
Oracle® REST Data Services
Installation, Configuration, and Development
Guide

Release 18.4
F12730-02
January 2019

Oracle REST Data Services Installation, Configuration, and Development Guide, Release 18.4

F12730-02

Copyright © 2011, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Mamata Basapur, Chuck Murray

Contributors: Colm Divilly, Sharon Kennedy, Ganesh Pitchaiah, Kris Rice, Elizabeth Saunders, Jason Straub,
Vladislav Uvarov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xvi

Documentation Accessibility xvi

Related Documents xvii

Conventions xvii

Third-Party License Information xvii

 Changes in This Release for Oracle REST Data Services
Installation, Configuration, and Development Guide

Changes in Oracle REST Data Services Release 18.4 xviii

Changes in Oracle REST Data Services Release 18.3 xviii

Changes in Oracle REST Data Services Release 18.2 xix

Changes in Oracle REST Data Services Release 18.1 xx

1 Installing Oracle REST Data Services

1.1 About Oracle REST Data Services 1-1

1.2 Understanding the Installation Process 1-2

1.2.1 Supported Java EE Application Servers 1-2

1.2.2 System Requirements 1-2

1.2.3 About Installing Oracle REST Data Services 1-3

1.3 Configuring and Installing Oracle REST Data Services 1-3

1.3.1 About Using the Command-Line Interface 1-4

1.3.2 About the Database Users Used by Oracle REST Data Services 1-4

1.3.3 Privileges Granted by Oracle REST Data Services 1-5

1.3.4 Downloading, Configuring and Installing Oracle REST Data Services 1-6

1.3.4.1 Advanced Installation Using Command-Line Prompts 1-6

1.3.4.2 Silent Installation Using a Parameter File 1-11

1.3.4.3 Validating the Oracle REST Data Services Installation 1-21

1.3.4.4 If You Want to Reinstall or Uninstall (Remove) Oracle REST Data
Services 1-22

iii

1.3.5 Using SQL Developer Oracle REST Data Services Administration
(Optional) 1-22

1.3.5.1 About SQL Developer Oracle REST Data Services Administration 1-22

1.3.5.2 Configuring an Administrator User 1-23

1.3.6 Using OAuth2 in Non-HTTPS Environments 1-23

1.4 Running in Standalone Mode 1-24

1.4.1 Starting in Standalone Mode 1-24

1.4.1.1 Converting a Private Key to DER (Linux and Unix) 1-25

1.4.2 Stopping the Server in Standalone Mode 1-26

1.4.3 Configuring a Doc Root for Non-Application Express Static Resources 1-26

1.5 Deploying to Oracle WebLogic Server 1-27

1.5.1 About Oracle WebLogic Server 1-27

1.5.2 Downloading, Installing, and Configuring Oracle REST Data Services 1-27

1.5.3 Configuring Oracle Application Express Images 1-27

1.5.4 Launching the Administration Server Console 1-28

1.5.5 Installing the Oracle WebLogic Server Deployment 1-29

1.5.6 Configuring WebLogic to Handle HTTP Basic Challenges Correctly 1-30

1.5.7 Verifying the State and Health of ords and i 1-31

1.6 Deploying to GlassFish Server 1-31

1.6.1 About GlassFish Server 1-32

1.6.2 Downloading, Installing, and Configuring Oracle REST Data Services 1-32

1.6.3 Configuring Oracle Application Express Images 1-33

1.6.4 Launching the Administration Server Console 1-33

1.6.5 Installing the GlassFish Server Deployment 1-34

1.7 Deploying to Apache Tomcat 1-35

1.7.1 About Apache Tomcat 1-35

1.7.2 Downloading, Installing, and Configuring Oracle REST Data Services 1-35

1.7.3 Configuring Oracle Application Express Images 1-35

1.7.4 Installing the Apache Tomcat Deployment 1-36

1.8 Upgrading Oracle REST Data Services 1-36

1.9 Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall
Oracle REST Data Services 1-38

2 Configuring Oracle REST Data Services (Advanced)

2.1 Configuring Multiple Databases 2-1

2.1.1 About the Request URL 2-1

2.1.2 Configuring Additional Databases 2-2

2.1.3 Routing Based on the Request Path Prefix 2-3

2.1.3.1 Example of Routing Based on the Request Path Prefix 2-3

2.1.4 Routing Based on the Request URL Prefix 2-4

2.1.4.1 Example of Routing Based on the Request URL Prefix 2-4

iv

2.2 Using the Multitenant Architecture with Oracle REST Data Services 2-4

2.2.1 Installing Oracle REST Data Services in a CDB Environment 2-5

2.2.1.1 Installation Enabling Multiple Releases 2-6

2.2.2 Upgrading Oracle REST Data Services in a CDB Environment 2-7

2.2.2.1 Migrating Oracle REST Data Services in the CDB to Enable
Multiple Releases 2-8

2.2.3 Making All PDBs Addressable by Oracle REST Data Services
(Pluggable Mapping) 2-8

2.2.4 Uninstalling Oracle REST Data Services in a CDB Environment 2-9

2.3 Support for Oracle RAC Fast Connection Failover 2-10

2.4 Configuring Security, Caching, Pre- and Post Processing, Environment, and
Excel Settings 2-11

2.5 Configuring REST-Enabled SQL Service Settings 2-11

2.6 Configuring the Maximum Number of Rows Returned from a Query 2-11

2.7 Configuring the Custom Error Pages 2-12

2.8 Developing RESTful Services for Use with Oracle REST Data Services 2-12

3 Developing Oracle REST Data Services Applications

3.1 Introduction to Relevant Software 3-2

3.1.1 About Oracle Application Express 3-2

3.1.2 About RESTful Web Services 3-2

3.2 Getting Started with RESTful Services 3-2

3.2.1 RESTful Services Terminology 3-3

3.2.2 About Request Path Syntax Requirements 3-4

3.2.3 "Getting Started" Documents Included in Installation 3-4

3.2.4 About cURL and Testing RESTful Services 3-5

3.2.5 Automatic Enabling of Schema Objects for REST Access (AutoREST) 3-5

3.2.5.1 Examples: Accessing Objects Using RESTful Services 3-6

3.2.5.2 Filtering in Queries 3-17

3.2.5.3 Auto PL/SQL 3-25

3.2.6 Manually Creating RESTful Services Using SQL and PL/SQL 3-31

3.2.6.1 About Oracle REST Data Services Mechanisms for Passing
Parameters 3-32

3.2.6.2 Using SQL/JSON Database Functions 3-42

3.2.7 About Working with Dates Using Oracle REST Data Services 3-52

3.2.7.1 About Datetime Handling with Oracle REST Data Services 3-52

3.2.7.2 About Setting the Time Zone 3-53

3.2.7.3 Exploring the Sample RESTful Services in Application Express
(Tutorial) 3-54

3.3 Configuring Secure Access to RESTful Services 3-59

3.3.1 Authentication 3-59

3.3.1.1 First Party Cookie-Based Authentication 3-59

v

3.3.1.2 Third Party OAuth 2.0-Based Authentication 3-60

3.3.2 About Privileges for Accessing Resources 3-60

3.3.3 About Users and Roles for Accessing Resources 3-61

3.3.4 About the File-Based User Repository 3-61

3.3.5 Tutorial: Protecting and Accessing Resources 3-62

3.3.5.1 OAuth Flows and When to Use Each 3-62

3.3.5.2 Assumptions for This Tutorial 3-62

3.3.5.3 Steps for This Tutorial 3-63

3.4 About Oracle REST Data Services User Roles 3-73

3.4.1 About Oracle Application Express Users and Oracle REST Data
Services Roles 3-74

3.4.1.1 Granting Application Express Users Oracle REST Data Services
Roles 3-74

3.4.1.2 Automatically Granting Application Express Users Oracle REST
Data Services Roles 3-75

3.4.2 Controlling RESTful Service Access with Roles 3-75

3.4.2.1 About Defining RESTful Service Roles 3-76

3.4.2.2 Associating Roles with RESTful Privileges 3-76

3.5 Authenticating Against WebLogic Server and GlassFish User Repositories 3-77

3.5.1 Authenticating Against WebLogic Server 3-77

3.5.1.1 Creating a WebLogic Server User 3-77

3.5.1.2 Verifying the WebLogic Server User 3-78

3.5.2 Authenticating Against GlassFish 3-79

3.5.2.1 Creating a GlassFish User 3-79

3.5.2.2 Verifying the GlassFish User 3-79

3.6 Integrating with Existing Group/Role Models 3-80

3.6.1 About role-mapping.xml 3-80

3.6.1.1 Parameterizing Mapping Rules 3-81

3.6.1.2 Dereferencing Parameters 3-81

3.6.1.3 Indirect Mappings 3-81

3.7 Using the Oracle REST Data Services PL/SQL API 3-82

3.7.1 Creating a RESTful Service Using the PL/SQL API 3-83

3.7.2 Testing the RESTful Service 3-83

3.8 Oracle REST Data Services Database Authentication 3-85

3.8.1 Installing Sample Database Scripts 3-85

3.8.2 Enabling the Database Authentication 3-86

3.8.3 Configuring the Request Validation Function 3-87

3.8.4 Testing the Database Authenticated User 3-87

3.8.5 Uninstalling the Sample Database Schema 3-88

3.9 Overview of Pre-hook Functions 3-88

3.9.1 Configuring the Pre-hook Function 3-89

3.9.2 Using a Pre-hook Function 3-89

vi

3.9.3 Processing of a Request 3-89

3.9.4 Identity Assertion of a User 3-89

3.9.5 Aborting Processing of a Request 3-90

3.9.6 Ensuring Pre-hook is Executable 3-90

3.9.7 Exceptions Handling by Pre-hook Function 3-90

3.9.8 Pre-hook Function Efficiency 3-90

3.9.9 Pre-Hook Examples 3-91

3.9.9.1 Installing the Examples 3-91

3.9.9.2 Uninstalling the Examples 3-94

4 REST-Enabled SQL Service

4.1 REST-Enabled SQL Service Terminology 4-1

4.2 Configuring the REST-Enabled SQL Service 4-2

4.3 Using cURL with REST-Enabled SQL Service 4-2

4.4 Getting Started with the REST-Enabled SQL Service 4-3

4.4.1 REST-Enabling the Oracle Database Schema 4-3

4.4.2 REST-Enabled SQL Authentication 4-4

4.4.3 REST-Enabled SQL Endpoint 4-4

4.5 REST-Enabled SQL Service Examples 4-5

4.5.1 POST Requests Using application/sql Content-Type 4-5

4.5.1.1 Using a Single SQL Statement 4-5

4.5.1.2 Using a File with cURL 4-7

4.5.1.3 Using Multiple SQL Statements 4-8

4.5.2 POST Requests Using application/json Content-Type 4-11

4.5.2.1 Using a File with cURL 4-11

4.5.2.2 Specifying the Limit Value in a POST Request for Pagination 4-12

4.5.2.3 Specifying the Offset Value in a POST Request for Pagination 4-14

4.5.2.4 Defining Binds in a POST Request 4-16

4.5.2.5 Specifying Batch Statements in a POST Request 4-20

4.5.3 Example POST Request with DATE and TIMESTAMP Format 4-23

4.5.4 Data Types and Formats Supported 4-25

4.6 REST-Enabled SQL Request and Response Specifications 4-29

4.6.1 Request Specification 4-29

4.6.2 Response Specification 4-32

4.7 Supported SQL, SQL*Plus, and SQLcl Statements 4-38

4.7.1 Supported SQL Statements 4-38

4.7.2 Supported PL/SQL Statements 4-38

4.7.3 Supported SQL*Plus Statements 4-39

4.7.3.1 Set System Variables 4-39

4.7.3.2 Show System Variables 4-40

vii

4.7.4 Supported SQLcl Statements 4-42

5 Migrating from mod_plsql to ORDS

5.1 Oracle HTTP Server mod_plsql Authentication 5-1

5.2 Example Oracle HTTP Server DAD file 5-2

5.3 Mapping mod_plsql Settings to ORDS 5-3

5.4 Example ORDS Configuration Files 5-8

5.4.1 Example Configuration File for Basic Authentication 5-8

5.4.2 Example Configuration File for Basic Dynamic Authentication 5-8

5.4.3 Example Configuration file for Custom Authentication 5-9

5.5 Example ORDS URL Mapping 5-10

5.6 Example ORDS Default Configuration 5-10

5.7 ORDS Authentication 5-11

5.7.1 Basic Authentication 5-11

5.7.2 Basic Dynamic Authentication 5-11

5.7.3 Custom Authentication 5-12

5.8 ORDS Features 5-12

5.8.1 Request Validation Function 5-13

5.8.2 Pre Process Feature 5-13

5.8.3 Post Process Feature 5-13

5.8.4 File Upload Feature 5-14

6 Oracle REST Data Services PL/SQL Package Reference

6.1 ORDS.CREATE_ROLE 6-1

6.2 ORDS.CREATE_SERVICE 6-1

6.3 ORDS.DEFINE_HANDLER 6-4

6.4 ORDS.DEFINE_MODULE 6-6

6.5 ORDS.DEFINE_PARAMETER 6-7

6.6 ORDS.DEFINE_PRIVILEGE 6-9

6.7 ORDS.DEFINE_SERVICE 6-11

6.8 ORDS.DEFINE_TEMPLATE 6-14

6.9 ORDS.DELETE_MODULE 6-16

6.10 ORDS.DELETE_PRIVILEGE 6-16

6.11 ORDS.DELETE_ROLE 6-17

6.12 ORDS.DROP_REST_FOR_SCHEMA 6-17

6.13 ORDS.ENABLE_OBJECT 6-18

6.14 ORDS.ENABLE_SCHEMA 6-19

6.15 ORDS.PUBLISH_MODULE 6-20

6.16 ORDS.RENAME_MODULE 6-20

viii

6.17 ORDS.RENAME_PRIVILEGE 6-21

6.18 ORDS.RENAME_ROLE 6-22

6.19 ORDS.SET_MODULE_ORIGINS_ALLOWED 6-22

6.20 ORDS.SET_URL_MAPPING 6-23

7 Oracle REST Data Services Administration PL/SQL Package
Reference

7.1 Example Subprograms for Developing and Administering RESTful Services 7-1

8 Implicit Parameters

8.1 List of Implicit Parameters 8-1

8.1.1 About the :body parameter 8-5

8.1.2 About the :body_text Parameter 8-6

8.1.3 About the :content_type Parameter 8-6

8.1.4 About the :current_user Parameter 8-6

8.1.5 About the :status_code Parameter 8-6

8.1.6 About the :forward_location Parameter 8-7

8.1.7 About the Pagination Implicit Parameters 8-8

8.1.7.1 About the :page_offset Parameter 8-9

8.1.7.2 About the :page_size Parameter 8-9

8.1.7.3 About the :row_offset Parameter 8-10

8.1.7.4 About the :row_count Parameter 8-10

8.1.7.5 About the :fetch_offset Parameter 8-10

8.1.7.6 About the :fetch_size Parameter 8-10

8.1.7.7 About Automatic Pagination 8-10

8.1.7.8 About Manual Pagination 8-11

9 OAUTH PL/SQL Package Reference

9.1 OAUTH.CREATE_CLIENT 9-1

9.2 OAUTH.DELETE_CLIENT 9-2

9.3 OAUTH.GRANT_CLIENT_ROLE 9-3

9.4 OAUTH.RENAME_CLIENT 9-4

9.5 OAUTH.REVOKE_CLIENT_ROLE 9-4

9.6 OAUTH.UPDATE_CLIENT 9-5

A Oracle REST Data Services Third-Party License Information

A.1 Oracle REST Data Services Third Party List A-1

ix

B Oracle REST Data Services Database Type Mappings

B.1 Oracle Built-in Types B-1

B.2 Handling Structural Database Types B-3

B.3 Oracle Geospacial Encoding B-5

B.4 Enabling Database Mapping Support B-5

C About the Oracle REST Data Services Configuration Files

C.1 Locating Configuration Files C-1

C.2 Setting the Location of the Configuration Files C-1

C.3 Understanding the Configuration Folder Structure C-1

C.4 Understanding the Configuration File Format C-2

C.4.1 Understanding the url-mapping.xml File Format C-2

C.5 Understanding Configurable Parameters C-3

D Troubleshooting Oracle REST Data Services

D.1 Enabling Detailed Request Error Messages D-1

D.2 Configuring Application Express Static Resources with Oracle REST Data
Services D-1

E Creating an Image Gallery

E.1 Before You Begin E-1

E.1.1 About URIs E-1

E.1.2 About Browser Support E-2

E.1.3 Creating an Application Express Workspace E-2

E.2 Creating the Gallery Database Table E-2

E.3 Creating the Gallery RESTful Service Module E-3

E.4 Trying Out the Gallery RESTful Service E-4

E.5 Creating the Gallery Application E-5

E.6 Trying Out the Gallery Application E-8

E.7 Securing the Gallery RESTful Services E-8

E.7.1 Protecting the RESTful Services E-8

E.7.2 Modifying the Application to Use First Party Authentication E-9

E.8 Accessing the RESTful Services from a Third Party Application E-11

E.8.1 Creating the Third Party Developer User E-12

E.8.2 Registering the Third Party Application E-12

E.8.3 Acquiring an Access Token E-12

E.8.4 Using an Access Token E-14

E.8.5 About Browser Origins E-15

x

E.8.6 Configuring a RESTful Service for Cross Origin Resource Sharing E-15

E.8.7 Acquiring a Token Using the Authorization Code Protocol Flow E-15

E.8.7.1 Registering the Client Application E-16

E.8.7.2 Acquiring an Authorization Code E-16

E.8.7.3 Exchanging an Authorization Code for an Access Token E-17

E.8.7.4 Extending OAuth 2.0 Session Duration E-18

E.8.8 About Securing the Access Token E-19

Index

xi

List of Examples

1-1 Parameters to configure for Application Express and APEX RESTful Services and

run in standalone mode 1-17

1-2 Parameters to run in standalone mode using http 1-19

1-3 Parameters to run in standalone mode using https and providing the ssl certificate paths 1-20

