
Oracle® Database
Using Oracle Sharding

19c
E87088-10
October 2022

Oracle Database Using Oracle Sharding, 19c

E87088-10

Copyright © 2018, 2022, Oracle and/or its affiliates.

Primary Authors: Virginia Beecher, Roopam Jain

Contributors: Shailesh Dwivedi, Jean-Francois Verrier, Prakash Jashnani, Pankaj Chandiramani, Mark
Dilman, Nourdine Benadjaoud, Rennie Sreekumar Ranjit Kumar , David Colello , Steve Ball, Abhishek
Srivastava, Sebastian Binek, Shahab Hamid

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Oracle Sharding Overview

What is Sharding 1-1

About Oracle Sharding 1-1

Oracle Sharding as Distributed Partitioning 1-2

Benefits of Oracle Sharding 1-3

Example Applications using Database Sharding 1-4

Flexible Deployment Models 1-5

High Availability in Oracle Sharding 1-5

Sharding Methods 1-6

Client Request Routing 1-6

Query Execution 1-7

High Speed Data Ingest 1-7

Deployment Automation 1-7

Data Pump Migration 1-7

Lifecycle Management of Shards 1-7

2 Oracle Sharding Architecture and Concepts

Components of the Oracle Sharding Architecture 2-1

Sharded Database and Shards 2-1

Shard Catalog 2-2

Shard Director 2-3

Global Service 2-3

Partitions, Tablespaces, and Chunks 2-3

Tablespace Sets 2-5

Sharding Methods 2-6

System-Managed Sharding 2-6

User-Defined Sharding 2-9

Composite Sharding 2-11

Using Subpartitions with Sharding 2-13

Sharded Database Schema Objects 2-16

Sharded Tables 2-16

Sharded Table Family 2-18

iii

How a Table Family Is Sharded 2-18

Designing Schemas With Multiple Table Families 2-19

Duplicated Tables 2-21

Non-Table Objects Created on All Shards 2-22

Shard-Level High Availability 2-23

About Sharding and Replication 2-23

Using Oracle Data Guard with a Sharded Database 2-24

Using Oracle GoldenGate with a Sharded Database 2-29

Query Processing and the Query Coordinator 2-32

Client Application Request Routing 2-34

Management Interfaces for a Sharded Database 2-35

3 Sharded Database Deployment

Introduction to Sharded Database Deployment 3-1

Choosing a Shard Creation Method 3-1

Sharded Database Deployment Roadmap 3-2

Provision and Configure Hosts and Operating Systems 3-3

Install the Oracle Database Software 3-5

Install the Shard Director Software 3-6

Create the Shard Catalog Database 3-6

Create the Shard Databases 3-11

Configure the Sharded Database Topology 3-17

Create the Shard Catalog 3-18

Add and Start Shard Directors 3-20

Add Shardspaces If Needed 3-21

Add Shardgoups If Needed 3-21

Verify the Sharding Topology 3-22

Add the Shard CDBs 3-23

Add the Shards 3-24

Add Shards Using GDSCTL ADD SHARD 3-24

Add Shards Using GDSCTL CREATE SHARD 3-25

Add Host Metadata 3-28

Deploy the Sharding Configuration 3-29

Create and Start Global Database Services 3-32

Verify Shard Status 3-33

Example Sharded Database Deployment 3-33

Example Sharded Database Topology 3-34

Deploy the Example Sharded Database 3-36

Using Transparent Data Encryption with Oracle Sharding 3-38

iv

Creating a Single Encryption Key on All Shards 3-39

4 Using Oracle Database Sharding in Oracle Cloud Infrastructure

Deploy a Sharded Database on Kubernetes 4-1

Deploy a Sharded Database With Terraform 4-1

Deploy a Sharded Database with Docker 4-1

5 Sharded Database Schema Design

Sharded Database Schema Design Considerations 5-1

Choosing Sharding Keys 5-2

Primary Key and Foreign Key Constraints 5-5

Indexes on Sharded Tables 5-5

DDL Execution in a Sharded Database 5-5

Creating Objects Locally and Globally 5-6

DDL Syntax Extensions for Oracle Sharding 5-7

CREATE TABLESPACE SET 5-7

ALTER TABLESPACE SET 5-8

DROP TABLESPACE SET and PURGE TABLESPACE SET 5-8

CREATE TABLE 5-8

ALTER TABLE 5-11

ALTER SESSION 5-11

PL/SQL Procedure Execution in a Sharded Database 5-12

Creating Sharded Database Schema Objects 5-13

Create an All-Shards User 5-13

Creating a Sharded Table Family 5-14

Creating Sharded Tables 5-17

Creating Duplicated Tables 5-19

Updating Duplicated Tables and Synchronizing Their Contents 5-20

Schema Creation Examples 5-21

Create a System-Managed Sharded Database Schema 5-21

Create a User-Defined Sharded Database Schema 5-24

Create a Composite Sharded Database Schema 5-27

Monitor DDL Execution and Verify Object Creation 5-30

DDL Execution Failure and Recovery Examples 5-34

Generating Unique Sequence Numbers Across Shards 5-38

6 Migrating to a Sharded Database

Using Oracle Data Pump to Migrate to a Sharded Database 6-1

Migrating a Schema to a Sharded Database 6-1

v

Migrating the Sample Schema 6-3

Migrating Data to a Sharded Database 6-5

Loading the Sample Schema Data 6-7

Migrating Data Without a Sharding Key 6-10

Using External Tables to Load Data into a Sharded Database 6-11

Loading Data into Duplicated Tables 6-11

Loading Data into Sharded Tables 6-13

7 Query and DML Execution

How Database Requests are Routed to the Shards 7-1

Routing Queries and DMLs Directly to Shards 7-1

Routing Queries and DMLs by Proxy 7-2

Connecting to the Query Coordinator 7-3

Query Coordinator Operation 7-3

Query Processing for Single-Shard Queries 7-4

Query Processing for Multi-Shard Queries 7-5

Specifying Consistency Levels in a Multi-Shard Query 7-6

Supported Query Constructs and Example Query Shapes 7-6

Queries on Sharded Tables Only 7-7

Queries Involving Both Sharded and Duplicated Tables 7-7

Aggregate Functions Supported by Oracle Sharding 7-9

Queries with User-Defined Types 7-9

Execution Plans for Proxy Routing 7-11

Supported DMLs and Examples 7-13

Simple DMLs Where Only the Target Table is Referenced 7-13

DMLs Referencing Other Tables 7-13

Example Merge Statements 7-14

Limitations in Multi-Shard DML Support 7-15

Gathering Optimizer Statistics on Sharded Tables 7-16

8 Developing Applications for the Sharded Database

Direct Routing to a Shard 8-1

Suitability for Sharding of Existing Applications 8-2

Sharding APIs Supporting Direct Routing 8-2

Oracle JDBC APIs for Oracle Sharding 8-2

Oracle Call Interface for Oracle Sharding 8-4

Oracle Universal Connection Pool APIs for Oracle Sharding 8-4

Oracle Data Provider for .NET APIs for Oracle Sharding 8-7

vi

9 Sharded Database Administration

Managing the Sharding-Enabled Stack 9-1

Starting Up the Sharding-Enabled Stack 9-1

Shutting Down the Sharding-Enabled Stack 9-1

Managing Oracle Sharding Database Users 9-1

About the GSMUSER Account 9-1

About the GSMROOTUSER Account 9-2

Backing Up and Recovering a Sharded Database 9-2

Modifying a Sharded Database Schema 9-3

Propagation of Parameter Settings Across Shards 9-3

Migrating a Non-PDB Shard to a PDB 9-4

Managing Sharded Database Software Versions 9-5

Patching and Upgrading a Sharded Database 9-5

Upgrading Sharded Database Components 9-6

Downgrading a Sharded Database 9-7

Compatibility and Migration from Oracle Database 18c 9-7

Managing Oracle Sharded Database with Enterprise Manager Cloud Control 9-8

Prerequisite: Enable Sharded Database Metrics 9-9

Discovering Sharded Database Components 9-10

Overview of Sharded Database Management with Oracle Enterprise Manager Cloud
Control 9-11

Monitoring a Sharded Database 9-14

Querying System Objects Across Shards 9-14

Monitoring a Sharded Database with GDSCTL 9-15

Monitoring a Sharded Database with Enterprise Manager Cloud Control 9-15

Sharded Database Home Page 9-15

Data Distribution and Performance Page 9-18

Shard Management 9-22

About Adding Shards 9-22

Resharding and Hot Spot Elimination 9-23

Removing a Shard From the Pool 9-25

Adding Standby Shards 9-25

Managing Shards with Oracle Enterprise Manager Cloud Control 9-26

Validating a Shard 9-26

Adding Primary Shards 9-27

Adding Standby Shards 9-27

Deploying Shards 9-28

Managing Shards with GDSCTL 9-29

Validating a Shard 9-29

Adding Shards to a System-Managed SDB 9-30

Replacing a Shard 9-35

vii

Chunk Management 9-38

About Moving Chunks 9-38

Moving Chunks 9-39

About Splitting Chunks 9-39

Splitting Chunks 9-40

Shard Director Management 9-40

Creating a Shard Director 9-40

Editing a Shard Director Configuration 9-41

Removing a Shard Director 9-42

Region Management 9-42

Creating a Region 9-42

Editing a Region Configuration 9-43

Removing a Region 9-43

Shardspace Management 9-43

Creating a Shardspace 9-43

Adding a Shardspace to a Composite Sharded Database 9-44

Shardgroup Management 9-46

Creating a Shardgroup 9-46

Services Management 9-46

Creating a Service 9-46

10

Achieving Data Sovereignty with Oracle Sharding

Overview of Data Sovereignty 10-1

Benefits of Implementing Data Sovereignty with Oracle Sharding 10-1

Implementing Data Sovereignty with Oracle Sharding 10-2

Use Case of Achieving Data Sovereignty with Oracle Sharding 10-3

Overview of Oracle Sharding Solution 10-3

Deployment Topology of Data Sovereignty with Oracle Sharding 10-5

Configuring Data Sovereignty with Oracle Sharding 10-6

Configuring VCN Networks in All Three OCI Regions 10-6

Configuring Remote VCN Peering Between All Three Regions 10-6

Configuring Private DNS for Naming Resolution Between the Regions 10-7

Installing a Global Service Manager in Each Region 10-8

Collecting TNS entries for Shard Catalog and Sharded Databases 10-9

Configuring the Shard Catalog 10-9

Configuring the Shard Databases 10-10

Creating Oracle Sharding Global Database 10-11

viii

11

Troubleshooting Oracle Sharding

Troubleshooting Tips 11-1

Checking the Sharding Method 11-1

Checking the Replication Type 11-2

Checking the Oracle Data Guard Protection Mode 11-3

Checking Which Shards Are Mapped to a Key 11-3

Checking Shard Operation Mode (Read-Only or Read-Write) 11-4

Checking DDL Text 11-5

Checking Chunk Migration Status 11-5

Checking Table Type (Sharded or Duplicated) 11-6

Checking User Type (Local or ALL_SHARD) 11-7

Identifying Tables Created as Sharded Tablespaces 11-7

Checking if Shard DDL is Enabled or Disabled 11-7

Filtering Data by Sharding Key 11-8

Setting the Duplicated Table Refresh Rate 11-9

Oracle Sharding Tracing and Debug Information 11-9

Enabling Tracing for Oracle Sharding 11-9

Where to Find Oracle Sharding Alert Logs and Trace Files 11-10

Common Error Patterns and Resolutions for Sharded Databases 11-11

Issues Starting Remote Scheduler Agent 11-11

Shard Director Fails to Start 11-11

Errors From Shards Created with CREATE SHARD 11-12

Issues Using Create Shard 11-13

Issues Using Deploy Command 11-14

12

Oracle Sharding Reference

Using GDSCTL with Oracle Sharding 12-1

Starting GDSCTL 12-1

Running GDSCTL Commands Interactively 12-1

Running GDSCTL Batch Operations 12-1

GDSCTL Help Text 12-2

GDSCTL Connections 12-2

GDSCTL Shard Catalog Connections 12-2

GDSCTL Shard Director Connections 12-2

GDSCTL Commands Used with Oracle Sharding 12-3

ix

Preface

Review the following topics to:

• Discover how you can use this document to learn about Oracle Sharding

• Get accessibility information for this document

• See a list of related documents that may help you design, develop, deploy, and
manage your Oracle Sharding environment

• Learn about typographic conventions used in this document

Audience
This document was written with a wide variety of audienaces in mind. System and
application architects can use it to evaluate Oracle Sharding suitability for their
requirements. IT managers can scope out the work needed to implement Oracle
Sharding for proof of concept and production deployments. Database administrators
can find information to help them deploy and maintain a sharded database. Application
developers can learn about any code changes for using Oracle Sharding. Finally,
business analysts can use this document as a guide to figure out costing for an Oracle
Sharding implementation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the Oracle database documentation set. These books may
be of particular interest:

• Oracle Database Global Data Services Concepts and Administration Guide

• Oracle Database Administrator’s Guide

• Oracle Data Guard Concepts and Administration

• Oracle Data Guard Broker

• Using the Oracle GoldenGate Microservices Architecture

• Oracle Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

Audience

10

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Oracle Call Interface Programmer's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Conventions

11

Changes in This Release for Oracle
Sharding

This preface contains:

Changes in Oracle Database 19c
The following are changes in Using Oracle Sharding for Oracle Database 19c.

New Features
The following features are new in this release:

Multiple Table Family Support for System-Managed Sharding
The Oracle Sharding feature for Oracle Database 18c supported only one table family
(a set of related tables sharing the same sharding key) for each sharded database. In
Oracle Database 19c, Oracle Sharding includes support for multiple table families
where all data from different table families reside in the same chunks. This feature
applies to system-managed sharded databases only. Different applications accessing
different table families can now be hosted on one sharded database.

There is one new GDSCTL command, CONFIG TABLE FAMILY, and several other
commands are extended to support this feature: ADD SERVICE, MODIFY SERVICE,
CONFIG SERVICE, CONFIG CHUNKS, STATUS ROUTING, and VALIDATE CATALOG.

There are no new SQL keywords or statements introduced with this feature; however,
some restrictions are changed with the use of CREATE SHARDED TABLE and TABLESPACE
SET.

See

• Sharded Table Family

• Oracle Database Global Data Services Concepts and Administration Guide

• Oracle Database SQL Language Reference

Support for Multiple PDB-Shards in the Same CDB
In Oracle Database 18c, Oracle Sharding introduced the capability for using a single
PDB in a CDB as a shard or a shard catalog database. In Oracle Database 19c,
Oracle Sharding enables you to use more than one PDB in a CDB for shards or shard
catalog databases, with certain restrictions. For example, this feature allows a CDB to
contain shard PDBs from different sharded databases (SDBs), each with their own
separate catalog databases.

See Compatibility and Migration from Oracle Database 18c for information about how
to migrate shard PDBs to 19c.

Changes in Oracle Database 19c

12

Generation of Unique Sequence Numbers Across Shards
Before Oracle Database 19c, if you needed a unique number across shards you had to
manage it yourself. In Oracle Database 19c, Oracle Sharding allows you to independently
generate sequence numbers on each shard which are unique across all shards.

To support this feature, new SEQUENCE object clauses, SHARD and NOSHARD, are included in the
SEQUENCE object DDL syntax.

See

• Generating Unique Sequence Numbers Across Shards

• Oracle Database SQL Language Reference

Support for Multi-Shard Query Coordinators on Shard Catalog Standbys
Before Oracle Database 19c, only the primary shard catalog database could be used as the
multi-shard query coordinator. In Oracle Database 19c you can also enable the multi-shard
query coordinator on Oracle Active Data Guard standbys of the shard catalog database. This
improves the scalability and availability of multi-shard query workload.

See

• Query Processing and the Query Coordinator

Propagation of Parameter Settings Across Shards
Before Oracle Database 19c, database administrators had to configure ALTER SYSTEM
parameter settings on each shard in a sharded database. This feature provides ease of
manageability by allowing administrators to centrally manage and propagate parameter
settings from the shard catalog to all of the database shards. Once settings are configured at
the shard catalog, they are automatically propagated to all shards of the sharded database.

See Propagation of Parameter Settings Across Shards

Deprecation and Desupport
The following features are deprecated or desupported in this release:

Desupport of Setting Passwords in GDSCTL Command Line
To enhance security, starting with Oracle Database 19c, the ability to specify passwords from
the Global Data Services Control Utility (GDSCTL) command-line when called from the
operating system prompt is no longer supported.

This desupport applies only to password changes where GDSCTL is called from a user
command-line prompt. For example, the following command is desupported:

$ gdsctl add database -connect inst1 -pwd gsm_password

Changes in Oracle Database 19c

13

Specifying the password from the GDSCTL utility itself is still valid. For example, the
following command is valid:

GDSCTL> add database -connect inst1 -pwd gsm_password

This deprecation addresses the security vulnerability when specifying passwords in
GDSCTL commands called from the operating system prompt.

Changes in Oracle Database 19c

14

1
Oracle Sharding Overview

Learn about what Oracle Sharding can do in this high level conceptual discussion.

Oracle Sharding capabilities and benefits are described in the following topics:

What is Sharding
Hyperscale computing is a computing architecture that can scale up or down quickly to meet
increased demand on the system. This architecture innovation was originally driven by
internet giants that run distributed sites and has been adopted by large-scale cloud providers.

Companies often achieve hyperscale computing using a technology called database
sharding, in which they distribute segments of a data set—a shard—across lots of databases
on lots of different computers.

Sharding uses a shared-nothing architecture in which shards share no hardware or software.
All of the shards together make up a single logical database, called a sharded database.

From the perspective of the application, a sharded database looks like a single database: the
number of shards, and the distribution of data across those shards, are completely
transparent to database applications. From the perspective of a database administrator, a
sharded database consists of multiple databases that can be managed collectively.

Figure 1-1 Distribution of a Table Across Database Shards

Sharded Table in Three Databases

Server B Server CServer A

Server

Unsharded Table in

 One Database

About Oracle Sharding
Oracle Sharding is a feature of Oracle Database that lets you automatically distribute and
replicate data across a pool of Oracle databases that share no hardware or software. Oracle
Sharding provides the best features and capabilities of mature RDBMS and NoSQL
databases, as described here.

• SQL language used for object creation, strict data consistency, complex joins, ACID
transaction properties, distributed transactions, relational data store, security, encryption,
robust performance optimizer, backup and recovery, and patching with Oracle Database

1-1

• Oracle innovations and enterprise-level features, including Advanced Security,
Automatic Storage Management (ASM), Advanced Compression, partitioning,
high-performance storage engine, SMP scalability, Oracle RAC, Exadata, in-
memory columnar, online redefinition, JSON document store, and so on

• Sharding-aware Oracle Database tools, such as SQL Developer, Enterprise
Manager Cloud Control, Recovery Manager (RMAN), and Data Pump, for sharded
database application development and management

• Programmatic interfaces, such as Java Database Connectivity (JDBC), Oracle Call
Interface (OCI), Universal Connection Pool (UCP), Oracle Data Provider for .NET
(ODP.NET), and PL/SQL, including extensions for sharded application
development

• Extreme availability with Oracle Data Guard and Active Data Guard.

Note:

Oracle GoldenGate replication support for Oracle Sharding High
Availability is deprecated in Oracle Database 21c.

• Support for multi-model data like relational, text, and JSON

• Existing life-cycle management and operational processes can be kept, leveraging
in-house and world-wide Oracle database administrator skill sets

• Enterprise-level support

• Extreme scalability and availability of NoSQL databases

Oracle Sharding as Distributed Partitioning
Sharding is a database scaling technique based on horizontal partitioning of data
across multiple independent physical databases. Each physical database in such a
configuration is called a shard.

From the perspective of an application, a sharded database in Oracle Sharding looks
like a single database; the number of shards, and the distribution of data across those
shards, are completely transparent to the application.

Even though a sharded database looks like a single database to applications and
application developers, from the perspective of a database administrator, a sharded
database consists of a set of discrete Oracle databases, each of which is a single
shard, that can be managed collectively.

A sharded table is partitioned across all shards of the sharded database. Table
partitions on each shard are not different from partitions that could be used in an
Oracle database that is not sharded.

The following figure shows the difference between partitioning on a single logical
database and partitions distributed across multiple shards.

Chapter 1
Oracle Sharding as Distributed Partitioning

1-2

Figure 1-2 Sharding as Distributed Partitioning

Single Logical Database Multiple Physical Shards

1 2 3

Partitions

4 5

6 7 8 9 10

9 10

11 12

11 12 13 14 15

16 17 18 19 20

Partitions

13 14

15 16

Partitions

17 18

19 20

Partitions

1 2

3 4

Partitions

5 6

7 8

Partitions

Oracle Sharding automatically distributes the partitions across shards when you execute the
CREATE SHARDED TABLE statement, and the distribution of partitions is transparent to
applications. The figure above shows the logical view of a sharded table and its physical
implementation.

Benefits of Oracle Sharding
Oracle Sharding provides linear scalability, complete fault isolation, and global data
distribution for the most demanding applications.

Key benefits of Oracle Sharding include:

• Linear Scalability

The Oracle Sharding shared–nothing architecture eliminates performance bottlenecks
and provides unlimited scalability. Oracle Sharding supports scaling up to 1000 shards.

• Extreme Availability and Fault Isolation

Single points of failure are eliminated because shards do not share resources such as
software, CPU, memory, or storage devices. The failure or slow-down of one shard does
not affect the performance or availability of other shards.

Shards are protected by Oracle MAA best practice solutions, such as Oracle Data Guard
and Oracle RAC.

An unplanned outage or planned maintenance of a shard impacts only the availability of
the data on that shard, so only the users of that small portion of the data are affected, for
example, during a failover brownout.

• Geographical Distribution of Data

Sharding enables Global Database where a single logical database could be distributed
over multiple geographies. This makes it possible to satisfy data privacy regulatory
requirements (Data Sovereignty) as well as allows to store particular data close to its
consumers (Data Proximity).

Chapter 1
Benefits of Oracle Sharding

1-3

Example Applications using Database Sharding
Oracle Sharding provides benefits for a variety of use cases.

Real Time OLTP

Real time OLTP applications have a very high transaction processing throughput, a
large user population, huge amounts of data, and require strict data consistency and
management at scale. Some examples include internet-facing consumer applications,
financial applications such as mobile payments, large scale SaaS applications such as
billing and medical applications. The benefits of using Oracle Sharding for such
applications include:

• Linear scalability of transactions per second, with response time staying constant
as new shards are added to support larger data volume

• Better application SLAs, because planned and unplanned outages on any given
shard does not impact the data stored and available on other shards

• Strict data consistency for transactional applications

• Transactions spanning multiple shards

• Support for complex joins, triggers, and stored procedures

• Simplified manageability at scale

Global Applications

Many enterprise applications are global in nature, where the same application serves
customers in multiple geographic locations. Such applications typically use a single
logical global database which is shared across multiple geographical regions. The
benefits of a shared global database include:

• Strict enforcement of data sovereignty, where data privacy regulations require data
to stay in a certain geographic location, region, country, or even state.

• Reduction of data replication across locations

• Better application SLAs, because planned and unplanned outages in one region
do not impact other regions

Internet of Things and Data Streaming Applications

Typically such applications collect large amounts of data and stream it at a very high
speed. Oracle Sharding has optimized data stream libraries which use Oracle
Database's direct path I/O technology to load data into the sharded database with
extremely high speed. Data load requirements for these applications can be in to 100s
of millions of records per second. Once the data is loaded directly into the database, it
is available for immediate processing with advanced query processing and analytic
capabilities.

Machine Learning

Many machine learning applications require training and scoring of models in real time.
Model training and scoring for many applications using algorithms like anomaly
detection, and clustering is specific to a given entity (for example, a given user's
financial transaction patterns or specific device metrics at a certain time of the day).
This kind of data can easily be shared by using a sharding key specific to the user or
devices. Additionally, Oracle Database Machine Learning algorithms can be applied

Chapter 1
Example Applications using Database Sharding

1-4

directly in the database obviating the need for a separate data pipeline and machine learning
processing infrastructure.

Big Data Analytics

When you have terabytes of data, sharding means you don't have to warehouse data to do
analytics on it. With up to 1000 shards in capacity, Oracle Sharding can turn a relational
database into a warehouse-sized data store. With the Federated Sharding solution, multiple
database installations in different locations that run the same application can be converted
into a federated sharded database so that you can run data analytics without moving the
data.

NoSQL Alternative

NoSQL solutions lack major RDBMS features, such as relational schema, SQL, complex data
types, online schema changes, multi-core scalability, security, ACID properties, CR for single-
shard operations, and so on. With Oracle Sharding you get the nearly limitless scaling and
sharding you had with NoSQL and all of the features and benefits of Oracle Database.

Flexible Deployment Models
The shared-nothing architecture of Oracle Sharding lets you keep your data on-premises, in
the cloud, or on a hybrid of cloud and on-premises systems. Because the database shards do
not share any resources, the shards can exist anywhere on a variety of on-premises and
cloud systems.

You can choose to deploy all of the shards on-premises, have them all in the cloud, or you
can split them up between cloud and on-premises systems to suit your needs.

Shards can be deployed on all database deployment models such as single instance,
Exadata, and Oracle RAC.

High Availability in Oracle Sharding
Oracle Sharding is tightly integrated with Oracle Data Guard to provide high availability and
disaster recovery. Replication is automatically configured and deployed when the sharded
database is created.

Oracle Data Guard replication maintains one or more synchronized copies (standbys) of a
shard (the primary) for high availability and data protection. Standbys can be deployed locally
or remotely, and when using Oracle Active Data Guard can also be open for read-only
access. Use this option when application needs strict data consistency and zero data loss.

Oracle GoldenGate is used for fine-grained active-active replication. Though applications
must be able to deal with conflicts and data loss upon potential failover.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Optionally, you can use Oracle RAC for shard-level high availability, complemented by
replication, to maintain shard-level data availability in the event of a cluster outage. Each

Chapter 1
Flexible Deployment Models

1-5

shard can be deployed on an Oracle RAC cluster to give it instant protection from
node failure. For example, each shard could be a two node Oracle RAC cluster.

Sharding Methods
Because Oracle Sharding is based on table partitioning, all of the sub-partitioning
methods provided by Oracle Database are also supported by Oracle Sharding. A data
sharding method controls the placement of the data on the shards. Oracle Sharding
supports system-managed, user defined, or composite sharding methods.

• System-managed sharding does not require you to map data to shards. The
data is automatically distributed across shards using partitioning by consistent
hash. The partitioning algorithm uniformly and randomly distributes data across
shards.

• User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons,
certain data needs to be stored on a particular shard, and the administrator needs
to have full control over moving data between shards.

• Composite sharding allows you to use two levels of sharding. First the data is
sharded by range or list and then it is sharded further by consistent hash.

In many use cases, especially for data sovereignty and data proximity
requirements, the composite sharding method offers the best of both system-
managed and user-defined sharding methods, giving you the automation you want
and the control over data placement you need.

Client Request Routing
Oracle Sharding supports direct, key-based routing from an application to a shard,
routing by proxy with the shard catalog, and routing to middle tiers, such as application
containers, web containers, and so on, which are affinitized with shards. Oracle
Database client drivers and connection pools are sharding aware.

• Key-based routing. Oracle client-side drivers (JDBC, OCI, UCP, ODP.NET) can
recognize sharding keys specified in the connection string for high performance
data dependent routing. A shard routing cache in the connection layer is used to
route database requests directly to the shard where the data resides.

• Routing by proxy. Oracle Sharding supports routing for queries that do not
specify a sharding key, giving any database application the flexibility to run SQL
statements, without specifying the shards on which the query should be executed.
Proxy routing can handle single-shard queries and multi-shard queries.

• Middle-tier routing. In addition to sharding the data tier, you can shard the web
tier and application tier, distributing the shards of those middle tiers to service a
particular set of database shards, creating a pattern known as a swim lane. A
smart router can route client requests based on specific sharding keys to the
appropriate swim lane, which in turn establishes connections on its subset of
shards.

Chapter 1
Sharding Methods

1-6

Query Execution
No changes to query and DML statements are required to support Oracle Sharding. Most
existing DDL statements will work the same way on a sharded database with the same
syntax and semantics as they do on a non-sharded Oracle Database.

In the same way that DDL statements can be executed on all shards in a configuration, so
too can certain Oracle-provided PL/SQL procedures.

Oracle Sharding also has its own keywords in the SQL DDL statements, which can only be
run against a sharded database.

High Speed Data Ingest
SQL*Loader enables direct data loading into the database shards for a high speed data
ingest.

SQL*Loader is a bulk loader utility used for moving data from external files into the Oracle
database. Its syntax is similar to that of the DB2 load utility, but comes with more options.
SQL*Loader supports various load formats, selective loading, and multi-table loads. Other
benefits include:

• Streaming capability lets you receive data from a large group of clients without blocking

• Group records according to Oracle RAC shard affinity using native UCP

• Optimize CPU allocation while decoupling record processing from I/O

• Fastest insert method for the Oracle Database through Direct Path Insert, bypassing SQL
and writing directly in the database files

Deployment Automation
Sharded database deployment is highly automated with Terraform, Kubernetes, and Ansible
scripts.

The deployment scripts take a simple input file describing your desired deployment topology,
and run from a single host to deploy shards to all of the sharded database hosts. Pause,
resume, and cleanup operations are included in the scripts in case of errors.

Data Pump Migration
Oracle Data Pump is sharding aware and is used to migrate data from a non-sharded Oracle
database to a sharded Oracle database.

You can load data directly into the shards by running Oracle Data Pump on each shard. This
method is very fast because the entire data loading operation can complete within the period
of time needed to load the shard with the maximum subset of the entire data set.

Lifecycle Management of Shards
The Oracle Sharding command-line interface and Oracle Enterprise Manager help you
manage your sharded database.

Chapter 1
Query Execution

1-7

Using the tools provided you can:

• Provision new sharded databases with scripts

• Scale out as needed by adding more shards online and take advantage of
automatic rebalancing

• Scale in by moving data and consolidating hardware when loads are low

• Monitor performance statistics using Enterprise Manager

• Back up for disaster recovery using Cloud Backup Service, RMAN, and Zero Data
Loss Recovery Appliance

• Patches and Upgrades automated with oPatchAuto in rolling mode

Chapter 1
Lifecycle Management of Shards

1-8

2
Oracle Sharding Architecture and Concepts

Components of the Oracle Sharding Architecture
The following figure illustrates the major architectural components of Oracle Sharding, which
are described in the topics that follow.

Figure 2-1 Oracle Sharding Architecture

Connection
Pools

. . .

Sharded
Database

Shard

Shard
Catalog

Shard
Directors

Sharding Key
CustomerID=28459361

Sharded Database and Shards
A sharded database is a collection of shards.

A sharded database is a single logical Oracle Database that is horizontally partitioned across
a pool of physical Oracle Databases (shards) that share no hardware or software.

Each shard in the sharded database is an independent Oracle Database instance that hosts
subset of a sharded database's data. Shared storage is not required across the shards.

Shards can be hosted anywhere an Oracle database can be hosted. Oracle Sharding
supports all of the deployment choices for a shard that you would expect with a single

2-1

instance or clustered Oracle Database, including on-premises, any cloud platform,
Oracle Exadata Database Machine, virtual machines, and so on.

Shards can all be placed in one region or can be placed in different regions. A region
in the context of Oracle Sharding represents a data center or multiple data centers that
are in close network proximity.

Shards are replicated for high availability and disaster recovery with Oracle Data
Guard. For high availability, Data Guard standby shards can be placed in the same
region where the primary shards are placed. For disaster recovery, the standby shards
can be located in another region.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c.

Shard Catalog
A shard catalog is an Oracle Database that supports automated shard deployment,
centralized management of a sharded database, and multi-shard queries.

A shard catalog serves following purposes

• Serves as an administrative server for entire shareded database

• Stores a gold copy of the database schema

• Manages multi-shard queries with a multi-shard query coordinator

• Stores a gold copy of duplicated table data

The shard catalog is a special-purpose Oracle Database that is a persistent store for
sharded database configuration data and plays a key role in centralized management
of a sharded database. All configuration changes, such as adding and removing
shards and global services, are initiated on the shard catalog. All DDLs in a sharded
database are executed by connecting to the shard catalog.

The shard catalog also contains the master copy of all duplicated tables in a sharded
database. The shard catalog uses materialized views to automatically replicate
changes to duplicated tables in all shards. The shard catalog database also acts as a
query coordinator used to process multi-shard queries and queries that do not specify
a sharding key.

Multiple shard catalogs can be deployed for high availability purposes. Using Oracle
Data Guard for shard catalog high availability is a recommended best practice.

At run time, unless the application uses key-based queries, the shard catalog is
required to direct queries to the shards. Sharding key-based transactions continue to
be routed and executed by the sharded database and are unaffected by a catalog
outage.

During the brief period required to complete an automatic failover to a standby shard
catalog, downtime affects the ability to perform maintenance operations, make schema
changes, update duplicated tables, run multi-shard queries, or perform other
operations like add shard, move chunks, and so on, which induce topology change.

Chapter 2
Components of the Oracle Sharding Architecture

2-2

Shard Director
Shard directors are network listeners that enable high performance connection routing based
on a sharding key.

Oracle Database 12c introduced the global service manager to route connections based on
database role, load, replication lag, and locality. In support of Oracle Sharding, global service
managers support routing of connections based on data location. A global service manager,
in the context of Oracle Sharding, is known as a shard director.

A shard director is a specific implementation of a global service manager that acts as a
regional listener for clients that connect to a sharded database. The director maintains a
current topology map of the sharded database. Based on the sharding key passed during a
connection request, the director routes the connections to the appropriate shard.

For a typical sharded database, a set of shard directors are installed on dedicated low-end
commodity servers in each region. To achieve high availability and scalability, deploy multiple
shard directors. You can deploy up to 5 shard directors in a given region.

The following are the key capabilities of shard directors:

• Maintain runtime data about sharded database configuration and availability of shards

• Measure network latency between its own and other regions

• Act as a regional listener for clients to connect to a sharded database

• Manage global services

• Perform connection load balancing

Global Service
A global service is a database service that is use to access data in a sharded database.

A global service is an extension to the notion of the traditional database service. All of the
properties of traditional database services are supported for global services. For sharded
databases, additional properties are set for global services — for example, database role,
replication lag tolerance, region affinity between clients and shards, and so on. For a read-
write transactional workload, a single global service is created to access data from any
primary shard in a sharded database. For highly available shards using Active Data Guard, a
separate read-only global service can be created.

Partitions, Tablespaces, and Chunks
Distribution of partitions across shards is achieved by creating partitions in tablespaces that
reside on different shards.

Each partition of a sharded table is stored in a separate tablespace, making the tablespace
the unit of data distribution in an SDB.

As described in Sharded Table Family, to minimize the number of multi-shard joins,
corresponding partitions of all tables in a table family are always stored in the same shard.
This is guaranteed when tables in a table family are created in the same set of distributed
tablespaces as shown in the syntax examples where tablespace set ts1 is used for all tables.

Chapter 2
Partitions, Tablespaces, and Chunks

2-3

However, it is possible to create different tables from a table family in different
tablespace sets, for example the Customers table in tablespace set ts1 and Orders in
tablespace set ts2. In this case, it must be guaranteed that the tablespace that stores
partition 1 of Customers always resides in the same shard as the tablespace that
stores partition 1 of Orders.

To support this functionality, a set of corresponding partitions from all of the tables in a
table family, called a chunk, is formed. A chunk contains a single partition from each
table of a table family. This guarantees that related data from different sharded tables
can be moved together. In other words, a chunk is the unit of data migration between
shards. In system-managed and composite sharding, the number of chunks within
each shard is specified when the sharded database is created. In user-defined
sharding, the total number of chunks is equal to the number of partitions.

A chunk that contains corresponding partitions from the tables of Cutomers-Orders-
LineItems schema is shown in the following figure.

Figure 2-2 Chunk as a Set of Partitions

Customers_P1 (1-1000000) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Each shard contains multiple chunks as shown in the following figure.

Chapter 2
Partitions, Tablespaces, and Chunks

2-4

Figure 2-3 Contents of a Shard

Customers_P1 (1-1M) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Customers_P6 (5000001-6M) Orders_P6 Lineitems_P6
Chunk #6

Sharded
Tables

Customers_P11(10000001-11M) Orders_P11 Lineitems_P11
Chunk #11

Sharded
Tables

Stockitems (Duplicated Table)

Shard

In addition to sharded tables, a shard can also contain one or more duplicated tables.
Duplicated tables cannot be stored in tablespaces that are used for sharded tables.

Tablespace Sets
Oracle Sharding creates and manages tablespaces as a unit called a TABLESPACE SET.

System-managed and composite sharding use TABLESPACE SET, while user-defined sharding
uses regular tablespaces.

A tablespace is a logical unit of data distribution in a sharded database. The distribution of
partitions across shards is achieved by automatically creating partitions in tablespaces that
reside on different shards. To minimize the number of multi-shard joins, the corresponding
partitions of related tables are always stored in the same shard. Each partition of a sharded
table is stored in a separate tablespace.

Chapter 2
Tablespace Sets

2-5

The PARTITIONS AUTO clause specifies that the number of partitions should be
automatically determined. This type of hashing provides more flexibility and efficiency
in migrating data between shards, which is important for elastic scalability.

The number of tablespaces created per tablespace set is determined based on the
number of chunks that were defined for the shardspace during deployment.

Note:

Only Oracle Managed Files are supported by tablespace sets.

Individual tablespaces cannot be dropped or altered independently of the
entire tablespace set.

TABLESPACE SET cannot be used with the user-defined sharding method.

Sharding Methods
The following topics discuss sharding methods supported by Oracle Sharding, how to
choose a method, and how to use subpartitioning.

System-Managed Sharding
System-managed sharding is a sharding method which does not require the user to
specify mapping of data to shards. Data is automatically distributed across shards
using partitioning by consistent hash. The partitioning algorithm evenly and randomly
distributes data across shards.

The distribution used in system-managed sharding is intended to eliminate hot spots
and provide uniform performance across shards. Oracle Sharding automatically
maintains the balanced distribution of chunks when shards are added to or removed
from an SDB.

Consistent hash is a partitioning strategy commonly used in scalable distributed
systems. It is different from traditional hash partitioning. With traditional hashing, the
bucket number is calculated as HF(key) % N where HF is a hash function and N is the
number of buckets. This approach works fine if N is constant, but requires reshuffling
of all data when N changes.

More advanced algorithms, such as linear hashing, do not require rehashing of the
entire table to add a hash bucket, but they impose restrictions on the number of
buckets, such as the number of buckets can only be a power of 2, and on the order in
which the buckets can be split.

The implementation of consistent hashing used in Oracle Sharding avoids these
limitations by dividing the possible range of values of the hash function (for example.
from 0 to 232) into a set of N adjacent intervals, and assigning each interval to a
chunk , as shown in the figure below. In this example, the SDB contains 1024 chunks,
and each chunk gets assigned a range of 222 hash values. Therefore partitioning by
consistent hash is essentially partitioning by the range of hash values.

Chapter 2
Sharding Methods

2-6

Figure 2-4 Ranges of Hash Values Assigned to Chunks

Chunk #1024

429496672964290772992 41943040

...

8388608

...Chunk #2...Chunk #1

Assuming that all of the shards have the same computing power, an equal number of chunks
is assigned to each shard in the SDB. For example, if 1024 chunks are created in an SDB
that contains 16 shards, each shard will contain 64 chunks.

In the event of resharding, when shards are added to or removed from an SDB, some of the
chunks are relocated among the shards to maintain an even distribution of chunks across the
shards. The contents of the chunks does not change during this process; no rehashing takes
place.

When a chunk is split, its range of hash values is divided into two ranges, but nothing needs
to be done for the rest of the chunks. Any chunk can be independently split at any time.

All of the components of an SDB that are involved in directing connection requests to shards
maintain a routing table that contains a list of chunks hosted by each shard and ranges of
hash values associated with each chunk. To determine where to route a particular database
request, the routing algorithm applies the hash function to the provided value of the sharding
key, and maps the calculated hash value to the appropriate chunk, and then to a shard that
contains the chunk.

The number of chunks in an SDB with system-managed sharding can be specified in the
GDSCTL command, CREATE SHARDCATALOG. If not specified, the default value, 120 chunks per
shard, is used. Once an SDB is deployed, the number of chunks can only be changed by
splitting chunks.

Before creating a sharded table partitioned by consistent hash, a set of tablespaces (one
tablespace per chunk) has to be created to store the table partitions. The tablespaces are
automatically created by executing the SQL statement, CREATE TABLESPACE SET.

All of the tablespaces in a tablespace set have the same physical attributes and can only
contain Oracle Managed Files (OMF). In its simplest form, the CREATE TABLESPACE SET
statement has only one parameter, the name of the tablespace set, for example:

CREATE TABLESPACE SET ts1;

In this case each tablespace in the set contains a single OMF file with default attributes. To
customize tablespace attributes, the USING TEMPLATE clause (shown in the example below) is
added to the statement. The USING TEMPLATE clause specifies attributes that apply to each
tablespace in the set.

CREATE TABLESPACE SET ts1
USING TEMPLATE
(
 DATAFILE SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K
 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE

Chapter 2
Sharding Methods

2-7

)
;

After a tablespace set has been created, a table partitioned by consistent hash can be
created with partitions stored in the tablespaces that belong to the set. The CREATE
TABLE statement might look as follows:

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

PARTITIONS AUTO in this statement means that the number of partitions is
automatically set to the number of tablespaces in the tablespace set ts1 (which is
equal to the number of chunks) and each partition will be stored in a separate
tablespace.

Each tablespace in a tablespace set belongs to a distinct chunk. In the other words, a
chunk can contain only one tablespace from a given tablespace set. However, the
same tablespace set can be used for multiple tables that belong to the same table
family. In this case, each tablespace in the set will store multiple partitions, one from
each table.

Alternatively, each table in a table family can be stored in a separate tablespace set. In
this case, a chunk contains multiple tablespaces, one from each tablespace set with
each tablespace storing a single partition.

The following figure illustrates the relationship between partitions, tablespaces, and
shards for a use case with a single sharded table. In this case, each chunk contains a
single tablespace, and each tablespace stores a single partition.

Figure 2-5 System-Managed Sharding

Shard 1 Shard 2 Shard 3 Shard 4

P_1

tbs_1-1

P_120

tbs1-120

P_121

tbs1_121

P_240

tbs1-240

P_241

tbs1-241
.
.
.

.

.

.

.

.

.

.

.

.

P_360

tbs1-360

P_361

tbs1-361

P_480

tbs1-480

Tablespace Set tbs1

Chapter 2
Sharding Methods

2-8

Note:

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

User-Defined Sharding
User-defined sharding lets you explicitly specify the mapping of data to individual shards. It is
used when, because of performance, regulatory, or other reasons, certain data needs to be
stored on a particular shard, and the administrator needs to have full control over moving
data between shards.

For a user-defined sharded database, two replication schemes are supported: Oracle Data
Guard or Oracle Active Data Guard. User-defined sharding is not supported where Oracle
GoldenGate is used as the replication method.

Another advantage of user-defined sharding is that, in case of planned or unplanned outage
of a shard, the user knows exactly what data is not available. The disadvantage of user-
defined sharding is the need for the database administrator to monitor and maintain balanced
distribution of data and workload across shards.

With user-defined sharding, a sharded table can be partitioned by range or list. The CREATE
TABLE syntax for a sharded table is not very different from the syntax for a regular table,
except for the requirement that each partition should be stored in a separate tablespace.

 CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
)
;

There is no tablespace set for user-defined sharding. Each tablespace has to be created
individually and explicitly associated with a shardspace. A shardspace is set of shards that
store data that corresponds to a range or list of key values.

In user-defined sharding, a shardspace consists of a shard or a set of fully replicated shards.
See Shard-Level High Availability for details about replication with user-defined sharding. For
simplicity, assume that each shardspace consists of a single shard.

Chapter 2
Sharding Methods

2-9

The following statements can be used to create the tablespaces for the accounts table
in the example above.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE west;

CREATE TABLESPACE tbs3 IN SHARDSPACE central;
CREATE TABLESPACE tbs4 IN SHARDSPACE central;

CREATE TABLESPACE tbs5 IN SHARDSPACE east;
CREATE TABLESPACE tbs6 IN SHARDSPACE east;

Before executing the CREATE TABLESPACE statements, the shardspaces must be
created and populated with shards. For example, you can use the following GDSCTL
commands:

ADD SHARDSPACE -SHARDSPACE east
ADD SHARDSPACE -SHARDSPACE central
ADD SHARDSPACE -SHARDSPACE west
ADD SHARD –CONNECT shard-1 –SHARDSPACE west;
ADD SHARD –CONNECT shard-2 –SHARDSPACE central;
ADD SHARD –CONNECT shard-3 –SHARDSPACE east;

The following figure shows the mapping of partitions to tablespaces, and tablespaces
to shards, for the accounts table in the previous examples.

Figure 2-6 User-Defined Sharding

Shard 1 Shard 2 Shard 3

P_NorthWest

Tablespace tbs1

P_SouthWest

Tablespace tbs2

P_NorthCentral

Tablespace tbs3

P_SouthCentral

Shardspace Central

Tablespace tbs4

P_NorthEast

Tablespace tbs5

P_SouthEast

Tablespace tbs6

Shardspace EastShardspace West

As with system-managed sharding, tablespaces created for user-defined sharding are
assigned to chunks. However, no chunk migration is automatically started when a
shard is added to the SDB. The user needs to execute the GDSCTL MOVE CHUNK
command for each chunk that needs to be migrated.

The GDSCTL SPLIT CHUNK command, which is used to split a chunk in the middle of
the hash range for system-managed sharding, is not supported for user-defined
sharding. You must use the ALTER TABLE SPLIT PARTITION statement to split a chunk.

Chapter 2
Sharding Methods

2-10

Note:

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

Composite Sharding
The composite sharding method allows you to create multiple shardspaces for different
subsets of data in a table partitioned by consistent hash. A shardspace is set of shards that
store data that corresponds to a range or list of key values.

System-managed sharding uses partitioning by consistent hash to randomly distribute data
across shards. This provides better load balancing compared to user-defined sharding that
uses partitioning by range or list. However, system-managed sharding does not give the user
any control on assignment of data to shards.

When sharding by consistent hash on a primary key, there is often a requirement to
differentiate subsets of data within an SDB in order to store them in different geographic
locations, allocate to them different hardware resources, or configure high availability and
disaster recovery differently. Usually this differentiation is done based on the value of another
(non-primary) column, for example, customer location or a class of service.

Composite sharding is a combination of user-defined and system-managed sharding which,
when required, provides benefits of both methods. With composite sharding, data is first
partitioned by list or range across multiple shardspaces, and then further partitioned by
consistent hash across multiple shards in each shardspace. The two levels of sharding make
it possible to automatically maintain balanced distribution of data across shards in each
shardspace, and, at the same time, partition data across shardspaces.

For example, suppose you want to allocate three shards hosted on faster servers to “gold”
customers and four shards hosted on slower machines to “silver” customers. Within each set
of shards, customers have to be distributed using partitioning by consistent hash on customer
ID.

Chapter 2
Sharding Methods

2-11

Figure 2-7 Composite Sharding

Tablespace

Set tbs1

SHARD1

P_1

tbs1-1

P_120

tbs1-120

.

.

.

SHARD2

P_121

tbs1-121

P_240

tbs1-240

.

.

.

SHARD3

P_241

tbs1-241

P_360

tbs1-360

.

.

.

Shardspace for GOLD customers - shspace1

SHARD4

P_1

tbs2-1

P_120

tbs2-120

.

.

.

SHARD5

P_121

tbs2-121

P_240

tbs1-240

.

.

.

SHARD6

P_241

tbs2-241

P_360

tbs2-360

.

.

.

SHARD7

P_361

tbs2-361

P_480

tbs2-480

.

.

.

Shardspace for SILVER customers - shspace2

Tablespace

Set tbs2

Two shardspaces need to be created for such a configuration. For example, you can
use the following GDSCTL commands.

ADD SHARDSPACE –SHARDSPACE shspace1;
ADD SHARDSPACE –SHARDSPACE shspace2;

ADD SHARD –CONNECT shard1 –SHARDSPACE shspace1;
ADD SHARD –CONNECT shard2 –SHARDSPACE shspace1;
ADD SHARD –CONNECT shard3 –SHARDSPACE shspace1;

ADD SHARD –CONNECT shard4 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard5 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard6 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard7 –SHARDSPACE shspace2;

With composite sharding, as with the other sharding methods, tablespaces are used to
specify the mapping of partitions to shards. To place subsets of data in a sharded table
into different shardspaces, a separate tablespace set must be created in each
shardspace as shown in the following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

To store user-defined subsets of data in different tablespaces, Oracle Sharding
provides syntax to group partitions into sets and associate each set of partitions with a
tablespace set. Support for partition sets can be considered a logical equivalent of a

Chapter 2
Sharding Methods

2-12

higher level of partitioning which is implemented on top of partitioning by consistent hash.

The statement in the following example partitions a sharded table into two partition sets: gold
and silver, based on class of service. Each partition set is stored in a separate tablespace.
Then data in each partition set is further partitioned by consistent hash on customer ID.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH (cust_id)
 PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Note:

In Oracle Database 12c Release 2 only a single partition set from a table can be
stored in a shardspace.
The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

Using Subpartitions with Sharding
Because Oracle Sharding is based on table partitioning, all of the subpartitioning methods
provided by Oracle Database are also supported for sharding.

