Oracle® REST Data Services

Installation, Configuration, and Development
Guide

Release 18.4
F12730-02
Januar y 2019

ORACLE"

Oracle REST Data Services Installation, Configuration, and Development Guide, Release 18.4
F12730-02

Copyright © 2011, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Mamata Basapur, Chuck Murray

Contributors: Colm Divilly, Sharon Kennedy, Ganesh Pitchaiah, Kris Rice, Elizabeth Saunders, Jason Straub,
Vladislav Uvarov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XVi
Documentation Accessibility XVi
Related Documents XVii
Conventions XVii
Third-Party License Information XVil

Changes in This Release for Oracle REST Data Services
Installation, Configuration, and Development Guide

Changes in Oracle REST Data Services Release 18.4 Xviii
Changes in Oracle REST Data Services Release 18.3 Xviii
Changes in Oracle REST Data Services Release 18.2 XiX
Changes in Oracle REST Data Services Release 18.1 XX

1 Installing Oracle REST Data Services

1.1 About Oracle REST Data Services 1-1
1.2 Understanding the Installation Process 1-2
1.2.1 Supported Java EE Application Servers 1-2
1.2.2 System Requirements 1-2
1.2.3 About Installing Oracle REST Data Services 1-3
1.3 Configuring and Installing Oracle REST Data Services 1-3
1.3.1 About Using the Command-Line Interface 1-4
1.3.2 About the Database Users Used by Oracle REST Data Services 1-4
1.3.3 Privileges Granted by Oracle REST Data Services 1-5
1.3.4 Downloading, Configuring and Installing Oracle REST Data Services 1-6
1.3.4.1 Advanced Installation Using Command-Line Prompts 1-6
1.3.4.2 Silent Installation Using a Parameter File 1-11
1.3.4.3 Validating the Oracle REST Data Services Installation 1-21

1.3.4.4 If You Want to Reinstall or Uninstall (Remove) Oracle REST Data
Services 1-22

ORACLE iii

135

Using SQL Developer Oracle REST Data Services Administration

(Optional) 1-22
1.3.5.1 About SQL Developer Oracle REST Data Services Administration 1-22
1.3.5.2 Configuring an Administrator User 1-23
1.3.6 Using OAuth2 in Non-HTTPS Environments 1-23
1.4 Running in Standalone Mode 1-24
1.4.1 Starting in Standalone Mode 1-24
1.4.1.1 Converting a Private Key to DER (Linux and Unix) 1-25
1.4.2 Stopping the Server in Standalone Mode 1-26
1.4.3 Configuring a Doc Root for Non-Application Express Static Resources 1-26

1.5 Deploying to Oracle WebLogic Server 1-27
1.5.1 About Oracle WebLogic Server 1-27
1.5.2 Downloading, Installing, and Configuring Oracle REST Data Services 1-27
1.5.3 Configuring Oracle Application Express Images 1-27
1.5.4 Launching the Administration Server Console 1-28
1.5.5 Installing the Oracle WebLogic Server Deployment 1-29
1.5.6 Configuring WebLogic to Handle HTTP Basic Challenges Correctly 1-30
1.5.7 Verifying the State and Health of ords and i 1-31

1.6 Deploying to GlassFish Server 1-31
1.6.1 About GlassFish Server 1-32
1.6.2 Downloading, Installing, and Configuring Oracle REST Data Services 1-32
1.6.3 Configuring Oracle Application Express Images 1-33
1.6.4 Launching the Administration Server Console 1-33
1.6.5 Installing the GlassFish Server Deployment 1-34

1.7 Deploying to Apache Tomcat 1-35
1.7.1 About Apache Tomcat 1-35
1.7.2 Downloading, Installing, and Configuring Oracle REST Data Services 1-35
1.7.3 Configuring Oracle Application Express Images 1-35
1.7.4 Installing the Apache Tomcat Deployment 1-36

1.8 Upgrading Oracle REST Data Services 1-36

1.9 Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall

Oracle REST Data Services 1-38
2 Configuring Oracle REST Data Services (Advanced)

2.1 Configuring Multiple Databases 2-1
2.1.1 About the Request URL 2-1
2.1.2 Configuring Additional Databases 2-2
2.1.3 Routing Based on the Request Path Prefix 2-3

2.1.3.1 Example of Routing Based on the Request Path Prefix 2-3
2.1.4 Routing Based on the Request URL Prefix 2-4
2.1.4.1 Example of Routing Based on the Request URL Prefix 2-4

ORACLE

2.2 Using the Multitenant Architecture with Oracle REST Data Services 2-4
2.2.1 Installing Oracle REST Data Services in a CDB Environment 2-5
2.2.1.1 Installation Enabling Multiple Releases 2-6
2.2.2 Upgrading Oracle REST Data Services in a CDB Environment 2-7
2.2.2.1 Migrating Oracle REST Data Services in the CDB to Enable
Multiple Releases 2-8
2.2.3 Making All PDBs Addressable by Oracle REST Data Services
(Pluggable Mapping) 2-8
2.2.4 Uninstalling Oracle REST Data Services in a CDB Environment 2-9
2.3 Support for Oracle RAC Fast Connection Failover 2-10
2.4 Configuring Security, Caching, Pre- and Post Processing, Environment, and
Excel Settings 2-11
2.5 Configuring REST-Enabled SQL Service Settings 2-11
2.6 Configuring the Maximum Number of Rows Returned from a Query 2-11
2.7 Configuring the Custom Error Pages 2-12
2.8 Developing RESTful Services for Use with Oracle REST Data Services 2-12
3 Developing Oracle REST Data Services Applications
3.1 Introduction to Relevant Software 3-2
3.1.1 About Oracle Application Express 3-2
3.1.2 About RESTful Web Services 3-2
3.2 Getting Started with RESTful Services 3-2
3.2.1 RESTful Services Terminology 3-3
3.2.2 About Request Path Syntax Requirements 3-4
3.2.3 "Getting Started" Documents Included in Installation 3-4
3.2.4 About cURL and Testing RESTful Services 3-5
3.2.5 Automatic Enabling of Schema Objects for REST Access (AutoREST) 3-5
3.2.5.1 Examples: Accessing Objects Using RESTful Services 3-6
3.2.5.2 Filtering in Queries 3-17
3.2.5.3 Auto PL/SQL 3-25
3.2.6 Manually Creating RESTful Services Using SQL and PL/SQL 3-31
3.2.6.1 About Oracle REST Data Services Mechanisms for Passing
Parameters 3-32
3.2.6.2 Using SQL/JSON Database Functions 3-42
3.2.7 About Working with Dates Using Oracle REST Data Services 3-52
3.2.7.1 About Datetime Handling with Oracle REST Data Services 3-52
3.2.7.2 About Setting the Time Zone 3-53
3.2.7.3 Exploring the Sample RESTful Services in Application Express
(Tutorial) 3-54
3.3 Configuring Secure Access to RESTful Services 3-59
3.3.1 Authentication 3-59
3.3.1.1 First Party Cookie-Based Authentication 3-59

ORACLE

3.3.1.2 Third Party OAuth 2.0-Based Authentication 3-60

3.3.2 About Privileges for Accessing Resources 3-60
3.3.3 About Users and Roles for Accessing Resources 3-61
3.3.4 About the File-Based User Repository 3-61
3.3.5 Tutorial: Protecting and Accessing Resources 3-62
3.3.5.1 OAuth Flows and When to Use Each 3-62
3.3.5.2 Assumptions for This Tutorial 3-62
3.3.5.3 Steps for This Tutorial 3-63
3.4 About Oracle REST Data Services User Roles 3-73
3.4.1 About Oracle Application Express Users and Oracle REST Data

Services Roles 3-74

3.4.1.1 Granting Application Express Users Oracle REST Data Services
Roles 3-74

3.4.1.2 Automatically Granting Application Express Users Oracle REST
Data Services Roles 3-75
3.4.2 Controlling RESTful Service Access with Roles 3-75
3.4.2.1 About Defining RESTful Service Roles 3-76
3.4.2.2 Associating Roles with RESTful Privileges 3-76
3.5 Authenticating Against WebLogic Server and GlassFish User Repositories 3-77
3.5.1 Authenticating Against WebLogic Server 3-77
3.5.1.1 Creating a WebLogic Server User 3-77
3.5.1.2 Verifying the WebLogic Server User 3-78
3.5.2 Authenticating Against GlassFish 3-79
3.5.2.1 Creating a GlassFish User 3-79
3.5.2.2 Verifying the GlassFish User 3-79
3.6 Integrating with Existing Group/Role Models 3-80
3.6.1 About role-mapping.xml 3-80
3.6.1.1 Parameterizing Mapping Rules 3-81
3.6.1.2 Dereferencing Parameters 3-81
3.6.1.3 Indirect Mappings 3-81
3.7 Using the Oracle REST Data Services PL/SQL API 3-82
3.7.1 Creating a RESTful Service Using the PL/SQL API 3-83
3.7.2 Testing the RESTful Service 3-83
3.8 Oracle REST Data Services Database Authentication 3-85
3.8.1 Installing Sample Database Scripts 3-85
3.8.2 Enabling the Database Authentication 3-86
3.8.3 Configuring the Request Validation Function 3-87
3.8.4 Testing the Database Authenticated User 3-87
3.8.5 Uninstalling the Sample Database Schema 3-88
3.9 Overview of Pre-hook Functions 3-88
3.9.1 Configuring the Pre-hook Function 3-89
3.9.2 Using a Pre-hook Function 3-89

ORACLE vi

3.9.3 Processing of a Request 3-89
3.9.4 Identity Assertion of a User 3-89
3.9.5 Aborting Processing of a Request 3-90
3.9.6 Ensuring Pre-hook is Executable 3-90
3.9.7 Exceptions Handling by Pre-hook Function 3-90
3.9.8 Pre-hook Function Efficiency 3-90
3.9.9 Pre-Hook Examples 3-91
3.9.9.1 Installing the Examples 3-91

3.9.9.2 Uninstalling the Examples 3-94

4 REST-Enabled SQL Service

4.1 REST-Enabled SQL Service Terminology 4-1
4.2 Configuring the REST-Enabled SQL Service 4-2
4.3 Using cURL with REST-Enabled SQL Service 4-2
4.4 Getting Started with the REST-Enabled SQL Service 4-3
4.4.1 REST-Enabling the Oracle Database Schema 4-3
4.4.2 REST-Enabled SQL Authentication 4-4
4.4.3 REST-Enabled SQL Endpoint 4-4

4.5 REST-Enabled SQL Service Examples 4-5
4.5.1 POST Requests Using application/sgl Content-Type 4-5
45.1.1 Using a Single SQL Statement 4-5

4.5.1.2 Using a File with cURL 4-7

4.5.1.3 Using Multiple SQL Statements 4-8

4.5.2 POST Requests Using application/json Content-Type 4-11
4.5.2.1 Using a File with cURL 4-11

4.5.2.2 Specifying the Limit Value in a POST Request for Pagination 4-12

4.5.2.3 Specifying the Offset Value in a POST Request for Pagination 4-14

4.5.2.4 Defining Binds in a POST Request 4-16

4.5.2.5 Specifying Batch Statements in a POST Request 4-20

4.5.3 Example POST Request with DATE and TIMESTAMP Format 4-23
4.5.4 Data Types and Formats Supported 4-25

4.6 REST-Enabled SQL Request and Response Specifications 4-29
4.6.1 Request Specification 4-29
4.6.2 Response Specification 4-32

4.7 Supported SQL, SQL*Plus, and SQLcl Statements 4-38
4.7.1 Supported SQL Statements 4-38
4.7.2 Supported PL/SQL Statements 4-38
4.7.3 Supported SQL*Plus Statements 4-39
4.7.3.1 Set System Variables 4-39

4.7.3.2 Show System Variables 4-40

ORACLE

Vii

4.7.4 Supported SQLcl Statements 4-42

5 Migrating from mod_plsqgl to ORDS

5.1 Oracle HTTP Server mod_plsql Authentication 5-1
5.2 Example Oracle HTTP Server DAD file 5-2
5.3 Mapping mod_plsgl Settings to ORDS 5-3
5.4 Example ORDS Configuration Files 5-8
5.4.1 Example Configuration File for Basic Authentication 5-8
5.4.2 Example Configuration File for Basic Dynamic Authentication 5-8
5.4.3 Example Configuration file for Custom Authentication 5-9
5.5 Example ORDS URL Mapping 5-10
5.6 Example ORDS Default Configuration 5-10
5.7 ORDS Authentication 5-11
5.7.1 Basic Authentication 5-11
5.7.2 Basic Dynamic Authentication 5-11
5.7.3 Custom Authentication 5-12
5.8 ORDS Features 5-12
5.8.1 Request Validation Function 5-13
5.8.2 Pre Process Feature 5-13
5.8.3 Post Process Feature 5-13
5.8.4 File Upload Feature 5-14

6 Oracle REST Data Services PL/SQL Package Reference

6.1 ORDS.CREATE_ROLE 6-1
6.2 ORDS.CREATE_SERVICE 6-1
6.3 ORDS.DEFINE_HANDLER 6-4
6.4 ORDS.DEFINE_MODULE 6-6
6.5 ORDS.DEFINE_PARAMETER 6-7
6.6 ORDS.DEFINE_PRIVILEGE 6-9
6.7 ORDS.DEFINE_SERVICE 6-11
6.8 ORDS.DEFINE_TEMPLATE 6-14
6.9 ORDS.DELETE_MODULE 6-16
6.10 ORDS.DELETE_PRIVILEGE 6-16
6.11 ORDS.DELETE_ROLE 6-17
6.12 ORDS.DROP_REST_FOR_SCHEMA 6-17
6.13 ORDS.ENABLE_OBJECT 6-18
6.14 ORDS.ENABLE_SCHEMA 6-19
6.15 ORDS.PUBLISH_MODULE 6-20
6.16 ORDS.RENAME_MODULE 6-20

ORACLE viii

6.17 ORDS.RENAME_PRIVILEGE 6-21
6.18 ORDS.RENAME_ROLE 6-22
6.19 ORDS.SET_MODULE_ORIGINS_ALLOWED 6-22
6.20 ORDS.SET_URL_MAPPING 6-23
7 Oracle REST Data Services Administration PL/SQL Package
Reference
7.1 Example Subprograms for Developing and Administering RESTful Services 7-1
8 Implicit Parameters
8.1 List of Implicit Parameters 8-1
8.1.1 About the :body parameter 8-5
8.1.2 About the :body text Parameter 8-6
8.1.3 About the :content_type Parameter 8-6
8.1.4 About the :current_user Parameter 8-6
8.1.5 About the :status_code Parameter 8-6
8.1.6 About the :forward_location Parameter 8-7
8.1.7 About the Pagination Implicit Parameters 8-8
8.1.7.1 About the :page_offset Parameter 8-9
8.1.7.2 About the :page_size Parameter 8-9
8.1.7.3 About the :row_offset Parameter 8-10
8.1.7.4 About the :row_count Parameter 8-10
8.1.7.5 About the :fetch_offset Parameter 8-10
8.1.7.6 About the :fetch_size Parameter 8-10
8.1.7.7 About Automatic Pagination 8-10
8.1.7.8 About Manual Pagination 8-11
O OAUTH PL/SQL Package Reference
9.1 OAUTH.CREATE_CLIENT 9-1
9.2 OAUTH.DELETE_CLIENT 9-2
9.3 OAUTH.GRANT_CLIENT_ROLE 9-3
9.4 OAUTH.RENAME_CLIENT 9-4
9.5 OAUTH.REVOKE_CLIENT_ROLE 9-4
9.6 OAUTH.UPDATE_CLIENT 9-5
A Oracle REST Data Services Third-Party License Information
A.1 Oracle REST Data Services Third Party List A-1
ORACLE iX

B Oracle REST Data Services Database Type Mappings

B.1 Oracle Built-in Types B-1
B.2 Handling Structural Database Types B-3
B.3 Oracle Geospacial Encoding B-5
B.4 Enabling Database Mapping Support B-5

C About the Oracle REST Data Services Configuration Files

C.1 Locating Configuration Files C-1
C.2 Setting the Location of the Configuration Files C-1
C.3 Understanding the Configuration Folder Structure C-1
C.4 Understanding the Configuration File Format C-2

C.4.1 Understanding the url-mapping.xml File Format C-2
C.5 Understanding Configurable Parameters C-3

D Troubleshooting Oracle REST Data Services

D.1 Enabling Detailed Request Error Messages D-1

D.2 Configuring Application Express Static Resources with Oracle REST Data
Services D-1

E Creating an Image Gallery

E.1 Before You Begin E-1
E.1.1 About URIs E-1
E.1.2 About Browser Support E-2
E.1.3 Creating an Application Express Workspace E-2

E.2 Creating the Gallery Database Table E-2

E.3 Creating the Gallery RESTful Service Module E-3

E.4 Trying Out the Gallery RESTful Service E-4

E.5 Creating the Gallery Application E-5

E.6 Trying Out the Gallery Application E-8

E.7 Securing the Gallery RESTful Services E-8
E.7.1 Protecting the RESTful Services E-8
E.7.2 Modifying the Application to Use First Party Authentication E-9

E.8 Accessing the RESTful Services from a Third Party Application E-11
E.8.1 Creating the Third Party Developer User E-12
E.8.2 Registering the Third Party Application E-12
E.8.3 Acquiring an Access Token E-12
E.8.4 Using an Access Token E-14
E.8.5 About Browser Origins E-15

ORACLE X

E.8.6 Configuring a RESTful Service for Cross Origin Resource Sharing

E.8.7 Acquiring a Token Using the Authorization Code Protocol Flow

E.8.7.1
E.8.7.2
E.8.7.3
E.8.7.4

Registering the Client Application

Acquiring an Authorization Code

Exchanging an Authorization Code for an Access Token
Extending OAuth 2.0 Session Duration

E.8.8 About Securing the Access Token

Index

E-15
E-15
E-16
E-16
E-17
E-18
E-19

ORACLE"

Xi

List of Examples

1-1

1-2
1-3
2-1
3-1
3-2
3-3

3-5
3-6
3-7

3-8

3-9
3-10
3-11
4-1
4-2
4-3
4-4
4-5
4-6
4-7
5-1
5-2
5-3
5-4
55
5-6
5-7
5-8
5-9
5-10

Parameters to configure for Application Express and APEX RESTful Services and
run in standalone mode

Parameters to run in standalone mode using http

Parameters to run in standalone mode using https and providing the ssl certificate paths
Configuring custom error page for “HTTP 404" status code

Enabling the PL/SQL Function

Enabling the PL/SQL Procedure

Generating an Endpoint for the Stored Procedure

Package Procedure and Function Endpoints

Nested JSON Purchase Order with Nested Lineltems

PL/SQL Handler Code Used for a POST Request

GET Handler Code using Oracle REST Data Services Query on Relational Tables for
Generating a Nested JSON object

PL/SQL API Call for Creating a New test/:id Template and GET Handler in the demo
Module

Setting the Duser.timezone Java Environment Variable in Standalone Mode

Setting the Duser.timezone Java Environment Variable in a Java Application Server
Setting Enabled for all Pools

Example cURL Command

Binds in POST Request

Complex Bind in POST Request

Batch statements

Batch bind values

Oracle REST Data services Time Zone Set as Europe/London

PL/SQL Statement

dads.conf file

ords_conf/ords/conf/basic_auth.xml

ords_conf/ords/conf/basic_dynamic_auth.xml
ords_confs/ords/conf/custom_auth.xml

ords_conf/ords/url-mapping.xml

ords_conf/ords/default.xml

security.requestValidationFunction

procedure.preProcess

procedure.postProcess

Table upload

ORACLE

1-17
1-19
1-20
2-12
3-27
3-27
3-30
3-30
3-44
3-45

3-48

3-49
3-53
3-54
3-87

4-2
4-16
4-18
4-20
4-21
4-23
4-38

5-2

5-8

5-8

5-9
5-10
5-10
5-13
5-13
5-13
5-14

Xii

5-11 Procedure upload 5-14

5-12 Curl command for file upload 5-14
7-1 ORDS_ADMIN.CREATE_ROLE 7-1
7-2 ORDS_ADMIN.DEFINE_PARAMETER 7-2
8-1 Example 8-5
9-1 Example to Add Multiple Privileges 9-6

ORACLE Xiii

List of Figures

3-1 Selecting the Enable REST Service Option

3-2 Auto Enabling the PL/SQL Package Object

3-3 Adding an Anonymous PL/SQL Block to the Handler for the PUT Method

3-4 Setting the Bind Parameter |_salarychange to Pass for the PUT Method

3-5 Obtaining the URL to Call from the Details Tab

3-6 Displaying the Results from a SQL Query to Confirm the Execution of the PUT Method

3-7 Creating a Template Definition to Include a Route Pattern for Some Parameters or
Bind Variables

3-8 Adding a SQL Query to the Handler

3-9 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method
with Some Required Parameter Values

3-10 Using Browser to Show the Results of Using a Query String to Send a GET Method
with Some Parameter Name/Value Pairs

3-11 Generating Nested JSON Objects

ORACLE

3-28
3-29
3-34
3-34
3-35
3-36

3-37
3-38

3-39

3-41
3-51

XV

List of Tables

1-1 Advanced Installation Prompts for Installing in Standalone Mode

1-2 Options for Configuring Application Express or Migrating from mod_plsq|
1-3 Options for Running in Standalone Mode

1-4 Parameters for Database Connection

1-5 Parameters for Installing Oracle REST Data Services

1-6 Parameters for Installing into the CDB

1-7 Parameters for Installing Application Express

1-8 Parameters for Installing Oracle REST Data Services in Standalone Mode
1-9 Miscellaneous Parameters

3-1 Parameters for batchload

5-1 Mappings of mod_plsqgl Directives to ORDS Settings

7-1 p-schema Parameter Description

8-1 List of Implicit Parameters

8-2 Pagination Implicit Parameters

C-1 Oracle REST Data Services Configuration Files Parameters
ORACLE

1-8

1-9
1-10
1-13
1-13
1-15
1-16
1-18
1-21
3-16

7-2

8-1
8-9

XV

Preface

Preface

Oracle REST Data Services Installation, Configuration, and Development Guide
explains how to install and configure Oracle REST Data Services. (Oracle REST Data
Services was called Oracle Application Express Listener before Release 2.0.6.)

" Note:

Effective with Release 3.0, the title of this book is Oracle REST Data
Services Installation, Configuration, and Development Guide. The addition of
"Development” to the title reflects the fact that material from a previous
separate unofficial "Developer's Guide" has been included in this book in
Developing Oracle REST Data Services Applications.

Topics:

e Audience

e Documentation Accessibility
* Related Documents

» Conventions

e Third-Party License Information

Audience

This document is intended for system administrators or application developers who are
installing and configuring Oracle REST Data Services. This guide assumes you are
familiar with web technologies, especially REST (Representational State Transfer),
and have a general understanding of Windows and UNIX platforms.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

ORACLE XVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information and resources relating to Oracle REST Data Services, see the
following the Oracle Technology Network (OTN) site:

http://ww. oracl e. com t echnet wor k/ devel oper -t ool s/ rest - dat a- servi ces/

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLS, code
in examples, text that is displayed on the screen, or text that you enter.

Third-Party License Information

Oracle REST Data Services contains third-party code. See the Oracle Database
Licensing Information book for notices Oracle is required to provide.

Note, however, that the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the third-party software,
and the terms contained in the following notices do not change those rights.

ORACLE' Vi

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Changes in This Release for Oracle REST Data Services Installation, Configuration, and Development Guide

Changes in This Release for Oracle REST
Data Services Installation, Configuration,
and Development Guide

There are changes in this document for recent releases:

e Changes in Oracle REST Data Services Release 18.4
* Changes in Oracle REST Data Services Release 18.3
* Changes in Oracle REST Data Services Release 18.2
* Changes in Oracle REST Data Services Release 18.1

Changes in Oracle REST Data Services Release 18.4

The following are changes in Oracle REST Data Services Installation, Configuration,
and Development Guide Release 18.4.

New Features

The following feature is new in this release:

e Support for pre-hook functions.
See Overview of Pre-hook Functions

e A new chapter, Migrating from mod_plsqgl to ORDS is included in this release.
See Migrating from mod_plsgl to ORDS

Changes in Oracle REST Data Services Release 18.3

The following are changes in Oracle REST Data Services Installation, Configuration,
and Development Guide Release 18.3.

New Features

The following features are new in this release:
e Support for OAuth 2 Client Credentials authentication.
See REST-Enabled SQL Authentication.
e Parameters for Installing into the CDB.
See Parameters for Installing into the CDB.
e The following new configuration file parameters are included in this release:

— security.requestAut henticationFunction

ORACLE XViii

Changes in This Release for Oracle REST Data Services Installation, Configuration, and Development Guide

— procedure.rest. preHook
— jdbc. auth. enabl ed

See Understanding Configurable Parameters.
The following new chapter is included in this release:

See Oracle REST Data Services Administration PL/SQL Package Reference

Other Changes

The following are the additional changes made in this release:

Updated security. request Val i dati onFuncti on and security. maxEntries
parameters.

See Understanding Configurable Parameters.

The information about consolidated list of implicit parameters used in REST
service handlers is provided in this release. See Implicit Parameters.

Starting with this release, the information about the following SQL*Plus statements
are not available as they are restricted:

- CopY
— PASSWORD
— XQUERY
— VWHENEVER OSERROR
— WHENEVER SQLERROR
See Supported SQL*Plus Statements.

Starting with this release, following list of possible values for syst em vari abl e are
not supported:

— SET XQUERY BASEURI {text}

— SET XQUERY ORDERI NG { UNORDERED | ORDERED | DEFAULT}
— SET XQUERY NODE {BYVALUE | BYREFERENCE | DEFAULT}
— SET XQUERY CONTEXT {text}

See Set System Variables.

Changes in Oracle REST Data Services Release 18.2

The following are changes in Oracle REST Data Services Installation, Configuration,
and Development Guide Release 18.2.

New Features

ORACLE

The following feature is new in this release

Oracle REST Data Service no longer installs ORDS_METADATA schema into the
CDB$ROOT container. Only the ORDS_PUBLI C_USER (common user) is installed in the
CDB$ROOT. See Using the Multitenant Architecture with Oracle REST Data
Services .

XiX

Changes in This Release for Oracle REST Data Services Installation, Configuration, and Development Guide

Desupported Feature

The following feature is no longer supported by Oracle:

» Oracle NoSQL Database feature is desupported and unavailable in this release

Other Changes

The following is an additional change in this release:

* Oracle WebLogic Server supports 12g Release 2 (12.2.1.3) or later for this
release. See

Supported Java EE Application Servers.

Changes in Oracle REST Data Services Release 18.1

The following are changes in Oracle REST Data Services Installation, Configuration,
and Development Guide Release 18.1.

New Features

The following feature is new in this release

¢ Oracle REST Data Services Database Authentication

ORACLE

XX

Installing Oracle REST Data Services

This section describes how to install and deploy Oracle REST Data Services. (REST
stands for Representational State Transfer.)

Note:

Oracle REST Data Services was called Oracle Application Express Listener
before Release 2.0.6.

Topics:

* About Oracle REST Data Services

e Understanding the Installation Process

e Configuring and Installing Oracle REST Data Services
* Running in Standalone Mode

e Deploying to Oracle WebLogic Server

e Deploying to GlassFish Server

e Deploying to Apache Tomcat

e Upgrading Oracle REST Data Services

e Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle
REST Data Services

1.1 About Oracle REST Data Services

ORACLE

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server
and nod_pl sql . The Java EE implementation offers increased functionality including a
command line based configuration, enhanced security, file caching, and RESTful web
services. Oracle REST Data Services also provides increased flexibility by supporting
deployments using Oracle WebLogic Server, GlassFish Server, Apache Tomcat, and a
standalone mode.

The Oracle Application Express architecture requires some form of web server to
proxy requests between a web browser and the Oracle Application Express engine.
Oracle REST Data Services satisfies this need but its use goes beyond that of Oracle
Application Express configurations. Oracle REST Data Services simplifies the
deployment process because there is no Oracle home required, as connectivity is
provided using an embedded JDBC driver.

1-1

Chapter 1
Understanding the Installation Process

1.2 Understanding the Installation Process

This section offers an overview of Oracle REST Data Services and provides
information about supported Java Platform, Enterprise Edition (Java EE) application
servers and system requirements.

Topics:

e Supported Java EE Application Servers

* System Requirements

1.2.1 Supported Java EE Application Servers

Oracle REST Data Services supports the following Java EE application servers:

Application Server Supported Release

Oracle WebLogic Server 12g Release 2 (12.2.1.3) or later

GlassFish Server Release 4.1.2 or later

Apache Tomcat Release 8.5 or later

1.2.2 System Requirements

Oracle REST Data Services system requirements are as follows:

* Oracle Database (Enterprise Edition, Standard Edition or Standard Edition One)
release 11.1 or later, or Oracle Database 11g Release 2 Express Edition.

e Java JDK 8 or later.

* Web browser requirements:

ORACLE

4

Microsoft Internet Explorer 8.0 or later.
Mozilla Firefox 3.0 or later.

Google Chrome 2.0 or later.

Note:

Oracle Application Express is not a prerequisite for using Oracle REST Data
Services.

If Oracle Application Express is installed and if RESTful services have been
configured during the installation (see the step "Configure RESTful Services"
in Oracle Application Express Installation Guide), then Oracle REST Data
Services supports it, including executing the RESTful services defined in
Oracle Application Express.

1-2

Chapter 1
Configuring and Installing Oracle REST Data Services

1.2.3 About Installing Oracle REST Data Services

To install Oracle REST Data Services:

1. Download, install, and configure Oracle REST Data Services.

2. Deploy Oracle REST Data Services. Deployment options include:
» Standalone Mode.
* Oracle WebLogic Server.
» GlassFish Server.

* Apache Tomcat.

Related Topics

e Running in Standalone Mode

e Deploying to Oracle WebLogic Server
e Deploying to GlassFish Server

e Deploying to Apache Tomcat

1.3 Configuring and Installing Oracle REST Data Services

ORACLE

Before you deploy Oracle REST Data Services, you must install and configure it using
a command-line interface.

Topics:

Note:

You must have the SYS AS SYSDBA account for installing, upgrading,
validating or uninstalling Oracle REST Data Services.

* About Using the Command-Line Interface

» About the Database Users Used by Oracle REST Data Services

» Privileges Granted by Oracle REST Data Services

* Downloading, Configuring and Installing Oracle REST Data Services

* Using SQL Developer Oracle REST Data Services Administration (Optional)
e Using OAuth2 in Non-HTTPS Environments

¢ See Also:

To use the Oracle REST API for JSON Data Persistence, you must also
install the Oracle REST API. See "Oracle REST API Installation” in Oracle
REST Data Services SODA for REST Developer's Guide.

1-3

Chapter 1

Configuring and Installing Oracle REST Data Services

1.3.1 About Using the Command-Line Interface

Oracle REST Data Services provides several command line commands. For example,
you can configure the location where Oracle REST Data Services stores configuration
files, configure the database Oracle REST Data Services uses, and start Oracle REST
Data Services in standalone mode.

To display a full list of available commands, go to the directory or folder containing the
ords. war file and execute the following command:

java -jar ords.war help

A list of the available commands is displayed. To see instructions on how to use each
of these commands, enter help followed by the command name, for example:

java -jar ords.war help configdir

1.3.2 About the Database Users Used by Oracle REST Data Services

Oracle REST Data Services uses the following database users:

User Name

Required

Description

APEX_PUBLI C_USER

APEX_REST PUBLI C_USER

APEX_LI STENER

ORDS_METADATA

ORACLE

Only if using Oracle
REST Data
Services with
Oracle Application
Express

Only if using
RESTful Services
defined in
Application
Express of version
5.0 or above.

Only if using
RESTful Services
defined in
Application
Express of version
5.0 or above.

Yes

If you use Oracle REST Data Services with
Oracle Application Express, this is the
database user used when invoking
PL/SQL Gateway operations, for example,
all Oracle Application Express operations.

For information on unlocking the
APEX_PUBLIC_USER, see "Configure
APEX_PUBLIC_USER Account" in Oracle
Application Express Installation Guide.

The database user used when invoking
Oracle Application Express RESTful
Services if RESTful Services defined in
Application Express workspaces are being
accessed

The database user used to query RESTful
Services definitions stored in Oracle
Application Express if RESTful Services
defined in Application Express workspaces
are being accessed

Owner of the PL/SQL packages used for
implementing many Oracle REST Data
Services capabilities. ORDS_METADATA
is where the metadata about Oracle REST
Data Services-enabled schemas is stored.

It is not accessed directly by Oracle REST
Data Services; the Oracle REST Data
Services application never creates a
connection to the ORDS_METADATA
schema. The schema password is set to a
random string, connect privilege is
revoked, and the password is expired.

1-4

ORACLE

Chapter 1
Configuring and Installing Oracle REST Data Services

User Name Required Description

ORDS_PUBLI C_USER Yes User for invoking RESTful Services in the
Oracle REST Data Services-enabled
schemas.

The APEX_<xxx> users are created during the Oracle Application Express installation
process.

1.3.3 Privileges Granted by Oracle REST Data Services

As part of the Oracle REST Data Services installation, privileges are granted to
several users:

PUBLI Cis granted SELECT on many ORDS_METADATA tables and views.

PUBLI Cis granted EXECUTE on PL/SQL packages that are available for users to
invoke.

ORDS_METADATA is granted EXECUTE on the following:
— SYS. DBVS_ASSERT

— SYS. DBM5_CRYPTO
— SYS.DBVS_LOB

— SYS. DBMS_QUTPUT

— SYS. DBMS_REQ STRY
— SYS. DBVS_SESSI ON
— SYS.DBMS_UTILITY
— SYS. VALI DATE_ORDS
— SYS. HIF

— SYS. HIP

— SYS. OM

— SYS. WPG_DOCLOAD

* ORDS_METADATA is granted SELECT on the following:

— SYS. DBA DI RECTORI ES
— SYS.DBA OBJECTS

* ORDS_METADATA s granted the following system privileges:

— ALTER USER
— CREATE TRI GGER

» ORDS_METADATA is granted the necessary object privileges to migrate Application

Express REST data to ORDS_METADATA tables.

1-5

Chapter 1
Configuring and Installing Oracle REST Data Services

1.3.4 Downloading, Configuring and Installing Oracle REST Data

Services

The procedures in this topic apply to installing Oracle REST Data Services in a
traditional (non-CDB) database.

" Note:

You must complete the configuration steps in this topic before deploying to
an application server.

To install and configure Oracle REST Data Services:

1. Download the file or ds. versi on. nunber. zi p from the Oracle REST Data Services
download page.

Note that the ver si on. nunber in the file name reflects the current release number.
2. Unzip the downloaded zip file into a directory (or folder) of your choice:
e UNIX and Linux: unzip or ds. ver si on. nunber. zi p

* Windows: Double-click the file or ds. ver si on. nunber. zi p in Windows
Explorer

3. Choose one of the following installation options:
e Advanced Installation Using Command-Line Prompts
e Silent Installation Using a Parameter File

4. You can reinstall or uninstall Oracle REST Data Services if required.

Related Topics
* Using the Multitenant Architecture with Oracle REST Data Services
* About the Database Users Used by Oracle REST Data Services

* If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

¢ See Also:
OTN_downloads

1.3.4.1 Advanced Installation Using Command-Line Prompts

ORACLE

You can perform an advanced installation in which you are prompted for the necessary
parameter values, after which your choices are stored in the par ans/

ords_par ams. properti es file under the location where you installed Oracle REST
Data Services.

To perform an advanced installation, enter the following command:

1-6

http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html

ORACLE

Chapter 1
Configuring and Installing Oracle REST Data Services

java -jar ords.war install advanced

During installation, Oracle REST Data Services checks if configuration files already
exist in your specified configuration folder:

» If configuration files do not exist in that folder, they are created (examples:
defaul ts. xml, apex_pu. xm).

» If configuration files from an earlier release exist in that folder, Oracle REST Data
Services checks if <name>_pu. xn is present; and if it is not, you are prompted for
the password for the ORDS_PUBLIC_USER account. If the configuration files
<nane>_al . xm and <name> rt.xm from Release 2.0.n exist, they are preserved.
(However, in Releases 2.0.n RESTTful Services was optional, and therefore the
files might not exist in the configuration folder.)

* If multiple configuration files exist from a previous release (examples: apex. xni ,
apex_al . xm , apex_rt.xm,sales.xnl,sales al.xm,6sales rt.xm, ...),and if
<nanme>_pu. xm does not exist, then you are prompted to select the database
configuration so that the Oracle REST Data Services schema can be created in
that database.

The following shows an example advanced installation. In this example, if you
accepted the default value of 1 for Enter 1 if you wish to start in standal one
mode or 2 to exit [1],the remaining prompts are displayed; and if you will be using
Oracle Application Express, you must specify the APEX static resources |ocation.

d:\ords> ava -jar ords.war install advanced
This Oracle REST Data Services instance has not yet been configured.
Pl ease conplete the followi ng pronpts

Enter the location to store configuration data:/path/to/config

Enter the name of the database server [l ocal host]:

Enter the database listen port [1521]:

Enter 1 to specify the database service nane, or 2 to specify the database SID [1]:
Enter the database service name: orcl

Enter 1 if you want to verify/install Oracle REST Data Services schema or 2 to skip
this step [1]:

Enter the database password for ORDS_PUBLI C_USER:

Confi rm passwor d:

Requires SYS AS SYSDBA to verify Oracle REST Data Services schena.
Enter the database password for SYS AS SYSDBA:
Confi rm passwor d:

Enter the default tablespace for ORDS_METADATA [SYSAUX:
Enter the tenporary tabl espace for ORDS_METADATA [TEMP] :
Enter the default tablespace for ORDS_PUBLI C_USER [USERS]:
Enter the tenporary tabl espace for ORDS_PUBLI C_USER [TEMP] :

Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.

If using Oracle Application Express or migrating fromnod_plsql then you nust enter
11[1]:

Enter the PL/ SQL Gateway database user name [APEX_PUBLI C_USER]:

Enter the database password for APEX_PUBLI C_USER:

Confi rm passwor d:

Enter 1 to specify passwords for Application Express RESTful Services database users
(APEX_LI STENER, APEX_REST PUBLIC USER) or 2 to skip this step [1]:

Enter the database password for APEX_LI STENER

Confi rm passwor d:

Enter the database password for APEX_REST_PUBLI C_USER:

Confi rm passwor d:

1-7

ORACLE

Enter
Enter

Ent er
Enter the HTTP port [8080]:
(03]

Enter
Enter
Enter
Enter
certificate [1]:

the HTTPS port [8443]:
the SSL host nane: nyssl host

Chapter 1
Configuring and Installing Oracle REST Data Services

1if youwishto start in standal one node or 2 to exit [1]:
the APEX static resources |ocation:/path/tolapex/imges

1if using HTTP or 2 if using HTTPS [1]:

1 if using HTTP or 2 if using HTTPS [1]:2

1 to use the self-signed certificate or 2 if you will provide the SSL

1.3.4.1.1 Descriptions for Advanced Installation Prompts

This section describes the options you can choose while performing advanced
installation of Oracle REST Data Services schema.

Table 1-1 Advanced Installation Prompts for Installing in Standalone Mode

Options

Description

This Oracl e REST Data Services

i nstance has not yet been
configured.

Pl ease conplete the foll ow ng
prompt s

Enter the location to store
configuration data:/path/to/config

Enter the nane of the database
server [l ocal host]:

Enter the database listen port
[1521]:

Enter 1 to specify the database
service name, or 2 to specify the
database SID [1]:

Enter the database service name: orcl

Enter 1 if you want to verify/
install Oracle REST Data Services
schema

or 2 to skip this step [1]:

Enter the database password for
ORDS_PUBLI C_USER:

Confi rm passwor d:

Specify the location for the ORDS
configuration files. If the location does not
exist, then it will be created.

Specify the Oracle database hostname.
Specify the Oracle database port.

Specify the Oracle database service name, if
you choose option 1. Otherwise, if you choose
option 2 then, specify the Oracle database
SID.

Specify 1 to install the Oracle REST Data
Services schema and create the Oracle REST
Data Services proxy user,

ORDS_PUBLI C_USER

Specify the proxy user, ORDS_PUBLI C_USER
and the corresponding password.

1-8

ORACLE

Chapter 1

Configuring and Installing Oracle REST Data Services

Table 1-1 (Cont.) Advanced Installation Prompts for Installing in Standalone

Mode

Options

Description

Requires SYS AS SYSDBA to verify
Oracl e REST Data Services schena.
Enter the database password for SYS
AS SYSDBA:

Confirm password:

Enter the default tabl espace for
ORDS_METADATA [SYSAUX :

Enter the tenporary tabl espace for
ORDS_METADATA [TEMP] :

Enter the default tabl espace for
ORDS_PUBLI C_USER [USERS] :

Enter the tenporary tabl espace for
ORDS_PUBLI C_USER [TEMP]

Specify the SYS AS SYSDBA password.

Note: To install the Oracle REST Data
Services schema, SYS AS SYSDBA account is
required.

Specify the default tablespace and temporary
tablespace for the Oracle REST Data Services
schema, ORDS_METADATA.

Specify the default tablespace and temporary
tablespace for the Oracle REST Data Services
proxy user, ORDS_PUBLI C_USER.

Table 1-2 Options for Configuring Application Express or Migrating from

mod_plsql

Options

Description

Enter 1 if you want to use PL/SQL
Gateway or 2 to skip this step. If
using Oracle

Appl i cation Express or nigrating
from nmod_pl sql

then you nust enter 1 [1]:

Enter the PL/SQL Gateway database
user name [APEX_PUBLI C_USER]:
Confirm password:

Enter the database password for
APEX_PUBLI C_USER:

You can perform one of the following:

e If you are using Oracle Application
Express, then specify the PL/SQL
gateway user as APEX_PUBLI C_USER and
the corresponding database password.

e If you are migrating from Oracle
mod_plsql, then specify the PL/SQL
gateway database username and
database password.

e If you are not using either Oracle
Application Express or migrating from
Oracle mod_plsql, then select 2 to skip
this step.

1-9

ORACLE

Chapter 1
Configuring and Installing Oracle REST Data Services

Table 1-2 (Cont.) Options for Configuring Application Express or Migrating

from mod_plsql

Options

Description

Enter 1 to specify passwords for
Appl i cation Express RESTful

Servi ces

dat abase user (APEX LI STENER,
APEX_REST PUBLI C USER) or 2 to skip
this step [1]:

Enter the database password for
APEX_LI STENER:

Conf i rm passwor d:

Enter the database password for
APEX_REST_PUBLI C_USER:

Conf i rm passwor d:

If you have specified APEX_PUBLIC_USER
for the PL/SQL Gateway user, then you have
the option of using Application Express
RESTful Services.

Specify 2 if you do not want to use Application
Express RESTful Services and skip this step.

For Application Express 5.0 and above, option
1is required. The database users are created
using the script apex_rest _confi g. sql
provided in the Application Express installation
media.

Table 1-3 Options for Running in Standalone Mode

Options

Description

Enter 1 if you wish to start in
standal one nmode or 2 to exit [1]:

Enter the APEX static resources
[ocation:/path/to/apex/imges

Enter 1 if using HTTP or 2 if using
HTTPS [1]:
Enter the HTTP port [8080]:

oR

Enter 1 if using HTTP or 2 if using
HTTPS [1]:2

Enter the HTTPS port [8443]:

Enter the SSL hostnanme: nyssl host
Enter 1 to use the self-signed
certificate or 2 if you wll
provide the SSL certifi

cate [1]:

Specify 1 to start in standalone mode using
the Jetty web server that is bundled with
ORDS.

Specify the location of the Application Express
images. This prompt will appear if you have
specified APEX_PUBLI C_USER for the PL/SQL
Gateway user.

Specify the HTTP port if you choose 1.

Specify the HTTPS port and the Secure
Socket Layer (SSL) hostname if you choose 2.

You have the option of using the self-signed
certificate which generates the self-signed
certificate automatically.

1-10

Chapter 1
Configuring and Installing Oracle REST Data Services

Table 1-3 (Cont.) Options for Running in Standalone Mode

Options Description

Specify the path for the SSL certificate and the
R path for SSL certificate private key if you
Enter 1 to use the self-signed choose 2.

certificate or 2 if you wll
provi de the SSL certifi

cate [1]:2

Enter the path for the SSL
Certificate:/path/to/sslcert
Enter the path for the SSL
Certificates private
key:/path/tolsslcertprivatekey

Related Topics

* About the Oracle REST Data Services Configuration Files
e Starting in Standalone Mode

» Configuring and Installing Oracle REST Data Services

» Configuring Oracle Application Express Images

* Installing Application Express and Configuring Oracle REST Data Services

1.3.4.2 Silent Installation Using a Parameter File

ORACLE

Oracle REST Data Services can be installed in silent mode without any user
interaction.

You can perform a silent installation of Oracle REST Data Services using the
parameters specified in the <pat h-t o- parans-fil e>/ ords_parans. properti es file
under the location where you installed Oracle REST Data Services. This is the default
Oracle REST Data Services parameter file. You can edit that file to change the default
values to reflect your environment and preferences. If a required parameter is missing
in the file or do not contain a value, you will be prompted for that parameter. The
Oracle REST Data Services parameter file consists of key or value pairs in the format
key=val ue.

Alternatively, you have the option of specifying your own Oracle REST Data Services
parameter file by including the - - par anet er Fi | e option. If the - - par amet er Fi | e option
is not specified, the default Oracle REST Data Services parameter file is used.

Note:

If the default Oracle REST Data Services parameter file does not exist and
the —par anet er Fi | e option is not specified, then you will be prompted for the
installation options.

1-11

Chapter 1
Configuring and Installing Oracle REST Data Services

Example commands for installing Oracle REST Data Services in silent mode:

java -jar ords.war
java -jar ords.war --paranmeterFile /path/to/params/ myown_parans. properties

java -jar ords.war install sinple
java -jar ords.war install sinple --paranmeterFile /path/to/params/
Myown_par ams. properties

" Note:

Refer to on-line help command to check for additional options available for
the install command: java —jar ords.war help install

1.3.4.2.1 Parameters for Installing in Silent Mode
This section lists the parameters required for performing installation in silent mode.
Topics:
« Parameters for Database Connection
» Parameters for Installing Oracle REST Data Services
o Parameters for Installing into the CDB
* Parameters for Installing Application Express

» Parameters for Installing in Standalone Mode

* Miscellaneous Parameters

1.3.4.2.1.1 Parameters for Database Connection

This section lists the database connection parameters that must be specified in the
properties file.

For the database connection, you must specify db. host nane and db. port database
connection parameters. In addition, specify either db. servi cenane or db. si d
parameters. If you are specifying a database connection to an Oracle 12.x PDB, then
provide the db. servi cenane parameter.

Note:

If both db. servi cenane and db. si d are present in the parameter file, then
db. servi cename will be used.

ORACLE 1-12

Table 1-4 Parameters for Database Connection

Chapter 1

Configuring and Installing Oracle REST Data Services

Key Type Description Example
db. host name string Specifies the host myhost name
system for the Oracle
database.
db. port numeric Specifies the 1521
database listener port.
db. servi cenane string Specifies the network or ¢l . exanpl e. com
service name of the
database.
db.sid string Specifies the name of orcl

the database.

1.3.4.2.1.2 Parameters for Installing Oracle REST Data Services

ORACLE

This section lists the parameters required for installing Oracle REST Data Services
schema.

To install Oracle REST Data Services schema, following parameters must be
specified:

e SYS username and password
e ORDS_PUBLIC_USER password

» Existing default and temporary tablespaces for the ORDS_METADATA schema
and ORDS_PUBLIC_USER.

Note:

If all of the default and temporary tablespace parameters are omitted in the
Oracle REST Data Services parameter file, then the Oracle database default
and temporary tablespaces are used.

Table 1-5 Parameters for Installing Oracle REST Data Services

___|
Key Type Description Example

rest.services.ord boolean
s. add

Specifies whetherto true
install the Oracle

REST Data Services
schema. Set the value

to true.

Supported values:

e true

« false (default)

user. public. passw string Specifies the passwor d
ord password for
ORDS_PUBLIC_USE
R.

1-13

Chapter 1
Configuring and Installing Oracle REST Data Services

Table 1-5 (Cont.) Parameters for Installing Oracle REST Data Services
|

Key Type Description Example
schena. t abl espace string Specifies the SYSAUX
.defaul t ORDS_METADATA

default tablespace.
Specify an existing
default tablespace.

schema. t abl espace string Specifies the TEMP

.tenp ORDS_METADATA
temporary tablespace.
Specify an existing
temporary tablespace.

user. tabl espace. d string Specifies the SYSAUX
efaul t ORDS_PUBLIC_USE

R default tablespace.

Specify an existing

default tablespace.

user.tabl espace.t string Specifies the TEMP
enp ORDS_PUBLIC_USE
R temporary
tablespace. Specify an
existing temporary
tablespace.

bequeat h. connect boolean Specifies whetherto true
connect as bequeath.
Supported values:
e true
» false (default)

Related Topics

* Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle
REST Data Services

1.3.4.2.1.3 Parameters for Installing into the CDB

This section lists the parameters required for installing Oracle REST Data Services
into the CDB and all of its PDBs.

Oracle database 12.x provides you the option of installing Oracle REST Data Services
in the CDB and all of its PDBs.

" Note:

Provide the CDB service name for db. ser vi cenane or si d for db. si d.

ORACLE 1-14

Chapter 1
Configuring and Installing Oracle REST Data Services

Table 1-6 Parameters for Installing into the CDB

Key

Type

Description Example

pdb. open. asneeded

pdb. open. readwr i t
e

pdb. ski p. cl osed

pdb. ski p. readonl y

pdb. excl ude

boolean

string

boolean

boolean

string

Specifies whetherto true

open all PDBs in read

write mode if their

status is either closed

or read only. If the

value is set to true,

then the following

PDB parameters are

ignored:

* pdb. open. readw
rite

¢ pdb. skip.close
d

¢ pdb. skip. reado
nly

Supported values:

e true

e false (default)

Specifies the list of
PDB service names to
open for read write
mode if their status is
read only.

PDB1, PDB2, MYPDB

Specifies whetherto true
skip PDBs that are

closed.

Supported values:

o true

« false (default)

Specifies whetherto true
skip PDBs with read

only status.

Supported values:

o true

« false (default)
Specifies the list of

PDB service names to
exclude for install.

PDB3, PDB4, PDB_X

Related Topics

* Installing Oracle REST Data Services in a CDB Environment
This section describes installing Oracle REST Data Services into a multitenant
container database (CDB) environment.

1.3.4.2.1.4 Parameters for Installing Application Express

This section lists the parameters for using Application Express.

ORACLE

1-15

ORACLE

Chapter 1
Configuring and Installing Oracle REST Data Services

Table 1-7 Parameters for Installing Application Express

___|
Key Type Description Example

pl sql . gat eway. add boolean Specifies whetherto true
configure Oracle
REST Data Services
for Application
Express. Set this
value to true.

Supported values:

o true
« false (default)
db. user nanme string Specifies the PL/SQL APEX_PUBLI C_USER

gateway username.
For Application
Express, you must
specify
APEX_PUBLIC_USE
R.

db. passwor d string Specifies the passwor d
password for
APEX_PUBLIC_USE
R. The password must
match
APEX_PUBLIC_USE
R database password.

rest.services. ape boolean Specifies whetherto true
X. add configure Oracle

REST Data Services

for Application

Express RESTful

Services.

Supported values:

e ftrue

- false (default)
Set this value to true if

you want to use APEX
RESTful Services.

user.apex. |istene string Specifies the password

r.password password for
APEX_LISTENER. If

rest.services. ape
X. add is set to true,
you must provide a
password for
APEX_LISTENER.
The password must
match
APEX_LISTENER
database password.
Otherwise, if
rest.services. ape
X. add is set to false,
omit this parameter.

1-16

ORACLE

Chapter 1
Configuring and Installing Oracle REST Data Services

Table 1-7 (Cont.) Parameters for Installing Application Express

Key Type

Description Example

user. apex. rest pub string
lic.password

Specifies the passwor d
password for
APEX_REST_PUBLIC
_USER. If
rest.services. ape
X. add is set to true,
you must provide a
password for
APEX_REST_PUBLIC
_USER. The
password must match
APEX_REST_PUBLIC
_USER database
password. Otherwise,
if

rest.services. ape
X. add is set to false,
omit this parameter.

Example 1-1 Parameters to configure for Application Express and APEX
RESTful Services and run in standalone mode

Following example shows parameters to install Oracle REST Data Services, configure
for Application Express and APEX RESTful Services and run in standalone mode

using http:

" Note:

db. host name=| ocal host
db. passwor d=password
db. port=1521

Passwords in the parameter file will be encrypted during installation. The
encrypted passwords are stored in the parameter file. For
example,user. publ i c. passwor d=@585904F6C9B442532D5212962835D00C8.

db. servi cenane=or cl . exanpl e. com

db. user name=APEX_PUBLI C_USER

pl sqgl . gat eway. add=t r ue
rest.services. apex. add=true
rest.services. ords. add=true

schema. t abl espace. def aul t =SYSAUX
schema. t abl espace. t emp=TEMP

st andal one. htt p. port=8080

st andal one. node=t r ue

standal one. stati c. i mages=/pat h/to/ i mages
st andal one. use. htt ps=fal se

user. apex. | i st ener. passwor d=password
user. apex. restpublic. passwor d=passwor d

1-17

user. publ i c. passwor d=passwor d
user. t abl espace. def aul t =SYSAUX

user. tabl espace. t enp=TEWP

¢ See Also:

Chapter 1

Configuring and Installing Oracle REST Data Services

1.3.4.2.1.5 Parameters for Installing in Standalone Mode

* Forinformation on APEX_PUBLIC_USER, refer to section, Configure
APEX_PUBLIC_USER Account in Oracle Application Express
Installation Guide.

e Forinformation on APEX_LISTENER and
APEX_REST_PUBLIC_USER, refer to section, Configuring RESTful
Services with Oracle REST Data Services in Oracle Application Express
Installation Guide.

This section lists parameters for running Oracle REST Data Services in standalone

mode.

Table 1-8 Parameters for Installing Oracle REST Data Services in Standalone

Mode
___|
Key Type Description Example
st andal one. node boolean Indicates whetherto true
use the web
application server
(Jetty) that is included
with Oracle REST
Data Services.
Supported values:
e ftrue
- false (default)
standal one. http.p numeric Specifies the HTTP 8080
ort listener port.
st andal one. use. ht boolean Specifies whetherto true
t ps use https.
st andal one. https. numeric Specifies HTTPS 8443
port listener port.
st andal one. ssl . ho string Specifies the Secure nysecur ehost
st Socket Layer (SSL)

ORACLE

certificate hostname.
You must specify this
option if you are using
https.

1-18

ORACLE

Chapter 1
Configuring and Installing Oracle REST Data Services

Table 1-8 (Cont.) Parameters for Installing Oracle REST Data Services in

Standalone Mode

Key Type

Description Example

st andal one. use. ss boolean
|.cert

st andal one. ssl . ce string
rt.path

st andal one. ssl . ke string
y. path

standal one. static string
. i mages

Specifies whether you true
will provide the SSL
certificate. If this value

is set to true, you must

specify the

st andal one. ssl . ce
rt.path and

st andal one. ssl . ke
y. pat h.

Specifies the SSL
certificate path. If you
are providing the SSL
certificate, you must
specify the certificate
location.

Specifies the SSL
certificate key path. If
you are providing the
SSL certificate, you
must specify the
certificate key
location.

I path/tolssl/cert

| path/tol ssl/key

Specifies the location / pat h/ t o/ apex/
of Application Express j mages

images. If you are

using Application

Express, specify the

location of Application

Express images.

" Note:

On Microsoft Windows systems, if you specify an Application Express static
images location for st andal one. st ati c. i mages, use the backslash character
(/) before the colon, and use a forwardslash for the folder separator. For
example, st andal one. static.i mages=d\:/test/apex426/ apex/i mages/

Example 1-2 Parameters to run in standalone mode using http

Following code snippet shows an example of the list of parameters to specify for
installing Oracle REST Data Services and running in standalone mode using http:

db. host nane=Il ocal host
db. port=1521

db. servi cename=or cl . exanpl e. com

pl sql . gat eway. add=f al se

rest. services. apex. add=f al se
rest.services. ords. add=true

1-19

Chapter 1
Configuring and Installing Oracle REST Data Services

schenma. t abl espace. def aul t =SYSAUX
schema. t abl espace. t enp=TEMP
standal one. http. port=8080
standal one. node=t rue

st andal one. use. htt ps=f al se

user. publ i c. passwor d=passwor d
user. t abl espace. def aul t =SYSAUX
user. tabl espace. t enp=TEWP

Example 1-3 Parameters to run in standalone mode using https and providing
the ssl certificate paths

Following code snippet shows an example of the list of parameters to specify for
installing and running Oracle REST Data Services in standalone mode using https and
providing the ssl certificate paths:

db. host name=| ocal host

db. port=1521

db. servi cename=or cl . exanpl e. com

pl sql . gat eway. add=f al se

rest. services. apex. add=f al se
rest.services.ords. add=true

schena. t abl espace. def aul t =SYSAUX

schena. t abl espace. t enp=TEMP

st andal one. htt ps. port=8443

st andal one. node=t rue

standal one. ssl . cert. path=/path/to/ssl/cert
st andal one. ssl . host =nmysecur ehost

st andal one. ssl . key. pat h=/ pat h/ t o/ ssl / key
standal one. use. https=true

standal one. use. ssl . cert=true

user. publ i c. passwor d=passwor d

user. t abl espace. def aul t =SYSAUX

user. t abl espace. t enp=TEMP

Related Topics

* Running in Standalone Mode

1.3.4.2.1.6 Miscellaneous Parameters

This section lists some miscellaneous parameters.

ORACLE 1-20

Chapter 1
Configuring and Installing Oracle REST Data Services

Table 1-9 Miscellaneous Parameters

___|
Key Type Description Example

m grate. apex. rest boolean Specifies whetherto true
migrate APEX
RESTful Services
definitions to Oracle
REST Data Services
schema.

Supported values:
e true
- false (default)

1.3.4.3 Validating the Oracle REST Data Services Installation

If you want to check that the Oracle REST Data Services installation is valid, go to the
directory or folder containing the or ds. war file and enter the val i dat e command in the
following format:

java -jar ords.war validate [--database <dbnane>]

Note:

When you install Oracle REST Data Services, it attempts to find the Oracle
Application Express (APEX) schema and creates a view. This view joins the
relevant tables in the APEX schema to the tables in the Oracle REST Data
Services schema. If you install Oracle REST Data Services before APEX,
then Oracle REST Data Services cannot find the APEX schema and it
creates a stub view in place of the missing APEX tables.

Oracle highly recommends that you install Oracle REST Data Services after
APEX to ensure that the APEX objects, which Oracle REST Data Services
needs to query, are present. If you install Oracle REST Data Services before
APEX, then use the val i dat e command to force Oracle REST Data Services
to reconstruct the queries against the APEX schema.

If - - dat abase is specified, <dbnane> is the pool name that is stored in the Oracle
REST Data Services configuration files.

You are prompted for any necessary information that cannot be obtained from the
configuration of pool name, such as host, port, SID or service name, and the name
and password of a user with SYSDBA privilege (such as SYS AS SYSDBA).

Note:

If the validate command is run against a CDB, then it will validate the CDB
and all of its PDBs.

ORACLE 1-21

Chapter 1
Configuring and Installing Oracle REST Data Services

1.3.4.4 If You Want to Reinstall or Uninstall (Remove) Oracle REST Data

Services

If you want to reinstall Oracle REST Data Services, you must first uninstall the existing
Oracle REST Data Services; and before you uninstall, ensure that Oracle REST Data
Services is stopped.

Uninstalling Oracle REST Data Services removes the ORDS_METADATA schema,
the ORDS_PUBLIC_USER user, and Oracle REST Data Services-related database
objects (including public synonyms) if they exist in the database. To uninstall (remove,
or deinstall) Oracle REST Data Services, go to the directory or folder containing the
ords. war file and enter the uni nstal | command as follows:

java -jar ords.war uninstall

The uni nstal | command prompts you for some necessary information (host, port, SID
or service name, username, password).

See Also:

To uninstall Oracle REST Data Services from a CDB, see Using the
Multitenant Architecture with Oracle REST Data Services .

1.3.5 Using SQL Developer Oracle REST Data Services
Administration (Optional)

This section describes how to use Oracle SQL Developer to administer Oracle REST
Data Services.

¢ See Also:

"Oracle REST Data Services Administration" in Oracle SQL Developer
User's Guide

Topics:
e About SQL Developer Oracle REST Data Services Administration

e Configuring an Administrator User

1.3.5.1 About SQL Developer Oracle REST Data Services Administration

ORACLE

Oracle SQL Developer enables you to administer Oracle REST Data Services using a
graphical user interface. To take full advantage of these administration capabilities,
you must use SQL Developer Release 4.1 or later. Using SQL Developer for Oracle
REST Data Services administration is optional.

1-22

Chapter 1
Configuring and Installing Oracle REST Data Services

Using this graphical user interface, you can update the database connections, JDBC
settings, URL mappings, RESTful connections, security (allowed procedures, blocked
procedures, validation function and virus scanning), Caching, Pre/Post Processing
Procedures, Environment, and Excel Settings. Oracle SQL Developer also provides
statistical reporting, error reporting, and logging.

" See Also:

"Oracle REST Data Services Administration" in Oracle SQL Developer
User's Guide

1.3.5.2 Configuring an Administrator User

If you want to be able to administer Oracle REST Data Services using SQL Developer,
then you must configure an administrator user as follows:

e Execute the following command:

java -jar ords.war user adminlistener "Listener Administrator"
e Enter a password for the admi nl i st ener user.
e Confirm the password for the admi nl i st ener user.

e If you are using Oracle REST Data Services without HTTPS, follow the steps listed
under the section,Using OAuth2 in Non-HTTPS Environments.

