected to
CDB Root".

Prerequisites

To modify an entire CDB, the following prerequisites must be met:

• The current user must be a common user with the ALTER DATABASE privilege.

• To use an ALTER DATABASE statement with a recovery_clause, the current user must have
the SYSDBA administrative privilege commonly granted. In this case, you must exercise
this privilege using AS SYSDBA at connect time.

Chapter 13
Modifying Containers When Connected to the CDB Root

13-31

To modify an entire CDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Use an ALTER DATABASE statement with a clause that modifies an entire CDB.

Example 13-12 Backing Up the Control File for a CDB

The following ALTER DATABASE statement uses a recovery_clause to back up a control
file.

ALTER DATABASE BACKUP CONTROLFILE TO '+DATA/dbs/backup/control.bkp';

Example 13-13 Adding a Redo Log File to a CDB

The following ALTER DATABASE statement uses a logfile_clause to add redo log files.

ALTER DATABASE cdb ADD LOGFILE
 GROUP 4 ('/u01/logs/orcl/redo04a.log','/u02/logs/orcl/redo04b.log')
 SIZE 100M BLOCKSIZE 512 REUSE;

See Also:

Oracle Database SQL Language Reference

Setting the Undo Mode in a CDB Using ALTER DATABASE
When local undo is enabled, each container has its own undo tablespace for every
instance in which it is open. When local undo is disabled, there is one undo tablespace
for the entire CDB.

• About the CDB Undo Mode
You can configure a CDB to use local undo in every container or to use shared
undo (default) for the entire CDB.

• Configuring a CDB to Use Local Undo Mode
You can change a CDB to local undo mode by issuing an ALTER DATABASE LOCAL
UNDO ON statement and restarting the database.

• Configuring a CDB to Use Shared Undo Mode
To change a CDB to use shared undo mode, use an ALTER DATABASE LOCAL UNDO
OFF statement.

About the CDB Undo Mode
You can configure a CDB to use local undo in every container or to use shared undo
(default) for the entire CDB.

A CDB runs either in local or shared undo mode. The undo mode applies to the entire
CDB. Therefore, every container either uses shared undo or local undo.

Chapter 13
Modifying Containers When Connected to the CDB Root

13-32

You can specify the undo mode of a CDB during CDB creation in the ENABLE PLUGGABLE
DATABASE clause of the CREATE DATABASE statement. If you do not specify the UNDO clause,
then shared undo mode is the default. You can change the undo mode of a CDB after it is
created by issuing an ALTER DATABASE statement and restarting the CDB.

To determine the current CDB undo mode, run the following query in the CDB root:

SELECT PROPERTY_NAME, PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME = 'LOCAL_UNDO_ENABLED';

If the query returns TRUE for the PROPERTY_VALUE, then the CDB is in local undo mode.
Otherwise, the CDB is in shared undo mode.

• About Local Undo Mode
Local undo mode means that each container has its own undo tablespace for every
instance in which it is open.

• About Shared Undo Mode
Shared undo mode means that only one active undo tablespace exists for a single-
instance CDB. For an Oracle RAC CDB, there is one active undo tablespace for each
instance.

About Local Undo Mode
Local undo mode means that each container has its own undo tablespace for every instance
in which it is open.

In this mode, Oracle Database automatically creates an undo tablespace for every container
in the CDB. For an Oracle RAC CDB, there is one active undo tablespace for each instance
for each PDB in local undo mode.

Local undo mode provides increased isolation for each container and improves the efficiency
of some operations, such as unplugging the container or performing point-in-time recovery on
the container. In addition, local undo mode is required for some operations to be supported,
such as relocating a PDB or cloning a PDB that is in open read/write mode.

When a CDB is in local undo mode, the following applies:

• Any user who has the appropriate privileges for the current container can create an undo
tablespace for the container.

• Undo tablespaces are visible in static data dictionary views and dynamic performance
(V$) views in every container in the CDB.

See Also:

Oracle Database SQL Language Reference for information about the required
privileges

About Shared Undo Mode
Shared undo mode means that only one active undo tablespace exists for a single-instance
CDB. For an Oracle RAC CDB, there is one active undo tablespace for each instance.

Chapter 13
Modifying Containers When Connected to the CDB Root

13-33

When a CDB is in shared undo mode, the following applies:

• Only a common user who has the appropriate privileges and whose current
container is the CDB root can create an undo tablespace.

• When the current container is not the CDB root, an attempt to create an undo
tablespace fails and returns an error.

• Undo tablespaces are visible in static data dictionary views and dynamic
performance (V$) views when the current container is the CDB root. Undo
tablespaces are visible only in dynamic performance views when the current
container is a PDB, an application root, or an application PDB.

Note:

• When you change the undo mode of a CDB, the new undo mode applies
to an individual container the first time the container is opened after the
change.

• When you change the undo mode of a CDB, containers in the CDB
cannot flash back to a time or SCN that is prior to the change.

Configuring a CDB to Use Local Undo Mode
You can change a CDB to local undo mode by issuing an ALTER DATABASE LOCAL UNDO
ON statement and restarting the database.

When a CDB is in local undo mode, each container has its own undo tablespace for
every instance in which it is open. Oracle Database automatically creates an undo
tablespace in any container in the CDB that does not have one. If a PDB without an
undo tablespace is cloned, relocated, or plugged into a CDB that is configured to use
local undo mode, then Oracle Database automatically creates an undo tablespace for
the PDB the first time it is opened.

When a CDB is changed from shared undo mode to local undo mode, Oracle
Database creates the required undo tablespaces automatically.

1. If the CDB instance is open, then shut it down.

2. Start up the CDB instance in OPEN UPGRADE mode. For example:

STARTUP UPGRADE
3. In SQL*Plus, ensure that the current container is the CDB root. For example, enter

the following:

SHOW CON_NAME

CON_NAME

CDB$ROOT

Chapter 13
Modifying Containers When Connected to the CDB Root

13-34

4. Query the current undo mode of the CDB:

SELECT PROPERTY_NAME, PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME = 'LOCAL_UNDO_ENABLED';

5. To enable local undo, issue the following SQL statement:

ALTER DATABASE LOCAL UNDO ON;
6. Shut down and restart the CDB instance.

7. Optional: Manually create an undo tablespace in the PDB seed.

While Oracle Database creates an undo tablespace in the PDB seed automatically in
local undo mode, you might want to control the size and configuration of the undo
tablespace by creating an undo tablespace manually. To ensure the PDBs created from
the PDB seed use the manually-created undo tablespace and not the automatically-
created undo tablespace, you must set the UNDO_TABLESPACE initialization parameter to
the manually-created undo tablespace, or drop the automatically-created undo
tablespace.

a. In SQL*Plus, ensure that the current container is the root.

b. Place the PDB seed in open read/write mode:

ALTER PLUGGABLE DATABASE PDB$SEED OPEN READ WRITE FORCE;
c. Switch container to the PDB seed:

ALTER SESSION SET CONTAINER=PDB$SEED;
d. Create an undo tablespace in the PDB seed. For example:

CREATE UNDO TABLESPACE seedundots1
 DATAFILE 'seedundotbs_1a.dbf'
 SIZE 10M AUTOEXTEND ON
 RETENTION GUARANTEE;

e. Switch container to the root:

ALTER SESSION SET CONTAINER=CDB$ROOT;
f. Place the PDB seed in open read-only mode:

ALTER PLUGGABLE DATABASE PDB$SEED OPEN READ ONLY FORCE;

Configuring a CDB to Use Shared Undo Mode
To change a CDB to use shared undo mode, use an ALTER DATABASE LOCAL UNDO OFF
statement.

1. If the CDB instance is open, then shut it down.

2. Start up the CDB instance in OPEN UPGRADE mode. For example:

STARTUP UPGRADE

Chapter 13
Modifying Containers When Connected to the CDB Root

13-35

3. In SQL*Plus, ensure that the current container is the CDB root. For example, enter
the following:

SHOW CON_NAME

CON_NAME

CDB$ROOT

4. Optionally, query the current undo mode of the CDB:

SELECT PROPERTY_NAME, PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME = 'LOCAL_UNDO_ENABLED';

5. To turn off local undo, issue the following SQL statement:

ALTER DATABASE LOCAL UNDO OFF;
6. Shut down and restart the CDB instance.

When in shared undo mode, the CDB ignores any local undo tablespaces that were
created when it was in local undo mode. Oracle recommends that you delete the
unused local undo tablespaces.

Modifying the CDB Root Using ALTER DATABASE
To modify only the root of a CDB, use the ALTER DATABASE statement.

When the current container is the root, some ALTER DATABASE statements modify the
root without directly modifying any of the PDBs. See the "Modify Root Only" column of
Table 13-3 for a list of these statements.

Some statements set the defaults for the PDBs in the CDB. You can overwrite these
defaults for a PDB by using the ALTER PLUGGABLE DATABASE statement.

Prerequisites

To modify the root, the current user must have the ALTER DATABASE privilege in the
root.

To modify the root:

1. In SQL*Plus, ensure that the current container is the root.

2. Run an ALTER DATABASE statement with a clause that modifies the root.

The following examples modify the root.

A user whose current container is the root that is not explicitly assigned a tablespace
uses the default permanent tablespace for the root. The tablespace specified in the
ALTER DATABASE statement must exist in the root.

After executing this statement, the default type of subsequently created tablespaces in
the root is bigfile. This setting is also the default for PDBs.

The tablespace or tablespace group specified in the ALTER DATABASE statement must
exist in the root.

Chapter 13
Modifying Containers When Connected to the CDB Root

13-36

Example 13-14 Changing the Default Permanent Tablespace for the Root

This ALTER DATABASE statement uses a DEFAULT TABLESPACE clause to set the default
permanent tablespace to root_tbs for the root.

ALTER DATABASE DEFAULT TABLESPACE root_tbs;

Example 13-15 Bringing a Data File Online for the Root

This ALTER DATABASE statement uses a database_file_clause to bring the /u02/oracle/
cdb_01.dbf data file online.

ALTER DATABASE DATAFILE '/u02/oracle/cdb_01.dbf' ONLINE;

Example 13-16 Changing the Default Tablespace Type for the Root

This ALTER DATABASE statement uses a SET DEFAULT TABLESPACE clause to change the
default tablespace type to bigfile for the root.

ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE;

Example 13-17 Changing the Default Temporary Tablespace for the Root

This ALTER DATABASE statement uses a DEFAULT TEMPORARY TABLESPACE clause to set the
default temporary tablespace to root_temp for the root.

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE root_temp;

See Also:

• "Modifying a PDB at the Database Level"

• Oracle Database SQL Language Reference

Executing SQL in a Different Container
To execute SQL in a different container, use the CONTAINERS clause for DML or the CONTAINER
clause for DDL.

• Issuing DML Statements on a Container in a CDB
A DML (data manipulation language) statement issued in a CDB or application root can
modify a different container in the CDB. In addition, you can specify a default container
target for DML statements.

• Executing DDL Statements in a CDB
In a CDB, you can execute a data definition language (DDL) statement in the current
container or in all containers.

Chapter 13
Executing SQL in a Different Container

13-37

• Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within
a CDB. You can run the script against any specified containers.

• Executing Code in Containers Using the DBMS_SQL Package
When you are executing PL/SQL code in a container in a CDB, and you want to
execute one or more SQL statements in a different container, use the DBMS_SQL
package to switch containers.

Issuing DML Statements on a Container in a CDB
A DML (data manipulation language) statement issued in a CDB or application root
can modify a different container in the CDB. In addition, you can specify a default
container target for DML statements.

• About Issuing DML Statements on a Container in a CDB
DML statements can affect database objects in a specified container in a CDB.

• Specifying the Default Container for DML Statements in a CDB
To specify the default container for DML statements in a CDB, issue the ALTER
DATABASE statement with the CONTAINERS DEFAULT TARGET clause.

About Issuing DML Statements on a Container in a CDB
DML statements can affect database objects in a specified container in a CDB.

The container is specified by container ID. Because the container ID can appear in
more than one location, the database uses the following order of precedence:

1. The CON_ID specified in the WHERE clause of a DML statement

2. The CONTAINERS_DEFAULT_TARGET database property

3. The current container, which is either the CDB root or application root

In a CDB root or an application root, a DML statement that includes the CONTAINERS
clause can modify a table or view in a single container in the CDB or application
container. To use the CONTAINERS clause, specify the table or view being modified in
the CONTAINERS clause and the container ID affected in the WHERE clause.

You can specify a target container in an INSERT VALUES statement by specifying a
value for CON_ID in the VALUES clause. Also, you can specify a target container in an
UPDATE or DELETE statement by specifying a CON_ID predicate in the WHERE clause. For
example, the following DML statement updates the sales.customers table in the
container with a CON_ID of 7:

UPDATE CONTAINERS(sales.customers) ctab
 SET ctab.city_name='MIAMI'
 WHERE ctab.CON_ID=7
 AND CUSTOMER_ID=3425;

The following restrictions apply to the CONTAINERS clause:

• The specified schema must exist both in the container specified by CON_ID and in
the CDB or application root where the statement is executed.

Chapter 13
Executing SQL in a Different Container

13-38

• The value specified for the CON_ID in the WHERE clause must refer to a PDB, application
root, or application PDB within the CDB.

• INSERT as SELECT statements where the target of the INSERT is in CONTAINERS() is not
supported.

• A multitable INSERT statement where the target of the INSERT is in CONTAINERS() is not
supported.

• DML statements using the CONTAINERS clause require that the database listener is
configured using TCP (instead of IPC) and that the PORT and HOST values are specified for
each target PDB using the PORT and HOST clauses, respectively.

Specifying the Default Container for DML Statements in a CDB
To specify the default container for DML statements in a CDB, issue the ALTER DATABASE
statement with the CONTAINERS DEFAULT TARGET clause.

When a DML statement is issued in a CDB root without specifying containers in the WHERE
clause, the DML statement affects the default container for the CDB. The default container
can be any container in the CDB, including the CDB root, a PDB, an application root, or an
application PDB. Only one default container is allowed.

The CONTAINERS_DEFAULT_TARGET database property sets the default container. By default,
this property is not set. You can determine the default target containers for a CDB by running
the following query:

SELECT PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME='CONTAINERS_DEFAULT_TARGET';

1. In SQL*Plus, ensure that the current container is the CDB root or application root.

The current user must have the commonly granted ALTER DATABASE privilege.

2. Run the ALTER DATABASE statement with the CONTAINERS DEFAULT TARGET clause.

Example 13-18 Specifying the Default Container for DML Statements in a CDB

This example specifies that PDB1 is the default container for DML statements in the CDB.

ALTER DATABASE CONTAINERS DEFAULT TARGET = (PDB1);

Example 13-19 Clearing the Default Container

This example clears the default container setting. When it is not set, the default container is
the CDB root.

ALTER DATABASE CONTAINERS DEFAULT TARGET = NONE;

Executing DDL Statements in a CDB
In a CDB, you can execute a data definition language (DDL) statement in the current
container or in all containers.

Chapter 13
Executing SQL in a Different Container

13-39

• About Executing DDL Statements in a CDB
In a CDB, some DDL statements can apply to all containers or to the current
container only.

• Executing a DDL Statement in the Current Container
Specify CURRENT in the CONTAINER clause of a DDL statement to execute the
statement in the current container.

• Executing a DDL Statement in All Containers in a CDB
Specify ALL in the CONTAINER clause of a DDL statement to execute the statement
in all containers in a CDB.

About Executing DDL Statements in a CDB
In a CDB, some DDL statements can apply to all containers or to the current container
only.

To specify which containers are affected, use the CONTAINER clause:

CONTAINER = { CURRENT | ALL }

The following settings are possible:

• CURRENT means that the statement applies only to the current container.

• ALL means that the statement applies to all containers in the CDB, including the
root and all PDBs.

The following restrictions apply to the CONTAINER clause in DDL statements:

• The restrictions described in "About the Current Container".

• You can use the CONTAINER clause only with the DDL statements listed in
Table 13-4.

Table 13-4 DDL Statements and the CONTAINER Clause in a CDB

DDL Statement CONTAINER = CURRENT CONTAINER = ALL

CREATE USER Creates a local user in the current
PDB.

Creates a common user.

ALTER USER Alters a local user in the current
PDB.

Alters a common user.

CREATE ROLE Creates a local role in the current
PDB.

Creates a common role.

GRANT Grants a privilege in the local
container to a local user, common
user, or local role.

The SET CONTAINER privilege can
be granted to a user-created
common user in the current PDB.

Grants a system privilege or object
privilege on a common object to a
common user or common role. The
specified privilege is granted to the
user or role across the entire CDB.

Chapter 13
Executing SQL in a Different Container

13-40

Table 13-4 (Cont.) DDL Statements and the CONTAINER Clause in a CDB

DDL Statement CONTAINER = CURRENT CONTAINER = ALL

REVOKE Revokes a privilege in the local
container from a local user, common
user, or local role.

This statement can revoke only a
privilege granted with CURRENT
specified in the CONTAINER clause
from the specified user or role in the
local container. The statement does
not affect privileges granted with ALL
specified in the CONTAINER clause.

The SET CONTAINER privilege can
be revoked from a user-created
common user in the current PDB.

Revokes a system privilege or object
privilege on a common object from a
common user or common role. The
specified privilege is revoked from
the user or role across the entire
CDB.

This statement can revoke only a
privilege granted with ALL specified
in the CONTAINER clause from the
specified common user or common
role. The statement does not affect
privileges granted with CURRENT
specified in the CONTAINER clause.
However, any privileges granted
locally that depend on the privilege
granted commonly that is being
revoked are also revoked.

All other DDL statements apply to the current container only.

In addition to the usual rules for user, role, and profile names, the following rules and best
practices apply when you create a user, role, or profile in a CDB:

• It is best practice for common user, role, and profile names to start with a prefix to avoid
naming conflicts between common users, roles, and profiles and local users, roles, and
profiles. You specify this prefix with the COMMON_USER_PREFIX initialization parameter in
the CDB root. By default, the prefix is C## or c## in the CDB root.

• In an application container, it is best practice for application common user, role, and
profile names to start with a prefix to avoid naming conflicts between application common
users, roles, and profiles and local users, roles, and profiles. You specify this prefix with
the COMMON_USER_PREFIX initialization parameter in the application root. By default, the
prefix is NULL in an application root.

• When the COMMON_USER_PREFIX initialization parameter is set in an application root, the
setting applies to the application common user, role, and profile names in the application
container. The prefix can be different in the CDB root and in an application root, and the
prefix can be different in different application containers.

• Common user, role, and profile names must consist only of ASCII characters. This
restriction does not apply to application common user, role, and profile names.

• Local user, role, and profile names cannot start with the prefix specified for common
users with the COMMON_USER_PREFIX initialization parameter.

• Local user, role, and profile names cannot start with C## or c##.

• Regardless of the value of COMMON_USER_PREFIX in the CDB root, application common
user, role, and profile names cannot start with C## or c##.

• Application common user, role, and profile names cannot start with the prefix specified for
common users with the COMMON_USER_PREFIX initialization parameter.

Chapter 13
Executing SQL in a Different Container

13-41

See Also:

• "Modifying a CDB with ALTER SYSTEM" for information about using the
ALTER SYSTEM statement in a CDB

• Oracle Database SQL Language Reference

• Oracle Database Concepts

• Oracle Database Security Guide for more information about managing
users in a CDB

• Oracle Database Reference for more information about the
COMMON_USER_PREFIX initialization parameter

Executing a DDL Statement in the Current Container
Specify CURRENT in the CONTAINER clause of a DDL statement to execute the statement
in the current container.

The supported DDL statements are listed in Table 13-4.

The current user must be granted the required privileges to execute the DDL
statement in the current container. For example, to create a user, the current user
must be granted the CREATE USER system privilege in the current container.

To execute a DDL statement in the current container:

1. In SQL*Plus, access a container.

See "Accessing a Container in a CDB with SQL*Plus".

2. Execute the DDL statement with CONTAINER set to CURRENT.

A local user's user name cannot start with the prefix specified by the
COMMON_USER_PREFIX initialization parameter. By default, in the CDB root, the prefix is
C## or c##. An application root can specify its own prefix for an application container. In
addition, a common user's name must consist only of ASCII characters. The specified
tablespace must exist in the PDB.

Example 13-20 Creating Local User in a PDB

This example creates the local user testpdb in the current PDB.

CREATE USER testpdb IDENTIFIED BY password
 DEFAULT TABLESPACE pdb1_tbs
 QUOTA UNLIMITED ON pdb1_tbs
 CONTAINER = CURRENT;

Executing a DDL Statement in All Containers in a CDB
Specify ALL in the CONTAINER clause of a DDL statement to execute the statement in all
containers in a CDB.

The supported DDL statements are listed in Table 13-4.

The following prerequisites must be met:

Chapter 13
Executing SQL in a Different Container

13-42

• The current user must be a common user.

• The current user must be granted the required privileges commonly to execute the DDL
statement. For example, to create a user, the current user must be granted the CREATE
USER system privilege commonly.

To execute a DDL statement in all containers in a CDB:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Execute the DDL statement with CONTAINER set to ALL.

A common user's user name must start with the prefix specified by the COMMON_USER_PREFIX
initialization parameter. By default, in the CDB root, the prefix is C## or c##. An application
root can specify its own prefix for an application container. In addition, a common user's
name must consist only of ASCII characters. The specified tablespace must exist in the root
and in all PDBs.

Example 13-21 Creating Common User in a CDB

This example creates the common user c##testcdb.

CREATE USER c##testcdb IDENTIFIED BY password
 DEFAULT TABLESPACE cdb_tbs
 QUOTA UNLIMITED ON cdb_tbs
 CONTAINER = ALL;

Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within a
CDB. You can run the script against any specified containers.

• About Running Oracle-Supplied SQL Scripts in a CDB
In a CDB, the catcon.pl script is the best way to run SQL scripts and SQL statements.

• Syntax and Parameters for catcon.pl
The catcon.pl script is a Perl script that must be run at an operating system prompt.

• Running the catcon.pl Script
Examples illustrate running the catcon.pl script.

About Running Oracle-Supplied SQL Scripts in a CDB
In a CDB, the catcon.pl script is the best way to run SQL scripts and SQL statements.

An Oracle Database installation includes several SQL scripts. These scripts perform
operations such as creating data dictionary views and installing options.

The catcon.pl script can run scripts in the root and in specified PDBs in the correct order,
and it generates log files that you can view to confirm that the SQL script or SQL statement
did not generate unexpected errors. It also starts multiple processes and assigns new scripts
to them as they finish running scripts previously assigned to them.

Chapter 13
Executing SQL in a Different Container

13-43

Note:

• Unless you exclude the PDB seed when you run catcon.pl, the SQL
script or SQL statement is run on the PDB seed.

• You can use the catcon.pl script to run scripts on both CDBs and non-
CDBs.

Syntax and Parameters for catcon.pl
The catcon.pl script is a Perl script that must be run at an operating system prompt.

The catcon.pl script has the following syntax and parameters:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl
[--usr username[/password]]
[--int_usr username[/password]]
[--script_dir directory]
[--log_dir directory]
[{--incl_con|--excl_con} container]
[--echo]
[--spool]
[--error_logging { ON | errorlogging-table-other-than-SPERRORLOG }]
[--app_con application_root]
[--no_set_errlog_ident]
[--diag]
[-ignore_unavailable_pdbs]
[--verbose]
[--force_pdb_mode pdb_mode]
[--num_procs number]
[--user_scripts]
[--recover]
--log_file_base log_file_name_base
-- { SQL_script [arguments] | --x'SQL_statement' }

Ensure that --x SQL_statement is preceded by -- if it follows any single-letter
parameter. If --x SQL_statement is preceded by a script name or another --x
SQL_statement, then do not precede it with --. Also, note that the SQL statement must
be inside single quotation marks.

Command line parameters to SQL scripts can be introduced using --p. Interactive (or
secret) parameters to SQL scripts can be introduced using --P.

To view the help for the catcon.pl script, change directories to $ORACLE_HOME/
perl/bin/, and then run the following command:

perl $ORACLE_HOME/rdbms/admin/catcon.pl --help

The following table describes the catcon.pl parameters. A parameter is optional
unless it is indicated that it is required.

Chapter 13
Executing SQL in a Different Container

13-44

The short parameter names in the following table are for backward compatibility. Some
parameters do not have short names.

Table 13-5 catcon.pl Parameters

Parameter Short Name Description

--usr -u Specifies the user name and password to connect to the root and
the specified PDBs. Specify a common user with the required
privileges to run the SQL script or the SQL statement. The default is
"/ AS SYSDBA". If no password is supplied, then catcon.pl
prompts for a password.

--int_usr -U Specifies the user name and password to connect to the root and
the specified PDBs. Specify a common user with the required
privileges to perform internal tasks, such as querying CDB
metadata. The default is / AS SYSDBA. If no password is supplied,
then catcon.pl prompts for a password.

--script_dir -d Directory that contains the SQL script. The default is the current
directory.

--log_dir -l Directory into which catcon.pl writes log files. The default is the
current directory.

{--incl_con|--
excl_con}

{-c|-C} The containers in which the SQL script is run or is not run.

The --incl_con parameter lists the containers in which the SQL
script is run.

The --excl_con parameter lists the containers in which the SQL
script is not run.

Specify containers in a space-delimited list of PDB names enclosed
in single quotation marks.

The --incl_con and --excl_con parameters are mutually
exclusive.

When this parameter is used, the --app_con parameter cannot be
used.

--echo -e Sets echo ON while running the script. The default is echo OFF.

--spool -s Spools the output of every script into a file with the following name:

log-file-name-base_script-name-without-
extension_[container-name-if-any].default-
extension

--error_logging -E When set to ON, the default error logging table is used. ON is the
default setting. When set to ON, errors are written to the table
SPERRORLOG in the current schema in each container in which the
SQL script runs. If this table does not exist in a container, then it is
created automatically.

When a table other than SPERRORLOG is specified, errors are written
to the specified table. The table must exist in each container in
which the SQL script runs, and the current user must have the
necessary privileges to perform DML operations on the table in
each of these containers.

See SQL*Plus User's Guide and Reference for more information
about the error logging table.

Chapter 13
Executing SQL in a Different Container

13-45

Table 13-5 (Cont.) catcon.pl Parameters

Parameter Short Name Description

--app_con -F Specify an application root. The scripts are run in the application
root and in the application PDBs that are plugged into the
application root.

When this parameter is used, the --incl_con and --excl_con
parameters cannot be used.

--no_set_errlog_ident -I Do not issue a SET ERRORLOGGING identifier. This option is
intended for cases in which the SET ERRORLOGGING identifier is
already set and should not be overwritten.

--diag -g Turns on the generation of debugging information.

--verbose -v Turns on verbose output.

--
ignore_unavailable_pd
bs

-f Ignore PDBs that are closed or, if the --incl_con or --excl_con
option is used, do not exist and process only open PDBs that were
specified explicitly or implicitly.

When this option is not specified and some specified PDBs do not
exist or are not open, an error is returned and none of the
containers are processed.

--force_pdb_mode n/a The required open mode for all PDBs against which the scripts are
run. Specify one of the following values:

• UNCHANGED
• READ WRITE
• READ ONLY
• UPGRADE
• DOWNGRADE
When a value other than UNCHANGED is specified, all of the PDBs
against which the script is run are changed to the specified open
mode. If a PDB is open in a different mode, then the PDB is closed
and re-opened in the specified mode. After all of the scripts are run,
each PDB is restored to its original open mode.

When UNCHANGED, the default, is specified, the open mode of the
PDBs is not changed.

--num_procs -n Specifies how many SQL*Plus processes catcon.pl will spawn to
execute statements and/or scripts supplied by the caller. This
overrides the number that would be spawned by catcon.pl based
on number of PDBs in a CDB and the value of the CPU_COUNT
initialization parameter.

--user_scripts -S Specifies that all scripts and/or statements supplied by the caller will
not run in CDB$ROOT, PDB$SEED, or App Root Clones. All objects,
such as tables and views, created by the scripts and/or statements
will not be marked as Oracle-maintained.

--recover -R Causes catcon.pl to attempt to recover if a SQL*Plus process that
it spawned ends unexpectedly. When this parameter is not
specified, catcon.pl does not attempt to recover the process and
closes.

--log_file_base -b (Required) The base name for log file names.

Chapter 13
Executing SQL in a Different Container

13-46

Running the catcon.pl Script
Examples illustrate running the catcon.pl script.

If a SQL script or SQL statement run by catcon.pl performs data manipulation language
(DML) or data definition language (DDL) operations, then the containers being modified must
be in read/write mode.

To run the catcon.pl script:

1. Open a command line prompt.

2. Run the catcon.pl script and specify one or more SQL scripts or SQL statements:

cd $ORACLE_HOME/perl/bin/
perl $ORACLE_HOME/rdbms/admin/catcon.pl parameters SQL_script
perl $ORACLE_HOME/rdbms/admin/catcon.pl parameters -- --xSQL_statement

Example 13-22 Running the catblock.sql Script in All Containers in a CDB

The following example runs the catblock.sql script in all of the containers of a CDB (the
backslash indicates line continuation):

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl \
--usr SYS --script_dir $ORACLE_HOME/rdbms/admin \
--log_file_base catblock_output catblock.sql

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --script_dir parameter specifies that the SQL script is in the $ORACLE_HOME/rdbms/
admin directory.

• The --log_file_base parameter specifies that the base name for log file names is
catblock_output.

Default parameter values are used for all other parameters. Neither the --incl_con nor the
--excl_con parameter is specified. Therefore, catcon.pl runs the script in all containers by
default.

Example 13-23 Running the catblock.sql Script in Specific PDBs

The following example runs the catblock.sql script in the hrpdb and salespdb PDBs in a
CDB.

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl \
--usr SYS --int_usr SYS --script_dir $ORACLE_HOME/rdbms/admin \
--log_dir '/disk1/script_output' --incl_con 'HRPDB SALESPDB' \
--log_file_base catblock_output catblock.sql

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --int_usr parameter specifies that SYS user performs internal tasks.

Chapter 13
Executing SQL in a Different Container

13-47

• The --script_dir parameter specifies that the SQL script is in the $ORACLE_HOME/
rdbms/admin directory.

• The --log_dir parameter specifies that the output files are placed in the /disk1/
script_output directory.

• The --incl_con parameter specifies that the SQL script is run in the hrpdb and
salespdb PDBs. The script is not run in any other containers in the CDB.

• The --log_file_base parameter specifies that the base name for log file names is
catblock_output.

Example 13-24 Running the catblock.sql Script in All Containers Except for
Specific PDBs

The following example runs the catblock.sql script in all of the containers in a CDB
except for the hrpdb and salespdb PDBs.

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl \
--usr SYS --script_dir $ORACLE_HOME/rdbms/admin \
--log_dir '/disk1/script_output' --excl_con 'HRPDB SALESPDB' \
--log_file_base catblock_output catblock.sql

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --script_dir parameter specifies that the SQL script is in the $ORACLE_HOME/
rdbms/admin directory.

• The --log_dir parameter specifies that the output files are placed in the /disk1/
script_output directory.

• The --excl_con parameter specifies that the SQL script is run in all of the
containers in the CDB except for the hrpdb and salespdb PDBs.

• The --log_file_base parameter specifies that the base name for log file names is
catblock_output.

Example 13-25 Running a SQL Script with Command Line Parameters

The following example runs the custom_script.sql script in all of the containers of a
CDB.

cd $ORACLE_HOME/perl/bin/
perl $ORACLE_HOME/rdbms/admin/catcon.pl --usr SYS --script_dir /u01/
scripts \
--log_file_base custom_script_output custom_script.sql '--phr' \
'--PEnter password for user hr:'

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --script_dir parameter specifies that the SQL script is in the /u01/scripts
directory.

• The --log_file_base parameter specifies that the base name for log file names is
custom_script_output.

Chapter 13
Executing SQL in a Different Container

13-48

• The --p parameter specifies hr for a command line parameter

• The --P parameter specifies an interactive parameter that prompts for the password of
user hr.

Default parameter values are used for all other parameters. Neither the -incl_con nor the -
excl_con parameter is specified. Therefore, catcon.pl runs the script in all containers by
default.

Example 13-26 Running a SQL Statement in All Containers in a CDB

The following example runs a SQL statement in all of the containers of a CDB.

cd $ORACLE_HOME/perl/bin/
perl $ORACLE_HOME/rdbms/admin/catcon.pl --usr SYS --echo \
--log_file_base select_output -- --x"SELECT * FROM DUAL"

The following parameters are specified:

• The --usr parameter specifies that SYS user runs the script in each container.

• The --echo parameter shows output for the SQL statement.

• The --log_file_base parameter specifies that the base name for log file names is
select_output.

• The SQL statement SELECT * FROM DUAL is inside quotation marks and is preceded by --
x. Because --x is preceded by a parameter (--log_file_base), it must be preceded by
--.

Default parameter values are used for all other parameters. Neither the -incl_con nor the -
excl_con parameter is specified. Therefore, catcon.pl runs the SQL statement in all
containers by default.

See Also:

• "Modifying the Open Mode of PDBs"

• Oracle Database Administrator’s Guide for information about the catblock.sql
script

• Oracle Database SQL Language Reference for more information about SQL
scripts

Executing Code in Containers Using the DBMS_SQL Package
When you are executing PL/SQL code in a container in a CDB, and you want to execute one
or more SQL statements in a different container, use the DBMS_SQL package to switch
containers.

For example, you can use the DBMS_SQL package to switch containers when you need to
perform identical actions in more than one container.

The following are considerations for using DBMS_SQL to switch containers:

Chapter 13
Executing SQL in a Different Container

13-49

• A transaction cannot span multiple containers.

If the set of actions you must perform in the target container requires a transaction,
then consider using an autonomous transaction and perform a commit or rollback
as the last action.

• SET ROLE statements are not allowed.

Example 13-27 Performing Identical Actions in More Than One Container

This example includes a PL/SQL block that creates the identact table in the hr
schema in two PDBs (pdb1 and pdb2). The example also inserts a row into the
identact table in both PDBs.

DECLARE
 c1 INTEGER;
 rowcount INTEGER;
 taskList VARCHAR2(32767) :=
 'DECLARE
 PRAGMA AUTONOMOUS TRANSACTION;
 BEGIN
 -- Create the hr.identact table.
 EXECUTE IMMEDIATE
 ''CREATE TABLE hr.identact
 (actionno NUMBER(4) NOT NULL,
 action VARCHAR2 (10))'';
 EXECUTE IMMEDIATE
 ''INSERT INTO identact VALUES(1, 'ACTION1')'';
 -- A commit is required if the tasks include DML.
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 -- If there are errors, then drop the table.
 BEGIN
 EXECUTE IMMEDIATE ''DROP TABLE identact'';
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;
 END;';
 TYPE containerListType IS TABLE OF VARCHAR2(128) INDEX BY
PLS_INTEGER;
 containerList containerListType;
BEGIN
 containerList(1) := 'PDB1';
 containerList(2) := 'PDB2';
 c1 := DBMS_SQL.OPEN_CURSOR;
 FOR conIndex IN containerList.first..containerList.last LOOP
 DBMS_OUTPUT.PUT_LINE('Creating in container: ' ||
containerList(conIndex));
 DBMS_SQL.PARSE(
 c => c1 ,
 statement => taskList,
 language_flag => DBMS_SQL.NATIVE,
 edition => NULL,
 apply_crossedition_trigger => NULL,

Chapter 13
Executing SQL in a Different Container

13-50

 fire_apply_trigger => NULL,
 schema => 'HR',
 container => containerList(conIndex));
 rowcount := DBMS_SQL.EXECUTE(c=>c1);
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(c=>c1);
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SQL package

• Oracle Database PL/SQL Language Reference for more information about
autonomous transactions

Shutting Down a CDB Instance
You can shut down a CDB instance in the same way that you shut down a non-CDB instance.

Prerequisites

The following prerequisites must be met:

• The CDB instance must be mounted or open.

• The current user must be a common user with SYSDBA, SYSOPER, SYSBACKUP, or SYSDG
administrative privilege. To shut down a CDB, you must exercise this privilege using AS
SYSDBA, AS SYSOPER, AS SYSBACKUP, or AS SYSDG, respectively, at connect time.

To shut down a CDB:

1. In SQL*Plus, ensure that the current container is the root.

See "Connecting to a Container Using the SQL*Plus CONNECT Command".

2. Shut down the CDB instance.

See Also:

• "Modifying the Open Mode of PDBs"

• "About the Current Container"

• Oracle Database Administrator’s Guide to learn how to shut down an instance

Chapter 13
Shutting Down a CDB Instance

13-51

14
Administering a CDB Fleet

A CDB fleet is a collection of CDBs and hosted PDBs that you can manage as one logical
CDB.

• About CDB Fleets
A lead CDB is the central location for monitoring and managing the CDBs in the fleet.

• Purpose of a CDB Fleet
A CDB fleet provides the database infrastructure for scalability and centralized
management of many CDBs.

• Setting the Lead CDB in a CDB Fleet
Set the lead CDB in a CDB fleet by setting the LEAD_CDB database property to true.

• Designating a CDB Fleet Member
Designate a fleet member by setting the LEAD_CDB_URI database property to a database
link that points to the lead CDB.

About CDB Fleets
A lead CDB is the central location for monitoring and managing the CDBs in the fleet.

Designate one CDB in the fleet to be the lead CDB by setting its LEAD_CDB database property
to TRUE. The other CDBs in the fleet point to the lead CDB by setting the LEAD_CDB_URI
database property. After you configure the CDB fleet, PDB information from the various CDBs
is synchronized with the lead CDB. All PDBs in the CDBs are now “visible” in the lead CDB,
enabling you to access the PDBs in the fleet as a single, logical CDB from the lead CDB.

The following figure shows a CDB fleet consisting of CDB1, CDB2, and CDB3. The lead CDB
is CDB1. CDB2_hrpdb, which resides in CDB2, is visible in CDB1. CDB3_hrpdb, which
resides in CDB3, is also visible in CDB1.

14-1

Figure 14-1 CDB Fleet

CDB 3

CDB3_hrpdb

Seed
(PDB$SEED)

Root (CDB$ROOT)

CDB 2

CDB2_hrpdb

Seed
(PDB$SEED)

Root (CDB$ROOT)

CDB 1

CDB3_hrpdbCDB2_hrpdbCDB1_hrpdb

Seed
(PDB$SEED)

Root (CDB$ROOT)

All Oracle Database features, such as Oracle Real Application Cluster (Oracle RAC),
RMAN, point-in-time recovery, and flashback features, are supported for CDBs in the
fleet.

You can use the following cross-container features to access the CDBs and PDBs in a
CDB fleet:

• CDB views

• GV$ views

• The CONTAINERS clause

• Container maps

If a common application schema is configured with application containers, then these
cross-container features enable query and data aggregation across PDBs in different
CDBs managed in the fleet.

Note:

• Each PDB name must be unique across all CDBs in a CDB fleet.

• You can create a PDB in any CDB in the fleet, but you can only open a
PDB in the CDB where it was created.

Chapter 14
About CDB Fleets

14-2

See Also:

• "Monitoring CDBs and PDBs"

• "Partitioning by PDB with Container Maps"

Purpose of a CDB Fleet
A CDB fleet provides the database infrastructure for scalability and centralized management
of many CDBs.

A CDB fleet is useful in the following situations:

• The number of PDBs you must provision exceeds the MAX_PDBS initialization parameter
setting, requiring you to create multiple CDBs.

• Different PDBs in a single configuration require different types of servers to function
optimally.

For example, some PDBs might process a large transaction load, while other PDBs are
used mainly for monitoring, and you want the appropriate server resources for these
PDBs, such as CPU, memory, I/O rate, and storage systems.

• Different PDBs that use the same application must reside in different locations.

Monitoring and Diagnostic Collection Across CDBs

The lead CDB can run monitoring and reporting applications that execute across the CDBs in
the fleet. You can install a monitoring application in one container, and then use CDB views
and GV$ views to monitor and process diagnostic data for the entire CDB fleet. A cross-
container query issued in the lead CDB can automatically execute in all PDBs across the
CDB fleet.

Software as a Service (SaaS) Applications

Using a common schema and common application objects in different application containers
across the CDB fleet, you can use the CONTAINERS clause or a container map to run queries
across all PDBs in the CDB fleet. To ensure a common application schema across the CDBs,
the application can be installed in an application root.

A typical use case involves installing the master application root in the lead CDB. An
application root clone resides in every other CDB in the fleet. Proxy PDBs for the application
root clones reside in the master application root.

Database as a Service (DBaaS) Applications

The lead CDB can serve as a central location where you can collect and view usage metrics
and status of all or a subset of the PDBs provisioned in the CDB fleet.

Microservices

Microservices are a specialization of service-oriented architectures used to build flexible,
independently deployable software systems. With microservices, each team can deploy and
manage a CDB fleet with customized scaling and availability SLAs. The CDBs can use
different storage systems and configuration settings and cater to different types of workloads.

Chapter 14
Purpose of a CDB Fleet

14-3

The lead CDB can help the central DBA manage the collection of CDBs associated
with each individual microservice.

See Also:

• "Monitoring CDBs and PDBs"

• "Partitioning by PDB with Container Maps"

• Oracle Database Reference to learn more about MAX_PDBS

Setting the Lead CDB in a CDB Fleet
Set the lead CDB in a CDB fleet by setting the LEAD_CDB database property to true.

To set the lead CDB in a CDB fleet:

1. In SQL*Plus, ensure that the current container is the root of the CDB that will be
the lead CDB.

2. Optionally, check the current LEAD_CDB database property by running the following
query:

SELECT PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME='LEAD_CDB';

3. Set the LEAD_CDB database property to TRUE.

Example 14-1 Setting the Lead CDB Database Property to true

1. Access the CDB root:

ALTER SESSION SET CONTAINER = CDB$ROOT;

2. Run the following SQL statement:

ALTER DATABASE SET LEAD_CDB = TRUE;

See Also:

"About Container Access in a CDB"

Designating a CDB Fleet Member
Designate a fleet member by setting the LEAD_CDB_URI database property to a
database link that points to the lead CDB.

Chapter 14
Setting the Lead CDB in a CDB Fleet

14-4

Prerequisites

You must use a database link with fixed user semantics, which means that the user name
and password are in the link definition. The link cannot use connected user semantics, in
which case the user name and password are not in the link definition.

To designate a CDB fleet member:

1. In SQL*Plus, ensure that the current container is the root of the CDB that you want to
designate as a fleet member.

2. Optionally, check the current LEAD_CDB_URI database property by running the following
query:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES WHERE
PROPERTY_NAME='LEAD_CDB_URI';

3. If a database link does not exist, then create a link to the root of the lead CDB in the fleet.

The database link must be a fixed common user database link.

4. Set the LEAD_CDB_URI database property to the name of the database link to the lead
CDB.

Example 14-2 Designating a CDB Fleet Member

This example assumes that the lead CDB is cdb1 and that the database link to the lead CDB
does not exist. It also assumes that the network is configured so that the current CDB can
connect to cdb1 using the lead_pod service name.

1. Access the root of the CDB that you want to designate as a fleet member:

ALTER SESSION SET CONTAINER = CDB$ROOT;

2. Create the database link to cdb1:

CREATE PUBLIC DATABASE LINK lead_link
 CONNECT TO C##CF1 IDENTIFIED BY password
 USING 'lead_pod';

3. Set the LEAD_CDB_URI property to the name of the database link:

ALTER DATABASE SET LEAD_CDB_URI = 'dblink:LEAD_LINK';

See Also:

• "About Container Access in a CDB"

• Oracle Database Administrator’s Guide for information about fixed user
database links

Chapter 14
Designating a CDB Fleet Member

14-5

15
Administering PDBs

Administering PDBs includes tasks such as connecting to a PDB, modifying a PDB, and
managing services associated with PDBs.

• About PDB Administration
Administering a pluggable database (PDB) involves a subset of the tasks required to
administer a non-CDB.

• Managing Connections to a PDB
You manage connections for a PDB in the same way as for a non-CDB, with some
special considerations.

• Modifying a PDB at the System Level
You can use the ALTER SYSTEM statement to modify a PDB.

• Modifying a PDB at the Database Level
You can modify a PDB using the ALTER PLUGGABLE DATABASE statement.

• Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN
When the current container is a PDB, you can use the SQL*Plus STARTUP command to
open the PDB and the SQL*Plus SHUTDOWN command to close the PDB.

• Starting and Stopping PDBs in Oracle RAC
Administering a pluggable database (PDB) involves a small subset of the tasks required
to administer a non-CDB.

Related Topics

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

About PDB Administration
Administering a pluggable database (PDB) involves a subset of the tasks required to
administer a non-CDB.

In this subset of tasks, most are the same for a PDB and a non-CDB, but differences exist.
For example, there are differences when you modify the open mode of a PDB. Also, a PDB
administrator is limited to managing a single PDB and cannot manage other PDBs in the
multitenant container database (CDB).

• Tasks Common to PDBs and Non-CDBs
Most administrative tasks are the same for a PDB and a non-CDB.

• Tasks Specific to CDBs
Some administrative tasks cannot be performed when the current container is a PDB.

15-1

See Also:

"Modifying a PDB at the Database Level" for more information about
changing the open mode of the current PDB

Tasks Common to PDBs and Non-CDBs
Most administrative tasks are the same for a PDB and a non-CDB.

When you are administering a PDB, you can modify the PDB with an ALTER DATABASE,
ALTER PLUGGABLE DATABASE, or ALTER SYSTEM statement. You can also execute DDL
statements on the PDB. The following table describes some of these tasks common to
a PDB and non-CDB.

Table 15-1 Administrative Tasks Common to PDBs and Non-CDBs

Task Description Additional Information

Managing tablespaces You can create, modify, and drop
tablespaces for a PDB. You can
specify a default tablespace and
default tablespace type for each
PDB. Also, there is a default
temporary tablespace for each PDB.
You optionally can create additional
temporary tablespaces for use by
individual PDBs.

"Modifying a PDB at the Database
Level"

Oracle Database Administrator’s
Guide for information about
managing tablespaces

Managing data files and temp files Each PDB has its own data files.
You can manage data files and temp
files in the same way that you would
manage them for a non-CDB. You
can also limit the amount of storage
used by the data files for a PDB by
using the STORAGE clause in a
CREATE PLUGGABLE DATABASE or
ALTER PLUGGABLE DATABASE
statement.

"Modifying a PDB at the Database
Level"

Oracle Database Administrator’s
Guide for information about
managing data files and temp files

Managing schema objects You can create, modify, and drop
schema objects in a PDB in the
same way that you would in a non-
CDB. You can also create triggers
that fire for a specific PDB.

When you manage database links in
a CDB, the root has a unique global
database name, and so does each
PDB. The global name of the root is
defined by the DB_NAME and
DB_DOMAIN initialization parameters.
The global database name of a PDB
is defined by the PDB name and the
DB_DOMAIN initialization parameter.
The global database name of each
PDB must be unique within the
domain.

Oracle Database Administrator’s
Guide for more information about
schema objects

Oracle Database Administrator’s
Guide
Oracle Database PL/SQL Language
Reference for information about
creating triggers in a CDB

Chapter 15
About PDB Administration

15-2

Tasks Specific to CDBs
Some administrative tasks cannot be performed when the current container is a PDB.

The following tasks are performed by a common user for the entire CDB or for the CDB root
when the current container is the root:

• Starting up and shutting down a CDB instance

• Modifying the CDB or the root with an ALTER DATABASE statement

• Modifying the CDB or the root with an ALTER SYSTEM statement

• Executing data definition language (DDL) statements on a CDB or the root

• Managing the following components:

– Processes

– Memory

– Errors and alerts

– Diagnostic data

– Control files

– The online redo log and the archived redo log files

– Undo

• Creating, plugging in, unplugging, and dropping PDBs

A common user whose current container is the root can also change the open mode of one or
more PDBs. Similarly, a common user or local user whose current container is a PDB can
change the open mode of the current PDB.

See Also:

• "About the Current Container"

• " Administering a CDB" for more information about this task and other tasks
related to administering a CDB or the root

Managing Connections to a PDB
You manage connections for a PDB in the same way as for a non-CDB, with some special
considerations.

• Connecting to a PDB
You can use several techniques to connect to a PDB with the SQL*Plus CONNECT
command.

• Managing Services for PDBs
You can create, modify, or remove services for a PDB.

• Modifying the Listener Settings of a Referenced PDB
A PDB that is referenced by a proxy PDB is called a referenced PDB.

Chapter 15
Managing Connections to a PDB

15-3

Connecting to a PDB
You can use several techniques to connect to a PDB with the SQL*Plus CONNECT
command.

This section assumes that you understand how to connect to a non-CDB in SQL*Plus.

You can use the following techniques to connect to a PDB with the SQL*Plus CONNECT
command:

• Local connection with operating system authentication

• Database connection using easy connect

• Database connection using a net service name

Prerequisites

The following prerequisites must be met:

• The user connecting to the PDB must be granted the CREATE SESSION privilege in
the PDB.

• To connect to a PDB as a user that does not have SYSDBA, SYSOPER, SYSBACKUP, or
SYSDG administrative privilege, the PDB must be open.

Note:

This section assumes that the user connecting to the PDB using a local user
account. You can also connect to the PDB as a common user, and you can
connect to the root as a common user and switch to the PDB.

To connect to a PDB using the SQL*Plus CONNECT command:

1. Configure your environment so that you can open SQL*Plus.

2. Start SQL*Plus with the /NOLOG argument:

sqlplus /nolog

3. Issue a CONNECT command using easy connect or a net service name to connect to
the PDB.

To connect to a PDB, connect to a service with a PDB property.

Example 15-1 Connecting to a PDB in SQL*Plus Using the PDB's Net Service
Name

The following command connects to the hr user using the hrapp service. The hrapp
service has a PDB property for the hrpdb PDB. This example assumes that the client is
configured to have a net service name for the hrapp service.

CONNECT hr@hrapp

Chapter 15
Managing Connections to a PDB

15-4

See Also:

• "Modifying the Open Mode of PDBs" and "Modifying a PDB at the Database
Level" for information about changing the open mode of a PDB.

• "About Container Access in a CDB" for information about connecting to a PDB
as a common user

• "Managing Services for PDBs"

• Oracle Database Administrator’s Guide for information about connecting to the
database with SQL*Plus

Managing Services for PDBs
You can create, modify, or remove services for a PDB.

• About Services for PDBs
Each PDB has a default service, but you can create your own using SRVCTL or
DBMS_SERVICE.

• Managing Services for a PDB Using SRVCTL and DBMS_SERVICE
You can create, modify, or remove a service with a PDB property.

See Also:

Oracle Database Administrator’s Guide

About Services for PDBs
Each PDB has a default service, but you can create your own using SRVCTL or
DBMS_SERVICE.

• The PDB Property
The PDB property associates a service with a PDB. When a client connects to a service
with a PDB property, the current container for the connection is the PDB.

• Default and User-Defined Services
Creating a PDB creates a new default service for the PDB automatically.

• Tools for Managing Services
Oracle recommends using the SRVCTL utility to create and modify services. Alternatively,
you can use the DBMS_SERVICE package.

The PDB Property
The PDB property associates a service with a PDB. When a client connects to a service with a
PDB property, the current container for the connection is the PDB.

The PDB property is required only when you do either of the following:

• Create a service

Chapter 15
Managing Connections to a PDB

15-5

• Modify the PDB property of a service

You do not specify a PDB property when you start, stop, or remove a service. Also, you
do not need to specify a PDB property when you modify a service without modifying its
PDB property.

You can view the PDB property for a service by querying the ALL_SERVICES data
dictionary view. Alternatively, when using the SRVCTL utility, you can use the srvctl
config service command.

See Also:

"About the Current Container"

Default and User-Defined Services
Creating a PDB creates a new default service for the PDB automatically.

Each database service name must be unique in a CDB, and each database service
name must be unique within the scope of all the CDBs whose instances are reached
through a specific listener. The default service has the same name as the PDB. You
cannot manage this service, which you should only use for administrative tasks.

Always use user-defined services for applications. The reason is that you can
customize user-defined services to fit the requirements of your applications. Oracle
recommends that you not use the default PDB service for applications.

Note:

Do not associate a service with a proxy PDB.

In an Oracle Clusterware environment, you must create an Oracle Clusterware
resource for each service that is created for the PDB. When your database is being
managed by Oracle Restart or Oracle Clusterware, and when you use the SRVCTL
utility to start a service with a PDB property for a PDB that is closed, the PDB is
opened in read/write mode on the nodes where the service is started. However,
stopping a PDB service does not change the open mode of the PDB.

When you unplug or drop a PDB, the services of the unplugged or dropped PDB are
not removed automatically. You can remove these services manually.

See Also:

• "Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement"
for information about changing the open mode of a PDB

• "Creating a Proxy PDB That References an Application Root Replica"

Chapter 15
Managing Connections to a PDB

15-6

Tools for Managing Services
Oracle recommends using the SRVCTL utility to create and modify services. Alternatively,
you can use the DBMS_SERVICE package.

SRVCTL

If your single-instance database is being managed by Oracle Restart or your Oracle RAC
database is being managed by Oracle Clusterware, then use the Server Control (SRVCTL)
utility to create, modify, or remove the service.

To create a service for a PDB using the SRVCTL utility, use the add service command and
specify the PDB in the -pdb parameter. If you do not specify -pdb, then the service is
associated with the root.

To modify the PDB property of a service using the SRVCTL utility, use the modify service
command and specify the PDB in the -pdb parameter. To remove a service for a PDB using
the SRVCTL utility, use the remove service command.

You can use other SRVCTL commands to manage the service, such as the start service,
stop service, and relocate service commands, even if they do not include the -pdb
parameter.

The PDB name is not validated when you create or modify a service with the SRVCTL utility.
However, an attempt to start a service with invalid PDB name results in an error.

DBMS_SERVICE

If your database is not being managed by Oracle Restart or Oracle Clusterware, then use the
DBMS_SERVICE package to create or remove a database service.

DBMS_SERVICE exists at the root level and in each PDB. It is owned and executed by SYS at
each level. A PDB administrator cannot stop, relocate, or test the connection for a service
that is owned by another PDB.

When you create a service with the DBMS_SERVICE package, the PDB property of the service is
set to the current container. Therefore, to create a service with a PDB property set to a specific
PDB using the DBMS_SERVICE package, run the CREATE_SERVICE procedure when the PDB is
the current container. If you create a service using the CREATE_SERVICE procedure when the
current container is the root, then the service is associated with the root.

You cannot modify the PDB property of a service with the DBMS_SERVICE package. However,
you can remove a service in one PDB and create a similar service in a different PDB. In this
case, the new service has the PDB property of the PDB in which it was created.

You can also use other DBMS_SERVICE subprograms to manage the service, such as the
START_SERVICE and STOP_SERVICE procedures. You can use
DBMS_SERVICE.*_CONNECTION_TEST procedures to check the health of a database connection
during planned maintenance. Use the DELETE_SERVICE procedure to remove a service.

Chapter 15
Managing Connections to a PDB

15-7

See Also:

• "Example 19-9"

• Oracle Database Administrator’s Guide for information about configuring
automatic restart of an Oracle database

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SERVICE package

• Oracle Real Application Clusters Administration and Deployment Guide
for information about creating services in an Oracle Real Application
Clusters (Oracle RAC) environment

Managing Services for a PDB Using SRVCTL and DBMS_SERVICE
You can create, modify, or remove a service with a PDB property.

To manage a service with a PDB property using the SRVCTL utility:

1. Log in to the host computer with the correct user account.

2. Ensure that you run SRVCTL from the correct Oracle home.

3. Perform one of the following operations:

• To create or modify a service, run the add service command, and specify the
PDB in the -pdb parameter.

• To modify the PDB property of a service, run the modify service command,
and specify the PDB in the -pdb parameter.

• To remove a service, run the remove service command.

To create or remove a service for a PDB using the DBMS_SERVICE package:

1. In SQL*Plus, ensure that the current container is a PDB.

See "Connecting to a PDB".

2. Run the appropriate subprogram in the DBMS_SERVICE package.

Note:

If your database is being managed by Oracle Restart or Oracle Clusterware,
then use the SRVCTL utility to manage services. Do not use the
DBMS_SERVICE package.

Example 15-2 Creating a Service for a PDB Using the SRVCTL Utility

This example adds the salesrep service for the PDB salespdb in the CDB with
DB_UNIQUE_NAME mycdb:

srvctl add service -db mycdb -service salesrep -pdb salespdb

Chapter 15
Managing Connections to a PDB

15-8

Example 15-3 Modifying the PDB Property of a Service Using the SRVCTL Utility

This example modifies the salesrep service in the CDB with DB_UNIQUE_NAME mycdb to
associate the service with the hrpdb PDB:

srvctl modify service
 -db mycdb
 -service salesrep
 -pdb hrpdb

Example 15-4 Relocating a Service in Oracle RAC Using the SRVCTL Utility

You can use the relocate service command to relocate a service from one Oracle RAC
instance, where the service is currently running, to another instance, where it can run. This
technique applies both to services for administrator-managed databases as well as singleton
services for policy-managed databases.

The following command relocates service svc1 from Oracle RAC instance cdb_inst1, where
it is currently running, to instance cdb_inst2, where it is currently not running:

srvctl relocate service
 db cdb
 service svc1
 oldinst cdb_inst1
 newinst cdb_inst2
 –drain_timeout NNN
 –stopoption immediate

The following command performs the same operation for a policy-managed database:

srvctl relocate service
 db cdb
 service svc1
 currentnode cdb_inst1
 targetnode cdb_inst2
 –drain_timeout NNN
 –stopoption immediate

Example 15-5 Removing a Service Using the SRVCTL Utility

This example removes the salesrep service in the CDB with DB_UNIQUE_NAME mycdb:

srvctl remove service
 -db mycdb
 -service salesrep

Example 15-6 Creating a Service for a PDB Using the DBMS_SERVICE Package

This example creates the salesrep service for the current PDB:

BEGIN
 DBMS_SERVICE.CREATE_SERVICE(
 service_name => 'salesrep',

Chapter 15
Managing Connections to a PDB

15-9

 network_name => 'salesrep.example.com');
END;
/

The PDB property of the service is set to the current container. For example, if the
current container is the salespdb PDB, then the PDB property of the service is
salespdb.

Example 15-7 Removing a Service Using the DBMS_SERVICE Package

This example removes the salesrep service in the current PDB.

BEGIN
 DBMS_SERVICE.DELETE_SERVICE(
 service_name => 'salesrep');
END;
/

See Also:

• "Example 19-9"

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SERVICE package

• Oracle Real Application Clusters Administration and Deployment Guide
for information about managing services in an Oracle Real Application
Clusters (Oracle RAC) environment

Modifying the Listener Settings of a Referenced PDB
A PDB that is referenced by a proxy PDB is called a referenced PDB.

When the port or host name changes for the listener of the referenced PDB, you must
modify the listener settings of the referenced PDB so that its proxy PDBs continue to
function properly.

• Altering the Listener Host Name of a Referenced PDB
When the host name of the listener for a referenced PDB changes, you must run
an ALTER PLUGGABLE DATABASE CONTAINERS HOST statement to reset the host
name of the referenced PDB so that its proxy PDBs continue to function properly.

• Altering the Listener Port Number of a Referenced PDB
When the port number of the listener for a referenced PDB changes, you must run
an ALTER PLUGGABLE DATABASE CONTAINERS PORT statement to reset the port
number of the referenced PDB so that its proxy PDBs continue to function
properly.

Related Topics

• Creating a PDB as a Proxy PDB
You can create a PDB as a proxy PDB by referencing it in a remote CDB.

Chapter 15
Managing Connections to a PDB

15-10

Altering the Listener Host Name of a Referenced PDB
When the host name of the listener for a referenced PDB changes, you must run an ALTER
PLUGGABLE DATABASE CONTAINERS HOST statement to reset the host name of the referenced
PDB so that its proxy PDBs continue to function properly.

A proxy PDB uses a database link to establish communication with its referenced PDB during
PDB creation. After communication is established, the proxy PDB communicates directly with
the referenced PDB without using the database link used during PDB creation, and the
database link can be dropped. When the listener host name changes for the referenced PDB,
each proxy PDB must reestablish communication with its referenced PDB.

Beginning with Oracle Database 19c, version 19.10, you can execute the ALTER PLUGGABLE
DATABASE CONTAINERS HOST command in the CDB root, an application root, or a PDB by
including the PDB name.

The current user must have the ALTER DATABASE system privilege, and the privilege must be
either commonly granted or locally granted in the PDB.

1. In SQL*Plus, ensure that the current container is the referenced PDB.

See "Connecting to a PDB".

2. Run an ALTER PLUGGABLE DATABASE CONTAINERS HOST statement and specify the new
host name, or include the RESET keyword to return the host name to its default setting,
which is the host name of the referenced PDB.

3. Drop and re-create the proxy PDBs that reference the referenced PDB to reestablish
communication for each proxy PDB and its referenced PDB.

Example 15-8 Altering the Listener Host Name of a Referenced PDB

This example changes the host name for the referenced PDB to myhost.example.com.

ALTER PLUGGABLE DATABASE CONTAINERS HOST='myhost.example.com';

Example 15-9 Resetting the Listener Host Name to the Default Value

This example resets the host name for the referenced PDB to its default value. The default
value is the host name of the referenced PDB.

ALTER PLUGGABLE DATABASE CONTAINERS HOST RESET;

See Also:

• "Creating a PDB as a Proxy PDB"

• "HOST Clause"

Chapter 15
Managing Connections to a PDB

15-11

Example 15-10 Using the PDB Name When Altering the Listener Host Name

This example changes the host name for the PDB named PDB01 to
myhost.example.com.

ALTER PLUGGABLE DATABASE PDB01 CONTAINERS HOST='myhost.example.com';

Altering the Listener Port Number of a Referenced PDB
When the port number of the listener for a referenced PDB changes, you must run an
ALTER PLUGGABLE DATABASE CONTAINERS PORT statement to reset the port number of
the referenced PDB so that its proxy PDBs continue to function properly.

A proxy PDB uses a database link to establish communication with its referenced PDB
during PDB creation. After communication is established, the proxy PDB
communicates directly with the referenced PDB without using the database link used
during PDB creation, and the database link can be dropped. When the listener port
number changes for the referenced PDB, each proxy PDB must re-establish
communication with its referenced PDB.

Beginning with Oracle Database 19c, version 19.10, you can execute the ALTER
PLUGGABLE DATABASE CONTAINERS PORT command in the CDB root, an application root,
or a PDB by including the PDB name.

The current user must have the ALTER DATABASE system privilege, and the privilege
must be either commonly granted or locally granted in the PDB.

1. In SQL*Plus, ensure that the current container is the referenced PDB.

2. Run an ALTER PLUGGABLE DATABASE CONTAINERS PORT statement and specify the
new port number, or include the RESET keyword to return the port number to its
default setting, which is 1521.

3. Drop and re-create the proxy PDBs that reference the referenced PDB to re-
establish communication for each proxy PDB and its referenced PDB.

Example 15-11 Altering the Listener Port Number of a Referenced PDB

This example changes the port number for the referenced PDB to 1543.

ALTER PLUGGABLE DATABASE CONTAINERS PORT=1543;

Example 15-12 Resetting the Listener Port Number to the Default Value

This example resets the port number for the referenced PDB to its default value. The
default value for the port number is 1521.

ALTER PLUGGABLE DATABASE CONTAINERS PORT RESET;

Example 15-13 Using the PDB Name When Altering the Listener Port Number

This example changes the port number for the PDB named PDB01 to 1543.

ALTER PLUGGABLE DATABASE PDB01 CONTAINERS PORT=1543;

Chapter 15
Managing Connections to a PDB

15-12

Related Topics

• Connecting to a PDB
You can use several techniques to connect to a PDB with the SQL*Plus CONNECT
command.

• Creating a PDB as a Proxy PDB
You can create a PDB as a proxy PDB by referencing it in a remote CDB.

• PORT Clause
The PORT clause of the CREATE PLUGGABLE DATABASE statement specifies the port number
of the listener for the PDB being created.

Modifying a PDB at the System Level
You can use the ALTER SYSTEM statement to modify a PDB.

• About System-Level Modifications of a PDB
The ALTER SYSTEM statement can dynamically alter a PDB. You can issue an ALTER
SYSTEM statement when you want to change the way a PDB operates.

• Modifying a PDB with ALTER SYSTEM
To modify a PDB at the system level, use the ALTER SYSTEM statement (just as for a non-
CDB).

About System-Level Modifications of a PDB
The ALTER SYSTEM statement can dynamically alter a PDB. You can issue an ALTER SYSTEM
statement when you want to change the way a PDB operates.

When the current container is a PDB, you can run the following ALTER SYSTEM statements:

• ALTER SYSTEM FLUSH { SHARED_POOL | BUFFER_CACHE | FLASH_CACHE }
• ALTER SYSTEM { ENABLE | DISABLE } RESTRICTED SESSION
• ALTER SYSTEM SET USE_STORED_OUTLINES
• ALTER SYSTEM { SUSPEND | RESUME }
• ALTER SYSTEM CHECKPOINT
• ALTER SYSTEM CHECK DATAFILES
• ALTER SYSTEM REGISTER
• ALTER SYSTEM { KILL | DISCONNECT } SESSION
• ALTER SYSTEM SET initialization_parameter (for a subset of initialization parameters)

All other ALTER SYSTEM statements affect the entire CDB and must be run by a common user
in the root.

The ALTER SYSTEM SET initialization_parameter statement can modify only some
initialization parameters for PDBs. All initialization parameters can be set for the root. For any
initialization parameter that is not set explicitly for a PDB, the PDB inherits the parameter
value from the root.

Chapter 15
Modifying a PDB at the System Level

15-13

You can modify an initialization parameter for a PDB when the ISPDB_MODIFIABLE
column is TRUE for the parameter in the V$SYSTEM_PARAMETER view. The following query
lists all initialization parameters that are modifiable for a PDB:

SELECT NAME
FROM V$SYSTEM_PARAMETER
WHERE ISPDB_MODIFIABLE='TRUE'
ORDER BY NAME;

When the current container is a PDB, run the ALTER SYSTEM SET
initialization_parameter statement to modify the PDB. The statement does not
affect the root or other PDBs. The following table describes the behavior of the SCOPE
clause when you use a server parameter file (SPFILE) and run the ALTER SYSTEM SET
statement on a PDB.

SCOPE Setting Behavior

MEMORY The initialization parameter setting is changed in memory and takes effect
immediately in the PDB. The new setting affects only the PDB.

The setting reverts to the value set in the root in the any of the following
cases:

• An ALTER SYSTEM SET statement sets the value of the parameter in
the root with SCOPE equal to BOTH or MEMORY, and the PDB is closed
and re-opened. The parameter value in the PDB is not changed if
SCOPE is equal to SPFILE, and the PDB is closed and re-opened.

• The PDB is closed and re-opened.
• The CDB is shut down and re-opened.

SPFILE The initialization parameter setting is changed for the PDB and stored
persistently. The new setting takes effect in any of the following cases:

• The PDB is closed and re-opened.
• The CDB is shut down and re-opened.
In these cases, the new setting affects only the PDB.

BOTH The initialization parameter setting is changed in memory, and it is changed
for the PDB and stored persistently. The new setting takes effect
immediately in the PDB and persists after the PDB is closed and re-opened
or the CDB is shut down and re-opened. The new setting affects only the
PDB.

When a PDB is unplugged from a CDB, the values of the initialization parameters that
were specified for the PDB with SCOPE=BOTH or SCOPE=SPFILE are added to the PDB's
XML metadata file. These values are restored for the PDB when it is plugged in to a
CDB.

Note:

A text initialization parameter file (PFILE) cannot contain PDB-specific
parameter values.

Chapter 15
Modifying a PDB at the System Level

15-14

See Also:

• "Unplugging a PDB from a CDB"

• "About the Current Container"

• "Modifying a CDB with ALTER SYSTEM"

• Oracle Database SQL Language Reference

Modifying a PDB with ALTER SYSTEM
To modify a PDB at the system level, use the ALTER SYSTEM statement (just as for a non-
CDB).

Prerequisites

The current user must be granted the following privileges, which must be either commonly
granted or locally granted in the PDB:

• CREATE SESSION
• ALTER SYSTEM

To use ALTER SYSTEM to modify a PDB:

1. In SQL*Plus, ensure that the current container is a PDB.

See "Connecting to a PDB".

2. Run the ALTER SYSTEM statement.

Example 15-14 Enable Restricted Sessions in a PDB

To restrict sessions in a PDB, issue the following statement:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

Example 15-15 Changing the Statistics Gathering Level for the PDB

This ALTER SYSTEM statement sets the STATISTICS_LEVEL initialization parameter to ALL for
the current PDB:

ALTER SYSTEM SET STATISTICS_LEVEL = ALL SCOPE = MEMORY;

See Also:

• "Modifying a CDB with ALTER SYSTEM"

• Oracle Database SQL Language Reference

Chapter 15
Modifying a PDB at the System Level

15-15

Modifying a PDB at the Database Level
You can modify a PDB using the ALTER PLUGGABLE DATABASE statement.

• About Database-Level Modifications of a PDB
The ALTER PLUGGABLE DATABASE for a PDB is analogous to the ALTER DATABASE
for a non-CDB.

• Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement
To modify the attributes of a single PDB, use the ALTER PLUGGABLE DATABASE
statement.

• Changing the Global Database Name of a PDB
You can change the global database name of a PDB with the ALTER PLUGGABLE
DATABASE RENAME GLOBAL_NAME TO statement.

• Managing Refreshable Clone PDBs
A refreshable clone PDB is a read-only clone that can periodically synchronize
with its source PDB.

• Modifying the Open Mode of PDBs
You can modify the open mode of a PDB by using the ALTER PLUGGABLE DATABASE
SQL statement or the SQL*Plus STARTUP command.

About Database-Level Modifications of a PDB
The ALTER PLUGGABLE DATABASE for a PDB is analogous to the ALTER DATABASE for a
non-CDB.

Note:

An ALTER DATABASE statement issued when the current container is a PDB
that includes clauses that are supported for an ALTER PLUGGABLE DATABASE
statement have the same effect as the corresponding ALTER PLUGGABLE
DATABASE statement. However, these statements cannot include clauses that
are specific to PDBs, such as the pdb_storage_clause, the
pdb_change_state_clause, the logging_clause, and the
pdb_recovery_clause.

• Storage Clauses
Use ALTER PLUGGABLE DATABASE to configure storage at the PDB level.

• Logging and Recovery Clauses
Use ALTER PLUGGABLE DATABASE to set logging and recovery and recovery modes
at the PDB level.

• Miscellaneous Clauses
You can use ALTER PLUGGABLE DATABASE to modify the open mode, global name,
time zone, and default edition.

Chapter 15
Modifying a PDB at the Database Level

15-16

Storage Clauses
Use ALTER PLUGGABLE DATABASE to configure storage at the PDB level.

The following clauses of ALTER PLUGGABLE DATABASE modify PDB storage:

• database_file_clauses

These clauses work the same as they would in an ALTER DATABASE statement, but the
statement applies to the current PDB.

• DEFAULT TABLESPACE clause

For users created while the current container is a PDB, this clause specifies the default
tablespace for the user if the default tablespace is not specified in the CREATE USER
statement.

• DEFAULT TEMPORARY TABLESPACE clause

For users created while the current container is a PDB, this clause specifies the default
temporary tablespace for the user if the default temporary tablespace is not specified in
the CREATE USER statement.

• SET DEFAULT { BIGFILE | SMALLFILE } TABLESPACE clause

This clause changes the default type of subsequently created tablespaces in the PDB to
either bigfile or smallfile. This clause works the same as it would in an ALTER DATABASE
statement, but it applies to the current PDB.

• pdb_storage_clause

This clause sets a limit on the amount of storage used by all tablespaces that belong to a
PDB. This limit applies to the total size of all data files and temp files comprising
tablespaces that belong to the PDB.

This clause can also set a limit on the amount of storage that can be used by unified
audit OS spillover (.bin format) files in the PDB. If the limit is reached, then no additional
storage is available for these files.

This clause can also set a limit on the amount of storage in a shared temporary
tablespace that can be used by sessions connected to the PDB. If the limit is reached,
then no additional storage in the shared temporary tablespace is available to sessions
connected to the PDB.

Logging and Recovery Clauses
Use ALTER PLUGGABLE DATABASE to set logging and recovery and recovery modes at the PDB
level.

logging_clause

Note:

This clause is available starting with Oracle Database 12c Release 1 (12.1.0.2).

Chapter 15
Modifying a PDB at the Database Level

15-17

This clause specifies the logging attribute of the PDB. The logging attribute controls
whether certain DML operations are logged in the redo log file (LOGGING) or not
(NOLOGGING).

You can use this clause to specify one of the following attributes:

• LOGGING indicates that any future tablespaces created within the PDB will be
created with the LOGGING attribute by default. You can override this default logging
attribute by specifying NOLOGGING at the schema object level, in a CREATE TABLE
statement for example.

• NOLOGGING indicates that any future tablespaces created within the PDB will be
created with the NOLOGGING attribute by default. You can override this default
logging attribute by specifying LOGGING at the schema object level, in a CREATE
TABLE statement for example.

The specified attribute is used to establish the logging attribute of tablespaces created
within the PDB if the logging_clause is not specified in the CREATE TABLESPACE
statement.

The DBA_PDBS view shows the current logging attribute for a PDB.

Note:

The PDB must be open in restricted mode to use this clause.

pdb_force_logging_clause

Note:

This clause is available starting with Oracle Database 12c Release 1
(12.1.0.2).

This clause places a PDB into force logging or force nologging mode or takes a PDB
out of force logging or force nologging mode.

You can use this clause to specify one of the following attributes:

• ENABLE FORCE LOGGING places the PDB in force logging mode, which causes all
changes in the PDB, except changes in temporary tablespaces and temporary
segments, to be logged. Force logging mode cannot be overridden at the schema
object level.

PDB-level force logging mode takes precedence over and is independent of any
NOLOGGING or FORCE LOGGING settings you specify for individual tablespaces in the
PDB and any NOLOGGING settings you specify for individual database objects in the
PDB.

ENABLE FORCE LOGGING cannot be specified if a PDB is in force nologging mode.
DISABLE FORCE NOLOGGING must be specified first.

Chapter 15
Modifying a PDB at the Database Level

15-18

• DISABLE FORCE LOGGING takes a PDB which is currently in force logging mode out of that
mode. If the PDB is not in force logging mode currently, then specifying DISABLE FORCE
LOGGING results in an error.

• ENABLE FORCE NOLOGGING places the PDB in force nologging mode, which causes no
changes in the PDB to be logged. Force nologging mode cannot be overridden at the
schema object level.

CDB-wide force logging mode supersedes PDB-level force nologging mode. PDB-level
force nologging mode takes precedence over and is independent of any LOGGING or
FORCE LOGGING settings you specify for individual tablespaces in the PDB and any
LOGGING settings you specify for individual database objects in the PDB.