2-1 Configuring custom error page for “HTTP 404” status code 2-12

3-1 Enabling the PL/SQL Function 3-27

3-2 Enabling the PL/SQL Procedure 3-27

3-3 Generating an Endpoint for the Stored Procedure 3-30

3-4 Package Procedure and Function Endpoints 3-30

3-5 Nested JSON Purchase Order with Nested LineItems 3-44

3-6 PL/SQL Handler Code Used for a POST Request 3-45

3-7 GET Handler Code using Oracle REST Data Services Query on Relational Tables for

Generating a Nested JSON object 3-48

3-8 PL/SQL API Call for Creating a New test/:id Template and GET Handler in the demo

Module 3-49

3-9 Setting the Duser.timezone Java Environment Variable in Standalone Mode 3-53

3-10 Setting the Duser.timezone Java Environment Variable in a Java Application Server 3-54

3-11 Setting Enabled for all Pools 3-87

4-1 Example cURL Command 4-2

4-2 Binds in POST Request 4-16

4-3 Complex Bind in POST Request 4-18

4-4 Batch statements 4-20

4-5 Batch bind values 4-21

4-6 Oracle REST Data services Time Zone Set as Europe/London 4-23

4-7 PL/SQL Statement 4-38

5-1 dads.conf file 5-2

5-2 ords_conf/ords/conf/basic_auth.xml 5-8

5-3 ords_conf/ords/conf/basic_dynamic_auth.xml 5-8

5-4 ords_confs/ords/conf/custom_auth.xml 5-9

5-5 ords_conf/ords/url-mapping.xml 5-10

5-6 ords_conf/ords/default.xml 5-10

5-7 security.requestValidationFunction 5-13

5-8 procedure.preProcess 5-13

5-9 procedure.postProcess 5-13

5-10 Table upload 5-14

xii

5-11 Procedure upload 5-14

5-12 Curl command for file upload 5-14

7-1 ORDS_ADMIN.CREATE_ROLE 7-1

7-2 ORDS_ADMIN.DEFINE_PARAMETER 7-2

8-1 Example 8-5

9-1 Example to Add Multiple Privileges 9-6

xiii

List of Figures

3-1 Selecting the Enable REST Service Option 3-28

3-2 Auto Enabling the PL/SQL Package Object 3-29

3-3 Adding an Anonymous PL/SQL Block to the Handler for the PUT Method 3-34

3-4 Setting the Bind Parameter l_salarychange to Pass for the PUT Method 3-34

3-5 Obtaining the URL to Call from the Details Tab 3-35

3-6 Displaying the Results from a SQL Query to Confirm the Execution of the PUT Method 3-36

3-7 Creating a Template Definition to Include a Route Pattern for Some Parameters or

Bind Variables 3-37

3-8 Adding a SQL Query to the Handler 3-38

3-9 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method

with Some Required Parameter Values 3-39

3-10 Using Browser to Show the Results of Using a Query String to Send a GET Method

with Some Parameter Name/Value Pairs 3-41

3-11 Generating Nested JSON Objects 3-51

xiv

List of Tables

1-1 Advanced Installation Prompts for Installing in Standalone Mode 1-8

1-2 Options for Configuring Application Express or Migrating from mod_plsql 1-9

1-3 Options for Running in Standalone Mode 1-10

1-4 Parameters for Database Connection 1-13

1-5 Parameters for Installing Oracle REST Data Services 1-13

1-6 Parameters for Installing into the CDB 1-15

1-7 Parameters for Installing Application Express 1-16

1-8 Parameters for Installing Oracle REST Data Services in Standalone Mode 1-18

1-9 Miscellaneous Parameters 1-21

3-1 Parameters for batchload 3-16

5-1 Mappings of mod_plsql Directives to ORDS Settings 5-3

7-1 p-schema Parameter Description 7-2

8-1 List of Implicit Parameters 8-1

8-2 Pagination Implicit Parameters 8-9

C-1 Oracle REST Data Services Configuration Files Parameters C-3

xv

Preface

Oracle REST Data Services Installation, Configuration, and Development Guide
explains how to install and configure Oracle REST Data Services. (Oracle REST Data
Services was called Oracle Application Express Listener before Release 2.0.6.)

Note:

Effective with Release 3.0, the title of this book is Oracle REST Data
Services Installation, Configuration, and Development Guide. The addition of
"Development" to the title reflects the fact that material from a previous
separate unofficial "Developer's Guide" has been included in this book in
Developing Oracle REST Data Services Applications.

Topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

• Third-Party License Information

Audience
This document is intended for system administrators or application developers who are
installing and configuring Oracle REST Data Services. This guide assumes you are
familiar with web technologies, especially REST (Representational State Transfer),
and have a general understanding of Windows and UNIX platforms.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more information and resources relating to Oracle REST Data Services, see the
following the Oracle Technology Network (OTN) site:

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that is displayed on the screen, or text that you enter.

Third-Party License Information
Oracle REST Data Services contains third-party code. See the Oracle Database
Licensing Information book for notices Oracle is required to provide.

Note, however, that the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the third-party software,
and the terms contained in the following notices do not change those rights.

Preface

xvii

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Changes in This Release for Oracle REST
Data Services Installation, Configuration,
and Development Guide

There are changes in this document for recent releases:

• Changes in Oracle REST Data Services Release 18.4

• Changes in Oracle REST Data Services Release 18.3

• Changes in Oracle REST Data Services Release 18.2

• Changes in Oracle REST Data Services Release 18.1

Changes in Oracle REST Data Services Release 18.4
The following are changes in Oracle REST Data Services Installation, Configuration,
and Development Guide Release 18.4.

New Features
The following feature is new in this release:

• Support for pre-hook functions.
See Overview of Pre-hook Functions

• A new chapter, Migrating from mod_plsql to ORDS is included in this release.
See Migrating from mod_plsql to ORDS

Changes in Oracle REST Data Services Release 18.3
The following are changes in Oracle REST Data Services Installation, Configuration,
and Development Guide Release 18.3.

New Features
The following features are new in this release:

• Support for OAuth 2 Client Credentials authentication.

See REST-Enabled SQL Authentication.

• Parameters for Installing into the CDB.

See Parameters for Installing into the CDB.

• The following new configuration file parameters are included in this release:

– security.requestAuthenticationFunction

Changes in This Release for Oracle REST Data Services Installation, Configuration, and Development Guide

xviii

– procedure.rest.preHook

– jdbc.auth.enabled

See Understanding Configurable Parameters.

• The following new chapter is included in this release:

See Oracle REST Data Services Administration PL/SQL Package Reference

Other Changes
The following are the additional changes made in this release:

• Updated security.requestValidationFunction and security.maxEntries
parameters.

See Understanding Configurable Parameters.

• The information about consolidated list of implicit parameters used in REST
service handlers is provided in this release. See Implicit Parameters.

• Starting with this release, the information about the following SQL*Plus statements
are not available as they are restricted:

– COPY

– PASSWORD

– XQUERY

– WHENEVER OSERROR

– WHENEVER SQLERROR

See Supported SQL*Plus Statements.

• Starting with this release, following list of possible values for system_variable are
not supported:

– SET XQUERY BASEURI {text}

– SET XQUERY ORDERING {UNORDERED | ORDERED | DEFAULT}

– SET XQUERY NODE {BYVALUE | BYREFERENCE | DEFAULT}

– SET XQUERY CONTEXT {text}

See Set System Variables.

Changes in Oracle REST Data Services Release 18.2
The following are changes in Oracle REST Data Services Installation, Configuration,
and Development Guide Release 18.2.

New Features
The following feature is new in this release

• Oracle REST Data Service no longer installs ORDS_METADATA schema into the
CDB$ROOT container. Only the ORDS_PUBLIC_USER (common user) is installed in the
CDB$ROOT. See Using the Multitenant Architecture with Oracle REST Data
Services .

Changes in This Release for Oracle REST Data Services Installation, Configuration, and Development Guide

xix

Desupported Feature
The following feature is no longer supported by Oracle:

• Oracle NoSQL Database feature is desupported and unavailable in this release

Other Changes
The following is an additional change in this release:

• Oracle WebLogic Server supports 12g Release 2 (12.2.1.3) or later for this
release. See

Supported Java EE Application Servers.

Changes in Oracle REST Data Services Release 18.1
The following are changes in Oracle REST Data Services Installation, Configuration,
and Development Guide Release 18.1.

New Features
The following feature is new in this release

• Oracle REST Data Services Database Authentication

Changes in This Release for Oracle REST Data Services Installation, Configuration, and Development Guide

xx

1
Installing Oracle REST Data Services

This section describes how to install and deploy Oracle REST Data Services. (REST
stands for Representational State Transfer.)

Note:

Oracle REST Data Services was called Oracle Application Express Listener
before Release 2.0.6.

Topics:

• About Oracle REST Data Services

• Understanding the Installation Process

• Configuring and Installing Oracle REST Data Services

• Running in Standalone Mode

• Deploying to Oracle WebLogic Server

• Deploying to GlassFish Server

• Deploying to Apache Tomcat

• Upgrading Oracle REST Data Services

• Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle
REST Data Services

1.1 About Oracle REST Data Services
Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server
and mod_plsql. The Java EE implementation offers increased functionality including a
command line based configuration, enhanced security, file caching, and RESTful web
services. Oracle REST Data Services also provides increased flexibility by supporting
deployments using Oracle WebLogic Server, GlassFish Server, Apache Tomcat, and a
standalone mode.

The Oracle Application Express architecture requires some form of web server to
proxy requests between a web browser and the Oracle Application Express engine.
Oracle REST Data Services satisfies this need but its use goes beyond that of Oracle
Application Express configurations. Oracle REST Data Services simplifies the
deployment process because there is no Oracle home required, as connectivity is
provided using an embedded JDBC driver.

1-1

1.2 Understanding the Installation Process
This section offers an overview of Oracle REST Data Services and provides
information about supported Java Platform, Enterprise Edition (Java EE) application
servers and system requirements.

Topics:

• Supported Java EE Application Servers

• System Requirements

1.2.1 Supported Java EE Application Servers
Oracle REST Data Services supports the following Java EE application servers:

Application Server Supported Release

Oracle WebLogic Server 12g Release 2 (12.2.1.3) or later

GlassFish Server Release 4.1.2 or later

Apache Tomcat Release 8.5 or later

1.2.2 System Requirements
Oracle REST Data Services system requirements are as follows:

• Oracle Database (Enterprise Edition, Standard Edition or Standard Edition One)
release 11.1 or later, or Oracle Database 11g Release 2 Express Edition.

• Java JDK 8 or later.

• Web browser requirements:

– Microsoft Internet Explorer 8.0 or later.

– Mozilla Firefox 3.0 or later.

– Google Chrome 2.0 or later.

Note:

Oracle Application Express is not a prerequisite for using Oracle REST Data
Services.

If Oracle Application Express is installed and if RESTful services have been
configured during the installation (see the step "Configure RESTful Services"
in Oracle Application Express Installation Guide), then Oracle REST Data
Services supports it, including executing the RESTful services defined in
Oracle Application Express.

Chapter 1
Understanding the Installation Process

1-2

1.2.3 About Installing Oracle REST Data Services
To install Oracle REST Data Services:

1. Download, install, and configure Oracle REST Data Services.

2. Deploy Oracle REST Data Services. Deployment options include:

• Standalone Mode.

• Oracle WebLogic Server.

• GlassFish Server.

• Apache Tomcat.

Related Topics

• Running in Standalone Mode

• Deploying to Oracle WebLogic Server

• Deploying to GlassFish Server

• Deploying to Apache Tomcat

1.3 Configuring and Installing Oracle REST Data Services
Before you deploy Oracle REST Data Services, you must install and configure it using
a command-line interface.

Topics:

Note:

You must have the SYS AS SYSDBA account for installing, upgrading,
validating or uninstalling Oracle REST Data Services.

• About Using the Command-Line Interface

• About the Database Users Used by Oracle REST Data Services

• Privileges Granted by Oracle REST Data Services

• Downloading, Configuring and Installing Oracle REST Data Services

• Using SQL Developer Oracle REST Data Services Administration (Optional)

• Using OAuth2 in Non-HTTPS Environments

See Also:

To use the Oracle REST API for JSON Data Persistence, you must also
install the Oracle REST API. See "Oracle REST API Installation" in Oracle
REST Data Services SODA for REST Developer's Guide.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-3

1.3.1 About Using the Command-Line Interface
Oracle REST Data Services provides several command line commands. For example,
you can configure the location where Oracle REST Data Services stores configuration
files, configure the database Oracle REST Data Services uses, and start Oracle REST
Data Services in standalone mode.

To display a full list of available commands, go to the directory or folder containing the
ords.war file and execute the following command:

java -jar ords.war help

A list of the available commands is displayed. To see instructions on how to use each
of these commands, enter help followed by the command name, for example:

java -jar ords.war help configdir

1.3.2 About the Database Users Used by Oracle REST Data Services
Oracle REST Data Services uses the following database users:

User Name Required Description

APEX_PUBLIC_USER Only if using Oracle
REST Data
Services with
Oracle Application
Express

If you use Oracle REST Data Services with
Oracle Application Express, this is the
database user used when invoking
PL/SQL Gateway operations, for example,
all Oracle Application Express operations.

For information on unlocking the
APEX_PUBLIC_USER, see "Configure
APEX_PUBLIC_USER Account" in Oracle
Application Express Installation Guide.

APEX_REST_PUBLIC_USER Only if using
RESTful Services
defined in
Application
Express of version
5.0 or above.

The database user used when invoking
Oracle Application Express RESTful
Services if RESTful Services defined in
Application Express workspaces are being
accessed

APEX_LISTENER Only if using
RESTful Services
defined in
Application
Express of version
5.0 or above.

The database user used to query RESTful
Services definitions stored in Oracle
Application Express if RESTful Services
defined in Application Express workspaces
are being accessed

ORDS_METADATA Yes Owner of the PL/SQL packages used for
implementing many Oracle REST Data
Services capabilities. ORDS_METADATA
is where the metadata about Oracle REST
Data Services-enabled schemas is stored.

It is not accessed directly by Oracle REST
Data Services; the Oracle REST Data
Services application never creates a
connection to the ORDS_METADATA
schema. The schema password is set to a
random string, connect privilege is
revoked, and the password is expired.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-4

User Name Required Description

ORDS_PUBLIC_USER Yes User for invoking RESTful Services in the
Oracle REST Data Services-enabled
schemas.

The APEX_<xxx> users are created during the Oracle Application Express installation
process.

1.3.3 Privileges Granted by Oracle REST Data Services
As part of the Oracle REST Data Services installation, privileges are granted to
several users:

• PUBLIC is granted SELECT on many ORDS_METADATA tables and views.

• PUBLIC is granted EXECUTE on PL/SQL packages that are available for users to
invoke.

• ORDS_METADATA is granted EXECUTE on the following:

– SYS.DBMS_ASSERT

– SYS.DBMS_CRYPTO

– SYS.DBMS_LOB

– SYS.DBMS_OUTPUT

– SYS.DBMS_REGISTRY

– SYS.DBMS_SESSION

– SYS.DBMS_UTILITY

– SYS.VALIDATE_ORDS

– SYS.HTF

– SYS.HTP

– SYS.OWA

– SYS.WPG_DOCLOAD

• ORDS_METADATA is granted SELECT on the following:

– SYS.DBA_DIRECTORIES

– SYS.DBA_OBJECTS

• ORDS_METADATA is granted the following system privileges:

– ALTER USER

– CREATE TRIGGER

• ORDS_METADATA is granted the necessary object privileges to migrate Application
Express REST data to ORDS_METADATA tables.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-5

1.3.4 Downloading, Configuring and Installing Oracle REST Data
Services

The procedures in this topic apply to installing Oracle REST Data Services in a
traditional (non-CDB) database.

Note:

You must complete the configuration steps in this topic before deploying to
an application server.

To install and configure Oracle REST Data Services:

1. Download the file ords.version.number.zip from the Oracle REST Data Services
download page.

Note that the version.number in the file name reflects the current release number.

2. Unzip the downloaded zip file into a directory (or folder) of your choice:

• UNIX and Linux: unzip ords.version.number.zip

• Windows: Double-click the file ords.version.number.zip in Windows
Explorer

3. Choose one of the following installation options:

• Advanced Installation Using Command-Line Prompts

• Silent Installation Using a Parameter File

4. You can reinstall or uninstall Oracle REST Data Services if required.

Related Topics

• Using the Multitenant Architecture with Oracle REST Data Services

• About the Database Users Used by Oracle REST Data Services

• If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

See Also:

OTN_downloads

1.3.4.1 Advanced Installation Using Command-Line Prompts
You can perform an advanced installation in which you are prompted for the necessary
parameter values, after which your choices are stored in the params/
ords_params.properties file under the location where you installed Oracle REST
Data Services.