When using SQL Developer to retrieve and/or upload an Oracle REST Data Services
configuration, when prompted, enter the credentials provided in the preceding list.

1.3.6 Using OAuth2 in Non-HTTPS Environments

ORACLE

RESTful Services can be protected with the OAuth2 protocol to control access to
nonpublic data. To prevent data snooping, OAuth2 requires all requests involved in the
OAuth2 authentication process to be transported using HTTPS. The default behavior
of Oracle REST Data Services is to verify that all OAuth2 related requests have been
received using HTTPS. It will refuse to service any such requests received over HTTP,
returning an HTTP status code of 403 Forbidden.

This default behavior can be disabled in environments where HTTPS is not available
as follows:

1. Locate the folder where the Oracle REST Data Services configuration is stored.

2. Edit the file named def aul ts. xni .

3. Add the following setting to the end of this file just before the </ properti es> tag.
<entry key="security.verifySSL">fal se</entry>

4. Save the file.

5. Restart Oracle REST Data Services if it is running.

Note that it is only appropriate to use this setting in development or test environments.
It is never appropriate to use this setting in production environments because it will
result in user credentials being passed in clear text.

1-23

Chapter 1
Running in Standalone Mode

Note:

Oracle REST Data Services must be restarted after making configuration
changes. See your application server documentation for information on how
to restart applications.

1.4 Running in Standalone Mode

Although Oracle REST Data Services supports the Java EE application servers, you
also have the option of running in standalone mode. This section describes how to run
Oracle REST Data Services in standalone mode.

Standalone mode is suitable for development use and is supported in production
deployments. Standalone mode, however, has minimal management capabilities when
compared to most Java EE application servers and may not have adequate
management capabilities for production use in some environments.

Topics:

e Starting in Standalone Mode

e Stopping the Server in Standalone Mode

e Configuring a Doc Root for Non-Application Express Static Resources

Related Topics
e Supported Java EE Application Servers

1.4.1 Starting in Standalone Mode

ORACLE

To launch Oracle REST Data Services in standalone mode:
1. To start Standalone mode, execute the following command:

java -jar ords.war standal one

If you have not yet completed the standalone configuration, you are prompted to
do so.

Q) Tip:

To see help on standalone mode options, execute the following
command:

java -jar ords.war hel p standal one

¢ Note:

If you want to use RESTful services that require secure access, you
should use HTTPS.

1-24

Chapter 1
Running in Standalone Mode

2. When prompted, specify the location of the folder containing the Oracle

Application Express static resources used by Oracle REST Data Services, or
press Enter if you do not want to specify this location.

3. When prompted select if you want Oracle REST Data Services to generate a self-

signed certificate automatically or if you want to provide your own certificate. If you
want to use your own certificate, provide the path for the Certificate and DER
encoded related private key when prompted.

If the private key has not already been converted to DER, see section, Converting
a Private Key to DER (Linux and Unix) before you enter the values here.

You are only prompted for these values the first time you launch standalone mode.

Note:

Ensure that no other servers are listening on the port you choose. The
default port 8080 is commonly used by HTTP or application servers,
including the embedded PL/SQL gateway; the default secure port 8443 is
commonly used by HTTPS.

Related Topics
* Using OAuth2 in Non-HTTPS Environments
* Converting a Private Key to DER (Linux and Unix)

1.4.1.1 Converting a Private Key to DER (Linux and Unix)

ORACLE

Usually, you would have created a private key and a Certificate Signing Request
before obtaining your signed certificate. The private key needs to be converted into
DER in order for Oracle REST Data Services to read it properly.

For example, assume that the original private key was created using the OpenSSL tool
with a command similar to either of the following:

openssl req -new -newkey rsa: 2048 -nodes -keyout yourdonain. key -out
your donai n. csr

or

openssl genrsa -out private.em 2048

In this case, you must run a command similar to the following to convert it and remove
the encryption: openssl pkcs8 -topk8 -inform PEM -outform DER -in yourdomain.key -
out yourdomain.der -nocrypt

openssl pkcs8 -topk8 -inform PEM -outform DER -in yourdonain. key -out
your donai n. der - nocrypt

After doing this, you can include the path to your donai n. der when prompted by
Oracle REST Data Services, or you can modify the following entries in conf/ or ds/
st andal one/ st andal one. properties:

1-25

Chapter 1
Running in Standalone Mode

ssl.cert=<path to yourdomain.crt>
ssl.cert.key=<path to yourdonai n. der>
ssl . host =your donmai n

Also, ensure that j etty. secure. port is set.

1.4.2 Stopping the Server in Standalone Mode

To stop the Oracle REST Data Services server in standalone mode, at a command
prompt press Ctrl+C.

1.4.3 Configuring a Doc Root for Non-Application Express Static

Resources

ORACLE

You can configure a doc root for standalone mode to deploy static resources that are
outside the /i folder that is reserved for Application Express static resources.

To do so, specify the - - doc- r oot parameter with the standalone mode command, as
in the following example:

java -jar ords.war standal one --doc-root /var/ww/ htm

The preceding example makes any resource located within / var / ww/ ht m available
under http://server:port/. For example, if the file / var/ waw/ ht m / hel | 0. t xt exists,
it will be accessible at http://server:port/hello.txt.

The value specified for - - doc- r oot is stored in ${ confi g. di r}/ or ds/ st andal one/

st andal one. properti es in the st andal one. doc. r oot property. If a custom doc root is
not specified using - - doc- r oot , then the default doc-r oot value of ${config.dir}/
ords/ standal one/ doc_r oot is used. Any file placed within this folder will be available
at the root context.

This approach has the following features and considerations:

 HTML resources can be addressed without their file extension. For example, if a
file named hel | 0. ht M exists in the doc root, it can be accessed at the URI
http://server:port/hello.

e Attempts to address a HTML resource with its file extension are redirected to the
location without an extension. For example, if the URI http: //server: port/
hel I 0. ht m is accessed, then the client is redirected to htt p: / / server: port/
hel | 0.

The usual practice is to serve HTML resources without their file extensions, so this
feature facilitates that practice, while the redirect handles the case where the
resource is addressed with its file extension.

* Index pages for folders are supported. If a folder contains a file named i ndex. ht m
or i ndex. ht m then that file is used as the index page for the folder. For example,
if / var/ ww/ ht i contains / abc/ xyz/ i ndex. ht nl , then accessing http://
server:port/abc/ xyz/ displays the contents of i ndex. htm .

* Addressing a folder without a trailing slash causes a redirect to the URI with a
trailing slash. For example, if a client accesses http://server: port/abc/ xyz,
then the server issues a redirect to htt p: // server: port/abc/ xyz/.

1-26

Chapter 1
Deploying to Oracle WebLogic Server

* Resources are generated with weak etags based on the modification stamp of the
file and with a Cache Control header that causes the resources to be cached for 1
hour.

1.5 Deploying to Oracle WebLogic Server

This section describes how to deploy Oracle REST Data Services on Oracle WebLogic
Server. It assumes that you have completed the installation process and are familiar
with Oracle WebLogic Server. If you are unfamiliar with domains, managed servers,
deployment, security, users and roles, refer to your Oracle WebLogic Server
documentation.

Topics:

* About Oracle WebLogic Server

* Downloading, Installing, and Configuring Oracle REST Data Services

* Configuring Oracle Application Express Images

* Launching the Administration Server Console

* Installing the Oracle WebLogic Server Deployment

» Configuring WebLogic to Handle HTTP Basic Challenges Correctly

* Verifying the State and Health of ords and i

1.5.1 About Oracle WebLogic Server

You can download Oracle WebLogic Server from Oracle Technology Network.

To learn more about installing Oracle WebLogic Server, see Oracle Fusion
Middleware Getting Started With Installation for Oracle WebLogic Server and Oracle
Fusion Middleware Installation Guide for Oracle WebLogic Server.

" See Also:

webl ogi c_downl oads

1.5.2 Downloading, Installing, and Configuring Oracle REST Data

Services

You must complete this step before deploying Oracle REST Data Services on
WebLogic.

Related Topics

e Configuring and Installing Oracle REST Data Services

1.5.3 Configuring Oracle Application Express Images

ORACLE

If you are using Oracle Application Express, you must create a web archive to
reference the Oracle Application Express, image files. However, if you are not using

1-27

http://www.oracle.com/technetwork/middleware/weblogic/downloads/index.html

Chapter 1
Deploying to Oracle WebLogic Server

Oracle Application Express, you may skip the rest of this section about configuring
Oracle Application Express images.

Before you begin, you must create a web archive (WAR) file to reference the Oracle
Application Express image files. Use the static command to create a web archive file
named i . war:

java -jar ords.war static <apex directory>\inmages

Where:
e <apex directory>is the directory location of Oracle Application Express.

This command runs the st ati ¢ command contained in the or ds. war file. It packages
the Application Express static images into an archive file named i . war .

The created images WAR does not contain the static resources; instead, it references
the location where the static resources are stored. Therefore the static resources must
be available at the specified path on the server where the WAR is deployed.

Tip:

Usejava -jar ords.war help static to see the full range of options for
the st ati ¢ command.

Use the i . war file to deploy to WebLogic in the following steps:

1. Launching the Administration Server Console

2. Installing the Oracle WebLogic Server Deployment

3. Configuring WebLogic to Handle HTTP Basic Challenges Correctly

1.5.4 Launching the Administration Server Console

ORACLE

To launch the Administration Server console:

1. Start an Administration Server.

2. Launch the WebLogic Administration Console by typing the following URL in your
web browser:

htt p: // <host >: <port >/ consol e

Where:
» <host > is the DNS name or IP address of the Administration Server.

e <port>isthe port on which the Administration Server is listening for requests
(port 7001 by default).

3. Enter your WebLogic Administrator username and password.

4. If your domain is in Production mode, click the Lock & Edit button on the left-pane
below the submenu Change Center. If your domain is in Development mode, this
button does not appear.

1-28

Chapter 1
Deploying to Oracle WebLogic Server

1.5.5 Installing the Oracle WebLogic Server Deployment

ORACLE

Tip:

The Oracle REST Data Services files, ords. war and i . war, must be
available before you start this task.

To install the deployment:

1.

Go to the WebLogic Server Home Page. Below Domain Configuration, select
Deployments.

The Summary of Deployments is displayed.
Click Install.
Specify the location of the or ds. war file and click Next.

The ords. war file is located in the folder where you unzipped the Oracle REST
Data Services ZIP file.

Tip:

WebLogic Server determines the context root from the file name of a
WAR archive. If you need to keep backward compatibility, so that URLs
are of the form http://server/apex/... rather than http://server/ords/..., then
you must rename or ds. war to apex. war before the deployment.

The Install Application assistant is displayed.
Select Install this deployment as an application and click Next.

Select the servers and/or clusters to which you want to deploy the application or
module and click Next.

Tip:

If you have not created additional Managed Servers or clusters, you do
not see this assistant page.

In the Optional Settings, specify the following:
a. Name - Enter:

ords
b. Security - Select the following:

Custom Roles: Use roles that are defined in the Administration Console;
use policies that are defined in the deployment descriptor

c. Source accessibility - Select:

Use the defaults defined by the deployment's targets

1-29

Chapter 1
Deploying to Oracle WebLogic Server

7. Click Next.
A summary page is displayed.
8. Under Additional configuration, select one of the following:

* Yes, take me to the deployment's configuration - Displays the
Configuration page.

* No I will review the configuration later - Returns you to the Summary of
Deployments page.

9. Review the summary of configuration settings that you have specified.
10. Click Finish.
11. Repeat the previous steps to deploy the i . war file.
In the optional settings, specify the following:
a. Name - Enter:
i
b. Security - Select:

Custom Roles: Use roles that are defined in the Administration Console;
use policies that are defined in the deployment descriptor

c. Source Accessibility - Select:
Use the defaults defined by the deployment's targets

12. If your domain is in Production Mode, then on the Change Center click Activate
Changes.

Related Topics
* Configuring and Installing Oracle REST Data Services

» Configuring Oracle Application Express Images

1.5.6 Configuring WebLogic to Handle HTTP Basic Challenges

Correctly

ORACLE

By default WebLogic Server attempts to intercept all HTTP Basic Authentication
challenges. This default behavior needs to be disabled for Oracle REST Data Services
to function correctly. This is achieved by updating the enf or ce- val i d- basi c- aut h-
credenti al s flag. The WebLogic Server Administration Console does not display the
enf or ce-val i d- basi c-aut h-credenti al s setting. You can use WebLogic Scripting
Tool (WLST) commands to check, and edit the value in a running server.

The following WLST commands display the domain settings:
connect (' webl ogi ¢', " weblogic','t3://1ocal host:7001")
cd(" SecurityConfiguration")

cd(' nydonain')

I's()

1-30

Chapter 1
Deploying to GlassFish Server

If the domain settings displayed, contains the following entry:

-r-- Enf or ceVal i dBasi cAut hCredenti al s true

Then you must set this entry to f al se.

To set the entry to f al se, use the WLST commands as follows:

connect (' webl ogi ¢', 'weblogic', '"t3://local host:7001")
edit()

startEdit()

cd(" SecurityConfiguration")

cd(' nydonain")

set (' EnforceVal i dBasi cAuthCredentials', ' fal se')

save()

activate()

di sconnect ()

exit()

" Note:

WebLogic Server must be restarted for the new settings to take effect.

In the preceding example:

* webl ogi c is the WebLogic user having administrative privileges
e webl ogi ¢ is the password

e nydomai n is the domain

e The AdminServer is running on the | ocal host and on port 7001
Related Topics

e WebLogic Server Command Reference

1.5.7 Verifying the State and Health of ords and |

In the Summary of Deployments, select the Control tab and verify that both the or ds
and i State are Active and the Health status is OK.

If or ds and/ori are not Active, then enable them. In the Deployments table, select the
check box next to or ds and/or i . Click Start and select Servicing all requests to
make them active.

1.6 Deploying to GlassFish Server

This section describes how to deploy Oracle REST Data Services on GlassFish
Server.

ORACLE 1-31

https://docs.oracle.com/cd/E13222_01/wls/docs81/admin_ref/weblogicServer.html

Chapter 1
Deploying to GlassFish Server

< Note:

GlassFish Server support will be desupported in a future release. Oracle
recommends that you use the following alternatives instead:

e Oracle WebLogic Server
¢ Oracle REST Data Services standalone mode

e Apache Tomcat

Topics:

* About GlassFish Server

e Downloading, Installing, and Configuring Oracle REST Data Services
e Configuring Oracle Application Express Images

e Launching the Administration Server Console

e Installing the GlassFish Server Deployment

Q Tip:

This section assumes that you have completed the installation process and
are familiar with GlassFish Server. If you are unfamiliar with domains,
servers, applications, security, users and roles, see your GlassFish Server
documentation.

1.6.1 About GlassFish Server

You can install Oracle REST Data Services with GlassFish Server. GlassFish Server
is available for download from the Oracle Technology Network.

Related Topics

* Downloading, Installing, and Configuring Oracle REST Data Services

¢ See Also:

oracl e _glassfish server

1.6.2 Downloading, Installing, and Configuring Oracle REST Data
Services

You must complete this step before deploying Oracle REST Data Services on
GlassFish.

ORACLE 1-32

http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html

Chapter 1
Deploying to GlassFish Server

1.6.3 Configuring Oracle Application Express Images

If you are using Oracle Application Express, you must create a web archive to
reference the Oracle Application Express, image files. However, if you are not using
Oracle Application Express, you may skip the rest of this section about configuring
Oracle Application Express images.

Before you begin, you must create a web archive (WAR) file to reference the Oracle
Application Express image files. Use the st ati ¢ command to create a web archive file
named i . war:

java -jar ords.war static <apex directory>\inmages

Where:

e <apex directory>is the directory location of Oracle Application Express.

The created images WAR does not contain the static resources; instead, it references
the location where the static resources are stored. Therefore the static resources must
be available at the specified path on the server where the WAR is deployed.

Tip:

Usejava -jar ords.war help static tosee the full range of options for
the st ati ¢ command.

Use the i . war file to deploy to GlassFish in the following steps:

1. Launching the Administration Server Console

2. Installing the GlassFish Server Deployment

1.6.4 Launching the Administration Server Console

At least one GlassFish server domain must be started before you start the
Administration Console.

To launch the Administration Console:

1. Launch the Administration Console by typing the following URL in your web
browser:

http://local host: 4848

2. If prompted, log in to the Administration Console.

Tip:

You are prompted to log in if you chose to require an administration
password at the time GlassFish server was installed.

ORACLE 1-33

Chapter 1
Deploying to GlassFish Server

1.6.5 Installing the GlassFish Server Deployment

Tip:

The Oracle REST Data Services files, ords. war and i . war must be available
before you start this task.

To install the deployment:

1.

On the navigation tree, click the Application node.

The Applications page is displayed.

Click the Deploy button.

The Deploy Applications or Modules page is displayed.

Select Packaged File to be Uploaded to the Server and click Browse.
Navigate to the location of the or ds. war file, select the file, and click Open.
The Deploy Applications or Modules page is displayed.

On the Deploy Applications or Modules page, specify the following:

a. Type: Web Application

b. Context Root: ords

Tip:

The Context Root value defaults to ords. However you can change it
to apex if you need to keep backward compatibility, so that URLs are
of the form http://server/apex/... rather than http.//server/ords/....

c. Application Name: ords
d. Status: Enabled

e. Description: Oracle REST Data Services

f. Accept all other default settings and click OK.

Repeat the previous steps to deploy the i . war file. Clear the Context Root field so
that the context root set in the sun-web. xm is used.

The Applications page is displayed. A check mark should appear in the Enabled field
for ords

ORACLE

Tip:

If a check mark does not appear in the Enabled column for ords, then select
the check box next to ords and click Enable.

1-34

Chapter 1
Deploying to Apache Tomcat

Related Topics
* Configuring and Installing Oracle REST Data Services

» Configuring Oracle Application Express Images

1.7 Deploying to Apache Tomcat

This section describes how to deploy Oracle REST Data Services on Apache Tomcat.
Topics:

* About Apache Tomcat

* Downloading, Installing, and Configuring Oracle REST Data Services

* Configuring Oracle Application Express Images

* Installing the Apache Tomcat Deployment

1.7.1 About Apache Tomcat

Q Tip:

This section assumes that you have completed the installation process and
are familiar with Apache Tomcat. If you are unfamiliar with domains, servers,
applications, security, users and roles, see your Apache Tomcat
documentation.

You can download Apache Tomcat from:

¢ See Also:

apache_tomcat_80

1.7.2 Downloading, Installing, and Configuring Oracle REST Data
Services

You must complete this step before deploying Oracle REST Data Services on Apache
Tomcat.

Related Topics

* Configuring and Installing Oracle REST Data Services

1.7.3 Configuring Oracle Application Express Images

If you are using Oracle Application Express, you must create a web archive to
reference the Oracle Application Express, image files. However, if you are not using
Oracle Application Express, you may skip the rest of this section about configuring
Oracle Application Express images.

ORACLE' 1-35

https://tomcat.apache.org/download-80.cgi

Chapter 1
Upgrading Oracle REST Data Services

To configure Oracle Application Express Images on Apache Tomcat:

e Copy the contents of the <apex di rect ory>/ i nages folder to <Tontat
di rect ory>/ webapps/i/.

Where:

— <apex directory>is the directory location of the Oracle Application Express
distribution.

— <Tontat directory>is the folder where Apache Tomcat is installed.

1.7.4 Installing the Apache Tomcat Deployment

/) Tip:

The Oracle REST Data Services file or ds. war must be available before you
start this task.

To install the Apache Tomcat deployment:

1. Move the ords. war file into the webapps folder where Apache Tomcat is installed.

Tip:

Apache Tomcat determines the context root from the file name of a WAR
archive. If you need to keep backward compatibility, so that URLs are of
the form http://server/apex/... rather than http://server/ords/..., then you
must rename or ds. war to apex. war before moving it into to the webapps
folder.

2. Access Oracle Application Express by typing the following URL in your web
browser:

http://<host name>: <port >/ or ds/
Where:

* <host name> is the name of the server where Apache Tomcat is running.

e <port>is the port number configured for Apache Tomcat application server.

Related Topics
* Configuring and Installing Oracle REST Data Services

» Configuring Oracle Application Express Images

1.8 Upgrading Oracle REST Data Services

If you want to upgrade to a new release of Oracle REST Data Services, you must do
the following:

1. Stop the Oracle REST Data Services instance.

ORACLE 1-36

ORACLE

2.

Chapter 1
Upgrading Oracle REST Data Services

» If you are running Oracle REST Data Services on your application server
(such as Oracle WebLogic Server, GlassFish Server, or Apache Tomcat), stop
Oracle REST Data Services.

* If you are running Oracle REST Data Services in standalone mode, refer to
section, Stopping the Server in Standalone Mode.

Go to the folder where you unzipped the new Oracle REST Data Services release
distribution.

Enter the following on the command line:

java -jar ords.war install advanced

or
java -jar ords.war

When prompted for the configuration folder, use the configuration folder where the
Oracle REST Data Services configuration files are stored. (The configuration
location will be stored in the or ds. war file.)

» If you specified an existing Oracle REST Data Services configuration folder
that contains the configuration files, Oracle REST Data Services will attempt to
connect to each database defined in the configuration folder and check the
installed version.

» If you specified an Oracle REST Data Services configuration folder that does
not exist, you will be prompted for the database connection information, the
ORDS_PUBLIC_USER credentials, and additional configuration information.
Oracle REST Data Services will attempt to connect to this database and check
the installed version.

When Oracle REST Data Services checks the installed version, it does the following,
depending on whether an earlier 3.0.n version is already installed in the database.

If the installed version is an earlier 3.0.n version of Oracle REST Data Services,
you are prompted for the SYS credentials to enable Oracle REST Data Services to
apply the in-place upgrade. The in-place upgrade will modify the existing
installation to add the updated schema objects and packages. The existing
metadata stored in the Oracle REST Data Services schema will remain intact.

If Oracle REST Data Services is not already installed in the database (or if you are
upgrading from Release 2.0.n), you are prompted for the SYS credentials to
enable Oracle REST Data Services to perform the installation, and you will also be
prompted for the default and temporary tablespaces for the ORDS_METADATA
schema and ORDS_PUBLIC_USER.

When the upgrade or installation completes, you can re-deploy the or ds. war file to
your application server or start Oracle REST Data Services in standalone mode.

Related Topics

Troubleshooting Oracle REST Data Services

Stopping the Server in Standalone Mode

1-37

Chapter 1
Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST Data Services

1.9 Using a Bequeath Connection to Install, Upgrade,
Validate, or Uninstall Oracle REST Data Services

ORACLE

You can use the bequeath connection to install, upgrade, validate, or uninstall Oracle
REST Data Services. The installer will not prompt you for the SYS username and
password for the operation

In the parameter file, add the property: bequeat h. connect =t r ue

Using a bequeath connection for installing, validating, or uninstalling Oracle REST
Data Services is supported on Linux and Windows systems for Oracle Database
Release 12, but only on Linux systems for Oracle Database Release 11.

The command used must be run by an operating system user that is a member of the
DBA group. Example of installing Oracle REST Data Services:

java -jar ords.war

Bequeath Connection Using Linux

On a Linux system, you must set the following environment variables to use the
bequeath connection:

- ORACLE_HOME
- ORACLE_SID
LD_LIBRARY_PATH (to point to ORACLE_HOME/ | i b)

For Oracle Database Release 11 (but not for Release 12), you must specify the option
- DuseOr acl eHonme=t r ue. Examples of installing Oracle REST Data Services on a Linux
system:

e For Oracle Database Release 11:] ava -DuseQOracl eHone=true -jar ords. war
* For Oracle Database Release 12: java -jar ords. war

Related Topics

* Silent Installation Using a Parameter File
Oracle REST Data Services can be installed in silent mode without any user
interaction.

1-38

Configuring Oracle REST Data Services
(Advanced)

This section explains how to configure Oracle REST Data Services for connecting to
multiple databases for routing requests, and it refers to other documentation sources
for other configuration information.

" Note:

Oracle REST Data Services must be restarted after making configuration
changes. See your application server documentation for information on how
to restart applications.

Topics:
e Configuring Multiple Databases
e Support for Oracle RAC Fast Connection Failover

e Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel
Settings

e Configuring REST-Enabled SQL Service Settings
e Configuring the Maximum Number of Rows Returned from a Query
e Configuring the Custom Error Pages

e Developing RESTful Services for Use with Oracle REST Data Services

2.1 Configuring Multiple Databases

Oracle REST Data Services supports the ability to connect to more than one
database. This section describes different strategies for routing requests to the
appropriate database.

Topics:

e About the Request URL

e Configuring Additional Databases

e Routing Based on the Request Path Prefix
e Routing Based on the Request URL Prefix

2.1.1 About the Request URL

Oracle REST Data Services supports a number of different strategies for routing
requests to the appropriate database. All of these strategies rely on examining the

ORACLE 2-1

Chapter 2
Configuring Multiple Databases

request URL and choosing the database based on some kind of match against the
URL. It is useful to recap the pertinent portions of a request URL. Consider the
following URL:

https://ww. exanpl e. conf ords/ sal es/ f ?p=1: 1

This URL consists of the following sections:

e Protocol: https
* Host Name: ww. exanpl e. com
* Context Root: / ords

The context root is the location at which Oracle REST Data Services is deployed
on the application server.

* Request Path: / sal es/f ?p=1. 1
This is the portion of the request URL relative to the context root.

For different applications, it may be important to route requests based on certain
prefixes in the request path or certain prefixes in the full request URL.

There are two steps to configuring multiple databases:

1. Configuring the database connection information

2. Configuring which requests are routed to which database

2.1.2 Configuring Additional Databases

ORACLE

When you first configure Oracle REST Data Services, you configure a default
database connection named: apex. You can create additional database connections
using the set up command.

Tip:
To see full help for the set up command type:

java -jar ords.war help setup

To create a database connection type the following:

java -jar ords.war setup --database <database name>

Where:
e <database nanme> is the name you want to give the database connection.

You are prompted to enter the information required to configure the database. After
you have configured the additional databases, define the rules for how requests are
routed to the appropriate database.

Related Topics
* Configuring and Installing Oracle REST Data Services

* Routing Based on the Request Path Prefix

2-2

Chapter 2
Configuring Multiple Databases

* Routing Based on the Request URL Prefix

2.1.3 Routing Based on the Request Path Prefix

You create request routing rules using the map-url command.

Tip:
To see full help for the map- url command type:

java -jar ords.war help map-url

If you want to route requests based just on matching a prefix in the request path
portion of the URL, use the map- url command as follows:

java -jar ords.war map-url --type base-path --workspace-id <workspace nanme> <path
prefix> <database nanme>

Where:

e <workspace nane> is the name of the Oracle Application Express workspace
where RESTful services for this connection are defined. This may be omitted if
RESTful Services are not being used.

* <path prefix>is the prefix that must occur at the start of the request path.

* <database nane> is the name of the database connection configured in the
previous step.

Related Topics

» Configuring Additional Databases

2.1.3.1 Example of Routing Based on the Request Path Prefix

ORACLE

Assuming Oracle REST Data Services is deployed on a system named exanpl e. com
at the context path / or ds, then create the following rule:

java -jar ords.war map-url --type base-path --workspace-id sales_rest /sales sales_db

This rule means that any requests matching htt ps: // exanpl e. com ords/ sal es/ . ..
are routed to the sal es_db database connection. The sal es_r est workspace defined
within the sal es_db database is searched for RESTful Services definitions.

The previous rule matches all of the following requests:

https://exanpl e. com ords/ sal es/f ?p=1:1

https://exanpl e. con ords/ sal es/ | eads/

https://ww. exanpl e. coml ords/ sal es/ forecasting.report ?nonth=jan (If ww. exanpl e.com
resolves to the same systemas exanple.com)

The previous rule does not match of any of the following requests:

http://exanpl e. com ords/sal es/f?p=1:1 (The protocol is wong.)
https://exanpl e. com 8080/ ords/sal es/f?p=1:1 (The port is wong: 443 is default for
https, but don't specify if using default.)

2-3

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

https://exanple.comords/f?p=1:1 (Mssing the /sales prefix.)
https://exanpl e. com pl s/ sal es/| eads/ (The context path is wong.)

2.1.4 Routing Based on the Request URL Prefix

If you want to route requests based on a match of the request URL prefix, use the
map- ur| command as follows:

java -jar ords.war map-url --type base-url --workspace-id <workspace nane> <url
prefix> <database nane>

Where:

e <workspace nane> is the name of the Oracle Application Express workspace
where RESTful services for this connection are defined. This may be omitted if
RESTful Services are not being used.

o <url prefix>isthe prefix with which the request URL must start.

e <dat abase nane> is the name of the database connection.

2.1.4.1 Example of Routing Based on the Request URL Prefix

Assuming Oracle REST Data Services is deployed on a system named exanpl e. com
at the context path / or ds, then create the following rule:

java -jar ords.war map-url --type base-url --workspace-id sales_rest https://
exanpl e. com ords/ sal es sal es_db

This rule means that any requests matching ht t ps: // exanpl e. com ords/ sal es/ . ..
are routed to the sal es_db database connection. The sal es_r est workspace defined
within the sal es_db database is searched for RESTful Services definitions.

The previous rule matches all of the following requests:

https://exanpl e. com ords/ sal es/f ?p=1:1
https://exanpl e. conf ords/ sal es/ | eads/
https://exanpl e. com ords/ sal es/ forecasting.report ?nont h=j an

The previous rule does not match of any of the following requests:

http://exanpl e. com ords/sal es/f?p=1:1 (The protocol is wong.)

https://exanpl e. com 8080/ ords/sal es/f?p=1:1 (The port is wong: 443 is default for
https, but don't specify if using default.)

https://exanple.comords/f?p=1:1 (Mssing the /sales segnent of the base URL.)
https://exanpl e. com pl s/ sal es/| eads/ (The context path is wong.)

https://ww. exanpl e. com or ds/ sal es/ forecasting.report ?nonth=jan (The host nane is
wrong.)

2.2 Using the Multitenant Architecture with Oracle REST
Data Services

This section outlines installing, configuring, upgrading and uninstalling Oracle REST
Data Services in a multitenant container database.

e Installing Oracle REST Data Services in a CDB Environment

ORACLE 2.4

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

» Upgrading Oracle REST Data Services in a CDB Environment
* Migrating Oracle REST Data Services in the CDB to Enable Multiple Releases

* Uninstalling Oracle REST Data Services in a CDB Environment

2.2.1 Installing Oracle REST Data Services in a CDB Environment

ORACLE

This section describes installing Oracle REST Data Services into a multitenant
container database (CDB) environment.

Oracle Database 12c Release 1 (12.1) introduced the multitenant architecture. This
database architecture has a multitenant container database (CDB) that includes a root
container, CDB$ROOT, a seed database, PDB$SEED, and multiple pluggable databases
(PDBs). A PDB appears to users and applications as if it were a non-CDB. Each PDB
is equivalent to a separate database instance in Oracle Database Release 11g.

The root container, CDB$ROOT, holds common objects that are accessible to every PDB
utilizing metadata links or object links. The seed database, PDB$SEED, is used when
you create a new PDB to seed the new pluggable database. The key benefit of the
Oracle Database 12c¢ multitenant architecture is that the database resources, such as
CPU and memory, can be shared across all of the PDBs. This architecture also
enables many databases to be treated as one for tasks such as upgrades or patches,
and backups.

The installation process when you have multiple releases is described in the following
section:

e Installation Enabling Multiple Releases

¢ Note:

If you want to install directly into a PDB (not connected to Root during
installation), see Advanced Installation Using Command-Line Prompts for
more information.

Preinstallation Tasks for Oracle REST Data Services CDB Installation

* Ensure that the PDBs are open (not mounted/closed) in read/write mode (except
for PDB$SEED, which remains in read-only mode). For more information, see Oracle
Multitenant Administrator’'s Guide

» Ensure that the default and temporary tablespaces to be used by the
ORDS_METADATA schema and the ORDS_PUBLI C_USER user exist and that you know
the tablespace names. The installation procedure creates those users, but it does
not create the tablespaces.

Note:

ORDS_VMETADATA and ORDS_PUBLI C_USER are installed in the seed container,
and the default and temporary tablespaces exist in PDB$SEED. If these
tablespaces do not already exist, then you must create the tablespaces in
PDB$SEED. For more information, see Oracle Multitenant Administrator’s
Guide

2-5

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

2.2.1.1 Installation Enabling Multiple Releases

This section describes the installation process when you have multiple releases of
Oracle REST Data Services and patch sets in the PDBs in a multitenant environment.

When Oracle REST Data Services is installed into a CDB, the proxy user, Oracle
REST Data Services public user (ORDS_PUBLI C_USER) is installed in the root container
and is a common user. The ORDS_METADATA schema is a local user that contains the
metadata for Oracle REST Data Services. Both the ORDS_METADATA schema and the
ORDS_PUBLI C_USER are installed in the seed container (PDB$SEED) and all of the
pluggable databases.

Since the ORDS_METADATA is installed as a local user, this provides you the flexibility of
installing multiple Oracle REST Data Services releases in the pluggable databases.

2.2.1.1.1 Command Line Installation

You must provide the SYS AS SYSDBA credentials in the Root (CDB$ROOT) container to
perform the installation.

2.2.1.1.2 Advanced Installation

ORACLE

This section describes the advanced installation prompts for installing Oracle REST
Data Services into a CDB to enable multiple Oracle REST Data Services releases.

To install Oracle REST Data Services into a CDB to enable multiple Oracle REST
Data Services releases, perform the following steps:

1. Navigate to the folder where you unzipped the Oracle REST Data Services
installation Kit.

2. Enter the following command:

java -jar ords.war install advanced

3. When prompted, enter the database connection information for your CDB.

Enter the name of the database server[local host]:

Enter the database listen port [1521]:

Enter 1 to specify the database service name, or 2 to specify the
database SID [1]:

Enter the database service name: (for exanple, cdb.exanple.conj

4. Verify the Oracle REST Data Services installation.

Enter 1 if you want to verify/install Oacle REST Data Services schema
or 2 to skip this step [1]:

5. Accept or enter 1 (the default) to install Oracle REST Data Services into the CDB
and all of its PDBs.

Enter and confirmthe ORDS PUBLI C_USER password:

Enter the database password for ORDS PUBLI C_USER

Confirm password:

Requires SYS AS SYSDBA to verify Oracle REST Data Services schena.

2-6

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

Enter the database password for SYS AS SYSDBA:
Confirm password:

Retrieving information....
Your database connection is to a CDB. ORDS compn user

ORDS _PUBLI C USER wi || be

created in the CDB. ORDS schema will be installed in the PDBs.

Root CDB$ROOT - create ORDS commpn user

PDB PDB$SEED - install ORDS 18.2.0.<JulianDay. Ti me> (node is READ ONLY,
open for

READ/ WRI TE)

PDB PDBNarmel - install ORDS 1
PDB PDBName2 - install ORDS 1

0. <Juli anDay. Ti me>

8.2.
8.2.0.<Jul i anDay. Ti me>

Enter 1 if you want to install ORDS or 2 to skip this step [1]:

Press enter to continue with the installation.

When prompted, enter additional information as needed. See Advanced
Installation Using Command-Line Prompts for more information.

Note:

To use the pluggable mapping feature, see Making All PDBs Addressable by
Oracle REST Data Services (Pluggable Mapping) for more information.

2.2.1.1.3 Silent Installation

Silent installation reads the properties from the Oracle REST Data Services parameter
file.

To perform a silent installation, enter the following command:

java —jar ords.war install sinple
java —jar ords. war

Related Topics

Silent Installation Using a Parameter File
Oracle REST Data Services can be installed in silent mode without any user
interaction.

Advanced Installation Using Command-Line Prompts

2.2.2 Upgrading Oracle REST Data Services in a CDB Environment

When you use a new release of Oracle REST Data Services, upgrading its schema in
the CDB and its pluggable databases (PDBs) will occur automatically when you
perform a simple or advanced installation.

ORACLE

For example:

2-7

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

java -jar ords.war

If Oracle REST Data Services is already installed or upgraded, a message displays
the Oracle REST Data Services schema version, and you will not be prompted for
information.

2.2.2.1 Migrating Oracle REST Data Services in the CDB to Enable Multiple

Releases

This section describes how to migrate Oracle REST Data Services in the CDB to
enable multiple releases.

Starting with release 18.2.0 and later, if you have an Oracle REST Data Services
schema and ORDS_METADATA that is installed in the CDB$ROOT container, then during
upgrade it will migrate the common ORDS_METADATA schema to your PDBs as a local
schema. Oracle database 12.1.0.2 and later releases support this change.

2.2.3 Making All PDBs Addressable by Oracle REST Data Services
(Pluggable Mapping)

ORACLE

Pluggable mapping refers to the ability to make all PDBs in a CDB addressable by
Oracle REST Data Services. To use this feature, follow the instructions in this topic.

If the Oracle REST Data Services configuration file includes the

db. servi ceNaneSuf f i x parameter, this indicates that the Oracle REST Data Services
pool points to a CDB, and that the PDBs connected to that CDB should be made
addressable by Oracle REST Data Services.

The value of the db. servi ceNameSuf f i x parameter must match the value of the
DB_DOMAI N database initialization parameter, and it must start with a period (.). To set
the value of the db. servi ceNameSuf f i x parameter:

1. In SQL*Plus, connect to the root as a user with SYSDBA privileges.
2. Check the value of the DB_DOVAI N database initialization parameter.
SQL> show par aneter DB_DOVAIN
3. Exit SQL*Plus.
SQL> exit

4. If the DB_DOWAI N value was not empty, then on the command line enter the
command to create the key and value for the db.ser vi ceNameSuf f i x parameter
and its DB_DOMAI N. This will be used to add this entry to the Oracle REST Data
Services configuration file.

echo db. servi ceNanmeSuf fi x=. val ue- of - DB_DOMAI N > snsuffi x. properties

For example, if DB_DOVAI Nis set to exanpl e. com enter the following:
echo db. servi ceNameSuf f i x=. exanpl e. com > snsuffi x. properties

5. If the db. servi ceNaneSuf f i x parameter value is not defined, enter a command in
the following format to add an entry to the configuration file:

java -jar ords.war set-properties --conf pool-nane snsuffix.properties

Where pool-name is one of the following:

2-8

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

* pool Nane for a PL/SQL Gateway configuration

e pool Nane_pu for an Oracle REST Data Services RESTful Services
configuration

* pool Nane_rt for an Application Express RESTful Services configuration

Example 1: You want to make PDBs in a CDB addressable globally. Specify
def aul t s by entering the following command:

java -jar ords.war set-properties --conf defaults snsuffix.properties

Note:

The approach shown in Example 1 (setting the property for all pools
through the def aul ts. xm file) is best for most use cases.

Example 2: You want to make PDBs in a CDB addressable for your PL/SQL
Gateway, and your pool name is apex. Enter the following command:

java -jar ords.war set-properties --conf apex snsuffix.properties

For example, if the database pointed to by apex has a DB_DOMAI N value of

exanpl e. comand contains the two PDBs pdbl. exanpl e. comand

pdb2. exanmpl e. com the first PDB will be mapped to URLs whose path starts with /
ords/ pdbl/, and the second PDB will be mapped to URLs whose path starts

with / or ds/ pdb2/ .

Example 3: You want to make PDBs in a CDB addressable for your Oracle REST
Data Services RESTful Services, and your pool name is apex_pu. Enter the
following command:

java -jar ords.war set-properties --conf apex_pu snsuffix.properties

Example 4: You want to make PDBs in a CDB addressable for your Application
Express RESTful Services and your pool name is apex_rt . Enter the following
command:

java -jar ords.war set-properties --conf apex_rt snsuffix.properties

Related Topics

About the Oracle REST Data Services Configuration Files

2.2.4 Uninstalling Oracle REST Data Services in a CDB Environment

ORACLE

To uninstall Oracle REST Data Services from a CDB, use the uni nstal | command.
For example:

java -jar ords.war uninstall

Oracle REST Data Services will be removed from the CDB and its pluggable
databases (PDBs).

Related Topics

If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

2-9

Chapter 2
Support for Oracle RAC Fast Connection Failover

2.3 Support for Oracle RAC Fast Connection Failover

ORACLE

Oracle REST Data Services support the Fast Connection Failover (FCF) feature of
Oracle Real Application Clusters (Oracle RAC).

Oracle REST Data Services runs with the Universal Connection Pool (UCP) in all the
Application Server environments that it supports, such as WebLogic, Tomcat,
GlassFish. UCP in turn supports Fast Connection Failover . To enable FCF, Oracle
Notification Service (ONS) must to be enabled. To enable ONS, add entries to the list
of properties in the Oracle REST Data Services def aul t s. xm configuration file as
shown in the following code snippet:

<entry key="jdbc. enabl eONS">t rue</entry>

<entry key=

"j dbc. ONSConfi g" >nodes=r acnodel: 4200, racnode2: 4200\ nwal | et fil e=/ oracl e1l/
onswal | etfile</entry>

ONS is the messaging facility used to send the Fast Application Notification (FAN)
events. When ONS is enabled, Oracle REST Data Services automatically enables
FCF. To Enable specific FCF capabilities such as fail over or other advanced FCF
capabilities such as load balancing, you need to add entries in the configuration file for
the custom connection as shown in the following code snippet:

<entry key="db. connectionType">custonurl</entry>
<entry key="db. cust omJRL" >j dbc: oracl e: t hi n: @ DESCRI PTI ON=(FAI LOVER=ON)
(ADDRESS LI ST=
(LOAD_BALANCE=ON) (ADDRESS=(PROTOCOL=TCP)
(HOST=pr od_scan. exanpl e. conm) (PORT=1521)))
(CONNECT_DATA=(SERVI CE_NAME=I SPRD))) | </ ent ry>

After updating the def aul t s. xnl configuration file, Oracle REST Data Services need
to be restarted for the changes to take effect.

UCP supports Fast Connection Failover. FCF listens and responds to FAN events to
deal with the following two scenarios:

* Unplanned outages: When RAC detects an instance failure, it generates a FAN
Down event which FCF picks up. FCF then terminates all connections to the failed
instance and directs all future requests to the surviving RAC instances.

* Planned outages: For instance, when a Database Administrator (DBA) wants to
gracefully shut down a RAC instance for performing some maintenance activity.
The instance shutdown generates a FAN Planned Down event which FCF picks
up. FCF then directs all new requests to other RAC instances and drains or allows
currently active transactions to complete.

Note:

Long running transactions may need to be terminated forcefully.

2-10

Chapter 2
Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel Settings

2.4 Configuring Security, Caching, Pre- and Post
Processing, Environment, and Excel Settings

To configure security, caching, pre- and post- processing, environment, and Excel
settings, see Using SQL Developer Oracle REST Data Services Administration
(Optional).

2.5 Configuring REST-Enabled SQL Service Settings

This section explains how to configure the REST- Enabled SQL service.

" Note:

Enabling the REST- Enabled SQL service enables authentication against the
Oracle REST Data Service enabled database schemas. This makes the
database schemas accessible over HTTPS, using the database password.
Oracle highly recommends that you provide strong secure database
passwords

REST- Enabled SQL service is a feature of Oracle REST Data Service. By default, the
REST Enabled SQL service is turned off. To enable the REST- Enabled SQL service
and the REST- Enabled SQL Export service, perform the following steps:

1.

3.
4.

Locate the folder where the Oracle REST Data Services configuration file is
stored.

Open the def aul ts. xm file and add: <entry
key="r est Enabl edSql . acti ve">true</entry>.

Save the file.

Restart Oracle REST Data Services.

2.6 Configuring the Maximum Number of Rows Returned
from a Query

ORACLE

To configure maximum number of rows returned from a query, perform the following
steps:

1.

Locate the folder where the Oracle REST Data Services configuration file is
stored.

Open the def aul ts. xm file and update the value of the
m sc. pagi nat i on. maxRows parameter:<entry
key="mi sc. pagi nati on. naxRows” >1500</ ent ry>

2-11

3.
4.

Chapter 2
Configuring the Custom Error Pages

¢ Note:

The default value for ni sc. pagi nati on. maxRows is 500.

Save the file.

Restart Oracle REST Data Services.

2.7 Configuring the Custom Error Pages

This section explains how to configure a custom error page instead of the error page
generated by Oracle REST Data Services.

To configure a custom error page, perform the following steps:

1.

3.
4,

Locate the folder where the Oracle REST Data Services configuration file is
stored.

Open the def aul ts. xm file and update the value of the error. ext ernal Pat h
parameter:

<entry key="error.external Path">/path/to/error/pages/fol der/</entry>
Where:

e [/path/tolerror/pages/fol der is the path to a folder containing files that
define the error pages. The files are stored in {stat us}. ht ml format.

Where, { st at us} is the HTTP status code for which you want to create a
custom error page.

Save the file.

Restart Oracle REST Data Services.

Example 2-1 Configuring custom error page for “HTTP 404” status code

To configure a custom error page for the “HTTP 404 — Not Found” status, perform the
following steps:

1.
2.
3.

4,
5.

Create a file named 404. htm .
Save it under / usr/ 1 ocal / share/ ords/ error-pages/ folder.

Configure the error. ext er nal Pat h parameter to point to / usr/ | ocal / shar e/
ords/ errro-pages/ folder.

Save the file.

Restart Oracle REST Data Services.

2.8 Developing RESTful Services for Use with Oracle REST
Data Services

For more information on how to develop RESTful Services for use with Oracle REST
Data Services, see Developing Oracle REST Data Services Applications.

ORACLE

2-12

Developing Oracle REST Data Services
Applications

ORACLE

This section explains how to develop applications that use Oracle REST Data
Services. It includes guidance and examples.

" Note:

If you want to get started quickly, you can try the tutorial in Oracle REST
Data Services Quick Start Guide. However, you should then return to this
chapter to understand the main concepts and techniques.

Note:

Ensure that you have installed and configured both Oracle Application
Express 4.2 or later, and Oracle REST Data Services 3.0 or later, before
attempting to follow any of the tutorials and examples.

To use the Oracle REST API for JSON Data Persistence, you must first
install the Oracle REST API. See "Oracle REST API Installation” in Oracle
REST Data Services SODA for REST Developer's Guide.

It is assumed that you are familiar with Oracle Application Express. If you are
new to Oracle Application Express, see the Oracle Application Express
documentation.

Topics:

Introduction to Relevant Software

Getting Started with RESTful Services

Automatic Enabling of Schema Objects for REST Access (AutoREST)
Filtering in Queries

Configuring Secure Access to RESTful Services

About Oracle REST Data Services User Roles

Authenticating Against WebLogic Server and GlassFish User Repositories
Integrating with Existing Group/Role Models

Using the Oracle REST Data Services PL/SQL API

You may also want to review Creating an Image Gallery , a supplementary extended
example that uses Oracle Application Express to build an application.

3-1

Chapter 3
Introduction to Relevant Software

3.1 Introduction to Relevant Software

This section explains some key relevant software for developing applications that use
Oracle REST Data Services.

Topics:

e About Oracle Application Express

e About RESTful Web Services

Related Topics
e About Oracle REST Data Services

3.1.1 About Oracle Application Express

Oracle Application Express is a declarative, rapid web application development tool for
the Oracle database. It is a fully supported, no cost option available with all editions of
the Oracle database. Using only a web browser, you can develop and deploy
professional applications that are both fast and secure.

3.1.2 About RESTful Web Services

Representational State Transfer (REST) is a style of software architecture for
distributed hypermedia systems such as the World Wide Web. An API is described as
RESTful when it conforms to the tenets of REST. Although a full discussion of REST is
outside the scope of this document, a RESTful API has the following characteristics:

» Data is modelled as a set of resources. Resources are identified by URIs.

* A small, uniform set of operations are used to manipulate resources (for example,
PUT, POST, GET, DELETE).

* Aresource can have multiple representations (for example, a blog might have an
HTML representation and an RSS representation).

* Services are stateless and since it is likely that the client will want to access
related resources, these should be identified in the representation returned,
typically by providing hypertext links.

Release 4.2 of Oracle Application Express leverages the capabilities of Oracle REST
Data Services to provide developers with an easy to use graphical user interface for
defining and testing RESTful Web Services.

3.2 Getting Started with RESTful Services

This section introduces RESTful Services, and provides guidelines and examples for
developing applications that use RESTful Services.

Topics:
* RESTIful Services Terminology
» About Request Path Syntax Requirements

* "Getting Started" Documents Included in Installation

ORACLE 3-2

Chapter 3
Getting Started with RESTful Services

About cURL and Testing RESTful Services

Automatic Enabling of Schema Objects for REST Access (AutoREST)
Manually Creating RESTful Services Using SQL and PL/SQL

About Working with Dates Using Oracle REST Data Services

Related Topics

Developing Oracle REST Data Services Applications

3.2.1 RESTful Services Terminology

This section introduces some common terms that are used throughout this document:

RESTful service: An HTTP web service that conforms to the tenets of the
RESTful architectural style.

Resource module: An organizational unit that is used to group related resource
templates.

Resource template: An individual RESTful service that is able to service requests
for some set of URIs (Universal Resource Identifiers). The set of URIs is defined
by the URI Pattern of the Resource Template

URI pattern: A pattern for the resource template. Can be either a route pattern or
a URI template, although you are encouraged to use route patterns.

Route pattern: A pattern that focuses on decomposing the path portion of a URI
into its component parts. For example, a pattern of / : obj ect/: i d? will

match / enp/ 101 (matches a request for the item in the enp resource with i d of
101) and will also match / enp/ (matches a request for the enp resource, because
the :i d parameter is annotated with the ? modifier, which indicates that the i d
parameter is optional).

For a detailed explanation of route patterns, see docs\ j avadoc\ pl ugi n- api
\route-patterns. htnl, under <sql devel oper-instal | >\ ords and under the
location (if any) where you manually installed Oracle REST Data Services.

URI template: A simple grammar that defines the specific patterns of URIs that a
given resource template can handle. For example, the pattern enpl oyees/ {i d} will
match any URI whose path begins with enpl oyees/, such as enpl oyees/ 2560.

Resource handler: Provides the logic required to service a specific HTTP method
for a specific resource template. For example, the logic of the GET HTTP method
for the preceding resource template might be:

sel ect enpno, enane, dept fromenp where enpno = :id

HTTP operation: HTTP (HyperText Transport Protocol) defines standard methods
that can be performed on resources: GET (retrieve the resource contents), POST
(store a new resource), PUT (update an existing resource), and DELETE (remove a
resource).

Related Topics

ORACLE

About RESTful Web Services

3-3

Chapter 3
Getting Started with RESTful Services

3.2.2 About Request Path Syntax Requirements

To prevent path-based attacks, Oracle REST Data Services performs a number of
validation checks on the syntax of the path element of each request URL.

Each path must conform to the following rules:

e Is not empty or whitespace-only

e Does not contain any of the following characters: ?, #, ;, %

e Does not contain the null character (\u0000)

e Does not contain characters in the range: \u0001-\u0031

e Does not end with white space or a period (.)

e Does not contain double forward slash (//) or double back slash(\\)

e Does not contain two or more periods in sequence (.., ..., and so on)
e Total length is {@value #MAX_PATH_LENGTH} characters or less

e Does not match any of the following names (case insensitive), with or without file
extensions: CON, PRN, AUX, CLOCK$, NUL, COMO, COM1, COM2, COM3,
COM4, COM5, COM6, COM7, COM8, COM9, LPTO, LPT1, LPT2, LPT3, LPT4,
LPTS5, LPT6, LPT7, LPT8, LPT9

If you intend to auto-REST enable objects, then avoid object names that do not comply
with these requirements. For example, do not create a table named #EMPS. If you do
want to auto-REST enable objects that have non-compliant names, then you must use
an alias that complies with the requirements.

These requirements are applied to the URL decoded form of the URL, to prevent
attempted circumvention of percent encodings.

3.2.3 "Getting Started" Documents Included in Installation

ORACLE

When you install Oracle REST Data Services, an examples folder is created with
subfolders and files that you may find helpful. The installation folder hierarchy includes
this:

ords
conf
docs
exanpl es
soda
getting-started

In this hierarchy:

o exanpl es\ soda: Contains sample JSON documents used in some examples
included in Oracle REST Data Services SODA for REST Developer's Guide.

o exanpl es\ getting-started: Double-click i ndex. ht ni for a short document about
how to get started developing RESTful Services using Oracle REST Data
Services. This document focuses on using SQL Developer to get started. (SQL
Developer is the primary tool for managing Oracle REST Data Services. For
example, the ability to auto-enable REST support for schemas and tables is
available only in SQL Developer.)

3-4

Chapter 3
Getting Started with RESTful Services

3.2.4 About cURL and Testing RESTful Services

Other sections show the testing of RESTful Services using a web browser. However,
another useful way to test RESTful Services is using the command line tool named
cURL.

This powerful tool is available for most platforms, and enables you to see and control
what data is being sent to and received from a RESTful service.

curl -i https://server:port/ords/workspace/ hr/enpl oyees/ 7369

This example produces a response like the following:

HTTP/ 1.1 200 K

Server: Oracl e- REST-Dat a- Servi ces/ 2. 0. 6. 78. 05. 25
ETag: "..."

Content-Type: application/json

Transf er-Encodi ng: chunked

Date: Thu, 28 Mar 2014 16:49:34 GVl

{
"empno": 7369,
"enane":"SM TH',
"job":"CLERK",
"mgr": 7902,
"hi redate": "1980-12- 17T08: 00: 00Z",
"sal ": 800,
"dept no": 20
}

The -i option tells cURL to display the HTTP headers returned by the server.

Related Topics
» Exploring the Sample RESTful Services in Application Express (Tutorial)

¢ See Also:

cURL
The example in this section uses cURL with the services mentioned in
Exploring the Sample RESTful Services in Application Express (Tutorial)

3.2.5 Automatic Enabling of Schema Objects for REST Access
(AUtoREST)

ORACLE

If Oracle REST Data Services has been installed on the system associated with a
database connection, you can use the AutoREST feature to conveniently enable or
disable Oracle REST Data Services access for specified tables and views in the
schema associated with that database connection. Enabling REST access to a table,
view or PL/SQL function, procedure or package allows it to be accessed through
RESTful services.

3-5

http://curl.haxx.se/

Chapter 3
Getting Started with RESTful Services

AutoREST is a quick and easy way to expose database tables as REST resources.
You sacrifice some flexibility and customizability to gain ease of effort. AutoRest lets
you quickly expose data but (metaphorically) keeps you on a set of guide rails. For
example, you cannot customize the output formats or the input formats, or do extra
validation.

On the other hand, manually created resource modules require you to specify the SQL
and PL/SQL to support the REST resources. Using resource modules requires more
effort, but offers more flexibility; for example, you can customize what fields are
included, do joins across multiple tables, and validate the incoming data using PL/
SQL.

So, as an application developer you must make a choice: use the "guide rails" of
AutoREST, or create a resource module to do exactly what you need. If you choose
AutoREST, you can just enable a table (or set of tables) within a schema.

Note that enabling a schema is not equivalent to enabling all tables and views in the
schema. It just means making Oracle REST Data Services aware that the schema
exists and that it may have zero or more resources to expose to HTTP. Those
resources may be AutoREST resources or resource module resources.

You can automatically enable Oracle REST Data Services queries to access individual
database schema objects (tables, views, and PL/SQL) by using a convenient wizard in
Oracle SQL Developer. (Note that this feature is only available for Oracle REST Data
Services- enabled schemas, not for Oracle Application Express workspaces.)

To enable Oracle REST Data Services access to one or more specified tables or
views, you must do the following in SQL Developer:

1. Enable the schema (the one associated with the connection) for REST access.

Schema level: To enable Oracle REST Data Services access to selected objects
(that you specify in the next step) in the schema associated with a connection,
right-click its name in the Connections navigator and select REST Services, then
Enable REST Services.

(To drop support for Oracle REST Data Services access to objects in the schema
associated with a connection, right-click its name in the Connections navigator and
select REST Services, then Drop REST Services.)

2. Individually enable REST access for the desired objects.

Table or view level: To enable Oracle REST Data Services access to a specified
table or view, right-click its name in the Connections navigator and select Enable
REST Services.

For detailed usage information, click the Help button in the wizard or dialog box in
SQL Developer.

3.2.5.1 Examples: Accessing Objects Using RESTful Services

ORACLE

This section provides examples of using Oracle REST Data Services queries and
other operations against tables and views after you have REST-enabled them.

You can automatically expose table and view objects as RESTful services using SQL
Developer. This topic provides examples of accessing these RESTful services.

3-6

Chapter 3
Getting Started with RESTful Services

Tip:

Although these examples illustrate the URL patterns used to access these
resources, clients should avoid hard coding knowledge of the structure of
these URLSs; instead clients should follow the hyperlinks in the resources to
navigate between resources. The structure of the URL patterns may evolve
and change in future releases.

This topic provides examples of accessing objects using RESTful Services.
* Get Schema Metadata

* Get Object Metadata

* Get Object Data

* Get Table Data Using Paging

* Get Table Data Using Query

* Get Table Row Using Primary Key
* Insert Table Row

* Update/Insert Table Row

* Delete Using Filter

* Post by Batch Load

3.2.5.1.1 Get Schema Metadata

ORACLE

This example retrieves a list of resources available through the specified schema alias.
It shows RESTful services that are created by automatically enabling a table or view,
along with RESTful Services that are created by resource modules.

This example retrieves a list of resources available through the specified schema alias.
Pattern: GET http://<HOST>: <PORT>/ or ds/ <SchemAl i as>/ et adat a- cat al og/

Example: GET http://|ocal host: 8080/ ords/ or dst est/ met adat a- cat al og/

Result:
{
“items": [
{
"name": "EMP",
"links": [
{
"rel": "describes",

"href": "http://1ocal host: 8080/ ords/ ordstest/enp/"

"rel": "canonical",
"href": "http://Iocal host: 8080/ ords/ ordst est/net adat a- cat al og/ enp/ ",
"medi aType": "application/json"

3-7

"name":
"links":
{
"rel":
"href":

"rel":
"href":

Chapter 3
Getting Started with RESTful Services

"oracl e. exanpl es. hel | 0",

[

"descri bes",
"http://1ocal host: 8080/ ords/ ordst est/ exanpl es/ hel | o/ "

"canonical ",
"http://1ocal host: 8080/ ords/ ordst est/ met adat a- cat al og/ exanpl es/ hel | o/ ",

"nmedi aType": "application/json"

"limt":
"of fset":
"count":
"l'inks":
{
"rel":
"href":
1,
{
"rel":
"href":
}
]
}

"hasMore"

. fal se,
25,
0,
2,
[

"self",

"http://1ocal host: 8080/ ords/ or dst est/ met adat a- cat al og/"

“first",

"http://1ocal host: 8080/ ords/ or dst est/ met adat a- cat al og/"

The list of resources includes:

* Resources representing tables or views that have been REST enabled.

» Resources defined by resource modules. Note that only resources having a
concrete path (that is, not containing any parameters) will be shown. For example,
a resource with a path of / modul e/ sone/ pat h/ will be shown, but a resource with a
path of / modul e/ sone/ : par anet er/ will not be shown.

Each available resource has two hyperlinks:

* The link with relation descri bes points to the actual resource.

* The link with relation canoni cal describes the resource.

3.2.5.1.2 Get Object Metadata

This example retrieves the metadata (which describes the object) of an individual
object. The location of the metadata is indicated by the canoni cal link relation.

ORACLE

Pattern: GET http://<HOST>: <PCRT>/ or ds/ <SchenaAl i as>/ met adat a- cat al og/
<Chj ect Ali as>/

Example: GET http://l ocal host: 8080/ ords/ or dst est/ met adat a- cat al og/ enp/

Result:
{
"nane": "EMP",
"primrykey": [
"enpno”
1

3-8

Chapter 3
Getting Started with RESTful Services

"nmenmbers": [

"name": " errpno" s
"type": "NUVBER'

¥
{
"name": "enane",
"type": "VARCHAR2"
¥
{
"name": "job",
"type": "VARCHAR2"
¥
{
“name": "mgr",
"type": "NUMBER'
¥
{
"name": "hiredate",
"type": "DATE'
¥
{
"name": "sal ",
"type": "NUMBER'
¥
{
"name": "comf',
"type": "NUMBER'
¥
{
"name": "deptno",
"type": "NUMBER'
}
1,
"links": [
{
"rel": "collection",
"href": "http://1ocal host: 8080/ ords/ ordstest/netadat a- catal og/ ",
"nmedi aType": "application/json"
¥
{
"rel": "canonical",
"href": "http://1ocal host: 8080/ ords/ ordst est/ net adat a- cat al og/ enp/ "
¥
{
"rel": "describes",
"href": "http://1ocal host: 8080/ ords/ ordstest/enmp/"
}
]
}
3.2.5.1.3 Get Object Data

This example retrieves the data in the object. Each row in the object corresponds to a
JSON object embedded within the JSON array

Pattern: GET http://<HOST>: <PORT>/ or ds/ <SchemAl i as>/ <Chj ect Al i as>/
Example: GET http:// I ocal host: 8080/ ords/ or dst est/ enp/

Result:

ORACLE 3-9

Chapter 3
Getting Started with RESTful Services

{
"items": [
{
"enmpno": 7499,
“ename": "ALLEN',
"job": "SALESMAN',
“mgr": 7698,
"hiredate": "1981-02-20T00: 00: 002",
"sal": 1600,
“commi': 300,
"deptno": 30,
"links": [
{
"rel": "self",
"href": "http://Iocal host: 8080/ ords/ or dstest/enp/ 7499"
}
]
1
{
"enpno": 7934,
“enane": "M LLER',
"job": "CLERK",
“mgrt: 7782,
"hiredate": "1982-01-23T00: 00: 002",
"sal": 1300,
“comi: null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://Iocal host: 8080/ ords/ or dst est/enp/ 7934"
}
]
1
1.
"hasMre": false,
"limt": 25,
"of fset": 0,
"count": 13,
"links": [
{
"rel": "self",
“href": "http://local host: 8080/ ords/ordstest/enp/"
1
{
"rel": "edit",
“href": "http://local host: 8080/ ords/ordstest/enp/"
1
{
“rel": "describedby",
“href": "http://local host: 8080/ ords/ ordst est/net adat a- cat al og/ enp/ "
1
{
“rel": "first",
“href": "http://local host: 8080/ ords/ordstest/enp/"
1
]
}

ORACLE 3-10

Chapter 3
Getting Started with RESTful Services

3.2.5.1.4 Get Table Data Using Paging

ORACLE

This example specifies the of f set and | i ni t parameters to control paging of result
data.