Subpartitioning splits each partition into smaller parts and may be beneficial for efficient
parallel execution within a shard, especially in the case of sharding by range or list when the
number of partitions per shard may be small.

From a manageability perspective, subpartitioning makes it possible to support the tiered
storage approach by putting subpartitions into separate tablespaces and moving them
between storage tiers. Migration of subpartitions between storage tiers can be done without
sacrificing the scalability and availability benefits of sharding and the ability to perform
partition pruning and partition-wise joins on a primary key.

The following example shows system-managed sharding by consistent hash combined with
subpartitioning by range.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)

Chapter 2
Sharding Methods

2-13

, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
TABLESPACE SET ts1
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/
YYYY')),
 SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/
YYYY')),
 SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/
YYYY')),
 SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
;

The following figure offers a graphical view of the table created by this statement.

Figure 2-8 Subpartitions Stored in the Tablespace of the Parent Partition

Shard 1 Shard 2 Shard 3

Partition 1

Sub-Partitions

Partition 2

Sub-Partitions

Partition 3

Sub-Partitions

Partition 4

Sub-Partitions

Partition 5

Sub-Partitions

Partition 6

Sub-Partitions

tbs1-1

tbs1-2

tbs1-3

tbs1-4

tbs1-5

tbs1-6

2 3 41 2 3 41 2 3 41

2 3 41 2 3 41 2 3 41

Tablespace

Set tbs1

In this example each subpartition is stored in the parent partition’s tablespace.
Because subpartitioning is done by date, it makes more sense to store subpartitions in
separate tablespaces to provide the ability to archive older data or move it to a read-
only storage. The appropriate syntax is shown here.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE(signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/

Chapter 2
Sharding Methods

2-14

YYYY'))
 TABLESPACE SET ts1,
 SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
 TABLESPACE SET ts2,
 SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
 TABLESPACE SET ts3,
 SUBPARTITION future VALUES LESS THAN (MAXVALUE)
 TABLESPACE SET ts4
)
PARTITIONS AUTO
;

Note that in the case of a database that is not sharded, when tablespaces are specified in the
subpartition template it means that subpartition N from every partition is stored in the same
tablespace. This is different in case of sharding when subpartitions that belong to the different
partitions must be stored in separate tablespaces so that they can be moved in the event of
resharding.

Subpartitioning can be used with composite sharding, too. In this case data in a table is
organized in three levels: partition sets, partitions, and subpartitions. Examples of the three
levels of data organization are shown below.

Specifying subpartition templates per partitionset is not supported to ensure that there is
uniformity in the number and bounds of subpartitions across partitionsets. If you need to
specify tablespaces for subpartitions per partitionset, you can use the SUBPARTITIONS STORE
IN clause.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3) NOT NULL
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class, signup_date)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
 SUBPARTITION TEMPLATE /* applies to both SHARDSPACEs */
 (SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))
 , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
 , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
 , SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
(
 PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1
 subpartitions store in(tbs1)
, PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2
 subpartitions store in(tbs2)
)
;

Chapter 2
Sharding Methods

2-15

Sharded Database Schema Objects
To obtain the benefits of sharding, the schema of a sharded database should be
designed in a way that maximizes the number of database requests executed on a
single shard. The following topics define and illustrate the schema objects that form a
sharded database to inform your design.

Sharded Tables
A database table is split up across the shards, so that each shard contains the table
with the same columns, but a different subset of rows. A table split up in this manner is
called a sharded table.

The following figure shows how a set of large tables (referred to as a table family),
shown in the one database on the left, can be horizontally partitioned across the three
shards shown on the right, so that each shard contains a subset of the data, indicated
with red, yellow, and blue rows.

Figure 2-9 Horizontal Partitioning of a Table Across Shards

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

Partitions are distributed across shards at the tablespace level, based on a sharding
key. Examples of keys include customer ID, account number, and country ID. The
following data types are supported for the sharding key.

Chapter 2
Sharded Database Schema Objects

2-16

• NUMBER
• INTEGER
• SMALLINT
• RAW
• (N)VARCHAR
• (N)VARCHAR2
• (N)CHAR
• DATE
• TIMESTAMP
Each partition of a sharded table resides in a separate tablespace, and each tablespace is
associated with a specific shard. Depending on the sharding method, the association can be
established automatically or defined by the administrator.

Even though the partitions of a sharded table reside in multiple shards, to the application, the
table looks and behaves exactly the same as a partitioned table in a single database. SQL
statements issued by an application never have to refer to shards or depend on the number
of shards and their configuration.

The familiar SQL syntax for table partitioning specifies how rows should be partitioned across
shards. For example, the following SQL statement creates a sharded table, horizontally
partitioning the table across shards based on the sharding key cust_id.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
,CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

The sharded table is partitioned by consistent hash, a special type of hash partitioning
commonly used in scalable distributed systems. This technique automatically spreads
tablespaces across shards to provide an even distribution of data and workload.

Note:

Global indexes on sharded tables are not supported, but local indexes are
supported.

Chapter 2
Sharded Database Schema Objects

2-17

Sharded Table Family
A sharded table family is a set of tables that are sharded in the same way. Often there
is a parent-child relationship between database tables with a referential constraint in a
child table (foreign key) referring to the primary key of the parent table.

Multiple tables linked by such relationships typically form a tree-like structure where
every child has a single parent. A set of such tables is referred to as a table family. A
table in a table family that has no parent is called the root table. There can be only one
root table in a table family.

How a Table Family Is Sharded
Sharding a table family is illustrated here with the Customers–Orders–LineItems
schema.

Before sharding, the tables in the schema may look as shown in the examples below.
The three tables have a parent-child relationship, with Customers as the root table.

Customers Table (Root) Before Sharding

CustNo Name Address Location Class
--------- ---------- -------------- --------- ------
123 Brown 100 Main St us3 Gold
456 Jones 300 Pine Ave us1 Silver
999 Smith 453 Cherry St us2 Bronze

Orders Table Before Sharding

OrderNo CustNo OrderDate
--------- -------- -----------
4001 123 14-FEB-2013
4002 456 09-MAR-2013
4003 456 05-APR-2013
4004 123 27-MAY-2013
4005 999 01-SEP-2013

LineItems Table Before Sharding

LineNo OrderNo CustNo StockNo Quantity
------ ------- ------ ------- --------
40011 4001 123 05683022 1
40012 4001 123 45423609 4
40013 4001 123 68584904 1
40021 4002 456 05683022 1
40022 4002 456 45423509 3
40022 4003 456 80345330 16
40041 4004 123 45423509 1
40042 4004 123 68584904 2
40051 4005 999 80345330 12

The tables can be sharded by the customer number, CustNo, in the Customers table,
which is the root. The shard containing data pertaining to customer 123 is shown in the
following example tables.

Customers Table Shard With Customer 123 Data

Chapter 2
Sharded Database Schema Objects

2-18

CustNo Name Address Location Class
--------- ---------- -------------- ---------- ------
123 Brown 100 Main St us3 Gold

Orders Table Shard With Customer 123 Data

OrderNo CustNo OrderDate
--------- -------- -----------
4001 123 14-FEB-2013
4004 123 27-MAY-2013

LineItems Table Shard With Customer 123 Data

LineNo OrderNo CustNo StockNo Quantity
------ ------- ------ ------- --------
40011 4001 123 05683022 1
40012 4001 123 45423609 4
40013 4001 123 68584904 1
40041 4004 123 45423509 1
40042 4004 123 68584904 2

Designing Schemas With Multiple Table Families
A sharded database schema can have multiple table families, where all of the data from
different table families reside in the same chunks, which contain partitions from different table
families sharing the same hash key range.

Note:

Multiple table families are supported in system-managed sharded databases only.
Composite and user-defined sharded databases only support one table family.

To create a new table family, create a root sharded table and specify tablespace sets that are
not used by existing tablespace families. Each table family is identified by its root table.
Tables in the different table families should not be related to each other.

Each table family should have its own sharding key definition, while the same restriction on
having the same sharding key columns in child tables still holds true within each table family.
This means that all tables from different table families are sharded the same way with
consistent hash into the same number of chunks, with each chunk containing data from all
the table families.

Design your table families such that queries between different table-families are minimal and
only carried out on the sharding coordinator, as many such joins will have an effect on
performance

The following example shows you how to create multiple table families using the PARENT
clause with a system-managed sharding methodology (PARTITION BY CONSISTENT HASH).

CREATE SHARDED TABLE Customers <=== Table Family #1
(CustId NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE

Chapter 2
Sharded Database Schema Objects

2-19

)
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders
(OrderNo NUMBER
, CustId NUMBER
, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems
(LineNo NUMBER
, OrderNo NUMBER
, CustId NUMBER
, StockNo NUMBER
, Quantity NUMBER
)
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Products <=== Table Family #2
(ProdId NUMBER NOT NULL,
 CONSTRAINT pk_products PRIMARY KEY (ProdId)
)
PARTITION BY CONSISTENT HASH (ProdId)
PARTITIONS AUTO
TABLESPACE SET ts_2
;

Note:

ORA-3850 is thrown if you attempt to use a tablespace set for a table family,
but that tablespace set is already in use by an existing table family.

Joins across table families may not be efficient, and if you have many such
joins, or if they are performance-critical, you should use duplicated tables
instead of multiple table families.

Associating Global Services With Multiple Table Families

Chapter 2
Sharded Database Schema Objects

2-20

Each table family should be associated with a different global service. Applications from
different table families each have their own connection pool and service, and use their own
sharding key for routing to the correct shard.

When you create the first root table (that is, the first table family) all of the existing global
services are automatically associated with it. You can use the GDSCTL MODIFY SERVICE
command to change the services associated with a table family after more table families are
created, as shown in this example.

GDSCTL> MODIFY SERVICE –GDSPOOL shdpool –TABLE_FAMILY sales.customer -
SERVICE sales

Duplicated Tables
In Oracle Sharding a table with the same contents in each shard is called a duplicated table.

For many applications, the number of database requests handled by a single shard can be
maximized by duplicating read-only or read-mostly tables across all shards. This strategy is a
good choice for relatively small tables that are not updated frequently, and that are often
accessed together with sharded tables. Duplicated tables tend to be updated less frequently
than sharded tables and are not expected to be very large.

A sharded database includes both sharded tables that are horizontally partitioned across
shards, and duplicated tables that are replicated to all shards. Duplicated tables contain
reference information, for example, a Stock Items table that is common to each shard. The
combination of sharded and duplicated tables enables all transactions associated with a
sharding key to be processed by a single shard. This technique enables linear scalability and
fault isolation.

As an example of the need for a duplicated table, consider the table family that is described
in Sharded Table Family. The database schema might also include a Products table which
contains data that is shared by all the customers in the shards that were created for this table
family, and it cannot be sharded by the customer number. To prevent multi-shard queries
during order processing, the entire table must be duplicated on all shards.

The difference between sharded tables (Customers, Orders, and LineItems) and a duplicated
table (Products) is shown in the following figure.

Chapter 2
Sharded Database Schema Objects

2-21

Figure 2-10 Sharded Tables and a Duplicated Table in a Sharded Database

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles, views,
indexes, synonyms, functions, procedures, and packages, and non-schema database
objects, such as tablespaces, tablespace sets, directories, and contexts, can be
created on all shards.

Unlike tables, which require an extra keyword in the CREATE statement—SHARDED or
DUPLICATED—other objects are created on all shards using existing syntax. The only
requirement is that the SHARD DDL session property must be enabled.

Note that automatic creation on all shards of the following objects is not supported in
this release. These objects can be created by connecting to individual shards.

• Cluster

• Control file

• Database link

• Disk group

• Edition

• Flashback archive

• Materialized zone map

Chapter 2
Sharded Database Schema Objects

2-22

• Outline

• Pfile

• Profile

• Restore point

• Rollback segment

• Summary

Materialized views and view logs are supported starting in Oracle Database 18c, with the
following restrictions:

• Materialized views created on sharded tables remain empty on the catalog database,
while the corresponding materialized views on shards contain data from each of the
individual shards.

• Only the REFRESH COMPLETE ON DEMAND USING TRUSTED CONSTRAINTS option is supported
for materialized views on sharded tables.

Shard-Level High Availability
Oracle Sharding is integrated with Oracle Database replication technologies for high
availability and disaster recovery at the shard level.

The following topics describe how to use Oracle’s replication technologies to make your
sharded databases highly available:

About Sharding and Replication
Oracle Sharding is tightly integrated with the Oracle replication and disaster recovery
technologies Oracle Data Guard and Oracle GoldenGate.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Replication provides high availability, disaster recovery, and additional scalability for reads. A
unit of replication can be a shard, a part of a shard, or a group of shards.

Replication topology in a sharded database is declaratively specified using GDSCTL
command syntax. You can choose one of two technologies—Oracle Data Guard or Oracle
GoldenGate—to replicate your data. Oracle Sharding automatically deploys the specified
replication topology and enables data replication.

The availability of a sharded database is not affected by an outage or slowdown of one or
more shards. Replication is used to provide individual shard-level high availability (Oracle
Active Data Guard or Oracle GoldenGate). Replication is automatically configured and
deployed when the sharded database is created. Optionally, you can use Oracle RAC for
shard-level high availability, complemented by replication, to maintain shard-level data
availability in the event of a cluster outage. Oracle Sharding automatically fails over database
connections from a shard to its replica in the event of an unplanned outage.

Chapter 2
Shard-Level High Availability

2-23

Using Oracle Data Guard with a Sharded Database
Oracle Data Guard replication maintains one or more synchronized copies (standbys)
of a shard (the primary) for high availability and data protection. Standbys may be
deployed locally or remotely, and when using Oracle Active Data Guard can also be
open for read-only access.

Oracle Data Guard can be used as the replication technology for sharded databases
using the system-managed, user-defined, or composite method of sharding.

Using Oracle Data Guard with a System-Managed Sharded Database

In system-managed and composite sharding, the logical unit of replication is a group of
shards called a shardgroup. In system-managed sharding, a shardgroup contains all of
the data stored in the sharded database. The data is sharded by consistent hash
across shards that make up the shardgroup. Shards that belong to a shardgroup are
usually located in the same data center. An entire shardgroup can be fully replicated to
one or more shardgroups in the same or different data centers.

The following figure illustrates how Data Guard replication is used with system-
managed sharding. In the example in the figure there is a primary shardgroup,
Shardgroup 1, and two standby shardgroups, Shardgroup 2 and Shardgroup 3.
Shardgroup 1 consists of Data Guard primary databases (shards 1-3). Shardgroup 2
consists of local standby databases (shards 4-6) which are located in the same
datacenter and configured for synchronous replication. And Shardgroup 3 consists of
remote standbys (shards 7-9) located in a different datacenter and configured for
asynchronous replication. Oracle Active Data Guard is enabled in this configuration, so
each standby is open read-only.

Figure 2-11 System-Managed Sharding with Data Guard Replication

Datacenter 1

Datacenter 2

Shardgroup 1

Shardgroup 2

Shardgroup 3

1 2

5

3

4 6

7 8 9

Chapter 2
Shard-Level High Availability

2-24

The concept of shardgroup as a logical unit of replication hides from the user the
implementation details of replication. With Data Guard, replication is done at the shard
(database) level. The sharded database in the figure above consists of three sets of
replicated shards: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. Each set of replicated shards is managed
as a Data Guard Broker configuration with fast-start failover (FSFO) enabled.

To deploy replication, specify the properties of the shardgroups (region, role, and so on) and
add shards to them. Oracle Sharding automatically configures Data Guard and starts an
FSFO observer for each set of replicated shards. It also provides load balancing of the read-
only workload, role based global services and replication lag, and locality based routing.

Run the following GDSCTL commands to deploy the example configuration shown in the
figure above.

CREATE SHARDCATALOG –database host00:1521:shardcat –region dc1,dc2

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:shardcat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:shardcat –region dc2
START GSM -gsm gsm1
START GSM -gsm gsm2

ADD SHARDGROUP -shardgroup shardgroup1 -region dc1 -deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup2 -region dc1 -deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup3 -region dc2 -deploy_as active_standby

CREATE SHARD -shardgroup shardgroup1 -destination host01 -credential
oracle_cred
CREATE SHARD -shardgroup shardgroup1 -destination host02 -credential
oracle_cred
CREATE SHARD -shardgroup shardgroup1 -destination host03 -credential
oracle_cred
...
CREATE SHARD -shardgroup shardgroup3 -destination host09 -credential
oracle_cred

DEPLOY

Using Oracle Data Guard with a User-Defined Sharded Database

With user-defined sharding the logical (and physical) unit of replication is a shard. Shards are
not combined into shardgroups. Each shard and its replicas make up a shardspace which
corresponds to a single Data Guard Broker configuration. Replication can be configured
individually for each shardspace. Shardspaces can have different numbers of standbys which
can be located in different data centers. An example of user-defined sharding with Data
Guard replication is shown in the following figure.

Chapter 2
Shard-Level High Availability

2-25

Figure 2-12 User-Defined Sharding with Data Guard Replication

Datacenter 1

Datacenter 3

Datacenter 2

Shardspace A Shardspace B Shardspace C

1 2 3

4 5

6 7

8 9 10

Run the following GDSCTL commands to deploy the example user-defined sharded
database with Data Guard replication shown in the figure above.

CREATE SHARDCATALOG -sharding user –database host00:1521:cat –region
dc1,dc2,dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3
START GSM -gsm gsm1
START GSM -gsm gsm2
START GSM -gsm gsm3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b
ADD SHARDSPACE -shardspace shardspace_c

CREATE SHARD -shardspace shardspace_a –region dc1 -deploy_as primary -
destination
host01 -credential oracle_cred -netparamfile /home/oracle/
netca_dbhome.rsp

Chapter 2
Shard-Level High Availability

2-26

CREATE SHARD -shardspace shardspace_a –region dc1 -deploy_as standby -
destination
host04 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

CREATE SHARD -shardspace shardspace_a –region dc2 -deploy_as standby -
destination
host06 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

CREATE SHARD -shardspace shardspace_a –region dc3 -deploy_as standby -
destination
host08 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

CREATE SHARD -shardspace shardspace_b –region dc1 -deploy_as primary -
destination
host08 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rs
...

CREATE SHARD -shardspace shardspace_c –region dc3 -deploy_as standby -
destination
host10 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

DEPLOY

Using Oracle Data Guard with a Composite Sharded Database

In composite sharding, similar to user-defined sharding, a sharded database consists of
multiple shardspaces. However, each shardspace, instead of replicated shards, contains
replicated shardgroups.

Chapter 2
Shard-Level High Availability

2-27

Figure 2-13 Composite Sharding with Data Guard Replication

Shardgroup
A1

Shardgroup
B1

Shardgroup
A2

Shardgroup
B2

Shardgroup
B3

Shardgroup
A3

Shardspace A Shardspace B

Datacenter
1

Datacenter
2

Datacenter
3

Run the following GDSCTL commands to deploy the example configuration shown in
the previous figure.

CREATE SHARDCATALOG -sharding composite –database host00:1521:cat –
region dc1,dc2,dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3
START GSM -gsm gsm1
START GSM -gsm gsm2
START GSM -gsm gsm3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b

ADD SHARDGROUP -shardgroup shardgroup_a1 –shardspace shardspace_a -
region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_a2 –shardspace shardspace_a -
region dc1

Chapter 2
Shard-Level High Availability

2-28

-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_a3 –shardspace shardspace_a -region
dc3
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_b1 –shardspace shardspace_b -region
dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_b2 –shardspace shardspace_b -region
dc1
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_b3 –shardspace shardspace_b -region
dc2
-deploy_as active_standby

CREATE SHARD -shardgroup shardgroup_a1 -destination host01 –credential
orcl_cred
...

CREATE SHARD -shardgroup shardgroup_b3 -destination host09 -credential
orcl_cred

DEPLOY

Using Oracle GoldenGate with a Sharded Database
Oracle GoldenGate is used for fine-grained active-active replication where all shards are
writable, and each shard can be partially replicated to other shards within a shardgroup.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

In Oracle GoldenGate, replication is handled at the chunk level. For example, in Shardgroup
1 in the following figure, half of the data stored in each shard is replicated to one shard, and
the other half to another shard. If any shard becomes unavailable, its workload is split
between two other shards in the shardgroup. The multiple failover destinations mitigate the
impact of a shard failure because there is no single shard that has to handle all of the
workload from the failed shard.

Chapter 2
Shard-Level High Availability

2-29

Figure 2-14 System-Managed Sharding with Golden Gate Replication

Datacenter 1

Datacenter 2

Shardgroup 1

2 31

4

Shardgroup 2

5

With Oracle GoldenGate replication, a shardgroup can contain multiple replicas of
each row in a sharded table; therefore, high availability is provided within a
shardgroup, and there is no need to have a local replica of the shardgroup, as there is
in the case of Data Guard replication. The number of times each row is replicated
within a shardgroup is called its replication factor and is a configurable parameter.

To provide disaster recovery, a shardgroup can be replicated to one or more data
centers. Each replica of a shardgroup can have a different number of shards,
replication factor, database versions, and hardware platforms. However, all shardgroup
replicas must have the same number of chunks, because replication is done at the
chunk level.

Shardgroup 2 in the figure above contains the same data as Shardgroup 1, but resides
in a different data center. Shards in both data centers are writable. The default
replication factor, 2, is used for both shardgroups.

Note that because Shardgroup 2 contains only two shards and the replication factor is
2, the shards are fully replicated, and each of them contains all of the data stored in
the sharded database. This means that any query routed to these shards can be
executed without going across shards. There is only one failover destination in this
shardgroup; if a shard goes down, the load on the other shard doubles.

Oracle Sharding is designed to minimize the number of conflicting updates performed
to the same row on different shards. This is achieved designating a master chunk for
each range of hash values and routing most of requests for the corresponding data to
this chunk.

Sometimes it is impossible to avoid update conflicts because of state transitions, such
as a chunk move or split, or a shard going up or down. The user may also intentionally

Chapter 2
Shard-Level High Availability

2-30

allow conflicts in order to minimize transaction latency. For such cases Oracle GoldenGate
provides automatic conflict detection and resolution which handles all kinds of conflicts
including insert-delete conflicts.

Before creating any shards, there are some prerequisites:

• Register with scheduler (when using GDSCTL create shard)

• Prepare site-security wallets or client and server certificates.

• Install Oracle GoldenGate and add at least one secure deployment with sharding option,
and start up GoldenGate services and servers.

• In each Oracle home, make a copy of the client wallets used to add GoldenGate
deployments, and place it at $ORACLE_BASE/admin/ggshd_wallet/.

• Load PL/SQL packages from a GoldenGate install home. If you are creating shards using
GDSCTL CREATE SHARD, this step is only applicable to the shard catalog. If you are using
GDSCTL ADD SHARD, it applies to the shard catalog and all of the shards.

Run the following GDSCTL commands to deploy an example configuration shown in the
figure above.

CREATE SHARDCATALOG -database host00:1521:shardcat -chunks 60
 -user 'gsmcatuser/gsmcatuser_password'
 -repl OGG -sharding system -sdb orasdb
ADD GSM -gsm gsm1 -listener 1571 –catalog shard-dir1:1521:shardcat -localons
3841
ADD GSM -gsm gsm2 -listener 1571 –catalog shard-dir1:1521:shardcat -localons
3841
START GSM -gsm gsm1
START GSM -gsm gsm2
CONFIGURE -timeout 900
ADD REGION -region dc1
ADD REGION -region dc2
MODIFY GSM -gsm gsm1 -region dc1
MODIFY GSM -gsm gsm2 -region dc2
ADD SHARDGROUP -shardgroup shardgroup1 -region dc1 -repfactor 2
ADD SHARDGROUP -shardgroup shardgroup2 -region dc2 -repfactor 2

CREATE SHARD -shardgroup shardgroup1 -destination host01 -credential
oracle_cred
 -netparam /home/oracle/netca_dbhome.rsp -gg_service host01:9900/
deployment_name
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams01.tmp
 -dbtemplatefile /home/oracle/sharddb01.dbt

CREATE SHARD -shardgroup shardgroup1 -destination host02 -credential
oracle_cred
 -netparam /home/oracle/netca_dbhome.rsp -gg_service host02:9900/
remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams02.tmp
 -dbtemplatefile /home/oracle/sharddb02.dbt

CREATE SHARD -shardgroup shardgroup1 -destination host03 -credential
oracle_cred
 -netparam /home/oracle/netca_dbhome.rsp -gg_service host03:9900/

Chapter 2
Shard-Level High Availability

2-31

remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams03.tmp
 -dbtemplatefile /home/oracle/sharddb03.dbt

CREATE SHARD -shardgroup shardgroup2 -destination host04 -credential
oracle_cred
-netparam /home/oracle/netca_dbhome.rsp -gg_service host04:9900/
remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams04.tmp
 -dbtemplatefile /home/oracle/sharddb04.dbt

CREATE SHARD -shardgroup shardgroup2 -destination host05 -credential
oracle_cred
-netparam /home/oracle/netca_dbhome.rsp -gg_service host05:9900/
remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams05.tmp
 -dbtemplatefile /home/oracle/sharddb05.dbt

DEPLOY

Note that the above example uses CREATE SHARD to create new shards during
deployment. ADD SHARD is the alternative to CREATE SHARD, and the ADD SHARD method
assumes the pre-existence of clean slate database instances ready to be converted
into database shards.

Note:

Unlike sharding replication with Data Guard or Active Data Guard, you
cannot deploy Oracle GoldenGate manually, it must be done using the
DEPLOY command.

Oracle GoldenGate does not support PDBs as shards.

See Also:

Working with Oracle GoldenGate Sharding in the Fusion Middleware Using
the Oracle GoldenGate Microservices Architecture guide for more
information about using Oracle GoldenGate with Oracle Sharding.

Query Processing and the Query Coordinator
The query coordinator is part of the shard catalog. The query coordinator provides
query processing support for the sharded database. With its access to the sharded
database topology metadata in the shard catalog, there are three general cases in
which the query coordinator plays an important part.

1. Single Shard Queries with No Sharding Key

Chapter 2
Query Processing and the Query Coordinator

2-32

If a sharding key is not passed from the application, the query coordinator figures out
which shard contains the data required by the query and sends the query there for
execution.

2. Multi-Shard Queries

The query coordinator can also assist with queries that need data from more than one
shard, called multi-shard queries, for example SELECT COUNT(*) FROM Customer.

3. Aggregate Queries

The query coordinator handles aggregate queries typically used in reporting, such as
aggregates on sales data.

In every case, the query coordinator’s SQL compiler identifies the relevant shards
automatically and coordinates the query execution across all of the participating shards.

In a single-shard query scenario, the entire query is executed on the single participating
shard, and the query coordinator just passes processed rows back to the client.

For a multi-shard query the SQL compiler analyzes and rewrites the query into query
fragments that are sent and executed by the participating shards. The queries are rewritten
so that most of the query processing is done on the participating shards and then aggregated
by the coordinator.

The query coordinator uses Oracle Database's parallel query engine to optimize and push
multi-shard queries in parallel to the shards. Each shard executes the query on the subset of
data that it has. Then the results are returned back to the query coordinator, which sends
them back to the client.

In essence, the shards act as compute nodes for the queries executed by the query
coordinator. Because the computation is pushed to the data, there is reduced movement of
data between shards and the coordinator. This arrangement also enables the effective use of
resources by offloading processing from the query coordinator on to the shards as much as
possible.

Specifying Consistency Levels

You can specify different consistency levels for multi-shard queries. For example, you might
want some queries to avoid the cost of SCN synchronization across shards, and these
shards could be globally distributed. Another use case is when you use standbys for
replication and slightly stale data is acceptable for multi-shard queries, as the results could be
fetched from the primary and its standbys. A multi-shard query must maintain global read
consistency (CR) by issuing the query at the highest common SCN across all the shards.

High Availability and Performance

It is highly recommended that the query coordinator be protected with Oracle Data Guard in
Maximum Availability protection mode (zero data loss failover) with fast-start failover enabled.
The query coordinator may optionally be Oracle RAC-enabled for additional availability and
scalability. To improve the scalability and availability of multi-shard query workloads, Oracle
Active Data Guard standby shard catalog databases in read-only mode can act as multi-
shard query coordinators.

In aggregation use cases and SQL execution without a sharding key, you will experience a
reduced level of performance compared with direct, key-based, routing.

Chapter 2
Query Processing and the Query Coordinator

2-33

Client Application Request Routing
To route a client application request directly to a shard, you connect to the shard using
the Oracle drivers and provide a sharding key with the request.

About Sharding Keys

All database requests that require high performance and fault isolation must only
access data associated with a single value of the sharding key. The application must
provide the sharding key when establishing a database connection. If this is the case,
the request is routed directly to the appropriate shard.

Multiple requests can be executed in the same session as long as they all are related
to the same sharding key. Such transactions typically access 10s or 100s of rows.
Examples of single-shard transactions include order entry, lookup and update of a
customer’s billing record, and lookup and update of a subscriber’s documents.

Database requests that must access data associated with multiple values of the
sharding key, or for which the value of the sharding key is unknown, must be executed
from the query coordinator which orchestrates parallel execution of the query across
multiple shards.

About Oracle Connection Drivers

At run time, connection pools act as shard directors by routing database requests
across pooled connections. Oracle Database supports connection-pooling in data
access drivers such as OCI, JDBC, and ODP.NET. These drivers can recognize
sharding keys specified as part of a connection request. Similarly, the Oracle Universal
Connection Pool (UCP) for JDBC clients can recognize sharding keys specified in a
connection URL. Oracle UCP also enables non-Oracle application clients such as
Apache Tomcat and WebSphere to work with Oracle Sharding.

Oracle clients use UCP cache routing information to directly route a database request
to the appropriate shard, based on the sharding keys provided by the
application. Such data-dependent routing of database requests eliminates an extra
network hop, decreasing the transactional latency for high volume applications.

Routing information is cached during an initial connection to a shard, which is
established using a shard director. Subsequent database requests for sharding keys
within the cached range are routed directly to the shard, bypassing the shard director.

Like UCP, a shard director can process a sharding key specified in a connect string
and cache routing information. However, UCP routes database requests using an
already established connection, while a shard director routes connection requests to a
shard. The routing cache automatically refreshes when a shard becomes unavailable
or changes occur to the sharding topology. For high-performance, data-dependent
routing, Oracle recommends using a connection pool when accessing data in the
sharded database.

Separate connection pools must be used for direct routing and routing requests
through the query coordinator. For direct routing, separate global services must be
created for read-write and read-only workloads. This is true only if Data Guard
replication is used. For proxy routing, use the GDS$CATALOG service on the shard
catalog database.

Chapter 2
Client Application Request Routing

2-34

Management Interfaces for a Sharded Database
The GDSCTL command-line utility is used to configure, deploy, monitor, and manage an
Oracle Sharding sharded database. Oracle Enterprise Manager Cloud Control can also be
used for sharded database monitoring and management.

Like SQL*Plus, GDSCTL is a command-line utility with which you can control all stages of a
sharded database's life cycle. You can run GDSCTL remotely from a different server or laptop
to configure and deploy a sharded database topology, and then montior and manage your
sharded database.

GDSCTL provides a simple declarative way of specifying the configuration of a sharded
database and automating its deployment. Only a few GDSCTL commands are required to
create a sharded database.

You can also use Cloud Control for sharded database monitoring and life cycle management
if you prefer a graphical user interface. With Cloud Control you can monitor availability and
performance, and you can make changes to a sharding configuration, such as add and
deploy shards, services, shard directors, and other sharding components.

Chapter 2
Management Interfaces for a Sharded Database

2-35

3
Sharded Database Deployment

Sharded database deployment includes the prerequisites and instructions for installing the
required software components, creating the catalog, roles, and the sharded database,
configuring replication for high availability, and creating the schema for the sharded database.

The following topics contain the concepts and tasks you need to deploy a sharded database:

Introduction to Sharded Database Deployment
Oracle Sharding provides the capability to automatically deploy the sharded database, which
includes both the shards and the replicas.

The sharded database administrator defines the topology (regions, shard hosts, replication
technology) and invokes the DEPLOY command with a declarative specification using the
GDSCTL command-line interface.

Before You Begin

Note that there are many different configurations and topologies that can be used for a
sharded database. Your particular sharded database may employ a variety of Oracle software
components such as Oracle Data Guard, Oracle GoldenGate, and Oracle Real Application
Clusters (Oracle RAC) along with different sharding methodologies including system-
managed, composite, and user-defined sharding.

Depending on your application’s particular architecture and system requirements, you may
have several choices from which to choose when designing your system. See Sharding
Methods, Shard-Level High Availability for information about the various sharding
methodologies and disaster recovery and high-availability options.

Choosing a Shard Creation Method
When deploying a sharded configuration, there are two different GDSCTL commands, ADD
SHARD and CREATE SHARD, that can be used to add a shard.

Before you start to configure the sharding topology, decide which shard creation method to
use because this decision affects some of the configuration steps.

The differences between the ADD SHARD and CREATE SHARD methods are explained where
necessary in the configuration instructions.

ADD SHARD Method

The GDSCTL ADD SHARD command can be used to add a shard to an Oracle Sharding
configuration. When using this command, you are responsible for creating the Oracle
databases that will become shards during deployment. You can use whatever method you
want to create the databases as long as the databases meet the prerequisites for inclusion in
an Oracle Sharding configuration.

Some of the benefits of using the ADD SHARD method include:

3-1

• You have complete control over the process used to create the databases.

• It is straightforward to customize database parameters, naming, and storage
locations.

• Both PDB and non-CDB shards are supported.

• There is less Oracle software to configure on the shard hosts.

• There is much less complexity in the deployment process because the shard
databases are created before you run any GDSCTL commands.

CREATE SHARD Method

The GDSCTL CREATE SHARD command can be used to create a shard in an Oracle
Sharding configuration. With CREATE SHARD, the shard catalog leverages the Oracle
Remote Scheduler Agent to run the Database Configuration Assistant (DBCA)
remotely on each shard host to create a database for you. This method does not
support PDBs, so any shard databases added must be non-CDBs.

Some of the benefits of using the CREATE SHARD method include:

• It is easier to create shard databases for non-database administrators.

• It provides a standard way to provision a new database, when no standard is in
current practice.

• Any database created with CREATE SHARD is automatically configured correctly for
Oracle Sharding without the need to run SQL statements against the database or
otherwise adjust database parameters.

• You can create standby databases automatically.

Sharded Database Deployment Roadmap
Follow this roadmap to set up hosts, install the required software, and configure and
deploy a sharded database.

At a high level, the deployment steps are:

1. Set up the components.

• Provision and configure the hosts that will be needed for the sharding
configuration and topology selected (see Provision and Configure Hosts and
Operating Systems).

• Install Oracle Database software on the selected catalog and shard nodes
(see Install the Oracle Database Software).

• Install global service manager (GSM) software on the shard director nodes
(see Install the Shard Director Software).

2. Create databases needed to store the sharding metadata and the application data.

• Create a database that will become the shard catalog along with any desired
replicas for disaster recovery (DR) and high availability (HA) (see Create the
Shard Catalog Database).

• If you are using the ADD SHARD method to deploy shards, create databases
that will become the shards in the configuration including any standby
databases needed for DR and HA (see Create the Shard Databases).

Chapter 3
Introduction to Sharded Database Deployment

3-2

3. Specify the sharding topology using some or all the following commands from the GDSCTL
command line utility, among others (see Configure the Sharded Database Topology).

• CREATE SHARDCATALOG
• ADD GSM
• START GSM
• ADD SHARDSPACE
• ADD SHARDGROUP
• ADD CDB
• ADD SHARD
• ADD CREDENTIAL
• ADD FILE
• CREATE SHARD
• ADD INVITEDNODE

4. Run DEPLOY to deploy the sharding topology configuration (see Deploy the Sharding
Configuration).

5. Add the global services needed to access any shard in the sharded database (see
Create and Start Global Database Services).

6. Verify the status of each shard (see Verify Shard Status).

When the sharded database configuration deployment is complete and successful, you can
create the sharded schema objects needed for your application. See Sharded Database
Schema Objects.

The topics that follow describe each of the deployment tasks in more detail along with
specific requirements for various components in the system. These topics can act as a
reference for the set up and configuration of each particular step in the process. However, by
themselves, they will not produce a fully functional sharding configuration since they do not
implement a complete sharding scenario, but only provide the requirements for each step.

Example Sharded Database Deployment walks you through a specific deployment scenario
of a representative reference configuration. This section provides examples of every
command needed to produce a fully functional sharded database after all of the steps are
completed.

Provision and Configure Hosts and Operating Systems
Before you install any software, review these hardware, network, and operating system
requirements for Oracle Sharding.

• Oracle Database Enterprise Edition is required when running an Oracle Sharded
Database.

• Hardware and operating system requirements for shards are the same as those for
Oracle Database. See your Oracle Database installation documentation for these
requirements.

• Hardware and operating system requirements for the shard catalog and shard
directors are the same as those for the Global Data Services catalog and global service

Chapter 3
Provision and Configure Hosts and Operating Systems

3-3

manager. See Oracle Database Global Data Services Concepts and
Administration Guide for these requirements.

• Network requirements are Low Latency GigE.

• Port communication requirements are as follows.

– Each and every shard must be able to reach each and every shard director's
listener and ONS ports. The shard director listener ports and the ONS ports
must also be opened to the application/client tier, all of the shards, the shard
catalog, and all other shard directors.

The default listener port of the shard director is 1522, and the default ONS
ports on most platforms are 6123 for the local ONS and 6234 for remote ONS.

– Each and every shard must be able to reach the TNS Listener port (default
1521) of the shard catalog (both primary and standbys).

– The TNS Listener port of each shard must be opened to all shard directors
and the shard catalog.

– All of the port numbers listed above are modifiable during the deployment
configuration. However, the port numbers to be used must be known before
setting up the host software.

• Host name resolution must be successful between all of the shard catalog,
shards, and shard director hosts. Operating system commands such as ‘ping’
must succeed from a given host to any other host when specifying any host names
provided during sharded database configuration commands.

Number and Sizing of Host Systems

Depending on your specific configuration, the hosts that are needed may include the
following:

• Shard catalog host. The shard catalog host runs the Oracle Database that serves
as the shard catalog. This database contains a small amount of sharding topology
metadata and any duplicated tables that are created for your application. In
addition, this database acts as a query coordinator for cross-shard queries and
services connections for applications that have not been written to be sharding-
aware. In general, the transaction workload and size of this database are not
particularly large.

• Shard catalog database standbys (replicas). At least one more host to contain
a replica or standby of the primary shard catalog database is recommended. This
host is necessary in case of a failure of the primary catalog host. In addition, while
acting as a standby database, this host can also be configured to be a query
coordinator for cross-shard queries.

• Shard director host. The shard director (global service manager) software can
reside on a separate host, or it can be co-located on the same host as the shard
catalog. This component of the sharding system is comprised of a network listener
and several background processes used to monitor and configure a sharded
configuration. If the shard director is co-located on the same host as the catalog
database it must be installed in a separate Oracle Home from the catalog
database because the installation package is different than the one used for
Oracle Database.

• Multiple shard directors. For high-availability purposes, it is recommended that
you have more than one shard director running in a sharded system. Any
additional shard directors can run on their own hosts or on the hosts running the
standby shard catalog databases.

Chapter 3
Provision and Configure Hosts and Operating Systems

3-4

https://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19/shard&id=GSMUG-GUID-B7010949-4EAE-4AB1-A136-D5A4CD2AE688
https://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19/shard&id=GSMUG-GUID-B7010949-4EAE-4AB1-A136-D5A4CD2AE688

• Shards. In addition to the above hosts, each shard that is configured in the system
should also run on its own separate host. The hosts and their configurations chosen for
this task should be sized in the same way as a typical Oracle Database host depending
on how much load is put on each particular shard.

• Shard standbys (replicas). Again, for high-availability and disaster recovery purposes,
replication technology such as Oracle Data Guard or Oracle Golden Gate should be
used, and replicas created for all sharded data. Additional hosts will be needed to run
these replica or standby databases.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Once the number of hosts and capacity requirements for each host have been determined,
provision your hardware resources as appropriate for your environment using whatever
methodologies you choose. Before installing any software, you must confirm that the hosts
can communicate with each other though the ports as described above. Because a sharding
configuration is inherently a distributed system, it is crucial that this connectivity between and
among all of the hosts is confirmed before moving on to the next steps in the deployment
process. Failure to set up port access correctly will lead to failures in subsequent commands.

Install the Oracle Database Software
Install Oracle Database on each system that will host the shard catalog, a database shard, or
their replicas.

Aside from the requirement that the shard catalog and all of the shards in an Oracle Sharding
configuration require Oracle Database Enterprise Edition, there are no other special
installation considerations needed for sharding as long as the installation is successful and all
post-install scripts have been run successfully.

See your platform’s installation guide at https://docs.oracle.com/en/database/oracle/oracle-
database/ for information about configuring operating system users.

If you will be using the CREATE SHARD method to add shards to your configuration, you must
also install the Remote Scheduler Agent software on each shard host. The agent does not
need to be installed on the shard catalog hosts. See Installing and Configuring the Scheduler
Agent on a Remote Host for more information.

The CREATE SHARD method also requires the creation of two directories on each shard
host, $ORACLE_BASE/oradata and $ORACLE_BASE/fast_recovery_area. Create these two
directories while logged into the shard host as the owner of the Oracle Database software.
Permissions should be set the same as for the directories that will hold the data files for your
shard database, which is typically full access for the software owner only.

Chapter 3
Install the Oracle Database Software

3-5

https://docs.oracle.com/en/database/oracle/oracle-database/
https://docs.oracle.com/en/database/oracle/oracle-database/

Install the Shard Director Software
Install the global service manager software on each system that you want to host a
shard director.

Note that this software installation is distinct from an Oracle Database installation. If
you choose to co-locate the shard director software on the same host as the shard
catalog database, it must be installed in a separate Oracle Home.

See Oracle Database Global Data Services Concepts and Administration Guide for
information about installing the global service manager software.

Create the Shard Catalog Database
Use the following information and guidelines to create the shard catalog database.

The shard catalog database contains a small amount of sharding topology metadata
and also contains all the duplicated tables that will be created for use by your sharded
application. The catalog database also acts as a query coordinator to run cross-shard
queries that select and aggregate data from more than one shard.

From a sharding perspective, the way in which you create or provision the catalog
database is irrelevant. The database can be created with the Database Configuration
Assistant (DBCA), manually using SQL*Plus, or provisioned from cloud infrastructure
tools.

As long as you have a running Oracle Database Enterprise Edition instance on the
shard catalog host with the following characteristics, it can used as the shard catalog.

• Create a legacy database or a pluggable database (PDB) for use as the shard
catalog database. Using the root container (CDB$ROOT) of a container database
(CDB) as the shard catalog database is not supported.

• Your shard catalog database must use a server parameter file (SPFILE). This is
required because the sharding infrastructure uses internal database parameters to
store configuration metadata, and that data needs to persist across database
startup and shutdown operations.

$ sqlplus / as sysdba

SQL> show parameter spfile

NAME TYPE VALUE
-------- --------- ------------------------------------
spfile string /u01/app/oracle/dbs/spfilecat.ora

• The database character set and national character set must be the same because
it is used for all of the shard databases. This means that the character set chosen
must contain all possible characters that will be inserted into the shard catalog or
any of the shards.

This requirement arises from the fact that Oracle Data Pump is used internally to
move transportable tablespaces from one shard to another during sharding MOVE

Chapter 3
Install the Shard Director Software

3-6

CHUNK commands. A requirement of that mechanism is that character sets must match on
the source and destination.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=catalog_pdb_name;

SQL> select * from nls_database_parameters
 2 where parameter like '%CHARACTERSET';

PARAMETER VALUE
-- --------------------
NLS_NCHAR_CHARACTERSET AL16UTF16
NLS_CHARACTERSET WE8DEC

• Because the shard catalog database can run multi-shard queries which connect to
shards over database links, the OPEN_LINKS and OPEN_LINKS_PER_INSTANCE database
initialization parameter values must be greater than or equal to the number of shards that
will be part of the sharded database configuration.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=catalog_pdb_name;

SQL> show parameter open_links

NAME TYPE VALUE
------------------------------------ ----------- ------------
open_links integer 20
open_links_per_instance integer 20

• Set the DB_FILES database initialization parameter greater than or equal to the total
number of chunks and/or tablespaces in the system.

Each data chunk in a sharding configuration is implemented as a tablespace partition and
resides in its own operating system data file. As a result, the DB_FILES database
initialization parameter must be greater than or equal to the total number of chunks (as
specified on the CREATE SHARDCATALOG or ADD SHARDSPACE commands) and/or
tablespaces in the system.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=catalog_pdb_name;

SQL> show parameter db_files

NAME TYPE VALUE
------------------------------------ ----------- ------------
db_files integer 1024

• If you are planning to use CREATE SHARD to add shards to the sharding configuration, then
the SHARED_SERVERS and DISPATCHERS database initialization parameters must be set to

Chapter 3
Create the Shard Catalog Database

3-7

allow the Remote Scheduler Agent to connect to the catalog over an XDB
connection. This is not necessary if ADD SHARD will be used.

Specifically, SHARED_SERVERS must be greater than 0 (zero) to allow shared server
connections to the shard catalog from the Remote Scheduler Agent processes
running on the shard hosts. In addition, the value of DISPATCHERS must contain a
service for XDB, based on the Oracle SID value.

$ sqlplus / as sysdba

SQL> show parameter shared_servers

NAME TYPE VALUE
------------------------------------ ----------- ------------
shared_servers integer 5

SQL> show parameter dispatchers

NAME TYPE VALUE
------------------------------------ -----------

Dispatchers string (PROTOCOL=TCP),
(PROTO
 COL=TCP)
(SERVICE=mysid
 XDB)

After setting the parameter values appropriately, run the ALTER SYSTEM REGISTER
command to ensure that the XDB service is available for incoming connection
requests.

• To support Oracle Managed Files, which is used by the sharding chunk
management infrastructure, the DB_CREATE_FILE_DEST database parameter must
be set to a valid value.

This location is used during chunk movement operations (for example MOVE CHUNK
or automatic rebalancing) to store the transportable tablespaces holding the chunk
data. In addition, files described in Oracle Database Administrator’s Guide, "Using
Oracle Managed Files," are also stored in this location as is customary for any
Oracle database using Oracle Managed Files.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=catalog_pdb_name;

SQL> show parameter db_create_file_dest

NAME TYPE VALUE
--------------------- --------- -----------------------------
db_create_file_dest string /u01/app/oracle/oradata

• If a standby catalog database will be part of the sharding configuration, the
STANDBY_FILE_MANAGEMENT database parameter should be set to in order to
automatically create new database files on any standby catalog databases.

Chapter 3
Create the Shard Catalog Database

3-8

If this parameter is set to MANUAL (which is the default), then new database files created
during CREATE TABLESPACE commands, for example, will not be created on the standby.
This will cause data unavailability and application errors if the standby ever becomes a
primary database.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter standby_file_management

NAME TYPE VALUE
------------------------------------ ----------- ------------
standby_file_management stirng AUTO

• An Oracle-provided user account named GSMCATUSER must be unlocked and assigned a
password inside the legacy database or PDB designated for the shard catalog. This
account is used by the shard director processes to connect to the shard catalog database
and perform administrative tasks in response to sharding commands.

If you are using a PDB as the shard catalog, note that GSMCATUSER is a common user in
the container database. As a result, its password is the same for CDB$ROOT and all PDBs
in the CDB. If multiple PDBs in a single CDB are to be used as catalog databases for
different sharding configurations, they will all share the same GSMCATUSER password
which can be a security concern. To avoid this, host only one shard catalog PDB per
CDB, and do not unlock the GSMCATUSER account in any other PDBs.

The password you specify is used later during sharding topology creation in any ADD GSM
commands that are issued. It never needs to be specified again because the shard
director stores it securely in an Oracle Wallet and decrypts it only when necessary.

The MODIFY GSM command can be used to update the stored password if it is later
changed on the shard catalog database.

$ sqlplus / as sysdba

SQL> alter user gsmcatuser account unlock;

User altered.

SQL> alter user gsmcatuser identified by gsmcatuser_password;

User altered.

If you are using a PDB as the shard catalog, also run the following commands.

SQL> alter session set container=catalog_pdb_name;
SQL> alter user gsmcatuser account unlock;

User altered.

• A shard catalog administrator account must be created, assigned a password, and
granted privileges inside the legacy database or PDB designated as the shard catalog.

This account is the administrator account for the sharding metadata in the shard catalog
database. It is used to access the shard catalog using the GDSCTL utility when an

Chapter 3
Create the Shard Catalog Database

3-9

administrator needs to makes changes to the sharded database topology or
perform other administrative tasks.

GDSCTL connects as this user to the shard catalog database when GDSCTL
commands are run. The user name and password specified are used later in the
CREATE SHARDCATALOG command. As with the GSMCATUSER account above, the user
name and password are stored securely in an Oracle Wallet for later use. The
stored credentials can be updated by issuing an explicit CONNECT command from
GDSCTL to reset the values in the wallet.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=catalog_pdb_name;

SQL> create user mysdbadmin identified by mysdbadmin_password;

User created.

SQL> grant gsmadmin_role to mysdbadmin;

Grant succeeded.

• Set up and run an Oracle Net TNS Listener at your chosen port (default is 1521)
that can service incoming connection requests for the shard catalog legacy
database or PDB.

The TNS Listener can be created and configured in whatever way you wish. If the
shard catalog is a PDB, depending on how the database was created, it may be
necessary to explicitly create a database service that can allow for direct
connection requests to the PDB without the need to use ALTER SESSION SET
CONTAINER.