ENABLE FORCE NOLOGGING cannot be specified if a PDB is in force logging mode. DISABLE
FORCE LOGGING must be specified first.

• DISABLE FORCE NOLOGGING takes a PDB that is currently in force nologging mode out of
that mode. If the PDB is not in force nologging mode currently, then specifying DISABLE
FORCE NOLOGGING results in an error.

The DBA_PDBS view shows whether a PDB is in force logging or force nologging mode.

Note:

The PDB must be open in restricted mode to use this clause.

pdb_recovery_clause

Note:

This clause is available starting with Oracle Database 12c Release 1 (12.1.0.2).

ALTER PLUGGABLE DATABASE DISABLE RECOVERY takes the data files that belong to the PDB
offline and disables recovery of the PDB. The PDB data files are not part of any recovery
session until it is enabled again. Any new data files created while recovery is disabled are
created as unnamed files for the PDB.

ALTER PLUGGABLE DATABASE ENABLE RECOVERY brings the data files that belong to the PDB
online and marks the PDB for active recovery. Recovery sessions include these files.

Check the recovery status of a PDB by querying the RECOVERY_STATUS column in the V$PDBS
view.

Chapter 15
Modifying a PDB at the Database Level

15-19

See Also:

• Oracle Data Guard Concepts and Administration for more information
about the pdb_recovery_clause.

• Oracle Database Administrator’s Guide for information about controlling
the writing of redo records

• Oracle Database SQL Language Reference for more information about
the logging attribute

Miscellaneous Clauses
You can use ALTER PLUGGABLE DATABASE to modify the open mode, global name, time
zone, and default edition.

When the current container is a PDB, an ALTER PLUGGABLE DATABASE statement with
any of the following clauses modifies the PDB:

• pdb_change_state_clause

This clause changes the open mode of the current PDB.

If you specify the optional RESTRICTED keyword, then the PDB is accessible only to
users with the RESTRICTED SESSION privilege in the PDB.

Specifying FORCE in this clause changes semantics of the ALTER PLUGGABLE
DATABASE statement so that, in addition to opening a PDB that is currently closed, it
can be used to change the open mode of a PDB that is already open.

• RENAME GLOBAL_NAME clause

This clause changes the unique global database name for the PDB. The new
global database name must be different from that of any container in the CDB.
When you change the global database name of a PDB, the PDB name is changed
to the name before the first period in the global database name.

You must change the PDB property of database services used to connect to the
PDB when you change the global database name.

• set_time_zone_clause

This clause works the same as it would in an ALTER DATABASE statement, but it
applies to the current PDB.

• DEFAULT EDITION clause

This clause works the same as it would in an ALTER DATABASE statement, but it
applies to the current PDB. Each PDB can use edition-based redefinition, and
editions in one PDB do not affect editions in other PDBs. In a multitenant
environment in which each PDB has its own application, you can use edition-
based redefinition independently for each distinct application.

Chapter 15
Modifying a PDB at the Database Level

15-20

See Also:

• "Managing Services for PDBs"

• "Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE"

Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement
To modify the attributes of a single PDB, use the ALTER PLUGGABLE DATABASE statement.

When the current container is a PDB, an ALTER PLUGGABLE DATABASE statement modifies the
PDB. The modifications overwrite the defaults set for the root in the PDB. The modifications
do not affect the CDB root or other PDBs.

Prerequisites

The following prerequisites must be met:

• To change the open mode of the PDB from mounted to opened or from opened to
mounted, the current user must have SYSDBA, SYSOPER, SYSBACKUP, or SYSDG
administrative privilege. The privilege must be either commonly granted or locally granted
in the PDB. The user must exercise the privilege using AS sys_privilege_name at
connect time.

• For all other operations performed using the ALTER PLUGGABLE DATABASE statement, the
current user must have the ALTER DATABASE system privilege, and the privilege must be
either commonly granted or locally granted in the PDB.

• To close a PDB, the PDB must be open.

Note:

This section does not cover changing the global database name of a PDB using the
ALTER PLUGGABLE DATABASE statement.

To modify a PDB:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Run an ALTER PLUGGABLE DATABASE statement.

Example 15-16 Changing the Open Mode of a PDB

This ALTER PLUGGABLE DATABASE statement changes the open mode of the current PDB to
mounted.

ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;

The following statement changes the open mode of the current PDB to open read-only.

ALTER PLUGGABLE DATABASE OPEN READ ONLY;

Chapter 15
Modifying a PDB at the Database Level

15-21

A PDB must be in mounted mode to change its open mode to read-only or read/write
unless you specify the FORCE keyword.

The following statement changes the open mode of the current PDB from mounted or
open read-only to open read/write.

ALTER PLUGGABLE DATABASE OPEN FORCE;

The following statement changes the open mode of the current PDB from mounted to
migrate.

ALTER PLUGGABLE DATABASE OPEN UPGRADE;

Example 15-17 Bringing a Data File Online for a PDB

This ALTER PLUGGABLE DATABASE statement uses a database_file_clause to bring
the /u03/oracle/pdb1_01.dbf data file online.

ALTER PLUGGABLE DATABASE DATAFILE '/u03/oracle/pdb1_01.dbf' ONLINE;

Example 15-18 Changing the Default Tablespaces for a PDB

This ALTER PLUGGABLE DATABASE statement uses a DEFAULT TABLESPACE clause to set
the default permanent tablespace to pdb1_tbs for the PDB.

ALTER PLUGGABLE DATABASE DEFAULT TABLESPACE pdb1_tbs;

This ALTER PLUGGABLE DATABASE statement uses a DEFAULT TEMPORARY TABLESPACE
clause to set the default temporary tablespace to pdb1_temp for the PDB.

ALTER PLUGGABLE DATABASE DEFAULT TEMPORARY TABLESPACE pdb1_temp;

The tablespace or tablespace group specified in the ALTER PLUGGABLE DATABASE
statement must exist in the PDB. Users whose current container is a PDB that are not
explicitly assigned a default tablespace or default temporary tablespace use the
default tablespace or default temporary tablespace for the PDB.

Example 15-19 Changing the Default Tablespace Type for a PDB

This ALTER DATABASE statement uses a SET DEFAULT TABLESPACE clause to change
the default tablespace type to bigfile for the PDB.

ALTER PLUGGABLE DATABASE SET DEFAULT BIGFILE TABLESPACE;

Example 15-20 Setting Storage Limits for a PDB

This statement sets the storage limit for all tablespaces that belong to a PDB to two
gigabytes.

ALTER PLUGGABLE DATABASE STORAGE(MAXSIZE 2G);

Chapter 15
Modifying a PDB at the Database Level

15-22

This statement specifies that there is no storage limit for the tablespaces that belong to the
PDB.

ALTER PLUGGABLE DATABASE STORAGE(MAXSIZE UNLIMITED);

This statement specifies that there is no storage limit for the tablespaces that belong to the
PDB and that there is no storage limit for the shared temporary tablespace that can be used
by sessions connected to the PDB.

ALTER PLUGGABLE DATABASE STORAGE UNLIMITED;

Example 15-21 Setting the Logging Attribute of a PDB

With the PDB open in restricted mode, this statement specifies the NOLOGGING attribute for the
PDB:

ALTER PLUGGABLE DATABASE NOLOGGING;

Example 15-22 Setting the Force Logging Mode of a PDB

This statement enables force logging mode for the PDB:

ALTER PLUGGABLE DATABASE ENABLE FORCE LOGGING;

Example 15-23 Setting the Default Edition for a PDB

This example sets the default edition for the current PDB to PDB1E3.

ALTER PLUGGABLE DATABASE DEFAULT EDITION = PDB1E3;

See Also:

• "About Database-Level Modifications of a PDB" for information about the
clauses that modify the attributes of a single PDB

• "Changing the Global Database Name of a PDB"

• Oracle Database SQL Language Reference for more information about the
ALTER PLUGGABLE DATABASE statement

• Oracle Database Development Guide for a complete discussion of edition-
based redefinition

Changing the Global Database Name of a PDB
You can change the global database name of a PDB with the ALTER PLUGGABLE DATABASE
RENAME GLOBAL_NAME TO statement.

When you change the global database name of a PDB, the new global database name must
be different from that of any container in the CDB.

Chapter 15
Modifying a PDB at the Database Level

15-23

Prerequisites

The following prerequisites must be met:

• The current user must have the ALTER DATABASE system privilege, and the
privilege must be either commonly granted or locally granted in the PDB.

• For an Oracle Real Application Clusters (Oracle RAC) database, the PDB must be
open on the current instance only. The PDB must be closed on all other instances.

• The PDB being modified must be opened on the current instance in read/write
mode with RESTRICTED specified so that it is accessible only to users with
RESTRICTED SESSION privilege in the PDB.

To change the global database name of a PDB:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Run an ALTER PLUGGABLE DATABASE RENAME GLOBAL_NAME TO statement.

The following example changes the global database name of the PDB to
salespdb.example.com:

ALTER PLUGGABLE DATABASE RENAME GLOBAL_NAME TO salespdb.example.com;

3. Close the PDB.

4. Open the PDB in read/write mode.

When you change the global database name of a PDB, the PDB name is changed to
the first part of the new global name, which is the part before the first period. Also,
Oracle Database changes the name of the default database service for the PDB
automatically. Oracle Database also changes the PDB property of all database services
in the PDB to the new global name of the PDB. You must close the PDB and open it in
read/write mode for Oracle Database to complete the integration of the new PDB
service name into the CDB.

Oracle Net Services must be configured properly for clients to access database
services. You might need to alter your Oracle Net Services configuration because of
the PDB name change.

See Also:

• "Connecting to a PDB"

• "Managing Services for PDBs" for information about PDBs and database
services

Managing Refreshable Clone PDBs
A refreshable clone PDB is a read-only clone that can periodically synchronize with
its source PDB.

• Refreshing a PDB
You can refresh a PDB that was created as a refreshable clone.

Chapter 15
Modifying a PDB at the Database Level

15-24

• Switching Over a Refreshable Clone PDB
You can switch the roles of a source PDB and its refreshable clone PDB.

Refreshing a PDB
You can refresh a PDB that was created as a refreshable clone.

When you refresh a PDB manually, changes made to the source PDB since the last refresh
are propagated to the PDB being refreshed. You can manually refresh a PDB that is
configured for automatic refresh.

Prerequisites

To refresh a PDB, the PDB must have been created as a clone with the REFRESH MODE
MANUAL or REFRESH MODE EVERY minutes clause included.

1. In SQL*Plus, ensure that the current container is the PDB you want to refresh.

2. If the PDB is not closed, then close the PDB. For example, issue the following SQL
statement:

ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
3. Issue the following SQL statement:

ALTER PLUGGABLE DATABASE REFRESH;
Related Topics

• About Refreshable Clone PDBs
The CREATE PLUGGABLE DATABASE ... REFRESH MODE statement clones a source PDB
and configures the clone to be refreshable. Refreshing the clone PDB updates it with
redo accumulated since the last redo log apply.

Switching Over a Refreshable Clone PDB
You can switch the roles of a source PDB and its refreshable clone PDB.

The following statement performs a switchover:

ALTER PLUGGABLE DATABASE refresh_mode FROM clonepdb@dblink SWITCHOVER;

You must not specify REFRESH MODE NONE for refresh_mode. The database link specified in
the FROM clause must point to the root of the CDB in which the clone PDB resides.

After the switchover completes, the source PDB becomes the refreshable clone PDB, which
can only be opened in READ ONLY mode.

Prerequisites

You must meet the following prerequisites:

• You must be connected to the source PDB when you issue ALTER PLUGGABLE
DATABASE ... SWITCHOVER.

• If the source PDB and clone PDB are in separate CDBs, then the user specified in the
database link must have the same name and password in the source PDB and clone
PDB.

Chapter 15
Modifying a PDB at the Database Level

15-25

To switch the roles of the source and clone PDBs:

1. In SQL*Plus or SQL Developer, log in to the source PDB.

2. Execute the ALTER PLUGGABLE DATABASE refresh_mode FROM clonepdb@dblink
SWITCHOVER statement.

After the statement completes, the currently connected PDB is now the
refreshable clone PDB.

3. Optionally, refresh the clone PDB:

ALTER PLUGGABLE DATABASE REFRESH;

Example 15-24 Switching Over a Refreshable Clone PDB

This example assumes that your data center contains CDBs named cdb1 and cdb2.
The PDB named cdb1_pdb1 resides in cdb1. You want to create a refreshable clone of
this PDB in cdb2 and name it cdb1_pdb1_ref. Your goal is to switch over
cdb1_pdb1_ref so that it becomes the source PDB and cdb1_pdb1 becomes the clone
PDB.

1. In SQL*Plus, connect to cdb1 as a user with administrator privileges, and then
ensure sure that cdb1_pdb1 is open in read/write mode (sample output included):

CONNECT SYS@cdb1 AS SYSDBA
Enter password: *******

ALTER PLUGGABLE DATABASE ALL CLOSE;
ALTER PLUGGABLE DATABASE cdb1_pdb1 OPEN READ WRITE;
SHOW PDBS;

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 CDB1_PDB1 READ WRITE NO

2. Create a common user named c##u1 (replace pwd with a user-specified
password):

DROP USER c##u1 CASCADE;
CREATE USER c##u1 IDENTIFIED BY pwd;
GRANT CREATE SESSION, RESOURCE, CREATE ANY TABLE, UNLIMITED
TABLESPACE TO c##u1 CONTAINER=ALL;
GRANT CREATE PLUGGABLE DATABASE TO c##u1 CONTAINER=ALL;
GRANT SYSOPER TO c##u1 CONTAINER=ALL;

3. Set the container to cdb1_pdb1, and then create a table t1 to use for testing
(sample output included):

ALTER SESSION SET CONTAINER = cdb1_pdb1;
CREATE TABLE t1(n1 NUMBER);
INSERT INTO t1 VALUES(1);
COMMIT;
SELECT * FROM t1;

Chapter 15
Modifying a PDB at the Database Level

15-26

 N1

 1

4. Connect to cdb2 as a user with administrator privileges, and then create the common
user named c##u1 (replace pwd with a user-specified password):

CONNECT SYS@cdb2 AS SYSDBA
Enter password: *******

DROP USER c##u1 CASCADE;
CREATE USER c##u1 IDENTIFIED BY pwd;
GRANT CREATE SESSION, RESOURCE, CREATE ANY TABLE, UNLIMITED TABLESPACE TO
c##u1 CONTAINER=ALL;
GRANT CREATE PLUGGABLE DATABASE TO c##u1 CONTAINER=ALL;
GRANT SYSOPER TO c##u1 CONTAINER=ALL;

Now cdb1 and cdb2 both have a common user with the same name (c##u1) and
password.

5. Create a database link to cdb1.

The following command specifies user c##u1, password pwd, and service name cdb1:

CREATE DATABASE LINK cdb1_datalink CONNECT TO c##u1 IDENTIFIED BY pwd
USING 'cdb1';

6. Create the manually refreshable PDB named cdb1_pdb1_ref.

The following statement specifies the database link cdb1_datalink and the file
destination /dsk1/df:

CREATE PLUGGABLE DATABASE cdb1_pdb1_ref FROM cdb1_pdb1@cdb1_datalink
 CREATE_FILE_DEST='/dsk1/df'
 REFRESH MODE MANUAL;

7. Refresh cdb1_pdb1_ref:

ALTER SESSION SET CONTAINER = cdb1_pdb1_ref;
ALTER PLUGGABLE DATABASE REFRESH;

8. Query t1 to check that the refreshable clone PDB contains the correct contents (sample
output included):

ALTER PLUGGABLE DATABASE OPEN READ ONLY;
SELECT * FROM t1;

 N1

 1

Chapter 15
Modifying a PDB at the Database Level

15-27

9. Connect to cdb1 as a user with administrator privileges, and then create a
database link to cdb2:

CONNECT SYS@cdb1 AS SYSDBA
Enter password: *******

CREATE DATABASE LINK cdb2_datalink CONNECT TO c##u1 IDENTIFIED BY
pwd USING 'cdb2';

The preceding statement specifies user c##u1, password pwd, and service name
cdb2.

10. Set the container to cdb1_pdb1, and then switch over so that cdb1_pdb1_ref is the
primary PDB and the current PDB is the clone:

ALTER SESSION SET CONTAINER = cdb1_pdb1;
ALTER PLUGGABLE DATABASE
 REFRESH MODE MANUAL
 FROM cdb1_pdb1_ref@cdb2_datalink
 SWITCHOVER;

11. Query t1 to check that the current PDB, which is now the refreshable clone PDB,
contains the correct contents (sample output included):

ALTER PLUGGABLE DATABASE OPEN READ ONLY;
SELECT * FROM t1;

 N1

 1

12. Connect to cdb2 as a user with administrator privileges, set the container to the
new source PDB cdb1_pdb1_ref, and then insert a new row into table t1 (sample
output included):

CONNECT SYS@cdb2 AS SYSDBA
Enter password: *******

ALTER SESSION SET CONTAINER = cdb1_pdb1_ref;
SELECT * FROM t1;

 N1

 1

INSERT INTO t1 VALUES(2);
COMMIT;
SELECT * FROM t1;

 N1

 1
 2

Chapter 15
Modifying a PDB at the Database Level

15-28

13. Connect to cdb1 as a user with administrator privileges, set the container to cdb1_pdb1
(which is the new clone), refresh it, and then query t1:

CONNECT SYS@cdb1 AS SYSDBA
Enter password: *******

ALTER SESSION SET CONTAINER = cdb1_pdb1;
ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE REFRESH;
ALTER PLUGGABLE DATABASE OPEN READ ONLY;
SELECT * FROM t1;

 N1

 1
 2

The preceding output shows that the clone cdb1_pdb1 was refreshed from the source
cdb1_pdb1_ref.

Modifying the Open Mode of PDBs
You can modify the open mode of a PDB by using the ALTER PLUGGABLE DATABASE SQL
statement or the SQL*Plus STARTUP command.

• About the Open Mode of a PDB
When a PDB is mounted, you can open it in read/write, read-only, or MIGRATE mode. You
can also mount a PDB without opening it.

• Clauses for Changing the Open State of PDBs
To change the open mode of a PDB when the current container is the CDB root, specify
the pdb_change_state clause of ALTER PLUGGABLE DATABASE.

• Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE
You can modify the open mode of PDBs with the ALTER PLUGGABLE DATABASE statement
with a pdb_change_state clause.

• Preserving or Discarding the Open Mode of PDBs When the CDB Restarts
You can preserve the open mode of one or more PDBs when the CDB restarts by using
the ALTER PLUGGABLE DATABASE SQL statement with a pdb_save_or_discard_state
clause.

About the Open Mode of a PDB
When a PDB is mounted, you can open it in read/write, read-only, or MIGRATE mode. You can
also mount a PDB without opening it.

Open Modes of a PDB

You can view the open mode of a PDB by querying the OPEN_MODE column of the V$PDBS view.

The following table describes the possible open modes.

Chapter 15
Modifying a PDB at the Database Level

15-29

Table 15-2 PDB Mount and Open Modes

Mode Description Notes

OPEN READ WRITE A PDB in open read/write mode
allows queries and user
transactions to proceed and allows
users to generate redo logs.

This is the default open mode
except when a PDB belongs to a
physical standby database.

If you specify the optional
RESTRICTED keyword, then the
PDB is accessible only to users
with the RESTRICTED SESSION
privilege in the PDB. If you also
specify FORCE, then all sessions
connected to the PDB that do not
have the RESTRICTED SESSION
privilege in the PDB are
terminated, and their transactions
are rolled back.

OPEN READ ONLY A PDB in open read-only mode
allows queries but does not allow
user changes.

This is the default open mode
when a PDB belongs to a physical
standby database.

Database administrators can
create, modify, or drop common
users and roles in the CDB. The
CDB applies these changes to the
PDB when its open mode is
changed to read/write mode.
Before the changes are applied,
descriptions of common users and
roles in the PDB might be different
from the descriptions in the rest of
the CDB.

If you specify the optional
RESTRICTED keyword, then the
PDB is accessible only to users
with the RESTRICTED SESSION
privilege in the PDB. If you also
specify FORCE, then all sessions
connected to the PDB that do not
have the RESTRICTED SESSION
privilege in the PDB are
terminated, and their transactions
are rolled back.

OPEN MIGRATE When a PDB is in open migrate
mode, you can run database
upgrade scripts on the PDB.

A PDB is in this mode after you run
an ALTER DATABASE OPEN
UPGRADE statement.

If you specify the optional
RESTRICTED keyword, then the
PDB is accessible only to users
with the RESTRICTED SESSION
privilege in the PDB.

MOUNTED When a PDB is mounted, it does
not allow changes to any objects,
and it is accessible only to
database administrators. It cannot
read from or write to data files.
Information about the PDB is
removed from memory caches.
Consistent backups of the PDB are
supported.

Database administrators can
create, modify, or drop common
users and roles in the CDB. The
CDB applies these changes to the
PDB when its open mode is
changed to read/write mode.
Before the changes are applied,
descriptions of common users and
roles in the PDB might be different
from the descriptions in the rest of
the CDB.

Chapter 15
Modifying a PDB at the Database Level

15-30

Automatic Compatibility Check

When a PDB is opened, Oracle Database checks the compatibility of the PDB with the CDB.
Each compatibility violation is either of the following:

• Warning

The database records the warning in the alert log, and then opens the PDB normally
without displaying a warning message.

• Error

The database displays a message when the PDB is opened stating that the PDB was
altered with errors, and records the errors in the alert log. You must correct the condition
that caused each error. When there are errors, the PDB is opened, but access to the
PDB is limited to users with RESTRICTED SESSION privilege so that the compatibility
violations can be addressed. You can view descriptions of violations by querying
PDB_PLUG_IN_VIOLATIONS view.

See Also:

• "Modifying the Open Mode of PDBs" for information about modifying the open
mode of one or more PDBs when the current container is the root

• "Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement" for
information about modifying the open mode of a PDB when the current
container is the PDB

• "Shutting Down a CDB Instance"

• "Modifying a PDB at the Database Level" for information about modifying other
attributes of a PDB

Clauses for Changing the Open State of PDBs
To change the open mode of a PDB when the current container is the CDB root, specify the
pdb_change_state clause of ALTER PLUGGABLE DATABASE.

• OPEN and CLOSE Clauses
READ WRITE is the default for ALTER PLUGGABLE DATABASE OPEN unless a PDB being
opened belongs to a CDB used as a physical standby database, in which case READ
ONLY is the default.

• SERVICES Clause
You can use the services clause to specify the services that are started when a single
PDB is opened.

• INSTANCES Clause
In an Oracle RAC CDB, you can use the instances clause to specify the instances on
which the PDB is modified.

• The RELOCATE Clause
In an Oracle Real Application Clusters environment, use RELOCATE to instruct the
database to reopen the PDB on a different Oracle RAC instance.

Chapter 15
Modifying a PDB at the Database Level

15-31

OPEN and CLOSE Clauses
READ WRITE is the default for ALTER PLUGGABLE DATABASE OPEN unless a PDB being
opened belongs to a CDB used as a physical standby database, in which case READ
ONLY is the default.

When you specify PDBs to open or close, you can do the following:

• List one or more PDBs.

• Specify ALL to modify all PDBs.

• Specify ALL EXCEPT to modify all PDBs, except for the PDBs listed.

The following table describes the clauses of the ALTER PLUGGABLE DATABASE statement
that modify the mode of a PDB.

Table 15-3 ALTER PLUGGABLE DATABASE Clauses That Modify the Mode of a PDB

Clause Description

OPEN READ WRITE
[RESTRICTED] [FORCE]

Opens the PDB in read/write mode.

When RESTRICTED is specified, the PDB is accessible only to users with
RESTRICTED SESSION privilege in the PDB. All sessions connected to the PDB
that do not have RESTRICTED SESSION privilege on it are terminated, and their
transactions are rolled back.

When FORCE is specified, the statement opens a PDB that is currently closed
and changes the open mode of a PDB that is in open read-only mode.

OPEN READ
ONLY[RESTRICTED] [FORCE]

Opens the PDB in read-only mode.

When RESTRICTED is specified, the PDB is accessible only to users with
RESTRICTED SESSION privilege in the PDB. All sessions connected to the PDB
that do not have RESTRICTED SESSION privilege on it are terminated.

When FORCE is specified, the statement opens a PDB that is currently closed
and changes the open mode of a PDB that is in open read/write mode.

OPEN UPGRADE [RESTRICTED] Opens the PDB in migrate mode.

When RESTRICTED is specified, the PDB is accessible only to users with
RESTRICTED SESSION privilege in the PDB.

Chapter 15
Modifying a PDB at the Database Level

15-32

Table 15-3 (Cont.) ALTER PLUGGABLE DATABASE Clauses That Modify the Mode of a PDB

Clause Description

CLOSE [IMMEDIATE|ABORT] Places the PDB in mounted mode.

The CLOSE statement is the PDB equivalent of the SQL*Plus SHUTDOWN
command. If you do not specify IMMEDIATE or ABORT, then the PDB is shut
down with the normal mode.

When IMMEDIATE is specified, this statement is the PDB equivalent of the
SQL*Plus SHUTDOWN IMMEDIATE command.

If the CDB is in ARCHIVELOG mode, and if ABORT is specified, then the PDB is
forcefully closed. The PDB data files are not checkpointed or accessed during
this process. If other instances have the PDB open, then an available instance
performs instance recovery automatically. During this time, access to the PDB
on other instances may observe a brown-out time. If no instance has the PDB
open, then the next PDB open may cause automatic media recovery. If
automatic media recovery fails (for example, because of inaccessible files), then
you must manually recover the PDB before opening it.

If the PDB keystore was in an open state, then ALTER PLUGGABLE DATABASE
CLOSE does not close it. To close the keystore, run the ADMINISTER KEY
MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY "pdb_ks_pwd"
command.

SERVICES Clause
You can use the services clause to specify the services that are started when a single PDB is
opened.

The clause has the following variations:

• List one or more services in the services clause in the following form:

SERVICES = ('service_name' [,'service_name'] …)

• Specify ALL in the services clause to start all PDB’s services, as in the following example:

SERVICES = ALL

• Specify ALL EXCEPT in the services clause to start all PDB’s services, except for the
services listed, in the following form:

SERVICES = ALL EXCEPT('service_name' [,'service_name'] …)

• Specify NONE in the services clause to start only the PDB’s default service and none of the
other PDB’s services, as in the following example:

SERVICES = NONE

NONE is the default setting for the services clause. A PDB’s default service is always
started, regardless of the setting for the services clause.

Chapter 15
Modifying a PDB at the Database Level

15-33

INSTANCES Clause
In an Oracle RAC CDB, you can use the instances clause to specify the instances on
which the PDB is modified.

You can close a PDB in some instances and leave it open in others. The instances
clause has the following variations:

• List one or more instances in the instances clause in the following form:

INSTANCES = ('instance_name' [,'instance_name'] …)

• Specify ALL in the instances clause to modify the PDB in all running instances, as
in the following example:

INSTANCES = ALL

• Specify ALL EXCEPT in the instances clause to modify the PDB in all instances,
except for the instances listed, in the following form:

INSTANCES = ALL EXCEPT('instance_name' [,'instance_name'] …)

The RELOCATE Clause
In an Oracle Real Application Clusters environment, use RELOCATE to instruct the
database to reopen the PDB on a different Oracle RAC instance.

You can use the following options:

• Specify NORELOCATE, the default, to close the PDB in the current instance.

• Specify RELOCATE TO and specify an instance name to reopen the PDB in the
specified instance.

• Specify RELOCATE to reopen the PDB on a different instance that is selected by
Oracle Database.

Note:

If both the services clause and the instances clause are specified in the
same ALTER PLUGGABLE DATABASE statement, then the specified services are
started on the specified instances.

Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE
You can modify the open mode of PDBs with the ALTER PLUGGABLE DATABASE
statement with a pdb_change_state clause.

Prerequisites

To change the open mode of PDBs with the ALTER PLUGGABLE DATABASE statement,
you must meet the following prerequisites:

Chapter 15
Modifying a PDB at the Database Level

15-34

• The current user must have one of the following administrative privileges, which must be
either commonly granted or locally granted in the PDB:

– SYSDBA, exercised using AS SYSDBA at connect time

– SYSOPER, exercised using AS SYSOPER at connect time

– SYSBACKUP, exercised using SYSBACKUP at connect time

– SYSDG, exercised using AS SYSDG at connect time

Note:

You can modify the open mode of a PDB when the current container is the
PDB.

• When RESTRICTED SESSION is enabled, you must specify RESTRICTED when a PDB is
opened.

• In an Oracle RAC CDB, if a PDB is open in one or more Oracle RAC instances, then it
can be opened in additional instances. However, the PDB must be opened in the same
mode as in the instances in which it is already open. A PDB can be closed in some
instances and opened on others.

To place PDBs in a target mode with the ALTER PLUGGABLE DATABASE statement, you must
meet the requirements described in the following table.

Table 15-4 Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE

Target Mode
of PDBs

ALL
Keyword
Included

FORCE
Keyword
Included

Required Mode for the Root Required Mode for Each PDB
Being Modified

Read/write Yes Yes Read/write Mounted, read-only, or read/
write

Read/write Yes No Read/write Mounted or read/write

Read/write No Yes Read/write Mounted, read-only, or read/
write

Read/write No No Read/write Mounted

Read-only Yes Yes Read-only or read/write Mounted, read-only, or read/
write

Read-only Yes No Read-only or read/write Mounted or read-only

Read-only No Yes Read-only or read/write Mounted, read-only, or read/
write

Read-only No No Read-only or read/write Mounted

Migrate Yes Not applicable Read-only or read/write Mounted

Migrate No Not applicable Read-only or read/write Mounted

Mounted Yes Not applicable Read-only or read/write Mounted, read-only, migrate, or
read/write

Mounted No Not applicable Read-only or read/write Read-only, migrate, or read/write

Chapter 15
Modifying a PDB at the Database Level

15-35

To modify the open mode:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Run an ALTER PLUGGABLE DATABASE statement with a pdb_change_state clause.

Example 15-25 Changing the Open Mode of Listed PDBs

This statement changes the open mode of PDBs salespdb and hrpdb to open in read/
write mode.

ALTER PLUGGABLE DATABASE salespdb, hrpdb
 OPEN READ WRITE;

This statement changes the open mode of PDB salespdb to open in read-only mode.
RESTRICTED specifies that the PDB is accessible only to users with RESTRICTED
SESSION privilege in the PDB.

ALTER PLUGGABLE DATABASE salespdb
 OPEN READ ONLY RESTRICTED;

This statement changes the open mode of PDB salespdb to open in migrate mode:

ALTER PLUGGABLE DATABASE salespdb
 OPEN UPGRADE;

Example 15-26 Changing the Open Mode of All PDBs

Run the following query to display the open mode of each PDB associated with a
CDB:

SELECT NAME, OPEN_MODE FROM V$PDBS WHERE CON_ID > 2;

NAME OPEN_MODE
------------------------------ ----------
HRPDB READ WRITE
SALESPDB MOUNTED
DWPDB MOUNTED

Notice that hrpdb is already in read/write mode. To change the open mode of salespdb
and dwpdb to open in read/write mode, use the following statement:

ALTER PLUGGABLE DATABASE ALL
 OPEN READ WRITE;

The hrpdb PDB is not modified because it is already in open read/write mode. The
statement does not return an error because two PDBs are in mounted mode and one
PDB (hrpdb) is in the specified mode (read/write). Similarly, the statement does not
return an error if all PDBs are in mounted mode.

Chapter 15
Modifying a PDB at the Database Level

15-36

However, if any PDB is in read-only mode, then the statement returns an error. To avoid an
error and open all PDBs in the CDB in read/write mode, specify the FORCE keyword:

ALTER PLUGGABLE DATABASE ALL
 OPEN READ WRITE FORCE;

With the FORCE keyword included, all PDBs are opened in read/write mode, including PDBs in
read-only mode.

Example 15-27 Changing the Open Mode of All PDBs Except for Listed Ones

This statement changes the mode of all PDBs except for salespdb and hrpdb to mounted
mode.

ALTER PLUGGABLE DATABASE ALL EXCEPT salespdb, hrpdb
 CLOSE IMMEDIATE;

Note:

An ALTER PLUGGABLE DATABASE statement modifying the open mode of a PDB is
instance-specific. Therefore, if this statement is issued when connected to an
Oracle RAC instance, then it affects the open mode of the PDB only in that
instance.

See Also:

• "Clauses for Changing the Open State of PDBs"

• "Modifying a PDB at the Database Level" for information about modifying the
other attributes of a PDB

• Oracle Database Administrator’s Guide for information about database modes
and their uses

• Oracle Database SQL Language Reference

• Oracle Database Concepts for more information about shutdown modes

Preserving or Discarding the Open Mode of PDBs When the CDB Restarts
You can preserve the open mode of one or more PDBs when the CDB restarts by using the
ALTER PLUGGABLE DATABASE SQL statement with a pdb_save_or_discard_state clause.

You can do this in the following way:

• Specify SAVE STATE to preserve the PDBs' mode when the CDB is restarted.

For example, if a PDB is in open read/write mode before the CDB is restarted, then the
PDB is in open read/write mode after the CDB is restarted; if a PDB is in mounted mode
before the CDB is restarted, then the PDB is in mounted mode after the CDB is restarted.

Chapter 15
Modifying a PDB at the Database Level

15-37

• Specify DISCARD STATE to ignore the PDBs' open mode when the CDB is
restarted.

When DISCARD STATE is specified for a PDB, the PDB is always mounted after the
CDB is restarted.

You can specify which PDBs to modify in the following ways:

• List one or more PDBs.

• Specify ALL to modify all PDBs.

• Specify ALL EXCEPT to modify all PDBs, except for the PDBs listed.

For an Oracle RAC CDB, you can use the instances clause in the
pdb_save_or_discard_state clause to specify the instances on which a PDB's open
mode is preserved in the following ways:

• List one or more instances in the instances clause in the following form:

INSTANCES = ('instance_name' [,'instance_name'] …)

• Specify ALL in the instances clause to modify the PDB in all running instances, as
in the following example:

INSTANCES = ALL

• Specify ALL EXCEPT in the instances clause to modify the PDB in all instances,
except for the instances listed, in the following form:

INSTANCES = ALL EXCEPT('instance_name' [,'instance_name'] …)

For a PDB in an Oracle RAC CDB, SAVE STATE and DISCARD STATE only affect the
mode of the current instance. They do not affect the mode of other instances, even if
more than one instance is specified in the instances clause.

To issue an ALTER PLUGGABLE DATABASE SQL statement with a
pdb_save_or_discard_state clause, the current user must have the ALTER DATABASE
privilege in the root.

You can check the saved states for the PDBs in a CDB by querying the
DBA_PDB_SAVED_STATES view.

To preserve or discard a PDB's open mode when the CDB restarts:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Run an ALTER PLUGGABLE DATABASE statement with a pdb_save_or_discard_state
clause.

The following examples either preserve or discard the open mode of one or more
PDBs when the CDB restarts.

Chapter 15
Modifying a PDB at the Database Level

15-38

Example 15-28 Preserving the Open Mode of a PDB When the CDB Restarts

This statement preserves the open mode of the salespdb when the CDB restarts.

ALTER PLUGGABLE DATABASE salespdb SAVE STATE;

Example 15-29 Discarding the Open Mode of a PDB When the CDB Restarts

This statement discards the open mode of the salespdb when the CDB restarts.

ALTER PLUGGABLE DATABASE salespdb DISCARD STATE;

Example 15-30 Preserving the Open Mode of All PDBs When the CDB Restarts

This statement preserves the open mode of all PDBs when the CDB restarts.

ALTER PLUGGABLE DATABASE ALL SAVE STATE;

Example 15-31 Preserving the Open Mode of Listed PDBs When the CDB Restarts

This statement preserves the open mode of the salespdb and hrpdb when the CDB restarts.

ALTER PLUGGABLE DATABASE salespdb, hrpdb SAVE STATE;

Example 15-32 Preserving the Open Mode of All PDBs Except for Listed Ones When
the CDB Restarts

This statement preserves the open mode of all PDBs except for salespdb and hrpdb.

ALTER PLUGGABLE DATABASE ALL EXCEPT salespdb, hrpdb SAVE STATE;

Altering the Open Mode of a PDB Using STARTUP and
SHUTDOWN

When the current container is a PDB, you can use the SQL*Plus STARTUP command to open
the PDB and the SQL*Plus SHUTDOWN command to close the PDB.

• About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
When the current container is the root, the STARTUP PLUGGABLE DATABASE command can
open a single PDB.

• Starting Up a PDB Using the STARTUP Command
When the current container is a PDB, the SQL*Plus STARTUP command opens the PDB.

• Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
You can use the STARTUP PLUGGABLE DATABASE command to open a single PDB.

• Shutting Down a PDB Using the SHUTDOWN Command
When the current container is a PDB, the SQL*Plus SHUTDOWN command closes the PDB.

Chapter 15
Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN

15-39

About Modifying the Open Mode of PDBs with the SQL*Plus
STARTUP Command

When the current container is the root, the STARTUP PLUGGABLE DATABASE command
can open a single PDB.

Use the following options of the STARTUP PLUGGABLE DATABASE command to open a
PDB:

• FORCE
Closes an open PDB before re-opening it in read/write mode. When this option is
specified, no other options are allowed.

• RESTRICT
Enables only users with the RESTRICTED SESSION system privilege in the PDB to
access the PDB.

If neither OPEN READ WRITE nor OPEN READ ONLY is specified, then the PDB is
opened in read-only mode when the CDB to which it belongs is a physical standby
database. Otherwise, the PDB is opened in read/write mode.

• OPEN open_pdb_options

Opens the PDB in either read/write mode or read-only mode. You can specify OPEN
READ WRITE or OPEN READ ONLY. When you specify OPEN without any other options,
READ WRITE is the default.

The following prerequisites must be met:

• The current user must have SYSDBA, SYSOPER, SYSBACKUP, or SYSDG administrative
privilege, and the privilege must be either commonly granted or locally granted in
the PDB. The user must exercise the privilege using AS SYSDBA, AS SYSOPER, AS
SYSBACKUP, or AS SYSDG, respectively, at connect time.

• When RESTRICTED SESSION is enabled, RESTRICT must be specified when a PDB is
opened.

In addition, to place PDBs in a target mode with the STARTUP PLUGGABLE DATABASE
command, you must meet the requirements described in the following table.

Table 15-5 Modifying the Open Mode of a PDB with STARTUP PLUGGABLE DATABASE

Target Mode of the PDB FORCE Option Included Required Mode for the
Root

Required Mode of the
PDB Being Modified

Read/write Yes Read/write Mounted, read-only, or
read/write

Read/write No Read/write Mounted

Read-only No Read-only or read/write Mounted

Chapter 15
Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN

15-40

Note:

You can also use the STARTUP command to modify the open mode of a PDB when
the current container is the PDB.

See Also:

• "Starting Up a PDB Using the STARTUP Command"

• "Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command"

Starting Up a PDB Using the STARTUP Command
When the current container is a PDB, the SQL*Plus STARTUP command opens the PDB.

Use the following options of the STARTUP command to open a PDB:

• FORCE
Closes an open PDB before re-opening it in read/write mode. When this option is
specified, no other options are allowed.

• RESTRICT
Enables only users with the RESTRICTED SESSION system privilege in the PDB to access
the PDB.

If neither OPEN READ WRITE nor OPEN READ ONLY is specified and RESTRICT is specified,
then the PDB is opened in read-only mode when the CDB to which it belongs is a
physical standby database. Otherwise, the PDB is opened in read/write mode.

• OPEN open_pdb_options
Opens the PDB in either read/write mode or read-only mode. Specify OPEN READ WRITE
or OPEN READ ONLY. When RESTRICT is not specified, READ WRITE is always the default.

To issue the STARTUP command when the current container is a PDB, the following
prerequisites must be met:

• The current user must have SYSDBA, SYSOPER, SYSBACKUP, or SYSDG administrative
privilege, and the privilege must be either commonly granted or locally granted in the
PDB. The user must exercise the privilege using AS SYSDBA, AS SYSOPER, AS SYSBACKUP,
or AS SYSDG, respectively, at connect time.

• Excluding the use of the FORCE option, the PDB must be in mounted mode to open it.

• To place a PDB in mounted mode, the PDB must be in open read-only or open read/write
mode.

To modify a PDB with the STARTUP command:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Run the STARTUP command.

Chapter 15
Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN

15-41

Example 15-33 Opening a PDB in Read/Write Mode with the STARTUP
Command

STARTUP OPEN

Example 15-34 Opening a PDB in Read-Only Mode with the STARTUP
Command

STARTUP OPEN READ ONLY

Example 15-35 Opening a PDB in Read-Only Restricted Mode with the
STARTUP Command

STARTUP RESTRICT OPEN READ ONLY

Example 15-36 Opening a PDB in Read/Write Mode with the STARTUP
Command and the FORCE Option

This example assumes that the PDB is currently open. The FORCE option closes the
PDB and then opens it in the read/write mode.

STARTUP FORCE

See Also:

• "About the Current Container"

• "Connecting to a PDB".

• Oracle Database Administrator’s Guide for information about starting up
a database

• SQL*Plus User's Guide and Reference

Modifying the Open Mode of PDBs with the SQL*Plus STARTUP
Command

You can use the STARTUP PLUGGABLE DATABASE command to open a single PDB.

To modify a PDB with the STARTUP PLUGGABLE DATABASE command:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Run the STARTUP PLUGGABLE DATABASE command.

Note:

When the current container is the root, the SQL*Plus SHUTDOWN command
always shuts down the CDB instance. It cannot be used to close individual
PDBs.

Chapter 15
Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN

15-42

Example 15-37 Opening a PDB in Read/Write Mode with the STARTUP Command

STARTUP PLUGGABLE DATABASE hrpdb OPEN

Example 15-38 Opening a PDB in Read/Write Restricted Mode with the STARTUP
Command

STARTUP PLUGGABLE DATABASE hrpdb RESTRICT

Example 15-39 Opening a PDB in Read-Only Restricted Mode with the STARTUP
Command

STARTUP PLUGGABLE DATABASE hrpdb OPEN READ ONLY RESTRICT

Example 15-40 Opening a PDB in Read-Only Mode with the STARTUP Command

STARTUP PLUGGABLE DATABASE hrpdb OPEN READ ONLY

Example 15-41 Opening a PDB in Read/Write Mode with the STARTUP Command and
the FORCE Option

This example assumes that the hrpdb PDB is currently open. The FORCE option closes the
PDB and then opens it in the read/write mode.

STARTUP PLUGGABLE DATABASE hrpdb FORCE

See Also:

• "About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP
Command"

• "Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN" for
information about using the STARTUP or SHUTDOWN command when the current
container is a PDB

• Oracle Database Administrator’s Guide

• SQL*Plus User's Guide and Reference

Shutting Down a PDB Using the SHUTDOWN Command
When the current container is a PDB, the SQL*Plus SHUTDOWN command closes the PDB.

After the SHUTDOWN command is issued on a PDB successfully, it is in mounted mode.

The following SHUTDOWN modes are possible:

• When you specify SHUTDOWN only, then the PDB is shut down with the normal mode.

• When you specify SHUTDOWN IMMEDIATE, the PDB is shut down with the immediate mode.

Chapter 15
Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN

15-43

• When you specify SHUTDOWN ABORT, the PDB is forcefully closed.

For a single-instance CDB, PDB media recovery is required when you specify
SHUTDOWN ABORT. For an Oracle Real Application Clusters (Oracle RAC)
CDB, PDB media recovery is required if the SHUTDOWN ABORT command closes the
last open instance.

Note that if the PDB keystore was in an open state, then issuing SHUTDOWN at the PDB
level does not close it. To close the keystore, run the ADMINISTER KEY MANAGEMENT
SET KEYSTORE CLOSE IDENTIFIED BY "pdb_ks_pwd" command.

Prerequisites

To issue the SHUTDOWN command when the current container is a PDB, the following
prerequisites must be met:

• The current user must have SYSDBA, SYSOPER, SYSBACKUP, or SYSDG administrative
privilege, and the privilege must be either commonly granted or locally granted in
the PDB. The user must exercise the privilege using AS SYSDBA, AS SYSOPER, AS
SYSBACKUP, or AS SYSDG, respectively, at connect time.

• To close a PDB, the PDB must be open.

To modify a PDB with the SHUTDOWN command:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Run the SHUTDOWN command.

Note:

• When the current container is a PDB, the SHUTDOWN command only
closes the PDB, not the CDB instance.

• There is no SHUTDOWN command for a PDB that is equivalent to SHUTDOWN
TRANSACTIONAL for a CDB.

Example 15-42 Closing a PDB with the SHUTDOWN IMMEDIATE Command

SHUTDOWN IMMEDIATE

Chapter 15
Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN

15-44

See Also:

• "About the Current Container"

• "Connecting to a PDB"

• "Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE"

• Oracle Database Administrator’s Guide for more information about shutdown
modes

• SQL*Plus User's Guide and Reference

Starting and Stopping PDBs in Oracle RAC
Administering a pluggable database (PDB) involves a small subset of the tasks required to
administer a non-CDB.

Administering an Oracle RAC-based multitenant container database (CDB) is similar to
administering a non-CDB. The differences are that some administrative tasks apply to the
entire CDB, some to the CDB root, and some to specific PDBs. In this subset of tasks, most
are the same for a PDB and a non-CDB. There are some differences, however, such as when
you modify the open mode of a PDB. Also, a PDB administrator is limited to managing a
single PDB and is not affected by other PDBs in the CDB.

You manage PDBs in an Oracle RAC CDB by managing services. This is true regardless of
whether the PDBs are policy managed or administrator managed. Assign one dynamic
database service to each PDB to coordinate start, stop, and placement of PDBs across
instances in a clustered container database.

For example, if you have a CDB called raccont with a policy-managed PDB called spark in a
server pool called prod, then assign a service called plug to this database using the following
command:

srvctl add service –db raccont –pdb spark –service plug –serverpool prod

The service plug is uniformly managed across all nodes in the server pool. If you want to
have this service running as a singleton service in the same server pool, then use the -
cardinality singleton parameter with the preceding command.

To open the PDB spark, you must start the service plug as follows:

srvctl start service -db raccont -service plug

To stop the service plug:

srvctl stop service -db raccont -service plug

The PDB spark remains open until you close the PDB using the SQL command ALTER
PLUGGABLE DATABASE PDB_NAME CLOSE IMMEDIATE. You can check the status of the database
using the srvctl status service command.

Chapter 15
Starting and Stopping PDBs in Oracle RAC

15-45

Because PDBs are managed using dynamic database services, typical Oracle RAC-
based management practices apply. For this reason, if the service plug is in the online
state when Oracle Clusterware is shut down on a server hosting this service, then the
service is restored to its original state after the restart of Oracle Clusterware on this
server. Thus, starting PDBs is automated as with any other Oracle RAC database.

Note:

Unlike SQL*Plus, SRVCTL operates on an entire cluster database. Starting a
PDB using services therefore applies to multiple instances of the clustered
CDB at the same time when the service is defined to run on multiple servers
simultaneously and the current status of the cluster allows for this placement.

Related Topics

• Oracle Real Application Clusters Administration and Deployment Guide

Chapter 15
Starting and Stopping PDBs in Oracle RAC

15-46

16
Administering a PDB Snapshot Carousel

You can configure a PDB snapshot carousel for a specified PDB, create snapshots manually
or automatically, and set the maximum number of snapshots.

• About PDB Snapshot Carousel
A PDB snapshot carousel is a library of PDB snapshots.

• Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel
You can set the maximum number of PDB snapshots for a PDB.

• Configuring Automatic PDB Snapshots
Configure a PDB for automatic snapshots by using the SNAPSHOT MODE EVERY clause
when creating or altering a PDB.

• Creating PDB Snapshots Manually
To create a PDB snapshot manually, specify the SNAPSHOT snapshot_name clause in
ALTER PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE.

• Dropping a PDB Snapshot
You can drop a PDB snapshot by running an ALTER PLUGGABLE DATABASE statement with
the DROP SNAPSHOT clause.

• Viewing Metadata for PDB Snapshots
The data dictionary views DBA_PDB_SNAPSHOTS and DBA_PDB_SNAPSHOTFILE show the
metadata for PDB snapshots.

About PDB Snapshot Carousel
A PDB snapshot carousel is a library of PDB snapshots.

A PDB snapshot is a point-in-time copy of a PDB. The source PDB can be open read-only or
read/write while the snapshot is created. You can create snapshots manually using the
SNAPSHOT clause of CREATE PLUGGABLE DATABASE (or ALTER PLUGGABLE DATABASE), or
automatically using the EVERY interval clause. If the storage system supports sparse
clones, then the preceding command creates a sparse copy. Otherwise, the command
creates a full copy.

• Purpose of PDB Snapshot Carousel
A PDB snapshot carousel is useful for maintaining a library of recent PDB copies for
point-in-time recovery and cloning.

• How PDB Snapshot Carousel Works
The carousel for a specific PDB is a circular library of copies for this PDB.

• User Interface for PDB Snapshot Carousel
The SNAPSHOT MODE clause controls creation of snapshots, and determines whether
creation is manual, automatic, or disabled.

16-1

See Also:

Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Purpose of PDB Snapshot Carousel
A PDB snapshot carousel is useful for maintaining a library of recent PDB copies for
point-in-time recovery and cloning.

Cloning PDBs for Development and Testing

In a typical development use case, you clone a production PDB for testing using a
command of the form CREATE PLUGGABLE DATABASE newpdb FROM srcpdb. When the
CDB is in ARCHIVELOG mode and local undo mode, the source production PDB can be
opened in read/write mode and fully functional when you clone it, a technique known
as hot cloning. The hot clone PDB is transactionally consistent with the source PDB
as of the SCN at the completion of the ALTER PLUGGABLE DATABASE ... OPEN
statement.

The following steps illustrate a typical development scenario:

1. While the production PDB named pdb1_prod is open and in use, create a
refreshable clone PDB named pdb1_test_master.

A refreshable clone PDB can only be opened in read/only mode. To refresh the
clone PDB from pdb1_prod, you must close it.

2. Run ALTER PLUGGABLE DATABASE pdb1_test_master SNAPSHOT MODE EVERY 24
HOURS, which configures the PDB to generate automatic snapshots of
pdb1_test_master every day.

3. When you need new PDBs for testing, create a full clone PDB by using the CREATE
PLUGGABLE DATABASE … USING SNAPSHOT command.

4. Create sparse snapshot copy PDBs of the full clone PDB using CREATE PLUGGABLE
DATABASE ... SNAPSHOT COPY.

The following figure shows the creation of the clone pdb1_test_full1 from the PDB
snapshot taken on April 5. The figure shows three snapshot copy PDBs created from
pdb1_test_full1.

Chapter 16
About PDB Snapshot Carousel

16-2

Figure 16-1 Automatic Snapshots of a Refreshable Clone PDB

pdb1_test_scopy3pdb1_test_scopy1 pdb1_test_scopy2

pdb1_test_full1

pdb1_test_masterpdb1_prod

Mon
4/9

Mon
4/2

Tue
4/3

Wed
4/4

Thu
4/5

Fri
4/6

Sat
4/7

Sun
4/8

Automatic
Snapshots

Refreshable
Clone

Full
Clone

Snapshot Copy

Point-in-Time Restore with PDB Snapshot Carousel

One strategy is to take a snapshot of a PDB every day at the same time. Another strategy is
to take a PDB snapshot manually before data loads. In either case, a PDB snapshot carousel
enables you to restore a PDB using any available PDB snapshot.

For example, a sales history PDB named pdb1_prod generates an automatic snapshot every
day at 12:01 a.m. On the daily data load on the afternoon of Monday 4/9, you accidentally
load the wrong data, corrupting the PDB. You can create a new production PDB based on the
Monday 4/9 snapshot, drop the corrupted PDB, and then retry the data load.

Chapter 16
About PDB Snapshot Carousel

16-3

Figure 16-2 Restore a Production PDB Using a Snapshot

pdb1_prod

Mon
4/9

Mon
4/2

Tue
4/3

Wed
4/4

Thu
4/5

Fri
4/6

Sat
4/7

Sun
4/8

CREATE ...
USING

SNAPSHOT

pdb1_prod

Mon
4/9

Mon
4/2

Tue
4/3

Wed
4/4

Thu
4/5

Fri
4/6

Sat
4/7

Sun
4/8

Create
Snapshots

Logical

Corruption

in P.M. on

Mon 4/9

See Also:

• "About Cloning a PDB or Non-CDB"

• Oracle Database SQL Language Reference for CREATE PLUGGABLE
DATABASE syntax and semantics

• Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Chapter 16
About PDB Snapshot Carousel

16-4

How PDB Snapshot Carousel Works
The carousel for a specific PDB is a circular library of copies for this PDB.

The database creates successive copies in the carousel either on demand or automatically.
The database overwrites the oldest snapshot when the snapshot limit is reached.

• Contents of a PDB Snapshot
The contents of a PDB snapshot depend on whether the underlying file system supports
sparse files.

• Contents of a PDB Snapshot Carousel
The PDB snapshot carousel is the set of all existing snapshots for a PDB.

Contents of a PDB Snapshot
The contents of a PDB snapshot depend on whether the underlying file system supports
sparse files.

Snapshot Names

The name of a database-managed PDB snapshot is either user-specified or system-
generated. For system-generated snapshot names, SNAP_ is prefixed to a unique identifier,
which contains the snapshot SCN. For example, the following query shows three snapshots
with system-generated names and the SCNs at which they were taken:

SET LINESIZE 200
SET PAGESIZE 50000

COL CON_ID FORMAT 999999
COL CON_NAME FORMAT a15
COL SNAPSHOT_NAME FORMAT a27

SELECT CON_ID, CON_NAME, SNAPSHOT_NAME, SNAPSHOT_SCN FROM DBA_PDB_SNAPSHOTS;

 CON_ID CON_NAME SNAPSHOT_NAME SNAPSHOT_SCN
------- --------------- --------------------------- ------------
 5 HRPDB SNAP_1389467754_993556301 2925293
 5 HRPDB SNAP_1389467754_993556306 2925679
 5 HRPDB SNAP_1389467754_993556309 2925698

Note:

See Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services.

Full and Sparse Snapshots

The content of snapshots generated by ALTER PLUGGABLE DATABASE ... SNAPSHOT depends
on the underlying file system. If the underlying file system supports sparse copies, then the
PDB-level snapshots are sparse. Only the first PDB-managed PDB snapshot is full.

Chapter 16
About PDB Snapshot Carousel

16-5

Otherwise, the PDB snapshots contain full copies of the data files. The snapshot
includes other files necessary to create a PDB from the snapshot.

Snapshot Directories

Every PDB has its own snapshot directory. Within this directory, each snapshot has its
own subdirectory named after the SCN at which it was taken. The following query
shows the sparse PDB snapshots for hrpdb, which has a DBID of 1389467754:

SET LINESIZE 200
SET PAGESIZE 50000

COL SNAPSHOT_NAME FORMAT a27
COL FULL_SNAPSHOT_PATH FORMAT a65

SELECT SNAPSHOT_NAME, SNAPSHOT_SCN, FULL_SNAPSHOT_PATH FROM DBA_PDB_SNAPSHOTS;

SNAPSHOT_NAME SNAPSHOT_SCN FULL_SNAPSHOT_PATH
--------------------------- ------------ ---------------------------------------
SNAP_1389467754_993556301 2925293 /d1/snapshots/pdb_1389467754/2925293/
SNAP_1389467754_993556306 2925679 /d1/snapshots/pdb_1389467754/2925679/
SNAP_1389467754_993556309 2925698 /d1/snapshots/pdb_1389467754/2925698/

Note:

If the snapshot were full instead of sparse, then the full snapshot path would
specify an archive with the .pdb suffix.

The directory for /d1/snapshots/pdb_1389467754/2925698/ contains the following
files:

archparlog_1_63_52d1986a_993552590.arc
o1_mf_salestbs_g03341t2_.dbf
o1_mf_sysext_g0333vqw_.dbf
o1_mf_undo_1_g033gd2j_.dbf
o1_mf_sysaux_g0333vqv_.dbf
o1_mf_system_g0333vqt_.dbf
HRPDB.xml

The set includes the data files, archived redo log files, and an XML file that contains
metadata about the PDB snapshot. The following du command shows that the size of
the snapshot data files, which are sparse, is small relative to the size of the data files:

% du -h *dbf
16K o1_mf_salestbs_g03341t2_.dbf
16K o1_mf_sysaux_g0333vqv_.dbf
16K o1_mf_sysext_g0333vqw_.dbf
16K o1_mf_system_g0333vqt_.dbf
16K o1_mf_undo_1_g033gd2j_.dbf

Chapter 16
About PDB Snapshot Carousel

16-6

The following data dictionary join shows the snapshot file names and types for snapshot
2925698:

SELECT f.SNAPSHOT_FILENAME, f.SNAPSHOT_FILETYPE
FROM DBA_PDB_SNAPSHOTS s, DBA_PDB_SNAPSHOTFILE f
WHERE s.SNAPSHOT_SCN=f.SNAPSHOT_SCN
AND s.CON_ID=f.CON_ID
ORDER BY s.SNAPSHOT_SCN DESC;

SNAPSHOT_FILENAME SNAPSHOT
--- --------
/d1/snapshots/pdb_1389467754/2925698/o1_mf_sysaux_g0333vqv_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/o1_mf_system_g0333vqt_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/HRPDB.xml XML
/d1/snapshots/pdb_1389467754/2925698/o1_mf_sysext_g0333vqw_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/o1_mf_salestbs_g03341t2_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/o1_mf_undo_1_g033gd2j_.dbf DATA
/d1/snapshots/pdb_1389467754/2925698/archparlog_1_63_52d1986a_993552590.arc ARCH
/d1/snapshots/pdb_1389467754/2925679/o1_mf_sysext_g0333vqw_.dbf DATA
/d1/snapshots/pdb_1389467754/2925679/o1_mf_salestbs_g03341t2_.dbf DATA
/d1/snapshots/pdb_1389467754/2925679/o1_mf_undo_1_g033gd2j_.dbf DATA
/d1/snapshots/pdb_1389467754/2925679/o1_mf_sysaux_g0333vqv_.dbf DATA
/d1/snapshots/pdb_1389467754/2925679/archparlog_1_63_52d1986a_993552590.arc ARCH
/d1/snapshots/pdb_1389467754/2925679/HRPDB.xml XML
/d1/snapshots/pdb_1389467754/2925679/o1_mf_system_g0333vqt_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/HRPDB.xml XML
/d1/snapshots/pdb_1389467754/2925293/o1_mf_system_g0333vqt_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/o1_mf_sysaux_g0333vqv_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/o1_mf_undo_1_g033gd2j_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/o1_mf_salestbs_g03341t2_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/o1_mf_sysext_g0333vqw_.dbf DATA
/d1/snapshots/pdb_1389467754/2925293/archparlog_1_63_52d1986a_993552590.arc ARCH

Contents of a PDB Snapshot Carousel
The PDB snapshot carousel is the set of all existing snapshots for a PDB.

The MAX_PDB_SNAPSHOTS property specifies the maximum number of snapshots permitted in
the carousel. The current setting is visible in the CDB_PROPERTIES view.

The following figure shows a carousel for cdb1_pdb1. In this example, the database takes a
PDB snapshot automatically every day, maintaining a set of 8. After the first 8 snapshots
have been created, every new snapshot replaces the oldest snapshot. For example, the
Tuesday 4/10 snapshot replaces the Monday 4/2 snapshot; the Wednesday 4/11 snapshot
replaces the Tuesday 4/3 snapshot; and so on.

Chapter 16
About PDB Snapshot Carousel

16-7

Figure 16-3 PDB Snapshot Carousel

Mon
4/9

Mon
4/2

Tue
4/3

Wed
4/4

Thu
4/5

Fri
4/6

Sat
4/7

Sun
4/8

Application
Seed

cdb1_pdb1

Application Root sales_app

Carousel for cdb1_pdb1

If the file system supports sparse files, then all PDB snapshots in the carousel except
the first one are sparse. The source PDB can remain in read/write mode. Sparse files
significantly reduce the carousel storage space.

See Also:

Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

User Interface for PDB Snapshot Carousel
The SNAPSHOT MODE clause controls creation of snapshots, and determines whether
creation is manual, automatic, or disabled.

ALTER PLUGGABLE DATABASE … SNAPSHOT Statement

To set the snapshot mode for a PDB, use one of the following values in the SNAPSHOT
MODE clause of ALTER PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE:

• MANUAL
This clause, which is the default, enables the creation of manual snapshots of the
PDB. To create a snapshot on demand, specify the SNAPSHOT snapshot_name
clause in an ALTER PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE
statement.

• EVERY snapshot_interval [MINUTES|HOURS]
This clause enables the automatic creation of snapshots after an interval of time.
The following restrictions apply to the interval specified:

Chapter 16
About PDB Snapshot Carousel

16-8

– The minutes value must be less than 3000.

– The hours value must be less than 2000.

The database assigns each automatic snapshot a system-generated name. Note that
manual snapshots are also supported for the PDB when EVERY is specified.

• NONE
This clause disables snapshot creation for the PDB.

See Also:

• "About Cloning PDBs from PDB Snapshots"

• Oracle Database SQL Language Reference for the syntax and semantics of the
SNAPSHOT clause

MAX_PDB_SNAPSHOTS Database Property

To set the maximum number of snapshots for a PDB, specify the MAX_PDB_SNAPSHOTS
property in ALTER PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE. The default is for
the property is 8, which is also the maximum value. When the maximum allowed number of
snapshots has been created, the database purges the oldest snapshot. The CDB_PROPERTIES
view shows the setting of MAX_PDB_SNAPSHOTS.

See Also:

Oracle Database SQL Language Reference for the syntax of the ALTER PLUGGABLE
DATABASE statement

Snapshot-Related Data Dictionary Views

The following data dictionary views provide snapshot information:

• The DBA_PDB_SNAPSHOTS view records metadata about PDB snapshots, including
snapshot name, creation SCN, creation time, and file name.

• The DBA_PDB_SNAPSHOTFILE view lists the names and types of the files in a PDB
snapshot. This view is only populated when the snapshots are sparse.

• The DBA_PDBS view has a SNAPSHOT_MODE and SNAPSHOT_INTERVAL column.

See Also:

Oracle Database Reference to learn about DBA_PDB_SNAPSHOTS,
DBA_PDB_SNAPSHOTFILE, and DBA_PDBS

Chapter 16
About PDB Snapshot Carousel

16-9

Setting the Maximum Number of Snapshots in a PDB
Snapshot Carousel

You can set the maximum number of PDB snapshots for a PDB.

The MAX_PDB_SNAPSHOTS database property sets the maximum number of snapshots
for every PDB in a PDB snapshot carousel. The default maximum is 8. You cannot set
the property to a number greater than 8.

Prerequisites

The PDB must be open in read/write mode.

To set the maximum number of PDB snapshots for a PDB:

1. In SQL*Plus, ensure that the current container is the PDB for which you want to
set the limit.

2. Optionally, query CDB_PROPERTIES for the current setting of the SET
MAX_PDB_SNAPSHOTS property.

3. Run an ALTER PLUGGABLE DATABASE or ALTER DATABASE statement with the SET
MAX_PDB_SNAPSHOTS clause.

Example 16-1 Setting the Maximum Number of PDB Snapshots for a PDB

The following query shows the maximum in the carousel for cdb1_pdb1 (sample output
included):

SET LINESIZE 150
COL ID FORMAT 99
COL PROPERTY_NAME FORMAT a17
COL PDB_NAME FORMAT a9
COL VALUE FORMAT a3
COL DESCRIPTION FORMAT a43

SELECT r.CON_ID AS id, p.PDB_NAME, PROPERTY_NAME,
 PROPERTY_VALUE AS value, DESCRIPTION
FROM CDB_PROPERTIES r, CDB_PDBS p
WHERE r.CON_ID = p.CON_ID
AND PROPERTY_NAME LIKE 'MAX_PDB%'
ORDER BY PROPERTY_NAME;

ID PDB_NAME PROPERTY_NAME VAL DESCRIPTION
-- --------- ----------------- --- ------------------------------------
 3 CDB1_PDB1 MAX_PDB_SNAPSHOTS 8 maximum number of snapshots for a
PDB

The following SQL statement sets the maximum number of PDB snapshots for the
current PDB to 7:

ALTER PLUGGABLE DATABASE SET MAX_PDB_SNAPSHOTS=7;

Chapter 16
Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel

16-10

Example 16-2 Dropping All Snapshots in a PDB Snapshot Carousel

To drop all snapshots in a PDB snapshot carousel, set the MAX_PDB_SNAPSHOTS database
property to 0 (zero), as shown in the following statement:

ALTER PLUGGABLE DATABASE SET MAX_PDB_SNAPSHOTS=0;

This technique is faster than executing ALTER PLUGGABLE DATABASE ... DROP SNAPSHOT
snapshot_name for every snapshot.

See Also:

"About Container Access in a CDB"

Configuring Automatic PDB Snapshots
Configure a PDB for automatic snapshots by using the SNAPSHOT MODE EVERY clause when
creating or altering a PDB.

By default, a PDB is configured for manual snapshots.

Prerequisites

Note the following prerequisites for the ALTER PLUGGABLE DATABASE SNAPSHOT statement:

• The CDB must be in local undo mode.

• The administrator must have the privileges to create a PDB and drop a PDB.

To configure automatic snapshots when altering a PDB:

1. In SQL*Plus, log in as an administrator to the PDB whose snapshot mode you intend to
configure.

2. Optionally, query DBA_PDBS to determine the current snapshot mode.

3. Run ALTER PLUGGABLE DATABASE with the SNAPSHOT MODE EVERY interval clause,
specifying either MINUTES or HOURS.

To configure automatic snapshots when creating a PDB:

1. In SQL*Plus, log in as an administrator to the CDB root or application root.

2. Optionally, query DBA_PDBS to determine the current snapshot mode.

3. Run CREATE PLUGGABLE DATABASE with the SNAPSHOT MODE EVERY interval clause,
specifying either MINUTES or HOURS.

Chapter 16
Configuring Automatic PDB Snapshots

16-11

Example 16-3 Configuring an Automatic Snapshot Every Day for an Existing
PDB

This example assumes that you are logged in to the PDB whose snapshot mode you
intend to change. Query the data dictionary to confirm that the PDB is currently in
MANUAL mode (sample output included):

SELECT SNAPSHOT_MODE "S_MODE", SNAPSHOT_INTERVAL/60 "SNAP_INT_HRS"
FROM DBA_PDBS;

S_MODE SNAP_INT_HRS
------ ------------
MANUAL

Change the snapshot mode to every 24 hours:

ALTER PLUGGABLE DATABASE SNAPSHOT MODE EVERY 24 HOURS;

Confirm the change to automatic mode:

SELECT SNAPSHOT_MODE "S_MODE", SNAPSHOT_INTERVAL/60 "SNAP_INT_HRS"
FROM DBA_PDBS;

S_MODE SNAP_INT_HRS
------ ------------
AUTO 24

Example 16-4 Creating a PDB That Takes Snapshots Every Two Hours

This example assumes that you are logged in to the CDB root. The following
statement creates cdb1_pdb3 from an existing PDB named cdb1_pdb1, and configures
it to take snapshots automatically every 2 hours:

CREATE PLUGGABLE DATABASE cdb1_pdb3 FROM cdb1_pdb1
 FILE_NAME_CONVERT=('cdb1_pdb1','cdb1_pdb3')
 SNAPSHOT MODE EVERY 120 MINUTES;

See Also:

• "Cloning a PDB from a PDB Snapshot: Scenario"

• "Configuring a CDB to Use Local Undo Mode"

Chapter 16
Configuring Automatic PDB Snapshots

16-12

Creating PDB Snapshots Manually
To create a PDB snapshot manually, specify the SNAPSHOT snapshot_name clause in ALTER
PLUGGABLE DATABASE or CREATE PLUGGABLE DATABASE.

Prerequisites

Note the following prerequisites for the ALTER PLUGGABLE DATABASE SNAPSHOT statement:

• The CDB must be in local undo mode. You can check the mode by using the following
query, which returns TRUE when local undo is enabled:

SELECT * FROM DATABASE_PROPERTIES WHERE
PROPERTY_NAME='LOCAL_UNDO_ENABLED';

• The DBA must have the privileges to create and drop a PDB.

• If you want the snapshots to be sparse, then the underlying storage system must support
sparse files. In this case, only the first snapshot will be full.

To create a PDB snapshot:

1. In SQL*Plus, log in as an administrator to the PDB whose snapshot you intend to create.

2. Optionally, query DBA_PDBS.SNAPSHOT_MODE to confirm that the snapshot mode is not set
to NONE.

3. Run an ALTER PLUGGABLE DATABASE statement with the SNAPSHOT clause.

Example 16-5 Creating a PDB Snapshot with a User-Specified Name

The following SQL statements create two PDB snapshots of cdb1_pdb1, one before and one
after a Wednesday data load:

ALTER PLUGGABLE DATABASE SNAPSHOT cdb1_pdb1_b4WLOAD;
-- data load
ALTER PLUGGABLE DATABASE SNAPSHOT cdb1_pdb1_afWLOAD;

The following query of DBA_PDB_SNAPSHOTS shows the locations of two snapshots of the PDB
named cdb1_pdb1 (sample output included):

SET LINESIZE 150
COL CON_NAME FORMAT a9
COL ID FORMAT 99
COL SNAPSHOT_NAME FORMAT a17
COL SNAP_SCN FORMAT 9999999
COL FULL_SNAPSHOT_PATH FORMAT a61

SELECT CON_ID AS ID, CON_NAME, SNAPSHOT_NAME,
 SNAPSHOT_SCN AS snap_scn, FULL_SNAPSHOT_PATH
FROM DBA_PDB_SNAPSHOTS
ORDER BY SNAP_SCN;

 ID SNAPSHOT_NAME SNAP_SCN FULL_SNAPSHOT_PATH
--- ----------------- -------- ---

Chapter 16
Creating PDB Snapshots Manually

16-13

 4 CDB1_PDB1_B4WLOAD 5056465 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5056465/
 4 CDB1_PDB1_AFWLOAD 5056501 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5056501/

If you do not specify a PDB snapshot name, then the database generates a unique
name.

Example 16-6 Creating a PDB Snapshot with a System-Specified Name

The following SQL statement creates a snapshot, but does not specify a name:

ALTER PLUGGABLE DATABASE SNAPSHOT;

The following sample query shows that the database assigned the snapshot a name
prefixed with SNAP_:

SET LINESIZE 150
COL CON_NAME FORMAT a9
COL ID FORMAT 99
COL SNAPSHOT_NAME FORMAT a26
COL SNAP_SCN FORMAT 9999999
COL FULL_SNAPSHOT_PATH FORMAT a61

SELECT CON_ID AS id, CON_NAME, SNAPSHOT_NAME,
 SNAPSHOT_SCN AS snap_scn, FULL_SNAPSHOT_PATH
FROM DBA_PDB_SNAPSHOTS
ORDER BY SNAP_SCN;

 ID SNAPSHOT_NAME SNAP_SCN FULL_SNAPSHOT_PATH
--- -------------------------- --------

 4 CDB1_PDB1_B4WLOAD 5056465 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5056465/
 4 CDB1_PDB1_AFWLOAD 5056501 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5056501/
 4 SNAP_2935056285_1031574118 5057389 /ade/b/813544604/oracle/dbs/snapshots/
pdb_2935056285/5057389/

See Also:

• "About Container Access in a CDB"

• "Configuring a CDB to Use Local Undo Mode"

Chapter 16
Creating PDB Snapshots Manually

16-14

Dropping a PDB Snapshot
You can drop a PDB snapshot by running an ALTER PLUGGABLE DATABASE statement with the
DROP SNAPSHOT clause.

To drop all PDB snapshots based on a PDB, set the MAX_PDB_SNAPSHOTS property in the PDB
to 0 (zero).

To drop a PDB snapshot:

1. In SQL*Plus, ensure that the current container is the PDB from which you created the
PDB snapshot.

2. Run an ALTER PLUGGABLE DATABASE statement with the DROP SNAPSHOT clause.

Example 16-7 Dropping a PDB Snapshot

The following SQL statement drops a PDB snapshot named sales_snap:

ALTER PLUGGABLE DATABASE DROP SNAPSHOT sales_snap;

See Also:

"About Container Access in a CDB"

Viewing Metadata for PDB Snapshots
The data dictionary views DBA_PDB_SNAPSHOTS and DBA_PDB_SNAPSHOTFILE show the
metadata for PDB snapshots.

DBA_PDB_SNAPSHOTS contains general information about the snapshot, including name, SCN,
time, and path. DBA_PDB_SNAPSHOTFILE shows the path and file type of every file in a
snapshot: data files, archived redo log files, and XML files.

Note:

DBA_PDB_SNAPSHOTFILE only shows sparse clone PDBs. To create sparse clones,
the CLONEDB initialization parameter must be set to TRUE.

To view metadata for PDB snapshots:

1. In SQL*Plus, log in to the database as an administrative user.

2. Query DBA_PDB_SNAPSHOTS.

Chapter 16
Dropping a PDB Snapshot

16-15

For example, run the following query (sample output included):

COL SNAPSHOT_NAME FORMAT a30
SELECT SNAPSHOT_NAME, SNAPSHOT_SCN, SNAPSHOT_TIME FROM
DBA_PDB_SNAPSHOTS;

SNAPSHOT_NAME SNAPSHOT_SCN SNAPSHOT_TIME
------------------------------ ------------ -------------
HRPDB_SNAP_F 3678939 1536262569
HRPDB_SNAP_S 4954803 986473745

3. Query DBA_PDB_SNAPSHOTFILE.

For example, run the following join query (sample output included):

SET LINESIZE 120
COL SNAPSHOT_NAME FORMAT a12
COL SNAPSHOT_FILENAME FORMAT a54

SELECT SNAPSHOT_NAME, SNAPSHOT_FILENAME, SNAPSHOT_FILETYPE AS TYPE
FROM DBA_PDB_SNAPSHOTS s, DBA_PDB_SNAPSHOTFILE f
WHERE s.SNAPSHOT_SCN=f.SNAPSHOT_SCN;

SNAPSHOT_NAM SNAPSHOT_FILENAME
TYPE
------------ --

HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_undo_1_fry1l5bq_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_salestbs_fry19m6h_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_sysext_fry19d1n_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_sysaux_fry19d1m_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/o1_mf_system_fry19d1k_.dbf
DATA
HRPDB_SNAP_S /d1/snapshots/4954803/
HRPDB.xml XML
HRPDB_SNAP_S /d1/snapshots/4954803/archparlog_1_274_b87ca51e_985963
 814.arc
ARCH

Example 16-8 Querying Metadata for Full PDB Snapshots

The following query shows two PDB snapshots. The snapshots are full, not sparse, as
indicated by the .pdb extension.