Pattern: GET http://<HOST>: <PORT>/ or ds/ <SchemaAl i as>/ <Cbj ect Al i as>/ ?
of fset=<Cffset>& imt=<Limt>

Example: GET http://| ocal host: 8080/ ords/ ordst est/enp/ ?of f set =10& i mi t=5

Result:
{
"items": [
{
“empno": 7900
"enane": "JAMVES'
“job": "CLERK",
“mgr": 7698,
“hiredate": "1981-12-03T00: 00: 00Z",
"sal": 950
"comi': null,
“deptno": 30
“links": [
{
"rel": "self",
"href": "http://local host: 8080/ ords/ ordstest/enmp/ 7900"
}
]
¥
{
“empno": 7934
"enanme": "M LLER",
"job": "CLERK",
“mgr": 7782,
"hiredate": "1982-01-23T00: 00: 00Z",
"sal ": 1300,
"comi': null,
"deptno": 10
“links": [
{
"rel": "self",
"href": "http://local host: 8080/ ords/ ordstest/enmp/ 7934"
}
]
1
I,
"hashore": fal se
"limt": 5,
"offset": 10,
“count": 3,
"links": [
{
"rel": "self",
“href": "http://local host: 8080/ ords/ordstest/enp/"
¥
{
"rel": "edit",

“href": "http://local host: 8080/ ords/ ordstest/enp/"

3-11

]
}

Chapter 3
Getting Started with RESTful Services

“rel": "describedby",
“href": "http://local host: 8080/ ords/ ordst est/ net adat a- cat al og/ enp/ "

"rel": "first",
"href": "http://local host: 8080/ ords/ordstest/enp/ ?limt=5"
"rel": "prev",

“href": "http://local host: 8080/ ords/ ordstest/enp/ ?of fset =5&imt=5"

3.2.5.1.5 Get Table Data Using Query

This example specifies a filter clause to restrict objects returned.

ORACLE

Pattern: GET http://<HOST>: <PORT>/ or ds/ <SchemaAl i as>/ <Cbj ect Al i as>/ ?
g=<Fi |l terC ause>

Example: GET http://|ocal host: 8080/ ords/ ordst est/enp/ ?2q={"deptno": {"$l te":
20}}

Result:

{

"items": [

{

"enmpno": 7566,

"enane": "JONES',

"job": "MANAGER',

“mgr": 7839,

"hiredate": "1981-04-01T23:00:00Z",
"sal ": 2975,

"comi': null,

"deptno": 20,

“links": [

{

"rel": "self",
"href": "http://local host: 8080/ ords/ ordstest/enmp/ 7566"

“empno": 7934,

"ename": "M LLER",

"job": "CLERK",

“mgr": 7782,

"hiredate": "1982-01-23T00: 00: 00Z",
"sal ": 1300,

"comi: null,

"deptno": 10,

“links": [

{

"rel": "self",
"href": "http://local host: 8080/ ords/ ordstest/enmp/ 7934"
}

3-12

Chapter 3
Getting Started with RESTful Services

]

}
1,
"hasMore": false,
"limt": 25,
"offset": 0,
"count": 7,
"links": [

{

"rel": "self",

"href": "http://local host: 8080/ ords/ ordst est/enp/ ?q=%B%22dept no%22: %' BIR2%R24I t e
%R2: 209 D% D"
|3
{
"rel": "edit",
“href": "http://local host: 8080/ ords/ ordst est/enp/ ?2q=%B%22dept no%22: % BIR2%R24I t e
%R2: 2094 D% D"
|3
{

“rel": "describedby",

“href": "http://local host: 8080/ ords/ ordst est/ net adat a- cat al og/ enp/ "
h
{

“rel": "first",
"href": "http://local host: 8080/ ords/ ordst est/enp/ ?q=%B%22dept no%22: %' BIR2%R24I t e
%22: 209 D% D"
1
]
}

3.2.5.1.6 Get Table Row Using Primary Key
This example retrieves an object by specifying its identifying key values.

Pattern: GET http://<HOST>: <PORT>/ or ds/ <SchemAl i as>/ <Chj ect Al i as>/
<KeyVal ues>

Where <KeyVal ues> is a comma-separated list of key values (in key order).
Example: GET http:// | ocal host: 8080/ ords/ or dst est/ enp/ 7839
Result:
{
"empno": 7839,

"ename": "KING',
"job": "PRESI DENT",

"mgr": null,
"hiredate": "1981-11-17T00: 00: 002",
"sal": 5000,
"comi: null,
"deptno": 10,
"links": [
{
"rel": "self",
“href": "http://local host: 8080/ ords/ ordstest/enmp/ 7839"
1
{
"rel": "edit",
“href": "http://local host: 8080/ ords/ ordstest/enmp/ 7839"
|3

ORACLE 3-13

Chapter 3
Getting Started with RESTful Services

{

“rel": "describedby",
"href": "http://local host: 8080/ ords/ ordst est/net adat a- cat al og/ enp/i tent

1
{

"rel": "collection",

"href": "http://local host: 8080/ ords/ordstest/enp/"
}

]
}

3.2.5.1.7 Insert Table Row

ORACLE

This example inserts data into the object. The body data supplied with the request is a
JSON object containing the data to be inserted.

If the object has a primary key, then there must be an insert trigger on the object that
populates the primary key fields. If the table does not have a primary key, then the
ROWID of the row will be used as the item's identifier.

If the object lacks a trigger to assign primary key values, then the PUT operation
described in next section,Update/insert Table Row should be used instead.

Pattern: POST htt p: // <HOST>: <PORT>/ or ds/ <SchemaAl i as>/ <(bj ect Al i as>/

Example:

curl -i -H "Content-Type: application/json" -X POST -d "{ \"enpno\" :7, \"enane\":
\"JBOND\ ", \"job\":\"SPY\", \"deptno\" :11 }" "http://Iocal host: 8080/ ords/ ordstest/
enpl/

Content-Type: application/json

{ "enpno" :7, "enane": "JBOND', "job":"SPY', "deptno" :11}

Result:
{
"empno": 7,
"ename": "JBOND',
"job": "SPY",
"mgr": null,
"hiredate": null,
"sal": null,
“conm': null,
"deptno": 11,
"links": [
{
“rel": "self",
“href": "http://local host: 8080/ ords/ ordstest/enp/ 7"
¥
{
“rel": "edit",
“href": "http://local host: 8080/ ords/ ordstest/enp/ 7"
¥
{

“rel": "describedby",

“href": "http://local host: 8080/ ords/ ordst est/net adat a- cat al og/ enp/ it ent
b
{

"rel": "collection",
“href": "http://local host: 8080/ ords/ ordstest/enp/"

3-14

Chapter 3
Getting Started with RESTful Services

}
]
}

3.2.5.1.8 Update/Insert Table Row

This example inserts or updates (sometimes called an "upsert") data in the object. The
body data supplied with the request is a JSON object containing the data to be
inserted or updated.

Pattern: PUT http://<HOST>: <PORT>/ or ds/ <SchemAl i as>/ <Chj ect Al i as>/
<KeyVal ues>

Example:

curl -i -H "Content-Type: application/json" -X PUT -d "{ \"enpno\" :7, \"ename\":
\"JBOND\ ", \"job\":\"SPY\", \"deptno\" :11 }" "http://local host: 8080/ ords/
ordstest/enp/7

Content-Type: application/json
{ "enpno" :7, "enane": "JBOND', "job":"SPY', "deptno" :11}

Result:

{
“empno": 7,
"ename": "JBOND',
"job": "SPY",
"mgr": null,
"hiredate": null,
"sal": null,
"conm': null,
"deptno": 11,
"links": [
{
“rel": "self",
“href": "http://local host: 8080/ ords/ ordstest/enp/ 7"

b
{
"rel": "edit",
“href": "http://local host: 8080/ ords/ ordstest/enp/ 7"
I3
{
“rel": "describedby",
“href": "http://local host: 8080/ ords/ ordst est/net adat a- cat al og/ enp/ it ent

I3
{

"rel": "collection",

“href": "http://local host: 8080/ ords/ordstest/enp/"
}

]
}

3.2.5.1.9 Delete Using Filter

This example deletes object data specified by a filter clause.

Pattern: DELETE htt p:// <HOST>: <PORT>/ or ds/ <SchensAl i as>/ <Chj ect Al i as>/ ?
g=<Fi | terC ause>

ORACLE 3-15

Chapter 3
Getting Started with RESTful Services

Example: curl -i -X DELETE "http://| ocal host: 8080/ or ds/ ordst est/enp/ ?
g={"deptno": 11}"

Result:
{
}

"itensDeleted": 1

3.2.5.1.10 Post by Batch Load

ORACLE

This example inserts object data using the batch load feature. The body data supplied
with the request is a CSV file. The behavior of the batch operation can be controlled
using the optional query parameters, which are described in Table 3-1.

Pattern: POST htt p: // <HOST>: <PORT>/ or ds/ <SchemaAl i as>/ <(bj ect Al i as>/
bat chl cad?<Par anet er s>

Parameters:

Table 3-1 Parameters for batchload

__|
Parameter Description

batchesPerCommit Sets the frequency for commits. Optional commit points can be set after
a batch is sent to the database. The default is every 10 batches. 0
indicates commit deferred to the end of the load. Type: Integer.

batchRows Sets the number of rows in each batch to send to the database. The
default is 50 rows per batch. Type: Integer.

dateFormat Sets the format mask for the date data type. This format is used when
converting input data to columns of type date. Type: String.

delimiter Sets the field delimiter for the fields in the file. The default is the comma
OF

enclosures embeddedRightDouble

errors Sets the user option used to limit the number of errors. If the number of

errors exceeds the value specified for er r or sMax (the service option)
or by errors (the user option), then the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be
allowed (up to errorsMax value), specify UNLIMITED (-1) .

errorsMax A service option used to limit the number of errors allowed by users. It
intended as an option for the service provider and not to be exposed as
a user option. If the number of errors exceeds the value specified for
error shMax (the service option) or by error s (the user option), then
the load is terminated.
To permit no errors at all, specify 0. To indicate that all errors be
allowed, specify UNLIMITED (-1).

lineEnd Sets the line end (terminator). If the file contains standard line end
characters (\r. \r\n or \n), then | i neEnd does not need to be specified.

lineMax Sets a maximum line length for identifying lines/rows in the data stream.
A'li neMax value will prevent reading an entire stream as a single line
when the incorrect | i neEnd character is being used. The default is
unlimited.

locale Sets the locale.

responseEncoding Sets the encoding for the response stream.

3-16

Chapter 3
Getting Started with RESTful Services

Table 3-1 (Cont.) Parameters for batchload

___|
Parameter Description

responseFormat Sets the format for response stream. This format determines how
messages and bad data will be formatted. Valid values: RAW SQL.

timestampFormat Sets the format mask for the time stamp data type. This format is used
when converting input data to columns of type time stamp.

timestampTZFormat Sets the format mask for the time stamp time zone data type. This
format is used when converting input data to columns of type time
stamp time zone.

truncate Indicates if and/or how table data rows should be deleted before the
load. Fal se (the default) does not delete table data before the load,;
Tr ue causes table data to be deleted with the DELETE SQL statement;
Truncat e causes table data to be deleted with the TRUNCATE SQL
statement.

Example:

POST http://1ocal host: 8080/ ords/ or dst est/enp/ bat chl oad?bat chRows=25
Content - Type: text/csv

enpno, enane, j ob, mgr, hi redat e, sal , conm dept no

0, M SPY MAST, , 2005-05-01 11:00: 01, 4000, , 11

7, J. BOND, SPY, 0, 2005- 05-01 11:00: 01, 2000, , 11

9, R Cooper, SOFTWARE, 0, 2005- 05- 01 11:00: 01, 10000, , 11
26, Max, DENTI ST, 0, 2005- 05-01 11:00: 01, 5000, , 11

Result:

#I NFO Nunber of rows processed: 4

#I NFO Nunber of rows in error: 0

#I NFO El apsed tinme: 00:00:03.939 - (3,939 ns) 0 - SUCCESS: Load processed without
errors

3.2.5.2 Filtering in Queries

ORACLE

This section describes and provides examples of filtering in queries against REST-
enabled tables and views.

Filtering is the process of limiting a collection resource by using a per-request dynamic
filter definition across multiple page resources, where each page contains a subset of
items found in the complete collection. Filtering enables efficient traversal of large
collections.

To filter in a query, include the parameter q=FilterObject, where FilterObject is a JSON
object that represents the custom selection and sorting to be applied to the resource.
For example, assume the following resource:

https://exanpl e. com ords/scott/enp/

The following query includes a filter that restricts the ENAME column to "JOHN";
https://exanpl e. conf ords/ scott/enp/ ?2q={"ENAME": " JOHN"}

3-17

Chapter 3
Getting Started with RESTful Services

3.2.5.2.1 FilterObject Grammar

The Fi | t er Obj ect must be a JSON object that complies with the following syntax:

Filteroject { orderby , asof, wnenbers }

The or der by, asof , and wrenber s attributes are optional, and their definitions are as
follows:

or der by
"$orderby": {orderByMenbers}

or der ByMenber s
or der ByProperty
orderByProperty , orderByMenbers

or der ByProperty
col unmmNane @ sortingVal ue

sortingVal ue
" ASCY
" DESC"
"o
W qn
-1
1

asof
"$asof": date
"$asof ": "datechars"

"$asof": scn

"$asof": +int
wrenber s
wpai r

wpair , wmenbers

wpai r
col umProperty
conpl exQper at or Property

col umProperty
col umNanme : string
col umName @ nunber
columNare : date
col umNane : si npl eCper at or Obj ect
col unmmNane @ conpl exQper at or Obj ect
col umNane : [conpl exVal ues]

col umNane
"\p{Alpha}[[\p{Al pha}]] ([[\p{A nun}]#$_])*$"

conpl exQper at or Property
conpl exKey : [conpl exVal ues]
conpl exKey : sinpl eCper at or Obj ect

conpl exKey

"$and"
"$or"

ORACLE 3-18

ORACLE

conpl exVal ues
conpl exVal ue , conpl exVal ues

conpl exVal ue
si npl eQper at or Obj ect
conpl exQper at or Cbj ect
col um@bj ect

col um@bj ect
{col umProperty}

si npl eQper at or Obj ect
{'si npl eQper at or Property}

conpl exQper at or Cbj ect
{conpl exCper at or Property}

si npl eQper at or Property
"$eq" : string | number | date
"$ne" : string | number | date
"$It" . nunmber | date
"$lte" : nunmber | date
"$gt" : nunmber | date
"$gte" : nunber | date
"$instr" : string
"$ninstr" : string
"$like" : string
“$Snull" : null
"$notnull" : null
"$bet ween" : betweenVal ue

bet weenVal ue
[null , betweenNot Null]
[betweenNot Nul |, null]

[bet weenRegul ar , betweenRegul ar]

bet weenNot Nul |
nunber
date

bet weenRegul ar
string
number
date

Data type definitions include the following:

string
JSONStri ng
nunber
JSONNunber
date
{"$date": "datechars"}
scn
{"$scn": +int}

Where:

datechars is an RFC3339 date format in UTC (2)

Chapter 3
Getting Started with RESTful Services

3-19

Chapter 3
Getting Started with RESTful Services

JSONStri ng

" chars "
chars

char

char chars
char

any- Uni code- character except-"-or-\-or-control-character
"
\
\/
\b
\ f
\n
\r
\t
\u four-hex-digits

JSONNunber

i nt

int frac

int exp

int frac exp
i nt

digit

digitl-9 digits

- digit

- digitl-9 digits
frac

. digits
exp

e digits
digits

digit

digit digits

e

e+

e.

E

E+

E-

The Fi | t er Cbj ect must be encoded according to Section 2.1 of RFC3986.

3.2.5.2.2 Examples: FilterObject Specifications

The following are examples of operators in Fi | t er Cbj ect specifications.

ORDER BY property ($orderby)

Oder by with literals

"$orderby": {"SALARY": "ASC',"ENAME':"DESC'}
}

Order by with nunbers

{

ORACLE 3-20

Chapter 3
Getting Started with RESTful Services

"$orderby": {"SALARY': -1, "ENAME": 1}
}

ASOF property ($asof)

Wth SON (Implicit)

{
"$asof ": 1273919
}
Wth SCN (Explicit)
{
"$asof": {"$scn": "1273919"}
}
Wth Date (Inplicit)
{
"$asof ": "2014-06- 30T00: 00: 00Z"
}

Wth Date (Explicit)

{
"$asof": {"$date": "2014-06-30T00: 00: 002"}

}

EQUALS operator ($eq)
(I'nplicit and explicit equality supported. _
Inplicit (Support String and Dates too)

{
"SALARY": 1000

}
Explicit
{
"SALARY": {"$eq": 1000}
}

Strings
{

"ENAME": {"$eq":"SM TH'}
}

Dat es

{
“H REDATE": {"$date": "1981-11-17T08: 00: 002"}

}

NOT EQUALS operator ($ne)

ORACLE 3-21

ORACLE

Chapter 3
Getting Started with RESTful Services

Nunmber

{
"SALARY": {"$ne": 1000}

}

String

{
"ENAME": {"$ne":"SM TH'}
}

Dat es

{
"H REDATE": {"$ne": {"$date":"1981-11-17T08: 00: 00Z"}}

}

LESS THAN operator ($It)
(Supports dates and numbers only)

Nunber s

{
"SALARY": {"$/t": 10000}
}

Dat es

{
"SALARY": {"$It": {"$date":"1999-12- 17T08: 00: 00Z"}}

}

LESS THAN OR EQUALS operator ($lte)
(Supports dates and numbers only)

Nunber s

{
"SALARY": {"$lte": 10000}

}

Dat es

{
"H REDATE": {"$lte": {"$date":"1999-12-17T08: 00: 00Z"}}
}

GREATER THAN operator ($gt)
(Supports dates and numbers only)

Nunber s

{
"SALARY": {"$gt": 10000}

}

Dat es

3-22

Chapter 3
Getting Started with RESTful Services

{
"SALARY": {"$gt": {"S$date":"1999-12- 17T08: 00: 00Z"}}

}

GREATER THAN OR EQUALS operator ($gte)
(Supports dates and numbers only)

Nunber s

{
"SALARY": {"$gte": 10000}

}

Dat es

{
"H REDATE": {"$gte": {"$date":"1999- 12-17T08: 00: 00Z"}}

}

In string operator ($instr)
(Supports strings only)

{
"ENAME": {"S$instr":"M'}
}

Not in string operator ($ninstr)
(Supports strings only)

{
"ENAME": {"$ninstr":"M'}
}

LI KE operator ($like)
(Supports strings. Eescape character not supported to try to match expressions with
_or %characters.)

{
"ENAME': {"$like": " AX%}
}

BETWEEN operator ($between)
(Supports string, dates, and nunbers)

Nunber s

{
"SALARY": {"$between": [1000, 2000]}

}

Dat es

{
"SALARY": {"$between": [{"$date":"1989-12-17T08: 00: 00Z"},

{"$date": " 1999- 12- 17T08: 00: 00Z"}]}
}

ORACLE 3-23

ORACLE

Strings

{
"ENAME": {"S$between": ["A","C']}
}

Nul I Ranges ($lte equivalent)
(Supported by nunbers and dates only)

{
"SALARY": {"$between": [null,2000]}

}

Nul I Ranges ($gte equival ent)
(Supported by nunbers and dates only)

{
"SALARY": {"$between": [1000, null]}

}

###H# NULL operator ($null)

{
"ENAMVE": {"$null": null}

}

#H# NOT NULL operator ($notnull)

{
"ENAME": {"$notnull": null}

}

AND oper at or ($and)
(Supports all operators, including $and and $or)

Col umn context del egation

Chapter 3
Getting Started with RESTful Services

(Operators inside $and will use the closest context defined in the JSON tree.)

{
"SALARY': {"Sand": [{"$gt": 1000},{"$It":4000}]}

}

Col umm context override
(Exanple: salary greater than 1000 and nane |ike S%

{

"SALARY": {"$and": [{"$gt": 1000}, {"ENAME": {"$like"

}

Inplicit and in col ums

{
"SALARY": [{"$gt": 1000},{"$It": 4000}]

b

H gh order AND

"S%]}

3-24

Chapter 3
Getting Started with RESTful Services

(Al first colums and or high order operators -- $and and $ors -- defined at the
first level of the JSONw Il be joined and an inplicit AND)
(Exanmpl e: Salary greater than 1000 and nane starts with Sor T)

{

"SALARY": {"$gt": 1000},

"ENAME': {"S$or": [{"S$like":"S®%}, {"$like":"T%}]}
}

Invalid expression (operators $lt and $gt |ack col um context)
"$and": [{"$It": 5000}, {"$gt": 1000}]
}

Valid alternatives for the previous invalid expression

"$and": [{"SALARY": {"$It": 5000}}, {"SALARY": {"$gt": 1000}}]

}
{
"SALARY": [{"$It": 5000},{"$gt": 1000}]
}
{
"SALARY": {"$and": [{"$It": 5000},{"$gt": 1000}]}
}

OR operator ($or)
(Supports all operators including $and and $or)

Col umn context del egation
(Operators inside $or will use the closest context defined in the JSON tree)

{
"ENAME": {"$or": [{"$eq":"SMTH'}, {"$eq":"KING'}]}

}

Col utm context override
(Exarmpl e: name starts with S or salary greater than 1000)

{
"SALARY": {"$or": [{"$gt": 1000}, {"ENAVE': {"$like":"S%}}] }

}

3.2.5.3 Auto PL/SQL

ORACLE

This section explains how PL/SQL is made available through HTTP(S) for Remote
Procedure call (RPC).

The auto PL/SQL feature uses a standard to provide consistent encoding and data
transfer in a stateless web service environment. Using this feature, you can enable
Oracle Database stored PL/SQL functions and procedures at package level through
Oracle REST Data Services, similar to how you enable the views and tables.

3-25

Chapter 3
Getting Started with RESTful Services

Auto Enabling PL/SQL Subprograms

Oracle REST Data Services supports auto enabling of the following PL/SQL objects,
based on their catalog object identifier:

e PL/SQL Procedure
e PL/SQL Function
* PL/SQL Package

The functions, and procedures within the PL/SQL package cannot be individually
enabled as they are named objects within a PL/SQL package object. Therefore, the
granularity level enables the objects at the package level. This granularity level
enables to expose all of its public functions and procedures.

If you want to only enable a subset of functions and procedures, then you must create
a separate delegate package and enable it to expose only that subset of functions and
procedures.

< Note:

Overloaded package functions and procedures are not supported.

3.2.5.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects

This section discusses the method and content-type supported by this feature.

The auto enabling of the PL/SQL Objects feature supports POST as the HTTP
method. In POST method, input parameters are encoded in the payload and output
parameters are decoded from the response.

Note:
The standard data CRUD to HTTP method mappings are not applicable as
this feature provides an RPC-style interaction.

The content-type supported is appl i cati on/ son.

3.2.5.3.2 Auto-Enabling the PL/SQL Objects

This section explains how to auto-enable the PL/SQL objects through Oracle REST
Data Services.

You can enable the PL/SQL objects in one of the following ways:
e Auto-Enabling Using the PL/SQL API
e Auto-Enabling the PL/SQL Objects Using SQL Developer

3.2.5.3.2.1 Auto-Enabling Using the PL/SQL API

You can enable a PL/SQL object using the Oracle REST Data Services PL/SQL API.

ORACLE 3-26

ORACLE

Chapter 3
Getting Started with RESTful Services

To enable the PL/SQL package, use the Oracle REST Data Services PL/SQL API as
shown in following sample code snippet:

BEG N
ords. enabl e_obj ect (
p_enabl ed => TRUE,
p_schema => ' MY_SCHEMA',
p_object =>"'M_PKG,
p_object type => ' PACKAGE ,
p_object_alias => 'ny_pkg',
p_auto rest _auth => FALSE);
conmit;
END;
/

Example 3-1 Enabling the PL/SQL Function

To enable the PL/SQL function, use the Oracle REST Data Services PL/SQL API as
shown in following sample code snippet:

BEG N

ords. enabl e_obj ect (
p_enabl ed => TRUE,
p_schema => ' M_SCHEMA',
p_object =>"'M_FUNC ,
p_obj ect _type => ' FUNCTI ON ,
p_object _alias => "ny_func',
p_auto_rest_auth => FALSE);

comit;
END;

Example 3-2 Enabling the PL/SQL Procedure

To enable the PL/SQL procedure, use the Oracle REST Data Services PL/SQL API as
shown in following sample code snippet:

BEG N

ords. enabl e_obj ect (
p_enabl ed => TRUE,
p_schema => ' MY_SCHEMA',
p_object =>"'M _PRCC,
p_object type => ' PROCEDURE ,
p_object alias => 'ny_proc',
p_auto rest_auth => FALSE);

commit;
END;

3-27

Chapter 3
Getting Started with RESTful Services

3.2.5.3.2.2 Auto-Enabling the PL/SQL Objects Using SQL Developer

This section describes how to enable the PL/SQL objects using SQL Developer 4.2
and above.

To enable the PL/SQL objects (for example, package) using SQL Developer, perform
the following steps:

" Note:

You can now enable, packages, functions and procedures. However, the
granularity of enabling is either at the whole package level, standalone
function level, or at the standalone procedure level.

1. In SQL Developer, right-click on a package as shown in the following figure:

Figure 3-1 Selecting the Enable REST Service Option

=[5 Packages |
= j i
% gE [Edit.

{968 EditBody..

e

ﬁ GE Export...

Ll E]JL_F: o Debug... Lal+EShifiF10
REST Development Compile CHTH
: Compile for Debu Cui+Shik-F8
B Run.. Cul-FiD
i) REST Data Services
Compare With]
Order Members By ¥
Drop Package...
Grant...
Revoke..
Uni Test save Package Spec and Body..
3 Lirt Tests Enable REST Service...
[Mot connected Use as Template...
Synchronize Specificgtion and Body...
3 Code Qutline

DQuick DDL k

2. Select Enable RESTful Services to display the following wizard page:

ORACLE 3-28

Chapter 3
Getting Started with RESTful Services

Figure 3-2 Auto Enabling the PL/ISQL Package Object

(3 RESTFul Services Wizard - Step 1 of 2 []
Specify Details
- |
= Specify Details
.i, RESTfl Surnmary
Erable ohject [+l
Object abas Fegstry_phg
Autiwrizaton reguired [|
Help Mext > Brish Canced

* Enable object: Enable this option (that is, enable REST access for the
package).

* Object alias: Accept regi stry_pkg for the object alias.
e Authorization required: For simplicity, disable this option.

e Onthe RESTful Summary page of the wizard, click Finish.

3.2.5.3.3 Generating the PL/SQL Endpoints

HTTP endpoints are generated dynamically per request for the enabled database
objects. Oracle REST Data Services uses the connected database catalog to generate
the endpoints using a query.

The following rules apply for all the database objects for generating the HTTP
endpoints:

* All names are converted to lowercase
* An endpoint is generated if it is not already allocated
Stored Procedure and Function Endpoints

The function or procedure name is generated into the URL in the same way as tables
and views in the same namesspace.

ORACLE 3-29

Chapter 3
Getting Started with RESTful Services

Example 3-3 Generating an Endpoint for the Stored Procedure

CREATE OR REPLACE PROCEDURE MY_SCHEMA. MY_PROC | S
BEG N

NULL;
END;

Following endpoint is generated:

http://1 ocal host: 8080/ ords/ nmy_schema/ ny_proc/

Example 3-4 Package Procedure and Function Endpoints

The package, function, and procedure endpoints are generated with package name as
a parent. Endpoints for functions and procedures that are not overloaded or where the
lowercase name is not already in use are generated.

If you have a package, MY_PKG as defined in the following code snippet:

CREATE OR REPLACE PACKAGE MY_SCHEMA. MY_PKG AS
PROCEDURE MY_PRCC;
FUNCTI ON MY_FUNC RETURN VARCHARZ;
PROCEDURE MY_PROC2;
PROCEDURE "my_proc2";
PROCEDURE MY_PROC3(P1 | N VARCHAR) ;
PROCEDURE MY_PROC3(P2 | N NUVBER) ;
END MY_PKG

Then the following endpoints are generated:

http://1 ocal host: 8080/ ords/ ny_schema/ my_pkg/ MY_PRCC
http://1 ocal host: 8080/ ords/ ny_schema/ my_pkg/ MY_FUNC

Note:

Endpoints for the procedure nmy_proc?2 is not generated because its name is
not unique when the name is converted to lowercase, and endpoints for the
procedure ny_proc3 is not generated because it is overloaded.

3.2.5.3.4 Resource Input Payload
The input payload is a JSON document with values adhering to the REST standard.

The payload should contain a name/value pair for each IN or IN OUT parameter as
shown in the following code snippet:

{

“pl": "abc",
"p2": 123,
"p3": null

}

ORACLE 3-30

Chapter 3
Getting Started with RESTful Services

Note:

Where there are no IN or IN OUT parameters, an empty JSON body is
required as shown in the following code snippet:

{
}

Oracle REST Data Services uses the database catalog metadata to unmarshal the
JSON payload into Oracle database types, which is ready to be passed to the
database through JDBC.

3.2.5.3.5 Resource Payload Response

When the PL/SQL object is executed successfully, it returns a JSON body.

The JSON body returned, contains all OUT and IN OUT output parameter values.
Oracle REST Data Services uses the database catalog metadata to marshal the
execution of the result back into JSON as shown in the following code snippet:

{
"p3" : "abcl23",

"pd" 1
}

Where there are no OUT or IN OUT parameters, an empty JSON body is returned as
shown in the following code snippet:

{
}

3.2.5.3.6 Function Return Value

The return value of functions do not have an associated name.

As the return value of functions do not have an associated name, the name "~ret" is
used as shown in the following code snippet:

{
"~ret" : "abcl23"

}

3.2.6 Manually Creating RESTful Services Using SQL and PL/SQL

This section describes how to manually create RESTful Services using SQL and
PL/SQL and shows how to use a JSON document to pass parameters to a stored
procedure in the body of a REST request.

ORACLE 3-31

Chapter 3
Getting Started with RESTful Services

This section includes the following topics:
* About Oracle REST Data Services Mechanisms for Passing Parameters

* Using SQL/JSON Database Functions

3.2.6.1 About Oracle REST Data Services Mechanisms for Passing

Parameters

This section describes the main mechanisms that Oracle REST Data Services
supports for passing parameters using REST HTTP to handlers that are written by the
developer:

e Using JSON to Pass Parameters

You can use JSON in the body of REST requests, such as the POST or PUT
method, where each parameter is a JSON name/value pair.

e Using Route Patterns to Pass Parameters

You can use route patterns for required parameters in the URI to specify
parameters for REST requests such as the GET method, which does not have a
body, and in other special cases.

* Using Query Strings for Optional Parameters

You can use query strings for optional parameters in the URI to specify
parameters for REST requests, such as the GET method, which does not have a
body, and in other special cases.

Prerequisite Setup Tasks To Be Completed Before Performing Tasks for Passing
Parameters

This prerequisite setup information assumes you have completed steps 1 and 2 in
Getting Started with RESTful Services section, where you have REST-enabled the
ordst est schema and enp database table (Step 1) and created and tested the
RESTful service from a SQL query (Step 2). You must complete these two steps
before performing the tasks about passing parameters described in the subsections
that follow.

Related Topics
e Getting Started with RESTful Services

3.2.6.1.1 Using JSON to Pass Parameters

ORACLE

This section shows how to use a JSON document to pass parameters to a stored
procedure in the body of a REST request, such as POST or PUT method, where each
parameter is a name/value pair. This operation performs an update on a record, which
in turn returns the change to the record as an OQUT parameter.

Perform the following steps:

3-32

Chapter 3
Getting Started with RESTful Services

1. | . Note:

The following stored procedure performs an update on an existing record
in the enp table to promote an employee by changing any or all of the
following: job, salary, commission, department number, and manager.
The stored procedure returns the salary change as an QUT parameter.

create or replace procedure promote (| _enpno I N nunber,
| job I'N varchar2,
| _ngr IN nunber, | _sal IN number, | _commIN
nunber, | _deptno I N nunber,
| _sal arychange QUT nunber)
is
ol dsalary nunber;
begin
select nvl(e.sal, 0)into oldsalary FROM enp e
where e.enpno = | _enpno;
update enp e set
e.job = nvl(l_jobh, e.job),
e.mgr = nvl(l_ngr, e.nmr)
e.sal nvl (I _sal, e.sal),
e.comm = nvl (I _comm e.com),
e.deptno = nvl (I _deptno, e.deptno)
where e.enpno = | _enpno;
| salarychange := nvl (| _sal, oldsalary) -

ol dsal ary;
end;

As a privileged or dst est user, connect to the or dst est schema and create the
pronot e stored procedure.

2. Perform the following steps to setup a handler for a PUT request on the enp
resource to pass parameters in the body of the PUT method in a JSON document
to the pronot e stored procedure.

a. Using Oracle SQL Developer, in the REST Development section, right click on
the enp template and select Add Handler for the PUT method.

b. Inthe Create Resource Handler dialog, click the green plus symbol to add
the MIME type appl i cati on/j son and then click Apply to send it a JSON
document in the body of the PUT method.

c. Using the SQL Worksheet, add the following anonymous PL/SQL block: begi n
pronot e
(:1_enpno, :I_job, :I_mr, :l_sal, :1_comm :| _deptno, :1_salarycha
nge); end; as shown in the following figure.

ORACLE 3-33

Chapter 3

Getting Started with RESTful Services

Figure 3-3 Adding an Anonymous PL/SQL Block to the Handler for the
PUT Method

Connections

F- (2 Analytic View Reports
-2 Data Dictionary Reports
-2~ Data Modeler Reports
B [E OLAP Reports

[+~ TimesTen Reports
-2 User Defined Reports

F-RY B Parameters | Details
5 @ oroaest Jriv-na B &@¢aua 8 -
- [Tables (Filtered)
o-E e Worksheet | Query Buider

-H EMPNO ‘begin |
il ENAME : promote (:1_empno, :1_job, :].ngr, :1 _sal, :1_comm, :1_deptno, :1_salarychange);
L@ | | e

e) » :

Reports. x| [=]

Al Reports

REST Development x| =

BB« @

d. Click the Parameters tab to set the Bind Parameter as | _sal arychange , the
Access Method as an OUT parameter, the Source Type as RESPONSE, and
Data Type as | NTEGER as shown in the following figure. This is the promote
procedure’s output which is an integer value equal to the change in salary in a
JSON name/value format.

Figure 3-4 Setting the Bind Parameter |_salarychange to Pass for the
PUT Method

Connections

[Analytic View Reports

-2~ Data Modeler Reports
(2 OLAP Reports
[#-([Z TimesTen Reports
-2 User Defined Reports

-2 Data Dictionary Reports

F-RY B SQLWorkshest | Parameters | Details
- (@ ordstest HEAE 4
Tables (Filter
e ?] E"(:H ed) Name Bind Parameter Access Method Source Type Data Type

f = salarychange |_salarychange ouT RESPONSE INTEGER
- 108 hd

1§ '] »

Reports. x| [=]

Al Reports

REST Development 2.

3B« @

=]

]

ORACLE"

3-34

ORACLE

3.

Chapter 3
Getting Started with RESTful Services

e. Click the Details tab to get the URL to call as shown in the Examples section
of the following figure. Copy this URL to your clipboard.
Figure 3-5 Obtaining the URL to Call from the Details Tab
[Oracle SQL Developer: PUT/emp/ =N R
File Edit View Mavigate Run Team Tools Window Help
Godag 9@ Q0 O~]
Connections wom EHEMP Byomstest | & GETempjijobfideptno el PUT jemp/ By U b
e-BY B SQL Worksheet |Parameters | Details
- [ordstest &,
=1 @Tabms (Filtered)
= g ;PEMPND Method Handler
[l ENAME Method: PUT
- 108
Source Type: PL/SQL
Reports.
FﬁAH Reports ‘* X
- [Analytic View Reports MIME Types
-2 Data Dictionary Reports application fison
- [E- Data Modeler Reports
([~ OLAP Reports
([TimesTen Reports
- [E- User Defined Reports
REST Development Examples
B« @ URI Module: ftest
-1 femp/
,E GET URI Pattern: femp/
©LlpuT
E'D T |htq::,’,l|ncalhnst:BDDEfnrds,i‘nrdstest;.’testfempf
5]
@ Privileges
f. Right click on the t est module to upload the module. Do not forget this step.
To test the RESTful service, execute the following cURL command in the
command prompt:curl -i -H "Content-Type: application/json" -X PUT -d
“\"l _enpno\" : 7499, \"l sal\" : 9999, \"| job\" : \"Director\",
\"l _comm ™ : 300}
< Note:

You can also use any REST client available to test the RESTful service.

The cURL command returns the following response:

HTTP/ 1.1 200 OK
Cont ent - Type: application/json Transfer-Encoding: chunked
{"sal arychange": 8399}

In SQL Developer SQL Worksheet, perform the following SELECT statement on the
enp table: SELECT * from enp to see that the PUT method was executed, then
select the Data tab to display the records for the EMP table.

3-35

Chapter 3
Getting Started with RESTful Services

Figure 3-6 Displaying the Results from a SQL Query to Confirm the
Execution of the PUT Method

£ Oracle SQL Developer : Table ORDSTEST EMP@ordstest = e =
File Edit View Mavigate Run Team Tools Window Help
DEG 9@ Q9 O~ @
Connections om EEEMP | (B ordstest =] GET empjsiobf:deptno il PUT femp/ Tk *
@ - @(ﬂ A 4 % Columns |Data Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details |P|III|
. =
E}a ordstest adHE XS R | st Filter:| V|v Actions...
@'"@%"ES LAesd) fiempo [fhEnamE[f308 [{mer |{} HREDATE |4} saL [comm |f DEPTG |
- [EH EMP
EHE 1 7360 SMITH CLERK 7902 17-DEC-80 800 (null) 20
[EMPNO
2 7499 ALIEN Director 7698 20-FEB-31 9999 300 30
3 7521 WARD SALESMAN 7698 22-FEB-E1 1250 500 30
4 7566 JONES ~ MLNAGER 7839 02-APR-81 2975 (null) 20
Reports 5 7654 MARTIN SALESMAN 7698 28-SEF-81 1250 1400 30
[All Reports 6 7698 BLAKE ~ MLNAGER 7839 01-MAY-81 2850 (null) 30
[[Analytic View Reparts 7 7782 CLARK MANAGER 7839 09-JUN-81 2450 (null) 10
G- (2 Data Dictionary Reports 8 7788 SCOTT ANALYST 7566 19-APR-87 3000 (mull) 20
-[E Data Modeler Reports
(2 Data Modeler Repor 9 7839KING PRESIDENT (null) 17-NOV-81 5000 (null) 10
[+ OLAP Reports
. Py P
{&-(Z> TmesTen Reports 10 7844 TURNER SALESMAN 7698 08-SEF-81 1500 0 30
(2 User Defined Reports 11 7876 ADRMS CLEEK 7788 23-MAY-87 1100 (null) 20
12 7900 JAMES CLEEK 7693 03-DEC-81 950 (null) 30
REST Development 13 7902 FORD ANALYST 7566 03-DEC-81 3000 (null) 20
- ' 14 7934 MILLER CLERK 7782 23-JBN-82 1300 (null) 10
B« @
Bu Jemp]
, E GET
b, Q PUT
E}T__l emp/:job/:deptr
: £ E GET
% Privileges

¢ Note:

e All parameters are optional. If you leave out a name/value pair for a
parameter in your JSON document, the parameter is set to NULL.

¢ The name/value pairs can be arranged in any order in the JSON
document. JSON allows much flexibility in this regard in the JSON
document.

e Only one level of JSON is supported. You can not have nested JSON
objects or arrays.

3.2.6.1.2 Using Route Patterns to Pass Parameters

ORACLE

This section describes how to use route patterns in the URI to specify parameters for
REST requests, such as with the GET method, which does not have a body.

First create a GET method handler for a query on the enp table that has many bind
variables. These steps use a route pattern to specify the parameter values that are
required.

Perform the following steps to use a route pattern to send a GET method with some
required parameter values:

3-36

ORACLE

Chapter 3
Getting Started with RESTful Services

In SQL Developer, right click on the test module and select Add Template to
create a new template that calls enp; however, in this case the template definition
includes a route pattern for the parameters or bind variables that is included in the
URI rather than in the body of the method. To define the required parameters, use
a route pattern by specifying a/: before the j ob and dept no parameters. For
example, for the URI pattern, enter: enp/ : j ob/ : dept no as shown in the following
figure.

Figure 3-7 Creating a Template Definition to Include a Route Pattern for
Some Parameters or Bind Variables

F& Edit Resource Template L=

Universal Resource Identifier

LRI Pattern: |Em|:u,.":jn:u|:u,.":u:|eptru:| |

Example: http: ffmyhost:8080 fords myschema/test/emp/:job/:deptno

Priarity: C} 1
LOwW MEDILUM HIGH
HTTP Entity Tag
ETag: m

Generate the version id using secure hashing which uniguely identifies the
resource version,

Help Apply Cancel

L A

Click Next to go to REST Data Services — Step 2 of 3, and click Next to go to
REST Data Services — Step 3 of 3, then click Finish to complete the template.

Right click on the enp/ : j ob/ : dept no template and select Add Handl er for the GET
method.

Right click on the GET method to open the handler.

Add the following query to the SQL Worksheet: sel ect * fromenp e where
e.job = :job and e.deptno = :deptno and e.nmgr = NVL (:ngr, e.ngr) and
e.sal = NVL (:sal, e.sal); as also shown in the following figure.

3-37

Chapter 3
Getting Started with RESTful Services

Figure 3-8 Adding a SQL Query to the Handler

Farameters | Details

bEO-DR B0 &8s B

Worksheet Query Buider

EE select * from emp & where L]
e.jok = ijob and

1 e.deptno = :deptno and

! e.mgr = NWL {(:mJr, e.mgr) and
e.3al = NWL (:3al, e.3al);

6. Click the Details tab to get the URL to call. Copy this URL to your clipboard.

7. Right click on the t est module to upload the module. Do not forget this step.

8. Testthe REST endpoint. In a web browser enter the URL:http: / /1 ocal host :
8080/ or ds/ ordst est/t est/enp/ SALESMAN 30 as shown in the following figure.

ORACLE" 3-38

Chapter 3

Getting Started with RESTful Services

Figure 3-9 Using Browser to Show the Results of Using a Route Pattern to Send a GET
Method with Some Required Parameter Values

€)G

{
r items:
*{

1.

COracle |£h Maost Visited

[

empno: T321,
ename: "WARD",
job: "SRLESMRN",
mgr: Te9E,

hiredate: "1381-02-21TI1E:

sal: 1250,
comm: 500,
deptno: 30

empno: Ta5d,

ename: "MLETIN",

job: "SALESMEN",

mgr: 7695,

hiredate: "1981-08-27T1
sal: 1250,

comm: 1400,

deptno: 20

(>

empno: (544,

enams: "TUERNER",
job: "SALESMRN",
mgr: TeOE,

hiredate: "1881-08-07T1E:

sal: 1500,
comm: O,
deptno: 30

hasMore: fals=se,

limit:

off=set:

count:

The query returns 3 records for the salesmen named Ward, Martin, and Turner.

ORACLE

25,
-

o

3,

localhost:8080/ ords/ordstest/test/emp/SALESMAN/30

30:002",

Lad
=
=
=
[}

30:00z",

3-39

Chapter 3
Getting Started with RESTful Services

" See Also:

To learn more about Route Patterns see this document in the Oracle REST
Data Services distribution at docs/ j avadoc/ pl ugi n- api / r out e-

patterns. ht m and this document Oracle REST Data Services Route
Patterns

3.2.6.1.3 Using Query Strings for Optional Parameters

ORACLE

This section describes how to use query strings in the URI to specify parameters for
REST requests like the GET method, which does not have a body. You can use query
strings for any of the other optional bind variables in the query as you choose.

The syntax for using query strings is: ?par ml=val uel&par n2=val ue2 ...
&par mN=val ueN.

For example, to further filter the query: http://1 ocal host : 8080/ or ds/ or dst est /

t est/ enp/ SALESMAN 30, to use a query string to send a GET method with some
parameter name/value pairs, select employees whose mgr (manager) is 7698 and
whose sal (salary) is 1500 by appending the query string ?ngr =7698&sal =1500 to the
URL as follows: http://1 ocal host: 8080/ or ds/ or dst est/t est/ enp/ SALESMAN 307
mgr =76988&sal =1500.

To test the endpoint, in a web browser enter the following URL.: http://localhost:8080/
ords/ordstest/test/emp/SALESMAN/30?mgr=7698&sal=1500 as shown in the following
figure:

3-40

https://blog.cdivilly.com/2015/03/10/route-patterns/
https://blog.cdivilly.com/2015/03/10/route-patterns/

ORACLE

Chapter 3

Getting Started with RESTful Services

Figure 3-10 Using Browser to Show the Results of Using a Query String to

Send a GET Method with Some Parameter Name/Value Pairs

—

L localhost:8080/ ords/ordstest/test/emp/SALESMAN/307mgr=7698 &=al=1500

Oracle |2 Most Visited

{
* items: [
1
empno: 7544,
enams: "TUERNER",
job: "SLALESMAN",
mgr: TeOE,
hiredate: "1981-00-07T1&:30:00Z",
sal: 1500,
comm: O,
deptno: 30
H
1.
hasMore: false,
limit: 25,
offset: 0,
count: 1,
* links=s: |
1
rel: "s=1f",
href: http://localhost:80B0/ords/ordestest/test/enp/ SRLESMEN,/ 30
be
v
rel: "descrikbedby",
href: http://localhost:B080/ords/ordstest/metadata-catalog/tes
Te
M|
rel: "first",
href: http://localhost:8080/ords/ordstest/test/emp/ SALESMAN/ 30
}
]
}

The query returns one record for the salesman named Turner in department 30 who

has a salary of 1500 and whose manager is 7698.

Note the following points:

* ltis a good idea to URL encode your parameter values. This may not always be
required; however, it is the safe thing to do. This prevents the Internet from
transforming something, for example, such as a special character in to some other
character that may cause a failure. Your REST client may provide this capability or
you can search the Internet for the phrase url encoder to find tools that can do

this for you.

3-41

Chapter 3
Getting Started with RESTful Services

Never put a backslash at the end of your parameter list in the URI; otherwise, you
may get a 404 Not Found error.

¢ See Also:

To gain more experience using JSON to pass parameter values, see Lab 4
of the ORDS Oracle By Example (OBE) and Database Application
Development Virtual Image.

3.2.6.2 Using SQL/JSON Database Functions

This section describes how to use the SQL/JSON database functions available in
Oracle Database 12c Release 2 (12.2) to map the nested JSON objects to and from
the hierarchical relational tables.

This section includes the following topics:

Inserting Nested JSON Objects into Relational Tables

Generating Nested JSON Objects from Hierachical Relational Data

3.2.6.2.1 Inserting Nested JSON Objects into Relational Tables

This section explains how to insert JSON objects with nested arrays into multiple,
hierarchical relational tables.

ORACLE

The two key technologies used to implement this functionality are as follows:

The : body bind variable that Oracle REST Data Services provides to deliver JSON
and other content in the body of POST and other REST calls into PL/SQL REST
handlers

JSON_TABLE and other SQL/JSON operators provided in Oracle Database 12¢
Release 2 (12.2)

Some of the advantages of using these technologies for inserting data into relational
tables are as follows:

Requirements for implementing this functionality are very minimal. For example,
installation of JSON parser software is not required

You can use simple, declarative code that is easy to write and understand when
the JSON to relational mapping is simple

Powerful and sophisticated capabilities to handle more complex mappings. This
includes:

— Mechanisms for mapping NULLS and boolean values

— Sophisticated mechanisms for handling JSON. JSON evolves over time.
Hence, the mapping code must be able to handle both the older and newer
versions of the JSON documents.

For example, simple scalar values may evolve to become JSON objects
containing multiple scalars or nested arrays of scalar values or objects. SQL/
JSON operators that return the scalar value can continue to work even when
the simple scalar is embedded within these more elaborate structures. A

3-42

https://apexapps.oracle.com/pls/apex/f?p=44785:24:113172122269057:ADD_BOOKMARK:::P24_CONTENT_ID:13282
https://apexapps.oracle.com/pls/apex/f?p=44785:24:113172122269057:ADD_BOOKMARK:::P24_CONTENT_ID:13282
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

Chapter 3
Getting Started with RESTful Services

special mechanism, called the Ordinality Column, can be used to determine
the structure from where the value was derived.

" See Also:

The following pages for more information on JSON_TABLE and other SQL/
JSON operators and on Ordinality Column mechanism:

e json_db

e ordinality_column

3.2.6.2.1.1 Usage of the :body Bind Variable
This section provides some useful tips for using the : body bind variable.

Some of the useful tips for using the : body bind variable are as follows:

* The : body bind variable can be accessed, or de-referenced, only
once. Subsequent accesses return a NULL value. So, you must first assign
the : body bind variable to the local L_POvariable before using it in the two
JSON_Table operations.

e The : body bind variable is a BLOB datatype and you can assign it only to a BLOB
variable.

Note:

Since L_POis a BLOB variable, you must use the FORMAT JSON phrase
after the expression in the JSON_TABLE function. section for more
information.

The : body bind variable can be used with other types of data such as image data.

¢ See Also:

e Creating an Image Gallery for a working example of using : body bind
variable with image data .

- Database SQL Language Reference

3.2.6.2.1.2 Example of JSON Purchase Order with Nested Lineltems

This section shows an example that takes the JSON Purchase Order with Nested
Lineltems and inserts it into a row of the PurchaseOrder table and rows of the
Lineltem table.

ORACLE 3-43

https://blogs.oracle.com/jsondb/
https://blogs.oracle.com/jsondb/entry/the_new_sql_json_query3

Example 3-5 Nested

Chapter 3
Getting Started with RESTful Services

JSON Purchase Order with Nested Lineltems

{" PONunber" : 1608,
"Requestor” . "Alexis Bull",
" Cost Center" © "A50",
" Addr ess"” : {"street" : "200 Sporting Geen",
"city" . "South San Francisco",
"state" : "CA",
"zi pCode" : 99236,
"country" : "United States of Anerica"},
"Lineltens" [{"ItemNunber" : 1,
"Part" . {"Description" : "One Magic
Chri st mas",
“UnitPrice" :19. 95,
" UPCCode" : 1313109289},
"Quantity" . 9.0},
{"Item\unber" : 2,
"Part" . {"Description" . "Lethal Weapon",
“UnitPrice" : 19.95,
" UPCCode" . 8539162892},
"Quantity" : 5.0}]}

3.2.6.2.1.3 Table Definitions for PurchaseOrder and Lineltems Tables

3.2.6.2.1.4 PL/SQL Handler Code for a POST Request

ORACLE

This section provides definitions for the PurchaseOrder and Lineltem tables.

The definitions for the PurchaseOrder and the Lineltems tables are as follows:

CREATE TABLE PurchaseOrder (
PONo NUMBER (5),
Request or VARCHAR2 (50),
Cost Cent er VARCHAR2 (5),
AddressSt reet VARCHAR2 (50),
AddressCity VARCHAR2 (50),
AddressSt at e VARCHAR2 (2),
AddressZi p VARCHAR2 (10),
AddressCountry VARCHAR2 (50),
PRI MARY KEY (PONo)):

CREATE TABLE Li nel tem (
PONo NUMBER (5),
I't emNumber NUMBER (10),
Part Description VARCHAR2 (50),
Part UnitPrice NUMBER (10),
Par t UPCCODE NUMBER (10) ,
Quantity NUMBER (10),
PRI MARY KEY (PONo, | t enNunber));

This section gives an example PL/SQL handler code for a POST request. The handler

code is used to insert a purchase order into a row of the PurchaseOrder table and

rows of the Lineltem table.

3-44

Chapter 3
Getting Started with RESTful Services

Example 3-6 PL/SQL Handler Code Used for a POST Request

Decl are

L_PO BLOB;
Begin

L PO := :body;

| NSERT | NTO Pur chaseOr der
SELECT * FROM json_tabl e(L_PO FORMAT JSON, '$'

COLUWNS (
PONo Nurber PATH ' $. PONunber ',
Request or VARCHAR2 PATH ' $. Requestor',
Cost Cent er VARCHAR2 PATH ' $. Cost Center',

AddressStreet VARCHAR2 PATH '$. Address. street',
AddressCity VARCHAR2 PATH '$. Address.city',
AddressState VARCHAR2 PATH ' $. Address. state',
Addr essZip VARCHAR2 PATH ' $. Addr ess. zi pCode'
AddressCountry VARCHAR2 PATH '$. Address. country'));

I NSERT I NTO Lineltem
SELECT * FROM json_tabl e(L_PO FORVAT JSON, '$'

COLUMNS (
PONo Nunber PATH '$. PONunber',
NESTED PATH ' $. Li nel tems[*]"
COLUMNS (
I t emNunber Nunber PATH '$.|tenmNunber',

PartDescription VARCHAR2 PATH '$. Part. Description',
Part UnitPrice Nunber PATH '$.Part.UnitPrice',
Par t UPCCode Nunber PATH '$. Part. UPCCode',
Quantity Number ~ PATH '$. Quantity')));
commit;
end;

3.2.6.2.1.5 Creating the REST API Service to Invoke the Handler

ORACLE

This section explains how to create the REST API service to invoke the handler, using
the Oracle REST Data Services.

To setup the REST API service, a URI is defined to identify the resource the REST
calls will be operating on. The URI is also used by Oracle REST Data Services to
route the REST HTTP calls to specific handlers. The general format for the URI is as
follows:

<server>: <port >/ ords/ <schema>/ <modul e>/ <t enpl at e>/ <par anet er s>

Here, <server >: <port > is where the Oracle REST Data Service is installed. For
testing purposes, you can use demo and test in place of module and template
respectively in the URI. Modules are used to group together related templates that
define the resources the REST API will be operating upon.

To create the REST API service, use one of the following methods:

3-45

Chapter 3
Getting Started with RESTful Services

e Use the Oracle REST Data Services PL/SQL API to define the REST service and
a handler for the POST insert. Then connect to the j sont abl e schema on the
database server that contains the PurchaseOrder and Lineltem tables.

Note:

JSON_TABLE and other SQL/JSON operators use single quote so these
must be escaped. For example, every single quote (') must be replaced
with double quotes ().

* Use the Oracle REST Data Services, REST Development pane in SQL Developer
to define the REST service.

3.2.6.2.1.6 Defining the REST Service and Handler using PL/SQL API

ORACLE

This section shows how to define the REST Service and Handler for the POST insert
using the Oracle REST Data Services PL/SQL API.

You can alternatively use the Oracle REST Data Services REST development pane in
SQL Developer to create the modules, templates and handlers.

BEG N
ORDS. ENABLE_SCHEMA(
p_enabl ed => TRUE,
p_schema => ' ORDSTEST',

p_url _mapping_type => ' BASE_PATH ,
p_url _mapping_pattern => 'ordstest',

p_auto_rest _auth => FALSE);

ORDS. DEFI NE_MODULE(
p_nodul e_nane => 'demo',
p_base_path => '[deno/",
p_itens_per_page => 25,
p_status => ' PUBLI SHED ,
p_comments => NULL);

ORDS. DEFI NE_TEMPLATE(
p_nodul e_nane => 'demn',
p_pattern => 'test',
p_priority = 0,
p_etag_type => 'HASH ,
p_etag_query => NULL,
p_comments => NULL);

ORDS. DEFI NE_HANDLER(
p_nodul e_nane => 'demn',
p_pattern => 'test',
p_net hod => 'POST',
p_source_type => "plsql /bl ock',

p_itens_per_page => 0,
p_mnes_allowed =>"",
p_conmmrent s => NULL,

p_source =
decl are
L_PO BLOB : = : body;
begin

3-46

Chapter 3
Getting Started with RESTful Services

| NSERT | NTO Pur chaseCOr der
SELECT * FROM json_table(L_PO FORMAT JSON, "'$"'

COLUMNS (
PONo Number PATH ' ' $. PONunber ' ',
Request or VARCHAR2 PATH '' $. Requestor' ',

Cost Cent er VARCHAR2 PATH ''S$. Cost Center'',

Addr essSt reet VARCHAR2 PATH ''$. Address. street'"',
AddressCity VARCHAR2 PATH ''$. Address.city'"',
AddressState VARCHAR2 PATH ''$. Address. state'"',
AddressZip VARCHAR2 PATH ' ' $. Address. zi pCode' ',

Addr essCountry VARCHAR2 PATH '' $. Address. country''));

| NSERT I NTO Lineltem
SELECT * FROM json_table(L_PO FORMAT JSON, "'$"'

comit;
end; "'

COWM T,

END;

COLUMNS (
PONo Nunber PATH ''$. PONunber'',
NESTED PATH ' " $. Li nel tens[*]""
COLUMNS (

| t emNunber Nunber PATH ' ' $. 1t enNumber ' ',
Part Description VARCHAR? PATH ''$. Part. Description'"',
Part UnitPrice Nurmber PATH "' $. Part. UnitPrice' "',
Par t UPCCode Number PATH ' ' $. Part . UPCCode' ',
Quantity Nunber PATH ''$. Quantity'')));

Related Topics
* Using the Oracle REST Data Services PL/SQL API

* About Oracle REST Data Services Mechanisms for Passing Parameters

e Oracle REST Data Services PL/SQL Package Reference

3.2.6.2.2 Generating Nested JSON Objects from Hierachical Relational Data

This section explains how to query the relational tables in hierarchical (parent/child)
relationships and return the data in a nested JSON format using the Oracle REST
Data Services.

ORACLE

The two key technologies used to implement this functionality are as follows:

e The new SQL/JSON functions available with Oracle Database 12c Release 2
(12.2). You can use j son_obj ect s for generating JSON objects from the relational
tables, and j son_arrayagg, for generating nested JSON arrays from nested (child)
relational tables.

* The Oracle REST Data Services media source type used for enabling the REST
service handler to execute a SQL query that in turn returns the following types of

data:

3-47

Chapter 3
Getting Started with RESTful Services

— The HTTP Content-Type of the data, which in this case is application/json
— The JSON data returned by the j son_obj ect

Some of the advantages of using this approach are as follows:

* Requirements for implementing this functionality is very minimal. For example,
installation of JSON parser software is not required.

* Simple, declarative coding which is easy to write and understand which makes the
JSON objects to relational tables mapping simple.

» Powerful and sophisticated capabilities to handle more complex mappings. This
includes mechanisms for mapping NULLS and boolean values.

For example, a NULL in the Oracle Database can be converted to either the
absence of the JSON element or to a JSON NULL value. The Oracle Database
does not store Boolean types but the SQL/JSON functions allow string or numeric
values in the database to be mapped to Boolean TRUE or FALSE values.

3.2.6.2.2.1 Example to Generate Nested JSON Objects from the Hierachical
Relational Tables

This section describes how to query or GET the data we inserted into the
PurchaseOrder and Lineltem relational tables in the form of nested JSON purchase
order.

Example 3-7 GET Handler Code using Oracle REST Data Services Query on
Relational Tables for Generating a Nested JSON object

SELECT 'application/json', json_object (' PONumber' VALUE po. PONo,
"Requestor' VALUE po. Requestor,
" Cost Center' VALUE po. Cost Center,
" Address' VALUE
json_object('street’ VALUE po. AddressStreet,
"city' VALUE po.AddressCity,
"state’ VALUE po. AddressStat e,
' zi pCode' VALUE po. AddressZi p,
"country' VALUE po. AddressCountry),
"Lineltens' VALUE (select json_arrayagg(
json_object('ItemNunber' VALUE Ii.Item\unber,
"Part' VALUE
j son_object (' Description' VALUE |i.PartDescription,
"UnitPrice' VALUE Ii.PartUnitPrice,
" UPCCode' VALUE i . Part UPCCODE),
"Quantity' VALUE li.Quantity))
FROM Lineltem i WHERE po.PONo = |i.PONo))
FROM Pur chaseQr der po
VWHERE po. PONo = :id

3.2.6.2.2.2 PL/SQL API Calls for Defining Template and GET Handler

This section provides an example of Oracle REST Data Services PL/SQL API call for
creating a new template in the module created.

ORACLE 3-48

Chapter 3
Getting Started with RESTful Services

Example 3-8 PL/SQL API Call for Creating a New test/:id Template and GET
Handler in the deno Module

Begin

ords. define_tenplate(
p_nodul e_name => 'deno',
p_pattern => "test/:id");

ords. defi ne_handl er (
p_nodul e_nane => 'deno',
p_pattern => "test/:id",
p_nethod =>"'GCET',
p_source_type => ords. source_type nedi a,
p_source =>"'

SELECT ' "application/json'', json_object("'' PONumber'' VALUE po. PONo,
"' Requestor'' VALUE po. Requestor,
"' CostCenter'' VALUE po. CostCenter,
"' Address'' VALUE
json_object(''street'' VALUE po.AddressStreet,
"‘city'' VALUE po. AddressCity,
"'state'' VALUE po. AddressState,
"' zipCode'' VALUE po. AddressZi p,
""country'' VALUE po. AddressCountry),
""Lineltems'' VALUE (select json_arrayagg(
json_object ("' ItemNumber'' VALUE Ii.|temNunber,
""Part'"' VALUE
json_object ("' Description'' VALUE
|'i.PartDescription,
"“UnitPrice'" VALUE |i.PartUnitPrice,
"' UPCCode' " VALUE |i. Part UPCCCDE),
""Quantity'' VALUE Ii.Quantity))
FROM Lineltem |i WHERE po.PONo = |i.PONo))
FROM Pur chaseOr der po
VWHERE po.PONo = :id '
);

Commi t;
End;
3.2.6.2.3 Testing the RESTful Services

This section shows how to test the POST and GET RESTful Services to access the
Oracle database and get the results in a JSON format.