To validate that the listener is configured correctly when using a PDB for the shard
catalog, do the following using your newly created mysdbadmin account above
and an appropriate connect string. Running LSNRCTL SERVICES lists all services
currently available using the listener.

$ sqlplus mysdbadmin/mysdbadmin_password@catalog_connect_string

SQL> show con_name

CON_NAME

catalog_pdb_name

Once you confirm connectivity, make note of the catalog_connect_string above. It
is used later in the configuration process in the GDSCTL CREATE SHARDCATALOG
command. Typically, it will be of the form host:port/service_name (for example,
cathost.example.com:1521/catalog_pdb.example.com).

After all of the above requirements have been met, the newly created database can
now be the target of a GDSCTL CREATE SHARDCATALOG command.

For high availability and disaster recovery purposes, it is highly recommended that you
also create one or more standby shard catalog databases. From a sharding

Chapter 3
Create the Shard Catalog Database

3-10

perspective, as long as the above requirements are also met on the standby databases, and
all changes to the primary shard catalog database are consistently applied to the standbys,
there are no further sharding-specific configuration steps required.

Create the Shard Databases
If you are using the CREATE SHARD method to add shards to your configuration, then skip this
topic as it does not apply to CREATE SHARD. Otherwise, the databases that will be used as
shards should be created on their respective hosts.

As with the shard catalog database, the way in which you create or provision the shard
databases is irrelevant from a sharding perspective. The database can be created with the
Database Configuration Assistant (DBCA), manually using SQL*Plus, or provisioned from
cloud infrastructure tools.

As long as you have a running Oracle Database Enterprise Edition instance on each shard
host, with the following characteristics, it can be used as a shard.

• If the shard will be a PDB in a CDB, then an Oracle-provided user account named
GSMROOTUSER must be unlocked and assigned a password inside CDB$ROOT of the
database designated for a shard. In addition, this user must be granted the SYSDG and
SYSBACKUP system privileges.

The GSMROOTUSER account is used by GDSCTL and the shard director processes to connect
to the shard database to perform administrative tasks in response to sharding
commands. The password specified is used by GDSCTL during sharding topology creation
in any ADD CDB commands that are issued. It is also be used by the shard director during
the DEPLOY command to configure Oracle Data Guard (as necessary) on the shard
databases. It never needs to be specified again by the user, because GDSCTL and the
shard director store it securely in an Oracle Wallet and decrypt it only when necessary.
The MODIFY CDB command can be used to update the stored password if it is later
changed on the shard database.

$ sqlplus / as sysdba

SQL> alter user gsmrootuser account unlock;

User altered.

SQL> alter user gsmrootuser identified by gsmrootuser_password;

User altered.

SQL> grant SYSDG, SYSBACKUP to gsmrootuser;

Grant succeeded.

• If the shard will be a PDB, then create a PDB for use as the shard database. Using the
root container (CDB$ROOT) of a CDB as a shard is not supported.

• Your shard database must use a server parameter file (SPFILE). The SPFILE is required
because the sharding infrastructure uses internal database parameters to store

Chapter 3
Create the Shard Databases

3-11

configuration metadata, and that data must persist through database startup and
shutdown operations.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> show parameter spfile

NAME TYPE VALUE
-------- --------- ------------------------------------
spfile string /u01/app/oracle/dbs/spfileshard.ora

• The database character set and national character set of the shard database must
be the same as that used for the shard catalog database and all other shard
databases. This means that the character set you choose must contain all possible
characters that will be inserted into the shard catalog or any of the shards.

This requirement arises from the fact that Oracle Data Pump is used internally to
move transportable tablespaces from one shard to another during sharding MOVE
CHUNK commands. A requirement of that mechanism is that character sets must
match on the source and destination.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> select * from nls_database_parameters
 2 where parameter like '%CHARACTERSET';

PARAMETER VALUE
-- --------------------
NLS_NCHAR_CHARACTERSET AL16UTF16
NLS_CHARACTERSET WE8DEC

• The COMPATIBLE initialization parameter must be set to at least 12.2.0.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> show parameter compatible

NAME TYPE VALUE
---------------------- ----------- -----------------
compatible string 19.0.0

• Enable Flashback Database if your sharded database will use standby shard
databases.

$ sqlplus / as sysdba

Chapter 3
Create the Shard Databases

3-12

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> select flashback_on from v$database;

FLASHBACK_ON

YES

• FORCE LOGGING mode must be enabled if your shard database will use standby shard
databases.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> select force_logging from v$database;

FORCE_LOGGING

YES

• Set the DB_FILES database initialization parameter greater than or equal to the total
number of chunks and/or tablespaces in the system.

Each data chunk in a sharding configuration is implemented as a tablespace partition and
resides in its own operating system datafile. As a result, the DB_FILES database
initialization parameter must be greater than or equal to the total number of chunks (as
specified in the CREATE SHARDCATALOG or ADD SHARDSPACE commands) and/or
tablespaces in the system.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> show parameter db_files

NAME TYPE VALUE
------------------------------------ ----------- ------------
db_files integer 1024

• To support Oracle Managed Files, used by the sharding chunk management
infrastructure, the DB_CREATE_FILE_DEST database parameter must be set to a valid
value.

This location is used during chunk movement operations (for example MOVE CHUNK or
automatic rebalancing) to store the transportable tablespaces holding the chunk data. In
addition, files described in Oracle Database Administrator’s Guide, "Using Oracle
Managed Files," are also stored in this location as is customary for any Oracle database
using Oracle Managed Files.

$ sqlplus / as sysdba

Chapter 3
Create the Shard Databases

3-13

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> show parameter db_create_file_dest

NAME TYPE VALUE
--------------------- --------- -----------------------------
db_create_file_dest string /u01/app/oracle/oradata

• A directory object named DATA_PUMP_DIR must be created and accessible in the
shard database from the GSMADMIN_INTERNAL account.

GSMADMIN_INTERNAL is an Oracle-supplied account that owns all of the sharding
metadata tables and PL/SQL packages. It should remain locked and is never used
to login interactively. It’s only purpose is to own and control access to the sharding
metadata and PL/SQL.

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> create or replace directory DATA_PUMP_DIR as ‘/u01/app/oracle/
oradata’;

Directory created.

SQL> grant read, write on directory DATA_PUMP_DIR to
gsmadmin_internal;

Grant succeeded.

• To support file movement from shard to shard, the DB_FILE_NAME_CONVERT
database parameter must be set to a valid value. This location is used when
standby databases are in use, as is typical with non-sharded databases, and the
location can also be used during chunk movement operations. For regular file
system locations, it is recommended that this parameter end with a trailing slash
(/).

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> show parameter db_file_name_convert

NAME TYPE VALUE
---------------------- --------- -----------------------------
db_file_name_convert string /dbs/SHARD1/, /dbs/SHARD1S/

• If a standby shard databases will be part of the sharding configuration, the
STANDBY_FILE_MANAGEMENT database parameter should be set to AUTO to
automatically create new database files on any standby shard databases.

Chapter 3
Create the Shard Databases

3-14

If this parameter is set to MANUAL (which is the default), then new database files created
during CREATE TABLESPACE commands, for example, will not be created on the standby.
This will cause data unavailability and application errors if the standby ever becomes a
primary database.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter standby_file_management

NAME TYPE VALUE
------------------------------------ ----------- ------------
standby_file_management string AUTO

• An Oracle-provided user account named GSMUSER must be unlocked and assigned a
password inside the PDB or legacy database designated as the shard database. In
addition, this user must be granted the SYSDG and SYSBACKUP system privileges.

If the shards are PDBs, note that GSMUSER is a common user in the CDB. As a result, its
password is the same for CDB$ROOT and all PDBs in the CDB, which can be a security
concern. To avoid this, host only one shard PDB per CDB, and do not unlock the GSMUSER
account in any other PDBs.

This account is used by the shard director processes to connect to the shard database
and perform administrative tasks in response to sharding commands. The password
specified is used later during sharding topology creation in any ADD SHARD commands
that are issued. The password never needs to be specified again because the shard
director stores it securely in an Oracle Wallet and only decrypts it when necessary. You
can update the stored password using the MODIFY SHARD command if the password is
later changed on the shard database.

$ sqlplus / as sysdba

SQL> alter user gsmuser account unlock;

User altered.

SQL> alter user gsmuser identified by gsmuser_password;

User altered.

SQL> REM run the following commands if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> alter user gsmuser account unlock;

User altered.

SQL> REM all cases run the following command

SQL> grant SYSDG, SYSBACKUP to gsmuser;

Grant succeeded.

Chapter 3
Create the Shard Databases

3-15

• Set up and run an Oracle Net TNS Listener at your chosen port (default is 1521)
that can service incoming connection requests for the shard PDB.

The TNS Listener can be created and configured in whatever way you wish. If the
shard is a PDB, depending on how the database was created, it may be necessary
to explicitly create a database service that can allow for direct connection requests
to the PDB without the need to use ALTER SESSION SET CONTAINER.

To validate that the listener is configured correctly when using a PDB for the shard,
run the following command using your newly unlocked GSMUSER account and an
appropriate connect string. Running LSNRCTL SERVICES lists all services currently
available using the listener.

$ sqlplus gsmuser/gsmuser_password@shard_connect_string

SQL> show con_name

CON_NAME

shard_pdb_name

Once you confirm connectivity, make note of the shard_connect_string above. It is
used later in the configuration process in the GDSCTL ADD SHARD command.
Typically, the connect string is in the form host:port/service_name (for example,
shardhost.example.com:1521/shard_pdb.example.com).

Validate the Shard Database

To validate that all of the above requirements have been met, you can run an Oracle-
supplied procedure, validateShard, that inspects the shard database and reports any
issues encountered. This procedure is read-only and makes no changes to the
database configuration.

The validateShard procedure can and should be run against primary, mounted
(unopened) standby, and Active Data Guard standby databases that are part of the
sharded database configuration. You can run validateShard multiple times and at any
time during the sharded database life cycle, including after upgrades and patching.

To run the validateShard package, do the following:

$ sqlplus / as sysdba

SQL> REM run the following command if using a CDB
SQL> alter session set container=shard_pdb_name;

SQL> set serveroutput on
SQL> execute dbms_gsm_fix.validateShard

This procedure will produce output similar to the following:

INFO: Data Guard shard validation requested.
INFO: Database role is PRIMARY.
INFO: Database name is SHARD1.
INFO: Database unique name is shard1.
INFO: Database ID is 4183411430.

Chapter 3
Create the Shard Databases

3-16

INFO: Database open mode is READ WRITE.
INFO: Database in archivelog mode.
INFO: Flashback is on.
INFO: Force logging is on.
INFO: Database platform is Linux x86 64-bit.
INFO: Database character set is WE8DEC. This value must match the character
set of the catalog database.
INFO: 'compatible' initialization parameter validated successfully.
INFO: Database is a multitenant container database.
INFO: Current container is SHARD1_PDB1.
INFO: Database is using a server parameter file (spfile).
INFO: db_create_file_dest set to: '/u01/app/oracle/dbs'
INFO: db_recovery_file_dest set to: '/u01/app/oracle/dbs'
INFO: db_files=1000. Must be greater than the number of chunks and/or
tablespaces to be created in the shard.
INFO: dg_broker_start set to TRUE.
INFO: remote_login_passwordfile set to EXCLUSIVE.
INFO: db_file_name_convert set to: '/dbs/SHARD1/, /dbs/SHARD1S/'
INFO: GSMUSER account validated successfully.
INFO: DATA_PUMP_DIR is '/u01/app/oracle/dbs/
9830571348DFEBA8E0537517C40AF64B'.

All output lines marked INFO are for informational purposes and should be validated as
correct for your configuration.

All output lines marked ERROR must be fixed before moving on to the next deployment steps.
These issues will cause errors for certain sharding operations if they are not resolved.

All output lines marked WARNING may or may not be applicable for your configuration. For
example, if standby databases will not be used for this particular deployment, then any
warnings related to standby databases or recovery can be ignored. This is especially true for
non-production, proof-of-concept, or application development deployments. Review all
warnings and resolve as necessary.

Once all of the above steps have been completed, the newly created database can now be
the target of a GDSCTL ADD SHARD command.

For high availability and disaster recovery purposes, it is highly recommended that you also
create one or more standby shard databases. From a sharding perspective, as long as the
above requirements are also met on the standby databases, and all changes to the primary
shard database are applied to the standbys, the standby database only needs to be added to
the sharding configuration with an ADD SHARD command.

Configure the Sharded Database Topology
The sharded database topology is descibed by the sharding metadata in the shard catalog
database. Use GDSCTL to configure the sharded database topology.

The sharded database topology consists of the sharding method, replication (high availability)
technology, the default number of chunks to be present in the sharded database, the location
and number of shard directors, the numbers of shardgroups, shardspaces, regions, and
shards in the sharded database, and the global services that will be used to connect to the
sharded database.

Chapter 3
Configure the Sharded Database Topology

3-17

Keep the Global Data Services Control Utility (GDSCTL) Command Reference in the
Oracle Database Global Data Services Concepts and Administration Guide on hand
for information about usage and options for the GDSCTL commands used in the
configuration procedures.

• Follow the procedures listed below, in the order presented, to complete your
sharded database topology configuration.

Run the commands from a shard director host because the GDSCTL command line
interface is installed there as part of the shard director (global service manager)
installation.

Create the Shard Catalog
Use the GDSCTL CREATE SHARDCATALOG command to create metadata describing the
sharded database topology in the shard catalog database.

Note that once you run CREATE SHARDCATALOG, and the rest of the sharding metadata
has been created, there are several metadata properties that cannot be modified
without recreating the entire sharded database from scratch. These include the
sharding method (system-managed, composite, user-defined), replication technology
(Oracle Data Guard, Oracle GoldenGate), default number of chunks in the database,
and others. Make sure that you consult the GDSCTL reference documentation for the
complete list of possible command options and their defaults.

Consult the GDSCTL documentation or run GDSCTL HELP CREATE SHARDCATALOG for
more details about the command usage.

Shard Catalog Connect String

When you run the CREATE SHARDCATALOG command, GDSCTL connects to the shard
catalog database with the user name and connect string specified.

If your shard catalog database has an associated standby database for high
availability or disaster recovery purposes, the connection string,
catalog_connect_string, in the examples that follow, should specify all of the primary
and standby databases. If you don't include the standby databases in the connect
string, then the shard director processes will not be able to connect to the standby if
the primary shard catalog is unavailable.

If the shard catalog database is a PDB, note that catalog_connect_string should
specify the PDB for the shard catalog database, not the CDB$ROOT.

The following is a simple tnsnames.ora entry.

CATALOG_CONNECT_STRING=
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = tcp)(HOST = primary_catalog)(PORT = 1521))
 (ADDRESS = (PROTOCOL = tcp)(HOST = standby_catalog)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = catpdb.example.com)
)
)

Chapter 3
Configure the Sharded Database Topology

3-18

If you are using the ADD SHARD method to create shards, do only the first step. If you are using
the CREATE SHARD method, do both steps.

1. Run CREATE SHARDCATALOG with the settings appropriate for your planned sharding
topology.

Additional Parameters Required for CREATE SHARD Method

If you will use the CREATE SHARD method to add shards to the configuration, then when
you run CREATE SHARDCATALOG you must set the following additional parameters, which
are required for Remote Scheduler Agent registration in the next step.

• –agent_password specifies the password that will be used by the Remote Scheduler
Agent to register with the shard catalog.

• –agent_port specifies the port number that the Agent uses to create an XDB
connection to the shard catalog. The default for this parameter is 8080.

System-Managed Sharding Method

In the following example, the sharded database metadata is created for a system-
managed sharding configuration with two regions named region1 and region2.
Because system-managed is the default sharding method, it does not need to be
specified with the -sharding parameter.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -repl DG -region region1,region2

Note also that if -shardspace is not specified, a default shardspace named
shardspaceora is created. If -region is not specified, the default region named
regionora is created. If the single default region is created along with the default
shardspace, then a default shardgroup named shardspaceora_regionora is also
created in the shardspace.

Composite Sharding Method

The following example shows you how to create shard catalog metadata for a composite
sharded database with Data Guard replication in MaxAvailability protection mode, 60
chunks per shardspace, and two shardspaces.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding composite -chunks 60
 -protectmode maxavailability -shardspace shardspace1,shardspace2

User-Defined Sharding Method

The next example shows you how to create shard catalog metadata for a user-defined
sharded database with Data Guard replication.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding user
 -protectmode maxperformance

2. For CREATE SHARD method only: Register the Remote Scheduler Agents with the
shard catalog, and start the agents on each shard host.

Chapter 3
Configure the Sharded Database Topology

3-19

Go to each shard host, log in as the owner of the Oracle software installation, and
run the following schagent commands in the Oracle Home from which the shard
database will run.

schagent –registerdatabase catalog_hostname agent_port
schagent -start

In the schagent command above, replace catalog_hostname with the name of the
shard catalog host, and replace agent_port as with the port number you configured
in CREATE SHARDCATALOG above.

For example:

$ $ORACLE_HOME/bin/schagent –registerdatabase cathost.example.com
8080
$ $ORACLE_HOME/bin/schagent -start

After successful agent registration, the shard host can receive remote job requests
from the shard catalog during GDSCTL DEPLOY. After a successful deployment on a
given host, the Remote Scheduler Agent is no longer used during a sharded
database’s life cycle and can be stopped safely using the following command.

$ $ORACLE_HOME/bin/schagent –stop

Future Connections to the Shard Catalog

GDSCTL stores the credentials for the shard catalog administrator in a wallet on the
local host. However, for subsequent GDSCTL sessions on other hosts, it may be
necessary to explicitly connect to the shard catalog in order to perform administrative
tasks by running the GDSCTL CONNECT command, as shown here.

GDSCTL> connect mysdbadmin/mysdbadmin_password@catalog_connect_string

Add and Start Shard Directors
Add to the configuration the shard directors, which will monitor the sharding system
and run background tasks in response to GDSCTL commands and other events, and
start them.

The following commands must be run on the host where the shard director processes
are to run. This can be the shard catalog host or a dedicated host for the shard
director processes.

1. Add and start a shard director (GSM), as shown in the following example.

GDSCTL> connect mysdbadmin/
mysdbadmin_password@catalog_connect_string
GDSCTL> add gsm -gsm sharddirector1 -catalog catalog_connect_string
-pwd gsmcatuser_password
GDSCTL> start gsm -gsm sharddirector1

The value for the -gsm parameter is the name that you will be using to reference
this shard director in later GDSCTL commands. The values for the -catalog and -

Chapter 3
Configure the Sharded Database Topology

3-20

pwd parameters should be the same used when you created the shard catalog database.

Use the -listener, -localons, and -remoteons parameters as described in the GDSCTL
reference to override the default port numbers of 1522, 6123, and 6234, respectively.
Always confirm that the port numbers to be used, whether default or user-specified, are
available on the host and do not conflict with other running software or Oracle listeners.

2. Repeat the ADD GSM and START GSM commands for any additional shard directors on each
shard director host.

Replace the shard director name (that is, sharddirector1 in the example) with an
appropriate value for each shard director.

If more than one shard director is used, then multiple regions must have been created for
them in the CREATE SHARDCATALOG command, or you can add them later by running ADD
REGION.

Specify a region for each shard director with the -region parameter on each ADD GSM
command, as shown here.

GDSCTL> add gsm -gsm sharddirector2 -catalog catalog_connect_string -pwd
gsmcatuser_password -region dc2

For later GDSCTL sessions, you might need to explicitly specify the shard director to be
administered. If an error message is shown referencing the default GSMORA shard director,
run GDSCTL SET GSM before continuing, as shown here.

GDSCTL> set gsm -gsm sharddirector1

Add Shardspaces If Needed
If you are using composite or user-defined sharding, and you need to add more shardspaces
to complete your desired sharding topology, use the ADD SHARDSPACE command to add
additional shardspaces.

• Run ADD SHARDSPACE as shown here.

GDSCTL> add shardspace -shardspace shardspace2

By default, the ADD SHARDSPACE command inherits the -chunks and -protectmode values
that you used in the CREATE SHARDCATALOG command. You can specify, on a per-
shardspace basis,the number of chunks and the Data Guard protection mode by using
the -chunks and -protectmode parameters with ADD SHARDSPACE.

Add Shardgoups If Needed
If your sharded database topology uses the system-managed or composite sharding method,
you can add any necessary additional shardgroups for your application.

Each shardspace must contain at least one primary shardgroup and may contain any number
or type of standby shardgroups. Shardgroups are not used in the user-defined sharding
method.

Chapter 3
Configure the Sharded Database Topology

3-21

• Run ADD SHARDGROUP to add shardgroups to the configuration.

GDSCTL> add shardgroup -shardgroup shardgroup_primary -shardspace
shardspace1
 -deploy_as primary -region region1
GDSCTL> add shardgroup -shardgroup shardgroup_standby -shardspace
shardspace1
 -deploy_as active_standby -region region2

Note that when you run ADD SHARDGROUP you can specify one of three types of
shardgroups: primary, standby (mounted, not open), and active_standby (open,
available for queries) using the -deploy_as parameter (the default is standby).

Any shards subsequently added to the shardgroup must be opened in the mode
corresponding to the -deploy_as setting for the shardgroup. For example, read-
write for primary shardgroups, mounted for standby shardgroups, or read-only with
apply for active standby shardgroups.

After shards are deployed, their current mode is monitored by the shard directors
and communicated to the shard catalog such that it is possible and expected that
shards of different open modes may be in the same shardgroup, depending upon
subsequent switchover or failover operations.

Verify the Sharding Topology
Before adding information about your shard databases to the catalog, verify that your
sharding topology is correct before proceeding by using the various GDSCTL CONFIG
commands.

Once shards are added and deployed, it is no longer possible to change much of the
shard catalog metadata, so validating your configuration is an important task at this
point.

• Run GDSCTL CONFIG to view overall configuration information.

GDSCTL> config

Regions

region1
region2

GSMs

sharddirector1
sharddirector2

Sharded Database

orasdb

Databases

Chapter 3
Configure the Sharded Database Topology

3-22

Shard Groups

shardgroup_primary
shardgroup_standby

Shard spaces

shardspaceora

Services

GDSCTL pending requests

Command Object Status
------- ------ ------

Global properties

Name: oradbcloud
Master GSM: sharddirector1
DDL sequence #: 0

You can use the various GDSCTL CONFIG commands to display more information about
shardspaces, shardgroups, and other shard catalog objects. For a complete list of GDSCTL
CONFIG command variants, see the GDSCTL reference documentation or run GDSCTL HELP.

Add the Shard CDBs
If your shards will be PDBs inside CDBs, then add the CDBs containing the shard PDBs to
the sharding configuration with the ADD CDB command. If you will be using non-CDBs as your
shards, or will be using CREATE SHARD to add shards, skip to the next section.

1. Run the ADD CDB command as shown here.

GDSCTL> add cdb -connect cdb_connect_string -pwd gsmrootuser_password

This command causes GDSCTL to connect to GSMROOTUSER/
gsmrootuser_password@cdb_connect_string as SYSDG to validate settings and to
retrieve the DB_UNIQUE_NAME of the CDB, which will become the CDB name in the shard
catalog.

2. Repeat the ADD CDB command for all of the CDBs that contain a shard PDB in the
configuration.

3. When all of the CDBs are added, run GDSCTL CONFIG CDB to display a list of CDBs in the
catalog.

GDSCTL> config cdb

Chapter 3
Configure the Sharded Database Topology

3-23

Add the Shards
Depending on whether you use ADD SHARD or CREATE SHARD to add shards to your
configuration, follow the appropriate instructions below.

Add Shards Using GDSCTL ADD SHARD
Use the GDSCTL ADD SHARD command to add the shard information to the shard
catalog.

1. Run ADD SHARD with the usage appropriate to your sharding method, as shown in
the following examples.

For system-managed or composite sharding, run ADD SHARD with the parameters
shown here.

GDSCTL> add shard -connect shard_connect_string -pwd
gsmuser_password
-shardgroup shardgroup_name -cdb cdb_name

For user-defined sharding, the command usage is slightly different.

GDSCTL> add shard -connect shard_connect_string -pwd
gsmuser_password
-shardspace shardspace_name -deploy_as db_mode -cdb cdb_name

Do not specify the –cdb parameter if you are not using PDBs as your shards.

In the examples above, the -cdb parameter specifies the name of the CDB in
which the shard PDB exists, -shardgroup or -shardspace specifies the location of
the shard in your sharding topology, and -deploy_as specifies the open mode
(primary, standby, active_standby) of the shard.

Note:

It is highly recommended that you set server=dedicated in the connect
string.

When you run ADD SHARD, GDSCTL connects to GSMUSER/
gsmuser_password@shard_connect_string as SYSDG to validate the settings on
the shard, and re-runs dbms_gsm_fix.validateShard to check for errors. Then
GDSCTL constructs the shard name using the following conventions.

• For PDB shards: db_unique_name_of_CDB_PDB_name, for example
cdb1_pdb1

• For legacy database shards: db_unique_name_of_DB, which is simply the
db_unique_name

Finally, the metadata that describes the shard is added to the shard catalog.

Chapter 3
Configure the Sharded Database Topology

3-24

2. Run GDSCTL CONFIG SHARD to view the shard metadata on the shard catalog.

GDSCTL> config shard
Name Shard Group Status State Region Availability
--------- ------------------- ------ ----- ------ ------------
cdb1_pdb1 shardgroup_primary U none region1 -
cdb2_pdb1 shardgroup_standby U none region2 -
cdb3_pdb2 shardgroup_primary U none region1 -
cdb4_pdb2 shardgroup_standby U none region2 -

Note that the value for Status is U for “undeployed”, and State and Availability are none
and - until the DEPLOY command is successfully run.

Add Shards Using GDSCTL CREATE SHARD
Use the GDSCTL CREATE SHARD command to create the shard database and add the shard
information to the shard catalog.

Run CREATE SHARD with the parameters appropriate to your sharding method, as shown in the
following examples.

For system-managed or composite sharding, run CREATE SHARD with the parameters shown
here.

GDSCTL> create shard -shardgroup shardgroup_name –destination shard_hostname
 –osaccount account_name –ospassword account_password

For user-defined sharding, the command usage is slightly different.

GDSCTL> create shard -shardspace shardspace_name –deploy_as db_mode
 –destination shard_hostname –osaccount account_name –ospassword
account_password

The -shardgroup or -shardspace parameters specify the location of the shard in your
sharding topology, and -deploy_as specifies the intended open mode (primary, standby,
active_standby) of the shard.

The –destination parameter specifies which Remote Scheduler Agent the shard catalog
contacts to spawn NETCA and DBCA to create the shard database. This value is typically the
host name of the shard host. To see the list of available destinations, select from the
ALL_SCHEDULER_EXTERNAL_DESTS view on the shard catalog database.

The –osaccount and –ospassword parameters specify the operating system user name and
password to be used when spawning the NETCA and DBCA processes on the shard host.
Typically, the user name is the owner of the Oracle Database software.

Password Encryption

To avoid specifying the cleartext password for the account on each CREATE SHARD command,
you can store the encrypted password in the shard catalog for later use by using the GDSCTL

Chapter 3
Configure the Sharded Database Topology

3-25

ADD CREDENTIAL command. In the CREATE SHARD command specify the credential
name in the command parameters instead of –osaccount and –ospassword as shown
below.

GDSCTL> add credential –credential credential_name
 –osaccount account_name –ospassword account_password

GDSCTL> create shard -shardgroup shardgroup_name –destination
shard_hostname
 –credential credential_name

What Happens When You Run CREATE SHARD

When you run CREATE SHARD, GDSCTL validates the input parameters and the shard
host setup and then adds shard metadata to the shard catalog, which in turn causes
the following operations to be performed during GDSCTL DEPLOY:

• Create and start a TNS Listener process on shard hosts at port 1521 with a
listener name of “LISTENER” (by default)

• For primary shards, create the shard database using the default DBCA template
located on the shard host at $ORACLE_HOME/assistants/dbca/templates/
General_Purpose.dbc (by default)

The primary shards will have the following characteristics, by default:

– Randomly generated passwords for SYS, SYSTEM, and GSMUSER
– A db_unique_name, db_name, and SID of the form ‘shNN’ where NN is a

sequence-based number to uniquely identify added shards

– A db_domain value the same as the domain found in the
ALL_SCHEDULER_EXTERNAL_DESTS.HOSTNAME column corresponding to the
specified destination. If no domain is found, then db_domain is set to the
db_domain of the shard catalog database.

– NLS_CHARACTERSET and NLS_NCHAR_CHARACTERSET values the same as those
for the shard catalog database

– The db_file_name_convert parameter set to ‘*’,’$ORACLE_BASE/oradata/’
– The db_create_file_dest parameter set to $ORACLE_BASE/oradata
– The remote_login_passwordfile parameter set to EXCLUSIVE
– The database is in archivelog mode

– Force logging is enabled

– Database flashback is on

– If Oracle Data Guard replication was specified on CREATE SHARDCATALOG, the
following parameters are set.

* dg_broker_start set to TRUE
* db_recovery_file_dest set to $ORACLE_BASE/fast_recovery_area
* db_recovery_file_dest_size set to 51200 MB
* standby_file_management set to AUTO
* db_flashback_retention_target set to 60

Chapter 3
Configure the Sharded Database Topology

3-26

• For standby shards, use DBCA and RMAN to create the standby database based on the
existing primary. In general, all primary database parameters are inherited by the
standbys.

CREATE SHARD Usage Tips For Database Customization

The GDSCTL CREATE SHARD command has several parameters that let you customize the
shard databases.

• The –sys_password and –system_password parameters let you specify the passwords for
the SYS and SYSTEM accounts on your new shards.

Note that the GSMUSER password is always created randomly because this account is not
intended to be used for interactive logins. To change the GSMUSER password after
deployment, change the password on the database with ALTER USER and then use the
GDSCTL MODIFY SHARD command to update the sharding metadata with the new
password.

• The –netparam and –netparamfile parameters let you customize the TNS listener name
and port number when they are created on the shard host.

The value specified for these parameters is the file name of a NETCA response file.
Examples of response files can be found in $ORACLE_HOME/assistants/netca on the
shard hosts.

• Likewise, you can use the -dbtemplate and -dbtemplatefile parameters to specify the
DBCA template file to be used when creating the shard database.

The default template is $ORACLE_HOME/assistants/dbca/templates/
General_Purpose.dbc on the shard host.

• You can use the -dbparam and -dbparamfile parameters to directly pass DBCA
command line parameters to the DBCA process on the shard host, just as you would
enter them when running DBCA from the command line.

To see all of the possible parameters for primary database creation, run dbca -help -
createDatabase. To see parameters for standby database creation, run dbca -help -
createDuplicateDB. For example, to change the global database name and SID for a
primary shard, create a file with a single line as shown below, and specify that file name
in -dbparam or -dbparamfile.

-gdbName mydb.example.com -sid mysid

• When specifying any of these parameters, you can use -netparamfile, -
dbtemplatefile, or -dbparamfile with an operating system file name, as seen from
GDSCTL.

Alternatively, you can save the contents of the file in the shard catalog database with the
ADD FILE command and then use -netparam, -dbtemplate, or -dbparam on your CREATE
SHARD command.

GDSCTL> create shard -dbtemplatefile /home/user/mytemplate.dbc -
netparamfile /home/user/mynetca.rsp ...

Chapter 3
Configure the Sharded Database Topology

3-27

or

GDSCTL> add file –file mytemplate –source /home/user/mytemplate.dbc
GDSCTL> add file –file mynetca –source /home/user/mynetca.rsp
GDSCTL> create shard –dbtemplate mytemplate –netparam mynetca ...

If you wish to ensure that a standby shard on a particular host is in the same Data
Guard configuration as a specific primary shard, it is recommended that you create the
primary shard first followed by the standby shard using the desired –destination
value in CREATE SHARD. If you create several primary shards sequentially, and then
create several standby shards, the primaries and standbys are matched in Data Guard
configurations in a non-deterministic way.

Verify the Shard Configuration

Run GDSCTL CONFIG SHARD to verify that the shard metadata on the shard catalog is as
expected.

GDSCTL> config shard
Name Shard Group Status State Region
Availability
--------- ------------------- ------ ----- ------

sh1 shardgroup_primary U none region1 -
sh2 shardgroup_primary U none region1 -
sh3 shardgroup_standby U none region2 -
sh4 shardgroup_standby U none region2 -

Note that the value for Status is U for “undeployed”, and State and Availability are
none and - until the GDSCTL DEPLOY command is successfully run.

Add Host Metadata
Add all of the host names and IP addresses of your shard hosts to the shard catalog.

As part of the deployment process, the shard director contacts the shards and directs
them to register with the shard director’s TNS listener process. This listener process
only accepts incoming registration requests from trusted sources and will reject
registration requests from unknown hosts.

If your shard hosts have multiple host names or network interfaces assigned to them, it
is possible that the incoming registration request to the shard director may come from
a host that was not automatically added during ADD SHARD or CREATE SHARD. In this
case, the registration request is rejected and the shard will not deploy correctly. The
visible symptom of this problem will be that CONFIG SHARD shows PENDING for the
shard’s Availability after DEPLOY has completed.

To avoid this issue, use the GDSCTL ADD INVITEDNODE command to manually add all
host names and IP addresses of your shard hosts to the shard catalog metadata.

1. View a list of trusted hosts.

By default, the ADD SHARD and CREATE SHARD commands add the default host
name of the shard host to the shard catalog metadata, so that any registration

Chapter 3
Configure the Sharded Database Topology

3-28

requests from that host to the shard director will be accepted. You can view the list of
trusted hosts by running the GDSCTL CONFIG VNCR command.

GDSCTL> config vncr

2. Ping from all of the hosts in the configuration to verify successful host name resolution.

Any hosts listed in the CONFIG VNCR output must be reachable by name from all of the
other hosts in the topology. Use the ping command from the shard, shard catalog, and
shard director hosts to verify that hostname resolution succeeds for all of the host names
listed.

To resolve any issues, use operating system commands or settings to ensure that all of
the host names can be resolved.

3. Run the REMOVE INVITEDNODE command to manually remove any host names that are not
necessary and cannot be resolved from all of the hosts.

4. Run the ADD INVITEDNODE command to manually add all host names and IP addresses of
your shard hosts to the shard catalog metadata.

GDSCTL> add invitednode 127.0.0.1

Deploy the Sharding Configuration
When the sharded database topology has been fully configured with GDSCTL commands, run
the GDSCTL DEPLOY command to deploy the sharded database configuration.

When you run the GDSCTL DEPLOY command, the output looks like the following if you used
the ADD SHARD command to configure the shards.

GDSCTL> deploy
deploy: examining configuration...
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

If you used CREATE SHARD to configure the shards, the GDSCTL DEPLOY command output will
look similar to the following.

GDSCTL> deploy
deploy: examining configuration...
deploy: deploying primary shard 'sh1' ...
deploy: network listener configuration successful at destination 'shard1'
deploy: starting DBCA at destination 'shard1' to create primary shard
'sh1' ...
deploy: deploying primary shard 'sh2' ...
deploy: network listener configuration successful at destination 'shard2'
deploy: starting DBCA at destination 'shard2' to create primary shard
'sh2' ...
deploy: waiting for 2 DBCA primary creation job(s) to complete...
deploy: waiting for 2 DBCA primary creation job(s) to complete...
deploy: DBCA primary creation job succeeded at destination 'shard1' for
shard 'sh1'

Chapter 3
Deploy the Sharding Configuration

3-29

deploy: DBCA primary creation job succeeded at destination 'shard2'
for shard 'sh2'
deploy: deploying standby shard 'sh3' ...
deploy: network listener configuration successful at destination
'shard3'
deploy: starting DBCA at destination 'shard3' to create standby shard
'sh3' ...
deploy: deploying standby shard 'sh4' ...
deploy: network listener configuration successful at destination
'shard4'
deploy: starting DBCA at destination 'shard4' to create primary shard
'sh4' ...
deploy: waiting for 2 DBCA standby creation job(s) to complete...
deploy: waiting for 2 DBCA standby creation job(s) to complete...
deploy: DBCA standby creation job succeeded at destination 'shard3'
for shard 'sh3'
deploy: DBCA standby creation job succeeded at destination 'shard4'
for shard 'sh4'
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

What Happens During Deployment

As you can see, when you run DEPLOY several things happen.

• GDSCTL calls a PL/SQL procedure on the shard catalog that examines the
sharded database topology configuration to determine if there are any undeployed
shards present that are able to be deployed.

• If the CREATE SHARD method is used to create shards, PL/SQL code on the shard
catalog schedules a Remote Scheduler Agent job on each shard host that runs
NETCA, which creates and starts a TNS Listener. Then, a second job is scheduled
to run DBCA on the shard host, which creates the shard database. If standbys are
to be deployed, then another set of NETCA and DBCA jobs are run, which create
the standby databases on their respective hosts after the primary databases are
successfully created.

• For shards that are being deployed, the shard catalog sends requests to the shard
director to update database parameters on the shards, populate topology
metadata on the shard, and direct the shard to register with the shard director.

• If Oracle Data Guard replication is in use, and standby databases are present to
deploy, then the shard director calls PL/SQL APIs on the primary shards to create
a Data Guard configuration, or to validate an existing configuration on the primary
and standby sets. Fast Start Failover functionality is enabled on all of the shards
and, in addition, the shard director starts a Data Guard observer process on its
host to monitor the Data Guard configuration.

• If new shards are being added to an existing sharded database that already
contains deployed shards (called an incremental deployment), then any DDL
statements that have been run previously are run on the new shards to ensure that
the application schemas are identical across all of the shards.

• Finally, in the case of an incremental deployment on a sharded database using
system-managed or composite sharding methods, automatic chunk movement is
scheduled in the background, which is intended to balance the number of chunks
distributed among the shards now in the configuration. This process can be

Chapter 3
Deploy the Sharding Configuration

3-30

monitored using the GDSCTL CONFIG CHUNKS command after the DEPLOY command returns
control to GDSCTL.

What Does a Successful Deployment Look Like?

Following a successful deployment using PDBs and the ADD SHARD method, the output from
CONFIG SHARD should look similar to the following, if Data Guard active standby shards are in
use.

GDSCTL> config shard
Name Shard Group Status State Region Availability
--------- ------------------- ------- -------- ------- ------------
cdb1_pdb1 shardgroup_primary Ok Deployed region1 ONLINE
cdb2_pdb1 shardgroup_standby Ok Deployed region2 READ ONLY
cdb3_pdb2 shardgroup_primary Ok Deployed region1 ONLINE
cdb4_pdb2 shardgroup_standby Ok Deployed region2 READ ONLY

If you used the CREATE SHARD method, or used ADD SHARD with non-CDBs, then the shard
names are the db_unique_name value of the shard databases.

If mounted, non-open standbys are in use, the output will be similar to the following, because
the shard director is unable to log in to check the status of a mounted database.

GDSCTL> config shard
Name Shard Group Status State Region Availability
--------- ------------------ ------------- -------- ------- ------------
cdb1_pdb1 shardgroup_primary Ok Deployed region1 ONLINE
cdb2_pdb1 shardgroup_standby Uninitialized Deployed region2 -
cdb3_pdb2 shardgroup_primary Ok Deployed region1 ONLINE
cdb4_pdb2 shardgroup_standby Uninitialized Deployed region2 -

What To Do If Something Is Not Right

If any shards are showing an availability of PENDING, confirm that all steps related to ADD
INVITEDNODE and CONFIG VNCR from the topology configuration were completed. If not,
complete them now and run GDSCTL SYNC DATABASE -database shard_name to complete
shard deployment.

If you used the CREATE SHARD method to add shards to your configuration, and errors from
NETCA or DBCA are returned during GDSCTL DEPLOY from Remote Scheduler Agent jobs,
then do the following steps to resolve the errors and retry the deployment.

1. Resolve the issues.

The error message returned by GDSCTL DEPLOY should have enough information to view
the output from the failed job on the shard host.

Typically, there will be trace and log files from the NETCA or DBCA execution
in $ORACLE_BASE/cfgtoollogs on the shard host. Resolve any underlying issues that
caused the failure (bad parameters, resource issues on the host, and the like).

2. Re-set the shard host.

a. Stop any running TNS listeners created during the attempted deployment.

b. Stop any running shard databases started during the attempted deployment.

c. Delete $ORACLE_HOME/network/admin/listener.ora

Chapter 3
Deploy the Sharding Configuration

3-31

d. Delete all files associated with the failed shard creation from $ORACLE_BASE/
oradata and $ORACLE_BASE/fast_recovery_area

3. Run GDSCTL DEPLOY again.

Create and Start Global Database Services
After the shards are successfully deployed, and the correct status is confirmed, create
and start global database services on the shards to service incoming connection
requests from your application.

As an example, the commands in the following examples create read-write services on
the primary shards in the configuration and read-only services on the standby shards.
These service names can then be used in connect strings from your application to
appropriately route requests to the correct shards.

After the services are started, your sharded database is ready for application schema
creation and incoming client connection requests.

Example 3-1 Add and start a global service that runs on all of the primary
shards

The following commands create and start a global service named oltp_rw_srvc that a
client can use to connect to the sharded database. The oltp_rw_srvc service runs
read/write transactions on the primary shards.

GDSCTL> add service -service oltp_rw_srvc -role primary
GDSCTL> start service -service oltp_rw_srvc

Example 3-2 Add and start a global service for the read-only workload to run
on the standby shards

The oltp_ro_srvc global service is created and started to run read-only workloads on
the standby shards. This assumes that the standby shards are Oracle Active Data
Guard standby shards which are open for read-only access. Mounted, non-open
standbys cannot service read-only connections, and exist for disaster recovery and
high availability purposes only.

GDSCTL> add service -service oltp_ro_srvc -role physical_standby
GDSCTL> start service -service oltp_ro_srvc

Example 3-3 Verify the status of the global services

GDSCTL> config service

Name Network name Pool Started Preferred
all
---- ------------ ---- -------

oltp_rw_srvc oltp_rw_srvc.orasdb.oracdbcloud orasdb Yes Yes
oltp_ro_srvc oltp_ro_srvc.orasdb.oracdbcloud orasdb Yes Yes

GDSCTL> status service
Service "oltp_rw_srvc.orasdb.oradbcloud" has 2 instance(s). Affinity:

Chapter 3
Create and Start Global Database Services

3-32

ANYWHERE
 Instance "orasdb%1", name: "cdb1_pdb1", db: "cdb1_pdb1", region:
"region1", status: ready.
 Instance "orasdb%21", name: "cdb3_pdb2", db: "cdb3_pdb2", region:
"region1", status: ready.
Service "oltp_ro_srvc.orasdb.oradbcloud" has 2 instance(s). Affinity:
ANYWHERE
 Instance "orasdb%11", name: "cdb2_pdb1", db: "cdb2_pdb1", region:
"region2", status: ready.
 Instance "orasdb%31", name: "cdb4_pdb2", db: "cdb4_pdb2", region:
"region2", status: ready.

Verify Shard Status
Once you complete the DEPLOY step in your sharding configuration deployment, verify the
detailed status of each shard.

Run GDSCTL CONFIG SHARD to see the detailed status of each shard.

GDSCTL> config shard -shard cdb1_pdb1
Name: cdb1_pdb1
Shard Group: shardgroup_primary
Status: Ok
State: Deployed
Region: region1
Connection string:shard_connect_string
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 19.0.0.0
Failed DDL:
DDL Error: ---
Management error:
Failed DDL id:
Availability: ONLINE
Rack:

Supported services

Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled

Example Sharded Database Deployment
This example explains how to deploy a typical system-managed sharded database with
multiple replicas, using Oracle Data Guard for high availability. The shard catalog and the
shards in this example are PDBs and the shards are added to the configuration with the ADD
SHARD command.

Chapter 3
Verify Shard Status

3-33

To deploy a system-managed sharded database you create shardgroups and shards,
create and configure the databases to be used as shards, execute the DEPLOY
command, and create role-based global services.

You are not required to map data to shards in system-managed sharding, because the
data is automatically distributed across shards using partitioning by consistent hash.
The partitioning algorithm evenly and randomly distributes data across shards. For
more conceptual information about the system-managed sharded Database, see
System-Managed Sharding.

Example Sharded Database Topology
Consider the following system-managed sharded database configuration, where
shardgroup 1 contains the primary shards, while shardgroups 2 and 3 contain standby
replicas.

In addition, let’s assume that the replicas in shardgroup 2 are Oracle Active Data
Guard standbys (that is, databases open for read-only access), while the replicas in
shardgroup 3 are mounted databases that have not been opened.

Datacenter 1

Datacenter 2

Shardgroup 1

Shardgroup 2

Shardgroup 3

1 2

5

3

4 6

7 8 9

Chapter 3
Example Sharded Database Deployment

3-34

Table 3-1 Example System-Managed Topology Host Names

Topology Object Description

Shard Catalog Database Every sharded database topology requires a shard
catalog. In our example, the shard catalog
database has 2 standbys, one in each data center.

Primary

• Data center = 1
• Host name = cathost
• DB_UNIQUE_NAME = catcdb
• PDB name = catpdb
• Connect service name = catpdb
Active Standby

• Data center = 1
• Host name = cathost1
Standby

• Data center = 2
• Host name = cathost2

Regions Because there are two datacenters involved in this
configuration, there are two corresponding regions
created in the shard catalog database.

Data center 1

• Region name = dc1
Data center 2

• Region name = dc2

Shard Directors (global service managers) Each region requires a shard director running on a
host within that data center. This example shows
how to use two shard directors per region, which is
the best practice recommendation.

Data center 1

• Shard director host names = gsmhost1 and
gsmhost1b

• Shard director name = gsm1 and gsm1b
Data center 2

• Shard director hast name = gsmhost2 and
gsmhost2b

• Shard director name = gsm2 and gsm2b

Shardgroups Data center 1

• sg1
• sg2
Data center 2

• sg3

Shards • Host names = shardhost1, …, shardhost9
• DB_UNIQUE_NAME = cdb1, …, cdb9
• PDB names = pdb1, pdb2, pdb3

PDB names on standby replicas are the same
as the PDB names on their corresponding
primaries

Chapter 3
Example Sharded Database Deployment

3-35

Deploy the Example Sharded Database
Do the following steps to deploy the example system-managed sharded database with
multiple replicas, using Oracle Data Guard for high availability.

1. Provision and configure the following hosts: cathost, cathost1, cathost2, gsmhost1,
gsmhost1b, gsmhost2 gsmhost2b, and shardhost1 through shardhost9.

See Provision and Configure Hosts and Operating Systems for details.

2. Install the Oracle Database software on the following hosts: cathost, cathost1,
cathost2, and shardhost1 through shardhost9.

See Install the Oracle Database Software for details.

3. Install the shard director software on hosts gsmhost1, gsmhost1b, gsmhost2, and
gsmhost2b.

See Install the Shard Director Software for details.

4. Create the shard catalog database and start an Oracle TNS Listener on cathost.

Additionally, create standby replicas of the catalog on cathost1 and cathost2, and
verify that changes made to the primary catalog are applied on these standbys.

See Create the Shard Catalog Database for details.

5. Create the 3 primary databases that will contain the sharded data on hosts
shardhost1, shardhost2 and shardhost3.

Create the corresponding replicas, located and named as listed here.

• shardhost1 (cdb1/pdb1) replicas on shardhost4 (cdb4) and shardhost7 (cdb7)

• shardhost2 (cdb2/pdb2) replicas on shardhost5 (cdb5) and shardhost8 (cdb8)

• shardhost3 (cdb3/pdb3) replicas on shardhost6 (cdb6) and shardhost9 (cdb9)

The db_unique_name of the 9 container databases (CDB) should be cdb1 through
cdb9, in which the PDB names should be pdb1, pdb2 and pdb3 on the three
primaries and their replicas.

The service names for the CDBs should be cdb1 through cdb9, which the service
names for the PDB shards are pdb1, pdb2, and pdb3.

See Create the Shard Databases for details.

6. Assuming that all port numbers are the defaults, to configure the sharded
database topology, issue the following GDSCTL commands, replacing domains and
passwords with the appropriate values.

a. On host gsmhost1, run the following commands in GDSCTL.

create shardcatalog -database cathost.example.com:1521/
catpdb.example.com -user mydbsadmin/mydbsadmin_password -region
dc1,dc2

add gsm -gsm gsm1 -region dc1 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm1

See Create the Shard Catalog and Add and Start Shard Directors for details.