SET LINESIZE 200
SET PAGESIZE 50000

COL ID FORMAT 99
COL CON_NAME FORMAT a7
COL SNAPSHOT_NAME FORMAT a25
COL SNAPSHOT_SCN FORMAT a7

Chapter 16
Viewing Metadata for PDB Snapshots

16-16

COL FULL_SNAPSHOT_PATH FORMAT a65

SELECT CON_ID AS ID, CON_NAME, SNAPSHOT_NAME,
 SNAPSHOT_SCN, FULL_SNAPSHOT_PATH
FROM DBA_PDB_SNAPSHOTS;

ID CON_NAM SNAPSHOT_NAME SNAPSHO FULL_SNAPSHOT_PATH
-- ------- ------------------------- ------- -------------------------------
 5 HRPDB SNAP_3286480866_994766895 3160319 /d1/snap_3286480866_3160319.pdb
 5 HRPDB SNAP_3286480866_994767095 3165758 /d1/snap_3286480866_3165758.pdb

The following query of DBA_PDB_SNAPSHOTFILE returns no rows because this view is only
populated when PDB snapshots are sparse:

SQL> SELECT COUNT(*) FROM DBA_PDB_SNAPSHOTFILE;

 COUNT(*)

 0

Chapter 16
Viewing Metadata for PDB Snapshots

16-17

17
Administering Application Containers

You can administer application containers, including application roots and application PDBs.
You can also administer the applications installed in application containers.

Note:

You can complete the tasks in this chapter using SQL*Plus or Oracle SQL
Developer.

• About Application Container Administration
Some aspects of administering an application container are similar to administering the
CDB root and the CDB as a whole, while other aspects are similar to administering a
PDB.

• About Modifying an Application Root
The ALTER DATABASE statement can modify an application root. The ALTER PLUGGABLE
DATABASE statement can modify the open mode of application PDBs.

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Managing Application Common Objects
Application common objects are shared, user-created database objects in an application
container. Application common objects are created in an application root.

• Issuing DML Statements on Containers in an Application Container
A DML statement issued in an application root can modify one or more containers in the
application container. In addition, you can specify one or more default container targets
for DML statements.

• Partitioning by PDB with Container Maps
Container maps enable the partitioning of data at the application PDB level when the data
is not physically partitioned at the table level.

Related Topics

• Creating and Removing Application Containers and Seeds
You can create application containers and application seeds in several different ways.
You can also remove application containers from a CDB, and you can remove application
seeds from application containers.

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

About Application Container Administration
Some aspects of administering an application container are similar to administering the CDB
root and the CDB as a whole, while other aspects are similar to administering a PDB.

17-1

Administering an application container is similar to administering a CDB because you
can manage both the application root and the application PDBs that are plugged into
the application root. However, administering an application container is also similar to
managing a PDB because changes to the application container do not affect other
application containers or PDBs in the CDB.

The following table describes administrative tasks for application containers that are
similar to administrative tasks that manage a CDB or CDB root.

Table 17-1 Application Container Administrative Tasks Similar to Those of a
CDB

Administrative Task Description More Information

Configuring application
common users and commonly
granted privileges

Application common users
and privileges are similar to
common users and commonly
granted privileges in a CDB
root, but in an application
container, common users and
commonly granted privileges
only exist within the containers
of the application container,
including the application root,
application PDBs that belong
to the application root, and an
optional application seed that
belongs to the application root.

"Overview of Common and
Local Users in a CDB"

Creating application
containers

A common user whose current
container is the CDB root can
create application containers
that are plugged into the CDB
root by specifying the AS
APPLICATION CONTAINER
clause in the CREATE
PLUGGABLE DATABASE
statement. The database files
must be Oracle Managed
Files.

"Creating Application
Containers"

Creating application PDBs A common user whose current
container is the application
root can create application
PDBs that are plugged into the
application root.

"Creating and Removing
PDBs and Application
Containers"

Switching to containers A common user with the
proper privileges can switch
between containers in an
application container, including
the application root,
application PDBs that belong
to the application root, and an
optional application seed that
belongs to the application root.

"Switching to a Container
Using the ALTER SESSION
Statement"

Chapter 17
About Application Container Administration

17-2

Table 17-1 (Cont.) Application Container Administrative Tasks Similar to Those
of a CDB

Administrative Task Description More Information

Issuing ALTER SYSTEM SET
statements

The ALTER SYSTEM SET
statement can dynamically set
an initialization parameter in
one or more containers in an
application container.

"Modifying a CDB with ALTER
SYSTEM"

Issuing data definition
language (DDL) statements

In an application container,
some DDL statements can
apply to all containers in the
application container or to the
current container only.

"Modifying Application
Common Objects with DDL
Statements"

The following table describes administrative tasks for application containers that are similar to
administrative tasks that manage a PDB.

Table 17-2 Application Container Administrative Tasks Similar to Those of a PDB

Administrative Task Description More Information

Connecting to the application
root

The application root has its own
service name, and users can
connect to the application root in
the same way that they connect
to a PDB. Similarly, each
application PDB has its own
service name, and the
application seed has its own
service name.

"Accessing a Container in a
CDB"

Issuing the ALTER PLUGGABLE
DATABASE statement

An ALTER PLUGGABLE
DATABASE statement can modify
an application root, application
PDB, and application seed in the
same way it modifies a PDB. For
example, an administrator can
open or close an application root
with an ALTER PLUGGABLE
DATABASE statement.

"Modifying Containers When
Connected to the CDB Root"

"Modifying a PDB at the
Database Level"

Issuing the SQL*Plus STARTUP
and SHUTDOWN commands

SQL*Plus STARTUP and
SHUTDOWN commands operate
on an application root,
application PDB, and application
seed in the same way that they
operate on a PDB.

"Modifying the Open Mode of
PDBs"

Issuing the ALTER SYSTEM
statements

An ALTER SYSTEM statement
operates on an application root,
application PDB, and application
seed in the same way that it
operates on a PDB.

"Modifying a CDB with ALTER
SYSTEM"

"Modifying a PDB at the System
Level"

Chapter 17
About Application Container Administration

17-3

Table 17-2 (Cont.) Application Container Administrative Tasks Similar to Those of a
PDB

Administrative Task Description More Information

Managing tablespaces Administrators can create,
modify, and drop tablespaces for
an application root and for
application PDBs. Each
container has its own
tablespaces.

"About Managing Tablespaces in
a CDB"

Managing data files and temp
files

Administrators can create,
modify, and drop data files and
temp files for an application root
and for application PDBs. Each
container has its own files.

Oracle Database Administrator’s
Guide for information about
managing data files and temp
files

Managing schema objects You can create, modify, and drop
schema objects in an application
root and in each application PDB
in the same way that you would
in a PDB. You can also create
triggers that fire for a specific
application root or application
PDB.

However, application containers
support application common
objects, which can be shared
between the containers in an
application container. Application
common objects cannot be
created in PDBs.

"Managing Application Common
Objects"

About Modifying an Application Root
The ALTER DATABASE statement can modify an application root. The ALTER PLUGGABLE
DATABASE statement can modify the open mode of application PDBs.

The following table lists which containers are modified by clauses in ALTER DATABASE
and ALTER PLUGGABLE DATABASE statements issued in an application root. The table
also lists statements that are not allowed in an application root.

Note:

Statements issued when the current container is the application root never
affect the CDB root or PDBs that do not belong to the current application
root.

Chapter 17
About Modifying an Application Root

17-4

Table 17-3 Statements That Modify Containers in an Application Root

Modify Application Root Only Modify One or More Application
PDBs

Cannot Be Issued in an
Application Root

When connected as an application
common user whose current
container is the application root,
ALTER DATABASE statements with
the following clauses modify the
application root only:

• database_file_clauses
• DEFAULT EDITION clause

• DEFAULT TABLESPACE clause

• DEFAULT TEMPORARY
TABLESPACE clause

ALTER DATABASE statements with
the following clauses modify the
application root and set default values
for application PDBs:

• flashback_mode_clause
• SET DEFAULT {BIGFILE |

SMALLFILE} TABLESPACE
clause

• set_time_zone_clause
You can use these clauses to set
nondefault values for specific
application PDBs.

When connected as an application
common user whose current
container is the application root,
ALTER PLUGGABLE DATABASE
statements with the following clause
can modify the open mode of one or
more application PDBs:

• pdb_change_state
When the current container is an
application PDB, ALTER PLUGGABLE
DATABASE statements with this
clause can modify the open mode of
the current application PDB.

When connected as an application
common user whose current
container is the application root,
ALTER PLUGGABLE DATABASE
statements with the following clause
can preserve or discard the open
mode an application PDB when the
CDB restarts:

• pdb_save_or_discard_state

When connected as an application
common user whose current
container is the application root,
ALTER DATABASE statements with
the following clauses are not
allowed:

• startup_clauses
• recovery_clauses
• logfile_clauses
• controlfile_clauses
• standby_database_clauses
• instance_clauses
• security_clause
• RENAME GLOBAL_NAME clause

• ENABLE BLOCK CHANGE
TRACKING clause

• DISABLE BLOCK CHANGE
TRACKING clause

See Also:

• "About the Current Container"

• "Modifying a PDB at the Database Level"

• Oracle Database SQL Language Reference

Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

You can also uninstall an application from an application container. You perform these
operations in the application root. The application container propagates the application
changes to the application PDBs when the application PDBs synchronize with the application
in the application root.

• About Application Management
In an application container, an application is a named, versioned set of application
metadata and common data. The application is stored in the application root.

• Installing Applications in an Application Container
You can install an application in an application container.

Chapter 17
Managing Applications in an Application Container

17-5

• Upgrading Applications in an Application Container
Major changes to an application constitute application upgrades. You can upgrade
an application in an application container.

• Patching Applications in an Application Container
Minor changes to an application constitute application patches.

• Migrating an Existing Application to an Application Container
You can migrate an application that is installed in a PDB to an application
container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the
latest version and patch in the application root.

• Synchronizing an Application Root Replica with a Proxy PDB
When application containers in different CDBs have the same application, their
application roots can be kept synchronized by creating a master application root, a
replica application root, and a proxy PDB.

• Setting the Compatibility Version of an Application
The compatibility version of an application is the earliest version of the application
possible for the application PDBs that belong to the application container.

• Performing Bulk Inserts During Application Install, Upgrade, and Patch Operations
SQL*Loader is the only supported utility for bulk inserts into tables during
application install, upgrade, and patch operations. Only conventional path loads
are supported for bulk inserts during application install, upgrade, and patch
operations.

• Uninstalling Applications from an Application Container
You can uninstall an application in an application container.

Related Topics

• Overview of Applications in an Application Container
Within an application container, an application is the named, versioned set of
common data and metadata stored in the application root.

About Application Management
In an application container, an application is a named, versioned set of application
metadata and common data. The application is stored in the application root.

In this context, the term “application” means “application back-end.” Application
common objects include user accounts, tables, PL/SQL packages, and so on. You can
share an application with the application PDBs that belong to the application root.
When you perform application changes, application PDBs can synchronize with the
application in the application root.

• Basic Steps of Application Maintenance
You can install, upgrade, and patch an application in an application root.

• Application Versions
The application container also manages the versions of the application and the
patches to the application.

• Application Module Names and Service Names
The application module name is set by the DBMS_APPLICATION_INFO.SET_MODULE
procedure or the equivalent OCI attribute setting.

Chapter 17
Managing Applications in an Application Container

17-6

Basic Steps of Application Maintenance
You can install, upgrade, and patch an application in an application root.

You must issue an ALTER PLUGGABLE DATABASE ... BEGIN statement to start the operation
and an ALTER PLUGGABLE DATABASE ... END statement to end the operation. You can issue
these statements in the same user session or in different user sessions.

The following is the typical process for creating and maintaining an application in an
application container:

1. Create the application container.

2. Install the application in the application root using ALTER PLUGGABLE DATABASE ...
BEGIN INSTALL.

This step includes creating the application data model and configuring the application
common users and application common objects.

Note:

SQL*Loader is the only supported utility for bulk inserts into tables during
application install, upgrade, and patch operations.

3. Create the application PDBs in the application root.

4. Synchronize each application PDB that should install the application with the application
root. The statement is ALTER PLUGGABLE DATABASE APPLICATION ... SYNC.

5. Load the data for each application PDB.

6. Maintain the application. Upgrade using ALTER PLUGGABLE DATABASE ... BEGIN
UPGRADE, and patch using ALTER PLUGGABLE DATABASE ... BEGIN PATCH.

7. Synchronize application PDBs that should apply changes from upgrades and patches.

8. Add new application PDBs whenever necessary.

9. If necessary, uninstall the application using ALTER PLUGGABLE DATABASE ... BEGIN
UNINSTALL.

See Also:

• "Creating Application Containers"

• Oracle Database Security Guide to learn how to audit application maintenance
operations

Application Versions
The application container also manages the versions of the application and the patches to the
application.

Chapter 17
Managing Applications in an Application Container

17-7

The application container manages versions as follows:

• When you install an application, you must specify the application version number.

• When you upgrade an application, you must specify the old application version
number and the new application version number.

• When you patch an application, you must specify the minimum application version
number for the patch and the patch number.

As the application evolves, the application container maintains all of the versions and
patch changes that you apply.

You can also configure the application container so that different application PDBs use
different application versions. For example, if you provide an application to various
customers, and each customer has its own application PDB, some customers might
wait longer to upgrade the application. In this case, some application PDBs can use
the latest version of the application, whereas other application PDBs can use an older
version of the application.

Application Module Names and Service Names
The application module name is set by the DBMS_APPLICATION_INFO.SET_MODULE
procedure or the equivalent OCI attribute setting.

The module name is necessary during application maintenance because of other
activity that might be occurring in the database. For example, statements issued by
background processes should not be captured in the application capture tables. Also,
other users might execute statements that are unrelated to the application. A module
name check distinguishes what should be captured from what should not be captured.
Only sessions whose module name matches the module name of the session where
APPLICATION BEGIN was issued are considered for capture.

Query DBA_APPLICATIONS to determine the module name of the session in which
APPLICATION BEGIN was executed:

SELECT app_capture_module FROM dba_applications WHERE app_name='APEX';

Some clauses, such as the SHARING clause, are valid only when issued between an
ALTER PLUGGABLE DATABASE ... BEGIN statement and an ALTER PLUGGABLE
DATABASE ... END statement. For these clauses, if the module name for a session
does not match, then this session is not included in between the BEGIN and END
statements, causing statements that include the clause to fail with ORA-65021 or other
errors.

The most common cause for a module name mismatch is the default module name.
For example, SQL*Plus sets a default module name when a connection is made to the
database. A connection as a SYSDBA user results in one default module name (for
example, sqlplus@host1 (TNS V1-V3)), whereas a connection as a non-SYSDBA user
results in a different default module name (for example, SQL*Plus). When SYSDBA and
non-SYSDBA users are both performing maintenance, you must explicitly set the module
name in each session to the same value, and not rely the default settings in SQL*Plus.

Additionally, for the statement to be captured the service name of the session
executing a statement should match the service name of the session where

Chapter 17
Managing Applications in an Application Container

17-8

APPLICATION BEGIN was executed. Query DBA_APPLICATIONS to determine the service name
of the session in which APPLICATION BEGIN was executed:

SELECT app_capture_service FROM dba_applications WHERE app_name='APEX';

Example 17-1 Checking the Session's Module Name

This example shows how the default module name changes depending on whether the
connected user has SYSDBA privileges.

SQL> CONNECT / AS SYSDBA
Connected.

SQL> select module from v$session where audsid =
SYS_CONTEXT('USERENV','sessionid');

MODULE
--
sqlplus@host1 (TNS V1-V3)

SQL> CONNECT dba1
Password: *************
Connected.

SQL> select module from v$session where audsid =
SYS_CONTEXT('USERENV','sessionid');

MODULE
--
SQL*Plus

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn how to set the
application module name

Installing Applications in an Application Container
You can install an application in an application container.

• About Installing Applications in an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to install an application
in the application root.

• Installing an Application in an Application Container with Automated Propagation
In automated propagation, the application is installed in the application PDBs that
synchronize with the application in the application root.

Chapter 17
Managing Applications in an Application Container

17-9

About Installing Applications in an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to install an
application in the application root.

You install the application in the application root only. Application PDBs that
synchronize with the application install the application automatically. With the
automated method, you can perform the installation using one or more of the following
techniques: scripts, SQL statements, and graphical user interface tools.

Start of the installation with an ALTER PLUGGABLE DATABASE APPLICATION BEGIN
INSTALL statement and the end of the install with an ALTER PLUGGABLE DATABASE
APPLICATION END INSTALL statement. Each installation must be associated with an
application name and version number, which are specified in the ALTER PLUGGABLE
DATABASE APPLICATION statements.

Related Topics

• Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within
a CDB. You can run the script against any specified containers.

Installing an Application in an Application Container with Automated
Propagation

In automated propagation, the application is installed in the application PDBs that
synchronize with the application in the application root.

Prerequisites

You must meet the following prerequisites:

• The current user must have the ALTER PLUGGABLE DATABASE system privilege, and
the privilege must be commonly granted in the application root.

• The application root must be in open read/write.

To install an application using automated propagation:

1. In SQL*Plus or SQL Developer, ensure that the current container is a PDB.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL statement in
the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN INSTALL
'application_version_number';

For example, run the following statement if the application_name is salesapp and
the application_version_number is 4.2:

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '4.2';

3. Install the application using scripts, SQL statements, or graphical user interface
tools.

Chapter 17
Managing Applications in an Application Container

17-10

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END INSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END INSTALL
'application_version_number';

For example, run the following statement if the application_name is salesapp and the
application_version_number is 4.2:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '4.2';

Note:

Ensure that the application_name and application_version_number match in
the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL statement and
theALTER PLUGGABLE DATABASE APPLICATION END INSTALL statement.

5. Synchronize all of the application PDBs that must install the application by issuing an
ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Related Topics

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Upgrading Applications in an Application Container
Major changes to an application constitute application upgrades. You can upgrade an
application in an application container.

• About Upgrading Applications in an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to upgrade an
application in the application root.

• Upgrading an Application in an Application Container
After an upgrade, application changes caused by the upgrade propagate to the
application PDBs that synchronize with the application root.

About Upgrading Applications in an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to upgrade an application in
the application root.

• Purpose of Application Upgrade
You can upgrade the application definition once in the application root so that other
application PDBs can synchronize with the upgraded definition.

Chapter 17
Managing Applications in an Application Container

17-11

• How an Application Upgrade Works
When you upgrade an application, Oracle Database automatically clones the
application root.

• User Interface for Application Upgrade
To upgrade an application definition in the application root, use the ALTER
PLUGGABLE DATABASE APPLICATION ... UPGRADE command.

Related Topics

• Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within
a CDB. You can run the script against any specified containers.

Purpose of Application Upgrade
You can upgrade the application definition once in the application root so that other
application PDBs can synchronize with the upgraded definition.

Application PDBs do not automatically inherit the upgraded application definition in the
application root. Application PDBs synchronize with an application in the root when
you manually run an ALTER PLUGGABLE DATABASE statement with the SYNC clause. You
can upgrade using one or more of the following techniques: scripts, SQL statements,
and graphical user interface tools.

How an Application Upgrade Works
When you upgrade an application, Oracle Database automatically clones the
application root.

During the upgrade, application PDBs point to the root clone. Applications continue to
run during the upgrade. Application PDBs can perform DML on metadata-linked and
extended data-linked tables and views. Application PDBs can query metadata-linked
objects, extended data-linked objects, and data-linked objects.

After the upgrade, the application root clone remains and continues to support any
application PDB that still use the preupgrade version of the application in the root
clone. Application PDBs that upgrade are pointed to the upgraded application root.
Application PDBs that do not upgrade might continue to use the clone, and application
PDBs that are plugged into the application root might also use the same application
version as the root clone.

Note:

Unlike an application upgrade, a patch does not create an application root
clone. If an application PDB is not synchronized after a patch, then queries
are directed to the application root, which has already been patched.

The following figure illustrates the application upgrade process.

Chapter 17
Managing Applications in an Application Container

17-12

Figure 17-1 Upgrading Applications in an Application Container

Application Root v1.0

Application Root v1.0 Application Root Clone v1.0

Application Root Clone v1.0Application Root v2.0

Application Root Clone v1.0Application Root v2.0

Application PDBs

Application PDBs

Application PDBs

Application PDB
at v1.0

Synchronized
Application PDBs

1

2

3

4

Before upgrade

End upgrade

After synchronization

Begin upgrade

Chapter 17
Managing Applications in an Application Container

17-13

Note:

When the application root is in any open mode, the application root clone is
in read-only mode. When the application root is closed, the application root
clone is also closed.

User Interface for Application Upgrade
To upgrade an application definition in the application root, use the ALTER PLUGGABLE
DATABASE APPLICATION ... UPGRADE command.

Start the upgrade with an ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE
statement and end with an ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE
statement. Each upgrade must be associated with an application name, starting
version number, and ending version number, which are specified in the ALTER
PLUGGABLE DATABASE APPLICATION statements.

Note:

If Transparent Data Encryption is enabled in the application root, then an
external password store must be configured.

Upgrading an Application in an Application Container
After an upgrade, application changes caused by the upgrade propagate to the
application PDBs that synchronize with the application root.

Prerequisites

• The CDB must be in local undo mode.

• The current user must have the ALTER PLUGGABLE DATABASE system privilege, and
the privilege must be commonly granted in the application root.

• The application root must be in open read/write.

• If Transparent Data Encryption is enabled in the application root, then an external
password store must be configured.

To upgrade an application in an application container:

1. In SQL*Plus or SQL Developer, ensure that the current container is the application
root.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE statement in
the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN UPGRADE
'application_start_version_number' TO
'application_end_version_number';

Chapter 17
Managing Applications in an Application Container

17-14

For example, run the following statement if the application_name is salesapp, the
application_start_version_number is 4.2, and the application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN UPGRADE '4.2' TO
'4.3';

3. Upgrade the application using scripts, SQL statements, or graphical user interface tools.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END UPGRADE TO
'application_end_version_number';

For example, run the following statement if the application_name is salesapp and the
application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END UPGRADE TO '4.3';

Note:

Ensure that the application_name and application_end_version_number match
in the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE statement and
the ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statement.

5. Synchronize all of the application PDBs that must upgrade the application by issuing an
ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Related Topics

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

• Setting the Undo Mode in a CDB Using ALTER DATABASE
When local undo is enabled, each container has its own undo tablespace for every
instance in which it is open. When local undo is disabled, there is one undo tablespace
for the entire CDB.

Patching Applications in an Application Container
Minor changes to an application constitute application patches.

Examples of minor changes can include bug fixes and security patches. You can patch an
application in an application container.

• About Patching Applications in an Application Container
To patch an application in the application root, issue ALTER PLUGGABLE DATABASE
APPLICATION statements.

Chapter 17
Managing Applications in an Application Container

17-15

• Patching an Application in an Application Container with Automated Propagation
Application changes for the patch are propagated to the application PDBs that
synchronize with the application in the application root.

About Patching Applications in an Application Container
To patch an application in the application root, issue ALTER PLUGGABLE DATABASE
APPLICATION statements.

You patch the application in the application root only. The application PDBs that
synchronize with the application apply the changes. You can perform the patch using
one or more of the following techniques: scripts, SQL statements, and graphical user
interface tools.

The patch is restricted to a small set of operations. In general, destructive operations,
such as dropping a table, are not allowed in a patch. If you attempt to patch an
application, and the operation raises an “operation not supported in an application
patch” error, then upgrade the application instead of patching it to make the necessary
changes.

Note:

Unlike an application upgrade, a patch does not create an application root
clone. If an application PDB is not synchronized after a patch, then queries
are directed to the application root, which has already been patched.

Indicate the start of the patch with an ALTER PLUGGABLE DATABASE APPLICATION BEGIN
PATCH statement and the end of the patch with an ALTER PLUGGABLE DATABASE
APPLICATION END PATCH statement. Each patch must be associated with an
application name, starting version number, and ending version number. Specify these
values in the ALTER PLUGGABLE DATABASE APPLICATION statements.

Related Topics

• Running Oracle-Supplied SQL Scripts in a CDB
You can use the catcon.pl script to run Oracle-supplied SQL or SQL scripts within
a CDB. You can run the script against any specified containers.

• Upgrading Applications in an Application Container
Major changes to an application constitute application upgrades. You can upgrade
an application in an application container.

Patching an Application in an Application Container with Automated
Propagation

Application changes for the patch are propagated to the application PDBs that
synchronize with the application in the application root.

Prerequisites

The following prerequisites must be met:

Chapter 17
Managing Applications in an Application Container

17-16

• The current user must have the ALTER PLUGGABLE DATABASE system privilege, and the
privilege must be commonly granted in the application root.

• The application root must be in open read/write mode.

1. In SQL*Plus, ensure that the current container is the application root.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN PATCH statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 BEGIN PATCH patch_number
 MINIMUM VERSION 'minimum_application_version_number';

For example, run the following statement if the application_name is salesapp, the
patch_number is 987654, and the minimum_application_version_number is 4.2:

ALTER PLUGGABLE DATABASE APPLICATION salesapp
 BEGIN PATCH 987654 MINIMUM VERSION '4.2';

The minimum_application_version_number indicates the minimum application version at
which an application installation must be before the patch can be applied to it.

3. Patch the application using scripts, SQL statements, and graphical user interface tools.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END PATCH statement in the following
form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 END PATCH patch_number;

For example, run the following statement if the application_name is salesapp and the
patch_number is 987654:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END PATCH 987654;

Note:

Ensure that the application_name and patch_number match in the ALTER
PLUGGABLE DATABASE APPLICATION BEGIN PATCH statement and the ALTER
PLUGGABLE DATABASE APPLICATION END PATCH statement.

5. Synchronize all of the application PDBs that must patch the application by issuing an
ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Related Topics

• Accessing a Container in a CDB
Access a container in a CDB with SQL*Plus by issuing a CONNECT or ALTER SESSION
command.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Chapter 17
Managing Applications in an Application Container

17-17

Migrating an Existing Application to an Application Container
You can migrate an application that is installed in a PDB to an application container.

You can migrate the application to the application root or to an application PDB. For
example, you might migrate an application installed in a PDB plugged into an Oracle
Database 12c Release 2 (12.2) CDB to an application container in an Oracle
Database 18c CDB.

• About Migrating an Existing Application to an Application Container
You can migrate an application to an application root by creating an application
root using an existing PDB.

• Creating an Application Root Using an Existing PDB
Migrate an application that is installed in a PDB by copying the PDB to an
application container.

• Creating an Application PDB Using an Existing PDB
After migrating an existing application to an application root, you can use an
existing PDB that uses the application to create an application PDB.

About Migrating an Existing Application to an Application Container
You can migrate an application to an application root by creating an application root
using an existing PDB.

If the application is installed in more than one PDB, then you can use one of the PDBs
to create the application root. You can use one of the methods available for copying a
PDB to an application root, such as cloning the PDB or plugging in the PDB as an
application root.

When common users, roles, or profiles exist in the PDB used to create the application
root, you must run procedures in the DBMS_PDB package to associate them with the
application. When an application root created from a PDB is first opened, each local
user, role, and profile is marked as common. The procedures in the DBMS_PDB package
associate the user, role, or profile with the application. Therefore, all DDL operations
on the user, role, or profile must subsequently be done within an application
BEGIN...END block of this application.

When shared database objects exist in the application root, you must run procedures
in the DBMS_PDB package to associate the database objects with the application as
application common objects. Therefore, all DDL operations on the application common
objects must subsequently be done within an application BEGIN...END block of this
application.

After the application root is in place, you can create application PDBs in the new
application container using the existing PDBs. The application PDBs that you create
must contain the application objects, including their data. Additional steps are
necessary to synchronize the application version and patch number and to establish
shared database objects in the application PDBs.

Scenario with One Hundred PDBs Running the Same Application

Assume that you currently have one hundred PDBs that are running the same
application, and you want to migrate these PDBs to an application container. These
PDBs have the application common objects and common users, roles, and profiles

Chapter 17
Managing Applications in an Application Container

17-18

required by the application. To migrate the PDBs to an application container, follow these
steps:

1. Choose one of the PDBs, and use the instructions in "Creating an Application Root Using
an Existing PDB" to create the application root with this PDB.

As part of this step, you associate the database objects, users, roles, and profiles with
the application by running procedures in the DBMS_PDB package.

2. Use the instructions in "Creating an Application PDB Using an Existing PDB" to create
one hundred application PDBs using the PDBs that are running the application.

See Also:

• "Creating an Application Container"

• "Installing an Application in an Application Container with Automated
Propagation"

• Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_PDB

Creating an Application Root Using an Existing PDB
Migrate an application that is installed in a PDB by copying the PDB to an application
container.

Prerequisites

An Oracle Database 12c Release 2 (12.2) or later CDB must exist.

1. In the CDB, create the application root by cloning the existing PDB, relocating the
existing PDB, or by unplugging and plugging in the existing PDB.

The new application root must contain all database objects used by the application.

2. With the application root as the current container, start an application installation
operation by issuing an ALTER PLUGGABLE DATABASE ... BEGIN INSTALL statement.

3. Optional: Query the COMMON column in the DBA_USERS, DBA_ROLES, and DBA_PROFILES
views to determine which users, roles, and profiles are common.

4. Run the following procedures in the DBMS_PDB package to associate users, roles. and
profiles with the application:

• Run the SET_USER_EXPLICIT procedure to set application common users.

• Run the SET_ROLE_EXPLICIT procedure to set application common roles.

• Run the SET_PROFILE_EXPLICIT procedure to set application common profiles.

If you do not have EXECUTE privilege on the DBMS_PDB package, then you can run these
procedures in the DBMS_PDB_ALTER_SHARING package.

5. Optional: With the application root as the current container, query the SHARING column in
the DBA_OBJECTS view to determine which database objects are shared.

6. Run the following procedures in the DBMS_PDB package to associate database objects
with the application:

Chapter 17
Managing Applications in an Application Container

17-19

• Run the SET_DATA_LINKED procedure to set data-linked application common
objects.

• Run the SET_METADATA_LINKED procedure to set metadata-linked application
common objects.

• Run the SET_EXT_DATA_LINKED procedure to set extended data-linked
application common objects.

If you do not have EXECUTE privilege on the DBMS_PDB package, then you can run
these procedures in the DBMS_PDB_ALTER_SHARING package.

7. End the application installation operation by issuing an ALTER PLUGGABLE
DATABASE ... END INSTALL statement.

8. Optional: Rerun the queries that you ran previously to ensure that the sharing
properties of the database objects are correct and that the common properties of
the users, roles, and profiles are correct.

9. Optional: If existing PDBs use the application, then create application PDBs using
these existing PDBs.

See "Creating an Application PDB Using an Existing PDB".

Related Topics

• Creating an Application Container
You can create an application container using the CREATE PLUGGABLE DATABASE
statement with the AS APPLICATION CONTAINER clause.

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Oracle Database PL/SQL Packages and Types Reference

Creating an Application PDB Using an Existing PDB
After migrating an existing application to an application root, you can use an existing
PDB that uses the application to create an application PDB.

Prerequisites

You must meet the following prerequisites:

• An Oracle Database 12c Release 2 (12.2) or later CDB must exist, and the
application root to which the application PDB will belong must exist.

• The PDB must contain all application common objects used by the application.

• The application must be installed in the application root.

1. In the application root, create the application PDB by cloning the existing PDB or
by unplugging and plugging in the existing PDB.

Violations will be reported during PDB creation.

2. Connect to or switch to the new PDB as a user with the required privileges.

3. Run the pdb_to_apppdb.sql script in the ORACLE_HOME/rdbms/admin directory.

The script automatically synchronizes the application PDB with the application
root.

Chapter 17
Managing Applications in an Application Container

17-20

4. Optional: Query the SHARING column in the DBA_OBJECTS view to ensure that the sharing
properties of the database objects are correct.

5. Optional: Query the COMMON column in the DBA_USERS, DBA_ROLES, and DBA_PROFILES
views to ensure that the common properties of the users, roles, and profiles are correct.

Related Topics

• Creating and Removing PDBs and Application Containers
You can create PDBs, application containers, and application seeds using a variety of
techniques.

Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Installing, upgrading, patching, or uninstalling an application in an application root does not
change its application PDBs until they are synchronized. When the application PDB is the
current container, synchronize manually using one of the following forms of ALTER PLUGGABLE
DATABASE APPLICATION ... SYNC:

• Synchronize a single application as follows, where app1 is the name of the application:

ALTER PLUGGABLE DATABASE APPLICATION app1 SYNC;

Optionally, specify SYNC TO PATCH patchno to synchronize app1 to the specified patch,
and SYNC TO version to synchronize app1 to the specified version.

• Synchronize all applications as follows:

ALTER PLUGGABLE DATABASE APPLICATION ALL SYNC;

Prerequisites and Restrictions

• The current user must have ALTER PLUGGABLE DATABASE system privilege.

• When specifying multiple applications using ALL, the SYNC TO clause is not supported.

• Specifying multiple applications using ALL replays application BEGIN and END blocks in the
order in which they were captured. When applications depend on one another,
synchronizing them in a single statement is necessary for functional correctness.

1. In SQL*Plus, ensure that the current container is the application PDB.

2. Run an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Example 17-2 Synchronizing a Specific Application in an Application PDB

This example synchronizes an application named salesapp in an application PDB with the
latest application changes in the application root.

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC;

Chapter 17
Managing Applications in an Application Container

17-21

Example 17-3 Synchronizing an Application to a Specified Patch

This example synchronizes an application named salesapp in an application PDB to
patch 100.

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC TO PATCH 100;

Example 17-4 Synchronizing an Application to a Specified Application Release

This example synchronizes an application named salesapp in an application PDB to
release 2.0 of the application.

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC TO '2.0';

Example 17-5 Synchronizing All of the Applications in an Application PDB

This example synchronizes all of the applications in an application PDB with the latest
application changes in the application root.

ALTER PLUGGABLE DATABASE APPLICATION ALL SYNC;

Example 17-6 Synchronizing Implicitly Created Applications in an Application
PDB

This example synchronizes all of the implicitly-created applications in an application
PDB with the latest application changes to the implicitly created applications in the
application root.

ALTER PLUGGABLE DATABASE APPLICATION APP$CON SYNC;

See Also:

"Application Synchronization"

Synchronizing an Application Root Replica with a Proxy PDB
When application containers in different CDBs have the same application, their
application roots can be kept synchronized by creating a master application root, a
replica application root, and a proxy PDB.

• About Synchronizing an Application Root Replica with a Proxy PDB
A proxy PDB can synchronize an application root and a replica of the application
root.

• Creating a Proxy PDB That References an Application Root Replica
When multiple application containers run the same application, the application in
the application containers can be kept synchronized using proxy PDBs.

Chapter 17
Managing Applications in an Application Container

17-22

About Synchronizing an Application Root Replica with a Proxy PDB
A proxy PDB can synchronize an application root and a replica of the application root.

An application might be installed in several application containers. Installing, upgrading, and
patching the application are more efficient when you use proxy PDBs.

In this configuration, one application container has the master application root. The master
application root is where you install, upgrade, and patch the application. Application root
replicas are exact copies of the master application root. Each application root replica is
referenced by a proxy PDB in the master application root.

When a proxy PDB is synchronized with the application changes in the master application
root, it propagates the changes to its referenced application root replica. After the application
root replica is synchronized, application PDBs that are plugged into the application root
replica can synchronize with the replica and in this way receive the changes.

The following figure shows a configuration that synchronizes an application root replica using
a proxy PDB.

Chapter 17
Managing Applications in an Application Container

17-23

Figure 17-2 Synchronizing an Application Root Replica with a Proxy PDB

Proxy PDB’s SYSTEM
and SYSAUX Files

Application Root Replica’s
SYSTEM and SYSAUX Files

Copy to New Location

CREATE PLUGGABLE DATABASE ... AS PROXY ... FROM

Database
Link

Reference

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Application Root Replica

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

Application
Seed

PDBs and Application Containers

Application
Container

Application PDBs

Proxy
PDB

Master Application Root

Chapter 17
Managing Applications in an Application Container

17-24

In addition, when an application root replica is configured and has its own application PDBs,
a query that includes the CONTAINERS clause in the master application root can return data
from the current application container and from the application container with the application
root replica. The query can show results from the application root replica and from any open
application PDBs plugged into the replica.

See Also:

"Querying Application Common Objects Across Application PDBs"

Creating a Proxy PDB That References an Application Root Replica
When multiple application containers run the same application, the application in the
application containers can be kept synchronized using proxy PDBs.

1. Create the application container with the master application root by using a CREATE
PLUGGABLE DATABASE statement.

Install the application in the application container now or later.

2. Create the application container with the application root replica in one of the following
ways:

• Create an empty application container using any supported method.

• Clone the master application root.

If the port of the listener used by the application root replica is not 1521, then a PORT
clause is required during creation. If the host of the application root replica is different
from the host of the master application root, then a HOST clause is required during
creation.

This application root replica will be referenced by the proxy PDB.

3. In the master application root, create a proxy PDB that references the application root
replica that you created in the previous step.

4. Open and synchronize the proxy PDB.

When the proxy PDB is synchronized, it propagates the changes in the master
application root to the application root replica.

5. Optional: In the master application root, modify the application by installing, upgrading, or
patching it.

6. Optional: Synchronize the proxy PDB with the application changes in the master
application root by running the ALTER PLUGGABLE DATABASE APPLICATION statement with
the SYNC clause.

When the proxy PDB is synchronized, it propagates the changes in the master
application root to the application root replica.

Example 17-7 Synchronizing an Application Root Replica with a Proxy PDB

This example assumes that two CDBs exist: hqdb and depdb. The goal is to keep the same
application synchronized in an application container in each CDB. To accomplish this goal,
this example configures the following application containers:

Chapter 17
Managing Applications in an Application Container

17-25

• The hqdb CDB contains the application container with the master application root
called msappcon.

– An application called sampleapp is installed in the msappcon master application
root.

– The msappcon application root contains two application PDBs named mspdb1
and mspdb2.

– The msappcon application root also contains a proxy PDB named prxypdb that
references the application root replica in the other CDB.

• The depdb CDB contains the application container with the application root replica
called depappcon.

– An application called sampleapp is propagated from the proxy PDB prxypdb in
the msappcon master application root and installed in the depappcon master
application root.

– The depappcon application root contains two application PDBs named deppdb1
and deppdb2.

This example shows how changes to the sampleapp application in the msappcon
master application root are applied to the application PDBs in both CDBs when the
application PDBs are synchronized.

1. Create the application container with the master application root in the hqdb CDB.

a. In SQL*Plus, ensure that the current container is the hqdb CDB root.

b. Create the application container from the PDB seed with the following
statement:

CREATE PLUGGABLE DATABASE msappcon
 AS APPLICATION CONTAINER
 ADMIN USER msappconadm IDENTIFIED BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE appcontbs
 DATAFILE '/disk1/oracle/dbs/mssappcon/msappcon01.dbf' SIZE
250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/msappcon/');

c. Open the new master application root in read/write mode:

ALTER PLUGGABLE DATABASE msappcon OPEN;

2. Install an application in the master application root.

a. Change container to the master application root:

ALTER SESSION SET CONTAINER=msappcon;

b. Begin the application installation:

ALTER PLUGGABLE DATABASE APPLICATION sampleapp BEGIN INSTALL
'1.0';

Chapter 17
Managing Applications in an Application Container

17-26

c. Install the application.

For example, you can create database objects:

CREATE TABLE apptb SHARING=METADATA
 (id NUMBER(6),
 widget_name VARCHAR2(20));

d. End the application installation:

ALTER PLUGGABLE DATABASE APPLICATION sampleapp END INSTALL '1.0';

3. Create and synchronize one or more application PDBs in the master application root.

a. In SQL*Plus, ensure that the current container is the master application root.

b. Create application PDBs in the master application root.

For example, create two application PDBs from the PDB seed:

CREATE PLUGGABLE DATABASE mspdb1 ADMIN USER mspdb1admin IDENTIFIED BY
password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE mspdb1tbs
 DATAFILE '/disk1/oracle/dbs/mspdb1/mspdb101.dbf' SIZE 250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/mspdb1/');

CREATE PLUGGABLE DATABASE mspdb2 ADMIN USER mspdb2admin IDENTIFIED BY
password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE mspdb2tbs
 DATAFILE '/disk1/oracle/dbs/mspdb2/mspdb201.dbf' SIZE 250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/mspdb2/');

c. Open both application PDBs:

ALTER PLUGGABLE DATABASE mspdb1 OPEN;
ALTER PLUGGABLE DATABASE mspdb2 OPEN;

d. Synchronize the application PDBs with the master application root:

ALTER SESSION SET CONTAINER=mspdb1;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

ALTER SESSION SET CONTAINER=mspdb2;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

4. Create the application container with the application root replica in the depdb CDB.

a. In SQL*Plus, ensure that the current container is the depdb CDB root.

Chapter 17
Managing Applications in an Application Container

17-27

b. Create the application container from the PDB seed with the following
statement:

CREATE PLUGGABLE DATABASE depappcon
 AS APPLICATION CONTAINER
 ADMIN USER depappconadm IDENTIFIED BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE appcontbs
 DATAFILE '/disk2/oracle/dbs/depsappcon/depappcon01.dbf' SIZE
250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk2/oracle/dbs/pdbseed/',
 '/disk2/oracle/dbs/depappcon/');

Note:

• If the port of the listener used by the application root replica is
not 1521, then a PORT clause is required.

• If the host of the application root replica is different from the host
of the master application root, then a HOST clause is required.

c. Open the new application root replica in read/write mode:

ALTER PLUGGABLE DATABASE depappcon OPEN;

5. Create and synchronize the proxy PDB in the master application root.

a. In SQL*Plus, ensure that the current container is the master application root.

b. Create a database link to the application root replica:

CREATE PUBLIC DATABASE LINK depappcon
 CONNECT TO depappconadm IDENTIFIED BY password USING
'depappcon';

c. Create the proxy PDB:

CREATE PLUGGABLE DATABASE prxypdb AS PROXY
 FROM depappcon@depappcon
 FILE_NAME_CONVERT = ('/disk2/oracle/dbs/depsappcon/',
 '/disk1/oracle/dbs/prxypdb/');

d. Open the proxy PDB:

ALTER PLUGGABLE DATABASE prxypdb OPEN;

e. Synchronize the proxy PDB with the master application root:

ALTER SESSION SET CONTAINER=prxypdb;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

Chapter 17
Managing Applications in an Application Container

17-28

6. Create and synchronize one or more application PDBs in the application root replica.

a. Change container to the application root replica:

ALTER SESSION SET CONTAINER=depappcon;

b. Create application PDBs in the application root replica.

For example, create two application PDBs from the PDB seed:

CREATE PLUGGABLE DATABASE deppdb1
 ADMIN USER deppdb1admin IDENTIFIED BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE deppdb1tbs
 DATAFILE '/disk2/oracle/dbs/deppdb1/deppdb101.dbf' SIZE 250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk2/oracle/dbs/pdbseed/',
 '/disk2/oracle/dbs/deppdb1/');

CREATE PLUGGABLE DATABASE deppdb2 ADMIN USER deppdb2admin IDENTIFIED
BY password
 STORAGE (MAXSIZE 2G)
 DEFAULT TABLESPACE deppdb2tbs
 DATAFILE '/disk2/oracle/dbs/deppdb2/deppdb201.dbf' SIZE 250M
 AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk2/oracle/dbs/pdbseed/',
 '/disk2/oracle/dbs/deppdb2/');

c. Open both application PDBs:

ALTER PLUGGABLE DATABASE deppdb1 OPEN;
ALTER PLUGGABLE DATABASE deppdb2 OPEN;

d. Synchronize the application PDBs with the master application root:

ALTER SESSION SET CONTAINER=deppdb1;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

ALTER SESSION SET CONTAINER=deppdb2;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

7. Check the structure of the apptb table in an application PDB in the application root
replica.

a. From the application root replica, switch containers to the deppdb1 application PDB:

ALTER SESSION SET CONTAINER=deppdb1;

b. Describe the apptb table:

desc apptb

Chapter 17
Managing Applications in an Application Container

17-29

Your output is similar to the following:

 Name Null? Type
 ------------------------------- -------- ------------
 ID NUMBER(6)
 WIDGET_NAME VARCHAR2(20)

8. In the master application root, upgrade the application.

a. Change container to the master application root:

ALTER SESSION SET CONTAINER=msappcon;

b. Begin the application upgrade.

ALTER PLUGGABLE DATABASE APPLICATION sampleapp
 BEGIN UPGRADE '1.0' TO '1.1';

c. Modify the application.

For example, add a row to the apptb table:

ALTER TABLE apptb ADD (widget_type VARCHAR2(30));

d. End the application upgrade:

ALTER PLUGGABLE DATABASE APPLICATION sampleapp END UPGRADE TO
'1.1';

9. Synchronize the proxy PDB with the master application root:

ALTER SESSION SET CONTAINER=prxypdb;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

10. Synchronize the application PDBs in the application root replica and check for the
application upgrade.

a. Synchronize the application PDBs:

ALTER SESSION SET CONTAINER=deppdb1;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

ALTER SESSION SET CONTAINER=deppdb2;
ALTER PLUGGABLE DATABASE APPLICATION sampleapp SYNC;

b. From the application root replica, switch containers to the deppdb1 application
PDB:

ALTER SESSION SET CONTAINER=deppdb1;

c. Describe the apptb table:

desc apptb

Chapter 17
Managing Applications in an Application Container

17-30

Your output is similar to the following:

 Name Null? Type
 ------------------------------- -------- ------------
 ID NUMBER(6)
 WIDGET_NAME VARCHAR2(20)
 WIDGET_TYPE VARCHAR2(30)

Notice that the change in the application upgrade is reflected in the output because
the widget_type column has been added to the apptb table.

Related Topics

• Creating Application Containers
You can use the CREATE PLUGGABLE DATABASE statement to create an application
container in a CDB.

• Creating a PDB as a Proxy PDB
You can create a PDB as a proxy PDB by referencing it in a remote CDB.

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Setting the Compatibility Version of an Application
The compatibility version of an application is the earliest version of the application possible
for the application PDBs that belong to the application container.

The compatibility version is enforced when the compatibility version is set and when an
application PDB is created. If there are application root clones that resulted from application
upgrades, then all application root clones that correspond to versions earlier than the
compatibility version are implicitly dropped.

You specify the compatibility version of an application by issuing one of the following SQL
statements when the application root is the current container:

• ALTER PLUGGABLE DATABASE APPLICATION application_name SET COMPATIBILITY
VERSION 'application_version_number';
application_name is the name of the application, and application_version_number is the
earliest compatible version.

• ALTER PLUGGABLE DATABASE APPLICATION application_name SET COMPATIBILITY
VERSION CURRENT;
application_name is the name of the application. The current version is the version of the
application in the application root.

Note:

You cannot plug in an application PDB that uses an application version earlier than
the compatibility setting of the application container.

Chapter 17
Managing Applications in an Application Container

17-31

1. In SQL*Plus, ensure that the current container is the application root.

2. Run an ALTER PLUGGABLE DATABASE APPLICATION SET COMPATIBILITY VERSION
statement.

Example 17-8 Setting the Compatibility Version to a Specific Version Number

This example sets the compatibility version for an application named salesapp to
version 4.2.

ALTER PLUGGABLE DATABASE APPLICATION salesapp
 SET COMPATIBILITY VERSION '4.2';

Example 17-9 Setting the Compatibility Version to the Current Application
Version

This example sets the compatibility version for an application named salesapp to the
current application version.

ALTER PLUGGABLE DATABASE APPLICATION salesapp
 SET COMPATIBILITY VERSION CURRENT;

See Also:

"About Upgrading Applications in an Application Container" for information
about application root clones

Performing Bulk Inserts During Application Install, Upgrade, and Patch
Operations

SQL*Loader is the only supported utility for bulk inserts into tables during application
install, upgrade, and patch operations. Only conventional path loads are supported for
bulk inserts during application install, upgrade, and patch operations.

The correct SQL*Loader module name must be specified between the ALTER
PLUGGABLE DATABASE APPLICATION BEGIN and the ALTER PLUGGABLE DATABASE
APPLICATION END statements. The module name is SQL Loader Conventional Path
Load.

1. In SQL*Plus, ensure that the current container is the application root.

2. Set the correct module by running the following procedure:

BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(
 'SQL Loader Conventional Path Load', '');
END;

This module must remain set for the entire application install, upgrade, or patch
operation.

Chapter 17
Managing Applications in an Application Container

17-32

3. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN statement for beginning an
application installation, upgrade, or patch.

For example, if you are performing the bulk insert as part of an application installation,
then run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 BEGIN INSTALL 'application_version_number';

4. Perform the conventional path load with SQL*Loader.

5. Run the ALTER PLUGGABLE DATABASE APPLICATION END statement for ending an
application installation, upgrade, or patch.

For example, if you are performing the bulk insert as part of an application installation,
then run the ALTER PLUGGABLE DATABASE APPLICATION END INSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 END INSTALL 'application_version_number';

Note:

Ensure that the application_name and application_version_number match in
the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL statement and
the ALTER PLUGGABLE DATABASE APPLICATION END INSTALL statement.

6. Synchronize all application PDBs that must include these application changes by issuing
an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Example 17-10 Performing a Conventional Path Load During an Application
Installation

In this example, the conventional path load is performed in an application root.

1. In SQL*Plus, switch to the application root.

ALTER SESSION SET CONTAINER=cdb1_approot1;

2. Set the correct module.

BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(
 'SQL Loader Conventional Path Load', '');
END;

3. Start the application installation.

ALTER PLUGGABLE DATABASE APPLICATION APP1 BEGIN INSTALL '1';

Chapter 17
Managing Applications in an Application Container

17-33

4. Use SQL*Loader to perform the conventional path load.

HOST sqlldr u1/u1@cdb1_approot1 control=my_bulk_load.ctl -
rows=3 log=my_bulk_load.log

5. End the application installation.

ALTER PLUGGABLE DATABASE APPLICATION APP1 END INSTALL '1';

See Also:

Oracle Database Utilities for information about SQL*Loader

Uninstalling Applications from an Application Container
You can uninstall an application in an application container.

• About Uninstalling Applications from an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to uninstall an
application from the application root.

• Uninstalling an Application from an Application Container
To uninstall an application in from application container, run the ALTER PLUGGABLE
DATABASE APPLICATION BEGIN UNINSTALL statement to begin the uninstallation
and the ALTER PLUGGABLE DATABASE APPLICATION END UNINSTALL statement to
end it. The application uninstalled from the application PDBs that synchronize with
the application in the application root.

About Uninstalling Applications from an Application Container
You issue ALTER PLUGGABLE DATABASE APPLICATION statements to uninstall an
application from the application root.

You uninstall the application from the application root only, and application PDBs that
synchronize with the application uninstall the application automatically. The uninstall
operation can be done with one or more of the following: scripts, SQL statements, and
graphical user interface tools.

You must indicate the start of the uninstallation with an ALTER PLUGGABLE DATABASE
APPLICATION BEGIN UNINSTALL statement and the end of the uninstallation with an
ALTER PLUGGABLE DATABASE APPLICATION END UNINSTALL statement. Each
uninstallation must be associated with an application name and version number, which
are specified in the ALTER PLUGGABLE DATABASE APPLICATION statements.

Uninstalling an application does not remove the application from the data dictionary. It
marks the application as UNINSTALLED so that upgrade, patch, and uninstall of the
application is disallowed.

Destructive changes to application objects are allowed during application
uninstallation. Applications running in an application PDB continue to function during
uninstallation and after the application is uninstalled from the application root. The
application can continue to function in the application PDB because the ALTER

Chapter 17
Managing Applications in an Application Container

17-34

PLUGGABLE DATABASE APPLICATION BEGIN UNINSTALL statement creates a clone of the
application root called an application root clone. An application root clone serves as a
metadata repository for old versions of application objects, so that application PDBs that have
not been synchronized with latest version of the application can continue to function.
Because the clone is created while the application PDB is open, local undo must be
configured at the CDB level before an application can be uninstalled.

Note:

An application upgrade also creates an application root clone.

See Also:

• "About Upgrading Applications in an Application Container" for information
about application root clones

• "Running Oracle-Supplied SQL Scripts in a CDB"

Uninstalling an Application from an Application Container
To uninstall an application in from application container, run the ALTER PLUGGABLE DATABASE
APPLICATION BEGIN UNINSTALL statement to begin the uninstallation and the ALTER
PLUGGABLE DATABASE APPLICATION END UNINSTALL statement to end it. The application
uninstalled from the application PDBs that synchronize with the application in the application
root.

The following prerequisites must be met:

• The CDB must be in local undo mode.

• The current user must have the ALTER PLUGGABLE DATABASE system privilege, and the
privilege must be commonly granted in the application root.

• The application root must be in open read/write mode.

1. In SQL*Plus, ensure that the current container is the application root.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UNINSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN UNINSTALL;
For example, run the following statement if the application_name is salesapp:

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN UNINSTALL;
3. Uninstall the application using scripts, SQL statements, or graphical user interface tools.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END UNINSTALL statement in the
following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END UNINSTALL;
For example, run the following statement if the application_name is salesapp:

Chapter 17
Managing Applications in an Application Container

17-35

ALTER PLUGGABLE DATABASE APPLICATION salesapp END UNINSTALL;

Note:

Ensure that the application_name matches in the ALTER PLUGGABLE
DATABASE APPLICATION BEGIN UNINSTALL statement and theALTER
PLUGGABLE DATABASE APPLICATION END UNINSTALL statement.

5. Synchronize all of the application PDBs that must uninstall the application by
issuing an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC
clause.

See Also:

• "Accessing a Container in a CDB"

• "Synchronizing Applications in an Application PDB"

• "Setting the Undo Mode in a CDB Using ALTER DATABASE"

Managing Application Common Objects
Application common objects are shared, user-created database objects in an
application container. Application common objects are created in an application root.

• About Application Common Objects
Application common objects are created in an application root and are shared with
the application PDBs that belong to the application root.

• Restrictions for Application Common Objects
Some restrictions apply to application common objects.

• Creating Application Common Objects
You create an application common object in an application root either by ensuring
that the DEFAULT_SHARING initialization parameter is set to the correct value or by
including the SHARING clause in the CREATE SQL statement.

• Issuing DML Statements on Application Common Objects
The rules are different for issuing DML statements on metadata-linked, data-
linked, and extended data-linked application common objects.

• Modifying Application Common Objects with DDL Statements
When you modify an application common object in an application root with certain
DDL statements, you must modify the object between ALTER PLUGGABLE DATABASE
APPLICATION BEGIN and ALTER PLUGGABLE DATABASE APPLICATION END
statements, and application PDBs must synchronize with the application to apply
the changes.

About Application Common Objects
Application common objects are created in an application root and are shared with the
application PDBs that belong to the application root.

Chapter 17
Managing Application Common Objects

17-36

There are three types of application common object: metadata-linked, data-linked, and
extended data-linked. The following types of database objects can be application common
objects:

• Analytic views

• Attribute dimensions

• Directories

• External procedure libraries

• Hierarchies

• Java classes, resources, and sources

• Object tables, types, and views

• Sequences

• Packages, stored functions, and stored procedures

• Synonyms

• Tables (including global temporary tables)

• Triggers

• Views

• Creation of Application Common Objects
Create application common objects by issuing a CREATE statement when the current
container is the application root and specifying the SHARING clause.

• About Metadata-Linked Application Common Objects
For metadata-linked application common objects, the metadata for the object is stored
once in the application root.

• About Extended Data-Linked Application Common Objects
For data-linked application common objects, both the metadata and the data for the
object is stored once in the application root. A data link in each application PDB that
belongs to the application root enables the application PDBs to share the metadata and
data of the object.

• About Extended Data-Linked Application Common Objects
For an extended data-linked object, each application PDB can create its own data while
sharing the common data in the application root. Only data stored in the application root
is common for all application PDBs.

See Also:

"Application Common Objects"

Creation of Application Common Objects
Create application common objects by issuing a CREATE statement when the current container
is the application root and specifying the SHARING clause.

You can specify the sharing attribute by including the SHARING clause in the CREATE statement
or by setting the DEFAULT_SHARING initialization parameter in the application root. When you

Chapter 17
Managing Application Common Objects

17-37

set the DEFAULT_SHARING initialization parameter, the setting is the default sharing
attribute for all database objects of a supported type created in the application root.
However, when a SHARING clause is included in a CREATE statement, its setting
overrides the setting for the DEFAULT_SHARING initialization parameter.

You can specify one of the following for the sharing attribute:

• METADATA: A metadata link shares the database object’s metadata, but its data is
unique to each container. These database objects are referred to as metadata-
linked application common objects. This setting is the default.

• DATA: A data link shares the database object, and its data is the same for all
containers in the application container. Its data is stored only in the application
root. These database objects are referred to as data-linked application common
objects.

• EXTENDED DATA: An extended data link shares the database object, and its data in
the application root is the same for all containers in the application container.
However, each application PDB in the application container can store data that is
unique to the application PDB. For this type of database object, data is stored in
the application root and, optionally, in each application PDB. These database
objects are referred to as extended data-linked application common objects.

• NONE: The database object is not shared.

For most types of application common objects, the only valid settings for the SHARING
clause are METADATA and NONE. The following types of application common objects
allow additional settings for the SHARING clause:

• For tables (excluding object tables), the SHARING clause can be set to METADATA,
DATA, EXTENDED DATA, or NONE. For object tables, only METADATA or NONE is valid.

• For views (excluding object views), the SHARING clause can be set to METADATA,
DATA, EXTENDED DATA, or NONE. For object views, only METADATA or NONE is valid.

• For sequences, the SHARING clause can be set to METADATA, DATA, or NONE.

With a metadata-linked sequence, each application PDB has its own sequence.
When the metadata-linked sequence is incremented using the NEXTVAL
pseudocolumn in one application PDB, it does not affect the value of the sequence
in the other application PDBs in the application container.

With a data-linked sequence, each application PDB shares the same sequence in
the application root. When the metadata-linked sequence is incremented using the
NEXTVAL pseudocolumn in one application PDB, all other application PDBs in the
same application container also see the change.

Application common objects can be created or changed only as part of an application
installation, upgrade, or patch. An application PDB applies changes to application
common objects when it synchronizes with the application that made the changes. If
an application PDB is closed when an application common object is created, dropped,
or modified, then the appropriate changes are applied in the application PDB when it is
opened and synchronized with the application.

The names of application common objects must not conflict with those of local
database objects in any of the application PDBs that belong to the application root or
Oracle-supplied common objects in the CDB root. If a newly opened application PDB
contains a local database object whose name conflicts with that of an application
common object, then the application PDB is opened in RESTRICTED mode. In this case,

Chapter 17
Managing Application Common Objects

17-38

you must resolve the naming conflict before the application PDB can be opened in normal
mode.

About Metadata-Linked Application Common Objects
For metadata-linked application common objects, the metadata for the object is stored once
in the application root.

A metadata link in each application PDB that belongs to the application root enables the
application PDBs to share the metadata for the object, including the object name and
structure. The data for the object is unique to each container, including the application root
and each application PDB that belongs to the application root.

Data definition language (DDL) operations on a metadata-linked application common object
can be run in the application root only as part of an application installation, upgrade, or patch.
However, the data can be modified in an application PDB using normal data manipulation
language (DML) operations.

For example, consider a company with several regional offices. The company wants the
structure of the information about employees to be consistent, but each office has different
employees. If this company has a human resources application in an application container, it
can create a separate application PDB for each regional office and use a metadata-linked
table to store employee information. The data structure of the table, such as the columns, is
the same in the application PDB for each regional office, but the employee data is different.

Another example might involve a company that builds and maintains a sales application that
is used by several different businesses. Each business uses the same sales application, but
the data for each business is different. For example, each business has different customers
and therefore different customer data. To ensure that each client uses the same data
structure for its application, the company might create an application container with
metadata-linked application common objects. Each business that uses the sales application
has its own application PDB, and the data structure is the same in each application PDB, but
the data is different.

About Extended Data-Linked Application Common Objects
For data-linked application common objects, both the metadata and the data for the object is
stored once in the application root. A data link in each application PDB that belongs to the
application root enables the application PDBs to share the metadata and data of the object.

DDL operations on a data-linked application common object can be run in the application root
only as part of an application installation, upgrade, or patch. In addition, the data can be
modified using normal DML operations only in the application root. The data cannot be
modified in application PDBs.

For example, consider a company with several regional offices. The company wants the
information about the products they sell, such as the product names and descriptions, to be
consistent at all of the regional offices. If this company has a sales application in an
application container, then it can create a separate application PDB for each regional office
and use a data-linked table to store product information. Each application PDB can query the
product information, and the product information is consistent at each regional office.

Data-linked application common objects are also useful for data that is standard and does not
change. For example, a table that stores the postal codes for a country might be a data-
linked application common object in an application container. All of the application PDBs
access the same postal code data in the application root.

Chapter 17
Managing Application Common Objects

17-39

Note:

If the data-linked application common object is part of a configuration that
synchronizes an application root replica with a proxy PDB, then DML
operations on a data-linked object in the application root can be done outside
of an application action, but the DML operation is not automatically
propagated to the application root replication through the proxy PDB. If you
want the DML operation to be propagated to the application root replica, then
the DML operation on a data-linked object in the application root must be
done within an application installation, upgrade, or patch.

About Extended Data-Linked Application Common Objects
For an extended data-linked object, each application PDB can create its own data
while sharing the common data in the application root. Only data stored in the
application root is common for all application PDBs.

DDL operations on an extended data-linked application common object can be run in
the application root only as part of an application installation, upgrade, or patch.
However, the data can be modified in the application root or in an application PDB
using normal DML operations.

For example, a sales application in an application container might support several
application PDBs, and all of the application PDBs need the postal codes in the United
States for shipping purposes. In this case the postal codes can be stored in the
application root so that all of the application PDBs can access it. However, one
application PDB also makes sales in Canada, and this application PDB requires the
postal codes for the United States and Canada. This one application PDB can store
the postal codes for Canada in an extended data-linked object in the application PDB
instead of in the application root.

Note:

• Tables and views are the only types of database objects that can be
extended data-linked objects.

• If the extended data-linked application common object is part of a
configuration that synchronizes an application root replica with a proxy
PDB, then DML operations on an extended data-linked object in the
application root can be done outside of an application action, but the
DML operation is not automatically propagated to the application root
replication through the proxy PDB. If you want the DML operation to be
propagated to the application root replica, then the DML operation on an
extended data-linked object in the application root must be done within
an application installation, upgrade, or patch.

Restrictions for Application Common Objects
Some restrictions apply to application common objects.

Chapter 17
Managing Application Common Objects

17-40

Queries on application common objects can return data from a container that is not the
current container. For example, when the current container is an application root, queries that
include the CONTAINERS clause can return data from application PDBs for metadata-linked
application common objects. Also, when the current container is an application PDB, queries
on data-linked and extended data-linked application common objects return data that resides
in the application root.

Columns of the following types return no data in queries that return data from a container
other than the current container:

• The following user-defined types: object types, varrays, REFs, and nested tables

• The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression

In addition, queries on object tables and object views return no data from containers other
than the current container.

Related Topics

• Querying Application Common Objects Across Application PDBs
The CONTAINERS clause enables you to query application common objects across all
PDBs in an application container. Queries from the application root display data in objects
that exist in all open PDBs in the container.

Creating Application Common Objects
You create an application common object in an application root either by ensuring that the
DEFAULT_SHARING initialization parameter is set to the correct value or by including the
SHARING clause in the CREATE SQL statement.

You can create a metadata-linked object, an extended data-linked, or a data-linked object in
an application root as part of an application installation, upgrade, or patch. An application
PDB applies changes to application common objects when it synchronizes with the
application in the application root.

1. In SQL*Plus, ensure that the current container is the application root.

The current user must have the privileges required to create the database object.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN statement for beginning an
application installation, upgrade, or patch.

For example, if you are creating the application common object as part of an application
installation, then run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL
statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 BEGIN INSTALL 'application_version_number';

3. Create the application common object and specify its sharing attribute in one of the
following ways:

• Ensure that the DEFAULT_SHARING initialization parameter is set to the desired sharing
attribute in the application root, and issue the CREATE SQL statement to create the
database object.

• Issue the CREATE SQL statement, and include the SHARING clause set to METADATA,
DATA, or EXTENDED DATA.

Chapter 17
Managing Application Common Objects

17-41

When a SHARING clause is included in a SQL statement, it takes precedence over
the value specified in the DEFAULT_SHARING initialization parameter. For example, if
the DEFAULT_SHARING initialization parameter is set to METADATA in the application
root, and a database object is created with SHARING set to DATA, then the database
object is created as a data-linked database object.

Note:

Once a database object is created, its sharing attribute cannot be
changed.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END statement for ending an
application installation, upgrade, or patch.

For example, if you are creating the application common object as part of an
application installation, then run the ALTER PLUGGABLE DATABASE APPLICATION END
INSTALL statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name
 END INSTALL 'application_version_number';

Note:

Ensure that the application_name and application_version_number
match in the ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL
statement and the ALTER PLUGGABLE DATABASE APPLICATION END
INSTALL statement.

5. Synchronize all of the application PDBs that must apply these changes by issuing
an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause with
the application PDB as the current container.

Example 17-11 Setting the DEFAULT_SHARING Initialization Parameter

This example sets the DEFAULT_SHARING initialization parameter to DATA both in
memory and in the SPFILE. When a database object that supports sharing is created
in the application root, and no SHARING clause is included in the CREATE SQL
statement, the database object uses the sharing attribute specified in the
DEFAULT_SHARING initialization parameter.

ALTER SYSTEM SET DEFAULT_SHARING=DATA SCOPE=BOTH;

Example 17-12 Creating a Metadata-Linked Object

This example creates the employees_md metadata-linked table by including the
SHARING=METADATA clause. The application_name is salesapp and the
application_version_number is 4.2, and the object is created during application
installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '4.2';
CREATE TABLE employees_md SHARING=METADATA

Chapter 17
Managing Application Common Objects

17-42

 (employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25) CONSTRAINT emp_last_name_nn_demo NOT NULL,
 email VARCHAR2(25) CONSTRAINT emp_email_nn_demo NOT NULL,
 phone_number VARCHAR2(20),
 hire_date DATE DEFAULT SYSDATE
 CONSTRAINT emp_hire_date_nn_demo NOT NULL,
 job_id VARCHAR2(10) CONSTRAINT emp_job_nn_demo NOT NULL,
 salary NUMBER(8,2) CONSTRAINT emp_salary_nn_demo NOT NULL,
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4),
 dn VARCHAR2(300),
 CONSTRAINT emp_salary_min_demo CHECK (salary > 0),
 CONSTRAINT emp_email_uk_demo UNIQUE (email));
ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '4.2';

Example 17-13 Creating a Data-Linked Object

This example creates the product_descriptions_ob data-linked table by including the
SHARING=DATA clause. The application_name is salesapp and the
application_version_number is 4.2, and the object is created during application installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '4.2';
CREATE TABLE product_descriptions_ob SHARING=DATA (
 product_id NUMBER(6),
 language_id VARCHAR2(3),
 translated_name NVARCHAR2(50)
 CONSTRAINT translated_name_nn NOT NULL,
 translated_description NVARCHAR2(2000)
 CONSTRAINT translated_desc_nn NOT NULL);
ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '4.2';

Example 17-14 Creating an Extended Data-Linked Object

This example creates the postalcodes extended data-linked table by including the EXTENDED
keyword and the SHARING clause. The application_name is salesapp and the
application_version_number is 4.2, and the object is created during application installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '4.2';
CREATE TABLE postalcodes SHARING=EXTENDED DATA
 (code VARCHAR2(7),
 country_id NUMBER,
 place_name VARCHAR2(20));
ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '4.2';

Example 17-15 Creating an Object That Is Not Shared in an Application Root

This example creates the departments_ns table and specifies that it is not a shared common
application object by including the SHARING=NONE clause. After creation, this database object
can be accessed only in the application root.

CREATE TABLE departments_ns SHARING=NONE
 (department_id NUMBER(4),

Chapter 17
Managing Application Common Objects

17-43

 department_name VARCHAR2(30) CONSTRAINT dept_name_nn NOT NULL,
 manager_id NUMBER(6),
 location_id NUMBER(4),
 dn VARCHAR2(300));

Note:

The ALTER PLUGGABLE DATABASE APPLICATION BEGIN and END statements
are not required when you create an object that is not a shared common
object. However, if you create an object that is not shared in between ALTER
PLUGGABLE DATABASE APPLICATION BEGIN and END statements, then the
object is created in application PDBs that synchronize with the application.

Related Topics

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the
latest version and patch in the application root.

Issuing DML Statements on Application Common Objects
The rules are different for issuing DML statements on metadata-linked, data-linked,
and extended data-linked application common objects.

• Issuing DML on Metadata-Linked Common Objects
You can issue DML on metadata-linked application objects as normal.

• Issuing DML on Data-Linked Common Objects
For data-linked application objects, issue DML as normal in the application root.
For extended data-linked application objects, issue DML as normal in the
application root and in application PDBs.

Related Topics

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the
latest version and patch in the application root.

• Synchronizing an Application Root Replica with a Proxy PDB
When application containers in different CDBs have the same application, their
application roots can be kept synchronized by creating a master application root, a
replica application root, and a proxy PDB.

Issuing DML on Metadata-Linked Common Objects
You can issue DML on metadata-linked application objects as normal.

For metadata-linked application common objects, the object definitions are the same in
all application PDBs, but the data is different. Users and applications can issue DML

Chapter 17
Managing Application Common Objects

17-44

statements on these objects in the same way as for ordinary database objects. The DML only
affects the current container.

• Querying Using the CONTAINERS Clause
For metadata-linked objects, the CONTAINERS clause enables you to query a table or view
across all PDBs in an application container.

• Setting the Default Container or DML
You can set the CONTAINERS_DEFAULT attribute on any metadata-linked object so that
DML issued in the application root is wrapped in the CONTAINERS clause by default.

Querying Using the CONTAINERS Clause
For metadata-linked objects, the CONTAINERS clause enables you to query a table or view
across all PDBs in an application container.

For metadata-linked objects, the CONTAINERS clause is useful when DML is run in the
application root. The query performs a UNION ALL, returning all rows from the object in the
root and all open application PDBs (except those in RESTRICTED mode).

To query a subset of the PDBs, specify the CON_ID or CON$NAME in predicate. If the queried
table or view does not already contain a CON_ID column, then the query adds a CON_ID
column to the query result, which identifies the container whose data a given row represents.

Prerequisites

Note the following prerequisites:

• To query data in an application container, you must be a common user connected to the
application root.

• The table or view must exist in the application root and all PDBs in the application
container.

• The table or view must be in your own schema. It is not necessary to specify schema, but
if you do, then you must specify your own schema.

To query a metadata-linked object in an application container:

1. Log in to the application root as an application common user.

2. Specify the CONTAINERS clause in a SELECT statement.

For example, the following statement counts the number of rows in the sh.customers
table in the root and every application PDB (sample output included):

SELECT c.CON_ID, COUNT(*)
FROM CONTAINERS(sh.customers) c
GROUP BY c.CON_ID
ORDER BY 1;

 CON_ID COUNT(*)
---------- ----------
 3 20002
 6 426
 8 7232

Chapter 17
Managing Application Common Objects

17-45

Setting the Default Container or DML
You can set the CONTAINERS_DEFAULT attribute on any metadata-linked object so that
DML issued in the application root is wrapped in the CONTAINERS clause by default.

Set ENABLE CONTAINERS_DEFAULT in either an ALTER TABLE or ALTER VIEW statement.
The CONTAINERS_DEFAULT column in the DBA_TABLES and DBA_VIEWS views shows
whether the database object is enabled for the CONTAINERS clause by default.

To set the default container for DML involving a metadata-linked table or view:

1. Log in to the application root as an application common user.

2. Issue an ALTER TABLE or ALTER VIEW statement with the ENABLE
CONTAINERS_DEFAULT clause in the application root.

The following statement sets the default container for sh.customers:

ALTER TABLE sh.customers ENABLE CONTAINERS_DEFAULT;

After setting this attribute, queries and DML statements issued in the application
root use the CONTAINERS clause by default for sh.customers.

Issuing DML on Data-Linked Common Objects
For data-linked application objects, issue DML as normal in the application root. For
extended data-linked application objects, issue DML as normal in the application root
and in application PDBs.

For data-linked application objects, DML in the application root affects the data
accessible by all PDBs in the application container. You cannot issue DML on data-
linked application objects in application PDBs.

For extended data-linked application objects, DML in the application root affects the
data accessible by all PDBs in the application container. DML in an application PDB
only affects data that is unique to the application PDB.

Consider an application root that has data-linked or extended data-linked objects.
Also, assume that this root is the master for application root replicas synchronized with
proxy PDBs. In this case, DML only synchronizes with the replicas when DML occurs
during an application installation, upgrade, or patch. Specifically, DML must occur in
the root between ALTER PLUGGABLE DATABASE APPLICATION ... {BEGIN|END}
statements. Other DML applies only to the current root and is not synchronized with
root replicas.

To issue DML for an application common object that is not part of an application
root replica configuration:

1. Connect to the appropriate container in the application container as a user with the
privileges required to issue DML statements on the database object.

2. Issue DML statements normally.

Chapter 17
Managing Application Common Objects

17-46

To issue DML for a data-linked or extended data-linked object that is part of an
application root replica configuration:

1. In SQL*Plus, ensure that the current container is the master application root in the
application root replica in the configuration.

The current user must have the privileges required to issue the DML statements on the
database object.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION ... BEGIN statement for beginning
an application installation, upgrade, or patch.

If you are modifying the application common object as part of an application upgrade,
then issue the upgrade statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN UPGRADE
 'application_start_version_number' TO
 'application_end_version_number';

For example, run the following statement if the application_name is salesapp, the
application_start_version_number is 4.2, and the application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp
 BEGIN UPGRADE '4.2' TO '4.3';

3. Issue the DML statements on the data-linked application common object.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION ... END statement.

For example, if you are modifying the application common object as part of an application
upgrade, then run the statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END UPGRADE
 TO 'application_end_version_number';

For example, run the following statement if the application_name is salesapp, the
application_start_version_number is 4.2, and the application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END UPGRADE TO '4.3';

Note:

Ensure that the application_name and application_end_version_number match
in the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE statement and
ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statements.

5. To synchronize all application PDBs that must apply these changes, issue an ALTER
PLUGGABLE DATABASE APPLICATION statement with the SYNC clause when the application
PDB is the current container.

Chapter 17
Managing Application Common Objects

17-47

Modifying Application Common Objects with DDL Statements
When you modify an application common object in an application root with certain DDL
statements, you must modify the object between ALTER PLUGGABLE DATABASE
APPLICATION BEGIN and ALTER PLUGGABLE DATABASE APPLICATION END statements,
and application PDBs must synchronize with the application to apply the changes.