To perform an advanced installation, enter the following command:

Chapter 1
Configuring and Installing Oracle REST Data Services

1-6

http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html

java -jar ords.war install advanced

During installation, Oracle REST Data Services checks if configuration files already
exist in your specified configuration folder:

• If configuration files do not exist in that folder, they are created (examples:
defaults.xml, apex_pu.xml).

• If configuration files from an earlier release exist in that folder, Oracle REST Data
Services checks if <name>_pu.xml is present; and if it is not, you are prompted for
the password for the ORDS_PUBLIC_USER account. If the configuration files
<name>_al.xml and <name>_rt.xml from Release 2.0.n exist, they are preserved.
(However, in Releases 2.0.n RESTful Services was optional, and therefore the
files might not exist in the configuration folder.)

• If multiple configuration files exist from a previous release (examples: apex.xml,
apex_al.xml, apex_rt.xml, sales.xml, sales_al.xml, sales_rt.xml, …), and if
<name>_pu.xml does not exist, then you are prompted to select the database
configuration so that the Oracle REST Data Services schema can be created in
that database.

The following shows an example advanced installation. In this example, if you
accepted the default value of 1 for Enter 1 if you wish to start in standalone
mode or 2 to exit [1], the remaining prompts are displayed; and if you will be using
Oracle Application Express, you must specify the APEX static resources location.

d:\ords>java -jar ords.war install advanced
This Oracle REST Data Services instance has not yet been configured.
Please complete the following prompts

Enter the location to store configuration data:/path/to/config
Enter the name of the database server [localhost]:
Enter the database listen port [1521]:
Enter 1 to specify the database service name, or 2 to specify the database SID [1]:
Enter the database service name:orcl
Enter 1 if you want to verify/install Oracle REST Data Services schema or 2 to skip
this step [1]:
Enter the database password for ORDS_PUBLIC_USER:
Confirm password:

Requires SYS AS SYSDBA to verify Oracle REST Data Services schema.
Enter the database password for SYS AS SYSDBA:
Confirm password:

Enter the default tablespace for ORDS_METADATA [SYSAUX]:
Enter the temporary tablespace for ORDS_METADATA [TEMP]:
Enter the default tablespace for ORDS_PUBLIC_USER [USERS]:
Enter the temporary tablespace for ORDS_PUBLIC_USER [TEMP]:

Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.
If using Oracle Application Express or migrating from mod_plsql then you must enter
1 [1]:
Enter the PL/SQL Gateway database user name [APEX_PUBLIC_USER]:
Enter the database password for APEX_PUBLIC_USER:
Confirm password:
Enter 1 to specify passwords for Application Express RESTful Services database users
(APEX_LISTENER, APEX_REST_PUBLIC_USER) or 2 to skip this step [1]:
Enter the database password for APEX_LISTENER:
Confirm password:
Enter the database password for APEX_REST_PUBLIC_USER:
Confirm password:

Chapter 1
Configuring and Installing Oracle REST Data Services

1-7

Enter 1 if you wish to start in standalone mode or 2 to exit [1]:
Enter the APEX static resources location:/path/to/apex/images

Enter 1 if using HTTP or 2 if using HTTPS [1]:
Enter the HTTP port [8080]:

 OR

Enter 1 if using HTTP or 2 if using HTTPS [1]:2
Enter the HTTPS port [8443]:
Enter the SSL hostname:mysslhost
Enter 1 to use the self-signed certificate or 2 if you will provide the SSL
certificate [1]:

1.3.4.1.1 Descriptions for Advanced Installation Prompts
This section describes the options you can choose while performing advanced
installation of Oracle REST Data Services schema.

Table 1-1 Advanced Installation Prompts for Installing in Standalone Mode

Options Description

This Oracle REST Data Services
instance has not yet been
configured.
Please complete the following
prompts
Enter the location to store
configuration data:/path/to/config

Specify the location for the ORDS
configuration files. If the location does not
exist, then it will be created.

Enter the name of the database
server [localhost]:

Specify the Oracle database hostname.

Enter the database listen port
[1521]:

Specify the Oracle database port.

Enter 1 to specify the database
service name, or 2 to specify the
database SID [1]:
Enter the database service name:orcl

Specify the Oracle database service name, if
you choose option 1. Otherwise, if you choose
option 2 then, specify the Oracle database
SID.

Enter 1 if you want to verify/
install Oracle REST Data Services
schema
or 2 to skip this step [1]:
Enter the database password for
ORDS_PUBLIC_USER:
Confirm password:

Specify 1 to install the Oracle REST Data
Services schema and create the Oracle REST
Data Services proxy user,
ORDS_PUBLIC_USER.

Specify the proxy user, ORDS_PUBLIC_USER
and the corresponding password.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-8

Table 1-1 (Cont.) Advanced Installation Prompts for Installing in Standalone
Mode

Options Description

Requires SYS AS SYSDBA to verify
Oracle REST Data Services schema.
Enter the database password for SYS
AS SYSDBA:
Confirm password:

Specify the SYS AS SYSDBA password.

Note: To install the Oracle REST Data
Services schema, SYS AS SYSDBA account is
required.

Enter the default tablespace for
ORDS_METADATA [SYSAUX]:
Enter the temporary tablespace for
ORDS_METADATA [TEMP]:

Specify the default tablespace and temporary
tablespace for the Oracle REST Data Services
schema, ORDS_METADATA.

Enter the default tablespace for
ORDS_PUBLIC_USER [USERS]:
Enter the temporary tablespace for
ORDS_PUBLIC_USER [TEMP]

Specify the default tablespace and temporary
tablespace for the Oracle REST Data Services
proxy user, ORDS_PUBLIC_USER.

Table 1-2 Options for Configuring Application Express or Migrating from
mod_plsql

Options Description

Enter 1 if you want to use PL/SQL
Gateway or 2 to skip this step. If
using Oracle
Application Express or migrating
from mod_plsql
then you must enter 1 [1]:
Enter the PL/SQL Gateway database
user name [APEX_PUBLIC_USER]:
Confirm password:
Enter the database password for
APEX_PUBLIC_USER:

You can perform one of the following:

• If you are using Oracle Application
Express, then specify the PL/SQL
gateway user as APEX_PUBLIC_USER and
the corresponding database password.

• If you are migrating from Oracle
mod_plsql, then specify the PL/SQL
gateway database username and
database password.

• If you are not using either Oracle
Application Express or migrating from
Oracle mod_plsql, then select 2 to skip
this step.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-9

Table 1-2 (Cont.) Options for Configuring Application Express or Migrating
from mod_plsql

Options Description

Enter 1 to specify passwords for
Application Express RESTful
Services
database user (APEX_LISTENER,
APEX_REST_PUBLIC_USER) or 2 to skip
this step [1]:
Enter the database password for
APEX_LISTENER:
Confirm password:
Enter the database password for
APEX_REST_PUBLIC_USER:
Confirm password:

If you have specified APEX_PUBLIC_USER
for the PL/SQL Gateway user, then you have
the option of using Application Express
RESTful Services.

Specify 2 if you do not want to use Application
Express RESTful Services and skip this step.

For Application Express 5.0 and above, option
1 is required. The database users are created
using the script apex_rest_config.sql
provided in the Application Express installation
media.

Table 1-3 Options for Running in Standalone Mode

Options Description

Enter 1 if you wish to start in
standalone mode or 2 to exit [1]:

Specify 1 to start in standalone mode using
the Jetty web server that is bundled with
ORDS.

Enter the APEX static resources
location:/path/to/apex/images

Specify the location of the Application Express
images. This prompt will appear if you have
specified APEX_PUBLIC_USER for the PL/SQL
Gateway user.

Enter 1 if using HTTP or 2 if using
HTTPS [1]:
Enter the HTTP port [8080]:

Specify the HTTP port if you choose 1.

OR
Enter 1 if using HTTP or 2 if using
HTTPS [1]:2
Enter the HTTPS port [8443]:
Enter the SSL hostname:mysslhost
Enter 1 to use the self-signed
certificate or 2 if you will
provide the SSL certifi
cate [1]:

Specify the HTTPS port and the Secure
Socket Layer (SSL) hostname if you choose 2.

You have the option of using the self-signed
certificate which generates the self-signed
certificate automatically.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-10

Table 1-3 (Cont.) Options for Running in Standalone Mode

Options Description

OR
Enter 1 to use the self-signed
certificate or 2 if you will
provide the SSL certifi
cate [1]:2
Enter the path for the SSL
Certificate:/path/to/sslcert
Enter the path for the SSL
Certificates private
key:/path/to/sslcertprivatekey

Specify the path for the SSL certificate and the
path for SSL certificate private key if you
choose 2.

Related Topics

• About the Oracle REST Data Services Configuration Files

• Starting in Standalone Mode

• Configuring and Installing Oracle REST Data Services

• Configuring Oracle Application Express Images

• Installing Application Express and Configuring Oracle REST Data Services

1.3.4.2 Silent Installation Using a Parameter File
Oracle REST Data Services can be installed in silent mode without any user
interaction.

You can perform a silent installation of Oracle REST Data Services using the
parameters specified in the <path-to-params-file>/ords_params.properties file
under the location where you installed Oracle REST Data Services. This is the default
Oracle REST Data Services parameter file. You can edit that file to change the default
values to reflect your environment and preferences. If a required parameter is missing
in the file or do not contain a value, you will be prompted for that parameter. The
Oracle REST Data Services parameter file consists of key or value pairs in the format
key=value.

Alternatively, you have the option of specifying your own Oracle REST Data Services
parameter file by including the --parameterFile option. If the --parameterFile option
is not specified, the default Oracle REST Data Services parameter file is used.

Note:

If the default Oracle REST Data Services parameter file does not exist and
the –parameterFile option is not specified, then you will be prompted for the
installation options.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-11

Example commands for installing Oracle REST Data Services in silent mode:

java -jar ords.war
java -jar ords.war --parameterFile /path/to/params/myown_params.properties

java -jar ords.war install simple
java -jar ords.war install simple --parameterFile /path/to/params/
myown_params.properties

Note:

Refer to on-line help command to check for additional options available for
the install command: java –jar ords.war help install

1.3.4.2.1 Parameters for Installing in Silent Mode
This section lists the parameters required for performing installation in silent mode.

Topics:

• Parameters for Database Connection

• Parameters for Installing Oracle REST Data Services

• Parameters for Installing into the CDB

• Parameters for Installing Application Express

• Parameters for Installing in Standalone Mode

• Miscellaneous Parameters

1.3.4.2.1.1 Parameters for Database Connection

This section lists the database connection parameters that must be specified in the
properties file.

For the database connection, you must specify db.hostname and db.port database
connection parameters. In addition, specify either db.servicename or db.sid
parameters. If you are specifying a database connection to an Oracle 12.x PDB, then
provide the db.servicename parameter.

Note:

If both db.servicename and db.sid are present in the parameter file, then
db.servicename will be used.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-12

Table 1-4 Parameters for Database Connection

Key Type Description Example

db.hostname string Specifies the host
system for the Oracle
database.

myhostname

db.port numeric Specifies the
database listener port.

1521

db.servicename string Specifies the network
service name of the
database.

orcl.example.com

db.sid string Specifies the name of
the database.

orcl

1.3.4.2.1.2 Parameters for Installing Oracle REST Data Services

This section lists the parameters required for installing Oracle REST Data Services
schema.

To install Oracle REST Data Services schema, following parameters must be
specified:

• SYS username and password

• ORDS_PUBLIC_USER password

• Existing default and temporary tablespaces for the ORDS_METADATA schema
and ORDS_PUBLIC_USER.

Note:

If all of the default and temporary tablespace parameters are omitted in the
Oracle REST Data Services parameter file, then the Oracle database default
and temporary tablespaces are used.

Table 1-5 Parameters for Installing Oracle REST Data Services

Key Type Description Example

rest.services.ord
s.add

boolean Specifies whether to
install the Oracle
REST Data Services
schema. Set the value
to true.

Supported values:

• true
• false (default)

true

user.public.passw
ord

string Specifies the
password for
ORDS_PUBLIC_USE
R.

password

Chapter 1
Configuring and Installing Oracle REST Data Services

1-13

Table 1-5 (Cont.) Parameters for Installing Oracle REST Data Services

Key Type Description Example

schema.tablespace
.default

string Specifies the
ORDS_METADATA
default tablespace.
Specify an existing
default tablespace.

SYSAUX

schema.tablespace
.temp

string Specifies the
ORDS_METADATA
temporary tablespace.
Specify an existing
temporary tablespace.

TEMP

user.tablespace.d
efault

string Specifies the
ORDS_PUBLIC_USE
R default tablespace.
Specify an existing
default tablespace.

SYSAUX

user.tablespace.t
emp

string Specifies the
ORDS_PUBLIC_USE
R temporary
tablespace. Specify an
existing temporary
tablespace.

TEMP

bequeath.connect boolean Specifies whether to
connect as bequeath.

Supported values:

• true
• false (default)

true

Related Topics

• Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle
REST Data Services

1.3.4.2.1.3 Parameters for Installing into the CDB

This section lists the parameters required for installing Oracle REST Data Services
into the CDB and all of its PDBs.

Oracle database 12.x provides you the option of installing Oracle REST Data Services
in the CDB and all of its PDBs.

Note:

Provide the CDB service name for db.servicename or sid for db.sid.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-14

Table 1-6 Parameters for Installing into the CDB

Key Type Description Example

pdb.open.asneeded boolean Specifies whether to
open all PDBs in read
write mode if their
status is either closed
or read only. If the
value is set to true,
then the following
PDB parameters are
ignored:
• pdb.open.readw

rite
• pdb.skip.close

d
• pdb.skip.reado

nly
Supported values:
• true
• false (default)

true

pdb.open.readwrit
e

string Specifies the list of
PDB service names to
open for read write
mode if their status is
read only.

PDB1, PDB2, MYPDB

pdb.skip.closed boolean Specifies whether to
skip PDBs that are
closed.
Supported values:
• true
• false (default)

true

pdb.skip.readonly boolean Specifies whether to
skip PDBs with read
only status.
Supported values:
• true
• false (default)

true

pdb.exclude string Specifies the list of
PDB service names to
exclude for install.

PDB3, PDB4, PDB_X

Related Topics

• Installing Oracle REST Data Services in a CDB Environment
This section describes installing Oracle REST Data Services into a multitenant
container database (CDB) environment.

1.3.4.2.1.4 Parameters for Installing Application Express

This section lists the parameters for using Application Express.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-15

Table 1-7 Parameters for Installing Application Express

Key Type Description Example

plsql.gateway.add boolean Specifies whether to
configure Oracle
REST Data Services
for Application
Express. Set this
value to true.

Supported values:

• true
• false (default)

true

db.username string Specifies the PL/SQL
gateway username.
For Application
Express, you must
specify
APEX_PUBLIC_USE
R.

APEX_PUBLIC_USER

db.password string Specifies the
password for
APEX_PUBLIC_USE
R. The password must
match
APEX_PUBLIC_USE
R database password.

password

rest.services.ape
x.add

boolean Specifies whether to
configure Oracle
REST Data Services
for Application
Express RESTful
Services.

Supported values:

• true
• false (default)
Set this value to true if
you want to use APEX
RESTful Services.

true

user.apex.listene
r.password

string Specifies the
password for
APEX_LISTENER. If
rest.services.ape
x.add is set to true,
you must provide a
password for
APEX_LISTENER.
The password must
match
APEX_LISTENER
database password.
Otherwise, if
rest.services.ape
x.add is set to false,
omit this parameter.

password

Chapter 1
Configuring and Installing Oracle REST Data Services

1-16

Table 1-7 (Cont.) Parameters for Installing Application Express

Key Type Description Example

user.apex.restpub
lic.password

string Specifies the
password for
APEX_REST_PUBLIC
_USER. If
rest.services.ape
x.add is set to true,
you must provide a
password for
APEX_REST_PUBLIC
_USER. The
password must match
APEX_REST_PUBLIC
_USER database
password. Otherwise,
if
rest.services.ape
x.add is set to false,
omit this parameter.

password

Example 1-1 Parameters to configure for Application Express and APEX
RESTful Services and run in standalone mode

Following example shows parameters to install Oracle REST Data Services, configure
for Application Express and APEX RESTful Services and run in standalone mode
using http:

Note:

Passwords in the parameter file will be encrypted during installation. The
encrypted passwords are stored in the parameter file. For
example,user.public.password=@0585904F6C9B442532D5212962835D00C8.

db.hostname=localhost
db.password=password
db.port=1521
db.servicename=orcl.example.com
db.username=APEX_PUBLIC_USER
plsql.gateway.add=true
rest.services.apex.add=true
rest.services.ords.add=true
schema.tablespace.default=SYSAUX
schema.tablespace.temp=TEMP
standalone.http.port=8080
standalone.mode=true
standalone.static.images=/path/to/images
standalone.use.https=false
user.apex.listener.password=password
user.apex.restpublic.password=password

Chapter 1
Configuring and Installing Oracle REST Data Services

1-17

user.public.password=password
user.tablespace.default=SYSAUX
user.tablespace.temp=TEMP

See Also:

• For information on APEX_PUBLIC_USER, refer to section, Configure
APEX_PUBLIC_USER Account in Oracle Application Express
Installation Guide.