Chapter 3
Example Sharded Database Deployment

3-36

b. On host gsmhost1b, run the following commands in GDSCTL.

connect mydbsadmin/mydbsadmin_password@cathost.example.com:1521/
catpdb.example.com
add gsm -gsm gsm1b -region dc1 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm1b

See Add and Start Shard Directors for details.

c. On host gsmhost2, run the following commands in GDSCTL.

connect mydbsadmin/mydbsadmin_password@cathost.example.com:1521/
catpdb.example.com
add gsm -gsm gsm2 -region dc2 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm2

See Add and Start Shard Directors for details.

d. On host gsmhost2b, run the following commands in GDSCTL.

connect mydbsadmin/mydbsadmin_password@cathost.example.com:1521/
catpdb.example.com
add gsm -gsm gsm2b -region dc2 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm2b

See Add and Start Shard Directors for details.

e. Back on host gsmhost1, run the following from GDSCTL to complete the sharded
database setup.

add shardgroup -shardgroup sg1 -deploy_as primary -region dc1
add shardgroup -shardgroup sg2 -deploy_as active_standby -region dc1
add shardgroup -shardgroup sg3 -deploy_as standby -region dc2
add cdb -connect shardhost1.example.com:1521/cdb1.example.com -pwd
gsmrootuser_password
add cdb -connect shardhost2.example.com:1521/cdb2.example.com -pwd
gsmrootuser_password

Repeat the ADD CDB command for shardhost3 through shardhost9 and cdb3 through
cdb9, then run the following commands.

add shard -connect shardhost1.example.com:1521/pdb1.example.com -pwd
gsmuser_password -shardgroup sg1 -cdb cdb1
add shard -connect shardhost2.example.com:1521/pdb2.example.com -pwd
gsmuser_password -shardgroup sg1 -cdb cdb2
add shard -connect shardhost3.example.com:1521/pdb3.example.com -pwd
gsmuser_password -shardgroup sg1 -cdb cdb3
add shard -connect shardhost4.example.com:1521/pdb1.example.com -pwd
gsmuser_password -shardgroup sg2 -cdb cdb4
add shard -connect shardhost5.example.com:1521/pdb2.example.com -pwd

Chapter 3
Example Sharded Database Deployment

3-37

gsmuser_password -shardgroup sg2 -cdb cdb5
add shard -connect shardhost6.example.com:1521/pdb3.example.com -
pwd gsmuser_password -shardgroup sg2 -cdb cdb6
add shard -connect shardhost7.example.com:1521/pdb1.example.com -
pwd gsmuser_password -shardgroup sg3 -cdb cdb7
add shard -connect shardhost8.example.com:1521/pdb2.example.com -
pwd gsmuser_password -shardgroup sg3 -cdb cdb8
add shard -connect shardhost9.example.com:1521/pdb3.example.com -
pwd gsmuser_password -shardgroup sg3 -cdb cdb9

See Add Shardgoups If Needed, Add the Shard CDBs, and Add Shards Using
GDSCTL ADD SHARD for details.

f. Use the CONFIG VNCR and ADD INVITEDNODE commands to validate that all of
the VNCR entries are valid and sufficient for a successful deployment.

See Add Host Metadata for details.

g. Run DEPLOY from GDSCTL to complete the configuration of the sharded
database.

See Deploy the Sharding Configuration for details.

h. Add and start services for read-write and read-only access to the sharded
database.

add service -service oltp_rw_srvc -role primary
start service -service oltp_rw_srvc
add service -service oltp_ro_srvc -role physical_standby
start service -service oltp_ro_srvc

See Create and Start Global Database Services for details.

7. You can use the GDSCL CONFIG, CONFIG SHARD, and CONFIG SERVICE commands to
validate that all of the shards and services are online and running.

See Verify Shard Status for details.

Using Transparent Data Encryption with Oracle Sharding
Oracle Sharding supports Transparent Data Encryption (TDE), but in order to
successfully move chunks in a sharded database with TDE enabled, all of the shards
must share and use the same encryption key for the encrypted tablespaces.

A sharded database consists of multiple independent databases and a catalog
database. For TDE to work properly, especially when data is moved between shards,
certain restrictions apply. In order for chunk movement between shards to work when
data is encrypted, you must ensure that all of the shards use the same encryption key.

There are two ways to accomplish this:

• Create and export an encryption key from the shard catalog, and then import and
activate the key on all of the shards individually.

• Store the wallet in a shared location and have the shard catalog and all of the
shards use the same wallet.

Chapter 3
Using Transparent Data Encryption with Oracle Sharding

3-38

The following TDE statements are automatically propagated to shards when executed on the
shard catalog with shard DDL enabled:

• alter system set encryption wallet open/close identified by password

• alter system set encryption key

• administer key management set keystore [open|close] identified by password

• administer key management set key identified by password

• administer key management use key identified by password

• administer key management create key store identified by password

Limitations

The following limitations apply to using TDE with Oracle Sharding.

• For MOVE CHUNK to work, all shard database hosts must be on the same platform.

• MOVE CHUNK cannot use compression during data transfer, which may impact
performance.

• Only encryption on the tablespace level is supported. Encryption on specific columns is
not supported.

See Also:

Oracle Database Advanced Security Guide for more information about TDE

Creating a Single Encryption Key on All Shards
To propagate a single encryption key to all of the databases in the sharded database
configuration, you must create a master encryption key on the shard catalog, then use wallet
export, followed by wallet import onto the shards, and activate the keys.

Note:

This procedure assumes that the keystore password and wallet directory path are
the same for the shard catalog and all of the shards. If you require different
passwords and directory paths, all of the commands should be issued individually
on each shard and the shard catalog with shard DDL disabled using the shard’s
own password and path.

These steps should be done before any data encryption is performed.

1. Create an encryption key on the shard catalog.

With shard DDL enabled, issue the following statements.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE wallet_directory_path
IDENTIFIED BY
 keystore_password;

Chapter 3
Using Transparent Data Encryption with Oracle Sharding

3-39

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;

The keystore_password should be the same if you prefer to issue wallet open and
close commands centrally from the catalog.

Note:

The wallet directory path should match the
ENCRYPTION_WALLET_LOCATION in the corresponding sqlnet.ora.

ENCRYPTION_WALLET_LOCATION parameter is being deprecated. You are
advised to use the WALLET_ROOT static initialization and
TDE_CONFIGURATION dynamic initialization parameter instead.

With shard DDL disabled, issue the following statement.

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY keystore_password
WITH BACKUP;

An encryption key is created and activated in the shard catalog database’s wallet.

If you issue this statement with DDL enabled, it will also create encryption keys in
each of the shards’ wallets, which are different keys from that of the catalog. In
order for data movement to work, you cannot use different encryption keys on
each shard.

2. Get the master key ID from the shard catalog keystore.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

3. With shard DDL disabled, export the catalog wallet containing the encryption key.

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET
secret_phrase TO
 wallet_export_file IDENTIFIED BY keystore_password;

(Optional) Enter the result of the step here.

4. Physically copy the wallet file to each of the shard hosts, into their corresponding
wallet export file location, or put the wallet file on a shared disk to which all of the
shards have access.

5. With shard DDL disabled, log on to each shard and import the wallet containing
the key.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;
ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET

Chapter 3
Using Transparent Data Encryption with Oracle Sharding

3-40

secret_phrase FROM
 wallet_export_file IDENTIFIED BY keystore_password WITH BACKUP;

6. Restart the shard databases.

7. Activate the key on all of the shards.

On the catalog with shard DDL enabled

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;
ADMINISTER KEY MANAGEMENT USE KEY master_key_id IDENTIFIED BY
keystore_password
 WITH BACKUP;

All of the shards and the shard catalog database now have the same encryption key
activated and ready to use for data encryption. On the shard catalog, you can issue TDE
DDLs (with shard DDL enabled) such as:

• Create encrypted tablespaces and tablespace sets.

• Create sharded tables using encrypted tablespaces.

• Create sharded tables containing encrypted columns (with limitations).

Validate that the key IDs on all of the shards match the ID on the shard catalog.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

Chapter 3
Using Transparent Data Encryption with Oracle Sharding

3-41

4
Using Oracle Database Sharding in Oracle
Cloud Infrastructure

Tooling for Oracle Sharding includes Terraform, Kubernetes, and Docker scripts to automate
and further simplify the sharded database deployment operations.

Deploy a Sharded Database on Kubernetes
Automate the provisioning of sharded databases on Oracle Kubernetes Engine (OKE) using
Oracle Cloud Infrastructure Ansible Modules and Helm/Chart.

To deploy Oracle Sharding on OKE, Oracle Cloud Infrastructure Ansible Modules create
compute resources, configure the network, and create block storage volumes by using yaml
files passed to Ansible playbooks.

Find the instructions and downloads for sharded database deployment on Kubernetes at
https://github.com/oracle/db-sharding/tree/master/oke-based-sharding-deployment.

Deploy a Sharded Database With Terraform
Tooling for Oracle Sharding includes Terraform modules and scripts to automate your
sharded database deployment on both Oracle Cloud Infrastructure and on-premises systems.

The Terraform modules and scripts create and configure a complete sharded database
infrastructure, including shard directors, shard catalogs, and shards. The scripts also provide
the option to deploy standby shards and shard catalogs using Oracle Data Guard for
replication to provide high availability and disaster recovery of the sharded data.

As part of the set-up process, you install the Terraform binary, download the Oracle Sharding
shard director installation package, and for on-premises deployments, you download the
Oracle Database installation files.

Find the instructions and downloads for Terraform-based sharded database deployment for
your target systems at the following locations.

• Oracle Cloud Infrastructure https://github.com/oracle/db-sharding/tree/master/
deployment-with-terraform/sdb-terraform-oci.

• On-Premises https://github.com/oracle/db-sharding/tree/master/deployment-with-
terraform/sdb-terraform-onprem

Deploy a Sharded Database with Docker
Oracle Sharding provides sample Docker build files to facilitate sharded database installation,
configuration, and environment setup for DevOps users.

In this process you install and configure the Docker engine, create global service manager
(shard director) and Oracle Database images, create a network bridge, create containers for
the Oracle Sharding objects and shard director, and deploy the containers.

4-1

https://github.com/oracle/db-sharding/tree/master/oke-based-sharding-deployment
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-oci
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-oci
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-onprem
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-onprem

Find the instructions and downloads for sharded database deployment with Docker at
https://github.com/oracle/db-sharding/tree/master/docker-based-sharding-deployment.

Chapter 4
Deploy a Sharded Database with Docker

4-2

https://github.com/oracle/db-sharding/tree/master/docker-based-sharding-deployment

5
Sharded Database Schema Design

To obtain the benefits of sharding, the schema of a sharded database should be designed in
a way that maximizes the number of database requests executed on a single shard.

Sharded Database Schema Design Considerations
Design of the database schema has a big impact on the performance and scalability of a
sharded database. An improperly designed schema can lead to unbalanced distribution of
data and workload across shards and large percentage of multi-shard operations.

The data model should be a hierarchical tree structure with a single root table. Oracle
Sharding supports any number of levels within the hierarchy.

To obtain the benefits of sharding, the schema of a sharded database should be designed in
a way that maximizes the number of database requests executed on a single shard.

A sharded database schema consists of a sharded table family and duplicated tables with the
following characteristics.

Sharded table family

• A set of tables which are equi-partitioned by the sharding key.

– Related data is always stored and moved together.

– Joins and integrity constraint checks are done within a shard.

• The sharding method and key are based on the application's requirements.

• The sharding key must be included in the primary key.

Duplicated tables

• Non-sharded tables which are replicated to all shards.

• Usually contain common reference data.

• Can be read and updated on each shard.

Planning a Sharded Database Schema Design

Once the sharded database is populated with data, it is impossible to change many attributes
of the schema, such as whether a table is sharded or duplicated, sharding key, and so on.
Therefore, the following points should be carefully considered before deploying a sharded
database.

• Which tables should be sharded?

• Which tables should be duplicated?

• Which sharded table should be the root table?

• What method should be used to link other tables to the root table?

• Which sharding method should be used?

5-1

• Which sharding key should be used?

• Which super sharding key should be used (if the sharding method is composite)?

Choosing Sharding Keys
Sharded table partitions are distributed across shards at the tablespace level, based
on a sharding key. Examples of keys include customer ID, account number, and
country ID.

Sharding keys must adhere to the following characteristics.

• The sharding key should be very stable; its value should almost never change.

• The sharding key must be present in all of the sharded tables. This allows the
creation of a family of equi-partitioned tables based on the sharding key.

• Joins between tables in a table family should be performed using the sharding key.

Sharding Keys for System-Managed Sharded Databases

For the system-managed sharding method, the sharding key must be based on a
column that has high cardinality; the number of unique values in this column must be
much bigger than the number of shards. Customer ID, for example, is a good
candidate for the sharding key, while a United States state name is not.

A sharding key can be a single column or multiple columns. When multiple columns
are present, the hash of the columns are concatenated to form the sharding key.

The following examples create a sharded table called Customers and specify that
columns cust_id and name form the sharding keys for the table.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE,
CONSTRAINT cust_pk PRIMARY KEY(cust_id, name))
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO
TABLESPACE SET ts1;

CREATE SHARDED TABLE Orders
(OrderNo NUMBER NOT NULL
, CustNo NUMBER NOT NULL
, Name VARCHAR2(50) NOT NULL
, OrderDate DATE
, CONSTRAINT OrderPK PRIMARY KEY (CustNo, Name, OrderNo)
, CONSTRAINT CustFK FOREIGN KEY (CustNo, Name) REFERENCES
Customers(Cust_ID, Name)
)
PARTITION BY REFERENCE (CustFK);

Sharding Keys for Composite Sharded Databases

Chapter 5
Choosing Sharding Keys

5-2

Composite sharding enables two levels of sharding - one by list or range and another by
consistent hash. This is accomplished by the application providing two keys: a super sharding
key and a sharding key.

Composite sharding does not support multi-column LIST partitionsets, as shown here.

CREATE SHARDED TABLE customers (
cust_id NUMBER NOT NULL,
Name VARCHAR2(50) NOT NULL,
class VARCHAR2(3) NOT NULL ,
class2 number not null,
CONSTRAINT cust_pk PRIMARY KEY(cust_id,name,class))
PARTITIONSET BY LIST (class, class2)
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO (
PARTITIONSET silver VALUES (('SLV',1),('BRZ',2)) TABLESPACE SET ts1
PARTITIONSET gold VALUES (('GLD',3),('OTH',4)) TABLESPACE SET ts2);

PARTITION BY CONSISTENT HASH (cust_id,name)
*
ERROR at line 8:
ORA-02514: list PARTITIONSET method expects a single partitioning column

Multi-column RANGE partitionsets are supported, as shown below.

CREATE SHARDED TABLE customers (
cust_id NUMBER NOT NULL,
Name VARCHAR2(50) NOT NULL,
class number NOT NULL ,
class2 number not null,
CONSTRAINT cust_pk PRIMARY KEY(cust_id,name,class))
PARTITIONSET BY RANGE (class, class2)
PARTITION BY CONSISTENT HASH (cust_id,name)
PARTITIONS AUTO (
PARTITIONSET silver VALUES LESS THAN (10,100) TABLESPACE SET ts1,
PARTITIONSET gold VALUES LESS THAN (20,200) TABLESPACE SET ts2);

Table created.

In both of the above cases, the sharding key (not the partitionset key) can be multi-column.

Sharding Keys for User-Defined Sharded Databases

For partition by list in user-defined sharding, Oracle Sharding expects a single sharding key
column. An error is thrown when multiple columns are specified for a list-partitioned sharded
table.

CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL

Chapter 5
Choosing Sharding Keys

5-3

, state2 VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state,state2)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
);

ERROR at line 1:
ORA-03813: list partition method expects a single partitioning column
in
user-defined sharding

For a range-partitioned sharded table, you can specify multiple columns as sharding
key columns.

CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state NUMBER NOT NULL
, state2 NUMBER NOT NULL
, status VARCHAR2(1)
)
PARTITION BY RANGE (state, state2)
(PARTITION p_northwest VALUES LESS THAN(10, 100) TABLESPACE ts1
, PARTITION p_southwest VALUES LESS THAN(20,200) TABLESPACE ts2);

Table created.

But in both cases, the sharding key (not the partitionset key) can be multi-column.

Sharding Key Type Support

The following data types are supported for the sharding key.

• NUMBER
• INTEGER
• SMALLINT
• RAW
• (N)VARCHAR
• (N)VARCHAR2
• (N)CHAR
• DATE

Chapter 5
Choosing Sharding Keys

5-4

• TIMESTAMP

Primary Key and Foreign Key Constraints
In a sharding environment, the primary key constraints and foreign key constraints are
controlled by the following rules.

• For primary keys, there are unique constraints and unique indexes on sharded tables; the
column list must contain the sharding key columns. In earlier Oracle releases the
restriction was that the sharding key must be a prefix of such columns, but this rule is
now more relaxed.

• Foreign keys from one sharded table to another sharded table also must contain the
sharding key. This is automatically enforced because a foreign key refers to either the
primary key or unique columns of the referenced table.

• Foreign keys on sharded tables must be within the same table family. This is required
because different table families have different sharding key columns.

• Foreign keys in sharded tables referencing local tables are not allowed.

• Foreign keys in sharded tables referencing duplicated tables are not allowed.

• Foreign keys in duplicated table referencing sharded tables are not allowed.

Indexes on Sharded Tables
Only local indexes can be created on sharded tables. Unique local indexes on sharded tables
must contain the sharding key.

Global indexes on sharded tables are not allowed because they can compromise the
performance of online chunk movement.

The following example creates a local index named id1 for the id column of the account
table.

CREATE INDEX id1 ON account (id) LOCAL;

The following example creates a local unique index named id2 for the id and state columns
of the account table.

CREATE UNIQUE INDEX id2 ON account (id, state) LOCAL;

DDL Execution in a Sharded Database
To create a schema in a sharded database, you must issue DDL commands on the shard
catalog database, which validates the DDLs and executes them locally before they are
executed on the shards.

The shard catalog database contains local copies of all of the objects that exist in the
sharded database, and serves as the master copy of the sharded database schema. If the
shard catalog validation and execution of DDLs are successful, the DDLs are automatically
propagated to all of the shards and applied in the order in which they were issued on the
shard catalog.

Chapter 5
Primary Key and Foreign Key Constraints

5-5

If a shard is down or not accessible during DDL propagation, the shard catalog keeps
track of DDLs that could not be applied to the shard, and then applies them when the
shard is back up.

When a new shard is added to a sharded database, all of the DDLs that have been
executed in the sharded database are applied in the same order to the shard before it
becomes accessible to clients.

There are two ways you can issue DDLs in a sharded database.

• Use the GDSCTL SQL command.

When you issue a DDL with the GDSCTL SQL command, as shown in the following
example, GDSCTL waits until all of the shards have finished executing the DDL and
returns the status of the execution.

GDSCTL> sql “create tablespace set tbsset”

• Connect to the shard catalog database using SQL*Plus using the
GDS$CATALOG.sdbname service.

When you issue a DDL command on the shard catalog database, it returns the
status when it finishes executing locally, but the propagation of the DDL to all of
the shards happens in the background asynchronously.

SQL> create tablespace set tbsset;

Note:

Using the SYS account to execute shard DDL is not recommended; create a
privileged account for this purpose.

For information about DDL syntax extensions for Oracle Sharding, see DDL Syntax
Extensions for Oracle Sharding.

Creating Objects Locally and Globally
Objects created using GDSCTL creates global, sharded database objects; however,
you can create local or global objects by connecting to the shard catalog with
SQL*Plus.

When a DDL to create an object is issued using the GDSCTL sql command, the
object is created on all of the shards. A master copy of the object is also created in the
shard catalog database. An object that exists on all shards, and the shard catalog
database, is called a sharded database object.

When connecting to the shard catalog using SQL*Plus, two types of objects can be
created: sharded database objects and local objects. Local objects are traditional
objects that exist only in the shard catalog. Local objects can be used for
administrative purposes, or they can be used by multi-shard queries originated from
the shard catalog database, to generate and store a report, for example.

Sharded objects cannot have any dependency on local objects. For example, you
cannot create an all-shard view on a local table.

Chapter 5
DDL Execution in a Sharded Database

5-6

The type of object (sharded database or local) that is created in a SQL*Plus session depends
on whether the SHARD DDL mode is enabled in the session. This mode is enabled by default
on the shard catalog database for the all-shards user, which is a user that exists on all of the
shards and the shard catalog database. All of the objects created while SHARD DDL is enabled
in a session are sharded database objects.

To enable SHARD DDL in the session, the all-shards user must run

ALTER SESSION ENABLE SHARD DDL

All of the objects created while SHARD DDL is disabled are local objects. To create a local
object, the all-shards user must first run

ALTER SESSION DISABLE SHARD DDL

See ALTER SESSION for more information about the SHARD DDL session parameter.

DDL Syntax Extensions for Oracle Sharding
Oracle Sharding includes SQL DDL statements with syntax that can only be run against a
sharded database.

Changes to query and DML statements are not required to support Oracle Sharding, and the
changes to the DDL statements are very limited. Most existing DDL statements will work the
same way on a sharded database, with the same syntax and semantics, as they do on a non-
sharded database.

CREATE TABLESPACE SET
This statement creates a tablespace set that can be used as a logical storage unit for one or
more sharded tables and indexes. A tablespace set consists of multiple Oracle tablespaces
distributed across shards in a shardspace.

The CREATE TABLESPACE SET statement is intended specifically for Oracle Sharding. Its
syntax is similar to CREATE TABLESPACE.

CREATE TABLESPACE SET tablespace_set
 [IN SHARDSPACE shardspace]
 [USING TEMPLATE (
 { MINIMUM EXTENT size_clause
 | BLOCKSIZE integer [K]
 | logging_clause
 | FORCE LOGGING
 | ENCRYPTION tablespace_encryption_spec
 | DEFAULT [table_compression] storage_clause
 | { ONLINE | OFFLINE }
 | extent_management_clause
 | segment_management_clause
 | flashback_mode_clause
 }...
)];

Chapter 5
DDL Execution in a Sharded Database

5-7

Note that in system-managed sharding there is only one default shardspace in the
sharded database. The number of tablespaces in a tablespace set is determined
automatically and is equal to the number of chunks in the corresponding shardspace.

All tablespaces in a tablespace set are bigfile tablespaces and have the same
properties. The properties are specified in the USING TEMPLATE clause and they
describe the properties of one single tablespace in the tablespace set. This clause is
the same as permanent_tablespace_clause for a typical tablespace, with the
exception that a data file name cannot be specified in the datafile_tempfile_spec
clause. The data file name for each tablespace in a tablespace set is generated
automatically.

Note that a tablespace set can only consist of permanent tablespaces, there is no
system, undo, or temporary tablespace set. Also, note that in the example below the
total data file size of the tablespace set is 100mxN (where N is the number of
tablespaces in the tablespace set).

Example

CREATE TABLESPACE SET TSP_SET_1 IN SHARDSPACE sgr1
USING TEMPLATE
(DATAFILE SIZE 100m
 EXTEND MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO
);

ALTER TABLESPACE SET
This statement alters a tablespace set that can be used as a logical storage unit for
one or more sharded tables and indexes.

The SHARDSPACE property of a tablespace set cannot be modified. All other attributes of
a tablespace set can be altered just as for a regular permanent tablespace. Because
tablespaces in a tablespace set are bigfile, the ADD DATAFILE and DROP DATAFILE
clauses are not supported.

DROP TABLESPACE SET and PURGE TABLESPACE SET
These statements drop or purge a tablespace set, which can be used as a logical
storage unit for one or more sharded tables and indexes.

The syntax and semantics for these statements are similar to DROP and PURGE
TABLESPACE statements.

CREATE TABLE
The CREATE TABLE statement has been extended to create sharded and duplicated
tables, and specify a table family.

Syntax

CREATE [{ GLOBAL TEMPORARY | SHARDED | DUPLICATED}]
 TABLE [schema.] table

Chapter 5
DDL Execution in a Sharded Database

5-8

 { relational_table | object_table | XMLType_table }
 [PARENT [schema.] table] ;

The following parts of the CREATE TABLE statement are intended to support Oracle Sharding:

• The SHARDED and DUPLICATED keywords indicate that the table content is either partitioned
across shards or duplicated on all shards respectively. The DUPLICATED keyword is the
only syntax change to create duplicated tables. All other changes described below apply
only to sharded tables.

• The PARENT clause links a sharded table to the root table of its table family.

• In system and composite sharding, to create a sharded table, TABLESPACE SET is used
instead of TABLESPACE. All clauses that contain TABLESPACE are extended to contain
TABLESPACE SET.

• Three clauses: consistent_hash_partitions, consistent_hash_with_subpartitions,
and partition_set_clause in the table_partitioning_clauses.

table_partitioning_clauses ::=
{range_partitions
| hash_partitions
| list_partitions
| composite_range_partitions
| composite_hash_partitions
| composite_list_partitions
| reference_partitioning
| system_partitioning
| consistent_hash_partitions
| consistent_hash_with_subpartitions
| partition_set_clause
}

Example

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
,
CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET ts2,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET ts1)
;

Chapter 5
DDL Execution in a Sharded Database

5-9

Example of consistent_hash_with_subpartitions

CREATE SHARDED TABLE Customers
 ("custi_id" NUMBER NOT NULL
 , name VARCHAR2(50)
 , class VARCHAR2(3) NOT NULL
 , signup_date DATE
 ,
 CONSTRAINT cust_pk PRIMARY
KEY("custi_id",name,signup_date,class)
)
 PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH ("custi_id",name)
 SUBPARTITION BY RANGE (signup_date)
 SUBPARTITION TEMPLATE
 (SUBPARTITION per1 VALUES LESS THAN
(TO_DATE('01/01/2000','DD/MM/YYYY'))
 , SUBPARTITION per2 VALUES LESS THAN
(TO_DATE('01/01/2010','DD/MM/YYYY'))
 , SUBPARTITION per3 VALUES LESS THAN
(TO_DATE('01/01/2020','DD/MM/YYYY'))
 , SUBPARTITION future VALUES LESS THAN (MAXVALUE))
 PARTITIONS AUTO
 (
 PARTITIONSET "gold" VALUES ('Gld','BRZ') TABLESPACE SET ts1
SUBPARTITIONS STORE IN(TBS1,TBS2,TBS3,TBS4)
 , PARTITIONSET "silver" VALUES ('Slv','OTH') TABLESPACE SET ts2
SUBPARTITIONS STORE IN(TBS5,TBS6,TBS7,TBS8)
) ;

Limitations

Limitations for sharded tables in the current release:

• There is no default tablespace set for sharded tables.

• A temporary table cannot be sharded or duplicated.

• Index-organized sharded tables are not supported.

• A sharded table cannot contain a nested table column or an identity column.

• A primary key constraint defined on a sharded table must contain the sharding
column(s). A foreign key constraint on a column of a sharded table referencing a
duplicated table column is not supported.

• System partitioning and interval range partitioning are not supported for sharded
tables. Specification of individual hash partitions is not supported for partitioning by
consistent hash.

• A column in a sharded table used in PARTITION BY or PARTITIONSET BY clauses
cannot be a virtual column.

Duplicated tables in the current release are not supported with the following:

• System and reference partitioned tables

• LONG, abstract (MDSYS data types are supported), REF data types

• Maximum number of columns without primary key is 999

Chapter 5
DDL Execution in a Sharded Database

5-10

• The nologging and inmemory options

• XMLType column in a duplicated table cannot be used in non-ASSM tablespace

See CREATE TABLE for more information about using the clauses supporting Oracle
Sharding.

ALTER TABLE
The ALTER TABLE statement is extended to modify sharded and duplicated tables.

There are limitations on using ALTER TABLE with a sharded database.

The following options are not supported for a sharded table in a system-managed or
composite sharded database:

• Rename

• Add foreign key constraint

• All operations on individual partitions and subpartitions

• All partition-related operations on the shard, except TRUNCATE partition, UNUSABLE LOCAL
INDEXES, and REBUILD UNUSABLE LOCAL INDEXES

The following are not supported for duplicated tables:

• Data types: long, abstract (MDSYS datatypes are supported), REF
• Column options: vector encode, invisible column, nested tables

• Object types

• Clustered table

• External table

• ILM policy

• PARENT clause

• Flashback table operation

• System and Reference partitioning

• Enable NOLOGGING option

• Drop duplicated table materialized view log

• Drop duplicated table materialized views on shards

• Alter materialized views (of duplicated tables) on shards

ALTER SESSION
The ALTER SESSION statement is extended to support sharded databases.

The session-level SHARD DDL parameter sets the scope for DDLs issued against the shard
catalog database.

ALTER SESSION { ENABLE | DISABLE } SHARD DDL;

When SHARD DDL is enabled, all DDLs issued in the session are executed on the shard
catalog and all shards. When SHARD DDL is disabled, a DDL is executed only against the

Chapter 5
DDL Execution in a Sharded Database

5-11

shard catalog database. SHARD DDL is enabled by default for a sharded database user
(the user that exists on all shards and the catalog). To create a sharded database user,
the SHARD DDL parameter must be enabled before running CREATE USER.

PL/SQL Procedure Execution in a Sharded Database
In the same way that DDL statements can be executed on all shards in a
configuration, so too can certain Oracle-provided PL/SQL procedures. These specific
procedure calls behave as if they were sharded DDL statements, in that they are
propogated to all shards, tracked by the catalog, and run whenever a new shard is
added to a configuration.

All of the following procedures can act as if they were a sharded DDL statement.

• Any procedure in the DBMS_FGA package

• Any procedure in the DBMS_RLS package

• The following procudures from the DBMS_STATS package:

– GATHER_INDEX_STATS

– GATHER_TABLE_STATS

– GATHER_SCHEMA_STATS

– GATHER_DATABASE_STATS

– GATHER_SYSTEM_STATS

• The following procedures from the DBMS_GOLDENGATE_ADM package:

– ADD_AUTO_CDR

– ADD_AUTO_CDR_COLUMN_GROUP

– ADD_AUTO_CDR_DELTA_RES

– ALTER_AUTO_CDR

– ALTER_AUTO_CDR_COLUMN_GROUP

– PURGE_TOMBSTONES

– REMOVE_AUTO_CDR

– REMOVE_AUTO_CDR_COLUMN_GROUP

– REMOVE_AUTO_CDR_DELTA_RES

To run one of the procedures in the same way as sharded DDL statements, do the
following steps.

1. Connect to the shard catalog database using SQL*Plus as a database user with
the gsm_pooladmin_role.

2. Enable sharding DDL using alter session enable shard ddl.

3. Run the target procedure using a sharding-specific PL/SQL procedure named
SYS.EXEC_SHARD_PLSQL.
This procedure takes a single CLOB argument, which is a character string
specifying a fully qualified procedure name and its arguments. Note that running
the target procedure without using EXEC_SHARD_PLSQL causes the procedure to
only be run on the catalog and it is not propogated to all of the shards. Running

Chapter 5
PL/SQL Procedure Execution in a Sharded Database

5-12

the procedure without specifying the fully qualified name (for example,
SYS.DBMS_RLS.ADD_POLICY) will result in an error.

For example, to run DBMS_RLS.ADD_POLICY on all shards, do the following from SQL*Plus after
enabling shard DLL.

exec
sys.exec_shard_plsql('sys.dbms_rls.add_policy(object_schema =>
 ''testuser1'',

 object_name => ''DEPARTMENTS'',

 policy_name => ''dept_vpd_pol'',

 function_schema => ''testuser1'',

 policy_function => ''authorized_emps'',

 statement_types => ''INSERT, UPDATE, DELETE, SELECT, INDEX'',

 update_check => TRUE)'

) ;

Take careful note of the need for double single-quotes inside the target procedure call
specification, because the call specification itself is a string parameter to exec_shard_plsql.

If the target procedure executes correctly on the shard catalog database, it will be queued for
processing on all the currently deployed shards. Any error in the target procedure execution
on the catalog is returned to the SQL*Plus session. Errors during execution on the shards
can be tracked in the same way they are for DDLs.

Creating Sharded Database Schema Objects
The following topics show you how to create the schema objects in your sharded database.
Refer back to the Sharded Database Schema Objects section in chapter 2 for conceptual
information about these objects.

Create an All-Shards User
Local users that only exist in the shard catalog database do not have the privileges to create
schema objects in the sharded database. The first step of creating the sharded database
schema is to create an all-shards user.

Create an all-shards user by connecting to the shard catalog database as a privileged user,
enabling SHARD DDL, and executing the CREATE USER command. When the all-shards user
connects to the shard catalog database, the SHARD DDL mode is enabled by default.

Chapter 5
Creating Sharded Database Schema Objects

5-13

Note:

Local users can create non-schema sharded database objects, such as
tablespaces, directories, and contexts, if they enable SHARD DDL mode;
however, they cannot create schema objects, such as tables, views, indexes,
functions, procedures, and so on.

Sharded objects cannot have any dependency on local objects. For example,
you cannot create an all-shard view on a local table.

You cannot grant SYS privileges to sharded users using sharded DDL. You
must log in to each shard and grant the privilege to the account manually on
that shard.

Creating a Sharded Table Family
Create a sharded table family with the SQL CREATE TABLE statement. You can specify
parent-child relationships between tables using reference partitioning or equi-
partitioning.

Use Reference Partitioning to Specify Parent-Child Relationships Between
Tables

The recommended way to create a sharded table family is to specify parent-child
relationships between tables using reference partitioning.

Partitioning by reference simplifies the syntax since the partitioning scheme is only
specified for the root table. Also, partition management operations that are performed
on the root table are automatically propagated to its descendents. For example, when
adding a partition to the root table, a new partition is created on all its descendents.

The appropriate CREATE TABLE statements for Customers–Orders–LineItems schema
using a system-managed sharding methodology are shown below. The first statement
creates the root table of the table family, Customers.

CREATE SHARDED TABLE Customers
(CustNo NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

The following two statements create the Orders and LineItems tables, which are a
child and grandchild of the Customers table.

CREATE SHARDED TABLE Orders
(OrderNo NUMBER NOT NULL
, CustNo NUMBER NOT NULL
, OrderDate DATE

Chapter 5
Creating Sharded Database Schema Objects

5-14

, CONSTRAINT OrderPK PRIMARY KEY (CustNo, OrderNo)
, CONSTRAINT CustFK FOREIGN KEY (CustNo) REFERENCES Customers(CustNo)
)
PARTITION BY REFERENCE (CustFK)
;

CREATE SHARDED TABLE LineItems
(CustNo NUMBER NOT NULL
, LineNo NUMBER(2) NOT NULL
, OrderNo NUMBER(5) NOT NULL
, StockNo NUMBER(4)
, Quantity NUMBER(2)
, CONSTRAINT LinePK PRIMARY KEY (CustNo, OrderNo, LineNo)
, CONSTRAINT LineFK FOREIGN KEY (CustNo, OrderNo) REFERENCES Orders(CustNo,
OrderNo)
)
PARTITION BY REFERENCE (LineFK)
;

In the example statements above, corresponding partitions of all tables in the family are
stored in the same tablespace set, TS1. However, it is possible to specify separate
tablespace sets for each table.

Note that in the example statements above, the partitioning column CustNo used as the
sharding key is present in all three tables. This is despite the fact that reference partitioning,
in general, allows a child table to be equi-partitioned with the parent table without having to
duplicate the key columns in the child table. The reason for this is that reference partitioning
requires a primary key in a parent table because the primary key must be specified in the
foreign key constraint of a child table used to link the child to its parent. However, a primary
key on a sharded table must be the same as, or contain, the sharding key. This makes it
possible to enforce global uniqueness of a primary key without coordination with other
shards, a critical requirement for linear scalability.

To summarize, the use of reference-partitioned tables in a sharded database requires
adhering to the following rules:

• A primary key on a sharded table must either be the same as the sharding key, or contain
the sharding key. This is required to enforce global uniqueness of a primary key without
coordination with other shards.

• Reference partitioning requires a primary key in a parent table, because the primary key
must be specified in the foreign key constraint of a child table to link the child to its
parent. It is also possible to have a foreign key constraint when the parent table has just
UNIQUE constraint, but no PRIMARY KEY. The sharding key must also be NOT NULL.

For example, to link the LineItems (child) table to the Orders (parent) table, you need a
primary key in the Orders table. The second rule implies that the primary key in the
Orders table contains the CustNo value. (This is an existing partitioning rule not specific to
Oracle Sharding.)

Use Equi-Partitioning to Specify Parent-Child Relationships Between Tables

In some cases it is impossible or undesirable to create primary and foreign key constraints
that are required for reference partitioning. For such cases, specifying parent-child
relationships in a table family requires that all tables are explicitly equi-partitioned. Each child

Chapter 5
Creating Sharded Database Schema Objects

5-15

table is created with the PARENT clause in CREATE SHARDED TABLE that contains the
name of its parent. An example of the syntax is shown below.

 CREATE SHARDED TABLE Customers
(CustNo NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders
(OrderNo NUMBER
, CustNo NUMBER NOT NULL
, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems
(LineNo NUMBER
, OrderNo NUMBER
, CustNo NUMBER NOT NULL
, StockNo NUMBER
, Quantity NUMBER
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Because the partitioning scheme is fully specified in all of the CREATE SHARDED TABLE
statements, any table can be independently subpartitioned. This is not permitted with
reference partitioning where subpartitions can only be specified for the root table and
the subpartitioning scheme is the same for all tables in a table family.

Note that this method only supports two-level table families, that is, all children must
have the same parent and grandchildren cannot exist. This is not a limitation as long
as the partitioning column from the parent table exists in all of the child tables.

Chapter 5
Creating Sharded Database Schema Objects

5-16

See Also:

Oracle Database VLDB and Partitioning Guide for information about reference
partitioning

Creating Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable pieces among
multiple databases, called shards.

Tablespace Set Sizing

In the system-managed and composite sharding methods, when you create a tablespace set
on the shard catalog, you must make sure you have enough space for all of the tablespaces
created on the shard catalog and on each of the shards. This is especially important in a
metered usage environment.

For example, with a shard catalog and three shards in the configuration, you issue the
following statements.

ALTER SESSION ENABLE SHARD DDL;
CREATE TABLESPACE SET TSP_SET_1 IN SHARDSPACE SHSPC_1 USING TEMPLATE
 (DATAFILE SIZE 100M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED);

Assuming a default of 120 chunks per shard, the command creates 360 tablespaces of an
initial tables space 100M each on the shard catalog and on each shard. While that doesn't
sound like a lot of storage, when the database administrator allots 100G initially, they are not
expecting 3.6TB per shard. If that amount of storage is not planned for, this may lead to a
failed DDL, and will require significant effort to recover from.

Creating Sharded Tables in a System-Managed Sharded Database

In a system-managed sharded database, data is automatically distributed across the shards
using partitioning by consistent hash.

Before creating a sharded table, create a tablespace set with CREATE TABLESPACE SET to
store the table partitions.

CREATE TABLESPACE SET ts1;

If you need to customize the tablespace attributes, add the USING TEMPLATE clause to CREATE
TABLESPACE SET as shown in this example.

CREATE TABLESPACE SET ts1
USING TEMPLATE
(DATAFILE SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K
 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE
)
;

Chapter 5
Creating Sharded Database Schema Objects

5-17

You create a sharded table with CREATE SHARDED TABLE, horizontally partitioning the
table across the shards based on the sharding key cust_id.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

A system-managed sharded table is partitioned by consistent hash, by specifying
PARTITION BY CONSISTENT HASH (primary_key_column).

The PARTITIONS AUTO clause specifies that the number of partitions is automatically
set to the number of tablespaces in the tablespace set ts1, and each partition is stored
in a separate tablespace.

Creating Sharded Tables in a User-Defined Sharded Database

In a user-defined sharded database, you explicitly map data to individual shards. A
sharded table in a user-defined sharded database can be partitioned by range or list.

You do not create tablespace sets for user-defined sharded tables; however, you must
create each tablespace individually and explicitly associate it with a shardspace
deployed in the sharded database configuration, as shown here.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE west;

CREATE TABLESPACE tbs3 IN SHARDSPACE central;
CREATE TABLESPACE tbs4 IN SHARDSPACE central;

CREATE TABLESPACE tbs5 IN SHARDSPACE east;
CREATE TABLESPACE tbs6 IN SHARDSPACE east;

When you create the sharded table, you define the partitions with the ranges or lists of
data to be stored in each tablespace, as shown in the following example.

CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1

Chapter 5
Creating Sharded Database Schema Objects

5-18

, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
)
;

Creating Sharded Tables in a Composite Sharded Database

The sharded database using the composite sharding method allows you to partition subsets
of data that correspond to a range or list of key values in a table partitioned by consistent
hash.

With composite sharding, as with the other sharding methods, tablespaces are used to
specify the mapping of partitions to shards. To partition subsets of data in a sharded table, a
separate tablespace set must be created for each shardspace deployed in the sharded
database configuration as shown in the following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

The statement in the following example partitions a sharded table into two partition sets: gold
and silver, based on class of service. Each partition set is stored in a separate tablespace.
Then data in each partition set is further partitioned by consistent hash on customer ID.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH (cust_id)
 PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Creating Duplicated Tables
The number of database requests handled by a single shard can be maximized by
duplicating read-only or read-mostly tables across all shards. This strategy is a good choice
for relatively small tables that are not updated frequently, and that are often accessed
together with sharded tables.

There are some limitations on duplicated tables. The following are not supported for
duplicated tables.

• NOLOGGING

Chapter 5
Creating Sharded Database Schema Objects

5-19

• ALTER TABLE ADD/DROP CONSTRAINT for primary key only

• ALTER TABLE ADD/DROP PRIMARY KEY
• ALTER TABLE RENAME COLUMN
• PARTITION BY REFERENCE
• PARTITION BY SYSTEM
• CLUSTERED TABLE
• Non-final UDT or NESTED TABLE
• LONG DATATYPE
• COLUMN VECTOR ENCODE
• INVISIBLE COLUMN
• Column encryption

• Information Lifecycle Management (ILM) policy

• CTAS Parallel

• Foreign key constraints between duplicated tables and sharded tables are
generally not allowed with the exception that in user-defined sharding, you can
create DISABLE NOVALIDATE foreign key constraints between sharded and
duplicated tables.

The Products duplicated table can be created using the following statement.

CREATE DUPLICATED TABLE Products
(StockNo NUMBER PRIMARY KEY
, Description VARCHAR2(20)
, Price NUMBER(6,2))
;

Updating Duplicated Tables and Synchronizing Their Contents
Oracle Sharding synchronizes the contents of duplicated tables using Materialized
View Replication.

A duplicated table on each shard is represented by a materialized view. The master
table for the materialized views is located in the shard catalog. The CREATE
DUPLICATED TABLE statement automatically creates the master table, materialized
views, and other objects required for materialized view replication.

You can connect to any shard and update a duplicated table directly on the shard. The
update is first propagated over a database link from the shard to the master table on
the shard catalog. Then the update is asynchronously propagated to all other shards
as a result of a materialized view refresh.

The materialized views on all of the shards can be refreshed with one of the two
options:

• Automatic refresh at a configurable frequency per table

• On-demand refresh by running a stored procedure

Chapter 5
Creating Sharded Database Schema Objects

5-20

For automatic refresh, to get better refresh performance, you can also use a stored
procedure interface to create materialized view refresh groups.

Note:

A race condition is possible when a transaction run on a shard tries to update a row
which was deleted on the shard catalog. In this case, an error is returned and the
transaction on the shard is rolled back.

The following use cases are not supported when updating duplicated tables on a
shard.

• Updating a LOB or a data type not supported by database links

• Updating or deleting of a row inserted by the same transaction

Schema Creation Examples
The following examples show the steps you would take to create a schema for a sharded
database using the system-managed, user-defined, and composite sharding methods.

Create a System-Managed Sharded Database Schema
Create the tablespace set, sharded tables, and duplicated tables for a sharded database that
uses the system-managed sharding method.

1. Connect to the shard catalog database, create the application schema user, and grant
privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create a tablespace set for the sharded tables.

SQL> CREATE TABLESPACE SET TSP_SET_1 using template
 (datafile size 100m autoextend on next 10M maxsize unlimited
 extent management local segment space management auto);

3. If you use LOBs in a column, you can specify a tablespace set for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1;

Chapter 5
Schema Creation Examples

5-21

Note:

Tablespace sets for LOBS cannot be specified at the subpartitition level
in system-managed sharding.

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m
 autoextend on next 10M maxsize unlimited
 extent management local uniform size 1m;

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

SQL> CONNECT app_schema/app_schema_password
SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET_1
 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

Chapter 5
Schema Creation Examples

5-22

Note:

If any columns contain LOBs, you can include the tablespace set in the parent
table creation statement, as shown here.

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET_1
 LOB(image) store as (TABLESPACE SET LOBTS1)
 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in the
sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 CONSTRAINT pk_orders PRIMARY KEY (CustId, OrderId),
 CONSTRAINT fk_orders_parent FOREIGN KEY (CustId)
 REFERENCES Customers ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),

Chapter 5
Schema Creation Examples

5-23

 Qty NUMBER,
 CONSTRAINT pk_items PRIMARY KEY (CustId, OrderId, ProductId),
 CONSTRAINT fk_items_parent FOREIGN KEY (CustId, OrderId)
 REFERENCES Orders ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
 (
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) TABLESPACE products_tsp;

Next you should monitor the DDL execution and verify that the tablespace sets, tables,
and chunks were correctly created on all of the shards.

Create a User-Defined Sharded Database Schema
Create the schema user, tablespace set, sharded tables, and duplicated tables for a
sharded database that uses the user-defined sharding method.

1. Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create tablespaces for the sharded tables.

SQL> CREATE TABLESPACE ck1_tsp DATAFILE SIZE 100M autoextend on
next 10M maxsize
unlimited extent management local segment space management auto in
 shardspace shspace1;

SQL> CREATE TABLESPACE ck2_tsp DATAFILE SIZE 100M autoextend on
next 10M maxsize
unlimited extent management local segment space management auto in
 shardspace shspace2;

Chapter 5
Schema Creation Examples

5-24

3. If you use LOBs in any columns, you can specify tablespaces for the LOBs.

SQL> CREATE TABLESPACE lobts1 ... in shardspace shspace1;

SQL> CREATE TABLESPACE lobts2 ... in shardspace shspace2;

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample Customers-
Orders-Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m autoextend
 on next 10M maxsize unlimited extent management local uniform size 1m;

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-Orders-
Products schema.

SQL> CONNECT app_schema/app_schema_password

SQL> ALTER SESSION ENABLE SHARD DDL;

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) PARTITION BY RANGE (CustId)
 (PARTITION ck1 values less than ('m') tablespace ck1_tsp,
 PARTITION ck2 values less than (MAXVALUE) tablespace ck2_tsp
);

Chapter 5
Schema Creation Examples

5-25

Note:

If any columns in the sharded tables contain LOBs, the CREATE
SHARDED TABLE statement can include the LOB tablespaces, as
shown here.

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) PARTITION BY RANGE (CustId)
 (PARTITION ck1 values less than ('m') tablespace ck1_tsp
 lob(image) store as (tablespace lobts1),
 PARTITION ck2 values less than (MAXVALUE) tablespace
ck2_tsp
 lob(image) store as (tablespace lobts2)
);

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in
the sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 CONSTRAINT pk_orders PRIMARY KEY (CustId, OrderId),
 CONSTRAINT fk_orders_parent FOREIGN KEY (CustId)
 REFERENCES Customers ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,

Chapter 5
Schema Creation Examples

5-26

 Price NUMBER(19,4),
 Qty NUMBER,
 CONSTRAINT pk_items PRIMARY KEY (CustId, OrderId, ProductId),
 CONSTRAINT fk_items_parent FOREIGN KEY (CustId, OrderId)
 REFERENCES Orders ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
 (
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) TABLESPACE products_tsp;

Next you should monitor the DDL execution and verify that the tablespace sets, tables, and
chunks were correctly created on all of the shards.

Create a Composite Sharded Database Schema
Create the schema user, tablespace set, sharded tables, and duplicated tables for a sharded
database that uses the composite sharding method.

1. Connect to the shard catalog host, and set the ORACLE_SID to the shard catalog name.

2. Connect to the shard catalog database, create the application schema user, and grant
privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> connect / as sysdba
SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant connect, resource, alter session to app_schema;
SQL> grant execute on dbms_crypto to app_schema;
SQL> grant create table, create procedure, create tablespace,
 create materialized view to app_schema;
SQL> grant unlimited tablespace to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant dba to app_schema;

3. Create tablespace sets for the sharded tables.

SQL> CREATE TABLESPACE SET
 TSP_SET_1 in shardspace cust_america using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

Chapter 5
Schema Creation Examples

5-27

SQL> CREATE TABLESPACE SET
 TSP_SET_2 in shardspace cust_europe using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

4. If you use LOBs in any columns, you can specify tablespace sets for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1 in shardspace cust_america ... ;

SQL> CREATE TABLESPACE SET LOBTS2 in shardspace cust_europe ... ;

Note:

Tablespace sets for LOBs cannot be specified at the subpartitition level
in composite sharding.

5. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

CREATE TABLESPACE products_tsp datafile size 100m autoextend on
next 10M
 maxsize unlimited extent management local uniform size 1m;

6. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

connect app_schema/app_schema_password
alter session enable shard ddl;

CREATE SHARDED TABLE Customers
(
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1,
partitionset europe values ('EUROPE') tablespace set tsp_set_2
);

Chapter 5
Schema Creation Examples

5-28

Note:

If any columns in the sharded tables contain LOBs, the CREATE SHARDED
TABLE statement can include the LOB tablespace set, as shown here.

CREATE SHARDED TABLE Customers
(
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1
 lob(image) store as (tablespace set lobts1),
partitionset europe values ('EUROPE') tablespace set tsp_set_2
 lob(image) store as (tablespace set lobts2));

7. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in the
sample Customers-Orders-Products schema.

Create the sequence used for the OrderId column.

CREATE SEQUENCE Orders_Seq;

The Orders sharded table is created first:

CREATE SHARDED TABLE Orders
(
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 constraint pk_orders primary key (CustId, OrderId),
 constraint fk_orders_parent foreign key (CustId)
 references Customers on delete cascade
) partition by reference (fk_orders_parent);

Create a sharded table for LineItems

CREATE SHARDED TABLE LineItems
(

Chapter 5
Schema Creation Examples

5-29

 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),
 Qty NUMBER,
 constraint pk_items primary key (CustId, OrderId, ProductId),
 constraint fk_items_parent foreign key (CustId, OrderId)
 references Orders on delete cascade
) partition by reference (fk_items_parent);

8. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

CREATE DUPLICATED TABLE Products
(
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) tablespace products_tsp;

Next you should monitor the DDL execution and verify that the tablespace sets, tables,
and chunks were correctly created on all of the shards.