You can alter a metadata-linked object or a data-linked object in an application root.
You run an ALTER, RENAME, or DROP SQL statement on the database object to perform a
DDL change.

1. In SQL*Plus, ensure that the current container is the application root.

The current user must have the privileges required to make the planned changes
to the database object.

2. Run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN statement for beginning
an application installation, upgrade, or patch.

For example, if you are modifying the application common object as part of an
application upgrade, then run the ALTER PLUGGABLE DATABASE APPLICATION BEGIN
UPGRADE statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name BEGIN UPGRADE
 'application_start_version_number' TO
'application_end_version_number';

For example, run the following statement if the application_name is salesapp, the
application_start_version_number is 4.2, and the application_end_version_number
is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN UPGRADE
 '4.2' TO '4.3';

3. Modify the application common object with the DDL statement.

For example, an ALTER TABLE statement might add a column to a table.

4. Run the ALTER PLUGGABLE DATABASE APPLICATION END statement for ending an
application installation, upgrade, or patch.

For example, if you are modifying the application common object as part of an
application upgrade, then run the ALTER PLUGGABLE DATABASE APPLICATION END
UPGRADE statement in the following form:

ALTER PLUGGABLE DATABASE APPLICATION application_name END UPGRADE
 TO 'application_end_version_number';

For example, run the following statement if the application_name is salesapp and
the application_end_version_number is 4.3:

ALTER PLUGGABLE DATABASE APPLICATION salesapp END UPGRADE TO '4.3';

Chapter 17
Managing Application Common Objects

17-48

Note:

Ensure that the application_name and application_end_version_number match
in the ALTER PLUGGABLE DATABASE APPLICATION BEGIN UPGRADE statement and
the ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statement.

5. Synchronize all of the application PDBs that must apply these changes by issuing an
ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause with the
application PDB as the current container.

Related Topics

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the latest
version and patch in the application root.

Issuing DML Statements on Containers in an Application
Container

A DML statement issued in an application root can modify one or more containers in the
application container. In addition, you can specify one or more default container targets for
DML statements.

• About Issuing DML Statements on Containers in an Application Container
DML statements can affect database objects in more than one container in an application
container.

• Specifying the Default Container for DML Statements in an Application Container
To specify the default container for DML statements in an application container, issue the
ALTER PLUGGABLE DATABASE statement with the CONTAINERS DEFAULT TARGET clause.

About Issuing DML Statements on Containers in an Application Container
DML statements can affect database objects in more than one container in an application
container.

In an application root, a single DML statement that includes the CONTAINERS clause can
modify a table or view in one or more containers in the application container. To use the
CONTAINERS clause, specify the table or view being modified in the CONTAINERS clause and the
containers in the WHERE clause. A target container can be specified in an INSERT VALUES
statement by specifying a value for CON_ID in the VALUES clause. Also, a target container can
be specified in an UPDATE or DELETE statement by specifying a CON_ID predicate in the WHERE
clause.

For example, the following DML statement updates the sales.customers table in the
containers with a CON_ID of 7 or 8:

UPDATE CONTAINERS(sales.customers) ctab
 SET ctab.city_name='MIAMI'

Chapter 17
Issuing DML Statements on Containers in an Application Container

17-49

 WHERE ctab.CON_ID IN(7,8) AND
 CUSTOMER_ID=3425;

The values specified for the CON_ID in the WHERE clause must be for containers in the
current application container.

You can specify default target containers for DML operations. If a DML statement does
not specify values for the CON_ID in the WHERE clause, then the target containers of the
DML operation are those specified in the database property
CONTAINERS_DEFAULT_TARGET in the application root. When issued in an application
root, the following DML statement modifies the default target containers for the
application container:

UPDATE CONTAINERS(sales.customers) ctab
 SET ctab.city_name='MIAMI'
 WHERE CUSTOMER_ID=3425;

By default, the default target containers in an application container include all of its
application PDBs but not its application root or application seed. You can determine
the default target containers for an application container by running the following
query:

SELECT PROPERTY_VALUE
FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME='CONTAINERS_DEFAULT_TARGET';

In addition, you can enable the CONTAINERS_DEFAULT attribute for a table or view in an
application root. When this attribute is enabled, the CONTAINERS clause is used for
queries and DML statements on the database object by default, and the CONTAINERS
clause does not need to be specified in the SQL statements. To enable the
CONTAINERS_DEFAULT attribute for a table or view in an application root, run the an
ALTER TABLE or ALTER VIEW statement with the ENABLE CONTAINERS_DEFAULT clause.

The following restrictions apply to the CONTAINERS clause:

• The CONTAINERS DEFAULT TARGET clause does not affect SELECT statements.

• INSERT as SELECT statements where the target of the INSERT is in CONTAINERS() is
not supported.

• A multitable INSERT statement where the target of the INSERT is in CONTAINERS() is
not supported.

• DML statements using the CONTAINERS clause require that the database listener is
configured using TCP (instead of IPC) and that the PORT and HOST values are
specified for each target PDB using the PORT and HOST clauses, respectively.

Related Topics

• About Application Common Objects
Application common objects are created in an application root and are shared with
the application PDBs that belong to the application root.

Chapter 17
Issuing DML Statements on Containers in an Application Container

17-50

Specifying the Default Container for DML Statements in an Application
Container

To specify the default container for DML statements in an application container, issue the
ALTER PLUGGABLE DATABASE statement with the CONTAINERS DEFAULT TARGET clause.

When a DML statement is issued in an application root without specifying containers in the
WHERE clause, the DML statement affects the default container for the application container.
The default container can be any container in the application container, including the
application root or an application PDB. Only one default container is allowed.

1. In SQL*Plus, ensure that the current container is the application root.

The current user must have the commonly granted ALTER PLUGGABLE DATABASE privilege.

2. Run the ALTER PLUGGABLE DATABASE statement with the CONTAINERS DEFAULT TARGET
clause.

Example 17-16 Specifying the Default Container for DML Statements in an
Application Container

This example specifies that APDB1 is the default container for DML statements in the
application container.

ALTER PLUGGABLE DATABASE CONTAINERS DEFAULT TARGET = (APDB1);

Example 17-17 Clearing the Default Container

This example clears the default container setting. When it is not set, the default container is
the application root.

ALTER PLUGGABLE DATABASE CONTAINERS DEFAULT TARGET = NONE;

Partitioning by PDB with Container Maps
Container maps enable the partitioning of data at the application PDB level when the data is
not physically partitioned at the table level.

• About Container Maps
A container map is a database property that specifies a partitioned map table defined in
an application root.

• Creating a Container Map
Create a container map by creating a map object and setting the CONTAINER_MAP
database property to the map object.

About Container Maps
A container map is a database property that specifies a partitioned map table defined in an
application root.

Use a container map to partition the data in metadata-linked objects. Container maps
partition data in application PDBs based on a commonly-used column.

Chapter 17
Partitioning by PDB with Container Maps

17-51

For example, you might create a metadata-linked table named countries_mlt (with a
column cname) that stores different data in each application PDB. The map table
named pdb_map_tbl partitions by list on the cname column. The partitions amer_pdb,
euro_pdb, and asia_pdb correspond to the names of the application PDBs.

A container map can define a logical partition key on a column for a common object.
Because the container is resolved internally based on the container map, this mapping
removes the requirement to define a query with a CON_ID predicate or use the
CONTAINERS clause in the query.

Some types of row-based consolidation use a tenant ID with a single PDB that
contains multiple tenants. Container maps are useful for migrating to a configuration
that uses a different PDB for each tenant.

• Map Objects
The map object is the partitioned table.

• List-Partitioned Container Map: Example
This example uses a container map to route queries to PDBs that store data for a
geographical region.

• Range-Partitioned Container Map: Example
This example uses a container map to route queries to PDBs that store data for a
particular department.

Map Objects
The map object is the partitioned table.

The names of the partitions in the map table match the names of the application PDBs
in the application container. The metadata-linked object is not physically partitioned at
the table level, but it can be queried using the partitioning strategy used by the
container map.

To associate the map table with the metadata-linked table, specify the map table in
ALTER PLUGGABLE DATABASE ... CONTAINER_MAP while connected to the application
root. You can create no more than one container map in an application container. You
cannot create container maps in the CDB root.

Note:

• Data must be loaded into the PDB tables in a manner that is consistent
with the partitions defined in map object.

• When there are changes to the application PDBs in an application
container, the map object is not synchronized automatically to account
for these changes. For example, an application PDB that is referenced in
a map object can be unplugged, renamed, or dropped. The map object
must be updated manually to account for such changes.

Starting in Oracle Database 18c, for a CONTAINERS() query to use a map, the
partitioning column in the map table does not need to match a column in the metadata-
linked table. Assume that the table sh.sales is enabled for the container map
pdb_map_tbl, and cname is the partitioning column for the map table. Even though

Chapter 17
Partitioning by PDB with Container Maps

17-52

sh.sales does not include a cname column, the map table routes the following query to the
appropriate PDB: SELECT * FROM CONTAINERS(sh.sales) WHERE cname = 'US' ORDER BY
time_id.

List-Partitioned Container Map: Example
This example uses a container map to route queries to PDBs that store data for a
geographical region.

The following illustration of an application root shows a map object, a metadata-linked table,
and a query on the metadata-linked table. The query is executed in the appropriate
application PDB.

Figure 17-3 Container Map

Application Container

AMER EURO ASIA

Metadata-Linked Table oe.cmtb

COUNTRY VALUE

EX35

NR104

PD98

MEXICO

GERMANY

JAPAN

.

.

.

Map Object

(Single-Column Partitioned Table)

COUNTRY

US

MEXICO

CANADA

AMER Partition

UK

FRANCE

GERMANY

INDIA

CHINA

JAPAN

Query:

SELECT value FROM oe.cmtb WHERE country='GERMANY';

EURO Partition

ASIA Partition

Application Root

Executed in the EURO
Application PDB

The illustration shows an application container with three application PDBs named AMER,
EURO, and ASIA. The PDBs store data for the corresponding regions. A metadata-linked table
named oe.cmtb stores information for an application. This table has a COUNTRY column. For
this partitioning strategy, partition by list is used to create a map object that creates a partition

Chapter 17
Partitioning by PDB with Container Maps

17-53

for each region. The country value, which is GERMANY in the query shown in the
illustration, determines the region, which is EURO.

See Also:

"Creating a Container Map" for a detailed description of this example

Range-Partitioned Container Map: Example
This example uses a container map to route queries to PDBs that store data for a
particular department.

Consider another example that uses a range-partitioned table for the map object. The
following SQL statement creates the map object in the application root:

CREATE TABLE app_con_admin.conmap (
 department_id NUMBER NOT NULL)
PARTITION BY RANGE (department_id) (
PARTITION apppdb1 VALUES LESS THAN (100),
PARTITION apppdb2 VALUES LESS THAN (200),
PARTITION apppdb3 VALUES LESS THAN (300));

This map object partitions data in the application PDBs apppdb1, apppdb2, and
apppdb3 based on the commonly-used column department_id. The following SQL
statement sets the CONTAINER_MAP database property to the app_con_admin.conmap
table in the application root:

ALTER PLUGGABLE DATABASE SET CONTAINER_MAP='app_con_admin.conmap';

Queries that use container maps produce similar results to queries that use the
CONTAINERS clause. For example, the following queries return similar results:

SELECT employee_id
FROM CONTAINERS(hr.employees)
WHERE department_id = 10
AND CON_ID IN (44);

SELECT employee_id
FROM hr.employees
WHERE department_id = 10;

As shown in the first query with the CONTAINERS clause, when the query only pertains
to a single application PDB, the query must specify the container ID of this application
PDB in the WHERE clause. This requirement might cause application changes.

The second query uses the container map, replacing the CONTAINERS clause. The
second query does not specify the container because the container map directs the
query to the correct application PDB. Queries that use container maps are generally
more efficient than queries that use the CONTAINERS clause.

Chapter 17
Partitioning by PDB with Container Maps

17-54

The container map must be created by a common user with ALTER DATABASE system
privilege. Queries run against an object that is enabled for container map. Query privileges
are determined by privileges granted on the object.

Creating a Container Map
Create a container map by creating a map object and setting the CONTAINER_MAP database
property to the map object.

The map object is a partitioned table in which each partition name matches the name of an
application PDB in an application container.

Prerequisites

To create a container map, you must meet the following prerequisites:

• Before creating a container map, an application container with application PDBs must
exist in the CDB.

• The application container must have at least one application installed in it.

To create a container map:

1. In SQL*Plus, ensure that the current container is the application root.

2. Set the CONTAINER_MAP database property to the map object.

In the following statement, replace map_table_schema with the owner of the table, and
replace map_table_name with the name of the table:

ALTER DATABASE SET CONTAINER_MAP = 'map_table_schema.map_table_name';

3. Start an application installation, upgrade, or patch.

4. If the metadata-linked table that will be used by the container map does not exist, then
create it.

5. Enable the container map for the table to be queried by issuing an ALTER TABLE ...
ENABLE CONTAINER_MAP statement.

6. Ensure that the table to be queried is enabled for the CONTAINERS clause by issuing an
ALTER TABLE ... ENABLE CONTAINERS_DEFAULT statement.

7. End the application installation, upgrade, or patch started previously.

Example 17-18 Creating and Using a Container Map

This example creates a simple application that uses a container map. Assume that an
application container has three application PDBs named AMER, EURO, and ASIA. The
application PDBs store data for the different regions (America, Europe, and Asia,
respectively). A metadata-linked table stores information for an application and has a COUNTRY
column. For this partitioning strategy, partition by list is used to create a map object that
creates a partition for each region, and the country value is used to determine the region.

1. In SQL*Plus, ensure that the current container is the application root.

2. Create the map object.

CREATE TABLE salesadm.conmap (country VARCHAR2(30) NOT NULL)
PARTITION BY LIST (country) (

Chapter 17
Partitioning by PDB with Container Maps

17-55

 PARTITION AMER VALUES ('US','MEXICO','CANADA'),
 PARTITION EURO VALUES ('UK','FRANCE','GERMANY'),
 PARTITION ASIA VALUES ('INDIA','CHINA','JAPAN')
);

3. Set the CONTAINER_MAP database property to the map object.

ALTER PLUGGABLE DATABASE SET CONTAINER_MAP='salesadm.conmap';

4. Begin an application installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp BEGIN INSTALL '1.0';

5. Create a metadata-linked table that will be queried using the container map.

CREATE TABLE oe.cmtb SHARING=METADATA (
 value VARCHAR2(30),
 country VARCHAR2(30));

6. Enable the container map for the table to be queried.

ALTER TABLE oe.cmtb ENABLE CONTAINER_MAP;

7. Ensure that the table to be queried is enabled for the CONTAINERS clause.

ALTER TABLE oe.cmtb ENABLE CONTAINERS_DEFAULT;

8. End the application installation.

ALTER PLUGGABLE DATABASE APPLICATION salesapp END INSTALL '1.0';

9. Switch session into each application PDB and synchronize it.

ALTER SESSION SET CONTAINER=amer;
ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC;

ALTER SESSION SET CONTAINER=euro;
ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC;

ALTER SESSION SET CONTAINER=asia;
ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC;

10. Insert values into the oe.cmtb table in each application PDB based on the
partitioning strategy.

ALTER SESSION SET CONTAINER=amer;
INSERT INTO oe.cmtb VALUES ('AMER VALUE','US');
INSERT INTO oe.cmtb VALUES ('AMER VALUE','MEXICO');
INSERT INTO oe.cmtb VALUES ('AMER VALUE','CANADA');
COMMIT;

ALTER SESSION SET CONTAINER=euro;
INSERT INTO oe.cmtb VALUES ('EURO VALUE','UK');

Chapter 17
Partitioning by PDB with Container Maps

17-56

INSERT INTO oe.cmtb VALUES ('EURO VALUE','FRANCE');
INSERT INTO oe.cmtb VALUES ('EURO VALUE','GERMANY');
COMMIT;

ALTER SESSION SET CONTAINER=asia;
INSERT INTO oe.cmtb VALUES ('ASIA VALUE','INDIA');
INSERT INTO oe.cmtb VALUES ('ASIA VALUE','CHINA');
INSERT INTO oe.cmtb VALUES ('ASIA VALUE','JAPAN');
COMMIT;

11. Switch session into the application root and query the data using the container map.

ALTER SESSION SET CONTAINER=sales;

SELECT value FROM oe.cmtb WHERE country='MEXICO';

SELECT value FROM oe.cmtb WHERE country='GERMANY';

SELECT value FROM oe.cmtb WHERE country='JAPAN';

The output for the first query should be AMER VALUE, the output for the second query
should be EURO VALUE, and the output for the third query should be ASIA VALUE. These
values illustrate that the container map is working correctly.

Chapter 17
Partitioning by PDB with Container Maps

17-57

18
Managing Security for a Multitenant
Environment

You can manage common and local users and roles for a multitenant environment by using
SQL*Plus and Oracle Enterprise Manager.

• Managing Commonly and Locally Granted Privileges
In a multitenant environment, privileges can be granted commonly for an entire CDB or
application container, or granted locally to a specific PDB.

• Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

• Restricting Operations on PDBs Using PDB Lockdown Profiles
You can use PDB lockdown profiles in a multitenant environment to restrict sets of user
operations in pluggable databases (PDBs).

• Configuring Operating System Users for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure configures user accounts to be
operating system users for a pluggable database (PDB).

• Using Application Contexts in a Multitenant Environment
An application context stores user identification that can enable or prevent a user from
accessing data in the database.

• Using Oracle Virtual Private Database in a Multitenant Environment
Oracle Virtual Private Database (VPD) enables you to filter users who access data.

• Using Transport Layer Security in a Multitenant Environment
Transport Layer Security (TLS) can be used in a multitenant environment for application
containers.

• Oracle Data Redaction in a Multitenant Environment
In a multitenant environment, Oracle Data Redaction policies apply only to the objects
within the current pluggable database (PDB).

• Overview of Auditing in a Multitenant Environment
Auditing is the monitoring and recording of configured database actions, from both
database users and nondatabase users. Nondatabase users are application users who
are recognized in the database using the CLIENT_IDENTIFIER attribute.

Managing Commonly and Locally Granted Privileges
In a multitenant environment, privileges can be granted commonly for an entire CDB or
application container, or granted locally to a specific PDB.

• How the Oracle Multitenant Option Affects Privileges
In a multitenant environment, all users, including common users, can exercise their
privileges only within the current container.

• About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant privileges to
one another.

18-1

• How Commonly Granted System Privileges Work
Users can exercise system privileges only within the PDB in which they were
granted.

• How Commonly Granted Object Privileges Work
Object privileges on common objects applies to the object as well as all associated
links on this common object.

• Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

• Example: Granting a Privilege in a Multitenant Environment
You can use the GRANT statement to grant privileges in a multitenant environment.

• Enabling Common Users to View CONTAINER_DATA Object Information
Common users can view information about CONTAINER_DATA objects in the root or
for data in specific PDBs.

How the Oracle Multitenant Option Affects Privileges
In a multitenant environment, all users, including common users, can exercise their
privileges only within the current container.

However, a user connected to the root can perform certain operations that affect other
pluggable databases (PDBs). These operations include ALTER PLUGGABLE DATABASE,
CREATE USER, CREATE ROLE, and ALTER USER. The common user must possess the
commonly granted privileges that enable these operations. A common user connected
to the root can see metadata pertaining to PDBs by way of the container data objects
(for example, multitenant container database (CDB) views and V$ views) in the root,
provided that the common user has been granted privileges required to access these
views and his CONTAINER_DATA attribute has been set to allow seeing data about
various PDBs. The common user cannot query tables or views in a PDB.

Common users cannot exercise their privileges across other PDBs. They must first
switch to the PDB that they want, and then exercise their privileges from there. To
switch to a different container, the common user must have the SET CONTAINER
privilege. The SET CONTAINER privilege must be granted either commonly or in the
container to which the user is attempting to switch. Alternatively, the common user can
start a new database session whose initial current container is the container this user
wants, relying on the CREATE SESSION privilege in that PDB.

Be aware that commonly granted privileges may interfere with the security configured
for individual PDBs. For example, suppose an application PDB database administrator
wants to prevent any user in the PDB from modifying a particular application common
object. A privilege (such as UPDATE) granted commonly to PUBLIC or to a common user
or common role on the object would circumvent the PDB database administrator’s
intent.

Related Topics

• Oracle Database Security Guide

About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant privileges
to one another.

Chapter 18
Managing Commonly and Locally Granted Privileges

18-2

Privileges by themselves are neither common nor local. How the privileges are applied
depends on whether the privilege is granted commonly or granted locally.

For commonly granted privileges:

• A privilege that is granted commonly can be used in every existing and future container.

• Only common users can grant privileges commonly, and only if the grantee is common.

• A common user can grant privileges to another common user or to a common role.

• The grantor must be connected to the root and must specify CONTAINER=ALL in the GRANT
statement.

• Both system and object privileges can be commonly granted. (Object privileges become
actual only with regard to the specified object.)

• When a common user connects to or switches to a given container, this user's ability to
perform various activities (such as creating a table) is controlled by privileges granted
commonly as well as privileges granted locally in the given container.

• Do not grant privileges to PUBLIC commonly.

For locally granted privileges:

• A privilege granted locally can be used only in the container in which it was granted.
When the privilege is granted in the root, it applies only to the root.

• Both common users and local users can grant privileges locally.

• A common user and a local user can grant privileges to other common or local roles.

• The grantor must be connected to the container and must specify CONTAINER=CURRENT in
the GRANT statement.

• Any user can grant a privilege locally to any other user or role (both common and local)
or to the PUBLIC role.

Related Topics

• Overview of Privilege and Role Grants in a CDB
Just as in a non-CDB, users in a CDB can grant and be granted roles and privileges.
Roles and privileges in a CDB, however, are either locally or commonly granted.

• How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

How Commonly Granted System Privileges Work
Users can exercise system privileges only within the PDB in which they were granted.

For example, if a system privilege is locally granted to a common user A in a PDB B, user A
can exercise that privilege only while connected to PDB B.

System privileges can apply in the root and in all existing and future PDBs if the following
requirements are met:

• The system privilege grantor is a common user and the grantee is a common user, a
common role, or the PUBLIC role. Do not commonly grant system privileges to the PUBLIC
role, because this in effect makes the system privilege available to all users.

• The system privilege grantor possesses the ADMIN OPTION for the commonly granted
privilege

Chapter 18
Managing Commonly and Locally Granted Privileges

18-3

• The GRANT statement must contain the CONTAINER=ALL clause.

The following example shows how to commonly grant a privilege to the common user
c##hr_admin.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT CREATE ANY TABLE TO c##hr_admin CONTAINER=ALL;

Related Topics

• Oracle Database Security Guide

How Commonly Granted Object Privileges Work
Object privileges on common objects applies to the object as well as all associated
links on this common object.

These links include all metadata links, data links (previously called object links), or
extended data links that are associated with it in the root and in all PDBs belonging to
the container (including future PDBs) if certain requirements are met.

These requirements are as follows:

• The object privilege grantor is a common user and the grantee is a common user,
a common role, or the PUBLIC role.

• The object privilege grantor possesses the commonly granted GRANT OPTION for
the privilege

• The GRANT statement contains the CONTAINER=ALL clause.

The following example shows how to grant an object privilege to the common user
c##hr_admin so that he can select from the DBA_PDBS view in the CDB root or in any of
the associated PDBs that he can access.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT SELECT ON DBA_OBJECTS TO c##hr_admin
CONTAINER=ALL;

Related Topics

• Oracle Database Security Guide

• Data Dictionary Architecture in a CDB
From the user and application perspective, the data dictionary in each container in
a CDB is separate, as it would be in a non-CDB.

• Namespaces in a CDB
In a CDB, the namespace for every object is scoped to its container.

• How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

Chapter 18
Managing Commonly and Locally Granted Privileges

18-4

Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

To grant a privilege in a multitenant environment:

• Include the CONTAINER clause in the GRANT or REVOKE statement.

Setting CONTAINER to ALL applies the privilege to all existing and future containers; setting it to
CURRENT applies the privilege to the local container only. Omitting the CONTAINER clause
applies the privilege to the local container. If you issue the GRANT statement from the root and
omit the CONTAINER clause, then the privilege is applied locally.

Related Topics

• Oracle Database SQL Language Reference

Example: Granting a Privilege in a Multitenant Environment
You can use the GRANT statement to grant privileges in a multitenant environment.

Example 18-1 shows how to commonly grant the CREATE TABLE privilege to common user
c##hr_admin so that this user can use this privilege in all existing and future containers.

Example 18-1 Granting a Privilege in a Multitenant Environment

CONNECT SYSTEM
Enter password: password
Connected.

GRANT CREATE TABLE TO c##hr_admin CONTAINER=ALL;

Enabling Common Users to View CONTAINER_DATA Object Information
Common users can view information about CONTAINER_DATA objects in the root or for data in
specific PDBs.

• Viewing Data About the Root, CDB, and PDBs While Connected to the Root
You can restrict view information for the X$ table and the V$, GV$ and CDB_* views when
common users perform queries.

• Enabling Common Users to Query Data in Specific PDBs
You can enable common users to access data pertaining to specific PDBs by adjusting
the users’ CONTAINER_DATA attribute.

Viewing Data About the Root, CDB, and PDBs While Connected to the Root
You can restrict view information for the X$ table and the V$, GV$ and CDB_* views when
common users perform queries.

The X$ table and these views contain information about the application root and its
associated application PDBs or, if you are connected to the CDB root, the entire CDB.
Restricting this information is useful when you do not want to expose sensitive information
about other PDBs. To enable this functionality, Oracle Database provides these tables and

Chapter 18
Managing Commonly and Locally Granted Privileges

18-5

views as container data objects. You can find if a specific table or view is a container
data object by querying the TABLE_NAME, VIEW_NAME, and CONTAINER_DATA columns of
the USER_|DBA_|ALL_VIEWS|TABLES dictionary views.

To find information about the default (user-level) and object-specific
CONTAINER_DATA attributes:

1. In SQL*Plus or SQL Developer, log in to the root.

2. Query the CDB_CONTAINER_DATA data dictionary view.

For example:

COLUMN USERNAME FORMAT A13
COLUMN DEFAULT_ATTR FORMAT A7
COLUMN OWNER FORMAT A11
COLUMN OBJECT_NAME FORMAT A11
COLUMN ALL_CONTAINERS FORMAT A3
COLUMN CONTAINER_NAME FORMAT A10
COLUMN CON_ID FORMAT A6

SELECT USERNAME, DEFAULT_ATTR, OWNER, OBJECT_NAME,
 ALL_CONTAINERS, CONTAINER_NAME, CON_ID
FROM CDB_CONTAINER_DATA
ORDER BY OBJECT_NAME;

USERNAME DEFAULT OWNER OBJECT_NAME ALL CONTAINERS CON_ID
----------- ------- ----- ----------- --- ---------- ------
C##HR_ADMIN N SYS V$SESSION N CDB$ROOT 1
C##HR_ADMIN N SYS V$SESSION N SALESPDB 1
C##HR_ADMIN Y N HRPDB 1
C##HR_ADMIN Y N CDB$ROOT 1
DBSNMP Y Y 1
SYSTEM Y Y 1

Related Topics

• Container Data Objects in a CDB
A container data object is a table or view containing data pertaining to multiple
containers or the whole CDB.

• Oracle Database Reference

Enabling Common Users to Query Data in Specific PDBs
You can enable common users to access data pertaining to specific PDBs by adjusting
the users’ CONTAINER_DATA attribute.

To enable common users to access data about specific PDBs:

• Issue the ALTER USER statement in the root.

Chapter 18
Managing Commonly and Locally Granted Privileges

18-6

Example 18-2 Setting the CONTAINER_DATA Attribute

This example shows how to issue the ALTER USER statement to enable the common user
c##hr_admin to view information pertaining to the CDB$ROOT, SALES_PDB, and HRPDB containers
in the V$SESSION view (assuming this user can query that view).

CONNECT SYSTEM
Enter password: password
Connected.

ALTER USER c##hr_admin
SET CONTAINER_DATA = (CDB$ROOT, SALESPDB, HRPDB)
FOR V$SESSION CONTAINER=CURRENT;

In this specification:

• SET CONTAINER_DATA lists containers, data pertaining to which can be accessed by the
user.

• FOR V$SESSION specifies the CONTAINER_DATA dynamic view, which common user
c##hr_admin will query.

• CONTAINER = CURRENT must be specified because when you are connected to the root,
CONTAINER=ALL is the default for the ALTER USER statement, but modification of the
CONTAINER_DATA attribute must be restricted to the root.

If you want to enable user c##hr_admin to view information that pertains to the CDB$ROOT,
SALES_PDB, HRPDB containers in all CONTAINER_DATA objects that this user can access, then
omit FOR V$SESSION. For example:

ALTER USER c##hr_admin
SET CONTAINER_DATA = (CDB$ROOT, SALESPDB, HRPDB)
CONTAINER=CURRENT;

Related Topics

• Oracle Database SQL Language Reference

Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

• About Common Roles and Local Roles
In a multitenant environment, database roles can be specific to a PDB or used throughout
the entire system container or application container.

• How Common Roles Work
Common roles are visible in the root and in every PDB of a container within which they
are defined in a multitenant environment.

• How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

• Privileges Required to Create, Modify, or Drop a Common Role
Only common users who have the commonly granted CREATE ROLE, ALTER ROLE, and
DROP ROLE privileges can create, alter, or drop common roles.

Chapter 18
Managing Common Roles and Local Roles

18-7

• Rules for Creating Common Roles
When you create a common role, you must follow special rules.

• Creating a Common Role
You can use the CREATE ROLE statement to create a common role.

• Rules for Creating Local Roles
To create a local role, you must follow special rules.

• Creating a Local Role
You can use the CREATE ROLE statement to create a role.

• Role Grants and Revokes for Common Users and Local Users
Role grants and revokes apply only to the scope of access of the common user or
the local user.

About Common Roles and Local Roles
In a multitenant environment, database roles can be specific to a PDB or used
throughout the entire system container or application container.

A common role is a role whose identity and (optional) password are created in the root
of a container and will be known in the root and in all existing and future PDBs
belonging to that container.

A local role exists in only one PDB and can only be used within this PDB. It does not
have any commonly granted privileges.

Note the following:

• Common users can both create and grant common roles to other common and
local users.

• You can grant a role (local or common) to a local user or role only locally.

• If you grant a common role locally, then the privileges of that common role apply
only in the container where the role is granted.

• Local users cannot create common roles, but they can grant them to common and
other local users.

• The CONTAINER = ALL clause is the default when you create a common role in the
CDB root or an application root.

Related Topics

• Oracle Database Security Guide

How Common Roles Work
Common roles are visible in the root and in every PDB of a container within which they
are defined in a multitenant environment.

A privilege can be granted commonly to a common role if:

• The grantor is a common user.

• The grantor possesses the commonly granted ADMIN OPTION for the privilege that
is being granted.

• The GRANT statement contains the CONTAINER=ALL clause.

Chapter 18
Managing Common Roles and Local Roles

18-8

If the common role contains locally granted privileges, then these privileges apply only within
the PDB in which they were granted to the common role. A local role cannot be granted
commonly.

For example, suppose the CDB common user c##hr_mgr has been commonly granted the
DBA role. This means that user c##hr_mgr can use the privileges associated with the DBA role
in the root and in every PDB in the multitenant environment. However, if the CDB common
user c##hr_mgr has only been locally granted the DBA role for the hr_pdb PDB, then this user
can only use the DBA role's privileges in the hr_pdb PDB.

How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

This feature enables you to revoke privileges or roles that have been granted to the PUBLIC
role individually in each PDB as needed. If you must grant any privileges to the PUBLIC role,
then grant them locally. Never grant privileges to PUBLIC commonly.

Related Topics

• About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant privileges to
one another.

Privileges Required to Create, Modify, or Drop a Common Role
Only common users who have the commonly granted CREATE ROLE, ALTER ROLE, and DROP
ROLE privileges can create, alter, or drop common roles.

Common users can also create local roles, but these roles are available only in the PDB in
which they were created.

Rules for Creating Common Roles
When you create a common role, you must follow special rules.

The rules are as follows:

• Ensure that you are in the correct root. For the creation of common roles, you must be
in the correct root, either the CDB root or the application root. You cannot create common
roles from a PDB. To check if you are in the correct root, run one of the following:

– To confirm that you are in the CDB root, you can issue the show_con_name command.
The output should be CDB$ROOT.

– To confirm that you are in an application root, verify that the following query returns
YES:

SELECT APPLICATION_ROOT FROM V$PDBS WHERE
CON_ID=SYS_CONTEXT('USERENV', 'CON_ID');

– Ensure that the name that you give the common role starts with the value of
the COMMON_USER_PREFIX parameter (which defaults to C##). Note that this
requirement does not apply to the names of existing Oracle-supplied roles, such as
DBA or RESOURCE.

Chapter 18
Managing Common Roles and Local Roles

18-9

• Optionally, set the CONTAINER clause to ALL. As long as you are in the root, if
you omit the CONTAINER = ALL clause, then by default the role is created as a
common role for the CDB root or the application root.

Creating a Common Role
You can use the CREATE ROLE statement to create a common role.

1. Connect to the root of the CDB or the application container in which you want to
create the common role.

For example:

CONNECT SYSTEM
Enter password: password
Connected.

2. Run the CREATE ROLE statement with the CONTAINER clause set to ALL.

For example:

CREATE ROLE c##sec_admin IDENTIFIED BY password CONTAINER=ALL;

Related Topics

• Oracle Database Security Guide

Rules for Creating Local Roles
To create a local role, you must follow special rules.

These rules are as follows:

• You must be connected to the PDB in which you want to create the role, and have
the CREATE ROLE privilege.

• The name that you give the local role must not start with the value of the
COMMON_USER_PREFIX parameter (which defaults to C##).

• You can include CONTAINER=CURRENT in the CREATE ROLE statement to specify the
role as a local role. If you are connected to a PDB and omit this clause, then the
CONTAINER=CURRENT clause is implied.

• You cannot have common roles and local roles with the same name. However, you
can use the same name for local roles in different PDBs. To find the names of
existing roles, query the CDB_ROLES and DBA_ROLES data dictionary views.

Creating a Local Role
You can use the CREATE ROLE statement to create a role.

1. Connect to the PDB in which you want to create the local role.

Chapter 18
Managing Common Roles and Local Roles

18-10

For example:

CONNECT SYSTEM@hrpdb
Enter password: password
Connected.

2. Run the CREATE ROLE statement with the CONTAINER clause set to CURRENT.

For example:

CREATE ROLE sec_admin CONTAINER=CURRENT;

Related Topics

• Oracle Database Security Guide

Role Grants and Revokes for Common Users and Local Users
Role grants and revokes apply only to the scope of access of the common user or the local
user.

Common users can grant and revoke common roles to and from other common users. A local
user can grant a common role to any user in a PDB, including common users, but this grant
applies only within the PDB.

The following example shows how to grant the common user c##sec_admin the AUDIT_ADMIN
common role for use in all containers.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT AUDIT_ADMIN TO c##sec_admin CONTAINER=ALL;

Similarly, the next example shows how local user aud_admin can grant the common user
c##sec_admin the AUDIT_ADMIN common role for use within the hrpdb PDB.

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

GRANT AUDIT_ADMIN TO c##sec_admin CONTAINER=CURRENT;

This example shows how a local user aud_admin can revoke a role from another user in a
PDB. If you omit the CONTAINER clause, then CURRENT is implied.

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

REVOKE sec_admin FROM psmith CONTAINER=CURRENT;

Chapter 18
Managing Common Roles and Local Roles

18-11

Restricting Operations on PDBs Using PDB Lockdown
Profiles

You can use PDB lockdown profiles in a multitenant environment to restrict sets of
user operations in pluggable databases (PDBs).

• About PDB Lockdown Profiles
A PDB lockdown profile is a named set of features that controls a group of
operations.

• Default PDB Lockdown Profiles
Oracle Database provides a set of default PDB lockdown profiles that you can
customize for your site requirements.

• Creating a PDB Lockdown Profile
To create a PDB lockdown profile, you must have the CREATE LOCKDOWN PROFILE
system privilege.

• Enabling or Disabling a PDB Lockdown Profile
To enable or disable a PDB lockdown profile, use the PDB_LOCKDOWN initialization
parameter

• Dropping a PDB Lockdown Profile
To drop a PDB lockdown profile, you must have the DROP LOCKDOWN PROFILE
system privilege and be logged into the CDB or application root.

About PDB Lockdown Profiles
A PDB lockdown profile is a named set of features that controls a group of operations.

In some cases, you can enable or disable operations individually. For example, a PDB
lockdown profile can contain settings to disable specific clauses that come with the
ALTER SYSTEM statement.

PDB lockdown profiles restrict user access to the functionality the features provided,
similar to resource limits that are defined for users. As the name suggests, you use
PDB lockdown profiles in a CDB, for an application container, or for a PDB or
application PDB. You can create custom profiles to accommodate the requirements of
your site. PDB profiles enable you to define custom security policies for an application.
In addition, you can create a lockdown profile that is based on another profile, called a
base profile. You can configure this profile to be dynamically updated when the base
profile is modified, or configure it to be static (unchanging) when the base profile is
updated. Lockdown profiles are designed for both Oracle Cloud and on-premises
environments.

When identities are shared between PDBs, elevated privileges may exist. You can use
lockdown profiles to prevent this elevation of privileges. Identities can be shared in the
following situations:

• At the operating system level, when the database interacts with operating system
resources such as files or processes

• At the network level, when the database communicates with other systems, and
network identity is important

Chapter 18
Restricting Operations on PDBs Using PDB Lockdown Profiles

18-12

• Inside the database, as PDBs access or create common objects or they communicate
across container boundaries using features such as database links

The features that use shared identifies and that benefit from PDB lockdown profiles are in the
following categories:

• Network access features. These are operations that use the network to communicate
outside the PDB. For example, the PL/SQL packages UTL_TCP, UTL_HTTP, UTL_MAIL,
UTL_SNMP, UTL_INADDR, and DBMS_DEBUG_JDWP perform these kinds of operations.
Currently, ACLs are used to control this kind of access to share network identity.

• Common user or object access. These are operations in which a local user in the PDB
can proxy through common user accounts or access objects in a common schema.
These kinds of operations include adding or replacing objects in a common schema,
granting privileges to common objects, accessing common directory objects, granting the
INHERIT PRIVILEGES role to a common user, and manipulating a user proxy to a common
user.

• Operating System access. For example, you can restrict access to the UTL_FILE or
DBMS_FILE_TRANSFER PL/SQL packages.

• Connections. For example, you can restrict common users from connecting to the PDB
or you can restrict a local user who has the SYSOPER administrative privilege from
connecting to a PDB that is open in restricted mode.

The general procedure for creating a PDB lockdown profile is to first create it in the CDB root
or the application root using the CREATE LOCKDOWN PROFILE statement, and then use the
ALTER LOCKDOWN PROFILE statement to add the restrictions.

To enable a PDB lockdown profile, you can use the ALTER SYSTEM statement to set the
PDB_LOCKDOWN parameter. You can find information about existing PDB lockdown profiles by
connecting to CDB or application root and querying the DBA_LOCKDOWN_PROFILES data
dictionary view. A local user can find the contents of a PDB lockdown parameter by querying
the V$LOCKDOWN_RULES dynamic data dictionary view.

Default PDB Lockdown Profiles
Oracle Database provides a set of default PDB lockdown profiles that you can customize for
your site requirements.

By default, most of these profiles are empty. They are designed to be a placeholder or
template for you to configure, depending on your deployment requirements.

Detailed information about these profiles is as follows:

• PRIVATE_DBAAS incorporates restrictions that are suitable for private Cloud Database-as-
a-Service (DBaaS) deployments. These restrictions are:

– Must have the same database administrator for each PDB

– Different users permitted to connect to the database

– Different applications permitted

PRIVATE_DBAAS permits users to connect to the PDBs but prevents them from using
Oracle Database administrative features.

• SAAS incorporates restrictions that are suitable for Software-as-a-Service (SaaS)
deployments. These restrictions are:

– Must have the same database administrator for each PDB

Chapter 18
Restricting Operations on PDBs Using PDB Lockdown Profiles

18-13

– Different users permitted to connect to the database

– Must use the same application

The SAAS lockdown profile is more restrictive than the PRIVATE_DBAAS profile.
Users can be different, but the application code is the same; users are prevented
from directly connecting and must connect only through the application; and users
are not granted the ability to perform any administrative features.

• PUBLIC_DBAAS incorporates restrictions that are suitable for public Cloud Database-
as-a-Service (DBaaS) deployments. The restrictions are as follows:

– Different DBAs in each PDB

– Different users

– Different applications

The PUBLIC_DBAAS lockdown profile is the most restrictive of the lockdown profiles.

Creating a PDB Lockdown Profile
To create a PDB lockdown profile, you must have the CREATE LOCKDOWN PROFILE
system privilege.

After you create the lockdown profile, you can add restrictions before enabling it.

1. Connect to the CDB root or the application root as a user who has the CREATE
LOCKDOWN PROFILE system privilege.

For example, to connect to the CDB root:

CONNECT c##sec_admin
Enter password: password

2. Run the CREATE LOCKDOWN PROFILE statement to create the profile by using the
following syntax:

CREATE LOCKDOWN PROFILE profile_name
[FROM static_base_profile | INCLUDING dynamic_base_profile];

In this specification:

• profile_name is the name that you assign the lockdown profile. You can find
existing names by querying the PROFILE_NAMES column of the
DBA_LOCKDOWN_PROFILES data dictionary view.

• FROM static_base_profile creates a new lockdown profile by using the
values from an existing profile. Any subsequent changes to the base profile
will not affect the new profile.

• INCLUDING dynamic_base_profile also creates a new lockdown profile by
using the values from an existing base profile, except that this new lockdown
profile will inherit the DISABLE STATEMENT rules that comprise the base profile,
as well as any subsequent changes to the base profile. If rules that are
explicitly added to the new profile conflict with the rules in the base profile,
then the rules in the base profile take precedence. For example, an
OPTION_VALUE clause in the base profile takes precedence over the
OPTION_VALUE clause in the new profile.

Chapter 18
Restricting Operations on PDBs Using PDB Lockdown Profiles

18-14

The following two PDB lockdown profile statements demonstrate how the inheritance
works:

CREATE LOCKDOWN PROFILE hr_prof INCLUDING PRIVATE_DBAAS;
CREATE LOCKDOWN PROFILE hr_prof2 FROM hr_prof;

In the first statement, hr_prof inherits any changes made to the PRIVATE_DBAAS base
profile. If a new statement is enabled for PRIVATE_DBAAS, then it is enabled for hr_prof. In
the second statement, in contrast, when hr_prof changes, then hr_prof2 does not
change because it is independent of its base profile.

3. Run the ALTER LOCKDOWN PROFILE statement to provide restrictions for the profile.

For example:

ALTER LOCKDOWN PROFILE hr_prof DISABLE STATEMENT = ('ALTER SYSTEM');
ALTER LOCKDOWN PROFILE hr_prof ENABLE STATEMENT = ('ALTER SYSTEM') clause
= ('flush shared_pool');
ALTER LOCKDOWN PROFILE hr_prof DISABLE FEATURE = ('XDB_PROTOCOLS');

In the preceding example:

• DISABLE STATEMENT = ('ALTER SYSTEM') disables the use of all ALTER SYSTEM
statements for the PDB.

• ENABLE STATEMENT = ('ALTER SYSTEM') clause = ('flush shared_pool')
enables only the use of the FLUSH_SHARED_POOL clause for ALTER SYSTEM.

• DISABLE FEATURE = ('XDB_PROTOCOLS') prohibits the use of the XDB protocols (FTP,
HTTP, HTTPS) by this PDB

After you create a PDB lockdown profile, you are ready to enable it by using the ALTER
SYSTEM SET PDB_LOCKDOWN SQL statement.

Related Topics

• Oracle Database SQL Language Reference

Enabling or Disabling a PDB Lockdown Profile
To enable or disable a PDB lockdown profile, use the PDB_LOCKDOWN initialization parameter

You can use ALTER SYSTEM SET PDB_LOCKDOWN to enable a lockdown profile in any of the
following contexts:

• CDB (affects all PDBs)

• Application root (affects all application PDBs in the container)

• Application PDB

• PDB

Chapter 18
Restricting Operations on PDBs Using PDB Lockdown Profiles

18-15

Note:

It is not necessary to restart the instance to enable the profile. When the
ALTER SYSTEM SET PDB_LOCKDOWN statement completes, the profile rules take
effect immediately.

When you set PDB_LOCKDOWN in the CDB root, every PDB and application root inherits
this setting unless PDB_LOCKDOWN is set at the container level. To disable lockdown
profiles, set PDB_LOCKDOWN to null. If you set this parameter to null in the CDB root, then
lockdown profiles are disabled for all PDBs except those that explicitly set a profile
within the PDB.

A CDB common user who has been commonly granted the SYSDBA administrative
privilege or the ALTER SYSTEM system privilege can set PDB_LOCKDOWN only to a
lockdown profile that was created in the CDB root. An application common user with
the application common SYSDBA administrative privilege or the ALTER SYSTEM system
privilege can set PDB_LOCKDOWN only to a lockdown profile created in an application
root.

1. Log in to the desired container as a user who has the commonly granted ALTER
SYSTEM or commonly granted SYSDBA privilege.

For example, to enable the profile for all PDBs, log in to the CDB root:

CONNECT c##sec_admin
Enter password: password

2. Run the ALTER SYSTEM SET PDB_LOCKDOWN statement.

For example, the following statement enables the lockdown profile named hr_prof
for all PDBs:

ALTER SYSTEM SET PDB_LOCKDOWN = hr_prof;

The following statement resets the PDB_LOCKDOWN parameter:

ALTER SYSTEM RESET PDB_LOCKDOWN;

This variation of the preceding statement includes the SCOPE clause::

ALTER SYSTEM RESET PDB_LOCKDOWN SCOPE = BOTH;

The following statement disables all lockdown profiles in the CDB except those
that are explicitly set at the PDB level:

ALTER SYSTEM SET PDB_LOCKDOWN = '' SCOPE = BOTH;

To find the names of PDB lockdown profiles, query the PROFILE_NAME column of
the DBA_LOCKDOWN_PROFILES data dictionary view.

Chapter 18
Restricting Operations on PDBs Using PDB Lockdown Profiles

18-16

3. Optionally, review information about the profiles by querying DBA_LOCKDOWN_PROFILES.

For example, run the following query:

SET LINESIZE 150
COL PROFILE_NAME FORMAT a20
COL RULE FORMAT a20
COL CLAUSE FORMAT a25

SELECT PROFILE_NAME, RULE, CLAUSE, STATUS FROM CDB_LOCKDOWN_PROFILES;

Sample output appears below:

PROFILE_NAME RULE CLAUSE STATUS
----------------- -------------------- ------------------------- -------
HR_PROF XDB_PROTOCOLS DISABLE
HR_PROF ALTER SYSTEM DISABLE
HR_PROF ALTER SYSTEM FLUSH SHARED_POOL ENABLE
HR_PROF2 EMPTY
PRIVATE_DBAAS EMPTY
PUBLIC_DBAAS EMPTY
SAAS EMPTY

Dropping a PDB Lockdown Profile
To drop a PDB lockdown profile, you must have the DROP LOCKDOWN PROFILE system privilege
and be logged into the CDB or application root.

You can find the names of existing PDB lockdown profiles by querying the
DBA_LOCKDOWN_PROFILES data dictionary view.

1. Connect to the CDB root or the application root as a user who has the DROP LOCKDOWN
PROFILE system privilege.

For example, to connect to the CDB root:

CONNECT c##sec_admin
Enter password: password

2. Run the DROP LOCKDOWN_PROFILE statement.

For example:

DROP LOCKDOWN PROFILE hr_prof2;
3. Optionally, review the current list of profiles by querying DBA_LOCKDOWN_PROFILES.

For example, run the following query:

SET LINESIZE 150
COL PROFILE_NAME FORMAT a20
COL RULE FORMAT a20
COL CLAUSE FORMAT a25

SELECT PROFILE_NAME, RULE, CLAUSE, STATUS FROM CDB_LOCKDOWN_PROFILES;

Chapter 18
Restricting Operations on PDBs Using PDB Lockdown Profiles

18-17

Sample output appears below:

PROFILE_NAME RULE CLAUSE
STATUS
----------------- -------------------- -------------------------

HR_PROF XDB_PROTOCOLS
DISABLE
HR_PROF ALTER SYSTEM
DISABLE
HR_PROF ALTER SYSTEM FLUSH SHARED_POOL
ENABLE
PRIVATE_DBAAS
EMPTY
PUBLIC_DBAAS
EMPTY
SAAS
EMPTY

Configuring Operating System Users for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure configures user accounts to be
operating system users for a pluggable database (PDB).

• About Configuring Operating System Users for a PDB
Instead the oracle operating system user, you can set a specific user account to
be the operating system user for that PDB.

• Configuring an Operating System User for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure can set an operating system
user for a PDB.

• Setting the Default Credential in a PDB
You can set the database property DEFAULT_CREDENTIAL for a specified PDB.

About Configuring Operating System Users for a PDB
Instead the oracle operating system user, you can set a specific user account to be
the operating system user for that PDB.

If you do not set a specific user to be the operating system user for the PDB, then by
default the PDB uses the oracle operating system user. For the root, you can use the
oracle operating system user when you must interact with the operating system.

For better security, Oracle recommends that you set a unique operating system user
for each PDB in a multitenant environment. Doing so helps to ensure that operating
system interactions are performed as a less powerful user than the oracle operating
system user, and helps to protect data that belongs to one PDB from being accessed
by users who are connected to other PDBs.

Configuring an Operating System User for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure can set an operating system
user for a PDB.

Chapter 18
Configuring Operating System Users for a PDB

18-18

1. Log in to the database instance root as a user who has the EXECUTE privilege for the
DBMS_CREDENTIAL PL/SQL package and the ALTER SYSTEM system privilege.

For example:

sqlplus c##sec_admin
Enter password: password

2. Run the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure to create an Oracle credential
for the operating system user.

For example, to set the credential for a user named os_admin:

BEGIN
 DBMS_CREDENTIAL.CREATE_CREDENTIAL (
 credential_name => 'PDB1_OS_USER',
 username => 'os_admin',
 password => 'password');
END;
/

3. Connect to the PDB for which the operating system user will be used.

For example:

CONNECT cc##sec_admin@hrpdb
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current PDB, run
the show con_name command.

4. Set the PDB_OS_CREDENTIAL initialization parameter for the user whose credential was set
in Step 2.

For example:

ALTER SYSTEM SET PDB_OS_CREDENTIAL = PDB1_OS_USER SCOPE = SPFILE;

The PDB_OS_CREDENTIAL parameter is a static parameter, so you must set it using the
SCOPE = SPFILE clause.

5. Restart the database instance.

SHUTDOWN IMMEDIATE
STARTUP

Related Topics

• Oracle Database Security Guide

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

Related Topics

• Setting the Default Credential in a PDB
You can set the database property DEFAULT_CREDENTIAL for a specified PDB.

Chapter 18
Configuring Operating System Users for a PDB

18-19

Setting the Default Credential in a PDB
You can set the database property DEFAULT_CREDENTIAL for a specified PDB.

A default credential is useful when importing files from an object store into a PDB. If
you do not specify a credential name when using impdp, then Oracle Data Pump and
the object store module can use the DEFAULT_CREDENTIAL object to retrieve the user
name and password. When running impdp without specifying a credential, you must
prefix the dump file name with DEFAULT_CREDENTIAL:.

To set the default credential:

1. Log in to a PDB with administrator privileges.

2. Use an ALTER DATABASE statement to set the default credential.

For example, enter the following statement to set the credential to
SYSTEM.HR_CRED.

ALTER DATABASE PROPERTY SET DEFAULT_CREDENTIAL = 'SYSTEM.HR_CRED';

Example 18-3 Importing Data into a PDB Using the Default Credential

This example assumes that a default credential exists. The following command
imports data from an object store , prefacing the URL with the string
DEFAULT_CREDENTIAL:

impdp hr@pdb1 table_exists_action=replace \
 dumpfile=DEFAULT_CREDENTIAL:https://example.com/ostore/obucket/
myt.dmp

See Also:

• "Using Data Pump to Move Data Into a CDB"

• Oracle Database Utilities to learn about Data Pump Import

Using Application Contexts in a Multitenant Environment
An application context stores user identification that can enable or prevent a user from
accessing data in the database.

• What Is an Application Context?
An application context is a set of name-value pairs that Oracle Database stores
in memory.

• Application Contexts in a Multitenant Environment
Where you create an application in a multitenant environment determines where
you must create the application context.

Chapter 18
Using Application Contexts in a Multitenant Environment

18-20

What Is an Application Context?
An application context is a set of name-value pairs that Oracle Database stores in memory.

The context has a label called a namespace (for example, empno_ctx for an application
context that retrieves employee IDs). This context enables Oracle Database to find
information about both database and nondatabase users during authentication.

Inside the context are the name-value pairs (an associative array): the name points to a
location in memory that holds the value. An application can use the application context to
access session information about a user, such as the user ID or other user-specific
information, or a client ID, and then securely pass this data to the database.

You can then use this information to either permit or prevent the user from accessing data
through the application. You can use application contexts to authenticate both database and
non-database users.

Related Topics

• Oracle Database Security Guide

Application Contexts in a Multitenant Environment
Where you create an application in a multitenant environment determines where you must
create the application context.

If an application is installed in the application root or CDB root, then it becomes accessible
across the application container or system container and associated application PDBs. You
will need to create a common application context in this root.

When you create a common application context for use with an application container, note
the following:

• You can create application contexts in a multitenant environment by setting the
CONTAINER clause in the CREATE CONTEXT SQL statement. For example, to create a
common application context in the application root, you must execute CREATE CONTEXT
with CONTAINER set to ALL. To create the application context in a PDB, set CONTAINER to
CURRENT.

• You cannot use the same name for a local application context for a common application
context. You can find the names of existing application contexts by running the following
query:

SELECT OBJECT_NAME FROM DBA_OBJECTS WHERE OBJECT_TYPE ='CONTEXT';

• The PL/SQL package that you create to manage a common application context must be
a common PL/SQL package. That is, it must exist in the application root or CDB root. If
you create the application context for a specific PDB, then you must store the associated
PL/SQL package in that PDB.

• The name-value pairs that you set under a common session application context from an
application container or a system container for a common application context are not
accessible from other application containers or system containers when a common user
accesses a different container.

Chapter 18
Using Application Contexts in a Multitenant Environment

18-21

• The name-value pairs that you set under a common global application context
from an application container or a system container, are accessible only within the
same container in the same user session.

• An application can retrieve the value of an application context whether it resides in
the application root, the CDB root, or a PDB.

• During a plug-in operation of a PDB into a CDB or an application container, if the
name of the common application context conflicts with a PDB’s local application
context, then the PDB must open in restricted mode. A database administrator
would then need to correct the conflict before opening the PDB in normal mode.

• During an unplug operation, a common application context retains its common
semantics, so that later on, if the PDB is plugged into another CDB where a
common application context with the same name exists, it would continue to
behave like a common object. If a PDB is plugged into an application container or
a system container, where the same common application context does not exist,
then it behaves like a local object.

To find if an application context is a local application context or an application common
application context, query the SCOPE column of the DBA_CONTEXT or ALL_CONTEXT data
dictionary view.

Related Topics

• Oracle Database Security Guide

Using Oracle Virtual Private Database in a Multitenant
Environment

Oracle Virtual Private Database (VPD) enables you to filter users who access data.

• What Is Oracle Virtual Private Database?
Oracle Virtual Private Database (VPD) creates security policies to control
database access at the row and column level.

• Oracle Virtual Private Database in a Multitenant Environment
You can create Virtual Private Database policies in an application root for use
throughout any associated application PDBs.

What Is Oracle Virtual Private Database?
Oracle Virtual Private Database (VPD) creates security policies to control database
access at the row and column level.

Note:

Oracle Database release 12c introduced Real Application Security (RAS) to
supersede VPD. Oracle recommends that you use RAS for new projects that
require row and column level access controls for their applications.

Essentially, Oracle Virtual Private Database adds a dynamic WHERE clause to a SQL
statement that is issued against the table, view, or synonym to which an Oracle Virtual
Private Database security policy was applied.

Chapter 18
Using Oracle Virtual Private Database in a Multitenant Environment

18-22

Oracle Virtual Private Database enforces security, to a fine level of granularity, directly on
database tables, views, or synonyms. Because you attach security policies directly to these
database objects, and the policies are automatically applied whenever a user accesses data,
there is no way to bypass security.

When a user directly or indirectly accesses a table, view, or synonym that is protected with an
Oracle Virtual Private Database policy, Oracle Database dynamically modifies the SQL
statement of the user. This modification creates a WHERE condition (called a predicate)
returned by a function implementing the security policy. Oracle Database modifies the
statement dynamically, transparently to the user, using any condition that can be expressed in
or returned by a function. You can apply Oracle Virtual Private Database policies to SELECT,
INSERT, UPDATE, INDEX, and DELETE statements.

For example, suppose a user performs the following query:

SELECT * FROM OE.ORDERS;

The Oracle Virtual Private Database policy dynamically appends the statement with a WHERE
clause. For example:

SELECT * FROM OE.ORDERS
 WHERE SALES_REP_ID = 159;

In this example, the user can only view orders by Sales Representative 159.

If you want to filter the user based on the session information of that user, such as the ID of
the user, then you can create the WHERE clause to use an application context. For example:

SELECT * FROM OE.ORDERS
 WHERE SALES_REP_ID = SYS_CONTEXT('USERENV','SESSION_USER');

Note:

Oracle Virtual Private Database does not support filtering for DDLs, such as
TRUNCATE or ALTER TABLE statements.

Related Topics

• Oracle Database Real Application Security Administrator's and Developer's Guide

• Oracle Database Security Guide

Oracle Virtual Private Database in a Multitenant Environment
You can create Virtual Private Database policies in an application root for use throughout any
associated application PDBs.

The CDB restriction applies to shared context sensitive policies and views related to Virtual
Private Database policies as well. You cannot create a Virtual Private Database policy for an
entire multitenant environment.

Chapter 18
Using Oracle Virtual Private Database in a Multitenant Environment

18-23

With regard to application containers, you can create Virtual Private Database policies
to protect application common objects by applying the common policy to all PDBs that
belong to the application root. In other words, when you install an application in the
application root, all the common Virtual Private Database policies that protect the
common objects will be applied to and immediately enforced for all PDBs in the
application container.

Note the following:

• You can only create the common Virtual Private Database policy and its
associated PL/SQL function in the application root and only attach it to application
common objects. If the function is not in the same location as the policy, then an
error is raised at runtime.

• A Virtual Private Database policy that is applied to common objects is considered
a common policy that will be automatically enforced in PDBs that belong to the
application container when it accesses the application common objects from
application PDBs.

• Application common Virtual Private Database policies can only protect application
common objects.

• A Virtual Private Database policy that is applied to application common objects in
the application root and is applied to all application PDBs is considered a common
Virtual Private Database policy. A policy that is applied to a local database table
and enforced in one PDB is considered a local Virtual Private Database policy.

For example, if policy VPD_P1 is applied to the application common table T1 in the
application root, then it is a considered to be a common policy. It will be enforced
in each application PDB. If a policy named VPD_P1 is applied to a local table called
T1 in PDB1, then it is considered a local policy, which means that it affects only
PDB1. If a policy called VPD_P1 is applied to a local table T1 in the application root,
then it is still considered a local policy because it affects only the application root.
This concept applies to other operations, such as enabling, disabling, and
removing Virtual Private Database policies.

• Application common Virtual Private Database policies only protect application
common objects, while local Virtual Private Database policies only protect local
objects.

• If you are using application contexts, then ensure common database session-
based application contexts and common global application context objects are
used in the common Virtual Private Database configuration.

• Application container Virtual Private Database policies are stored in the application
root. PDBs store only local policies. If you plug a PDB into the application
container, then the common policies are not converted to local policies. Instead,
Oracle Database loads them from the application root and enforces them in the
local PDB when the policies access common objects in the local PDB.

Related Topics

• Oracle Database Security Guide

Chapter 18
Using Oracle Virtual Private Database in a Multitenant Environment

18-24

Using Transport Layer Security in a Multitenant Environment
Transport Layer Security (TLS) can be used in a multitenant environment for application
containers.

If you want to use Transport Layer Security (TLS) in a multitenant environment for an
application container, then you must ensure that each PDB is able to use its own wallet with
its own certificates for TLS authentication.

• Because there is no individual sqlnet.ora file for each PDB, place the wallet in a
subdirectory of the wallet directory where the name of the subdirectory is the GUID of
the PDB that uses the wallet.

For example, suppose the WALLET_LOCATION parameter in sqlnet.ora is set as follows:

(SOURCE=(METHOD=FILE)(METHOD_DATA=
 (DIRECTORY=/home/oracle/wallet)))

Place each PDB’s wallet in the /home/oracle/wallet/PDB_GUID directory. You can find
the existing PDBs and their GUIDs by querying the DBA_PDBS data dictionary view.

If the WALLET_LOCATION parameter is not specified, then you must place the PDB wallet in
a leaf subdirectory of the default wallet path where the name of the subdirectory is the
GUID of the PDB, and the name of the leaf subdirectory is wallet. For example:

$ORACLE_BASE/admin/db_unique_name/PDB_GUID/wallet

Or if the ORACLE_BASE environment variable is not set, then you can use the Oracle home:

$ORACLE_HOME/admin/db_unique_name/PDB_GUID/wallet

These default locations correspond to the default that is used by Oracle Enterprise User
Security to locate wallets for authentication to LDAP.

Related Topics

• Oracle Database Security Guide

Oracle Data Redaction in a Multitenant Environment
In a multitenant environment, Oracle Data Redaction policies apply only to the objects within
the current pluggable database (PDB).

You cannot create a Data Redaction policy for a multitenant container database (CDB). This
is because the objects for which you create Data Redaction policies typically reside in a PDB.
If you have the SYSDBA privilege, then you can list all the PDBs in a CDB by running the SHOW
PDBS command.

As with the CDB root, you cannot create Data Redaction policies in an application root.

Chapter 18
Using Transport Layer Security in a Multitenant Environment

18-25

Overview of Auditing in a Multitenant Environment
Auditing is the monitoring and recording of configured database actions, from both
database users and nondatabase users. Nondatabase users are application users
who are recognized in the database using the CLIENT_IDENTIFIER attribute.

You can base auditing on individual actions, such as the type of SQL statement
executed, or on combinations of data that can include the user name, application,
time, and so on. You can configure auditing for both successful and failed activities,
and include or exclude specific users from the audit. In a multitenant environment, you
can audit individual actions of the pluggable database (PDB) or individual actions in
the entire multitenant container database (CDB).

Auditing is enabled by default. Audit records are written to the unified audit trail in a
uniform format and are made available through the UNIFIED_AUDIT_TRAIL view.

• Unified Auditing in a Multitenant Environment
You can use unified auditing in a multitenant environment.

• Example: Auditing the DBA Role in a Multitenant Environment
The CREATE AUDIT POLICY statement can audit roles in a multitenant environment.

• Unified Audit Policies or AUDIT Settings in a Multitenant Environment
In a multitenant environment, you can create unified audit policies for individual
PDBs and in the root.

• Fine-Grained Auditing in a Multitenant Environment
You can create fine-grained audit policies in the CDB root, application root, CDB
PDBs, and application PDBs.

Unified Auditing in a Multitenant Environment
You can use unified auditing in a multitenant environment.

You can apply audit settings to individual PDBs or to the CDB, depending on the type
of policy. In a multitenant environment, each PDB, including the root, has its own
unified audit trail.

Audit settings in a multitenant environment affect the following areas:

• Unified audit policies created with the CREATE AUDIT POLICY and AUDIT
statements: You can create policies for both the root and individual PDBs.

• Audit records written to the syslog: On UNIX platforms, you can set the
UNIFIED_AUDIT_COMMON_SYSTEMLOG initialization parameter in the CDB root to
enable certain unified audit trail columns to be written to SYSLOG. On both
Windows and UNIX, you can set the UNIFIED_AUDIT_SYSTEMLOG parameter in both
the root and PDB level.

• Fine-grained audit policies: You can create policies for individual PDBs only, not
the root.

• Purging the audit trail: You can perform purge operations for both the root and
individual PDBs.

Related Topics

• Oracle Database Security Guide

Chapter 18
Overview of Auditing in a Multitenant Environment

18-26

Example: Auditing the DBA Role in a Multitenant Environment
The CREATE AUDIT POLICY statement can audit roles in a multitenant environment.

The following example shows how to audit a predefined common role DBA in a multitenant
environment.

Example 18-4 Auditing the DBA Role in a Multitenant Environment

CREATE AUDIT POLICY role_dba_audit_pol
 ROLES DBA
 CONTAINER = ALL;

AUDIT POLICY role_dba_audit_pol;

Unified Audit Policies or AUDIT Settings in a Multitenant Environment
In a multitenant environment, you can create unified audit policies for individual PDBs and in
the root.

• About Local, CDB Common, and Application Common Audit Policies
An audit policy can be either a local audit policy, a CDB common audit policy, or an
application common audit policy.

• Traditional Auditing in a Multitenant Environment
In traditional auditing (not unified auditing), the AUDIT and NOAUDIT statements can audit
statements and privileges in a multitenant environment.

• Configuring a Local Unified Audit Policy or Common Unified Audit Policy
The CONTAINER clause is specific to multitenant environment use for the CREATE AUDIT
POLICY statement.

• Example: Local Unified Audit Policy
The CREATE AUDIT POLICY statement can create a local unified audit policy in either
the root or a PDB.

• Example: CDB Common Unified Audit Policy
The CREATE AUDIT POLICY statement can create a CDB common unified audit policy.

• Example: Application Common Unified Audit Policy
For application container common unified audit policies, you can audit action options and
system privilege options, and refer to common objects and roles.

• How Local or Common Audit Policies or Settings Appear in the Audit Trail
You can query unified audit policy views from either the root or the PDB in which the
action occurred.

About Local, CDB Common, and Application Common Audit Policies
An audit policy can be either a local audit policy, a CDB common audit policy, or an
application common audit policy.

This applies to both unified audit policies and policies that are created using the AUDIT SQL
statement.

Chapter 18
Overview of Auditing in a Multitenant Environment

18-27

• Local audit policy. This type of policy can exist in either the root (CDB or
application) or the PDB (CDB or application). A local audit policy that exists in the
root can contain object audit options for both local and common objects. Both local
and common users who have been granted the AUDIT_ADMIN role can enable local
policies: local users from their PDBs and common users from the root or the PDB
to which they have privileges. You can enable a local audit policy for both local and
common users and roles.

You can create local audit policies for application local objects and application
local roles, as well as system action options and system privilege options. You
cannot enforce a local audit policy for a common user across all containers, nor
can you enforce a common audit policy for a local user.

• CDB common audit policy. This type of policy is available to all PDBs in the
multitenant environment. Only common users who have been granted the
AUDIT_ADMIN role can create and maintain common audit policies. You can enable
common audit policies only for common users. You must create common audit
policies only in the root. This type of policy can contain object audit options of only
common objects, and be enabled only for common users. You can enable a
common audit policy for common users and roles only.

You cannot enforce a common audit policy for a local user across all containers.

• Application common audit policy. Similar to CDB common audit policies, this
type of policy is available to all PDBs in the multitenant environment. You can
create common audit policies for application common objects and application
common roles, as well as system action options and system privilege options. You
can only create this type of policy in the application root container, but you can
enable it on both application common users and CDB common users. If you want
to audit objects, then ensure that these objects are application common objects.
You can determine whether an object is an application common object by querying
the SHARING column of the DBA_OBJECTS data dictionary view.

By default, audit policies are local to the current PDB, for both CDB and application
scenarios.

The following table explains how audit policies apply in different multitenant
environments.

Table 18-1 How Audit Policies Apply to the CDB Root, Application Root, and
Individual PDBs

Audit Option Type CDB Root Application Root Individual PDB

Common audit
statement or audit
policy

Applies to CDB
common users

Applies to CDB
common users

Applies to CDB
common users

Application container
common audit
statement or audit
policy

Not applicable • Applies to CDB
common users
and are valid for
the current
application
container only

• Applies to
application
container
common users

• Applies to CDB
common users
and are valid for
this application
container only

• Applies to
application
common users

Chapter 18
Overview of Auditing in a Multitenant Environment

18-28

Table 18-1 (Cont.) How Audit Policies Apply to the CDB Root, Application Root,
and Individual PDBs

Audit Option Type CDB Root Application Root Individual PDB

Local audit statement
or audit policy

Local configurations
not allowed

Local configurations
not allowed

• Applies to CDB
common users

• Applies to
application
common users

Traditional Auditing in a Multitenant Environment
In traditional auditing (not unified auditing), the AUDIT and NOAUDIT statements can audit
statements and privileges in a multitenant environment.

To configure the audit policy to be either a local audit policy or a common audit policy, you
must include the CONTAINER clause, as you normally do for other SQL creation or modification
statements. If you want to audit an application container, then you can audit SQL statement
and system privileges performed by local and common users and roles. The audit record will
be created in the container in which the action was performed.

• If you want to apply the AUDIT or NOAUDIT statement to the current CDB or application
PDB, then in this PDB, you must set CONTAINER to CURRENT. For example:

AUDIT DROP ANY TABLE BY SYSTEM BY ACCESS CONTAINER = CURRENT;

• If you want to apply the AUDIT or NOAUDIT statement to the entire multitenant
environment, then in the CDB root, then you must set CONTAINER to ALL. For an
application container, you would set it in the application root. For example:

AUDIT DROP ANY TABLE BY SYSTEM BY ACCESS CONTAINER = ALL;

To find if a traditional audit option is designed for use in an application container, perform a
join query with the DBA_OBJ_AUDIT_OPTS and DBA_OBJECTS data dictionary views, by using the
OWNER and OBJECT_NAME columns in both views, and the APPLICATION column in DBA_OBJECTS.

Related Topics

• Oracle Database SQL Language Reference

See Also:

Oracle Database SQL Language Reference for more information about the
traditional AUDIT and NOAUDIT SQL statements

Chapter 18
Overview of Auditing in a Multitenant Environment

18-29

Configuring a Local Unified Audit Policy or Common Unified Audit Policy
The CONTAINER clause is specific to multitenant environment use for the CREATE AUDIT
POLICY statement.

To create a local or common (CDB or application) unified audit policy in either the CDB
environment or an application container environment, include the CONTAINER clause in
the CREATE AUDIT POLICY statement.

• Use the following syntax to create a local or common unified audit policy:

CREATE AUDIT POLICY policy_name
 action1 [,action2]
 [CONTAINER = {CURRENT | ALL}];

In this specification:

• CURRENT sets the audit policy to be local to the current PDB.

• ALL makes the audit policy a common audit policy, that is, available to the entire
multitenant environment.

For example, for a common unified audit policy:

CREATE AUDIT POLICY dict_updates
 ACTIONS UPDATE ON SYS.USER$,
 DELETE ON SYS.USER$,
 UPDATE ON SYS.LINK$,
 DELETE ON SYS.LINK$
 CONTAINER = ALL;

Note the following:

• You can set the CONTAINER clause for the CREATE AUDIT POLICY statement but not
for ALTER AUDIT POLICY or DROP AUDIT POLICY. If you want to change the scope
of an existing unified audit policy to use this setting, then you must drop and re-
create the policy.

• For AUDIT statements, you can set the CONTAINER clause for audit settings only if
you have an Oracle database that has not been migrated to the Release 12.x and
later audit features. You cannot use the CONTAINER clause in an AUDIT statement
that is used to enable a unified audit policy.

• If you are in a PDB, then you can only set the CONTAINER clause to CURRENT, not
ALL. If you omit the setting while in the PDB, then the default is CONTAINER =
CURRENT.

• If you are in the root, then you can set the CONTAINER clause to either CURRENT if
you want the policy to apply to the root only, or to ALL if you want the policy to
apply to the entire CDB. If you omit the CONTAINER clause, then default is
CONTAINER = CURRENT.

• For objects:

– Common audit policies can have common objects only and local audit policies
can have both local objects and common objects.

Chapter 18
Overview of Auditing in a Multitenant Environment

18-30

– You cannot set CONTAINER to ALL if the objects involved are local. They must be
common objects.

• For privileges:

– You can set the CONTAINER to CURRENT (or omit the CONTAINER clause) if the user
accounts involved are a mixture of local and common accounts. This creates a local
audit configuration that applies only to the current PDB.

– You cannot set CONTAINER to ALL if the users involved are local users. They must be
common users.

– If you set CONTAINER to ALL and do not specify a user list (using the BY clause in the
AUDIT statement), then the configuration applies to all common users in each PDB.

• For application containers, you can run a common unified audit policy from the
application container script that is used for application install, upgrade, patch, and
uninstall operations. To do so:

1. Create a common unified audit policy in the application container root, and set this
policy to CONTAINER = ALL. Alternatively, you can include this policy in the script that
is described in this next step.

2. Create a custom version of the script you normally would use to install, upgrade,
patch, or uninstall Oracle Database.

3. Within this script, include the SQL statements that you want to audit within the
following lines:

ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL
List SQL statements here. Separate each statement with a semi-colon.
ALTER PLUGGABLE DATABASE APPLICATION END INSTALL

If you include the unified audit policy in the script, then ensure that you include both
the CREATE AUDIT POLICY and AUDIT POLICY statements.

After the audit policy is created and enabled, all user access to the application common
objects is audited irrespective of whether the audit policy is defined in the database or
from the script.

• To audit application install, upgrade, patch, and uninstall operations locally in an
application root or an application PDB, follow a procedure similar to the preceding
procedure for common unified audit policies, but synchronize the application PDB
afterward. For example:

ALTER PLUGGABLE DATABASE APPLICATION application_name SYNC;

Related Topics

• Managing Applications in an Application Container
You install, upgrade, or patch an application in an application container.

Example: Local Unified Audit Policy
The CREATE AUDIT POLICY statement can create a local unified audit policy in either the
root or a PDB.

When you create a local unified audit policy in the root, it only applies to the root and not
across the multitenant environment.

Chapter 18
Overview of Auditing in a Multitenant Environment

18-31

The following example shows a local unified audit policy that has been created by the
common user c##sec_admin from a PDB and applied to common user c##hr_admin.

Example 18-5 Local Unified Audit Policy

CONNECT c##sec_admin@hrpdb
Enter password: password
Connected.

CREATE AUDIT POLICY table_privs
 PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE
 CONTAINER = CURRENT;

AUDIT POLICY table_privs BY c##hr_admin;

Example: CDB Common Unified Audit Policy
The CREATE AUDIT POLICY statement can create a CDB common unified audit
policy.