This section includes the following topics:

* Insertion of JSON Object into the Database
* Generating JSON Object from the Database

3.2.6.2.3.1 Insertion of JSON Obiject into the Database
This section shows how to test insertion of JSON purchase order into the database.

URI Pattern: htt p: / / <HOST>: <PORT>/ or ds/ <SchenmaAl i as>/ <modul e>/ <t enpl at e>

ORACLE 3-49

Chapter 3
Getting Started with RESTful Services

Example:
Method: POST
URI Pattern: http://| ocal host: 8080/ ords/ or dst est/deno/ t est/

To test the RESTful service, create a file such as pol. j son with the following data for
PONumber 1608 :

{" PONumber " . 1608,

"Requestor” . "Alexis Bull",

" Cost Center" © "A50",

" Addr ess"” : {"street" : "200 Sporting Geen",
"city" . "South San Francisco",
"state" @ "CA"

"zi pCode" : 99236,
“country" : "United States of America"},
"Lineltens" : [{"ltemNunber" : 1,

"Part" . {"Description" : "One Magic
Chri st mas",
“UnitPrice" : 19.95,
" UPCCode" 1313109289},
“Quantity" . 9.0},
{"Item\unber" : 2,
"Part" : {"Description" :
"Lethal Weapon",
“UnitPrice"
19. 95,
" UPCCode"
8539162892},
"Quantity" : 5.0}]}

Then, execute the following cURL command in the command prompt:

curl -i -H"Content-Type: application/json" -X POST -d @ol.json "http://local host:
8080/ or ds/ or dst est/ deno/ test/ "

The cURL command returns the following response:

HTTP/ 1.1 200 OK
Transf er- Encodi ng: chunked

3.2.6.2.3.2 Generating JSON Object from the Database

ORACLE

This section shows the results of a GET method to fetch the JSON object from the
database..

Method: GET

URI Pattern: htt p: // <HOST>: <PORT>/ or ds/ <SchenmaAl i as>/ <nodul e>/ <t enpl at e>/
<par anet er s>

Example:

To test the RESTful service, in a web browser, enter the URL http://localhost:8080 /
ords/ordstest/demo/test/1608 as shown in the following figure:

3-50

Chapter 3
Getting Started with RESTful Services

Figure 3-11 Generating Nested JSON Objects

/] hitp://localhost:8080/ards/...)t\"l,\+

(- i) | localhost:8080/ ords/ ordstest/demo/test/ 1608
|1 Qracle @] Most Visited

i
PONumber: 1&0E,

Requestor: "Rlexis Bull",
CostCenter: "L50",
r Bddress: |

street: "200 Sporting Green",
city: "South San Francisco",
state: "CL",
zipCode: "O050236",
country: "United States of Emerica"

b
* LineTtems: |
v
ItemMmber: 1,
* Part: |
Description: "One Magic Christmas",
UnitPrice: 20,
UPCCode: 13131009288
b
Quantity: ¢
T
v
TtemMumber: 2,
* Part: {
Description: "Lethal Weapon",
OnitPrice: 20,
UPCCode: E539162892
b
(mantity: 5
}F
" {

ItemNumber: 1,
r Part: |
Description: "Cne Magic Christmas",
InitPrice: Z0,
UPCCode: 13131009289

te
fuantity: 9

ORACLE' 351

Chapter 3
Getting Started with RESTful Services

3.2.7 About Working with Dates Using Oracle REST Data Services

Oracle REST Data Services enables developers to create REST interfaces to Oracle
Database, Oracle Database 12c JSON Document Store as quickly and easily as
possible. When working with Oracle Database, developers can use the AutoREST
feature for tables or write custom modules using SQL and PL/SQL routines for more
complex operations.

Oracle REST Data Services uses the RFC3339 standard for encoding dates in strings.
Typically, the date format used is dd-mmm-yyyy, for example, 15-Jan-2017. Oracle
REST Data Services automatically converts JSON strings in the specified format to
Oracle date data types when performing operations such as inserting or updating
values in Oracle Database. When converting back to JSON strings, Oracle REST Data
Services automatically converts Oracle date data types to the string format.

Note:

Oracle Database supports a date data type while JSON does not support a
date data type.

This section includes the following topics:

e About Datetime Handling with Oracle REST Data Services
e About Setting the Time Zone

¢ See Also:

The following page for more information, including details on how time and
time zones are handled jsao_io_dates

3.2.7.1 About Datetime Handling with Oracle REST Data Services

ORACLE

As data arrives from a REST request, Oracle REST Data Services may parse ISO
8601 strings and convert them to the TI MESTAMP data type in Oracle Database. This
occurs with AutoREST (POST and PUT) as well as with bind variables in custom
modules. Remember that TI MESTAVP does not support time zone related components,
so the DATETI ME value is set to the time zone Oracle REST Data Services uses during
the conversion process.

When constructing responses to REST requests, Oracle REST Data Services converts
DATETI ME values in Oracle Database to ISO 8601 strings in Zulu. This occurs with
AutoREST (GET) and in custom modules that are mapped to SQL queries (GET). In the
case of DATE and Tl MESTAWP data types, which do not have time zone related
components, the time zone is assumed to be that in which Oracle REST Data Services
is running and the conversion to Zulu is made from there.

Here are some general recommendations when working with Oracle REST Data
Services for REST (that is, not APEX):

3-52

https://jsao.io/2016/10/working-with-dates-using-ords/

Chapter 3
Getting Started with RESTful Services

» Ensure that Oracle REST Data Services uses the appropriate time zone as per the
data in the database (for example, the time zone you want dates going into the
database).

* Do not alter NLS settings (that is, the time_zone) mid-stream.

Note that while ISO 8601 strings are mentioned, Oracle REST Data Services actually
supports strings. RFC3339 strings are a conformant subset of ISO 8601 strings. The
default format returned by JSON. st ri ngi f y(dat e) is supported.

WARNING:

It is important to keep the time zone that Oracle REST Data Services uses in
sync with the session time zone to prevent issues with implicit data
conversion to TI MESTAMP W TH TI ME ZONE or TI MESTAMP W TH LOCAL TI ME
ZONE. Oracle REST Data Services does this automatically by default but
developers can change the session time zone with an ALTER SESSI ON
statement.

¢ See Aslo:

rfc3339_date_time_format

3.2.7.2 About Setting the Time Zone

ORACLE

When Oracle REST Data Services is started, the JVM it runs in obtains and caches
the time zone Oracle REST Data Services uses for various time zone conversions. By
default, the time zone is obtained from the operating system (OS), so an easy way to
change the time zone Oracle REST Data Services uses is to change the time zone of
the OS and then restart Oracle REST Data Services or the application server on which
it is running. Of course, the instructions for changing the time zone vary by the
operating system.

If for any reason you do not want to use the same time zone as the OS, it is possible
to override the default using the Java environment variable Duser . ti nezone. Exactly
how that variable is set depends on whether you are running in standalone mode or in
a Java application server. The following topics show some examples.

Standalone Mode

When running Oracle REST Data Services in standalone mode, it is possible to set
Java environment variables by specifying them as command line options before the -
j ar option.

Example 3-9 Setting the Duser.timezone Java Environment Variable in
Standalone Mode

The following code example shows how to set the timezone in standalone mode on
the command line.

$ java -Duser.tinmezone=Anerical/ New York -jar ords.war standal one

3-53

https://xml2rfc.tools.ietf.org/public/rfc/html/rfc3339.html#anchor14

Chapter 3
Getting Started with RESTful Services

Java Application Server — Tomcat 8

In a Java application server, Tomcat 8, and possibly earlier and later versions too, it is
possible to set the time zone using the environment variable CATALI NA OPTS. The
recommended way to do this is not to modify the CATALI NA_BASE/ bi n/ cat al i na. sh
directly, but instead to set environment variables by creating a script named set env. sh
in CATALI NA_BASE/ bi n.

Example 3-10 Setting the Duser.timezone Java Environment Variable in a Java
Application Server

The following code example shows the contents of the set env. sh script for setting the
timezone in a Java Application server — Tomcat 8.

CATALI NA Tl MEZONE="- Duser . ti mezone=Aneri ca/ New_York"
CATALI NA_OPTS="$CATALI NA_OPTS $CATALI NA TI MEZONE

3.2.7.3 Exploring the Sample RESTful Services in Application Express

(Tutorial)

ORACLE

Oracle highly recommends to develop Oracle REST Data Services application using
SQL Developer because it supports the most recent Oracle REST Data Services
releases, that is, 3.0.X. Application Express provides a tutorial that is useful for
learning some basic concepts of REST and Oracle REST Data Services. However, the
tutorial uses the earlier Oracle REST Data Services releases, that is, 2.0.X. Following
are some of the useful tips discussed on how to use the tutorial:

If your Application Express instance is configured to automatically add the sample
application and sample database objects to workspaces, then a sample resource
module named: or acl e. exanpl e. hr will be visible in the list of Resource Modules. If
that resource module is not listed, then you can click the Reset Sample Data task on
the right side of the RESTful Services Page to create the sample resource module.

1. Click on oracl e. exanpl e. hr to view the Resource Templates and Resource
Handlers defined within the module. Note how the module has a URI prefix with
the value: hr/ . This means that all URIs serviced by this module will start with the
characters hr/ .

2. Click on the resource template named enpl oyees/ {i d} . Note how the template
has a URI Template with the value: empl oyees/ {i d} . This means that all URIs
starting with hr/ enpl oyees/ will be serviced by this Resource Template.

The HTTP methods supported by a resource template are listed under the
resource template. In this case, the only supported method is the GET method.

3. Click on the GET Resource Handler for hr/ enpl oyees/ {i d} to view its
configuration.

The Source Type for this handler is Query One Row. This means that the resource
is expected to be mapped to a single row in the query result set. The Source for
this handler is:

select * fromenp
where enmpno = :id

3-54

Chapter 3
Getting Started with RESTful Services

Assuming that the enpno column is unique, the query should only produce a single
result (or no result at all if no match is found for : i d). To try it out, press the Test
button. The following error message should be displayed:

400 - Bad Request - Request path contains unbound parameters: id
If you look at the URI displayed in the browser, it will look something like this:

https://server:port/ords/ workspace/ hr/enpl oyees/ {i d}

where:

* server is the DNS name of the server where Oracle Application Express is
deployed

e port is the port the server is listening on

« workspace is the name of the Oracle Application Express workspace you are
logged into

Note the final part of the URI: hr/ enpl oyees/ {i d} . The error message says that
this is not a valid URI, the problem is that you did not substitute in a concrete value
for the parameter named {i d}. To fix that, press the browser Back button, then
click Set Bind Variables.

4. For the bind variable named : i d, enter the value 7369, and press Test.

A new browser window appears displaying the following JSON (JavaScript Object
Notation):

{
"empno": 7369
"ename":"SM TH',
"job":"CLERK"
"mgr": 7902
"hiredate":"1980-12-17T08: 00: 002"
"sal ": 800
"dept no": 20
}

Note also the URI displayed in the browser for this resource:

https://server:port/ords/ workspace/ hr/enpl oyees/ 7369

The {i d} URI Template parameter is bound to the SQL : i d bind variable, and in
this case it has been given the concrete value of 7369, so the query executed by
the RESTful Service becomes:

select * fromenp
where enmpno = 7369

The results of this query are then rendered as JSON as shown above.

ORACLE 3-55

ORACLE

Chapter 3
Getting Started with RESTful Services

Tip:

Reading JSON can be difficult. To make it easier to read, install a
browser extension that pretty prints the JSON. For example, Mozilla
Firefox and Google Chrome both have extensions:

e jsonview_firefox

e json_formatter_chrome

Now see what happens when you enter the URI of a resource that does not exist.

On the Set Bind Variables page, change the value of : i d from 7369 to 1111, and
press Test.

As before, a new window pops up, but instead of displaying a JSON resource, it
displays an error message reading:

404 - Not Found

This is the expected behavior of this handler: when a value is bound to : i d that
does not exist in the enp table, the query produces no results and consequently
the standard HTTP Status Code of 404 - Not Found is returned.

So, you have a service that will provide information about individual employees, if
you know the ID of an employee, but how do you discover the set of valid
employee ids?

Press Cancel to return to the previous page displaying the contents of the
Resource Module.

Click on the template named enpl oyees/ .

The following steps look at the resource it generates, and later text will help you
understand its logic.

Click on the GET handler beneath enpl oyees/, and click Test.

A resource similar to the following is displayed (If you haven't already done so,
now would be a good time to install a JSON viewer extension in your browser to
make it easier to view the output):

{
"next":
{"$ref":
"https://server:port/ords/workspace/ hr/enpl oyees/ ?page=1"},
"items": [
{
“uri":
{"S$ref":
"https://server:port/ords/ workspace/ hr/enpl oyees/ 7369"},
“enmpno": 7369,
"ename": "SM TH'
1
{

"uri":

{"$ref":
"https://server:port/ords/ workspace/ hr/enpl oyees/ 7499"},
“enmpno": 7499,

"ename": "ALLEN'

3-56

http://jsonview.com/
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en

ORACLE

Chapter 3
Getting Started with RESTful Services

"uri":

{"$ref":
“https://server:port/ords/ workspace/ hr/enpl oyees/ 7782"},
"enpno": 7782,

“enane": "CLARK"

}
]
}

This JISON document contains a number of things worth noting:

* The first element in the document is named next and is a URI pointing to the
next page of results. (An explanation of how paginated results are supported
appears in later steps)

* The second element is named i t ens and contains a number of child elements.
Each child element corresponds to a row in the result set generated by the

query.

» The first element of each child element is named uri and contains a URI
pointing to the service that provides details of each employee. Note how the
latter part of the URI matches the URI Template: enpl oyees/ {i d}. In other
words, if a client accesses any of these URIs, the request will be serviced by
the enpl oyees/ {i d} RESTful service previously discussed.

So, this service addresses the problem of identifying valid employee IDs by
generating a resource that lists all valid employee resources. The key thing to
realize here is that it does not do this by just listing the ID value by itself and
expecting the client to be able to take the ID and combine it with prior knowledge
of the enpl oyees/{i d} service to produce an employee URI; instead, it lists the
URIs of each employee.

Because the list of valid employees may be large, the service also breaks the list
into smaller pages, and again uses a URI to tell the client where to find the next
page in the results.

To see at how this service is implemented, continue with the next steps.
Press the Back button in your browser to return to the GET handler definition.

Note the Source Type is Query, this is the default Source Type, and indicates that
the resource can contain zero or more results. The Pagination Size is 7, which
means that there will be seven items on each page of the results. Finally, the
Source for the handler looks like this:

sel ect empno "$uri", enpno, enane from (

sel ect emp.*,
row_nunber () over (order by empno) rn
fromenp

) tnp
wher e
rn between :row of fset and :row count

In this query:

e The first line states that you want to return three columns. The first column is
the employee id: empno, but aliased to a column name of $uri (to be explained

3-57

ORACLE

10.

11.

Chapter 3
Getting Started with RESTful Services

later), the second column is again the employee ID, and the third column is the
employee name, enane.

e Columns in result sets whose first character is $ (dollar sign) are given special
treatment. They are assumed to denote columns that must be transformed into
URIs, and these are called Hyperlink Columns. Thus, naming columns with a
leading $ is a way to generate hyperlinks in resources.

When a Hyperlink Column is encountered, its value is prepended with the URI
of the resource in which the column is being rendered, to produce a new URI.
For example, recall that the URI of this service is htt ps://server: port/ords/
wor kspace/ hr/ enpl oyees/ . If the value of enpno in the first row produced by
the this service's query is 7369, then the value of $uri becomes: https://
server: port/ords/workspace/ hr/ enpl oyees/ 7369.

* JSON does not have a URI data type, so a convention is needed to make it
clear to clients that a particular value represents a URI. Oracle REST Data
Services uses the JSON Reference proposal, which states that any JSON
object containing a member named $r ef , and whose value is a string, is a
URI. Thus, the column: $uri and its value: https://server: port/ords/
wor kspace/ hr/ enpl oyees/ 7369 is transformed to the following JSON object:

{"uri":
{"$ref":
"https://server:port/ords/ workspace/ hr/enpl oyees/ 7369"

}
}

e The inner query uses the r ow_nunber () analytical function to count the
number of rows in the result set, and the outer WHERE clause constrains the
result set to only return rows falling within the desired page of results. Oracle
REST Data Services defines two implicit bind parameters, : r ow of f set
and : row_count, that always contain the indicies of the first and last rows that
should be returned in a given page's results.

For example, if the current page is the first page and the pagination size is 7,
then the value of : row_of f set will be 1 and the value of : r ow_count will be 7.

To see a simpler way to do both hyperlinks and paged results, continue with the
following steps.

Click on the GET handler of the enpl oyeesf eed/ resource template.

Note that the Source Type of this handler is Feed and Pagination Size is 25.
Change the pagination size to 7, and click Apply Changes.

The Source of the handler is just the following:

sel ect enpno, enane fromenp
order by deptno, ename

As you can see, the query is much simpler than the previous example; however, if
you click Test, you will see a result that is very similar to the result produced by
the previous example.

e The Feed Source Type is an enhanced version of the Query Source Type that
automatically assumes the first column in a result set should be turned into a
hyperlink, eliminating the need to alias columns with a name starting with $. In
this example, the enpno column is automatically transformed into a hyperlink
by the Feed Source Type.

3-58

Chapter 3
Configuring Secure Access to RESTful Services

* This example demonstrates the ability of Oracle REST Data Services to
automatically paginate result sets if a Pagination Size of greater than zero is
defined, and the query does not explicitly dereference the : r ow_of f set
or : row_count bind parameters. Because both these conditions hold true for
this example, Oracle REST Data Services enhances the query, wrapping it in
clauses to count and constrain the number and offset of rows returned. Note
that this ability to automatically paginate results also applies to the Query
Source Type.

" See Also:

json_ref

3.3 Configuring Secure Access to RESTful Services

This section describes how to configure secure access to RESTful Services

RESTful APIs consist of resources, each resource having a unique URI. A set of
resources can be protected by a privilege. A privilege defines the set of roles, at least
one of which an authenticated user must possess to access a resource protected by a
privilege.

Configuring a resource to be protected by a particular privilege requires creating a
privilege mapping. A privilege mapping defines a set of patterns that identifies the
resources that a privilege protects.

Topics:

* Authentication

* About Privileges for Accessing Resources

* About Users and Roles for Accessing Resources

* About the File-Based User Repository

* Tutorial: Protecting and Accessing Resources

3.3.1 Authentication

Users can be authenticated through first party cookie-based authentication or third
party OAuth 2.0-based authentication

Topics:
» First Party Cookie-Based Authentication

e Third Party OAuth 2.0-Based Authentication

3.3.1.1 First Party Cookie-Based Authentication

ORACLE

A first party is the author of a RESTful API. A first party application is a web application
deployed on the same web origin as the RESTful API. A first party application is able
to authenticate and authorize itself to the RESTful API using the same cookie session
that the web application is using. The first party application has full access to the
RESTful API.

3-59

http://tools.ietf.org/html/draft-pbryan-zyp-json-ref

Chapter 3
Configuring Secure Access to RESTful Services

3.3.1.2 Third Party OAuth 2.0-Based Authentication

A third party is any party other than the author of a RESTful API. A third party
application cannot be trusted in the same way as a first party application; therefore,
there must be a mediated means to selectively grant the third party application limited
access to the RESTful APL.

The OAuth 2.0 protocol defines flows to provide conditional and limited access to a
RESTful API. In short, the third party application must first be registered with the first
party, and then the first party (or an end user of the first party RESTful service)
approves the third party application for limited access to the RESTful API, by issuing
the third party application a short-lived access token.

¢ See Also:
ietf rfc6749

3.3.1.2.1 Two-Legged and Three-Legged OAuth Flows

Some flows in OAuth are defined as two-legged and others as three-legged.

Two-legged OAuth flows involve two parties: the party calling the RESTful API (the
third party application), and the party providing the RESTful API. Two-legged flows are
used in server to server interactions where an end user does not need to approve
access to the RESTful API. In OAuth 2.0 this flow is called the client credentials flow. It
is most typically used in business to business scenarios.

Three-legged OAuth flows involve three parties: the party calling the RESTful API,
the party providing the RESTful API, and an end user party that owns or manages the
data to which the RESTful API provides access. Three-legged flows are used in client
to server interactions where an end user must approve access to the RESTful API. In
OAuth 2.0 the authorization code flow and the implicit flow are three-legged flows.
These flows are typically used in business to consumer scenarios.

For resources protected by three-legged flows, when an OAuth client is registering
with a RESTful API, it can safely indicate the protected resources that it requires
access to, and the end user has the final approval decision about whether to grant the
client access. However for resources protected by two-legged flows, the owner of the
RESTful API must approve which resources each client is authorized to access.

3.3.2 About Privileges for Accessing Resources

ORACLE

A privilege for accessing resources consists of the following data:

* Name: The unique identifier for the Privilege. This value is required.

e Label: The name of the privilege presented to an end user when the user is being
asked to approve access to a privilege when using OAuth. This value is required if
the privilege is used with a three-legged OAuth flow.

» Description: A description of the purpose of the privilege. It is also presented to the
end user when the user is being asked to approve access to a privilege. This value
is required if the privilege is used with a three-legged OAuth flow.

3-60

https://tools.ietf.org/html/rfc6749

Chapter 3
Configuring Secure Access to RESTful Services

* Roles: A set of role names associated with the privilege. An authenticated party
must have at least one of the specified roles in order to be authorised to access
resources protected by the privilege. A value is required, although it may be an
empty set, which indicates that a user must be authenticated but that no specific
role is required to access the privilege.

For two-legged OAuth flows, the third party application (called a client in OAuth
terminology) must possess at least one of the required roles.

For three-legged OAuth flows, the end user that approves the access request from the
third party application must possess at least one of the required roles.

Related Topics
e Two-Legged and Three-Legged OAuth Flows

3.3.3 About Users and Roles for Accessing Resources

A privilege enumerates a set of roles, and users can possess roles. but where are
these Roles defined? What about the users that possess these roles? Where are they
defined?

A privilege enumerates a set of roles, and users can possess roles. Oracle REST Data
Services delegates the task of user management to the application server on which
Oracle REST Data Services is deployed. Oracle REST Data Services is able to
authenticate users defined and managed by the application server and to identify the
roles and groups to which the authenticated user belongs. It is the responsibility of the
party deploying Oracle REST Data Services on an application server to also configure
the user repository on the application server.

Because an application server can be configured in many ways to define a user
repository or integrate with an existing user repository, this document cannot describe
how to configure a user repository in an application server. See the application server
documentation for detailed information.

3.3.4 About the File-Based User Repository

ORACLE

Oracle REST Data Services provides a a simple file-based user repository
mechanism. However, this user repository is only intended for the purposes of
demonstration and testing, and is not supported for production use.

See the command-line help for the user command for more information on how to
create a user in this repository:

java -jar ords.war help user

Format:

java -jar ords.war user <user> <roles>
Arguments:

e <user>is the user ID of the user.

e <rol es>is the list of roles (zero or more) that the user has.

Related Topics

* Tutorial: Protecting and Accessing Resources

3-61

Chapter 3
Configuring Secure Access to RESTful Services

3.3.5 Tutorial: Protecting and Accessing Resources

This tutorial demonstrates creating a privilege to protect a set of resources, and
accessing the protected resource with the following OAuth features:

e Client credentials
e Authorization code
* Implicit flow

It also demonstrates access the resource using first-party cookie-based authentication.

Topics:
e OAuth Flows and When to Use Each
e Assumptions for This Tutorial

e Steps for This Tutorial

3.3.5.1 OAuth Flows and When to Use Each

This topic explains when to use various OAuth flow features.

Use first party cookie-based authentication when accessing a RESTful API from a web
application hosted on the same origin as the RESTful API.

Use the authorization code flow when you need to permit third party web applications
to access a RESTful API and the third party application has its own web server where
it can keep its client credentials secure. This is the typical situation for most web
applications, and it provides the most security and best user experience, because the
third party application can use refresh tokens to extend the life of a user session
without having to prompt the user to reauthorize the application.

Use the implicit flow when the third party application does not have a web server
where it can keep its credentials secure. This flow is useful for third party single-page-
based applications. Because refresh tokens cannot be issued in the Implicit flow, the
user will be prompted more frequently to authorize the application.

Native mobile or desktop applications should use the authorization code or implicit
flows. They will need to display the sign in and authorization prompts in a web browser
view, and capture the access token from the web browser view at the end of the
authorization process.

Use the client credentials flow when you need to give a third party application direct
access to a RESTful API without requiring a user to approve access to the data
managed by the RESTful API. The third party application must be a server-based
application that can keep its credentials secret. The client credentials flow must not be
used with a native application, because the client credentials can always be
discovered in the native executable.

3.3.5.2 Assumptions for This Tutorial

This tutorial assumes the following:

» Oracle REST Data Services is deployed at the following URL: htt ps://
exanpl e. con or ds/

ORACLE 3-62

Chapter 3
Configuring Secure Access to RESTful Services

A database schema named ORDSTEST has been enabled for use with Oracle
REST Data Services, and its RESTful APIs are exposed under: https://
exanpl e. cont or ds/ or dst est/

The ORDSTEST schema contains a database table named EMP, which was
created as follows:

create table enp (
enpno nunber (4, 0),
enanme varchar2(10 byte),

job varchar2(9 byte),
nyr nunber (4, 0),
hiredate date,

sal nunber (7, 2),
conm nunber (7, 2),

deptno nunber(2,0),

constraint pk_enp primary key (enpno)

);
The resources to be protected are located under: htt ps: // exanpl e. conl or ds/
or dst est/ exanpl es/ enpl oyees/

3.3.5.3 Steps for This Tutorial

Follow these steps to protect and access a set of resources.

ORACLE

1.

Enable the schema. Connect to the ORDSTEST schema and execute the
following PL/SQL statements;

begin
ords. enabl e_schenm;
comit;

end;

Create a resource. Connect to the ORDSTEST schema and execute the following
PL/SQL statements:

begin
ords. create_service(
p_modul e_name => ' exanpl es. enpl oyees'
p_base_path =>'/exanpl es/enpl oyees/",
p_pattern => '.' |
p_i tems_per_page => 7,
p_source => 'select * fromenp order by enpno desc');
comm t;
end;

The preceding code creates the / exanpl es/ enpl oyees/ resource, which you will
protect with a privilege in a later step.
You can verify the resource by executing following cURL command:

curl -i https://exanple.conl ords/ordstest/exanpl es/ enpl oyees/

The result should be similar to the following (edited for readability):

Content- Type: application/json
Transf er- Encodi ng: chunked

{
"itens":

[

3-63

ORACLE

Chapter 3
Configuring Secure Access to RESTful Services

{"enpno": 7934, "enane": "M LLER", "j ob": " CLERK", "ngr":
7782, "hiredate":"1982-01-23T00: 00: 00Z", "sal ": 1300, "conni': nul I , "dept no": 10},

I

"hasMore":true,
"limt":7,
"of fset":0,
"count":7,
"links":
[
{"rel":"self","href":"https://exanpl e.coni ords/ ordst est/exanpl es/
enpl oyees/ "},
{"rel":"describedby", "href":"https://exanpl e. com ords/ or dst est/ net adat a-
cat al og/ exanpl es/ enpl oyees/ "},
{"rel":"first","href":"https://exanpl e. con ords/ ordst est/exanpl es/
enpl oyees/ "},
{"rel":"next","href":"https://exanpl e.coni ords/ ordstest/exanpl es/ enpl oyees/ ?
of fset=7"}
]
}

Create a privilege. While connected to the ORDSTEST schema, execute the
following PL/SQL statements:

begin
ords.create_role(' HR Adnministrator');

ords.create_privil ege(
p_name => 'exanpl e. enpl oyees',
p_role_name => 'HR Administrator',
p_l abel =>'Enpl oyee Data',
p_description => 'Provide access to enployee HR data');
comit;
end;

The preceding code creates a role and a privilege, which belong to the
ORDSTEST schema.
* The role name must be unique and must contain printable characters only.

* The privilege name must be unique and must conform to the syntax specified
by the OAuth 2.0 specification, section 3.3 for scope names.

* Because you will want to use this privilege with the three-legged authorization
code and implicit flows, you must provide a label and a description for the
privilege. The label and description are presented to the end user during the
approval phase of three-legged flows.

* The values should be plain text identifying the name and purpose of the
privilege.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGES view.

select id,name fromuser_ords_privileges where nanme = 'exanpl e. enpl oyees';

The result should be similar to the following:

ID
NAME

3-64

ORACLE

Chapter 3
Configuring Secure Access to RESTful Services

10260 exanpl e. enpl oyees

The ID value will vary from database to database, but the NAME value should be
as shown.

Associate the privilege with resources. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
ords. create_privil ege_mappi ng(
p_privilege_nane => 'exanpl e. enpl oyees',
p_pattern => '/exanpl es/ enpl oyees/*');
comit;
end;

The preceding code associates the exanpl e. enpl oyees privilege with the resource
pattern / exanpl es/ enpl oyees/ .

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGE_MAPPINGS view.

select privilege_id, nane, pattern fromuser_ords_privil ege_mappi ngs;

The result should be similar to the following:

PRI VI LEGE_| D NAME PATTERN

10260 exanpl e. enpl oyees / exanpl es/ enpl oyees/ *

The PRIVILEGE_ID value will vary from database to database, but the NAME and
PATTERN values should be as shown.

You can confirm that the / exanpl es/ enpl oyees/ resource is now protected by the
exanpl e. enpl oyees privilege by executing the following cURL command:

curl -i https://exanple.confords/ordstest/exanpl es/ enpl oyees/

The result should be similar to the following (reformatted for readability):

HTTP/ 1.1 401 Unaut hori zed
Content-Type: text/htm
Transfer-Encodi ng: chunked

<I DOCTYPE htm >
<htm >

</ .ht m >
You can confirm that the protected resource can be accessed through first party
authentication, as follows.

a. Create an end user. Create a test user with the HR Administrator role,
required to access the exanpl es. enpl oyees privilege using the file-based user
repository. Execute the following command at a command prompt

java -jar ords.war user "hr_admin" "HR Adnministrator"

When prompted for the password, enter and confirm it.
b. Sign in as the end user. Enter the following URL in a web browser:

https://exanpl e. conf ords/ or dst est/ exanpl es/ enpl oyees/

3-65

ORACLE

Chapter 3
Configuring Secure Access to RESTful Services

On the page indicating that access is denied, click the link to sign in.
Enter the credentials registered for the HR_ADMIN user, and click Sign In.

Confirm that the page redirects to htt ps: // exanpl e. coni or ds/ or dst est/
exanpl es/ enpl oyees/ and that the JSON document is displayed.

Register the OAuth client. While connected to the ORDSTEST schema, execute
the following PL/SQL statements:

begin

oaut h. create_client(
p_name => 'Cient Credentials Exanple',
p_grant _type => 'client_credentials',
p_privilege_names => 'exanpl e. enpl oyees',
p_support _enmmil => 'support @xanple.con);

comit;

end;

The preceding code registers a client named C i ent Credential s Exanpl e, to
access the exanpl es. enpl oyees privilege using the client credentials OAuth flow.

You can verify that the client was registered and has requested access to the
exanpl es. enpl oyees privilege by executing the following SQL statement:

select client_id, client_secret fromuser_ords_clients where name = 'Cient
Credential s Exanple';

The result should be similar to the following:

CLIENT_ID CLI ENT_SECRET

0_CZBVKEM\23t TB- 1 dd@Q. . 4BJXceuf bmrki - vr uYNLI g. .

The CLIENT_ID and CLIENT_SECRET values represent the secret credentials for
the OAuth client. These values must be noted and kept secure. You can think of
them as the userid and password for the client application.

Grant the OAuth client a required role. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:
begin
oauth. grant _client_rol e(
"Cient Credentials Exanple',
"HR Administrator');
commit;
end;

The preceding code registers a client named O i ent Credential s Exanple,to
access the exanpl es. enpl oyees privilege using the client credentials OAuth flow.

You can verify that the client was granted the role by executing the following SQL
statement:

select * fromuser_ords_client_roles where client_nane = 'Cient Credentials
Exanpl e';

The result should be similar to the following:

CLIENT_I D CLI ENT_NAME ROLE ID ROLE_NAME

10286 dient Credentials Exanple 10222 HR Admini strator

Obtain an OAuth access token using client credentials.

3-66

ORACLE

Chapter 3
Configuring Secure Access to RESTful Services

The OAuth protocol specifies the HTTP request that must be used to create an
access token using the client credentials flow[rfc6749-4.4.].

The request must be made to a well known URL, called the token endpoint. For
Oracle REST Data Services the path of the token endpoint is always oauth/token,
relative to the root path of the schema being accessed. The token endpoint for this
example is:

https://exanpl e. com ords/ or dst est/ oaut h/ t oken

Execute the following cURL command:

curl -i --user clientld:clientSecret --data "grant_type=client_credentials"
https://exanpl e. coml ords/ ordst est/ oaut h/ t oken

In the preceding command, replace cl i ent | d with the CLIENT_ID value in
USER_ORDS _ CLIENTS fordient Credentials Exanpl e, and replace

client Secret with the CLIENT_SECRET value shown in USER_ORDS_CLIENTS
fordient Credential s Exanpl e. The output should be similar to the following:

HTTP/ 1.1 200 K
Content - Type: application/json

{
"access_token": "2Yot nFZFEj r 1zCsi cMApAA",
"token_type": "bearer",
"expires_in":3600

}

In the preceding output, the access token is of type bear er, and the value is
specified by the access_t oken field. This value will be different for every request.
The expi res_i n value indicates the number of seconds until the access token
expires; in this case the token will expire in one hour (3600 seconds).

Access a protected resource using the access token. Execute the following
cURL command:

curl -i -H'Authorization: Bearer accessToken" https://exanple.conl ords/ordstest/
exanpl es/ enpl oyees/

In the preceding command, replace accessToken with the value of the
access_t oken field shown in the preceding step. The output should be similar to
the following:

Cont ent- Type: application/json
Transf er- Encodi ng: chunked

{

"itenms":

{"enpno": 7934, "enane": "M LLER", "j ob": " CLERK", "ngr":
7782, "hiredate":"1982-01-23T00: 00: 00Z", "sal ": 1300, "comi': nul | , "dept no": 10},

I

"hasMore":true,
"limt":7,
"offset":0,
“count": 7,
"l'inks":

{"rel":"self","href":"https://exanpl e.conl ords/ ordst est/exanpl es/

3-67

ORACLE

10.

Chapter 3
Configuring Secure Access to RESTful Services

enpl oyees/ "},
{"rel":"describedby", "href":"https://exanpl e. com ords/ or dst est/ net adat a-
cat al og/ exanpl es/ enpl oyees/ "},
{"rel":"first","href":"https://exanpl e. con ords/ ordst est/exanpl es/
enpl oyees/ "},
{"rel":"next","href":"https://exanpl e.coni ords/ ordst est/exanpl es/ enpl oyees/ ?
of fset=7"}

]
}

Register the client for authorization code. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin

oauth. create_client(
p_nanme => 'Authorization Code Exanple',
p_grant _type => "authorization_code',
p_owner => 'Exanple Inc.',
p_description => 'Sanple for denonstrating Authorization Code Flow ,
p_redirect_uri => "http://exanple.org/auth/code/ exanple/",
p_support_emai| => 'support @xanple.org",
p_support _uri => "http://exanple.org/ support',
p_privilege_nanes => 'exanpl e. enpl oyees'
);

comit;

end;

The preceding code registers a client named Aut hori zati on Code Exanpl e, to
access the exanpl es. enpl oyees privilege using the authorization code OAuth flow.
For an actual application, a URI must be provided to redirect back to with the
authorization code, and a valid support email address must be supplied; however,
this example uses fictitious data and the sample exanpl e. or g web service.

You can verify that the client is now registered and has requested access to the
exanpl es. enpl oyees privilege by executing the following SQL statement:

select id, client_id, client_secret fromuser_ords_clients where nane =
"Aut hori zation Code Exanple';

The result should be similar to the following:

ID CLIENT_ID CLI ENT_SECRET

10060 | GHs04BRgr BC3JwgOVx_YQ . Cef As\W8FJdMSB30EgG6! Kw. .

To grant access to the privilege, an end user must approve access. The
CLIENT_ID and CLIENT_SECRET values represent the secret credentials for the
OAuth client. These values must be noted and kept secure. You can think of them
as the userid and password for the client application.

Obtain an OAuth access token using an authorization code. This major step
involves several substeps. (You must have already created the HR_ADMIN end
user in a previous step.)

a. Obtain an OAuth authorization code.

The end user must be prompted (via a web page) to sign in and approve
access to the third party application. The third party application initiates this
process by directing the user to the OAuth Authorization Endpoint. For Oracle
REST Data Services, the path of the authorization endpoint is always oaut h/
aut h, relative to the root path of the schema being accessed. The token
endpoint for this example is:

3-68

ORACLE

Chapter 3
Configuring Secure Access to RESTful Services

https://exanpl e. com ords/ ordst est/ oaut h/ aut h

The OAuth 2.0 protocol specifies that the Authorization request URI must
include certain parameters in the query string:

The response_t ype parameter must have a value of code.

The cli ent _i d parameter must contain the value of the applications client
identifier. This is the cl i ent _i d value determined in a previous step.

The st at e parameter must contain a unigue unguessable value. This value
serves two purposes: it provides a way for the client application to uniquely
identify each authorization request (and therefore associate any application
specific state with the value; think of the value as the application's own
session identifier); and it provides a means for the client application to protect
against Cross Site Request Forgery (CSRF) attacks. The st at e value will be
returned in the redirect URI at the end of the authorization process. The client
must confirm that the value belongs to an authorization request initiated by the
application. If the client cannot validate the state value, then it should assume
that the authorization request was initiated by an attacker and ignore the
redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://exanpl e. coml ords/ ordst est/ oaut h/ aut h?
response_t ype=codeé&cl i ent _i d=cl i end| d&st at e=uni queRandonVal ue

In the preceding URI, replace cl i ent | d with the value of the CLIENT_ID
column that was noted previously, and replace uni queRandr onVal ue with a
unique unguessable value. The client application must remember this value
and verify it against the st at e parameter returned as part of the redirect at the
end of the authorization flow.

If the cl i ent _idis recognized, then a sign in prompt is displayed. Enter the
credentials of the HR_ADMIN end user, and click Sign In; and on the next
page click Approve to cause a redirect to redirect URI specified when the
client was registered. The redirect URI will include the authorization code in
the query string portion of the URI. It will also include the same st at e
parameter value that the client provided at the start of the flow. The redirect
URI will look like the following:

http://exanpl e. or g/ aut h/ code/ exanpl e/ ?
code=D5doeTSI DghxW VWPl 9UpA. . &st at e=uni queRandonVal ue

The client application must verify the value of the st at e parameter and then
note the value of the code parameter, which will be used in to obtain an
access token.

Obtain an OAuth access token.

After the third party application has an authorization code, it must exchange it
for an access token. The third party application's server must make a HTTPS
request to the Token Endpoint. You can mimic the server making this request
by using a cURL command as in the following example:

curl --user clientld:clientSecret --data
"grant _type=aut hori zati on_code&code=aut hori zati onCode" https://exanpl e. conf
ords/ ordst est/oaut h/t oken

3-69

ORACLE

Chapter 3
Configuring Secure Access to RESTful Services

In the preceding command, replace cl i ent | d with the value of the CLIENT_ID
shown in USER_ORDS_CLIENTS for Aut hori zati on Code Exanpl e, replace
client Secr et with the value of the CLIENT_SECRET shown in
USER_ORDS_CLIENTS for Aut hori zati on Code Exanpl e, and replace

aut hori zat i onCode with the value of the authorization code noted in a
previous step (the value of the code parameter).

The result should be similar to the following:

HTTP/ 1.1 200 K
Content - Type: application/json

{
"access_token": "psl GSSEXSBQyi bOhozNEdw. . ",

"token_type": "bearer",

"expires_in": 3600,

"refresh_token": "aRMy7AdWPuDvni eHucf V3g.."
}

In the preceding result, the access token is specified by the access_t oken
field, and a refresh token is specified by the ref r esh_t oken field. This refresh
token value can be used to extend the user session without requiring the user
to reauthorize the third party application.

Access a protected resource using the access token.

After the third party application has obtained an OAuth access token, it can
use that access token to access the protected / exanpl es/ enpl oyees/
resource:

curl -i -H'Authorization: Bearer accessToken" https://exanple.con ords/
or dst est / exanpl es/ enpl oyees/

In the preceding command, accessToken with the value of the access_t oken
field shown in a previous step.

The result should be similar to the following:

Content - Type: application/json
Transf er-Encodi ng: chunked

{
"items":
[
{"enpno": 7934, "enane": "M LLER", "j ob": " CLERK", "ngr":
7782, "hiredate":"1982-01-23T00: 00: 002", "sal ": 1300, "comi': nul I , "dept no": 10},

I

"hasMore":true,
"limt":7,
"of fset":0,
"count":7,
"links":
[
{"rel":"self","href":"https://exanpl e.conl ords/ordstest/exanpl es/
enpl oyees/ "},
{"rel":"describedby", "href":"https://exanpl e. com ords/ or dst est/ net adat a-
cat al og/ exanpl es/ enpl oyees/ "},
{"rel":"first","href":"https://exanpl e. con ords/ ordst est/exanpl es/
enpl oyees/ "},
{"rel":"next","href":"https://exanpl e.coni ords/ordstest/exanpl es/
enpl oyees/ ?of f set =7"}

3-70

ORACLE

Chapter 3
Configuring Secure Access to RESTful Services

]
}

Extend the session using a refresh token.

At any time, the third party application can use the refresh token value to
generate a new access token with a new lifetime. This enables the third party
application to extend the user session at will. To do this, the third party
application's server must make an HTTPS request to the Token Endpoint. You
can mimic the server making this request by using a cURL command as in the
following example:

curl --user clientld:clientSecret --data
“grant _type=refresh_tokené&refresh_t oken=refreshToken" https://exanple.con
ords/ ordst est/oaut h/t oken

In the preceding command, replace cl i ent | d with the value of the CLIENT_ID
shown in USER_ORDS_CLIENTS fordient Credentials Cient, replace
client Secr et with the value of the CLIENT_SECRET shown in
USER_ORDS_CLIENTSfordient Credentials Cient, and replace

r ef reshToken with the value of ref resh_t oken obtained in a previous step.

The result should be similar to the following:

HTTP/ 1.1 200 K
Content - Type: application/json

{
"access_token": "psl GSSEXSBQyi bOhozNEdw. . ",
"t oken_type": "bearer",
"refresh_token": "aRWy7AdWPuDvni eHucf V3g. . ",
"expires_in": 3600

}

In the preceding result, the access token is specified by the access_t oken
field, a new refresh token is specified by the r ef resh_t oken field. This refresh
token value can be used to extend the user session without requiring the user
to reauthorize the third party application. (Note that the previous access token
and refresh token are now invalid; the new values must be used instead.)

11. Register the client for implicit flow. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
oaut h. create_client(

p_name => 'Inplicit Exanple',

p_grant _type => "inplicit',

p_owner => 'Exanple Inc.',

p_description => 'Sanple for denonstrating Inplicit Flow,
p_redirect_uri => "http://exanple.org/inplicit/exanple/",
p_support_emai| => 'support @xanple.org",

p_support _uri => "http://exanple.org/ support',
p_privilege_nanmes => 'exanpl e. enpl oyees'

)

comit;

The preceding code registers a client named I npl i cit Exanpl e to access the
exanpl es. enpl oyees privilege using the implicit OAuth flow. For an actual
application, a URI must be provided to redirect back to with the authorization code,

3-71

ORACLE

12.

Chapter 3
Configuring Secure Access to RESTful Services

and a valid support email address must be supplied; however, this example uses
fictitious data and the sample exanpl e. or g web service.

You can verify that the client is now registered and has requested access to the
exanpl es. enpl oyees privilege by executing the following SQL statement:

select id, client_id, client_secret fromuser_ords_clients where name =
"Inplicit Example';

The result should be similar to the following:

ID CLIENT_I D CLI ENT_SECRET

10062 7Qz- - bNJpFpv8qgsf NQuS1A. .

To grant access to the privilege, an end user must approve access.

Obtain an OAuth access token using implicit flow. (You must have already
created the HR_ADMIN end user in a previous step.)

The end user must be prompted (via a web page) to sign in and approve access to
the third party application. The third party application initiates this process by
directing the user to the OAuth Authorization Endpoint. For Oracle REST Data
Services, the path of the authorization endpoint is always oaut h/ aut h, relative to
the root path of the schema being accessed. The token endpoint for this example
is:

https://exanpl e. com ords/ ordst est/oaut h/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must include
certain parameters in the query string:

The response_t ype parameter must have a value of t oken.

The cl i ent _i d parameter must contain the value of the applications client
identifier. This is the cl i ent _i d value determined in a previous step.

The st at e parameter must contain a unique unguessable value. This value serves
two purposes: it provides a way for the client application to uniquely identify each
authorization request (and therefore associate any application specific state with
the value; think of the value as the application's own session identifier); and it
provides a means for the client application to protect against Cross Site Request
Forgery (CSRF) attacks. The st at e value will be returned in the redirect URI at the
end of the authorization process. The client must confirm that the value belongs to
an authorization request initiated by the application. If the client cannot validate the
state value, then it should assume that the authorization request was initiated by
an attacker and ignore the redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://exanpl e. com ords/ or dst est/ oaut h/ aut h?
response_t ype=t oken&cl i ent _i d=cl i endl d&st at e=uni queRandonVal ue

In the preceding URI, replace cl i ent | d with the value of the CLIENT _ID column
that was noted previously, and replace uni queRandr onVal ue with a unique
unguessable value. The client application must remember this value and verify it
against the st at e parameter returned as part of the redirect at the end of the
authorization flow.

If the cl i ent i d is recognized, then a sign in prompt is displayed. Enter the
credentials of the HR_ADMIN end user, and click Sign In; and on the next page

3-72

Chapter 3
About Oracle REST Data Services User Roles

click Approve to cause a redirect to redirect URI specified when the client was
registered. The redirect URI will include the access token in the query string
portion of the URI. It will also include the same st at e parameter value that the
client provided at the start of the flow. The redirect URI will look like the following:

http://exanpl e. or g/ aut h/ code/ exanpl e/
#access_t oken=D5doeTSI DghxW WPl 9UpA. . &t ype=bear er &expi r es_i n=36004&st at e=uni queRa
ndonval ue

The client application must verify the value of the st at e parameter and then note
the value of the access token.

13. Access a protected resource using an access token. Execute the following
cURL command:

curl -i -H"Authorization: Bearer accessToken" https://exanple.confords/ordstest/
exanpl es/ enpl oyees/

In the preceding command, replace accessToken with the value of the
access_t oken field shown in the preceding step. The output should be similar to
the following:

Content - Type: application/json
Transfer-Encodi ng: chunked

{

"itens":

{"enpno": 7934, "enane": "M LLER", "j ob": " CLERK", "ngr":
7782, " hiredate": "1982-01-23T00: 00: 002", "sal ": 1300, "comi': nul | , "dept no": 10},

I

"hasMore": true,
"limt":7,
"offset": 0,
“count": 7,
"l'inks":

{"rel":"self","href":"https://exanpl e. conm ords/ ordstest/exanpl es/
enpl oyees/ "},

{"rel":"describedby", "href":"https://exanpl e. con ords/ or dst est/ net adat a-
cat al og/ exanpl es/ enpl oyees/ "},

{"rel":"first","href":"https://exanpl e. con ords/ ordstest/exanpl es/
enpl oyees/ "},

{"rel":"next","href":"https://exanpl e. con ords/ ordstest/exanpl es/ enpl oyees/ ?
of fset=7"}

]

}

Related Topics
e Using the Oracle REST Data Services PL/SQL API

3.4 About Oracle REST Data Services User Roles

Oracle REST Data Services defines a small number of predefined user roles:

e RESTful Services - This is the default role associated with a protected RESTful
service.

ORACLE 3-73

Chapter 3
About Oracle REST Data Services User Roles

e QAuth2 Cient Devel oper - Users who want to register OAuth 2.0 applications
must have this role.

e oracle.dbtool s.autorest.any. schema - Users who want to access all AutoREST
services.

* SQ Devel oper - Users who want to use Oracle SQL Developer to develop
RESTful services must have this role.

e SODA Devel oper - This is the default role that is required to access the SODA
REST API. For more information about this role, see Oracle REST Data Services
SODA for REST Developer's Guide.

o Listener Administrator - Users who want to administrate an Oracle REST Data
Services instance through Oracle SQL Developer must have this role. Typically,
only users created through the j ava -jar ords.war user command will have this
role.

Because the Li st ener Adni ni strator role enables a user to configure an Oracle
REST Data Services instance, and therefore has the capability to affect all
Application Express workspaces served through that instance, Application Express
users are not permitted to acquire the Li st ener Adni ni strat or role.

Topics:

e About Oracle Application Express Users and Oracle REST Data Services Roles

e Controlling RESTful Service Access with Roles

3.4.1 About Oracle Application Express Users and Oracle REST Data
Services Roles

By default, Oracle Application Express users do not have any of the Oracle REST
Data Services predefined user roles. This means that, by default, Application Express
users cannot:

* Invoke protected RESTful Services
* Register OAuth 2.0 applications
e Use Oracle SQL Developer to develop RESTful services.

This applies to all Application Express users, including Application Express developers
and administrators. It is therefore important to remember to follow the steps below to
add Application Express users to the appropriate user groups, so that they can
successfully perform the above actions.

Topics:

* Granting Application Express Users Oracle REST Data Services Roles

* Automatically Granting Application Express Users Oracle REST Data Services
Roles

3.4.1.1 Granting Application Express Users Oracle REST Data Services Roles

To give an Application Express User any of the roles above, the user must be added
to the equivalent Application Express user group. For example, to give the
RESTEASY_ADM N user the RESTf ul Servi ces role, follow these steps:

ORACLE 3-74

Chapter 3
About Oracle REST Data Services User Roles

1. Log in to the RESTEASY workspace as a RESTEASY_ADM N.

2. Navigate to Administration and then Manage Users and Groups.
3. Click the Edit icon to the left of the RESTEASY _ADM N user.

4. For User Groups, select RESTful Servi ces.

5

Click Apply Changes.

3.4.1.2 Automatically Granting Application Express Users Oracle REST Data
Services Roles

Adding Application Express users to the appropriate user groups can be an easily
overlooked step, or can become a repetitive task if there are many users to be
managed.

To address these issues, you can configure Oracle REST Data Services to
automatically grant Application Express users a predefined set of RESTful Service
roles by modifying the def aul t s. xm configuration file.

In that file, Oracle REST Data Services defines three property settings to configure
roles:

e apex.security.user.rol es - Acomma separated list of roles to grant ordinary
users, that is, users who are not developers or administrators.

e apex.security.devel oper.rol es - Acomma separated list of roles to grant users
who have the Devel oper account privilege. Devel oper s also inherit any roles
defined by the apex. security. user.rol es setting.

e apex.security.adm nistrator.rol es - Acomma separated list of roles to grant
users who have the Adni ni strat or account privilege. Admi ni strat or s also inherit
any roles defined by the apex. security. user.rol es and
apex. security. devel oper.rol es settings.

For example, to automatically give all users the RESTf ul Ser vi ces privilege and all
developers and administrators the QAut h2 Client Devel oper and SQL Devel oper
roles, add the following to the def aul t s. xm configuration file:

<I-- Gant all Application Express Users the ability
to invoke protected RESTful Services -->

<entry key="apex.security.user.rol es">RESTful Services</entry>

<I-- Gant Application Express Devel opers and Administrators the ability
to register QAuth 2.0 applications and use Oracle SQL Devel oper
to define RESTful Services -->

<entry key="apex.security. devel oper.roles">

QAuth2 dient Devel oper, SQ. Devel oper</entry>

Oracle REST Data Services must be restarted after you make any changes to the
defaul ts. xm configuration file.

3.4.2 Controlling RESTful Service Access with Roles

ORACLE

The built-in RESTf ul Ser vi ce role is a useful default for identifying users permitted to
access protected RESTful services.

However, it will often also be necessary to define finer-grained roles to limit the set of
users who may access a specific RESTful service.

3-75

Chapter 3
About Oracle REST Data Services User Roles

Topics:
* About Defining RESTful Service Roles
* Associating Roles with RESTful Privileges

3.4.2.1 About Defining RESTful Service Roles

A RESTful Service role is an Application Express user group. To create a user group
to control access to the Gallery RESTful Service, follow these steps. (

Log in to the RESTEASY workspace as a workspace administrator.
Navigate to Administration and then Manage Users and Groups.
Click the Groups tab.

Click Create User Group.

For Name, enter Gal | ery Users.

@ o » uw N B

Click Create Group.

3.4.2.2 Associating Roles with RESTful Privileges

After a user group has been created, it can be associated with a RESTful privilege. To
associate the Gallery Users role with the exanpl e. gal | ery privilege, follow these
steps.

1. Navigate to SQL Workshop and then RESTful Services.
2. Inthe Tasks section, click RESTful Service Privileges.
3. Click Gallery Access.

4. For Assigned Groups, select Gal | ery Users.

5. Click Apply Changes.

With these changes, users must have the Gallery Users role to be able to access the
Gallery RESTful service.

¢ See Also:

The steps here use the image gallery application in Creating an Image
Gallery as an example.

ORACLE 3-76

Chapter 3
Authenticating Against WebLogic Server and GlassFish User Repositories

3.5 Authenticating Against WebLogic Server and GlassFish
User Repositories

¢ Note:

GlassFish Server support will be desupported in a future release. Oracle
recommends that you use the following alternatives instead:

e Oracle WebLogic Server
¢ Oracle REST Data Services standalone mode

e Apache Tomcat

Oracle REST Data Services can use APIs provided by WebLogic Server and
GlassFish to verify credentials (username and password) and to retrieve the set of
groups and roles that the user is a member of.

This section walks through creating a user in the built-in user repositories provided by
WebLogic Server and GlassFish, and verifying the ability to authenticate against that
user.

This document does not describe how to integrate WebLogic Server and GlassFish
with the many popular user repository systems such as LDAP repositories, but Oracle
REST Data Services can authenticate against such repositories after WebLogic Server
or GlassFish has been correctly configured. See your application server
documentation for more information on what user repositories are supported by the
application server and how to configure access to these repositories.

Topics:
» Authenticating Against WebLogic Server
» Authenticating Against GlassFish

3.5.1 Authenticating Against WebLogic Server

Authenticating a user against WebLogic Server involves the following major steps:

1. Creating a WebLogic Server User

2. Verifying the WebLogic Server User

3.5.1.1 Creating a WebLogic Server User

ORACLE

To create a sample WebLogic Server user, follow these steps:

1. Start WebLogic Server if it is not already running

2. Access the WebLogic Server Administration Console (typically http: // server:
7001/ consol e), enter your credentials.

3. Inthe navigation tree on the left, click the Security Realms node

3-77

10.
11.
12.
13.
14.
15.

Chapter 3
Authenticating Against WebLogic Server and GlassFish User Repositories

If a security realm already exists, go to the next step. If a security realm does not
exist, create one as follows:

a. Click New.
b. For Name, enter Test - Real m then click OK.
c. Click Test-Realm.
d. Click the Providers tab.
e. Click New, and enter the following information:
Name: t est - aut hent i cat or
Type: Def aul t Aut henti cat or
f. Restart WebLogic Server if you are warned that a restart is necessary.
g. Click Test-Realm.
Click the Users and Groups tab.
Click New, and enter the following information:
* Name: 3rdparty_dev2
» Password: Enter and confirm the desired password for this user.
Click OK.
Click the Groups tab.
Click New., and enter the following information:
* Name: OAuth2 Client Developer (case sensitive)
Click OK.
Click the Users tab.
Click the 3rdparty_dev2 user.
Click the Groups tab.
In the Chosen list, add QAut h2 Client Devel oper .
Click Save.

You have created a user named 3rdparty_dev2 and made it a member of a group
named QAut h2 Cient Devel oper. This means the user will acquire the QAut h2
Client Devel oper role, and therefore will be authorized to register OAuth 2.0
applications.

Now verify that the user can be successfully authenticated.

3.5.1.2 Verifying the WebLogic Server User

To verify that the WebLogic Server user created can be successfully authenticated,
follow these steps:

1.

2.

ORACLE

In your browser, go to a URI in the following format:
https://server:port/ords/resteasy/ ui/oauth2/clients/

Enter the credentials of the 3rdparty_dev2 user, and click Sign In.

3-78

Chapter 3
Authenticating Against WebLogic Server and GlassFish User Repositories

The OAuth 2.0 Client Registration page should be displayed, with no applications
listed. If this page is displayed, you have verified that authentication against the
WebLogic Server user repository is working.

However, if the sign-on prompt is displayed again with the message User i s not
authorized to access resource, then you made mistake (probably misspelling the
Group List value).

3.5.2 Authenticating Against GlassFish

Authenticating a user against GlassFish involves the following major steps:

1. Creating a GlassFish User

2. Verifying the GlassFish User

3.5.2.1 Creating a GlassFish User

To create a sample GlassFish user, follow these steps:

1. Start GlassFish if it is not already running

2. Access the GlassFish Administration Console (typically htt p: // server: 4848); and
if you have configured a password, enter your credentials.

3. Navigate to the Security Configuration pages:

4. In the navigation tree on the left, expand the Configurations node, and then
expand the following nodes: server-config, Security, Realms, file.

5. Click Manage Users.
6. Click New, and enter the following information:

* Name: 3rdparty_dev2

* Group List: OAuth2 Client Developer (case sensitive)

» Password: Enter and confirm the desired password for this user.
7. Click OK.

You have created a user named 3rdparty_dev2 and made it a member of a group
named QAut h2 Cient Devel oper. This means the user will acquire the QAut h2
Cient Devel oper role, and therefore will be authorized to register OAuth 2.0
applications.

Now verify that the user can be successfully authenticated.

3.5.2.2 Verifying the GlassFish User

ORACLE

To verify that the WebLogic Server user created in Creating a GlassFish User can be
successfully authenticated, follow these steps:

1. Inyour browser, go to a URI in the following format:
https://server:port/ords/resteasy/ui/oauth2/clients/

2. Enter the credentials of the 3rdparty_dev2 user, and click Sign In.

3-79

Chapter 3
Integrating with Existing Group/Role Models

The OAuth 2.0 Client Registration page should be displayed, with no applications
listed. If this page is displayed, you have verified that authentication against the
WebLogic Server user repository is working.

However, if the sign-on prompt is displayed again with the message User i s not
authorized to access resource, then you made mistake (probably misspelling the
Group List value).

3.6 Integrating with Existing Group/Role Models

The examples in other sections demonstrate configuring the built-in user repositories
of WebLogic Server and GlassFish. In these situations you have full control over how
user groups are named. If a user is a member of a group with the exact same (case
sensitive) name as a role, then the user is considered to have that role.

However, when integrating with existing user repositories, RESTful service developers
will often not have any control over the naming and organization of user groups in the
user repository. In these situations a mechanism is needed to map from existing
"physical" user groups defined in the user repository to the "logical” roles defined by
Oracle REST Data Services and/or RESTful Services.

In Oracle REST Data Services, this group to role mapping is performed by configuring
a configuration file named r ol e- mappi ng. xnl .

Topics:

e Aboutrol e-mappi ng. xm

3.6.1 About rore- mappi ng. xni

ORACLE

rol e- mappi ng. xn is a Java XML Properties file where each property key defines a
pattern that matches against a set of user groups, and each property value identifies
the roles that the matched user group should be mapped to. It must be located in the
same folder as the def aul t s. xm configuration file. The file must be manually created
and edited.

Consider this example:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE properties SYSTEM "http://java.sun.conf dtd/ properties.dtd">
<properties>

<entry key="webdevs">RESTful Services</entry>

</ properties>

This role mapping is straightforward, stating that any user who is a member of a group
named: webdevs is given the role RESTf ul Servi ces, meaning that all members of the
webdevs group can invoke RESTf ul Servi ces.

A mapping can apply more than one role to a group. For example:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE properties SYSTEM "http://java.sun.conf dtd/ properties.dtd">
<properties>
<entry key="webdevs">RESTful Services, SQ Devel oper</entry>
</ properties>

3-80

Chapter 3
Integrating with Existing Group/Role Models

This rule gives members of the webdevs group both the RESTf ul Servi ces and SQL
Devel oper roles.

Topics:
e Parameterizing Mapping Rules
» Dereferencing Parameters

e Indirect Mappings

3.6.1.1 Parameterizing Mapping Rules

Having to explicitly map from each group to each role may not be scalable if the
number of groups or roles is large. To address this concern, you can parameterize
rules. Consider this example:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE properties SYSTEM "http://java.sun.conf dtd/ properties.dtd">
<properties>

<entry key="{prefix}.webdevs">RESTful Services</entry>

</ properties>

This example says that any group name that ends with . webdevs will be mapped to the
RESTf ul Servi ces role. For example, a group named: HQ webdevs would match this
rule, as would a group named: EAST. webhdevs.

The syntax for specifying parameters in rules is the same as that used for URI
Templates; the parameter name is delimited by curly braces ({}).

3.6.1.2 Dereferencing Parameters

Any parameter defined in the group rule can also be dereferenced in the role rule.
Consider this example:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE properties SYSTEM "http://java.sun.conf dtd/ properties.dtd">
<properties>

<entry key="cn={userid}, ou={group}, dc=MyDomai n, dc=cont >{ gr oup} </ entry>
</ properties>

This example maps the organizational unit component of an LDAP distinguished name
to a role. It says that the organizational unit name maps directly to a role with same
name. Note that it refers to a {useri d} parameter but never actually uses it; in effect, it
uses {useri d} as a wildcard flag.

For example, the distinguished name cn=j sni t h, ou=Devel oper s, dc=MyDomai n, dc=com
will be mapped to the logical role named Devel opers.