Monitor DDL Execution and Verify Object Creation
You can monitor DDL execution using GDSCTL and SQL, to verify that the DDLs are
propagated to all of the shards.

Monitor DDL Execution

You can check the status of the DDL propagation to the shards by using the GDSCTL
show ddl and config shard commands.

This check is mandatory when a DDL is executed using SQL*Plus on the shard
catalog, because SQL*Plus does not return the execution status on all of the shards.

The show ddl command output might be truncated. You can run SELECT ddl_text
FROM gsmadmin_internal.ddl_requests on the shard catalog to see the full text of the
statements.

Run the following command from the shard director host.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
5 grant connect, resource to app_schema
6 grant dba to app_schema
7 grant execute on dbms_crypto to app_s...
8 CREATE TABLESPACE SET TSP_SET_1 usin...
9 CREATE TABLESPACE products_tsp datafi...
10 CREATE SHARDED TABLE Customers (Cu...
11 CREATE SHARDED TABLE Orders (Order...
12 CREATE SEQUENCE Orders_Seq;

Chapter 5
Monitor DDL Execution and Verify Object Creation

5-30

13 CREATE SHARDED TABLE LineItems (Or...
14 CREATE MATERIALIZED VIEW "APP_SCHEMA"...

Run the config shard command on each shard in your configuration, as shown here, and
note the Last Failed DDL line in the command output.

GDSCTL> config shard -shard sh1
Name: sh1
Shard Group: primary_shardgroup
Status: Ok
State: Deployed
Region: region1
Connection string: shard_host_1:1521/sh1_host:dedicated
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE

Supported services

Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled

Verify Tablespace Set Creation

Verify that the tablespaces of the tablespace set you created for the sharded table family, and
the tablespaces you created for the duplicated tables, are created on all of the shards.

The number of tablespaces in the tablespace set, shown below as C001TSP_SET_1 through
C006TSP_SET_1, is based on the number of chunks specified in the GDSCTL create
shardcatalog command when the sharded database configuration was deployed.

The duplicated Products tablespace is shown below as PRODUCTS_TSP.

Run SELECT TABLESPACE_NAME on all of the shards in your configuration, as shown here.

$ sqlplus / as sysdba

SQL> select TABLESPACE_NAME, BYTES/1024/1024 MB from sys.dba_data_files
 order by tablespace_name;

TABLESPACE_NAME MB
----------------------- ----------
C001TSP_SET_1 100
C002TSP_SET_1 100
C003TSP_SET_1 100
C004TSP_SET_1 100
C005TSP_SET_1 100

Chapter 5
Monitor DDL Execution and Verify Object Creation

5-31

C006TSP_SET_1 100
PRODUCTS_TSP 100
SYSAUX 650
SYSTEM 890
SYS_SHARD_TS 100
TSP_SET_1 100

TABLESPACE_NAME MB
------------------------ ----------
UNDOTBS1 105
USERS 5

13 rows selected.

Verify Chunk Creation and Distribution

Verify that the chunks and chunk tablespaces were created on all of the shards.

Run the GDSCTL config chunks command as shown here, and note the ranges of
chunk IDs on each shard.

GDSCTL> config chunks
Chunks

Database From To
-------- ---- --
sh1 1 6
sh2 1 6
sh3 7 12
sh4 7 12

Run the following SQL statements on each of the shards in your configuration, as
shown here.

SQL> show parameter db_unique_name

NAME TYPE VALUE
---------------- ----------- ------------------------------
db_unique_name string sh1

SQL> select table_name, partition_name, tablespace_name
 from dba_tab_partitions
 where tablespace_name like 'C%TSP_SET_1'
 order by tablespace_name;

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------
ORDERS CUSTOMERS_P1 C001TSP_SET_1
CUSTOMERS CUSTOMERS_P1 C001TSP_SET_1
LINEITEMS CUSTOMERS_P1 C001TSP_SET_1
CUSTOMERS CUSTOMERS_P2 C002TSP_SET_1
LINEITEMS CUSTOMERS_P2 C002TSP_SET_1
ORDERS CUSTOMERS_P2 C002TSP_SET_1
CUSTOMERS CUSTOMERS_P3 C003TSP_SET_1

Chapter 5
Monitor DDL Execution and Verify Object Creation

5-32

ORDERS CUSTOMERS_P3 C003TSP_SET_1
LINEITEMS CUSTOMERS_P3 C003TSP_SET_1
ORDERS CUSTOMERS_P4 C004TSP_SET_1
CUSTOMERS CUSTOMERS_P4 C004TSP_SET_1

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------
LINEITEMS CUSTOMERS_P4 C004TSP_SET_1
CUSTOMERS CUSTOMERS_P5 C005TSP_SET_1
LINEITEMS CUSTOMERS_P5 C005TSP_SET_1
ORDERS CUSTOMERS_P5 C005TSP_SET_1
CUSTOMERS CUSTOMERS_P6 C006TSP_SET_1
LINEITEMS CUSTOMERS_P6 C006TSP_SET_1
ORDERS CUSTOMERS_P6 C006TSP_SET_1
18 rows selected.

Connect to the shard catalog database and verify that the chunks are uniformly distributed,
as shown here.

$ sqlplus / as sysdba

SQL> SELECT a.name Shard, COUNT(b.chunk_number) Number_of_Chunks
 FROM gsmadmin_internal.database a, gsmadmin_internal.chunk_loc b
 WHERE a.database_num=b.database_num
 GROUP BY a.name
 ORDER BY a.name;

SHARD NUMBER_OF_CHUNKS
------------------------------ ----------------
sh1 6
sh2 6
sh3 6
sh4 6

Verify Table Creation

To verify that the sharded and duplicated tables were created, log in as the application
schema user on the shard catalog database and each of the shards and query the tables on
a database shard, as shown below with the example app_schema user.

$ sqlplus app_schema/app_schema_password
Connected.

SQL> select table_name from user_tables;

TABLE_NAME

CUSTOMERS
ORDERS
LINEITEMS
PRODUCTS

4 rows selected.

Chapter 5
Monitor DDL Execution and Verify Object Creation

5-33

DDL Execution Failure and Recovery Examples
The following examples demonstrate the steps to issue a DDL, monitor its execution
status, and what to do when errors are encountered.

When a DDL fails on a shard, all further DDLs on that shard are blocked until the
failure is resolved and the GDSCTL recover shard command is run.

Note that you must have GSM_ADMIN privileges to run these GDSCTL commands.

The following examples demonstrate the case when a DDL is issued using SQL*Plus,
but the same status checking and corrective actions apply when using the GDSCTL SQL
command.

Example 5-1 A DDL execution error on the shard catalog

In this example the user makes a typo in the CREATE USER command.

SQL> alter session enable shard ddl;
Session altered.

SQL> CREATE USER example_user IDENTRIFIED BY out_standing1;
CREATE USER example_user IDENTRIFIED BY out_Standing1
 *
ERROR at line 1:
ORA-00922: missing or invalid option

The DDL fails to execute on the shard catalog and, as expected, the GDSCTL show
ddl command shows that no DDL was executed on any of the shards:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------

Then the user repeats the command with the correct spelling. Note that there is no
need to run alter session enable shard ddlagain because the same session is
used.

SQL> CREATE USER example_user IDENTIFIED BY out_Standing1;
User created.

Now show ddl shows that the DDL has been successfully executed on the shard
catalog database and it did not fail on any shards that are online.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****

Chapter 5
DDL Execution Failure and Recovery Examples

5-34

Note:

For any shard that is down at the time of the DDL execution, the DDL is
automatically applied when the shard is back up.

Example 5-2 Recovery from an error on a shard by executing a corrective action on
that shard

In this example, the user attempts to create a tablespace set for system-managed sharded
tables. But the datafile directory on one of the shards is not writable, so the DDL is
successfully executed on the catalog, but fails on the shard.

SQL> connect example_user/out_Standing1
Connected

SQL> create tablespace set tbsset;
Tablespace created.

Note that there is no need to run alter session enable shard ddl because the user
example_user was created as the SDB user and shard ddl is enabled by default.

Check status using GDSCTL show ddl:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset shard01

The command output shows that the DDL failed on the shard shard01. Run the GDSCTL
config shard command to get detailed information:

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1
Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Failed DDL: create tablespace set tbsset
DDL Error: ORA-02585: create tablepsace set failure, one of its tablespaces
not created
ORA-01119: error in creating database file \'/ade/b/3667445372/oracle/
rdbms/dbs/

Chapter 5
DDL Execution Failure and Recovery Examples

5-35

SHARD01/datafile/o1_mf_tbsset_%u_.dbf\'
ORA-27040: file create error, unable to create file
Linux-x86_64 Error: 13: Permission denied
Additional information: 1 \(ngsmoci_execute\)
Failed DDL id: 2
Availability: ONLINE

The text beginning with “Failed DDL:” indicates the problem. To resolve it, the user
must log in to the shard database host and make the directory writable.

Display the permissions on the directory:

cd $ORACLE_HOME/rdbms/dbs
 ls –l ../ | grep dbs
dr-xr-xr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Change the directory to writable:

chmod +w .
ls –l ../ | grep dbs
drwxrwxr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Go back to the GDSCTL console and issue the recover shard command:

GDSCTL> recover shard -shard shard01

Check the status again:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1
Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---

Chapter 5
DDL Execution Failure and Recovery Examples

5-36

DDL id:
Availability: ONLINE

As shown above, the failed DDL error no longer appears.

Example 5-3 Recovery from an error on a shard by executing a corrective action on
all other shards

In this example, the user attempts to create another tablespace set, tbs_set, but the DDL fails
on a shard because there is already an existing local tablespace with the same name.

On the shard catalog:

SQL> create tablespace set tbs_set;
Tablespace created.

Check status using the GDSCTL show ddl command:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set shard01

GDSCTL> config shard -shard shard01
Conversion = ':'Name: shard01
……
Failed DDL: create tablespace set tbs_set
DDL Error: ORA-02585: create tablespace set failure, one of its tablespaces
not created
ORA-01543: tablespace \'TBS_SET\' already exists \(ngsmoci_execute\)

A solution to this problem is to login to shard01 as a local database administrator, drop the
tablespace TBS_SET, and then run GDSCTL recover shard -shard shard01. But suppose
you want to keep this tablespace, and instead choose to drop the newly created tablespace
set that has the name conflict and create another tablespace set with a different name, such
as tbsset2. The following example shows how to do that on the shard catalog:

SQL> drop tablespace set tbs_set;
SQL> create tablespace set tbs_set2;

Check status using GDSCTL:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set shard01
4 drop tablespace set tbs_set
5 create tablespace set tbsset2

Chapter 5
DDL Execution Failure and Recovery Examples

5-37

You can see that DDLs 4 and 5 are not attempted on shard01 because DDL 3 failed
there. To make this shard consistent with the shard catalog, you must run the GDSCTL
recover shard command. However, it does not make sense to execute DDL 3 on this
shard because it will fail again and you actually do not want to create tablespace set
tbs_set anymore. To skip DDL 3 run recover shard with the –ignore_first option:

GDSCTL> recover shard -shard shard01 –ignore_first
GSM Errors: dbs1 shard01:ORA-00959: tablespace \'TBS_SET\' does not
exist
 (ngsmoci_execute)

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user sidney identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set
4 drop tablespace set tbs_set shard01
5 create tablespace set tbsset2

There is no failure with DDL 3 this time because it was skipped. However, the next
DDL (4 - drop tablespace set tbs_set) was applied and resulted in the error because
the tablespace set to be dropped does not exist on the shard.

Because the –ignore_first option only skips the first DDL, you need to execute
recover shard again to skip the drop statement as well:

GDSCTL> recover shard -shard shard01 –ignore_first

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user sidney identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set
4 drop tablespace set tbs_set
5 create tablespace set tbsset2

Note that there are no longer any failures shown, and all of the DDLs were applied
successfully on the shards.

When recover shard is run with the –ignore_first option, the failed DDL is marked
to be ignored during incremental deployment. Therefore, DDL numbers 3 and 4 are
skipped when a new shard is added to the SDB, and only DDL numbers 1, 2, and 5
are applied.

Generating Unique Sequence Numbers Across Shards
Oracle Sharding allows you to generate globally unique sequence numbers across
shards for non-primary key columns, and it is handled by the sharded database.

Customers often need to generate unique IDs for non-primary key columns, for
example order_id, when the customer_id is the sharding key. For this case among
others, this feature lets you generate unique sequence numbers across shards, while

Chapter 5
Generating Unique Sequence Numbers Across Shards

5-38

not requiring you to manage the global uniqueness of a given non-primary key column in your
application.

This functionality is supported by a new object, SHARDED SEQUENCE. A sharded sequence is
created on the shard catalog but has an instance on each shard. Each instance generates
monotonically increasing numbers that belong to a range which does not overlap with ranges
used on other shards. Therefore, every generated number is globally unique.

A sharded sequence can be used, for example, to generate a unique order number for a
table sharded by a customer ID. An application that establishes a connection to a shard using
the customer ID as a key can use a local instance of the sharded sequence to generate a
globally unique order number.

Note that the number generated by a sharded sequence cannot be immediately used as a
sharding key for a new row being inserted into this shard, because the key value may belong
to another shard and the insert will result in an error. To insert a new row, the application
should first generate a value of the sharding key and then use it to connect to the appropriate
shard. A typical way to generate a new value of the sharding key would be use a regular
(non-sharded) sequence on the shard catalog.

If a single sharding key generator becomes a bottleneck, a sharded sequence can be used
for this purpose. In this case, an application should connect to a random shard (using the
global service without specifying the sharding key), get a unique key value from a sharded
sequence, and then connect to the appropriate shard using the key value.

To support this feature, new SEQUENCE object clauses, SHARD and NOSHARD, are included in the
SEQUENCE object DDL syntax, as shown in the following CREATE statement syntax.

CREATE | ALTER SEQUENCE [schema.]sequence
 [{ INCREMENT BY | START WITH } integer
 | { MAXVALUE integer | NOMAXVALUE }
 | { MINVALUE integer | NOMINVALUE }
 | { CYCLE | NOCYCLE }
 | { CACHE integer | NOCACHE }
 | { ORDER | NOORDER }
 | { SCALE {EXTEND | NOEXTEND} | NOSCALE}
 | { SHARD {EXTEND | NOEXTEND} | NOSHARD}
]

NOSHARD is the default for a sequence. If the SHARD clause is specified, this property is
registered in the sequence object’s dictionary table, and is shown using the DBA_SEQUENCES,
USER_SEQUENCES, and ALL_SEQUENCES views.

When SHARD is specified, the EXTEND and NOEXTEND clauses define the behavior of a sharded
sequence. When EXTEND is specified, the generated sequence values are all of length (x+y),
where x is the length of a SHARD offset of size 4 (corresponding to the width of the maximum
number of shards, that is, 1000) affixed at beginning of the sequence values, and y is the
maximum number of digits in the sequence MAXVALUE/MINVALUE.

The default setting for the SHARD clause is NOEXTEND. With the NOEXTEND setting, the generated
sequence values are at most as wide as the maximum number of digits in the sequence
MAXVALUE/MINVALUE. This setting is useful for integration with existing applications where
sequences are used to populate fixed width columns. On invocation of NEXTVAL on a
sequence with SHARD NOEXTEND specified, a user error is thrown if the generated value
requires more digits of representation than the sequence’s MAXVALUE/MINVALUE.

Chapter 5
Generating Unique Sequence Numbers Across Shards

5-39

If the SCALE clause is also specified with the SHARD clause, the sequence generates
scalable values within a shard for multiple instances and sessions, which are globally
unique. When EXTEND is specified with both the SHARD and SCALE keywords, the
generated sequence values are all of length (x+y+z), where x is the length of a
prepended SHARD offset of size 4, y is the length of the scalable offset (default 6), and z
is the maximum number of digits in the sequence MAXVALUE/MINVALUE.

Note:

When using the SHARD clause, do not specify ORDER on the sequence. Using
SHARD generates globally unordered values. If ORDER is required, create the
sequences locally on each node.

The SHARD keyword will work in conjunction with CACHE and NOCACHE modes
of operation.

See Also:

Oracle Database SQL Language Reference

Chapter 5
Generating Unique Sequence Numbers Across Shards

5-40

6
Migrating to a Sharded Database

Migration from an existing non-sharded database to a sharded database consists of two
phases: schema migration and data migration. Oracle Sharding provides guidelines for
migrating your existing database schema and data to a sharded database.

The following approaches are recommended for database migration.

Using Oracle Data Pump to Migrate to a Sharded Database
Using the examples and guidelines provided in the following topics, you can extract DDL
definitions and data from the source database with the Oracle Data Pump export utility, and
then use the Data Pump import utility against the database export files to populate the target
sharded database.

If you already created the schema for your sharded database, you can go directly to the data
migration topic.

Migrating a Schema to a Sharded Database
Transition from a non-sharded database to a sharded database requires some schema
changes. At a minimum, the keyword SHARDED or DUPLICATED should be added to CREATE
TABLE statements. In some cases, the partitioning of tables should be changed as well, or a
column with the shading key added.

To properly design the sharded database schema, you must analyze the schema and
workload of the non-sharded database and make the following decisions.

• Which tables should be sharded and which should be duplicated

• What are the parent-child relationships between the sharded tables in the table family

• Which sharding method is used on the sharded tables

• What to use as the sharding key

If these decisions are not straightforward, you can use the Sharding Advisor to help you to
make them. Sharding Advisor is a tool that you run against a non-sharded Oracle Database
that you are considering to migrate to an Oracle Sharding environment.

To illustrate schema and data migration from a non-sharded to sharded database, we will use
a sample data model shown in the following figure.

6-1

Figure 6-1 Schema Migration Example Data Model

The data model consists of four tables, Customers, Orders, StockItems, and
LineItems, and the data model enforces the following primary key constraints.

• Customer.(CustNo)
• Orders.(PONo)
• StockItems.(StockNo)
• LineItems.(LineNo, PONo)
The data model defines the following referential integrity constraints.

• Customers.CustNo -> Orders.CustNo
• Orders.PONo -> LineItems.PONo
• StockItems.StockNo -> LineItems.StockNo
The following DDL statements create the example non-sharded schema definitions.

CREATE TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 PRIMARY KEY (CustNo)
);

CREATE TABLE Orders (
 PoNo NUMBER(5),
 CustNo NUMBER(3) REFERENCES Customers,
 OrderDate DATE,
 ShipDate DATE,

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-2

 ToStreet VARCHAR2(20),
 ToCity VARCHAR2(20),
 ToState CHAR(2),
 ToZip VARCHAR2(10),
 PRIMARY KEY (PoNo)
);

CREATE TABLE LineItems (
 LineNo NUMBER(2),
 PoNo NUMBER(5) REFERENCES Orders,
 StockNo NUMBER(4) REFERENCES StockItems,
 Quantity NUMBER(2),
 Discount NUMBER(4,2),
 PRIMARY KEY (LineNo, PoNo)
);

CREATE TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

Migrating the Sample Schema
As an example, to migrate the sample schema described above to a sharded database, do
the following steps.

1. Get access to the source database export directory.

The database administrator has to authorize the database user for required access to the
database export directory, as shown here.

CREATE OR REPLACE DIRECTORY expdir AS ‘/some/directory’;
GRANT READ, WRITE ON DIRECTORY expdir TO uname;
GRANT EXP_FULL_DATABASE TO uname;

With a full database export, the database administrator must grant you the
EXP_FULL_DATABASE role, uname. No additional role is required for a table level export.

2. Extract the DDL definitions from the source database.

A convenient way to extract the DDL statements is to create a Data Pump extract file.
You can export only metadata, or only a part of the schema containing the set of tables
you are interested in migrating, as shown in this example.

expdp uname/pwd directory=EXPDIR dumpfile=sample_mdt.dmp
logfile=sample_mdt.log INCLUDE=TABLE:\"IN \(\'CUSTOMERS\', \'ORDERS\',
\'STOCKITEMS\', \'LINEITEMS\' \) \" CONTENT=METADATA_ONLY
FLASHBACK_TIME=SYSTIMESTAMP

Then, use the Data Pump import utility against this database export file.

impdp uname/pwd@orignode directory=expdir dumpfile=sample_mdt.dmp
sqlfile=sample_ddl.sql

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-3

In this example, the impdp command does not actually perform an import of the
contents of the dump file. Rather, the sqlfile parameter triggers the creation of a
script named sample_ddl.sql which contains all of the DDL from within the export
dump file.

Trimming down the export in this way more efficiently captures a consistent image
of the database metadata without a possibly lengthy database data dump process.
You still must get the DDL statements in text format to perform the DDL
modifications required by your sharded database schema design.

3. Modify the extracted DDL statements for the sharded database.

For the sample schema shown above, the corresponding DDL statements for the
sharded database may look like the following. This is an example with system-
managed sharding.

CREATE SHARDED TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 CONSTRAINT RootPK PRIMARY KEY (CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders (
 PoNo NUMBER(5) NOT NULL,
 CustNo NUMBER(3) NOT NULL,
 OrderDate DATE,
 ShipDate DATE,
 ToStreet VARCHAR2(20),
 ToCity VARCHAR2(20),
 ToState CHAR(2),
 ToZip VARCHAR2(10),
 CONSTRAINT OrderPK PRIMARY KEY (CustNo, PoNo),
 CONSTRAINT CustFK Foreign Key (CustNo) REFERENCES Customers
(CustNo)
)
PARTITION BY REFERENCE (CustFK)
;
CREATE SHARDED TABLE LineItems (
 LineNo NUMBER(2) NOT NULL,
 PoNo NUMBER(5) NOT NULL,
 CustNo NUMBER(3) NOT NULL,
 StockNo NUMBER(4) NOT NULL,
 Quantity NUMBER(2),
 Discount NUMBER(4,2),
 CONSTRAINT LinePK PRIMARY KEY (CustNo, LineNo, PoNo),
 CONSTRAINT LineFK FOREIGN KEY (CustNo, PoNo) REFERENCES Orders
(CustNo, PoNo)

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-4

)
PARTITION BY REFERENCE (LineFK)
;

CREATE DUPLICATED TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

Here are some observations about the schema of the sharded database.

• Customers-Orders-LineItems form a table family of SHARDED tables, with Customers
as the root table and child tables are partitioned by reference. StockItems is a
DUPLICATED table.

• CustNo is chosen as the sharding key. Hence, this column must be included in all the
tables of the table family. Note that in the non-sharded database, the LineItems table
did not have a CustNo column, but it was included in the sharded version on the
table. The sharding key column also needs to be present in all primary and foreign
key constraints in sharded tables.

• StockItems is now a duplicated table. The master copy of a duplicated table resides
on the shard catalog database. Thus, the foreign key constraint in the LineItems table
referencing StockItems table cannot be enforced and is removed.

4. Run the modified DDLs against the target database.

Connect to the shard catalog database and run

ALTER SESSION ENABLE SHARD DDL;

Then run the DDLs listed above to create the sharded and duplicated tables.

It is recommended that you validate the sharding configuration using the GDSCTL
VALIDATE command, before loading the data.

gdsctl> validate

If you see inconsistencies or errors, you must correct the problem using the GDSCTL
commands SHOW DDL and RECOVER. After successful validation, the sharded database is
ready for data loading.

Migrating Data to a Sharded Database
Transitioning from a non-sharded database to a sharded database involves moving the data
from non-sharded tables in the source database to sharded and duplicated tables in the
target database.

Moving data from non-sharded tables to duplicated tables is straightforward, but moving data
from non-sharded tables to sharded tables requires special attention.

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-5

Loading Data into Duplicated Tables

You can load data into a duplicated table using any existing database tools, such as
Data Pump, SQL Loader, or plain SQL. The data must be loaded to the shard catalog
database. Then it gets automatically replicated to all shards.

Because the contents of the duplicated table is fully replicated to the database shards
using materialized views, loading a duplicated table may take longer than loading the
same data into a regular table.

Figure 6-2 Loading Duplicated Tables

Source
Database

Data
Pump

0

1

1

Shard Catalog
(Coordinator)

Duplicated
TableSource

Table

Shard1

Duplicated
Table

Shard2

Duplicated
Table

ShardN

Duplicated
Table

...

Loading Data into Sharded Tables

When loading a sharded table, each database shard accommodates a distinct subset
of the data set, so the data in each table must be split (partitioned) across shards
during the load.

You can use the Oracle Data Pump utility to load the data across database shards in
subsets. Data from the source database can be exported into a Data Pump dump file.
Then Data Pump import can be run on each shard concurrently by using the same
dump file.

The dump file can be either placed on shared storage accessible to all shards, or
copied to the local storage of each shard. When importing to individual shards, Data
Pump import ignores the rows that do not belong to the current shard.

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-6

Figure 6-3 Loading Sharded Tables Directly to the Database Shards

Data Pump
Export

...Shard 1

Partition 1

Source
Database

Source
Table

Shard Catalog
(Coordinator)

Shard 2

Partition 2

Shard N

Partition N

Data
Pump 1

Data
Pump 2

Data
Pump N

Loading the data directly into the shards is much faster, because all shards are loaded in
parallel. It also provides linear scalability; the more shards there are in the sharded database,
the higher data ingestion rate is achieved.

Loading the Sample Schema Data

As an example, the following steps illustrate how to move the sample schema data from a
non-sharded to sharded database. The syntax examples are based on the sample
Customers-Orders-LineItems-StockItems schema introduced in the previous topics.

1. Export the data from your database tables.

expdp uname/pwd@non_sharded_db directory=expdir
dumpfile=original_tables.dmp logfile=original_tables.log SCHEMAS=UNAME
INCLUDE=TABLE:\"IN \(\'CUSTOMERS\', \'ORDERS\', \'STOCKITEMS\') \"
FLASHBACK_TIME=SYSTIMESTAMP CONTENT=DATA_ONLY

If the source table (in the non-sharded database) is partitioned, then export to dump files
in non-partitioned format (data_options=group_partition_table_data).

Example, if the Orders table is a partitioned table on the source database, export it as
follows.

$ cat ordexp.par
directory=expdir
logfile=ordexp.log
dumpfile=ord_%U.dmp
tables=ORDERS
parallel=8
COMPRESSION=ALL
content=data_only
DATA_OPTIONS=GROUP_PARTITION_TABLE_DATA

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-7

$ expdp user/password parfile=ordexp.par

Because the SHARDED and DUPLICATED tables were already created in the target
database, you only export the table content (DATA_ONLY).

Data Pump export utility files are consistent on a per table basis. If you want all of
the tables in the export to be consistent at the same point in time, you must use
the FLASHBACK_SCN or FLASHBACK_TIME parameters as shown in the example
above. Having a consistent “as of” point in time database export files is
recommended.

2. Make the export file (original_tables.dmp) accessible by the target database
nodes before you start importing the data to the sharded database.

You can either move this file (or multiple files in the case of parallel export) to the
target database system or share the file over the network.

3. Prepare all the target databases (shard catalog and shards) for import.

The database administrator has to authorize the database user for required
access to the database import directory, as shown here.

CREATE OR REPLACE DIRECTORY expdir AS ‘/some/directory’;
GRANT READ, WRITE ON DIRECTORY expdir TO uname;
GRANT IMP_FULL_DATABASE TO uname;

4. Load the DUPLICATED table (StockItems) using the shard catalog.

The following is an example of the import command.

impdp uname/pwd@catnode:1521/ctlg directory=expdir
dumpfile=original_tables.dmp logfile=imp_dup.log tables=StockItems
content=DATA_ONLY

5. Load the SHARDED tables on the shards directly.

The best way to load the exported SHARDED tables (Customers, Orders) is to run
the Data Pump on each shard (shrd1,2,…, N) directly. The following is an example
of the import command on the first shard.

impdp uname/pwd@shrdnode:1521/shrd1 directory=expdir
DUMPFILE=original_tables.dmp LOGFILE=imp_shd1.log
TABLES=”Customers, Orders, LineItems” CONTENT=DATA_ONLY

Repeat this step on all of the other shards. Note that the same dump file
(original_tables.dmp) is used to load data for all of the shards. Data Pump
import will ignore rows that do not belong to the current shard. This operation can
be run in parallel on all shards.

To benefit from fast loading into very large partitioned tables with parallelism, the
data pump parameter DATA_OPTIONS should include the value
_FORCE_PARALLEL_DML (requires patch 31891464).

$ cat ordimp.par
directory=expdir
logfile=ordimp.log

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-8

dumpfile=ord_%U.dmp
tables=ORDERS
parallel=8
content=data_only
DATA_OPTIONS=_force_parallel_dml
$ impdp user/password parfile=ordimp.par

Without patch 31891464, you can alternatively migrate data using an external table of
type DATA PUMP, as shown in the following example.

a. Export on the source database.

CREATE TABLE ORDERS_EXT
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY "expdir"
 ACCESS PARAMETERS (DEBUG = (3 , 33489664))
 LOCATION ('ord1.dat',
 'ord2.dat',
 'ord3.dat',
 'ord4.dat')
)
PARALLEL 8
REJECT LIMIT UNLIMITED
AS SELECT * FROM user.ORDERS;

b. Import into each target shard.

CREATE TABLE ORDERS_EXT
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY "expdir"
 ACCESS PARAMETERS (DEBUG = (3 , 33489664))
 LOCATION ('ord1.dat',
 'ord2.dat',
 'ord3.dat',
 'ord4.dat')
)
PARALLEL 8
REJECT LIMIT UNLIMITED
;
INSERT /*+ APPEND ENABLE_PARALLEL_DML PARALLEL(a,12) pq_distribute(a,
random) */ INTO "user"."ORDERS" a
SELECT /*+ full(b) parallel(b,12) pq_distribute(b, random)*/
*
FROM "ORDERS_EXT"
WHERE <predicate*>;
Commit;

(*) The predicate in the WHERE clause depends on the sharding method. For user-
defined sharding by range, for example, it will be based on the range of CustNo on a
particular shard. For system-managed (consistent hash-based) sharding, see the use
case in Using External Tables to Load Data into a Sharded Database.

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-9

Note:

You can make Data Pump run faster by using the PARALLEL parameter in the
expdp and impdp commands. For export, this parameter should be used in
conjunction with the %U wild card in the DUMPFILE parameter to allow
multiple dump files be created, as shown in this example.

expdp uname/pwd@orignode SCHEMAS=uname directory=expdir
dumpfile=samp_%U.dmp logfile=samp.log
FLASHBACK_TIME=SYSTIMESTAMP PARALLEL=4

The above command uses four parallel workers and creates four dump files
with suffixes _01, _02, _03, and _04. The same wild card can be used during
the import to allow you to reference multiple input files.

Migrating Data Without a Sharding Key
As an example, the following steps illustrate how to migrate data to a sharded table
from a source table that does not contain the sharding key.

The examples of the Data Pump export and import commands in the previous topic do
not include the LineItems table. The reason is that this table in the non-sharded
database does not contain the sharding key column (CustNo). However, this column is
required in the sharded version of the table.

Because of the schema mismatch between the non-sharded and sharded versions of
the table, data migration for LineItems must be handled differently, as shown in the
following steps.

1. On the source, non-sharded, database, create a temporary view with the missing
column and SQL expression to generate value for this column.

CREATE OR REPLACE VIEW Lineitems_View AS
 SELECT l.*,
 (SELECT o.CustNo From Orders o WHERE l.PoNo=o.PoNo) CustNo
FROM LineItems l;

This creates a view LineItems_View with the column CustNo populated based on
the foreign key relationship with the Orders table.

2. Export the new view with VIEWS_AS_TABLES option of the data pump export
utility.

expdp uname/pwd@non_sharded_db directory=expdir
DUMPFILE=original_tables_vat.dmp LOGFILE=original_tables_vat.log
FLASHBACK_TIME=SYSTIMESTAMP CONTENT=DATA_ONLY
TABLES=Uname.Customers,Uname.Orders,Uname.StockItems
VIEWS_AS_TABLES=Uname.LineItems_

3. Import the data to sharded tables by directly running the data pump import on
individual shards (shrd1, shrd2,.., shrdN).

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-10

The following is an example of running the import on the first shard.

impdp uname/pwd@shrdnode:1521/shrd1 directory=expdir
DUMPFILE=original_tables_vat.dmp LOGFILE=imp_shd_vat1.log
CONTENT=DATA_ONLY
TABLES=Uname.Customers,Uname.Orders,Uname.LineItems_View
VIEWS_AS_TABLES=Uname.LineItems_View REMAP_TABLE=Lineitems_View:Lineitems

The examples uses the impdp tool VIEWS_AS_TABLES option to import the view
LineItems_View exported as a table during export operation. And the parameter
REMAP_TABLE is used to indicate that this data should actually be inserted in the original
table LineItems.

Using External Tables to Load Data into a Sharded Database
Using the examples and guidelines in the following topics, you can load data into a sharded
database by creating external tables and then loading the data from the external tables into
sharded or duplicated tables.

This data loading method is useful when the data to be loaded resides in external files, for
example in CSV files.

External tables can be defined using the ORGANIZATION EXTERNAL keyword in the CREATE
TABLE statement. This table must be local to each shard and not sharded or duplicated.
Loading the data into the sharded or duplicated table involves a simple INSERT … SELECT
statement from an external table, with a condition to filter only a subset of data for sharded
tables.

You may choose to keep the files on different hosts based on the access time and size of the
files. For example, copy the files for duplicated tables on the shard catalog host and keep
files for sharded tables on a network share that is accessible to all of the shards. It is also
possible to keep a copy of the sharded table files on each shard for faster loading.

For more information about external tables, see External Tables in Oracle Database Utilities.

Loading Data into Duplicated Tables
Data for the duplicated tables resides on the shard catalog, so loading the data into the
duplicated tables is also done on the shard catalog. The data is then automatically replicated
to shards after loading is complete.

Consider the following table defined as a duplicated table.

CREATE DUPLICATED TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

Loading data into the table StockItems involves the following steps.

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-11

1. Create a directory object pointing to the directory containing the data file and grant
access to the shard user on this directory.

CREATE OR REPLACE DIRECTORY shard_dir AS '/path/to/datafile';
GRANT ALL on DIRECTORY shard_dir TO uname;

2. Create an external table that is local to the shard catalog, with the same columns
as the duplicated table.

On the shard catalog, run:

ALTER SESSION DISABLE SHARD DDL;
CREATE TABLE StockItems_Ext (
 StockNo NUMBER(4) NOT NULL,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER DEFAULT DIRECTORY shard_dir
 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ’|’ (
 StockNo,
 Description,
 Price)
)LOCATION (’StockItems.dat’)
);

In this example, the data file for the duplicated table is named StockItems.dat
and column values are separated by the character ‘|’.

3. Insert data from the external table into the duplicated table.

INSERT INTO StockItems (SELECT * FROM StockItems_Ext);

You can use also optimizer hints such as APPEND and PARALLEL (with degree of
parallelism) for faster loading depending on your system resources. For example:

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ APPEND PARALLEL */ INTO StockItems
 (SELECT * FROM StockItems_Ext);

or

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ APPEND PARALLEL(24) */ INTO StockItems
 (SELECT * FROM StockItems_Ext);

4. Commit the insert operation.

COMMIT;

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-12

5. Drop the external table.

DROP TABLE StockItems_Ext;

Repeat these steps for each duplicated table.

Loading Data into Sharded Tables
Loading data into a sharded table needs to be performed on individual shards because data
for a sharded table is partitioned across shards. The load can be done concurrently on all the
shards, even if the source data file is shared.

The process of loading is similar to the loading of duplicated tables, with an additional filter in
the INSERT … SELECT statement to filter out the rows that do not belong to the current shard.

As an example, consider the sharded table created as follows.

CREATE SHARDED TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 CONSTRAINT RootPK PRIMARY KEY (CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Loading data into this table involves doing the following steps on each shard.

1. Create the directory object in the same way as done for the duplicated tables.

2. Create an external table for Customers table.

ALTER SESSION DISABLE SHARD DDL;
CREATE TABLE Customers_Ext (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER DEFAULT DIRECTORY shard_dir
 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ’|’ (
 CustNo, CusName, Street, City, State, Zip, Phone)

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-13

)LOCATION (’Customers.dat’)
);

3. Insert data from external table into sharded table.

ALTER SESSION ENABLE PARALLEL DML;

INSERT /*+ APPEND PARALLEL(24) */ INTO Customers
 (SELECT * FROM Customers_Ext WHERE
 SHARD_CHUNK_ID(’UNAME.CUSTOMERS’, CUSTNO) IS NOT NULL
);

The operator SHARD_CHUNK_ID is used to filter the rows that belong to the current
shard. This operator returns a valid chunk number for the given sharding key
value. The parameters for this operator are the root table name (in this case
UNAME.CUSTOMERS) and values of the sharding key columns. When a value does
not belong to the current shard, this operator returns NULL.

Note that this operator is introduced in the current release (Oracle Database 21c).
If this operator is not available in your version, you must modify the insert
statement as follows for the case of system-managed sharding.

INSERT /*+ APPEND PARALLEL(24) */ INTO Customers c
 (SELECT * FROM Customers_Ext WHERE
 EXISTS (SELECT chunk_number FROM gsmadmin_internal.chunks
 WHERE ora_hash(c.CustNo)>= low_key
 AND ora_hash c.CustNo)< high_key)
);

This query user internal sharding metadata to decide the eligibility for the row to be
inserted.

4. Commit the insert operation.

COMMIT;

5. Drop external tables.

DROP TABLE Customers_Ext;

Repeat the above steps for each sharded table, starting with the root table and
descending down the table family hierarchy to maintain any foreign key constraints.

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-14

7
Query and DML Execution

On a sharded database, queries and DML can be routed to the shards for execution with or
without a sharding key. If a key is provided by the application a database request is routed
directly to the shards, but if no key is provided the request is processed by the shard catalog,
and then directed to the necessary shards for execution.

How Database Requests are Routed to the Shards
In Oracle Sharding, database query and DML requests are routed to the shards in two main
ways, depending on whether a sharding key is supplied with the request.

These two routing methods are called direct routing and proxy routing.

Direct Routing

You can connect directly to the shards to execute queries and DML by providing a sharding
key with the database request. Direct routing is the preferred way of accessing shards to
achieve better performance, among other benefits.

Proxy Routing

Queries that need data from multiple shards, and queries that do not specify a sharding key,
cannot be routed directly by the application. Those queries require a proxy to route requests
between the application and the shards. Proxy routing is handled by the shard catalog query
coordinator.

Routing Queries and DMLs Directly to Shards
Applications can have their requests routed directly to the shards if they provide a sharding
key. With the direct routing mechanism, requests can only query and manipulate the data that
belongs to the shard they were routed to.

Direct access to the data on the shards has several advantages.

• Offers better performance: Overall, applications experience better performance
compared to routing requests to the shards indirectly through the shard catalog (by
proxy). With direct routing there is no need for the requests and the results to pass
through a coordinator database.

• Accommodates geographic distribution of shards: Applications can access the data in
shards localized in their region.

• Eases load balancing: Load balancing application requests across the shards can be
easily achieved by moving the data across shards using chunk moves.

• Supports all type of queries:

– SELECT, INSERT, and UPDATE on sharded tables: The scope of these queries is the
data that belong to the shards accessed.

– SELECT, INSERT, and UPDATE on duplicated tables: The scope of theses queries is all
of the data in the duplicated tables. Because the master copies of a duplicated tables

7-1

reside in the coordinator database, the DMLs on the duplicated tables are re-
routed to the coordinator database.

The following figure illustrates DML on duplicated tables using direct routing to a
shard.

1. The Application sends the DML request directly to one of the shards, Shard DB1.

2. The DML is forwarded from Shard DB1 to the Coordinator Database, where it is
run on the master duplicated tables.

3. The Coordinator Database refresh mechanism runs periodically to update the
instances of the duplicated tables on all of the shards.

Figure 7-1 DML on a Duplicated Table with Direct Routing

Application

Coordinator Database

Shard DB2 Shard DB3Shard DB1

2

1

3 3 3

For more information about direct routing, see Client Application Request Routing.

For information about developing applications for direct routing, see Developing
Applications for the Sharded Database

Routing Queries and DMLs by Proxy
Using the shard catalog query coordinator as a proxy, Oracle Sharding can handle
request routing for queries and DMLs that do not specify a sharding key.

By using the coordinator as a proxy, Oracle Sharding provides you with the flexibility to
allow any database application to run SQL statements without the need to specify the
shards where the query should be executed.

The following figure illustrates DML on duplicated tables using proxy routing.

1. The Application sends the DML request to the Coordinator Database where it is
run on the master duplicated tables.

2. The Coordinator Database refresh mechanism runs periodically to update the
instances of the duplicated tables on all of the shards.

Chapter 7
How Database Requests are Routed to the Shards

7-2

Figure 7-2 DML on a Duplicated Table with Proxy Routing

Coordinator Database

Shard DB2 Shard DB3Shard DB1

1

2 2 2

Application

For more information about the coordinator, see Query Processing and the Query
Coordinator.

The remaining topics in this chapter discuss routing and processing database requests by
proxy.

Connecting to the Query Coordinator
The Oracle Sharding query coordinator, a component of the shard catalog, contains the
metadata of the sharded topology and provides query processing support for sharded
databases.

To perform multi-shard queries, connect to the coordinator using the GDS$CATALOG service on
the shard catalog database.

sqlplus app_schema/app_schema@shardcatvm:1521/GDS\$CATALOG.oradbcloud

For more information about the coordinator, see Query Processing and the Query
Coordinator

Query Coordinator Operation
The SQL compiler in the shard catalog identifies the relevant shards automatically, and
coordinates the query execution across all of the participating shards. Database links are
used for the communication between the coordinator and the shards.

As shown in the following figure, at a high level, the coordinator rewrites each incoming
query, Q, into two queries, Coordinator Query (CQ) and Shard Query (SQ) where SQ, where
SQ (Shard Query) is the part of Q that runs on each participating shard, and CQ (Coordinator
Query) is the part of Q that runs on the coordinator shard.

A query, Q, is rewritten into CQ (Shard_Iterator(SQ)), where the Shard_Iterator
is the operator that connects to the shards and runs SQ. It can be run in parallel or serially.

Chapter 7
Connecting to the Query Coordinator

7-3

Figure 7-3 Query Coordinator Operation

Application Coordinator Database

Shard DB2 Shard DB3Shard DB1

CQ + Shard Iterator

Q

R

SQ r1 r2 r3SQSQ

The following is an example of an aggregate query, Q1, rewritten into Q1’.

Q1 : SELECT COUNT(*) FROM customers

Q1’: SELECT SUM(sc) FROM (Shard_Iterator(SELECT COUNT(*) sc FROM s1
(i)))

There are two main elements in this process.

1. The relevant shards are identified.

2. The query is rewritten into a distributive form and iterated across the relevant
shards.

During the query compilation on the coordinator database, the query compiler
analyzes the predicates on the sharding key, and extracts the predicates that can be
used to identify the participating shards, that is, the shards that will contribute rows for
the sharded tables referenced in the query. The rest of the shards are referred to as
pruned shards.

In the case where only one participating shard was identified, the full query is routed to
that shard for execution. This is called a single-shard query.

If there is more than one participating shard, the query is called a multi-shard query
and it is rewritten. The rewriting process takes into account the expressions computed
by the query as well as the query shape.

Query Processing for Single-Shard Queries
A single-shard query is a query which needs to scan data from only one shard and
does not need to lookup data from any other shards.

The single-shard query is similar to a client connecting to a specific shard and issuing
a query on that shard. In this scenario, the entire query will be executed on the single
participating shard, and the coordinator just passes processed rows back to the client.
The plan on the coordinator is similar to the remote mapped cursor.

Chapter 7
Query Processing for Single-Shard Queries

7-4

For example, the following query is fully mapped to a single shard because the data for
customer 123 is located only on that shard.

SELECT count(*) FROM customers c, orders o WHERE c.custno = o.custno and
c.custno = 123;

The query contains a condition on the shard key that maps to one and only one shard which
is known at query compilation time (literals) or query start time (bind). The query is fully
executed on the qualifying shard.

Single-shard queries are supported for:

• Equality and In-list, such as Area = ‘West’
• Conditions containing literal, bind, or expression of literals and binds, such as

Area = :bind

Area = CASE :bind <10 THEN ‘West’ ELSE ‘East’ END

• SELECT, UPDATE, DELETE, INSERT, FOR UPDATE, and MERGE. UPSERT is not supported.

Query Processing for Multi-Shard Queries
A multi-shard query is a query that must scan data from more than one shard, and the
processing on each shard is independent of any other shard.

A multi-shard query maps to more than one shard and the coordinator might need to do
some processing before sending the result to the client. For example, the following query
gets the number of orders placed by each customer.

SELECT count(*), c.custno FROM customers c, orders o WHERE c.custno =
o.custno
 GROUP BY c.custno;

The query is transformed to the following by the coordinator.

SELECT sum(count_col), custno FROM (SELECT count(*) count_col, c.custno
 FROM customers c, orders o
 WHERE c.custno = o.custno GROUP BY c.custno) GROUP BY custno;

The inline query block is mapped to every shard just as a remote mapped query block. The
coordinator performs further aggregation and GROUP BY on top of the result set from all
shards. The unit of execution on every shard is the inline query block.

Multi-Shard Queries and Global Read Consistency

A multi-shard query must maintain global read consistency (CR) by issuing the query at the
highest common SCN across all the shards. See Specifying Consistency Levels in a Multi-
Shard Query for information about how to set consistency levels.

Passing Hints in Multi-Shard Queries

Any hint specified in the original query on the coordinator is propagated to the shards.

Chapter 7
Query Processing for Multi-Shard Queries

7-5

Tracing and Troubleshooting Slow Running Multi-Shard Queries

Set the trace event shard_sql on the coordinator to trace the query rewrite and shard
pruning. One of the common performance issues observed is when the GROUP BY is
not pushed to the shards because of certain limitations of the sharding. Check if all of
the possible operations are pushed to the shards and the coordinator has minimal
work to consolidate the results from shards.

Specifying Consistency Levels in a Multi-Shard Query
You can use the initialization parameter
MULTISHARD_QUERY_DATA_CONSISTENCY to set different consistency levels
when executing multi-shard queries across shards.

You can specify different consistency levels for multi-shard queries. For example, you
might want some queries to avoid the cost of SCN synchronization across shards, and
these shards could be globally distributed. Another use case is when you use
standbys for replication and slightly stale data is acceptable for multi-shard queries, as
the results could be fetched from the primary and its standbys.

The default mode is strong, which performs SCN synchronization across all shards.
Other modes skip SCN synchronization. The delayed_standby_allowed level allows
fetching data from the standbys as well, depending on load balancing and other
factors, and could contain stale data.

This parameter can be set either at the system level or at the session level.

See Also:

Oracle Database Reference for more information about
MULTISHARD_QUERY_DATA_CONSISTENCY usage.

Supported Query Constructs and Example Query Shapes
Oracle Sharding supports single-shard and multi-shard query shapes with some
restrictions.

The following are restrictions on query constructs in Oracle Sharding.

• CONNECT BY Queries CONNECT BY queries are not supported.

• MODEL Clause The MODEL clause is not supported.

• User-Defined PL/SQL in the WHERE Clause User-defined PL/SQL is allowed in
multi-shard queries only in the SELECT clause. If it is specified in the WHERE clause
then an error is thrown.

• XLATE and XML Query type XLATE and XML Query type columns are not
supported.

• Object types You can include object types in SELECT lists, WHERE clauses, and so
on, but custom constructors and member functions of type object type are not
permitted in WHERE clauses.

Chapter 7
Supported Query Constructs and Example Query Shapes

7-6

Furthermore, for duplicated tables, non-final types, that is, object types that are created
with the NOT FINAL keyword, cannot be used as a column data type. For sharded tables,
non-final types can be used as a column data type but the column must be created with
keywords NOT SUBSTITUTABLE AT ALL LEVELS.

Note:

Queries involving only duplicated tables are run on the coordinator.

The following topics show several examples of query shapes supported in Oracle Sharding.

Queries on Sharded Tables Only
For a single-table query, the query can have an equality filter on the sharding key that
qualifies a shard. For join queries, all of the tables should be joined using equality on the
sharding key.

The following examples show queries where only sharded tables participate.

Example 7-1 Inner Join

SELECT … FROM s1 INNER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Example 7-2 Left Outer Join

SELECT … FROM s1 LEFT OUTER JOIN s2 ON s1.sk=s2.sk

Example 7-3 Right Outer Join

SELECT … FROM s1 RIGHT OUTER JOIN s2 ON s1.sk=s2.sk

Example 7-4 Full Outer Join

SELECT … FROM s1 FULL OUTER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Queries Involving Both Sharded and Duplicated Tables
A query involving both sharded and duplicated tables can be either a single-shard or multi-
shard query, based on the predicates on the sharding key. The only difference is that the
query contains a non-sharded table.

Note:

Joins between a sharded table and a duplicated table can be on any column, using
any comparison operator, = < > <= >=, or arbitrary join expressions.

Chapter 7
Supported Query Constructs and Example Query Shapes

7-7

Example 7-5 Inner Join

SELECT … FROM s1 INNER JOIN r1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

Example 7-6 Left or Right Outer Join

In this case, the sharded table is the first table in LEFT OUTER JOIN.

SELECT … FROM s1 LEFT OUTER JOIN r1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2)
AND any_filter(r1) AND filter_one_shard(s1)

In this case, the sharded table is the second table in RIGHT OUTER JOIN.