Example 18-6 shows a common unified audit policy that has been created by the
common user c##sec_admin from the root and applied to common user c##hr_admin.

Example 18-6 Common Unified Audit Policy

CONNECT c##sec_admin
Enter password: password
Connected.

CREATE AUDIT POLICY admin_pol
 ACTIONS CREATE TABLE, ALTER TABLE, DROP TABLE
 ROLES c##hr_mgr, c##hr_sup
 CONTAINER = ALL;

AUDIT POLICY admin_pol BY c##hr_admin;

Example: Application Common Unified Audit Policy
For application container common unified audit policies, you can audit action options
and system privilege options, and refer to common objects and roles.

You can create the application common audit policy only from the application root, and
enable the policy for both application common users and CDB common users.

The following example shows how to create a policy that audits the application
common user SYSTEM for the application container app_pdb. The audit policy audits
SELECT actions on the SYSTEM.utils_tab table and on DROP TABLE actions on any of
the PDBs in the container database, including the CDB root. The policy also audits the
use of the SELECT ANY TABLE system privilege across all containers.

Example 18-7 Application Common Unified Audit Policy

CONNECT c##sec_admin@app_pdb
Enter password: password
Connected.

Chapter 18
Overview of Auditing in a Multitenant Environment

18-32

CREATE AUDIT POLICY app_pdb_admin_pol
 ACTIONS SELECT ON hr_app_cdb.utils_tab, DROP TABLE
 PRIVILEGES SELECT ANY TABLE
 CONTAINER = ALL;

AUDIT POLICY app_pdb_admin_pol by SYSTEM, c##hr_admin;

In the preceding example, setting CONTAINER to ALL applies the policy only to all the relevant
object accesses in the application root and on all the application PDBs that belong to the
application root. It does not apply the policy outside this scope.

How Local or Common Audit Policies or Settings Appear in the Audit Trail
You can query unified audit policy views from either the root or the PDB in which the action
occurred.

You can perform the following types of queries:

• Audit records from all PDBs. The audit trail reflects audited actions that have been
performed in the PDBs. For example, if user lbrown in PDB1 performs an action that has
been audited by either a common or a local audit policy, then the audit trail will capture
this action. The DBID column in the UNIFIED_AUDIT_TRAIL data dictionary view indicates
the PDB in which the audited action takes place and to which the policy applies. If you
want to see audit records from all PDBs, you should query the CDB_UNIFIED_AUDIT_TRAIL
data dictionary view from the root.

• Audit records from common audit policies. This location is where the common audit
policy results in an audit record. The audit record can be generated anywhere in the
multitenant environment—the root or the PDBs, depending on where the action really
occurred. For example, the common audit policy fga_pol audits the EXECUTE privilege on
the DBMS_FGA PL/SQL package, and if this action occurs in PDB1, then the audit record is
generated in PDB1 and not in the root. Hence, the audit record can be seen in PDB1.

You can query the UNIFIED_AUDIT_TRAIL data dictionary view for the policy from either
the root or a PDB if you include a WHERE clause for the policy name (for example, WHERE
UNIFIED_AUDIT_POLICIES = 'FGA_POL').

The following example shows how to find the results of a common unified audit policy:

CONNECT c##sec_admin
Enter password: password
Connected.

SELECT DBID, ACTION_NAME, OBJECT_SCHEMA, OBJECT_NAME FROM
CDB_UNIFIED_AUDIT_TRAIL WHERE DBUSERNAME = 'c##hr_admin';
46892-1
DBID ACTION_NAME OBJECT_SCHEMA OBJECT_NAME
----------- ----------- ------------- -----------
653916017 UPDATE HR EMPLOYEES
653916018 UPDATE HR JOB_HISTORY
653916017 UPDATE HR JOBS

Chapter 18
Overview of Auditing in a Multitenant Environment

18-33

Fine-Grained Auditing in a Multitenant Environment
You can create fine-grained audit policies in the CDB root, application root, CDB
PDBs, and application PDBs.

Note the following general rules about fine-grained audit policies in a multitenant
environment:

• You cannot create fine-grained audit policies on SYS objects.

• You cannot create fine-grained audit policies, either local or application common,
for extended data link objects.

• When you create a fine-grained audit policy in the CDB root, the policy cannot be
applied to all PDBs. It only applies to objects within the CDB root. (In other words,
there is no such thing as a common fine-grained audit policy for the CDB root.) If
you want to create a fine-grained audit policy to audit a common object’s access in
all the PDBs, then you must explicitly create that policy in each PDB and then
enable it on the common objects that is accessible in the PDB.

• When you create a fine-grained audit policy in a PDB, it applies only to objects
within the PDB.

• You can create application common fine-grained audit policies only if you are
connected to the application root and only within the BEGIN/END block. If you are
connected to the application root and create the fine-grained audit policy outside
the BEGIN/END block, then the fine-grained audit policy is created in the application
root.

• You cannot create application common fine-grained audit policies on local PDB
objects.

• If the application common fine-grained audit policy has a handler, then this handler
must be owned by either an application common user or a CDB common user.

• You can create an application fine-grained audit policy on local (PDB) objects and
CDB common objects. Because the policy is local to its container, the object on
which the policy is defined is audited only in the particular container where the
policy is defined. For example, if you create a fine-grained audit policy in the
hr_pdb PDB, the object for which you create this policy must exist in the hr_pdb
PDB.

• You cannot create local fine-grained audit policies in an application PDB on object
linked and extended data link objects. On metadata-linked objects are allowed in
the fine-grained audit policy.

• Application root local policies are allowed for all application common objects.

• When you create a fine-grained audit policy as a common audit policy in an
application root, it will be effective in each PDB that belongs to this application
root. Therefore, any access to the application common object and CDB common
object (on which the application common fine-grained audit policy is defined) from
the application PDB is audited in the fine-grained audit trail in that application
PDB.

• When you create scripts for application install, upgrade, patch, or uninstall
operations, you can include SQL statements within the ALTER PLUGGABLE
DATABASE app_name BEGIN INSTALL and ALTER PLUGGABLE DATABASE app_name

Chapter 18
Overview of Auditing in a Multitenant Environment

18-34

END INSTALL blocks to perform various operations. You can include fine-grained audit
policy statements only within these blocks.

• You can only enable, disable, or drop application common fine-grained audit policies from
the application root, and from within a ALTER PLUGGABLE DATABASE app_name BEGIN
INSTALL and ALTER PLUGGABLE DATABASE app_name END INSTALL block in a script.

Related Topics

• Oracle Database Security Guide

Chapter 18
Overview of Auditing in a Multitenant Environment

18-35

19
Monitoring CDBs and PDBs

You can view information about CDBs and PDBs using SQL*Plus or SQL Developer.

• About CDB and Container Information in Views
In a CDB, the metadata for data dictionary tables and view definitions is stored only in the
root.

• Determining Whether a Database Is a CDB
You can query the CDB column in the V$DATABASE view to determine whether a database
is a CDB or a non-CDB. The CDB column returns YES if the current database is a CDB or
NO if the current database is a non-CDB.

• Viewing Information About the Containers in a CDB
The V$CONTAINERS view provides information about all containers in a CDB, including the
root and all PDBs.

• Viewing Information About PDBs
The CDB_PDBS view and DBA_PDBS view provide information about the PDBs associated
with a CDB, including the status of each PDB.

• Viewing the Open Mode of Each PDB
The V$PDBS view provides information about the PDBs associated with the current
database instance.

• Querying Container Data Objects
In the root, container data objects can show information about database objects (such as
tables and users) contained in the root and in PDBs. Access to PDB information is
controlled by the common user's CONTAINER_DATA attribute.

• Querying Across Containers with the CONTAINERS Clause
The CONTAINERS clause enables you to query tables and views across all containers in a
CDB. It also enables you to query application common objects across all containers in an
application container.

• Determining the Current Container ID or Name
You can determine your current container ID or container name in a CDB.

• Listing the Modifiable Initialization Parameters in PDBs
In a CDB, some initialization parameters apply to the root and to all PDBs. When such an
initialization parameter is changed, it affects the entire CDB. You can set other
initialization parameters to different values in each container.

• Viewing the History of PDBs
The CDB_PDB_HISTORY view shows the history of the PDBs in a CDB. It provides
information about when and how each PDB was created and other information about
each PDB's history.

• Viewing Information About Applications in Application Containers
Several views provide information about the applications in application containers in a
CDB.

19-1

Related Topics

• Tools for a Multitenant Environment
You can use various tools to configure and administer a multitenant environment.

About CDB and Container Information in Views
In a CDB, the metadata for data dictionary tables and view definitions is stored only in
the root.

Each container, including each PDB, application root, and application PDB, has its
own set of data dictionary tables and views for the objects contained in the container.
Because each container can contain different data and schema objects, containers
can display different metadata in data dictionary views, even when querying the same
view in each container. For example, metadata about tables displayed in the
DBA_TABLES view can be different in two different containers because the containers
can contain different tables. An internal mechanism called a metadata link enables a
container to access the metadata for these views in the root.

If a dictionary table stores information that pertains to the whole CDB, instead of for
each container, then the metadata and the data displayed in a data dictionary view are
stored in the root. For example, Automatic Workload Repository (AWR) data can be
stored in the root, and this data is displayed in some data dictionary views, such as the
DBA_HIST_ACTIVE_SESS_HISTORY view. An internal mechanism called a data link
enables a container to access both the metadata and the data for these types of views
in the root.

• About Viewing Information When the Current Container Is Not the CDB Root
When the current container is a PDB, an application root, or an application PDB,
the data dictionary views show metadata for the current container only.

• About Viewing Information When the Current Container Is the CDB Root
When the current container is the CDB root, a common user can view data
dictionary information for the CDB root and for PDBs, application roots, and
application PDBs by querying container data objects.

• Views for a CDB
You can query a set of views for information about a CDB and its PDBs.

See Also:

"Data Dictionary Architecture in a CDB" for more information about dictionary
access in containers, metadata links, and data links

About Viewing Information When the Current Container Is Not the
CDB Root

When the current container is a PDB, an application root, or an application PDB, the
data dictionary views show metadata for the current container only.

To an application connected to a PDB, application root, or application PDB, the data
dictionary appears as it would for a non-CDB. The data dictionary only shows

Chapter 19
About CDB and Container Information in Views

19-2

metadata related to the current container. Also, in a container that is not the CDB root, CDB_
views only show information about database objects visible through the corresponding DBA_
view.

About Viewing Information When the Current Container Is the CDB Root
When the current container is the CDB root, a common user can view data dictionary
information for the CDB root and for PDBs, application roots, and application PDBs by
querying container data objects.

A container data object is a table or view that can contain data pertaining to the following:

• One or more containers

• The CDB as a whole

• One or more containers and the CDB as a whole

Container data objects include V$, GV$, CDB_, and some Automatic Workload Repository
DBA_HIST* views. A common user's CONTAINER_DATA attribute determines which containers
are visible in container data objects.

In a CDB, for every DBA_ view, there is a corresponding CDB_ view. All CDB_ views are
container data objects, but most DBA_ views are not.

Each container data object contains a CON_ID column that identifies the container for each
row returned. Table 19-1 describes the meanings of the values in the CON_ID column.

Table 19-1 CON_ID Column in Container Data Objects

Value in CON_ID
Column

Description

0 The data pertains to the entire CDB

1 The data pertains to the CDB root

2 The data pertains to the PDB seed

3 - 4,098 The data pertains to a PDB, an application root, or an application PDB

Each container has its own container ID.

The following views behave differently from other [G]V$ views:

• [G]V$SYSSTAT
• [G]V$SYS_TIME_MODEL
• [G]V$SYSTEM_EVENT
• [G]V$SYSTEM_WAIT_CLASS
When queried from the CDB root, these views return instance-wide data, with 0 in the CON_ID
column for each row returned. However, you can query equivalent views that behave the
same as other container data objects. The following views can return specific data for each
container in a CDB: [G]V$CON_SYSSTAT, [G]V$CON_SYS_TIME_MODEL, [G]V$CON_SYSTEM_EVENT,
and [G]V$CON_SYSTEM_WAIT_CLASS.

Chapter 19
About CDB and Container Information in Views

19-3

Note:

• When querying a container data object, the data returned depends on
whether containers are open and on the privileges granted to the user
running the query.

• In an Oracle Real Application Clusters (Oracle RAC) environment, the
data returned by container data objects might vary based on the instance
to which a session is connected.

• In a non-CDB, all CON_ID columns in container data objects are 0 (zero).

• When a container is opened in restricted mode, it is ignored in queries
on CDB_ views.

See Also:

• "About the Current Container"

• "Container Data Objects in a CDB"

• Oracle Database Security Guide for detailed information about container
data objects

Views for a CDB
You can query a set of views for information about a CDB and its PDBs.

Table 19-2 describes data dictionary views that are useful for monitoring a CDB and its
PDBs.

Table 19-2 Views for a CDB

View Description More Information

Container data objects, including:

• V$ views

• GV$ views

• CDB_ views

• DBA_HIST* views

Container data objects can display
information about multiple PDBs.
Each container data object includes
a CON_ID column to identify
containers.

There is a CDB_ view for each
corresponding DBA_ view.

"Querying Container Data Objects"

Oracle Database Security Guide

{CDB|DBA}_PDBS Displays information about the PDBs
associated with the CDB, including
the status of each PDB.

"Viewing Information About PDBs"

Oracle Database Reference

CDB_PROPERTIES Displays the permanent properties
of each container in a CDB.

Oracle Database Reference

{CDB|DBA}_PDB_HISTORY Displays the history of each PDB. Oracle Database Reference

Chapter 19
About CDB and Container Information in Views

19-4

Table 19-2 (Cont.) Views for a CDB

View Description More Information

{CDB|DBA}_CONTAINER_DATA Displays information about the user-
level and object-level
CONTAINER_DATA attributes
specified in the CDB.

Oracle Database Reference

{CDB|DBA}_HIST_PDB_INSTANCE Displays the PDBs and instances in
the Workload Repository.

Oracle Database Reference

{CDB|DBA}_PDB_SAVED_STATES Displays information about the
current saved PDB states in the
CDB.

Oracle Database Reference

"Preserving or Discarding the Open
Mode of PDBs When the CDB
Restarts"

{CDB|DBA}_APPLICATIONS Describes all applications in an
application container.

"Viewing Information About
Applications"

{CDB|DBA}_APP_STATEMENTS Describes all statements from
application installation, upgrade, and
patch operations in an application
container.

"Viewing Information About
Application Statements"

{CDB|DBA}_APP_PATCHES Describes all application patches in
an application container.

"Viewing Information About
Application Patches"

{CDB|DBA}_APP_ERRORS Describes all application error
messages generated in an
application container.

"Viewing Information About
Application Errors"

{CDB|DBA}_CDB_RSRC_PLANS Displays information about all the
CDB resource plans.

Oracle Database Reference

"Viewing CDB Resource Plans"

{CDB|
DBA}_CDB_RSRC_PLAN_DIRECTIVES

Displays information about all the
CDB resource plan directives.

Oracle Database Reference

"Viewing CDB Resource Plan
Directives"

PDB_ALERTS Contains descriptions of reasons for
PDB alerts.

Oracle Database Reference

PDB_PLUG_IN_VIOLATIONS Displays information about
incompatibilities between a PDB and
the CDB to which it belongs. This
view is also used to display
information generated by executing
DBMS_PDB.CHECK_PLUG_COMPATIB
ILITY.

Oracle Database Reference

"Plugging In an Unplugged PDB"

{USER|ALL|DBA|CDB}_OBJECTS Displays information about database
objects, and the SHARING column
shows whether a database object is
a metadata-linked object, a data-
linked object, an extended data-
linked object, or a standalone object
that is not linked to another object.

Oracle Database Reference

{ALL|DBA|CDB}_SERVICES Displays information about database
services, and the PDB column shows
the name of the PDB associated
with each service.

Oracle Database Reference

Chapter 19
About CDB and Container Information in Views

19-5

Table 19-2 (Cont.) Views for a CDB

View Description More Information

{USER|ALL|DBA|CDB}_VIEWS
{USER|ALL|DBA|CDB}_TABLES

The CONTAINER_DATA column
shows whether the view or table is a
container data object.

Oracle Database Reference

{USER|ALL|DBA|CDB}_USERS The COMMON column shows whether
a user is a common user or a local
user.

Oracle Database Reference

{USER|ALL|DBA|CDB}_ROLES
{USER|ALL|DBA|CDB}_COL_PRIVS
{USER|ALL}_COL_PRIVS_MADE
{USER|ALL}_COL_PRIVS_RECD
{USER|ALL}_TAB_PRIVS_MADE
{USER|ALL}_TAB_PRIVS_RECD
{USER|DBA|CDB}_SYS_PRIVS
{USER|DBA|CDB}_ROLE_PRIVS
ROLE_TAB_PRIVS
ROLE_SYS_PRIVS

The COMMON column shows whether
a role or privilege is commonly
granted or locally granted.

Oracle Database Reference

{USER|ALL|DBA|CDB}_ARGUMENTS
{USER|ALL|DBA|CDB}_CLUSTERS
{USER|ALL|DBA|
CDB}_CONSTRAINTS
{ALL|DBA|CDB}_DIRECTORIES
{USER|ALL|DBA|
CDB}_IDENTIFIERS
{USER|ALL|DBA|CDB}_LIBRARIES
{USER|ALL|DBA|CDB}_PROCEDURES
{USER|ALL|DBA|CDB}_SOURCE
{USER|ALL|DBA|CDB}_SYNONYMS
{USER|ALL|DBA|CDB}_VIEWS

The ORIGIN_CON_ID column shows
the ID of the container from which
the row originates.

Oracle Database Reference

[G]V$DATABASE Displays information about the
database from the control file. If the
database is a CDB, then CDB-
related information is included.

"Determining Whether a Database Is
a CDB"

Oracle Database Reference

[G]V$CONTAINERS Displays information about the
containers associated with the
current CDB, including the root and
all PDBs.

"Viewing Information About the
Containers in a CDB"

Oracle Database Reference

[G]V$PDBS Displays information about the PDBs
associated with the current CDB,
including the open mode of each
PDB.

"Viewing the Open Mode of Each
PDB"

Oracle Database Reference

[G]V$PDB_INCARNATION Displays information about all PDB
incarnations. Oracle creates a new
PDB incarnation whenever a PDB is
opened with the RESETLOGS option.

Oracle Database Reference

Chapter 19
About CDB and Container Information in Views

19-6

Table 19-2 (Cont.) Views for a CDB

View Description More Information

[G]V$SYSTEM_PARAMETER
[G]V$PARAMETER

Displays information about
initialization parameters, and the
ISPDB_MODIFIABLE column shows
whether a parameter can be
modified for a PDB.

"Listing the Modifiable Initialization
Parameters in PDBs"

Oracle Database Reference

V$DIAG_ALERT_EXT
[G]V$DIAG_APP_TRACE_FILE
[G]V$DIAG_OPT_TRACE_RECORDS
V$DIAG_SESS_OPT_TRACE_RECORDS
V$DIAG_SESS_SQL_TRACE_RECORDS
[G]V$DIAG_SQL_TRACE_RECORDS
[G]V$DIAG_TRACE_FILE
[G]V$DIAG_TRACE_FILE_CONTENTS

Displays trace file and alert file data
for the current container in a CDB.

Oracle Database SQL Tuning Guide

V$DIAG_INCIDENT
V$DIAG_PROBLEM

Displays information about problems
and incidents for the current
container in a CDB.

Oracle Database Reference

Determining Whether a Database Is a CDB
You can query the CDB column in the V$DATABASE view to determine whether a database is a
CDB or a non-CDB. The CDB column returns YES if the current database is a CDB or NO if the
current database is a non-CDB.

To determine whether a database is a CDB:

1. In SQL*Plus, connect to the database as an administrative user.

2. Query the V$DATABASE view.

Example 19-1 Determining Whether a Database is a CDB

SELECT CDB FROM V$DATABASE;

Sample output:

CDB

YES

See Also:

Oracle Database Reference

Chapter 19
Determining Whether a Database Is a CDB

19-7

Viewing Information About the Containers in a CDB
The V$CONTAINERS view provides information about all containers in a CDB, including
the root and all PDBs.

To view this information, the query must be run by a common user whose current
container is the root. When the current container is a PDB, this view only shows
information about the current PDB.

To view information about the containers in a CDB:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Query the V$CONTAINERS view.

Example 19-2 Viewing Identifying Information About Each Container in a CDB

COLUMN NAME FORMAT A8

SELECT NAME, CON_ID, DBID, CON_UID, GUID FROM V$CONTAINERS ORDER BY
CON_ID;

Sample output:

NAME CON_ID DBID CON_UID GUID
-------- ---------- ---------- ----------

CDB$ROOT 1 659189539 1
C091A6F89C7572A1E0436797E40AC78D
PDB$SEED 2 4026479912 4026479912
C091AE9C00377591E0436797E40AC138
HRPDB 3 3718888687 3718888687
C091B6B3B53E7834E0436797E40A9040
SALESPDB 4 2228741407 2228741407
C091FA64EF8F0577E0436797E40ABE9F

See Also:

• "About Configuring and Managing a Multitenant Environment"

• "About the Current Container"

• "Determining the Current Container ID or Name"

• Oracle Database Reference

Chapter 19
Viewing Information About the Containers in a CDB

19-8

Viewing Information About PDBs
The CDB_PDBS view and DBA_PDBS view provide information about the PDBs associated with a
CDB, including the status of each PDB.

To view this information, the query must be run by a common user whose current container is
the root. When the current container is a PDB, all queries on these views return no results.

To view information about PDBs:

1. In SQL*Plus, ensure that the current container is the root.

See "Accessing a Container in a CDB with SQL*Plus".

2. Query the CDB_PDBS or DBA_PDBS view.

Example 19-3 Viewing Container ID, Name, and Status of Each PDB

COLUMN PDB_NAME FORMAT A15

SELECT PDB_ID, PDB_NAME, STATUS FROM DBA_PDBS ORDER BY PDB_ID;

Sample output:

 PDB_ID PDB_NAME STATUS
---------- --------------- -------------
 2 PDB$SEED NORMAL
 3 HRPDB NORMAL
 4 SALESPDB NORMAL

See Also:

"About the Current Container"

Viewing the Open Mode of Each PDB
The V$PDBS view provides information about the PDBs associated with the current database
instance.

You can query this view to determine the open mode of each PDB. For each PDB that is
open, this view can also show when the PDB was last opened. A common user can query
this view when the current container is the root or a PDB. When the current container is a
PDB, this view only shows information about the current PDB.

To view the open status of each PDB:

1. In SQL*Plus, access a container.

See "Accessing a Container in a CDB with SQL*Plus".

2. Query the V$PDBS view.

Example 19-4 Viewing the Name and Open Mode of Each PDB

COLUMN NAME FORMAT A15
COLUMN RESTRICTED FORMAT A10

Chapter 19
Viewing Information About PDBs

19-9

COLUMN OPEN_TIME FORMAT A30

SELECT NAME, OPEN_MODE, RESTRICTED, OPEN_TIME FROM V$PDBS;

Sample output:

NAME OPEN_MODE RESTRICTED OPEN_TIME
--------------- ---------- ---------- ------------------------------
PDB$SEED READ ONLY NO 21-MAY-12 12.19.54.465 PM
HRPDB READ WRITE NO 21-MAY-12 12.34.05.078 PM
SALESPDB MOUNTED NO 22-MAY-12 10.37.20.534 AM

See Also:

• "Modifying the Open Mode of PDBs with ALTER PLUGGABLE
DATABASE"

• "Modifying the Open Mode of PDBs"

• "Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement"

• "About the Current Container"

Querying Container Data Objects
In the root, container data objects can show information about database objects (such
as tables and users) contained in the root and in PDBs. Access to PDB information is
controlled by the common user's CONTAINER_DATA attribute.

For example, CDB_ views are container data objects. See "About Viewing Information
When the Current Container Is the CDB Root" and Oracle Database Security Guide for
more information about container data objects.

Each container data object contains a CON_ID column that shows the container ID of
each PDB in the query results. You can view the PDB name for a container ID by
querying the DBA_PDBS view.

To use container data objects to show information about multiple PDBs:

1. In SQL*Plus, ensure that the current container is the root.

See "About Container Access in a CDB".

2. Query the container data object to show the desired information.

Note:

When a query contains a join of a container data object and a non-container
data object, and the current container is the root, the query returns data for
the entire CDB only (CON_ID = 0).

Chapter 19
Querying Container Data Objects

19-10

Example 19-5 Showing the Tables Owned by Specific Schemas in Multiple PDBs

This example queries the DBA_PDBS view and the CDB_TABLES view from the root to show the
tables owned by hr user and oe user in the PDBs associated with the CDB. This query
returns only rows where the PDB has an ID greater than 2 (p.PDB_ID > 2) to avoid showing
the users in the CDB root and PDB seed.

COLUMN PDB_NAME FORMAT A15
COLUMN OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A30

SELECT p.PDB_ID, p.PDB_NAME, t.OWNER, t.TABLE_NAME
 FROM DBA_PDBS p, CDB_TABLES t
 WHERE p.PDB_ID > 2 AND
 t.OWNER IN('HR','OE') AND
 p.PDB_ID = t.CON_ID
 ORDER BY p.PDB_ID;

Sample output:

 PDB_ID PDB_NAME OWNER TABLE_NAME
---------- --------------- --------------- ------------------------------
 3 HRPDB HR COUNTRIES
 3 HRPDB HR JOB_HISTORY
 3 HRPDB HR EMPLOYEES
 3 HRPDB HR JOBS
 3 HRPDB HR DEPARTMENTS
 3 HRPDB HR LOCATIONS
 3 HRPDB HR REGIONS
 4 SALESPDB OE PRODUCT_INFORMATION
 4 SALESPDB OE INVENTORIES
 4 SALESPDB OE ORDERS
 4 SALESPDB OE ORDER_ITEMS
 4 SALESPDB OE WAREHOUSES
 4 SALESPDB OE CUSTOMERS
 4 SALESPDB OE SUBCATEGORY_REF_LIST_NESTEDTAB
 4 SALESPDB OE PRODUCT_REF_LIST_NESTEDTAB
 4 SALESPDB OE PROMOTIONS
 4 SALESPDB OE PRODUCT_DESCRIPTIONS

This sample output shows the PDB hrpdb has tables in the hr schema and the PDB
salespdb has tables in the oe schema.

Example 19-6 Showing the Users in Multiple PDBs

This example queries the DBA_PDBS view and the CDB_USERS view from the root to show the
users in each PDB. The query uses p.PDB_ID > 2 to avoid showing the users in the CDB
root and the PDB seed.

COLUMN PDB_NAME FORMAT A15
COLUMN USERNAME FORMAT A30

SELECT p.PDB_ID, p.PDB_NAME, u.USERNAME
 FROM DBA_PDBS p, CDB_USERS u

Chapter 19
Querying Container Data Objects

19-11

 WHERE p.PDB_ID > 2 AND
 p.PDB_ID = u.CON_ID
 ORDER BY p.PDB_ID;

Sample output:

 PDB_ID PDB_NAME USERNAME
---------- --------------- ------------------------------
 .
 .
 .
 3 HRPDB HR
 3 HRPDB OLAPSYS
 3 HRPDB MDSYS
 3 HRPDB ORDSYS
 .
 .
 .
 4 SALESPDB OE
 4 SALESPDB CTXSYS
 4 SALESPDB MDSYS
 4 SALESPDB EXFSYS
 4 SALESPDB OLAPSYS
 .
 .
 .

Example 19-7 Showing the Data Files for Each PDB in a CDB

This example queries the DBA_PDBS and CDB_DATA_FILES views to show the name and
location of each data file for all of the PDBs in a CDB, including the PDB seed.

COLUMN PID FORMAT 999
COLUMN PDB_NAME FORMAT A8
COLUMN FILE_ID FORMAT 9999
COLUMN TABLESPACE_NAME FORMAT A10
COLUMN FILE_NAME FORMAT A45

SELECT p.PDB_ID AS PID, p.PDB_NAME, d.FILE_ID, d.TABLESPACE_NAME,
d.FILE_NAME
 FROM DBA_PDBS p, CDB_DATA_FILES d
 WHERE p.PDB_ID = d.CON_ID
 ORDER BY p.PDB_ID;

Sample output:

PID PDB_NAME FILE_ID TABLESPACE FILE_NAME
--- -------- ------- ----------
--
 2 PDB$SEED 6 SYSAUX /disk1/oracle/dbs/pdbseed/cdb1_ax.f
 2 PDB$SEED 5 SYSTEM /disk1/oracle/dbs/pdbseed/cdb1_db.f
 3 HRPDB 9 SYSAUX /disk1/oracle/dbs/hrpdb/hrpdb_ax.f
 3 HRPDB 8 SYSTEM /disk1/oracle/dbs/hrpdb/hrpdb_db.f

Chapter 19
Querying Container Data Objects

19-12

 3 HRPDB 13 USER /disk1/oracle/dbs/hrpdb/hrpdb_usr.dbf
 4 SALESPDB 15 SYSTEM /disk1/oracle/dbs/salespdb/salespdb_db.f
 4 SALESPDB 16 SYSAUX /disk1/oracle/dbs/salespdb/salespdb_ax.f
 4 SALESPDB 18 USER /disk1/oracle/dbs/salespdb/salespdb_usr.dbf

Example 19-8 Showing the Temp Files in a CDB

This example queries the CDB_TEMP_FILES view to show the name and location of each temp
file in a CDB, as well as the tablespace that uses the temp file.

COLUMN CON_ID FORMAT 999
COLUMN FILE_ID FORMAT 9999
COLUMN TABLESPACE_NAME FORMAT A15
COLUMN FILE_NAME FORMAT A45

SELECT CON_ID, FILE_ID, TABLESPACE_NAME, FILE_NAME
 FROM CDB_TEMP_FILES
 ORDER BY CON_ID;

Sample output:

CON_ID FILE_ID TABLESPACE_NAM FILE_NAME
------ ------- -------------- ---
 1 1 TEMP /disk1/oracle/dbs/t_tmp1.f
 2 2 TEMP /disk1/oracle/dbs/pdbseed/t_tmp1.f
 3 3 TEMP /disk1/oracle/dbs/hrpdb/t_hrpdb_tmp1.f
 4 4 TEMP /disk1/oracle/dbs/salespdb/t_salespdb_tmp1.f

Example 19-9 Showing the Services Associated with PDBs

This example queries the CDB_SERVICES view to show the PDB name, network name, and
container ID of each service associated with a PDB.

COLUMN NETWORK_NAME FORMAT A30
COLUMN PDB FORMAT A15
COLUMN CON_ID FORMAT 999

SELECT PDB, NETWORK_NAME, CON_ID FROM CDB_SERVICES
 WHERE PDB IS NOT NULL AND
 CON_ID > 2
 ORDER BY PDB;

Sample output:

PDB NETWORK_NAME CON_ID
--------------- ------------------------------ ------
HRPDB hrpdb.example.com 3
SALESPDB salespdb.example.com 4

Chapter 19
Querying Container Data Objects

19-13

See Also:

• "About the Current Container"

• "Container Data Objects in a CDB"

• Oracle Database Security Guide for detailed information about container
data objects

• Oracle Database Reference

Querying Across Containers with the CONTAINERS Clause
The CONTAINERS clause enables you to query tables and views across all containers in
a CDB. It also enables you to query application common objects across all containers
in an application container.

• About Querying Across Containers with the CONTAINERS Clause
The CONTAINERS clause enables you to query across containers in a CDB.

• Querying User-Created Tables and Views Across All Containers
The CONTAINERS clause enables you to query user-created tables and views
across all containers. This clause enables queries from the CDB root to display
data in tables or views that exist in all open PDBs in a CDB.

• Querying Application Common Objects Across Application PDBs
The CONTAINERS clause enables you to query application common objects across
all PDBs in an application container. Queries from the application root display data
in objects that exist in all open PDBs in the container.

About Querying Across Containers with the CONTAINERS Clause
The CONTAINERS clause enables you to query across containers in a CDB.

The CONTAINERS clause enables you to query user-created tables and views across all
containers in a CDB. This clause enables queries from the CDB root to display data in
tables or views that exist in all open containers in a CDB.

The CONTAINERS clause also enables you to query application common objects, such
as tables and views, across all application PDBs in an application container. This
clause enables queries from the application root to display data in tables or views that
exist in all open application PDBs in the application container.

The CONTAINERS clause exposes three implicitly generated columns:

• CON_ID: The ID of the container from which the row is retrieved.

• CON$NAME: The name of the container from which the row is retrieved. This is a
hidden column.

• CDB$NAME: The name of the CDB from which the row is retrieved. In the absence of
a proxy PDB or a CDB fleet, all rows will have the same value for CDB$NAME. This is
a hidden column.

When the CONTAINERS clause is evaluated, each container is treated as a partition;
therefore, the plan output for a query using the CONTAINERS clause includes a partition

Chapter 19
Querying Across Containers with the CONTAINERS Clause

19-14

iterator. Partition pruning can be used to restrict the set of containers that is accessed during
query execution. The pruning predicate may be specified either on the CON_ID column or the
CON$NAME column, both of which are implicitly generated for a CONTAINERS clause.

Evaluation of the CONTAINERS clause makes use of parallel execution processes. Each
container is assigned to a parallel execution process (P00*) and the process switches into the
container to execute a recursive SQL statement on the base table or view. The base table or
view is the object whose name is passed as an argument to the CONTAINERS clause.

The CONTAINERS_PARALLEL_DEGREE initialization parameter can control the degree of
parallelism of a query involving the CONTAINERS clause. If the value of
CONTAINERS_PARALLEL_DEGREE is lower than 65535 (the default), then the specified value is
used.

When the CONTAINERS_PARALLEL_DEGREE initialization parameter is set to the default value
(65535), queries that use the CONTAINERS clause are parallel by default. The default degree of
parallelism is calculated with the following formula:

max(min(cpu_count,number_of_open_containers),#instances)

In addition, you can pass a DEFAULT_PDB_HINT hint in the CONTAINERS clause. The hint is
passed in the query that is run in each container.

The columns accessed by the recursive SQL statement are determined by the columns of the
CONTAINERS clause accessed in the query. Predicates in the query using the CONTAINERS
clause may be pushed down to the recursive SQL and evaluated within each container,
significantly reducing the number of rows that need to be processed as a post filter on the
CONTAINERS clause.

You can force the recursive SQL that results from a query that includes the CONTAINERS
clause to be parallel by using the DEFAULT_PDB_HINT clause of a CONTAINERS hint or by using
automatic degree of parallelism. However, parallel statement queuing is not possible for
recursive SQL that results from a query that includes the CONTAINERS clause.

Columns of the following types are removed if they exist in a table specified in a CONTAINERS
clause:

• The following user-defined types: object types, varrays, REFs, and nested tables

• The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression

Note:

• When a container is opened in restricted mode, it is ignored by the CONTAINERS
clause.

• When the CONTAINERS clause is used and an error is returned by a container,
the query does not return results from the container that raised the error, and
the error is not returned. For example, you cannot select a BFILE column from a
remote table into a local variable. If a query that does this uses the CONTAINERS
clause and includes local and remote containers, then the query returns results
for the local containers, but not the remote containers, and no error is returned.

Chapter 19
Querying Across Containers with the CONTAINERS Clause

19-15

See Also:

• "About the Current Container"

• Oracle Database SQL Language Reference for more information about
the CONTAINERS clause and the CONTAINERS hint

• Oracle Database Security Guide for detailed information about container
data objects

• Oracle Database Reference for more information about the
CONTAINERS_PARALLEL_DEGREE initialization parameter

• Oracle Database Data Warehousing Guide for more information about
automatic degree of parallelism and parallel statement queuing

Querying User-Created Tables and Views Across All Containers
The CONTAINERS clause enables you to query user-created tables and views across all
containers. This clause enables queries from the CDB root to display data in tables or
views that exist in all open PDBs in a CDB.

Prerequisites

The tables and views, or synonyms of them, specified in the CONTAINERS clause must
exist in the CDB root and in all other containers.

To use the CONTAINERS clause to query tables and views across all containers:

1. In SQL*Plus, access a container.

To view data in multiple containers, ensure that the current container is the CDB
root.

See "About Container Access in a CDB".

2. Run a query that includes the CONTAINERS clause.

Example 19-10 Querying a Table Owned by a Common User Across All
Containers

This example makes the following assumptions:

• An organization has several PDBs, and each PDB is for a different department in
the organization.

• Each PDB has an employees table that tracks the employees in the department,
but the table in each PDB contains different employees.

• The CDB root also has an empty employees table.

• The employees table in each container is owned by the same common user.

Chapter 19
Querying Across Containers with the CONTAINERS Clause

19-16

With the CDB root as the current container and the common user that owns the table as the
current user, run the following query with the CONTAINERS clause to return all employees in the
employees table in all PDBs:

SELECT * FROM CONTAINERS(employees);

Example 19-11 Querying a Table Owned by Local Users Across All Containers

This example makes the following assumptions:

• An organization has several PDBs, and each PDB is for a different department in the
organization.

• Each PDB has an hr.employees table that tracks the employees in the department, but
the table in each PDB contains different employees.

• The CDB root also has an empty employees table owned by a common user.

To run a query that returns all employees in all PDBs, first connect to each PDB as a
common user, and create a view with the following statement:

CREATE OR REPLACE VIEW employees AS SELECT * FROM hr.employees;

The common user that owns the view must be the same common user that owns the
employees table in the CDB root. After you run this statement in each PDB, the common user
has a view named employees in each PDB.

With the CDB root as the current container and the common user as the current user, run the
following query with the CONTAINERS clause to return all employees in the hr.employees table
in all PDBs:

SELECT * FROM CONTAINERS(employees);

You can also query the view in specific containers. For example, the following SQL statement
queries the view in the containers with a CON_ID of 3 and 4:

SELECT * FROM CONTAINERS(employees) WHERE CON_ID IN(3,4);

Note:

You can also use the CONTAINERS clause to query Oracle-supplied tables and views.
When running the query, ensure that the current user is the owner of the table or
view, or create a view using the CONTAINERS clause and grant SELECT privilege on
the view to the appropriate users.

Chapter 19
Querying Across Containers with the CONTAINERS Clause

19-17

See Also:

• "About the Current Container"

• "Container Data Objects in a CDB"

• Oracle Database SQL Language Reference for more information about
the CONTAINERS clause

• Oracle Database Security Guide for detailed information about container
data objects

Querying Application Common Objects Across Application PDBs
The CONTAINERS clause enables you to query application common objects across all
PDBs in an application container. Queries from the application root display data in
objects that exist in all open PDBs in the container.

The CONTAINERS clause is most useful for metadata-linked application common
objects. With metadata-linked application common objects, the structure is the same in
all containers in an application container, but the data is different. You can use the
CONTAINERS clause to view the data in a metadata-linked application common object in
multiple application PDBs. The benefits are similar for extended data-linked objects.
The CONTAINERS clause uses parallel execution to execute the query across the
distinct application PDBs hosted in the application root.

To use the CONTAINERS clause to query tables and views across all application
PDBs:

1. In SQL*Plus, access the application root.

See "About Container Access in a CDB".

2. Run a query that includes the CONTAINERS clause.

Note:

You can enable the CONTAINERS_DEFAULT attribute for a table or view in an
application root. When this attribute is enabled, the CONTAINERS clause is
used for queries and DML statements on the database object by default, and
the CONTAINERS clause is not required in the SQL statements. To enable the
CONTAINERS_DEFAULT attribute for a table or view in an application root, run
the ALTER TABLE or CREATE OR REPLACE VIEW statement with the ENABLE
CONTAINERS_DEFAULT clause.

Example 19-12 Querying an Application Common Object Across All
Application PDBs

This example makes the following assumptions:

• An organization has several application PDBs, and each application PDB is for a
different department in the organization.

Chapter 19
Querying Across Containers with the CONTAINERS Clause

19-18

• Each application PDB has an employees table that tracks the employees in the
department, but the table in each application PDB contains different employees.

• The application root also has an empty employees table.

• The employees table in each container is owned by the same common user.

• A company has multiple tenants that use an application in an application container, and
each tenant has its own application PDB.

• The company uses metadata-linked application common objects to keep the structure of
the data the same in all application PDBs, but the data is different in each application
PDB.

• Each application PDB has a metadata-linked sales.customers table that stores
information about each tenant’s customers.

With the application root as the current container and the application common user that owns
the table as the current user, run the following query with the CONTAINERS clause to return all
customers in the sales.customers table in all application PDBs:

SELECT * FROM CONTAINERS(sales.customers);

See Also:

• "About Application Common Objects"

• "About the Current Container"

• Oracle Database SQL Language Reference for more information about the
CONTAINERS clause

• Oracle Database Security Guide for detailed information about container data
objects

Determining the Current Container ID or Name
You can determine your current container ID or container name in a CDB.

To determine the current container ID:

• Run the following SQL*Plus command:

SHOW CON_ID
To determine the current container name:

• Run the following SQL*Plus command:

SHOW CON_NAME
In addition, you can use the functions listed in Table 19-3 to determine the container ID,
container name, and DBID of a container.

Chapter 19
Determining the Current Container ID or Name

19-19

Table 19-3 Functions That Return the Container Information

Function Description

CON_NAME_TO_ID('container_na
me')

Returns the container ID based on the container's name.

CON_DBID_TO_ID(container_dbid
)

Returns the container ID based on the container's DBID.

CON_UID_TO_ID(container_uid) Returns the container ID based on the container's unique
identifier (UID).

CON_GUID_TO_ID(container_guid
)

Returns the container ID based on the container's globally
unique identifier (GUID).

CON_ID_TO_CON_NAME(container
_id)

Returns the container name based on the container ID.

CON_ID_TO_DBID(container_id) Returns the container's DBID based on the container ID.

The V$CONTAINERS view shows the name, DBID, UID, and GUID for each container in
a CDB.

Example 19-13 Returning the Container ID Based on the Container Name

SELECT CON_NAME_TO_ID('HRPDB') FROM DUAL;

Example 19-14 Returning the Container ID Based on the Container DBID

SELECT CON_DBID_TO_ID(2226957846) FROM DUAL;

Example 19-15 Returning the Container Name Based on the Container ID

SELECT CON_ID_TO_CON_NAME(4) FROM DUAL;

See Also:

• "About a Multitenant Environment"

• "About the Current Container"

• "Viewing Information About the Containers in a CDB"

• Oracle Database Reference for more information about the
V$CONTAINERS view

Listing the Modifiable Initialization Parameters in PDBs
In a CDB, some initialization parameters apply to the root and to all PDBs. When such
an initialization parameter is changed, it affects the entire CDB. You can set other
initialization parameters to different values in each container.

For example, you might have a parameter set to one value in the root, set to another
value in one PDB, and set to yet another value in a second PDB.

Chapter 19
Listing the Modifiable Initialization Parameters in PDBs

19-20

The query in this section lists the initialization parameters that you can set independently in
each PDB.

To list the initialization parameters that are modifiable in each container:

1. In SQL*Plus, access a container.

See "About Container Access in a CDB".

2. Run the following query:

SELECT NAME FROM V$SYSTEM_PARAMETER
 WHERE ISPDB_MODIFIABLE = 'TRUE'
 ORDER BY NAME;

If an initialization parameter listed by this query is not set independently for a PDB, then the
PDB inherits the parameter value of the root.

See Also:

• "Modifying a CDB with ALTER SYSTEM"

• "Modifying a PDB at the System Level"

Viewing the History of PDBs
The CDB_PDB_HISTORY view shows the history of the PDBs in a CDB. It provides information
about when and how each PDB was created and other information about each PDB's history.

To view the history of each PDB:

1. In SQL*Plus, ensure that the current container is the root.

See "Accessing a Container in a CDB with SQL*Plus".

2. Query CDB_PDB_HISTORY view.

Example 19-16 Viewing the History of PDBs

This example shows the following information about each PDB's history:

• The DB_NAME field shows the CDB that contained the PDB.

• The CON_ID field shows the container ID of the PDB.

• The PDB_NAME field shows the name of the PDB in one of its incarnations.

• The OPERATION field shows the operation performed in the PDB's history.

• The OP_TIMESTAMP field shows the date on which the operation was performed.

• If the PDB was cloned in an operation, then the CLONED_FROM_PDB field shows the PDB
from which the PDB was cloned.

COLUMN DB_NAME FORMAT A10
COLUMN CON_ID FORMAT 999
COLUMN PDB_NAME FORMAT A15
COLUMN OPERATION FORMAT A16

Chapter 19
Viewing the History of PDBs

19-21

COLUMN OP_TIMESTAMP FORMAT A10
COLUMN CLONED_FROM_PDB_NAME FORMAT A15

SELECT DB_NAME, CON_ID, PDB_NAME, OPERATION, OP_TIMESTAMP, CLONED_FROM_PDB_NAME
 FROM CDB_PDB_HISTORY
 WHERE CON_ID > 2
 ORDER BY CON_ID;

Sample output:

DB_NAME CON_ID PDB_NAME OPERATION OP_TIMESTA CLONED_FROM_PDB
---------- ------ --------------- ---------------- ---------- ---------------
NEWCDB 3 HRPDB CREATE 10-APR-12 PDB$SEED
NEWCDB 4 SALESPDB CREATE 17-APR-12 PDB$SEED
NEWCDB 5 TESTPDB CLONE 30-APR-12 SALESPDB

Note:

When the current container is a PDB, the CDB_PDB_HISTORY view shows the
history of the current PDB only. A local user whose current container is a
PDB can query the DBA_PDB_HISTORY view and exclude the CON_ID column
from the query to view the history of the current PDB.

See Also:

"About the Current Container"

Viewing Information About Applications in Application
Containers

Several views provide information about the applications in application containers in a
CDB.

• Viewing Information About Applications
The DBA_APPLICATIONS view provides information about the applications in an
application container.

• Viewing Information About Application Status
The DBA_APP_PDB_STATUS view provides information about the status of the
applications in an application container. It can show the status of each application
in each application PDB.

• Viewing Information About Application Statements
The DBA_APP_STATEMENTS view provides information about SQL statements issued
during application installation, upgrade, and patch operations

• Viewing Information About Application Versions
The DBA_APP_VERSIONS view provides information about the versions for
applications in an application container.

Chapter 19
Viewing Information About Applications in Application Containers

19-22

• Viewing Information About Application Patches
The DBA_APP_PATCHES view provides information about the patches for applications in an
application container.

• Viewing Information About Application Errors
The DBA_APP_ERRORS view provides information errors raised when an application PDB
synchronizes with an application in the application root.

• Listing the Shared Database Objects in an Application Container
The DBA_OBJECTS view can list the shared database objects in an application container.

• Listing the Extended Data-Linked Objects in an Application Container
The DBA_TABLES and DBA_VIEWS views can list the extended data-linked objects in an
application container.

Related Topics

• Creating and Removing Application Containers
You can create application containers in several different ways, including using the PDB
seed, cloning an existing PDB or non-CDB, and plugging in an unplugged PDB. You can
also remove application containers from a CDB.

• Administering Application Containers
You can administer application containers, including application roots and application
PDBs. You can also administer the applications installed in application containers.

Viewing Information About Applications
The DBA_APPLICATIONS view provides information about the applications in an application
container.

Note:

The DBA_APPLICATIONS view provides information about the application in the
current container only. To view information about applications in all of the
application PDBs in the current application container, query the
DBA_APP_PDB_STATUS with the application root as the current container.

To view information about the applications in an application container:

1. In SQL*Plus, access the application root of the application container.

2. Query the DBA_APPLICATIONS view.

Example 19-17 Viewing Details About the Applications in an Application Container

This query shows the name, the latest version, and the status of each user-created
application in the application container.

COLUMN APP_NAME FORMAT A15
COLUMN APP_VERSION FORMAT A15
COLUMN APP_STATUS FORMAT A15

SELECT APP_NAME, APP_VERSION, APP_STATUS
FROM DBA_APPLICATIONS
WHERE APP_IMPLICIT='N';

Chapter 19
Viewing Information About Applications in Application Containers

19-23

The following sample output shows the salesapp application:

APP_NAME APP_VERSION APP_STATUS
--------------- --------------- ---------------
SALESAPP 1.2 NORMAL

Note:

Oracle Database creates some applications implicitly when an application
common user operation is issued with a CONTAINER=ALL clause outside of
ALTER PLUGGABLE DATABASE APPLICATION BEGIN/END statements. The
sample query excludes implicitly-created applications by specifying
APP_IMPLICIT='N' in the WHERE clause.

Related Topics

• Administering Application Containers
You can administer application containers, including application roots and
application PDBs. You can also administer the applications installed in application
containers.

• Synchronizing Applications in an Application PDB
Synchronizing an application updates the application in the application PDB to the
latest version and patch in the application root.

Viewing Information About Application Status
The DBA_APP_PDB_STATUS view provides information about the status of the
applications in an application container. It can show the status of each application in
each application PDB.

The view can show the status of an application in an application PDB even if the
application PDB is closed.

Note:

When queried from the application root, the DBA_APP_PDB_STATUS view
provides information about the applications in all application PDBs in the
current application container. To view information about the application in the
current container only, query the DBA_APPLICATIONS view.

To view information about the application status in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_PDB_STATUS view.

Chapter 19
Viewing Information About Applications in Application Containers

19-24

Example 19-18 Viewing Information About Application Status

This query shows the name of the application PDB, the name of the application, the version
number of the application, and the status of the application.

COLUMN PDB_NAME FORMAT A15
COLUMN APP_NAME FORMAT A15
COLUMN APP_VERSION FORMAT A20
COLUMN APP_STATUS FORMAT A12

SELECT p.PDB_NAME, s.APP_NAME, s.APP_VERSION, s.APP_STATUS
 FROM DBA_PDBS p, DBA_APP_PDB_STATUS s
 WHERE p.CON_UID = s.CON_UID;

Your output is similar to the following:

PDB_NAME APP_NAME APP_VERSION APP_STATUS
--------------- --------------- -------------------- ------------
SALES1 SALESAPP 4.2 NORMAL

Note:

The status of an application can be NORMAL in an application PDB even when the
application has not been synchronized to the latest version. Other statuses might
indicate that an operation is in progress or that an operation encountered a
problem. For example, the status UPGRADING might indicate that an upgrade of the
application is in progress in the application PDB, or it might indicate that an error
was encountered when the application PDB tried to upgrade an application.

See Also:

"Administering Application Containers"

Viewing Information About Application Statements
The DBA_APP_STATEMENTS view provides information about SQL statements issued during
application installation, upgrade, and patch operations

Oracle Database records all of the SQL statements issued during application installation,
upgrade, and patch operations, and you can view the history of these statements by querying
the DBA_APP_STATEMENTS view.

To view information about the SQL statements issued during application operations:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_STATEMENTS view.

Chapter 19
Viewing Information About Applications in Application Containers

19-25

Example 19-19 Viewing Information About Application Statements

This query shows the statement ID, capture time, SQL statement, and application
name for the SQL statements for applications in the application container.

SET LONG 8000
SET PAGES 8000
COLUMN STATEM_ID FORMAT NNNNN
COLUMN CAPTURE_TIME FORMAT A12
COLUMN APP_STATEMENT FORMAT A36
COLUMN APP_NAME FORMAT A15

SELECT STATEMENT_ID AS STATEM_ID, CAPTURE_TIME, APP_STATEMENT, APP_NAME
FROM DBA_APP_STATEMENTS
ORDER BY STATEMENT_ID;

Your output is similar to the following:

STATEM_ID CAPTURE_TIME APP_STATEMENT APP_NAME
--------- ------------ ------------------------------------

 1 30-AUG-15 SYS
APP$1E87C094764

1142FE0534018F8
 0AA6C5
 2 30-AUG-15 ALTER PLUGGABLE DATABASE APPLICATION
APP$1E87C094764
 APP$CON BEGIN INSTALL '1.0'
1142FE0534018F8
 0AA6C5
 3 30-AUG-15 ALTER PLUGGABLE DATABASE APPLICATION
APP$1E87C094764
 APP$CON END INSTALL '1.0'
1142FE0534018F8
 0AA6C5
 4 30-AUG-15 SYS SALESAPP
 5 30-AUG-15 ALTER PLUGGABLE DATABASE APPLICATION SALESAPP
 salesapp BEGIN INSTALL '1.0'
 6 30-AUG-15 CREATE TABLE oe.cmtb SHARING=METADAT SALESAPP
 A (
 value VARCHAR2(30),
 country VARCHAR2(30))
 7 30-AUG-15 CREATE TABLE conmap (SALESAPP
 country VARCHAR2(30) NOT NULL)
 PARTITION BY LIST (country) (
 PARTITION AMER VALUES ('US','MEXICO'
 ,'CANADA'),
 PARTITION EURO VALUES ('UK','FRANCE'
 ,'GERMANY'),
 PARTITION ASIA VALUES ('INDIA','CHIN
 A','JAPAN'))
 8 30-AUG-15 ALTER TABLE oe.cmtb ENABLE CONTAINER SALESAPP
 _MAP
 9 30-AUG-15 ALTER PLUGGABLE DATABASE APPLICATION SALESAPP

Chapter 19
Viewing Information About Applications in Application Containers

19-26

 salesapp END INSTALL '1.0'
.
.
.

Note:

Oracle Database creates some applications implicitly when an application common
user operation is issued with a CONTAINER=ALL clause outside of ALTER PLUGGABLE
DATABASE APPLICATION BEGIN/END statements. The names of these applications
begin with APP$, and the sample output shows these applications.

See Also:

• "Administering Application Containers"

• "Synchronizing Applications in an Application PDB"

Viewing Information About Application Versions
The DBA_APP_VERSIONS view provides information about the versions for applications in an
application container.

Oracle Database records the versions for each application in an application container.

To view information about the application versions in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_VERSIONS view.

Example 19-20 Viewing Information About Application Versions

This query shows the name of the application that was versioned, the version number, and
the comment for the version.

COLUMN APP_NAME FORMAT A15
COLUMN APP_VERSION FORMAT A20
COLUMN APP_VERSION_COMMENT FORMAT A25

SELECT APP_NAME, APP_VERSION, APP_VERSION_COMMENT
 FROM DBA_APP_VERSIONS;

Chapter 19
Viewing Information About Applications in Application Containers

19-27

Your output is similar to the following:

APP_NAME APP_VERSION APP_VERSION_COMMENT
--------------- -------------------- -------------------------
SALESAPP 1.0 Sales Application

See Also:

"Administering Application Containers"

Viewing Information About Application Patches
The DBA_APP_PATCHES view provides information about the patches for applications in
an application container.

Oracle Database records the patches for each application in an application container.

To view information about the application patches in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_PATCHES view.

Example 19-21 Viewing Information About Application Patches

This query shows the name of the application that was patched, the patch number, the
minimum application version for the patch, and the status of the patch for each patch
in the application container.

COLUMN APP_NAME FORMAT A15
COLUMN PATCH_NUMBER FORMAT NNNNNNNN
COLUMN PATCH_MIN_VERSION FORMAT A10
COLUMN PATCH_STATUS FORMAT A15

SELECT APP_NAME, PATCH_NUMBER, PATCH_MIN_VERSION, PATCH_STATUS
 FROM DBA_APP_PATCHES;

Your output is similar to the following:

APP_NAME PATCH_NUMBER PATCH_MIN_ PATCH_STATUS
--------------- ------------ ---------- ---------------
SALESAPP 1 1.2 INSTALLED

See Also:

"Administering Application Containers"

Chapter 19
Viewing Information About Applications in Application Containers

19-28

Viewing Information About Application Errors
The DBA_APP_ERRORS view provides information errors raised when an application PDB
synchronizes with an application in the application root.

An application PDB issues the ALTER PLUGGABLE DATABASE APPLICATION statement with the
SYNC clause. You can view the history of application errors during application synchronization
by querying the DBA_APP_ERRORS view.

To view information about errors raised during application synchronization:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_APP_ERRORS view.

Example 19-22 Viewing Details About Errors Raised During Application
Synchronization

This query shows the application name, the SQL statement that raised the error, the error
number, and the error message for errors raised during application synchronization.

SET LONG 8000
SET PAGES 8000
COLUMN APP_NAME FORMAT A15
COLUMN APP_STATEMENT FORMAT A36
COLUMN ERRORNUM FORMAT NNNNNNNN
COLUMN ERRORMSG FORMAT A20

SELECT APP_NAME, APP_STATEMENT, ERRORNUM, ERRORMSG
 FROM DBA_APP_ERRORS;

See Also:

"Administering Application Containers"

Listing the Shared Database Objects in an Application Container
The DBA_OBJECTS view can list the shared database objects in an application container.

Shared database objects are metadata-linked application common objects, data-linked
application common objects, and extended data-linked application common objects.

To list the shared database objects in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_OBJECTS view and specify the SHARING column.

Chapter 19
Viewing Information About Applications in Application Containers

19-29

Example 19-23 Listing the User-Created Shared Database Objects in an
Application Container

This query shows the owner and name of the user-created shared database objects in
the application container. It also shows whether each shared database object is a
metadata-linked application common object or a data-linked application common
object. The query excludes Oracle-supplied shared database objects.

COLUMN OWNER FORMAT A15
COLUMN OBJECT_NAME FORMAT A25
COLUMN SHARING FORMAT A13

SELECT OWNER, OBJECT_NAME, SHARING
 FROM DBA_OBJECTS WHERE SHARING != 'NONE'
 AND ORACLE_MAINTAINED = 'N';

Your output is similar to the following:

OWNER OBJECT_NAME SHARING
--------------- ------------------------- -------------
SALESADM CONMAP METADATA LINK
OE PRODUCT_DESCRIPTIONS_OB DATA LINK
OE CMTB METADATA LINK

See Also:

"Managing Application Common Objects"

Listing the Extended Data-Linked Objects in an Application Container
The DBA_TABLES and DBA_VIEWS views can list the extended data-linked objects in an
application container.

An extended data-linked object is a special type of data-linked object for which each
application PDB can create its own specific data while sharing the common data in the
application root. Only the data stored in the application root is common for all
application PDBs.

To list the extended data-linked objects in an application container:

1. In SQL*Plus, access the application root of the application container.

See "About Container Access in a CDB".

2. Query the DBA_TABLES or DBA_VIEWS view and specify the
EXTENDED_DATA_LINK='YES' in the WHERE clause.

Chapter 19
Viewing Information About Applications in Application Containers

19-30

Example 19-24 Listing the Extended Data-Linked Tables in an Application Container

This query shows the owner and name of the extended data-linked tables in the application
container.

COLUMN OWNER FORMAT A20
COLUMN TABLE_NAME FORMAT A30

SELECT OWNER, TABLE_NAME FROM DBA_TABLES WHERE EXTENDED_DATA_LINK='YES';

Your output is similar to the following:

OWNER TABLE_NAME
-------------------- ------------------------------
SALESADM ZIPCODES

See Also:

"Managing Application Common Objects"

Chapter 19
Viewing Information About Applications in Application Containers

19-31

Part V
Using Oracle Features in a Multitenant
Environment

You can use Oracle Database features in a multitenant environment.

• Backing Up and Recovering CDBs and PDBs
You can back up and recover multitenant container databases (CDBs) and pluggable
databases (PDBs).

• Using Database Utilities in a Multitenant Environment
You can use utilities such as Oracle Data Pump, DBNEWID, and Oracle LogMiner in a
multitenant environment.

• Using Oracle Resource Manager for PDBs
Use PL/SQL package procedures to administer Oracle Resource Manager (Resource
Manager) to allocate resources to pluggable databases (PDBs) in a multitenant container
database (CDB).

• Using Oracle Scheduler with a CDB
You can use Oracle Scheduler to schedule jobs in a multitenant container database
(CDB).

• Using Oracle Database Vault with a CDB
You can use Oracle Database Vault in a multitenant container database (CDB).

• Using XStream with a CDB
You can use Oracle Database XStream in a multitenant container database (CDB).

20
Backing Up and Recovering CDBs and PDBs

You can back up and recover multitenant container databases (CDBs) and pluggable
databases (PDBs).

• Overview of Backing Up and Recovering CDBs and PDBs
When using the multitenant architecture, you can perform backup and recovery
operations on a whole multitenant container database (CDB), the root, or one or more
pluggable databases (PDBs).

• Backup and Complete Recovery of CDBs
To perform backup and complete recovery operations on a whole multitenant container
database (CDB), you connect as TARGET to the root.

• Backup and Complete Recovery of PDBs
You can perform backup and complete recovery operations on a single pluggable
database (PDB) or on multiple PDBs.

• Point-in-Time Recovery in a Multitenant Environment
You can perform point-in-time recovery of the whole multitenant container database
(CDB) or a particular pluggable database (PDB).

• Flashback Database in a Multitenant Environment
You can perform a Flashback Database operation for a whole multitenant container
database (CDB) or for a particular pluggable (PDB).

Overview of Backing Up and Recovering CDBs and PDBs
When using the multitenant architecture, you can perform backup and recovery operations on
a whole multitenant container database (CDB), the root, or one or more pluggable databases
(PDBs).

The Oracle Recovery Manager (RMAN) commands used to backup and recover CDBs and
PDBs are the same as those used for non-CDBs, with minor variations in the syntax. The
backup and recovery operations performed on non-CDBs can also be performed on CDBs
and PDBs. This includes the following:

• Full and incremental backups

• Complete and point-in-time recovery (PITR)

• Flashback Database

• Reporting operations (such as listing backups and cross-checking backups)

About Connecting to CDBs and PDBs

You can connect to the root in one of the following ways:

• Connect using operating system authentication

You are connected to the root as the SYS user with the SYSDBA privilege.

• Connect locally as a common user

20-1

• Connect as a common user through Oracle Net Services

To connect as TARGET to a PDB, use one of the following techniques:

• Connect with a net service name that resolves to a database service for that PDB

• Connect locally as a common user or local user with the SYSDBA or SYSBACKUP
privilege

Note:

Certain operations are not available when you connect directly to a PDB.
See Oracle Database Backup and Recovery User’s Guide for a list of these
operations.

See Also:

The following sections in the Oracle Database Backup and Recovery User’s
Guide provide detailed information about backing up and recovering PDBs:

• Connecting as Target to the Root

• Connecting as Target to a PDB

Backup and Complete Recovery of CDBs
To perform backup and complete recovery operations on a whole multitenant container
database (CDB), you connect as TARGET to the root.

The connection must be established as a common user with the SYSDBA or SYSBACKUP
privilege.

After you connect to the root, the same commands that are used to perform operations
on non-CDBs are used to perform backup and complete recovery on the entire CDB.

See Also:

The following sections in the Oracle Database Backup and Recovery User’s
Guide provide detailed information about performing backup and complete
recovery of CDBs:

• "Backing Up a Whole CDB"

• "Performing Complete Recovery of a Whole CDB"

• "Validating a Whole CDB"

• "Reporting in CDBs"

Chapter 20
Backup and Complete Recovery of CDBs

20-2

Backup and Complete Recovery of PDBs
You can perform backup and complete recovery operations on a single pluggable database
(PDB) or on multiple PDBs.

Backups of PDBs

When relocating a PDB or cloning a non-CDB as a PDB, you may want to retain the use of
preplugin backups. For preplugin backups to be usable in the destination CDB, metadata
about the preplugin backups must be exported to the RMAN repository of the destination
CDB.

The technique for making the backups usable depends on the type of operation:

• Creating a PDB by cloning a non-CDB

When the non-CDB is opened in read/write mode, you must execute the
DBMS_PDB.EXPORTRMANBACKUP procedure as the last step before cloning. When plugging in
the non-CDB as a PDB to a destination CDB, the operation copies the backup metadata
of the source non-CDB into the data dictionary of the destination CDB.

• Relocating a PDB to another CDB

When you unplug the source PDB, the backup metadata is automatically exported.
Therefore, you do not need to execute DBMS_PDB.EXPORTRMANBACKUP.

Preplugin backups are usable only on the destination CDB into which you plug in the source
non-CDB or PDB.

Note:

• Oracle Database Backup and Recovery User’s Guide to learn about preplugin
backups

• Oracle Database Backup and Recovery User’s Guide to learn how to create a
preplugin backup of the whole database

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_PDB.EXPORTRMANBACKUP procedure

Syntax for Backup Commands

Although the Oracle Recovery Manager (RMAN) commands are the same, the syntax used
to perform operations on multiple PDBs contains some modifications.

To perform backup and complete recovery operations on a single PDB, you can connect as
TARGET to either of the following containers:

• PDB

In this case, use the same commands that you would use to backup or recover non-
CDBs. For example, to back up a PDB, use the BACKUP DATABASE command.

• CDB$ROOT

Chapter 20
Backup and Complete Recovery of PDBs

20-3

In this case, use the PLUGGABLE DATABASE clause in your RMAN commands. The
following command backs up the PDB hrpdb when connected to the root:

BACKUP PLUGGABLE DATABASE hrpdb;

To perform backup and complete recovery operations on multiple PDBs using a
single command, you must connect to the root. Use the PLUGGABLE DATABASE
clause followed by the list of PDBs on which you want to perform the operation.
The following example backs up the PDBs hrpdb, salespdb, and invpdb when
connected to the root:

BACKUP PLUGGABLE DATABASE hrpdb, salespdb, invpdb;

See Also:

The following sections in the Oracle Database Backup and Recovery User’s
Guide provide detailed information about backing up and recovering PDBs:

• "Connecting as Target to a PDB"

• "Connecting as Target to the Root"

• "Backing Up PDBs with RMAN"

• "Performing Complete Recovery of PDBs with RMAN"

• "Validating PDBs"

• "Reporting in PDBs"

Point-in-Time Recovery in a Multitenant Environment
You can perform point-in-time recovery of the whole multitenant container database
(CDB) or a particular pluggable database (PDB).

Point-in-Time Recovery of a CDB

To perform point-in-time recovery of a CDB, you must meet the following prerequisites:

• You must be logged in to the root container as a common user with the SYSDBA or
SYSBACKUP privilege.

• The CDB must be mounted.

When performing the recovery operation, use the same commands that you use for
non-CDBs.

Point-in-Time Recovery of a PDB

When a PDB is closed in an open or closed CDB, you can recover the PDB to a past
point in time. The technique depends on the undo mode of the CDB. The following
table describes the differences.

Chapter 20
Point-in-Time Recovery in a Multitenant Environment

20-4

Table 20-1 Differences in Point-in-Time Recovery Techniques

Undo
Mode

Auxiliary
Instance
Used?

Connect as
TARGET to ...

RMAN Commands to Use for Recovery

Shared Yes CDB root Include the PLUGGABLE DATABASE clause to specify the
PDB that must be recovered.

RMAN uses an auxiliary destination to store temporary files
created during recovery. If a fast recovery area has been
configured, then it is used as the auxiliary destination. You
can explicitly specify an auxiliary destination using the
AUXILIARY DESTINATION clause in the RECOVER
command.

Local No CDB root or PDB When connected to the PDB, use the same commands that
you use for non-CDBs. When connected to the root, include
the PLUGGABLE DATABASE clause to specify the PDB that
must be recovered.

See Also:

The following sections in the Oracle Database Backup and Recovery User’s Guide
for more information about point-in-time recovery.

• "Overview of Restore Points in a Multitenant Environment"

• "Creating CDB Restore Points"

• "Creating PDB Restore Points"

• "Performing Point-in-Time Recovery of CDBs and PDBs"

Flashback Database in a Multitenant Environment
You can perform a Flashback Database operation for a whole multitenant container database
(CDB) or for a particular pluggable (PDB).

RMAN uses an auxiliary destination to store temporary files created during point-in-time
recovery. By default, the fast recovery area is used as the auxiliary destination. You can
explicitly specify an auxiliary destination using the AUXILIARY DESTINATION clause in the
RECOVER command.

Flashback of CDBs

To perform Flashback Database for a CDB, you must meet the following prerequisites:

• You must be connected to the root as a common user with the SYSDBA or SYSBACKUP
privilege.

• The CDB must be mounted.

Specify the target point in time for the flashback operation using a CDB restore point, time
expression, or SCN. A CDB restore point is accessible to every PDB within the CDB.
However, the restore point does not reflect the PDB sub-incarnation of any of its PDBs.

Chapter 20
Flashback Database in a Multitenant Environment

20-5

Flashback of PDBs

When a PDB is closed and the CDB is open, you can perform a flashback database
operation for this PDB using the FLASHBACK DATABASE command. Performing a
Flashback Database operation on a particular PDB modifies only data files related to
that PDB. The other PDBs in the CDB are not impacted and are available for use.
Note that a PDB restore point is accessible only to the PDB in which it is defined and
can be used for operations only on this PDB.

Table 20-2 Differences in Flashback Techniques

CDB
Undo
Mode

Auxiliary
Instance
Used?

Connect as TARGET to ... Commands

Shared Yes CDB root Use the FLASHBACK PLUGGABLE
DATABASE command. You can only
flash back to a clean PDB restore
point.

RMAN uses an auxiliary destination to
store temporary files created during
flashback. If a fast recovery area has
been configured, then it is used as the
auxiliary destination. You can explicitly
specify an auxiliary destination using
the AUXILIARY DESTINATION clause
in the FLASHBACK PLUGGABLE
DATABASE command.

Local No CDB root or PDB Use the FLASHBACK PLUGGABLE
DATABASE command. You can specify
the target point in time for the
flashback operation using a CDB
restore point, PDB restore point, time
expression, or target SCN.

See Also:

The following sections in the Oracle Database Backup and Recovery User’s
Guide for more information about flashback of CDBs and PDBs:

• "Overview of Restore Points in a Multitenant Environment"

• "Creating CDB Restore Points"

• "Creating PDB Restore Points"

• "Performing a Flashback Database Operation for a Whole CDB"

• "Performing a Flashback Database Operation for PDBs"

Chapter 20
Flashback Database in a Multitenant Environment

20-6

21
Using Database Utilities in a Multitenant
Environment

You can use utilities such as Oracle Data Pump, DBNEWID, and Oracle LogMiner in a
multitenant environment.

• Importing and Exporting Data in a CDB
Oracle Data Pump technology enables very high-speed movement of data and metadata
from one database to another.

• Using LogMiner in a CDB
You can use LogMiner in a multitenant container database (CDB).

• DBNEWID Considerations for CDBs and PDBs
The DBNEWID parameter PDB allows you to change the DBID on pluggable databases
(PDBs).

Importing and Exporting Data in a CDB
Oracle Data Pump technology enables very high-speed movement of data and metadata
from one database to another.

• About Using Data Pump in a Multitenant Environment
In general, using Data Pump with PDBs is identical to using Data Pump with a non-CDB.

• Using Data Pump to Move Data Into a CDB
After you create an empty PDB, you can use an Oracle Data Pump full-mode export and
import operation to move data into the PDB.

• Using Data Pump to Move PDBs Within Or Between CDBs
Data Pump export and import operations on PDBs are identical to those on non-CDBs,
with the exception of how common users are handled.

About Using Data Pump in a Multitenant Environment
In general, using Data Pump with PDBs is identical to using Data Pump with a non-CDB.

A multitenant container database (CDB) is an Oracle database that includes zero, one, or
many user-created pluggable databases (PDBs). A PDB is a portable set of schemas,
schema objects, and nonschema objects that appear to an Oracle Net client as a non-CDB. A
non-CDB is an Oracle database that is not a CDB.

You can use Data Pump to migrate all or some of a database in the following scenarios:

• From a non-CDB into a PDB

• Between PDBs within the same or different CDBs

• From a PDB into a non-CDB

21-1

Note:

Data Pump does not support any CDB-wide operations. If you are connected
to the root or seed database of a CDB, then Data Pump issues the following
warning:

ORA-39357: Warning: Oracle Data Pump operations are not
typically needed when connected to the root or seed of a
container database.

Using Data Pump to Move Data Into a CDB
After you create an empty PDB, you can use an Oracle Data Pump full-mode export
and import operation to move data into the PDB.

You can import data with or without the transportable option. If you use the
transportable option on a full mode export or import, then it is referred to as a full
transportable export/import.

When the transportable option is used, export and import use both transportable
tablespace data movement and conventional data movement; the latter for those
tables that reside in non-transportable tablespaces such as SYSTEM and SYSAUX. Using
the transportable option can reduce the export time and especially, the import time,
because table data does not need to be unloaded and reloaded and index structures
in user tablespaces do not need to be recreated.

Note the following requirements when using Data Pump to move data into a CDB:

• To administer a multitenant environment, you must have the CDB_DBA role.

• Full database exports from Oracle Database 11.2.0.2 and earlier can be imported
into Oracle Database 12c (CDB or non-CDB). However, Oracle recommends that
you first upgrade the source database to Oracle Database 11g release 2 (11.2.0.3
or later), so that information about registered options and components is included
in the export.

• When migrating Oracle Database 11g release 2 (11.2.0.3 or later) to a CDB (or to
a non-CDB) using either full database export or full transportable database export,
you must set the Data Pump Export parameter VERSION=12 in order to generate a
dump file that is ready for import into Oracle Database 12c. If you do not set
VERSION=12, then the export file that is generated does not contain complete
information about registered database options and components.

• Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT_DATAFILES=datafile_name parameters.
When the source database is Oracle Database 11g release 11.2.0.3 or later, but
earlier than Oracle Database 12c Release 1 (12.1), the VERSION=12 parameter is
also required.

• File-based full transportable imports only require use of the
TRANSPORT_DATAFILES=datafile_name parameter. Data Pump Import infers the
presence of the TRANSPORTABLE=ALWAYS and FULL=YES parameters.

Chapter 21
Importing and Exporting Data in a CDB

21-2

• As of Oracle Database 12c release 2 (12.2), in a multitenant container database (CDB)
environment, the default Data Pump directory object, DATA_PUMP_DIR, is defined as a
unique path for each PDB in the CDB. This unique path is defined whether the
PATH_PREFIX clause of the CREATE PLUGGABLE DATABASE statement is defined or is not
defined for relative paths.

• Starting in Oracle Database 19c, the credential parameter of impdp specifies the name
of the credential object that contains the user name and password required to access an
object store bucket. You can also specify a default credential using the PDB property
named DEFAULT_CREDENTIAL. When you run impdb with then default credential, you prefix
the dump file name with DEFAULT_CREDENTIAL: and you do not specify the credential
parameter.