• For information on APEX_LISTENER and
APEX_REST_PUBLIC_USER, refer to section, Configuring RESTful
Services with Oracle REST Data Services in Oracle Application Express
Installation Guide.

1.3.4.2.1.5 Parameters for Installing in Standalone Mode

This section lists parameters for running Oracle REST Data Services in standalone
mode.

Table 1-8 Parameters for Installing Oracle REST Data Services in Standalone
Mode

Key Type Description Example

standalone.mode boolean Indicates whether to
use the web
application server
(Jetty) that is included
with Oracle REST
Data Services.

Supported values:
• true
• false (default)

true

standalone.http.p
ort

numeric Specifies the HTTP
listener port.

8080

standalone.use.ht
tps

boolean Specifies whether to
use https.

true

standalone.https.
port

numeric Specifies HTTPS
listener port.

8443

standalone.ssl.ho
st

string Specifies the Secure
Socket Layer (SSL)
certificate hostname.
You must specify this
option if you are using
https.

mysecurehost

Chapter 1
Configuring and Installing Oracle REST Data Services

1-18

Table 1-8 (Cont.) Parameters for Installing Oracle REST Data Services in
Standalone Mode

Key Type Description Example

standalone.use.ss
l.cert

boolean Specifies whether you
will provide the SSL
certificate. If this value
is set to true, you must
specify the
standalone.ssl.ce
rt.path and
standalone.ssl.ke
y.path.

true

standalone.ssl.ce
rt.path

string Specifies the SSL
certificate path. If you
are providing the SSL
certificate, you must
specify the certificate
location.

/path/to/ssl/cert

standalone.ssl.ke
y.path

string Specifies the SSL
certificate key path. If
you are providing the
SSL certificate, you
must specify the
certificate key
location.

/path/to/ssl/key

standalone.static
.images

string Specifies the location
of Application Express
images. If you are
using Application
Express, specify the
location of Application
Express images.

/path/to/apex/
images

Note:

On Microsoft Windows systems, if you specify an Application Express static
images location for standalone.static.images, use the backslash character
(/) before the colon, and use a forwardslash for the folder separator. For
example, standalone.static.images=d\:/test/apex426/apex/images/

Example 1-2 Parameters to run in standalone mode using http

Following code snippet shows an example of the list of parameters to specify for
installing Oracle REST Data Services and running in standalone mode using http:

db.hostname=localhost
db.port=1521
db.servicename=orcl.example.com
plsql.gateway.add=false
rest.services.apex.add=false
rest.services.ords.add=true

Chapter 1
Configuring and Installing Oracle REST Data Services

1-19

schema.tablespace.default=SYSAUX
schema.tablespace.temp=TEMP
standalone.http.port=8080
standalone.mode=true
standalone.use.https=false
user.public.password=password
user.tablespace.default=SYSAUX
user.tablespace.temp=TEMP

Example 1-3 Parameters to run in standalone mode using https and providing
the ssl certificate paths

Following code snippet shows an example of the list of parameters to specify for
installing and running Oracle REST Data Services in standalone mode using https and
providing the ssl certificate paths:

db.hostname=localhost
db.port=1521
db.servicename=orcl.example.com
plsql.gateway.add=false
rest.services.apex.add=false
rest.services.ords.add=true
schema.tablespace.default=SYSAUX
schema.tablespace.temp=TEMP
standalone.https.port=8443
standalone.mode=true
standalone.ssl.cert.path=/path/to/ssl/cert
standalone.ssl.host=mysecurehost
standalone.ssl.key.path=/path/to/ssl/key
standalone.use.https=true
standalone.use.ssl.cert=true
user.public.password=password
user.tablespace.default=SYSAUX
user.tablespace.temp=TEMP

Related Topics

• Running in Standalone Mode

1.3.4.2.1.6 Miscellaneous Parameters

This section lists some miscellaneous parameters.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-20

Table 1-9 Miscellaneous Parameters

Key Type Description Example

migrate.apex.rest boolean Specifies whether to
migrate APEX
RESTful Services
definitions to Oracle
REST Data Services
schema.

Supported values:
• true
• false (default)

true

1.3.4.3 Validating the Oracle REST Data Services Installation
If you want to check that the Oracle REST Data Services installation is valid, go to the
directory or folder containing the ords.war file and enter the validate command in the
following format:

java -jar ords.war validate [--database <dbname>]

Note:

When you install Oracle REST Data Services, it attempts to find the Oracle
Application Express (APEX) schema and creates a view. This view joins the
relevant tables in the APEX schema to the tables in the Oracle REST Data
Services schema. If you install Oracle REST Data Services before APEX,
then Oracle REST Data Services cannot find the APEX schema and it
creates a stub view in place of the missing APEX tables.

Oracle highly recommends that you install Oracle REST Data Services after
APEX to ensure that the APEX objects, which Oracle REST Data Services
needs to query, are present. If you install Oracle REST Data Services before
APEX, then use the validate command to force Oracle REST Data Services
to reconstruct the queries against the APEX schema.

If --database is specified, <dbname> is the pool name that is stored in the Oracle
REST Data Services configuration files.

You are prompted for any necessary information that cannot be obtained from the
configuration of pool name, such as host, port, SID or service name, and the name
and password of a user with SYSDBA privilege (such as SYS AS SYSDBA).

Note:

If the validate command is run against a CDB, then it will validate the CDB
and all of its PDBs.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-21

1.3.4.4 If You Want to Reinstall or Uninstall (Remove) Oracle REST Data
Services

If you want to reinstall Oracle REST Data Services, you must first uninstall the existing
Oracle REST Data Services; and before you uninstall, ensure that Oracle REST Data
Services is stopped.

Uninstalling Oracle REST Data Services removes the ORDS_METADATA schema,
the ORDS_PUBLIC_USER user, and Oracle REST Data Services-related database
objects (including public synonyms) if they exist in the database. To uninstall (remove,
or deinstall) Oracle REST Data Services, go to the directory or folder containing the
ords.war file and enter the uninstall command as follows:

java -jar ords.war uninstall

The uninstall command prompts you for some necessary information (host, port, SID
or service name, username, password).

See Also:

To uninstall Oracle REST Data Services from a CDB, see Using the
Multitenant Architecture with Oracle REST Data Services .

1.3.5 Using SQL Developer Oracle REST Data Services
Administration (Optional)

This section describes how to use Oracle SQL Developer to administer Oracle REST
Data Services.

See Also:

"Oracle REST Data Services Administration" in Oracle SQL Developer
User's Guide

Topics:

• About SQL Developer Oracle REST Data Services Administration

• Configuring an Administrator User

1.3.5.1 About SQL Developer Oracle REST Data Services Administration
Oracle SQL Developer enables you to administer Oracle REST Data Services using a
graphical user interface. To take full advantage of these administration capabilities,
you must use SQL Developer Release 4.1 or later. Using SQL Developer for Oracle
REST Data Services administration is optional.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-22

Using this graphical user interface, you can update the database connections, JDBC
settings, URL mappings, RESTful connections, security (allowed procedures, blocked
procedures, validation function and virus scanning), Caching, Pre/Post Processing
Procedures, Environment, and Excel Settings. Oracle SQL Developer also provides
statistical reporting, error reporting, and logging.

See Also:

"Oracle REST Data Services Administration" in Oracle SQL Developer
User's Guide

1.3.5.2 Configuring an Administrator User
If you want to be able to administer Oracle REST Data Services using SQL Developer,
then you must configure an administrator user as follows:

• Execute the following command:

java -jar ords.war user adminlistener "Listener Administrator"

• Enter a password for the adminlistener user.

• Confirm the password for the adminlistener user.

• If you are using Oracle REST Data Services without HTTPS, follow the steps listed
under the section,Using OAuth2 in Non-HTTPS Environments.

When using SQL Developer to retrieve and/or upload an Oracle REST Data Services
configuration, when prompted, enter the credentials provided in the preceding list.

1.3.6 Using OAuth2 in Non-HTTPS Environments
RESTful Services can be protected with the OAuth2 protocol to control access to
nonpublic data. To prevent data snooping, OAuth2 requires all requests involved in the
OAuth2 authentication process to be transported using HTTPS. The default behavior
of Oracle REST Data Services is to verify that all OAuth2 related requests have been
received using HTTPS. It will refuse to service any such requests received over HTTP,
returning an HTTP status code of 403 Forbidden.

This default behavior can be disabled in environments where HTTPS is not available
as follows:

1. Locate the folder where the Oracle REST Data Services configuration is stored.

2. Edit the file named defaults.xml.

3. Add the following setting to the end of this file just before the </properties> tag.

<entry key="security.verifySSL">false</entry>

4. Save the file.

5. Restart Oracle REST Data Services if it is running.

Note that it is only appropriate to use this setting in development or test environments.
It is never appropriate to use this setting in production environments because it will
result in user credentials being passed in clear text.

Chapter 1
Configuring and Installing Oracle REST Data Services

1-23

Note:

Oracle REST Data Services must be restarted after making configuration
changes. See your application server documentation for information on how
to restart applications.

1.4 Running in Standalone Mode
Although Oracle REST Data Services supports the Java EE application servers, you
also have the option of running in standalone mode. This section describes how to run
Oracle REST Data Services in standalone mode.

Standalone mode is suitable for development use and is supported in production
deployments. Standalone mode, however, has minimal management capabilities when
compared to most Java EE application servers and may not have adequate
management capabilities for production use in some environments.

Topics:

• Starting in Standalone Mode

• Stopping the Server in Standalone Mode

• Configuring a Doc Root for Non-Application Express Static Resources

Related Topics

• Supported Java EE Application Servers

1.4.1 Starting in Standalone Mode
To launch Oracle REST Data Services in standalone mode:

1. To start Standalone mode, execute the following command:

java -jar ords.war standalone

If you have not yet completed the standalone configuration, you are prompted to
do so.

Tip:

To see help on standalone mode options, execute the following
command:

java -jar ords.war help standalone

Note:

If you want to use RESTful services that require secure access, you
should use HTTPS.

Chapter 1
Running in Standalone Mode

1-24

2. When prompted, specify the location of the folder containing the Oracle
Application Express static resources used by Oracle REST Data Services, or
press Enter if you do not want to specify this location.

3. When prompted select if you want Oracle REST Data Services to generate a self-
signed certificate automatically or if you want to provide your own certificate. If you
want to use your own certificate, provide the path for the Certificate and DER
encoded related private key when prompted.

If the private key has not already been converted to DER, see section, Converting
a Private Key to DER (Linux and Unix) before you enter the values here.

You are only prompted for these values the first time you launch standalone mode.

Note:

Ensure that no other servers are listening on the port you choose. The
default port 8080 is commonly used by HTTP or application servers,
including the embedded PL/SQL gateway; the default secure port 8443 is
commonly used by HTTPS.

Related Topics

• Using OAuth2 in Non-HTTPS Environments

• Converting a Private Key to DER (Linux and Unix)

1.4.1.1 Converting a Private Key to DER (Linux and Unix)
Usually, you would have created a private key and a Certificate Signing Request
before obtaining your signed certificate. The private key needs to be converted into
DER in order for Oracle REST Data Services to read it properly.

For example, assume that the original private key was created using the OpenSSL tool
with a command similar to either of the following:

openssl req -new -newkey rsa:2048 -nodes -keyout yourdomain.key -out
yourdomain.csr

or

openssl genrsa -out private.em 2048

In this case, you must run a command similar to the following to convert it and remove
the encryption: openssl pkcs8 -topk8 -inform PEM -outform DER -in yourdomain.key -
out yourdomain.der -nocrypt

openssl pkcs8 -topk8 -inform PEM -outform DER -in yourdomain.key -out
yourdomain.der -nocrypt

After doing this, you can include the path to yourdomain.der when prompted by
Oracle REST Data Services, or you can modify the following entries in conf/ords/
standalone/standalone.properties:

Chapter 1
Running in Standalone Mode

1-25

ssl.cert=<path to yourdomain.crt>
ssl.cert.key=<path to yourdomain.der>
ssl.host=yourdomain

Also, ensure that jetty.secure.port is set.

1.4.2 Stopping the Server in Standalone Mode
To stop the Oracle REST Data Services server in standalone mode, at a command
prompt press Ctrl+C.

1.4.3 Configuring a Doc Root for Non-Application Express Static
Resources

You can configure a doc root for standalone mode to deploy static resources that are
outside the /i folder that is reserved for Application Express static resources.

To do so, specify the --doc-root parameter with the standalone mode command, as
in the following example:

java -jar ords.war standalone --doc-root /var/www/html

The preceding example makes any resource located within /var/www/html available
under http://server:port/. For example, if the file /var/www/html/hello.txt exists,
it will be accessible at http://server:port/hello.txt.

The value specified for --doc-root is stored in ${config.dir}/ords/standalone/
standalone.properties in the standalone.doc.root property. If a custom doc root is
not specified using --doc-root, then the default doc-root value of ${config.dir}/
ords/standalone/doc_root is used. Any file placed within this folder will be available
at the root context.

This approach has the following features and considerations:

• HTML resources can be addressed without their file extension. For example, if a
file named hello.html exists in the doc root, it can be accessed at the URI
http://server:port/hello.

• Attempts to address a HTML resource with its file extension are redirected to the
location without an extension. For example, if the URI http://server:port/
hello.html is accessed, then the client is redirected to http://server:port/
hello.

The usual practice is to serve HTML resources without their file extensions, so this
feature facilitates that practice, while the redirect handles the case where the
resource is addressed with its file extension.

• Index pages for folders are supported. If a folder contains a file named index.html
or index.htm, then that file is used as the index page for the folder. For example,
if /var/www/html contains /abc/xyz/index.html, then accessing http://
server:port/abc/xyz/ displays the contents of index.html.

• Addressing a folder without a trailing slash causes a redirect to the URI with a
trailing slash. For example, if a client accesses http://server:port/abc/xyz,
then the server issues a redirect to http://server:port/abc/xyz/.

Chapter 1
Running in Standalone Mode

1-26

• Resources are generated with weak etags based on the modification stamp of the
file and with a Cache Control header that causes the resources to be cached for 1
hour.

1.5 Deploying to Oracle WebLogic Server
This section describes how to deploy Oracle REST Data Services on Oracle WebLogic
Server. It assumes that you have completed the installation process and are familiar
with Oracle WebLogic Server. If you are unfamiliar with domains, managed servers,
deployment, security, users and roles, refer to your Oracle WebLogic Server
documentation.

Topics:

• About Oracle WebLogic Server

• Downloading, Installing, and Configuring Oracle REST Data Services

• Configuring Oracle Application Express Images

• Launching the Administration Server Console

• Installing the Oracle WebLogic Server Deployment

• Configuring WebLogic to Handle HTTP Basic Challenges Correctly

• Verifying the State and Health of ords and i

1.5.1 About Oracle WebLogic Server
You can download Oracle WebLogic Server from Oracle Technology Network.

To learn more about installing Oracle WebLogic Server, see Oracle Fusion
Middleware Getting Started With Installation for Oracle WebLogic Server and Oracle
Fusion Middleware Installation Guide for Oracle WebLogic Server.

See Also:

weblogic_downloads

1.5.2 Downloading, Installing, and Configuring Oracle REST Data
Services

You must complete this step before deploying Oracle REST Data Services on
WebLogic.

Related Topics

• Configuring and Installing Oracle REST Data Services

1.5.3 Configuring Oracle Application Express Images
If you are using Oracle Application Express, you must create a web archive to
reference the Oracle Application Express, image files. However, if you are not using

Chapter 1
Deploying to Oracle WebLogic Server

1-27

http://www.oracle.com/technetwork/middleware/weblogic/downloads/index.html

Oracle Application Express, you may skip the rest of this section about configuring
Oracle Application Express images.

Before you begin, you must create a web archive (WAR) file to reference the Oracle
Application Express image files. Use the static command to create a web archive file
named i.war:

java -jar ords.war static <apex directory>\images

Where:

• <apex directory> is the directory location of Oracle Application Express.

This command runs the static command contained in the ords.war file. It packages
the Application Express static images into an archive file named i.war.

The created images WAR does not contain the static resources; instead, it references
the location where the static resources are stored. Therefore the static resources must
be available at the specified path on the server where the WAR is deployed.

Tip:

Use java -jar ords.war help static to see the full range of options for
the static command.

Use the i.war file to deploy to WebLogic in the following steps:

1. Launching the Administration Server Console

2. Installing the Oracle WebLogic Server Deployment

3. Configuring WebLogic to Handle HTTP Basic Challenges Correctly

1.5.4 Launching the Administration Server Console
To launch the Administration Server console:

1. Start an Administration Server.

2. Launch the WebLogic Administration Console by typing the following URL in your
web browser:

http://<host>:<port>/console

Where:

• <host> is the DNS name or IP address of the Administration Server.

• <port> is the port on which the Administration Server is listening for requests
(port 7001 by default).

3. Enter your WebLogic Administrator username and password.

4. If your domain is in Production mode, click the Lock & Edit button on the left-pane
below the submenu Change Center. If your domain is in Development mode, this
button does not appear.

Chapter 1
Deploying to Oracle WebLogic Server

1-28

1.5.5 Installing the Oracle WebLogic Server Deployment

Tip:

The Oracle REST Data Services files, ords.war and i.war, must be
available before you start this task.