SELECT … FROM r1 RIGHT OUTER JOIN s1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2)
AND filter_one_shard(s1) AND any_filter(r1)

In some cases, the duplicated table is the first table in LEFT OUTER JOIN, or the
sharded table is first and it maps to a single shard, based on filter predicate on the
sharding key.

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2)
AND any_filter(r1) AND any_filter(s1)

In some cases, the duplicated table is the second table in RIGHT OUTER JOIN, or the
sharded table is second and it maps to a single shard based on filter predicate on
sharding key.

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2)
AND any_filter (s1) AND any_filter(r1)

Example 7-7 Full Outer Join

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

In this case, the sharded table requires access to multiple shards:

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.non_sk=s2.non_sk
WHERE any_filter(s1) AND any_filter(s2)

Chapter 7
Supported Query Constructs and Example Query Shapes

7-8

Example 7-8 Semi-Join (EXISTS)

SELECT … FROM s1 EXISTS
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

SELECT … FROM r1 EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey and filter_one_shard(s1))

In this case, the sharded table is in a subquery that requires the participation of multiple
shards.

SELECT … FROM r1 EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey)

Example 7-9 Anti-Join (NOT EXISTS)

SELECT … FROM s1 NOT EXISTS
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

In this case, the sharded table is in the sub-query.

SELECT … FROM r1 NOT EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey

Aggregate Functions Supported by Oracle Sharding
The following aggregations are supported by proxy routing in Oracle Sharding.

• COUNT
• SUM
• MIN
• MAX
• AVG

Queries with User-Defined Types
User-defined SQL object types and user-defined SQL collection types are referred to as user-
defined types. Oracle Sharding supports queries with user-defined types.

Example 7-10 Create Table with User-Defined Types

The following example creates an all-shard type and type body, then creates a sharded table
referencing the type.

ALTER SESSION ENABLE SHARD DDL;

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),

Chapter 7
Supported Query Constructs and Example Query Shapes

7-9

 phone VARCHAR2(20),
 MEMBER FUNCTION details (
 self IN person_typ
) RETURN VARCHAR2
);
/

CREATE OR REPLACE TYPE BODY person_typ AS
 MEMBER FUNCTION details (
 self IN person_typ
) RETURN VARCHAR2 IS
 result VARCHAR2(100);
 BEGIN
 result := first_name || ' ' || last_name || ' ' || email || '
' || phone;
 RETURN result;
 END;
END;
/

CREATE SHARDED TABLE Employees
(Employee_id NUMBER NOT NULL
, person person_typ
, signup_date DATE NOT NULL
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Example 7-11 Insert Data Using Type Constructor

INSERT INTO Employees values (1, person_typ('John', 'Doe',
'jdoe@example.com', '123-456-7890'), to_date('24 Jun 2020', 'dd Mon
YYYY'));

Example 7-12 Multi-Shard Query of a User-Defined Type Column

SELECT e.person FROM Employees e;

SELECT e.person.first_name, e.person.last_name FROM Employees e;

SELECT e.person.details() FROM Employee e where e.person.first_name =
'John’;

SELECT signup_date from Employees e where e.person =
person_typ('John', 'Doe', 'jdoe@example.com', '123-456-7890’);

Chapter 7
Supported Query Constructs and Example Query Shapes

7-10

Execution Plans for Proxy Routing
In a multi-shard query, each shard produces an independent execution plan which is
optimized for the data size and compute resources available on the shard.

You do not need to connect to individual shards to see the explain plan for SQL fragments.
Interfaces provided in dbms_xplan.display_cursor() display on the coordinator the plans for
the SQL segments executed on the shards, and [V/X]$SHARD_SQL uniquely maps a shard
SQL fragment of a multi-shard query to the target shard database.

SQL Segment Interfaces for dbms_xplan.display_cursor()
Two interfaces can display the plan for a SQL segment executed on shards. The interfaces
take shard IDs as the argument to display the plans from the specified shards. The
ALL_SHARDS format displays the plans from all of the shards.

To print all of the plans from all shards use the format value ALL_SHARDS as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC +ALL_SHARDS‘,
 shard_ids=>shard_ids))

To print selective plans from the shards, pass shard IDs in the display_cursor() function.
For plans from multiple shards, pass an array of numbers containing shard IDs in the
shard_ids parameter as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC',
 shard_ids=>ids))

To return a plan from one shard pass the shard ID directly to the shard_id parameter, as
shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC',
 shard_id=>1))

V$SQL_SHARD

V$SQL_SHARD uniquely maps a shard SQL fragment of a multi-shard query to the target shard
database. This view is relevant only for the shard coordinator database to store a list of
shards accessed for each shard SQL fragment for a given multi-shard query. Every execution
of a multi-shard query can execute a shard SQL fragment on different set of shards, so every
execution updates the shard IDs. This view maintains the SQL ID of a shard SQL fragment
for each REMOTE node and the SHARD IDs on which the shard SQL fragment was
executed.

Name Null? Type
--- --------

Chapter 7
Supported Query Constructs and Example Query Shapes

7-11

 SQL_ID VARCHAR2(13)
 CHILD_NUMBER NUMBER
 NODE_ID NUMBER
 SHARD_SQL_ID VARCHAR2(13)
 SHARD_ID NUMBER
 SHARD_CHILD_NUMBER NUMBER

• SQL_ID – SQL ID of a multi-shard query on coordinator

• CHILD_NUMBER – cursor child number of a multi-shard query on coordinator

• NODE_ID – ID of REMOTE node for a shard SQL fragment of a multi-shard query

• SHARD_SQL_ID – SQL ID of the shard SQL fragment for given remote NODE ID

• SHARD_ID – IDs of shards where the shard SQL fragment was executed

• SHARD _CHILD_NUMBER– cursor child number of a shard SQL fragment on a
shard (default 0)

The following is an example of a multi-shard query on the sharded database and the
execution plan.

SQL> select count(*) from departments a where exists (select distinct
department_id
 from departments b where b.department_id=60);
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	FILTER	
3	VIEW	VW_SHARD_377C5901
4	SHARD ITERATOR	
5	REMOTE	
6	VIEW	VW_SHARD_EEC581E4
7	SHARD ITERATOR	
8	REMOTE	
--

A query of SQL_ID on the V$SQL_SHARD view.

SQL> Select * from v$sql_shard where SQL_ID = ‘1m024z033271u’;
SQL_ID NODE_ID SHARD_SQL_ID SHARD_ID
------------- ------- -------------- --------
1m024z033271u 5 5z386yz9suujt 1
1m024z033271u 5 5z386yz9suujt 11
1m024z033271u 5 5z386yz9suujt 21
1m024z033271u 8 8f50ctj1a2tbs 11

Chapter 7
Supported Query Constructs and Example Query Shapes

7-12

See Also:

Oracle Database PL/SQL Packages and Types Reference

Oracle Database Reference

Supported DMLs and Examples
DMLs in Oracle sharding can target either duplicated tables or sharded tables. There are no
limitations on DMLs when the target is a duplicated table.

DMLs (mainly Insert, Update and Delete) targeting sharded tables can be

• Simple DMLs where only the target table is referenced

• DMLs referencing other tables

• Merge statements

Simple DMLs Where Only the Target Table is Referenced
The following are several examples of supported DMLs.

Example 7-13 Update all of the rows

UPDATE employees SET salary = salary *1.1;

Example 7-14 Insert one row

INSERT INTO employees VALUES (102494, 'Jane Doe, ...
);

Example 7-15 Delete one row

DELETE employees WHERE employee_id = 103678;

DMLs Referencing Other Tables
DMLs on sharded tables can reference other sharded tables, duplicated tables, or local
tables.

Example 7-16 DML referencing duplicated table

In this example, employees is a sharded table and ref_jobs is a duplicated table.

DELETE employees
 WHERE job_id IN (SELECT job_id FROM ref_jobs
 WHERE job_id = 'SA_REP');

Chapter 7
Supported DMLs and Examples

7-13

Example 7-17 DML referencing another sharded table

UPDATE departments SET department_name = 'ABC‘
 WHERE department_id IN (SELECT department_id
 FROM employees
 WHERE salary < 10000);

Example 7-18 Insert as select from a local table

INSERT INTO employees SELECT * FROM local_employees;

Example 7-19 DML affecting one shard

A DML statement might affect only one shard, or it can involve multiple shards. For
example, the DELETE statement shown here affects only one shard because there is a
predicate on the sharding key (employee_id) in the WHERE clause..

DELETE employees WHERE employee_id = 103678;

Example 7-20 DML affecting multiple shards

The following statement affects all of the rows in the EMPLOYEES table because it does
not have a WHERE clause.

UPDATE employees SET salary = salary *1.1;

To run this UPDATE statement on all shards, the shard coordinator iterates over all of
the primary shard databases and invokes remote execution of the UPDATE statement.
The coordinator starts a distributed transaction and performs two phase commit to
guarantee the consistency of the distributed transaction. If there is an in-doubt
transaction, you must recover it manually.

Example Merge Statements
The MERGE statement can target a sharded table or a duplicated table. The merge is
allowed as long as the MERGE operation itself can be pushed to the shards.

Example 7-21 Merge statement with sharded table employees as the target
table

In this example, the employee_id column is the sharding key, and the join predicate on
the source query is on the sharding key, so the MERGE statement will get pushed to all
of the shards to be executed.

MERGE INTO employees D
 USING (SELECT employee_id, salary, department_id FROM employees
 WHERE department_id = 80) S
 ON (D.employee_id = S.employee_id)
 WHEN MATCHED THEN UPDATE SET D.salary = D.salary + S.salary*.01
 DELETE WHERE (S.salary > 8000)
 WHEN NOT MATCHED THEN INSERT (D.employee_id, D.salary)

Chapter 7
Supported DMLs and Examples

7-14

 VALUES (S.employee_id, S.salary*0.1)
 WHERE (S.salary <= 8000);

Example 7-22 Merge statement with duplicated table as the target table

In this example, the target table is the duplicated table ref_employees. The source query
references the sharded table employees and the join predicate is on the sharding key
employee_id.

MERGE INTO ref_employees D
 USING (SELECT employee_id, salary, department_id FROM employees
 WHERE department_id = 80) S
 ON (D.employee_id = S.employee_id)
 WHEN MATCHED THEN UPDATE SET D.salary = D.salary + S.salary*.01
 DELETE WHERE (S.salary > 8000)
 WHEN NOT MATCHED THEN INSERT (D.employee_id, D.salary)
 VALUES (S.employee_id, S.salary*0.1)
 WHERE (S.salary <= 8000);

Limitations in Multi-Shard DML Support
The following DML features are not supported by multi-shard DML in Oracle Sharding.

• Parallel DML Parallel DML is not supported by multi-shard DML. The DML will always
run on one shard at a time (serially) in multi-shard DML.

• Error Logging The ERROR LOG clause with DML is not supported by multi-shard DML. A
user error is raised in this case.

• Array DML Array DML is not supported by multi-shard DML. ORA-2681 is raised in this
cases.

• RETURNING Clause The RETURNING INTO clause is not supported by regular distributed
DMLs; therefore, it is not supported by Oracle Sharding. ORA-22816 is raised if you try to
use the RETURNING INTO clause in multi-shard DMLs.

• MERGE and UPSERT The MERGE statement is partially supported by Oracle Sharding,
that is, a MERGE statement affecting only single shard is supported. ORA error is raised if a
MERGE statement requires the modification of multiple shards.

• Multi-Table INSERT Multi-table inserts are not supported by database links; therefore,
multi-table inserts are not supported by Oracle Sharding.

• Updatable Join View ORA-1779 is thrown when the updatable join view has a join on a
sharded table on sharding keys. The reason for this error is that the primary key defined
on a sharded table is combination of internal column SYS_HASHVAL + sharding key and
you cannot specify SYS_HASHVAL in the updatable join view. Because of this restriction you
cannot establish the key-preserved table resulting in raising ORA-1779.

• Triggers

Chapter 7
Supported DMLs and Examples

7-15

Gathering Optimizer Statistics on Sharded Tables
You can gather statistics on sharded tables from the coordinator database.

The statistic preference parameter COORDINATOR_TRIGGER_SHARD, when set to TRUE on
all of the shards, allows the coordinator database to import the statistics gathered on
the shards.

The PL/SQL procedures DBMS_STATS.GATHER_SCHEMA_STATS() and
DBMS_STATS.GATHER_TABLE_STATS() gather statistics on sharded tables and duplicated
tables in the shards and in the coordinator database. See also,
REPORT_GATHER_TABLE_STATS Function.

Manual Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you
have a schema named sharduser:

connect / as sysdba
EXECUTE
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD',
'TRUE');

2. Gather statistics across the shards.

The user should be an all-shards user and needs to have privileges to access
dictionary tables.

a. On the shards run the following.

connect sharduser/password
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER',
options => 'GATHER');

b. When all shards are completed, to pull aggregated statistics run the following
on the coordinator.

connect sharduser/password
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER',
options => 'GATHER');

c. Check the statistics on all of the shards.

connect sharduser/password

ALTER SESSION SET nls_date_format='DD-MON-YYYY HH24:MI:SS';
 col TABLE_NAME form a40
 set pagesize 200 linesize 200

SELECT TABLE_NAME, NUM_ROWS, sharded, duplicated, last_analyzed
 FROM user_tables
 WHERE table_name not like 'MLOG%' and table_name not like

Chapter 7
Gathering Optimizer Statistics on Sharded Tables

7-16

'RUPD%'
 and table_name not like 'USLOG%';

Automatic Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you have a
schema named sharduser:

connect / as sysdba
EXECUTE
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD','TRUE'
);

2. Schedule a job to pull aggregated statistics on the shards and on the coordinator
database.

The user should be an all-shards user and must have privileges to access dictionary
tables.

Start the following job on the shards:

connect sharduser/password
BEGIN
DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'Gather_Stats_2',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN DBMS_STATS.GATHER_SCHEMA_STATS(ownname =>
''DEMO'', options => ''GATHER''); END;',
 start_date => SYSDATE,
 repeat_interval =>
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=14;byminute=10;byseco
nd=00',
 end_date => NULL,
 enabled => TRUE,
 comments => 'Gather table statistics');
END;
/

After the job on all of the shards is finished, start the following job on the coordinator.

connect sharduser/password
BEGIN
DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'Gather_Stats_2',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN DBMS_STATS.GATHER_SCHEMA_STATS(ownname
=> ''DEMO'', options => ''GATHER''); END;',
 start_date => SYSDATE,
 repeat_interval =>
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=15;byminute=10;byseco
nd=00',
 end_date => NULL,
 enabled => TRUE,
 comments => 'Gather table statistics');

Chapter 7
Gathering Optimizer Statistics on Sharded Tables

7-17

END;
/

Chapter 7
Gathering Optimizer Statistics on Sharded Tables

7-18

8
Developing Applications for the Sharded
Database

Direct Routing to a Shard
Oracle clients and connections pools are able to recognize sharding keys specified in the
connection string for high performance data dependent routing. A shard routing cache in the
connection layer is used to route database requests directly to the shard where the data
resides.

In direct, key-based, routing to a shard, a connection is established to a single, relevant shard
which contains the data pertinent to the required transaction using a sharding key.

A sharding key is used to route database connection requests at a user session level during
connection checkout. The composite sharding method requires both a sharding key and a
super sharding key. Direct, key-based, routing requires the sharding key (or super sharding
key) be passed as part of the connection. Based on this information, a connection is
established to the relevant shard which contains the data pertinent to the given sharding key
or super sharding key.

Once the session is established with a shard, all SQL queries and DMLs are supported and
executed in the scope of the given shard. This routing is fast and is used for all OLTP
workloads that perform intra-shard transactions. It is recommended that direct routing be
employed for all OLTP workloads that require the highest performance and availability.

In support of Oracle Sharding, key enhancements have been made to Oracle connection
pools and drivers. JDBC, Universal Connection Pool (UCP), OCI Session Pool (OCI), and
Oracle Data Provider for .NET (ODP.NET) provide APIs to pass sharding keys during the
connection creation. Apache Tomcat, IBM Websphere, Oracle WebLogic Server, and JBOSS
can leverage JDBC/UCP support and use sharding. PHP, Python, Perl, and Node.js can
leverage OCI support.

A shard topology cache is a mapping of the sharding key ranges to the shards. Oracle
Integrated Connection Pools maintain this shard topology cache in their memory. Upon the
first connection to a given shard (during pool initialization or when the pool connects to newer
shards), the sharding key range mapping is collected from the shards to dynamically build the
shard topology cache.

Caching the shard topology creates a fast path to the shards and expedites the process of
creating a connection to a shard. When a connection request is made with a sharding key,
the connection pool looks up the corresponding shard on which this particular sharding key
exists (from its topology cache). If a matching connection is available in the pool then the pool
returns a connection to the shard by applying its internal connection selection algorithm.

A database connection request for a given sharding key that is in any of the cached topology
map, goes directly to the shard (that is, bypassing the shard director). Connection Pool also
subscribes to RLB notifications from the SDB and dispenses the best connection based on
runtime load balancing advisory. Once the connection is established, the client executes
transactions directly on the shard. After all transactions for the given sharding key have been

8-1

executed, the application must return the connection to the pool and obtain a
connection for another key.

If a matching connection is not available in the pool, then a new connection is created
by forwarding the connection request with the sharding key to the shard director.

Once the pools are initialized and the shard topology cache is built based on all
shards, a shard director outage has no impact on direct routing.

Suitability for Sharding of Existing Applications
Existing applications that were never intended to be sharded will require some level of
redesign to achieve the benefits of a sharded architecture.

In some cases it may be as simple as providing the sharding key, in other cases it may
be impossible to horizontally partition data and workload as required by a sharded
database.

Many customer-facing web applications, such as e-commerce, mobile, and social
media are well suited to sharding. Such applications have a well defined data model
and data distribution strategy (hash, range, list, or composite) and primarily access
data using a sharding key. Examples of sharding keys include customer ID, account
number, and country_id. Applications will also usually require partial de-normalization
of data to perform well with sharding.

Transactions that access data associated with a single value of the sharding key are
the primary use-case for a sharded database, such as lookup and update of a
customer’s records, subscriber documents, financial transactions, e-commerce
transactions, and the like. Because all the rows in a sharded schema that have the
same value of the sharding key are guaranteed to be on the same shard, such
transactions are always single-shard and executed with the highest performance and
provide the highest level of consistency.

Multi-shard operations are supported, but with a reduced level of performance and
consistency. Such transactions include simple aggregations, reporting, and the like,
and play a minor role in a sharded application relative to workloads dominated by
single-shard transactions.

Sharding APIs Supporting Direct Routing
Oracle connection pools and drivers support Oracle Sharding.

JDBC, UCP, OCI, and Oracle Data Provider for .NET (ODP.NET) recognize sharding
keys as part of the connection check. Apache Tomcat, Websphere, and WebLogic
leverage UCP support for sharding and PHP, Python, Perl, and Node.js leverage OCI
support.

Oracle JDBC APIs for Oracle Sharding
Oracle Java Database Connectivity (JDBC) provides APIs for connecting to database
shards in an Oracle Sharding configuration.

The JDBC driver recognizes the specified sharding key and super sharding key and
connects to the relevant shard that contains the data. Once the connection is
established to a shard, then any database operations, such as DMLs, SQL queries
and so on, are supported and executed in the usual way.

Chapter 8
Suitability for Sharding of Existing Applications

8-2

A shard-aware application gets a connection to a given shard by specifying the sharding key
using the database sharding APIs.

• The OracleShardingKey interface indicates that the current object represents an Oracle
sharding key that is to be used with Oracle sharded database.

• The OracleShardingKeyBuilder interface builds the compound sharding key with
subkeys of various supported data types. This interface uses the new JDK 8 builder
pattern for building a sharding key.

• The OracleConnectionBuilder interface builds connection objects with additional
parameters other than user name and password.

• The OracleDataSource class provides database sharding support with the
createConnectionBuilder and createShardingKeyBulider methods.

• The OracleXADataSource class provides database sharding support with the
createConnectionBuilder method

• The OracleConnection class provides database sharding support with the
setShardingKeyIfValid and setShardingKey methods.

• The OracleXAConnection class provides database sharding support with the
setShardingKeyIfValid and setShardingKey methods.

See the Oracle Database JDBC Developer’s Guide for more information and examples.

Example 8-1 Sample Shard-Aware Application Code Using JDBC

The following code snippet shows how to use JDBC sharding APIs

OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)
(PORT=1521)(PROTOCOL=tcp))
(CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))");
 ods.setUser("hr");
 ods.setPassword("hr");

 // Employee name is the sharding Key in this example.
 // Build the Sharding Key using employee name as shown below.

 OracleShardingKey employeeNameShardKey = ods.createShardingKeyBuilder()
 .subkey("Mary",
JDBCType.VARCHAR)// First Name
 .subkey("Claire",
JDBCType.VARCHAR)// Last Name
 .build();

 OracleShardingKey locationSuperShardKey =
ods.createShardingKeyBuilder() // Building a super sharding key using
location as the key
 .subkey("US",
JDBCType.VARCHAR)
 .build();

 OracleConnection connection = ods.createConnectionBuilder()
 .shardingKey(employeeNameShardKey)

Chapter 8
Sharding APIs Supporting Direct Routing

8-3

 .superShardingKey(locationSuperShar
dKey)
 .build();

Related Topics

• JDBC Support for Database Sharding in Oracle Database JDBC Developer’s
Guide

Oracle Call Interface for Oracle Sharding
Oracle Call Interface (OCI) provides an interface for connecting to database shards in
an Oracle Sharding configuration.

To make requests that read from or write to a chunk, your application must be routed
to the appropriate database (shard) that stores that chunk during the connection
initiation step. This routing is accomplished by using a data key. The data key enables
routing to the specific chunk by specifying its sharding key or to a group of chunks by
specifying its super sharding key.

In order to get a connection to the correct shard containing the chunk you wish to
operate on, you must specify a key in your application before getting a connection to a
sharded Oracle database for either stand-alone connections or connections obtained
from an OCI Session pool. For an OCI Session pool, you must specify a data key
before you check out connections from the pool.

At a high-level, the following steps have to be followed to form sharding keys and
shard group keys and get a session with an underlying connection:

1. Allocate the sharding key descriptor by calling OCIDescriptorAlloc() and
specifying the descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the
sharding key.

2. Allocate the shard group key descriptor by calling OCIDescriptorAlloc() and
specifying the descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the
shard group key.

3. Call OCISessionGet() using the initialized authentication handle from the previous
step containing the sharding key and shard group key information to get the
database connection to the shard and chunk specified by the sharding key and
group of chunks as specified by the shard group key.

See Oracle Call Interface Programmer's Guide for information about creating
connections to OCI Session pools, stand-alone connections, and custom pool
connections.

Related Topics

• OCI Interface for Using Shards in Oracle Call Interface Programmer's Guide

Oracle Universal Connection Pool APIs for Oracle Sharding
Oracle Universal Connection Pool (UCP) provides APIs for connecting to database
shards in an Oracle Sharding configuration.

A shard-aware application gets a connection to a given shard by specifying the
sharding key using the enhanced sharding API calls createShardingKeyBuilder and
createConnectionBuilder.

Chapter 8
Sharding APIs Supporting Direct Routing

8-4

At a high-level, the following steps have to be followed in making an application work with a
sharded database:

1. Update the URL to reflect the shard directors and global service.

2. Set the following pool parameters at the pool level and the shard level.

• setInitialPoolSize sets the initial number of connections to be created when UCP
is started

• setMinPoolSize sets the minimum number of connections maintained by pool at
runtime

• setMaxPoolSize sets maximum number of connections allowed on connection pool

• setMaxConnectionsPerShard sets max connections per shard

3. Build a sharding key object with createShardingKeyBuilder.

4. Establish a connection using createConnectionBuilder.

5. Execute transactions within the scope of the given shard.

Example 8-2 Establishing a Connection Using UCP Sharding API

The following is a code fragment which illustrates how the sharding keys are built and
connections established using UCP Sharding API calls.

...

PoolDataSource pds =
 PoolDataSourceFactory.getPoolDataSource();

 // Set Connection Pool properties
pds.setURL(DB_URL);
pds.setUser("hr");
pds.setPassword("****");
pds.setInitialPoolSize(10);
pds.setMinPoolSize(20);
pds.setMaxPoolSize(30);

// build the sharding key object

OracleShardingKey shardingKey =
 pds.createShardingKeyBuilder()
 .subkey("mary.smith@example.com", OracleType.VARCHAR2)
 .build();

 // Get an UCP connection for a shard
Connection conn =
 pds.createConnectionBuilder()
 .shardingKey(shardingKey)
 .build();
...

Chapter 8
Sharding APIs Supporting Direct Routing

8-5

Example 8-3 Sample Shard-Aware Application Code Using UCP Connection
Pool

In this example the pool settings are defined at the pool level and at the shard level.

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;

public class MaxConnPerShard
{
 public static void main(String[] args) throws SQLException
 {
 String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=shard-
dir1)(PORT=3216)
 (PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=shsvc.shpool.oradbcloud)
(REGION=east)))";
 String user="testuser1", pwd = "testuser1";

 int maxPerShard = 100, initPoolSize = 20;

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
 pds.setURL(url);
 pds.setUser(user);
 pds.setPassword(pwd);
 pds.setConnectionPoolName("testpool");
 pds.setInitialPoolSize(initPoolSize);

 // set max connection per shard
 pds.setMaxConnectionsPerShard(maxPerShard);
 System.out.println("Max-connections per shard is:
"+pds.getMaxConnectionsPerShard());

 // build the sharding key object
 int shardingKeyVal = 123;
 OracleShardingKey sdkey = pds.createShardingKeyBuilder()
 .subkey(shardingKeyVal, OracleType.NUMBER)
 .build();

 // try to build maxPerShard connections with the sharding key
 Connection[] conns = new Connection[maxPerShard];
 for (int i=0; i<maxPerShard; i++)
 {
 conns[i] = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

Chapter 8
Sharding APIs Supporting Direct Routing

8-6

Statement stmt = conns[i].createStatement();
 ResultSet rs = stmt.executeQuery("select sys_context('userenv',
'instance_name'),
 sys_context('userenv', 'chunk_id') from dual");
 while (rs.next()) {
 System.out.println((i+1)+" - inst:"+rs.getString(1)+",
chunk:"+rs.getString(2));
 }
 rs.close();
 stmt.close();
 }

 System.out.println("Try to build "+(maxPerShard+1)+" connection ...");
 try {
 Connection conn = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select sys_context('userenv',
'instance_name'),
 sys_context('userenv', 'chunk_id') from dual");
 while (rs.next()) {
 System.out.println((maxPerShard+1)+" - inst:"+rs.getString(1)+",
 chunk:"+rs.getString(2));
 }
 rs.close();
 stmt.close();

 System.out.println("Problem!!! could not build connection as max-
connections per
 shard exceeded");
 conn.close();
 } catch (SQLException e) {
 System.out.println("Max-connections per shard met, could not build
connection
 any more, expected exception: "+e.getMessage());
 }
 for (int i=0; i<conns.length; i++)
 {
 conns[i].close();
 }
 }
}

Related Topics

• UCP APIs for Database Sharding Support in Oracle Universal Connection Pool
Developer’s Guide

Oracle Data Provider for .NET APIs for Oracle Sharding
Oracle Data Provider for .NET (ODP.NET) provides APIs for connecting to database shards
in an Oracle Sharding configuration.

Chapter 8
Sharding APIs Supporting Direct Routing

8-7

Using ODP.NET APIs, a shard-aware application gets a connection to a given shard by
specifying the sharding key and super sharding key with APIs such as the
SetShardingKey(OracleShardingKey shardingKey, OracleShardingKey
superShardingKey) instance method in the OracleConnection class.

At a high level, the following steps are necessary for a .NET application to work with a
sharded database:

1. Use ODP.NET, Unmanaged Driver.

Sharding is supported with or without ODP.NET connection pooling. Each pool can
maintain connections to different shards of the sharded database.

2. Use an OracleShardingKey class to set the sharding key and another instance for
the super sharding key.

3. Invoke the OracleConnection.SetShardingKey() method prior to calling
OracleConnection.Open() so that ODP.NET can return a connection with the
specified sharding key and super sharding key.

These keys must be set while the OracleConnection is in a Closed state,
otherwise an exception is thrown.

Example 8-4 Sample Shard-Aware Application Code Using ODP.NET

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection
 ("user id=hr;password=hr;Data Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new
OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

Related Topics

• Database Sharding in Oracle Data Provider for .NET Developer's Guide for
Microsoft Windows

Chapter 8
Sharding APIs Supporting Direct Routing

8-8

9
Sharded Database Administration

Oracle Sharding provides tools and some automation for the administration of a sharded
database.

The following topics describe sharded database administration in detail:

Managing the Sharding-Enabled Stack
This section describes the startup and shutdown of components in the sharded database
configuration. It contains the following topics:

Starting Up the Sharding-Enabled Stack
The following is the recommended startup sequence of the sharding-enabled stack:

• Start the shard catalog database and local listener.

• Start the shard directors (GSMs).

• Start up the shard databases and local listeners.

• Start the global services.

• Start the connection pools and clients.

Shutting Down the Sharding-Enabled Stack
The following is the recommended shutdown sequence of the sharding-enabled stack:

• Shut down the connection pools and clients.

• Stop the global services.

• Shut down the shard databases and local listeners.

• Stop the shard directors (GSMs).

• Stop the shard catalog database and local listener.

Managing Oracle Sharding Database Users
This section describes the database users specific to Oracle Sharding. It contains the
following topics:

About the GSMUSER Account
The GSMUSER account is used by GDSCTL and global service managers to connect to
databases in a GDS configuration.

9-1

GSMUSER exists by default on any Oracle database. In an Oracle Sharding
configuration, the account is used to connect to shards instead of pool databases, and
it must be granted both the SYSDG and SYSBACKUP system privileges after the
account has been unlocked.

The password given to the GSMUSER account is used in the gdsctl add shard
command. Failure to grant SYSDG and SYSBACKUP to GSMUSER on a new shard
causes gdsctl add shard to fail with an ORA-1031: insufficient privileges error.

If you use the gdsctl create shard command to create a new shard with the
Database Configuration Assistant (DBCA), the GSMUSER account is automatically
granted the SYSDG and SYSBACKUP privileges and assigned a random password
during the deployment process. Because the GSMUSER account never needs to be
logged into interactively, the value of the password does not need to be known by
administrators; however, the password can be changed after deployment if required by
using the alter user SQL command on the shard, in combination with the gdsctl
modify shard -pwd command.

See Also:

add shard in Global Data Services Concepts and Administration Guide

About the GSMROOTUSER Account
GSMROOTUSER is a database account specific to Oracle Sharding that is only used when
pluggable database (PDB) shards are present. The account is used by GDSCTL and
global service managers to connect to the root container of container databases
(CDBs) to perform administrative tasks.

If PDB shards are not in use, the GSMROOTUSER user should not by unlocked nor
assigned a password on any database. However, in sharded configurations containing
PDB shards, GSMROOTUSER must be unlocked and granted the SYSDG and
SYSBACKUP privileges before a successful gdsctl add cdb command can be
executed. The password for the GSMROOTUSER account can be changed after
deployment if desired using the alter user SQL command in the root container of the
CDB in combination with the gdsctl modify cdb -pwd command.

See Also:

add cdb in Global Data Services Concepts and Administration Guide

Backing Up and Recovering a Sharded Database
Because shards are hosted on individual Oracle databases, you can use Oracle
Maximum Availability best practices to back up and restore shards individually.

If you are using Data Guard and Oracle Active Data Guard for SDB high availability, be
sure to take observers offline and disable Fast Start Failover before taking a primary or
standby database offline.

Contact Oracle Support for specific steps to recover a shard in the event of a disaster.

Chapter 9
Backing Up and Recovering a Sharded Database

9-2

See Also:

Oracle Maximum Availability Architecture for MAA best practices white papers

Modifying a Sharded Database Schema
When making changes to duplicated tables or sharded tables in a sharded database, these
changes should be done from the shard catalog database.

Before executing any DDL operations on a sharded database, enable sharded DDL with

ALTER SESSION ENABLE SHARD DDL;

This statement ensures that the DDL changes will be propagated to each shard in the
sharded database.

The DDL changes that are propagated are commands that are defined as “schema related,”
which include operations such as ALTER TABLE. There are other operations that are
propagated to each shard, such as the CREATE, ALTER, DROP user commands for simplified
user management, and TABLESPACE operations to simplify the creation of tablespaces on
multiple shards.

GRANT and REVOKE operations can be done from the shard catalog and are propagated to
each shard, providing you have enabled shard DDL for the session. If more granular control
is needed you can issue the command directly on each shard.

Operations such as DBMS package calls or similar operations are not propagated. For
example, operations gathering statistics on the shard catalog are not propagated to each
shard.

If you perform an operation that requires a lock on a table, such as adding a not null column,
it is important to remember that each shard needs to obtain the lock on the table in order to
perform the DDL operation. Oracle’s best practices for applying DDL in a single instance
apply to sharded environments.

Multi-shard queries, which are executed on the shard catalog, issue remote queries across
database connections on each shard. In this case it is important to ensure that the user has
the appropriate privileges on each of the shards, whether or not the query will return data
from that shard.

See Also:

Oracle Database SQL Language Reference for information about operations used
with duplicated tables and sharded tables

Propagation of Parameter Settings Across Shards
When you configure system parameter settings at the shard catalog, they are automatically
propagated to all shards of the sharded database.

Chapter 9
Modifying a Sharded Database Schema

9-3

http://www.oracle.com/goto/maa

Before Oracle Database 19c, you had to configure ALTER SYSTEM parameter settings
on each shard in a sharded database. In Oracle Database 19c, Oracle Sharding
provides centralized management by allowing you to set parameters on the shard
catalog. Then the settings are automatically propagated to all shards of the sharded
database.

Propagation of system parameters happens only if done under ENABLE SHARD DDL on
the shard catalog, then include SHARD=ALL in the ALTER statement.

SQL>alter session enable shard ddl;
SQL>alter system set enable_ddl_logging=true shard=all;

Note:

Propagation of the enable_goldengate_replication parameter setting is
not supported.

Migrating a Non-PDB Shard to a PDB
Do the following steps if you want to migrate shards from a legacy single-instance
database to Oracle multitenant architecture.

1. Back up each existing non-PDB shard, and then create a new CDB, and a PDB
inside it.

2. Restore each shard to the PDB inside the CDB.

3. Run the GDSCTL ADD CDB command to add the new CDB.

GDSCTL> add cdb -connect cdb_connect_string -pwd
gsmrootuser_password

4. Run the GDSCTL ADD SHARD -REPLACE command, specifying the connect string of
the PDB, shard_connect_string, which tells the sharding infrastructure to replace
the old location of the shard with new PDB location.

For system-managed or composite sharding, run ADD SHARD with the parameters
shown here.

GDSCTL> add shard -replace db_unique_name_of_non_PDB -connect
shard_connect_string -pwd gsmuser_password
-shardgroup shardgroup_name -cdb cdb_name

For user-defined sharding, the command usage is slightly different.

GDSCTL> add shard -replace db_unique_name_of_non_PDB -connect
shard_connect_string -pwd gsmuser_password
-shardspace shardspace_name -deploy_as db_mode -cdb cdb_name

Chapter 9
Migrating a Non-PDB Shard to a PDB

9-4

Managing Sharded Database Software Versions
This section describes the version management of software components in the sharded
database configuration. It contains the following topics:

Patching and Upgrading a Sharded Database
Applying an Oracle patch to a sharded database environment can be done on a single shard
or all shards; however, the method you use depends on the replication option used for the
environment and the type of patch being applied.

Oracle Sharding uses consolidated patching to update a shard director (GSM)
ORACLE_HOME, so you must apply the Oracle Database release updates to the
ORACLE_HOME to get security and Global Data Services fixes.

Patching a Sharded Database

Most patches can be applied to a single shard at a time; however, some patches should be
applied across all shards. Use Oracle’s best practices for applying patches to single shards
just as you would a non-sharded database, keeping in mind the replication method that is
being used with the sharded database. Oracle opatchauto can be used to apply patches to
multiple shards at a time, and can be done in a rolling manner. Data Guard configurations are
applied one after another, and in some cases (depending on the patch) you can use Standby
First patching.

When using Oracle GoldenGate be sure to apply patches in parallel across the entire
shardspace. If a patch addresses an issue with multi-shard queries, replication, or the
sharding infrastructure, it should be applied to all of the shards in the sharded database.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Upgrading a Sharded Database

Upgrading the Oracle Sharding environment is not much different from upgrading other
Oracle Database and global service manager environments; however, the components must
be upgraded in a particular sequence such that the shard catalog is upgraded first, followed
by the shard directors, and finally the shards.

See Also:

Oracle OPatch User's Guide

Oracle Database Global Data Services Concepts and Administration Guide for
information about upgrading the shard directors.

Oracle Data Guard Concepts and Administration for information about patching and
upgrading in an Oracle Data Guard configuration.

Chapter 9
Managing Sharded Database Software Versions

9-5

Upgrading Sharded Database Components
The order in which sharded database components are upgraded is important for
limiting downtime and avoiding errors as components are brought down and back
online.

Before upgrading any sharded database components you must

• Complete any pending MOVE CHUNK operations that are in progress.

• Do not start any new MOVE CHUNK operations.

• Do not add any new shards during the upgrade process.

1. Upgrade the shards with the following points in mind.

• For system-managed sharded databases: upgrade each set of shards in a
Data Guard Broker configuration in a rolling manner.

• For user-defined sharded databases: upgrade each set of shards in a
shardspace in a rolling manner.

• For composite sharded databases: in a given shardspace, upgrade each set of
shards in a Data Guard Broker configuration in a rolling manner.

• If you are upgrading an Oracle Database 18c sharded database configuration
containing pluggable database (PDB) shards, follow the PDB-specific upgrade
instructions in Compatibility and Migration from Oracle Database 18c.

2. Upgrade the shard catalog database.

 For best results the catalog should be upgraded using a rolling database upgrade;
however, global services will remain available during the upgrade if the catalog is
unavailable, although service failover will not occur.

3. Upgrade any shard directors that are used to run GDSCTL clients, and which do
not also run a global service manager server.

Shard director upgrades should be done in-place; however, an in-place upgrade
causes erroneous error messages unless permissions on the following files for the
following platforms are updated to 755:

• On Linux, Solaris64, and Solaris Sparc64:

$ORACLE_HOME/QOpatch/qopiprep.bat
$ORACLE_HOME/jdk/bin/jcontrol
$ORACLE_HOME/jdk/jre/bin/jcontrol

• On AIX:

$ORACLE_HOME/QOpatch/qopiprep.bat
$ORACLE_HOME/jdk/jre/bin/classic/libjvm.a
$ORACLE_HOME/jdk/bin/policytool

• On HPI:

$ORACLE_HOME/jdk/jre/lib/IA64N/server/Xusage.txt
$ORACLE_HOME/jdk/jre/bin/jcontrol
$ORACLE_HOME/QOpatch/qopiprep.bat

Chapter 9
Managing Sharded Database Software Versions

9-6

• On Windows no error messages are expected.

4. Stop, upgrade, and restart all shard director servers one at a time.

 To ensure zero downtime, at least one shard director server should always be
running. Shard director servers at an earlier version than the catalog will continue to
operate fully until catalog changes are made.

See Also:

Oracle Data Guard Concepts and Administration for information about using
DBMS_ROLLING to perform a rolling upgrade.

Oracle Data Guard Concepts and Administration for information about patching and
upgrading databases in an Oracle Data Guard configuration.

Downgrading a Sharded Database
Oracle Sharding does not support downgrading.

Sharded database catalogs and shards cannot be downgraded.

Compatibility and Migration from Oracle Database 18c
When upgrading from an Oracle Database 18c installation which contains a single PDB shard
for a given CDB, you must update the shard catalog metadata for any PDB.

Specifically, in 18c, the name of a PDB shard is the DB_UNIQUE_NAME of its CDB; however, in
Oracle Database 19c, the shard names are db_unique_name_of_CDB_pdb_name.

To update the catalog metadata to reflect this new naming methodology, and to also support
the new GSMROOTUSER account as described in About the GSMROOTUSER Account, perform
the following steps during the upgrade process as described in Upgrading Sharded Database
Components.

1. After upgrading any CDB that contains a PDB shard, ensure that the GSMROOTUSER
account exists, is unlocked, has been assigned a password, and has been granted
SYSDG, SYSBACKUP, and gsmrootuser_role privileges.

The following SQL statements in SQL*Plus will successfully set up GSMROOTUSER while
connected to the root container (CDB$ROOT) of the CDB.

SQL> alter session set "_oracle_script"=true;
Session altered.

SQL> create user gsmrootuser;
User created.

SQL> alter user gsmrootuser identified by new_GSMROOTUSER_password
 account unlock;
User altered.

SQL> grant sysdg, sysbackup, gsmrootuser_role to gsmrootuser
container=current;

Chapter 9
Managing Sharded Database Software Versions

9-7

Grant succeeded.

SQL> alter session set "_oracle_script"=false;
Session altered.

2. After upgrading the catalog database to the desired Oracle Database version, run
the following PL/SQL procedure to update the catalog metadata to reflect the new
name for the PDB shards present in the configuration.

This procedure must be executed for each Oracle Database 18c PDB shard.

The first parameter to pdb_fixup is the value of db_unique_name in the CDB that
contains the PDB shard. In Oracle Database 18c, this is the same as the shard
name as shown by gdsctl config shard.

The second parameter is the PDB name of the shard PDB as shown by show
con_name in SQL*Plus when connected to the shard PDB.

The pdb_fixup procedure will update the catalog metadata to make it compatible
with the new naming method for PDB shards.

SQL> connect sys/password as sysdba
Connected.
SQL> set serveroutput on
SQL> execute gsmadmin_internal.dbms_gsm_pooladmin.pdb_fixup('cdb1',
'pdb1');

3. After upgrading all of the shard directors to the desired version, run the following
GDSCTL command once for each CDB in the configuration to inform the shard
directors of the password for the GSMROOTUSER in each CDB.

GDSCTL> modify cdb -cdb CDB_name -pwd new_GSMROOTUSER_password

Managing Oracle Sharded Database with Enterprise
Manager Cloud Control

Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage a
sharded database and its components.

See the following topics for information about sharded database discovery, monitoring,
and management using Enterprise Manager Cloud Control:

• Prerequisite: Enable Sharded Database Metrics

• Prerequisite: Discover the Sharded Database Topology

• Monitoring a Sharded Database with Enterprise Manager Cloud Control

• Overview of Sharded Database Management Using Oracle Enterprise Manager
Cloud Control

• Shard Management

• Chunk Management

• Shard Director Management

• Region Management

Chapter 9
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

9-8

• Shardspace Management

• Shardgroup Management

• Services Management

Prerequisite: Enable Sharded Database Metrics
By default sharded database performance metrics are disabled. They can be enabled from
the Enterprise Manager Cloud Console or the monitoring template.

There are two methods of gathering metrics, which require you to follow different setup steps
as explained in each section below.

Using Default Enterprise Manager Database Metrics

By default metrics shown in the Enterprise Manager Cloud Console Sharded Database pages
are the default database metrics, require that you create a metrics query user, and are only
gathered on the shard databases discovered in Enterprise Manager.

The default database metrics do not give you data as frequently as the enhanced sharded
database metrics described later.

Because multi-shard queries are used to gather metrics, you must also create a user that can
access all shards in the sharded database to run the queries.

To use default metrics:

1. Grant the user permission to run the cross shard queries.

alter session enable shard ddl;

2. Create a new metrics query account on every shard and the shard catalog manually.

create user SHARD_SYS identified by password;
grant connect, create session, gsmadmin_role to SHARD_SYS;
GRANT ALL PRIVILEGES TO SHARD_SYS; /*Needed to get all the schemas stats*/
GRANT SELECT ANY DICTIONARY TO SHARD_SYS; /*Needed to get all the schemas
stats*/

3. Use the same metrics query account credentials to discover the shard catalog and all
shard databases in Enterprise Manager.

See Prerequisite: Discovering the Sharded Database Topology

4. To enable the default metrics:

$emctl set property
 -sysman_pwd password
 -name oracle.sysman.db.ha.sdb.dd.usesdbmetrics
 -value false

Using Enhanced Sharded Database Metrics

With Sharded Database enhanced metrics you can gather information about the shards from
the shard catalog, so it is not required that you discover all of the shard databases in
Enterprise Manager to get complete metrics for the sharded database topology.

To use enhanced metrics:

Chapter 9
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

9-9

1. Discover the shard catalog in Enterprise Manager.

See Prerequisite: Discovering the Sharded Database Topology

2. Enable the Sharded Database metrics using the Console or using the monitoring
template.

$emctl set property
 -sysman_pwd password
 -name oracle.sysman.db.ha.sdb.dd.usesdbmetrics
 -value true

Discovering Sharded Database Components
In Enterprise Manager Cloud Control, you can discover the shard catalog and shard
databases, then add the shard directors, sharded databases, shardspaces, and
shardgroups using guided discovery.

As a prerequisite to managing the sharded database in Cloud Control, you must first
discover at minimum the shard director hosts and the shard catalog database.
Optionally to manage all of the shards in the sharded database, you must also
discover the shard databases.

Because the shard catalog database and each of the shards is a database itself, you
can use standard database discovery procedures.

Managing the shards is only possible when the individual shards are discovered using
database discovery. Discovering the shards is optional to discovering a sharded
database, because you can have a sharded database configuration without the
shards.

1. In Enterprise Manager Cloud Control, select Setup, choose Add Target, then
choose Add Target Manually.

2. In the Add Targets Manually page, click Add Using Guided Process in the Add
Non-Host Target Using Guided Process panel.

3. In the Add Using Guided Process dialog, locate and select Sharded Database,
and click Add.

4. In the Add Sharded Database: Catalog Database page, click the browse icon next
to Catalog Database to locate the shard catalog database.

5. In the Select Targets dialog, click the target name corresponding to the catalog
database and click Select.

The Catalog Database and Monitoring Credentials fields are filled in if they exist.
The monitoring credential is used to query the shard catalog database to get the
configuration information.

The monitoring user (usually DBSNMP) should be granted the
GDS_CATALOG_SELECT role and has read only privileges on the shard catalog
repository tables.

SQL> grant GDS_CATALOG_SELECT to dbsnmp;

Click Next to proceed to the next step.

Chapter 9
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

9-10

In the Add Sharded Database: Components page you are shown information about the
sharded database that is managed by the catalog database, including the sharded
database name, its domain name, the sharding method employed on the sharded
database, and a list of discovered shard directors.

6. To set monitoring credentials on a shard director, click the plus sign icon on the right side
of the list entry.

A dialog opens allowing you to set the credentials.

Click OK to close the dialog, and click Next to proceed to the next step.

7. In the Add Sharded Database: Review page, verify that all of the shard directors,
shardspaces, and shardgroups were discovered.

8. Click Submit to finalize the steps.

An Enterprise Manager Deployment Procedure is submitted and you are returned to the
Add Targets Manually page.

At the top of the page you will see information about the script that was submitted to add
all of the discovered components to Cloud Control.

9. Click the link to view the provisioning status of the sharded database components.

In another browser window you can go to the Cloud Control All Targets page to observe
the status of the sharded database.

When the target discovery procedure is finished, sharded database targets are added in
Cloud Control. You can open the sharded database in Cloud Control to monitor and manage
the components.

Overview of Sharded Database Management with Oracle Enterprise
Manager Cloud Control

Your sharded database can be configured, deployed, monitored, and managed using Oracle
Enterprise Manager Cloud Control

Any discovered sharded database objects can be found in the All Targets page in Enterprise
Manager.

Shown below are the Oracle Sharding objects Shard Director and Shard Database in the
Databases target type category.

Chapter 9
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

9-11

Shown below are the Oracle Sharding objects Shardgroup and Shardspace in the
Groups, Systems and Services target type category.

On the Sharded Database page, you can access most of the management tools from
the Sharded Database menu, such as Add Primary Shards, Add Standby Shards, and
Deploy Shards, as shown below.

Chapter 9
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

9-12

Management tools for other sharded database objects are located in the menus of other
Sharded Database object pages, which are described in the procedures requiring that access
to those pages.

Chapter 9
Managing Oracle Sharded Database with Enterprise Manager Cloud Control

9-13

Monitoring a Sharded Database
Sharded databases can be monitored using Enterprise Manager Cloud Control or
GDSCTL.

See the following topics to use Enterprise Manager Cloud Control or GDSCTL to
monitor sharded databases.

Querying System Objects Across Shards
Use the SHARDS() clause to query Oracle-supplied tables to gather performance,
diagnostic, and audit data from V$ views and DBA_* views.

The shard catalog database can be used as the entry point for centralized diagnostic
operations using the SQL SHARDS() clause. The SHARDS() clause allows you to query
the same Oracle supplied objects, such as V$, DBA/USER/ALL views and dictionary
objects and tables, on all of the shards and return the aggregated results.

As shown in the examples below, an object in the FROM part of the SELECT statement is
wrapped in the SHARDS() clause to specify that this is not a query to local object, but to
objects on all shards in the sharded database configuration. A virtual column called
SHARD_ID is automatically added to a SHARDS()-wrapped object during execution of a
multi-shard query to indicate the source of every row in the result. The same column
can be used in predicate for pruning the query.

A query with the SHARDS() clause can only be run on the shard catalog database.

Examples

The following statement queries performance views

SQL> SELECT shard_id, callspersec FROM SHARDS(v$servicemetric)
 WHERE service_name LIKE 'oltp%' AND group_id = 10;

The following statement gathers statistics.