3.6.1.3 Indirect Mappings

ORACLE

To accomplish the desired role mapping, it may sometimes be necessary to apply
multiple intermediate rules. Consider this example:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE properties SYSTEM "http://java.sun.conf dtd/ properties.dtd">
<properties>

<entry key="cn={userid}, ou={group}, dc=exanpl e, dc=com' >{ group} </ entry>
<entry key="{prefix}, ou={group}, dc=acquired, dc=cont >{ gr oup} </ ent ry>

3-81

Chapter 3
Using the Oracle REST Data Services PL/SQL API

<entry key="Devel opers">RESTful Services, SQ Devel oper</entry>
</ properties>

This example maps the organizational unit component of an LDAP distinguished name
to some roles. Complicating matters is the fact that users can come from two different
organizations, resulting in differing distinguishing name patterns.

* Users from exanpl e. comalways have a single common name (CN) identifying
their user id, followed by the organizational unit (OU) and the domain name (DC).
For example: cn=j sni t h, ou=Devel opers, dc=exanpl e, dc=com

e Users from acqui r ed. comhave varying numbers of common name (CN) prefixes,
but the organizational unit is the field you are interested in. For example:
cn=Pr oduct Dev, cn=abel | , ou=Engi neeri ng, dc=acqui r ed, dc=com

e Both organizations identify software engineers with ou=Devel opers.

You want to map engineers in both organizations to the RESTf ul Servi ces and SQL
Devel oper roles.

e The first rule maps engineers in the exanpl e. comorganization to the intermediate
Devel opers role.

* The second rule maps engineers in the acqui r ed. comorganization to the
intermediate Devel opers role.

e The final rule maps from the intermediate Devel oper s role to the RESTf ul
Servi ces and SQL Devel oper roles.

3.7 Using the Oracle REST Data Services PL/SQL API

ORACLE

Oracle REST Data Services has a PL/SQL API (application programming interface)
that you can use as an alternative to the SQL Developer graphical interface for many
operations. The available subprograms are included in the following PL/SQL
packages:

e Oracle REST Data Services, documented in Oracle REST Data Services PL/SQL
Package Reference

e OAUTH, documented in OAUTH PL/SQL Package Reference
To use the Oracle REST Data Services PL/SQL API, you must first:

* Install Oracle REST Data Services in the database that you will use to develop
RESTful services.

 Enable one or more database schemas for REST access.
Topics:

e Creating a RESTful Service Using the PL/SQL API
* Testing the RESTful Service

Related Topics
* Automatic Enabling of Schema Objects for REST Access (AutoREST)

3-82

Chapter 3
Using the Oracle REST Data Services PL/SQL API

3.7.1 Creating a RESTful Service Using the PL/SQL API

You can create a RESTful service by connecting to a REST-enabled schema and
using the ORDS.CREATE_SERVICE procedure.

The following example creates a simple "Hello-World"-type service:

begin
ords. create_service(
p_nodul e_nane => 'exanpl es.routes' ,
p_base_path =>'/exanples/routes/",
p_pattern => 'greeting/:name',
p_source => 'select '"Hello "' || :name || '" from'' ||
nvl (: whom sys_context ("' USERENV' ','" CURRENT_USER ')) "greeting" fromdual');
comit;
end;
/

The preceding example does the following:

» Creates a resource module named examples.routes.

» Sets the base path (also known as the URI prefix) of the module to / exanpl es/
routes/.

* Creates a resource template in the module, with the route pattern
greeting/:nane.

e Creates a GET handler and sets its source as a SQL query that forms a short
greeting:

— CET is the default value for the p_net hod parameter, and it is used here
because that parameter was omitted in this example.

— COLLECTI ON_FEED is the default value for the p_net hod parameter, and it is
used here because that parameter was omitted in this example

* An optional parameter named whomis specified.

Related Topics
* ORDS.CREATE_SERVICE

3.7.2 Testing the RESTful Service

ORACLE

To test the RESTful service that you created, start Oracle REST Data Services if it is
not already started:

java -jar ords.war

Enter the URI of the service in a browser. The following example displays a "Hello"
greeting to Joe, by default from the current user because no whomparameter is
specified.:

http://1ocal host: 8080/ ords/ ordst est/ exanpl es/ rout es/ greeti ng/ Joe
In this example:

» Oracle REST Data Services is running on localhost and listening on port 8080.

» Oracle REST Data Services is deployed at the context-path / or ds.

3-83

ORACLE

Chapter 3
Using the Oracle REST Data Services PL/SQL API

* The RESTful service was created by a database schema named or dst est .

e Because the URL does not include the optional whom parameter, the :whom bind
parameter is bound to the null value, which causes the query to use the value of
the current database user (sys_context (' ' USERENV' ', ' " CURRENT USER '))
instead.

If you have a JSON viewing extension installed in your browser, you will see a result
like the following:

{
"items": [
{
"greeting": "Hello Joe from ORDSTEST"
}
]

"hashore": fal se,
"limt": 25,
"offset": 0,
“count": 1,
"links": [
{
"rel": "self",
“href": "http://local host: 8080/ ords/ ordst est/exanpl es/routes/greeting/"
1
{

“rel": "describedby",
“href": "http://local host: 8080/ ords/ ordst est/ net adat a- cat al og/ exanpl es/ rout es/
greeting/"
b
{
"rel": "first",
“href": "http://local host: 8080/ ords/ ordst est/exanpl es/ rout es/ greeting/ Joe"
}
]
}

The next example is like the preceding one, except the optional parameter whomis
specified to indicate that the greeting is from Jane.

http://1ocal host: 8080/ ords/ ordst est/ exanpl es/ rout es/ greeti ng/ Joe?whom=Jane

This time, the result will look like the following:

{
"items": [
{
"greeting": "Hello Joe from Jane"
}
1,
"hashbre": false,
"limt": 25,
"offset": 0,
“count": 1,
"links": [
{
"rel": "self",
"href": "http://local host: 8080/ ords/ ordst est/exanpl es/ routes/ greeting/"
1
{

"rel": "describedby",
"href": "http://local host: 8080/ ords/ ordst est/ net adat a- cat al og/ exanpl es/ rout es/

3-84

Chapter 3
Oracle REST Data Services Database Authentication

greeting/"
|3
{

“rel": "first",
“href": "http://local host: 8080/ ords/ ordst est/exanpl es/ rout es/ greeting/ Joe"
1
]
}

Notice that in this result, what follows "from" is Jane and not ORDSTEST, because
the : whombind parameter was bound to the Jane value.

3.8 Oracle REST Data Services Database Authentication

This section describes how to use the database authentication feature to provide basic
authentication for PL/SQL gateway calls.

Database authentication feature is similar to dynamic basic authentication provided by
mod-plsql where the user is prompted for the database credentials to authenticate and
authorize access to PL/SQL stored procedures.

3.8.1 Installing Sample Database Scripts

ORACLE

This section describes how to install the sample database scripts.

The unzipped Oracle REST Data Services installation kit contains the sample
database scripts that create a basic demo scenario for the database authentication.

The following code snippet shows how to install the sample database schema:

db_auth $ cd sql/
sgl $ sgl sys as sysdba

SQLcl: Rel ease Release 18.1.1 Production on Fri Mar 23 14:03:18 2018
Copyright (c) 1982, 2018, Oracle. Al rights reserved.

Passv\ord’) (**********?) *kkkkk*k

Connected to:

Oracl e Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQ.> @nstall <chosen-password>

3-85

Chapter 3
Oracle REST Data Services Database Authentication

Note:

* You need to adjust the SQLcl connect string and the user credentials to
suit your environment. For this demo scenario, SQLcl connects to the
database with service name or cl

e <chosen- passwor d> is the password you assigned to EXAMPLE_USER1 and
EXAMPLE_USER? database users. Make a note of this password value for
later reference.

The sample database schema creates the following database users:

e SAMPLE_PLSQL_APP: A database schema where the protected SAMPLE_PRCC
will be installed.

« EXAMPLE_USER1: A database user granted with execute privilege on
SAVPLE_PLSQ._APP. SAMPLE_PROC procedure.

- EXAMPLE_USER2: A second database user granted with execute privilege on
SAVPLE_PLSQL_APP. SAMPLE_PROC procedure.

3.8.2 Enabling the Database Authentication

This section describes how to enable the database authentication feature.
To enable the database authentication feature, do one of the following:

» For fresh installation of Oracle REST Data Services, update the / u01/ or ds/
par ans/ or ds_par anms properties file with the following entry:

j dbc. aut h. enabl ed=t rue
* For existing Oracle REST Data Services installation, run the following commands:

cd /u01/ords
$JAVA HOVE/ bin/java -jar ords.war set-property jdbc.auth.enabled true

This setting is applicable to PL/SQL gateway pools (for example, apex. xnl), it does
not apply to other pool types such as the ORDS_PUBLI C_USER pool (for example,
apex_pu. xm).

Note:

The j dbc. aut h. enabl ed setting can be configured per database pool.
Alternatively, it can be configured in def aul t s. xnl file so that it is enabled
for all pools.

ORACLE 3-86

Chapter 3
Oracle REST Data Services Database Authentication

Example 3-11 Setting Enabled for all Pools

This example code snippet shows how j dbc. aut h. enabl ed setting is enabled for all
pools.

ords $ java -jar ords.war set-property jdbc.auth.enabled true

Mar 23, 2018 2:23:49 PMoracle.dbtools.rt.config.setup. SetProperty execute
INFO. Modified: /tnp/cd/ords/defaults.xm, setting: jdbc.auth.enabled =
true

After you update the configuration settings, restart the Oracle REST Data Services for
the changes to take effect.

3.8.3 Configuring the Request Validation Function

This section describes how to temporarily disable the request validation function.

If you want to invoke only a whitelisted set of stored procedures in the database
through the PL/SQL gateway, then you must configure Oracle REST Data Services to
use a request validation function (especially when you are using Oracle Application
Express).

The demo sample procedure used for testing the database authentication feature is
not whitelisted, so you must temporarily disable the request validation function.

To disable the request validation function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

Open the defaul ts. xn file.
Look for security. request Val i dati onFuncti on entry and remove it from the file.

Save the file.

o M WD

Restart Oracle REST Data Services, if it is already running.

Note:

In production environment, you must use a custom request validation
function that whitelists the stored procedures you want to access for your
application

3.8.4 Testing the Database Authenticated User

ORACLE

This section describes how to test if the database user is authenticated.

Assuming that Oracle REST Data Service is running in a standalone mode on local
host and on port 8080, access the following URL in your web browser:

http://1ocal host: 8080/ ords/ sanpl e_pl sql _app. sanpl e_proc

The browser prompts you to enter credentials. Enter exanpl e_user 1 for user name
and enter the password value you noted while installing the sample schema.

3-87

Chapter 3
Overview of Pre-hook Functions

The browser displays 'Hello EXAMPLE_USER1!" to demonstrate that the database
user was authenticated and the identity of the user was propagated to the database
through the OWA CGl variable named REMOTE_USER. .

3.8.5 Uninstalling the Sample Database Schema

To uninstall the database schema, run the commands as shown in the following code
snippet:

db_auth $ cd sql/
sql $ sgl sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018
Copyright (c) 1982, 2018, Oracle. Al rights reserved.

PaSSV\Drd? (**********?) kkkkk*

Connected to:

Oracl e Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQL> @ninstall

3.9 Overview of Pre-hook Functions

ORACLE

This section explains how to use PL/SQL based pre-hook functions that are invoked
prior to an Oracle REST Data Services (ORDS) based REST call.

A pre-hook function is typically used to implement application logic that needs to be
applied across all REST endpoints of an application. For example a pre-hook enables
the following functionality:

* Configure application specific database session state: Configure the session
to support a VPD policy.

* Custom authentication and authorization: As the pre-hook is invoked prior to
dispatching the REST service, it is used to inspect the request headers and
determine the user who is making the request, and also find if that user is
authorized to make the request.

* Auditing or metrics gathering: To track information regarding the REST APIs
invoked.

Topics:

* Configuring the Pre-hook Function

* Using a Pre-hook Function

* Processing of a Request

* ldentity Assertion of a User

* Aborting Processing of a Request

* Ensuring Pre-hook is Executable

* Exceptions Handling by Pre-hook Function

* Pre-hook Function Efficiency

3-88

Chapter 3
Overview of Pre-hook Functions

* Pre-Hook Examples

3.9.1 Configuring the Pre-hook Function

This section describes how to configure a pre-hook function.

The pre-hook function is configured using pr ocedur e. r est . preHook setting. The value
of this setting must be the name of a stored PL/SQL function.

3.9.2 Using a Pre-hook Function

This section explains how the pre-hook function is used.

A pre-hook must be a PL/SQL function with no arguments and must return a BOOLEAN
value. The function must be executable by the database user to whom the request is
mapped. For example, if the request is mapped to an ORDS enabled schema, then
that schema must be granted the execute privilege on the pre-hook function (or to
PUBLI C).

If the function returns t r ue, then it indicates that the normal processing of the request
must continue. If the function returns f al se, then it indicates that further processing of
the request must be aborted.

ORDS invokes a pre-hook function in an OWA (Oracle Web Agent) that is a PL/SQL
Gateway Toolkit environment. This means that the function can introspect the request
headers and the OWA CGI environment variables, and use that information to drive its
logic. The function can also use the OWA PL/SQL APIs to generate a response for the
request (for example, in a case where the pre-hook function needs to abort further
processing of the request, and provide its own response).

3.9.3 Processing of a Request

The pre-hook function must return t r ue if it determines that the processing of a
request must continue. In such cases, any OWA response produced by the pre-hook
function is ignored (except for cases as detailed in the section Identity Assertion of a
User), and the REST service is invoked as usual.

3.9.4 Identity Assertion of a User

ORACLE

This section describes how pre-hook function can make assertions about the identity
of the user.

When continuing processing, a pre-hook can make assertions about the identity and
the roles assigned to the user who is making the request. This information is used in
the processing of the REST service. A pre-hook function can determine this by setting
one or both of the following OWA response headers.

e X- ORDS- HOOK- USER: Identifies the user making the request, the value is bound to
the : current _user implicit parameter and the REMOTE_| DENT OWA CGl
environment variable.

e X- ORDS- HOOK- ROLES: Identifies the roles assigned to the user. This information is
used to determine the authorization of the user to access the REST service. If this
header is present then X- ORDS- HOOK- USER must also be present.

3-89

Chapter 3
Overview of Pre-hook Functions

Note:

X- ORDS- HOOK- USER and X- ORDS- HOOK- ROLES headers are not included in the
response of the REST service. These headers are only used internally by
ORDS to propagate the user identity and roles.

Using these response headers, a pre-hook can integrate with the role based
access control model of ORDS. This enables the application developer to
build rich integrations with third party authentication and access control
systems.

3.9.5 Aborting Processing of a Request

This section explains how the pre-hook function aborts the processing of a request.

If a pre-hook determines that the processing of the REST service should not continue,
then the function must return f al se value. This value indicates to ORDS that further
processing of the request must not be attempted.

If the pre-hook does not produce any OWA output, then ORDS generates a 403

For bi dden error response page. If the pre-hook produces any OWA response, then
ORDS returns the OWA output as the response. This enables the pre-hook function to
customize the response that client receives when processing of the REST service is
aborted.

3.9.6 Ensuring Pre-hook is Executable

If a schema cannot invoke a pre-hook function, then ORDS generates a 503 Servi ce
Unavai | abl e response for any request against that schema. Since a pre-hook has
been configured, it would not be safe for ORDS to continue processing the request
without invoking the pre-hook function. It is very important that the pre-hook function is
executable by all ORDS enabled schemas. If the pre-hook function is not executable,
then the REST services defined in those schemas will not be available.

3.9.7 Exceptions Handling by Pre-hook Function

When a pre-hook raises an error condition, for example, when a run-time error occurs,
a NO DATA FOUND exception is raised. In such cases, ORDS cannot proceed with
processing of the REST service as it would not be secure. ORDS inteprets any
exception raised by the pre-hook function as a signal that the request is forbidden and
generates a 403 For bi dden response, and does not proceed with invoking the REST
service. Therefore, if the pre-hook raises an unexpected exception, it forbids access to
that REST service. It is highly recommended that all pre-hook functions must have a
robust exception handling block so that any unexpected error conditions are handled
appropriately and do not make REST Services unavailable.

3.9.8 Pre-hook Function Efficiency

A pre-hook function is invoked for every REST service call. Therefore, the pre-hook
function must be designed to be efficient. If a pre-hook function is inefficient, then it
has a negative effect on the performance of the REST service call. Invoking the pre-

ORACLE 3-90

Chapter 3
Overview of Pre-hook Functions

hook involves at least one additional database round trip. It is critical that the ORDS
instance and the database are located close together so that the round-trip latency
overhead is minimized.

3.9.9 Pre-Hook Examples

This section provides some sample PL/SQL functions that demonstrate different ways
in which the pre-hook functionality can be leveraged.

Source code for the examples provided in the following sections is included in the
unzipped Oracle REST Data Services distribution archive exanpl es/ pre_hook/ sql
sub-folder.

3.9.9.1 Installing the Examples

ORACLE

This section describes how to install the pre-hook examples.

To install the pre-hook examples, execute exanpl es/ pre_hook/ sql /i nstal | . sql
script. The following code snippet shows how to install the examples using Oracle
SQLcl command line interface:

pre_hook $ cd exanpl es/ pre_hook/ sql /
sgl $ sgl sys as sysdba

SQLcl: Rel ease Release 18.1.1 Production on Fri Mar 23 14:03:18 2018
Copyright (c) 1982, 2018, Oracle. Al rights reserved.

Passv\ord’) (**********?) *kkkkk*k

Connected to:

Oracl e Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQ.> @nstall <chosen-password>

* You need to adjust the SQLcl connect string and the user credentials to suit your
environment. For these demo scenarios, SQLcl connects to the database with
service name orcl .

e <chosen- passwor d> is the password you assigned to the PRE_HOOK_TEST database
user. Make a note of this password value for later reference.

e The exanpl es/ pre_hook/sqgl /instal|.sql command creates the following two
databases schemas:

— The PRE_HOOKX_DEFNS schema where the pre-hook function is defined along
with a database table named cust om aut h_user s, where user identities are
stored. This table is populated with a single user j oe. bl oggs@xanpl e. com
whose password is the value assigned for <chosen- passwor d>.

— The PRE_HOOK_TESTS schema where ORDS based REST services that are
used to demonstrate the pre-hooks are defined.

3-91

Chapter 3
Overview of Pre-hook Functions

3.9.9.1.1 Example: Denying all Access

The simplest pre-hook is one that unilaterally denies access to any REST Service.

To deny access to any REST service, the function must always return f al se as shown
in the following code snippet:

create or replace function deny_all _hook return bool ean as
begi n

return fal se;

end;

/

grant execute on deny_all _hook to public;

Where:

e The deny_al | _hook pre-hook function always returns f al se value.

* Execute privilege is granted to all users. So, any ORDS enabled schema can
invoke this function

Configuring ORDS

To enable deny_al | _hook pre-hook function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Openthedefaults.xn file and add:

<entry key="procedure.rest.preHook" >pre_hook defns.deny _all _hook</entry>

3. Save the file.
4. Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service which can be
accessed at the following URL (assuming ORDS is deployed on | ocal host and
listening on port 8080) :

http://1ocal host: 8080/ ords/ pre_hook_tests/prehooks/ user

Access the URL in a browser. You should get a response similar to the following:

403 For bi dden

This demonstrates that the deny_al | _hook pre-hook function was invoked and it
prevented the access to the REST service by returning a f al se value.

ORACLE 3-92

Chapter 3
Overview of Pre-hook Functions

3.9.9.1.2 Example: Allowing All Access

Modify the source code of the deny_al | _hook pre-hook function to allow access to all
REST service requests as shown in the following code snippet:

create or replace function deny_all _hook return bool ean as
begin

return true;

end;

/

Try it out

Access the following test URL in a browser:

http://1ocal host: 8080/ ords/ pre_hook_tests/ prehooks/ user

The response should include JSON similar to the following code snippet:

{

"authenticated user": "no user authenticated"

}

Note:

The REST service executes because the pre-hook function authorized it.

Related Topics

e ldentity Assertion of a User
This section describes how pre-hook function can make assertions about the
identity of the user.

3.9.9.1.3 Example: Asserting User Identity

ORACLE

The following code snippet demonstrates how the pre-hook function makes assertions
about the user identity and the roles they possess:

create or replace function identity_hook return bool ean as
begi n
i f custom auth_api.authenticate_owa then
custom auth_api . assert _identity;
return true;
end if;
custom aut h_api . pronpt _for_basic_credential s(' Test Custom Realm);
return fal se;
end;

The pre-hook delegates the task of authenticating the user to the
custom aut h_api . aut henti cat e_owa function. If the function indicates that the user is

3-93

Chapter 3
Overview of Pre-hook Functions

authenticated, then it invokes the cust om aut h_api . assert _i dentity procedure to
propagate the user identity and roles to ORDS.

Configuring ORDS

To enable pre-hook function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Openthedefaults.xnl file and add:

<entry key="procedure.rest.preHook">pre_hook defns.identity hook</
entry></entry>

3. Save the file.

4. Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service that can be
accessed at the following URL (assuming ORDS is deployed on localhost and listening
on port 8080):

http://1ocal host: 8080/ ords/ pre_hook_t ests/ prehooks/ user

In a web browser access the preceding URL.

¢ Note:

The first time you access the URL, the browser will prompt you to enter your
credentials. Enter the user name as j oe. bl oggs@xanpl e. comand for the
password, use the value you assigned for <chosen- passwor d> when you
executed the install script. Click the link to sign in.

In response a JSON document is displayed with the JSON object in it.

n.on

{"authenticated_user":"joe. bl oggs@xanpl e. coni'}

3.9.9.2 Uninstalling the Examples

ORACLE

This section explains how to uninstall the examples.

The following code snippet shows how to uninstall the examples:

pre_hook $ cd sql/
sql $ sgl sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018
Copyright (c) 1982, 2018, Oracle. Al rights reserved.

Passwor d? (**********?) kkkkk*k
Connected to:

3-94

Chapter 3
Overview of Pre-hook Functions

Oracl e Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQL> @mninstall

ORACLE 3-95

REST-Enabled SQL Service

The REST-Enabled SQL service is a HTTPS web service that provides access to the
Oracle Database SQL engine. You can POST SQL statements to the service. The
service then runs the SQL statements against Oracle Database and returns the result
to the client in a JSON format.

Statically defined RESTful services use predefined SQL statements that are useful
when you need a fixed and repeatable service. The REST- Enabled SQL service
enables you to define SQL statements dynamically and run them against the database
without predefined SQL statements. This makes your data more accessible over
REST.

Typical Use Case: Your Oracle Database is in the cloud and you want to make it
available through a REST API over HTTPS.

Predefined REST APIs provide common operations such as returning the results of
reports and providing an API for updating common tables in your database. There is a
need for client developers to run their own queries or queries that can only be written
at run time. In these cases, a REST- Enabled SQL service is useful.

Note:

If you have Oracle REST Data Services installed and if you do not have
SQL*Net (JDBC, OCI) to establish an network connection to Oracle
Database, then a REST-Enabled SQL service provides an easy mechanism
to query and run SQL, SQL*Plus, and SQLcl statements against the REST-
enabled Oracle Database schema.

Topics:

 REST-Enabled SQL Service Terminology

* Configuring the REST-Enabled SQL Service

e Using cURL with REST-Enabled SQL Service

e Getting Started with the REST-Enabled SQL Service

4.1 REST-Enabled SQL Service Terminology

ORACLE

This section introduces some common terms that are used throughout this document.

* REST- Enabled SQL service: A HTTPS web service that provides SQL access to
the database. SQL statements can be posted to the service, and the results are
returned in a JSON format to the client.

e HTTPS: Hyper Text Transfer Protocol Secure (HTTPS) is the secure version
of HTTP, the protocol over which data is sent between your browser and the
website to which you are connected. The ‘S’ stands for secure. It means that all

4-1

Chapter 4
Configuring the REST-Enabled SQL Service

communications between your browser and Oracle REST Data Services are
encrypted.

* cURL: cURL is a command-line tool used to transfer data. It is free and open
source software that can be downloaded from the following location: curl_haxx.

* SQL*Net (or Net8): SQL*Net is the networking software of Oracle that enables
remote data access between programs and Oracle Database.

4.2 Configuring the REST-Enabled SQL Service

4.3 Using

ORACLE

By default, the REST- Enabled SQL service is turned off. To configure REST- Enabled
SQL service settings, see Configuring REST-Enabled SQL Service Settings.

cURL with REST-Enabled SQL Service

This section explains how to use cURL commands to access the REST-Enabled SQL
service.

You can use the HTTPS POST method to access the REST-Enabled SQL service. To
access the REST-Enabled SQL service, you can use the command-line tool named
cURL. This powerful tool is available for most platforms, and enables you to connect
and control the data that you send to and receive from a REST-Enabled SQL service.

Example 4-1 Example cURL Command

Request: curl -i -X POST --user ORDSTEST: ordstest --data-binary "select
sysdate fromdual" -H "Content-Type: application/sqgl" -k https://
| ocal host: 8088/ ords/ ordstest/ _/sql

Where:

e The-i option displays the HTTP headers returned by the server.

* The - k option enables cURL to proceed and operate even for server connections
that are otherwise considered to be insecure.

Response:

HTTP/ 1.1 200 &K
Cont ent - Type: application/json
X-Frame- Options: SAMEORIG N
Transf er- Encodi ng: chunked
{
"env": {
"def aul t Ti meZone": " Eur ope/ London

b
"items": [
{
"statementld":1,
"statement Type": "query",
"statenment Pos": {
"startline":1,
"endLine": 2
b

"statement Text":
"response": |

sel ect sysdate from dual ",

4-2

https://curl.haxx.se/

Chapter 4
Getting Started with the REST-Enabled SQL Service

]

esult": 0,

"resultSet":{
"netadata": |
{
"col umNane": " SYSDATE",
"j sonCol utmNane": "sysdat e",
"col umTypeNange": " DATE",
"precision":0,
"scal e": 0,
"isNul l able": 1
}
1,
"items": |
{
"sysdate":"2017-07-21T08: 06: 442"
}
1,
"hasMore": fal se,
“limt": 1500,
"offset": 0,
"count":1

4.4 Getting Started with the REST-Enabled SQL Service

The REST- Enabled SQL service is provided only through HTTPS POST method.
Topics:
e REST-Enabling the Oracle Database Schema

e REST-Enabled SQL Authentication
e REST-Enabled SQL Endpoint

4.4.1 REST-Enabling the Oracle Database Schema

ORACLE

You must REST-enable the Oracle database schema on which you want to use the
REST- Enabled SQL service. To REST-enable the Oracle Database schema, you can
use SQL Developer or the PL/SQL API.

The following code snippet shows how to REST-enable the Oracle Database schema
ORDSTEST:

SQ.> CONNECT ORDSTEST/ *****.
Connect ed

SQL> exec ords. enabl e_schens,
anonymous bl ock conpl et ed
SQL> comit;

4-3

Chapter 4
Getting Started with the REST-Enabled SQL Service

Commit conpl ete.
SQL>

Related Topics
» Auto-Enabling Using the PL/SQL API

4.4.2 REST-Enabled SQL Authentication

This section explains how to authenticate the schema on which you want to use the
REST-Enabled SQL service.

Before using the REST-Enabled SQL service, you must authenticate using the SQL
Developer role.

The Following are the different types of authentications available:

e First Party Authentication (Basic Authentication): For this authentication,
create a user in Oracle REST Data Services with the SQL Developer role. This
Oracle REST Data Services user will be able to run SQL for any Oracle database
schema that is REST-enabled.

* Schema Authentication: For this authentication, use the Oracle Database
schema name in uppercase and the Oracle database schema password (for
example, HR and HRPasswor d). This type of user will be able to run SQL for the
specified schema. It will be given the SQL Developer role by Oracle REST Data
Services.

» OAuth 2 Client Credentials: For this authentication, perform the following steps
to grant the SQL Developer role to the client in Oracle REST Data Services:

1. Create a client using CAUTH. create_cl i ent.
2. Grant the SQL Developer role to the client.

3. Acquire the access token using the client _id and client_secret of the
client.

4. Specify the access token in subsequent REST-Enabled SQL requests.

4.4.3 REST-Enabled SQL Endpoint

ORACLE

This section shows the format or pattern used to access the REST- Enabled SQL
service.

If Oracle REST Data Services is running in a Java EE Application Server, then the
REST-Enabled SQL service is only accessible through HTTPS. If Oracle REST Data
Services is running in standalone mode, then Oracle REST Data Services can be
configured to use HTTPS. The examples in this document use this configuration.

The following example URL locates the REST-Enabled SQL service for the specified
schema alias:

Pattern: htt ps: // <HOST>/ or ds/ <SchenaAl i as>/ _/ sql
Example: https://host/ords/ordstest/ /sql
Where: The default port is 443

4-4

Chapter 4
REST-Enabled SQL Service Examples

Content Type and Payload Data Type Supported
The HTTPS POST request consists of the following:
* Header Content-Type
— application/sql:for SQL statements
— application/json: for ISON documents
» Payload data type
— SQL: SQL, PL/SQL, SQL*Plus, SQLcl statements

— JSON document: A JSON document with SQL statements and other options
such as bind variables

4.5 REST-Enabled SQL Service Examples

This section provides different HTTPS POST request examples that use Oracle REST
Data Services standalone setup with secure HTTPS access.

The payload data of the HTTPS POST request message can be in one of the following
formats:

* POST Requests Using application/sgl Content-Type
* POST Requests Using application/json Content-Type

4.5.1 POST Requests Using application/sgl Content-Type

For POST requests with Cont ent - Type as appl i cati on/ sgl , the payload is specified
using SQL, SQL*Plus, and SQLcl statements. The payload can be a single line
statement, multiple line statements, or a file that consists of multiline statements as
shown in the following examples:

* Using a Single SQL Statement
* Using Multiple SQL Statements
* Using a File with cURL

4.5.1.1 Using a Single SQL Statement

ORACLE

The following example uses Schema Authentication to run a single SQL statement
against the dermp Oracle Database schema:

Request:

curl -i -X POST --user DEMO denp --data-binary "select sysdate from dual "
-H "Content - Type: application/sql" -k https://local host: 8088/ ords/

deno/ _/ sql

Response:

HTTP/ 1.1 200 K

Cont ent - Type: application/json
X- Frame- Options: SAMEORIG N
Transf er- Encodi ng: chunked

4-5

Chapter 4
REST-Enabled SQL Service Examples

“env":
"def aul t Ti meZone": " Eur ope/ London’

1
"items": [
{

"statementld":1,

"statement Type": "query",

"stat ement Pos": {
“startline":1,
“endLine": 2

b

"statement Text":
"response": |

sel ect sysdate from dual ",

]

n

esult": 0,
"resultSet":{
"netadata": |

{
"col unmName": " SYSDATE",
"j sonCol utmNane": "sysdat e",
"col umTypeNange": " DATE",
"precision":0,
"scal e": 0,
"isNul lable": 1

"items": [
"sysdate":"2017-07- 21T08: 06; 442"

]

hasMore": f al se,
“limt": 1500,
"of fset":0,
"count":1

Where:

* DEMOis the Oracle Database schema name.
» deno is the Oracle Database schema password.

e select sysdate from dual isthe SQL statement that will run in the DEMO Oracle
Database schema.

» Content-Type: application/sqgl isthe contenttype. Only appli cation/sgl and
application/json are supported.

 https://1ocal host: 8088/ ords/ demo/ /sql is the location of the REST- Enabled
SQL service for the deno Oracle Database schema.

ORACLE 4-6

Chapter 4
REST-Enabled SQL Service Examples

4.5.1.2 Using a File with cURL

ORACLE

For multiline SQL statements, using a file as payload data in requests is useful.

File: sinpl e_query. sql

SELECT 10
FROM dual ;

Request:

curl -i -X POST --user DEMO denmp --data-binary "@inple _query.sql" -H
"Content-Type: application/sgl" -k https://Iocal host: 8088/ ords/demo/ _/sql

Response:

HTTP/ 1.1 200 OK

Cont ent - Type: application/json
X- Frame- Options: SAMECRIG N
Transf er- Encodi ng: chunked

{
"env": {
"defaul t Ti reZone": " Eur ope/ London"
b
“items": |
{
"statenment!|d":1,
"statement Type": "query",
"stat ement Pos": {
"startLine":1,

“endLine": 1
b
"statement Text": " SELECT 10 FROM dual ",
"response": |
1,
"result": 0,
"resultSet":{
“netadata": |
{
"col umNane": " 10",
"j sonCol urmNange": " 10",
"col umTypeNane": " NUMBER",
"precision":0,
"scal e":-127,
"isNul | able": 1
}
],
“items": |
{
"10":10
}

4-7

Chapter 4
REST-Enabled SQL Service Examples

“hasMore": fal se,
“limt": 1500,
"of fset":0,
"count":1

4.5.1.3 Using Multiple SQL Statements

ORACLE

You can run one or more statements in each POST request. Statements are
separated similar to Oracle Database SQL*Plus script syntax, such as, end of line for
SQL*Plus statements, a semi colon for SQL statements, and forward slash for PL/SQL
statements.

File: script.sql:

CREATE TABLE T1 (col 1 INT);
DESC T1

I NSERT | NTO T1 VALUES(1):
SELECT * FROM T1;

BEGI N

| NSERT | NTO T1 VALUES(2):
END;

/

SELECT * FROM T1;

Request:curl -i -X POST --user DEMO denp --data-binary "@cript.sql" -H
"Content-Type: application/sql" -k https://Iocal host: 8088/ ords/deno/ _/sql

Response:

HTTP/ 1.1 200 OK

Cont ent - Type: application/json
X- Frame- Options: SAMECRIG N
Transf er- Encodi ng: chunked

{
“env": {
"defaul t Ti meZone": " Eur ope/ London"
b
“items":|[
{
"statenment|d":1,
"stat ement Type": "ddl ",
"stat ement Pos": {
"startLine":1,
“endLine": 1
b
"statement Text":"CREATE TABLE T _EXAMPLEL (col 1 INT)",
"response": |
“\nTabl e T_EXAMPLEL created.\n\n"
1,

4-8

Chapter 4
REST-Enabled SQL Service Examples

"result": 0

"statenmentld": 2,

"stat ement Type": "

"stat ement Pos": {
“startlLine":2,

"endLi ne": 2

sql plus",

b
"statement Text":"DESC T_EXAMPLEL",
"response": |
“Name Nul[\n Type \n---- ----- --mnmmnnnn \nCOL1
NUVBER(38) \n"
1,
"result": 0
¥
{
"statenmentld":3,
"statement Type": "dm ",
"stat ement Pos": {
“startlLine":3,
“endLine": 3
b
"statenment Text": "I NSERT | NTO T_EXAMPLEL VALUES(1)",
"response": |
“\nl row inserted.\n\n"

]

n

esult": 1

"statenent|d": 4,
"statement Type": "query",
"stat ement Pos": {
"startLine":4,
"endLine": 4
b
"statenent Text": " SELECT * FROM T_EXAMPLEL",
"response": |

]

n

esult":1,
"resultSet":{
"netadata": |

{
"col umName": " COL1",

"j sonCol umNange": "col 1",
"col umTypeNane": " NUMBER",

"precision": 38,

"scale": 0,
"isNullable": 1
1
] L]
"items": [
{
"col1":1

ORACLE 4.9

Chapter 4
REST-Enabled SQL Service Examples

}
J

hasMore": f al se,
“limt": 1500,
"of fset":0,

" count":1

"statement|d":5,

"statement Type": "

"stat ement Pos": {
“startlLine":5,

"endLi ne": 8

plsql",

b
"statenment Text":"BEG N\n | NSERT | NTO T_EXAMPLE1 VALUES(2);
\nEND; ",
"response": |
"\ nPL\/SQL procedure successfully conpleted.\n\n"
]

n

esult":1

"statenent!d": 6,
"statement Type": "query",
"stat ement Pos": {
"startLine":9,
"endLine": 9
b
"statenent Text": " SELECT * FROM T_EXAMPLEL",
"response": |

]

n

esult":1,
"resultSet":{
"netadata": |

{
"col umName": " COL1",

"j sonCol umNange": "col 1",
"col umTypeNane": " NUMBER",

"precision": 38,

"scale": 0,
"isNullable": 1
1
] L]
"items": [
{
"col1":1
}l
{
"col 1": 2
1
]

hashore": fal se,
"limt": 1500,

ORACLE 4-10

Chapter 4
REST-Enabled SQL Service Examples

"offset": 0,
“count": 2

"statenent!d":7,
"stat ement Type": "ddl ",
"stat ement Pos": {
"startLine": 10,
"endLi ne": 10
b
"statenment Text": " DROP TABLE T_EXAMPLEL",
"response": |
“\nTabl e T_EXAMPLEL dropped.\n\n"
1,

"result":1

4.5.2 POST Requests Using application/json Content-Type

Using a JSON document as the payload enables you to define more complex requests
as shown in the following sections:

e Using a File with cURL

e Specifying the Limit Value in a POST Request for Pagination
e Specifying the Offset Value in a POST Request for Pagination
e Defining Binds in a POST Request

4.5.2.1 Using a File with cURL

ORACLE

The following example posts a JSON document (within the si npl e_query. j son file) to
the REST-Enabled SQL service.

File: si npl e_query.json
{ "statenment Text":"SELECT TO DATE(' 01-01-1976',"' dd-mmyyyy') FROM dual ;"}

Request: curl -i -X POST --user DEMO deno --data-bi nary
"@inple_query.json" -H "Content-Type: application/json" -k https://
| ocal host : 8088/ or ds/ demo/ _/ sql

Where:
e The statenent Text holds the SQL statement or statements.

* The Content - Type is appl i cation/json.

Response:

HTTP/ 1.1 200 K

Cont ent - Type: application/json
X-Frame- Options: SAMECRIG N
Transf er- Encodi ng: chunked

4-11

Chapter 4
REST-Enabled SQL Service Examples

“env":

"def aul t Ti meZone": " Eur ope/ London"
I8
"items": [

{

"statement1d": 1,
"statement Type": "query",
"stat ement Pos": {
“startLine":1,
“endLine": 1
b
"statement Text":"SELECT TO DATE(' 01-01-1976',' dd- mm yyyy")
FROM dual ",

"response": |
1,
"result": 0,
"resultSet":{
"netadata": |
{
"col unmName": " TO_DATE(' 01- 01-1976' , ' DD- MM YYYY') ",
"j sonCol utmNane": "to_date(' 01-01-1976', ' dd- mm
yyyy')",

"col umTypeNange": " DATE",
"precision":0,
"scal e": 0,
"isNullable":1

"items": [

"to_date(' 01-01-1976' " dd- mm
yyyy')": " 1976- 01- 01T00: 00 00Z"
}
!

hasMore": f al se,
“limt":1500,
"of fset":0,
"count":1

4.5.2.2 Specifying the Limit Value in a POST Request for Pagination

You can specify the I i mi t value in a POST JSON request for the pagination of a large
result set returned from a query.

File:linmit.json

{

"statement Text": "
WTH data(r) AS (

ORACLE 4-12

ORACLE

Chapter 4
REST-Enabled SQL Service Examples

SELECT 1 r FROM dual

UNION ALL

SELECT r+1 FROM data WHERE r < 100

)

SELECT r FROM data; ",

“limt": 5

}

Request: curl -i -X POST --user DEMO deno --data-binary "@imt.json" -H

"Content-Type: application/json" -k https://Iocal host: 8088/ ords/dem/ /sql

Where: The linit is the maximum number of rows returned from a query.

Note:

The maximum number of rows returned from a query is based on the
m sc. pagi nat i on. maxRows value set in def aul t. xni file.

Response:

HTTP/ 1.1 200 K
Cont ent - Type: application/json
X-Frame- Options: SAMEOCRIG N
Transf er- Encodi ng: chunked
{
“env": {
"defaul t Ti neZone": " Eur ope/ London"
b
"items": |
{
"statenent|d": 1,
"statement Type": "query",
"statenent Pos": {
"startLine":1,
“endLine": 1
b
"statenment Text":" WTH data(r) AS (SELECT 1 r FROM dual UNI ON
ALL SELECT r+1 FROM data WHERE r < 100) SELECT r FROM data",
"response": |
1,
"result":0,
"resultSet":{
"netadata": |
{
"col umName": "R",
"j sonCol urmNang": "r",
"col umTypeNane": " NUMBER",
"precision":0,
"scal e":-127,
"isNul l abl e": 1

}
I

"items": |

4-13

Chapter 4
REST-Enabled SQL Service Examples

]

“hasMore":true,
“limt":5,

"of fset":0,
"count":5

Related Topics

* Configuring the Maximum Number of Rows Returned from a Query

4.5.2.3 Specifying the Offset Value in a POST Request for Pagination

You can specify the of f set value in a POST JSON request. This value specifies the
first row that must be returned and is used for pagination of the result set returned
from a query.

File:of fset limt.json

{

"statenment Text": "

WTH data(r) AS (

SELECT 1 r FROM dual

UNI ON ALL

SELECT r+1 FROM data WHERE r < 100
)

SELECT r FROM data; ",

"of fset": 25,

"limt": 5

}

Request: curl -i -X POST --user DEMO deno --data-binary
"@ffset limt.json" -H "Content-Type: application/json" -k https://
| ocal host: 8088/ or ds/ deno/ _/ sql

ORACLE 4-14

Chapter 4
REST-Enabled SQL Service Examples

Where: of f set is the first row to be returned in the result set. Typically, this is used to
provide the pagination for a large result set that returns the next page of rows in the
result set.

Note:

Each request made to the REST-Enabled SQL service is performed in its
own transaction, which means that you cannot ensure that the rows returned
will match the previous request. To avoid these risks, queries that need
pagination should use the ORDER BY clause on a primary key.

Response:

HTTP/ 1.1 200 OK
Cont ent - Type: application/json
X-Frame- Options: SAMEORIG N
Transf er- Encodi ng: chunked
{
“env":{
"defaul t Ti neZone": " Eur ope/ London"
b
"items": |
{

"statenent!d": 1,

"statement Type": "query",

"stat enent Pos": {
"startLine":1,
“endLine": 1

b

"statenment Text":" WTH data(r) AS (SELECT 1 r FROM dual UNI ON

ALL SELECT r+1 FROM data WHERE r < 100) SELECT r FROM data",

"response": |
1,
"result":0,
"resultSet":{
"netadata": |
{
"col umName": "R",
"j sonCol urmNang": "r",
"col umTypeNane": " NUMBER",
"precision":0,
"scal e":-127,
"isNul labl e": 1
}
1,
"items": |
{
"r": 26
¥
{
"r" 27
¥
{

ORACLE 4-15

Chapter 4
REST-Enabled SQL Service Examples

"r":28

"r":29
{
}

"r":30

]

hasMore": true,
“limt":5,

"of fset": 25,
"count":5

4.5.2.4 Defining Binds in a POST Request

You can define binds in JSON format. This functionality is useful when calling
procedures and functions that use binds as the parameters.

Example 4-2 Binds in POST Request

File: bi nds. j son

{
"statenent Text": "CREATE PROCEDURE TEST_OUT_PARAMETER (V_PARAM IN INT IN,

V_PARAM QUT I NT QUT) AS BEG N V_PARAM QUT := V_PARAM IN + 10; END;
/
EXEC TEST_OUT_PARAMETER(:varl, :var2)",
"binds": [
{"name":"var1","data_type": "NUMBER', "val ue": 10},
{"name":"var2", "data_type": "NUMBER', "node": "out"}
]
}

Request: curl -i -X POST --user DEMO deno --data-binary "@inds.json" -H
"Content-Type: application/json" -k https://Iocal host: 8088/ ords/dem/ /sql

Response:

HTTP/ 1.1 200 OK

Cont ent - Type: application/json
X- Frame- Options: SAMEORIG N
Transf er- Encodi ng: chunked

{
“env":{
"defaul t Ti neZone": " Eur ope/ London"
}!
"items": |
{

"statement!d": 1,

ORACLE 4-16

Chapter 4
REST-Enabled SQL Service Examples

n.on

"stat ement Type":

"stat ement Pos": {
“startline":1,
“endLine": 2

plsql",

b

"statenent Text": " CREATE PROCEDURE TEST_OUT_PARAMETER
(V_PARAM IN IN INT, V_PARAM QUT QUT INT) AS BEG N V_PARAM QUT : =
 PARAM IN + 10; END; ",

"response": |

"\ nProcedure TEST_OUT_PARAMETER conpi | ed\ n\n"

1,
"result": 0,
"binds": [
{
"nanme":"varl",
"data_type": " NUMBER',
"val ue": 10
1
{
"nane":"var2",
"data_type": " NUMBER',
"node": "out"
"result": nul
}
]
1
{
"statenmentld": 2,
"stat ement Type": "sql pl us"
"stat ement Pos": {
“startline":3,
“endLine": 3
b
"statement Text":"EXEC TEST_OUT_PARAMETER(:varl, :var2)"
"response": |
"\ nPL\/SQ. procedure successfully conpleted.\n\n"
1,
"result": 0,
"binds": [
{
"nane":"varl",
"data_type": " NUMBER',
"val ue": 10
1
{
"nane":"var2",
"data_type": " NUMBER',
"node": "out"
"result": 20
}
]
}

ORACLE 4-17

ORACLE

Chapter 4

REST-Enabled SQL Service Examples

Example 4-3 Complex Bind in POST Request

Fileconpl ex_bi nd_exanpl e. j son

{

n.on

"statement Text":

declare
type t is table of nunber index by binary_integer;
[in t =N
| _out t;
begin

for i in 1..1_in.count |oop

| _out(i) :=1_in(i) * 2;

end | oop;

(L_QJT =1 _out;
end;

"
’

"binds":[
{
"name": "IN,
"data_type":"PL/SQL TABLE",
"type_name":"",
"type_subname":"",
"type_conponents": |

{
}

"data_type": " NUMBER'

1,

"val ue": [

"name":"L_OUT",
"data_type":"PL/SQL TABLE",
"type_name":"",
"type_subname":"",
"type_conponents": |
{
"data_type": " NUMBER'

Request: curl -i -X POST --user DEMO deno --data-bi nary

" @onpl ex_bi nd_exanpl e.json" -H "Content-Type: application/json”

https://Iocal host: 8088/ ords/ demo/ /sql

-k

4-18

Chapter 4
REST-Enabled SQL Service Examples

Response:

HTTP/ 1.1 200 &K
Cont ent - Type: application/json
X- Frame- Options: SAMEORIG N
Transf er- Encodi ng: chunked
{
“env": {
"defaul t Ti neZone": " Eur ope/ London"
1
“items": |
{
"statementld": 1,
"statenent Type": "pl sqgl ",
"stat ement Pos": {
"startLine":2,
“endLine": 12
b
"statement Text":"declare \n type t is table of nunber index by
binary_integer; \nl_in t = :IN \nl_out t; \n begin \n for
i inl..1_in.count loop \n |_out(i) :=1_in(i) * 2, \n end |oop;
\n L QUT:=1_out; \n end;",
"response": |
1,
"result": 1,
"binds":[
{
"name":"IN',
"data_type":"PL/SQL TABLE",
"type_conponents":|

{
"dat a_type": " NUMBER'
}
1,
"type_name":"",
"type_subname":"",
"val ue": [
2,
4,
7
]
1
{
"name": "L_OUT",
"data_type":"PL/SQL TABLE",
"mode": "out",

"type_conponents":|

“dat a_type": " NUMBER'

}
] ’ n nn

"type_name":"",
"type_subname":"",
"result":[

4l

ORACLE 4-19

ORACLE

Chapter 4

REST-Enabled SQL Service Examples

4.5.2.5 Specifying Batch Statements in a POST Request

This section shows the examples with batch statements and batch bind values in a

POST request.
Example 4-4 Batch statements

File: batch_example.json

{
"statement Text": [
"insert into adhoc_table_sinple values(1)",
"insert into adhoc_table_sinple values(2)",
"del ete from adhoc_tabl e_sinple"
]
}
Request :curl -i -X POST --user DEMO deno --data-bi nary

" @at ch_exanpl e.json" -H "Content-Type: application/json"
| ocal host : 8088/ or ds/ demo/ _/ sql

Response:

HTTP/ 1.1 200 OK
Cont ent - Type: application/json
X- Frame- Options: SAMEORIG N
Transf er- Encodi ng: chunked
{
"env": {
"defaul t Ti neZone": " Eur ope/ London"
b
"items": |
{
"statenent!d": 1,
"statement Type": "dm ",
"stat enent Pos"; {
"startLine":0,
“endLine": 0

}

n

tatement Text": [
"insert into adhoc_table_sinple values(1)",
"insert into adhoc_table_sinple values(2)",
"del ete from adhoc_table_sinple"

-k https://

4-20

Chapter 4

REST-Enabled SQL Service Examples

1,
"response": |
“\nl row inserted.\n\n",
“\nl row inserted.\n\n",
"\n2 rows inserted.\n\n"
1,
"result":[
1,
1,
2

Example 4-5 Batch bind values

File: batch_bind_example.json

{
"statenent Text": "I NSERT | NTO ADHOC TABLE DATE VALUES(?,?)",
"binds":|
{
"index": 1,
"data_type": " NUMBER',
"batch":true,
"val ue": |
3,
6,
9,
13,
17
]
¥
{
"index": 2,
"data_type":"DATE",
"batch":true,
"val ue": |
"2017-02-21T06: 12: 20Z",
"2017-02-21T06: 12: 20Z",
"2017-02-21T06: 12: 20Z",
"2017-02-21T06: 12: 20Z",
"2017-02-21T06: 12: 20Z"
]
}
J
}
Request: curl -i -X POST --user DEMO denp --data-binary

" @at ch_bi nd_exanpl e.json" -H "Content-Type: application/json" -k https://

| ocal host : 8088/ or ds/ demo/ _/ sql

ORACLE

4-21

Chapter 4
REST-Enabled SQL Service Examples

Response:

HTTP/ 1.1 200 K
Cont ent - Type: application/json
X- Frame- Options: SAMECRIG N
Transf er- Encodi ng: chunked
{
“env": {
"defaul t Ti neZone": " Eur ope/ London"

}

items": [
{

"statementld": 1,

"stat ement Type": "dm ",

"stat ement Pos": {
“startLine":1,
“endLine": 2

b

"stat ement Text": " | NSERT | NTO ADHOC TABLE DATE VALUES(?,?)",

"response": |
“\nl row inserted.\n\n",
“\nl row inserted.\n\n",
“\nl row inserted.\n\n",
“\nl row inserted.\n\n",
“\nl row inserted.\n\n"

]

"

esult":[
11

1
1,
1
1

1,
"bi nds": |
{
"index": 1,
"data_type": " NUMBER',
"batch":true,
"val ue": [
3,
6,
9,
13,
17

"i ndex": 2,
"data_type":"DATE",
"batch":true,
"val ue": [
"2017-02- 21T06: 12: 20Z",
"2017-02- 21T06: 12: 20Z",
"2017-02- 21T06: 12: 20Z",
"2017-02- 21T06: 12: 20Z",

ORACLE 4-22

Chapter 4
REST-Enabled SQL Service Examples

"2017-02-21T06: 12: 202"

4.5.3 Example POST Request with DATE and TIMESTAMP Format

ORACLE

Example 4-6 Oracle REST Data services Time Zone Set as Europe/London

Oracle Database DATE and TIMESTAMP data types do not have a time zone
associated with them. The DATE and TIMESTAMP values are associated with the
time zone of the application. Oracle REST Data Services and the REST- Enabled SQL
service return values in a JSON format. The standard for JSON is to return date and
timestamp values using the UTC Zulu format. Oracle REST Data Services and the
REST- Enabled SQL service return Oracle Database DATE and TIMESTAMP values
in the Zulu format using the time zone in which Oracle REST Data Services is running.

Oracle recommends running Oracle REST Data Services using the UTC time zone to
make this process easier.

File: date.json

{

"statement Text": " SELECT TO DATE(' 2016-01-01 10:00: 03', " yyyy- mdd
hh24:m:ss') winter, TO DATE('2016-07-01 10:00:03',"'yyyy-nmdd
hh24:m:ss') summer FROM dual ;"

}
Request: curl -i -X PCST --user DEMO denp --data-binary "@ate.json" -H
"Content-Type: application/json" -k https://local host: 8088/ ords/deno/ _/sql
Response:

Note:

In this example, both DATE values are specified as 10 a.m. The " sumrer "
value is returned as 9 a.m. Zulu time. This is due to British Summer Time.

HTTP/ 1.1 200 K
Date: Wed, 26 Jul 2017 14:59:27 GMI
Cont ent - Type: application/json
X- Frame- Options: SAMECRIG N
Transf er- Encodi ng: chunked
Server: Jetty(9.2.21.v20170120)
{

“env":{

"defaul t Ti meZone": " Eur ope/ London"

4-23

Chapter 4
REST-Enabled SQL Service Examples

I8
"items": |
{
"statenentld": 1,
"statement Type": "query",
"stat ement Pos": {
"startLine":1,
"endLine": 1
b
"statement Text":"SELECT TO DATE(' 2016-01-01 10:00:03', "' yyyy-mm
dd hh24:mi:ss') winter, TO DATE('2016-07-01 10:00:03","'yyyy-mm dd
hh24:m:ss') summer FROM dual ",
"response": |
1,
"result":0,
"resultSet":{
"netadata": |
{
"col unmName": "W NTER",

"j sonCol utmNane": "wi nter",
"col umTypeNange": " DATE",

"precision":0,

"scal e": 0,
"isNul | able": 1
1
{
"col umNange": " SUMVER",
"j sonCol utmNane": " sumrer ",
"col umTypeNange": " DATE",
"precision":0,
"scal e": 0,
"isNul | able": 1
}
1,
"items": [
{
"winter":"2016-01-01T10: 00;: 032",
"summrer":"2016-07-01T09: 00: 032"
}
1,
“hasMore": f al se,
“limt": 1500,
"of fset":0,
"count":1

ORACLE 4-24

4.5.4 Data Types and Formats Supported

The following code snippet shows the different data types and the formats supported:

ORACLE

{

"statement Text":"SELECT ?,?,?,?2,?,?

12,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7 FROM dual ",

“binds": [
{

"i ndex": 1,

"data_type":"

"val ue": 1233

"i ndex": 2,

"data_type":"

"val ue": 123

"i ndex": 3,
"data_type":
"val ue": 123

"i ndex": 4,
"data_type":
"val ue": 123

"i ndex": 5,
"data_type":
"val ue": 123

"i ndex": 6,
"data_type":
"val ue": 123

"i ndex": 7,

"data_type":"

"val ue": 123

"i ndex": 8,
"data_type":
"val ue": 123

"i ndex": 9,
"data_type":
"val ue": 123

NUMBER',

NUMERI C',

" DECI MAL",

"DEC',

"NUMBER'

"I NTEGER',

" SMALLI NT",

"FLOAT",

Chapter 4
REST-Enabled SQL Service Examples

2,2,2,2,2,2,2,2,2,2,2,2,2,?2,2,2,?2,2,?2,°?

4-25

ORACLE

"i ndex": 10,
"data_type":"DOUBLE PRECI SI ON',
"val ue": 123

"i ndex": 11,
"data_type":"REAL"
"val ue": 123

"i ndex": 12,
"data_type": "Bl NARY_FLOAT",
"val ue": 123

"i ndex": 13,
"data_type": "Bl NARY_DOUBLE",
"val ue": 123

"index": 14,
"data_type":"CHAR',

n.on

"val ue":"abc

n

"index": 15,
"data_type": " CHARACTER'

n.on

"val ue": "abc

n

"index": 16,
"data_type": " VARCHAR',

n.on

"val ue":"abc

n

"index": 17,
"data_type": " VARCHAR2"

n.on

"val ue":"abc

n

"index": 18,
"data_type": " CHAR VARYI NG'

n.on

"val ue": "abc

n

"i ndex": 19,

"data_type": " CHARACTER VARYING',

n.on

"val ue": "abc

n

"i ndex": 20,
"data_type": " NCHAR'

n.on

"val ue": "abc

n

Chapter 4
REST-Enabled SQL Service Examples

4-26

ORACLE

Chapter 4

REST-Enabled SQL Service Examples

"index": 21,
"data_type":"NATI ONAL CHAR',

n.on

"val ue": "abc

n

"i ndex": 22,
"data_type": " NATI ONAL CHARACTER'

n.on

"val ue": "abc

n

"index": 23,
"data_type": " NVARCHAR'

n.on

"val ue": "abc

n

"index": 24,
"data_type": " NVARCHAR2"

n.on

"val ue": "abc

n

"index": 25,
"data_type":"NCHAR VARYING',

n.on

"val ue":"abc

n

"i ndex": 26,
"data_type": " NATI ONAL CHAR VARYI NG'

n.on

"val ue": "abc

n

"i ndex": 27,
"data_type": " NATI ONAL CHARACTER VARYI NG'

n.on

"val ue":"abc

n

"i ndex": 28,
"data_type":"DATE",
"val ue":"01-Jan-2016"

"index": 29,
"data_type":"TI MESTAVP",
"val ue":"1976-02-01T00: 00: 00Z"

"index": 30,
"data_type":"TI MESTAVP",
"val ue":"1976-02-01T00: 00: 00Z"

"i ndex": 31,

"data_type":"TI MESTAWP W TH LOCAL TI ME ZONE",

"val ue":"1976-02-01T00: 00: 00Z"

4-27

ORACLE

Chapter 4
REST-Enabled SQL Service Examples

"i ndex": 32,
"data_type":"TI MESTAVP WTH TI ME ZONE",
"val ue":"1976-02-01T00: 00: 00Z"

"index": 33,
"data_type": "I NTERVALYM',
"val ue": " P10Y10M

"i ndex": 34,
"data_type": "I NTERVAL YEAR TO MONTH',
"val ue": " P10Y10M'

"i ndex": 35,
"data_type":"INTERVAL YEAR(2) TO MONTH',
"val ue": " P10Y10M'

"index": 36,
"data_type": "I NTERVALDS",
"val ue": " P11DT10H1O0MLOS"

"i ndex": 37,
"data_type": "I NTERVAL DAY TO SECOND',
"val ue": " P11DT10H1OMLOS"

"i ndex": 38,
"data_type": "I NTERVAL DAY(2) TO SECOND(6)",
"val ue": " P11DT10H10MLOS"

"i ndex": 39,
"data_type":"ROND',
"value": 1

"i ndex": 40,
"data_type":"RAW,
"val ue": " AB"

"I ndex": 41,
"data_type":"LONG RAW,
"val ue": " AB"

"index": 42,
"data_type":"CLOB",

n.on

"val ue":"cl obval ue"

4-28

Chapter 4
REST-Enabled SQL Request and Response Specifications

1

{
"i ndex": 43,
"data_type":"NCLOB",
"val ue": "cl obval ue"

1

{
"i ndex": 45,
"data_type":"LONG',
"val ue": " A"

}

4.6 REST-Enabled SQL Request and Response
Specifications

The following sections provide REST-Enabled SQL request and response
specifications:

e Request Specification

* Response Specification

4.6.1 Request Specification

Request Specification for application/sql

The body of the request is in plain UTF8 text. Statements can be separated by their
usual SQL*Plus terminator.

Specification for application/json

JSONPath Typ Description Example Default Possible Values
e Value

$.statement Tex Strin Specifies the SQL "sel ect 1 Not Not applicable
t g statements to fromdual " applicable

execute.
$. statement Tex Arra Specifies batch ["insert Not Not applicable
t y DML statements jnto testl applicable

using an array. val ues(1)",

One DML _ “updat e

statement is

specified per string testl set

col 1=2"]

in an array.

ORACLE' 4-29

Chapter 4

REST-Enabled SQL Request and Response Specifications

JSONPath Typ

Default

Possible Values

Description

Example
Value

Num
ber

$. of f set

Num
ber

$.1inmt

$. bi nds Arra

$. bi nds[*] . nam Strin
e g

$. binds[*].ind Num
ex ber

$. bi nds[*].dat Strin
a_type g

ORACLE

Specifies the
number of rows to
offset the query

result. This is used

for pagination of
the result set
returned from a
query.

Specifies the
maximum number
of rows returned
from a query.

Values greater
than the value of
the

m sc. pagi natio
n. maxRows
property, specified
in the
default.xnl,is
ignored.

Specifies an array
of objects
specifying the bind
information.

Specifies the
name of the bind,
when you are
using named
notation.

Specifies the index

of bind, when you
are using
positional notation.

Specifies Oracle
data type of the
bind.

Between 0 to
m sc. pagi hati on
. maxRows.

25 0

Between 0 to
m sc. pagi hati on
. maxRows.

500 m sc. pag
i nation.

max Rows

Not
applicable

"bi nds":

{ "name":
"nybi nd1",
"data_type"
: "NUMBER',
"mode": "out
"

{ "name":"
ybi nd2",
"data_type"
: "NUMBER',
"val ue":

711
" nybi nd"

Not applicable

m

Not
applicable

Not applicable

1 Not
applicable

Between 1 to n

Not
applicable

For more
information, refer to
Oracle Built-in
Types

" NUMBER'

4-30

ORACLE

Chapter 4

REST-Enabled SQL Request and Response Specifications

JSONPath Typ Description Example Default Possible Values
e Value
$. binds[*].val Any Specifies the value "value to null Can be one of the
ue valu of the bind. insert" following data-
e types:
e Number
e String
* Array
For more
information, refer to
Oracle Built-in
Types
$.binds[*].nod Strin Specifies the "out" "in" ["in"
e g mode in which the "inout",
bind is used. "out"]
$. bi nds[*].bat Bool Specifies whether true fal se [true, false]
ch ean or not you want to
perform a batch
bind. If you want to
perform a batch
bind, then set the
valuetotrue.
If the value is set
totrue,
then $bi nds[*]
must consist of an
array of values.
$.binds[*].typ Strin Required when " Not Not applicable
e nane g you are applicable
B using $hi nds[*].
data_type =
“PL/ SQL TABLE"
Currently, only an
empty string is
accepted as the
value.
$. binds[*].typ Strin Required when " Not Not applicable
e_subnane g you are applicable
- using $bi nds[*].
data_type =

"PL/ SQL TABLE"

Currently, only an
empty string is
accepted as the
value.