To install the deployment:

1. Go to the WebLogic Server Home Page. Below Domain Configuration, select
Deployments.

The Summary of Deployments is displayed.

2. Click Install.

3. Specify the location of the ords.war file and click Next.

The ords.war file is located in the folder where you unzipped the Oracle REST
Data Services ZIP file.

Tip:

WebLogic Server determines the context root from the file name of a
WAR archive. If you need to keep backward compatibility, so that URLs
are of the form http://server/apex/... rather than http://server/ords/..., then
you must rename ords.war to apex.war before the deployment.

The Install Application assistant is displayed.

4. Select Install this deployment as an application and click Next.

5. Select the servers and/or clusters to which you want to deploy the application or
module and click Next.

Tip:

If you have not created additional Managed Servers or clusters, you do
not see this assistant page.

6. In the Optional Settings, specify the following:

a. Name - Enter:

ords

b. Security - Select the following:

Custom Roles: Use roles that are defined in the Administration Console;
use policies that are defined in the deployment descriptor

c. Source accessibility - Select:

Use the defaults defined by the deployment's targets

Chapter 1
Deploying to Oracle WebLogic Server

1-29

7. Click Next.

A summary page is displayed.

8. Under Additional configuration, select one of the following:

• Yes, take me to the deployment's configuration - Displays the
Configuration page.

• No I will review the configuration later - Returns you to the Summary of
Deployments page.

9. Review the summary of configuration settings that you have specified.

10. Click Finish.

11. Repeat the previous steps to deploy the i.war file.

In the optional settings, specify the following:

a. Name - Enter:

i

b. Security - Select:

Custom Roles: Use roles that are defined in the Administration Console;
use policies that are defined in the deployment descriptor

c. Source Accessibility - Select:

Use the defaults defined by the deployment's targets

12. If your domain is in Production Mode, then on the Change Center click Activate
Changes.

Related Topics

• Configuring and Installing Oracle REST Data Services

• Configuring Oracle Application Express Images

1.5.6 Configuring WebLogic to Handle HTTP Basic Challenges
Correctly

By default WebLogic Server attempts to intercept all HTTP Basic Authentication
challenges. This default behavior needs to be disabled for Oracle REST Data Services
to function correctly. This is achieved by updating the enforce-valid-basic-auth-
credentials flag. The WebLogic Server Administration Console does not display the
enforce-valid-basic-auth-credentials setting. You can use WebLogic Scripting
Tool (WLST) commands to check, and edit the value in a running server.

The following WLST commands display the domain settings:

connect('weblogic','weblogic','t3://localhost:7001')
cd('SecurityConfiguration')
cd('mydomain')
ls()

Chapter 1
Deploying to Oracle WebLogic Server

1-30

If the domain settings displayed, contains the following entry:

-r-- EnforceValidBasicAuthCredentials true

Then you must set this entry to false.

To set the entry to false, use the WLST commands as follows:

connect('weblogic', 'weblogic', 't3://localhost:7001')
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
set('EnforceValidBasicAuthCredentials','false')
save()
activate()
disconnect()
exit()

Note:

WebLogic Server must be restarted for the new settings to take effect.

In the preceding example:

• weblogic is the WebLogic user having administrative privileges

• weblogic is the password

• mydomain is the domain

• The AdminServer is running on the localhost and on port 7001

Related Topics

• WebLogic Server Command Reference

1.5.7 Verifying the State and Health of ords and i
In the Summary of Deployments, select the Control tab and verify that both the ords
and i State are Active and the Health status is OK.

If ords and/or i are not Active, then enable them. In the Deployments table, select the
check box next to ords and/or i. Click Start and select Servicing all requests to
make them active.

1.6 Deploying to GlassFish Server
This section describes how to deploy Oracle REST Data Services on GlassFish
Server.

Chapter 1
Deploying to GlassFish Server

1-31

https://docs.oracle.com/cd/E13222_01/wls/docs81/admin_ref/weblogicServer.html

Note:

GlassFish Server support will be desupported in a future release. Oracle
recommends that you use the following alternatives instead:

• Oracle WebLogic Server

• Oracle REST Data Services standalone mode

• Apache Tomcat

Topics:

• About GlassFish Server

• Downloading, Installing, and Configuring Oracle REST Data Services

• Configuring Oracle Application Express Images

• Launching the Administration Server Console

• Installing the GlassFish Server Deployment

Tip:

This section assumes that you have completed the installation process and
are familiar with GlassFish Server. If you are unfamiliar with domains,
servers, applications, security, users and roles, see your GlassFish Server
documentation.

1.6.1 About GlassFish Server
You can install Oracle REST Data Services with GlassFish Server. GlassFish Server
is available for download from the Oracle Technology Network.

Related Topics

• Downloading, Installing, and Configuring Oracle REST Data Services

See Also:

oracle_glassfish_server

1.6.2 Downloading, Installing, and Configuring Oracle REST Data
Services

You must complete this step before deploying Oracle REST Data Services on
GlassFish.

Chapter 1
Deploying to GlassFish Server

1-32

http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html

1.6.3 Configuring Oracle Application Express Images
If you are using Oracle Application Express, you must create a web archive to
reference the Oracle Application Express, image files. However, if you are not using
Oracle Application Express, you may skip the rest of this section about configuring
Oracle Application Express images.

Before you begin, you must create a web archive (WAR) file to reference the Oracle
Application Express image files. Use the static command to create a web archive file
named i.war:

java -jar ords.war static <apex directory>\images

Where:

• <apex directory> is the directory location of Oracle Application Express.

The created images WAR does not contain the static resources; instead, it references
the location where the static resources are stored. Therefore the static resources must
be available at the specified path on the server where the WAR is deployed.

Tip:

Use java -jar ords.war help static to see the full range of options for
the static command.

Use the i.war file to deploy to GlassFish in the following steps:

1. Launching the Administration Server Console

2. Installing the GlassFish Server Deployment

1.6.4 Launching the Administration Server Console
At least one GlassFish server domain must be started before you start the
Administration Console.

To launch the Administration Console:

1. Launch the Administration Console by typing the following URL in your web
browser:

http://localhost:4848

2. If prompted, log in to the Administration Console.

Tip:

You are prompted to log in if you chose to require an administration
password at the time GlassFish server was installed.

Chapter 1
Deploying to GlassFish Server

1-33

1.6.5 Installing the GlassFish Server Deployment

Tip:

The Oracle REST Data Services files, ords.war and i.war must be available
before you start this task.

To install the deployment:

1. On the navigation tree, click the Application node.

The Applications page is displayed.

2. Click the Deploy button.

The Deploy Applications or Modules page is displayed.

3. Select Packaged File to be Uploaded to the Server and click Browse.

4. Navigate to the location of the ords.war file, select the file, and click Open.

The Deploy Applications or Modules page is displayed.

5. On the Deploy Applications or Modules page, specify the following:

a. Type: Web Application

b. Context Root: ords

Tip:

The Context Root value defaults to ords. However you can change it
to apex if you need to keep backward compatibility, so that URLs are
of the form http://server/apex/... rather than http://server/ords/....

c. Application Name: ords

d. Status: Enabled

e. Description: Oracle REST Data Services

f. Accept all other default settings and click OK.

6. Repeat the previous steps to deploy the i.war file. Clear the Context Root field so
that the context root set in the sun-web.xml is used.

The Applications page is displayed. A check mark should appear in the Enabled field
for ords

Tip:

If a check mark does not appear in the Enabled column for ords, then select
the check box next to ords and click Enable.

Chapter 1
Deploying to GlassFish Server

1-34

Related Topics

• Configuring and Installing Oracle REST Data Services

• Configuring Oracle Application Express Images

1.7 Deploying to Apache Tomcat
This section describes how to deploy Oracle REST Data Services on Apache Tomcat.

Topics:

• About Apache Tomcat

• Downloading, Installing, and Configuring Oracle REST Data Services

• Configuring Oracle Application Express Images

• Installing the Apache Tomcat Deployment

1.7.1 About Apache Tomcat

Tip:

This section assumes that you have completed the installation process and
are familiar with Apache Tomcat. If you are unfamiliar with domains, servers,
applications, security, users and roles, see your Apache Tomcat
documentation.

You can download Apache Tomcat from:

See Also:

apache_tomcat_80

1.7.2 Downloading, Installing, and Configuring Oracle REST Data
Services

You must complete this step before deploying Oracle REST Data Services on Apache
Tomcat.

Related Topics

• Configuring and Installing Oracle REST Data Services

1.7.3 Configuring Oracle Application Express Images
If you are using Oracle Application Express, you must create a web archive to
reference the Oracle Application Express, image files. However, if you are not using
Oracle Application Express, you may skip the rest of this section about configuring
Oracle Application Express images.

Chapter 1
Deploying to Apache Tomcat

1-35

https://tomcat.apache.org/download-80.cgi

To configure Oracle Application Express Images on Apache Tomcat:

• Copy the contents of the <apex directory>/images folder to <Tomcat
directory>/webapps/i/.

Where:

– <apex directory> is the directory location of the Oracle Application Express
distribution.

– <Tomcat directory> is the folder where Apache Tomcat is installed.

1.7.4 Installing the Apache Tomcat Deployment

Tip:

The Oracle REST Data Services file ords.war must be available before you
start this task.

To install the Apache Tomcat deployment:

1. Move the ords.war file into the webapps folder where Apache Tomcat is installed.

Tip:

Apache Tomcat determines the context root from the file name of a WAR
archive. If you need to keep backward compatibility, so that URLs are of
the form http://server/apex/... rather than http://server/ords/..., then you
must rename ords.war to apex.war before moving it into to the webapps
folder.

2. Access Oracle Application Express by typing the following URL in your web
browser:

http://<hostname>:<port>/ords/

Where:

• <hostname> is the name of the server where Apache Tomcat is running.

• <port> is the port number configured for Apache Tomcat application server.

Related Topics

• Configuring and Installing Oracle REST Data Services

• Configuring Oracle Application Express Images

1.8 Upgrading Oracle REST Data Services
If you want to upgrade to a new release of Oracle REST Data Services, you must do
the following:

1. Stop the Oracle REST Data Services instance.

Chapter 1
Upgrading Oracle REST Data Services

1-36

• If you are running Oracle REST Data Services on your application server
(such as Oracle WebLogic Server, GlassFish Server, or Apache Tomcat), stop
Oracle REST Data Services.

• If you are running Oracle REST Data Services in standalone mode, refer to
section, Stopping the Server in Standalone Mode.

2. Go to the folder where you unzipped the new Oracle REST Data Services release
distribution.

3. Enter the following on the command line:

java -jar ords.war install advanced

or

java -jar ords.war

4. When prompted for the configuration folder, use the configuration folder where the
Oracle REST Data Services configuration files are stored. (The configuration
location will be stored in the ords.war file.)

• If you specified an existing Oracle REST Data Services configuration folder
that contains the configuration files, Oracle REST Data Services will attempt to
connect to each database defined in the configuration folder and check the
installed version.

• If you specified an Oracle REST Data Services configuration folder that does
not exist, you will be prompted for the database connection information, the
ORDS_PUBLIC_USER credentials, and additional configuration information.
Oracle REST Data Services will attempt to connect to this database and check
the installed version.

When Oracle REST Data Services checks the installed version, it does the following,
depending on whether an earlier 3.0.n version is already installed in the database.

• If the installed version is an earlier 3.0.n version of Oracle REST Data Services,
you are prompted for the SYS credentials to enable Oracle REST Data Services to
apply the in-place upgrade. The in-place upgrade will modify the existing
installation to add the updated schema objects and packages. The existing
metadata stored in the Oracle REST Data Services schema will remain intact.

• If Oracle REST Data Services is not already installed in the database (or if you are
upgrading from Release 2.0.n), you are prompted for the SYS credentials to
enable Oracle REST Data Services to perform the installation, and you will also be
prompted for the default and temporary tablespaces for the ORDS_METADATA
schema and ORDS_PUBLIC_USER.

When the upgrade or installation completes, you can re-deploy the ords.war file to
your application server or start Oracle REST Data Services in standalone mode.

Related Topics

• Troubleshooting Oracle REST Data Services

• Stopping the Server in Standalone Mode

Chapter 1
Upgrading Oracle REST Data Services

1-37

1.9 Using a Bequeath Connection to Install, Upgrade,
Validate, or Uninstall Oracle REST Data Services

You can use the bequeath connection to install, upgrade, validate, or uninstall Oracle
REST Data Services. The installer will not prompt you for the SYS username and
password for the operation

In the parameter file, add the property: bequeath.connect=true

Using a bequeath connection for installing, validating, or uninstalling Oracle REST
Data Services is supported on Linux and Windows systems for Oracle Database
Release 12, but only on Linux systems for Oracle Database Release 11.

The command used must be run by an operating system user that is a member of the
DBA group. Example of installing Oracle REST Data Services:

java -jar ords.war

Bequeath Connection Using Linux

On a Linux system, you must set the following environment variables to use the
bequeath connection:

• ORACLE_HOME

• ORACLE_SID

• LD_LIBRARY_PATH (to point to ORACLE_HOME/lib)

For Oracle Database Release 11 (but not for Release 12), you must specify the option
-DuseOracleHome=true. Examples of installing Oracle REST Data Services on a Linux
system:

• For Oracle Database Release 11: java -DuseOracleHome=true -jar ords.war

• For Oracle Database Release 12: java -jar ords.war

Related Topics

• Silent Installation Using a Parameter File
Oracle REST Data Services can be installed in silent mode without any user
interaction.

Chapter 1
Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST Data Services

1-38

2
Configuring Oracle REST Data Services
(Advanced)

This section explains how to configure Oracle REST Data Services for connecting to
multiple databases for routing requests, and it refers to other documentation sources
for other configuration information.

Note:

Oracle REST Data Services must be restarted after making configuration
changes. See your application server documentation for information on how
to restart applications.

Topics:

• Configuring Multiple Databases

• Support for Oracle RAC Fast Connection Failover

• Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel
Settings

• Configuring REST-Enabled SQL Service Settings

• Configuring the Maximum Number of Rows Returned from a Query

• Configuring the Custom Error Pages

• Developing RESTful Services for Use with Oracle REST Data Services

2.1 Configuring Multiple Databases
Oracle REST Data Services supports the ability to connect to more than one
database. This section describes different strategies for routing requests to the
appropriate database.

Topics:

• About the Request URL

• Configuring Additional Databases

• Routing Based on the Request Path Prefix

• Routing Based on the Request URL Prefix

2.1.1 About the Request URL
Oracle REST Data Services supports a number of different strategies for routing
requests to the appropriate database. All of these strategies rely on examining the

2-1

request URL and choosing the database based on some kind of match against the
URL. It is useful to recap the pertinent portions of a request URL. Consider the
following URL:

https://www.example.com/ords/sales/f?p=1:1

This URL consists of the following sections:

• Protocol: https

• Host Name: www.example.com

• Context Root: /ords

The context root is the location at which Oracle REST Data Services is deployed
on the application server.

• Request Path: /sales/f?p=1.1

This is the portion of the request URL relative to the context root.

For different applications, it may be important to route requests based on certain
prefixes in the request path or certain prefixes in the full request URL.

There are two steps to configuring multiple databases:

1. Configuring the database connection information

2. Configuring which requests are routed to which database

2.1.2 Configuring Additional Databases
When you first configure Oracle REST Data Services, you configure a default
database connection named: apex. You can create additional database connections
using the setup command.

Tip:

To see full help for the setup command type:

java -jar ords.war help setup

To create a database connection type the following:

java -jar ords.war setup --database <database name>

Where:

• <database name> is the name you want to give the database connection.

You are prompted to enter the information required to configure the database. After
you have configured the additional databases, define the rules for how requests are
routed to the appropriate database.

Related Topics

• Configuring and Installing Oracle REST Data Services

• Routing Based on the Request Path Prefix

Chapter 2
Configuring Multiple Databases

2-2

• Routing Based on the Request URL Prefix

2.1.3 Routing Based on the Request Path Prefix
You create request routing rules using the map-url command.

Tip:

To see full help for the map-url command type:

java -jar ords.war help map-url

If you want to route requests based just on matching a prefix in the request path
portion of the URL, use the map-url command as follows:

java -jar ords.war map-url --type base-path --workspace-id <workspace name> <path
prefix> <database name>

Where:

• <workspace name> is the name of the Oracle Application Express workspace
where RESTful services for this connection are defined. This may be omitted if
RESTful Services are not being used.

• <path prefix> is the prefix that must occur at the start of the request path.

• <database name> is the name of the database connection configured in the
previous step.

Related Topics

• Configuring Additional Databases

2.1.3.1 Example of Routing Based on the Request Path Prefix
Assuming Oracle REST Data Services is deployed on a system named example.com
at the context path /ords, then create the following rule:

java -jar ords.war map-url --type base-path --workspace-id sales_rest /sales sales_db

This rule means that any requests matching https://example.com/ords/sales/...
are routed to the sales_db database connection. The sales_rest workspace defined
within the sales_db database is searched for RESTful Services definitions.

The previous rule matches all of the following requests:

https://example.com/ords/sales/f?p=1:1
https://example.com/ords/sales/leads/
https://www.example.com/ords/sales/forecasting.report?month=jan (If www.example.com
resolves to the same system as example.com.)

The previous rule does not match of any of the following requests:

http://example.com/ords/sales/f?p=1:1 (The protocol is wrong.)
https://example.com:8080/ords/sales/f?p=1:1 (The port is wrong: 443 is default for
https, but don't specify if using default.)