SQL> SELECT table_name, partition_name, blocks, num_rows
 FROM SHARDS(dba_tab_partition) p
 WHERE p.table_owner= :1;

The following example statement shows how to find the SHARD_ID value for each
shard.

SQL> select ORA_SHARD_ID, INSTANCE_NAME from SHARDS(sys.v_$instance);

 ORA_SHARD_ID INSTANCE_NAME
 ------------ ----------------
 1 sh1
 11 sh2
 21 sh3
 31 sh4

Chapter 9
Monitoring a Sharded Database

9-14

The following example statement shows how to use the SHARD_ID to prune a query.

SQL> select ORA_SHARD_ID, INSTANCE_NAME
 from SHARDS(sys.v_$instance)
 where ORA_SHARD_ID=21;

 ORA_SHARD_ID INSTANCE_NAME
 ------------ ----------------
 21 sh3

See Also:

Oracle Database SQL Language Reference for more information about the
SHARDS() clause.

Monitoring a Sharded Database with GDSCTL
There are numerous GDSCTL CONFIG commands that you can use to obtain the health status
of individual shards, shardgroups, shardspaces, and shard directors.

Monitoring a shard is just like monitoring a normal database, and standard Oracle best
practices should be used to monitor the individual health of a single shard. However, it is also
important to monitor the overall health of the entire sharded environment. The GDSCTL
commands can also be scripted and through the use of a scheduler and can be done at
regular intervals to help ensure that everything is running smoothly. When using Oracle
GoldenGate for replication it is also important to monitor the lag of each replication stream.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL CONFIG commands

Monitoring a Sharded Database with Enterprise Manager Cloud Control
Sharded database targets are found in the All Targets page in Enterprise Manager Cloud
Control.

To monitor sharded database components you must first enable statistics gathering and then
discover the sharded database. See Prerequisite: Enable Sharded Database Metrics and
Discovering Sharded Database Components for more information.

Sharded Database Home Page
The target home page for a sharded database shows you a summary of the sharded
database components and their statuses.

Chapter 9
Monitoring a Sharded Database

9-15

Summary

The Summary pane, in the top left of the page, shows the following information:

• Sharded Database Name: Sharded database name

• Sharded Database Domain Name: Sharded database domain name

• Catalog Database: Shard catalog database name. You can click the name to view
more information about the shard catalog database.

• Catalog Version: Oracle Database version of the shard catalog

• Sharding Type: Sharding method used to shard the database. This could be
System-managed, User-defined, or Composite.

• Replication Type: Replication technology used for high availability.

• Shard Directors: Number and status of the shard directors

• Master Shard Director: Master shard director name. You can click the shard
director name to view more information about the master shard director, including
the shard director (global service manager) version, current status, ports used,
and incidents.

Members

The Members pane, in the upper right of the page, shows some relevant information
about each of the sharded database components.

The pane is divided into tabs for each component: Shardspaces, Shardgroups, Shard
Directors, Shards, Catalog Databases, and Global Services. Click on a tab to view the
information about each type of component

• Shardspaces:

Shardspaces are only displayed for databases sharded with the user-defined or
composite sharding method.

The Shardspaces tab displays the shardspace names, status, number of chunks,
and protection mode. The shardspace names can be clicked to reveal more details
about the selected shardspace.

You can click the shardspace name to view more details, including information
about the shardgroups within the shardspace (for composite sharding) and
incidents.

• Shardgroups:

Shardgroups are only displayed for databases sharded with the system-managed
or composite sharding method.

The Shardgroups tab displays the shardgroup names, status, the shardspace to
which it belongs, the number of chunks, Data Guard role, and the region to which
it belongs.

You can click the shardgroup name to reveal more details about the selected
component, including information about the shards within the shardgroup, and
incidents.

Note that for a database sharded using the system-managed sharding method,
shardspaceora is the shardspace created by Oracle Sharding to contain all of the

Chapter 9
Monitoring a Sharded Database

9-16

shardgroups. It is managed by Oracle Sharding and will not appear in the Shardspaces
tab.

• Shard Directors:

The Shard Directors tab displays the shard director names, status, region, host, and
Oracle home.

You can click the shard director names to reveal more details about the selected shard
director, including the shard director (global service manager) version, current status,
ports used, and incidents.

You can also click the shard director host to view more details about the host system.

• Shards:

The Shards tab displays the shard names, Data Guard roles, target type, target status,
the shardspaces and shardgroups to which they belong, the regions to which they
belong, and the state (deployed or .

In the Names column, you can expand the primary shards to display the information
about their corresponding standby shards.

You can hover the mouse over the Deployed column icon and the deployment status
details are displayed. You can click on the shard, shardspace, and shardgroup names to
reveal more details about the selected component.

• Catalog Databases

The Catalog Databases tab lists the shard catalog databases and displays the shard
catalog database name, type, status, and role for each catalog database.

You can click on the catalog database name to view more information about the
database.

• Global Services:

The Global Services tab displays the name, status, and Data Guard role of the sharded
database global services. Above the list is shown the total number of services and an
icon showing how many services are in a particular status. You can hover your mouse
pointer over the icon to read a description of the status icon.

Incidents

The Incidents pane displays messages and warnings about the various components in the
sharded database environment. More information about how to use this pane is in the Cloud
Control online help.

Sharded Database Menu

The Sharded Database menu, located in the top left corner, provides you with access to tools
to manage the sharded database components.

Target Navigation

The Target Navigation pane gives you easy access to more details about any of the
components in the sharded database.

Clicking the navigation tree icon on the upper left corner of the Sharded Database home
page opens the Target Navigation pane. This pane shows all of the discovered components
in the sharded database in tree form.

Chapter 9
Monitoring a Sharded Database

9-17

Expanding a shardspace reveals the shardgroups in them. Expanding a shardgroup
reveals the shards in that shardgroup.

Any of the component names can be clicked to view more details about them.

Data Distribution and Performance Page
In Enterprise Manager Cloud Control, the Sharded Database page, Data Distribution
and Performance, gives you an overall view of the data in your sharded database and
how the shards are performing.

Overview

The Overview section at the top of the page displays number of regions, shardspaces,
shardgroups, shards (broken down into primary and standby), chunks, and services in
the sharded database configuration that are represented by the data in the chart. If
you apply a filter to the chart these numbers change.

Data Distribution and Performance Chart Views

The two icons at the top left corner of the chart toggle the chart between two views:

Figure 9-1 Home and Top Shards Icons

Chapter 9
Monitoring a Sharded Database

9-18

• Home: is the default view. Home displays data for all shards in the sharded database by
default. You can filter the chart and change the metrics on display as described below.

• Top Shards: shows you charts for the top 5, 10, or 20 shards for certain metrics.

Shard Blocks

The color-coded chart displays data by shard. Each shard is indicated by a block.

Figure 9-2 Shard Block with Mouse Over Text

Each block is labeled with the shard name. Moving the mouse over a block displays the
Shard name, Data Guard Role, Number of Chunks in the shard, and the Service Time (msec/
call).

Note:

If you are using default database metrics then you will not see data from any
undiscovered shards in the chart.
If you are using enhanced metrics, the data for all shards is displayed because the
shards are discovered by the shard catalog.

Home View Summary Icons

The row of icons above the chart display the following information:

Chapter 9
Monitoring a Sharded Database

9-19

Figure 9-3 Home View Summary Icons

• Up: (Green arrow pointing up) Number of shard databases that are up

• Down: (Red arrow pointing down) Number of shards that are down

• Unmonitored: (Yellow arrow with "X") Number of shards that are unmonitored.
This is the number of shards not discovered by Enterprise Manager.

• Other: (Yellow gear with question mark "?")Sharded database targets discovered
in Enterprise Manager, but that have some issue with target monitoring, such as
an unreachable agent, or an availability evaluation error.

• Critical: (Red circle with "X") Number of critical incidents

• Warning: (Yellow triangle with exclamation point "!") Number of warning incidents

Chart View Controls

Compare metrics on each of the shards by size and color of the blocks in the chart.

Figure 9-4 Chart View Controls

• View Size By: changes the size distribution of the blocks by the metric selected

• View Color By: changes the comparative color of the blocks by the metric
selected

By default, the colors are light, medium, and dark blue, which indicates that the
thresholds for the lightest and darkest color categories are set to arbitrary
Enterprise Manager defaults.

Click Configure Threshold (button with three dots) to set custom thresholds for
low and high categories in each metric. Charts configured with custom thresholds
are shown in a different color spectrum with green=low, yellow=medium, and
red=high.

• Tree Map Table View: (button with table at the top right corner of the chart)
displays a table view of the data shown in the chart

Filters

Click the hamburger icon at the top left corner of the chart to apply filters to the data.

Chapter 9
Monitoring a Sharded Database

9-20

Figure 9-5 Filters Icon

• Shard Search: Filter by shard name. You can use an asterisk (*) to select a group of
shards with matching name patterns.

• Key Search: Lets you enter a shard key value to view the shards that contain data with
that key. In the resulting chart you can right-click a block and select Shard-Level Data
Distribution to drill down into a particular shard.

• SQL ID Search: Display which shards are executing a query by the SQL ID for the query,
which you can find in the V$SQL_SHARD view in the catalog database.

• Sort By: Sort the blocks in the chart by size in the default tiled view, in a sequence of
bars, or show only the top or bottom 5 blocks.

• Filter By: Lets you display only shards in the specified Role, Shardgroup, or Service.

Hide Inactive Shards: When using the Service filter, you will see all of the shards;
however, shards on which the service is not running are shown in grey (inactive), and you
can use the checkbox to hide the inactive shards.

• Group By: Toggles that display aggregates for the group, which is indicated by a box line
around the group of shards.

– Shardgroup displays a shardgroup box at the top of the grouping, which displays
aggregate info about the shardgroup on hover, and you can drill down for
shardgroup-based data.

– Region displays a region box at the top of the group, which displays aggregate info
about the region on hover.

– Data Guard Aggregate Group groups each shard and its standbys as a single
entity, so that you can see the data set being handled by a particular shard and its
standbys as a whole.

Top Shards View

Click the Top Shards button on the left side of the chart to view graphs with metrics on the
shards with the highest Data Size, Number of Chunks, Throughput, and Service Time.

Chapter 9
Monitoring a Sharded Database

9-21

Use the View list at the top right corner of the view to display the top 5, 10, or 20
shards in each graph.

Shard Management
You can manage shards in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control and GDSCTL.

The following topics describe shard management concepts and tasks:

About Adding Shards
New shards can be added to an existing sharded database environment to scale out
and to improve fault tolerance.

For fault tolerance, it is beneficial to have many smaller shards than a few very large
ones. As an application matures and the amount of data increases, you can add an
entire shard or multiple shards to the SDB to increase capacity.

Chapter 9
Shard Management

9-22

When you add a shard to a sharded database, if the environment is sharded by consistent
hash, then chunks from existing shards are automatically moved to the new shard to
rebalance the sharded environment.

When using user-defined sharding, populating a new shard with data may require manually
moving chunks from existing shards to the new shard using the GDSCTL split chunk and
move chunk commands.

Oracle Enterprise Manager Cloud Control can be used to help identify chunks that would be
good candidates to move, or split and move to the new shard.

When you add a shard to the environment, verify that the standby server is ready, and after
the new shard is in place take backups of any shards that have been involved in a move
chunk operation.

Resharding and Hot Spot Elimination
The process of redistributing data between shards, triggered by a change in the number of
shards, is called resharding. Automatic resharding is a feature of the system-managed
sharding method that provides elastic scalability of an SDB.

Sometimes data in an SDB needs to be migrated from one shard to another. Data migration
across shards is required in the following cases:

• When one or multiple shards are added to or removed from an SDB

• When there is skew in the data or workload distribution across shards

The unit of data migration between shards is the chunk. Migrating data in chunks guaranties
that related data from different sharded tables are moved together.

When a shard is added to or removed from an SDB, multiple chunks are migrated to maintain
a balanced distribution of chunks and workload across shards.

Depending on the sharding method, resharding happens automatically (system-managed) or
is directed by the user (composite). The following figure shows the stages of automatic
resharding when a shard is added to an SDB with three shards.

Chapter 9
Shard Management

9-23

Figure 9-6 Resharding an SDB

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

5

6

7

9

10

11

4 8 12

+

1

2

3

5

6

7

9

10

11

4

8

12

A particular chunk can also be moved from one shard to another, when data or
workload skew occurs, without any change in the number of shards. In this case,
chunk migration can be initiated by the database administrator to eliminate the hot
spot.

RMAN Incremental Backup, Transportable Tablespace, and Oracle Notification Service
technologies are used to minimize impact of chunk migration on application availability.
A chunk is kept online during chunk migration. There is a short period of time (a few
seconds) when data stored in the chunk is available for read-only access only.

FAN-enabled clients receive a notification when a chunk is about to become read-only
in the source shard, and again when the chunk is fully available in the destination
shard on completion of chunk migration. When clients receive the chunk read-only
event, they can either repeat connection attempts until the chunk migration is
completed, or access the read-only chunk in the source chunk. In the latter case, an
attempt to write to the chunk will result in a run-time error.

Chapter 9
Shard Management

9-24

Note:

Running multi-shard queries while a sharded database is resharding can result in
errors, so it is recommended that you do not deploy new shards during multi-shard
workloads.

See Also:

Adding Shards to a System-Managed SDB

Sharding Methods

Removing a Shard From the Pool
It may become necessary to remove a shard from the sharded database environment, either
temporarily or permanently, without losing any data that resides on that shard.

For example, removing a shard might become necessary if a sharded environment is scaled
down after a busy holiday, or to replace a server or infrastructure within the data center. Prior
to decommissioning the shard, you must move all of the chunks from the shard to other
shards that will remain online. As you move them, try to maintain a balance of data and
activity across all of the shards.

If the shard is only temporarily removed, keep track of the chunks moved to each shard so
that they can be easily identified and moved back once the maintenance is complete.

See Also:

About Moving Chunks

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL REMOVE SHARD command

Adding Standby Shards
You can add Data Guard standby shards to an Oracle Sharding environment; however there
are some limitations.

When using Data Guard as the replication method for a sharded database, Oracle Sharding
supports only the addition of a primary or physical standby shard; other types of Data Guard
standby databases are not supported when adding a new standby to the sharded database.
However, a shard that is already part of the sharded database can be converted from a
physical standby to a snapshot standby. When converting a physical standby to a snapshot
standby, the following steps should be followed:

1. Stop all global services on the shard using the GDSCTL command STOP SERVICE.

2. Disable all global services on the shard using the GDSCTL command DISABLE SERVICE.

Chapter 9
Shard Management

9-25

3. Convert the shard to a snapshot standby using the procedure described in the
Data Guard documentation.

At this point, the shard remains part of the sharded database, but will not accept
connections which use the sharding key.

If the database is converted back to a physical standby, the global services can be
enabled and started again, and the shard becomes an active member of the sharded
database.

See Also:

Oracle Data Guard Concepts and Administration

Managing Shards with Oracle Enterprise Manager Cloud Control
You can manage database shards using Oracle Enterprise Manager Cloud Control

To manage shards using Cloud Control, they must first be discovered. Because each
database shard is a database itself, you can use standard Cloud Control database
discovery procedures.

The following topics describe shard management using Oracle Enterprise Manager
Cloud Control:

Validating a Shard
Validate a shard prior to adding it to your Oracle Sharding deployment.

You can use Oracle Enterprise Manager Cloud Control to validate shards before
adding them to your Oracle Sharding deployment. You can also validate a shard after
deployment to confirm that the settings are still valid later in the shard lifecycle. For
example, after a software upgrade you can validate existing shards to confirm
correctness of their parameters and configuration.

To validate shards with Cloud Control, they should be existing targets that are being
monitored by Cloud Control.

1. From a shardgroup management page, open the Shardgroup menu, located in
the top left corner of the shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shard from the list and click Validate.

4. Click OK to confirm you want to validate the shard.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

When the shard validation script runs successfully check for errors reported in the
output.

Chapter 9
Shard Management

9-26

Adding Primary Shards
Use Oracle Enterprise Manager Cloud Control to add a primary shards to your Oracle
Sharding deployment.

Primary shards should be existing targets that are being monitored by Cloud Control.

It is highly recommended that you validate a shard before adding it to your Oracle Sharding
environment. You can either use Cloud Control to validate the shard (see Validating a Shard),
or run the DBMS_GSM_FIX.validateShard procedure against the shard using SQL*Plus (see
Validating a Shard).

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Add Primary Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to manage
under Shard Director Credentials, select the shard director host credentials, and log in.

3. Select Deploy All Shards in the sharded database to deploy all shards added to the
sharded database configuration.

The deployment operation validates the configuration of the shards and performs final
configuration steps. Shards can be used only after they are deployed.

4. Click Add.

5. In the Database field of the Shard Details dialog, select a shard and click Select.

6. In a composite Oracle Sharding environment you can select the shardspace to which to
add the shard.

7. Click OK.

8. Enter the GSMUSER credentials if necessary, then click Next.

9. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the
adjacent field

10. Review the configuration of the shard to be added and click Submit.

11. Click the link in the Information box at the top of the page to view the provisioning status
of the shard.

If you did not select Deploy All Shards in the sharded database in the procedure above,
deploy the shard in your Oracle Sharding deployment using the Deploying Shards task.

Adding Standby Shards
Use Oracle Enterprise Manager Cloud Control to add a standby shards to your Oracle
Sharding deployment.

Standby shards should be existing targets that are being monitored by Cloud Control.

It is highly recommended that you validate a shard before adding it to your Oracle Sharding
environment. You can either use Cloud Control to validate the shard (see Validating a Shard),
or run the DBMS_GSM_FIX.validateShard procedure against the shard using SQL*Plus (see
Validating a Shard).

Chapter 9
Shard Management

9-27

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Add Standby Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select Deploy All Shards in the sharded database to deploy all shards added to
the sharded database configuration.

The deployment operation validates the configuration of the shards and performs
final configuration steps. Shards can be used only after they are deployed.

4. Choose a primary shard for which the new shard will act as a standby in the
Primary Shards list.

5. Click Add.

6. In the Database field of the Shard Details dialog, select the standby shard.

7. Select the shardgroup to which to add the shard.

Only shardgroups that do not already contain a standby for the selected primary
are shown.

8. Click OK.

9. Enter the GSMUSER credentials if necessary, then click Next.

10. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the
adjacent field

11. Review the configuration of the shard to be added and click Submit.

12. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

If you did not select Deploy All Shards in the sharded database in the procedure
above, deploy the shard in your Oracle Sharding deployment using the Deploying
Shards task.

Deploying Shards
Use Oracle Enterprise Manager Cloud Control to deploy shards that have been added
to your Oracle Sharding environment.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Deploy Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select the Perform Rebalance check box to redistribute data between shards
automatically after the shard is deployed.

If you want to move chunks to the shard manually, uncheck this box.

4. Click Submit.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

Chapter 9
Shard Management

9-28

Managing Shards with GDSCTL
You can manage shards in your Oracle Sharding deployment using the GDSCTL command-
line utility.

The following topics describe shard management using GDSCTL:

Validating a Shard
Before adding a newly created shard to a sharding configuration, you must validate that the
shard has been configured correctly for the sharding environment.

Before you run ADD SHARD, run the validateShard procedure against the database that will
be added as a shard. The validateShard procedure verifies that the target database has the
initialization parameters and characteristics needed to act successfully as a shard.

The validateShard procedure analyzes the target database and reports any issues that need
to be addressed prior to running GDSCTL ADD SHARD on that database. The validateShard
procedure does not make any changes to the database or its parameters; it only reports
information and possible issues.

The validateShard procedure takes one optional parameter that specifies whether the shard
will be added to a shard catalog using Data Guard or to a shard catalog using Oracle
GoldenGate as its replication technology. If you are using Data Guard, call
validateShard('DG'). If you are using Oracle GoldenGate, use validateShard('OGG').
The default value is Data Guard if no parameter is passed to validateShard.

The validateShard procedure can also be run after the deployment of a shard to confirm that
the settings are still valid later in the shard lifecycle. For example, after a software upgrade or
after shard deployment, validateShard can be run on existing shards to confirm correctness
of their parameters and configuration.

Run validateShard as follows:

sqlplus / as sysdba
SQL> set serveroutput on
SQL> execute dbms_gsm_fix.validateShard

The following is an example of the output.

INFO: Data Guard shard validation requested.
INFO: Database role is PRIMARY.
INFO: Database name is DEN27B.
INFO: Database unique name is den27b.
INFO: Database ID is 718463507.
INFO: Database open mode is READ WRITE.
INFO: Database in archivelog mode.
INFO: Flashback is on.
INFO: Force logging is on.
INFO: Database platform is Linux x86 64-bit.
INFO: Database character set is WE8DEC. This value must match the character
set of
 the catalog database.
INFO: 'compatible' initialization parameter validated successfully.

Chapter 9
Shard Management

9-29

INFO: Database is not a multitenant container database.
INFO: Database is using a server parameter file (spfile).
INFO: db_create_file_dest set to: '<ORACLE_BASE>/oracle/dbs2'
INFO: db_recovery_file_dest set to: '<ORACLE_BASE>/oracle/dbs2'
INFO: db_files=1000. Must be greater than the number of chunks and/or
tablespaces
 to be created in the shard.
INFO: dg_broker_start set to TRUE.
INFO: remote_login_passwordfile set to EXCLUSIVE.
INFO: db_file_name_convert set to: '/dbs/dt, /dbs/bt, dbs2/DEN27D/,
dbs2/DEN27B/'
INFO: GSMUSER account validated successfully.
INFO: DATA_PUMP_DIR is '<ORACLE_BASE>//oracle/dbs2'.

Any lines tagged with INFO are informational in nature and confirm correct settings.
Lines tagged with WARNING may or may not be issues depending on your configuration.
For example, issues related to Data Guard parameters are reported, but if your
configuration will only include primary databases, then any Data Guard issues can be
ignored. Finally, any output with the ERROR tag must be corrected for the shard to
deploy and operate correctly in a sharding configuration.

Adding Shards to a System-Managed SDB
Adding shards to a system-managed SDB elastically scales the SDB. In a system-
managed SDB chunks are automatically rebalanced after the new shards are added.

To prepare a new shard host, do all of the setup procedures as you did for the initial
sharded database environment including:

• Install the Oracle Database Software

1. Connect to a shard director host, and verify the environment variables.

$ ssh os_user@shard_director_home
$ env |grep ORA
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/18.0.0/gsmhome_1

2. Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsctl
GDSCTL> set gsm -gsm sharddirector1
GDSCTL> connect mysdbadmin/mysdbadmin_password

3. Verify the current shard configuration.

GDSCTL> config shard
Name Shard Group Status State Region
Availability
---- ----------- ------ ----- ------

sh1 primary_shardgroup Ok Deployed region1
ONLINE
sh2 standby_shardgroup Ok Deployed region2

Chapter 9
Shard Management

9-30

READ_ONLY
sh3 primary_shardgroup Ok Deployed region1
ONLINE
sh4 standby_shardgroup Ok Deployed region2
READ_ONLY

4. Specify the shard group, destination, and the credentials for each new shard.

In the examples the new shard hosts are called shard5 and shard6, and they are using
the default templates for NETCA and DBCA.

GDSCTL> add invitednode shard5
GDSCTL> create shard -shardgroup primary_shardgroup -destination shard5
 -credential os_credential -sys_password
GDSCTL> add invitednode shard6
GDSCTL> create shard -shardgroup standby_shardgroup -destination shard6
 -credential os_credential -sys_password

While creating the shards, you can also set the SYS password in the create shard using
-sys_password as shown in the above example. This sets the SYS password after the
shards are created during DEPLOY.

The above example uses the CREATE SHARD method for creating new shards. To add a
preconfigured shard using the ADD SHARD command, do the following after ADD
INVITEDNODE:

GDSCTL> add shard –shardgroup primary_shardgroup
 –connect shard_host:TNS_listener_port/shard_database_name
 –pwd GSMUSER_password

If the shard to be added is a PDB, you must use the -cdb option in ADD SHARD to specify
which CDB the PDB shard is in. In addition, ADD CDB must be used before the ADD SHARD
command to add the CDB to the catalog. See Oracle Database Global Data Services
Concepts and Administration Guide for the syntax for ADD CDB and ADD SHARD.

Chapter 9
Shard Management

9-31

Note:

The valid node checking for registration (VNCR) feature provides the
ability to configure and dynamically update a set of IP addresses, host
names, or subnets from which registration requests are allowed by the
shard directors. Database instance registration with a shard director
succeeds only when the request originates from a valid node. By default,
the shard management tier (based on Oracle Global Data Services
framework) automatically adds a VNCR entry for the host on which a
remote database is running each time create shard or add shard is
executed. The automation (called auto-VNCR) finds the public IP
address of the target host, and automatically adds a VNCR entry for that
IP address. If the host has multiple public IP addresses, then the
address on which the database registers may not be the same as the
address which was added using auto-VNCR and , as a result,
registration many be rejected. If the target database host has multiple
public IP addresses, it is advisable that you configure VNCR manually
for this host using the add invitednode or add invitedsubnet
commands in GDSCTL.

If there are multiple net-cards on the target host (/sbin/ifconfig returns
more than one public interface), use add invitednode to be safe (after
finding out which interface will be used to route packets).

If there is any doubt about registration, then use config vncr and use
add invitednode as necessary. There is no harm in doing this, because
if the node is added already, auto-VNCR ignores it, and if you try to add it
after auto-VNCR already added it, you will get a warning stating that it
already exists.

5. Run the DEPLOY command to create the shards and the replicas.

GDSCTL> deploy

6. Verify that the new shards are deployed.

GDSCTL> config shard
Name Shard Group Status State Region
Availability
---- ----------- ------ ----- ------

sh1 primary_shardgroup Ok Deployed region1
ONLINE
sh2 standby_shardgroup Ok Deployed region2
READ_ONLY
sh3 primary_shardgroup Ok Deployed region1
ONLINE
sh4 standby_shardgroup Ok Deployed region2
READ_ONLY
sh5 primary_shardgroup Ok Deployed region1
ONLINE
sh6 standby_shardgroup Ok Deployed region2
READ_ONLY

Chapter 9
Shard Management

9-32

7. Check the chunk configuration every minute or two to see the progress of automatic
rebalancing of chunks.

$ gdsctl config chunks -show_Reshard

Chunks

Database From To
-------- ---- --
sh1 1 4
sh2 1 4
sh3 7 10
sh4 7 10
sh5 5 6
sh5 11 12
sh6 5 6
sh6 11 12

Ongoing chunk movement

Chunk Source Target status
----- ------ ------ ------

8. Observe that the shards (databases) are automatically registered.

$ gdsctl databases

Database: "sh1" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region1
 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%1
Database: "sh2" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1
 Region: region2
 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%11
Database: "sh3" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region1
 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%21
Database: "sh4" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1
 Region: region2

Chapter 9
Shard Management

9-33

 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%31
Database: "sh5" Registered: Y State: Ok ONS: N. Role: PRIMARY
Instances: 1
 Region: region1
 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%41
Database: "sh6" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1
 Region: region2
 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%51

9. Observe that the services are automatically brought up on the new shards.

$ gdsctl services

Service "oltp_ro_srvc.cust_sdb.oradbcloud" has 3 instance(s).
Affinity: ANYWHERE
 Instance "cust_sdb%11", name: "sh2", db: "sh2", region:
"region2", status: ready.
 Instance "cust_sdb%31", name: "sh4", db: "sh4", region:
"region2", status: ready.
 Instance "cust_sdb%51", name: "sh6", db: "sh6", region:
"region2", status: ready.
Service "oltp_rw_srvc.cust_sdb.oradbcloud" has 3 instance(s).
Affinity: ANYWHERE
 Instance "cust_sdb%1", name: "sh1", db: "sh1", region:
"region1", status: ready.
 Instance "cust_sdb%21", name: "sh3", db: "sh3", region:
"region1", status: ready.
 Instance "cust_sdb%41", name: "sh5", db: "sh5", region:
"region1", status: ready.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for information about GDSCTL command usage

Chapter 9
Shard Management

9-34

Replacing a Shard
If a shard fails and is unrecoverable, or if you just want to move a shard to a new host for
other reasons, you can replace it using the ADD SHARD -REPLACE command in GDSCTL.

When a shard database fails and the database can be recovered on the same host (using
RMAN backup/restore or other methods), there is no need to replace the shard using the -
replace parameter. If the shard cannot be recovered locally, or for some other reason you
want to relocate the shard to another host or CDB, it is possible to create its replica on the
new host. The sharding configuration can be updated with the new information by specifying
the -replace option in GDSCTL command ADD SHARD.

The following are some cases where replacing a shard using ADD SHARD -REPLACE is
useful.

• The server (machine) where the shard database was running suffered irreparable
damage and has to be replaced

• You must replace a working server with another (more powerful, for example) server

• A shard in a PDB was relocated from one CDB to another

In all of these cases the number of shards and data distribution across shards does not
change after ADD SHARD is executed; a shard is replaced with another shard that holds the
same data. This is different from ADD SHARD used without the -replace option when the
number of shards increases and data gets redistributed.

Upon running ADD SHARD -REPLACE, the old shard parameters, such as connect_string,
 db_unique_name, and so on, are replaced with their new values. A new database can have
different db_unique_name than the failed one. When replacing a standby in a Data Guard
configuration, the DBID of the new database must match the old one, as Data Guard requires
all of the members of the configuration to have same DBID.

Before Using Replace

Before you use ADD SHARD -REPLACE, verify the following:

• You have restored the database correctly (for example, using RMAN restore or other
method). The new database shard must have the same sharding metadata as the failed
one. Perform basic validation to ensure that you do not accidently provide a connect
string to the wrong shard.

• The shard that failed must have been in a deployed state before failure happened.

• The shard that failed must be down when executing the ADD SHARD -REPLACE
command.

• Fast-start failover observer must be running, if fast-start failover is enabled (which it is by
default).

Replacing a Shard in a Data Guard Environment

The ADD SHARD -REPLACE command can only be used to replace a standby shard if the
primary is still alive. In order to replace a primary shard that failed, wait for one of the
remaining standbys to switch over to the primary role before trying to replace the failed shard.

When a switchover is not possible (primary and all the standbys are down), you must run
ADD SHARD -REPLACE for each member starting with the primary. This creates a new
broker configuration from scratch.

Chapter 9
Shard Management

9-35

In MAXPROTECTION mode with no standbys alive, the primary database shuts down
to maintain the protection mode. In this case, the primary database cannot be opened
if the standby is not alive. To handle the replace operation in this scenario, you must
first downgrade Data Guard protection mode using DGMGRL (to MAXAVAILABILITY
or MAXPERFORMANCE) by starting up the database in mounted mode. After the
protection mode is set, open the primary database and perform the replace operation
using GDSCTL. After the replace operation finishes you can revert the protection
mode back to the previous level using DGMGRL.

When replacing a standby in a Data Guard configuration, the DBID of the new
database must match the old one, as Data Guard requires all of the members of the
configuration to have same DBID.

Example 9-1 Example 1: Replacing the primary shard with no standbys in the
configuration

The initial configuration has two primary shards deployed and no standbys, as shown
in the following example. The Availability for shdc is shown as a dash because it has
gone down in a disaster scenario.

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east -

To recover, you create a replica of the primary from the backup, using RMAN for
example. For this example, a new shard is created with db_unique_name shdd and
connect string inst4. Now, the old shard, shdc, can be replaced with the new shard,
shdd, as follows:

$ gdsctl add shard -replace shdc -connect inst4 -pwd password

DB Unique Name: SHDD

You can verify the configuration as follows:

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdd dbs1 Ok Deployed east ONLINE

Example 9-2 Example 2: Replacing a standby shard

Note that you cannot replace a primary shard when the configuration contains a
standby shard. In such cases, if the primary fails, the replace operation must be
performed after one of the standbys becomes the new primary by automatic
switchover.

Chapter 9
Shard Management

9-36

The initial configuration has two shardgroups: one primary and one standby, each containing
two shards, when the standby, shdd goes down.

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east ONLINE
shdd dbs2 Ok Deployed east -
shde dbs2 Ok Deployed east READ ONLY

Create a new standby. Because the primary is running, this should be done using the RMAN
DUPLICATE command with the FOR STANDBY option. Once the new standby, shdf, is ready,
replace the old shard, shdd, as follows:

$ gdsctl add shard -replace shdd -connect inst6 -pwd password

DB Unique Name: shdf

You can verify the configuration as follows:

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east ONLINE
shde dbs2 Ok Deployed east READ ONLY
shdf dbs2 Ok Deployed east READ ONLY

Replacing a Shard in an Oracle GoldenGate Environment

The GDSCTL command option ADD SHARD -REPLACE is not supported with Oracle
GoldenGate.

Common Errors

ORA-03770: incorrect shard is given for replace

This error is thrown when the shard given for the replace operation is not the replica of the
original shard. Specifically, the sharding metadata does not match the metadata stored in the
shard catalog for this shard. Make sure that the database was copied correctly, preferably
using RMAN. Note that this is not an exhaustive check. It is assumed that you created the
replica correctly.

ORA-03768: The database to be replaced is still up: shardc

The database to be replaced must not be running when running the add shard -replace
command. Verify this by looking at the output of GDSCTL command config shard. If the
shard failed but still shows ONLINE in the output, wait for some time (about 2 minutes) and
retry.

Chapter 9
Shard Management

9-37

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for information about the ADD SHARD command.

Chunk Management
You can manage chunks in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control and GDSCTL.

The following topics describe chunk management concepts and tasks:

About Moving Chunks
Sometimes it becomes necessary to move a chunk from one shard to another. To
maintain scalability of the sharded environment, it is important to attempt to maintain
an equal distribution of the load and activity across all shards.

As the environment matures in a composite SDB, some shards may become more
active and have more data than other shards. In order to keep a balance within the
environment you must move chunks from more active servers to less active
servers. There are other reasons for moving chunks:

• When a shard becomes more active than other shards, you can move a chunk to a
less active shard to help redistribute the load evenly across the environment.

• When using range, list, or composite sharding, and you are adding a shard to a
shardgroup.

• When using range, list, or composite sharding, and you a removing a shard from a
shardgroup.

• After splitting a chunk it is often advisable to move one of the resulting chunks to a
new shard.

When moving shards to maintain scalability, the ideal targets of the chunks are shards
that are less active, or have a smaller portion of data. Oracle Enterprise Manager and
AWR reports can help you identify the distribution of activity across the shards, and
help identify shards that are good candidates for chunk movement.

Note:

Any time a chunk is moved from one shard to another, you should make a
full backup of the databases involved in the operation (both the source of the
chunk move, and the target of the chunk move.)

Chapter 9
Chunk Management

9-38

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL MOVE CHUNK command

Moving Chunks
You can move chunks from one shard to another in your Oracle Sharding deployment using
Oracle Enterprise Manager Cloud Control.

1. From a shardspace management page, open the Shardspace menu, located in the top
left corner of the Sharded Database target page, and choose Manage Shardgroups.

2. Select a shardgroup in the list and click Move Chunks.

3. In the Move Chunks dialog, select the source and destination shards between which to
move the chunks.

4. Select the chunks that you want to move by choosing one of the options.

• Enter ID List: enter a comma separates list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk move should occur.

• Immediately: the chunk move is provisioned upon confirmation

• Later: schedule the timing of the chunk move using the calendar tool in the adjacent
field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning status
of the chunk move.

About Splitting Chunks
Splitting a chunk in a sharded database is required when chunks become too big, or only part
of a chunk must be migrated to another shard.

Oracle Sharding supports the online split of a chunk. Theoretically it is possible to have a
single chunk for each shard and split it every time data migration is required. However, even
though a chunk split does not affect data availability, the split is a time-consuming and CPU-
intensive operation because it scans all of the rows of the partition being split, and then
inserts them one by one into the new partitions. For composite sharding, it is time consuming
and may require downtime to redefine new values for the shard key or super shard key.

Therefore, it is recommended that you pre-create multiple chunks on each shard and split
them either when the number of chunks is not big enough for balanced redistribution of data
during re-sharding, or a particular chunk has become a hot spot.

Even with system-managed sharding, a single chunk may grow larger than other chunks or
may become more active. In this case, splitting that chunk and allowing automatic resharding
to move one of the resulting chunks to another shard maintains a more equal balanced
distribution of data and activity across the environment.

Chapter 9
Chunk Management

9-39

Oracle Enterprise Manager heat maps show which chunks are more active than other
chunks. Using this feature will help identify which chunks could be split, and one of the
resulting chunks could then be moved to another shard to help rebalance the
environment.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for information about using the GDSCTL SPLIT CHUNK command

Splitting Chunks
You can split chunks in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shardspace in the list and click Split Chunks.

4. Select the chunks that you want to split by choosing one of the options.

• Enter ID List: enter a comma separate list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk split should occur.

• Immediately: the chunk split is provisioned upon confirmation

• Later: schedule the timing of the chunk split using the calendar tool in the
adjacent field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning
status of the chunk split.

When the chunk is split successfully the number of chunks is updated in the
Shardspaces list. You might need to refresh the page to see the updates.

Shard Director Management
You can add, edit, and remove shard directors in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

The following topics describe shard director management tasks:

Creating a Shard Director
Use Oracle Enterprise Manager Cloud Control to create and add a shard director to
your Oracle Sharding deployment.

Chapter 9
Shard Director Management

9-40

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to manage
under Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create, or select a shard director from the list and click Create Like.

Choosing Create opens the Add Shard Director dialog with default configuration values in
the fields.

Choosing Create Like opens the Add Shard Director dialog with configuration values
from the selected shard director in the fields. You must select a shard director from the
list to enable the Create Like option.

4. Enter the required information in the Add Shard Director dialog, and click OK.

Note:

If you do not want the shard director to start running immediately upon creation,
you must uncheck the Start Shard Director After Creation checkbox.

5. Click OK on the confirmation dialog.

6. Click the link in the Information box at the top of the page to view the provisioning status
of the shard director.

When the shard director is created successfully it appears in the Shard Directors list. You
might need to refresh the page to see the updates.

Editing a Shard Director Configuration
Use Oracle Enterprise Manager Cloud Control to edit a shard director configuration in your
Oracle Sharding deployment.

You can change the region, ports, local endpoint, and host credentials for a shard director in
Cloud Control. You cannot edit the shard director name, host, or Oracle home.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to manage
under Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a shard director from the list and click Edit.

Note that you cannot edit the shard director name, host, or Oracle home.

4. Edit the fields, enter the GSMCATUSER password, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the shard director configuration changes.

Chapter 9
Shard Director Management

9-41

Removing a Shard Director
Use Oracle Enterprise Manager Cloud Control to remove shard directors from your
Oracle Sharding deployment.

If the shard director you want to remove is the administrative shard director, as
indicated by a check mark in that column of the Shard Directors list, you must choose
another shard director to be the administrative shard director before removing it.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shard director from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning
status of the shard director removal.

When the shard director is removed successfully it no longer appears in the Shard
Directors list. You might need to refresh the page to see the changes.

Region Management
You can add, edit, and remove regions in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

The following topics describe region management tasks:

Creating a Region
Create sharded database regions in your Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create.

4. Enter a unique name for the region in the Create Region dialog.

5. Optionally, select a buddy region from among the existing regions.

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning
status of the region.

When the region is created successfully it appears in the Regions list. You might need
to refresh the page to see the updates.

Chapter 9
Region Management

9-42

Editing a Region Configuration
Edit sharded database region configurations in your Oracle Sharding deployment using
Oracle Enterprise Manager Cloud Control.

You can change the buddy region for a sharded database region in Cloud Control. You
cannot edit the region name.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under Shard
Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Edit.

4. Select or remove a buddy region, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the region configuration changes.

When the region configuration is successfully updated the changes appear in the Regions
list. You might need to refresh the page to see the updates.

Removing a Region
Remove sharded database regions in your Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under Shard
Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning status
of the region removal.

When the region configuration is successfully removed the changes appear in the Regions
list. You might need to refresh the page to see the updates.

Shardspace Management
You can add, edit, and remove shardspaces in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control.

The following topics describe shardspace management tasks:

Creating a Shardspace
Create shardspaces in your composite Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

Only databases that are sharded using the composite method can have more than one
shardspace. A system-managed sharded database can have only one shardspace.

Chapter 9
Shardspace Management

9-43

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create.

Note:

This option is disabled in the Shardspaces page for a system-managed
sharded database.

4. Enter the values in the fields in the Add Shardspace dialog, and click OK.

• Name: enter a unique name for the shardspace (required)

• Chunks: Enter the number of chunks that should be created in the
shardspace (default 120)

• Protection Mode: select the Data Guard protection mode (default Maximum
Performance)

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shardspace.

When the shardspace is created successfully it appears in the Shardspaces list. You
might need to refresh the page to see the updates.

Adding a Shardspace to a Composite Sharded Database
Learn to create a new shardspace, add shards to the shardspace, create a tablespace
set in the new shardspace, and add a partitionset to the sharded table for the added
shardspace. Then verify that the partitions in the tables are created in the newly added
shards in the corresponding tablespaces.

To add a new shardspace to an existing sharded database, make sure that the
composite sharded database is deployed and all DDLs are propagated to the shards.

1. Create a new shardspace, add shards to the shardspace, and deploy the
environment.

a. Connect to the shard catalog database.

GDSCTL> connect mysdbadmin/mysdbadmin_password

b. Add a shardspace and add a shardgroup to the shardspace.

GDSCTL> add shardspace -chunks 8 -shardspace cust_asia
GDSCTL> add shardgroup -shardspace cust_asia -shardgroup
asia_shgrp1 -deploy_as primary -region region3

c. Add shards

GDSCTL> add shard -shardgroup asia_shgrp1 –connect
shard_host:TNS_listener_port/shard_database_name –pwd
GSMUSER_password

Chapter 9
Shardspace Management

9-44

GDSCTL> add shard asia_shgrp1 –connect shard_host:TNS_listener_port/
shard_database_name –pwd GSMUSER_password

d. Deploy the environment.

GDSCTL> deploy

Running DEPLOY ensures that all of the previous DDLs are replayed on the new shards
and all of the tables are created. The partition is created in the default SYS_SHARD_TS
tablespace.

2. On the shard catalog create the tablespace set for the shardspace and add partitionsets
to the sharded root table.

a. Create the tablespace set.

SQL> CREATE TABLESPACE SET
 TSP_SET_3 in shardspace cust_asia using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

b. Add the partitionset.

SQL> ALTER table customers add PARTITIONSET asia VALUES ('ASIA”')
TABLESPACE SET TSP_SET_3 ;

c. When lobs are present, create the tablespace set for lobs and mention the lob
storage information in the add partitionset command.

SQL> alter table customers add partitionset asia VALUES ('ASIA')
tablespace set TSP_SET_3 lob(docn) store as (tablespace set
LOBTSP_SET_4)) ;

d. When the root table contains subpartitions, use the store as clause to specify the
tablespace set for the subpartitions.

SQL> alter table customers add partitionset asia VALUES ('ASIA')
tablespace set TSP_SET_3 subpartitions store in(SUB_TSP_SET_1,
SUB_TSP_SET_2);

The ADD PARTITIONSET command ensures that the child tables are moved to the
appropriate tablespaces.

3. Verify that the partitions in the new shardspace are moved to the new tablespaces.

Connect to the new shards and verify that the partitions are created in the new
tablespace set.

SQL> select table_name, partition_name, tablespace_name, read_only from
dba_tab_partitions;

Chapter 9
Shardspace Management

9-45

Shardgroup Management
You can add, edit, and remove shardgroups in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

The following topics describe shardgroup management tasks:

Creating a Shardgroup
Create shardgroups in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

1. Select a shardspace to which to add the shardgroup.

2. Open the Shardspace menu, located in the top left corner of the shardspace
target page, and choose Manage Shardgroups.

3. Click Create.

4. Enter values in the Create Shardgroup dialog, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shardgroup.

For example, with the values entered in the screenshots above, the following
command is run:

GDSCTL Command: ADD SHARDGROUP -SHARDGROUP 'north' -SHARDSPACE
'shardspaceora'
 -REGION 'north' -DEPLOY_AS 'STANDBY'

When the shardgroup is created successfully it appears in the Manage Shardgroups
list. You might need to refresh the page to see the updates.

Services Management
You can manage services in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control.

To manage Oracle Sharding services, open the Sharded Database menu, located in
the top left corner of the Sharded Database target page, and choose Services. On the
Services page, using the controls at the top of the list of services, you can start, stop,
enable, disable, create, edit, and delete services.

Selecting a service opens a service details list which displays the hosts and shards on
which the service is running, and the status, state, and Data Guard role of each of
those instances. Selecting a shard in this list allows you to enable, disable, start, and
stop the service on the individual shards.

The following topics describe services management tasks:

Creating a Service
Create services in your Oracle Sharding deployment using Oracle Enterprise Manager
Cloud Control.

Chapter 9
Shardgroup Management

9-46

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Services.

2. If prompted, enter the shard catalog credentials, select the shard director to manage
under Shard Director Credentials, select the shard director host credentials, and log in.

3. Click Create, or select a service from the list and click Create Like.

Choosing Create opens the Create Service dialog with default configuration values in the
fields.

Choosing Create Like opens the Create Like Service dialog with configuration values
from the selected service in the fields. You must select a service from the list to enable
the Create Like option.

4. Enter the required information in the dialog, and click OK.

Note:

If you do not want the service to start running immediately upon creation, you
must uncheck the Start service on all shards after creation checkbox.

5. Click the link in the Information box at the top of the page to view the provisioning status
of the service.

When the service is created successfully it appears in the Services list. You might need to
refresh the page to see the updates.

Chapter 9
Services Management

9-47

10
Achieving Data Sovereignty with Oracle
Sharding

The proliferation of cloud computing has brought heightened concerns about industry-
standard regulations especially around protecting data and its privacy. Today, most
organizations want to know where their data is stored, and who has access to it. This creates
a key concern about managing data residency—the requirement that data be stored in a
specific geographic location.

There are more than 120 countries already engaged in some form of international privacy
laws for data protection to ensure that citizens' data are offered more rigorous protections
and controls, be it on-premises or on cloud.

Overview of Data Sovereignty
Data sovereignty generally refers to how data is governed by regulations specific to the
region in which it originated. These types of regulations can specify where data is stored, how
it is accessed, how it is processed, and the life-cycle of the data.

With the exponential growth of data crossing borders and public cloud regions, more than
100 countries now have passed regulations concerning where data is stored and how it is
transferred. Personally identifiable information (PII) in particular increasingly is subject to the
laws and governance structures of the nation in which it is collected. Data transfers to other
countries often are restricted or allowed based on whether that country offers similar levels of
data protection, and whether that nation collaborates in forensic investigations.

Data sovereignty requirements are driven by local regulations which could result in different
application architectures. A few of them are:

• Data must be physically stored in a certain geographic location. For example, within the
boundaries of a specific country or a region comprising of several countries. It is fine to
access and process the data remotely so far as the data is not stored in remote locations.
From a technical standpoint, this implies that data stores like databases, object stores,
and messaging stores that physically store the persistent data must be in a certain
geographic location. However, the application run time which has business logic for
processing of data could be outside the geographic location. Examples of such
applications parts include application servers, mobile applications, API Gateways,
Workflows, and so on.

• Data must be physically stored and processed in a certain geographic location: In this
case, storing of data and processing of data must take place within the defined
geographic location.

Benefits of Implementing Data Sovereignty with Oracle Sharding
Oracle Sharding meets data sovereignty requirements and supports applications that require
low latency and high availability.

10-1

• Sharding makes it possible to locate different parts of the data in different
countries or regions – thus satisfying regulatory requirements where data has to
be located in a certain jurisdiction.

• It also supports storing particular data closer to its consumers. Oracle Sharding
automates the entire lifecycle of a sharded database – deployment, schema
creation, data-dependent routing with superior run-time performance, elastic
scaling, and life-cycle management.

• It also provides the advantages of an enterprise RDBMS, including relational
schema, SQL, and other programmatic interfaces, support for complex data types,
online schema changes, multi-core scalability, advanced security, compression,
high-availability, ACID properties, consistent reads, developer agility with JSON,
and much more.

Implementing Data Sovereignty with Oracle Sharding
Oracle Sharding distributes segments of a data set across many databases (shards)
on different computers, on-premises, or in the cloud. These shards can be deployed in
multiple regions across the globe. This enables Oracle Sharding to create globally
distributed databases honoring data residency.

All of the shards in a given database are presented to the application as a single
logical database. Applications are seamlessly connected to the right shard based on
the queries they run. For example, if an application instance deployed in the US needs
data that resides in Europe, the application request is seamlessly routed to an EU data
center, without the application having to do anything special.

Figure 10-1 Oracle Sharding Architecture

Connection
Pools

. . .

Sharded
Database

Shard

Shard
Catalog

Shard
Directors

Sharding Key
CustomerID=28459361

Chapter 10
Implementing Data Sovereignty with Oracle Sharding

10-2

Additionally, Oracle Database security features such as Real Application Security (RAS) and
Oracle Database Vault can be used to limit data access further, even within a region. For
example, an administrator in the EU region can further be restricted to see data only from a
subset of countries and not all EU countries. Within a Data Sovereignty region, data can be
replicated across multiple data centers by using Oracle Data Guard and Oracle GoldenGate
for such replication.

Oracle Sharding management interfaces give you control of the global metadata and provide
a view of the physical databases (replicas), data they contain, replication topology, and more.
Oracle Sharding handles data redistribution when nodes are added or dropped.