4-31

4.6.2 Response Specification

ORACLE

Chapter 4

REST-Enabled SQL Request and Response Specifications

JSONPath Typ Description Example Default Possible Values
e Value
$.binds[*].typ Arra Specifiesanarray [{"data_typ Not Not applicable
e_conponents Y of datatypesin e":"NUMBER' applicable
the PL/SQL 1
TABLE
Required when
you are
using $bi nds[*].
data type =
"PL/SQ. TABLE"
$.binds[*].typ Strin Specifies Oracle " NUMBER' Not For more
e_conponents[* g data type of a applicable information, refer to
]._dat a_type column in the Oracle Built-in
- PL/SQL TABLE. Types
Required when
you are
using $bi nds[*] .
data_type =
"PL/ SQL TABLE"
JSONPath Data Description Example Possible values
type Values
$. env Object Specifies the Not Not applicable
information about applicable
the Oracle REST
Data Services
environment.
$. env. def aul t Ti meZone String Specifies the "Europe/ Notapplicable
timezone in which |_ondon"
Oracle REST Data
Services server is
running on.
$S.itens Array Specifies that there Not
is one item for each applicable Not applicable
statement
executed.
$.items[*].statenment] Number Specifies the 1
d sequence number Not applicable
of the statement.
$.itenms[*].statenment T String Specifies the type " query" ["query", "dml",
ype of statement. "ddl", "plsqgl",

"sqlplus" , "ignore",
"transaction-
control", "session-
control”, "system-
control", "jdbc",
"other"]

4-32

Chapter 4

REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
$.itens[*].statementP Object Specifies Not
0s information about applicable Not applicable
the position of a
specified
statement.
$.items[*].statementP Number Specifies startline Not
0s.startLine of the statement. applicable Not applicable
$.items[*].statementP Number Specifies endline Not
0s. endLi ne of the statement. applicable Not applicable
$itens[*].statenent Te String Specifiesthe SQL "select 1
xt statement to be from Not applicable
executed. dual "
$itens[*].statenent Te Array Specifies batch ["insert
xt DML statements into Not applicable
can be specified test1
using an array. val ues(1)
One DML " , " updat e
statement specified test1 set
per string in an col 1=2" |
array.
$.itenms[*].response Array Specifiesarray of ["\nl
Strings. The r ow Not applicable
response i nserted.
generated when \n\n"]
running the
statement.
$.items[*]. . result Number Specifies the result 5
generated when Not applicable
running the
statement.
For DML
statements, this will
be the number of
rows affected.
$.items[*].result Array Specifies the result [1, 1,
generated when 2] Not applicable
running each of the
batch statements.
For DML
statements, this will
be the number of
rows affected.
$.items[*].resultSet Object Specifies
information about ~ Not Not applicable
the result set applicable

ORACLE

generated from a
query.

4-33

ORACLE

Chapter 4
REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
$.items[*].resultSet. Array Specifies each
nmet adat a object in the array Not Not applicable
provides applicable
information about
the metadata of a
column.
$.items[*].resultSet. String Specifies the name
net adat a[*] . col unmNam of the column used Not Not applicable
e in the Oracle applicable
Database.
$.items[*].resultSet. String Specifies the name
net adat a[*] . j sonCol um of the column used Not Not applicable
nName in applicable
$.items[*].resu
[tSet.itens[*].
<col umnane>
$.items[*].resultSet. String Specifies the
net adat a[*] . col umTyp Oracle Database Not Not applicable
eName data type of the applicable
column.
$.items[*].resultSet. Number Specifies the
met adat a[*] . preci si on precision of the Not Not applicable
column. applicable
$.items[*].resultSet. Number Specifies the scale
net adat a[*] . scal e of the column. Not Not applicable
applicable
$.items[*].resultSet. Number Specifies whether
net adat a[*] . i sNul | abl the column is Not Not applicable
e nullable or not. applicable
0, if the column is
not nullable.
1, if the column is
nullable.
$.items[*].resultSet. Array Specifies the list of
itenms all rows returned in Not Not applicable
the result set. applicable
$.items[*].resultSet. Any Specifies the value
i tens[*]. <col urmnanme> type of a particular Not Not applicable
column and row in applicable

the result set.

4-34

ORACLE

Chapter 4

REST-Enabled SQL Request and Response Specifications

JSONPath

Data
type

Description Example

Values

Possible values

$.items[*].resul tSet.

hashbr e

$.items[*].resultSet.

count

$.items[*].resul tSet.

of f set

$.itens[*].resultSet.

limt

Boolean

Number

Number

Number

Specifies whether f al se
result set has more

rows. Value is set

to tr ue if the result

set has more rows,
otherwise set to

fal se.

The rows in the
result set depend
on

m sc. pagi nation
. maxRows value
configured in
defaul ts. xn file
or as specified in
the request.

Specifies the
number of rows Not
returned. applicable

Specifies the 25
number of rows to
offset the query

result. This is used

for pagination of

the result set

returned from a

query.

Specifies the 500
maximum number

of rows returned

from a query.

Values greater

than

m sc. pagi nation

. maxRows value
specified in

defaul t.xml file

are ignored.

[true , false]

Not applicable

Between 0 to
m sc. pagi nation
. maxRows

Between 0 to
m sc. pagi hati on
. maxRows

4-35

Chapter 4
REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
$.itens[*].bi nds Array Specifies an array " bi nds":
of objects [{ "name Notapplicable
specifying the bind w. » mybi nd
information. 1"
"data_typ
e": " NUMBE
R,
"mode": "o
ut" },
{ "nane":
" mybi nd2"
"data_typ
e": " NUMBE
R,
"val ue":
7}
$.itens[*].binds[*].n String Specifies the name "nyhi nd"
ane of the bind, when Not applicable
you are using
named notation.
$.itens[*].binds[*].i Number specifiesilndexof 1 1-n
ndex bind, when you are
using positional
notation.
$.itens[*].binds[*].d String Specifies the "NUMBER' For more
ata_type Oracle data type of information, refer to
the bind. Oracle Built-in
Types
$.items[*].binds[*].v Anytype Specifiesthe value "value to Can be one of the
al ue of the bind. insert" following data
types:
* Number
e String
* Array
For more

information, refer to
Oracle Built-in

Types
$.itens[*].binds[*].r Anytype Specifies the result Not applicable
esul t of an OUT bind. Not

applicable
$.items[*].binds[*].m String Specifies the mode " out" ["in",
ode in which the bind is "i nout",
used. "out" |

ORACLE 4-36

ORACLE

Chapter 4

REST-Enabled SQL Request and Response Specifications

JSONPath

Data
type

Description Example

Values

Possible values

$.items[*].binds[*].b Boolean

at ch

$.itens[*].binds[*].t
ype_nane

$.items[*]. binds[*].t
ype_subnarme

$.itens[*].binds[*].t
ype_conponent s

$.itens[*].binds[*].t
ype_conponent s[*] . dat
a_type

String

String

Array

String

Specifies whether
or not you want to
perform a batch
bind. If you want to
perform a batch
bind, then set the
value totrue.

If a batch bind is to
be performed, then
the value is set to
true.

If the value is set to
true,

then $hi nds[*]
value must be an
array of values.

true

Required when "
using $bi nds[*] .
data_type =

"PL/ SQL TABLE".

Currently, only an
empty string is
accepted as the
value.

Required when
using $bi nds[*] .
data_type =
"PL/ SQL TABLE".
Currently, only an
empty string is
accepted as the
value.

Array of data types
in the PL/SQL
TABLE

Required when
using $bi nds[*] .
data_type =
"PL/ SQL TABLE".

The Oracle data
type of a column in
the PL/SQL
TABLE.

Required when
using $bi nds[*].
data_type

= "PL/ SQL
TABLE"

[{"data_t
ype":"NUM
BER'}]

" NUMBER"

[true, false]

Not applicable

Not applicable

Not applicable

For more
information, refer to
Oracle Built-in
Types

4-37

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

4.7 Supported SQL, SQL*Plus, and SQLcl Statements

This section lists all the supported SQL, SQL*Plus and SQLcl statements for REST-
Enabled SQL service.

Topics
e Supported SQL Statements
e Supported PL/SQL Statements

e Supported SQL*Plus Statements
e Supported SQLcl Statements

4.7.1 Supported SQL Statements

This section describes the SQL statements that the REST- Enabled SQL service
supports.

REST- Enabled SQL service supports all SQL commands. If the specified Oracle
Database schema has the appropriate privileges, then you can run them. Oracle
REST Data Services makes all queries into in-line views before execution to provide
pagination support. Queries are made in-line irrespective of the format in which you
provide the query. All the other nonquery SQL statements are executed as they are.

In-line views have the following limitations:

e All column names in a query must be unique because the views and in-line views
cannot have ambiguous column names.

e Cursor expressions are not displayed in view or in-line views.
¢ WITH FUNCTION clause is not supported in in-line views.
Related Topics

e SQL_statements_ref

4.7.2 Supported PL/SQL Statements

ORACLE

The REST- Enabled SQL service supports PL/SQL statements and blocks.
Example 4-7 PL/SQL Statement

DECLARE v_message VARCHAR2(100) := 'Hello Wrld';
BEG N
FORi IN1..3 LOCP
DBMS_QUTPUT. PUT_LI NE (v_nessage);
END LOOP;
END,
/

Related Topics
e plsql_block

4-38

http://docs.oracle.com/database/122/SQLQR/SQL-Statements.htm#SQLQR109
http://docs.oracle.com/database/122/LNPLS/block.htm#LNPLS01303

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

4.7.3 Supported SQL*Plus Statements

This section lists all the SQL*Plus statements that the REST- Enabled SQL service
supports.

REST- Enabled SQL service supports most of the SQL*Plus statements except those
statements that are related to formatting. The specific Oracle Database schema must
have the appropriate privileges to run the SQL*Plus statemments.

The following is a list of supported SQL*Plus statements:

e SET systemvariabl e val ue

" Note:

system vari abl e and val ue represent one of the clauses described in
Set System Variables section.

| (sl ash)

e DEF[INE] [variable] | [variable = text]
e DESCIRIBE] {[schemna.]object][@onnect identifier]}
 EXEC] UTE] statenent

e HELP | ? [topic]

* PRINT [variable ...]

* PROMPT] [text]

* REM ARK]

e SHOW [option]

e TIM[NG [START text | SHOW| STOF]

e UNDEF[INE] variable ...

e VAR | ABLE] [variable [type][=value]]
Related Topics

e sqlplus_commands
4.7.3.1 Set System Variables

The following is a list of possible values for syst em vari abl e and val ue:

Note:
The command SET CMDS[EP] {; | ¢ | ON| OFF} is obsolete.

- SET APPI[NFO{ON | OFF | text}
. SET AUTOP[RINT] {ON| OFF}

ORACLE 4-39

https://docs.oracle.com/database/122/SQPUG/SQL-Plus-command-summary.htm#SQPUG02345

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

- SET AUTOT[RACE] {ON| OFF | TRACE[ONLY]} [EXP[LAIN|] [STAT[ISTICS]]
« SET BLO CKTERMNATOR| {. | ¢ | ON| OFF}

- SET CMDS[EP] {; | ¢ | ON| OFF}

« SET COLINVI[SIBLE] [ON| OFF]

- SET CONCAT] {. | ¢ | ON| OFF}

- SET COPYQJOMM T] {0 | n}

- SET DEF[INE] {&| ¢ | ON| OFF}

. SET DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM{ON | OFF}] [INDENT {ON |
OFF}]

. SET ECHO {ON | OFF}

e SET ERRORL[OGA NG {ON | OFF} [TABLE [schenm.]tabl ename] [TRUNCATE]
[I DENTI FIER identifier]

- SET ESAPE] {\ | ¢ | ON| OFF}
« SET FEED[BACK] {6 | n | ON| OFF | ONLY}]

. SET SERVERQUT[PUT] {ON | OFF} [SIZE {n | UNL[IM TED]}] [FOR[MAT]
{WRA[PPED] | WOR[D WRAPPED] | TRU NCATED]}]

e SET SHOW MODE] {ON | OFF}

« SET SQLBL[ANKLINES] {ON | OFF}
e SET SQLP[ROMPT] {SQL> | text}
« SET TI[ME {ON| OFF}

e SET TIM[NG {ON| OFF}

e SET VER[IFY] {ON| OFF}
Related Topics

* set-system_var_summary

4.7.3.2 Show System Variables

ORACLE

This section lists the possible values for opt i on which is either a term or a clause used
in the SHO W opti on command.

The following is a list of possible values for the opt i on variable:

Note:
The commands SHOW CVDSEP and SHOW DESCR[| BE] are obsolete.

e SHOWNsystemvariabl e
e SHOWED TI ON

- SHOWERR[ORS] [{ ANALYTIC VIEW| ATTRI BUTE DI MENSI ON | H ERARCHY |
FUNCTI ON | PROCEDURE | PACKAGE | PACKAGE BODY | TRIGGER | VIEW| TYPE
| TYPE BODY | DI MENSION | JAVA CLASS } [schema.]name]

4-40

https://docs.oracle.com/database/122/SQPUG/SET-system-variable-summary.htm#SQPUG060

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

. SHOW PDBS
. SHOW SGA

« SHOW SQLCODE

« SHOW COLI NVI [SI BLE]
- SHOW APPI N FO

- SHOW AUTOT[RACE]

. SHOW BI NDS

« SHOWBLQ CK TERM NATCR]
- SHOW CMVDSEP

« SHOW COPYTYPECHECK

- SHOW COPYCOWM T

- SHOW DEFI NE

- SHOW DEFI NES

- SHOW DESCR] | BE]

. SHOW ECHO

. SHOWEDI TI ON

- SHOW ERRORL[OGG NG
. SHOW ESJ APE]

. SHOW FEEDBACK

« SHOW CONCAT

« SHOW SHOW MODE]

. SHOW RECYC] LEBI N|

. SHOW RELEASE

« SHOW SQLBL[ANKLI NES]

. SHOW SCAN
« SHOW SERVERQUT] PUT]
- SHOW SPACE

e SHOW TABLES

e SHONTIM[NG
e SHOW USER

« SHOW VER[| FY]
« SHOW XQUERY
Related Topics

e show_command

ORACLE 4-41

https://docs.oracle.com/database/122/SQPUG/SHOW.htm#SQPUG124

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

4.7.4 Supported SQLcl Statements

ORACLE

This section lists the SQLcl statements that the REST- Enabled SQL service supports.

REST- Enabled SQL service supports some of the SQLcl statements. The specific
Oracle Database schema must have the appropriate privileges to run the SQLcl
statements.

The following is a list of supported SQLcl statements:

« CTAS
« DDL
« SET DDL

4-42

Migrating from mod_plsql to ORDS

This chapter demonstrates how a mod_plsql application is migrated to Oracle REST
Data Services (ORDS).

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server
and mod_plsql. An Oracle HTTP Server mod_plsql application can be migrated to
ORDS by defining new ORDS configuration files. The mod_plsqgl database resources
such as before procedures, after procedures, request validation functions,
owa_custom packages, doc upload procedures and doc tables require no change
when you are migrating to ORDS.

Topics:

e Oracle HTTP Server mod_plsql Authentication

e Example Oracle HTTP Server DAD file

e Mapping mod_plsgl Settings to ORDS

e Example ORDS Configuration Files

e Example ORDS URL Mapping

e Example ORDS Default Configuration

* ORDS Authentication

e ORDS Features

5.1 Oracle HTTP Server mod_plsqgl Authentication

Oracle HTTP Server mod_plsql applications are configured in a database access
descriptor (DAD) file.

The following example mod_plsql application provides the methods to authenticate the
requests against the Oracle Database:

» Basic authentication: The username and password are stored in the DAD file
and so the end user is not required to log in. This method is useful for web pages
that provide public information.

* Basic dynamic authentication: The users provide credentials in a browser HTTP
basic authentication dialog box. The only way to log out is to close all the
instances of the browser.

* Custom authentication: Enables applications to invoke a user-written
authentication function to authenticate the users within the application and not at
the database level.

Related Topics
e Oracle HTTP Server mod_plsql

ORACLE 5-1

unilink:Oracle_HTTP_Server_mod_plsql

Chapter 5
Example Oracle HTTP Server DAD file

5.2 Example Oracle HTTP Server DAD file

ORACLE

This section provides an example Oracle HTTP Server DAD file.

The following dads. conf file includes three locations demonstrating the basic, basic
dynamic and custom authentications and the following directives:

e Pl sql Bef oreProcedure

e Plsqgl AfterProcedure

* PlIsgl Request Val i dati onFuncti on
e Pl sqgl Docunent Tabl ename

e Pl sqgl Docunment Procedure

Example 5-1 dads.conf file

H+=

mod_pl sql DAD Configuration File

H H N

<Location /pls/basic_auth>
Set Handl er pls_handl er
O der deny, al | ow
Allow fromall

Al l owOverride None
Pl sgl Dat abaseUser name PRI VI LEGED USER
Pl sgl Dat abasePasswor d passwor dFOR$0RD5Exanpl e
Pl sgl Dat abaseConnect String oracl e-ee: 1521; ORCLPDB1
Ser vi ceNanmeFor mat
Pl sgl Aut henti cati onMbde Basi ¢
Pl sgl Bef or eProcedur e sanpl e_pl sql _app_net adat a. bef or eProc
Pl sql After Procedure sanpl e_pl sql _app_netadat a. after Proc

Pl sgl Request Val i dati onFuncti on
sanpl e_pl sql _app_net adat a. val i dati onFunc
Pl sgl Docunent Tabl enane privileged user.doc_table
Pl sgl Docunent Procedur e privileged user. upl oad
</ Locati on>
<Location /pls/basic_dynam c¢_aut h>
Set Handl er pls_handl er
O der deny, al | ow
Allow fromal |

Al l owOverride None
Pl sgl Dat abaseConnect String oracl e-ee: 1521: ORCLPDB1
Ser vi ceNanmeFor mat
Pl sgl Aut hent i cati onMbde Basi ¢
Pl sgl Bef or eProcedur e sanpl e_pl sql _app_net adat a. bef or eProc
Pl sql After Procedure sanpl e_pl sql _app_netadat a. aft er Proc

Pl sgl Request Val i dati onFuncti on
sanpl e_pl sql _app_net adat a. val i dati onFunc

5-2

Chapter 5
Mapping mod_plsql Settings to ORDS

</l ocation>

<Location /pls/custom auth>
Set Handl er pls_handl er
Order deny, al | ow
Allow fromall

Al owOverride None
Pl sgl Dat abaseUser name PRI VI LEGED USER
Pl sgl Dat abasePasswor d passwor dFORSORD5Exanpl e
Pl sgl Dat abaseConnect String oracl e-ee: 1521: ORCLPDB1
Ser vi ceNanmeFor mat
Pl sgl Aut henti cati onvbde Cust onmOna
Pl sgl Bef or eProcedur e sanpl e_pl sql _app_net adat a. bef or eProc
Pl sgl AfterProcedure sanpl e_pl sql _app_net adat a. af t er Proc

Pl sgl Request Val i dati onFuncti on
sanpl e_pl sql _app_net adat a. val i dati onFunc
</l ocation>

5.3 Mapping mod_plsqgl Settings to ORDS

This section shows the mappings of mod_plsqgl settings to ORDS.

ORDS allows you to specify configuration files that are similar to a location defined in
an Oracle HTTP Server mod_plsqgl DAD file. Each configuration file is defined in
ords_conf/ords/ conf directory and the configuration file is then mapped to a
particular URL using the or ds_conf/ords/ url - mappi ng. xn file. ORDS provides the
following configurable parameters that can be used when migrating mod_plsq|
directives:

Table 5-1 Mappings of mod_plsql Directives to ORDS Settings

|
mod_plsql Setting ORDS Setting Description

Pl sql Dat abaseUser Nane db. user nane Specifies the username to use
to log in to the database.

ORDS and mod_plsql are
equivalent.

Pl sql Dat abasePasswor d db. password Specifies the password to use
to log in to the database.

ORDS and mod_plsql are

equivalent.
Pl sql Dat abaseConnect Str Multiple Settings such as: Specifies the connection to an
i ng « db. host nane Oracle database.
+ db. port ORDS and mod_plsql are
equivalent.

e db. servicenane
e dh.sid

ORACLE 5-3

ORACLE

Chapter 5

Mapping mod_plsql Settings to ORDS

Table 5-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting

ORDS Setting

Description

Pl sql Aut henti cat i onMbde

security.request Aut hent
i cationFunction

Specifies the authentication
mode to use to allow access.
When
security.request Aut hent
i cationFunction is not
specified, ORDS behavior is
same as Basi ¢ mode of
mod_plsql.

When
security.request Aut hent
i cationFunctionis
specified, ORDS can perform
the same action as example
dad directive

Pl sql Aut henti cati onMbde
Cust omOnaof mod_plsql.
Example ORDS equivalent
configuration parameter:

<entry
key="security.requestAu
t henticationFunction">p
rivileged_user.owa_cust
om aut hori ze</entry>
ORDS and mod_plsql are
equivalent.

Pl sql Bef or eProcedur e

procedur e. preProcess

Specifies the procedure to be
invoked before calling the
requested procedure.

ORDS and mod_plsql are
equivalent.

Pl sql AfterProcedure

procedur e. post Process

Specifies the procedure to be
invoked after calling the
requested procedure.

ORDS and mod_plsql are
equivalent.

Pl sql Request Val i dati onF
unction

security.request Validat
i onFuncti on

Specifies an application-
defined PL/SQL function that
can allow or disallow further
processing of the requested
procedure.

ORDS and mod_plsql are
equivalent.

Pl sql Docunent Tabl ename

owa. docTabl e

Specifies the table in the
database to which all
documents are uploaded.

ORDS and mod_plsql are
equivalent.

5-4

Chapter 5
Mapping mod_plsql Settings to ORDS

Table 5-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings
|

mod_plsql Setting ORDS Setting Description

Pl sql Docunent Procedure N/A Specifies the procedure to call
when a document download is
initiated.

In ORDS the document
procedure is the requested
resource. It is not defined in
the configuration file.

ORDS and mod_plsql are

equivalent.
Pl sql Docunent Pat h N/A ORDS has no equivalent.
Pl sql Def aul t Page m sc. def aul t Page Specifies the default

procedure to call if none is
specified in the URL.

ORDS and mod_plsql are

equivalent.
Plsql ErrorStyle debug. pri nt DebugToScree Specifies the error reporting
n mode for mod_plsql errors.

debug. pri nt DebugToScr ee
n is equivalent to

Plsql ErrorStyle

DebugSt yl e, otherwise there
is no equivalent.

ORDS and mod_plsql are
equivalent.

Pl sql Excl usi onLi st security. excl usionLi st Specifies a pattern for
procedures, packages, or
schema names which are
forbidden to be directly run
from a browser.

See Understanding
Configurable Parameters.

ORDS and mod_plsql are

equivalent.
Pl sql I dl eSessi onCl eanup jdbc.InactivityTimeout Specifies the time (in minutes)
| nt erval in which the idle database
sessions should be closed and
cleaned.

Value can be 0 to N seconds.
Where, 0 (default) means that
the idle connections are not
removed from pool.

ORDS and mod_plsql are
equivalent.

ORACLE 5-5

ORACLE

Chapter 5

Mapping mod_plsql Settings to ORDS

Table 5-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting

ORDS Setting

Description

Pl sql MaxRequest sPer Sess
i on

j dbc. MaxConnect i onReuse
Count

Specifies the maximum
number of requests a pooled
database connection should
service before it is closed and
re-opened.

Default value is 1000.

ORDS and mod_plsql are
equivalent.

Pl sql I nf oLoggi ng

N/A

See Understanding
Configurable Parameters.

Pl sql LogDirectory

N/A

See Understanding
Configurable Parameters.

Pl sql LogEnabl e

N/A

See Understanding
Configurable Parameters.

Pl sql Sessi onSt at eManage
ment

N/A

Specifies how package and
session state should be
cleaned up at the end of each
request.

ORDS always performs:
dbns_sessi on. nodi fy_pac
kage_st at e(dbms_sessi on.
reinitialize)atthe end of
each request.

Pl sql Al waysDescri beProc
edure

N/A

Specifies whether the
mod_plsql application should
describe a procedure before
trying to run it.

ORDS always describes
procedure on first access, and
then the definition is cached.
Changes in signature are
detected and recached.

Pl sql ConnectionVal i dat i
on

N/A

Specifies the mechanism the
mod_plsql module should use
to detect terminated
connections in its connection
pool.

ORDS always validates
connections on borrow.

Pl sql Fet chBuf fer Si ze

N/A

Specifies the number of rows
of content to fetch from the
database for each trip, using
either owa_util . get page
orowa_util.get_page_raw.
ORDS materializes results as
a 32K VARCHAR or CLOB if
results are greater than 32K,
S0 not applicable.

5-6

Chapter 5
Mapping mod_plsql Settings to ORDS

Table 5-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings
|

mod_plsql Setting ORDS Setting Description

Pl sql NLSLanguage N/A Specifies the NLS_LANG
variable.
ORDS, Java, and JDBC use
unicode.

Pl sql Transf er Mode N/A Pl sqgl Transf er Mode

specifies the transfer mode for
data from the database back
to the mod_plsql application.

ORDS always uses unicode.

Pl sql Bi ndBucket Lengths N/A Specifies the rounding size to
use while binding the number
of elements in a collection
bind.

Rarely used in mod_plsql, and
JDBC has no equivalent
concept.

Pl sql Bi ndBucket W dt hs N/A Specifies the rounding size to
use while binding the number
of elements in a collection
bind.

Rarely used in mod_plsql and
JDBC has no equivalent

concept.
Pl sql CacheC eanupTi ne N/A ORDS has no equivalent.
Pl sql DMSEnabl e N/A ORDS does not support DMS.
Pl sql Sessi onCooki eName ~ N/A ORDS does not offer session

management for PL/SQL
Gateway calls.

Pl sql CacheDirectory N/A ORDS has no equivalent.
Pl sql CacheEnabl e N/A ORDS has no equivalent.
Pl sql CacheMaxAge N/A ORDS has no equivalent.
Pl sql CacheMaxSi ze N/A ORDS has no equivalent.
Pl sql CacheTot al Si ze N/A ORDS has no equivalent.
Pl sql CA Envi ronnent Li st N/A ORDS has no equivalent.
Pl sgl ConnectionTi neout N/A ORDS has no equivalent.
Pl sql Pat hAl i as N/A ORDS has no equivalent.
Pl sql Pat hAl i asProcedure N/A ORDS has no equivalent.
Pl sql Upl oadAsLongRaw N/A ORDS has no equivalent.

ORACLE 5.7

Chapter 5
Example ORDS Configuration Files

5.4 Example ORDS Configuration Files

The following sections show how the example mod_plsql application can be migrated
to ORDS.

Topics:
* Example Configuration File for Basic Authentication
* Example Configuration File for Basic Dynamic Authentication

* Example Configuration file for Custom Authentication

5.4.1 Example Configuration File for Basic Authentication

Example 5-2 ords_conflords/conflbasic_auth.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<! DOCTYPE properties SYSTEM "http://java.sun.conl dtd/properties.dtd">
<properties>
<comment >Saved on Wed Jul 25 10:22:37 UTC 2018</coment >
<entry key="db. username">PRI VI LEGED USER</entry>
<entry key="db. password">! passwor dFORSORD5Exanpl e</ ent ry>
<I-- Exanple url -->
<I-- See url-mapping.xm -->
<I-- http://local host: 8086/ ords/ pl s/ basi ¢c_aut h/
sanpl e_pl sql _app. sanpl e_public_proc-->
<I-- http://local host: 8086/ ords/ pl s/ basi ¢c_aut h/
sanpl e_pl sql _app. privileged public_proc-->

<entry

key="procedure. post Process">sanpl e_pl sql _app_net adat a. af t er Proc</entry>
<entry

key="procedure. preProcess" >sanpl e_pl sql _app_net adat a. bef oreProc</entry>
<entry

key="security.requestValidationFunction">sanpl e pl sql _app_netadata.validati
onFunc</entry>

<entry key="owa.docTabl e">sanpl e_pl sql _app. doc_t abl e</entry>
</ properties>

5.4.2 Example Configuration File for Basic Dynamic Authentication

ORACLE

Example 5-3 ords_conflords/conflbasic_dynamic_auth.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<! DOCTYPE properties SYSTEM "http://java.sun.com dtd/properties.dtd">
<properties>

<conmment >Saved on Wed Jul 25 10:22:37 UTC 2018</ conment >

<l-- NOTE THAT IF TH S USER HAS EXECUTE PRI VI LEGE ON THE RESOURCE
THEN j dbc. auth. enabl ed 1S I GNORED -->

<l-- |F TH' S USER DOES NOT HAVE EXECUTE PRI VI LEGE ON THE RESOURCE
THEN j dbc. auth. enabl ed I'S | NVOKED AND THE CREDENTI ALS OF A PRI VI LEGED USER

5-8

Chapter 5
Example ORDS Configuration Files

HAS TO BE PROVI DED- - >

<entry key="db. user name">NON_PRI VI LEGED USER</ entry>

<entry key="db. passwor d" >! passwor dFORSORD5Exanpl e</ ent ry>

<entry key="j dbc. aut h. enabl ed" >t rue</entry>

<I-- Exanple url -->

<I-- See url-mpping.xm -->

<I-- INVCKE jdbc. auth. enabl ed : http://1ocal host: 8086/ ords/ pl s/
basi c_dynam c¢_aut h/ sanpl e_pl sql _app. sanpl e_privileged_proc -->

<I-- | GNORE jdbc. auth. enabl ed : http://1ocal host: 8086/ ords/ pl s/
basi c_dynam c¢_aut h/ sanpl e_pl sql _app. sanpl e_public_proc -->

<!I-- Because jdbc.auth.enabled is ignored when referencing the
sanpl e_public_app, the beforeProc,afterProc and validationFunc nust be
accessi bl e by NON PRI VILEGED USER -->

<I-- The following objects are executed by the same credentials used
to access the resource -->

<I-- If the resource can be accessed by the db.username then that
connection is used to access these nethods -->
<I-- If the resource cannot be accessed by the db.username then

jdbc.auth. enabl ed is invoked and those credentials as used to access these
met hods -->

<entry

key="procedur e. post Process">sanpl e_pl sql _app_net adat a. af t er Proc</entry>
<entry

key="procedure. preProcess" >sanpl e_pl sql _app_net adat a. bef oreProc</entry>
<entry

key="security.requestValidationFunction">sanpl e_pl sql _app_net adat a. val i dat
onFunc</entry>
</ properties>

5.4.3 Example Configuration file for Custom Authentication

ORACLE

Example 5-4 ords_confs/ords/conflcustom_auth.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<! DOCTYPE properties SYSTEM "http://java. sun.conl dtd/properties.dtd">
<properties>

<comment >Saved on Wed Jul 25 10:22:37 UTC 2018</coment >

<entry key="db. username">PRI VI LEGED USER</entry>

<entry key="db. passwor d">! passwor dFORSORD5Exanpl e</ ent ry>

<I-- Exanple url -->

<I-- See url-mapping.xm -->

<I-- http://local host: 8086/ ords/ pl s/ cust om aut h/
sanpl e_pl sql _app. sanple_proc -->

<I-- privileged user.owa_custom authorize requires the follow ng as
the customlogin -->

<entry

key="procedur e. post Process">sanpl e_pl sql _app_net adat a. af t er Proc</entry>
<entry

key="procedure. preProcess" >sanpl e_pl sql _app_net adat a. bef oreProc</entry>
<entry

key="security.request ValidationFunction">sanpl e pl sql _app_netadat a. val i dat
onFunc</entry>
<entry

5-9

Chapter 5
Example ORDS URL Mapping

key="security.request Aut henti cati onFunction">privil eged_user. owa_cust om aut
hori ze</entry>
</ properties>

5.5 Example ORDS URL Mapping

This section shows the example mapping between base-path url and the configuration
files.

Example 5-5 ords_conflords/url-mapping.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<pool -config xm ns="http://xm ns. oracl e. conl apex/ pool - confi g">
<pool name="basic_auth" base-path="/pl s/basic_auth"
updat ed="2018- 07- 17T20: 52: 29. 045Z" />
<pool name="basi c_dynani c_auth" base-pat h="/pl s/ basi c_dynani c_aut h"
updat ed="2018- 07- 17T20: 52: 29. 045Z" />
<pool name="custom auth" base-path="/pls/custom auth”
updat ed="2018- 07- 17T20: 52: 29. 045Z" />
</ pool - confi g>

5.6 Example ORDS Default Configuration

ORACLE

This section shows the example default configuration setting for ORDS.

The defaul t. xm file provides the database connection details used by all
configurations.

" Note:

To turn off procedure validation caching, set security. maxEntri es value to
0. This is necessary to emulate Oracle HTTP Server mod_plsq|l.

Example 5-6 ords_conflords/default.xml

<?xm version = "1.0' encoding = 'UTF-8 ?>
<I DOCTYPE properties SYSTEM "http://java.sun.com dtd/properties.dtd">
<properties>

<I-- by default security.maxEntries = 2000 which means 2000 procedures
validity will be cached-->

<I-- this is fine for applications |ike apex where the validation of a
procedure does not change -->

<I-- for applications mgrating fromnmod_plsqgl the cache should be
disabled so that procedures validity is determned for each request -->

<I-- this is done by setting security.mxentries to 0 -->

<entry key="security.maxEntries">0</entry>

<entry key="db. host nane" >or acl e- ee</entry>

<entry key="db. port">1521</entry>

<entry key="db. servi cenanme">or cl pdbl</entry>
</ properties>

5-10

Chapter 5
ORDS Authentication

5.7 ORDS Authentication

ORDS has the ability to perform HTTP Basic Authentication by providing a one to one
mapping from mod_plsgl. In ORDS more secure methods of authentication are
available.

Topics:
e Basic Authentication
» Basic Dynamic Authentication

e Custom Authentication

Related Topics

» Developing Oracle REST Data Services Applications

5.7.1 Basic Authentication

This section describes the basic authentication implemented using ORDS.

The database credentials are specified in the ORDS configuration file. The
db. user name must have the required privileges to access the resources.

Note:

The entry security. request Aut henti cati onFuncti on is not specified.

5.7.2 Basic Dynamic Authentication

This section describes how basic dynamic authentication is implemented using ORDS.

A default db. user name and db. passwor d must be specified in ORDS configuration file
when providing basic dynamic authentication for accessing the resources.

The resources that cannot be accessed using this type of authentication can be
accessed if the following conditions are satisfied:

e The value for <entry key="j dbc. aut h. enabl ed" >t r ue</ ent r y> entry must be
true..

e The security.requestAut henticationFunction entry must not be specified.

* When ORDS response prompts a Basic HTTP Authentication dialog box in a
browser, the credentials provided by the user must have the required privileges,
then the resource is made available.

ORACLE 5-11

Chapter 5
ORDS Features

Note:

If the credentials are provided through the browser HTTP authentication
dialog box, then the only way to log out is to close all the instances of the
browser.

5.7.3 Custom Authentication

This section describes how custom authentication is implemented using ORDS.

A function is specified to perform the custom authentication. This function has access
to the owa variables. Resources are only available if the following function returns a
TRUE value:

<entry
key="security.request Aut henticationFunction">privileged_user.owa_custom au
thorize</entry>

The authentication function must have signature as shown in the following code
shippet:

/**

* OMA_CUSTOM used in mod_plsgl when the following is used in the dad
configuration file
Pl sgl Aut henti cati onMbde Cust om
In ORDS environnent this can reside in any schema as long as the
connection has execute privileges
In mod _plsgl this has to reside in the connections schema as you cannot
speci fy the name of the schema, package or function
ex: Pl sql Aut henti cationhMbde Cust omOna
*|
CREATE OR REPLACE PACKAGE OM _CUSTOM AS
/**
* Response:
> F Failed
WAV Aut henti cate in response header
Aut hori zati on Required
You are not authorized to access the requested resource. Check the
supplied credentials (e.g., username and password).
*|
FUNCTI ON aut hori ze RETURN BOCLEAN;
END OM_CUSTOM ;
/

5.8 ORDS Features

ORACLE

This section describes the ORDS features that are useful when you are migrating from
a mod_plsql application to ORDS.

Topics:

* Request Validation Function

5-12

Chapter 5
ORDS Features

e Pre Process Feature
* Post Process Feature

* File Upload Feature

5.8.1 Request Validation Function

This section explains the use of request validation function.

The request validation function restricts the access to resources. The request
validation function is provided with the name of the resource being requested and
returns TRUE or FALSE value in response.

If the request validation function returns a FALSE value, then ORDS terminates the
request.

Example 5-7 security.requestValidationFunction
<entry

key="security.requestValidationFunction">sanpl e pl sql app_netadata.validati
onFunc</entry>

You can choose any name for the validation function. However, the signature must be
in the following format:

CREATE OR REPLACE FUNCTI ON val i dati onfunc(procedure_name VARCHAR2) RETURN
BOOLEAN | S.

5.8.2 Pre Process Feature

This section describes the procedur e. pr eProcess ORDS configuration parameter.

The procedur e. preProcess ORDS configuration parameter allows a comma delimited
list of procedures that are executed before the requested resource.

Example 5-8 procedure.preProcess

Following example code snippet shows a use case for logging in:

<entry key="procedure. preProcess">sanpl e_pl sql _app_net adat a. bef or eProc</
entry>

5.8.3 Post Process Feature

ORACLE

This section describes the procedur e. post Process ORDS configuration parameter.

The procedur e. post Process ORDS configuration parameter allows a comma
delimited list of procedures that are executed after the requested resource.

Example 5-9 procedure.postProcess

Following example code snippet shows a use case for logging out:

<entry key="procedure. post Process">sanpl e_pl sql _app_net adat a. af t er Proc</
entry>

5-13

Chapter 5
ORDS Features

5.8.4 File Upload Feature

ORACLE

This section describes the ORDS file upload feature.

The ORDS configuration parameter owa. docTabl e, defines the table name where the
uploaded files persist.

Example 5-10 Table upload

CREATE TABLE DOC_TABLE (

NANE VARCHAR(256) UNI QUE NOT NULL,
M ME_TYPE VARCHAR(128) ,

DOC_SI ZE NUNBER,

DAD_CHARSET VARCHAR(128) ,

LAST_UPDATED DATE,

CONTENT_TYPE VARCHAR(128) ,

CONTENT LONG RAW

BLOB_CONTENT BLOB);

Example 5-11 Procedure upload

You can choose to have any name for the upload function. However, the signature
must match the following POST request:

--The paraneters of the procedure should match the parameters of the
request

--The procedure is called after ORDS performs the file upload/insert.
--This procedure can rollback the file INSERT as it is in the sane
transaction as the | NSERT

CREATE OR REPLACE PROCEDURE upl oad (filename VARCHAR2 DEFAULT NULL)

Example 5-12 Curl command for file upload

curl -i -X PCST -F 'filename=@el loworld.txt' "http://local host: 8086/
ords/ pl s/ basi ¢c_aut h/ exanpl e_user 1. upl oad

5-14

Oracle REST Data Services PL/SQL
Package Reference

The Oracle REST Data Services PL/SQL package contains subprograms (procedures
and functions) for developing RESTful services using Oracle REST Data Services.

Related Topics
Using the Oracle REST Data Services PL/SQL API

6.1 ORDS.CREATE_ROLE

Format

ORDS. CREATE_ROLE(
p_rol e_name I N sec_rol es. name% ype);

Description

CREATE_ROLE creates an Oracle REST Data Services role with the specified name.
Parameters

p_role_name
Name of the role.

Usage Notes

After the role is created, it can be associated with any Oracle REST Data Services
privilege.

Examples
The following example creates a role.

EXECUTE ORDS. CREATE_ROLE(p_rol e_name=>'Ti ckets User');

6.2 ORDS.CREATE_SERVICE

" Note:

ORDS.CREATE_SERVICE is deprecated. Use ORDS.DEFINE_SERVICE
instead.

ORACLE 6-1

ORACLE

Format

ORDS. CREATE_SERVI CE(

p_nodul e_nane

Chapter 6
ORDS.CREATE_SERVICE

I'N ords_nodul es. name% ype,

p_base_path I'N ords_nodul es. uri_prefix% ype,
p_pattern IN ords_tenplates.uri_tenplate% ype,
p_net hod I'N ords_handl ers. met hod% ype DEFAULT ' GET',

p_source_type

I'N ords_handl ers. source_t ype% ype
DEFAULT ords. source_type_collection_feed,

p_source I'N ords_handl ers. sour ce% ype,

p_i tens_per _page IN ords_nodul es. itens_per_page% ype DEFAULT 25,
p_status I'N ords_nodul es. stat us% ype DEFAULT ' PUBLI SHED ,
p_etag_type IN ords_tenpl ates. etag_type% ype DEFAULT ' HASH ,

p_etag_query
p_mi mes_al | owed

p_nodul e_comrent s

p_tenpl ate_comment s

p_handl er _coment s

IN ords_tenpl ates. etag_query% ype DEFAULT NULL,
IN ords_handl ers. m nmes_al | owed% ype DEFAULT NULL,
I'N ords_nodul es. comment s% ype DEFAULT NULL,

I'N ords_nodul es. comment s% ype DEFAULT NULL,

I'N ords_nodul es. comment s% ype DEFAULT NULL);

Description

Creates a new RESTful service.
Parameters

p_module_name
The name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_pattern

A matching pattern for the resource template. For example, a pattern of /

obj ect s/ : obj ect/:id? will match / obj ect s/ enp/ 101 (matches a request for the item
in the enp resource with i d of 101) and will also match / obj ect s/ enp/ (matches a
request for the enp resource, because the :i d parameter is annotated with the ? or
question mark modifier, which indicates that the i d parameter is optional).

p_method

The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a hew resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

e source_type_collection_feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

e source_type_collection_item Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

6-2

Chapter 6
ORDS.CREATE_SERVICE

e source_type_nedi a. Executes a SQL query conforming to a specific format and
turns the result set into a binary representation with an accompanying HTTP
Content-Type header identifying the Internet media type of the representation.
Result Format: Binary

e source_type_plsql.Executes an anonymous PL/SQL block and transforms any
OUT or IN/OUT parameters into a JSON representation. Available only when the
HTTP method is DELETE, PUT, or POST. Result Format: JSON

e source_type_query || source_type_csv_query. Executes a SQL query and
transforms the result set into either an Oracle REST Data Services legacy
JavaScript Object Notation (JSON) or CSV representation, depending on the
format selected. Available when the HTTP method is GET. Result Format: JSON
or CSV

e source_type_query_one_row. Executes a SQL query returning one row of data
into an Oracle REST Data Services legacy JSON representation. Available when
the HTTP method is GET. Result Format: JSON

» source_type_feed. Executes a SQL query and transforms the results into a
JSON Feed representation. Each item in the feed contains a summary of a
resource and a hyperlink to a full representation of the resource. The first column
in each row in the result set must be a unique identifier for the row and is used to
form a hyperlink of the form: pat h/t o/ f eed/ {i d} , with the value of the first
column being used as the value for {i d}. The other columns in the row are
assumed to summarize the resource and are included in the feed. A separate
resource template for the full representation of the resource should also be
defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is,
the number of rows to return on each page of a JSON format result set based on a
database query. Default: NULL (defers to the resource module setting).

p_status
The publication status. Valid values: 'PUBLISHED' (default) or 'NOT_PUBLISHED'.

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP
Header that acts as a version identifier for a resource. Use entity tag headers to avoid
retrieving previously retrieved resources and to perform optimistic locking when
updating resources. Valid values: '"HASH' or 'QUERY" or 'NONE'.

* HASH - Known as Secure HASH: The contents of the returned resource
representation are hashed using a secure digest function to provide a unique
fingerprint for a given resource version.

* QUERY - Manually define a query that uniquely identifies a resource version. A
manually defined query can often generate an entity tag more efficiently than
hashing the entire resource representation.

* NONE - Do not generate an entity tag.

p_etag_query
A query that is used to generate the entity tag.

ORACLE 6-3

Chapter 6
ORDS.DEFINE_HANDLER

p_mimes_allowed
A comma-separated list of MIME types that the handler will accept. Applies to PUT
and POST only.

p_module_comments
Comment text.

p_template_comments
Comment text.

p_handler_comments
Comment text.

Usage Notes
Creates a resource module, template, and handler in one call.

This procedure is deprecated. Use ORDS.DEFINE_SERVICE instead.

Examples
The following example creates a simple service.

BEG N
ORDS. CREATE_SERVI CE(
p_modul e_name => 'ny.tickets',
p_base_path =>'/ny/tickets/',
p_pattern =>".",
p_source => "select t.id "$.id", t.id, t.title fromtickets t' ||
' where t.owner = :current_user order by t.updated_on desc'
);
END;
/

6.3 ORDS.DEFINE_HANDLER

ORACLE

Format

ORDS. DEFI NE_HANDLER(

p_nodul e_nane I'N ords_nodul es. nane% ype,

p_pattern IN ords_tenplates.uri _tenplate%ype,

p_net hod IN ords_handl ers. net hod% ype DEFAULT ' GET',
p_source_type I'N ords_handl ers. source_type% ype

DEFAULT ords. source_type_col | ection_feed,

p_source IN ords_handl ers. sour ce% ype,

p_itens_per_page IN ords_handlers.itens_per page% ype DEFAULT NULL,
p_mnes_al | owed IN ords_handl ers. m mes_al | owed% ype DEFAULT NULL,
p_comments IN ords_handl ers. conment s% ype DEFAULT NULL);

Description

DEFINE_HANDLER defines a module handler. If the handler already exists, then the
handler and any existing handlers will be replaced by this definition; otherwise, a new
handler is created.

6-4

Chapter 6
ORDS.DEFINE_HANDLER

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

p_method

The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a hew resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

» source_type_collection_feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JISON

e source_type collection_item Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

e source_type_nedi a. Executes a SQL query conforming to a specific format and
turns the result set into a binary representation with an accompanying HTTP
Content-Type header identifying the Internet media type of the representation.
Result Format: Binary

e source_type_pl sql . Executes an anonymous PL/SQL block and transforms any
OUT or IN/OUT parameters into a JSON representation. Available only when the
HTTP method is DELETE, PUT, or POST. Result Format: JSON

e source_type_query || source_type_csv_query. Executes a SQL query and
transforms the result set into either an Oracle REST Data Services legacy
JavaScript Object Notation (JSON) or CSV representation, depending on the
format selected. Available when the HTTP method is GET. Result Format: JSON
or CSV

e source_type_query_one_row. Executes a SQL query returning one row of data
into an Oracle REST Data Services legacy JSON representation. Available when
the HTTP method is GET. Result Format: JSON

e source_type_feed. Executes a SQL query and transforms the results into a
JSON Feed representation. Each item in the feed contains a summary of a
resource and a hyperlink to a full representation of the resource. The first column
in each row in the result set must be a unique identifier for the row and is used to
form a hyperlink of the form: pat h/ t o/ f eed/ {i d}, with the value of the first
column being used as the value for {i d} . The other columns in the row are
assumed to summarize the resource and are included in the feed. A separate
resource template for the full representation of the resource should also be
defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

ORACLE 6-5

Chapter 6
ORDS.DEFINE_MODULE

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is,
the number of rows to return on each page of a JSON format result set based on a
database query. Default: NULL (defers to the resource module setting).

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and
POST only.

p_comments
Comment text.

Usage Notes

Only one handler for each HTTP method (source type) is permitted.

Examples

The following example defines a POST handler to the / ny/ ti cket s/ resource to
accept new tickets.

BEG N
ORDS. DEFI NE_HANDLER(
p_nmodul e_name => 'ny.tickets',
p_pattern =>"'.',
p_method => 'POST',
p_nimes_al | owed => "application/json',
p_source_type => ords. source_type_pl sql,

p_source => "'

decl are
| _owner varchar2(255);
| _payl oad bl ob;
| id nunber;

begi n
| _payl oad : = : body;
| _owner : = :owner;
if (1_owner is null) then

| _owner := :current_user;

end if;

| _id:=ticket_api.create_ticket(
p_json_entity =>|_payl oad,
p_author => | _owner

)
;location :=""./"" || |_id;
»status := 201;

end;

END;

6.4 ORDS.DEFINE_MODULE

ORACLE

Format

ORDS. DEFI NE_MODULE(
p_nodul e_nane I'N ords_nodul es. nane% ype,
p_base_path I'N ords_nodul es. uri _prefix% ype,

p_itens_per_page |N ords_nodul es.itens_per_page% ype DEFAULT 25,

6-6

Chapter 6
ORDS.DEFINE_PARAMETER

p_status I'N ords_nodul es. stat us% ype DEFAULT ' PUBLI SHED ,
p_coment s I N ords_nodul es. comment s% ype DEFAULT NULL);
Description

DEFINE_MODULE defines a resource module. If the module already exists, then the
module and any existing templates will be replaced by this definition; otherwise, a new
module is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is,
the number of rows to return on each page of a JSON format result set based on a
database query. Default: 25.

p_status
Publication status. Valid values: PUBLI SHED (default) or NOT_PUBLI SHED.

p_comments
Comment text.

Usage Notes

(None.)

Examples
The following example creates a simple module.

BEG N
ORDS. DEFI NE_MODULE(
p_nmodul e_name => 'ny.tickets',
p_base path =>'/ny/tickets/"
)i
END;
/

6.5 ORDS.DEFINE_PARAMETER

ORACLE

Format
ORDS. DEFI NE_PARAVETER(
p_nodul e_nane I'N ords_nodul es. name% ype,
p_pattern IN ords_tenplates.uri_tenplate% ype,
p_net hod I'N ords_handl ers. met hod% ype,
p_nane I N ords_paramet ers. name% ype ,

p_bind_variabl e_name IN ords_paraneters. bind_vari abl e_name% ype

DEFAULT NULL,
p_source_type I N ords_paranet ers. source_type% ype DEFAULT ' HEADER ,
p_param type I'N ords_paraneters. param type% ype DEFAULT ' STRING ,

6-7

ORACLE

Chapter 6
ORDS.DEFINE_PARAMETER

p_access_net hod I'N ords_paraneters. access_net hod% ype DEFAULT "IN,
p_comrent s I'N ords_paranet ers. comment s% ype DEFAULT NULL);
Description

DEFINE_PARAMETER defines a module handler parameter. If the parameter already
exists, then the parameter will be replaced by this definition; otherwise, a new
parameter is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

p_method

The owning handler HTTP Method. Valid values: GET (retrieves a representation of a
resource), POST (creates a new resource or adds a resource to a collection), PUT
(updates an existing resource), DELETE (deletes an existing resource).

p_name
The name of the parameter, as it is named in the URI Template or HTTP Header.
Used to map names that are not valid SQL parameter names.

p_bind_variable_name
The name of the parameter, as it will be referred to in the SQL. If NULL is specified,
then the parameter is unbound.

p_source_type
The type that is identified if the parameter originates in the URI Template or a HTTP
Header. Valid values: HEADER, RESPONSE, URI .

p_param_type
The native type of the parameter. Valid values: STRI NG, | NT, DOUBLE, BOOLEAN, LONG,
TI MESTAMP.

p_access_method
The parameter access method. Indicates if the parameter is an input value, output
value, or both. Valid values: | N, OUT, | NOUT.

p_comments
Comment text.

Usage Notes

All parameters must have unique names and variable names for the same handler.

Examples

The following example defines an outbound parameter on the POST handler to store
the location of the created ticket.

BEG N
ORDS. DEFI NE_PARAMVETER(
p_nmodul e_name => 'ny.tickets',
p_pattern =>"'.',

6-8

p_nethod => ' PCST',

p_nane => ' X- APEX- FORWARD ,

p_bi nd_variabl e_name => 'location',
p_source_type => ' HEADER ,
p_access_method => ' QUT'

)
END;
/

Chapter 6

ORDS.DEFINE_PRIVILEGE

The following example defines an outbound parameter on the POST handler to store
the HTTP status of the operation.

BEG N

ORDS. DEFI NE_PARAMETER(
p_nmodul e_name => 'ny.tickets',

p_pattern =>"
p_met hod => ' POST',

p_name => ' X- APEX- STATUS- CCDE',
p_bind_variabl e_name => 'status',
p_source_type => ' HEADER ,
p_access_method => ' QUT'

END;

6.6 ORDS.DEFINE_PRIVILEGE

ORACLE

Format

ORDS. DEFI NE_PRI VI LEGE(
p_privil ege_nane

p_rol es
p_patterns
p_nodul es
p_| abel
p_description
p_comrent s

or

ORDS. DEFI NE_PRI VI LEGE(
p_privilege_nane

p_roles
p_patterns
p_| abel
p_description
p_comrent s

or

ORDS. DEFI NE_PRI VI LEGE(
p_privil ege_nane

p_roles

p_| abel
p_description
p_conmment s

Description

IN sec_privileges.

IN owa.vc_arr,
IN owa.vc_arr,
IN owa.vc_arr,

IN sec_privileges.
IN sec_privileges.
IN sec_privileges.

IN sec_privileges.

IN owa.vc_arr,
IN owa.vc_arr,

IN sec_privileges.
IN sec_privileges.
IN sec_privileges.

IN sec_privileges.

IN owa.vc_arr,

IN sec_privileges.
IN sec_privileges.
IN sec_privileges.

name% ype,

| abel % ype DEFAULT NULL,
description% ype DEFAULT NULL,
comrent s% ype DEFAULT NULL);

name% ype,

| abel % ype DEFAULT NULL,
description% ype DEFAULT NULL,
comrent s% ype DEFAULT NULL);

name% ype,
| abel % ype DEFAULT NULL,

description% ype DEFAULT NULL,
comrent s% ype DEFAULT NULL);

DEFINE_PRIVILEGE defines an Oracle REST Data Services privilege. If the privilege
already exists, then the privilege and any existing patterns and any associations with
modules and roles will be replaced by this definition; otherwise, a new privilege is

created.

6-9

ORACLE

Chapter 6
ORDS.DEFINE_PRIVILEGE

Parameters

p_privilege_name
Name of the privilege. No spaces allowed.

p_roles

The names of the roles, at least one of which the privilege requires. May be empty, in
which case the user must be authenticated but does not require any specific role;
however, must not be null. Unauthenticated users will be denied access.

p_patterns
A list of patterns.

p_modules
A list of module names referencing modules created for the current schema.

p_label
Name of this security constraint as displayed to an end user. May be null.

p_description
A brief description of the purpose of the resources protected by this constraint.

p_comments
Comment text.

Usage Notes

p_rol es, p_patterns, and p_nodul es do not accept null values. If no value is to be
passed, then either choose the appropriate procedure specification or pass an empty
owa. vc_arr value.

Examples
The following example creates a privilege connected to roles, patterns, and modules:

DECLARE
| _priv_roles owa.vc_arr;
| _priv_patterns owa.vc_arr;
| _priv_nodul es owa.vc_arr;
BEG N

| _priv_roles(1l) := "'Tickets User';

| _priv_patterns(1) :="/ny/*";

| _priv_patterns(2) :="'/comments/*";

| _priv_patterns(3) :="'/tickets_feed/ *";
| _priv_patterns(4) :="/tickets/*';

| _priv_patterns(5) :="'/categories/*";

| _priv_patterns(6) :="'/stats/*';

| _priv_nodul es(1) := "ny.tickets';

ords.create_rol e(' Tickets User');

ords. define_privil ege(

p_privil ege_nane => "tickets.privilege',

p_roles => | _priv_roles,

p_patterns => | _priv_patterns,

P_nodul es => | _priv_nodul es,

p_| abel => 'Task Ticketing Access',
p_description => 'Provides the ability to create, ' ||

6-10

"update and delete tickets ' ||
"and post commrents on tickets'
);
END;
/

Chapter 6
ORDS.DEFINE_SERVICE

The following example creates a privilege connected to roles and patterns:

DECLARE

| _priv_roles owa.vc_arr;

| _priv_patterns owa.vc_arr;
BEG N

| _priv_roles(l) :="'Tickets User';

| _priv_patterns(l) :="/ny/*";

| _priv_patterns(2) :="'/conmments/*";

| _priv_patterns(3) :="'/tickets_feed/ *";
| _priv_patterns(4) :="/tickets/*';

| _priv_patterns(5) :="'/categories/*";

| _priv_patterns(6) :="'/stats/*';

ords.create_rol e(' Tickets User');

ords. define_privil ege(

p_privil ege_nane => "tickets.privilege',

p_roles => | _priv_roles,

p_patterns => | _priv_patterns,

p_| abel => 'Task Ticketing Access',
p_description => '"Provides the ability to create, '

"update and delete tickets ' ||
"and post comments on tickets'
)i
END;
/

The following example creates a privilege connected to roles:

DECLARE
| _priv_roles owa.vc_arr;
BEG N
| _priv_roles(l) :="Tickets User';

ords.create_role(' Tickets User');

ords. define_privil ege(

p_privil ege_nane => "tickets.privilege',

p_rol es => | _priv_roles,

p_| abel => 'Task Ticketing Access',
p_description => 'Provides the ability to create, '

"update and delete tickets ' ||
"and post conmments on tickets'

END;

6.7 ORDS.DEFINE_SERVICE

Format

ORDS. DEFI NE_SERVI CE(
p_nodul e_nane I'N ords_nodul es. name% ype,

ORACLE

6-11

ORACLE

Chapter 6
ORDS.DEFINE_SERVICE

p_base_path I'N ords_nodul es. uri _prefix% ype,
p_pattern IN ords_tenplates.uri_tenplate% ype,
p_net hod I'N ords_handl ers. met hod% ype DEFAULT ' GET',
p_source_type I'N ords_handl ers. source_t ype% ype

DEFAULT ords. source_type_col | ection_feed,
p_source I'N ords_handl ers. sour ce% ype,
p_i tens_per _page IN ords_nodul es. itens_per_page% ype DEFAULT 25,
p_status I'N ords_nodul es. st at us% ype DEFAULT ' PUBLI SHED ,
p_etag_type IN ords_tenpl ates. etag_type% ype DEFAULT ' HASH ,
p_etag_query IN ords_tenpl ates. etag_query% ype DEFAULT NULL,
p_mi mes_al | owed IN ords_handl ers. m nmes_al | owed% ype DEFAULT NULL,
p_nodul e_comrent s I'N ords_nodul es. comment s% ype DEFAULT NULL,

p_tenmplate_coments | N ords_nodul es. comment s% ype DEFAULT NULL,
p_handl er_comrents I N ords_nodul es. comment s% ype DEFAULT NULL);

Description

DEFINE_SERVICE defines a resource module, template, and handler in one call. If
the module already exists, then the module and any existing templates will be replaced
by this definition; otherwise, a new module is created.

Parameters

p_module_name
Name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_pattern

A matching pattern for the resource template. For example, a pattern of /

obj ect s/ : obj ect/:id? will match / obj ect s/ enp/ 101 (matches a request for the item
in the enp resource with i d of 101) and will also match / obj ect s/ enp/ . (Matches a
request for the enp resource, because the :i d parameter is annotated with the ?
modifier, which indicates that the i d parameter is optional.)

p_method

The HTTP Method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a hew resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

e source_type_collection_feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

e source_type_collection_item Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

e source_type_nedi a. Executes a SQL query conforming to a specific format and
turns the result set into a binary representation with an accompanying HTTP
Content-Type header identifying the Internet media type of the representation.
Result Format: Binary

6-12

Chapter 6
ORDS.DEFINE_SERVICE

e source_type_pl sql . Executes an anonymous PL/SQL block and transforms any
OUT or IN/OUT parameters into a JSON representation. Available only when the
HTTP method is DELETE, PUT, or POST. Result Format: JSON

e source_type_query || source_type_csv_query. Executes a SQL query and
transforms the result set into either an Oracle REST Data Services legacy
JavaScript Object Notation (JSON) or CSV representation, depending on the
format selected. Available when the HTTP method is GET. Result Format: JSON
or CSV

e source_type_query_one_row. Executes a SQL query returning one row of data
into an Oracle REST Data Services legacy JSON representation. Available when
the HTTP method is GET. Result Format: JSON

e source_type_feed. Executes a SQL query and transforms the results into a
JSON Feed representation. Each item in the feed contains a summary of a
resource and a hyperlink to a full representation of the resource. The first column
in each row in the result set must be a unique identifier for the row and is used to
form a hyperlink of the form: pat h/ t o/ f eed/ {i d}, with the value of the first
column being used as the value for {i d} . The other columns in the row are
assumed to summarize the resource and are included in the feed. A separate
resource template for the full representation of the resource should also be
defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is,
the number of rows to return on each page of a JSON format result set based on a
database query. Default: NULL (defers to the resource module setting).

p_status
Publication status. Valid values: PUBLI SHED (default) or NOT_PUBLI SHED.

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP
Header that acts as a version identifier for a resource. Use entity tag headers to avoid
retrieving previously retrieved resources and to perform optimistic locking when
updating resources. Valid values are HASH, QUERY, NONE:

e HASH (known as Secure HASH): The contents of the returned resource
representation are hashed using a secure digest function to provide a unique
fingerprint for a given resource version.

* QUERY: Manually define a query that uniquely identifies a resource version. A
manually defined query can often generate an entity tag more efficiently than
hashing the entire resource representation.

* NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and
POST only.

ORACLE 6-13

Chapter 6
ORDS.DEFINE_TEMPLATE

p_module_comments
Comment text.

p_template_comments
Comment text.

p_handler_comments
Comment text.

Usage Notes
Creates a resource module, template, and handler in one call.

Use this procedure instead of the deprecated ORDS.CREATE_SERVICE procedure.

Examples
The following example defines a REST service that retrieves the current user's tickets.

BEG N
CORDS. DEFI NE_SERVI CE(
p_nodul e_nane => 'ny.tickets',
p_base_path => '/ny/tickets/',
p_pattern =>"'.',
p_source => 'select t.id "$.id", t.id, t.title fromtickets t' ||
" where t.owner = :current_user order by t.updated_on desc'
);
END;
/

The following example defines a REST service that retrieves tickets filtered by
category.