Chapter 2
Configuring Multiple Databases

2-3

https://example.com/ords/f?p=1:1 (Missing the /sales prefix.)
https://example.com/pls/sales/leads/ (The context path is wrong.)

2.1.4 Routing Based on the Request URL Prefix
If you want to route requests based on a match of the request URL prefix, use the
map-url command as follows:

java -jar ords.war map-url --type base-url --workspace-id <workspace name> <url
prefix> <database name>

Where:

• <workspace name> is the name of the Oracle Application Express workspace
where RESTful services for this connection are defined. This may be omitted if
RESTful Services are not being used.

• <url prefix> is the prefix with which the request URL must start.

• <database name> is the name of the database connection.

2.1.4.1 Example of Routing Based on the Request URL Prefix
Assuming Oracle REST Data Services is deployed on a system named example.com
at the context path /ords, then create the following rule:

java -jar ords.war map-url --type base-url --workspace-id sales_rest https://
example.com/ords/sales sales_db

This rule means that any requests matching https://example.com/ords/sales/...
are routed to the sales_db database connection. The sales_rest workspace defined
within the sales_db database is searched for RESTful Services definitions.

The previous rule matches all of the following requests:

https://example.com/ords/sales/f?p=1:1
https://example.com/ords/sales/leads/
https://example.com/ords/sales/forecasting.report?month=jan

The previous rule does not match of any of the following requests:

http://example.com/ords/sales/f?p=1:1 (The protocol is wrong.)
https://example.com:8080/ords/sales/f?p=1:1 (The port is wrong: 443 is default for
https, but don't specify if using default.)
https://example.com/ords/f?p=1:1 (Missing the /sales segment of the base URL.)
https://example.com/pls/sales/leads/ (The context path is wrong.)
https://www.example.com/ords/sales/forecasting.report?month=jan (The host name is
wrong.)

2.2 Using the Multitenant Architecture with Oracle REST
Data Services

This section outlines installing, configuring, upgrading and uninstalling Oracle REST
Data Services in a multitenant container database.

• Installing Oracle REST Data Services in a CDB Environment

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

2-4

• Upgrading Oracle REST Data Services in a CDB Environment

• Migrating Oracle REST Data Services in the CDB to Enable Multiple Releases

• Uninstalling Oracle REST Data Services in a CDB Environment

2.2.1 Installing Oracle REST Data Services in a CDB Environment
This section describes installing Oracle REST Data Services into a multitenant
container database (CDB) environment.

Oracle Database 12c Release 1 (12.1) introduced the multitenant architecture. This
database architecture has a multitenant container database (CDB) that includes a root
container, CDB$ROOT, a seed database, PDB$SEED, and multiple pluggable databases
(PDBs). A PDB appears to users and applications as if it were a non-CDB. Each PDB
is equivalent to a separate database instance in Oracle Database Release 11g.

The root container, CDB$ROOT, holds common objects that are accessible to every PDB
utilizing metadata links or object links. The seed database, PDB$SEED, is used when
you create a new PDB to seed the new pluggable database. The key benefit of the
Oracle Database 12c multitenant architecture is that the database resources, such as
CPU and memory, can be shared across all of the PDBs. This architecture also
enables many databases to be treated as one for tasks such as upgrades or patches,
and backups.

The installation process when you have multiple releases is described in the following
section:

• Installation Enabling Multiple Releases

Note:

If you want to install directly into a PDB (not connected to Root during
installation), see Advanced Installation Using Command-Line Prompts for
more information.

Preinstallation Tasks for Oracle REST Data Services CDB Installation

• Ensure that the PDBs are open (not mounted/closed) in read/write mode (except
for PDB$SEED, which remains in read-only mode). For more information, see Oracle
Multitenant Administrator’s Guide

• Ensure that the default and temporary tablespaces to be used by the
ORDS_METADATA schema and the ORDS_PUBLIC_USER user exist and that you know
the tablespace names. The installation procedure creates those users, but it does
not create the tablespaces.

Note:

ORDS_METADATA and ORDS_PUBLIC_USER are installed in the seed container,
and the default and temporary tablespaces exist in PDB$SEED. If these
tablespaces do not already exist, then you must create the tablespaces in
PDB$SEED. For more information, see Oracle Multitenant Administrator’s
Guide

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

2-5

2.2.1.1 Installation Enabling Multiple Releases
This section describes the installation process when you have multiple releases of
Oracle REST Data Services and patch sets in the PDBs in a multitenant environment.

When Oracle REST Data Services is installed into a CDB, the proxy user, Oracle
REST Data Services public user (ORDS_PUBLIC_USER) is installed in the root container
and is a common user. The ORDS_METADATA schema is a local user that contains the
metadata for Oracle REST Data Services. Both the ORDS_METADATA schema and the
ORDS_PUBLIC_USER are installed in the seed container (PDB$SEED) and all of the
pluggable databases.

Since the ORDS_METADATA is installed as a local user, this provides you the flexibility of
installing multiple Oracle REST Data Services releases in the pluggable databases.

2.2.1.1.1 Command Line Installation
You must provide the SYS AS SYSDBA credentials in the Root (CDB$ROOT) container to
perform the installation.

2.2.1.1.2 Advanced Installation
This section describes the advanced installation prompts for installing Oracle REST
Data Services into a CDB to enable multiple Oracle REST Data Services releases.

To install Oracle REST Data Services into a CDB to enable multiple Oracle REST
Data Services releases, perform the following steps:

1. Navigate to the folder where you unzipped the Oracle REST Data Services
installation kit.

2. Enter the following command:

java -jar ords.war install advanced

3. When prompted, enter the database connection information for your CDB.

Enter the name of the database server[localhost]:
Enter the database listen port [1521]:
Enter 1 to specify the database service name, or 2 to specify the
database SID [1]:
Enter the database service name:(for example, cdb.example.com)

4. Verify the Oracle REST Data Services installation.

Enter 1 if you want to verify/install Oracle REST Data Services schema
or 2 to skip this step [1]:

5. Accept or enter 1 (the default) to install Oracle REST Data Services into the CDB
and all of its PDBs.

Enter and confirm the ORDS_PUBLIC_USER password:
Enter the database password for ORDS_PUBLIC_USER:
Confirm password:
Requires SYS AS SYSDBA to verify Oracle REST Data Services schema.

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

2-6

Enter the database password for SYS AS SYSDBA:
Confirm password:

Retrieving information....
Your database connection is to a CDB. ORDS common user
ORDS_PUBLIC_USER will be
created in the CDB. ORDS schema will be installed in the PDBs.
Root CDB$ROOT - create ORDS common user
PDB PDB$SEED - install ORDS 18.2.0.<JulianDay.Time> (mode is READ ONLY,
open for
READ/WRITE)
PDB PDBName1 - install ORDS 18.2.0.<JulianDay.Time>
PDB PDBName2 - install ORDS 18.2.0.<JulianDay.Time>

Enter 1 if you want to install ORDS or 2 to skip this step [1]:

6. Press enter to continue with the installation.

7. When prompted, enter additional information as needed. See Advanced
Installation Using Command-Line Prompts for more information.

Note:

To use the pluggable mapping feature, see Making All PDBs Addressable by
Oracle REST Data Services (Pluggable Mapping) for more information.

2.2.1.1.3 Silent Installation
Silent installation reads the properties from the Oracle REST Data Services parameter
file.

To perform a silent installation, enter the following command:

java –jar ords.war install simple
java –jar ords.war

Related Topics

• Silent Installation Using a Parameter File
Oracle REST Data Services can be installed in silent mode without any user
interaction.

• Advanced Installation Using Command-Line Prompts

2.2.2 Upgrading Oracle REST Data Services in a CDB Environment
When you use a new release of Oracle REST Data Services, upgrading its schema in
the CDB and its pluggable databases (PDBs) will occur automatically when you
perform a simple or advanced installation.

For example:

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

2-7

java -jar ords.war

If Oracle REST Data Services is already installed or upgraded, a message displays
the Oracle REST Data Services schema version, and you will not be prompted for
information.

2.2.2.1 Migrating Oracle REST Data Services in the CDB to Enable Multiple
Releases

This section describes how to migrate Oracle REST Data Services in the CDB to
enable multiple releases.

Starting with release 18.2.0 and later, if you have an Oracle REST Data Services
schema and ORDS_METADATA that is installed in the CDB$ROOT container, then during
upgrade it will migrate the common ORDS_METADATA schema to your PDBs as a local
schema. Oracle database 12.1.0.2 and later releases support this change.

2.2.3 Making All PDBs Addressable by Oracle REST Data Services
(Pluggable Mapping)

Pluggable mapping refers to the ability to make all PDBs in a CDB addressable by
Oracle REST Data Services. To use this feature, follow the instructions in this topic.

If the Oracle REST Data Services configuration file includes the
db.serviceNameSuffix parameter, this indicates that the Oracle REST Data Services
pool points to a CDB, and that the PDBs connected to that CDB should be made
addressable by Oracle REST Data Services.

The value of the db.serviceNameSuffix parameter must match the value of the
DB_DOMAIN database initialization parameter, and it must start with a period (.). To set
the value of the db.serviceNameSuffix parameter:

1. In SQL*Plus, connect to the root as a user with SYSDBA privileges.

2. Check the value of the DB_DOMAIN database initialization parameter.

SQL> show parameter DB_DOMAIN

3. Exit SQL*Plus.

SQL> exit

4. If the DB_DOMAIN value was not empty, then on the command line enter the
command to create the key and value for the db.serviceNameSuffix parameter
and its DB_DOMAIN. This will be used to add this entry to the Oracle REST Data
Services configuration file.

echo db.serviceNameSuffix=.value-of-DB_DOMAIN > snsuffix.properties

For example, if DB_DOMAIN is set to example.com, enter the following:

echo db.serviceNameSuffix=.example.com > snsuffix.properties

5. If the db.serviceNameSuffix parameter value is not defined, enter a command in
the following format to add an entry to the configuration file:

java -jar ords.war set-properties --conf pool-name snsuffix.properties

Where pool-name is one of the following:

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

2-8

• poolName for a PL/SQL Gateway configuration

• poolName_pu for an Oracle REST Data Services RESTful Services
configuration

• poolName_rt for an Application Express RESTful Services configuration

Example 1: You want to make PDBs in a CDB addressable globally. Specify
defaults by entering the following command:

java -jar ords.war set-properties --conf defaults snsuffix.properties

Note:

The approach shown in Example 1 (setting the property for all pools
through the defaults.xml file) is best for most use cases.

Example 2: You want to make PDBs in a CDB addressable for your PL/SQL
Gateway, and your pool name is apex. Enter the following command:

java -jar ords.war set-properties --conf apex snsuffix.properties

For example, if the database pointed to by apex has a DB_DOMAIN value of
example.com and contains the two PDBs pdb1.example.com and
pdb2.example.com, the first PDB will be mapped to URLs whose path starts with /
ords/pdb1/, and the second PDB will be mapped to URLs whose path starts
with /ords/pdb2/.

Example 3: You want to make PDBs in a CDB addressable for your Oracle REST
Data Services RESTful Services, and your pool name is apex_pu. Enter the
following command:

java -jar ords.war set-properties --conf apex_pu snsuffix.properties

Example 4: You want to make PDBs in a CDB addressable for your Application
Express RESTful Services and your pool name is apex_rt. Enter the following
command:

java -jar ords.war set-properties --conf apex_rt snsuffix.properties

Related Topics

• About the Oracle REST Data Services Configuration Files

2.2.4 Uninstalling Oracle REST Data Services in a CDB Environment
To uninstall Oracle REST Data Services from a CDB, use the uninstall command.

For example:

java -jar ords.war uninstall

Oracle REST Data Services will be removed from the CDB and its pluggable
databases (PDBs).

Related Topics

• If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

Chapter 2
Using the Multitenant Architecture with Oracle REST Data Services

2-9

2.3 Support for Oracle RAC Fast Connection Failover
Oracle REST Data Services support the Fast Connection Failover (FCF) feature of
Oracle Real Application Clusters (Oracle RAC).

Oracle REST Data Services runs with the Universal Connection Pool (UCP) in all the
Application Server environments that it supports, such as WebLogic, Tomcat,
GlassFish. UCP in turn supports Fast Connection Failover . To enable FCF, Oracle
Notification Service (ONS) must to be enabled. To enable ONS, add entries to the list
of properties in the Oracle REST Data Services defaults.xml configuration file as
shown in the following code snippet:

<entry key="jdbc.enableONS">true</entry>
<entry key=
"jdbc.ONSConfig">nodes=racnode1:4200,racnode2:4200\nwalletfile=/oracle11/
onswalletfile</entry>

ONS is the messaging facility used to send the Fast Application Notification (FAN)
events. When ONS is enabled, Oracle REST Data Services automatically enables
FCF. To Enable specific FCF capabilities such as fail over or other advanced FCF
capabilities such as load balancing, you need to add entries in the configuration file for
the custom connection as shown in the following code snippet:

<entry key="db.connectionType">customurl</entry>
<entry key="db.customURL">jdbc:oracle:thin:@(DESCRIPTION=(FAILOVER=ON)
(ADDRESS_LIST=
 (LOAD_BALANCE=ON)(ADDRESS=(PROTOCOL=TCP)
(HOST=prod_scan.example.com)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=ISPRD)))|</entry>

After updating the defaults.xml configuration file, Oracle REST Data Services need
to be restarted for the changes to take effect.

UCP supports Fast Connection Failover. FCF listens and responds to FAN events to
deal with the following two scenarios:

• Unplanned outages: When RAC detects an instance failure, it generates a FAN
Down event which FCF picks up. FCF then terminates all connections to the failed
instance and directs all future requests to the surviving RAC instances.

• Planned outages: For instance, when a Database Administrator (DBA) wants to
gracefully shut down a RAC instance for performing some maintenance activity.
The instance shutdown generates a FAN Planned Down event which FCF picks
up. FCF then directs all new requests to other RAC instances and drains or allows
currently active transactions to complete.

Note:

Long running transactions may need to be terminated forcefully.

Chapter 2
Support for Oracle RAC Fast Connection Failover

2-10

2.4 Configuring Security, Caching, Pre- and Post
Processing, Environment, and Excel Settings

To configure security, caching, pre- and post- processing, environment, and Excel
settings, see Using SQL Developer Oracle REST Data Services Administration
(Optional).

2.5 Configuring REST-Enabled SQL Service Settings
This section explains how to configure the REST- Enabled SQL service.

Note:

Enabling the REST- Enabled SQL service enables authentication against the
Oracle REST Data Service enabled database schemas. This makes the
database schemas accessible over HTTPS, using the database password.
Oracle highly recommends that you provide strong secure database
passwords

REST- Enabled SQL service is a feature of Oracle REST Data Service. By default, the
REST Enabled SQL service is turned off. To enable the REST- Enabled SQL service
and the REST- Enabled SQL Export service, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Open the defaults.xml file and add: <entry
key="restEnabledSql.active">true</entry>.

3. Save the file.

4. Restart Oracle REST Data Services.

2.6 Configuring the Maximum Number of Rows Returned
from a Query

To configure maximum number of rows returned from a query, perform the following
steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Open the defaults.xml file and update the value of the
misc.pagination.maxRows parameter:<entry
key=”misc.pagination.maxRows”>1500</entry>

Chapter 2
Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel Settings

2-11

Note:

The default value for misc.pagination.maxRows is 500.

3. Save the file.

4. Restart Oracle REST Data Services.

2.7 Configuring the Custom Error Pages
This section explains how to configure a custom error page instead of the error page
generated by Oracle REST Data Services.

To configure a custom error page, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Open the defaults.xml file and update the value of the error.externalPath
parameter:

<entry key=”error.externalPath">/path/to/error/pages/folder/</entry>

Where:

• /path/to/error/pages/folder is the path to a folder containing files that
define the error pages. The files are stored in {status}.html format.

Where, {status} is the HTTP status code for which you want to create a
custom error page.

3. Save the file.

4. Restart Oracle REST Data Services.

Example 2-1 Configuring custom error page for “HTTP 404” status code

To configure a custom error page for the “HTTP 404 – Not Found” status, perform the
following steps:

1. Create a file named 404.html.

2. Save it under /usr/local/share/ords/error-pages/ folder.

3. Configure the error.externalPath parameter to point to /usr/local/share/
ords/errro-pages/ folder.

4. Save the file.

5. Restart Oracle REST Data Services.

2.8 Developing RESTful Services for Use with Oracle REST
Data Services

For more information on how to develop RESTful Services for use with Oracle REST
Data Services, see Developing Oracle REST Data Services Applications.

Chapter 2
Configuring the Custom Error Pages

2-12

3
Developing Oracle REST Data Services
Applications

This section explains how to develop applications that use Oracle REST Data
Services. It includes guidance and examples.

Note:

If you want to get started quickly, you can try the tutorial in Oracle REST
Data Services Quick Start Guide. However, you should then return to this
chapter to understand the main concepts and techniques.

Note:

Ensure that you have installed and configured both Oracle Application
Express 4.2 or later, and Oracle REST Data Services 3.0 or later, before
attempting to follow any of the tutorials and examples.

To use the Oracle REST API for JSON Data Persistence, you must first
install the Oracle REST API. See "Oracle REST API Installation" in Oracle
REST Data Services SODA for REST Developer's Guide.