Example 21-1 Importing a Table into a PDB

To specify a particular PDB for the export/import operation, supply a connect identifier in the
connect string when you start Data Pump. For example, to import data to a PDB named pdb1,
you could enter the following on the Data Pump command line:

impdp hr@pdb1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Example 21-2 Specifying a Credential When Importing Data

This example assumes that you created a credential named HR_CRED using
DBMS_CREDENTIAL.CREATE_CREDENTIAL as follows:

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'HR_CRED',
 username => 'atpc_user@oracle.com',
 password => 'password'
);
END;
/

The following command specifies credential HR_CRED, and specifies the a file stored in an
object store. The URL of the file is https://example.com/ostore/dnfs/myt.dmp.

impdp hr@pdb1 \
 table_exists_action=replace \
 credential=HR_CRED \
 parallel=16 \
 dumpfile=https://example.com/ostore/dnfs/myt.dmp

Example 21-3 Importing Data Using a Default Credential

1. You create a credential named HR_CRED using DBMS_CREDENTIAL.CREATE_CREDENTIAL as
follows:

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'HR_CRED',
 username => 'atpc_user@oracle.com',
 password => 'password'

Chapter 21
Importing and Exporting Data in a CDB

21-3

);
END;
/

2. You set the PDB property DEFAULT_CREDENTIAL as follows:

ALTER DATABASE PROPERTY SET DEFAULT_CREDENTIAL = 'ADMIN.HR_CRED'

3. The following command specifies the default credential as a prefix to the dump file
location https://example.com/ostore/dnfs/myt.dmp:

impdp hr@pdb1 \
 table_exists_action=replace \
 parallel=16 \
 dumpfile=default_credential:https://example.com/ostore/dnfs/
myt.dmp

Note that the credential parameter is not specified.

See Also:

• Oracle Database Security Guide to learn how to configure SSL
authentication, which is necessary for object store access

• Oracle Database Utilities to learn about using Data Pump Import to load
files to the object store

Using Data Pump to Move PDBs Within Or Between CDBs
Data Pump export and import operations on PDBs are identical to those on non-CDBs,
with the exception of how common users are handled.

If you have created a common user in a CDB, then a full database or privileged
schema export of that user from within any PDB in the CDB results in a standard
CREATE USER C##common name DDL statement being performed upon import. The
statement will fail because of the common user prefix C## on the user name. The
following error message will be returned:

ORA-65094:invalid local user or role name

In the PDB being exported, if you have created local objects in that user's schema and
you want to import them, then either make sure a common user of the same name
already exists in the target CDB instance or use the Data Pump Import REMAP_SCHEMA
parameter on the impdp command, as follows:

REMAP_SCHEMA=C##common name:local user name

Related Topics

• Oracle Database Utilities

Chapter 21
Importing and Exporting Data in a CDB

21-4

• Oracle Database Utilities

• Oracle Database Utilities

Using LogMiner in a CDB
You can use LogMiner in a multitenant container database (CDB).

The following sections discuss some differences to be aware of when using LogMiner in a
CDB versus a non-CDB:

LogMiner supports CDBs that have PDBs of different character sets provided the root
container has a character set that is a superset of all the PDBs.

To administer a multitenant environment you must have the CDB_DBA role.

• LogMiner V$ Views and DBA Views in a CDB
In a CDB, views used by LogMiner to show information about LogMiner sessions running
in the system contain an additional column named CON_ID.

• The V$LOGMNR_CONTENTS View in a CDB
In a CDB, the V$LOGMNR_CONTENTS view and its associated functions are restricted to the
root database. Several new columns exist in V$LOGMNR_CONTENTS in support of CDBs.

• Enabling Supplemental Logging in a CDB
In a CDB, the syntax for enabling and disabling database-wide supplemental logging
using the ALTER DATABASE command.

• Using a Flat File Dictionary in a CDB
You cannot take a dictionary snapshot for an entire CDB in a single flat file. You must be
connected to a distinct PDB, and can take a snapshot of only that PDB in a flat file.

LogMiner V$ Views and DBA Views in a CDB
In a CDB, views used by LogMiner to show information about LogMiner sessions running in
the system contain an additional column named CON_ID.

The CON_ID column identifies the container ID associated with the session for which
information is being displayed. When you query the view from a pluggable database (PDB),
only information associated with the database is displayed. The following views are affected
by this new behavior:

• V$LOGMNR_DICTIONARY_LOAD
• V$LOGMNR_LATCH
• V$LOGMNR_PROCESS
• V$LOGMNR_SESSION
• V$LOGMNR_STATS

Note:

To support CDBs, the V$LOGMNR_CONTENTS view has several other new columns in
addition to CON_ID.

Chapter 21
Using LogMiner in a CDB

21-5

The following DBA views have analogous CDB views whose names begin with CDB.

Type of Log View DBA View CDB View

LogMiner Log Views DBA_LOGMNR_LOG CDB_LOGMNR_LOG
LogMiner Purged Log Views DBA_LOGMNR_PURGED_LOG CDB_LOGMNR_PURGED_LOG
LogMiner Session Log Views DBA_LOGMNR_SESSION CDB_LOGMNR_SESSION

The DBA views show only information related to sessions defined in the container in
which they are queried.

The CDB views contain an additional CON_ID column, which identifies the container
whose data a given row represents. When CDB views are queried from the root, they
can be used to see information about all containers.

The V$LOGMNR_CONTENTS View in a CDB
In a CDB, the V$LOGMNR_CONTENTS view and its associated functions are restricted to
the root database. Several new columns exist in V$LOGMNR_CONTENTS in support of
CDBs.

• CON_ID — contains the ID associated with the container from which the query is
executed. Because V$LOGMNR_CONTENTS is restricted to the root database, this
column returns a value of 1 when a query is done on a CDB.

• SRC_CON_NAME — the PDB name. This information is available only when mining is
performed with a LogMiner dictionary.

• SRC_CON_ID — the container ID of the PDB that generated the redo record. This
information is available only when mining is performed with a LogMiner dictionary.

• SRC_CON_DBID — the PDB identifier. This information is available only when mining
is performed with a current LogMiner dictionary.

• SRC_CON_GUID — contains the GUID associated with the PDB. This information is
available only when mining is performed with a current LogMiner dictionary.

Enabling Supplemental Logging in a CDB
In a CDB, the syntax for enabling and disabling database-wide supplemental logging
using the ALTER DATABASE command.

For example, use the following syntax when adding or dropping supplemental log data:

ALTER DATABASE [ADD|DROP] SUPPLEMENTAL LOG DATA ...

Note the following:

• In a CDB, supplemental logging levels that are enabled from CDB$ROOT are
enabled across the CDB.

• If at least minimal supplemental logging is enabled in CDB$ROOT, then additional
supplemental logging levels can be enabled at the PDB level.

• Supplemental logging levels enabled at the CDB level from CDB$ROOT cannot be
disabled at the PDB level.

Chapter 21
Using LogMiner in a CDB

21-6

• Dropping all supplemental logging from CDB$ROOT disables all supplemental logging
across the CDB regardless of previous PDB level settings.

Supplemental logging operations started with CREATE TABLE and ALTER TABLE statements can
be executed from either the CDB root or a PDB. They affect only the table to which they are
applied.

Using a Flat File Dictionary in a CDB
You cannot take a dictionary snapshot for an entire CDB in a single flat file. You must be
connected to a distinct PDB, and can take a snapshot of only that PDB in a flat file.

Thus, when using a flat file dictionary, you can only mine the redo logs for the changes
associated with the PDB whose data dictionary is contained within the flat file.

DBNEWID Considerations for CDBs and PDBs
The DBNEWID parameter PDB allows you to change the DBID on pluggable databases
(PDBs).

By default, when you run the DBNEWID utility on a container database (CDB) it changes the
DBID of only the CDB; the DBIDs of the pluggable databases (PDBs) comprising the CDB
remain the same. This could cause problems with duplicate DBIDs for PDBs in some cases,
such as when a CDB is cloned.

As of Oracle Database 12c Release 2 (12.2), you can change the DBID on the PDBs by
using the new DBNEWID PDB parameter. You cannot specify a particular PDB; either all of
them or none of them will have new DBIDs. The PDB parameter is applicable only in a CDB
environment. It has the following format:

PDB=[ALL | NONE]

• If you specify ALL, then in addition to the DBID for the CDB changing, the DBIDs for all
PDBs comprising the CDB are also changed.

• Specifying NONE (the default) leaves the PDB DBIDs the same, even if the CDB DBID is
changed.

Oracle recommends that you use PDB=ALL, but PDB=NONE is the default for backward
compatibility reasons.

Chapter 21
DBNEWID Considerations for CDBs and PDBs

21-7

22
Using Oracle Resource Manager for PDBs

Use PL/SQL package procedures to administer Oracle Resource Manager (Resource
Manager) to allocate resources to pluggable databases (PDBs) in a multitenant container
database (CDB).

This chapter assumes that you meet the following prerequisites:

• You understand how to configure and manage a CDB.

• You understand how to use Resource Manager to allocate resources in a non-CDB.

Note:

• You can complete the tasks in this chapter using SQL*Plus or Oracle SQL
Developer.

• You can also administer the Resource Manager with the graphical user
interface of Oracle Enterprise Manager Cloud Control (Cloud Control).

• For simplicity, this chapter refers to PDBs, application roots, and application
PDBs as “PDBs.”

• Overview of Oracle Resource Manager in a Multitenant Environment
In a CDB, workloads within multiple PDBs can compete for system and CDB resources.
Resource plans solve this problem.

• Managing CDB Resource Plans
In a CDB, PDBs might have different levels of priority. You can create CDB resource
plans to distribute resources to different PDBs based on these priorities.

• Managing PDB Resource Plans
You can create, enable, and modify resource plans for individual PDBs.

• Monitoring PDBs Managed by Oracle Database Resource Manager
A set of dynamic performance views enables you to monitor the results of your Oracle
Database Resource Manager settings for PDBs.

See Also:

• "Administering a Multitenant Environment"

• Oracle Database Administrator’s Guide to learn more about Resource Manager

22-1

Overview of Oracle Resource Manager in a Multitenant
Environment

In a CDB, workloads within multiple PDBs can compete for system and CDB
resources. Resource plans solve this problem.

In a multitenant environment, Resource Manager operates on two levels:

• CDB level

Resource Manager can manage the workloads for multiple PDBs that are
contending for system and CDB resources. You can specify how resources are
allocated to PDBs, and you can limit the resource utilization of specific PDBs. The
principal tool is a CDB resource plan.

• PDB level

Resource Manager can manage the workloads within each PDB. The principal tool
is a PDB resource plan.

Resource Manager allocates the resources in two steps:

1. It allocates a portion of the system's resources to each PDB.

2. In a specific PDB, it allocates a portion of system resources obtained in the
preceding step to each session connected to the PDB.

Note:

Resource Manager manages activity in the root automatically.

To use Resource Manager in a multitenant environment, you must meet the following
prerequisites:

• The CDB must exist and must contain PDBs.

• To complete a task that uses the DBMS_RESOURCE_MANAGER package, you must have
ADMINISTER_RESOURCE_MANAGER system privilege.

• Purpose of Resource Management in a Multitenant Environment
Resource Manager can provide more efficient use of resources for a CDB.

• Overview of Resource Plan Directives
A CDB resource plan allocates resources to its PDBs according to its set of
resource plan directives (directives).

• Background and Administrative Tasks and Consumer Groups
In a CDB, background and administrative tasks map to the Resource Manager
consumer groups that run them optimally.

• Initialization Parameters for PDB-Level Resources
Use initialization parameters to control CPU, memory, sessions, and I/O in a PDB.

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-2

See Also:

• " Creating and Configuring a CDB" and "Creating and Removing PDBs and
Application Containers"

• Oracle Database Administrator’s Guide to learn more about the
DBMS_RESOURCE_MANAGER package

Purpose of Resource Management in a Multitenant Environment
Resource Manager can provide more efficient use of resources for a CDB.

When resource allocation decisions for a CDB are left to the operating system, you may
encounter the following problems with workload management:

• Inappropriate allocation of resources among PDBs

The operating system distributes resources equally among all active processes and
cannot prioritize one task over another. Therefore, one or more PDBs might use an
inordinate amount of the system resources, leaving the other PDBs starved for
resources.

• Inappropriate allocation of resources within a single PDB

One or more sessions connected to a single PDB might use an inordinate amount of the
system resources, leaving other sessions connected to the same PDB starved for
resources.

• Inconsistent performance of PDBs

A single PDB might perform inconsistently when other PDBs are competing for more
system resources or less system resources at various times.

• Lack of resource usage data for PDBs

Resource usage data is critical for monitoring and tuning PDBs. It might be possible to
use operating system monitoring tools to gather the resource usage data for a non-CDB if
it is the only database running on the system. However, in a CDB, operating system
monitoring tools are no longer as useful because there are multiple PDBs running on the
system.

Resource Manager helps to overcome these problems by allowing the CDB more control
over how hardware resources are allocated among the PDBs and within PDBs.

In a CDB with multiple PDBs, some PDBs typically are more important than others. The
Resource Manager enables you to prioritize and limit the resource usage of specific PDBs.
With the Resource Manager, you can:

• Specify that different PDBs should receive different shares of the system resources so
that more resources are allocated to the more important PDBs

• Limit the CPU usage of a particular PDB

• Limit the number of parallel execution servers that a particular PDB can use

• Limit the memory usage of a particular PDB

• Specify the amount of memory guaranteed for a particular PDB

• Specify the maximum amount of memory a particular PDB can use

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-3

• Use PDB performance profiles for different sets of PDB

A performance profile for a set of PDBs can specify shares of system resources,
CPU usage, and number of parallel execution servers. PDB performance profiles
enable you to manage resources for large numbers of PDBs by specifying
Resource Manager directives for profiles instead of individual PDBs.

• Limit the resource usage of different sessions connected to a single PDB

• Limit the I/O generated by specific PDBs

• Monitor the resource usage of PDBs

Overview of Resource Plan Directives
A CDB resource plan allocates resources to its PDBs according to its set of resource
plan directives (directives).

A parent-child relationship exists between a CDB resource plan and its resource plan
directives. Each directive references either a set of PDBs in a performance profile, or a
single PDB.

You can specify directives for both individual PDBs and for PDB performance profiles
in the same CDB. No two directives for the currently active plan can reference the
same PDB or the same PDB performance profile.

• PDB Performance Profiles
A PDB performance profile configures resource plan directives for a set of PDBs
that have the same priorities and resource controls.

• Resource Plan Directives
Directives control allocation of CPU and parallel execution servers.

PDB Performance Profiles
A PDB performance profile configures resource plan directives for a set of PDBs that
have the same priorities and resource controls.

For example, you might create a performance profiles called Gold, Silver, and Bronze.
Each profile specifies a different set of directives depending on the importance of the
type of PDB. Gold PDBs are more mission critical than Silver PDBs, which are more
mission critical than Bronze PDBs. A PDB specifies its performance profile with the
DB_PERFORMANCE_PROFILE initialization parameter.

You can use PDB lockdown profiles to specify PDB initialization parameters that
control resources, such as SGA_TARGET and PGA_AGGREGATE_LIMIT. A lockdown profile
prevents the PDB administrator from modifying the settings.

Oracle recommends using matching names for performance profiles and lockdown
profiles. To prevent PDB owners from switching profiles, Oracle recommends putting
the PDB performance profile in the PDB lockdown profile.

Resource Plan Directives
Directives control allocation of CPU and parallel execution servers.

A directive can control the allocation of resources to PDBs based on the share value
that you specify for each PDB or PDB performance profile. A higher share value
results in more resources. For example, you can specify that one PDB is allocated

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-4

double the resources allocated to a second PDB by setting the share value for the first PDB
twice as high as the share value for the second PDB. Similarly, you can specify that one PDB
performance profile is allocated double the resources allocated to a second PDB
performance profile by setting the share value for the first PDB performance profile twice as
high as the share value for the second PDB performance profile. The settings apply to the set
of PDBs that use each profile.

You can also specify utilization limits for PDBs and PDB performance profiles. The limit
controls allocation to the PDB or performance profile. For example, the limit can control how
much CPU a PDB gets as a percentage of the total CPU available to the CDB.

You can use both shares and utilization limits together for precise control over the resources
allocated to each PDB and PDB performance profile in a CDB.

See Also:

"About Restricting PDB Users for Enhanced Security" for more information about
PDB lockdown profiles

Background and Administrative Tasks and Consumer Groups
In a CDB, background and administrative tasks map to the Resource Manager consumer
groups that run them optimally.

Resource Manager uses the following rules to map a task to a consumer group:

• A task is mapped to a consumer group in the container that starts the task.

If a task starts in the CDB root, then the task maps to a consumer group in the CDB root.
If the task starts in a PDB, then the task maps to a consumer group in the PDB.

• Many maintenance and administrative tasks automatically map to a consumer group.

For example, automated maintenance tasks map to ORA$AUTOTASK. In certain cases, the
tasks map to a consumer group, but the mapping is modifiable. Such tasks include
RMAN backup, RMAN image copy, Oracle Data Pump, and In-Memory population.

Note:

Oracle Database Administrator’s Guide to learn more about the mapping rules for
predefined consumer groups

Initialization Parameters for PDB-Level Resources
Use initialization parameters to control CPU, memory, sessions, and I/O in a PDB.

• CPU-Related Initialization Parameters for PDBs
The CPU_COUNT initialization parameter specifies the number of CPUs available for Oracle
Database to use.

• Memory-Related Initialization Parameters for PDBs
Several initialization parameters control the memory usage of a PDB.

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-5

• Session-Related Initialization Parameters for PDBs
Several initialization parameters control how sessions consume resources in a
PDB.

• I/O-Related Initialization Parameters for PDBs
The MAX_IOPS and MAX_MBPS initialization parameters limit the disk I/O generated
by a PDB.

CPU-Related Initialization Parameters for PDBs
The CPU_COUNT initialization parameter specifies the number of CPUs available for
Oracle Database to use.

Instance caging is a technique that uses an initialization parameter to limit the number
of CPUs that an instance can use simultaneously. You can set CPU_COUNT at the PDB
level. If Resource Manager is enabled, then the PDB is “caged” (restricted) to the
number of CPUs specified by CPU_COUNT.

CPU_COUNT works the same way as the utilization_limit directive in the CDB plan.
However, the CPU_COUNT limit is expressed in terms of number of CPUs rather than
utilization percentage. If both the utilization_limit and CPU_COUNT are specified,
then the lower limit is enforced.

CPU_COUNT is advantageous because when the PDB is plugged into a new container,
the CPU_COUNT setting remains with the plugged-in PDB. Also, Oracle Database uses
the CPU_COUNT setting for a PDB to derive many other PDB parameters, such as those
for parallel execution.

Memory-Related Initialization Parameters for PDBs
Several initialization parameters control the memory usage of a PDB.

When the PDB is the current container, the initialization parameters in the following
table control the memory usage of the current PDB. When one or more of these
parameters is set for a PDB, ensure that the CDB and the other PDBs have sufficient
memory for their operations. The initialization parameters control the memory usage of
PDBs only if the following conditions are met:

• The NONCDB_COMPATIBLE initialization parameter is set to false in the CDB root.

• The MEMORY_TARGET initialization parameter is not set or is set to 0 (zero) in the
CDB root.

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-6

Table 22-1 Initialization Parameters That Control the Memory Usage of PDBs

Initialization Parameter Description

DB_CACHE_SIZE Sets the minimum, guaranteed buffer cache space for the
PDB.

The following requirements must be met:

• It must be less than or equal to 50% of the setting for
the DB_CACHE_SIZE in the CDB root.

• The sum of the DB_CACHE_SIZE settings for all PDBs
must be less than or equal to 50% of the setting for the
DB_CACHE_SIZE in the CDB root.

These requirements do not apply if the SGA_TARGET
initialization parameter is set to a nonzero value in the CDB
root.

When the SGA_TARGET initialization parameter is set to a
nonzero, the following requirements must be met:

• The values of DB_CACHE_SIZE plus
SHARED_POOL_SIZE in a PDB must be less than or
equal to 50% of the PDB’s SGA_TARGET value.

• The values of DB_CACHE_SIZE plus
SHARED_POOL_SIZE in a PDB must be less than or
equal to 50% of the SGA_TARGET value at the CDB
level.

• The sum of DB_CACHE_SIZE plus SHARED_POOL_SIZE
across all the PDBs in a CDB must be less than or
equal to 50% of the SGA_TARGET value at the CDB
level.

SHARED_POOL_SIZE Sets the minimum, guaranteed shared pool space for the
PDB.

The following requirements must be met:

• It must be less than or equal to 50% of the setting for
the SHARED_POOL_SIZE in the CDB root.

• The sum of the SHARED_POOL_SIZE settings for all
PDBs must be less than or equal to 50% of the setting
for the SHARED_POOL_SIZE in the CDB root.

These requirements do not apply if the SGA_TARGET
initialization parameter is set to a nonzero value in the CDB
root.

When the SGA_TARGET initialization parameter is set to a
nonzero, the following requirements must be met:

• The values of DB_CACHE_SIZE plus
SHARED_POOL_SIZE in a PDB must be less than or
equal to 50% of the PDB’s SGA_TARGET value.

• The values of DB_CACHE_SIZE plus
SHARED_POOL_SIZE in a PDB must be less than or
equal to 50% of the SGA_TARGET value at the CDB
level.

• The sum of DB_CACHE_SIZE plus SHARED_POOL_SIZE
across all the PDBs in a CDB must be less than or
equal to 50% of the SGA_TARGET value at the CDB
level.

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-7

Table 22-1 (Cont.) Initialization Parameters That Control the Memory Usage of PDBs

Initialization Parameter Description

SGA_MIN_SIZE Sets the minimum SGA size for the PDB.

The following requirements must be met:

• It must be less than or equal to 50% of the setting for
the SGA_TARGET in the CDB root.

• It must be less than or equal to 50% of the setting for
the SGA_TARGET in the PDB.

• The sum of the SGA_MIN_SIZE settings for all PDBs
must be less than or equal to 50% of the setting for the
SGA_TARGET in the CDB root.

These requirements do not apply if the SGA_TARGET
initialization parameter is not set or is set to 0 (zero) in the
CDB root.

SGA_TARGET Sets the maximum SGA size for the PDB.

The SGA_TARGET setting in the PDB is enforced only if the
SGA_TARGET initialization parameter is set to a nonzero
value in the CDB root. The SGA_TARGET setting in the PDB
must be less than or equal to the SGA_TARGET setting in the
CDB root.

PGA_AGGREGATE_LIMIT Sets the maximum PGA size for the PDB.

The following requirements must be met:

• It must be less than or equal to the setting for the
PGA_AGGREGATE_LIMIT in the CDB root.

• It must be greater than or equal to two times the setting
for the PGA_AGGREGATE_TARGET in the PDB.

PGA_AGGREGATE_TARGET Sets the target aggregate PGA size for the PDB.

The following requirements must be met:

• It must be less than or equal to the
PGA_AGGREGATE_TARGET value set at the CDB level.

• It must be less than or equal to 50% of the
PGA_AGGREGATE_LIMIT initialization parameter value
set at the CDB level.

• It must be less than or equal to 50% of the
PGA_AGGREGATE_LIMIT value set in the PDB.

Example 22-1 Setting the Maximum Aggregate PGA Memory Available for a
PDB

With the PDB as the current container, run the following SQL statement to set the
PGA_AGGREGATE_LIMIT initialization parameter both in memory and in the SPFILE to 90
MB:

ALTER SYSTEM SET PGA_AGGREGATE_LIMIT = 90M SCOPE = BOTH;

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-8

Example 22-2 Setting the Minimum SGA Size for a PDB

With the PDB as the current container, run the following SQL statement to set the
SGA_MIN_SIZE initialization parameter both in memory and in the SPFILE to 500 MB:

ALTER SYSTEM SET SGA_MIN_SIZE = 500M SCOPE = BOTH;

Session-Related Initialization Parameters for PDBs
Several initialization parameters control how sessions consume resources in a PDB.

Table 22-2 Initialization Parameters That Control the Session Usage of PDBs

Initialization Parameter Description (When Set at PDB Level) Default at PDB Level

SESSIONS Sets the maximum of number of sessions that a
PDB can use.

If the PDB tries to use more sessions than
configured by its SESSIONS parameter, then an
ORA-00018 error message is generated. For PDBs,
the SESSIONS parameter does not count recursive
sessions and therefore does not require the 10%
adjustment.

The SESSIONS parameter for a PDB can only be
modified by the PDB. It cannot be set higher than
the SESSIONS value set at the CDB level.

SESSIONS at the CDB level
multiplied by ratio of PDB-level
CPU_COUNT / CDB-level
CPU_COUNT

MAX_IDLE_TIME Specifies the maximum number of minutes that a
session can be idle. After the maximum is reached,
Oracle Database automatically terminates the
session.

0 (not set)

MAX_IDLE_BLOCKER_TIM
E

Sets the number of minutes that a session can be
idle before it is a candidate for termination.

With this parameter, an idle session is terminated if
it is blocking another session. Oracle Database
considers a session blocked in any of the following
situations:

• The session is holding a lock needed by
another session.

• The session is a parallel operation and its
consumer group, PDB, or CDB has either
reached its maximum parallel server limit or has
queued parallel operations.

• The PDB or database instance for the session
is about to hit its sessions or processes limit.

Unlike MAX_IDLE_TIME, MAX_IDLE_BLOCKER_TIME
terminates resources only when they are needed.

0 (not set)

I/O-Related Initialization Parameters for PDBs
The MAX_IOPS and MAX_MBPS initialization parameters limit the disk I/O generated by a PDB.

A large amount of disk I/O can cause poor performance. Several factors can result in excess
disk I/O, such as poorly designed SQL or index and table scans in high-volume transactions.

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-9

If one PDB is generating a large amount of disk I/O, then it can degrade the
performance of other PDBs in the same CDB.

Use one or both of the following initialization parameters to limit the I/O generated by a
specific PDB:

• The MAX_IOPS initialization parameter limits the number of I/O operations for each
second.

• The MAX_MBPS initialization parameter limits the megabytes for I/O operations for
each second.

If you set both preceding initialization parameters for a single PDB, then Oracle
Database enforces both limits. Note that these limits are not enforced for Oracle
Exadata, which uses I/O Resource Management (IORM) to manage I/Os between
PDBs.

If these initialization parameters are set with the CDB root as the current container,
then the values become the default values for all containers in the CDB. If they are set
with an application root as the current container, then the values become the default
values for all application PDBs in the application container. When they are set with a
PDB or application PDB as the current container, then the settings take precedence
over the default settings in the CDB root or the application root. These parameters
cannot be set in a non-CDB.

The default for both initialization parameters is 0 (zero). If these initialization
parameters are set to 0 (zero) in a PDB, and the CDB root is set to 0, then there is no
I/O limit for the PDB. If these initialization parameters are set to 0 (zero) in an
application PDB, and its application root is set to 0, then there is no I/O limit for the
application PDB.

Critical I/O operations, such as ones for the control file and password file, are
exempted from the limit and continue to run even if the limit is reached. However, all
I/O operations, including critical I/O operations, are counted when the number of I/O
operations and the megabytes for I/O operations are calculated.

You can use the DBA_HIST_RSRC_PDB_METRIC view to calculate a reasonable I/O limit
for a PDB. Consider the values in the following columns when calculating a limit: IOPS,
IOMBPS, IOPS_THROTTLE_EXEMPT, and IOMBPS_THROTTLE_EXEMPT. The rsmgr:io rate
limit wait event indicates that a limit was reached.

Example 22-3 Limiting the I/O Generated by a PDB

With the PDB as the current container, run the following SQL statement to set the
MAX_IOPS initialization parameter both in memory and in the SPFILE to a limit of 1,000
I/O operations for each second:

ALTER SYSTEM SET MAX_IOPS = 1000 SCOPE = BOTH;

Example 22-4 Limiting the Megabytes of I/O Generated by a PDB

With the PDB as the current container, run the following SQL statement to set the
MAX_MBPS initialization parameter both in memory and in the SPFILE to a limit of 200
MB of I/O for each second:

ALTER SYSTEM SET MAX_MBPS = 200 SCOPE = BOTH;

Chapter 22
Overview of Oracle Resource Manager in a Multitenant Environment

22-10

See Also:

• "Modifying a PDB at the System Level"

• Oracle Database Reference for more information about the MAX_IOPS
initialization parameter

• Oracle Database Reference for more information about the MAX_MBPS
initialization parameter

Managing CDB Resource Plans
In a CDB, PDBs might have different levels of priority. You can create CDB resource plans to
distribute resources to different PDBs based on these priorities.

• About CDB Resource Plans
Create CDB resource plans that allocate shares and resource limits for PDBs.

• Creating a CDB Resource Plan for Managing PDBs
To create a CDB resource plan for individual PDBs and define the directives for the plan,
use the DBMS_RESOURCE_MANAGER package.

• Creating a CDB Resource Plan for Managing PDBs: Scenario
This scenario illustrates each of the steps involved in creating a CDB resource plan for
individual PDBs.

• Creating a CDB Resource Plan with PDB Performance Profiles
Use the DBMS_RESOURCE_MANAGER package to create a CDB resource plan for PDB
performance profiles and define the directives for the plan. Each PDB that uses a profile
adopts the CDB resource plan directive.

• Creating a CDB Resource Plan for PDB Performance Profiles: Scenario
This scenario illustrates the steps involved in creating a CDB resource plan for PDB
performance profiles.

• Enabling a CDB Resource Plan
You enable the Resource Manager for a CDB by setting the RESOURCE_MANAGER_PLAN
initialization parameter in the root.

• Modifying a CDB Resource Plan
Modifying a CDB resource plan includes tasks such as updating the plan, creating,
updating, or deleting plan directives for PDBs, and updating default directives.

• Disabling a CDB Resource Plan
Disable the Resource Manager for a CDB by unsetting the RESOURCE_MANAGER_PLAN
initialization parameter in the CDB root.

• Viewing Information About Plans and Directives in a CDB
You can view information about CDB resource plans, CDB resource plan directives, and
predefined resource plans in a CDB.

About CDB Resource Plans
Create CDB resource plans that allocate shares and resource limits for PDBs.

Chapter 22
Managing CDB Resource Plans

22-11

• Shares for Allocating Resources to PDBs
To allocate resources among PDBs, assign a share value to each PDB or
performance profile. A higher share value results in more guaranteed resources
for a PDB or the PDBs that use the performance profile.

• Utilization Limits for PDBs
A utilization limit restrains the system resource usage of a specific PDB or a
specific PDB performance profile.

• The Default Directive for PDBs
When you do not explicitly define directives for a PDB, the PDB uses the default
directive for PDBs.

Shares for Allocating Resources to PDBs
To allocate resources among PDBs, assign a share value to each PDB or performance
profile. A higher share value results in more guaranteed resources for a PDB or the
PDBs that use the performance profile.

Specify a share value for a PDB using the
DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE procedure and for a PDB
performance profile using the
DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE procedure. In both cases,
the shares parameter specifies the share value for the PDB. Multiple PDBs can use
the same PDB performance profile.

The following figure shows an example of three PDBs with share values specified for
them in a CDB resource plan.

Figure 22-1 Shares in a CDB Resource Plan

CDB resource plan in root

Directive:

share = 3
Directive:

share = 3
Directive:

share = 1

PDB
salespdb

PDB
servicespdb

PDB
hrpdb

The preceding figure shows that the total number of shares is seven (3 plus 3 plus 1).
The salespdb and the servicespdb PDB are each guaranteed 3/7 of the resources,
while the hrpdb PDB is guaranteed 1/7 of the resources. However, any PDB can use
more than the guaranteed amount of a resource when no resource contention exists.

The following table shows the resource allocation to the PDBs in the preceding figure
based on the share values. The table assumes that loads of the PDBs consume all
system resources allocated.

Chapter 22
Managing CDB Resource Plans

22-12

Table 22-3 Resource Allocation for Sample PDBs

Resource Resource Allocation See Also

CPU The salespdb and servicespdb PDBs
can consume the same amount of CPU
resources. The salespdb and
servicespdb PDBs are each guaranteed
three times more CPU resource than the
hrpdb PDB.

Oracle Database Administrator’s
Guide for more information about
this resource

Parallel execution
servers

Queued parallel queries from the salespdb
and servicespdb PDBs are selected
equally. Queued parallel queries from the
salespdb and servicespdb PDBs are
selected three times as often as queued
parallel queries from the hrpdb PDB.

Oracle Database Administrator’s
Guide for more information about
this resource

Utilization Limits for PDBs
A utilization limit restrains the system resource usage of a specific PDB or a specific PDB
performance profile.

You can specify utilization limits for CPU and parallel execution servers. Utilization limits for a
PDB are set by the CDB resource plan.

The following table describes utilization limits for PDBs and the Resource Manager action
taken when a PDB reaches a utilization limit. For limits specified with a PDB performance
profile, the limit applies to every PDB that uses the PDB performance profile. For example, if
pdb1 and pdb20 have a performance profile BRONZE, and if BRONZE has a limit set to 10%, then
pdb1 has a 10% limit and pdb20 has a 10% limit.

Table 22-4 Utilization Limits for PDBs

Resource Resource Utilization Limit Resource Manager Action When Limit Is
Reached

CPU The CPU utilization limit for sessions
connected to a PDB is set by the
utilization_limit parameter in
subprograms of the
DBMS_RESOURCE_MANAGER package. The
utilization_limit parameter specifies the
percentage of the system resources that a
PDB can use. The value ranges from 0 to 100.

You can also limit CPU for a PDB by setting
the initialization parameter CPU_COUNT. For
example, if you set the CPU_COUNT to 8, then
the PDB cannot use more than 8 CPUs at any
time. If both utilization_limit and
CPU_COUNT are specified, then the more
restrictive (lower) value is enforced.

Resource Manager throttles the PDB sessions
so that the CPU utilization for the PDB does
not exceed the utilization limit.

Chapter 22
Managing CDB Resource Plans

22-13

Table 22-4 (Cont.) Utilization Limits for PDBs

Resource Resource Utilization Limit Resource Manager Action When Limit Is
Reached

Parallel execution
servers

You can limit the number of parallel execution
servers in a PDB by means of parallel
statement queuing. The limit is a “queuing
point” because the database queues parallel
queries when the limit is reached.

You can set the limit (queuing point) in either
of the following ways:

• The value of the
PARALLEL_SERVERS_TARGET
initialization parameter setting in the PDB

• The value of the
PARALLEL_SERVERS_TARGET
initialization parameter setting in the CDB
root multiplied by the value of the
parallel_server_limit directive set
for the PDB in the CDB resource
manager plan

For example, if the
PARALLEL_SERVERS_TARGET
initialization parameter is set to 200 in the
CDB root, and if the
parallel_server_limit directive for a
PDB is set to 10%, then utilization limit for
the PDB is 20 parallel execution servers
(200 * .10).

If the limit is set in both preceding ways, then
the lower limit of the two is used. See Oracle
Database Reference for the default value for
PARALLEL_SERVERS_TARGET.

Note: Oracle recommends using the
PARALLEL_SERVERS_TARGET initialization
parameter instead of the
parallel_server_limit directive in a CDB
plan.

Resource Manager queues parallel queries
when the number of parallel execution servers
used by the PDB would exceed the limit.

Note: In a CDB, parallel statements are
queued based on the
PARALLEL_SERVERS_TARGET settings at both
the PDB and CDB level. A statement is
queued when the number of parallel servers
used by the PDB exceeds the target for the
PDB or when the number of parallel servers
used by all PDBs exceeds the target for the
CDB.

The following figure shows an example of three PDBs with shares and utilization limits
specified for them in a CDB resource plan.

Chapter 22
Managing CDB Resource Plans

22-14

Figure 22-2 Shares and Utilization Limits in a CDB Resource Plan

CDB resource plan in root

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 1
utilization_limit = 70
parallel_server_limit = 70

PDB
salespdb

PDB
servicespdb

PDB
hrpdb

The preceding figure shows that there are no utilization limits on the salespdb and
servicespdb PDBs because utilization_limit and parallel_server_limit are both set to
100% for them. However, the hrpdb PDB is limited to 70% of the applicable system resources
because utilization_limit and parallel_server_limit are both set to 70%.

Note:

This scenario assumes that the PARALLEL_SERVERS_TARGET initialization parameter
does not specify a lower limit in a PDB. When the PARALLEL_SERVERS_TARGET
initialization parameter specifies a lower limit for parallel execution servers in a
PDB, the lower limit is used.

See Also:

• Oracle Database Administrator’s Guide

• Oracle Database Reference to learn about CPU_COUNT

The Default Directive for PDBs
When you do not explicitly define directives for a PDB, the PDB uses the default directive for
PDBs.

The following table shows the attributes of the initial default directive for PDBs.

Table 22-5 Initial Default Directive Attributes for PDBs

Directive Attribute Value

shares 1

Chapter 22
Managing CDB Resource Plans

22-15

Table 22-5 (Cont.) Initial Default Directive Attributes for PDBs

Directive Attribute Value

utilization_limit 100

parallel_server_limit 100

When a PDB is plugged into a CDB and no directive is defined for it, the PDB uses the
default directive for PDBs.

You can create new directives for the new PDB. You can also change the default
directive attribute values for PDBs by using the UPDATE_CDB_DEFAULT_DIRECTIVE
procedure in the DBMS_RESOURCE_MANAGER package.

When a PDB is unplugged from a CDB, the directive for the PDB is retained. If the
same PDB is plugged back into the CDB, then it uses the directive defined for it if the
directive was not deleted manually.

Figure 22-3 shows an example of the default directive in a CDB resource plan.

Figure 22-3 Default Directive in a CDB Resource Plan

. . .

CDB resource plan in root

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 1
utilization_limit = 70
parallel_server_limit = 70

PDB
salespdb

PDB
servicespdb

PDB
marketingpdb

PDB
testingpdb

PDB
hrpdb

Default Directive:

share = 1
utilization_limit = 50
parallel_server_limit = 50

Figure 22-3 shows that the default PDB directive specifies that the share is 1, the
utilization_limit is 50%, and the parallel_server_limit is 50%. Any PDB that is
part of the CDB and does not have directives defined for it uses the default PDB
directive. Figure 22-3 shows the PDBs marketingpdb and testingpdb using the

Chapter 22
Managing CDB Resource Plans

22-16

default PDB directive. Therefore, marketingpdb and testingpdb each get 1 share and
utilization limits of 50.

See Also:

• "Creating New CDB Resource Plan Directives for a PDB"

• "Updating the Default Directive for PDBs in a CDB Resource Plan"

• "Creating and Removing PDBs and Application Containers"

• "Unplugging a PDB from a CDB"

• Oracle Database Administrator’s Guide for information about the parallel server
limit

Creating a CDB Resource Plan for Managing PDBs
To create a CDB resource plan for individual PDBs and define the directives for the plan, use
the DBMS_RESOURCE_MANAGER package.

The general steps for creating a CDB resource plan for individual PDBs are the following:

1. Create the pending area using the CREATE_PENDING_AREA procedure.

2. Create the CDB resource plan using the CREATE_CDB_PLAN procedure.

3. Create directives for the PDBs using the CREATE_CDB_PLAN_DIRECTIVE procedure.

4. (Optional) Update the default PDB directive using the UPDATE_CDB_DEFAULT_DIRECTIVE
procedure.

5. Validate the pending area using the VALIDATE_PENDING_AREA procedure.

6. Submit the pending area using the SUBMIT_PENDING_AREA procedure.

Creating a CDB Resource Plan for Managing PDBs: Scenario
This scenario illustrates each of the steps involved in creating a CDB resource plan for
individual PDBs.

The scenario assumes that you want to create a CDB resource plan for a CDB named
newcdb. The plan includes a directive for each PDB. In this scenario, you also update the
default directive and the AutoTask directive.

The directives are defined using various procedures in the DBMS_RESOURCE_MANAGER package.
The attributes of each directive are defined using parameters in these procedures. Table 22-6
describes the types of directives in the plan.

Table 22-6 Attributes for PDB Directives in a CDB Resource Plan

Directive Attribute Description See Also

shares Resource allocation share for CPU
and parallel execution server
resources.

"Shares for Allocating
Resources to PDBs"

Chapter 22
Managing CDB Resource Plans

22-17

Table 22-6 (Cont.) Attributes for PDB Directives in a CDB Resource Plan

Directive Attribute Description See Also

utilization_limit Resource utilization limit for CPU. "Utilization Limits for PDBs"

parallel_server_limit Maximum percentage of parallel
execution servers that a PDB can use
before queuing parallel statements.

When the parallel_server_limit
directive is specified for a PDB, the
limit is the
PARALLEL_SERVERS_TARGET value
of the CDB root multiplied by the
value of the
parallel_server_limit
parameter in the
CREATE_CDB_PLAN_DIRECTIVE
procedure.

Note: Oracle recommends using the
PARALLEL_SERVERS_TARGET
initialization parameter instead of the
parallel_server_limit directive
in a CDB plan.

"Utilization Limits for PDBs"

Table 22-7 describes how the CDB resource plan allocates resources to its PDBs
using the directive attributes described in Table 22-6.

Table 22-7 Sample Directives for PDBs in a CDB Resource Plan

PDB shares Directive utilization_limit Directive parallel_server_limit
Directive

salespdb 3 Unlimited Unlimited

servicespdb 3 Unlimited Unlimited

hrpdb 1 70 70

Default 1 50 50

AutoTask 1 75 75

The salespdb and servicespdb PDBs are more important than the other PDBs in the
CDB. Therefore, they get a higher share (3), unlimited CPU utilization resource, and
unlimited parallel execution server resource.

The default directive applies to PDBs for which specific directives have not been
defined. For this scenario, assume that the CDB has several PDBs that use the default
directive. This scenario updates the default directive.

In addition, this scenario updates the AutoTask directive. The AutoTask directive
applies to automatic maintenance tasks that are run in the root maintenance window.

Chapter 22
Managing CDB Resource Plans

22-18

To create a CDB resource plan:

1. Create a pending area using the CREATE_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

2. Create a CDB resource plan named newcdb_plan using the CREATE_CDB_PLAN procedure:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN(
 plan => 'newcdb_plan',
 comment => 'CDB resource plan for newcdb');
END;
/

3. Create the CDB resource plan directives for the PDBs using the
CREATE_CDB_PLAN_DIRECTIVE procedure. Each directive specifies how resources are
allocated to a specific PDB.

Table 22-7 describes the directives for the salespdb, servicespdb, and hrpdb PDBs in
this scenario. Run the following procedures to create these directives:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'salespdb',
 shares => 3,
 utilization_limit => 100,
 parallel_server_limit => 100);
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'servicespdb',
 shares => 3,
 utilization_limit => 100,
 parallel_server_limit => 100);
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'hrpdb',
 shares => 1,
 utilization_limit => 70,
 parallel_server_limit => 70);
END;
/

All other PDBs in this CDB use the default PDB directive.

Chapter 22
Managing CDB Resource Plans

22-19

4. If the current default CDB resource plan directive for PDBs does not meet your
requirements, then update the directive using the UPDATE_CDB_DEFAULT_DIRECTIVE
procedure.

The default directive applies to PDBs for which specific directives have not been
defined. See "The Default Directive for PDBs" for more information.

Table 22-7 describes the default directive that PDBs use in this scenario. Run the
following procedure to update the default directive:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_DEFAULT_DIRECTIVE(
 plan => 'newcdb_plan',
 new_shares => 1,
 new_utilization_limit => 50,
 new_parallel_server_limit => 50);
END;
/

5. Validate the pending area using the VALIDATE_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

6. Submit the pending area using the SUBMIT_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Creating a CDB Resource Plan with PDB Performance Profiles
Use the DBMS_RESOURCE_MANAGER package to create a CDB resource plan for PDB
performance profiles and define the directives for the plan. Each PDB that uses a
profile adopts the CDB resource plan directive.

The general steps for creating a CDB resource plan with PDB performance profiles are
the following:

1. Create the pending area using the CREATE_PENDING_AREA procedure.

2. Create the CDB resource plan using the CREATE_CDB_PLAN procedure.

3. Create directives for the PDB performance profiles using the
CREATE_CDB_PROFILE_DIRECTIVE procedure.

4. (Optional) Update the default PDB directive using the
UPDATE_CDB_DEFAULT_DIRECTIVE procedure.

5. Validate the pending area using the VALIDATE_PENDING_AREA procedure.

6. Submit the pending area using the SUBMIT_PENDING_AREA procedure.

7. For each PDB that will use a profile, set the DB_PERFORMANCE_PROFILE initialization
parameter and specify the profile name.

Chapter 22
Managing CDB Resource Plans

22-20

Creating a CDB Resource Plan for PDB Performance Profiles: Scenario
This scenario illustrates the steps involved in creating a CDB resource plan for PDB
performance profiles.

The scenario assumes that you want to create a CDB resource plan for a CDB named
newcdb. The plan includes a directive for each PDB performance profile. In this scenario, you
also update the default directive and the AutoTask directive.

In the CDB resource plan, you give each profile a name. In each PDB, you set the
DB_PERFORMANCE_PROFILE initialization parameter to specify which PDB performance profile
the PDB uses.

The directives are defined using various procedures in the DBMS_RESOURCE_MANAGER package.
The attributes of each directive are defined using parameters in these procedures. The
following table describes the types of directives in the plan.

Table 22-8 Attributes for PDB Performance Profile Directives in a CDB Resource Plan

Directive Attribute Description See Also

shares Resource allocation share for CPU
and parallel execution server
resources.

"Shares for Allocating
Resources to PDBs"

utilization_limit Resource utilization limit for CPU. "Utilization Limits for PDBs"

parallel_server_limit Maximum percentage of parallel
execution servers that a PDB can
use.

When the parallel_server_limit
directive is specified for a PDB
performance profile, the limit is the
value of the
PARALLEL_SERVERS_TARGET
initialization parameter setting in the
CDB root multiplied by the value of
the parallel_server_limit
parameter in the
CREATE_CDB_PROFILE_DIRECTIVE
procedure.

"Utilization Limits for PDBs"

The following table describes how the CDB resource plan allocates resources to its PDB
performance profiles using the directive attributes described in Table 22-8.

Table 22-9 Sample Directives for PDB Performance Profiles in a CDB Resource Plan

PDB shares Directive utilization_limit Directive parallel_server_limit Directive

gold 3 Unlimited Unlimited

silver 2 40 40

bronze 1 20 20

Default 1 10 10

AutoTask 2 60 60

Chapter 22
Managing CDB Resource Plans

22-21

The default directive applies to PDBs for which specific directives have not been
defined. For this scenario, assume that the CDB has several PDBs that use the default
directive. This scenario updates the default directive.

In addition, this scenario updates the AutoTask directive. The AutoTask directive
applies to automatic maintenance tasks that are run in the root maintenance window.

To create a CDB resource plan for PDB performance profiles:

1. For each PDB that will use a profile, set the DB_PERFORMANCE_PROFILE initialization
parameter to the name of the profile that the PDB will use.

a. Run an ALTER SYSTEM statement to set the parameter.

For example, with the PDB as the current container, run the following SQL
statement:

ALTER SYSTEM SET DB_PERFORMANCE_PROFILE=gold SCOPE=spfile;

b. Close the PDB:

ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;

c. Open the PDB:

ALTER PLUGGABLE DATABASE OPEN;

2. Create a pending area using the CREATE_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Create a CDB resource plan named newcdb_plan using the CREATE_CDB_PLAN
procedure:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN(
 plan => 'newcdb_plan',
 comment => 'CDB resource plan for newcdb');
END;
/

4. Create the CDB resource plan directives for the PDBs using the
CREATE_CDB_PLAN_DIRECTIVE procedure. Each directive specifies how resources
are allocated to a specific PDB.

Table 22-7 describes the directives for the gold, silver, and bronze profiles in this
scenario. Run the following procedures to create these directives:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'gold',
 shares => 3,
 utilization_limit => 100,
 parallel_server_limit => 100);
END;

Chapter 22
Managing CDB Resource Plans

22-22

/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'silver',
 shares => 2,
 utilization_limit => 40,
 parallel_server_limit => 40);
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'bronze',
 shares => 1,
 utilization_limit => 20,
 parallel_server_limit => 20);
END;
/

All other PDBs in this CDB use the default PDB directive.

5. If the current default CDB resource plan directive for PDBs does not meet your
requirements, then update the directive using the UPDATE_CDB_DEFAULT_DIRECTIVE
procedure.

The default directive applies to PDBs for which specific directives have not been defined.

Table 22-7 describes the default directive that PDBs use in this scenario. Run the
following procedure to update the default directive:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_DEFAULT_DIRECTIVE(
 plan => 'newcdb_plan',
 new_shares => 1,
 new_utilization_limit => 10,
 new_parallel_server_limit => 10);
END;
/

6. Validate the pending area using the VALIDATE_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

7. Submit the pending area using the SUBMIT_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

"The Default Directive for PDBs"

Chapter 22
Managing CDB Resource Plans

22-23

Enabling a CDB Resource Plan
You enable the Resource Manager for a CDB by setting the RESOURCE_MANAGER_PLAN
initialization parameter in the root.

This parameter specifies the top plan, which is the plan to be used for the current CDB
instance. If no plan is specified with this parameter, then the Resource Manager is not
enabled.

Prerequisites

Before enabling a CDB resource plan, complete the prerequisites described in
"Overview of Oracle Resource Manager in a Multitenant Environment".

To enable a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Perform one of the following actions:

• Use an ALTER SYSTEM statement to set the RESOURCE_MANAGER_PLAN
initialization parameter to the CDB resource plan.

The following example sets the CDB resource plan to newcdb_plan using an
ALTER SYSTEM statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'newcdb_plan';

• In a text initialization parameter file, set the RESOURCE_MANAGER_PLAN
initialization parameter to the CDB resource plan, and restart the CDB.

The following example sets the CDB resource plan to newcdb_plan in an
initialization parameter file:

RESOURCE_MANAGER_PLAN = 'newcdb_plan'

See Also:

• "About Container Access in a CDB"

• Oracle Database Administrator’s Guide to learn how to schedule a CDB
resource plan change with Oracle Scheduler

Modifying a CDB Resource Plan
Modifying a CDB resource plan includes tasks such as updating the plan, creating,
updating, or deleting plan directives for PDBs, and updating default directives.

• Updating a CDB Resource Plan
You can update a CDB resource plan to change its comment using the
UPDATE_CDB_PLAN procedure.

Chapter 22
Managing CDB Resource Plans

22-24

• Managing CDB Resource Plan Directives for a PDB
You can create, update, and delete CDB resource plan directives for a PDB.

• Managing CDB Resource Plan Directives for a PDB Performance Profile
You can create, update, and delete CDB resource plan directives for a PDB performance
profile.

• Updating the Default Directive for PDBs in a CDB Resource Plan
You can update the default directive for PDBs in a CDB resource plan using the
UPDATE_CDB_DEFAULT_DIRECTIVE procedure. The default directive applies to PDBs for
which specific directives have not been defined.

• Updating the Default Directive for Maintenance Tasks in a CDB Resource Plan
You can update the AutoTask directive in a CDB resource plan using the
UPDATE_CDB_AUTOTASK_DIRECTIVE procedure. The AutoTask directive applies to automatic
maintenance tasks that are run in the root maintenance window.

• Deleting a CDB Resource Plan
You can delete a CDB resource plan using the DELETE_CDB_PLAN procedure.

Updating a CDB Resource Plan
You can update a CDB resource plan to change its comment using the UPDATE_CDB_PLAN
procedure.

Prerequisites

Before updating a CDB resource plan, complete the prerequisites described in "Overview of
Oracle Resource Manager in a Multitenant Environment".

To update a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_PLAN procedure, and enter a new comment in the new_comment
parameter.

For example, the following procedure changes the comment for the newcdb_plan CDB
resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_PLAN(
 plan => 'newcdb_plan',
 new_comment => 'CDB plan for PDBs in newcdb');
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

Chapter 22
Managing CDB Resource Plans

22-25

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

• "About CDB Resource Plans"

• "About Container Access in a CDB"

Managing CDB Resource Plan Directives for a PDB
You can create, update, and delete CDB resource plan directives for a PDB.

• Creating New CDB Resource Plan Directives for a PDB
When you create a PDB in a CDB, you can create a CDB resource plan directive
for the PDB using the CREATE_CDB_PLAN_DIRECTIVE procedure. The directive
specifies how resources are allocated to the new PDB.

• Updating CDB Resource Plan Directives for a PDB
You can update the CDB resource plan directive for a PDB using the
UPDATE_CDB_PLAN_DIRECTIVE procedure. The directive specifies how resources
are allocated to the PDB.

• Deleting CDB Resource Plan Directives for a PDB
You can delete the CDB resource plan directive for a PDB using the
DELETE_CDB_PLAN_DIRECTIVE procedure.

Creating New CDB Resource Plan Directives for a PDB
When you create a PDB in a CDB, you can create a CDB resource plan directive for
the PDB using the CREATE_CDB_PLAN_DIRECTIVE procedure. The directive specifies
how resources are allocated to the new PDB.

Prerequisites

Before creating a new CDB resource plan directive for a PDB, complete the
prerequisites described in "Overview of Oracle Resource Manager in a Multitenant
Environment".

To create a new CDB resource plan directive for a PDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the CREATE_CDB_PLAN_DIRECTIVE procedure, and specify the appropriate
values for the new PDB.

Chapter 22
Managing CDB Resource Plans

22-26

For example, the following procedure allocates resources to a PDB named operpdb in the
newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'operpdb',
 shares => 1,
 utilization_limit => 20,
 parallel_server_limit => 30);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

• "About CDB Resource Plans"

• "About Container Access in a CDB"

Updating CDB Resource Plan Directives for a PDB
You can update the CDB resource plan directive for a PDB using the
UPDATE_CDB_PLAN_DIRECTIVE procedure. The directive specifies how resources are allocated
to the PDB.

Prerequisites

Before updating a CDB resource plan directive for a PDB, ensure that you meet the
prerequisites described in "Overview of Oracle Resource Manager in a Multitenant
Environment".

To update a CDB resource plan directive for a PDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_PLAN_DIRECTIVE procedure, and specify the new resource allocation
values for the PDB.

Chapter 22
Managing CDB Resource Plans

22-27

For example, the following procedure updates the resource allocation to a PDB
named operpdb in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'operpdb',
 new_shares => 1,
 new_utilization_limit => 10,
 new_parallel_server_limit => 20);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

• "About Container Access in a CDB"

• "About CDB Resource Plans"

Deleting CDB Resource Plan Directives for a PDB
You can delete the CDB resource plan directive for a PDB using the
DELETE_CDB_PLAN_DIRECTIVE procedure.

You might delete the directive for a PDB if you unplug or drop the PDB. However, you
can retain the directive, and if the PDB is plugged into the CDB in the future, the
existing directive applies to the PDB.

Prerequisites

Before deleting a CDB resource plan directive for a PDB, complete the prerequisites
described in "Overview of Oracle Resource Manager in a Multitenant Environment".

To delete a CDB resource plan directive for a PDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the DELETE_CDB_PLAN_DIRECTIVE procedure, and specify the CDB resource
plan and the PDB.

Chapter 22
Managing CDB Resource Plans

22-28

For example, the following procedure deletes the directive for a PDB named operpdb in
the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.DELETE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'operpdb');
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

• "About Container Access in a CDB"

• "About CDB Resource Plans"

Managing CDB Resource Plan Directives for a PDB Performance Profile
You can create, update, and delete CDB resource plan directives for a PDB performance
profile.

• Creating New CDB Resource Plan Directives for a PDB Performance Profile
You can create a CDB resource plan directive for the a new PDB performance profile
using the CREATE_CDB_PROFILE_DIRECTIVE procedure. The directive specifies how
resources are allocated to the all PDBs that use the new profile.

• Updating CDB Resource Plan Directives for a PDB Performance Profile
Update the CDB resource plan directive for a PDB performance profile using the
UPDATE_CDB_PROFILE_DIRECTIVE procedure. The directive specifies how resources are
allocated to the PDBs that use the PDB performance profile.

• Deleting CDB Resource Plan Directives for a PDB Performance Profile
You can delete the CDB resource plan directive for a PDB performance profile using the
DELETE_CDB_PROFILE_DIRECTIVE procedure.

Chapter 22
Managing CDB Resource Plans

22-29

Creating New CDB Resource Plan Directives for a PDB Performance Profile
You can create a CDB resource plan directive for the a new PDB performance profile
using the CREATE_CDB_PROFILE_DIRECTIVE procedure. The directive specifies how
resources are allocated to the all PDBs that use the new profile.

Prerequisites

Before creating a new CDB resource plan directive for a PDB performance profile,
complete the prerequisites described in "Overview of Oracle Resource Manager in a
Multitenant Environment".

To create a new CDB resource plan directive for a PDB performance profile:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the CREATE_CDB_PROFILE_DIRECTIVE procedure, and specify the appropriate
values for the new PDB performance profile.

For example, the following procedure allocates resources to a PDB performance
profile named copper in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'copper',
 shares => 1,
 utilization_limit => 20,
 parallel_server_limit => 30);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Note:

For a PDB to use the new profile, the PDB must have the
DB_PERFORMANCE_PROFILE initialization parameter set to the profile name.

Chapter 22
Managing CDB Resource Plans

22-30

See Also:

• "About CDB Resource Plans"

• "About Container Access in a CDB"

Updating CDB Resource Plan Directives for a PDB Performance Profile
Update the CDB resource plan directive for a PDB performance profile using the
UPDATE_CDB_PROFILE_DIRECTIVE procedure. The directive specifies how resources are
allocated to the PDBs that use the PDB performance profile.

Before updating a CDB resource plan directive for a PDB performance profile, complete the
prerequisites described in "Overview of Oracle Resource Manager in a Multitenant
Environment".

To update a CDB resource plan directive for a PDB performance profile:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_PROFILE_DIRECTIVE procedure, and specify the new resource
allocation values for the PDB performance profile.

For example, the following procedure updates the resource allocation for a PDB
performance profile named copper in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'copper',
 new_shares => 1,
 new_utilization_limit => 10,
 new_parallel_server_limit => 20);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 22
Managing CDB Resource Plans

22-31

See Also:

• "About CDB Resource Plans"

• "About Container Access in a CDB"

Deleting CDB Resource Plan Directives for a PDB Performance Profile
You can delete the CDB resource plan directive for a PDB performance profile using
the DELETE_CDB_PROFILE_DIRECTIVE procedure.

If no PDBs use a performance profile, then you might delete the directive for the
profile.

Prerequisites

Before deleting a CDB resource plan directive for a PDB performance profile,
complete the prerequisites described in "Overview of Oracle Resource Manager in a
Multitenant Environment".

To delete a CDB resource plan directive for a PDB performance profile:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the DELETE_CDB_PROFILE_DIRECTIVE procedure, and specify the CDB
resource plan and the PDB performance profile.

For example, the following procedure deletes the directive for a PDB named
operpdb in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.DELETE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'operpdb');
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 22
Managing CDB Resource Plans

22-32

See Also:

• "About Container Access in a CDB".

• "About CDB Resource Plans"

Updating the Default Directive for PDBs in a CDB Resource Plan
You can update the default directive for PDBs in a CDB resource plan using the
UPDATE_CDB_DEFAULT_DIRECTIVE procedure. The default directive applies to PDBs for which
specific directives have not been defined.

Prerequisites

Before updating the default directive for PDBs in a CDB resource plan, complete the
prerequisites described in "Overview of Oracle Resource Manager in a Multitenant
Environment".

To update the default directive for PDBs in a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_DEFAULT_DIRECTIVE procedure, and specify the appropriate default
resource allocation values.

For example, the following procedure updates the default directive for PDBs in the
newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_DEFAULT_DIRECTIVE(
 plan => 'newcdb_plan',
 new_shares => 2,
 new_utilization_limit => 40);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 22
Managing CDB Resource Plans

22-33

See Also:

• See "The Default Directive for PDBs" for more information.

• "About CDB Resource Plans"

• See "About Container Access in a CDB".

Updating the Default Directive for Maintenance Tasks in a CDB Resource Plan
You can update the AutoTask directive in a CDB resource plan using the
UPDATE_CDB_AUTOTASK_DIRECTIVE procedure. The AutoTask directive applies to
automatic maintenance tasks that are run in the root maintenance window.

Prerequisites

Before updating the default directive for maintenance tasks in a CDB resource plan,
complete the prerequisites described in "Overview of Oracle Resource Manager in a
Multitenant Environment".

To update the AutoTask directive for maintenance tasks in a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_AUTOTASK_DIRECTIVE procedure, and specify the appropriate
AutoTask resource allocation values.

For example, the following procedure updates the AutoTask directive for
maintenance tasks in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_AUTOTASK_DIRECTIVE(
 plan => 'newcdb_plan',
 new_shares => 2,
 new_utilization_limit => 60);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 22
Managing CDB Resource Plans

22-34

See Also:

• "About Container Access in a CDB"

• "About CDB Resource Plans"

Deleting a CDB Resource Plan
You can delete a CDB resource plan using the DELETE_CDB_PLAN procedure.

The resource plan must be disabled. You might delete a CDB resource plan if the plan is no
longer needed. You can enable a different CDB resource plan, or you can disable Resource
Manager for the CDB.

Prerequisites

Before deleting a CDB resource plan, complete the prerequisites described in "Overview of
Oracle Resource Manager in a Multitenant Environment".

To delete a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the DELETE_CDB_PLAN procedure, and specify the CDB resource plan.

For example, the following procedure deletes the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.DELETE_CDB_PLAN(
 plan => 'newcdb_plan');
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 22
Managing CDB Resource Plans

22-35

See Also:

• "About CDB Resource Plans"

• See "About Container Access in a CDB".

• "Enabling a CDB Resource Plan"

• "Disabling a CDB Resource Plan"

Disabling a CDB Resource Plan
Disable the Resource Manager for a CDB by unsetting the RESOURCE_MANAGER_PLAN
initialization parameter in the CDB root.

A CDB resource plan that specifies shares or utilization limits for PDBs is required to
enable CPU management, both between PDBs and within a PDB. If a resource plan
with shares or utilization limits is enabled for a PDB, and if the CDB resource plan is
not specified, then the CDB resource plan is set to DEFAULT_CDB_PLAN. This setting
gives equal shares to all PDBs and specifies no utilization limits. To disable CPU
resource management throughout the CDB, set RESOURCE_MANAGER_PLAN to
ORA$INTERNAL_CDB_PLAN.

Prerequisites

Before disabling a CDB resource plan, complete the prerequisites described in
"Overview of Oracle Resource Manager in a Multitenant Environment".

To disable a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Perform one of the following actions:

• Use an ALTER SYSTEM statement to unset the RESOURCE_MANAGER_PLAN
initialization parameter for the CDB.

The following example unsets the RESOURCE_MANAGER_PLAN initialization
parameter using an ALTER SYSTEM statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = '';

• In an initialization parameter file, unset the RESOURCE_MANAGER_PLAN
initialization parameter, and restart the CDB.

The following example unsets the RESOURCE_MANAGER_PLAN initialization
parameter in an initialization parameter file:

RESOURCE_MANAGER_PLAN =

Chapter 22
Managing CDB Resource Plans

22-36

See Also:

• "About Container Access in a CDB"

• "Shutting Down a CDB Instance"

• Oracle Database Administrator’s Guide for information about starting up a
database

Viewing Information About Plans and Directives in a CDB
You can view information about CDB resource plans, CDB resource plan directives, and
predefined resource plans in a CDB.

• Viewing CDB Resource Plans
An example illustrates using the DBA_CDB_RSRC_PLANS view to display all CDB resource
plans defined in the CDB.

• Viewing CDB Resource Plan Directives
An example illustrates using the DBA_CDB_RSRC_PLAN_DIRECTIVES view to display all
directives defined in all CDB resource plans in the CDB.

See Also:

Oracle Database Administrator’s Guide for information about monitoring Oracle
Database Resource Manager

Viewing CDB Resource Plans
An example illustrates using the DBA_CDB_RSRC_PLANS view to display all CDB resource plans
defined in the CDB.

The DEFAULT_CDB_PLAN is supplied with Oracle Database. You can use this default plan if it
meets your requirements.

To view CDB resource plans:

1. Start SQL*Plus or SQL Developer, and log in to the CDB root.

2. Run the following query:

COLUMN PLAN FORMAT A30
COLUMN STATUS FORMAT A10
COLUMN COMMENTS FORMAT A35

SELECT PLAN, STATUS, COMMENTS
FROM DBA_CDB_RSRC_PLANS
ORDER BY PLAN;

Chapter 22
Managing CDB Resource Plans

22-37

Your output looks similar to the following:

PLAN STATUS COMMENTS
------------------------ ----------- ----------------------------
DEFAULT_CDB_PLAN Default CDB plan
DEFAULT_MAINTENANCE_PLAN Default CDB maintenance plan
NEWCDB_PLAN CDB plan for PDBs in newcdb
ORA$INTERNAL_CDB_PLAN Internal CDB plan

Note:

Plans in the pending area have a status of PENDING. Plans in the pending
area are being edited. Any plan that is not in the pending area has a NULL
status.

See Also:

"About CDB Resource Plans"

Viewing CDB Resource Plan Directives
An example illustrates using the DBA_CDB_RSRC_PLAN_DIRECTIVES view to display all
directives defined in all CDB resource plans in the CDB.

The DEFAULT_CDB_PLAN is a default CDB plan that is supplied with Oracle Database.
With DEFAULT_CDB_PLAN, every PDB has 1 share and a utilization limit of 100. If the
CDB resource plan has no CPU directives configured, that is, the shares and
utilization_limits directives are unset, then CPU Resource Manager uses the
PDB-level CPU_MIN_COUNT and CPU_COUNT parameters to manage CPU. Note that
ORA$DEFAULT_PDB_DIRECTIVE is the default directive for PDBs.

To view CDB resource plan directives:

1. Start SQL*Plus or SQL Developer, and log in to the CDB root.

2. Run the following query:

COLUMN PLAN HEADING 'Plan' FORMAT A24
COLUMN PLUGGABLE_DATABASE HEADING 'Pluggable Database' FORMAT A25
COLUMN SHARES HEADING 'Shares' FORMAT 999
COLUMN UTILIZATION_LIMIT HEADING 'Utilization|Limit' FORMAT 999
COLUMN PARALLEL_SERVER_LIMIT HEADING 'Parallel|Server|Limit' FORMAT
999

SELECT PLAN,
 PLUGGABLE_DATABASE,
 SHARES,
 UTILIZATION_LIMIT,

Chapter 22
Managing CDB Resource Plans

22-38

 PARALLEL_SERVER_LIMIT
 FROM DBA_CDB_RSRC_PLAN_DIRECTIVES
 ORDER BY PLAN;

Your output looks similar to the following:

 Parallel
 Utilization Server
Plan Pluggable Database Shares Limit Limit
------------------------ ------------------------- ------ ----------- --------
DEFAULT_CDB_PLAN ORA$DEFAULT_PDB_DIRECTIVE 1 100 100
DEFAULT_CDB_PLAN ORA$AUTOTASK 90 100
DEFAULT_MAINTENANCE_PLAN ORA$AUTOTASK 90 100
DEFAULT_MAINTENANCE_PLAN ORA$DEFAULT_PDB_DIRECTIVE 1 100 100
NEWCDB_PLAN HRPDB 1 70 70
NEWCDB_PLAN SALESPDB 3 100 100
NEWCDB_PLAN ORA$DEFAULT_PDB_DIRECTIVE 1 50 50
NEWCDB_PLAN ORA$AUTOTASK 1 75 75
NEWCDB_PLAN SERVICESPDB 3 100 100

The preceding output shows the directives for the newcdb_plan created in "Creating a
CDB Resource Plan for Managing PDBs: Scenario" and modified in "Modifying a CDB
Resource Plan".

See Also:

• "About CDB Resource Plans"

• "The Default Directive for PDBs"

Managing PDB Resource Plans
You can create, enable, and modify resource plans for individual PDBs.

• About PDB Resource Plans
A PDB resource plan determines how the resources for a specific PDB are allocated to
consumer groups within this PDB.

• Creating a PDB Resource Plan
You create a PDB resource plan in the same way that you create a resource plan for a
non-CDB. You use procedures in the DBMS_RESOURCE_MANAGER PL/SQL package to create
the plan.

• Enabling a PDB Resource Plan
Enable a PDB resource plan by setting the RESOURCE_MANAGER_PLAN initialization
parameter to the plan with an ALTER SYSTEM statement when the current container is
the PDB.

• Modifying a PDB Resource Plan
You can use the DBMS_RESOURCE_MANAGER package to modify a PDB resource plan in the
same way you would modify the resource plan for a non-CDB.

Chapter 22
Managing PDB Resource Plans

22-39

• Disabling a PDB Resource Plan
You disable a PDB resource plan by unsetting the RESOURCE_MANAGER_PLAN
initialization parameter in the PDB.

About PDB Resource Plans
A PDB resource plan determines how the resources for a specific PDB are allocated to
consumer groups within this PDB.

A PDB resource plan is similar to a resource plan for a non-CDB. A PDB resource plan
differs from a CDB resource plan, which determines the amount of resources allocated
to each PDB.

The following restrictions apply to PDB resource plans:

• A PDB resource plan cannot have subplans.

• A PDB resource plan cannot have a multiple-level scheduling policy.

If you create a PDB using a non-CDB, and the non-CDB contains resource plans, then
these resource plans might not conform to the preceding restrictions. In this case,
Oracle Database automatically transforms these resource plans into equivalent PDB
resource plans that meet these requirements. The original resource plans and
directives are recorded in the DBA_RSRC_PLANS and DBA_RSRC_PLAN_DIRECTIVES views
with the LEGACY status.

• CDB Resource Plan Requirements When Creating PDB Resource Plans
When you create PDB resource plans, the CDB resource plan must meet certain
requirements.

• PDB Resource Plan: Example
A one-to-many relationship exists between CDB resource plans and PDB resource
plans.

See Also:

• "About CDB Resource Plans"

• "Options for Creating a PDB from a Non-CDB"

• Oracle Database Administrator’s Guide to learn more about resource
plans

CDB Resource Plan Requirements When Creating PDB Resource Plans
When you create PDB resource plans, the CDB resource plan must meet certain
requirements.

Create directives for a CDB resource plan by using the
DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE procedure. Create directives
for a PDB resource plan using the CREATE_PLAN_DIRECTIVE procedure in the same
package. When you create one or more PDB resource plans and there is no CDB
resource plan, the CDB uses the DEFAULT_CDB_PLAN that is supplied with Oracle
Database.

Chapter 22
Managing PDB Resource Plans

22-40

The following table describes the requirements for the CDB resource plan and the results
when the requirements are not met. The parameter values described in the "CDB Resource
Plan Requirements" column are for the CREATE_CDB_PLAN_DIRECTIVE procedure. The
parameter values described in the "Results When Requirements Are Not Met" column are for
the CREATE_PLAN_DIRECTIVE procedure.

Table 22-10 CDB Resource Plan Requirements for PDB Resource Plans

Resource CDB Resource Plan Requirements Results When Requirements Are Not Met

CPU One of the following requirements must be
met:

• A share value must be specified for the
PDB using the shares parameter.

• A utilization limit for CPU below 100 must
be specified for the PDB using the
utilization_limit parameter.

These values can be set in a directive for the
specific PDB or in a default directive.

The CPU allocation policy of the PDB
resource plan is not enforced.

The CPU limit specified by the
utilization_limit parameter in the PDB
resource plan is not enforced.

Parallel execution
servers

One of the following requirements must be
met:

• A share value must be specified for the
PDB using the shares parameter.

• A parallel server limit below 100 must be
specified for the PDB using the
parallel_server_limit parameter.

These values can be set in a directive for the
specific PDB or in a default directive.

The parallel execution server allocation
policy of the PDB resource plan is not
enforced.

The parallel server limit specified by
parallel_server_limit in the PDB
resource plan is not enforced. However, you
can set the PARALLEL_SERVERS_TARGET
initialization parameter in a PDB to enforce
the parallel limit.

PDB Resource Plan: Example
A one-to-many relationship exists between CDB resource plans and PDB resource plans.

The following figure shows an example of a CDB resource plan and a PDB resource plan.

Chapter 22
Managing PDB Resource Plans

22-41

Figure 22-4 A CDB Resource Plan and a PDB Resource Plan

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

CDB resource plan in root

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 1
utilization_limit = 70
parallel_server_limit = 70

PDB
salespdb

PDB
servicespdb

PDB
hrpdb

PDB
resource plan for

servicespdb

Directive 1:

75% of CPU
Directive 2:

15% of CPU
Directive 3:

10% of CPU

Consumer group
“OLTP”

Consumer group
“REPORTING”

Consumer group
“OTHER_GROUPS”

The preceding figure shows some of the directives in a PDB resource plan for the
servicespdb PDB. Other PDBs in the CDB can also have PDB resource plans.

Creating a PDB Resource Plan
You create a PDB resource plan in the same way that you create a resource plan for a
non-CDB. You use procedures in the DBMS_RESOURCE_MANAGER PL/SQL package to
create the plan.

A CDB resource plan allocates a portion of the system's resources to a PDB. A PDB
resource plan determines how this portion is allocated within the PDB.

The following is a summary of the steps required to create a PDB resource plan:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Create a pending area using the CREATE_PENDING_AREA procedure.

3. Create, modify, or delete consumer groups using the CREATE_CONSUMER_GROUP
procedure.

4. Map sessions to consumer groups using the SET_CONSUMER_GROUP_MAPPING
procedure.

Chapter 22
Managing PDB Resource Plans

22-42

5. Create the PDB resource plan using the CREATE_PLAN procedure.

6. Create PDB resource plan directives using the CREATE_PLAN_DIRECTIVE procedure.

7. Validate the pending area using the VALIDATE_PENDING_AREA procedure.

8. Submit the pending area using the SUBMIT_PENDING_AREA procedure.

Ensure that the current container is a PDB and that the user has the required privileges when
you complete these steps. See Oracle Database Administrator’s Guide for detailed
information about completing these steps.

You also have the option of creating a simple resource plan that is adequate for many
situations using the CREATE_SIMPLE_PLAN procedure. See Oracle Database Administrator’s
Guide for information about creating a simple resource plan.

Note:

Some restrictions apply to PDB resource plans. See "About PDB Resource Plans"
for information.

Enabling a PDB Resource Plan
Enable a PDB resource plan by setting the RESOURCE_MANAGER_PLAN initialization parameter to
the plan with an ALTER SYSTEM statement when the current container is the PDB.

If no plan is specified with this parameter, then no PDB resource plan is enabled for the PDB.

Prerequisites

Before enabling a PDB resource plan, complete the prerequisites described in "Overview of
Oracle Resource Manager in a Multitenant Environment".

To enable a PDB resource plan:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Use an ALTER SYSTEM statement to set the RESOURCE_MANAGER_PLAN initialization
parameter to the PDB resource plan.

You can also schedule a PDB resource plan change with Oracle Scheduler.

Example 22-5 Enabling a PDB Resource Plan

The following example sets the PDB resource plan to salespdb_plan.

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'salespdb_plan';

Chapter 22
Managing PDB Resource Plans

22-43

See Also:

• "About Container Access in a CDB"

• "Modifying a PDB at the System Level"

• Oracle Database Administrator’s Guide to learn how to schedule a PDB
resource plan change with Oracle Scheduler

Modifying a PDB Resource Plan
You can use the DBMS_RESOURCE_MANAGER package to modify a PDB resource plan in
the same way you would modify the resource plan for a non-CDB.