BEG N
ORDS. DEFI NE_SERVI CE(

p_nmodul e_name => ' by. category',

p_base_path => '/by/category/"',

p_pattern => ':category_id",

p_source => "select ''../../nyltickets/'" ||

t.id"$.id", t.id, t.title ||

" fromtickets t, categories c, ticket_categories tc' ||
" where c.id = :category_id and c.id = tc.category_id and' ||
" tc.ticket_id =t.id order by t.updated_on desc'

END;

6.8 ORDS.DEFINE_TEMPLATE

ORACLE

Format

ORDS. DEFI NE_TEMPLATE(
p_nodul e_nane | N ords_nodul es. nane% ype,
p_pattern IN ords_tenplates.uri_tenplate% ype,
p_priority IN ords_tenplates. priority% ype DEFAULT O,
p_etag_type IN ords_tenplates. etag_type% ype DEFAULT ' HASH ,
p_etag_query IN ords_tenplates.etag_query% ype DEFAULT NULL,
p_coment s I'N ords_tenplates. comment s% ype DEFAULT NULL);

6-14

Chapter 6
ORDS.DEFINE_TEMPLATE

Description

DEFINE_TEMPLATE defines a resource template. If the template already exists, then
the template and any existing handlers will be replaced by this definition; otherwise, a
new template is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern

A matching pattern for the resource template. For example, a pattern of /

obj ect s/ : obj ect/:id? will match / obj ect s/ enp/ 101 (matches a request for the item
in the enp resource with i d of 101) and will also match / obj ect s/ enp/ . (Matches a
request for the enp resource, because the :i d parameter is annotated with the ?
modifier, which indicates that the i d parameter is optional.)

p_priority
The priority for the order of how the resource template should be evaluated: 0 (low
priority. the default) through 9 (high priority).

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP
Header that acts as a version identifier for a resource. Use entity tag headers to avoid
retrieving previously retrieved resources and to perform optimistic locking when
updating resources. Valid values are HASH, QUERY, NONE:

e HASH (known as Secure HASH): The contents of the returned resource
representation are hashed using a secure digest function to provide a unique
fingerprint for a given resource version.

e QUERY: Manually define a query that uniquely identifies a resource version. A
manually defined query can often generate an entity tag more efficiently than
hashing the entire resource representation.

* NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_comments
Comment text.

Usage Notes

he resource template pattern must be unique with a resource module.

Examples
The following example defines a resource for displaying ticket items.

BEG N
ORDS. DEFI NE_TEMPLATE(
p_modul e_name => 'ny.tickets',
p_pattern => '/:id'
)

ORACLE 6-15

Chapter 6
ORDS.DELETE_MODULE

END;

6.9 ORDS.DELETE_MODULE

Format

ORDS. DELETE_MODULE(
p_nodul e_name | N ords_nodul es. nane% ype) ;

Description

DELETE_MODULE deletes a resource module.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

Usage Notes

If the module does not already exist or is accessible to the current user, then no
exception is raised.

Examples
The following example deletes a resource module.

EXECUTE ORDS. DELETE_MODULE(p_nodul e_name=>' ny. tickets');

6.10 ORDS.DELETE_PRIVILEGE

ORACLE

Format

ORDS. DELETE_PRI VI LEGE(
p_name | N sec_privileges. nane% ype);

Description
DELETE_PRIVILEGE deletes a provilege.
Parameters

p_name
Name of the privilege.

Usage Notes

If the privilege does not already exist or is not accessible to the current user, then no
exception is raised.

Examples
The following example deletes a privilege.

EXECUTE ORDS. DELETE_PRI VI LEGE(p_nanme=>"ti ckets. privilege');

6-16

Chapter 6
ORDS.DELETE_ROLE

6.11 ORDS.DELETE_ROLE

Format

ORDS. DELETE_ROLE(
p_role_nanme IN sec_rol es. nane% ype) ;

Description

DELETE_ROLE deletes the named role.

Parameters

p_name
Name of the role.

Usage Notes

This will also delete any association between the role and any privileges that reference
the role.

No exception is produced if the role does not already exist.

Examples
The following example deletes a role.

EXECUTE ORDS. DELETE_ROLE(p_rol e_nanme=>'Ti ckets User');

6.12 ORDS.DROP_REST_FOR_SCHEMA

Format

ORDS. DROP_REST_FOR_SCHEMA(
p_schema ords_schemas. parsi ng_schema% ype DEFAULT NULL);

Description

DROP_REST_FOR_SCHEMA deletes all auto-REST Oracle REST Data Services
metadata for the associated schema.

Parameters

p_schema
Name of the schema.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS. Enabl e_Schena
procedure.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata
for the TICKETS schema.

EXECUTE ORDS. DROP_REST FOR SCHEMA(' ti ckets'):

ORACLE 6-17

Chapter 6
ORDS.ENABLE_OBJECT

Related Topics
* ORDS.ENABLE_SCHEMA

6.13 ORDS.ENABLE_OBJECT

ORACLE

Format

ORDS. ENABLE_OBJECT(

p_enabl ed I'N bool ean DEFAULT TRUE,

p_schema I N ords_schemss. par si ng_schema% ype DEFAULT NULL,
p_obj ect I'N ords_obj ects. parsi ng_obj ect % ype,

p_obj ect _type I'N ords_objects.type% ype DEFAULT ' TABLE',

p_object _alias I'N ords_objects. object_alias% ype DEFAULT NULL,
p_auto_rest _auth |N bool ean DEFAULT NULL);

Description

ENABLE_OBJECT enables Oracle REST Data Services access to a specified table or
view in a schema.

Parameters

p_enabled
TRUE to enable access; FALSE to disable access.

p_schema
Name of the schema for the table or view.

p_object
Name of the table or view.

p_object_type
Type of the object: TABLE (default) or VI EW

p_object_alias
Alias of the object.

p_auto_rest_auth

Controls whether Oracle REST Data Services should require user authorization
before allowing access to the Oracle REST Data Services metadata for this object. If
this value is TRUE, then the service is protected by the following roles:

e oracle.dbtool s.autorest.any. schena
e oracle.dbtool s.rol e. aut or est . <SCHEMANAVE>. <OBJECTNAME>

Usage Notes

Only database users with the DBA role can enable/access to objects that they do now
own.

Examples
The following example enables a table named CATEGORIES.
EXECUTE ORDS. ENABLE_OBJECT(p_obj ect =>' CATEGORI ES') ;

The following example enables a view named TICKETS_FEED.

6-18

Chapter 6
ORDS.ENABLE_SCHEMA

BEG N

CRDS. ENABLE_OBJECT(
p_object =>'TI CKETS_FEED ,
p_object _type => 'VIEW

)
END;
/

6.14 ORDS.ENABLE_SCHEMA

ORACLE

Format

ORDS. ENABLE_SCHEMA
p_enabl ed I'N bool ean DEFAULT TRUE,
p_schema I N ords_schemss. par si ng_schema% ype DEFAULT NULL,
p_url _mappi ng_type I N ords_url| _mappi ngs. type% ype DEFAULT ' BASE_PATH ,
p_url _mapping_pattern IN ords_url _mappings. pattern% ype DEFAULT NULL,
p_auto_rest_auth I'N bool ean DEFAULT NULL);

Description

ENABLE_SCHEMA enables Oracle REST Data Services to access the named
schema.

Parameters

p_enabled
TRUE to enable Oracle REST Data Services access; FALSE to disable Oracle REST
Data Services access.

p_schema
Name of the schema. If the p_schena parameter is omitted, then the current schema
is enabled.

p_url_mapping_type
URL Mapping type: BASE _PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

p_auto_rest_auth

For a schema, controls whether Oracle REST Data Services should require user
authorization before allowing access to the Oracle REST Data Services metadata
catalog of this schema.

Usage Notes

Only database users with the DBA role can enable or disable a schema other than
their own.

Examples
The following example enables the current schema.

EXECUTE ORDS. ENABLE_SCHEMA;

6-19

Chapter 6
ORDS.PUBLISH_MODULE

6.15 ORDS.PUBLISH_MODULE

Format
ORDS. PUBLI SH_MODULE(

p_nodul e_name | N ords_nodul es. nane% ype,
p_status I'N ords_nodul es. st at us% ype DEFAULT ' PUBLI SHED);

Description

PUBLISH_MODULE changes the publication status of an Oracle REST Data Services
resource module.

Parameters

p_module_name
Current name of the RESTful service module. Case sensitive.

p_status
Publication status. Valid values: PUBLI SHED (default) or NOT_PUBLI SHED.

Usage Notes

(None.)

Examples
The following example publishes a previously defined module named ny. ti ckets.

EXECUTE ORDS. PUBLI SH_MODULE(p_nodul e_name=>" ny. tickets');

6.16 ORDS.RENAME_MODULE

ORACLE

Format

ORDS. RENANVE_MODULE(
p_modul e_nane I'N ords_nodul es. nane% ype,
p_new_nane I'N ords_nodul es. nane% ype DEFAULT NULL,
p_new_base_path |IN ords_nodul es.uri_prefix% ype DEFAULT NULL);

Description

RENAME_MODULE lets you change the name or the base path, or both, of an Oracle
REST Data Services resource module.

Parameters

p_module_name
Current name of the RESTful service module. Case sensitive.

p_new_name

New name to be assigned to the RESTful service module. Case sensitive. If this
parameter is null, the name is not changed.

6-20

Chapter 6
ORDS.RENAME_PRIVILEGE

p_new_base_path

The base of the URI to be used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module. If this
parameter is null, the base path is not changed.

Usage Notes

Both the new resource module name and the base path must be unique within the
enabled schema.

Examples
The following example renames resource module ny. tickets tool d. ti ckets.

BEG N
ORDS. RENAME_MODUL E(
p_nodul e_nane =>'ny.tickets',
p_new_name=>'ol d.tickets',
p_new base_path=>'/ol d/tickets/");
END;
/

6.17 ORDS.RENAME_PRIVILEGE

Format

ORDS. RENANVE_PRI VI LEGE(
p_name I'N sec_privil eges. nane% ype,
p_new name | N sec_privileges. nane% ype);

Description

RENAME_PRIVILEGE renames a privilege.

Parameters

p_name
Current name of the privilege.

p_new_name
New name to be assigned to the privilege.

Usage Notes

(None.)

Examples

The following example renames the privilege ti ckets. privi |l ege to
ol d.tickets.privilege.

BEG N
ORDS. RENAVE_PRI VI LEGE(
p_name =>'"tickets.privilege',
p_new name=>'ol d.tickets.privilege');
END;
/

ORACLE 6-21

6.18 ORDS.RENAME_ROLE

Format

ORDS. RENAME_RCOLE(
p_role_name [IN sec_roles. nane% ype,
p_new name | N sec_rol es. nane% ype);

Description
RENAME_ROLE renames a role.
Parameters

p_role_name
Current name of the role.

p_new_name
New name to be assigned to the role.

Usage Notes

p_rol e_name must exist.

Examples

The following example renames an existing role.

BEG N
ORDS. RENAVE_ROLE(
p_rol e_name=>'Ti ckets User',
p_new_nanme=>' Legacy Tickets User');
END;
/

Chapter 6
ORDS.RENAME_ROLE

6.19 ORDS.SET_MODULE_ORIGINS_ALLOWED

ORACLE

Format

ORDS. SET_MODULE_ORI GI NS_ALLOWED

p_nodul e_nane I'N ords_nodul es. nane% ype,

p_origins_allowed IN sec_origins_all owed_nodul es. origins_al | owed% ype) ;

Description

SET_MODULE_ORIGINS_ALLOWED configures the allowed origins for a resource

module. Any existing allowed origins will be replaced.

Parameters

p_module_name
Name of the resource module.

6-22

Chapter 6
ORDS.SET_URL_MAPPING

p_origins_allowed
A comma-separated list of URL prefixes. If the list is empty, any existing origins are
removed.

Usage Notes

To indicate no allowed origins for a resource module (and remove any existing allowed
origins), specify an empty p_ori gi ns_al | owed value.

Examples

The following restricts the resource module ny. ti cket s to two specified origins.

BEG N
ORDS. SET_MODULE_ORI G NS_ALLONED(
p_nodul e_nane => 'ny.tickets',
p_origins_allowed => 'http://exanple.comhttps://exanple.con);
END;

/

6.20 ORDS.SET URL_MAPPING

Format

ORDS. SET_URL_MAPPI NG
p_schema I'N ords_schenas. parsi ng_schema% ype DEFAULT NULL,
p_url _mappi ng_t ype I'N ords_url _mappings. t ype% ype,
p_url _mappi ng_pattern I N ords_url _mappi ngs. pattern% ype);

Description

SET_URL_MAPPING configures how the specified schema is mapped to request
URLs.

Parameters

p_schema
Name of the schema to map. The default is the schema of the current user.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

Usage Notes

Only DBA users can update the mapping of a schema other than their own.

Examples
The following example creates a BASE_PATH mapping for the current user.

BEG N
ORDS. SET_URL_MAPPI NG
p_url _mappi ng_type => ' BASE_PATH ,
p_url _mapping_pattern => 'https://exanpl e.conm ords/ticketing'
)

ORACLE 6-23

Chapter 6
ORDS.SET_URL_MAPPING

END;

ORACLE 6-24

Oracle REST Data Services Administration
PL/SQL Package Reference

The Oracle REST Data Services (ORDS) ADMIN PL/SQL package contains
subprograms (procedures and functions) for developing and administering the
RESTful services using Oracle REST Data Services for a privileged user.

Any user who has the execution rights on the ORDS_ADM N package is considered to be
an administrator. The predefined database role, ORDS_ADMINISTRATOR_ROLE is
provided for this purpose.

The ORDS_ADM N package is identical to the ORDS package except for the AUTHID
CURRENT_USER right, without the deprecated methods and a p_schema parameter
for every method where the target schema must be specified.

Related Topics
e Oracle REST Data Services PL/SQL Package Reference

7.1 Example Subprograms for Developing and
Administering RESTful Services

This section provides example subprograms that are used for developing and
administering the RESTful services using ORDS.

Following are some of the example subprograms:

Example 7-1 ORDS_ADMIN.CREATE_ROLE

Format

ORDS_ADM N. CREATE_ROLE(
p_schema I'N ords_schenas. par si ng_schem% ype,
p_role name IN sec_rol es. nane% ype);

The following example creates a role:

ORDS_ADM N. CREATE_ROLE(
p_schema I'N ords_schenas. parsi ng_schema% ype,
p_role_name IN sec_rol es. nanme% ype);

BEG N
ORDS_ADM N. CREATE_ROLE(
p_schema => 'tickets',
p_role_name => 'Tickets User');

b

ORACLE 7-1

Chapter 7
Example Subprograms for Developing and Administering RESTful Services

END;

Example 7-2 ORDS_ADMIN.DEFINE_PARAMETER

Format

ORDS_ADM N. DEFI NE_PARAMETER(

p_schema I'N ords_schemas. par si ng_schemaY% ype,
p_nodul e_nane I'N ords_nodul es. nane% ype,

p_pattern IN ords_tenpl ates. uri_tenpl at e% ype,
p_met hod I'N ords_handl ers. met hod% ype,

p_nane I'N ords_paraneters. name% ype ,

p_bind_variabl e_name IN ords_paraneters. bind_vari abl e_name% ype
DEFAULT NULL,

p_source_type IN ords_paraneters. source_type% ype DEFAULT
" HEADER
p_paramtype IN ords_paraneters. param type% ype DEFAULT
" STRING ,
p_access_net hod IN ords_paraneters.access_net hod% ype DEFAULT "IN,
p_coments I'N ords_paraneters. conment s% ype DEFAULT NULL);

The following example defines an outbound parameter on the POST handler to store
the location of the created ticket:

BEG N
ORDS_ADM N. DEFI NE_PARAMETER(
p_schema => 'tickets',
p_nodul e_nane => 'ny.tickets',
p_pattern =>".",
p_nethod => ' PCST',
p_name => ' X- APEX- FORWARD ,
p_bi nd_variabl e_name => 'l ocation',
p_source_type => ' HEADER ,
p_access_method => ' QUT'
);
END;

Table 7-1 p-schema Parameter Description

__|
Parameter Description

p_schema Specifies the name of the schema. This
parameter is mandatory.

ORACLE s

Implicit Parameters

This chapter describes the implicit parameters used in REST service handlers that are
not explicitly declared. Oracle REST Data Services (ORDS) adds these parameters
automatically to the resource handlers.

8.1 List of Implicit Parameters

The following table lists the implicit parameters:

" Note:

Parameter names are case sensitive. For example, :CURRENT_USER is not
a valid implicit parameter.

Table 8-1 List of Implicit Parameters

Name Type Access HTTP Descri Introdu
Mode Header ption ced

:body BLOB IN N/A Specifie 2.0
s the
body of
the
request
asa
tempora
ry
BLOB.

:body_ CLOB IN N/A Specifie 18.3
t ext s the

body of

the

request

asa

tempora

ry

CLOB.

ORACLE 8-1

Chapter 8
List of Implicit Parameters

Table 8-1 (Cont.) List of Implicit Parameters

Name Type Access HTTP Descri Introdu
Mode Header ption ced

.conte VARCH IN Cont en Specifie 2.0

nt_typ AR t-Type sthe

e MIME
type of
the
request
body,
as
indicate
d by the
Content
-Type
request
header.

ccurre VARCH IN N/A Specifie 2.0

nt use AR s the

r authenti
cated
user for
the
request.
If no
user is
authenti
cated,
then the
value is
set to
null.

:forwa VARCH OUT X- Specifie 18.3
rd_ loc AR ORDS- sthe

ation FORWAR location
D- where

Oracle
REST
Data
Service
s must
forward
a GET
request
to
produce
the
respons
e for
this
request.

ORACLE 8-2

Table 8-1 (Cont.) List of Implicit Parameters

Chapter 8

List of Implicit Parameters

___|]
Type Access HTTP

Name

Mode

Header

Descri

Introdu

ption ced

.fetch
_offse
t

NUMBE IN
R

N/A

Specifie 18.3
s the
zero-
based
offset of
the first
row to
be
displaye
dona
page.

:fetch
_Size

NUMBE IN
R

N/A

Specifie 18.3
s the

maximu

m

number

of rows

to be

retrieve
dona

page.

- page_
of f set

NUMBE IN
R

N/A

Specifie 2.0
s the
Zero
based
page
offset in
a
paginat
ed
request.
Note:
The :p
age_of
fset
paramet
eris
depreca
ted.
Use:r
ow of f
set
paramet
er
instead.

ORACLE

8-3

Table 8-1 (Cont.) List of Implicit Parameters

Chapter 8
List of Implicit Parameters

___|]
Name Type Access HTTP

Mode

Header

Descri
ption

Introdu
ced

:page_ NUMBE IN
si ze R

N/A

Specifie
s the
maximu
m
number
of rows
to be
retrieve
dona
page.
The : pa
ge_siz
e
paramet
eris
depreca
ted.
Use : f
etch_s
ize

par ame
ter
instead.

2.0

:row 0 NUMBE IN
ffset R

N/A

Specifie
s the
one-
based
index of
the first
row to
be
displaye
dina
paginat
ed
request.

3.0

:row ¢ NUMBE IN
ount R

N/A

Specifie
s the
one-
based
index of
the last
row to
be
displaye
dina
paginat
ed
request.

3.0

ORACLE

8-4

Chapter 8
List of Implicit Parameters

Table 8-1 (Cont.) List of Implicit Parameters
]

Name Type Access HTTP Descri Introdu
Mode Header ption ced
:statu NUMBE OUT X- Specifie 18.3
s _code R ORDS- sthe
STATUS HTTP
_CODE Status
code for
the
request.

8.1.1 About the :body parameter

ORACLE

The : body implicit parameter is used in the resource handlers to receive the contents
of the request body as a temporary BLOB.

Note:

Only POST or PUT requests can have a request body. The HTTP
specification does not permit request bodies on GET or DELETE requests.

Example 8-1 Example

The following example illustrates a PL/SQL block that stores the request body in a
database table:

begin
insert into tab (content) values (:body);
end;

" Note:

The : body implicit parameter must be dereferenced exactly once in a
PL/SQL block. If it is dereferenced more than once, then the second and
subsequent dereferences will appear to be empty. This is because the client
sends the request body only once.

The following example will not work as intended because it dereferences the : body
parameter twice:

begin

insert into tabl(content) values (:body); -- request body will be inserted
insert into tab2(content) values (:body); -- an enpty blob will be
inserted

end;

8-5

Chapter 8
List of Implicit Parameters

To avoid this limitation, the : body parameter value must be assigned to a local PL/SQL
variable before it is used. This enables the local variable to be dereferenced more than
once:

declare
| _content blob := :body;
begin
insert into tabl (content) values(l _content);
insert into tab2(content) values(l _content);
end;

8.1.2 About the :body_text Parameter

The : body_t ext implicit parameter is used in the resource handlers to receive the
contents of the request body as a temporary CLOB. Typically, the content of the
request body is textual (for example JSON or HTML content) and so, receiving the
request body as a CLOB saves the resource handler author from the effort of
converting the : body BLOB parameter to a CLOB instance. Similar to the : body
parameter, the : body text parameter must be dereferenced only once in a PL/SQL
block.

It is recommended to assign the : body_t ext value to a local PL/SQL variable, and the
PL/SQL variable is used throughout the PL/SQL block.

8.1.3 About the :content_type Parameter

The : cont ent _t ype implicit parameter provides the value of the Content-Type request
header supplied with the request. If no Content-Type header is present in the request,
then a null value is returned.

8.1.4 About the :current_user Parameter

The : current _user implicit parameter provides the identity of the user authenticated
for the request.

Note:

In a scenario, where the user is not authenticated, the value is set to null. For
example, if the request is for a public resource, then the value will be set to
null.

8.1.5 About the :status_code Parameter

The : st at us_code implicit parameter enables a resource handler to indicate the HTTP
status code value to include in a response. The value must be one of the numeric
values defined in the HTTP Specification document.

ORACLE 8-6

https://tools.ietf.org/html/rfc7231#section-6

Chapter 8
List of Implicit Parameters

8.1.6 About the :forward_location Parameter

ORACLE

The : forward_| ocat i on implicit parameter provides a mechanism for PL/SQL based
resource handlers to produce a response for a request.

Consider a POST request that results in the creation of a new resource. Typically, the
response of a POST request for REST APIs contains the location of the newly created
resource (in the Location response header) along with the representation of the new
resource. The presence of the Location header in the response indicates that there
must be a GET resource handler that can produce a response for the specified
location.

Instead of applying logic to the POST resource handler to render the representation of
the new resource in the response, the resource handler can delegate that task to the
existing GET Resource Handler.

The following resource handler defines a POST handler that delegates the generation
of the response to a GET resource handler:

ords. defi ne_handl er (
p_nodul e_nane => 'tickets.collection',
p_pattern =>"'.",
p_nmethod =>"'POST',
p_mnmes_al |l owed => "application/json',
p_source_type => ords. source_type_plsql,
p_source =>"'
decl are
| _owner varchar 2(255);
| _payl oad cl ob;
| _id nunber;
begin
| _payload : = :body_text;
| _owner := :current_user;
| id:=ticket_api.create_ticket(
p_json_entity => 1 _payl oad,
p_author => 1 _owner

);

:forward_location :=""./"" || |_id;
:status_code : = 201,
end,

)i

Where:

 The ords. define_handl er APl is used to add a POST handler to an existing
resource module named ti ckets. col | ecti on.

* The p_pattern with value '." indicates that the POST handler should be bound to
the root resource of the resource module. If the base path of the
tickets.collection'is/tickets/,thenthe POST handler is bound to the /
tickets/ URL path.

8-7

Chapter 8
List of Implicit Parameters

* The p_m nes_al | owed value indicates that the POST request must have a
Content-Type header value of appl i cation/json'.

» The p_source_type value indicates that the source of the POST handler is a
PL/SQL block.

e The p_sour ce value contains the source of the PL/SQL block:

Where:

Note:

The : body_t ext implicit parameter is assigned to a local variable, so
that it can be dereferenced more than once.

— The identity of the user, making the POST request, is determined from
the : current _user implicit parameter.

— The PL/SQL block, delegates the task of storing the request payload to a
PL/SQL package level function. The PL/SQL block should only contain logic to
bridge from the HTTP request to the PL/SQL package invocation.

" Note:

When all the data modification operations are wrapped in a PL/SQL
API, the PL/SQL block can be independently unit tested. Long and
complicated PL/SQL blocks are an anti-pattern indicative of code
that is difficult to test and maintain.

— The PL/SQL package level function returns the ID of the newly created
resource.

— The:forward_| ocation implicit parameter is assigned the value of ' . /' ||
| _id. For example, if the value of | _i d is 4256, then the value
of :forward | ocationis/tickets/ 4256 .

When ORDS evaluates the preceding PL/SQL block and checks the value
assigned to the : forwar d_| ocat i on implicit parameter, it initiates a GET
request against the specified location (for example, / ti cket s/ 4256) and return
the response generated by the GET request as the response of the POST
request. In addition, ORDS includes a location response header with the fully
resolved URL of the : forward_| ocati on value.

— The: status_code implicit parameter is assigned the HTTP response status
code value. The 201 (Created) status code indicates that a new resource is
created. This value will override the status code generated by the GET
request.

8.1.7 About the Pagination Implicit Parameters

The following table lists the pagination implicit parameters:

ORACLE 8-8

Chapter 8
List of Implicit Parameters

Note:

Oracle REST Data Services reserves the use of the query parameters, page,
of fset, andlinit. Itis not permitted to define REST services that use
named bind parameters with any of the preceding query parameter names.
Alternatively, REST services must use the appropriate pagination implicit
parameters defined in the following table:

Table 8-2 Pagination Implicit Parameters
|

Name Description Status

: page_of f set Specifies the zero based page Deprecated
offset in a pagination request.

: page_si ze Specifies the maximum Deprecated
number of rows to be retrieved
on a page.

:row_of f set Specifies the index of the first Not Recommended

row to be displayed in a
pagination request.

: row_count Specifies the index of the last Not Recommended
row to displayed in a
pagination request.

:fetch_of f set Specifies the zero based index Recommended
of the first row to be displayed
on a page.

:fetch_size Specifies the maximum Recommended
number of rows to be retrieved
on a page.

8.1.7.1 About the :page_offset Parameter

The : page_of f set implicit parameter is provided for backward compatibility, so it is
used only with sour ce_t ype_query source type resource handlers.

" Note:

e The source_type_query source type is deprecated, instead use the
source_type_col | ection feed parameter.

e The : page_of f set implicit parameter is deprecated, instead use
the : row_of f set implicit parameter.

8.1.7.2 About the :page_size Parameter

The : page_si ze implicit parameter is used to indicate the maximum number of rows to
be retrieved on a page. : page_si ze parameter is provided for backward compatibility.
This parameter is deprecated, instead use : f et ch_si ze implicit parameter.

ORACLE 8-9

Chapter 8
List of Implicit Parameters

8.1.7.3 About the :row_offset Parameter

The :row of f set implicit parameter indicates the number of the first row to be
displayed on a page. The : row _of f set implicit parameter is used when you are using
both a wrapper pagination query and r ow_nunber () (used in Oracle 11g and earlier
releases). Starting Oracle 12c or later releases, Oracle recommends using

the : f et ch_of f set implicit parameter and a row limiting clause instead of

the : row of f set parameter.

8.1.7.4 About the :row_count Parameter

The : row_count implicit parameter is used to indicate the number of rows to be
displayed on a page. The : row_count value is the value of the sum of : row_of f set
and the pagination size. The : row_count implicit parameter is useful when
implementing pagination using a wrapper pagination query and r ow_nunber () method
that was used in Oracle database 11g and earlier releases. Starting Oracle Database
release 12c or later, Oracle recommends that you use : f et ch_si ze parameter and a
row limiting clause instead.

8.1.7.5 About the :fetch_offset Parameter

The : fet ch_of f set implicit parameter is used to indicate the zero based offset of the
first row to display in a given page. The : f et ch_of f set implicit parameter is used
when you implement pagination using a row limiting clause, which is recommended for
use with Oracle 12c and later releases.

8.1.7.6 About the :fetch_size Parameter

The : fet ch_si ze implicit parameter is used to indicate the maximum number of rows
to retrieve on a page. ORDS always sets the value of : f et ch_si ze to the pagination
size plus one. The presence or absence of the extra row helps ORDS in determining if
there is a subsequent page in the results or not.

Note:

The extra row that is queried is never displayed on the page.

8.1.7.7 About Automatic Pagination

ORACLE

This section describes the automatic pagination process.

If a GET resource handler source type, source_type_col | ection_feed or
source_type_query has a non zero pagination size (p_i t ens_per _page) and the
source of the GET resource handler does not dereference any of the implicit
pagination parameters discussed in the preceding sections, then ORDS automatically
wraps the query in a pagination clause to constrain the query results to include only
the values from the requested page. With automatic pagination, the resource handler

8-10

Chapter 8
List of Implicit Parameters

author needs to specify only the pagination size, and ORDS automatically handles the
remaining effort in paginating the resource.

Note:

All resource modules have a default pagination size (p_i t ens_per _page) of
25. So, by default automatic pagination is enabled.

8.1.7.8 About Manual Pagination

ORACLE

This section describes the manual pagination process.

In some scenarios, a GET resource handler needs to perform pagination on its own
rather than delegating the pagination process to ORDS. In such cases, the source of
the GET resource handler will dereference one or more implicit pagination parameters
discussed in the preceding sections.

Note:

The GET resource handler must specify the desired pagination size so that
ORDS can correctly calculate the required values for the implicit pagination
parameters.

Examples

Manual pagination example using row limiting clause

The following example defines a REST service that uses a row limiting clause to
paginate the query result set. This is the recommended way to implement manual
pagination:

begi n
ords. define_service(

p_nmodul e_name => 'exanpl e. pagi ng',

p_base path =>'/exanple/',

p_pattern => '/paged',

p_i tems_per_page => 7,

p_source => 'select * fromenp e order by enpno desc
of fset :fetch_offset rows fetch next :fetch_size rows only'
);
conmit;
end;

Manual pagination example using row_number() method

The following example defines a REST service that uses a wrapper query and
row_nunber () method. This approach is not recommended.

begi n
ords. defi ne_servi ce(
p_modul e_name => 'exanpl e. pagi ng',

8-11

Chapter 8
List of Implicit Parameters

p_base path => '/exanmple/",

p_pattern => '/paged',

p_itens_per_page => 7,

p_source => 'select * from(select q_.* , row nunber() over (order by
1) rn__ from(select * fromenp e order by enpno desc) g_)where rn__
bet ween :row of fset and :row count'
)i
commi t;
end;

ORACLE 8-12

OAUTH PL/SQL Package Reference

The OAUTH PL/SQL package contains procedures for implementing OAuth
authentication using Oracle REST Data Services.

Related Topics
e Using the Oracle REST Data Services PL/SQL API

9.1 OAUTH.CREATE_CLIENT

ORACLE

Format

OAUTH. CREATE_CLI ENT(

p_narme VARCHAR2 | N,
p_grant _type VARCHAR2 | N,
p_owner VARCHAR2 | N DEFAULT NULL,

p_description VARCHAR? | N DEFAULT NULL,
p_al | owed_origins VARCHAR2 | N DEFAULT NULL,
p_redirect _uri VARCHAR2 | N DEFAULT NULL,
p_support_enmai|l VARCHAR2 I N DEFAULT NULL,
p_support _uri VARCHAR2 | N DEFAULT NULL,
p_privilege_nanmes VARCHAR2 | N)

Description

Creates an OAuth client registration.
Parameters

p_name
Name for the client, displayed to the end user during the approval phase of three-
legged OAuth. Must be unique.

p_grant_type
Must be one of aut hori zati on_code, inplicit,orclient credentials.

p_owner
Name of the party that owns the client application.

p_description

Description of the purpose of the client, displayed to the end user during the approval
phase of three-legged OAuth. May be null if p_grant _typeisclient_credentials;
otherwise, must not be null.

p_allowed_origins

A comma-separated list of URL prefixes. If the list is empty, any existing origins are
removed.

9-1

Chapter 9
OAUTH.DELETE_CLIENT

p_redirect_uri

Client-controlled URI to which redirect containing an OAuth access token or error will
be sent. May be null if p_grant _typeisclient_credential s; otherwise, must not be
null.

p_support_email
The email where end users can contact the client for support.

p_support_uri
The URI where end users can contact the client for support. Example: http://
www. mycl i ent donai n. cond support/

p_privilege_names
List of comma-separated privileges that the client wants to access.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples

The following example creates an OAuth client registration.

BEG N
QAUTH. create_client(
" CLI ENT_TEST' ,
"aut hori zation_code',
"test_user',

"This is a test description.',

"https://exanple.org/ny_redirect/# ",

"test @xample.org',

"https://exanpl e.org/ hel p/#/",

"MyPrivilege'

);
COWM T;

END;

/

9.2 OAUTH.DELETE_CLIENT

ORACLE

Format

QAUTH. DELETE_CLI ENT(
p_name VARCHAR2 IN);

Description

Deletes an OAuth client registration.

Parameters

p_name
Name of the client registration to be deleted.

9-2

Chapter 9
OAUTH.GRANT_CLIENT_ROLE

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples
The following example deletes an OAuth client registration.

BEG N
QAUTH. del ete_cl i ent (
" CLI ENT_TEST'
):
COW T,
END;
/

9.3 OAUTH.GRANT_CLIENT_ROLE

ORACLE

Format

OAUTH. GRANT_CLI ENT_ROLE(
p_client_name VARCHAR2 I N,
p_role_nane VARCHAR2 IN);

Description

Grant an OAuth client the specified role, enabling clients performing two-legged OAuth
to access privileges requiring the role.

Parameters

p_client_name
Name of the OAuth client.

p_role_name
Name of the role to be granted.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples
The following example creates a role and grants that role to an OAuth client.

BEG N
ORDS. create_rol e(p_rol e_name => ' CLI ENT_TEST_ROLE');

OAUTH. grant _cl i ent _rol e(
" CLI ENT_TEST',

" CLI ENT_TEST_RCOLE

):
COWM T;

END;

/

9-3

Chapter 9
OAUTH.RENAME_CLIENT

9.4 OAUTH.RENAME_CLIENT

Format

QAUTH. RENAME_CLI ENT(
p_nane VARCHAR2 | N,
p_new_name VARCHAR2 IN);

Description

Renames a client.

Parameters

p_name
Current name for the client.

p_new_name
New name for the client.

Usage Notes

The client name is displayed to the end user during the approval phase of three-
legged OAuth.

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples
The following example renames a client.

BEG N

QAUTH. renane_cl i ent (

" CLI ENT_TEST',

' CLI ENT_TEST_RENAMED
):

COWM T;
END;
/

9.5 OAUTH.REVOKE_CLIENT_ROLE

ORACLE

Format

OAUTH. REVOKE_CLI ENT_ROLE(
p_client_name VARCHAR2 IN,
p_rol e_nane VARCHAR2 IN);

Description

Revokes the specified role from an OAuth client, preventing the client from accessing
privileges requiring the role through two-legged OAuth.

9-4

Chapter 9
OAUTH.UPDATE_CLIENT

Parameters

p_client_name
Name of the OAuth client.

p_role_name
Name of the role to be revoked

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples
The following example revokes a specified role from an OAuth client.

BEG N
QAUTH. revoke_client _rol e(
" CLI ENT_TEST_RENAMED
" CLI ENT_TEST_ROLE
);
COWM T;
END;
/

9.6 OAUTH.UPDATE_CLIENT

Format

OAUTH. UPDATE_CLI ENT(

p_name VARCHAR2 | N,
p_description VARCHAR2 | N,
p_origins_allowed VARCHAR2 IN,
p_redirect _uri VARCHAR2 | N,
p_support_enai | VARCHAR2 | N,
p_suppor _uri VARCHAR2 | N,

p_privilege_nanes t_ords_vchar_tab IN);

Description

Updates the client information (except name). Any null values will not alter the existing
client property.

Parameters

p_name
Name of the client that requires the owner, description, origins allowed, support e-
mail, support URI, and/or privilege modification.

p_description
Description of the purpose of the client, displayed to the end user during the approval
phase of three-legged OAuth.

ORACLE 9-5

Chapter 9
OAUTH.UPDATE_CLIENT

p_redirect_uri

Client-controlled URI to which a redirect containing the OAuth access token/error will
be sent. If this parameter is null, the existing p_r edi rect _uri value (if any) is not
changed.

p_support_email
The email address where end users can contact the client for support.

p_support_uri
The URI where end users can contact the client for support. Example: http://
www. mycl i ent donai n. cond support/

p_privilege_names
List of names of the privileges that the client wishes to access.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

If you want to rename the client, use the OAUTH. RENAME_CLI ENT procedure.

Example to Updates the Description of the Specified Client

The following example updates the description of the client with the name matching
the value for p_nane.

BEG N
ORDS_METADATA. QAUTH. updat e_cl i ent (
p_nanme => ' CLI ENT_TEST_RENAMED ,
p_description => 'The description was altered',
p_origins_allowed => null,
p_redirect_uri => null,
p_support_email => null,
p_support_uri => null,
p_privilege_names => null);
COW T;
END;
/

Example 9-1 Example to Add Multiple Privileges
The following example adds a second privilege:

declare

my_privs t_ords_vchar tab :=1t_ords_vchar_tab ();
begin

my_privs. EXTEND (3);
my_privs(l):="tst.privilegel';
my_privs(2):="tst.privilege2';

oaut h. update_client(

p_name => 'Test _Cient',
p_owner => 'scott',
p_description => 'Description',
p_grant _type => 'client_credentials',
p_redirect _uri =>"/abc/efg/",
p_privilege_nanes => ny_privs);

comit;

end;

ORACLE 9-6

Chapter 9
OAUTH.UPDATE_CLIENT

Related Topics
e OAUTH.RENAME_CLIENT

ORACLE 9-7

Oracle REST Data Services Third-Party
License Information

A.1 Oracle REST Data Services Third Party List

Licensed Licensed Version License
Technology ID Technology
7521 xml-apis.jar 1.3.04 Apache 2.0
22401 Commons Logging 1.0.4 Apache 2.0
29682 Font Awesome 4.6 SILOFL 1.1
36065 Commons FileUpload 1.3.3 Apache 2.0
36854 Javassist 3.22.0-CR2 Apache 2.0
37851 avalon.framework.jar 4.3.1 Apache 2.0
39174 commons-io 2.2 Apache 2.0
39830 JavaScript Extension 4.1.0 Oracle
Toolkit (JET)
42191 jackson-core 295 Apache 2.0
43662 Batik SVG Toolkit 1.10 Apache 2.0
43724 Jetty 9.4.11 Apache 2.0
44177 Apache FOP 2.3 Apache 2.0
44297 PDFBox 2.0.11 Apache 2.0
44826 XML Graphics 23 Apache 2.0
Commons
44904 Google Guava 26.0 Apache 2.0

ORACLE

Oracle REST Data Services Database

Type Mappings

This appendix describes the REST Data Services database type mappings along with
the structural database types.

B.1 Oracle Built-in Types

Data Type JSON REST Value Example Description
Data Versi
Type on
NUMBER number vi "big" : Represented with all significant
1234567890 digits. An exponent is used when
- .o the number exceeds 10 digits.
bi gger"
1.2345678901el
0
RAW string Custo "code" : Base64 bit encoding is used
m " SEVMIE8gV09ST
Eq.lll
DATE string v1.2 "start" : Represented using 1ISO 8601 format
"1995- 06- 02T04 in UTC time zone
0 29: 117"
TIMESTAMP string v1.2 when : Represented using 1ISO 8601 format
"1995- 06- 02T04 in UTC time zone
:29:11.0022"
TIMESTAMP WITH string vl1.2 "at": Represented using ISO 8601
LOCAL TIME "1995-06-02T04:2 format. The local time zone is
ZONE 9:11.002Z" converted to UTC time zone as the
local time zone specification does
not apply for a transfer encoding.
CHAR string vl "message" Represented with trailing spaces.
"Hell o World! This may be required as padding for
" PUT or POST methods. For
example, "abc "
ROWID string Custo "id" : Output as the native Oracle textual
m " AAAGIOIAAEAAAA representation. For example,
ObAAA" equivalent to the following

ORACLE

conversion: SELECT
RON DTOCHAR(id) id FROM
DUAL.

B-1

ORACLE

Appendix B
Oracle Built-in Types

Data Type JSON REST Value Example Description
Data Versi
Type on
UROWID string Custo "uid" Output as the native Oracle textual
m " AMMGY9AAEAAAA representation. For example,
ObAAA" equivalent to the following
conversion: SELECT CAST(uid as
VARCHAR(4000)) id FROM DUAL.
FLOAT number v1 *as NUMBER
NCHAR string vl "message” Represented using unicode
"Hel | o Worl d! character where the character is not
" supported by the body character
set.
NVARCHAR2 string vl "message” Represented using unicode
"Hel | o Worl d!* character where the character is not
supported by the body character
set.
VARCHAR?2 string vl "message”
"Hello World!™
BINARY_FLOAT number v1 *as NUMBER
BINARY_DOUBLE number vl *as NUMBER
TIMESTAMP WITH object v1.2 Represented using 1ISO 8601 format
TIME ZONE "avent" in UTC time zone. The value
"1995- 06-02T0 represents the same point in time
4:29:11. 0022" but the original time zone is lost.
"when" :
"1995- 06- 02T0
4:29:11.0022"
INTERVAL YEAR object Custo Represented using ISO 8601
TO MONTH m "until" "Duration” format. Zero duration
"P-123Y3M' components are considered
“until® - optional.
"P3M
INTERVAL DAY TO object Custo Represented using ISO 8601
SECOND m “until" "Duration” format. Zero duration
" P. 5DT3H55M' components are considered optional
until" :
" PT3H55M'
LONG string vl *as VARCHAR
LONG RAW string Custo "long_code" :
m { "SEVMIE8gV09

STE"

B-2

Appendix B
Handling Structural Database Types

Data Type JSON REST Value Example Description
Data Versi
Type on
BLOB string Custo
m "bin" o {
"base64 val ue
"bGvhc3WzS4=
}
CLOB string Custo
m "text" 1 {
"val ue" :
"Hel o World!
}
BFILE Object Custo
m "file" @ {
"l ocator" :
"TARGET DI R,
“filename" :
"nyfile"
}
BOOLEAN true|] vl
false "right" :
true
“wong" :
fal se

B.2 Handling Structural Database Types

This section explains how structural database types are handled.

Object Types

An exception to this is where ORDS has adopted an accepted encoding for an
Industry Standard type such as GeoJSON.

Following is a sample code snippet:

"address" : {
"nunber" : 42,

"street" : "VWallaby \Way",

ORACLE' B-3

ORACLE

"city" : "Sydney"

}

Inheritance

Appendix B
Handling Structural Database Types

Object type inheritance is not supported. For marshalling purposes, all object types are

treated as if they are left concrete types.

PL/SQL Records

PL/SQL Records are not supported.

VARRAYS
VARRAYS are mapped directly to the JSON array type.

Following is a sample code snippet:
"addresses" : |

{

" db_type" : "M_SCHEMA AUS ADDRESS',
"nunber" : 42,

"street" : "VWallaby Way",

"city" : "Sydney"

b

{

" db_type" : "M_SCHEMA. UK_ADDRESS"
"nunber @ 1,

"street" : "Oracle Parkway"

"city" : "Reading"
"postcode" : "RG 1RA"
}

]

Element Inheritance

If the type of a VARRAY element instance is a sub-type of the defined type, then it
becomes mandatory to add the __db_t ype named value, as explained in the object

types section.

B-4

Appendix B
Oracle Geospacial Encoding

Associative Arrays

Associative arrays (formally known as PL/SQL table or index-by table) fall into
following two categories:

* Indexed by an integer value: A sparsely populated indexed array. This type of
array may not yield a value for a given index. When this type of array is converted
to and from JSON, the index is ignored, removing the indexable value gaps. This
will have the side-effect that a sparsely populated indexed array that is passed as
an IN/OUT parameter through a PL/SQL procedure without any changes, could
still appear to have been changed, as the indexable value gaps would have been
removed.

Following is a sample code snippet:

"avg_val ues" : [
34,
57,
86,

3235

* Notindexed by an integer value: For example, VARCHAR. This category is
rarely used and not supported by the Oracle JDBC API.

B.3 Oracle Geospacial Encoding

Oracle Geospacial types comprises of more than the predefined Oracle Object types.
However, recognized JSON encoding call, GeoJSON is used to encode the instance
data.

Related Topics

¢ GeoJSON standard documentation

B.4 Enabling Database Mapping Support

ORACLE

This section shows how to enable the extended database mapping support.

To enable the extended database mapping support, the following code snippet must
be added to the Oracle REST Data Services def aul t s. xnl file, which is located in the
Oracle REST Data Services configuration or ds directory:

<entry key="mi sc. dat at ypes. enabl e">true</entry>

B-5

http://geojson.org/

About the Oracle REST Data Services
Configuration Files

The section describes the Oracle REST Data Services configuration files.

Topics:

» Locating Configuration Files

e Setting the Location of the Configuration Files

e Understanding the Configuration Folder Structure
* Understanding the Configuration File Format

* Understanding Configurable Parameters

C.1 Locating Configuration Files

Use the confi gdi r command to display the current location of the configuration files:

java -jar ords.war configdir

If the configuration folder has not yet been configured, the message: The config. dir
setting is not set, is displayed. If it has been configured, the current value of the
setting is displayed.

C.2 Setting the Location of the Configuration Files

To change the location of the configuration folder use the confi gdi r command:

java -jar ords.war configdir </path/tol/config>

Where:

e </path/tolconfig>is the location where the configuration files are stored.

C.3 Understanding the Configuration Folder Structure

The configuration folder has the following structure:

N
|
+-defaul ts. xn
+-apex. properties*
+-url - mappi ng. xm
|
+conf/
I
+- apex. xm
+-apex_al . xm

ORACLE C-1

Appendix C
Understanding the Configuration File Format

+-apex_rt. xn
+-apex_pu. xni

+- (db- name) . xm

+-(db-name) _al . xn
+-(db-name) _rt. xn
+- (db- name) _pu. xm

)
)_
)_
)

Global settings that apply to all database connections are stored in def aul ts. xnl .

Settings specific to a particular database connection (for example, the default apex
connection) are stored in conf/ <db- nane>. xm , where <db- name> is the name of the
database connection.

If the database connection uses Oracle Application Express RESTful Services, the
files with names including _al . xm , _rt.xm , and _pu. xml store the configuration for
the APEX_LI STENER, APEX_REST_PUBLI C_USER, and ORDS_PUBL| C_USER database users,
respectively.

If the database connection uses Oracle REST Data Services RESTful Services, the
file <db- name>_pu. xm stores the configuration for the ORDS_PUBLI C_USER database
user.

C.4 Understanding the Configuration File Format

Configuration files use the standard Java XML properties file format, where each
configuration setting contains a key and a corresponding value. The following is an
example of a defaul ts. xm file:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE properties SYSTEM "http://java.sun.conf dtd/ properties.dtd">
<properties>

<entry key="db. connectionType">basi c</entry>
<entry key="db. host nane">| ocal host </ entry>
<entry key="db. port">1521</entry>

<entry key="db.sid">orcl</entry>

<entry key="jdbc. DriverType">thin</entry>

<entry key="jdbc.InitialLinit">3</entry>

<entry key="jdbc. M nLinit">1</entry>

<entry key="jdbc. MaxLimt">10</entry>

<entry key="jdbc. MaxStatementsLimt">10</entry>

<entry key="jdbc. | nactivityTi meout">1800</entry>
<entry key="jdbc. st at enent Ti meout " >900</ entry>

<entry key="jdbc. MaxConnecti onReuseCount " >1000</ entry>

</ properties>

C.4.1 Understanding the url-mapping.xml File Format

ORACLE

The url - mappi ng. xm file stores the rules that route requests to the appropriate
database when more than one database is configured. The following is an example of
a url - mappi ng. xn file:

<pool -config xm ns="http://xm ns. oracl e. con apex/ pool - confi g">
<pool name="sal es_db"

C-2

Appendix C
Understanding Configurable Parameters

base- pat h="/sal es"
wor kspace-i d="sal es_rest"/>

</ pool -

config>

C.5 Understanding Configurable Parameters

Table C-1 lists editable parameters for the def aul t s. xm and (db- nane) . xm
configuration files.

4

Note:

Oracle recommends users to use the Oracle REST Data Services command-
line interface and Oracle SQL Developer Oracle REST Data Services
Administration to edit the configuration files.

Table C-1 Oracle REST Data Services Configuration Files Parameters

Key

Type Description Example Setting Type

apex. docTabl e

cache. cachi ng

cache.directory

cache. duration

cache. expiration

cache. maxEntries

cache. nmoni torlnterval

ORACLE

string This parameter is deprecated, MYDOCTABLE Pool specific
instead use owa. docTabl e
parameter.

boolean Supported values: true Global
e true
» false (default)
For caching to be enabled, this
must be set to true and the
procedur eNaneLi st must have
a procedure.

string The directory location for the C\data Global
cache files. \cachefiles

string Supported values: days Global
e days (default)
° minutes
* hours

Required for expire cache type.

numeric Required for expire cache type. 7 Global
Defaults to 7.

numeric Required for Iru cache type. 500 Global
Defaults to 500.

numeric Interval time is specified in 60 Global
minutes.

If the cache type is expire, Oracle
REST Data Services, checks the
cache every NN minutes for files
that have expired. For example, if
the moni t or I nt erval is 60,
then it checks the cache every 60
minutes.

Defaults to 60.

C-3

Appendix C

Understanding Configurable Parameters

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type
cache. procedur eNameLi st string Specifies the procedure names to p, Global
allow for caching of their files. downl oad file
Procedure names can contain the
wildcard characters asterisk (*)
or question mark (?). Use an
asterisk (*) to substitute zero or
more characters and a question
mark (?) to substitute for any one
character.
Each procedure hame must be
separated by a comma.
cache. type string Supported values: lru Global
° expire
e lru (default)
db. connecti onType string The type of connection. basi c Pool specific
Supported values:
* basic
« tns
e customurl
db. cust omURL string Specifies the JDBC URL jdbc: oracl e:t Pool specific
connection to connect to the hi n: @ DESCRI P
database. TI ON=(ADDRESS
=(PROTOCOL=TC
P)
(HOST=nyhost)
(PORT=1521))
(CONNECT_DATA
=(SERVI CE_NAM
E=oralll. exam
ple.con))
db. host nane string Specifies the host system for the myhost nane Pool specific
Oracle database.
db. password string Specifies the password of the ! Pool specific
specified database user. Include passwor d4user
an exclamation at the beginning
of the password so that it can be
stored encrypted.
db. port numeric Specifies the database listener 1521 Pool specific
port.
db. servi cenanme string Specifies the network service oralll. exanpl Pool specific

ORACLE

name of the database. e.com

C-4

Appendix C
Understanding Configurable Parameters

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key

Type

Description Example Setting Type

db. servi ceNaneSuf f i x

db. sid

db. t nsAl i asName

db.tnsDirectory

db. user name

debug. pri nt DebugToScr een

error. keepError Messages

error.maxEntries

string

string

string

string

string

boolean

boolean

numeric

Specifies that the pool points to a apex_pu Pool specific
CDB, and that the PDBs

connected to that CDB should be

made addressable by Oracle

REST Data Services (see Making

All PDBs Addressable by Oracle

REST Data Services (Pluggable

Mapping)).
Specifies the name of the oralll Pool specific
database.

Specifies the TNS alias name MY_TNSALI AS Pool specific
that matches the name in the
t nsnanmes. ora file.

The directory location of your C.\ORACLE Pool specific
t nsnames. or a file. \ NETWORK
\ ADM N

Specifies the name of the APEX_PUBLI C_U Pool specific
database user for the connection. SER

Specifies whether to display error f al se Global
messages on the browser.

Supported values:
e true
» false (default)

Specifies whether to retain the true Global
error messages.

Supported values:
e true
» false (default)

Specifies the total number of 50 Global
error messages to retain.

Defaults to 50.

error. external Pat h

string

Specifies the path to a folder that / pat h/ t o/ Global
contains the custom error page. error/ pages/

f ol der/

i cap. port

numeric

Specifies the Internet Content 5555 Global
Adaptation Protocol (ICAP) Port

to virus scan files.

The i cap. port is required to

have a value.

i cap. server

ORACLE

string

Specifies the Internet Content server nanme Global
Adaptation Protocol (ICAP)
Server name to virus scan files.

The i cap. server is required to
have a value.

C-5

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Appendix C
Understanding Configurable Parameters

__|]
Setting Type

Key

Type

Description

Example

jdbc. Driver Type

string

Specifies the JDBC driver type.
Supported values:

e thin
* 0cCi8

thin

jdbc. I nactivityTi meout

numeric

Specifies how long an available
connection can remain idle
before it is closed. The inactivity
connection timeout is in seconds.

Defaults to 1800.

1800

jdbe. InitialLinmt

numeric

Specifies the initial size for the
number of connections that will
be created.

Defaults to 3. (The default is low,
and should probably be set
higher in most production
environments.)

j dbc. MaxConnect i onReuseCo
unt

numeric

Specifies the maximum number
of times to reuse a connection
before it is discarded and
replaced with a new connection.

Defaults to 1000.

1000

j dbc. MaxLi mi t

numeric

Specifies the maximum number
of connections.

Defaults to 10. (Might be too low
for some production
environments.)

20

j dbc. aut h. enabl ed

boolean

Specifies if the PL/SQL Gateway
calls can be authenticated using
database users. If the value is

t r ue then this feature is enabled.

If the value is f al se, then this
feature is disabled. The default
value is f al se. Oracle
recommends not to use this
feature. This feature used only to
facilitate customers migrating
from mod_plsql.

fal se

j dbc. MaxSt at ement sLi mi t

numeric

Specifies the maximum number
of statements to cache for each
connection.

Defaults to 10.

10

j doc. M nLi it

ORACLE

numeric

Specifies the minimum number of 1

connections.
Defaults to 1.

Pool specific

Pool specific

Pool specific

Pool specific

Pool specific

Pool specific

Pool specific

Pool specific

C-6

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Appendix C

Understanding Configurable Parameters

Key Type Description Example Setting Type
j dbc. st at enent Ti neout numeric Specifies how long a borrowed 900 Pool specific
(in use) connection can remain
unused before it is considered as
abandoned and reclaimed. The
abandoned connection timeout is
in seconds.
Defaults to 900.
| 0g. | oggi ng boolean Specifies whether to retainthe true Global
log messages.
Supported values:
e true
- false (default)
| og. maxEntries numeric Specifies the total number of log 50 Global
messages to retain.
Defaults to 50.
| 0g. procedure boolean Specifies whether procedures are fal se Global
to be logged.
Supported values:
o true
» false (default)
m sc. def aul t Page string Specifies the default page to apex Pool specific
display. The Oracle REST Data
Services home page, apex, is
commonly used.
m sc. pagi nation. maxRows numeric Specifies the maximum number 300 Pool specific

ORACLE

of rows that will be returned from
a query when processing a
RESTful service and that will be
returned from a nested cursor in
a result set. Affects all RESTful
services generated through a
SQL query, regardless of whether
the resource is paginated.

Defaults to 10000.

C-7

Appendix C
Understanding Configurable Parameters

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters
]

Key Type Description Example Setting Type
owa. docTabl e string Specifies the name of the MYDOCTABLE Pool specific
document table used by the file
upload.
Defaults
to FLONS_FI LES. WW_FLOW FI L
E_OBJECTS$ value.
" No
te:
For
AP
EX
4.x
and
abo
ve
this
par
am
eter
sho
uld
not
be
use
d.
procedur e. post Process string Specifies the procedure name(s) SCHEMAL. SUBM Pool specific
to execute after executing the T. REQUEST, FIN
procedure specified on the URL. | gHTASK
Multiple procedure names must
be separated by commas.
procedure. preProcess string Specifies the procedure name(s) SCOTT. PREPROC Pool specific

ORACLE

to execute prior to executing the
procedure specified on the URL.
Multiple procedure names must
be separated by commas.

11
I NI TI ALI ZE,
PKGL. PROC

C-8

Appendix C
Understanding Configurable Parameters

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type

Description Example

Setting Type

procedure. rest. preHook string

Specifies the function to be

Oracle REST Data Services
based REST Service. The
function can perform
configuration of the database
session, perform additional
validation or authorization of the
request. If the function returns
true, then processing of the
request continues. If the function
returns f al se, then processing
of the request is aborted and an
HTTP 403 Forbidden status is
returned.

security. di sabl eDef aul t Ex boolean
cl usi onLi st

ORACLE

If this value is setto t rue, then fal se
the Oracle REST Data Services

internal exclusion list is not

enforced.

Note: The Oracle REST Data
Services internal exclusion list
blocks the users from accessing

the following:
° Sys.*
 dbms_*
o utl*

e owa_*

e owa*
htp.*

o htf*

e wpg_docload.*

Supported values:

° true

- false (default)

Oracle recommends that you do
not set this value to t r ue. That
is, do not disable the default
internal exclusion list. The only
possible exception is temporarily

disabling the internal exclusion
list for debugging purposes.

MYAPP. VALI DAT Pool specific
invoked prior to dispatching each E REST CALL

Global

C-9

Appendix C
Understanding Configurable Parameters

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type

Description Example Setting Type

security. excl usionLi st string

Specifies a pattern for
procedures, packages, or
schema names which are
forbidden to be directly executed
from a browser.

cust omer _acco Global
unt, bank*,

enpl oye?

Procedure names can contain the
wildcard characters asterisk (*)
or question mark (?). Use an
asterisk (*) to substitute zero or
more characters and a question
mark (?) to substitute for any one
character.

Note: Separate multiple patterns
using commas.

security.inclusionList string

Specifies a pattern for apex, p, Vv, Global
procedures, packages, or f, ww_*, y*,
schema names which are c*

allowed to be directly executed

from a browser.

Procedure names can contain the
wildcard characters asterisk (*)
or question mark (?). Use an
asterisk (*) to substitute zero or
more characters and a question
mark (?) to substitute for any one
character.

Note: Separate multiple patterns
using commas.

security. mxEntries numeric

2000 Global

Specifies the maximum number
of cached procedure validations.
Defaults to 2000. Set this value to
0 to force the validation
procedure to be invoked on each

request.

security.request Authentic string
ationFunction

ORACLE

Specifies an authentication
function to determine if the
requested procedure in the URL
should be allowed or disallowed
for processing. The function
should return t r ue if the
procedure is allowed; otherwise,
it should return false. If it returns
false, Oracle REST Data
Services will return VWY

Aut hent i cat e in the response
header.

owa_cust om au Pool specific
thori ze

C-10

Appendix C
Understanding Configurable Parameters

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key

Type

Description

Example Setting Type

security.requestValidatio string

nFunction

Specifies a validation function to
determine if the requested
procedure in the URL should be
allowed or disallowed for
processing. The function should
return true if the procedure is
allowed; otherwise, return false.

CHECK VALI D P Pool specific
ROCEDURE

security.verifySSL

boolean

Specifies whether HTTPS is
available in your environment.
Supported values:

e true (default)

- false

If you change the value to false,
see Using OAuth2 in Non-HTTPS
Environments.

true Global

soda. defaul tLimt

string

When using the SODA REST
API, specifies the default number
of documents returned for a GET
reguest on a collection when a
limit is not specified in the URL.
Must be a positive integer, or
"unlimited" for no limit.

Defaults to 100.

75 Pool specific

soda. maxLimt

string

When using the SODA REST
API, specifies the maximum
number of documents that will be
returned for a GET request on a
collection URL, regardless of any
limit specified in the URL. Must
be a positive integer, or
"unlimited" for no limit.

Defaults to 1000.

700 Pool specific

rest Enabl edSql . active

boolean

Specifies whether the REST-
Enabled SQL service is active.
Supported values:

o true

- false (default)

true Pool specific

ORACLE

¢ See Also:

For more information, see Configuring and Installing Oracle REST Data
Services and "Oracle REST Data Services Administration” in Oracle SQL
Developer User's Guide.

C-11

Troubleshooting Oracle REST Data
Services

This appendix contains information on troubleshooting Oracle REST Data Services.
Topics:

» Enabling Detailed Request Error Messages

e Configuring Application Express Static Resources with Oracle REST Data
Services

D.1 Enabling Detailed Request Error Messages

To enable detailed request error messages, add the following setting to the Oracle
REST Data Services configuration file named: def aul ts. xni :

<entry key="debug. pri nt DebugToScreen">true</entry>

When this setting is present in def aul t s. xnl , any request that produces an error
response includes a detailed message, including a stack trace. This setting must not
be enabled on productions systems due to the risk of sensitive information being
revealed to an attacker.

D.2 Configuring Application Express Static Resources with
Oracle REST Data Services

When using Oracle REST Data Services, a blank page might be displayed when
attempting to access an Oracle Application Express page, for example, when
attempting to display ht t ps: // exanpl e/ ords/ . This problem is caused by an improper
configuration of Application Express static resources, which causes the JavaScript and
CSS resources required by Application Express not to be found and the Application
Express page not to render correctly.

The specific cause can be any of the following:

» Forgetting to ensure that the Application Express static images are located on the
same server as the Oracle REST Data Services instance

* Forgetting to deploy i . war on WebLogic Server or GlassFish

e Specifying an incorrect path when using the java -jar ords.war static
command to generate i . war

e Configuring Application Express to use a nondefault context path for static
resources (/i) and not specifying the same context path (using the - - cont ext -
pat h option) when using java -jar ords.war static

* Moving, renaming, or deleting the folder pointed to by i . war after deploying i . war

ORACLE D-1

ORACLE

Appendix D
Configuring Application Express Static Resources with Oracle REST Data Services

* When running in Standalone mode, entering an incorrect path (or not specifying a
path) when prompted on the first run of Standalone mode

* When running in Standalone mode, entering an incorrect path with the - - st ati c-
i mages option

* Upgrading to a new version of Application Express and forgetting to reconfigure
and redeploy i . war to point to the static resources for the new Application Express
version, or in Standalone mode forgetting to update the location by using the - -
apex- i mages option

To help in diagnosing the problem, you can try to access the apex_versi on. txt file.
For example, if your Application Express deployment is located at htt ps: //

exanpl e. conf ords/ and your static resources have been deployed at htt ps://
exanpl e. confi/, use a browser to access the following URL:

https://exanpl e. conli/apex_version.txt

If you get a 404 Not Found error, then check the preceding list of possible specific
causes, including i . war not being deployed or not pointing to a folder containing
Application Express static resources.