It is assumed that you are familiar with Oracle Application Express. If you are
new to Oracle Application Express, see the Oracle Application Express
documentation.

Topics:

• Introduction to Relevant Software

• Getting Started with RESTful Services

• Automatic Enabling of Schema Objects for REST Access (AutoREST)

• Filtering in Queries

• Configuring Secure Access to RESTful Services

• About Oracle REST Data Services User Roles

• Authenticating Against WebLogic Server and GlassFish User Repositories

• Integrating with Existing Group/Role Models

• Using the Oracle REST Data Services PL/SQL API

You may also want to review Creating an Image Gallery , a supplementary extended
example that uses Oracle Application Express to build an application.

3-1

3.1 Introduction to Relevant Software
This section explains some key relevant software for developing applications that use
Oracle REST Data Services.

Topics:

• About Oracle Application Express

• About RESTful Web Services

Related Topics

• About Oracle REST Data Services

3.1.1 About Oracle Application Express
Oracle Application Express is a declarative, rapid web application development tool for
the Oracle database. It is a fully supported, no cost option available with all editions of
the Oracle database. Using only a web browser, you can develop and deploy
professional applications that are both fast and secure.

3.1.2 About RESTful Web Services
Representational State Transfer (REST) is a style of software architecture for
distributed hypermedia systems such as the World Wide Web. An API is described as
RESTful when it conforms to the tenets of REST. Although a full discussion of REST is
outside the scope of this document, a RESTful API has the following characteristics:

• Data is modelled as a set of resources. Resources are identified by URIs.

• A small, uniform set of operations are used to manipulate resources (for example,
PUT, POST, GET, DELETE).

• A resource can have multiple representations (for example, a blog might have an
HTML representation and an RSS representation).

• Services are stateless and since it is likely that the client will want to access
related resources, these should be identified in the representation returned,
typically by providing hypertext links.

Release 4.2 of Oracle Application Express leverages the capabilities of Oracle REST
Data Services to provide developers with an easy to use graphical user interface for
defining and testing RESTful Web Services.

3.2 Getting Started with RESTful Services
This section introduces RESTful Services, and provides guidelines and examples for
developing applications that use RESTful Services.

Topics:

• RESTful Services Terminology

• About Request Path Syntax Requirements

• "Getting Started" Documents Included in Installation

Chapter 3
Introduction to Relevant Software

3-2

• About cURL and Testing RESTful Services

• Automatic Enabling of Schema Objects for REST Access (AutoREST)

• Manually Creating RESTful Services Using SQL and PL/SQL

• About Working with Dates Using Oracle REST Data Services

Related Topics

• Developing Oracle REST Data Services Applications

3.2.1 RESTful Services Terminology
This section introduces some common terms that are used throughout this document:

• RESTful service: An HTTP web service that conforms to the tenets of the
RESTful architectural style.

• Resource module: An organizational unit that is used to group related resource
templates.

• Resource template: An individual RESTful service that is able to service requests
for some set of URIs (Universal Resource Identifiers). The set of URIs is defined
by the URI Pattern of the Resource Template

• URI pattern: A pattern for the resource template. Can be either a route pattern or
a URI template, although you are encouraged to use route patterns.

• Route pattern: A pattern that focuses on decomposing the path portion of a URI
into its component parts. For example, a pattern of /:object/:id? will
match /emp/101 (matches a request for the item in the emp resource with id of
101) and will also match /emp/ (matches a request for the emp resource, because
the :id parameter is annotated with the ? modifier, which indicates that the id
parameter is optional).

For a detailed explanation of route patterns, see docs\javadoc\plugin-api
\route-patterns.html, under <sqldeveloper-install>\ords and under the
location (if any) where you manually installed Oracle REST Data Services.

• URI template: A simple grammar that defines the specific patterns of URIs that a
given resource template can handle. For example, the pattern employees/{id} will
match any URI whose path begins with employees/, such as employees/2560.

• Resource handler: Provides the logic required to service a specific HTTP method
for a specific resource template. For example, the logic of the GET HTTP method
for the preceding resource template might be:

select empno, ename, dept from emp where empno = :id

• HTTP operation: HTTP (HyperText Transport Protocol) defines standard methods
that can be performed on resources: GET (retrieve the resource contents), POST
(store a new resource), PUT (update an existing resource), and DELETE (remove a
resource).

Related Topics

• About RESTful Web Services

Chapter 3
Getting Started with RESTful Services

3-3

3.2.2 About Request Path Syntax Requirements
To prevent path-based attacks, Oracle REST Data Services performs a number of
validation checks on the syntax of the path element of each request URL.

Each path must conform to the following rules:

• Is not empty or whitespace-only

• Does not contain any of the following characters: ?, #, ;, %

• Does not contain the null character (\u0000)

• Does not contain characters in the range: \u0001-\u0031

• Does not end with white space or a period (.)

• Does not contain double forward slash (//) or double back slash(\\)

• Does not contain two or more periods in sequence (.., ..., and so on)

• Total length is {@value #MAX_PATH_LENGTH} characters or less

• Does not match any of the following names (case insensitive), with or without file
extensions: CON, PRN, AUX, CLOCK$, NUL, COM0, COM1, COM2, COM3,
COM4, COM5, COM6, COM7, COM8, COM9, LPT0, LPT1, LPT2, LPT3, LPT4,
LPT5, LPT6, LPT7, LPT8, LPT9

If you intend to auto-REST enable objects, then avoid object names that do not comply
with these requirements. For example, do not create a table named #EMPS. If you do
want to auto-REST enable objects that have non-compliant names, then you must use
an alias that complies with the requirements.

These requirements are applied to the URL decoded form of the URL, to prevent
attempted circumvention of percent encodings.

3.2.3 "Getting Started" Documents Included in Installation
When you install Oracle REST Data Services, an examples folder is created with
subfolders and files that you may find helpful. The installation folder hierarchy includes
this:

ords
 conf
 docs
 examples
 soda
 getting-started
 ...

In this hierarchy:

• examples\soda: Contains sample JSON documents used in some examples
included in Oracle REST Data Services SODA for REST Developer's Guide.

• examples\getting-started: Double-click index.html for a short document about
how to get started developing RESTful Services using Oracle REST Data
Services. This document focuses on using SQL Developer to get started. (SQL
Developer is the primary tool for managing Oracle REST Data Services. For
example, the ability to auto-enable REST support for schemas and tables is
available only in SQL Developer.)

Chapter 3
Getting Started with RESTful Services

3-4

3.2.4 About cURL and Testing RESTful Services
Other sections show the testing of RESTful Services using a web browser. However,
another useful way to test RESTful Services is using the command line tool named
cURL.

This powerful tool is available for most platforms, and enables you to see and control
what data is being sent to and received from a RESTful service.

curl -i https://server:port/ords/workspace/hr/employees/7369

This example produces a response like the following:

HTTP/1.1 200 OK
Server: Oracle-REST-Data-Services/2.0.6.78.05.25
ETag: "..."
Content-Type: application/json
Transfer-Encoding: chunked
Date: Thu, 28 Mar 2014 16:49:34 GMT

{
 "empno":7369,
 "ename":"SMITH",
 "job":"CLERK",
 "mgr":7902,
 "hiredate":"1980-12-17T08:00:00Z",
 "sal":800,
 "deptno":20
}

The -i option tells cURL to display the HTTP headers returned by the server.

Related Topics

• Exploring the Sample RESTful Services in Application Express (Tutorial)

See Also:

cURL
The example in this section uses cURL with the services mentioned in
Exploring the Sample RESTful Services in Application Express (Tutorial)

3.2.5 Automatic Enabling of Schema Objects for REST Access
(AutoREST)

If Oracle REST Data Services has been installed on the system associated with a
database connection, you can use the AutoREST feature to conveniently enable or
disable Oracle REST Data Services access for specified tables and views in the
schema associated with that database connection. Enabling REST access to a table,
view or PL/SQL function, procedure or package allows it to be accessed through
RESTful services.

Chapter 3
Getting Started with RESTful Services

3-5

http://curl.haxx.se/

AutoREST is a quick and easy way to expose database tables as REST resources.
You sacrifice some flexibility and customizability to gain ease of effort. AutoRest lets
you quickly expose data but (metaphorically) keeps you on a set of guide rails. For
example, you cannot customize the output formats or the input formats, or do extra
validation.

On the other hand, manually created resource modules require you to specify the SQL
and PL/SQL to support the REST resources. Using resource modules requires more
effort, but offers more flexibility; for example, you can customize what fields are
included, do joins across multiple tables, and validate the incoming data using PL/
SQL.

So, as an application developer you must make a choice: use the "guide rails" of
AutoREST, or create a resource module to do exactly what you need. If you choose
AutoREST, you can just enable a table (or set of tables) within a schema.

Note that enabling a schema is not equivalent to enabling all tables and views in the
schema. It just means making Oracle REST Data Services aware that the schema
exists and that it may have zero or more resources to expose to HTTP. Those
resources may be AutoREST resources or resource module resources.

You can automatically enable Oracle REST Data Services queries to access individual
database schema objects (tables, views, and PL/SQL) by using a convenient wizard in
Oracle SQL Developer. (Note that this feature is only available for Oracle REST Data
Services- enabled schemas, not for Oracle Application Express workspaces.)

To enable Oracle REST Data Services access to one or more specified tables or
views, you must do the following in SQL Developer:

1. Enable the schema (the one associated with the connection) for REST access.

Schema level: To enable Oracle REST Data Services access to selected objects
(that you specify in the next step) in the schema associated with a connection,
right-click its name in the Connections navigator and select REST Services, then
Enable REST Services.

(To drop support for Oracle REST Data Services access to objects in the schema
associated with a connection, right-click its name in the Connections navigator and
select REST Services, then Drop REST Services.)

2. Individually enable REST access for the desired objects.

Table or view level: To enable Oracle REST Data Services access to a specified
table or view, right-click its name in the Connections navigator and select Enable
REST Services.

For detailed usage information, click the Help button in the wizard or dialog box in
SQL Developer.

3.2.5.1 Examples: Accessing Objects Using RESTful Services
This section provides examples of using Oracle REST Data Services queries and
other operations against tables and views after you have REST-enabled them.

You can automatically expose table and view objects as RESTful services using SQL
Developer. This topic provides examples of accessing these RESTful services.

Chapter 3
Getting Started with RESTful Services

3-6

Tip:

Although these examples illustrate the URL patterns used to access these
resources, clients should avoid hard coding knowledge of the structure of
these URLs; instead clients should follow the hyperlinks in the resources to
navigate between resources. The structure of the URL patterns may evolve
and change in future releases.

This topic provides examples of accessing objects using RESTful Services.

• Get Schema Metadata

• Get Object Metadata

• Get Object Data

• Get Table Data Using Paging

• Get Table Data Using Query

• Get Table Row Using Primary Key

• Insert Table Row

• Update/Insert Table Row

• Delete Using Filter

• Post by Batch Load

3.2.5.1.1 Get Schema Metadata
This example retrieves a list of resources available through the specified schema alias.
It shows RESTful services that are created by automatically enabling a table or view,
along with RESTful Services that are created by resource modules.

This example retrieves a list of resources available through the specified schema alias.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/

Result:

{
 "items": [
 {
 "name": "EMP",
 "links": [
 {
 "rel": "describes",
 "href": "http://localhost:8080/ords/ordstest/emp/"
 },
 {
 "rel": "canonical",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/",
 "mediaType": "application/json"
 }
]
 },
 {

Chapter 3
Getting Started with RESTful Services

3-7

 "name": "oracle.examples.hello",
 "links": [
 {
 "rel": "describes",
 "href": "http://localhost:8080/ords/ordstest/examples/hello/"
 },
 {
 "rel": "canonical",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/hello/",
 "mediaType": "application/json"
 }
]
 }
],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 2,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/"
 },
 {
 "rel": "first",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/"
 }
]
}

The list of resources includes:

• Resources representing tables or views that have been REST enabled.

• Resources defined by resource modules. Note that only resources having a
concrete path (that is, not containing any parameters) will be shown. For example,
a resource with a path of /module/some/path/ will be shown, but a resource with a
path of /module/some/:parameter/ will not be shown.

Each available resource has two hyperlinks:

• The link with relation describes points to the actual resource.

• The link with relation canonical describes the resource.

3.2.5.1.2 Get Object Metadata
This example retrieves the metadata (which describes the object) of an individual
object. The location of the metadata is indicated by the canonical link relation.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/
<ObjectAlias>/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/emp/

Result:

{
 "name": "EMP",
 "primarykey": [
 "empno"
],

Chapter 3
Getting Started with RESTful Services

3-8

 "members": [
 {
 "name": "empno",
 "type": "NUMBER"
 },
 {
 "name": "ename",
 "type": "VARCHAR2"
 },
 {
 "name": "job",
 "type": "VARCHAR2"
 },
 {
 "name": "mgr",
 "type": "NUMBER"
 },
 {
 "name": "hiredate",
 "type": "DATE"
 },
 {
 "name": "sal",
 "type": "NUMBER"
 },
 {
 "name": "comm",
 "type": "NUMBER"
 },
 {
 "name": "deptno",
 "type": "NUMBER"
 }
],
 "links": [
 {
 "rel": "collection",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/",
 "mediaType": "application/json"
 },
 {
 "rel": "canonical",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
 },
 {
 "rel": "describes",
 "href": "http://localhost:8080/ords/ordstest/emp/"
 }
]
}

3.2.5.1.3 Get Object Data
This example retrieves the data in the object. Each row in the object corresponds to a
JSON object embedded within the JSON array

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/

Example: GET http://localhost:8080/ords/ordstest/emp/

Result:

Chapter 3
Getting Started with RESTful Services

3-9

{
 "items": [
 {
 "empno": 7499,
 "ename": "ALLEN",
 "job": "SALESMAN",
 "mgr": 7698,
 "hiredate": "1981-02-20T00:00:00Z",
 "sal": 1600,
 "comm": 300,
 "deptno": 30,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7499"
 }
]
 },
 ...
 {
 "empno": 7934,
 "ename": "MILLER",
 "job": "CLERK",
 "mgr": 7782,
 "hiredate": "1982-01-23T00:00:00Z",
 "sal": 1300,
 "comm": null,
 "deptno": 10,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7934"
 }
]
 }
],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 13,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/"
 },
 {
 "rel": "edit",
 "href": "http://localhost:8080/ords/ordstest/emp/"
 },
 {
 "rel": "describedby",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
 },
 {
 "rel": "first",
 "href": "http://localhost:8080/ords/ordstest/emp/"
 }
]
}

Chapter 3
Getting Started with RESTful Services

3-10

3.2.5.1.4 Get Table Data Using Paging
This example specifies the offset and limit parameters to control paging of result
data.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
offset=<Offset>&limit=<Limit>

Example: GET http://localhost:8080/ords/ordstest/emp/?offset=10&limit=5

Result:

{
 "items": [
 {
 "empno": 7900,
 "ename": "JAMES",
 "job": "CLERK",
 "mgr": 7698,
 "hiredate": "1981-12-03T00:00:00Z",
 "sal": 950,
 "comm": null,
 "deptno": 30,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7900"
 }
]
 },
 ...
 {
 "empno": 7934,
 "ename": "MILLER",
 "job": "CLERK",
 "mgr": 7782,
 "hiredate": "1982-01-23T00:00:00Z",
 "sal": 1300,
 "comm": null,
 "deptno": 10,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7934"
 }
]
 }
],
 "hasMore": false,
 "limit": 5,
 "offset": 10,
 "count": 3,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/"
 },
 {
 "rel": "edit",
 "href": "http://localhost:8080/ords/ordstest/emp/"

Chapter 3
Getting Started with RESTful Services

3-11

 },
 {
 "rel": "describedby",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
 },
 {
 "rel": "first",
 "href": "http://localhost:8080/ords/ordstest/emp/?limit=5"
 },
 {
 "rel": "prev",
 "href": "http://localhost:8080/ords/ordstest/emp/?offset=5&limit=5"
 }
]
}

3.2.5.1.5 Get Table Data Using Query
This example specifies a filter clause to restrict objects returned.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
q=<FilterClause>

Example: GET http://localhost:8080/ords/ordstest/emp/?q={"deptno":{"$lte":
20}}

Result:

{
 "items": [
 {
 "empno": 7566,
 "ename": "JONES",
 "job": "MANAGER",
 "mgr": 7839,
 "hiredate": "1981-04-01T23:00:00Z",
 "sal": 2975,
 "comm": null,
 "deptno": 20,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7566"
 }
]
 },
 ...
 {
 "empno": 7934,
 "ename": "MILLER",
 "job": "CLERK",
 "mgr": 7782,
 "hiredate": "1982-01-23T00:00:00Z",
 "sal": 1300,
 "comm": null,
 "deptno": 10,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7934"
 }

Chapter 3
Getting Started with RESTful Services

3-12

]
 }
],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 7,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/?q=%7B%22deptno%22:%7B%22%24lte
%22:20%7D%7D"
 },
 {
 "rel": "edit",
 "href": "http://localhost:8080/ords/ordstest/emp/?q=%7B%22deptno%22:%7B%22%24lte
%22:20%7D%7D"
 },
 {
 "rel": "describedby",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"
 },
 {
 "rel": "first",
 "href": "http://localhost:8080/ords/ordstest/emp/?q=%7B%22deptno%22:%7B%22%24lte
%22:20%7D%7D"
 }
]
}

3.2.5.1.6 Get Table Row Using Primary Key
This example retrieves an object by specifying its identifying key values.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/
<KeyValues>

Where <KeyValues> is a comma-separated list of key values (in key order).