Prerequisites

Before modifying a PDB resource plan, complete the prerequisites described in
"Overview of Oracle Resource Manager in a Multitenant Environment".

To modify a PDB resource plan:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Modify the PDB resource plan by completing one or more of the following tasks:

• Update a consumer group using the UPDATE_CONSUMER_GROUP procedure.

• Delete a consumer group using the DELETE_CONSUMER_GROUP procedure.

• Update a resource plan using the UPDATE_PLAN procedure.

• Delete a resource plan using the DELETE_PLAN procedure.

• Update a resource plan directive using the UPDATE_PLAN_DIRECTIVE
procedure.

• Delete a resource plan directive using the DELETE_PLAN_DIRECTIVE procedure.

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 22
Managing PDB Resource Plans

22-44

See Also:

• "About PDB Resource Plans"

• "About Container Access in a CDB".

• Oracle Database Administrator’s Guide for instructions about completing the
consumer group tasks

Disabling a PDB Resource Plan
You disable a PDB resource plan by unsetting the RESOURCE_MANAGER_PLAN initialization
parameter in the PDB.

Prerequisites

Before disabling a PDB resource plan, complete the prerequisites described in "Overview of
Oracle Resource Manager in a Multitenant Environment".

To disable a PDB resource plan:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Use an ALTER SYSTEM statement to unset the RESOURCE_MANAGER_PLAN initialization
parameter for the PDB.

Example 22-6 Disabling a PDB Resource Plan

The following example disables the PDB resource plan.

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = '';

See Also:

• "Modifying a PDB at the System Level"

• See "About Container Access in a CDB".

Monitoring PDBs Managed by Oracle Database Resource
Manager

A set of dynamic performance views enables you to monitor the results of your Oracle
Database Resource Manager settings for PDBs.

• About Resource Manager Views for PDBs
You can monitor the results of your Oracle Database Resource Manager settings for
PDBs using views.

Chapter 22
Monitoring PDBs Managed by Oracle Database Resource Manager

22-45

• Monitoring CPU Usage for PDBs
The V$RSRCPDBMETRIC view enables you to track CPU metrics in milliseconds, in
terms of number of sessions, or in terms of utilization for the past one minute.

• Monitoring Parallel Execution for PDBs
The V$RSRCPDBMETRIC view enables you to track parallel statements and parallel
server use for PDBs.

• Monitoring the I/O Generated by PDBs
The V$RSRCPDBMETRIC view enables you to track the amount of I/O generated by
PDBs.

• Monitoring Memory Usage for PDBs
The V$RSRCPDBMETRIC view enables you to track the amount memory used by
PDBs.

About Resource Manager Views for PDBs
You can monitor the results of your Oracle Database Resource Manager settings for
PDBs using views.

The following views are available:

• V$RSRCPDBMETRIC
The V$RSRCPDBMETRIC view provides current statistics on resource consumption for
PDBs, including CPU usage, parallel execution, I/O generated, and memory
usage.

• V$RSRCPDBMETRIC_HISTORY
The columns in the V$RSRCPDBMETRIC_HISTORY view are the same as the columns
in the V$RSRCPDBMETRIC view. The only difference between these views is that the
V$RSRCPDBMETRIC view contains metrics for the past one minute only, whereas the
V$RSRCPDBMETRIC_HISTORY view contains metrics for the last 60 minutes.

• V$RSRC_PDB
The V$RSRC_PDB view provides cumulative statistics. The statistics are
accumulated since the time that the CDB resource plan was set.

• DBA_HIST_RSRC_PDB_METRIC
This view contains the historical statistics of V$RSRCPDBMETRIC_HISTORY, taken
using Automatic Workload Repository (AWR) snapshots.

Note:

The V$RSRCPDBMETRIC and V$RSRCPDBMETRIC_HISTORY views record statistics
for resources that are not currently being managed by Resource Manager
when the STATISTICS_LEVEL initialization parameter is set to ALL or TYPICAL.

Chapter 22
Monitoring PDBs Managed by Oracle Database Resource Manager

22-46

See Also:

• Oracle Database SQL Tuning Guide for more information about real-time SQL
monitoring

• Oracle Database Reference to learn about V$RSRCPDBMETRIC,
V$RSRCPDBMETRIC_HISTORY, V$RSRC_PDB, and DBA_HIST_RSRC_PDB_METRIC

Monitoring CPU Usage for PDBs
The V$RSRCPDBMETRIC view enables you to track CPU metrics in milliseconds, in terms of
number of sessions, or in terms of utilization for the past one minute.

The view provides real-time metrics for each PDB and is very useful in scenarios where you
are running workloads and want to continuously monitor CPU resource utilization.

The active CDB resource plan manages CPU usage for a PDB. Use this view to compare the
maximum and average CPU utilization for PDBs with other PDB settings such as the
following:

• CPU time used

• Time waiting for CPU

• Average number of sessions that are consuming CPU

• Number of sessions that are waiting for CPU allocation

For example, you can view the amount of CPU resources a PDB used and how long it waited
for resource allocation. Alternatively, you can view how many sessions from each PDB are
executed against the total number of active sessions.

Tracking CPU Consumption in Terms of CPU Utilization for PDBs

To track CPU consumption in terms of CPU utilization, query the CPU_UTILIZATION_LIMIT
and AVG_CPU_UTILIZATION columns. AVG_CPU_UTILIZATION lists the average percentage of
the server's CPU that is consumed by a PDB. CPU_UTILIZATION_LIMIT represents the
maximum percentage of the server's CPU that a PDB can use. This limit is set using the
UTILIZATION_LIMIT directive attribute.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID,
 p.PDB_NAME,
 r.CPU_UTILIZATION_LIMIT,
 r.AVG_CPU_UTILIZATION
FROM V$RSRCPDBMETRIC r,
 CDB_PDBS p
WHERE r.CON_ID = p.CON_ID;

Chapter 22
Monitoring PDBs Managed by Oracle Database Resource Manager

22-47

Tracking CPU Consumption and Throttling for PDBs

Use the CPU_CONSUMED_TIME and CPU_TIME_WAIT columns to track CPU consumption
and throttling in milliseconds for each PDB. The column NUM_CPUS represents the
number of CPUs that Resource Manager is managing.

The following query displays this information by showing the container ID (CON_ID) and
name of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID,
 p.PDB_NAME,
 r.CPU_CONSUMED_TIME,
 r.CPU_WAIT_TIME,
 r.NUM_CPUS
FROM V$RSRCPDBMETRIC r,
 CDB_PDBS p
WHERE r.CON_ID = p.CON_ID;

Tracking CPU Consumption and Throttling in Terms of Number of Sessions for
PDBs

To track the CPU consumption and throttling in terms of number of sessions, use the
RUNNING_SESSIONS_LIMIT, AVG_RUNNING_SESSIONS, and AVG_WAITING_SESSIONS
columns. RUNNING_SESSIONS_LIMIT lists the maximum number of sessions from a
particular PDB that can be running at any time. This limit is defined by the
UTILIZATION_LIMIT directive attribute that you set for the PDB.
AVG_RUNNING_SESSIONS lists the average number of sessions that are consuming CPU,
and AVG_WAITING_SESSIONS lists the average number of sessions that are waiting for
CPU.

The following query displays this information by showing the container ID (CON_ID) and
name of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID,
 p.PDB_NAME,
 r.RUNNING_SESSIONS_LIMIT,
 r.AVG_RUNNING_SESSIONS,
 r.AVG_WAITING_SESSIONS
FROM V$RSRCPDBMETRIC r,
 CDB_PDBS p
WHERE r.CON_ID = p.CON_ID;

Monitoring Parallel Execution for PDBs
The V$RSRCPDBMETRIC view enables you to track parallel statements and parallel
server use for PDBs.

Parallel execution servers for a PDB are managed with the active CDB resource plan
of the PDB's CDB. To track parallel statements and parallel server use for PDBs, use

Chapter 22
Monitoring PDBs Managed by Oracle Database Resource Manager

22-48

the AVG_ACTIVE_PARALLEL_STMTS, AVG_QUEUED_PARALLEL_STMTS,
AVG_ACTIVE_PARALLEL_SERVERS, AVG_QUEUED_PARALLEL_SERVERS, and
PARALLEL_SERVERS_LIMIT columns.

AVG_ACTIVE_PARALLEL_STMTS and AVG_ACTIVE_PARALLEL_SERVERS list the average number of
parallel statements running and the average number of parallel servers used by the parallel
statements. AVG_QUEUED_PARALLEL_STMTS and AVG_QUEUED_PARALLEL_SERVERS list the
average number of parallel statements queued and average number of parallel servers that
were requested by queued parallel statements. PARALLEL_SERVERS_LIMIT lists the number of
parallel servers allowed to be used by the PDB.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID, p.PDB_NAME, r.AVG_ACTIVE_PARALLEL_STMTS,
r.AVG_QUEUED_PARALLEL_STMTS,
 r.AVG_ACTIVE_PARALLEL_SERVERS, r.AVG_QUEUED_PARALLEL_SERVERS,
r.PARALLEL_SERVERS_LIMIT
 FROM V$RSRCPDBMETRIC r, CDB_PDBS p
 WHERE r.CON_ID = p.CON_ID;

Monitoring the I/O Generated by PDBs
The V$RSRCPDBMETRIC view enables you to track the amount of I/O generated by PDBs.

I/O is limited for a PDB by setting the MAX_IOPS initialization parameter or the MAX_MBPS
initialization parameter in the PDB. Use this view to compare the I/O generated by PDBs in
terms of the number of operations each second and the number of megabytes each second.

Tracking the Number of I/O Operations Generated Each Second by PDBs

To track the I/O operations generated each second by PDBs during the previous minute, use
the IOPS column.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID, p.PDB_NAME, r.IOPS
 FROM V$RSRCPDBMETRIC r, CDB_PDBS p
 WHERE r.CON_ID = p.CON_ID;

Tracking the Number Megabytes Generated for I/O Operations Each Second by PDBs

To track number of megabytes generated for I/O operations each second by PDBs during the
previous minute, use the IOMBPS column.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

Chapter 22
Monitoring PDBs Managed by Oracle Database Resource Manager

22-49

SELECT r.CON_ID, p.PDB_NAME, r.IOMBPS
 FROM V$RSRCPDBMETRIC r, CDB_PDBS p
 WHERE r.CON_ID = p.CON_ID;

Monitoring Memory Usage for PDBs
The V$RSRCPDBMETRIC view enables you to track the amount memory used by PDBs.

Use this view to track the amount of SGA, PGA, buffer cache, and shared pool
memory currently used by PDBs.

To track the current memory usage, in bytes, for specific PDBs, use the SGA_BYTES,
PGA_BYTES, BUFFER_CACHE_BYTES, and SHARED_POOL_BYTES columns.

The following query displays this information by showing the container ID (CON_ID) and
name of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID, p.PDB_NAME, r.SGA_BYTES, r.PGA_BYTES,
r.BUFFER_CACHE_BYTES, r.SHARED_POOL_BYTES
 FROM V$RSRCPDBMETRIC r, CDB_PDBS p
 WHERE r.CON_ID = p.CON_ID;

Chapter 22
Monitoring PDBs Managed by Oracle Database Resource Manager

22-50

23
Using Oracle Scheduler with a CDB

You can use Oracle Scheduler to schedule jobs in a multitenant container database (CDB).

Before using Oracle Scheduler with a CDB, meet the following requirements:

• You understand how to configure and manage a CDB.

• You understand how to use Oracle Scheduler to schedule jobs in a non-CDB.

• DBMS_SCHEDULER Invocations in a CDB
Most scheduler calls work the same way as they do in non-CDBs, except for two
scheduler global attributes.

• Job Coordinator and Slave Processes in a CDB
The major CDB-related changes are to the job coordinator process.

• DBMS_JOB and DBMS_SCHEDULER
You can use DBMS_JOB within a PDB only if you grant the CREATE JOB privilege to the
schemas that submit DBMS_JOB jobs.

• Processes to Close a PDB
If a PDB is closed with the immediate option, then the coordinator terminates jobs
running in the PDB, and the jobs must be recovered before they can run again.

• New and Changed CDB Views
Some CDB views are specific to CDBs, whereas others have a CDB-specific column.

See Also:

• "Administering a Multitenant Environment"

• Oracle Database Administrator’s Guide

DBMS_SCHEDULER Invocations in a CDB
Most scheduler calls work the same way as they do in non-CDBs, except for two scheduler
global attributes.

The JOB_QUEUE_PROCESSES initialization parameter specifies the maximum number of job
slaves per instance that can be created for the execution of DBMS_JOB jobs and Oracle
Scheduler (DBMS_SCHEDULER) jobs. The range of values is 0 to 4000 (default).

To limit job slaves in a CDB environment, you can set JOB_QUEUE_PROCESSES in the following
locations:

• CDB root

Set JOB_QUEUE_PROCESSES to the maximum number of slave processes that Scheduler
can use simultaneously in the entire database instance.

23-1

If JOB_QUEUE_PROCESSES is 0 in the CDB root, then DBMS_JOB and Oracle Scheduler
jobs cannot run in the root or any PDB, regardless of the JOB_QUEUE_PROCESSES
setting at the PDB level.

• PDB

Set JOB_QUEUE_PROCESSES to the maximum number of simultaneous jobs for this
PDB. The actual number depends on the resources assigned by Resource
Manager and the demand in other containers. When multiple PDBs request jobs,
Oracle Scheduler attempts to give all PDBs a fair share of the processes.

If JOB_QUEUE_PROCESSES is 0 in a PDB, then DBMS_JOB and Oracle Scheduler jobs
cannot run in this PDB, regardless of the JOB_QUEUE_PROCESSES setting in the CDB
root.

You must set all global Oracle Scheduler attributes at the PDB level. For example, if
you set the EMAIL_SENDER attribute in the root database using
DBMS_SCHEDULER.SET_ATTRIBUTE, then it applies to the jobs that run in the root, not the
jobs running in a specific PDB. If you choose a new EMAIL_SENDER for a PDB, then you
must set the global attribute in this PDB.

See Also:

Oracle Database Reference to learn more about JOB_QUEUE_PROCESSES

Job Coordinator and Slave Processes in a CDB
The major CDB-related changes are to the job coordinator process.

In a non-CDB, the coordinator looks at all jobs that are ready to run, picks a subset of
them to run, and assigns them to job slaves. It also opens and closes windows, which
changes the resource plan in effect for the database.

That is essentially what happens inside a CDB except for the following:

• Jobs are selected from all PDBs

The coordinator looks at the root database and all the child PDBs and selects jobs
based on the job priority, the job scheduled start time, and the availability of
resources to run the job. The latter criterion depends on the consumer group of the
job and the resource plan currently in effect. The coordinator makes no attempt to
be fair to every PDB. The only way to ensure that jobs from a PDB are not starved
is to allocate enough resources to it.

• Windows are open in the PDB and root database levels

In a non-CDB, only one window can be open at any given time. In a CDB, there
are two levels of windows. At the PDB level, windows can be used to set resource
plans that allocate resources among consumer groups belonging to that PDB. At
the root database level, windows can allocate resources to different PDBs.
Therefore, at any time, there can be a window open in the root database and one
in each PDB.

• Job slave switches to the specific PDB it belongs to

Chapter 23
Job Coordinator and Slave Processes in a CDB

23-2

The job slaves are essentially the same as in a non-CDB, except that when a slave
executes a job, it switches to the PDB that the job belongs to and then executes it. The
rest of the code is essentially unchanged.

DBMS_JOB and DBMS_SCHEDULER
You can use DBMS_JOB within a PDB only if you grant the CREATE JOB privilege to the schemas
that submit DBMS_JOB jobs.

The DBMS_JOB interface is implemented using DBMS_SCHEDULER. For this reason, Oracle
recommends that you switch from DBMS_JOB to DBMS_SCHEDULER.

For the scheduler, the coordinator selects jobs to run from every PDB. Also, for the scheduler,
the slave process switches into a PDB before executing a job; otherwise, the code is
essentially unchanged.

See Also:

Oracle Database Administrator’s Guide for information about support for DBMS_JOB

Processes to Close a PDB
If a PDB is closed with the immediate option, then the coordinator terminates jobs running in
the PDB, and the jobs must be recovered before they can run again.

In an Oracle RAC database, the coordinator can, in most cases, recover the jobs on another
instance where that PDB is open. So, if the coordinator on the first instance can find another
instance where the PDB is still open, it moves the jobs there. In certain cases, moving the
jobs to another instance may not be possible. For example, if the PDB in question is not open
anywhere else, the jobs cannot be moved. Also, moving a job to another instance is not
possible when the job has the INSTANCE_ID attribute set. In this case the job cannot run until
the PDB on that instance is open again.

In a non-Oracle RAC case, the question of moving jobs does not arise. Terminated jobs can
only be recovered after the PDB is opened again.

New and Changed CDB Views
Some CDB views are specific to CDBs, whereas others have a CDB-specific column.

• V$ and GV$ views have a CON_ID column that identifies a container whose data is
represented by a CDB_* row. In non-CDBs, the CON_ID column is NULL.

• CDB_* views correspond to all Scheduler DBA_* views.

In a PDB, these views only show objects visible through a corresponding DBA_* view, but
all objects are visible in the root. The CDB_* view contains all columns found in a given
DBA_* view and the column (CON_ID). In non-CDBs, this column is NULL.

Chapter 23
DBMS_JOB and DBMS_SCHEDULER

23-3

24
Using Oracle Database Vault with a CDB

You can use Oracle Database Vault in a multitenant container database (CDB).

• About Oracle Database Vault
The Oracle Database Vault security controls protect application data from unauthorized
access, and comply with privacy and regulatory requirements.

• How Oracle Database Vault Works in a Multitenant Environment
To provide increased security for consolidation, you can use Oracle Database Vault with
Oracle Multitenant.

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, DBA_OLS_STATUS, and CDB_OLS_STATUS data
dictionary views verify if Oracle Database is configured and enabled.

• Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment
You can register Oracle Database Vault in a multitenant environment based on several
scenarios.

• Configuring Realms
You can create a realm around database objects to protect them, and then set
authorizations to control user access to this data.

• Rule Sets and Rules in a Multitenant Environment
In a multitenant environment, you can create a rule set and its associated rules in the
application root.

• Command Rules in a Multitenant Environment
In a multitenant environment, you can create common and local command rules in either
the CDB root or the application root.

• Oracle Database Vault Policies in a Multitenant Environment
Oracle Database Vault policies are only local to the pluggable database (PDB) in which
they were created.

• Using Database Vault Operations Control to Restrict Multitenant Common User Access to
Local PDB Data
You can control PDB access by CDB root common users, such as infrastructure
database administrators.

• Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB
You can convert a standalone Oracle Database Release 12c or later database to a PDB,
and then plug this PDB into a CDB.

About Oracle Database Vault
The Oracle Database Vault security controls protect application data from unauthorized
access, and comply with privacy and regulatory requirements.

You can deploy controls to block privileged account access to application data and control
sensitive operations inside the database using trusted path authorization. Through the
analysis of privileges and roles, you can increase the security of existing applications by

24-1

using least privilege best practices. Oracle Database Vault secures existing database
environments transparently, eliminating costly and time consuming application
changes.

Related Topics

• Oracle Database Vault Administrator’s Guide

How Oracle Database Vault Works in a Multitenant
Environment

To provide increased security for consolidation, you can use Oracle Database Vault
with Oracle Multitenant.

Oracle Database Vault can prevent privileged user access inside a pluggable database
(PDB) and between the PDB and the common privileged user at the container
database. Each PDB has its own Database Vault metadata, such as realms, rule sets,
command rules, default policies (such as default realms), and so on. In addition, the
objects within the DVSYS and DVF schemas are automatically available to any child
PDBs. Both schemas are common user schemas.

You can configure common realms in the application root only, but you can create
common rule sets and command rules in either the application root or the CDB root. A
common command rule in the application root applies to its associated PDBs, and
common command rules in the CDB root apply to all PDBs in the CDB environment.
The ability to create common realms and command rules enables you to create
policies that use a shared set of realms, rule sets, or command rules throughout the
CDB environments, rather than having to create these same components for every
PDB in the multitenant environment. The common protection applies for all PDBs
associated with the application root that have Oracle Database Vault enabled.

You can create individual local policies for each PDB. When you use Database Vault to
protect an object, Database Vault subjects common privileges for common objects to
the same enforcement rules as local system privileges.

When you configure a PDB that has Database Vault enabled, the DVSYS schema is a
common user schema that is stored in the root. This means that all the objects within
the DVSYS schema (tables, data dictionary views, user accounts, PL/SQL packages,
default policies, and so on) are subject to the common privileges available for this
schema. In other words, you can create realms, factors, and so on in the root to
protect the schema in the root. Ensure that you configure Database Vault in the root
first, before you configure it in the associated PDBs.

When you enable Oracle Database Vault in the CDB root, you can choose either
regular mode or strict mode. The settings propagate throughout the CDB based on the
setting you choose. For example, suppose a CDB contains both Database Vault-
enabled PDBs and PDBs in which Database Vault is not enabled. If you enable
Database Vault using regular mode, then both types of PDBs continue to function
normally. If you enable Database Vault using strict mode, then the Database Vault-
disabled PDBs operate in restricted mode.

Figure 24-1 illustrates how the database in regular mode allows different access for
common and local database administrators depending if Database Vault is enabled. In
this scenario, neither the common user nor the local users have access to the realms
in PDB1 and PDB2. Both the common user and the PDB3 local user have access to
the Custom App application in PDB3, where Database Vault is not enabled.

Chapter 24
How Oracle Database Vault Works in a Multitenant Environment

24-2

Figure 24-1 Oracle Database Vault in a Multitenant Environment with Regular Mode

CDB

PDB1
Database
Vault
Enabled

PDB2
Database
Vault
Enabled

PDB3
Database
Vault Not

Enabled

HR
Realm

Common

CDB DBA

Local

PDB DBA

Root
CDB

Fin
Realm

Custom
App

Local

PDB DBA

om

Com

CDB

Com

CDB

Related Topics

• Realms in a Multitenant Environment
In a multitenant environment, you can create a realm to protect common objects in the
application root.

• Rule Sets and Rules in a Multitenant Environment
In a multitenant environment, you can create a rule set and its associated rules in the
application root.

• Command Rules in a Multitenant Environment
In a multitenant environment, you can create common and local command rules in either
the CDB root or the application root.

• Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB
You can convert a standalone Oracle Database Release 12c or later database to a PDB,
and then plug this PDB into a CDB.

Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, DBA_OLS_STATUS, and CDB_OLS_STATUS data dictionary
views verify if Oracle Database is configured and enabled.

In addition to Oracle Database Vault administrators, the Oracle Database SYS user and users
who have been granted the DBA role can query these views.

• For Database Vault:

Chapter 24
Verifying That Database Vault Is Configured and Enabled

24-3

– If you want to find the Database Vault status for a non-multitenant database, or
in a multitenant environment for the root only or an individual PDB, then query
DBA_DV_STATUS. For example:

SELECT * FROM DBA_DV_STATUS;

Output similar to the following appears:

NAME STATUS
-------------------- -----------
DV_CONFIGURE_STATUS TRUE
DV_ENABLE_STATUS TRUE

– If you want to find the Database Vault status of all PDBs in a multitenant
environment, as a common user with administrative privileges, then query
CDB_DV_STATUS, which provides the addition of a container ID (CON_ID) field.

• For Oracle Label Security, query the following data dictionary views, which are
similar to their Database Vault equivalent views:

– DBA_OLS_STATUS
– CDB_OLS_STATUS

Registering Oracle Database Vault with an Oracle Database
in a Multitenant Environment

You can register Oracle Database Vault in a multitenant environment based on several
scenarios.

• Registering Database Vault in the CDB Root
In a multitenant environment, you register Oracle Database Vault with common
users who will use the Database Vault-enforced roles in the CDB root.

• Registering Database Vault Common Users to Manage Specific PDBs
In a multitenant environment, you must register Oracle Database Vault in the root
first, then in the PDBs afterward.

• Registering Database Vault Local Users to Manage Specific PDBs
You must register Oracle Database Vault in the root first, and then in the PDBs
afterward.

• Plugging in a Database Vault-Enabled PDB
From SQL*Plus, in a multitenant environment, you can plug in a database that
already has Database Vault enabled.

• Manually Installing Oracle Database Vault in a Multitenant Environment
Under certain conditions, for a multitenant environment, you must manually install
Oracle Database Vault.

Registering Database Vault in the CDB Root
In a multitenant environment, you register Oracle Database Vault with common users
who will use the Database Vault-enforced roles in the CDB root.

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-4

1. In a multitenant environment, log into the root of the database instance as a user who
has privileges to create users and grant the CREATE SESSION and SET CONTAINER
privileges.

For example:

sqlplus c##dba_debra
Enter password: password

2. Select user accounts (or create new users) that will be used for the Database Vault
Owner (DV_OWNER role) and Database Vault Account Manager (DV_ACCTMGR role)
accounts.

Oracle strongly recommends that you maintain two accounts for each role. One account,
the primary named user account, will be used on a day-to-day basis and the other
account will be used as a backup account in case the password of the primary account is
lost and must be reset.

Prepend the names of these accounts with c## or C##. For example:

GRANT CREATE SESSION, SET CONTAINER TO c##sec_admin_owen
 IDENTIFIED BY password CONTAINER = ALL;
GRANT CREATE SESSION, SET CONTAINER TO c##dbv_owner_root_backup
 IDENTIFIED BY password CONTAINER = ALL;
GRANT CREATE SESSION, SET CONTAINER TO c##accts_admin_ace
 IDENTIFIED BY password CONTAINER = ALL;
GRANT CREATE SESSION, SET CONTAINER TO c##dbv_acctmgr_root_backup
 IDENTIFIED BY password CONTAINER = ALL;

In this specification:

• Create the primary accounts (c##sec_admin_owen and c##accts_admin_ace) if these
do not already exist for the new roles, DV_ADMIN and DV_ACCTMGR.

• Replace password with a password that is secure.

3. Connect to the root as user SYS with the SYSDBA administrative privilege

CONNECT SYS AS SYSDBA
Enter password: password

4. Configure the two backup Database Vault user accounts.

For example:

BEGIN
 CONFIGURE_DV (
 dvowner_uname => 'c##dbv_owner_root_backup',
 dvacctmgr_uname => 'c##dbv_acctmgr_root_backup',
 force_local_dvowner => FALSE);
 END;
/

In this example, setting force_local_dvowner to FALSE enables the common users to
have DV_OWNER privileges for the PDBs that are associated with this CDB root. Setting it to
TRUE restricts the common DV_OWNER user to have the DV_OWNER role privileges for the

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-5

CDB root only. If you grant DV_OWNER locally to the CDB root common user, then
that user cannot grant the DV_OWNER role commonly to any other user.

5. Run the utlrp.sql script to recompile invalidated objects in the root.

@?/rdbms/admin/utlrp.sql

If the script provides instructions, follow them, and then run the script again. If the
script terminates abnormally without giving any instructions, then run it again.

6. Connect to the root as the primary Database Vault Owner user that you just
configured.

For example:

CONNECT c##dbv_owner_root_backup
Enter password: password

7. Enable Oracle Database Vault using one of the following commands:

• To enable Oracle Database Vault to use regular mode:

EXEC DBMS_MACADM.ENABLE_DV;

• If every associated PDB will need to have Database Vault enabled in this
database, then use the following command. (You will need to enable each of
these PDBs after you complete this procedure.) PDBs that do not have
Database Vault enabled will be in restricted mode after the database is
restarted and until Database Vault is enabled in the PDB:

EXEC DBMS_MACADM.ENABLE_DV (strict_mode => 'y');

8. Connect with the SYSDBA administrative privilege.

CONNECT / AS SYSDBA

9. Restart the database.

SHUTDOWN IMMEDIATE
STARTUP

10. Verify that Oracle Database Vault and Oracle Label Security are installed and
enabled.

SELECT * FROM DBA_DV_STATUS;
SELECT * FROM DBA_OLS_STATUS;

11. Connect as the backup DV_OWNER user and then grant the DV_OWNER role to the
primary DV_OWNER user that you created earlier.

For example:

CONNECT c##dbv_owner_root_backup
Enter password: password

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-6

GRANT DV_OWNER TO c##sec_admin_owen WITH ADMIN OPTION;

12. Connect as the backup DV_ACCTMGR user and then grant the DV_ACCTMGR role to the
backup DV_ACCTMGR user.

For example:

CONNECT c##dbv_acctmgr_root_backup
Enter password: password

GRANT DV_ACCTMGR TO c##accts_admin_ace WITH ADMIN OPTION;

13. Store the two backup account passwords in a safe location such as a privileged account
management (PAM) system in case they are needed in the future.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, DBA_OLS_STATUS, and CDB_OLS_STATUS data
dictionary views verify if Oracle Database is configured and enabled.

• Oracle Database Vault Administrator’s Guide

• Oracle Database Vault Administrator’s Guide

Registering Database Vault Common Users to Manage Specific PDBs
In a multitenant environment, you must register Oracle Database Vault in the root first, then in
the PDBs afterward.

If you try to register in a PDB first, then an ORA-47503: Database Vault is not enabled on
CDB$ROOT error appears.

1. If you have not already done so, then identify or create named common user accounts to
be used as the Database Vault accounts along with associated backup accounts.

2. Ensure that you have registered Oracle Database Vault in the CDB root and that the
DV_OWNER role was granted commonly to the common user.

3. Connect to the PDB as an administrator who is local to the PDB.

For example:

CONNECT dba_debra@pdb_name
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the current
PDB, run the show con_name command.

4. Grant the CREATE SESSION and SET CONTAINER privileges to the users for this PDB.

For example:

GRANT CREATE SESSION, SET CONTAINER TO c##sec_admin_owen CONTAINER =
CURRENT;
GRANT CREATE SESSION, SET CONTAINER TO c##accts_admin_ace CONTAINER =
CURRENT;

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-7

5. Connect as user SYS with the SYSDBA administrative privilege

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

6. While still in the PDB, configure the two backup Database Vault user accounts.

BEGIN
 CONFIGURE_DV (
 dvowner_uname => 'c##dbv_owner_root_backup',
 dvacctmgr_uname => 'c##dbv_acctmgr_root_backup');
 END;
/

In this example, the force_local_dvowner parameter is omitted because it is
unnecessary. All common users who are configured within a PDB are restricted to
the scope of the PDB.

7. Run the utlrp.sql script to recompile invalidated objects in this PDB.

@?/rdbms/admin/utlrp.sql

If the script provides instructions, follow them, and then run the script again. If the
script terminates abnormally without giving any instructions, then run it again.

8. Connect to the PDB as the backup Database Vault Owner user that you just
configured.

For example:

CONNECT c##dbv_owner_root_backup@pdb_name
Enter password: password

9. Enable Oracle Database Vault in this PDB.

EXEC DBMS_MACADM.ENABLE_DV;

10. Connect to the CDB with the SYSDBA administrative privilege.

CONNECT / AS SYSDBA

11. Close and reopen the PDB.

For example:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

12. Verify that the PDB is configured and enabled for Database Vault.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

SELECT * FROM DBA_DV_STATUS;

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-8

13. Connect as the backup DV_OWNER user and then grant the DV_OWNER role to the primary
DV_OWNER user that you created earlier.

For example:

CONNECT c##dbv_owner_root_backup@pdb_name
Enter password: password

GRANT DV_OWNER TO c##sec_admin_owen WITH ADMIN OPTION;

14. Connect as the backup DV_ACCTMGR user and then grant the DV_ACCTMGR role to the
primary DV_ACCTMGR user.

For example:

CONNECT c##dbv_acctmgr_root_backup@pdb_name
Enter password: password

GRANT DV_ACCTMGR TO c##accts_admin_ace WITH ADMIN OPTION;

15. Store the two backup account passwords in a safe location such as a privileged account
management (PAM) system in case they are needed in the future.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, DBA_OLS_STATUS, and CDB_OLS_STATUS data
dictionary views verify if Oracle Database is configured and enabled.

• Oracle Database Vault Administrator’s Guide

• Oracle Database Vault Administrator’s Guide

Registering Database Vault Local Users to Manage Specific PDBs
You must register Oracle Database Vault in the root first, and then in the PDBs afterward.

If you try to register in a PDB first, then an ORA-47503: Database Vault is not enabled on
CDB$ROOT error appears.

1. Log in to the PDB as a user who has privileges to create users and to grant the CREATE
SESSION and SET CONTAINER privileges.

For example:

sqlplus sec_admin@pdb_name
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the current
PDB, run the show con_name command.

2. If you are not using existing local user named accounts for the new Database Vault roles,
create new named local user accounts.

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-9

In both cases, you must create backup accounts to hold the Database Vault roles
in case the named user loses or forgets their password.

GRANT CREATE SESSION, SET CONTAINER TO sec_admin_owen
 IDENTIFIED BY password;
GRANT CREATE SESSION, SET CONTAINER TO dbv_owner_backup
 IDENTIFIED BY password;
GRANT CREATE SESSION, SET CONTAINER TO accts_admin_ace
 IDENTIFIED BY password;
GRANT CREATE SESSION, SET CONTAINER TO dbv_acctmgr_backup
 IDENTIFIED BY password;

3. Ensure that you have registered Oracle Database Vault in the CDB root.

Temporarily connect to the root and then query the DBA_DV_STATUS view.

CONNECT SYS / AS SYSDBA
Enter password: password

SELECT * FROM DBA_DV_STATUS;

4. Connect to the PDB as user SYS with the SYSDBA administrative privilege.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

5. While still in the PDB, configure the two backup Database Vault user accounts.

BEGIN
 CONFIGURE_DV (
 dvowner_uname => 'dbv_owner_backup',
 dvacctmgr_uname => 'dbv_acctmgr_backup');
 END;
/

In this example, the force_local_dvowner parameter is omitted because it is
unnecessary. Database Vault roles are granted locally when configured in a PDB.

6. Run the utlrp.sql script to recompile invalidated objects in this PDB.

@?/rdbms/admin/utlrp.sql

If the script provides instructions, follow them, and then run the script again. If the
script terminates abnormally without giving any instructions, run it again.

7. Connect to the PDB as the backup Database Vault Owner user that you just
configured.

For example:

CONNECT dbv_owner_backup@pdb_name
Enter password: password

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-10

8. Enable Oracle Database Vault in this PDB.

EXEC DBMS_MACADM.ENABLE_DV;

9. Connect to the CDB with the SYSDBA administrative privilege.

CONNECT / AS SYSDBA

10. Close and reopen the PDB.

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

11. Verify that the PDB is configured and enabled for Database Vault and Oracle Label
Security.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

SELECT * FROM DBA_DV_STATUS;
SELECT * FROM DBA_OLS_STATUS;

12. Connect as the backup DV_OWNER user and then grant the DV_OWNER role to the primary
DV_OWNER user that you created earlier.

For example:

CONNECT dbv_owner_backup@pdb_name
Enter password: password

GRANT DV_OWNER TO sec_admin_owen WITH ADMIN OPTION;

13. Connect as the backup DV_ACCTMGR user and then grant the DV_ACCTMGR role to the
backup DV_ACCTMGR user.

For example:

CONNECT dbv_acctmgr_backup@pdb_name
Enter password: password

GRANT DV_ACCTMGR TO c##accts_admin_ace WITH ADMIN OPTION;

14. Store the two backup account passwords in a safe location such as a privileged account
management (PAM) system in case they are needed in the future.

Plugging in a Database Vault-Enabled PDB
From SQL*Plus, in a multitenant environment, you can plug in a database that already has
Database Vault enabled.

In this scenario, the plugged in database has its own local Database Vault accounts. Be
aware that if you plug a Database Vault-enabled database into a CDB that is not Database
Vault enabled, then the PDB will remain in restricted mode until you enable Database Vault in
the CDB and then restart the CDB. If you plug a non-Database Vault-enabled PDB into a
CDB that is Database Vault enabled, then the PDB remains in restricted mode until you

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-11

enable Database Vault in the PDB and then restart the PDB. This plugged in non-
Database Vault enabled PDB can still be used. However, if the CDB is Database Vault
enabled with the strict option set, then the PDB must be Database Vault enabled.

Before you plug in a Database Vault-enabled PDB and if the Database Vault roles are
granted to common users, ensure that you understand fully how plugging in PDBs
affect common users.

Related Topics

• Oracle Database Security Guide

Manually Installing Oracle Database Vault in a Multitenant
Environment

Under certain conditions, for a multitenant environment, you must manually install
Oracle Database Vault.

For example, you must manually install Oracle Database Vault if a release 11g Oracle
database without Database Vault is upgraded to release 12c, then converted to a PDB
to be plugged into a 12c Database Vault-enabled database. In addition, you must
manually install Oracle Database Vault (and Oracle Label Security) in a PDB if this
PDB does not have these products when the PDB has been plugged into a CDB
where Database Vault and Label Security are installed.

1. As user who has been granted the SYSDBA administrative privilege, log in to the
PDB in which you want to install Oracle Database Vault.

For example, to log in to a PDB named hr_pdb:

sqlplus sec_admin@hr_pdb as sysdba
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

2. If necessary, check if Oracle Database Vault and Oracle Label Security are already
installed on this PDB.

If the DVSYS account (for Database Vault) and the LBACSYS account (for Label
Security) exist, then Database Vault and Label Security exist on the PDB.

SELECT USERNAME FROM DBA_USERS WHERE USERNAME IN ('DVSYS',
'LBACSYS');

3. If neither Database Vault nor Label Security have been installed, then install
Oracle Label Security by executing the catols.sql script.

@$ORACLE_HOME/rdbms/admin/catols.sql

Oracle Label Security must be installed before you can install Oracle Database
Vault.

Chapter 24
Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment

24-12

4. Install Oracle Database Vault by executing the catmac.sql script.

@$ORACLE_HOME/rdbms/admin/catmac.sql

5. At the Enter value for 1 prompt, enter SYSTEM as the tablespace to install DVSYS.

6. At the Enter value for 2 prompt, enter the temporary tablespace for the PDB.

After the installation is complete, you can register Oracle Database Vault in the PDB. If
Database Vault is not registered in the CDB already, you must close the PDB before you can
register Database Vault in the CDB root. Database Vault must be registered in CDB root
before it can be registered in the PDB. After Database Vault is registered in the CDB root and
the database has been restarted, then you can open the PDB and register Database Vault.

Related Topics

• Oracle Database Vault Administrator’s Guide

Configuring Realms
You can create a realm around database objects to protect them, and then set authorizations
to control user access to this data.

• What Are Realms?
Realms enable you to protect database objects, including specific object types.

• Realm Authorizations in a Multitenant Environment
In a multitenant environment, the rules and behavior for common realm authorizations
are similar to the authorizations for other common objects.

What Are Realms?
Realms enable you to protect database objects, including specific object types.

• About Realms
A realm is a grouping of database schemas, database objects, and database roles that
must be secured for a given application.

• Realms in a Multitenant Environment
In a multitenant environment, you can create a realm to protect common objects in the
application root.

About Realms
A realm is a grouping of database schemas, database objects, and database roles that must
be secured for a given application.

Think of a realm as zone of protection for your database objects. A schema is a logical
collection of database objects such as tables, views, and packages, and a role is a collection
of privileges. By arranging schemas and roles into functional groups, you can control the
ability of users to use system privileges against these groups and prevent unauthorized data
access by the database administrator or other powerful users with system privileges. Oracle
Database Vault does not replace the discretionary access control model in the existing Oracle
database. It functions as a layer on top of this model for both realms and command rules.

Oracle Database Vault provides two types of realms: regular and mandatory. Both realm
types can protect either an entire schema or crucial objects within a schema selectively, such

Chapter 24
Configuring Realms

24-13

as tables and indexes. With a regular realm, an object owner or users who has been
granted object privileges can perform queries or DML operations without realm
authorization but must have realm authorization to perform DDL operations. A
mandatory realm provides stronger protection for objects within a realm. Mandatory
realms block both object privilege-based and system privilege-based access and will
not allow users with object privileges to perform queries, DML, or DDL operations
without realm authorization. In other words, even an object owner cannot access his or
her own objects without proper realm authorization if the objects are protected by
mandatory realms.

For databases that use Oracle Flashback Technology, then both regular and
mandatory realms will enforce the same behavior for a flashback table. Users can
execute a FLASHBACK TABLE SQL statement on a realm-protected table if the user is
authorized to the realm.

For databases that use Information Lifecycle Management (ILM), a Database Vault
administrator can use the DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER and
DBMS_MACADM.UNAUTHORIZE_MAINTENANCE_USER procedure to control who can perform
ILM operations on realm-protected objects.

You can register schemas, all objects of a certain type in a schema, or individual
objects within a schema into a realm. After you create a realm, you can register a set
of schema objects or roles (secured objects) for realm protection and authorize a set
of users or roles to access the secured objects. Objects that are protected by a regular
realm allow DML access to users who have direct object grants.

For example, you can create a realm to protect all existing database schemas that are
used in an accounting department. The realm prohibits any user who is not authorized
to the realm to use system privileges to access the secured accounting data. When an
entire schema is protected, all objects in the schema are protected, including tables,
indexes, procedures and other objects.

You can run reports on realms that you create in Oracle Database Vault. You can use
simulation mode during development, test, and even production phases to log only
realm violations instead of blocking access. This enables you to quickly test
applications using Database Vault realms.

You can configure realms by using the Oracle Database Vault Administrator pages in
Oracle Enterprise Manager Cloud Control. Alternatively, you can configure realms by
using the PL/SQL interfaces and packages provided by Oracle Database Vault.

Realms in a Multitenant Environment
In a multitenant environment, you can create a realm to protect common objects in the
application root.

The advantage of creating a realm in the application root instead of creating a large
number objects and realms around these objects within individual pluggable
databases (PDBs) is that you can create them in one place, the application root. This
way, you can manage them centrally.

You cannot create a common realm in the CDB root.

A Database Vault common realm can be either a regular realm or a mandatory realm.
The realm protects only objects within the application root, not local objects in a PDB.
The CDB root, application root, and any affected PDBs all must be Database Vault
enabled.

Chapter 24
Configuring Realms

24-14

To configure a common realm, you must be commonly granted the DV_OWNER or DV_ADMIN
role. To grant common authorizations for a common realm, you must be in the application
root. To propagate the realm to the PDBs that are associated with the application root, you
must synchronize the application root. For example, to synchronize an application called
saas_sales_app

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

Related Topics

• Oracle Database Vault Administrator’s Guide

Realm Authorizations in a Multitenant Environment
In a multitenant environment, the rules and behavior for common realm authorizations are
similar to the authorizations for other common objects.

Local Authorization for a Common Realm

The local authorization for a common realm refers to the authorization a user has for the PDB
that this user is accessing.

The rules for the local authorization for a common realm are as follows:

• A user who has been commonly granted the DV_OWNER or DV_ADMIN role can grant local
authorization to common users, common roles, local users, and local roles. The common
DV_OWNER or DV_ADMIN user can also remove local authorization from a common realm in
a PDB.

• A local Database Vault administrator can authorize locally (that is, grant local
authorizations to both local and common users) within the PDB. A common Database
Vault administrator can also grant authorizations in each PDB. A common realm
authorization can only be granted by a common Database Vault administrator in the
application root.

• The common Database Vault administrator can both add or remove local authorization to
and from a common realm from within the PDB.

• If a common user has only local authorization for a common realm, then this user cannot
access the common realm in any other PDB than this local authorization.

• A common user or a common role can have both the local authorization and the common
authorization to a common realm at the same time. Removing a common user’s local
authorization from a common realm does not affect the common user’s common
authorization. Removing a common user’s common authorization from a common realm
does not affect the common user’s local authorization.

Common Authorization for a Common Realm

The common authorization for a common realm refers to the authorization a common user or
a common role has in the application root while the authorization takes effect in every
container that is Database Vault enabled.

The rules for the local authorization for a common realm are as follows:

• A user who has been commonly granted the DV_OWNER or DV_ADMIN role can grant
common realm authorization to common users or roles in the application root. This
common Database Vault administrator can perform the removal of common
authorizations while in the application root.

Chapter 24
Configuring Realms

24-15

• This common authorization applies to the containers that have been Database
Vault enabled in the CDB.

• If a common user is authorized to a common realm in the application root, then
this user has access to the objects protected by the common realm in the
application root and any application PDBs.

• Any rule sets that are associated with a common realm must be common rule sets.
The rules that are added to a common rule set that is associated with common
authorization cannot involve any local objects.

How the Authorization of a Realm Works in Both the Application Root and in an
Individual PDB

During the Database Vault enforcement in a container, a common realm performs the
same enforcement behaviors as the same realm when it is used locally in a PDB.

Rule Sets and Rules in a Multitenant Environment
In a multitenant environment, you can create a rule set and its associated rules in the
application root.

A common realm must use a common rule set when the associated realm or
command rule is evaluated by Database Vault. The common rule set and its rules can
only be created in the application root. After the common rule set is created, it exists in
every container that is associated with the root where the common rule set is created.
The common rule set can only include common rules.

To configure a common rule set and its rules, you must be commonly granted the
DV_OWNER or DV_ADMIN role.

Related Topics

• Command Rules in a Multitenant Environment
In a multitenant environment, you can create common and local command rules in
either the CDB root or the application root.

Command Rules in a Multitenant Environment
In a multitenant environment, you can create common and local command rules in
either the CDB root or the application root.

Common command rules can be associated only with common realms, rule sets, and
rules. Local command rules can be associated only with local realm, rule sets, and
rules.

To apply these command rules to the entire multitenant environment, you must
execute the command rule procedures from the CDB root or application root as a
common user who has been granted the DVADM or DVOWNER role. A common command
rule that is created in the CDB root will be applied to all PDBs in that CDB
environment. A common command rule that is created in the application root will only
be applied to the PDBs that are associated with this application root. To propagate the
command rule to the PDBs that are associated with the CDB root or application root,
you must synchronize the PDB. For example, to synchronize an application root called
saas_sales_app to its application PDBs:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

Chapter 24
Rule Sets and Rules in a Multitenant Environment

24-16

To synchronize a common command rule in the CDB root to a PDB:

ALTER PLUGGABLE DATABASE APPLICATION APPCDBSYSTEM SYNC;

You can check a user’s roles by querying the USER_ROLE_PRIVS data dictionary view. To find
information about command rules, query the DBA_DV_COMMAND_RULE data dictionary view.

Oracle Database Vault Policies in a Multitenant Environment
Oracle Database Vault policies are only local to the pluggable database (PDB) in which they
were created.

That is, if you created the policy in a PDB, then only local realms and command rules can be
added to it. You cannot create Database Vault policies that can have common realms or
common command rules.

Using Database Vault Operations Control to Restrict Multitenant
Common User Access to Local PDB Data

You can control PDB access by CDB root common users, such as infrastructure database
administrators.

• About Using Database Vault Operations Control
You can automatically restrict common users from accessing pluggable database (PDB)
local data in autonomous, regular Cloud, or on-premises environments.

• Enabling Database Vault Operations Control
To enable Database Vault operations control, use the
DBMS_MACADM.ENABLE_APP_PROTECTION PL/SQL procedure.

• Adding Common Users and Packages to an Exception List
Common users and applications that must access PDB local data can be added to an
exception list.

• Deleting Common Users and Packages from an Exception List
Users and applications that no longer need to access PDB local data can be removed
from the exception list.

• Disabling Database Vault Operations Control
To disable Database Vault operations control, use the
DBMS_MACADM.DISABLE_APP_PROTECTION PL/SQL procedure.

Related Topics

• DBA Operations in an Oracle Database Vault EnvironmentOracle Database Vault
Administrator’s Guide

About Using Database Vault Operations Control
You can automatically restrict common users from accessing pluggable database (PDB) local
data in autonomous, regular Cloud, or on-premises environments.

To accomplish this, you can use Oracle Database Vault operations control, which applies to
common users such as infrastructure database administrators and applications.

Chapter 24
Oracle Database Vault Policies in a Multitenant Environment

24-17

Database Vault operations control is useful for situations where a database
administrator must log in to the CDB root as a highly privileged user, but still not be
able to access PDB customer data. Database operations control does not block PDB
database administrators. To block these users, enable Oracle Database Vault in the
PDB and then use the Database Vault features such as realm control to block these
users.

You can create an exception list for Database Vault operations control of common
users and packages for situations where a common user or application must perform
tasks that must access local data on a PDB. An example of the type of common user
that you would specify for the exception list is the CTXSYS application account, which is
responsible for Oracle Text. Specifying a package in an exception list enables you to
apply more fine-grained control instead of providing full access to a user in an
exception list.

The general process for using Database Vault operations control is as follows:

1. Enable Database Vault operations control and keep it enabled for the production
environment.

2. At this stage Database Vault operations control applies to all PDBs in the
environment, regardless of whether the PDB has enabled Database Vault or not.

3. To enable specific users and packages to have access to the local schemas of the
PDBs, add them to an exception list. When the user or package no longer needs
access, then you can remove them from the exception list. For example, if the
database is using Oracle Text, then you can add the CTXSYS administrative user
account and the package to the exception list.

Enabling Database Vault Operations Control
To enable Database Vault operations control, use the
DBMS_MACADM.ENABLE_APP_PROTECTION PL/SQL procedure.

Oracle recommends that if you elect to use Database Vault operations control for your
multitenant production server, then you should keep Database Vault operations control
enabled full time.

In most cases, you will enable Database Operations control for the entire CDB, not just
a specific PDB. If you need to disable it for a specific PDB (for example, for
troubleshooting purposes), then you can execute the
DBMS_MACADM.DISABLE_APP_PROTECTION procedure on the PDB. When you are finished
troubleshooting the PDB, re-enable it for Database Vault operations control, as shown
in the example in this topic.

Before you enable Database Vault operations control, Database Vault must be enabled
and configured in the CDB root. However, Database Vault does not need to be
enabled in the PDBs.

1. Log in to the CDB root as a common user who has been granted the DV_OWNER
role.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Execute the DBMS_MACADM.ENABLE_APP_PROTECTION procedure.

Chapter 24
Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data

24-18

• To enable Database Vault operations control for all PDBs in the CDB environment:

EXEC DBMS_MACADM.ENABLE_APP_PROTECTION;

• The operations control for a specific PDB may have been disabled for
troubleshooting reasons. To re-enable Database Vault operations control for a
specific PBB (for example, HRPDB):

EXEC DBMS_MACADM.ENABLE_APP_PROTECTION ('HRPDB');

At this stage, one or all of the PDBs are enabled for Database Vault operations control. You
can confirm by connecting as user SYS with the SYSDBA administrative privilege and then
executing the SELECT * FROM DBA_DV_STATUS; query. If specific trusted common users or
packages must have access to the local schemas of these PDBs to perform special
operations, then you can use the DBMS_MACADM.ADD_APP_EXCEPTION procedure to add the
user or package to an exception list for Database Vault operations control.

Related Topics

• Adding Common Users and Packages to an Exception ListOracle Database Vault
Administrator’s Guide

Adding Common Users and Packages to an Exception List
Common users and applications that must access PDB local data can be added to an
exception list.

Add a user package to the exception list if the package is the only object in the user account
that needs access to the PDB local data. This allows for fine grained control over what is put
into the exception list. The kinds of common users and packages that you would add to the
exception list are ones that are necessary for the functioning of the PDB. For example, if you
are using Oracle Spatial, then you should add the MDSYS account to the exception list. MDSYS
requires access to customer PDB data for Oracle Spatial functions. To add a common user
and a package to the Database Vault operations control exception list, you can use the
DBMS_MACADM.ADD_APP_EXCEPTION PL/SQL procedure. To find existing exceptions, you can
query the DBA_DV_APP_EXCEPTION data dictionary view.

1. Log in to the CDB root as a common user who has been granted the DV_OWNER role.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Ensure that the package that you will specify for the common user meets the following
requirements:

• The package must be owned by the common user.

• A user-created package must be created with definer's rights procedures.

You can find more information about user-created packages by querying the DBA_OBJECTS
data dictionary view.

3. Execute the DBMS_MACADM.ADD_APP_EXCEPTION procedure.

Chapter 24
Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data

24-19

For example:

DBMS_MACADM.ADD_APP_EXCEPTION ('MDSYS', 'PATCH_APP');

Deleting Common Users and Packages from an Exception List
Users and applications that no longer need to access PDB local data can be removed
from the exception list.

To remove a common user and a package from the Database Vault operations control
exception list, you can use the DBMS_MACADM.DELETE_APP_PROTECTION PL/SQL
procedure. To find existing exceptions, you can query the DBA_DV_APP_EXCEPTION data
dictionary view.

1. Log in to the CDB root as a common user who has been granted the DV_OWNER
role.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Execute the DBMS_MACADM.DELETE_APP_EXCEPTION procedure.

For example:

DBMS_MACADM.DELETE_APP_EXCEPTION ('MDSYS', 'PATCH_APP');

Disabling Database Vault Operations Control
To disable Database Vault operations control, use the
DBMS_MACADM.DISABLE_APP_PROTECTION PL/SQL procedure.

In most cases, you should keep Database Vault operations control enabled. If
troubleshooting requires that a PDB be dropped from Database Vault operations
control, then Oracle recommends that you temporarily disable Database Vault
operations control for the PDB (and maintain operations control for the rest of the
PDBs). After the troubleshooting is complete, then you should re-enable Database
Vault operations control.

1. Log in to the CDB root as a common user who has been granted the DV_OWNER
role.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Execute the DBMS_MACADM.DISABLE_APP_PROTECTION procedure.

• To disable Database Vault operations control for all PDBs in the CDB
environment:

EXEC DBMS_MACADM.DISABLE_APP_PROTECTION;

Chapter 24
Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data

24-20

• To disable Database Vault operations control for a specific PBB (for example, HRPDB):

EXEC DBMS_MACADM.DISABLE_APP_PROTECTION ('HRPDB');

Converting a Standalone Oracle Database to a PDB and
Plugging It into a CDB

You can convert a standalone Oracle Database Release 12c or later database to a PDB, and
then plug this PDB into a CDB.

1. Connect to the root as a user who has been granted the DV_OWNER role.

For example:

sqlplus c##sec_admin
Enter password: password

2. Grant the DV_PATCH_ADMIN role to user SYS with CONTAINER = CURRENT.

GRANT DV_PATCH_ADMIN TO SYS CONTAINER = CURRENT;

3. In the root, connect as user SYS with the SYSOPER system privilege.

For example:

CONNECT SYS AS SYSOPER
Enter password: password

4. Restart the database in read-only mode.

For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT
ALTER DATABASE OPEN READ ONLY

5. Connect to the Database Vault-enabled database as a user who has the DV_OWNER role.

For example:

CONNECT sec_admin@pdb_name

6. Grant the DV_PATCH_ADMIN role to user SYS on this database.

GRANT DV_PATCH_ADMIN TO SYS;

7. Optionally, run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function to determine whether
the unplugged PDB is compatible with the CDB.

When you run the function, set the following parameters:

• pdb_descr_file: Set this parameter to the full path to the XML file that will contain a
description of the PDB.

Chapter 24
Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB

24-21

• store_report: Set this parameter to indicate whether you want to generate a
report if the PDB is not compatible with the CDB. Set it to TRUE to generate a
report or FALSE to not generate a report. A generated report is stored in the
PDB_PLUG_IN_VIOLATIONS temporary table and is generated only if the PDB is
not compatible with the CDB.

For example, to determine whether a PDB described by the /disk1/usr/
dv_db_pdb.xml file is compatible with the current CDB, run the following PL/SQL
block:

SET SERVEROUTPUT ON
DECLARE
 compatible CONSTANT VARCHAR2(3) :=
 CASE DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => '/disk1/usr/dv_db_pdb.xml',
 store_report => TRUE)
 WHEN TRUE THEN 'YES'
 ELSE 'NO'
END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(compatible);
END;
/

If the output is YES, then the PDB is compatible, and you can continue with the
next step.

If the output is NO, then the PDB is not compatible. You can check the
PDB_PLUG_IN_VIOLATIONS temporary table to see why it is not compatible.

8. Create an XML file that describes the PDB.

For example:

BEGIN
 DBMS_PDB.DESCRIBE(
 pdb_descr_file => '/disk1/oracle/dv_db.xml');
END;
/

9. Run the CREATE PLUGGABLE DATABASE statement, and specify the XML file in the
USING clause. Specify other clauses when they are required.

For example:

CREATE PLUGGABLE DATABASE pdb_name AS CLONE USING 'dv_db.xml'
NOCOPY;

10. Connect to the PDB that you just created as user SYS with the SYSDBA
administrative privilege.

CONNECT SYS@pdb_name AS SYSDBA

Chapter 24
Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB

24-22

11. Execute the noncdb_to_pdb.sql script.

@$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql

12. Open this PDB in a read/write restricted mode.

ALTER PLUGGABLE DATABASE pdb_name OPEN READ WRITE RESTRICTED;

13. Run the following procedure to synchronize the PDB:

EXECUTE DBMS_PDB.SYNC_PDB;

14. Connect to the root as a user who has been granted the DV_OWNER role.

sqlplus c##sec_admin
Enter password: password

15. Revoke the DV_PATCH_ADMIN role from user SYS with CONTAINER = CURRENT.

REVOKE DV_PATCH_ADMIN FROM SYS CONTAINER = CURRENT;

16. Connect to the legacy Database Vault-enabled database as user SYS with the SYSOPER
system privilege.

CONNECT SYS@pdb_name AS SYSOPER

17. Restart this database.

For example:

SHUTDOWN IMMMEDIATE
STARUP

18. Revoke the DV_PATCH_ADMIN role from user SYS.

REVOKE DV_PATCH_ADMIN FROM SYS;

Related Topics

• Creating and Removing PDBs and Application Containers
You can create PDBs, application containers, and application seeds using a variety of
techniques.

Chapter 24
Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB

24-23

25
Using XStream with a CDB

You can use Oracle Database XStream in a multitenant container database (CDB).

• About XStream
XStream consists of Oracle Database components and application programming
interfaces (APIs) that enable client applications to receive data changes from an Oracle
database and send data changes to an Oracle database.

• System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database. This self-contained collection is called a pluggable database (PDB).
A CDB contains PDBs.

• XStream Out and a Multitenant Environment
A multitenant environment enables a database to contain a portable set of schemas,
objects, and related structures that appears logically to an application as a separate
database.

• Configuring XStream Out in a CDB
When you configure XStream Out in a CDB, you must decide which database changes
will be captured by XStream Out and sent to the client application.

• XStream In and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database.

About XStream
XStream consists of Oracle Database components and application programming interfaces
(APIs) that enable client applications to receive data changes from an Oracle database and
send data changes to an Oracle database.

These data changes can be shared between Oracle databases and other systems. The other
systems include non-Oracle databases, non-RDBMS Oracle products, file systems, third
party software applications, and so on. A client application is designed by the user for specific
purposes and use cases.

XStream consists of two major features: XStream Out and XStream In. XStream Out
provides Oracle Database components and APIs that enable you to share data changes
made to an Oracle database with other systems. XStream Out can retrieve both data
manipulation language (DML) and data definition language (DDL) changes from the redo log
and send these changes to a client application that uses the APIs, as shown in the following
figure.

25-1

Figure 25-1 XStream Out

Client
Application

XStream

Out

Interface

Outbound
Server

Database

Connect

Data Stream

ACK

Redo
Log

Red
Log

RedoRed

Redo
LogLog

Red
Log

Redo
Log

Red
Log

Redo
Log

Queue

.

.

.

Capture

XStream In provides Oracle Database components and APIs that enable you to share
data changes made to other systems with an Oracle database. XStream In can apply
these changes to database objects in the Oracle database, as shown in the following
figure.

Figure 25-2 XStream In

Database

Connect

Data Stream

ACK

Client
Application

XStream

In Interface

Inbound
Server

XStream uses the capture and apply features of the Oracle database. These features
enable the following functionality for XStream:

Chapter 25
About XStream

25-2

• The logical change record (LCR) format for streaming database changes

An LCR is a message with a specific format that describes a database change. If the
change was a data manipulation language (DML) operation, then a row LCR
encapsulates each row change resulting from the DML operation. One DML operation
might result in multiple row changes, and so one DML operation might result in multiple
row LCRs. If the change was a data definition language (DDL) operation, then a single
DDL LCR encapsulates the DDL change.

• Rules and rule sets that control behavior, including inclusion and exclusion rules

Rules enable the filtering of database changes at the database level, schema level, table
level, and row/column level.

• Rule-based transformations that modify captured data changes

• Support for most data types in the database, including LOBs, LONG, LONG RAW, and
XMLType

• Customized configurations, including multiple inbound streams to a single database
instance, multiple outbound streams from a single database instance, multiple outbound
streams from a single capture process, and so on

• Full-featured apply for XStream In, including apply parallelism for optimal performance,
SQL generation, conflict detection and resolution, error handling, and customized apply
with apply handlers

Note:

In both XStream Out and XStream In configurations, the client application must use
a dedicated server connection.

Related Topics

• Oracle Database XStream Guide

System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of schemas,
objects, and related structures that appears logically to an application as a separate
database. This self-contained collection is called a pluggable database (PDB). A CDB
contains PDBs.

It can also contain application containers. An application container is an optional component
of a CDB that consists of an application root and the application PDBs associated with it. An
application container stores data for one or more applications. An application container
shares application metadata and common data. In a CDB, each of the following is a
container: the CDB root, each PDB, each application root, and each application PDB.

In a CDB, LCRs can contain the global name of the container where the change originated in
the source_database_name attribute and the global name of the CDB root in the root_name
attribute. The rules for XStream components can consider these attributes.

Chapter 25
System-Created Rules and a Multitenant Environment

25-3

• System-Created Rules in a CDB and XStream Out
In a CDB, XStream Out must be configured in the CDB root. Therefore, the
PL/SQL procedures in the DBMS_XSTREAM_ADM package that create system-created
rules must be run in the CDB root while connected as a common user.

• System-Created Rules in a CDB and XStream In
You can configure XStream In in the root or in any container in a CDB.

Related Topics

• Multitenant Architecture
The multitenant architecture enables an Oracle database to function as a
multitenant container database (CDB).

System-Created Rules in a CDB and XStream Out
In a CDB, XStream Out must be configured in the CDB root. Therefore, the PL/SQL
procedures in the DBMS_XSTREAM_ADM package that create system-created rules must
be run in the CDB root while connected as a common user.

Excluding the procedures that create rules for propagations, the procedures that
create system-created rules for XStream Out, such as the ADD_GLOBAL_RULES
procedure, include the key parameters in the following table:

Table 25-1 Key Procedure Parameters for System-Created Rules in a CDB

Parameter Description

source_database The global name of the source database. In a CDB, specify the global
name of the container to which the rules pertain. The container can be
the CDB root, a PDB, an application root, or an application PDB. The
following are examples: mycdb.example.com or
hrpdb.example.com.

source_root_name The global name of the CDB root in the source CDB. The following are
examples: mycdb.example.com.

source_container_
name

The short name of the source container. The container can be the
CDB root, a PDB, an application root, or an application PDB. The
following are examples: CDB$ROOT or hrpdb.

If you do not include the domain name when you specify source_database or
source_root_name, then the procedure appends it to the name automatically. For
example, if you specify DBS1 and the domain is .EXAMPLE.COM, then the procedure
specifies DBS1.EXAMPLE.COM automatically.

The combination of these key parameters determines which containers' changes
XStream Out captures and streams to the client application, based on the rules
generated by the procedures. Regardless of the settings for these parameters,
system-generated rules can still limit the changes captured and streamed to specific
schemas and tables.

Local capture means that a capture process runs on the source CDB. In a local
capture configuration, the source_root_name parameter specifies the global name of
the CDB root in the local CDB. If this parameter is NULL, then the global name of the
CDB root in the local CDB is specified automatically. The resulting rules include a
condition for the global name of the CDB root in the current CDB.

Chapter 25
System-Created Rules and a Multitenant Environment

25-4

Downstream capture means that a capture process runs on a CDB other than the source
CDB. In a downstream capture configuration, the source_root_name parameter must be non-
NULL, and it must specify the global name of the CDB root in the remote source CDB. The
resulting rules include a condition for the global name of the CDB root in the remote CDB. If
this parameter is NULL, then local capture is assumed.

The following table describes the rule conditions for various source_database and
source_container_name parameter settings in a local capture configuration.

Table 25-2 Local Capture and XStream Out Container Rule Conditions

source_database
Parameter Setting

source_container_na
me Parameter Setting

Description

NULL NULL XStream Out captures and streams changes
made in any container in the local CDB, including
the CDB root, all PDBs, all application roots, and
all application PDBs.

non-NULL NULL XStream Out captures and streams changes
made in the specified source container of the local
CDB. The source container can be the CDB root,
a PDB, an application root, or an application PDB.
The DBMS_XSTREAM_ADM procedure queries the
CDB_PDBS view and CDB_PROPERTIES view to
determine the source_container_name value.

NULL non-NULL XStream Out captures and streams changes
made in the specified source container of the local
CDB. The source container can be the CDB root,
a PDB, an application root, or an application PDB.
The DBMS_XSTREAM_ADM procedure queries the
CDB_PDBS view and CDB_PROPERTIES view to
determine the source_database value.

non-NULL non-NULL XStream Out captures and streams changes
made in the specified source container of the local
CDB. The source container can be the CDB root,
a PDB, an application root, or an application PDB.

If the prefix of the source_database value is
different from the source_container_name
value, then the resulting rules include a condition
for the source_database value, and an internal
table maps the source_database value to the
source_container_name value.

The following table describes the rule conditions for various source_database and
source_container_name parameter settings in a downstream capture configuration.

Table 25-3 Downstream Capture and XStream Out Container Rule Conditions

source_database
Parameter Setting

source_container_na
me Parameter Setting

Description

NULL NULL XStream Out captures and streams changes
made in any container in the remote source CDB,
including the CDB root, all PDBs, all application
roots, and all application PDBs.

Chapter 25
System-Created Rules and a Multitenant Environment

25-5

Table 25-3 (Cont.) Downstream Capture and XStream Out Container Rule Conditions

source_database
Parameter Setting

source_container_na
me Parameter Setting

Description

non-NULL NULL XStream Out captures and streams changes
made in the specified source container of the
remote source CDB. The source container can be
the CDB root, a PDB, an application root, or an
application PDB. The DBMS_XSTREAM_ADM
procedure derives the source_container_name
value from the prefix of source_database value.

NULL non-NULL The DBMS_XSTREAM_ADM procedure raises an
error.

non-NULL non-NULL XStream Out captures and streams changes
made in the specified source container of the
remote source CDB. The source container can be
the CDB root, a PDB, an application root, or an
application PDB.

If the prefix of the source_database value is
different from the source_container_name
value, then the resulting rules include a condition
for the source_database value, and an internal
table maps the source_database value to the
source_container_name value.

Related Topics

• Oracle Database XStream Guide

• Oracle Database PL/SQL Packages and Types Reference

System-Created Rules in a CDB and XStream In
You can configure XStream In in the root or in any container in a CDB.

Typically, an inbound server does not use rule sets or rules. Instead, it usually
processes all LCRs that it receives from its client application. An inbound server can
apply changes to the current container only. Therefore, if an inbound server is
configured in the CDB root, then it can apply changes only to the CDB root. If an
inbound server is configured in a PDB, then it can apply changes only to that PDB. If
an inbound server is configured in an application root, then it can apply changes only
to that application root, and if an inbound server is configured in an application PDB,
then it can apply changes only to that application PDB.

Related Topics

• Administering a Multitenant Environment
You can administer a multitenant environment using SQL*Plus or Enterprise
Manager Cloud Control (Cloud Control).

Chapter 25
System-Created Rules and a Multitenant Environment

25-6

XStream Out and a Multitenant Environment
A multitenant environment enables a database to contain a portable set of schemas, objects,
and related structures that appears logically to an application as a separate database.

This self-contained collection is called a pluggable database (PDB). A multitenant container
database (CDB) contains PDBs. In a CDB, XStream Out functions much the same as it does
in a non-CDB.

A CDB can also contain application containers. An application container is an optional
component of a CDB that consists of an application root and all application PDBs associated
with it. An application container stores data for one or more applications. An application
container shares application metadata and common data. In a CDB, each of the following is a
container: the CDB root, each PDB, each application root, and each application PDB.

The main differences in the way XStream Out functions in a CDB and non-CDB are:

• XStream Out must be configured only in the CDB root.

• XStream Out can see changes made to any container within the CDB.

• XStream Out capture rules can limit the LCRs to those that are needed for the client
application. The system-generated capture rules select the appropriate LCRs based on
the parameters that were passed to the ADD_OUTBOUND and CREATE_OUTBOUND procedures
in the DBMS_XSTREAM_ADM package. You can use the ADD_*_RULES procedures in the same
package for more fine-grained control over the rules used by the XStream Out
components.

• The user who performs XStream Out tasks must be a common user.

Unplug and Plug Operations in an XStream Environment

When a PDB, application root, or application PDB involved with XStream Out is unplugged
from its CDB and plugged into another CDB, any capture process or outbound server is not
considered part of the container. You must configure the capture process and outbound
server again in the other CDB.

If an outbound server is configured in a different database than the capture process, then
unplug and plug operations have additional considerations.

For this example, assume the following:

• A CDB named CDB1 contains PDB PDB1.

• A capture process is configured in CDB1, and it sends LCRs from PDB1 to an outbound
server in a CDB named CDB2.

• You unplug PDB1 from CDB1, and then plug it into a CDB named CDB3.

To continue delivering LCRs from PDB1 to the outbound server in CDB2, you must configure a
new capture process in CDB3 to capture and send LCRs to CDB2.

The rules used by the outbound server in database B must be altered to change references
to the root of CDB1 to the root of CDB3. In addition, if PDB1 was given a different name in CDB3,
then the rules must be altered to reflect the new PDB name.

Chapter 25
XStream Out and a Multitenant Environment

25-7

Application Containers in an XStream Environment

When a CDB has one or more application containers, XStream Out must be
configured in the CDB root, and XStream Out can capture changes made in any
container in the CDB, including the application roots and application PDBs. Changes
captured in an application container can be sent to containers of any type, including
PDBs, application roots, and application PDBs.

When replicating changes from one application root to another application root,
XStream can replicate ALTER PLUGGABLE DATABASE APPLICATION statements. To avoid
errors, the target application root that applies the statements must have the same
application installed as the source application root, and the application name must be
identical in both application roots.

To avoid errors when replicating changes from an application root to a container that is
not an application root, you must ensure that ALTER PLUGGABLE DATABASE
APPLICATION statements are not replicated.

With the XStream OCI API, you can control whether ALTER PLUGGABLE DATABASE
APPLICATION statements are replicated using the OCIXStreamOutAttach function and
the OCILCRHeaderGet function. With the XStream Java API, you can control this
behavior using the mode parameter in the XStreamOut.attach method.

Related Topics

• System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as
a separate database. This self-contained collection is called a pluggable database
(PDB). A CDB contains PDBs.

• Configuring XStream Out in a CDB
When you configure XStream Out in a CDB, you must decide which database
changes will be captured by XStream Out and sent to the client application.

• Multitenant Architecture
The multitenant architecture enables an Oracle database to function as a
multitenant container database (CDB).

Configuring XStream Out in a CDB
When you configure XStream Out in a CDB, you must decide which database changes
will be captured by XStream Out and sent to the client application.

XStream Out can stream all database changes for all containers, including the CDB
root and all PDBs, application roots, and application PDBs, or XStream Out can
stream the changes from specific containers. In addition, you can configure XStream
Out with local capture, or you can configure it with downstream capture to offload the
work required to capture changes from the source database.

The following restrictions apply when you configure XStream Out in a CDB:

• The capture process and outbound server must be in the CDB root.

• The capture process and outbound server must be in the same CDB.

• Each container in the CDB must be open during XStream Out configuration.

Chapter 25
Configuring XStream Out in a CDB

25-8

• When changes made to an application root are captured, you must ensure that ALTER
PLUGGABLE DATABASE APPLICATION statements are replicated only to other application
roots.

In addition, ensure that you create the XStream administrator properly for a CDB.

Note:

When a container is created using a non-CDB, any XStream Out components from
the non-CDB cannot be used in the container. You must drop and re-create the
XStream Out components, including the capture process and outbound servers, in
the CDB root.

• Configuring XStream Out with Local Capture in a CDB
An example illustrates configuring XStream Out with local capture in a CDB.

• Configuring XStream Out with Downstream Capture in CDBs
Using downstream capture, the XStream Out components can reside in databases other
than the source database.

Related Topics

• XStream Out and a Multitenant Environment
A multitenant environment enables a database to contain a portable set of schemas,
objects, and related structures that appears logically to an application as a separate
database.

• System-Created Rules in a CDB and XStream Out
In a CDB, XStream Out must be configured in the CDB root. Therefore, the PL/SQL
procedures in the DBMS_XSTREAM_ADM package that create system-created rules must be
run in the CDB root while connected as a common user.

• Oracle Database XStream Guide

• Options for Creating a PDB from a Non-CDB
You have multiple options for moving a non-CDB into a PDB.

Configuring XStream Out with Local Capture in a CDB
An example illustrates configuring XStream Out with local capture in a CDB.

Prerequisites

Before configuring XStream Out, ensure that all containers in the CDB are in open read/write
mode during XStream Out configuration.

Assumptions

This section makes the following assumptions:

• The capture process will be a local capture process, and it will run on the same database
as the outbound server.

• The name of the outbound server is xout.

Chapter 25
Configuring XStream Out in a CDB

25-9

• Data manipulation language (DML) and data definition language (DDL) changes
made to the oe.orders and oe.order_items tables in PDB pdb1.example.com are
sent to the outbound server.

• DML and DDL changes made to the hr schema in the PDB pdb1.example.com are
sent to the outbound server.

Figure 25-3 provides an overview of this XStream Out configuration.

Figure 25-3 Sample XStream Out Configuration Created Using CREATE_OUTBOUND for a PDB

pdb1.example.com

pdb2.example.com

pdb3.example.com

pdb4.example.com

pdb5.example.com

pdb6.example.com

CDB

Seed (PDB$SEED)

Root (CDB$ROOT)

Redo
Log

hr Schema

oe.orders Table

oe.order_items Table

Record
Changes

Capture
Process

Enqueue
LCRs

Dequeue
LCRs

Queue

.

.

.

Client
Application

Capture DML
and DDL Changes
from pdb1.example.com

Outbound
Server

xout

Receive LCRs
from committed
transactions

To create an outbound server using the CREATE_OUTBOUND procedure:

1. In SQL*Plus, connect to the root in the CDB (not to the PDB pdb1.example.com)
as the XStream administrator.

2. Create the outbound server and other XStream components.

a. Ensure that all containers in the source CDB are in open read/write mode.

b. Run the CREATE_OUTBOUND procedure.