You can access worldwide reporting without actually copying the data from the various
regions. Sharding can run multi-shard reports without copying any data from any region.
Oracle Sharding pushes queries to the nodes where the data resides.

Oracle Sharding provides comprehensive data sovereignty solutions that focus on the
following aspects:

• Data Residency: Data can be distributed across multiple shards, which can be deployed
in different geographical locations.

• Data Processing: Application requests are automatically routed to the correct shard
irrespective of where the application is running.

• Data Access: Data access within a region can be restricted further using the Virtual
Private Database capability of Oracle Database.

• Derivative Data: Ensuring that the data is stored in an Oracle Database, and using Oracle
Database features to contain the proliferation of derivative data.

• Data Replication: Oracle Sharding can be used with Oracle Data Guard or Oracle
GoldenGate to replicate data within the same Data Sovereignty region.

Use Case of Achieving Data Sovereignty with Oracle Sharding
A large but imaginary financial institute, Shard Bank, wants to offer credit services to users in
multiple counties. Each country where credit service will be provided has its own data privacy
regulations and the Personally Identifiable Information (PII) data have to be stored in this
country.

The access to the data has to be limited and data administrators in one country cannot see
data in others. The solution for this use case is user-defined Sharding with shards configured
in different countries and Real Application Security (RAS) for data access control.

Overview of Oracle Sharding Solution
Oracle Sharding solution provides you with in-country data storage, and still supports a global
view of all the data.

The example below demonstrates a hybrid Oracle Sharding user-defined deployment
between OCI data centers and on-premises across multiple regions. In this Oracle Sharding
configuration, you can store and process all data locally. Each database (in each sovereign
region) is made into a shard and the shards belong to a single sharded database. Oracle
Sharding allows you to query data in one shard (within one country), and Oracle Sharding
supports multi-shard queries (that can query data from all the countries).

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-3

Figure 10-2 Sharded Database

The global sharded database is sharded by a key indicating the country in which it
must reside. In-country applications connect to the local database as usual, and all
data is stored and processed locally.

Any multi-shard queries are directed to the shard coordinator. The coordinator rewrites
the query and sends it to each shard (country) that has the required data. The
coordinator processes and aggregates the results from all of the countries and returns
result.

Oracle Sharding makes this use case possible with the following capabilities:

• Direct-to-shard routing for in-country queries.

• The user-defined sharding method allows you to use a range or list of countries to
partition data among the shards.

• Automatic configuration of replication using Oracle Active Data Guard, and
constrain the replicas to be in-country.

The benefits of this approach are:

• Each shard can be in a cloud or on-premises within the country.

• Shards can use different cloud providers (multi-cloud strategy) and replicas of a
shard can be in a different cloud or on-premises.

• Online resharding allows you to move data between clouds, or to and from the
cloud and on-premises.

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-4

• Strict enforcement of data sovereignty providing protection from inadvertent cross region
data leak.

• Single Multimodel Big Data store with reduced volume of data duplication.

• Better fault isolation as planned/unplanned down time within one region/LOB does not
impact other regions/LOBs.

• Ability to split busy partitions and shards as needed.

• Support for full ACID properties is critical for transactional applications.

Deployment Topology of Data Sovereignty with Oracle Sharding
In this example use case, we create a sharded database on Oracle Cloud Infrastructure that
spans three regions, Frankfurt (Region1 FRA), Amsterdam (Region 2 AMS), and London
(Region 3 LON).

Each region hosts a shard director (Virtual Machine global service manager (GSM)) and one
shard (System Database Shard 1, 2, and 3 respectively), and Region 1 (FRA) hosts the
shard catalog (System Database GSM Catalog Database).

Figure 10-3 Deployment Topology of Data Sovereignty with Oracle Sharding

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-5

Configuring Data Sovereignty with Oracle Sharding
Configure Data Sovereignty with Oracle Sharding by performing the steps given in the
following topics.

Configuring VCN Networks in All Three OCI Regions
In Oracle Cloud Infrastructure (OCI), a virtual cloud network is a virtual version of a
traditional network on which your instances run. Deploy and configure a virtual cloud
network (VCN) in each of our regions (FRA, AMS, and LON).

In each region, create a VCN with two subnets: public and private.

1. Create new route table for private subnet and associate it with private subnet. The
default route table should only be used for the public subnet and the private
subnet should have a dedicated private route table.

2. Create an internet gateway and associate it with default route table.

3. Create a Network Address Translation (NAT) gateway, Service Gateway, and
associate it with route table for private subnet.

• VCN Name/CIDER: Oracle Sharding VCN FRA 10.0.0.0/16

• Public Subnet name/CIDER: public_fra 10.0.5.0/24

• Private Subnet name/CIDER: private_fra 10.0.6.0/24

Note:

Repeat the steps in all regions used in the sharding deployment. The subnet
CIDER must be different in each region and you must provide region prefix in
the VCN/subnet name.

Configuring Remote VCN Peering Between All Three Regions
Remote VCN peering is the process of connecting two VCNs in different regions,
which allows the VCNs' resources to communicate using private IP addresses without
routing the traffic over the internet.

Configure two remote peering connections (RPCs) in each region to connect with the
other two regions in the topology.

1. See Remote VCN Peering using an RPC for the steps to configure an RPC.

2. Configure routing rules for the public subnet/VCN.

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-6

https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/remoteVCNpeering.htm

3. Configure routing rules for the private subnet/VCN.

4. Configure security rules.

Configuring Private DNS for Naming Resolution Between the Regions
You create private views for the public and private subnet for each domain in each region,
resulting in a total of 6 private zones within 1 zone. Then all entries are added to each private
zone configuration.

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-7

1. See Private DNS to create and manage private DNS zones.

2. Verify that all names are resolved correctly before you proceed with the next task.

Note:

These steps must be done in each region on all VCNs/VMs so that names
can be correctly resolved.

Installing a Global Service Manager in Each Region
Oracle Global Data Services global service manager (GSM) is used in Oracle
Sharding to route queries from the application to the correct shard in a sharded
database.

Download the software and perform the following tasks:

• Download the global service manager (Oracle Database 19c) software into the
bastion VM.

• Apply the latest version of OPatch.

• Apply the latest available Oracle Database Bundle Patch on the newly installed
global service manager (Oracle Database 19c).

To install a GSM in each region:

1. Create a 200 GB block storage using iSCSI. Configure iSCSI on the OCI Compute
for GSM. Mount block storage under/u01 .

See Connecting to Volumes With Consistent Device Paths for the mounting block
storage process.

2. As the root user, install all the required packages.

yum install -y oracle-database-preinstall-19c
3. As the root user, ensure that /u01 is owned by oracle:oinstall.

chown oracle:oinstall /u01
4. Download the GSM software to the designated shard director VM and install it in

silent mode.

See Performing a Silent Install of Global Service Manager.

5. Add gsm home to /etc/oratab.

gsm:/u01/app/oracle/product/19.0.0.0/dbhome_1:N
6. Apply the latest OPatch version.

7. Apply the latest available bundle patch version for Oracle Database 19c.

8. Open GSM port on Firewall:

$ systemctl start firewalld.service
$ systemctl enable firewalld.service
$ firewall-cmd --permanent --zone=public --add-port=1522/tcp #
firewall-cmd --reload

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-8

https://docs.oracle.com/en-us/iaas/Content/DNS/Tasks/privatedns.htm
https://docs.oracle.com/en-us/iaas/Content/Block/References/consistentdevicepaths.htm
https://docs.oracle.com/en/database/oracle/oracle-database/21/gsmug/global-data-services-config.html#GUID-C03F39F9-576F-48B7-892B-2636F423BF21

$ firewall-cmd --permanent --zone=public --list-ports
1522/tcp 22/tcp

9. Ensure that the required port is open on security lists assigned to GSM VMs to allow
applications to connect to GSM.

Collecting TNS entries for Shard Catalog and Sharded Databases
The collection of TNS entries is required to prepare GSM server for configuration of shard
catalog and shard databases. The shard catalog requires access only to PDB that stores the
shard catalog objects. However for the shard database, prepare the entries for each shared
CDB and PDB that stores the application schemas.

1. Prepare the tnsnames entries to access the shard catalog database and all shards (Shard
Catalog and Shards).

2. Add these entries to $ORACLE_HOME/network/admin/tnsnames.ora on the GSM VMs.

Note:

Use FQDN for hostnames in connection strings.

db_unique_name =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = host_name_fqdn)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = cdb_service_name)
)
)

pdb_name =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = host_name_fqdn)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = pdb_service_name)
)
)

Configuring the Shard Catalog
The shard catalog manages the metadata for Oracle Sharding. Configure a database on
Region 1 (FRA) which will be the shard catalog database.

1. Connect to all DBCS instances and update sqlnet encryption algorithms configured in
sqlnet.ora file and add the RC4_256 encryption method as a supported algorithm for
client and server.

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-9

Note:

The patch is required to enable the AES encryption as the AES
encryption is not supported by default by GSM: Enh 29496977 - GDS
ONLY USES RC4_256 TYPE ENCRYPTION. To enable the AES encryption,
apply the patch in Oracle Database 19c. However, this patch is not
required in Oracle Database 21c.

Note:

The RC4_256 algorithm is required only for Oracle Database 19c.

2. Configure the shard catalog database with requirements for Oracle Sharding.

SQL> alter system set open_links=16 scope=spfile;
SQL> alter system set open_links_per_instance=16 scope=spfile;
SQL> shu immediate
SQL> startup

3. Configure users on the shard catalog database.

SQL> alter user gsmcatuser account unlock.
SQL> alter user gsmcatuser identified by password;
Switch to PDB dedicated for catalog database
SQL> alter session set container=catalog_db_pdb;
SQL> create user mysdbadmin identified by password;
SQL> grant connect, create session, gsmadmin_role to mysdbadmin;
SQL> grant inherit privileges on user SYS to GSMADMIN_INTERNAL;

Configuring the Shard Databases
Configure a database in each region which will be a shard in the Oracle Sharding
configuration.

1. Connect to all DBCS instances and update sqlnet encryption algorithms
configured in sqlnet.ora file and add the RC4_256 encryption method as a
supported algorithm for client and server.

Note:

The patch is required to enable the AES encryption as the AES
encryption is not supported by default by GSM: Enh 29496977 - GDS
ONLY USES RC4_256 TYPE ENCRYPTION. To enable the AES encryption,
apply the patch in Oracle Database 19c. However, this patch is not
required in Oracle Database 21c.

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-10

Note:

The RC4_256 algorithm is required only for Oracle Database 19c.

2. Run the following commands:

SQL> alter database flashback on;
SQL> alter system set dg_broker_start=true;
SQL> alter user GSMROOTUSER account unlock;
SQL> alter user GSMUSER account unlock;
SQL> alter user GSMADMIN_INTERNAL account unlock;
SQL> alter user GSMROOTUSER identified by password;
SQL> alter user GSMUSER identified by password;
SQL> alter user GSMADMIN_INTERNAL identified by password;
SQL> grant sysdg to gsmuser;
SQL> grant SYSBACKUP to gsmuser;
SQL> grant sysdg to GSMROOTUSER;
SQL> grant SYSBACKUP to GSMROOTUSER;
SQL> alter system set global_names=false;
SQL> shu immediate
SQL> startup
Switch to PDB used as shared database
SQL> alter session set container= pdb_name;
SQL> grant read,write on directory DATA_PUMP_DIR to GSMADMIN_INTERNAL;
SQL> grant sysdg to gsmuser;
SQL> grant SYSBACKUP to gsmuser;

Creating Oracle Sharding Global Database
Configure global service manager listener, create shard catalog database, and add all shards
to configuration. The deployment step configures all shards as a single global database.

1. Configure the shard catalog in Oracle Sharding.

Note:

By default system-managed sharding is configured. If you require any other
sharding method, specify it during shard catalog creation.

GDSCTL> create shardcatalog -database catalog_pdb_tns_entry -sharding
user -user
 mysdbadmin/password -region region1

2. Add the GSM listener and start it. Execute the listener from GDSCTL.

GDSCTL> add gsm -gsm sharddirector1 -listener 1522 -pwd password -catalog
pdb_tns_entry
 -region region1

3. Use the following template to add shards to the configuration. Repeat for each shard
database.

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-11

Add shard in FRA:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_fra
GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_fra -pwd gsmuser_pwd -deploy_as
PRIMARY

Add shard in AMS:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_ams
GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_ams -pwd gsmuser_pwd -deploy_as
PRIMARY

Add shard in LON:

GDSCTL> add invitednode shard_hostname
GDSCTL> add cdb -connect cdb_conn_tns_entry -pwd gsmrootuser_pwd
GDSCTL> add shardspace -shardspace primary_shardspace_lon
GDSCTL> add shard -cdb cdb_conn_string -connect pdb_conn_string
 -shardspace primary_shardspace_lon -pwd gsmuser_pwd -deploy_as
PRIMARY

4. Deploy the sharded database configuration.

Run the GDSCTL DEPLOY command, to get the following output:

GDSCTL> deploy
deploy: examining configuration...
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

5. Create global database services on the shards to service incoming connection
requests from your application. The global service is an extension to the traditional
database service. All the properties of traditional services are supported for global
services. For sharded databases additional properties are set for global services.
See Create and Start Global Database Services.

For example, database role, replication lag tolerance, region affinity between
clients and shards, and so on. For a read-write transactional workload, create a
single global service to access data from any primary shard in a sharded
database. For highly available shards using Active Data Guard, create a separate
read-only global service.

GDSCTL> add service -service oltp_rw_srvc -role primary

Load the data into the shards using the methods described in Migrating to a Sharded
Database

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-12

Related Topics

• C.35 create shardcatalog

• Create the Shard Catalog Database

Chapter 10
Use Case of Achieving Data Sovereignty with Oracle Sharding

10-13

https://docs.oracle.com/en/database/oracle/oracle-database/19/gsmug/gdsctl-reference.html#GUID-16E4FFF2-29C9-4954-9474-6D269BF3F6AF

11
Troubleshooting Oracle Sharding

You can enable tracing, locate log and trace files, and troubleshooting common issues.

The following topics describe Oracle Sharding troubleshooting in detail:

Troubleshooting Tips
Use these tips to discover information about the sharded database that you need to help you
troubleshoot issues.

Topics:

• Checking the Sharding Method

• Checking the Replication Type

• Checking the Oracle Data Guard Protection Mode

• Checking Which Shards Are Mapped to a Key

• Checking Shard Operation Mode (Read-Only or Read-Write)

• Checking DDL Text

• Checking Chunk Migration Status

• Checking Table Type (Sharded or Duplicated)

• Checking User Type (Local or ALL_SHARD)

• Identifying Tables Created as Sharded Tablespaces

• Checking if Shard DDL is Enabled or Disabled

• Filtering Data by Sharding Key

Checking the Sharding Method
Run gdsctl config sdb to check which sharding method, also known as the shard type, is
used in the sharded database.

The sharding method can be system-managed, composite, or user-defined.

The sharding method is shown under "Shard type" in the output of gdsctl config sdb as
shown here.

gdsctl> config sdb

GDS Pool administrators

Replication Type

11-1

Data Guard

Shard type

System-managed

Shard spaces

shd1

Services

srv1

Checking the Replication Type
Run gdsctl config sdb to check which method is used for shard replication in the
sharded database.

The replication type is shown under "Replication Type" in the output of gdsctl config
sdb as shown here.

gdsctl> config sdb

GDS Pool administrators

Replication Type

Data Guard

Shard type

System-managed

Shard spaces

shd1

Services

srv1

Table 11-1 Replication types in config sdb output

Replication Type Value Shown in Output

Oracle Data Guard Data Guard

Oracle GoldenGate Golden Gate

Chapter 11
Troubleshooting Tips

11-2

Checking the Oracle Data Guard Protection Mode
You can run gdsctl config shardspace on a given shardspace to check the Oracle Data
Guard protection mode in your GDSCTL session, rather than switching to DGMGRL.

Data Guard can be configured in three different protection modes: MaxProtection,
MaxAvailability, and MaxPerformance.

The Data Guard protection mode is shown under PROTECTION MODE in the gdsctl
config shardspace command output, as shown here.

GDSCTL> config shardspace -shardspace shd1
Shard Group Region Role
----------- ------ ----
dbs1 east Primary

PROTECTION_MODE Chunks
--------------- ------
MaxProtection 6

Checking Which Shards Are Mapped to a Key
You can run gdsctl config chunks -key to check which shards are mapped to a sharding
key.

Example 1: Single Table Family

In the following example, there is only one table family in the sharded database configuration,
and the table is partitioned (sharded) on data type number.

In this example, the user is checking which chunk sharding key value "2" is mapped to. In the
output it shows sharding key 2 is mapped to chunk "3" and is present in the database
"aime1b".

GDSCTL> config chunks -key 2
Range Definition

Chunks Range Definition
------ ----------------
3 1431655764-2147483646

Databases

aime1b

Similarly, this can be done for any data type sharding is done on. Also, a multiple column
sharding key can be checked with comma separated values.

The range definition is the range of hash values and can be ignored.

Example 2: Multiple Table Families

In a multiple table family configuration, add the option -table_family to specify the table
family to which the specified sharding key belongs.

Chapter 11
Troubleshooting Tips

11-3

The config chunks command lists shards from all shardgroups in the topology. This
example also lists a Data Guard standby shardgroup, as shown by the addition of
"aime1e" to the Databases (shards) list.

GDSCTL> config chunks -key 1 -table_family testuserfam3.customersfam1

Range Definition

Chunks Range Definition
------ ----------------
1 0-357913941

Databases

aime1b
aime1e

Example 3: Specifying a Multiple Column Sharding Key

When a table is sharded by multiple columns, specify the sharding key value as a
comma-separated list as shown here.

GDSCTL> config chunks -key 10,mary,2010-04-04

Range Definition

Chunks Range Definition
------ ----------------
4 1288490187-1717986916

Databases

aime1b
aime1e

Checking Shard Operation Mode (Read-Only or Read-Write)
You can check whether shards are running in read-only or read-write mode by running
gdsctl config chunks -cross_shard.

The gdsctl config chunks -cross_shard command output shows which shards,
listed under "Database", are running in read-only and read-write modes, as shown
below. The command also lists the chunk ranges on those shards.

gdsctl config chunks -cross_shard

Read-Only cross shard targets

Database From To
-------- ---- --
tst3b_cdb2_pdb1 1 3
tst3c_cdb3_pdb1 9 10
tst3d_cdb2_pdb1 4 5
tst3e_cdb3_pdb1 6 8

Chapter 11
Troubleshooting Tips

11-4

Chunks not offered for cross-shard

Shard space From To
----------- ---- --

Read-Write cross-shard targets

Database From To
-------- ---- --
tst3b_cdb2_pdb1 1 5
tst3c_cdb3_pdb1 6 10

Chunks not offered for Read-Write cross-shard activity

Data N/A

Checking DDL Text
Run gdsctl show ddl -ddl ddl_id to get the text for the specified DDL.

The DDL numeric identifier is specified with -ddl ddl_id to get the text and other details of a
particular DDL, as shown here.

gdsctl show ddl -ddl 5

DDL Text: CREATE SHARDED TABLE Customers (CustNo NUMBER NOT NULL, Name
VARCHAR2(50), Address VARCHAR2(250), Location VARCHAR2(20), Class
VARCHAR2(3), CONSTRAINT RootPK PRIMARY KEY(CustNo)) PARTITION BY CONSISTENT
HASH (CustNo) PARTITIONS AUTO TABLESPACE SET ts1
Owner: TESTUSER1
Object name: CUSTOMERS
DDL type: C
Obsolete: 0
Failed shards:

Note:

The show ddl command output might be truncated. You can run SELECT ddl_text
FROM gsmadmin_internal.ddl_requests on the shard catalog to see the full text of
the statements.

Checking Chunk Migration Status
Run gdsctl config chunks -show_reshard to check the status of chunk migration.

A chunk move is a long running operation, whether user-initiated or internal (during
incremental deploy), so if you need to check the status, the gdsctl config chunks -
show_reshard provides the following status indicators as the move progresses.

• empty - indicates no chunk migration in progress

Chapter 11
Troubleshooting Tips

11-5

• scheduled - chunk is pending movement, which could be because it is waiting on
another chunk move to complete, or the move didn't initiate due to some error

• running - current in progress

• failed - chunk move failed. Check GSM traces and source and target database
traces for details.

In the following example, chunk move status is shown in the "Ongoing chunk
movement" table in the command output.

gdsctl config chunks -show_reshard

Chunks

Database From To
-------- ---- --
tst3b_cdb2_pdb1 1 6
tst3c_cdb3_pdb1 7 10
tst3d_cdb2_pdb1 1 6
tst3e_cdb3_pdb1 7 10

Ongoing chunk movement

Chunk Source Target
status
----- ------ ------

7 tst3c_cdb3_pdb1 tst3b_cdb2_pdb1
Running
8 tst3c_cdb3_pdb1 tst3b_cdb2_pdb1
scheduled
9 tst3c_cdb3_pdb1 tst3b_cdb2_pdb1
scheduled
10 tst3c_cdb3_pdb1 tst3b_cdb2_pdb1
scheduled

Checking Table Type (Sharded or Duplicated)
You can check whether tables are sharded or duplicated in dba/all/user_tables using
SELECT TABLE_NAME,SHARDED,DUPLICATED FROM user_tables;.

In the following example, column "S" indicates whether a table is sharded, and column
"D" indicates whether a table is duplicated.

SQL> select TABLE_NAME,SHARDED,DUPLICATED from user_tables;

TABLE_NAME S D
--------------- - -
CUSTOMERS Y N
DUP1 N Y
LINEITEMS Y N
MLOG$_DUP1 N N
ORDERS Y N

Chapter 11
Troubleshooting Tips

11-6

Checking User Type (Local or ALL_SHARD)
You can find out which users are created as local users and which are sharded database
users by selecting the username and ALL_SHARD column in dba/all/user_users.

SQL> select USERNAME,ALL_SHARD from users_users where username='TESTUSER1';

USERNAME ALL_SHARD
--------------- ---------
TESTUSER1 YES

Identifying Tables Created as Sharded Tablespaces
You can find out whether tablespaces are used for a sharded table by selecting the
TABLESPACE_NAME and CHUNK_TABLESPACE columns in dba/all/user_tablespaces.

The value in the CHUNK_TABLESPACE column is Y in dba/all/user_tablespaces if it is a
tablespace for a sharded table.

SQL> select TABLESPACE_NAME,CHUNK_TABLESPACE from user_tablespaces;

TABLESPACE_NAME C
------------------------------ -
SYSTEM N
SYSAUX N
TEMP N
SYSEXT N
TS1 Y

Checking if Shard DDL is Enabled or Disabled
You can check if Shard DDL is enabled or disabled in the current SQL session.

These examples show the result of checking Shard DDL status after enabling and disabling
Shard DDL.

SQL> alter session enable shard ddl;

Session altered.

SQL> select shard_ddl_status from v$session where AUDSID =
userenv('SESSIONID');

SHARD_DD

ENABLED

SQL> alter session disable shard ddl;

Session altered.

Chapter 11
Troubleshooting Tips

11-7

SQL> select shard_ddl_status from v$session where AUDSID =
userenv('SESSIONID');

SHARD_DD

DISABLED

Filtering Data by Sharding Key
You can set the SHARD_QUERIES_RESTRICTED_BY_KEY parameter to enable or disable
data filtering by a specified sharding key.

The parameter SHARD_QUERIES_RESTRICTED_BY_KEY can be set with ALTER at the
system or session level. If enabled, DMLs will only display select data for specified
SHARDING_KEY set in the client connection.

In the following example, the client connection is established with a shard with
SHARDING_KEY specified as "1". However, when the client runs a SELECT on the
customers table, all of the rows in that table in the shard are displayed.

connection established for client with sharding_key=1

SQL> select * from customers order by custno;

 CUSTNO NAME ADDRESS LOCATION CLA
---------- ---------- ---------- ---------- ---
 1 John Oracle KM Bangalore A
 50 Larry Oracle HQ SFO B

2 rows selected.

SQL>

Now, as shown below, we enable session level filtering, and the result of the same
SELECT statement is restricted to only the single row that matches the SHARD_KEY
specified in the client connection.

SQL> alter session set shard_queries_restricted_by_key = true;

Session altered.

SQL> select current_shard_key from dual;

CURRENT_SHARD_KEY

 1

1 row selected.

SQL> select * from customers;

 CUSTNO NAME ADDRESS LOCATION CLA

Chapter 11
Troubleshooting Tips

11-8

---------- ---------- ---------- ---------- ---
 1 John Oracle KM Bangalore A

Setting the Duplicated Table Refresh Rate
You can modify the refresh rate for duplicated tables by setting the
SHRD_DUPL_TABLE_REFRESH_RATE database parameter.

By default duplicated tables are refreshed every 60 seconds. The example below shows
increasing the refresh interval to 100 seconds.

SQL> show parameter refresh

NAME TYPE VALUE
------------------------------------ -----------

shrd_dupl_table_refresh_rate integer 60

SQL> alter system set shrd_dupl_table_refresh_rate=100 scope=both;

System altered.

SQL> show parameter refresh

NAME TYPE VALUE
------------------------------------ -----------

shrd_dupl_table_refresh_rate integer 100

Oracle Sharding Tracing and Debug Information
The following topics explain how to enable tracing and find the logs.

Enabling Tracing for Oracle Sharding
Enable PL/SQL tracing to track down issues in the sharded database.

To get full tracing, set the GWM_TRACE level as shown here. The following statement provides
immediate tracing, but the trace is disabled after a database restart.

ALTER SYSTEM SET EVENTS 'immediate trace name GWM_TRACE level 7';

The following statement enables tracing that continues in perpetuity, but only after restarting
the database.

ALTER SYSTEM SET EVENT='10798 trace name context forever, level 7'
SCOPE=spfile;

It is recommended that you set both of the above traces to be thorough.

Chapter 11
Oracle Sharding Tracing and Debug Information

11-9

To trace everything in the Oracle Sharding environment, you must enable tracing on
the shard catalog and all of the shards. The traces are written to the RDBMS session
trace file for either the GDSCTL session on the shard catalog, or the session(s)
created by the shard director (a.k.a. GSM) on the individual shards.

Where to Find Oracle Sharding Alert Logs and Trace Files
There are several places to look for trace and alert logs in the Oracle Sharding
environment.

Standard RDBMS trace files located in diag/rdbms/.. will contain trace output.

Output from ‘deploy’ will go to job queue trace files db_unique_name_jXXX_PID.trc.

Output from other GDSCTL commands will go to either a shared server trace file
db_unique_name_sXXX_PID.trc or dedicated trace file db_unique_name_ora_PID.trc
depending on connect strings used.

Shared servers are typically used for many of the connections to the catalog and
shards, so the tracing is in a shared server trace file named SID_s00*.trc.

GDSCTL has several commands that can display status and error information.

Use GDSCTL STATUS GSM to view locations for shard director (GSM) trace and log files.

GDSCTL> status
Alias SHARDDIRECTOR1
Version 18.0.0.0.0
Start Date 25-FEB-2016 07:27:39
Trace Level support
Listener Log File /u01/app/oracle/diag/gsm/slc05abw/
sharddirector1/alert/log.xml
Listener Trace File /u01/app/oracle/diag/gsm/slc05abw/
sharddirector1/trace/
ora_10516_139939557888352.trc
Endpoint summary (ADDRESS=(HOST=shard0)(PORT=1571)
(PROTOCOL=tcp))
GSMOCI Version 2.2.1
Mastership N
Connected to GDS catalog Y
Process Id 10535
Number of reconnections 0
Pending tasks. Total 0
Tasks in process. Total 0
Regional Mastership TRUE
Total messages published 71702
Time Zone +00:00
Orphaned Buddy Regions: None
GDS region region1
Network metrics:
 Region: region2 Network factor:0

Chapter 11
Oracle Sharding Tracing and Debug Information

11-10

The non-XML version of the alert.log file can be found in the /trace directory as shown here.

/u01/app/oracle/diag/gsm/shard-director-node/sharddirector1/trace/alert*.log

To decrypt log output in GSM use the following command.

GDSCTL> set _event 17 -config_only

Master shard director (GSM) trace/alert files include status and errors on any and all
asynchronous commands or background tasks (move chunk, split chunk, deploy, shard
registration, Data Guard configuration, shard DDL execution, etc.)

To find pending AQ requests for the shard director, including error status, use GDSCTL
CONFIG.

To see ongoing and scheduled chunk movement, use GDSCTL CONFIG CHUNKS -
show_reshard

To see shards with failed DDLs, use GDSCTL SHOW DDL -failed_only

To see the DDL error information for a given shard, use GDSCTL CONFIG SHARD -shard
shard_name

Common Error Patterns and Resolutions for Sharded
Databases

See the following topics for information about troubleshooting common errors in Oracle
Sharding.

Issues Starting Remote Scheduler Agent
If you encounter issues starting Remote Scheduler Agent on all the shard hosts, try the
following:

To start Scheduler you must be inside ORACLE_HOME on each shard server.

[oracle@shard2 ~]$ echo welcome | schagent -registerdatabase 192.0.2.24 8080
Agent Registration Password?
Failed to get agent Registration Info from db: No route to host

Solution: Disable firewall

service ipchains stop
service iptables stop
chkconfig ipchains off
chkconfig iptables off

Shard Director Fails to Start
If you encounter issues starting the shard director, try the following:

Chapter 11
Common Error Patterns and Resolutions for Sharded Databases

11-11

To start Scheduler you must be inside ORACLE_HOME on each shard server.

GDSCTL>start gsm -gsm shardDGdirector
GSM-45054: GSM error
GSM-40070: GSM is not able to establish connection to GDS catalog

GSM alert log, /u01/app/oracle/diag/gsm/shard1/sharddgdirector/trace/
alert_gds.log
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
GSM-40122: OCI Catalog Error. Code: 12514. Message: ORA-12514:
TNS:listener does not
currently know of service requested in connect descriptor
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
2017-04-20T22:50:22.496362+05:30
Process 1 in GSM instance is down
GSM shutdown is successful
GSM shutdown is in progress
NOTE : if not message displayed in the GSM log then enable GSM trace
level to 16
while adding GSM itself.

1. Remove the newly created shard director (GSM) that failed to start.

GDSCTL> remove gsm -gsm shardDGdirector

2. Add the shard director using trace level 16.

GDSCTL> add gsm -gsm shardDGdirector -listener port_num -pwd
gsmcatuser_password
 -catalog hostname:port_num:shard_catalog_name
 -region region1 -trace_level 16

3. If the shard catalog database is running on a non-default port (other than 1521),
set the remote listener.

SQL> alter system set
local_listener='(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=hostname)(PORT=port_num)))';

Errors From Shards Created with CREATE SHARD
For errors that occur during a DEPLOY from shards created with the GDSCTL
CREATE SHARD command check the following:

• Remote Scheduler Agent logs on shard hosts

• DBA_SCHEDULER_JOB_RUN_DETAILS view on shard catalog

• NETCA/DBCA output files in $ORACLE_BASE/cfgtoollogs on shard hosts

Chapter 11
Common Error Patterns and Resolutions for Sharded Databases

11-12

Issues Using Create Shard
The following are solutions to some issues that occur when using the GDSCTL CREATE
SHARD command..

Make sure to create $ORACLE_BASE/oradata and $ORACLE_BASE/
fast_recovery_area directories to avoid the following errors

GDSCTL> create shard -shardgroup primary_shardgroup -destination che -
osaccount
 oracle -ospassword oracle
GSM-45029: SQL error
ORA-03710: directory does not exist or is not writeable at destination:
 $ORACLE_BASE/oradata
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4730
ORA-06512: at line 1

GDSCTL>create shard -shardgroup primary_shardgroup -destination che -
osaccount oracle
 -ospassword oracle
GSM-45029: SQL error
ORA-03710: directory does not exist or is not writeable at destination:
 $ORACLE_BASE/fast_recovery_area
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4755
ORA-06512: at line 1

Solution: Create oradata,fast_recovery_area under $ORACLE_BASE on all the shard hosts.

Privilege issues

GDSCTL>create shard -shardgroup primary_shardgroup -destination blr -
credential cred
GSM-45029: SQL error
ORA-02610: Remote job failed with error:
EXTERNAL_LOG_ID="job_79126_3",
USERNAME="oracle",
STANDARD_ERROR="Launching external job failed: Login executable not setuid-
root"
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4596
ORA-06512: at line 1

Solution: Make sure to have root privilege on following directories,

chown root $ORACLE_HOME/bin/extjob
chmod 4750 $ORACLE_HOME/bin/extjob
chown root $ORACLE_HOME/rdbms/admin/externaljob.ora

Chapter 11
Common Error Patterns and Resolutions for Sharded Databases

11-13

chmod 640 $ORACLE_HOME/rdbms/admin/externaljob.ora
chown root $ORACLE_HOME/bin/jssu
chmod 4750 $ORACLE_HOME/bin/jssu

Error on create shard

GDSCTL>create shard -shardgroup primary_shardgroup -destination
mysql02 -osaccount
 oracle -ospassword oracle
GSM-45029: SQL error
ORA-03719: Shard character set does not match catalog character set.
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 7469
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 79
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 5770
ORA-06512: at line 1

Solution: Check the JAVA version, it must be the same on the shard catalog and all
shard servers.

rpm -qa|grep java

Issues Using Deploy Command

GDSCTL> deploy
GSM-45029: SQL error
ORA-29273: HTTP request failed
ORA-06512: at "SYS.DBMS_ISCHED", line 3715
ORA-06512: at "SYS.UTL_HTTP", line 1267
ORA-29276: transfer timeout
ORA-06512: at "SYS.UTL_HTTP", line 651
ORA-06512: at "SYS.UTL_HTTP", line 1257
ORA-06512: at "SYS.DBMS_ISCHED", line 3708
ORA-06512: at "SYS.DBMS_SCHEDULER", line 2609
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 14284
ORA-06512: at line 1

Solution : Check the $ORACLE_HOME/data/pendingjobs for the exact error.
ORA-1017 is thrown if any issues on wallet.

1. On problematic Shard host stop the remote scheduler agent.

schagent -stop

2. rename wallet direcotry on Database home

mv $ORACLE_HOME/data/wallet $ORACLE_HOME/data/wallet.old

Chapter 11
Common Error Patterns and Resolutions for Sharded Databases

11-14

3. start the remote scheduler agent and it will create new wallet directory

schagent -start
schagent -status
echo welcome | schagent -registerdatabase 10.10.10.10 8080

Chapter 11
Common Error Patterns and Resolutions for Sharded Databases

11-15

12
Oracle Sharding Reference

The following topics provide you with reference information to help you plan, configure,
deploy, and manage your Oracle Sharding sharded database configuration.

Using GDSCTL with Oracle Sharding
Several of the Global Data Services GDSCTL commands are used for setting up and
deploying an Oracle Sharding configuration. Learn how to use the GDSCTL command-line
tool and the Oracle Sharding-related GDSCTL commands in the following topics.

Starting GDSCTL
To start GDSCTL, enter gdsctl at the operating system prompt.

$ gdsctl

GDSCTL starts and displays the GDSCTL command prompt.

GDSCTL>

Running GDSCTL Commands Interactively
You can run GDSCTL commands interactively at either the operating system prompt or the
GDSCTL command prompt.

Run a GDSCTL command at the system prompt.

$ gdsctl add gsm -gsm gsm1 -catalog 127.0.0.1:1521:db1

Run a GDSCTL command at the GDSCTL command prompt.

GDSCTL> add gsm -gsm gsm1 -catalog 127.0.0.1:1521:db1

Both of these methods achieve the same result. The command syntax examples in this
document use the GDSCTL command prompt.

Running GDSCTL Batch Operations
You can gather all the GDSCTL commands in one file and run them as a batch with
GDSCTL.

12-1

The following command starts GDSCTL and runs the commands contained in the
specified script file.

$ gdsctl @script_file_name

GDSCTL Help Text
You can display help for GDSCTL and GDSCTL commands.

The GDSCTL HELP command displays a summary of all GDSCTL commands.

GDSCTL> help

If you specify a command name after HELP, then the help text for that command is
shown.

GDSCTL> help start gsm

You can also use the -h option with any GDSCTL command to show the help text for
the specified command.

GDSCTL> start gsm -h

GDSCTL Connections
Some GDSCTL commands require a connection to the shard catalog, and for ceratin
operations, GDSCTL must connect to a shard director.

GDSCTL Shard Catalog Connections
If you run GDSCTL commands that require a connection to the shard catalog, then
you must run the GDSCTL CONNECT command before the first command that requires
the connection.

The CONNECT command only needs to be run once in a GDSCTL session.

GDSCTL uses Oracle Net Services to connect to the shard catalog database or
another database in the Oracle Sharding configuration. For these connections you can
run GDSCTL from any client or host that has the necessary network configuration.

Unless specified, GDSCTL resolves connect strings with the current name resolution
methods (such as TNSNAMES).

The GDSCTL operations that require a connection to a shard catalog are noted in the
usage notes for each command.

GDSCTL Shard Director Connections
For certain operations, GDSCTL must connect to a shard director, also known as
global service manager.

Chapter 12
Using GDSCTL with Oracle Sharding

12-2

Unless specified, GDSCTL resolves connect strings with the current name resolution
methods (such as TNSNAMES). However, to resolve the shard director name, GDSCTL
queries the gsm.ora file.

To connect to a shard director, GDSCTL must be running on the same host as the shard
director. When connecting to a shard director, GDSCTL looks for the gsm.ora file associated
with the local shard director.

The following are the GDSCTL operations that require a connection to a shard director.

• ADD GSM adds a shard director.

• START GSM starts the shard director.

• STOP GSM stops the shard director.

• MODIFY GSM modifies the configuration parameters of the shard director.

• STATUS GSM returns the status of a shard director.

• SET INBOUND_CONNECT_LEVEL sets the INBOUND_CONNECT_LEVEL listener parameter.

• SET TRACE_LEVEL sets the trace level for the listener associated with the specified shard
director.

• SET OUTBOUND_CONNECT_LEVEL sets the timeout value for the outbound connections for
the listener associated with a specific shard director.

• SET LOG_LEVEL sets the log level for the listener associated with a specific shard director.

GDSCTL Commands Used with Oracle Sharding
A subset of GDSCTL commands is used with Oracle Sharding.

• add cdb

• add credential

• add file

• add gsm

• add invitednode (add invitedsubnet)

• add region

• add service

• add shard

• add shardgroup

• add shardspace

• config

• config cdb

• config chunks

• config credential

• config file

• config gsm

• config region

Chapter 12
Using GDSCTL with Oracle Sharding

12-3

• config sdb

• config service

• config shard

• config shardgroup

• config shardspace

• config table family

• config vncr

• configure

• connect

• create shard

• create shardcatalog

• delete catalog

• deploy

• disable service

• enable service

• modify catalog

• modify cdb

• modify credential

• modify file

• modify gsm

• modify region

• modify service

• modify shard

• modify shardgroup

• modify shardspace

• move chunk

• relocate service

• remove cdb

• remove credential

• remove file

• remove gsm

• remove invitednode (remove invitedsubnet)

• remove region

• remove service

• remove shard

• remove shardgroup

• remove shardspace

Chapter 12
Using GDSCTL with Oracle Sharding

12-4

• services

• set gsm

• set inbound_connect_level

• set log_level

• set outbound_connect_level

• set trace_level

• split chunk

• sql

• start gsm

• start service

• status gsm

• status service

• stop gsm

• stop service

• validate catalog

Chapter 12
Using GDSCTL with Oracle Sharding

12-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Sharding
	Changes in Oracle Database 19c
	New Features
	Multiple Table Family Support for System-Managed Sharding
	Support for Multiple PDB-Shards in the Same CDB
	Generation of Unique Sequence Numbers Across Shards
	Support for Multi-Shard Query Coordinators on Shard Catalog Standbys
	Propagation of Parameter Settings Across Shards

	Deprecation and Desupport
	Desupport of Setting Passwords in GDSCTL Command Line

	1 Oracle Sharding Overview
	What is Sharding
	About Oracle Sharding
	Oracle Sharding as Distributed Partitioning
	Benefits of Oracle Sharding
	Example Applications using Database Sharding
	Flexible Deployment Models
	High Availability in Oracle Sharding
	Sharding Methods
	Client Request Routing
	Query Execution
	High Speed Data Ingest
	Deployment Automation
	Data Pump Migration
	Lifecycle Management of Shards

	2 Oracle Sharding Architecture and Concepts
	Components of the Oracle Sharding Architecture
	Sharded Database and Shards
	Shard Catalog
	Shard Director
	Global Service

	Partitions, Tablespaces, and Chunks
	Tablespace Sets
	Sharding Methods
	System-Managed Sharding
	User-Defined Sharding
	Composite Sharding
	Using Subpartitions with Sharding

	Sharded Database Schema Objects
	Sharded Tables
	Sharded Table Family
	How a Table Family Is Sharded
	Designing Schemas With Multiple Table Families

	Duplicated Tables
	Non-Table Objects Created on All Shards

	Shard-Level High Availability
	About Sharding and Replication
	Using Oracle Data Guard with a Sharded Database
	Using Oracle GoldenGate with a Sharded Database

	Query Processing and the Query Coordinator
	Client Application Request Routing
	Management Interfaces for a Sharded Database

	3 Sharded Database Deployment
	Introduction to Sharded Database Deployment
	Choosing a Shard Creation Method
	Sharded Database Deployment Roadmap

	Provision and Configure Hosts and Operating Systems
	Install the Oracle Database Software
	Install the Shard Director Software
	Create the Shard Catalog Database
	Create the Shard Databases
	Configure the Sharded Database Topology
	Create the Shard Catalog
	Add and Start Shard Directors
	Add Shardspaces If Needed
	Add Shardgoups If Needed
	Verify the Sharding Topology
	Add the Shard CDBs
	Add the Shards
	Add Shards Using GDSCTL ADD SHARD
	Add Shards Using GDSCTL CREATE SHARD

	Add Host Metadata

	Deploy the Sharding Configuration
	Create and Start Global Database Services
	Verify Shard Status
	Example Sharded Database Deployment
	Example Sharded Database Topology
	Deploy the Example Sharded Database

	Using Transparent Data Encryption with Oracle Sharding
	Creating a Single Encryption Key on All Shards

	4 Using Oracle Database Sharding in Oracle Cloud Infrastructure
	Deploy a Sharded Database on Kubernetes
	Deploy a Sharded Database With Terraform
	Deploy a Sharded Database with Docker

	5 Sharded Database Schema Design
	Sharded Database Schema Design Considerations
	Choosing Sharding Keys
	Primary Key and Foreign Key Constraints
	Indexes on Sharded Tables
	DDL Execution in a Sharded Database
	Creating Objects Locally and Globally
	DDL Syntax Extensions for Oracle Sharding
	CREATE TABLESPACE SET
	ALTER TABLESPACE SET
	DROP TABLESPACE SET and PURGE TABLESPACE SET
	CREATE TABLE
	ALTER TABLE
	ALTER SESSION

	PL/SQL Procedure Execution in a Sharded Database
	Creating Sharded Database Schema Objects
	Create an All-Shards User
	Creating a Sharded Table Family
	Creating Sharded Tables
	Creating Duplicated Tables
	Updating Duplicated Tables and Synchronizing Their Contents

	Schema Creation Examples
	Create a System-Managed Sharded Database Schema
	Create a User-Defined Sharded Database Schema
	Create a Composite Sharded Database Schema

	Monitor DDL Execution and Verify Object Creation
	DDL Execution Failure and Recovery Examples
	Generating Unique Sequence Numbers Across Shards

	6 Migrating to a Sharded Database
	Using Oracle Data Pump to Migrate to a Sharded Database
	Migrating a Schema to a Sharded Database
	Migrating the Sample Schema
	Migrating Data to a Sharded Database
	Loading the Sample Schema Data
	Migrating Data Without a Sharding Key

	Using External Tables to Load Data into a Sharded Database
	Loading Data into Duplicated Tables
	Loading Data into Sharded Tables

	7 Query and DML Execution
	How Database Requests are Routed to the Shards
	Routing Queries and DMLs Directly to Shards
	Routing Queries and DMLs by Proxy

	Connecting to the Query Coordinator
	Query Coordinator Operation
	Query Processing for Single-Shard Queries
	Query Processing for Multi-Shard Queries
	Specifying Consistency Levels in a Multi-Shard Query

	Supported Query Constructs and Example Query Shapes
	Queries on Sharded Tables Only
	Queries Involving Both Sharded and Duplicated Tables
	Aggregate Functions Supported by Oracle Sharding
	Queries with User-Defined Types
	Execution Plans for Proxy Routing

	Supported DMLs and Examples
	Simple DMLs Where Only the Target Table is Referenced
	DMLs Referencing Other Tables
	Example Merge Statements
	Limitations in Multi-Shard DML Support

	Gathering Optimizer Statistics on Sharded Tables

	8 Developing Applications for the Sharded Database
	Direct Routing to a Shard
	Suitability for Sharding of Existing Applications
	Sharding APIs Supporting Direct Routing
	Oracle JDBC APIs for Oracle Sharding
	Oracle Call Interface for Oracle Sharding
	Oracle Universal Connection Pool APIs for Oracle Sharding
	Oracle Data Provider for .NET APIs for Oracle Sharding

	9 Sharded Database Administration
	Managing the Sharding-Enabled Stack
	Starting Up the Sharding-Enabled Stack
	Shutting Down the Sharding-Enabled Stack

	Managing Oracle Sharding Database Users
	About the GSMUSER Account
	About the GSMROOTUSER Account

	Backing Up and Recovering a Sharded Database
	Modifying a Sharded Database Schema
	Propagation of Parameter Settings Across Shards
	Migrating a Non-PDB Shard to a PDB
	Managing Sharded Database Software Versions
	Patching and Upgrading a Sharded Database
	Upgrading Sharded Database Components
	Downgrading a Sharded Database
	Compatibility and Migration from Oracle Database 18c

	Managing Oracle Sharded Database with Enterprise Manager Cloud Control
	Prerequisite: Enable Sharded Database Metrics
	Discovering Sharded Database Components
	Overview of Sharded Database Management with Oracle Enterprise Manager Cloud Control

	Monitoring a Sharded Database
	Querying System Objects Across Shards
	Monitoring a Sharded Database with GDSCTL
	Monitoring a Sharded Database with Enterprise Manager Cloud Control
	Sharded Database Home Page
	Data Distribution and Performance Page

	Shard Management
	About Adding Shards
	Resharding and Hot Spot Elimination
	Removing a Shard From the Pool
	Adding Standby Shards
	Managing Shards with Oracle Enterprise Manager Cloud Control
	Validating a Shard
	Adding Primary Shards
	Adding Standby Shards
	Deploying Shards

	Managing Shards with GDSCTL
	Validating a Shard
	Adding Shards to a System-Managed SDB
	Replacing a Shard

	Chunk Management
	About Moving Chunks
	Moving Chunks
	About Splitting Chunks
	Splitting Chunks

	Shard Director Management
	Creating a Shard Director
	Editing a Shard Director Configuration
	Removing a Shard Director

	Region Management
	Creating a Region
	Editing a Region Configuration
	Removing a Region

	Shardspace Management
	Creating a Shardspace
	Adding a Shardspace to a Composite Sharded Database

	Shardgroup Management
	Creating a Shardgroup

	Services Management
	Creating a Service

	10 Achieving Data Sovereignty with Oracle Sharding
	Overview of Data Sovereignty
	Benefits of Implementing Data Sovereignty with Oracle Sharding
	Implementing Data Sovereignty with Oracle Sharding
	Use Case of Achieving Data Sovereignty with Oracle Sharding
	Overview of Oracle Sharding Solution
	Deployment Topology of Data Sovereignty with Oracle Sharding
	Configuring Data Sovereignty with Oracle Sharding
	Configuring VCN Networks in All Three OCI Regions
	Configuring Remote VCN Peering Between All Three Regions
	Configuring Private DNS for Naming Resolution Between the Regions
	Installing a Global Service Manager in Each Region
	Collecting TNS entries for Shard Catalog and Sharded Databases
	Configuring the Shard Catalog
	Configuring the Shard Databases
	Creating Oracle Sharding Global Database

	11 Troubleshooting Oracle Sharding
	Troubleshooting Tips
	Checking the Sharding Method
	Checking the Replication Type
	Checking the Oracle Data Guard Protection Mode
	Checking Which Shards Are Mapped to a Key
	Checking Shard Operation Mode (Read-Only or Read-Write)
	Checking DDL Text
	Checking Chunk Migration Status
	Checking Table Type (Sharded or Duplicated)
	Checking User Type (Local or ALL_SHARD)
	Identifying Tables Created as Sharded Tablespaces
	Checking if Shard DDL is Enabled or Disabled
	Filtering Data by Sharding Key
	Setting the Duplicated Table Refresh Rate

	Oracle Sharding Tracing and Debug Information
	Enabling Tracing for Oracle Sharding
	Where to Find Oracle Sharding Alert Logs and Trace Files

	Common Error Patterns and Resolutions for Sharded Databases
	Issues Starting Remote Scheduler Agent
	Shard Director Fails to Start
	Errors From Shards Created with CREATE SHARD
	Issues Using Create Shard
	Issues Using Deploy Command

	12 Oracle Sharding Reference
	Using GDSCTL with Oracle Sharding
	Starting GDSCTL
	Running GDSCTL Commands Interactively
	Running GDSCTL Batch Operations
	GDSCTL Help Text
	GDSCTL Connections
	GDSCTL Shard Catalog Connections
	GDSCTL Shard Director Connections

	GDSCTL Commands Used with Oracle Sharding