If a plain text file is displayed, it should contain text like the following:

Application Express Version: 4.2.1

Check that the version nhumber matches the version of Application Express that is
deployed on the database. If the numbers do not match, check if you have made an
error mentioned in the last item in the preceding list of possible specific causes,
because Oracle REST Data Services is not configured to use the correct version of the
Application Express static resources to match the Application Express version in the
database.

If you need help in solving the problem, check the information in this book about
creating and deploying i . war for your environment, such as WebLogic Server or
Glassfish.

You can also get detailed help on the static listener command by entering the following
at a command prompt:

java -jar ords.war help static

D-2

Creating an Image Gallery

This tutorial explains an extended example that builds an image gallery service for
storing and retrieving images. This tutorial uses Oracle Application Express.
Topics:

* Before You Begin

» Creating the Gallery Database Table

e Creating the Gallery RESTful Service Module

e Trying Out the Gallery RESTful Service

* Creating the Gallery Application

e Trying Out the Gallery Application

e Securing the Gallery RESTful Services

* Accessing the RESTful Services from a Third Party Application

¢ See Also:

To do this tutorial, you must be familiar with the concepts and techniques
covered in Developing Oracle REST Data Services Applications.

E.1 Before You Begin

This section describes some common conventions used in this example as well as
best practices regarding API entry points.

Topics:
* About URIs
e About Browser Support

e Creating an Application Express Workspace

E.1.1 About URIs

Throughout this example, URIs and URI Templates are referenced using an
abbreviated form that omits the host name, context root and workspace path prefix.
Consider the following example:

gal I ery/i mages/

To access this URI in your Web browser, you would use a URI in the following format:

htt ps://<host>: <port >/ or ds/ <wor kspace>/ gal | ery/i mages/

ORACLE E-1

https://docs.oracle.com/cd/E56351_01/doc.30/e87809/developing-REST-applications.htm#AELIG3000

Appendix E
Creating the Gallery Database Table

where

* <host > is the host on which Oracle REST Data Services is running.
e <port>isthe port on which Oracle REST Data Services is listening.
e [ords is the context root where Oracle REST Data Services is deployed.

* /<workspace>/ is the workspace path prefix of the Oracle Application Express
workspace where the RESTful Service is defined.

E.1.2 About Browser Support

This example uses many modern features defined in HTML5 and related
specifications. It has only been tested in Mozilla Firefox and Google Chrome. It has not
been tested in Microsoft Internet Explorer or on smart-phone/tablet web browsers.
Please use recent versions of either Mozilla Firefox or Google Chrome for this
example.

E.1.3 Creating an Application Express Workspace

To follow the instructions for creation the Gallery example application and related
objects, first, create a new Oracle Application Express Workspace (in Full
Development mode). See the Oracle Application Express Documentation for details on
how to do this.

Call the workspace r est easy and call the administrator user of the workspace
rest easy_adnm n. Ensure the rest easy_adm n user is a a member of the RESTf ul
Servi ces user group.

E.2 Creating the Gallery Database Table

To create the Gallery database table, follow these steps:

1. Log into the r est easy workspace.
2. Navigate to SQL Workshop and then SQL Commands.
3. Enter or copy and paste in the following SQL:

CREATE SEQUENCE GALLERY_SEQ
/
CREATE TABLE GALLERY (
| D NUMBER NOT NULL ENABLE,
TI TLE VARCHAR2(1000) NOT NULL ENABLE,
CONTENT_TYPE VARCHAR2(1000) NOT NULL ENABLE,
| MAGE BLOB NOT NULL ENABLE,
CONSTRAI NT GALLERY_PK PRI MARY KEY (1D) ENABLE
)
/
CREATE OR REPLACE TRI GGER Bl _GALLERY
before insert on GALLERY for each row
begin
if :NEWIDis null then
sel ect GALLERY_SEQ nextval into :NEWID from sys. dual ;
end if;
end;
/

ORACLE E-2

Appendix E
Creating the Gallery RESTful Service Module

ALTER TRI GGER BI _GALLERY ENABLE
/

E.3 Creating the Gallery RESTful Service Module

To create the Gallery RESTful services module, follow these steps:

ORACLE

1.
2.

© o » »

9.

Navigate to SQL Workshop and then RESTful Services.

Click Create on the right side, and enter the following information:
 Name: gal l ery. exanpl e

* URI Prefix: gal l ery/

* URI Template: i mages/

* Method: PCST

e Source: Enter or copy and paste in the following:

declare
i mge_id integer;
begin
insert into gallery (title, content_type,inage)
values (:title,:content_type,:body)
returning id into imge_id;
sstatus := 201;
location := imge_id;
end;

Click Create Module.

Click the POST handler under i mages/

For Requires Secure Access, select No.

Click Create Parameter, and enter the following:
* Name: Sl ug

* Bind Variable Name: title

Click Create.

Click Create Parameter on the bottom right, and enter the following information:
* Name: X- APEX- FORWARD

+ Bind Variable Name: | ocati on

* Access Method: QUT

Click Create.

10. Click Create Parameter on the bottom right, and enter the following information:

 Name: X- APEX- STATUS- CODE
* Bind Variable Name: st at us
« Access Method: OUT

 Parameter Type: | nt eger

11. Click Create.

E-3

Appendix E
Trying Out the Gallery RESTful Service

At this point you have created the module with a single service that can store new
images. Next, add a service to display the list of stored images:

1.
2.
3.

4,

Navigate to SQL Workshop and then RESTful Services.
Click the module named gal | ery. exanpl e.
Click Create Handler under i nages/, and enter the following information:
¢ Method: GET
* Source Type: Feed
* Requires Secure Access: No
* Source: Enter or copy and paste in the following:
select id, title content_type fromgallery order by id desc

Click Create.

At this point you have created the service to store and list images. Next, add a service
to display individual images:

1.
2.
3.

6.

Navigate to SQL Workshop and then RESTful Services.
Click the module named gal | ery. exanpl e.
Click Create Template under gallery.example, and enter the following information:
* URI Template: i mages/{i d}
Click Create.
Click Create Handler under images/{id}, and enter the following information:
¢ Method: GET
* Source Type: Medi a Resource
* Requires Secure Access: No
e Source: Enter or copy and paste in the following:
sel ect content_type, image fromgallery where id = :id

Click Create.

E.4 Trying Out the Gallery RESTful Service

To try out the Gallery RESTful Service, follow these steps:

ORACLE

1
2
3.
4

Navigate to SQL Workshop and then RESTful Services.
Click the module named gal | ery. exanpl e.

Click the GET handler located under i mages/ .

Click Test.

The following URI should be displayed in the browser:

https://<host>: <port>/ords/resteasy/gallery/inmges/

Content similar to the following should be displayed:

{"next":
{"$ref":

E-4

Appendix E
Creating the Gallery Application

"http://1ocal host: 8080/ ords/resteasy/ gall ery/imges/ ?page=1"
h

"items":[]

}

* The content is a JSON document that lists the location of each image in the
gallery, but since you have not yet added any images, the list (the i t ens|]
element) is empty.

e The JSON has no extra white space to minimize its size, this can make it
difficult to decipher, it is recommended to add a JSON viewing plugin to your
browser to make viewing the JSON easier.

To create an Oracle Application Express application to enable users to add and view
images in the gallery, see Creating the Gallery Application.

E.5 Creating the Gallery Application

ORACLE

To create an Oracle Application Express application that uses the gallery RESTful
Services, follow these steps:

1. Navigate to Application Builder.

2. Click Create.

3. Choose Dat abase, then click Next.

4. Enterlnage Gallery inthe Name field, then click Next.

5. Click Create Application, and then Create Application again to confirm creation
of the application.

6. Click page 1, Hone.

7. Under Regions click the + (plus sign) icon to create a new region.

8. For Region Type, choose HTM. and click Next, then click Next on the next page.

9. For Region Template, choose No Tenpl at e.

10. For Title, enter Tasks, and click Next.
11. For Enter HTML Text Region Source, specify:
Upl oad | mage
12. Click Create Region.
13. Under Regions, click the + (plus sign) icon to create a new region.
14. For Region Type, choose HTM., and click Next, then Next again.
15. For Region Template, choose DI V Region with |ID.
16. For Title, enter | mages.
17. Click Create Region.
18. Click the | mages region and click the Attributes tab.
19. For Static ID, enter i mages, and click Apply Changes.
20. Under Page, click the Edit icon, then click the JavaScript tab.

21. For Function and Global Variable Declaration, enter or copy and paste in the
following:

E-5

ORACLE

Appendix E
Creating the Gallery Application

var workspace_path_prefix = 'resteasy';
var gallery url ="'./" + workspace_path_prefix + '/gallery/inmages/';
function uploadFiles(url, fileOrBlob, onload) {
var name = 'unspecified';
if (fileoBlob['name']) {
name = fileO Bl ob. nang;
1
var xhr = new XM.Ht t pRequest () ;
xhr. open(' POST', url, true);
xhr. set Request Header (' Sl ug' , nane) ;
xhr. onl oad = onl oad;
xhr. send(fileOr Bl ob);

}

function createUpl oader () {
var $upload = $(' <div id="uploader" title="Image Upl oad"\
styl e="di spl ay: none">\
<f or np\
<fiel dset >\
<l abel for="file">File</Iabel >\
<input type="file" name="file" id="file"\
class="text ui-widget-content ui-corner-all"/>\
</fieldset>\
</fornmp
</[div>');
$(document . body) . append($upl oad) ;
$upl oad. di al og({
aut oQpen: f al se,
modal : true,
buttons: {
"Upl oad": function() {
var file = document.querySel ector('input[type="file"]");
upl oadFiles(gal lery_url, file.files[0],function() {
$(' #upl oader'). di al og("cl ose");
get I mages();
D
}

ncel": function() {
$(' #upl oader'). di al og("cl ose");
}

}

IO

$(' #upl oad-btn").click(function() {
$(' #upl oader'). di al og("open");

b

}

function getlnmages() {
var xhr = new XM.Ht t pRequest () ;
xhr. open(' GET', gallery_url);
xhr.onl oad = function(e) {
var data = JSON parse(this.response);
$(' #image-list').remove();
var $images = $(' <ol id="image-list">");
for (i indata.items) {
var item= data.itens[i];
var uri = itemuri['$ref'];
var $image = $('</1i>")
.append('<a href="" +uri +"'" + title="" +
itemtitle + '"><ing src="graphics/'+ uri +
tr><fa>');

E-6

ORACLE

22.

23.
24,
25.

Appendix E
Creating the Gallery Application

$i mages. append($i mage) ;

$(' #i mages') . append($i mages);
1
xhr. send();

}

For Execute when Page Loads, enter or copy and paste in the following:

creat eUpl oader ();
get | mages() ;

Click Apply Changes.
Under Page, click the Edit icon, then click the CSS tab.
For Inline, enter or copy and paste in the following:

a im { border:none; }
#images ol { margin: lemauto; width: 100% }
#imges |i { display: inline; }
#imges a { background: #ff; display: inline; float: left;
margin: 0 0 27px 30px; width: auto; padding: 10px 10px 15px;
textalign: center; text-decoration: none; color: #333;
font-size: 18px; -webkit-box-shadow. 0 3px 6px rgbha(0,0,0,.25);
-noz- boxshadow. 0 3px 6px rgba(0,0,0,.25); }
#images ing { display: block; width: 190px; margin-bottom 12px; }
| abel {font-weight: bold; text-align: right;float: left;
width: 120px; margin-right: 0.625em }
| abel :after {content(":")}
input, textarea { width: 250px; nargin-bottom b5px;textalign: left}
textarea {height: 150px;}
br { clear: left; }
#images a:after { content: attr(title); }
cbutton {
border-top: 1px solid #96d1f8;
background: #65a9d7;
backgr ound:
-webki t-gradient(linear,left top,left bottom
from #3e779d), t o(#65a9d7)) ;
backgr ound:
-webkit-1inear-gradient(top, #3e779d, #65a9d7);
backgr ound:
-noz-linear-gradient(top, #3e779d, #65a9d7);
background: -ns-linear-gradient(top, #3e779d, #65a9d7);
background: -o-linear-gradient(top, #3e779d, #65a9d7);
paddi ng: 5px 10px;
-webki t - border-radius: 8px;
-noz- border-radi us: 8px;
border-radius: 8px;
-webki t - box- shadow. rgba(0,0,0,1) 0 1px O0;
-moz- box- shadow. rgba(0,0,0,1) 0 1px O;
box- shadow. rgba(0,0,0,1) 0 1px O;
t ext - shadow. rgba(0,0,0,.4) 0 1px O;
color: white;
font-size: 14px;
text-decoration: none;
vertical-align: mddle;

}

.button: hover {
border-top-col or: #28597a;

E-7

Appendix E
Trying Out the Gallery Application

background: #28597a;
col or: #ccc;
cursor: pointer;

}

.button:active {
bor der-top-col or: #1b435e;
background: #1b435e;

}

26. Click Apply Changes.

E.6 Trying Out the Gallery Application

To try out the Gallery application, follow these steps:

g ® N PR

Navigate to Application Builder.

Click Run beside the Image Gallery application.

Log in as the rest easy_admi n user.

Click Upload Image.

Choose an image file (a JPEG or PNGfile) and click Upload.

The application displays the uploaded image.

E.7 Securing the Gallery RESTful Services

It is not wise to allow public access to the image uploading service, and it is probably
not ideal to allow public access to the images in the gallery either. Therefore, you
should protect access to the RESTful services.

RESTful Services support two kinds of authentication:

First Party Authentication. This is authentication intended to be used by the party
who created the RESTful service, enabling an Application Express application to
easily consume a protected RESTful service. The application must be located with
the RESTful service, that is, it must be located in the same Oracle Application
Express workspace. The application must use the standard Oracle Application
Express authentication.

Third Party Authentication. This is authentication intended to be used by third party
applications not related to the party who created the RESTful service. Third party
authentication relies on the OAuth 2.0 protocol.

Topics:

Protecting the RESTful Services
Modifying the Application to Use First Party Authentication

E.7.1 Protecting the RESTful Services

To protect the RESTful services, follow these steps:

1.

ORACLE

Navigate to SQL Workshop and then RESTful Services.

E-8

Appendix E
Securing the Gallery RESTful Services

2. Click RESTful Service Privileges in the section labeled Tasks.
3. Click Create, and enter the following:
* Name: exanpl e.gal l ery
e Label: Gall ery Access
* Assigned Groups: RESTf ul Services
» Description: View and Post images in the Gallery
* Protected Modules: gal | ery. exanpl e
4. Click Create.
To check that access to the RESTful Service is now restricted, follow these steps:
1. Navigate to SQL Workshop and then RESTful Services.
2. Click the module named gal | ery. exanpl e.
3. Click the GET handler located under i mages/ .
4. Click Test.
The URI in the following format should be displayed in the browser:

https://<host>:<port>/ords/resteasy/gallery/imges

An error page should be displayed with the error message:

401 Unaut hori zed.

¢ See Also:

This is the expected result, because a protected RESTful Service cannot be
accessed unless proper credentials are provided. To add the required
credentials to the request, see Modifying the Application to Use First Party
Authentication

E.7.2 Modifying the Application to Use First Party Authentication

ORACLE

First Party Authentication relies on the cookie and user session established by the
Application Express application, but Oracle REST Data Services needs additional
information to enable it to verify the cookie. It needs to know the application ID and the
current session ID. This information is always known to the Application Express
application, and must be included with the request made to the RESTful service by
adding the custom Apex- Sessi on HTTP header to each request sent to a RESTful
Service. The application ID and session ID are sent as the value of the header,
separated from each other by a comma delimiter. For example:

GET /ords/resteasy/gall ery/imges/
Host: server.exanple.com
Apex- Session: 102, 6028968452563

Sometimes it is not possible to include a custom header in the HTTP request. For
example, when displaying an image in an HTML page using the <i ng> tag, an
alternative mechanism is used for these scenarios. The application ID and session ID
are included in a query parameter named _apex_sessi on, which is added to the

E-9

ORACLE

Appendix E
Securing the Gallery RESTful Services

Request URI, which contains the application ID and session ID separated by a
comma. For example:

<ing src="graphi cs/101?_apex_sessi on=102, 6028968452563" >

Note that this approach must only be used when it is not possible to use a custom
header. Otherwise, this approach is discouraged because of the increased risk of the
session ID being inadvertently stored or disclosed due to its inclusion in the URI.

To modify the application to add the first party authentication information to each
request, follow these steps:

o w NP

10.
11.

Navigate to Application Builder.

Click the Edit button beside the Image Gallery application.
Click the first page, named Horre.

Under Page click the Edit icon, and click the JavaScript tab.

Add the following at the start of the Function and Global Variable Declaration
field:

function set ApexSessi on(pat hOr Xhr) {
var appld = $v('pFlowid);
var sessionld = $v(' plnstance');
var apexSession = appld +'," + sessionld,;
if (typeof pathOrXhr === "string') {
var path = pathO Xhr;
if (path.indexOf("?') ==-1) {
path = path + '?_apex_session=" + apexSession;
} else {
path = path + '& apex_session=" + apexSession;

}

return path;

} else {

var xhr = pathO Xhr;

xhr. set Request Header (' Apex- Sessi on', apexSessi on);
return xhr;

}
}

This defines a JavaScript function named set ApexSessi on() which will add the
first party authentication information to an XM_Ht t pRequest object or a string
containing a path.

Now you must modify the existing JavaScript code to add call this function when
appropriate.

After the line reading xhr. open(' PCST' , url, true);, add the following line:

set ApexSessi on(xhr);

After the line reading xhr. open(' GET', gallery_url);, add the following line:
set ApexSessi on(xhr);

Change the line reading var uri = itemuri['$ref']; to:

var uri = setApexSession(itemuri['$ref']);

Click Apply Changes.

Try running the application as before. It should work, because it is now providing
the RESTful Services with the required authentication information.

E-10

Appendix E
Accessing the RESTful Services from a Third Party Application

E.8 Accessing the RESTful Services from a Third Party
Application

ORACLE

If third parties want to consume and use the Gallery RESTful services, they must
register the third party application in order to gain OAuth 2.0 credentials, which can
then be used to initiate an interactive process by which users can authorize the third
party application to access the RESTful Services on their behalf.

Once an application is registered, it can then acquire an access token. The access
token must be provided with each request to a protected RESTful Service. Oracle
REST Data Services verifies the access token before allowing access to the RESTful
service.

OAuth 2.0 defines a number of different protocol flows that can be used by
applications to acquire an access token. Oracle REST Data Services supports two of
these protocol flows:

* Authorization Code. This flow is used when the third party application is able to
keep its client credentials secure, for example, a third party website that is properly
secured.

* Implicit Grant. This flow is used when the third party application cannot assure
that its credentials would remain secret, for example, a JavaScript-based browser
application or a native smartphone application.

The first step is to register the third party application. To demonstrate this, you will
create a user representing the third party developer, and then use that user to register
an application.

The steps in the related topics create a user in the RESTEASY workspace user
repository and perform related actions.

¢ Note:

In addition to authenticating users defined in workspace user repositories,
Oracle REST Data Services can also authenticate against any user
repository accessible from WebLogic Server or GlassFish. For information,
see Authenticating Against WebLogic Server and GlassFish User
Repositories.

Topics:

* Creating the Third Party Developer User

* Registering the Third Party Application

e Acquiring an Access Token

» Using an Access Token

* About Browser Origins

* Configuring a RESTful Service for Cross Origin Resource Sharing

e Acquiring a Token Using the Authorization Code Protocol Flow

E-11

Appendix E
Accessing the RESTful Services from a Third Party Application

» About Securing the Access Token

E.8.1 Creating the Third Party Developer User

To create the third party developer user (the user account for the third party developer
who wants to register an application to access the RESTful services), follow these
steps:

1. Navigate to Administration.
2. Click Manage Users and Groups.
3. Click Create User, and enter the following information:
* Username: 3rdparty_dev
* Email Address: Email address for this developer user
* Password: Password for this user
* User Groups: QAuth 2.0 dient Devel oper

4. Click Create User.

E.8.2 Registering the Third Party Application

To register the third party application to use the I nplicit G ant OAuth 2.0 protocol
flow, follow these steps:

1. Go to the following URI in your browser:
https://server:port/ords/resteasy/ui/oauth2/clients/
2. Enter the credentials of the 3rdparty_dev user created above, and click Sign In.
3. Click Regi ster Cient, and enter the following information:
e Name:3rd Party Gallery
» Description: Denonstrates consuning the Gallery RESTful Service
* Response Type: Token
* Redirect URI: https://exanpl e.org/
e Support Email: Desired email address
* Required Scopes: Gal | ery Access
4. Click Register.
5. Click 3rd Party Gallery in the list that appears on the next page.

6. Note the values of the Client Identifier and the Authorization URI fields.

E.8.3 Acquiring an Access Token

To acquire an access token, a user must be prompted to approve access. To initiate
the approval process, direct the user to the approval page using the following URI:

https://server:port/ords/resteasy/oauth2/aut h?response_type=t oken&\
client_i d=CLI ENT_I DENTI FI ER&\
st at e=STATE

ORACLE E-12

Appendix E
Accessing the RESTful Services from a Third Party Application

where:

e CLI ENT_I DENTI FI ERis the Client Identifier assigned to the application when it was
registered.

» STATE s a unique value generated by the application used to prevent Cross Site
Request Forgery (CSRF) attacks.

Note the following about the Oracle REST Data Services OAuth 2.0 implementation:

* The OAuth 2.0 specification allows two optional parameters to be supplied in the
above request:

— redirect _uri: Identifies the location where the authorization server will
redirect back to after the user has approved/denied access.

— scope: Identifies the RESTful Service Privileges that the client wishes to
access.

Oracle REST Data Services does not support either of these parameters: both of
these values are specified when the client is registered, so it would be redundant
to repeat them here. Any values supplied for these parameters will be ignored.

» The OAuth 2.0 specification recommends the use of the st at e parameter, but
Oracle REST Data Services requires the use of the parameter because of its
importance in helping to prevent CSRF attacks.

e The response type is also specified when the application is registered, and thus
the response_t ype parameter is also redundant; however, the OAuth 2.0
specification states the parameter is always required, so it must be included. It is
an error if the response_t ype value differs from the registered response type.

When the preceding URI is accessed in a browser, the user is prompted to sign on,
and then prompted to review the application's request for access and choose whether
to approve or deny access.

If the user approves the request, then the browser will be redirected back to the
registered redirect URI, and the access token will be encoded in the fragment portion
of the URI:

https://exanpl e. or g/ #t oken_t ype=bear er &
access_t oken=ACCESS_TOKEN&\
expires_i n=TOKEN_LI FETI ME&
st at e=STATE

where:

e exanpl e. or g is used for illustrative purposes only. In a real application
exanpl e. or g will be replaced with the URL of the third party application that is
requesting access.

e ACCESS TCKENis the unique, unguessable access token assigned to the current
user session, and which must be provided with subsequent requests to the
RESTful service.

e TOKEN_LI FETI ME is the number of seconds for which the access token is valid.

e STATE is the unique value supplied by the application at the start of the
authorization flow. If the returned st at e value does not match the initial st at e
value, then there is an error condition, and the access token must not be used,
because it is possible an attacker is attempting to subvert the authorization
process through a CSRF attack.

ORACLE E-13

Appendix E
Accessing the RESTful Services from a Third Party Application

Note:

You can modify the default OAuth access token duration (or lifetime) for all
the generated access tokens. To achieve this, add the

security. oaut h. t okenLifetime entry to the def aul ts. xml configuration file
in the following way, with the OAuth access token duration specified in
seconds:

<entry key="security. oauth.tokenLifetime”>600</entry>

If the user denies the request, or the user is not authorized to access the RESTful
Service, the browser will be redirected back to the registered redirect URI, and an
error message will be encoded in the fragment portion of the URI:

https://exanpl e. org/ #error=access_deni ed&st at e=STATE

where:

e error=access_deni ed informs the client that the user is not authorized to access
the RESTful Service, or chose not to approve access to the application.

e STATE is the unique value supplied by the application at the start of the
authorization flow. If the returned st at e value does not match the initial st at e
value, then there is an error condition, the client should ignore this response. It is
possible an attacker is attempting to subvert the authorization process via a CSRF
attack.

E.8.4 Using an Access Token

ORACLE

After the application has acquired an access token, the access token must be included
with each request made to the protected RESTful service. To do this, an
Aut hori zat i on header is added to the HTTP request, with the following syntax:

Aut hori zation: Bearer ACCESS TOKEN

where:

e ACCESS TOKENis the access token value.

For example, a JavaScript-based browser application might invoke the Gallery service
as follows:

var accessToken = ... /* initialize with the value of the access token */
var xhr = new XM.Htt pRequest () ;

xhr. open(' GET', 'https://server:port/ords/resteasy/gallery/imges/', true);
/* Add the Access Token to the request */

xhr. set Request Header (' Aut hori zation', 'Bearer ' + accessToken);

xhr.onload = function(e) {

/* logic to process the returned JSON docunent */

b

xhr. send();

The preceding example uses the XMLHt t pRequest . set Request Header (nang, val ue)
function to add the Aut hori zat i on header to the HTTP request. If the access token is

E-14

Appendix E
Accessing the RESTful Services from a Third Party Application

valid, then the server will respond with a JSON document listing the images in the
gallery.

E.8.5 About Browser Origins

One of the key security concepts of web browsers is the Same Origin Policy, which
permits scripts running on pages originating from the same web site (an Origin) to
access each other's data with no restrictions, but prevents access to data originating
from other web sites.

An origin is defined by the protocol, host name and port of a web-site. For example
https://exanpl e. comis one origin and htt ps: // anot her. exanpl e. comis a different
origin, because the host name differs. Similarly, htt p: // exanpl e. comis a different
origin than ht t ps: / / exanpl e. combecause the protocol differs. Finally, http://
exanpl e. comis a different origin from ht t p: / / exanpl e. com 8080 because the port
differs.

For example, if a third party client of the Gallery RESTful service is located at:

https://thirdparty.conlgallery.htn

and the Gallery RESTful service is located at:

https://exanpl e. com ords/resteasy/ gal | ery/imges/

then the Same Origin Policy will prevent gal | ery. ht M making an XMLHt t pRequest to
https://exanpl e. com ords/resteasy/ gal | ery/i mages/, because scripts in the
https://thirdparty. comorigin can only access data from that same origin, and
https://exanpl e. comis clearly a different origin.

This is proper if the authors of ht t ps: // exanpl e. comdo not trust the authors of
https://thirdparty. com However, if the authors do have reason to trust each other,
then the Same Origin Policy is too restrictive. Fortunately, a protocol called Cross
Origin Resource Sharing (CORS), provides a means for htt ps: / / exanpl e. comto
inform the web browser that it trusts htt ps: //t hi rdparty. comand thus to instruct the
browser to permit gal | ery. ht Ml to make an XMLHt t pRequest to https://

exanpl e. conf ords/ rest easy/ gal | ery/i mages/ .

E.8.6 Configuring a RESTful Service for Cross Origin Resource
Sharing

To configure a RESTful service for Cross Origin Resource Sharing, follow these steps:

=

Navigate to SQL Workshop and then RESTful Services.
2. Click the module named gal | ery. exanpl e.

3. For Origins Allowed, enter the origins that are permitted to access the RESTful
service (origins are separated by a comma).

4. Press Apply Changes

E.8.7 Acquiring a Token Using the Authorization Code Protocol Flow

Other sections have explained acquiring an access token using the OAuth 2.0 Implicit
protocol flow. This section explains how to do the same using the Authorization Code

ORACLE E-15

Appendix E
Accessing the RESTful Services from a Third Party Application

protocol flow. The process is slightly more involved than for the Implicit protocol flow,
because it requires exchanging an authorization code for an access token.

This section will mimic this exchange process using cURL.

Topics:

* Registering the Client Application

* Acquiring an Authorization Code

* Exchanging an Authorization Code for an Access Token

» Extending OAuth 2.0 Session Duration

E.8.7.1 Registering the Client Application

[To register the client, follow these steps:

1. Go to the following URI in your browser:
https://server:port/ords/resteasy/ ui/oauth2/clients/
2. Enter the credentials of the 3rdparty_dev user, and click Sign In.
3. Click Register Client, and enter the following information:
* Name: Another Gallery

e Description: Denonstrat es using the Authorization Code QAuth 2.0
Protocol Fl ow

* Response Type: Code
 Redirect URI : https://gallery. exanpl e. demo
e Support EMail: any desired email address
* Required Scopes: Gal | ery Access
4. Click Register.
5. Click 3rd Party Gallery in the list that appears on the next page.

6. Note the values of the Client Identifier, Client Secret, and the Authorization URI
fields.

E.8.7.2 Acquiring an Authorization Code

ORACLE

The first step in the Authorization Code protocol flow is to acquire an authorization
code. An authorization code is a short lived token that when presented along with the
application's client identifier and secret can be exchanged for an access token.

To acquire an access token, the user must be prompted to approve access. To initiate
the approval process, direct the user to the approval page using a URI in the following
format:

https://server:port/ords/resteasy/oauth2/aut h?response_type=code&
client_i d=CLI ENT_I DENTI FI ER&
st at e=STATE

where:

E-16

Appendix E
Accessing the RESTful Services from a Third Party Application

e CLI ENT_I DENTI FI ER is the Client Identifier assigned to the application when it was
registered.

e STATE s a unique value generated by the application used to prevent Cross Site
Request Forgery (CSRF) attacks.

If the user approves the request, then the browser will be redirected back to the
registered redirect URI, and the access token will be encoded in the query string
portion of the URI:

https://gallery. exanpl e. demo?code=AUTHORI ZATI ON_CODE&st at e=STATE

where:

e AUTHORI ZATI ON_CODE is the authorization code value.

» STATE is the unique value supplied by the application at the start of the
authorization flow. If the returned st at e value does not match the initial st at e
value, then there is an error condition, the authorization code must not be used. It
is possible an attacker is attempting to subvert the authorization process via a
CSRF attack.

Because the registered htt ps:// gal | ery. exanpl e. deno redirect URI does not
exist, the browser will report a server not found error, but for the purposes of this
example, this does not matter, because you can still see the authorization code
value encoded in the URI. Note the value of the code parameter, because it will be
used while Exchanging an Authorization Code for an Access Token.

E.8.7.3 Exchanging an Authorization Code for an Access Token

ORACLE

In this section you will use cURL to exchange the authorization code for an access
token. To exchange an authorization code the application must make an HTTP
request to the Oracle REST Data Services OAuth 2.0 token endpoint, providing the
authorization code and its client identifier and secret. If the credentials are correct,
Oracle REST Data Services responds with a JSON document containing the access
token. Note that the application makes the HTTP request from its server side (where
the client identifier and secret are securely stored) directly to Oracle REST Data
Services; the web-browser is not involved at all in this step of the protocol flow.

Use a cURL command in the following format to exchange the authorization code for
an access token:

curl -i -d "grant_type=authorization_code&ode=AUTHORI ZATI ON_CODE" \
--user CLIENT_I DENTI FER: CLI ENT_SECRET \
https://server:port/ords/resteasy/ oauth2/token

where:

e AUTHORI ZATI ON_CQDE is the authorization code value (which was encoded in the
code parameter of the query string in the redirect URI in the previous section).

e CLI ENT_I DENTI FERis the client identifier value.
o CLI ENT_SECRET is the client secret value.
cURL translates the above commands into an HTTP request like the following:

POST /ords/resteasy/oauth2/token HTTP/ 1.1

Aut hori zation: Basic QOxJRUSUXOl ERUSUSUZIRVI 6Q0xJRUSUXINFQLIFVA==
Host: server:port

Accept: */*

E-17

Appendix E
Accessing the RESTful Services from a Third Party Application

Content-Length: 59
Content - Type: application/ x-ww«form url encoded

grant _type=aut hori zati on_code&code=AUTHORI ZATI ON_CODE

where:

* The requestis an HTTP PCST to the oaut h2/t oken OAuth 2.0 token endpoint.

e The Aut hori zati on header uses the HTTP BASI C authentication protocol to
encode the client identifier and secret to assert the application's identity.

e The Cont ent - Type of the request is form data (appl i cati on/ x- wwf orm
ur | encoded) and the content of the request is the form data asserting the OAuth
2.0 token grant type and the OAuth 2.0 authorization code value.

The preceding HTTP request will produce a response like the following:

HTTP/ 1.1 200 K
ETag: "..."
Content-Type: application/json

{
"access_t oken": " 04t ss- gM35uCeQzR 2vedQ . ",
"token_type": "bearer",
"expires_in":3600,
"refresh_token": " UX4FVHhPFJI 6GokvTXYWOA. . "
}

The response is a JSON document containing the access token along with a refresh
token. After the application has acquired an access token, the access token must be
included with each request made to the protected RESTful Service. To do this an
Aut hori zat i on header is added to the HTTP request, with the following syntax:

Aut hori zation: Bearer ACCESS TOKEN

Related Topics
* Extending OAuth 2.0 Session Duration

E.8.7.4 Extending OAuth 2.0 Session Duration

ORACLE

To extend the lifetime of an OAuth 2.0 session, a refresh token can be exchanged for
a new access token with a new expiration time. Note that refresh tokens are only
issued for the Authorization Code protocol flow.

The application makes a similar request to that used to exchange an authorization
code for an access token. Use a cURL command in the following format to exchange
the refresh token for an access token:

curl -i -d "grant_type=refresh_token&refresh_t oken=REFRESH TOKEN" \
--user CLIENT_I DENTI FER: CLI ENT_SECRET \
https://server:port/ords/resteasy/ oauth2/token

where:

e REFRESH TOKEN is the refresh token value returned when the access token was
initially issued.

o CLI ENT_I DENTI FER is the client identifier value.
e CLI ENT_SECRET is the client secret value.

E-18

Appendix E
Accessing the RESTful Services from a Third Party Application

cURL translates the above commands into an HTTP request like the following:

POST /ords/resteasy/oauth2/token HTTP/ 1.1

Aut hori zation: Basic QOxJRUSUXOl ERUSUSUZIRVI 6Q0xJRUSUXINFQLIFVA==
Host: server:port

Accept: */*

Content-Length: 53

Cont ent - Type: application/x-wwform url encoded

grant _type=refresh_t oken&refresh_t oken=REFRESH_TOKEN

where:
e The requestis an HTTP POST to the oaut h2/t oken OAuth 2.0 token endpoint.

e The Aut hori zat i on header uses the HTTP BASI C authentication protocol to
encode the client identifier and secret to assert the application's identity.

e The Cont ent - Type of the request is form data (appl i cati on/ x- ww- f or m
ur | encoded) and the content of the request is the form data asserting the OAuth
2.0 token grant type and the refresh token value.

The preceding HTTP request will produce a response like the following:

HTTP/ 1.1 200 K
ETag: “...
Content - Type: application/json

{
"access_t oken":"hECH Fc70s2Kt XT4pDf kzw. . ",

"token_type": "bearer",

"expires_in":3600,

"refresh_token":"-70BQKc_gUQ®3ZHC 08Hg. . "
}

The response is a JSON document containing the new access token along with a new
refresh token. The existing access token and refresh token are invalidated, and any
attempt to access a service using the old access token will fail.

E.8.8 About Securing the Access Token

ORACLE

In OAuth 2.0 the access token is the sole credential required to provide access to a
protected service. It is, therefore, essential to keep the access token secure. Follow
these guidelines to help keep the token secure:

e ltis strongly recommended to use HTTPS for all protected RESTful Services. This
prevents snooping attacks where an attacker may be able to steal access tokens
by eavesdropping on insecure channels. It also prevents attackers from viewing
the sensitive data that may be present in the payload of the requests.

e Ensure that the client application is not located in a browser origin with other
applications or scripts that cannot be trusted. For example assume that user Alice
has a client application hosted at the following location:

https://sharedhosting. contalice/application

If another user (such as Fred) is also able to host his application in the same
origin, for example, at:

https://sharedhosting.contfred/trouble

E-19

ORACLE

Appendix E
Accessing the RESTful Services from a Third Party Application

then it will be easy for / fred/ t r oubl e to steal any access token acquired by /
al i cel/ application, because they share the same origin https://

shar edhost . com and thus the browser will not prevent either application from
accessing the other's data.

To protect against this scenario, Alice's application must be deployed in its own
origin, for example:

https://alice.sharedhosting. con application

or:

https://application.alice.sharedhosting. com

or:

https://aliceapp.com

E-20

Index

A

access token
acquiring, E-12
securing, E-19
using, E-14
Apache Tomcat, 1-2
about, 1-35
configuring Oracle REST Data Services
images, 1-35
deploying to, 1-35
downloading, 1-35
authentication
against WebLogic and GlassFish user
repositories, 3-77

B

bequeath connection, 1-38
browser origins, E-15

C

command-line interface, 1-4
configdir command, C-1
locating configuration files, C-1
locating configuration folder, C-1
configuration file editable parameters
jdbc.MaxConnectionReuseCount, C-6
jdbc.MinLimit, C-6
security.requestValidationFunction, C-11
security.verifySSL, C-11
soda.defaultLimit, C-11
soda.maxLimit, C-11
configuration files, C-1
format of, C-2
locating using configdir command, C-1
configuration folder
setting location, C-1
structure of, C-1
CORS (Cross Origin Resource Sharing), E-15
CREATE_CLIENT procedure, 9-1
CREATE_ROLE procedure, 6-1

CREATE_SERVICE procedure (deprecated), 6-1

Cross Origin Resource Sharing (CORS), E-15

ORACLE

Cross Site Request Forgery (CSRF) attacks,
E-13

CSRF (Cross Site Request Forgery) attacks,
E-13

cURL, 3-5

D

database users, 1-4
defaults.xml

enabling detailed request error messages,

D-1

defaults.xmll, file format, C-2
DEFINE_HANDLER procedure, 6-4
DEFINE_MODULE procedure, 6-6
DEFINE_PARAMETER procedure, 6-7
DEFINE_PRIVILEGE procedure, 6-9
DEFINE_SERVICE procedure, 6-11
DEFINE_TEMPLATE procedure, 6-14
DELETE_CLIENT procedure, 9-2
DELETE_MODULE procedure, 6-16
DELETE_PRIVILEGE procedure, 6-16
DELETE_ROLE procedure, 6-17
deploy options

Apache Tomcat, 1-35
deployment options

GlassFish Server, 1-31

Oracle WebLogic Server, 1-27
DER

converting private key to DER, 1-25
downloading

Apache Tomcat, 1-35

GlassFish Server, 1-32

Oracle WebLogic Server, 1-27
DROP_REST_FOR_SCHEMA procedure, 6-17

E

ENABLE_OBJECT procedure, 6-18
ENABLE_SCHEMA procedure, 6-19

Index-1

G

GlassFish Server, 1-2

about, 1-32

creating a WAR file for images, 1-33

deploy to, 1-31

downloading, 1-32

installing the deployment, 1-34, 1-36
GRANT_CLIENT_ROLE procedure, 9-3
graphical user interface administration, 1-22

image gallery example, E-1

installation options
standalone mode, 1-24

installation overview, 1-3

J

Java EE application servers
about supported, 1-2
JSON
using to pass parameters, 3-32

M

multiple database configuration, 2-1
about the request URL, 2-1
configuring additional databases, 2-2
routing request rules, 2-3
routing requests based on URL prefix, 2-4

O

OAUTH package
CREATE_CLIENT, 9-1
DELETE_CLIENT, 9-2
GRANT_CLIENT_ROLE, 9-3
RENAME_CLIENT, 94
REVOKE_CLIENT_ROLE, 9-4
UPDATE_CLIENT, 9-5
OAuth2, default behavior, 1-23
Oracle GlassFish Server
launching Administration Console, 1-33
Oracle REST Data Services
about, 1-1
about upgrading, 1-36
administering with graphical user interface,
1-22
bequeath connection, 1-38
caching, 2-11
configuration files, C-1
configuring, 1-3, 1-6, 2-1

ORACLE

Index

Oracle REST Data Services (continued)
configuring multiple databases, 2-1
configuring with command-line interface, 1-4,

1-6
database users, 1-4
developing RESTful services, 2-12
downloading, 1-3
environment, 2-11
Excel settings, 2-11
installation overview, 1-3
installing, 1-3
PL/SQL API

PL/SQL API for Oracle REST Data
Services, 3-82

pre- and post- processing, 2-11
running in standalone mode, 1-24
security, 2-11
system requirements, 1-2

Oracle REST Data Services configuration file
enabling detailed request error messages,

D-1

Oracle REST Data Services package
CREATE_SERVICE (deprecated), 6-1

Oracle WebLogic Server, 1-2
about, 1-27
deploy to, 1-27
downloading, 1-27
installing, 1-27
installing the deployment, 1-29

ORDS package
CREATE_ROLE, 6-1
DEFINE_HANDLER, 6-4
DEFINE_MODULE, 6-6
DEFINE_PARAMETER, 6-7
DEFINE_PRIVILEGE, 6-9
DEFINE_SERVICE, 6-11
DEFINE_TEMPLATE, 6-14
DELETE_MODULE, 6-16
DELETE_PRIVILEGE, 6-16
DELETE_ROLE, 6-17
DROP_REST_FOR_SCHEMA, 6-17
ENABLE_OBJECT, 6-18
ENABLE_SCHEMA, 6-19
PUBLISH_MODULE, 6-20
RENAME_MODULE, 6-20
RENAME_PRIVILEGE, 6-21
RENAME_ROLE, 6-22
SET_MODULE_ORIGINS_ALLOWED, 6-22
SET_URL_MAPPING, 6-23

P

passing parameters
using JSON, 3-32
using query strings, 3-40

Index-2

passing parameters (continued)
using route patterns, 3-36
private key
converting to DER, 1-25
PUBLISH_MODULE procedure, 6-20

R

RENAME_CLIENT procedure, 9-4
RENAME_MODULE procedure, 6-20
RENAME_PRIVILEGE procedure, 6-21
RENAME_ROLE procedure, 6-22
resource handler, 3-3
resource module, 3-3
resource template, 3-3
RESTful services

about, 3-2

accessing from third-party application, E-11

configuring for cross-origin resource sharing,

E-15

developing, 2-12

getting started with, 3-2

image gallery example, E-1

integrating with existing group/role models,

3-80

sample services, 3-54

securing, E-8

terminology, 3-3

user roles, 3-73

using cURL, 3-5
REVOKE_CLIENT_ROLE procedure, 9-4
role-mapping.xml file, 3-80
route pattern, 3-3

S

Same Origin Policy, E-15

ORACLE

Index

SET_MODULE_ORIGINS_ALLOWED
procedure, 6-22
SET_URL_MAPPING procedure, 6-23
SQL Developer Oracle REST Data Services
Administration, 1-22
standalone mode
starting, 1-24
stopping the server, 1-26
standalone mode, running in, 1-24
structure of configuration folder, C-1
supported Java EE application servers, 1-2
system requirements, 1-2

T

troubleshooting, D-1
enabling detailed request error messages,
D-1

U

UPDATE_CLIENT procedure, 9-5
upsert operation, 3-15
URI pattern, 3-3
URI template, 3-3
url-mapping.xml

file format, C-2

request rules routing, C-2
user roles for RESTful services, 3-73
using query strings

to pass optional parameters, 3-40
using route patterns

for passing required parameters, 3-36

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Third-Party License Information

	Changes in This Release for Oracle REST Data Services Installation, Configuration, and Development Guide
	Changes in Oracle REST Data Services Release 18.4
	New Features

	Changes in Oracle REST Data Services Release 18.3
	New Features
	Other Changes

	Changes in Oracle REST Data Services Release 18.2
	New Features
	Desupported Feature
	Other Changes

	Changes in Oracle REST Data Services Release 18.1
	New Features

	1 Installing Oracle REST Data Services
	1.1 About Oracle REST Data Services
	1.2 Understanding the Installation Process
	1.2.1 Supported Java EE Application Servers
	1.2.2 System Requirements
	1.2.3 About Installing Oracle REST Data Services

	1.3 Configuring and Installing Oracle REST Data Services
	1.3.1 About Using the Command-Line Interface
	1.3.2 About the Database Users Used by Oracle REST Data Services
	1.3.3 Privileges Granted by Oracle REST Data Services
	1.3.4 Downloading, Configuring and Installing Oracle REST Data Services
	1.3.4.1 Advanced Installation Using Command-Line Prompts
	1.3.4.1.1 Descriptions for Advanced Installation Prompts

	1.3.4.2 Silent Installation Using a Parameter File
	1.3.4.2.1 Parameters for Installing in Silent Mode
	1.3.4.2.1.1 Parameters for Database Connection
	1.3.4.2.1.2 Parameters for Installing Oracle REST Data Services
	1.3.4.2.1.3 Parameters for Installing into the CDB
	1.3.4.2.1.4 Parameters for Installing Application Express
	1.3.4.2.1.5 Parameters for Installing in Standalone Mode
	1.3.4.2.1.6 Miscellaneous Parameters

	1.3.4.3 Validating the Oracle REST Data Services Installation
	1.3.4.4 If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

	1.3.5 Using SQL Developer Oracle REST Data Services Administration (Optional)
	1.3.5.1 About SQL Developer Oracle REST Data Services Administration
	1.3.5.2 Configuring an Administrator User

	1.3.6 Using OAuth2 in Non-HTTPS Environments

	1.4 Running in Standalone Mode
	1.4.1 Starting in Standalone Mode
	1.4.1.1 Converting a Private Key to DER (Linux and Unix)

	1.4.2 Stopping the Server in Standalone Mode
	1.4.3 Configuring a Doc Root for Non-Application Express Static Resources

	1.5 Deploying to Oracle WebLogic Server
	1.5.1 About Oracle WebLogic Server
	1.5.2 Downloading, Installing, and Configuring Oracle REST Data Services
	1.5.3 Configuring Oracle Application Express Images
	1.5.4 Launching the Administration Server Console
	1.5.5 Installing the Oracle WebLogic Server Deployment
	1.5.6 Configuring WebLogic to Handle HTTP Basic Challenges Correctly
	1.5.7 Verifying the State and Health of ords and i

	1.6 Deploying to GlassFish Server
	1.6.1 About GlassFish Server
	1.6.2 Downloading, Installing, and Configuring Oracle REST Data Services
	1.6.3 Configuring Oracle Application Express Images
	1.6.4 Launching the Administration Server Console
	1.6.5 Installing the GlassFish Server Deployment

	1.7 Deploying to Apache Tomcat
	1.7.1 About Apache Tomcat
	1.7.2 Downloading, Installing, and Configuring Oracle REST Data Services
	1.7.3 Configuring Oracle Application Express Images
	1.7.4 Installing the Apache Tomcat Deployment

	1.8 Upgrading Oracle REST Data Services
	1.9 Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST Data Services

	2 Configuring Oracle REST Data Services (Advanced)
	2.1 Configuring Multiple Databases
	2.1.1 About the Request URL
	2.1.2 Configuring Additional Databases
	2.1.3 Routing Based on the Request Path Prefix
	2.1.3.1 Example of Routing Based on the Request Path Prefix

	2.1.4 Routing Based on the Request URL Prefix
	2.1.4.1 Example of Routing Based on the Request URL Prefix

	2.2 Using the Multitenant Architecture with Oracle REST Data Services
	2.2.1 Installing Oracle REST Data Services in a CDB Environment
	2.2.1.1 Installation Enabling Multiple Releases
	2.2.1.1.1 Command Line Installation
	2.2.1.1.2 Advanced Installation
	2.2.1.1.3 Silent Installation

	2.2.2 Upgrading Oracle REST Data Services in a CDB Environment
	2.2.2.1 Migrating Oracle REST Data Services in the CDB to Enable Multiple Releases

	2.2.3 Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping)
	2.2.4 Uninstalling Oracle REST Data Services in a CDB Environment

	2.3 Support for Oracle RAC Fast Connection Failover
	2.4 Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel Settings
	2.5 Configuring REST-Enabled SQL Service Settings
	2.6 Configuring the Maximum Number of Rows Returned from a Query
	2.7 Configuring the Custom Error Pages
	2.8 Developing RESTful Services for Use with Oracle REST Data Services

	3 Developing Oracle REST Data Services Applications
	3.1 Introduction to Relevant Software
	3.1.1 About Oracle Application Express
	3.1.2 About RESTful Web Services

	3.2 Getting Started with RESTful Services
	3.2.1 RESTful Services Terminology
	3.2.2 About Request Path Syntax Requirements
	3.2.3 "Getting Started" Documents Included in Installation
	3.2.4 About cURL and Testing RESTful Services
	3.2.5 Automatic Enabling of Schema Objects for REST Access (AutoREST)
	3.2.5.1 Examples: Accessing Objects Using RESTful Services
	3.2.5.1.1 Get Schema Metadata
	3.2.5.1.2 Get Object Metadata
	3.2.5.1.3 Get Object Data
	3.2.5.1.4 Get Table Data Using Paging
	3.2.5.1.5 Get Table Data Using Query
	3.2.5.1.6 Get Table Row Using Primary Key
	3.2.5.1.7 Insert Table Row
	3.2.5.1.8 Update/Insert Table Row
	3.2.5.1.9 Delete Using Filter
	3.2.5.1.10 Post by Batch Load

	3.2.5.2 Filtering in Queries
	3.2.5.2.1 FilterObject Grammar
	3.2.5.2.2 Examples: FilterObject Specifications

	3.2.5.3 Auto PL/SQL
	3.2.5.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects
	3.2.5.3.2 Auto-Enabling the PL/SQL Objects
	3.2.5.3.2.1 Auto-Enabling Using the PL/SQL API
	3.2.5.3.2.2 Auto-Enabling the PL/SQL Objects Using SQL Developer

	3.2.5.3.3 Generating the PL/SQL Endpoints
	3.2.5.3.4 Resource Input Payload
	3.2.5.3.5 Resource Payload Response
	3.2.5.3.6 Function Return Value

	3.2.6 Manually Creating RESTful Services Using SQL and PL/SQL
	3.2.6.1 About Oracle REST Data Services Mechanisms for Passing Parameters
	3.2.6.1.1 Using JSON to Pass Parameters
	3.2.6.1.2 Using Route Patterns to Pass Parameters
	3.2.6.1.3 Using Query Strings for Optional Parameters

	3.2.6.2 Using SQL/JSON Database Functions
	3.2.6.2.1 Inserting Nested JSON Objects into Relational Tables
	3.2.6.2.1.1 Usage of the :body Bind Variable
	3.2.6.2.1.2 Example of JSON Purchase Order with Nested LineItems
	3.2.6.2.1.3 Table Definitions for PurchaseOrder and LineItems Tables
	3.2.6.2.1.4 PL/SQL Handler Code for a POST Request
	3.2.6.2.1.5 Creating the REST API Service to Invoke the Handler
	3.2.6.2.1.6 Defining the REST Service and Handler using PL/SQL API

	3.2.6.2.2 Generating Nested JSON Objects from Hierachical Relational Data
	3.2.6.2.2.1 Example to Generate Nested JSON Objects from the Hierachical Relational Tables
	3.2.6.2.2.2 PL/SQL API Calls for Defining Template and GET Handler

	3.2.6.2.3 Testing the RESTful Services
	3.2.6.2.3.1 Insertion of JSON Object into the Database
	3.2.6.2.3.2 Generating JSON Object from the Database

	3.2.7 About Working with Dates Using Oracle REST Data Services
	3.2.7.1 About Datetime Handling with Oracle REST Data Services
	3.2.7.2 About Setting the Time Zone
	3.2.7.3 Exploring the Sample RESTful Services in Application Express (Tutorial)

	3.3 Configuring Secure Access to RESTful Services
	3.3.1 Authentication
	3.3.1.1 First Party Cookie-Based Authentication
	3.3.1.2 Third Party OAuth 2.0-Based Authentication
	3.3.1.2.1 Two-Legged and Three-Legged OAuth Flows

	3.3.2 About Privileges for Accessing Resources
	3.3.3 About Users and Roles for Accessing Resources
	3.3.4 About the File-Based User Repository
	3.3.5 Tutorial: Protecting and Accessing Resources
	3.3.5.1 OAuth Flows and When to Use Each
	3.3.5.2 Assumptions for This Tutorial
	3.3.5.3 Steps for This Tutorial

	3.4 About Oracle REST Data Services User Roles
	3.4.1 About Oracle Application Express Users and Oracle REST Data Services Roles
	3.4.1.1 Granting Application Express Users Oracle REST Data Services Roles
	3.4.1.2 Automatically Granting Application Express Users Oracle REST Data Services Roles

	3.4.2 Controlling RESTful Service Access with Roles
	3.4.2.1 About Defining RESTful Service Roles
	3.4.2.2 Associating Roles with RESTful Privileges

	3.5 Authenticating Against WebLogic Server and GlassFish User Repositories
	3.5.1 Authenticating Against WebLogic Server
	3.5.1.1 Creating a WebLogic Server User
	3.5.1.2 Verifying the WebLogic Server User

	3.5.2 Authenticating Against GlassFish
	3.5.2.1 Creating a GlassFish User
	3.5.2.2 Verifying the GlassFish User

	3.6 Integrating with Existing Group/Role Models
	3.6.1 About role-mapping.xml
	3.6.1.1 Parameterizing Mapping Rules
	3.6.1.2 Dereferencing Parameters
	3.6.1.3 Indirect Mappings

	3.7 Using the Oracle REST Data Services PL/SQL API
	3.7.1 Creating a RESTful Service Using the PL/SQL API
	3.7.2 Testing the RESTful Service

	3.8 Oracle REST Data Services Database Authentication
	3.8.1 Installing Sample Database Scripts
	3.8.2 Enabling the Database Authentication
	3.8.3 Configuring the Request Validation Function
	3.8.4 Testing the Database Authenticated User
	3.8.5 Uninstalling the Sample Database Schema

	3.9 Overview of Pre-hook Functions
	3.9.1 Configuring the Pre-hook Function
	3.9.2 Using a Pre-hook Function
	3.9.3 Processing of a Request
	3.9.4 Identity Assertion of a User
	3.9.5 Aborting Processing of a Request
	3.9.6 Ensuring Pre-hook is Executable
	3.9.7 Exceptions Handling by Pre-hook Function
	3.9.8 Pre-hook Function Efficiency
	3.9.9 Pre-Hook Examples
	3.9.9.1 Installing the Examples
	3.9.9.1.1 Example: Denying all Access
	3.9.9.1.2 Example: Allowing All Access
	3.9.9.1.3 Example: Asserting User Identity

	3.9.9.2 Uninstalling the Examples

	4 REST-Enabled SQL Service
	4.1 REST-Enabled SQL Service Terminology
	4.2 Configuring the REST-Enabled SQL Service
	4.3 Using cURL with REST-Enabled SQL Service
	4.4 Getting Started with the REST-Enabled SQL Service
	4.4.1 REST-Enabling the Oracle Database Schema
	4.4.2 REST-Enabled SQL Authentication
	4.4.3 REST-Enabled SQL Endpoint

	4.5 REST-Enabled SQL Service Examples
	4.5.1 POST Requests Using application/sql Content-Type
	4.5.1.1 Using a Single SQL Statement
	4.5.1.2 Using a File with cURL
	4.5.1.3 Using Multiple SQL Statements

	4.5.2 POST Requests Using application/json Content-Type
	4.5.2.1 Using a File with cURL
	4.5.2.2 Specifying the Limit Value in a POST Request for Pagination
	4.5.2.3 Specifying the Offset Value in a POST Request for Pagination
	4.5.2.4 Defining Binds in a POST Request
	4.5.2.5 Specifying Batch Statements in a POST Request

	4.5.3 Example POST Request with DATE and TIMESTAMP Format
	4.5.4 Data Types and Formats Supported

	4.6 REST-Enabled SQL Request and Response Specifications
	4.6.1 Request Specification
	4.6.2 Response Specification

	4.7 Supported SQL, SQL*Plus, and SQLcl Statements
	4.7.1 Supported SQL Statements
	4.7.2 Supported PL/SQL Statements
	4.7.3 Supported SQL*Plus Statements
	4.7.3.1 Set System Variables
	4.7.3.2 Show System Variables

	4.7.4 Supported SQLcl Statements

	5 Migrating from mod_plsql to ORDS
	5.1 Oracle HTTP Server mod_plsql Authentication
	5.2 Example Oracle HTTP Server DAD file
	5.3 Mapping mod_plsql Settings to ORDS
	5.4 Example ORDS Configuration Files
	5.4.1 Example Configuration File for Basic Authentication
	5.4.2 Example Configuration File for Basic Dynamic Authentication
	5.4.3 Example Configuration file for Custom Authentication

	5.5 Example ORDS URL Mapping
	5.6 Example ORDS Default Configuration
	5.7 ORDS Authentication
	5.7.1 Basic Authentication
	5.7.2 Basic Dynamic Authentication
	5.7.3 Custom Authentication

	5.8 ORDS Features
	5.8.1 Request Validation Function
	5.8.2 Pre Process Feature
	5.8.3 Post Process Feature
	5.8.4 File Upload Feature

	6 Oracle REST Data Services PL/SQL Package Reference
	6.1 ORDS.CREATE_ROLE
	6.2 ORDS.CREATE_SERVICE
	6.3 ORDS.DEFINE_HANDLER
	6.4 ORDS.DEFINE_MODULE
	6.5 ORDS.DEFINE_PARAMETER
	6.6 ORDS.DEFINE_PRIVILEGE
	6.7 ORDS.DEFINE_SERVICE
	6.8 ORDS.DEFINE_TEMPLATE
	6.9 ORDS.DELETE_MODULE
	6.10 ORDS.DELETE_PRIVILEGE
	6.11 ORDS.DELETE_ROLE
	6.12 ORDS.DROP_REST_FOR_SCHEMA
	6.13 ORDS.ENABLE_OBJECT
	6.14 ORDS.ENABLE_SCHEMA
	6.15 ORDS.PUBLISH_MODULE
	6.16 ORDS.RENAME_MODULE
	6.17 ORDS.RENAME_PRIVILEGE
	6.18 ORDS.RENAME_ROLE
	6.19 ORDS.SET_MODULE_ORIGINS_ALLOWED
	6.20 ORDS.SET_URL_MAPPING

	7 Oracle REST Data Services Administration PL/SQL Package Reference
	7.1 Example Subprograms for Developing and Administering RESTful Services

	8 Implicit Parameters
	8.1 List of Implicit Parameters
	8.1.1 About the :body parameter
	8.1.2 About the :body_text Parameter
	8.1.3 About the :content_type Parameter
	8.1.4 About the :current_user Parameter
	8.1.5 About the :status_code Parameter
	8.1.6 About the :forward_location Parameter
	8.1.7 About the Pagination Implicit Parameters
	8.1.7.1 About the :page_offset Parameter
	8.1.7.2 About the :page_size Parameter
	8.1.7.3 About the :row_offset Parameter
	8.1.7.4 About the :row_count Parameter
	8.1.7.5 About the :fetch_offset Parameter
	8.1.7.6 About the :fetch_size Parameter
	8.1.7.7 About Automatic Pagination
	8.1.7.8 About Manual Pagination

	9 OAUTH PL/SQL Package Reference
	9.1 OAUTH.CREATE_CLIENT
	9.2 OAUTH.DELETE_CLIENT
	9.3 OAUTH.GRANT_CLIENT_ROLE
	9.4 OAUTH.RENAME_CLIENT
	9.5 OAUTH.REVOKE_CLIENT_ROLE
	9.6 OAUTH.UPDATE_CLIENT

	A Oracle REST Data Services Third-Party License Information
	A.1 Oracle REST Data Services Third Party List

	B Oracle REST Data Services Database Type Mappings
	B.1 Oracle Built-in Types
	B.2 Handling Structural Database Types
	B.3 Oracle Geospacial Encoding
	B.4 Enabling Database Mapping Support

	C About the Oracle REST Data Services Configuration Files
	C.1 Locating Configuration Files
	C.2 Setting the Location of the Configuration Files
	C.3 Understanding the Configuration Folder Structure
	C.4 Understanding the Configuration File Format
	C.4.1 Understanding the url-mapping.xml File Format

	C.5 Understanding Configurable Parameters

	D Troubleshooting Oracle REST Data Services
	D.1 Enabling Detailed Request Error Messages
	D.2 Configuring Application Express Static Resources with Oracle REST Data Services

	E Creating an Image Gallery
	E.1 Before You Begin
	E.1.1 About URIs
	E.1.2 About Browser Support
	E.1.3 Creating an Application Express Workspace

	E.2 Creating the Gallery Database Table
	E.3 Creating the Gallery RESTful Service Module
	E.4 Trying Out the Gallery RESTful Service
	E.5 Creating the Gallery Application
	E.6 Trying Out the Gallery Application
	E.7 Securing the Gallery RESTful Services
	E.7.1 Protecting the RESTful Services
	E.7.2 Modifying the Application to Use First Party Authentication

	E.8 Accessing the RESTful Services from a Third Party Application
	E.8.1 Creating the Third Party Developer User
	E.8.2 Registering the Third Party Application
	E.8.3 Acquiring an Access Token
	E.8.4 Using an Access Token
	E.8.5 About Browser Origins
	E.8.6 Configuring a RESTful Service for Cross Origin Resource Sharing
	E.8.7 Acquiring a Token Using the Authorization Code Protocol Flow
	E.8.7.1 Registering the Client Application
	E.8.7.2 Acquiring an Authorization Code
	E.8.7.3 Exchanging an Authorization Code for an Access Token
	E.8.7.4 Extending OAuth 2.0 Session Duration

	E.8.8 About Securing the Access Token

	Index