Chapter 25
Configuring XStream Out in a CDB

25-10

Given the assumptions for this example, run the following CREATE_OUTBOUND
procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.CREATE_OUTBOUND(
 server_name => 'xout',
 source_database => 'pdb1.example.com',
 table_names => tables,
 schema_names => schemas);
END;
/

Note:

To capture changes in all containers in a CDB, including the CDB root, all
PDBs, all application roots, and all application PDBs, and send those
changes to the XStream client application, you can omit the
source_database parameter when you run the CREATE_OUTBOUND
procedure.

c. After the CREATE_OUTBOUND procedure completes successfully, optionally change the
open mode of one or more containers if necessary.

Running the procedure in Step b performs the following actions:

• Configures supplemental logging for the oe.orders and oe.order_items tables and
for all tables in the hr schema in the pdb1.example.com PDB.

• Creates a queue with a system-generated name that is used by the capture process
and the outbound server.

• Creates and starts a capture process with a system-generated name with rule sets
that instruct it to capture DML and DDL changes to the oe.orders table, the
oe.order_items table, and the hr schema from the pdb1.example.com PDB.

• Creates and starts an outbound server named xout with rule sets that instruct it to
send DML and DDL changes to the oe.orders table, the oe.order_items table, and
the hr schema to the client application.

• Sets the current user as the connect user for the outbound server. In this example,
the current user is the XStream administrator. The client application must connect to
the database as the connect user to interact with the outbound server.

Note:

The server_name value cannot exceed 30 bytes.

Chapter 25
Configuring XStream Out in a CDB

25-11

Tip:

To capture and send all database changes from the pdb1.example.com
database to the outbound server, specify NULL (the default) for the
table_names and schema_names parameters.

3. Create and run the client application that will connect to the outbound server in the
root of the CDB and receive the LCRs.

When you run the client application, the outbound server is started automatically.

Related Topics

• Oracle Database XStream Guide

• Oracle Database XStream Guide

Configuring XStream Out with Downstream Capture in CDBs
Using downstream capture, the XStream Out components can reside in databases
other than the source database.

When you have multiple CDBs, the source database can be in one CDB, and you can
use downstream capture to capture the changes in another CDB.

Prerequisites

Before configuring XStream Out, the following prerequisites must be met:

• Ensure that all containers in the CDB are in open read/write mode during XStream
Out configuration.

• This example uses downstream capture. Therefore, you must configure log file
transfer from the source database to a downstream database.

• If you want to use real-time downstream capture, then you must also add the
required standby redo logs.

Assumptions

This section makes the following assumptions:

• The name of the outbound server is xout.

• The queue used by the outbound server is c##xstrmadmin.xstream_queue.

• The source database is the PDB pdb1.example.com in the CDB
data.example.com.

• The capture process runs in the CDB capture.example.com.

• The outbound server runs in the CDB capture.example.com.

• DML and DDL changes made to the oe.orders and oe.order_items tables from
the PDB pdb1.example.com are sent to the outbound server.

• DML and DDL changes made to the hr schema from the PDB pdb1.example.com
are sent to the outbound server.

The following figure gives an overview of this XStream Out configuration.

Chapter 25
Configuring XStream Out in a CDB

25-12

Figure 25-4 Sample XStream Out Configuration Using Multiple CDBs and Downstream Capture

pdba.example.com

pdbb.example.com

pdbc.example.com

pdbd.example.com

pdbe.example.com

pdbf.example.com

CDB:
capture.example.com

Seed (PDB$SEED)

Root (CDB$ROOT)

Redo Log from
data.example.com

Local
Redo Log

hr Schema oe.orders Table oe.order_items Table

Capture
Process

Enqueue
LCRs

Dequeue
LCRs

Queue

.

.

.

Client
Application

Capture DML
and DDL Changes
from pdb1.example.com

Outbound
Server

xout

Receive LCRs
from committed
transactions

pdb1.example.com

pdb2.example.com

pdb3.example.com

pdb4.example.com

pdb5.example.com

pdb6.example.com

CDB:
data.example.com

Seed (PDB$SEED)

Root (CDB$ROOT)

Redo
Log

Record
Changes

Chapter 25
Configuring XStream Out in a CDB

25-13

To configure XStream Out with downstream capture in CDBs:

1. In SQL*Plus, connect to the root of the downstream capture CDB as the XStream
administrator.

In this example. the downstream capture CDB is capture.example.com.

2. Create the queue that will be used by the capture process.

For example, run the following procedure:

BEGIN
 DBMS_XSTREAM_ADM.SET_UP_QUEUE(
 queue_table => 'c##xstrmadmin.xstream_queue_table',
 queue_name => 'c##xstrmadmin.xstream_queue');
END;
/

3. Optionally, create the database link from the root in the downstream capture CDB
to the root in the source CDB.

In this example, create a database link from the root in capture.example.com to
the root in data.example.com. For example, if the user c##xstrmadmin is the
XStream administrator on both databases, then create the following database link:

CREATE DATABASE LINK data.example.com CONNECT TO c##xstrmadmin
 IDENTIFIED BY password USING 'data.example.com';

4. Ensure that all containers in the source CDB are in open read/write mode.

5. If you did not create the database link in Step 3, then you must complete additional
steps in the root of the source CDB.

These steps are not required if you created the database link in Step 3.

Run the BUILD procedure and ensure that required supplemental logging is
specified for the database objects in the source CDB:

a. Connect to the root in the source CDB as the XStream administrator.

b. Run the DBMS_CAPTURE_ADM.BUILD procedure. For example:

SET SERVEROUTPUT ON
DECLARE
 scn NUMBER;
BEGIN
 DBMS_CAPTURE_ADM.BUILD(
 first_scn => scn);
 DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 409391

This procedure displays the valid first SCN value for the capture process that
will be created in the root in the capture.example.com CDB. Make a note of
the SCN value returned because you will use it when you create the capture
process in Step 6.

Chapter 25
Configuring XStream Out in a CDB

25-14

c. Ensure that required supplemental logging is specified for the database objects in the
source CDB.

For this example, ensure that supplemental logging is configured for the hr schema,
the oe.orders table, and the oe.order_items table in the pdb1.example.com PDB.

6. While connected to the root in the downstream capture CDB, create the capture process.

For example, run the following procedure to create the capture process while connected
as the XStream administrator to capture.example.com:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'c##xstrmadmin.xstream_queue',
 capture_name => 'real_time_capture',
 rule_set_name => NULL,
 start_scn => NULL,
 source_database => NULL,
 use_database_link => TRUE,
 first_scn => NULL,
 logfile_assignment => 'implicit',
 source_root_name => 'data.example.com',
 capture_class => 'xstream');
END;
/

If you did not create a database link in Step 3, then specify the SCN value returned by
the DBMS_CAPTURE_ADM.BUILD procedure for the first_scn parameter.

Do not start the capture process.

7. After the capture process is created, optionally change the open mode of one or more
PDBs if necessary.

8. Run the ADD_OUTBOUND procedure.

Given the assumption for this section, run the following ADD_OUTBOUND procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.ADD_OUTBOUND(
 server_name => 'xout',
 queue_name => 'c##xstrmadmin.xstream_queue',
 source_database => 'pdb1.example.com',
 table_names => tables,
 schema_names => schemas,
 source_root_name => 'data.example.com',
 source_container_name => 'pdb1');
END;
/

Running this procedure performs the following actions:

Chapter 25
Configuring XStream Out in a CDB

25-15

• Creates an outbound server named xout. The outbound server has rule sets
that instruct it to send DML and DDL changes to the oe.orders table, the
oe.order_items table, and the hr schema to the client application. The rules
specify that these changes must have originated at the PDB
pdb1.example.com in the CDB data.example.com. The outbound server
dequeues LCRs from the queue c##xstrmadmin.xstream_queue.

• Sets the current user as the connect_user for the outbound server. In this
example, the current_user is the XStream administrator. The client
application must connect to the database as the connect_user to interact with
the outbound server.

Note:

The server_name value cannot exceed 30 bytes.

9. Create and run the client application that will connect to the outbound server and
receive the LCRs.

When you run the client application, the outbound server is started automatically at
the downstream capture CDB.

Related Topics

• Oracle Database XStream Guide

XStream In and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database.

This self-contained collection is called a pluggable database (PDB). A multitenant
container database (CDB) contains PDBs. It can also contain application containers.
An application container is an optional component of a CDB that consists of an
application root and all application PDBs associated with it. An application container
stores data for one or more applications. An application container shares application
metadata and common data. In a CDB, each of the following is a container: the CDB
root, each PDB, each application root, and each application PDB.

In a CDB, the inbound server is restricted to receiving LCRs from one source database
and only executing changes in the current container (one PDB, one application root,
one application PDB, or the CDB root). A single inbound server cannot apply changes
to more than one container in a CDB.

When the inbound server is in the CDB root, the apply user must be a common user.
When the inbound server is in an application root, the apply user must be a common
user or an application common user. When the inbound server is in a PDB or
application PDB, the apply user can be a common user or a local user.

Chapter 25
XStream In and a Multitenant Environment

25-16

Note:

XStream does not synchronize changes done in the application root container. Do
not use the XStream In replication to replicate operations done in the application
root container. You can manually apply these changes in the application root
containers in the target. Note that the operations done in the PDBs can still be
replicated.

Related Topics

• System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database. This self-contained collection is called a pluggable database (PDB).
A CDB contains PDBs.

• Multitenant Architecture
The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB).

Chapter 25
XStream In and a Multitenant Environment

25-17

Glossary

application
Within an application root, an application is a named, versioned set of data and metadata
created by a common user. An application might include an application common user, an
application common object, or some multiple and combination of the preceding.

application common object
A shared database object created while connected to an application root. The metadata (for a
metadata-linked object) or data (for a data-linked common object) is shared by application
PDBs in the application container.

application common user
A common user created while connected to an application root. The metadata (for a
metadata-linked common object) or data (for a data-linked common object) is shared by
application PDBs in the application container.

application container
A named set of application PDBs plugged in to an application root. An application container
may contain an application seed.

application patch
In an application container, a small change to an application. Typical examples of patching
include bug fixes and security patches. An application upgrade begins and ends with an
ALTER PLUGGABLE DATABASE APPLICATION statement.

application PDB
A PDB that is plugged in to an application container.

application root
The root container within an application container. Every application container has exactly
one application root. An application root shares some characteristics with the CDB root,

Glossary-1

because it can contain common objects, and some characteristics with a PDB,
because it is created with the CREATE PLUGGABLE DATABASE statement.

application seed
An optional application PDB that serves as a template for creating other PDBs within
an application container. An application container includes 0 or 1 application seed.

application upgrade
In an application container, a major change to the physical architecture of an
application. An application upgrade begins and ends with an ALTER PLUGGABLE
DATABASE APPLICATION statement.

CDB
An Oracle Database installation that contains at least one PDB. A PDB appears to an
Oracle Net client as a traditional Oracle database. Every Oracle database is either a
CDB or a non-CDB.

CDB administrator
A database administrator who manages a CDB. A PDB administrator manages
individual PDBs within the CDB.

CDB fleet
A collection of different CDBs that can be managed as one logical CDB.

CDB restore point
In a CDB, a restore point that is created when connected to the root, and when the
FOR PLUGGABLE DATABASE clause is not specified. Unlike a PDB restore point, a
CDB restore point is usable by all PDBs.

CDB root
In a multitenant container database (CDB), a collection of schemas, schema objects,
and nonschema objects to which all PDBs belong. Every CDB has exactly one root
container, which stores the system metadata required to manage PDBs. All PDBs
belong to the CDB root.

Glossary

Glossary-2

clean restore point
A PDB restore point that is created when the PDB is closed. A Flashback PDB to a clean
restore point does not require restoring backups or creating a temporary instance.

common object
An object that resides either in the CDB root or an application root that shares either data (a
data-linked common object) or metadata (a metadata-linked common object). All common
objects in the CDB root are Oracle-supplied. A common object in an application root is called
an application common object.

common user
In a multitenant container database (CDB), a database user that exists with the same identity
in multiple containers. A common user created in the CDB root has the same identity in every
existing and future PDB. A common user created in an application container has the same
identity in every existing and future application PDB in this application container.

container
In a multitenant container database (CDB), either the root or a PDB.

container data object
In a CDB, a table or view containing data pertaining to multiple containers and possibly the
CDB as a whole, along with mechanisms to restrict data visible to specific common users
through such objects to one or more containers. Examples of container data objects are
Oracle-supplied views whose names begin with V$ and CDB_.

cross-container operation
In a CDB, a DDL statement that affects the CDB itself, multiple containers, multiple common
users or roles, or a container other than the one to which the user is connected. Only a
common user connected to the root can perform cross-container operations.

data link
In a PDB, an internal mechanism that points to data (not metadata) in the root. For example,
AWR data resides in the root. Each PDB uses an object link to point to the AWR data in the
root, thereby making views such as DBA_HIST_ACTIVE_SESS_HISTORY and DBA_HIST_BASELINE
accessible in each separate container.

database consolidation
The general process of moving data from one or more non-CDBs into a multitenant container
database (CDB).

Glossary

Glossary-3

data-linked common object
A common object that exists either in the CDB root or an application root. The data,
rather than the metadata, is shared by any PDB that contains a data link that points to
the common object.

extended data-linked common object
A hybrid of a data-linked common object and a metadata-linked common object. For
an extended data-linked object, each application PDB can create its own PDB-specific
data while sharing the common data in the application root.

Fast Application Notification (FAN)
Applications can use FAN to enable rapid failure detection, balancing of connection
pools after failures, and re-balancing of connection pools when failed components are
repaired. The FAN notification process uses system events that Oracle Database
publishes when cluster servers become unreachable or if network interfaces fail.

hot cloning
Cloning a PDB while the source PDB is open in read/write mode.

lead CDB
In a CDB fleet, the central location for monitoring and managing several CDBs.

local undo mode
The use of a separate set of undo data files for each PDB in a CDB.

local user
In a multitenant container database (CDB), any user that is not a common user.

metadata link
In a PDB, an internal mechanism that points to a dictionary object definition stored in
the root. For example, the OBJ$ table in each PDB uses a metadata link to point to the
definition of OBJ$ stored in the root.

metadata-linked common object
A common object that exists either in the CDB root or an application root. The
metadata, rather than the data, is shared by any PDB that contains a metadata link
that points to the common object.

Glossary

Glossary-4

multitenant architecture
The architecture that enables an Oracle database to function as a multitenant container
database (CDB), which means that it can contain multiple PDBs. A PDB is a portable
collection of schemas, schema objects, and nonschema objects that appears to an Oracle
Net client as a traditional Oracle database (non-CDB).

multitenant container database (CDB)
See CDB.

non-CDB
An Oracle database that is not a multitenant container database (CDB). Before Oracle
Database 12c, all databases were non-CDBs. Starting in Oracle Database 12c, every
database must be either a CDB or a non-CDB.

Oracle Multitenant
A database option that enables you to create multiple PDBs in a CDB.

PDB
In a multitenant container database (CDB), a portable collection of schemas, schema objects,
and nonschema objects that appears to an Oracle Net client as a traditional Oracle database
(non-CDB).

PDB administrator
A database administrator who manages one or more PDBs. A CDB administrator manages
the whole CDB.

PDB archive file
A compressed file that contains both PDB data files and an XML metadata file. You can
create a PDB by specifying the archive file, and thereby avoid copying the XML file and the
data files separately.

PDB lockdown profile
A security mechanism to restrict operations that are available to local users connected to a
specified PDB. A typical use is to limit the effect of a grant privilege. For example, you limit
the grant of ALTER SYSTEM to only those options whose names begin with PLSQL.

Glossary

Glossary-5

PDB performance profile
A specified share of system resources, CPU, parallel execution servers, and memory
for a PDB or set of PDBs.

PDB restore point
Within a CDB, a restore point that usable only for a specific PDB. In contrast, a CDB
restore point is usable by all PDBs.

PDB snapshot
A named, point-in-time copy of a PDB created using the ALTER PLUGGABLE DATABASE
SNAPSHOT command. At the file level, a PDB snapshot is an archive file containing the
contents of the PDB copy.

If the underlying file system supports sparse files, then the first snapshot is full, and
every subsequent snapshot is sparse.

PDB synchronization
The user-initiated update of the application in an application PDB to the latest version
and patch in the application root.

PDB/non-CDB compatibility guarantee
In the multitenant architecture, the guarantee that a PDB behaves the same as a non-
CDB as seen from a client connecting with Oracle Net.

pluggable database (PDB)
See PDB.

proxy PDB
A PDB that references a PDB in a remote CDB using a database link. The remote
PDB is called a referenced PDB.

referenced PDB
The PDB that is referenced by a proxy PDB. A local PDB is in the same CDB as its
referenced PDB, whereas a remote PDB is in a different CDB.

Glossary

Glossary-6

refreshable clone PDB
A read-only clone that can periodically synchronize with its source PDB. Depending on the
value in the REFRESH MODE clause, the synchronization occurs either automatically or
manually.

resource plan
A container for resource plan directives that specify how resources are allocated to resource
consumer groups.

resource plan directive
A set of limits and controls for CPU, physical I/O, or logical I/O consumption for sessions in a
consumer group.

seed PDB
In a multitenant container database (CDB), a default pluggable database (PDB) that the
system uses as a template for user-created PDBs. A PDB seed is either the system-supplied
PDB$SEED or an application seed.

shared undo mode
In a single-instance CDB, only one active undo tablespace exists. For an Oracle RAC CDB,
one active undo tablespace exists for every instance.

snapshot copy PDB
A PDB that is created by running the CREATE PLUGGABLE DATABASE ... FROM ... SNAPSHOT
COPY command. A storage-managed snapshot is a copy of the underlying storage that is only
supported on specific file systems.

Note:

A storage-managed snapshot, which is used to make a snapshot copy PDB, is
different from a PDB-managed snapshot, which can be specified in a CREATE
PLUGGABLE DATABASE ... USING SNAPSHOT command. Storage-managed
snapshots are not involved in clones from PDB snapshots.

split mirror clone PDB
A PDB that is created by splitting a mirror in Oracle ASM.

Glossary

Glossary-7

Enter the your glossary term here.
Enter the description here

system container
The container that includes the CDB root and all PDBs in the CDB.

unplugged PDB
A self-contained set of PDB data files, and an XML metadata file that specifies the
locations of the PDB files.

Glossary

Glossary-8

Index

A
ADD_OUTBOUND procedure, 25-12
administrative users

password files, multitenant environment,
13-21

ALTER DATABASE statement, 13-13
application roots, 2-40, 17-4
CDBs, 13-30
RECOVER clause, 2-14

ALTER PLUGGABLE DATABASE statement,
13-30, 15-21, 17-4

DROP SNAPSHOT clause, 16-15
MATERIALIZE clause, 7-33
SET MAX_PDB_SNAPSHOTS clause, 16-7,

16-10
SNAPSHOT clause, 16-11, 16-13
SNAPSHOT COPY clause, 7-33
UNPLUG INTO clause, 11-1, 12-7, 12-16

ALTER SESSION statement
SET CONTAINER clause, 13-24

ALTER SYSTEM statement
CDBs, 13-29
CONTAINER clause, 13-29
PDBs, 15-13

application common objects, 2-32, 2-42, 17-36
CONTAINERS clause, 17-49
creation, 2-43, 17-37, 17-41
data-linked, 2-7, 2-45
DDL statements, 17-48
DML statements, 17-44, 17-49
extended data-linked objects, 2-46
metadata links, 2-45
metadata-linked common objects, 2-43
naming rules, 2-16
restrictions, 17-40

application containers
about, 2-36
administering, 17-1
application common objects, 2-16, 2-32,

2-42, 2-43, 17-36, 17-41, 17-49
application contexts, 18-21
application PDBs, 2-41
application roots, 2-40, 17-19

application containers (continued)
application seeds, 2-41

creating, 12-11, 12-12
preparing for, 12-12

application synchronization, 2-56
application versions, 2-53
applications, 2-49, 2-50
applications created implicitly, 2-55
bulk inserts, 17-32
compatibility version, 17-31
container maps, 2-57, 17-51

creating, 17-55
creating, 12-2, 12-4
DML statements, 17-49
dropping, 12-9
how an application upgrade works, 2-51
installing applications, 2-48, 2-49, 17-10
managing applications, 17-6
migrating an application, 2-55
migrating applications into, 17-18
naming rules, 2-6
patching applications, 2-54, 17-16
preparing for, 12-3
purpose, 2-37–2-39
SQL*Loader, 17-32
synchronizing applications, 17-21
synchronizing with proxy PDBs, 17-22
Transport Layer Security, 18-25
uninstalling applications, 17-34, 17-35
unplugging, 12-7
upgrading applications, 2-48, 2-50, 17-11
viewing extended data-linked objects, 19-30
viewing information about, 19-23
viewing patches, 19-27, 19-28
viewing shared objects, 19-29
viewing SQL statements, 19-25
viewing status, 19-24
viewing synchronization errors, 19-29
views, 19-22
Virtual Private Database policies, 18-23

application contexts
about, 18-21
application containers, 18-21
CDBs, 18-20

Index-1

application PDBs, 2-41
application synchronization, 2-56
cloning, 7-2
creating, 12-19, 17-20
naming rules, 2-6
synchronization, 2-57

application roots, 2-40
ALTER DATABASE statement, 17-4
ALTER PLUGGABLE DATABASE statement,

17-4
application PDBs

modifying, 17-4
creating, 17-19
modifying, 17-4

application seeds, 1-12, 2-3, 2-41
creating, 12-11, 12-12
dropping, 12-18
preparing for, 12-12
unplugging, 12-16

applications
in a CDB

metadata-linked common objects, 2-43
in application containers, 2-48–2-51

at different versions, 2-53
created implicitly, 2-55
migrating an application, 2-55
patching, 2-54, 17-16
synchronization, 2-56

uninstalling, 17-35
auditing

audit configurations, 2-33
audit policies, 2-33
CDBs, 18-26
common objects, 2-33
traditional, 18-29

authentication
operating system authentication, 18-18
operating system user in PDBs, 18-18
PDBs, 18-18

AVAILABILITY MAX clause, 8-7
AVAILABILITY NORMAL clause, 8-6

B
backup and recovery

CDBs and PDBs, 2-67, 20-1
break-glass protocol, 24-17

C
catcon.pl, 13-43
CDB resource plans, 22-11

PDB performance profiles, 22-20, 22-29
CDB_PDB_HISTORY view, 19-21
CDB_PDBS view, 19-9

CDBs, 3-1, 1, 13-18, 15-45, 24-2
about, 1-1
administering, 13-1
ALTER DATABASE statement, 13-30
ALTER PLUGGABLE DATABASE statement,

13-30
ALTER SYSTEM statement, 13-29
application common objects, 2-16, 2-42,

2-43, 17-36, 17-37, 17-49
querying, 19-18

application containers, 2-36–2-39
application common objects, 2-7, 17-37
application upgrades, 2-51
bulk inserts, 17-32
compatibility version, 17-31
creating, 12-2, 12-4
DML statements, 17-49
dropping, 12-9
installing applications, 2-48, 2-49, 17-10
migrating applications into, 17-18
patching applications, 17-16
preparing for, 12-3
synchronizing applications, 17-21
uninstalling applications, 17-34, 17-35
unplugging, 12-7
upgrading applications, 2-50, 17-11

application contexts, 18-20
application PDBs, 2-41

cloning, 7-2
creating, 12-19, 17-20

application seeds, 2-41
creating, 12-11
dropping, 12-18
preparing for, 12-12
unplugging, 12-16

auditing, 18-26
how affects, 18-26
traditional, 18-29

backup and recovery, 2-67, 20-1
CDB fleets, 14-1, 14-3

CDB member, 14-4
lead CDB, 14-1, 14-4

CDB resource plans
viewing information about, 22-37

character sets, 2-2
common objects, 2-7, 2-32
common privilege grants, 2-26, 2-29, 18-2
common roles, 2-22
common users, 2-15, 2-17, 2-18, 2-26, 2-29

definition, 3-2
naming rules, 2-16

compatibility violations, 15-29
connecting to, 13-19

ALTER SESSION statement, 13-24
CONNECT command, 13-22

Index

Index-2

CDBs (continued)
container data objects, 2-11, 19-3

querying, 19-10
container maps, 2-57, 17-51
containers, 1-1, 13-38, 19-8
CONTAINERS clause, 19-16
creating, 4-1, 4-10
creation, 1-11
cross-container operations, 2-14
current container, 2-14, 13-2, 19-19
data definition language (DDL), 13-39
data dictionary, 2-8
data links, 2-10
Data Redaction masking policies, 18-25
Database Resource Manager, 22-1
Database Vault operations control, 24-17
DBMS_SQL package, 13-49
DML statements, 13-38, 17-49
EM Express, 4-23
ENABLE PLUGGABLE DATABASE clause,

4-12
executing PL/SQL code, 13-49
files, 2-64
flashback, 20-5
flashback of PDBs, 2-67
functionality in Oracle Database Vault, 24-2
granting common roles and privileges, 2-27
granting privileges and roles, 2-25, 18-5
initialization parameters, 19-20
local privilege grants, 18-2
local roles, 2-22–2-24
local users, 2-17, 2-20

definition, 3-2
metadata links, 2-10
modifying, 13-29–13-31
monitoring, 19-1
object privileges, 18-4
Oracle Data Pump, 1-20
Oracle Database Vault, 13-3, 24-1
Oracle Managed Files, 4-13
PDB lockdown profiles, 2-34, 13-15, 18-12
PDB snapshots, 16-1

configuring automatic creation, 16-11
creating manually, 7-28, 16-13
dropping, 16-15
setting maximum number, 16-7, 16-10

PDB_FILE_NAME_CONVERT initialization
parameter, 4-14

PDBs
modifying, 13-30
refreshing, 15-25

planning creation, 4-2
plugging in PDBs

methods for, 5-1
preparing for, 5-22

CDBs (continued)
point-in-time recovery, 20-4
prerequisites for, 3-2
principles of grants, 2-24
privilege management, 18-1
realms, 24-14
recovering, 20-1
resource management, 2-68
revoking privileges, 18-5
roles

creating common, 18-10
creating local, 18-10
granting common, 2-26, 2-29, 18-11
how common roles work, 18-8
managing, 18-7
privileges required to manage, 18-9
rules for creating common, 18-9

root container, 2-2
modifying, 13-36

rule sets, 24-16
security, 18-1
SEED FILE_NAME_CONVERT clause, 4-13
seed PDBs, 1-12, 2-3
services, 2-60
shutting down, 13-51
snapshot copy PDBs, 7-29

materializing, 7-33
SQL scripts, 13-43
standby database, 13-3
system container, 2-2
system privileges, 18-3
tasks for, 3-3
temp files, 2-64
tools for, 3-6
Transparent Data Encryption, 13-3
undo mode, 2-64, 4-15, 13-32
unplugging PDBs, 11-1
user privileges, how affects, 18-2
using Data Pump to move data into, 21-2
viewing information about, 18-5, 19-1
views, 19-4
Virtual Private Database, 18-22

policies, 18-23
XStream, 25-1
XStream In, 25-16
XStream Out, 25-7

configuring, 25-9
configuring multiple, 25-12

CDBS
PDB access by infrastructure DBAs, 24-17

CLONEDB parameter, 7-1
cloning a non-CDB, 7-19
cloning a PDB, 7-1

local, 7-5, 7-6
refreshable clone PDBs, 7-24, 15-25

Index

Index-3

cloning a PDB (continued)
remote, 7-12, 7-14
using split mirrors, 7-33

cloning an application PDB, 7-2
command rules

with PDBs, 24-16
common objects, 2-32
common privilege grants, 2-26, 2-29

about, 18-2
granting, 18-5
revoking, 18-5
with object privileges, 18-4
with system privileges, 18-3

common roles, 2-22
about, 18-8
creating, 18-10
granting, 2-26, 2-29, 18-11
how they work, 18-8
privileges required to manage, 18-9
rules for creating, 18-9

common user accounts, 1-1, 2-15, 2-17
definition, 3-2
enabling access to other PDBs, 18-5
granting privileges to, 2-26, 2-29, 18-1
naming rules, 2-16

common users, 2-18
accessing data in PDBs, 18-6
prefix, 13-40

COMMON_USER_PREFIX parameter, 13-40
commonality, principles of, 2-16
CONFIGURE_DV procedure

registering Database Vault with, 24-7, 24-9
CONNECT command, SQL*Plus

CDBs, 13-22
container data objects, 2-11, 19-3

about, 18-5
definition, 19-3
querying, 19-10

container databases
See CDBs

container maps, 2-57, 17-51
creating, 17-55

CONTAINER_DATA objects
viewing information about, 18-5

CONTAINERS clause, 17-36, 17-49, 19-16,
19-18

CONTAINERS_DEFAULT attribute, 17-36
CONTAINERS_DEFAULT_TARGET property,

2-14
CONTAINERS_PARALLEL_DEGREE parameter,

19-16, 19-18
containers, CDB, 1-1, 2-1, 2-67

root, 2-2
CPU_COUNT initialization parameter, 22-6

CREATE DATABASE statement
CDBs, 4-10
ENABLE PLUGGABLE DATABASE clause,

4-12
SEED FILE_NAME_CONVERT clause, 4-13
undo_mode_clause, 4-15

CREATE LOCKDOWN PROFILE statement,
2-34, 18-14

CREATE PLUGGABLE DATABASE statement,
1-12, 1-14, 2-3

application containers, 2-36
AS PROXY clause, 1-23, 2-5, 10-1
clauses, 5-14
DEFAULT TABLESPACE clause, 5-6
file locations, 5-8
HOST clause, 10-5
logging_clause, 15-16, 15-17
MAX_AUDIT_SIZE clause, 5-5
MAX_DIAG_SIZE clause, 5-5
NO DATA clause, 7-6
PATH_PREFIX clause, 5-12
PDB listener host name, 10-5
PDB listener port number, 10-5
pdb_force_logging_clause, 15-16
PORT clause, 10-6
REFRESH MODE clause, 7-24
RELOCATE clause, 1-21, 8-1, 8-9, 8-10
SERVICE_NAME_CONVERT clause, 5-13
SNAPSHOT COPY clause, 1-16, 7-1, 7-29
SNAPSHOT MODE clause, 16-8
source file locations, 9-4
SOURCE_FILE_DIRECTORY clause, 9-5
SOURCE_FILE_NAME_CONVERT clause,

9-4
STORAGE clause, 5-5
USER_TABLESPACES clause, 5-6
USING clause, 1-18, 9-8
USING SNAPSHOT clause, 7-28

CREATE ROLE statement, 2-22
CREATE_FILE_DEST clause, 5-11, 7-10, 13-17
CREATE_SIMPLE_PLAN procedure

Database Resource Manager, 22-42
creating an application PDB, 17-20
creating CDBs, 4-1

CREATE DATABASE statement, 4-10
Database Configuration Assistant, 4-10
ENABLE PLUGGABLE DATABASE clause,

4-12
manually from a script, 4-10
Oracle Managed Files, 4-13
PDB_FILE_NAME_CONVERT initialization

parameter, 4-14
planning, 4-2
SEED FILE_NAME_CONVERT clause, 4-13
undo_mode_clause, 4-15

Index

Index-4

creating PDBs, 5-1
cross-container operations, 2-14
current container, 2-14, 13-2

D
data definition language (DDL)

CDBs, 13-39
data dictionary

CDBs, 2-8
PDBs, 1-9
storage in a CDB, 2-13

data links, 2-10, 2-45
data manipulation language

CDBs, 13-38
data-linked application common objects, 2-43,

12-2
data-linked common objects, 2-7, 2-42, 2-45,

17-36
Database Configuration Assistant

CDBs, 4-10
database consolidation, 1-7
database links, PDBs, 2-7
Database Resource Manager, 1-7

CDB resource plans, 22-11
CDBs, 2-68, 22-1
CREATE_SIMPLE_PLAN procedure, 22-42
monitoring PDBs, 22-45
PDB resource plans, 22-40
PDBs, 22-1

database services, 2-61, 2-62
in a CDB, 2-62
PDBs, 2-60

Database Upgrade Assistant (DBUA)
multitenant architecture support, 1-4

Database Vault
See Oracle Database Vault

Database Vault operations control
adding users and packages to exception list,

24-19
deleting users and packages from exception

list, 24-20
disabling, 24-20
enabling, 24-18

Database Vault realm protection, 24-13
Database Vault realm protections, 24-13
databases

grouped schemas
See realms, 24-13

DB_CACHE_SIZE parameter, 22-6
DB_CREATE_FILE_DEST initialization

parameter, 5-11
DB_PERFORMANCE_PROFILE parameter,

22-21
DBA_APP_ERRORS view, 19-29

DBA_APP_PATCHES view, 19-28
DBA_APP_PDB_STATUS view, 19-24
DBA_APP_STATEMENTS view, 19-25
DBA_APP_VERSIONS view, 19-27
DBA_APPLICATIONS view, 19-23
DBA_CONTAINER_DATA data dictionary view,

18-5
DBA_OBJECTS view, 17-19

shared objects, 19-29
DBA_PDB_SAVED_STATES view, 15-37
DBA_PDB_SNAPSHOTFILE view, 16-15
DBA_PDB_SNAPSHOTS view, 16-15
DBA_PROFILES view, 17-19
DBA_ROLES view, 17-19
DBA_TABLES view

extended data-linked objects, 19-30
DBA_USERS view, 17-19
DBMS_CREDENTIAL package, 13-17
DBMS_JOB

using with PDB, 23-3
DBMS_MACADM.ENABLE_DV procedure

registering Database Vault with, 24-4, 24-7,
24-9

DBMS_PDB package, 1-20, 5-1, 5-4, 7-14, 9-6,
17-19

DBMS_SCHEDULER package, 23-3
DBMS_SQL package

CDBs, 13-49
DEFAULT TABLESPACE clause, 5-6
default temporary tablespaces

specifying for root, 4-18, 4-21
DESCRIBE procedure, 9-6
direct-path load, 1-20
DROP PLUGGABLE DATABASE statement,

11-5, 12-9, 12-18
DVSYS schema

CDBs, 24-2

E
EM Express, 1-4

CDBs, 4-23
ENABLE PLUGGABLE DATABASE clause, 4-12
ENABLE_PLUGGABLE_DATABASE initialization

parameter, 4-16
Enterprise Manager

multitenant architecture support, 1-4
extended data-linked application common

objects, 12-2
extended data-linked objects, 2-46, 17-36

F
FILE_NAME_CONVERT clause, 7-10
Flashback PDB, 2-67, 13-15

Index

Index-5

FLASHBACK TABLE SQL statement, 24-13
fleets, CDB, 14-1, 14-3

H
HOST clause, 10-5

I
Information Lifecycle Management, 24-13
installations

Database Vault and Label Security in a
multitenant environment, 24-12

L
lead CDB, 14-1
LEAD_CDB database property, 14-4
LEAD_CDB_URI database property, 14-4
local privilege grants

about, 18-2
granting, 18-5
revoking, 18-5

local privileges
granting, 2-25

local roles, 2-22–2-24
about, 18-8
creating, 18-10
granting, 2-25
rules for creating, 18-10

local users, 2-17, 2-20
definition, 3-2

lockdown profiles, PDB, 2-34, 18-12
logging_clause, 15-16, 15-17
logical change records (LCRs), 25-1
LogMiner utility

using in a CDB, 21-5

M
MAX_AUDIT_SIZE clause, 5-5
MAX_DIAG_SIZE clause, 5-5
MAX_IOPS parameter, 22-9
MAX_MBPS parameter, 22-9
MAX_PDB_SNAPSHOTS database property,

16-1
metadata links, 2-10, 2-45
metadata-linked application common objects,

2-43, 12-2
metadata-linked common objects, 2-42, 2-43,

17-36
metadata links, 2-45

multitenant architecture, 1-1, 3-1, 1, 21-6
benefits, 1-6, 1-7, 1-9

multitenant architecture (continued)
overview, 2-1
user interfaces, 1-4
XStream In, 25-16
XStream Out, 25-7

multitenant container database
See CDBs

multitenant container databases, 3-1, 21-5, 24-2
See also CDBs

multitenant environment, 3-1

N
NO DATA clause, 7-6
non-CDBs, 1-1, 1-6

cloning as CDBs, 1-20
cloning as PDBs, 1-14, 7-1, 7-14, 7-19
moving to PDBs, 5-4

noncdb_to_pdb.sql script, 1-20, 7-14, 9-11

O
object privileges

with common privilege grants, 18-4
open modes

PDBs, 15-29
operating system users

configuring for PDBs, 18-18
operating systems, 18-18

authentication
operating system user for PDB, 18-18

ORA-39357: Warning: Oracle Data Pump
operations are not typically needed when
connected to the root or seed of a
container database, 21-1

ORA-47503 error, 24-7, 24-9
Oracle ASM, 5-11, 7-33
Oracle Data Guard

CDBs, 13-3
Oracle Data Pump, 1-20, 5-4
Oracle Data Redaction

CDBs, 18-25
Oracle Database Configuration Assistant

(DBCA), 1-4
Oracle Database Vault, 24-1

about, 24-1
CDBs, 13-3, 24-1

Oracle Database Vault operations control
about, 24-17

Oracle Database Vault policies
in multitenant environment, 24-17

Oracle Database Vault registration
common user to manage CDB root, 24-4
common users to manage specific PDBs,

24-7

Index

Index-6

Oracle Database Vault registration (continued)
local users to manage specific PDBs, 24-9
plugging in a Database Vault-enabled

database, 24-11
verifying configuration and enablement, 24-3

Oracle Enterprise Manager Database Express
See EM Express

Oracle Flashback Technology, 24-13
Oracle GoldenGate, 1-20, 5-4
Oracle Managed Files, 4-13, 5-11
Oracle Multitenant, 13-18
Oracle Multitenant option, 1-1, 1
Oracle Universal Installer, 4-1
Oracle Virtual Private Database, 18-22

CDBs, 18-22
Oracle Virtual Private Database (VPD)

about, 18-22
application containers, 18-23
CDBs, 18-23

P
PATH_PREFIX clause, 5-12, 7-10, 13-17
PDB lockdown profiles

about, 18-12
creating, 18-14
default, 18-13
disabling, 18-15
dropping, 18-17
enabling, 18-15

PDB performance profiles, 22-20
managing, 22-29

PDB relocation
basic steps, 8-10
how it works, 8-4
user interface, 8-9

PDB resource plans, 22-40
PDB snapshot carousel

about, 16-1
administering, 16-1
contents, 16-7
how it works, 16-5
purpose, 16-2
setting the maximum number of snapshots,

16-10
viewing snapshots, 16-15

PDB snapshots
viewing, 16-15

PDB_FILE_NAME_CONVERT initialization
parameter, 4-14, 7-14

pdb_force_logging_clause, 15-16, 15-17
PDB_OS_CREDENTIAL initialization parameter,

13-15, 13-17
PDB_PLUG_IN_VIOLATIONS view, 15-29
pdb_save_or_discard_state clause, 15-37

pdb_to_apppdb.sql script, 17-20
PDB$SEED, 2-3
PDBs, 3-1, 1, 13-18, 15-45, 24-2

about, 1-1
administering, 15-1
ALTER SYSTEM statement, 15-13
archive files, 1-18
auditing

types of audit settings allowed, 18-26
backup and recovery, 2-67
benefits, 1-6
buffer pool size, 22-6
CDB resource plans, 22-11

creating, 22-17, 22-20
directives, 22-15
disabling, 22-36
enabling, 22-24
managing, 22-24
shares, 22-12
utilization limits, 22-13
viewing information about, 22-37

character sets, 2-2
cloning, 1-14, 2-4, 7-1
cloning application, 7-2
cloning local, 7-5, 7-6, 7-12
command rules in, 24-16
common roles

about, 18-8
creating, 18-10
granting, 18-11
how they work, 18-8
privileges required for management, 18-9
revoking, 18-11
rules for creating, 18-9

common users, 2-16
accessing data in PDBs, 18-6
viewing privilege information, 18-5

compatibility violations, 15-29
connecting to, 2-63, 13-19, 15-4

ALTER SESSION statement, 13-24
CONNECT command, 13-22

consolidation of data into, 1-10
containers, 2-1
CPU limits, 22-6
creating as proxies, 10-1
creating by plugging in, 1-20, 9-8
creating from seed, 1-12, 6-1
creation, 1-12, 5-1
current container, 2-14, 13-2
data dictionary, 1-9
Data Redaction policies, 18-25
database links, 2-7
Database Resource Manager, 22-1
DBMS_SQL package, 13-49
definition, 2-3, 3-1

Index

Index-7

PDBs (continued)
dropping, 11-5
EM Express, 4-23
encryption, 7-1
executing PL/SQL code, 13-49
fine-grained audit policies, 18-34
flashback, 2-67, 13-15, 20-5
granting privileges and roles, 2-23
hot cloning, 7-1
I/O limits, 22-9
instances_clause, 15-31
keystore, 7-1
local roles

about, 18-8
creating, 18-10
rules for creating, 18-10

lockdown profiles, 2-34, 13-15
managing, 15-45
modifying, 15-16
moving, 8-1, 8-6, 8-7

how it works, 8-4
purpose, 8-4

moving non-CDBs into, 5-4, 9-6
naming rules, 2-6
open mode, 15-29, 19-9

preserving on restart, 15-37
operating system user configuration, 18-18
operating system user for, setting, 18-18
PDB resource plans, 22-40

creating, 22-42
disabling, 22-45
enabling, 22-43
modifying, 22-44

PGA size, 22-6
plugging Database Vault-enabled PDB to

CDB, 24-21
plugging in, 9-1

methods for, 5-1
preparing for, 5-22

point-in-time recovery, 20-4
prerequisites for, 3-2
privileges

common, 18-3
granting, 18-5
how affected, 18-2
object, 18-4
revoking, 18-5
viewing information about, 18-5

proxy, 1-12, 1-23, 2-3, 2-5, 10-4, 17-23
PUBLIC role, 18-9
purpose of, 2-4
refreshable clone, 1-17
refreshing, 15-25
relocate_clause, 15-31

PDBs (continued)
relocating, 1-21, 8-1, 8-6, 8-7, 8-10

how it works, 8-4
purpose, 8-4
user interface, 8-9

renaming, 15-23
resource management, 2-68
restore points, 2-67
services, 2-60–2-62, 15-5
services_clause, 15-31
SGA size, 22-6
shared pool size, 22-6
SHUTDOWN command, 15-39, 15-43
shutting down, 13-51
snapshot copy, 1-16, 7-29
snapshots, 7-33, 16-1, 16-5, 16-7, 16-8,

16-10, 16-11, 16-13, 16-15
STARTUP command, 15-39, 15-41, 15-42
tasks for, 3-3
temp files, 2-64
tools for, 3-6
types, 2-3
unplugged, 1-18
unplugging, 11-1
viewing information about, 18-5
views, 19-4
Virtual Private Database policies, 18-23
XStream In, 25-16
XStream Out, 25-7

configuring, 25-9
PGA_AGGREGATE_LIMIT parameter, 22-6
PGA_AGGREGATE_TARGET parameter, 22-6
pluggable database

See PDBs
pluggable databases

See PDBs
plugging in unplugged PDBs, 9-8
PORT clause, 10-6
privileges

granting common, 2-26, 2-27, 2-29
granting in a CDB, 2-23, 2-24
local, 2-25

proxy PDBs, 1-12, 1-23, 2-3, 2-5, 2-7, 10-1
creating, 17-25
referenced PDB

altering listener host name, 15-11
altering listener port number, 15-12

synchronizing an application root replica,
17-23

PUBLIC role, CDBs, 18-9

R
realms

about, 24-13

Index

Index-8

realms (continued)
authorizations in multitenant environment,

24-15
multitenant environment

about, 24-14
recovering CDBs, 20-1
REFRESH MODE clause, 7-24
refreshable clone PDBs, 1-17, 7-24

switchover, 15-25
relocating PDBs, 8-1

common listener network, 8-6
isolated listener network, 8-7
user interface, 8-9

REMOTE_RECOVERY_FILE_DEST parameter,
7-24

resource plans
CDB, 22-11
PDB, 22-40

roles
common, 2-27
common, granting, 18-11
granting in a CDB, 2-23, 2-24
in a CDB, 2-22
local, 2-23–2-25

root container, 1-1, 1-11, 2-2
modifying, 13-36
viewing information about, 18-5

row-level security
See fine-grained access control, Oracle Virtual
Private Database (VPD)

rsmgr:io rate limit, 22-9
rule sets

multitenant environment
about, 24-16

rule-based transformations, 25-1
rules, 25-1

S
Scheduler

CDB, 23-1
closing a PDB, 23-3
invocations to CDB, 23-1
using job coordinator in CDB, 23-2
using slave processes in CDB, 23-2
views, 23-3

security
CDBs, 18-1
PDBs, 13-15

SEED FILE_NAME_CONVERT clause, 4-13
seed PDB, 1-1, 1-11
SERVICE_NAME_CONVERT clause, 5-13, 7-10
services

PDBs, 15-5
SGA_MIN_SIZE parameter, 22-6

SGA_TARGET parameter, 22-6
SHARED_POOL_SIZE parameter, 22-6
SHUTDOWN command

closing a PDB, 15-39
PDBs, 15-43

shutting down an instance
CDBs, 13-51

SNAPSHOT COPY clause, 1-16, 7-1, 7-29
snapshot copy PDBs, 1-16
SNAPSHOT MODE clause, 16-8
snapshots, PDB, 16-1

contents, 16-5
viewing, 16-15

SOURCE_FILE_DIRECTORY clause, 9-5
SOURCE_FILE_NAME_CONVERT clause, 9-4
split mirror clone PDBs, 7-33
SQL scripts

CDBs, 13-43
SQL*Loader

application containers, 17-32
SQL*Plus

multitenant architecture support, 1-4
standby database

CDBs, 13-3
STANDBY_PDB_SOURCE_FILE_DBLINK

initialization parameter, 7-14
STANDBY_PDB_SOURCE_FILE_DIRECTORY

initialization parameter, 9-8
STARTUP command

PDBs, 15-41, 15-42
starting a PDB, 15-39

STORAGE clause, 5-5
switching over refreshable clone PDBs, 15-25
synchronizing applications, 17-21
system container, 2-2
system privileges

CDBs, 18-3
with common privilege grants, 18-3

T
Transparent Data Encryption

CDBs, 13-3
Transport Layer Security (TLS)

application containers, 18-25

U
undo mode

CDBs, 2-64, 13-32
undo tablespaces, 13-13

specifying for CDBs, 4-18, 4-21
undo_mode_clause, 4-15
unified audit policies, application containers

example, 18-32

Index

Index-9

unified audit policies, CDBs
about, 18-27
appearance in audit trail, 18-33
configuring, 18-30
examples, 18-31, 18-32

unified audit policies, roles
examples, 18-27

unplugging, 11-1, 12-7, 12-16
upgrades

database, 1-7, 2-8
user privileges

CDBs, 18-2
USER_TABLESPACES clause, 5-6
users

common, 1-1, 2-16, 2-18
user name, specifying with CREATE USER

statement, 13-21
USING SNAPSHOT clause, 7-28
utilization limits for PDBs, 22-13

V
V$CON_SYS_TIME_MODEL view, 19-3

V$CON_SYSSTAT view, 19-3
V$CON_SYSTEM_EVENT view, 19-3
V$CON_SYSTEM_WAIT_CLASS view, 19-3
V$CONTAINERS view, 19-8
V$PDBS view, 15-17, 19-9
V$RSRCPDBMETRIC view, 22-45

CPU usage, 22-47
I/O generated, 22-49
memory usage, 22-50
parallel execution, 22-48

V$RSRCPDBMETRIC_HISTORY view, 22-45
Virtual Private Database

See Oracle Virtual Private Database
VPD

See Oracle Virtual Private Database

X
XStream

CDBs, 25-1

Index

Index-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Multitenant Administrator’s Guide
	Changes in Oracle Database Release 19c, Version 19.1
	New Features

	Changes in Oracle Database Release 18c, Version 18.1
	New Features

	Part I Multitenant Architecture
	1 Introduction to the Multitenant Architecture
	About the Multitenant Architecture
	About Containers in a CDB
	About User Interfaces for the Multitenant Architecture

	Benefits of the Multitenant Architecture
	Challenges for a Non-CDB Architecture
	Benefits of the Multitenant Architecture for Database Consolidation
	Benefits of the Multitenant Architecture for Manageability

	Path to Database Consolidation
	Creation of a CDB
	Creation of a PDB
	Creation of a PDB by Cloning
	Creation of a PDB from a Seed
	Creation of a PDB by Cloning a PDB or a Non-CDB
	Clones from PDB Snapshots
	Snapshot Copy PDBs
	Refreshable Clone PDBs

	Creation of a PDB by Plugging In
	Creation of a PDB by Plugging In an Unplugged PDB
	Creation of a PDB from a Non-CDB

	Creation of a PDB by Relocating
	Creation of a PDB as a Proxy PDB

	Multitenant Environment Documentation Roadmap

	2 Overview of the Multitenant Architecture
	Overview of Containers in a CDB
	The CDB Root and System Container
	PDBs
	Types of PDBs
	Purpose of PDBs
	Proxy PDBs
	Names for PDBs
	Database Links Between PDBs

	Data Dictionary Architecture in a CDB
	Purpose of Data Dictionary Separation
	Metadata and Data Links
	Container Data Objects in a CDB
	Data Dictionary Storage in a CDB

	Current Container
	Cross-Container Operations

	Overview of Commonality in the CDB
	About Commonality in a CDB
	Principles of Commonality
	Namespaces in a CDB

	Overview of Common and Local Users in a CDB
	Common Users in a CDB
	Local Users in a CDB

	Overview of Common and Local Roles in a CDB
	Common Roles in a CDB
	Local Roles in a CDB

	Overview of Privilege and Role Grants in a CDB
	Principles of Privilege and Role Grants in a CDB
	Privileges and Roles Granted Locally in a CDB
	What Makes a Privilege or Role Grant Local
	Roles and Privileges Granted Locally

	Roles and Privileges Granted Commonly in a CDB
	What Makes a Grant Common
	Roles and Privileges Granted Commonly

	Grants to PUBLIC in a CDB
	Grants of Privileges and Roles: Scenario

	Overview of Common and Local Objects in a CDB
	Overview of Common Audit Configurations
	Overview of PDB Lockdown Profiles

	Overview of Applications in an Application Container
	About Application Containers
	Purpose of Application Containers
	Key Benefits of Application Containers
	Application Container Use Case: SaaS
	Application Containers Use Case: Logical Data Warehouse

	Application Root
	Application PDBs
	Application Seed

	Application Common Objects
	Creation of Application Common Objects
	Metadata-Linked Application Common Objects
	Metadata Links

	Data-Linked Application Common Objects
	Extended Data-Linked Application Objects

	Application Maintenance
	About Application Maintenance
	Application Installation
	Application Upgrade
	How an Application Upgrade Works
	Applications at Different Versions

	Application Patch

	Migration of an Existing Application
	Implicitly Created Applications
	Application Synchronization
	Synchronization of a Single Application
	Synchronization of Multiple Applications

	Container Maps

	Overview of Services in a CDB
	Service Creation in a CDB
	Default Services in a CDB
	Nondefault Services in a CDB

	Connections to Containers in a CDB

	Overview of Tablespaces and Database Files in a CDB
	Overview of Availability in a CDB
	Overview of Backup and Recovery in a CDB
	Overview of Flashback PDB in a CDB

	Overview of Oracle Resource Manager in a CDB

	Part II Creating and Configuring a Multitenant Environment
	3 Overview of Configuring and Managing a Multitenant Environment
	About Configuring and Managing a Multitenant Environment
	Common Users and Local Users
	Separation of Duties in CDB and PDB Administration

	Prerequisites for a Multitenant Environment
	Tasks and Tools for a Multitenant Environment
	Tasks for a Multitenant Environment
	Tools for a Multitenant Environment

	4 Creating and Configuring a CDB
	About Creating a CDB
	Planning for CDB Creation
	Decide How to Configure the CDB
	Plan the PDBs
	Plan the Physical Layout
	Learn How to Manage Initialization Parameters
	Select the Character Set
	Decide Which Time Zones to Support
	Select the Database and Redo Log Block Sizes
	Plan the SYSTEM and SYSAUX Tablespaces
	Plan the Temporary Tablespaces
	Choose the Undo Mode
	Plan the Services for Your Application
	Learn How to Start Up and Shut Down a CDB
	Plan for Oracle RAC

	Prerequisites for CDB Creation

	Creating a CDB
	About CDB Creation with DBCA
	About CDB Creation with SQL Statements
	About Enabling PDBs
	About the Names and Locations of Files for the CDB Root and PDB⁠$SEED
	The SEED FILE_NAME_CONVERT Clause
	Oracle Managed Files
	The PDB_FILE_NAME_CONVERT Initialization Parameter

	About the Attributes of the Data Files for PDB⁠$SEED
	About the CDB Undo Mode

	Creating a CDB with the CREATE DATABASE Statement
	Creating a CDB with the CREATE DATABASE Statement: Examples
	Creating a CDB Without Using Oracle Managed Files
	Creating a CDB Using Oracle Managed Files: Example

	Configuring EM Express for a CDB
	After Creating a CDB

	Part III Creating and Removing PDBs and Application Containers
	5 Overview of PDB Creation
	Techniques for Creating a PDB
	Current Container and PDB Creation
	Options for Creating a PDB from a Non-CDB

	PDB Storage
	Storage Limits
	Default Tablespace
	User Tablespaces
	PDB File Locations
	FILE_NAME_CONVERT Clause
	CREATE_FILE_DEST Clause
	Restrictions on PDB File Locations

	Service Name Conversion
	Summary of Clauses for Creating a PDB
	General Prerequisites for PDB Creation

	6 Creating a PDB from Scratch
	About Creating a PDB from Scratch
	Creating a PDB
	Creating a PDB: Examples
	Creating a PDB Using No Clauses: Example
	Creating a PDB and Granting Predefined Oracle Roles to the PDB Administrator: Example
	Creating a PDB Using Multiple Clauses: Example

	7 Cloning a PDB or Non-CDB
	About Cloning a PDB or Non-CDB
	How Cloning Works
	User Interface for PDB Cloning

	Cloning a Local PDB
	About Cloning a Local PDB
	Cloning a Local PDB: Basic Steps
	After Cloning a Local PDB
	Cloning a Local PDB: Examples
	Cloning a Local PDB Using No Clauses: Example
	Cloning a Local PDB Using DBCA: Example
	Cloning a Local PDB with the PATH_PREFIX Clause: Example
	Cloning a Local PDB Using the STORAGE Clause: Example
	Cloning a Local PDB with the NO DATA Clause: Example

	Cloning a Remote PDB
	About Cloning a Remote PDB
	Cloning a Remote PDB: Basic Steps
	After Cloning a Remote PDB
	Cloning a Remote PDB: Examples
	Cloning a Remote PDB Using No Clauses: Example
	Cloning a Remote PDB Using DBCA: Example

	Cloning a Non-CDB
	About Cloning a Non-CDB
	Cloning a Non-CDB: Basic Steps
	Cloning a Remote Non-CDB: Example

	About Refreshable Clone PDBs
	Purpose of Refreshable Clone PDBs
	Automatic and Manual Refresh Modes
	Requirements for Refreshable Clone PDBs
	Creating a Refreshable Clone PDB: Scenario

	Cloning PDBs from PDB Snapshots
	About Cloning PDBs from PDB Snapshots
	Cloning a PDB from a PDB Snapshot: Scenario

	Creating and Materializing Snapshot Copy PDBs
	About Snapshot Copy PDBs
	Storage Requirements for Snapshot Copy PDBs
	Restrictions for Snapshot Copy PDBs

	Creating a Snapshot Copy PDB: Scenario
	Materializing a Snapshot Copy PDB

	Creating a Split Mirror Clone PDB

	8 Relocating a PDB
	About PDB Relocation
	Purpose of PDB Relocation
	How PDB Relocation Works
	Server Session Draining When Relocating or Stopping PDBs
	Stages of PDB Relocation
	PDB Relocation in a Common Listener Network
	PDB Relocation in Isolated Listener Networks

	User Interface for PDB Relocation
	Relocating a PDB Using CREATE PLUGGABLE DATABASE
	Relocating a PDB: Examples
	Relocating a PDB from a Remote CDB
	Relocating a PDB Using DBCA: Example

	9 Plugging In an Unplugged PDB
	About PDB Plugin Operations
	About the XML File and Archive File
	Source File Locations When Plugging In an Unplugged PDB
	SOURCE_FILE_NAME_CONVERT Clause
	SOURCE_FILE_DIRECTORY Clause

	About Adopting a Non-CDB as a PDB

	Plugging In an Unplugged PDB
	Adopting a Non-CDB as a PDB
	After Plugging in an Unplugged PDB
	Plugging in an Unplugged PDB: Examples

	10 Creating a PDB as a Proxy PDB
	About Creating a Proxy PDB
	Proxy PDBs and SQL Statements
	Proxy PDBs and Database Links
	Proxy PDBs and Authentication
	Proxy PDBs and the Listener
	HOST Clause
	PORT Clause

	Creating a Proxy PDB

	11 Removing a PDB
	Unplugging a PDB from a CDB
	About Unplugging a PDB
	Unplugging a PDB

	Dropping a PDB

	12 Creating and Removing Application Containers and Seeds
	Creating and Removing Application Containers
	Creating Application Containers
	About Creating an Application Container
	Preparing for Application Containers
	Creating an Application Container

	Unplugging an Application Container from a CDB
	About Unplugging an Application Container
	Unplugging an Application Container

	Dropping an Application Container

	Creating and Removing Application Seeds
	Creating Application Seeds
	About Creating an Application Seed
	Preparing for an Application Seed
	Creating an Application Seed

	Unplugging an Application Seed from an Application Container
	About Unplugging an Application Seed
	Unplugging an Application Seed

	Dropping an Application Seed

	Creating an Application PDB

	Part IV Administering a Multitenant Environment
	13 Administering a CDB
	About CDB Administration
	About the Current Container
	About Administrative Tasks in a CDB
	About Using Manageability Features in a CDB
	About Managing Tablespaces in a CDB
	About Managing Permanent Tablespaces in a CDB
	About Managing Temporary Tablespaces in a CDB

	About Managing Database Objects in a CDB
	About Flashing Back a PDB
	About Restricting PDB Users for Enhanced Security
	PDB Lockdown Profiles
	The PDB_OS_CREDENTIAL Initialization Parameter
	The PATH_PREFIX and CREATE_FILE_DEST PDB Creation Clauses

	Overview of Oracle Multitenant with Oracle RAC

	Accessing Containers in a CDB
	About Container Access in a CDB
	Services in a CDB
	Session Limits in a CDB
	User Names in a Multitenant Environment
	How the Multitenant Option Affects Password Files for Administrative Users

	Accessing a Container in a CDB
	Connecting to a Container Using the SQL*Plus CONNECT Command
	Connecting to the Root Using the SQL*Plus CONNECT Command
	Connecting to a PDB Using the SQL*Plus CONNECT Command

	Switching to a Container Using the ALTER SESSION Statement

	Modifying a CDB at the System Level
	About System-Level Modifications of a CDB
	Modifying a CDB with ALTER SYSTEM

	Modifying Containers When Connected to the CDB Root
	About Container Modification When Connected to CDB Root
	Modifying an Entire CDB Using ALTER DATABASE
	Setting the Undo Mode in a CDB Using ALTER DATABASE
	About the CDB Undo Mode
	About Local Undo Mode
	About Shared Undo Mode

	Configuring a CDB to Use Local Undo Mode
	Configuring a CDB to Use Shared Undo Mode

	Modifying the CDB Root Using ALTER DATABASE

	Executing SQL in a Different Container
	Issuing DML Statements on a Container in a CDB
	About Issuing DML Statements on a Container in a CDB
	Specifying the Default Container for DML Statements in a CDB

	Executing DDL Statements in a CDB
	About Executing DDL Statements in a CDB
	Executing a DDL Statement in the Current Container
	Executing a DDL Statement in All Containers in a CDB

	Running Oracle-Supplied SQL Scripts in a CDB
	About Running Oracle-Supplied SQL Scripts in a CDB
	Syntax and Parameters for catcon.pl
	Running the catcon.pl Script

	Executing Code in Containers Using the DBMS_SQL Package

	Shutting Down a CDB Instance

	14 Administering a CDB Fleet
	About CDB Fleets
	Purpose of a CDB Fleet
	Setting the Lead CDB in a CDB Fleet
	Designating a CDB Fleet Member

	15 Administering PDBs
	About PDB Administration
	Tasks Common to PDBs and Non-CDBs
	Tasks Specific to CDBs

	Managing Connections to a PDB
	Connecting to a PDB
	Managing Services for PDBs
	About Services for PDBs
	The PDB Property
	Default and User-Defined Services
	Tools for Managing Services

	Managing Services for a PDB Using SRVCTL and DBMS_SERVICE

	Modifying the Listener Settings of a Referenced PDB
	Altering the Listener Host Name of a Referenced PDB
	Altering the Listener Port Number of a Referenced PDB

	Modifying a PDB at the System Level
	About System-Level Modifications of a PDB
	Modifying a PDB with ALTER SYSTEM

	Modifying a PDB at the Database Level
	About Database-Level Modifications of a PDB
	Storage Clauses
	Logging and Recovery Clauses
	Miscellaneous Clauses

	Modifying a PDB with the ALTER PLUGGABLE DATABASE Statement
	Changing the Global Database Name of a PDB
	Managing Refreshable Clone PDBs
	Refreshing a PDB
	Switching Over a Refreshable Clone PDB

	Modifying the Open Mode of PDBs
	About the Open Mode of a PDB
	Clauses for Changing the Open State of PDBs
	OPEN and CLOSE Clauses
	SERVICES Clause
	INSTANCES Clause
	The RELOCATE Clause

	Modifying the Open Mode of PDBs with ALTER PLUGGABLE DATABASE
	Preserving or Discarding the Open Mode of PDBs When the CDB Restarts

	Altering the Open Mode of a PDB Using STARTUP and SHUTDOWN
	About Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
	Starting Up a PDB Using the STARTUP Command
	Modifying the Open Mode of PDBs with the SQL*Plus STARTUP Command
	Shutting Down a PDB Using the SHUTDOWN Command

	Starting and Stopping PDBs in Oracle RAC

	16 Administering a PDB Snapshot Carousel
	About PDB Snapshot Carousel
	Purpose of PDB Snapshot Carousel
	How PDB Snapshot Carousel Works
	Contents of a PDB Snapshot
	Contents of a PDB Snapshot Carousel

	User Interface for PDB Snapshot Carousel

	Setting the Maximum Number of Snapshots in a PDB Snapshot Carousel
	Configuring Automatic PDB Snapshots
	Creating PDB Snapshots Manually
	Dropping a PDB Snapshot
	Viewing Metadata for PDB Snapshots

	17 Administering Application Containers
	About Application Container Administration
	About Modifying an Application Root
	Managing Applications in an Application Container
	About Application Management
	Basic Steps of Application Maintenance
	Application Versions
	Application Module Names and Service Names

	Installing Applications in an Application Container
	About Installing Applications in an Application Container
	Installing an Application in an Application Container with Automated Propagation

	Upgrading Applications in an Application Container
	About Upgrading Applications in an Application Container
	Purpose of Application Upgrade
	How an Application Upgrade Works
	User Interface for Application Upgrade

	Upgrading an Application in an Application Container

	Patching Applications in an Application Container
	About Patching Applications in an Application Container
	Patching an Application in an Application Container with Automated Propagation

	Migrating an Existing Application to an Application Container
	About Migrating an Existing Application to an Application Container
	Creating an Application Root Using an Existing PDB
	Creating an Application PDB Using an Existing PDB

	Synchronizing Applications in an Application PDB
	Synchronizing an Application Root Replica with a Proxy PDB
	About Synchronizing an Application Root Replica with a Proxy PDB
	Creating a Proxy PDB That References an Application Root Replica

	Setting the Compatibility Version of an Application
	Performing Bulk Inserts During Application Install, Upgrade, and Patch Operations
	Uninstalling Applications from an Application Container
	About Uninstalling Applications from an Application Container
	Uninstalling an Application from an Application Container

	Managing Application Common Objects
	About Application Common Objects
	Creation of Application Common Objects
	About Metadata-Linked Application Common Objects
	About Extended Data-Linked Application Common Objects
	About Extended Data-Linked Application Common Objects

	Restrictions for Application Common Objects
	Creating Application Common Objects
	Issuing DML Statements on Application Common Objects
	Issuing DML on Metadata-Linked Common Objects
	Querying Using the CONTAINERS Clause
	Setting the Default Container or DML

	Issuing DML on Data-Linked Common Objects

	Modifying Application Common Objects with DDL Statements

	Issuing DML Statements on Containers in an Application Container
	About Issuing DML Statements on Containers in an Application Container
	Specifying the Default Container for DML Statements in an Application Container

	Partitioning by PDB with Container Maps
	About Container Maps
	Map Objects
	List-Partitioned Container Map: Example
	Range-Partitioned Container Map: Example

	Creating a Container Map

	18 Managing Security for a Multitenant Environment
	Managing Commonly and Locally Granted Privileges
	How the Oracle Multitenant Option Affects Privileges
	About Commonly and Locally Granted Privileges
	How Commonly Granted System Privileges Work
	How Commonly Granted Object Privileges Work
	Granting or Revoking Privileges to Access a PDB
	Example: Granting a Privilege in a Multitenant Environment
	Enabling Common Users to View CONTAINER_DATA Object Information
	Viewing Data About the Root, CDB, and PDBs While Connected to the Root
	Enabling Common Users to Query Data in Specific PDBs

	Managing Common Roles and Local Roles
	About Common Roles and Local Roles
	How Common Roles Work
	How the PUBLIC Role Works in a Multitenant Environment
	Privileges Required to Create, Modify, or Drop a Common Role
	Rules for Creating Common Roles
	Creating a Common Role
	Rules for Creating Local Roles
	Creating a Local Role
	Role Grants and Revokes for Common Users and Local Users

	Restricting Operations on PDBs Using PDB Lockdown Profiles
	About PDB Lockdown Profiles
	Default PDB Lockdown Profiles
	Creating a PDB Lockdown Profile
	Enabling or Disabling a PDB Lockdown Profile
	Dropping a PDB Lockdown Profile

	Configuring Operating System Users for a PDB
	About Configuring Operating System Users for a PDB
	Configuring an Operating System User for a PDB
	Setting the Default Credential in a PDB

	Using Application Contexts in a Multitenant Environment
	What Is an Application Context?
	Application Contexts in a Multitenant Environment

	Using Oracle Virtual Private Database in a Multitenant Environment
	What Is Oracle Virtual Private Database?
	Oracle Virtual Private Database in a Multitenant Environment

	Using Transport Layer Security in a Multitenant Environment
	Oracle Data Redaction in a Multitenant Environment
	Overview of Auditing in a Multitenant Environment
	Unified Auditing in a Multitenant Environment
	Example: Auditing the DBA Role in a Multitenant Environment
	Unified Audit Policies or AUDIT Settings in a Multitenant Environment
	About Local, CDB Common, and Application Common Audit Policies
	Traditional Auditing in a Multitenant Environment
	Configuring a Local Unified Audit Policy or Common Unified Audit Policy
	Example: Local Unified Audit Policy
	Example: CDB Common Unified Audit Policy
	Example: Application Common Unified Audit Policy
	How Local or Common Audit Policies or Settings Appear in the Audit Trail

	Fine-Grained Auditing in a Multitenant Environment

	19 Monitoring CDBs and PDBs
	About CDB and Container Information in Views
	About Viewing Information When the Current Container Is Not the CDB Root
	About Viewing Information When the Current Container Is the CDB Root
	Views for a CDB

	Determining Whether a Database Is a CDB
	Viewing Information About the Containers in a CDB
	Viewing Information About PDBs
	Viewing the Open Mode of Each PDB
	Querying Container Data Objects
	Querying Across Containers with the CONTAINERS Clause
	About Querying Across Containers with the CONTAINERS Clause
	Querying User-Created Tables and Views Across All Containers
	Querying Application Common Objects Across Application PDBs

	Determining the Current Container ID or Name
	Listing the Modifiable Initialization Parameters in PDBs
	Viewing the History of PDBs
	Viewing Information About Applications in Application Containers
	Viewing Information About Applications
	Viewing Information About Application Status
	Viewing Information About Application Statements
	Viewing Information About Application Versions
	Viewing Information About Application Patches
	Viewing Information About Application Errors
	Listing the Shared Database Objects in an Application Container
	Listing the Extended Data-Linked Objects in an Application Container

	Part V Using Oracle Features in a Multitenant Environment
	20 Backing Up and Recovering CDBs and PDBs
	Overview of Backing Up and Recovering CDBs and PDBs
	Backup and Complete Recovery of CDBs
	Backup and Complete Recovery of PDBs
	Point-in-Time Recovery in a Multitenant Environment
	Flashback Database in a Multitenant Environment

	21 Using Database Utilities in a Multitenant Environment
	Importing and Exporting Data in a CDB
	About Using Data Pump in a Multitenant Environment
	Using Data Pump to Move Data Into a CDB
	Using Data Pump to Move PDBs Within Or Between CDBs

	Using LogMiner in a CDB
	LogMiner V⁠$ Views and DBA Views in a CDB
	The V⁠$LOGMNR_CONTENTS View in a CDB
	Enabling Supplemental Logging in a CDB
	Using a Flat File Dictionary in a CDB

	DBNEWID Considerations for CDBs and PDBs

	22 Using Oracle Resource Manager for PDBs
	Overview of Oracle Resource Manager in a Multitenant Environment
	Purpose of Resource Management in a Multitenant Environment
	Overview of Resource Plan Directives
	PDB Performance Profiles
	Resource Plan Directives

	Background and Administrative Tasks and Consumer Groups
	Initialization Parameters for PDB-Level Resources
	CPU-Related Initialization Parameters for PDBs
	Memory-Related Initialization Parameters for PDBs
	Session-Related Initialization Parameters for PDBs
	I/O-Related Initialization Parameters for PDBs

	Managing CDB Resource Plans
	About CDB Resource Plans
	Shares for Allocating Resources to PDBs
	Utilization Limits for PDBs
	The Default Directive for PDBs

	Creating a CDB Resource Plan for Managing PDBs
	Creating a CDB Resource Plan for Managing PDBs: Scenario
	Creating a CDB Resource Plan with PDB Performance Profiles
	Creating a CDB Resource Plan for PDB Performance Profiles: Scenario
	Enabling a CDB Resource Plan
	Modifying a CDB Resource Plan
	Updating a CDB Resource Plan
	Managing CDB Resource Plan Directives for a PDB
	Creating New CDB Resource Plan Directives for a PDB
	Updating CDB Resource Plan Directives for a PDB
	Deleting CDB Resource Plan Directives for a PDB

	Managing CDB Resource Plan Directives for a PDB Performance Profile
	Creating New CDB Resource Plan Directives for a PDB Performance Profile
	Updating CDB Resource Plan Directives for a PDB Performance Profile
	Deleting CDB Resource Plan Directives for a PDB Performance Profile

	Updating the Default Directive for PDBs in a CDB Resource Plan
	Updating the Default Directive for Maintenance Tasks in a CDB Resource Plan
	Deleting a CDB Resource Plan

	Disabling a CDB Resource Plan
	Viewing Information About Plans and Directives in a CDB
	Viewing CDB Resource Plans
	Viewing CDB Resource Plan Directives

	Managing PDB Resource Plans
	About PDB Resource Plans
	CDB Resource Plan Requirements When Creating PDB Resource Plans
	PDB Resource Plan: Example

	Creating a PDB Resource Plan
	Enabling a PDB Resource Plan
	Modifying a PDB Resource Plan
	Disabling a PDB Resource Plan

	Monitoring PDBs Managed by Oracle Database Resource Manager
	About Resource Manager Views for PDBs
	Monitoring CPU Usage for PDBs
	Monitoring Parallel Execution for PDBs
	Monitoring the I/O Generated by PDBs
	Monitoring Memory Usage for PDBs

	23 Using Oracle Scheduler with a CDB
	DBMS_SCHEDULER Invocations in a CDB
	Job Coordinator and Slave Processes in a CDB
	DBMS_JOB and DBMS_SCHEDULER
	Processes to Close a PDB
	New and Changed CDB Views

	24 Using Oracle Database Vault with a CDB
	About Oracle Database Vault
	How Oracle Database Vault Works in a Multitenant Environment
	Verifying That Database Vault Is Configured and Enabled
	Registering Oracle Database Vault with an Oracle Database in a Multitenant Environment
	Registering Database Vault in the CDB Root
	Registering Database Vault Common Users to Manage Specific PDBs
	Registering Database Vault Local Users to Manage Specific PDBs
	Plugging in a Database Vault-Enabled PDB
	Manually Installing Oracle Database Vault in a Multitenant Environment

	Configuring Realms
	What Are Realms?
	About Realms
	Realms in a Multitenant Environment

	Realm Authorizations in a Multitenant Environment

	Rule Sets and Rules in a Multitenant Environment
	Command Rules in a Multitenant Environment
	Oracle Database Vault Policies in a Multitenant Environment
	Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data
	About Using Database Vault Operations Control
	Enabling Database Vault Operations Control
	Adding Common Users and Packages to an Exception List
	Deleting Common Users and Packages from an Exception List
	Disabling Database Vault Operations Control

	Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB

	25 Using XStream with a CDB
	About XStream
	System-Created Rules and a Multitenant Environment
	System-Created Rules in a CDB and XStream Out
	System-Created Rules in a CDB and XStream In

	XStream Out and a Multitenant Environment
	Configuring XStream Out in a CDB
	Configuring XStream Out with Local Capture in a CDB
	Configuring XStream Out with Downstream Capture in CDBs

	XStream In and a Multitenant Environment

	Glossary
	application
	application common object
	application common user
	application container
	application patch
	application PDB
	application root
	application seed
	application upgrade
	CDB
	CDB administrator
	CDB fleet
	CDB restore point
	CDB root
	clean restore point
	common object
	common user
	container
	container data object
	cross-container operation
	data link
	database consolidation
	data-linked common object
	extended data-linked common object
	Fast Application Notification (FAN)
	hot cloning
	lead CDB
	local undo mode
	local user
	metadata link
	metadata-linked common object
	multitenant architecture
	multitenant container database (CDB)
	non-CDB
	Oracle Multitenant
	PDB
	PDB administrator
	PDB archive file
	PDB lockdown profile
	PDB performance profile
	PDB restore point
	PDB snapshot
	PDB synchronization
	PDB/non-CDB compatibility guarantee
	pluggable database (PDB)
	proxy PDB
	referenced PDB
	refreshable clone PDB
	resource plan
	resource plan directive
	seed PDB
	shared undo mode
	snapshot copy PDB
	split mirror clone PDB
	Enter the your glossary term here.
	system container
	unplugged PDB

	Index