Example: GET http://localhost:8080/ords/ordstest/emp/7839

Result:

{
 "empno": 7839,
 "ename": "KING",
 "job": "PRESIDENT",
 "mgr": null,
 "hiredate": "1981-11-17T00:00:00Z",
 "sal": 5000,
 "comm": null,
 "deptno": 10,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7839"
 },
 {
 "rel": "edit",
 "href": "http://localhost:8080/ords/ordstest/emp/7839"
 },

Chapter 3
Getting Started with RESTful Services

3-13

 {
 "rel": "describedby",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
 },
 {
 "rel": "collection",
 "href": "http://localhost:8080/ords/ordstest/emp/"
 }
]
}

3.2.5.1.7 Insert Table Row
This example inserts data into the object. The body data supplied with the request is a
JSON object containing the data to be inserted.

If the object has a primary key, then there must be an insert trigger on the object that
populates the primary key fields. If the table does not have a primary key, then the
ROWID of the row will be used as the item's identifier.

If the object lacks a trigger to assign primary key values, then the PUT operation
described in next section,Update/Insert Table Row should be used instead.

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/

Example:

curl -i -H "Content-Type: application/json" -X POST -d "{ \"empno\" :7, \"ename\":
\"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/ords/ordstest/
emp/
Content-Type: application/json

{ "empno" :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:

{
 "empno": 7,
 "ename": "JBOND",
 "job": "SPY",
 "mgr": null,
 "hiredate": null,
 "sal": null,
 "comm": null,
 "deptno": 11,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7"
 },
 {
 "rel": "edit",
 "href": "http://localhost:8080/ords/ordstest/emp/7"
 },
 {
 "rel": "describedby",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
 },
 {
 "rel": "collection",
 "href": "http://localhost:8080/ords/ordstest/emp/"

Chapter 3
Getting Started with RESTful Services

3-14

 }
]
}

3.2.5.1.8 Update/Insert Table Row
This example inserts or updates (sometimes called an "upsert") data in the object. The
body data supplied with the request is a JSON object containing the data to be
inserted or updated.

Pattern: PUT http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/
<KeyValues>

Example:

curl -i -H "Content-Type: application/json" -X PUT -d "{ \"empno\" :7, \"ename\":
\"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/ords/
ordstest/emp/7
Content-Type: application/json

{ "empno" :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:

{
 "empno": 7,
 "ename": "JBOND",
 "job": "SPY",
 "mgr": null,
 "hiredate": null,
 "sal": null,
 "comm": null,
 "deptno": 11,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/emp/7"
 },
 {
 "rel": "edit",
 "href": "http://localhost:8080/ords/ordstest/emp/7"
 },
 {
 "rel": "describedby",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
 },
 {
 "rel": "collection",
 "href": "http://localhost:8080/ords/ordstest/emp/"
 }
]
}

3.2.5.1.9 Delete Using Filter
This example deletes object data specified by a filter clause.

Pattern: DELETE http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
q=<FilterClause>

Chapter 3
Getting Started with RESTful Services

3-15

Example: curl -i -X DELETE "http://localhost:8080/ords/ordstest/emp/?
q={"deptno":11}"

Result:

{
 "itemsDeleted": 1
}

3.2.5.1.10 Post by Batch Load
This example inserts object data using the batch load feature. The body data supplied
with the request is a CSV file. The behavior of the batch operation can be controlled
using the optional query parameters, which are described in Table 3-1.

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/
batchload?<Parameters>

Parameters:

Table 3-1 Parameters for batchload

Parameter Description

batchesPerCommit Sets the frequency for commits. Optional commit points can be set after
a batch is sent to the database. The default is every 10 batches. 0
indicates commit deferred to the end of the load. Type: Integer.

batchRows Sets the number of rows in each batch to send to the database. The
default is 50 rows per batch. Type: Integer.

dateFormat Sets the format mask for the date data type. This format is used when
converting input data to columns of type date. Type: String.

delimiter Sets the field delimiter for the fields in the file. The default is the comma
(,).

enclosures embeddedRightDouble

errors Sets the user option used to limit the number of errors. If the number of
errors exceeds the value specified for errorsMax (the service option)
or by errors (the user option), then the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be
allowed (up to errorsMax value), specify UNLIMITED (-1) .

errorsMax A service option used to limit the number of errors allowed by users. It
intended as an option for the service provider and not to be exposed as
a user option. If the number of errors exceeds the value specified for
errorsMax (the service option) or by errors (the user option), then
the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be
allowed, specify UNLIMITED (-1).

lineEnd Sets the line end (terminator). If the file contains standard line end
characters (\r. \r\n or \n), then lineEnd does not need to be specified.

lineMax Sets a maximum line length for identifying lines/rows in the data stream.
A lineMax value will prevent reading an entire stream as a single line
when the incorrect lineEnd character is being used. The default is
unlimited.

locale Sets the locale.

responseEncoding Sets the encoding for the response stream.

Chapter 3
Getting Started with RESTful Services

3-16

Table 3-1 (Cont.) Parameters for batchload

Parameter Description

responseFormat Sets the format for response stream. This format determines how
messages and bad data will be formatted. Valid values: RAW, SQL.

timestampFormat Sets the format mask for the time stamp data type. This format is used
when converting input data to columns of type time stamp.

timestampTZFormat Sets the format mask for the time stamp time zone data type. This
format is used when converting input data to columns of type time
stamp time zone.

truncate Indicates if and/or how table data rows should be deleted before the
load. False (the default) does not delete table data before the load;
True causes table data to be deleted with the DELETE SQL statement;
Truncate causes table data to be deleted with the TRUNCATE SQL
statement.

Example:

POST http://localhost:8080/ords/ordstest/emp/batchload?batchRows=25
Content-Type: text/csv

empno,ename,job,mgr,hiredate,sal,comm,deptno
0,M,SPY MAST,,2005-05-01 11:00:01,4000,,11
7,J.BOND,SPY,0,2005-05-01 11:00:01,2000,,11
9,R.Cooper,SOFTWARE,0,2005-05-01 11:00:01,10000,,11
26,Max,DENTIST,0,2005-05-01 11:00:01,5000,,11

Result:

#INFO Number of rows processed: 4
#INFO Number of rows in error: 0
#INFO Elapsed time: 00:00:03.939 - (3,939 ms) 0 - SUCCESS: Load processed without
errors

3.2.5.2 Filtering in Queries
This section describes and provides examples of filtering in queries against REST-
enabled tables and views.

Filtering is the process of limiting a collection resource by using a per-request dynamic
filter definition across multiple page resources, where each page contains a subset of
items found in the complete collection. Filtering enables efficient traversal of large
collections.

To filter in a query, include the parameter q=FilterObject, where FilterObject is a JSON
object that represents the custom selection and sorting to be applied to the resource.
For example, assume the following resource:

https://example.com/ords/scott/emp/

The following query includes a filter that restricts the ENAME column to "JOHN":

https://example.com/ords/scott/emp/?q={"ENAME":"JOHN"}

Chapter 3
Getting Started with RESTful Services

3-17

3.2.5.2.1 FilterObject Grammar
The FilterObject must be a JSON object that complies with the following syntax:

FilterObject { orderby , asof, wmembers }

The orderby, asof, and wmembers attributes are optional, and their definitions are as
follows:

orderby
 "$orderby": {orderByMembers}

orderByMembers
 orderByProperty
 orderByProperty , orderByMembers

orderByProperty
 columnName : sortingValue

sortingValue
 "ASC"
 "DESC"
 "-1"
 "1"
 -1
 1

asof
 "$asof": date
 "$asof": "datechars"
 "$asof": scn
 "$asof": +int

wmembers
 wpair
 wpair , wmembers

wpair
 columnProperty
 complexOperatorProperty

columnProperty
 columnName : string
 columnName : number
 columnName : date
 columnName : simpleOperatorObject
columnName : complexOperatorObject
 columnName : [complexValues]

columnName
 "\p{Alpha}[[\p{Alpha}]]([[\p{Alnum}]#$_])*$"

complexOperatorProperty
 complexKey : [complexValues]
 complexKey : simpleOperatorObject

complexKey
 "$and"
 "$or"

Chapter 3
Getting Started with RESTful Services

3-18

complexValues
 complexValue , complexValues

complexValue
 simpleOperatorObject
 complexOperatorObject
 columnObject

columnObject
 {columnProperty}

simpleOperatorObject
 {simpleOperatorProperty}

complexOperatorObject
 {complexOperatorProperty}

simpleOperatorProperty
 "$eq" : string | number | date
 "$ne" : string | number | date
 "$lt" : number | date
 "$lte" : number | date
 "$gt" : number | date
 "$gte" : number | date
 "$instr" : string
 "$ninstr" : string
 "$like" : string
 "$null" : null
 "$notnull" : null
 "$between" : betweenValue

betweenValue
 [null , betweenNotNull]
 [betweenNotNull , null]
 [betweenRegular , betweenRegular]

betweenNotNull
 number
 date

betweenRegular
 string
 number
 date

Data type definitions include the following:

string
 JSONString
number
 JSONNumber
date
 {"$date":"datechars"}
scn
 {"$scn": +int}

Where:

datechars is an RFC3339 date format in UTC (Z)

Chapter 3
Getting Started with RESTful Services

3-19

JSONString
 ""
 " chars "
chars
 char
 char chars
char
 any-Unicode-character except-"-or-\-or-control-character
 \"
 \\
 \/
 \b
 \f
 \n
 \r
 \t
 \u four-hex-digits

JSONNumber
 int
 int frac
 int exp
 int frac exp
int
 digit
 digit1-9 digits
 - digit
 - digit1-9 digits
frac
 . digits
exp
 e digits
digits
 digit
 digit digits
e
 e
 e+
 e-
 E
 E+
 E-

The FilterObject must be encoded according to Section 2.1 of RFC3986.

3.2.5.2.2 Examples: FilterObject Specifications
The following are examples of operators in FilterObject specifications.

ORDER BY property ($orderby)

Order by with literals

{
 "$orderby": {"SALARY": "ASC","ENAME":"DESC"}
}

Order by with numbers

{

Chapter 3
Getting Started with RESTful Services

3-20

 "$orderby": {"SALARY": -1,"ENAME": 1}
}

ASOF property ($asof)

With SCN (Implicit)

{
 "$asof": 1273919
}

With SCN (Explicit)

{
 "$asof": {"$scn": "1273919"}
}

With Date (Implicit)

{
 "$asof": "2014-06-30T00:00:00Z"
}

With Date (Explicit)

{
 "$asof": {"$date": "2014-06-30T00:00:00Z"}
}

EQUALS operator ($eq)

(Implicit and explicit equality supported._

Implicit (Support String and Dates too)

{
 "SALARY": 1000
}

Explicit

{
 "SALARY": {"$eq": 1000}
}

Strings

{
 "ENAME": {"$eq":"SMITH"}
}

Dates

{
 "HIREDATE": {"$date": "1981-11-17T08:00:00Z"}
}

NOT EQUALS operator ($ne)

Chapter 3
Getting Started with RESTful Services

3-21

Number

{
 "SALARY": {"$ne": 1000}
}

String

{
 "ENAME": {"$ne":"SMITH"}
}

Dates

{
 "HIREDATE": {"$ne": {"$date":"1981-11-17T08:00:00Z"}}
}

LESS THAN operator ($lt)
(Supports dates and numbers only)

Numbers

{
 "SALARY": {"$lt": 10000}
}

Dates

{
 "SALARY": {"$lt": {"$date":"1999-12-17T08:00:00Z"}}
}

LESS THAN OR EQUALS operator ($lte)
(Supports dates and numbers only)

Numbers

{
 "SALARY": {"$lte": 10000}
}

Dates

{
 "HIREDATE": {"$lte": {"$date":"1999-12-17T08:00:00Z"}}
}

GREATER THAN operator ($gt)
(Supports dates and numbers only)

Numbers

{
 "SALARY": {"$gt": 10000}
}

Dates

Chapter 3
Getting Started with RESTful Services

3-22

{
 "SALARY": {"$gt": {"$date":"1999-12-17T08:00:00Z"}}
}

GREATER THAN OR EQUALS operator ($gte)
(Supports dates and numbers only)

Numbers

{
 "SALARY": {"$gte": 10000}
}

Dates

{
 "HIREDATE": {"$gte": {"$date":"1999-12-17T08:00:00Z"}}
}

In string operator ($instr)
(Supports strings only)

{
 "ENAME": {"$instr":"MC"}
}

Not in string operator ($ninstr)
(Supports strings only)

{
 "ENAME": {"$ninstr":"MC"}
}

LIKE operator ($like)
(Supports strings. Eescape character not supported to try to match expressions with
_ or % characters.)

{
 "ENAME": {"$like":"AX%"}
}

BETWEEN operator ($between)
(Supports string, dates, and numbers)

Numbers

{
 "SALARY": {"$between": [1000,2000]}
}

Dates

{
 "SALARY": {"$between": [{"$date":"1989-12-17T08:00:00Z"},
{"$date":"1999-12-17T08:00:00Z"}]}
}

Chapter 3
Getting Started with RESTful Services

3-23

Strings

{
 "ENAME": {"$between": ["A","C"]}
}

Null Ranges ($lte equivalent)
(Supported by numbers and dates only)

{
 "SALARY": {"$between": [null,2000]}
}

Null Ranges ($gte equivalent)
(Supported by numbers and dates only)

{
 "SALARY": {"$between": [1000,null]}
}

NULL operator ($null)

{
 "ENAME": {"$null": null}
}

NOT NULL operator ($notnull)

{
 "ENAME": {"$notnull": null}
}

AND operator ($and)
(Supports all operators, including $and and $or)

Column context delegation
(Operators inside $and will use the closest context defined in the JSON tree.)

{
 "SALARY": {"$and": [{"$gt": 1000},{"$lt":4000}]}
}

Column context override
(Example: salary greater than 1000 and name like S%)

{
 "SALARY": {"$and": [{"$gt": 1000},{"ENAME": {"$like":"S%"}}] }
}

Implicit and in columns

```
{
  "SALARY": [{"$gt": 1000},{"$lt":4000}] 
}
```

High order AND

Chapter 3
Getting Started with RESTful Services

3-24

(All first columns and or high order operators -- $and and $ors -- defined at the
first level of the JSON will be joined and an implicit AND)
(Example: Salary greater than 1000 and name starts with S or T)

{
 "SALARY": {"$gt": 1000},
 "ENAME": {"$or": [{"$like":"S%"}, {"$like":"T%"}]}
}

Invalid expression (operators $lt and $gt lack column context)

{
 "$and": [{"$lt": 5000},{"$gt": 1000}]
}

Valid alternatives for the previous invalid expression

{
 "$and": [{"SALARY": {"$lt": 5000}}, {"SALARY": {"$gt": 1000}}]
}

{
 "SALARY": [{"$lt": 5000},{"$gt": 1000}]
}

{
 "SALARY": {"$and": [{"$lt": 5000},{"$gt": 1000}]}
}

OR operator ($or)
(Supports all operators including $and and $or)

Column context delegation
(Operators inside $or will use the closest context defined in the JSON tree)

{
 "ENAME": {"$or": [{"$eq":"SMITH"},{"$eq":"KING"}]}
}

Column context override
(Example: name starts with S or salary greater than 1000)

{
 "SALARY": {"$or": [{"$gt": 1000},{"ENAME": {"$like":"S%"}}] }
}

3.2.5.3 Auto PL/SQL
This section explains how PL/SQL is made available through HTTP(S) for Remote
Procedure call (RPC).

The auto PL/SQL feature uses a standard to provide consistent encoding and data
transfer in a stateless web service environment. Using this feature, you can enable
Oracle Database stored PL/SQL functions and procedures at package level through
Oracle REST Data Services, similar to how you enable the views and tables.

Chapter 3
Getting Started with RESTful Services

3-25

Auto Enabling PL/SQL Subprograms

Oracle REST Data Services supports auto enabling of the following PL/SQL objects,
based on their catalog object identifier:

• PL/SQL Procedure

• PL/SQL Function

• PL/SQL Package

The functions, and procedures within the PL/SQL package cannot be individually
enabled as they are named objects within a PL/SQL package object. Therefore, the
granularity level enables the objects at the package level. This granularity level
enables to expose all of its public functions and procedures.

If you want to only enable a subset of functions and procedures, then you must create
a separate delegate package and enable it to expose only that subset of functions and
procedures.

Note:

Overloaded package functions and procedures are not supported.

3.2.5.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects
This section discusses the method and content-type supported by this feature.

The auto enabling of the PL/SQL Objects feature supports POST as the HTTP
method. In POST method, input parameters are encoded in the payload and output
parameters are decoded from the response.

Note:

The standard data CRUD to HTTP method mappings are not applicable as
this feature provides an RPC-style interaction.

The content-type supported is application/json.

3.2.5.3.2 Auto-Enabling the PL/SQL Objects
This section explains how to auto-enable the PL/SQL objects through Oracle REST
Data Services.

You can enable the PL/SQL objects in one of the following ways:

• Auto-Enabling Using the PL/SQL API

• Auto-Enabling the PL/SQL Objects Using SQL Developer

3.2.5.3.2.1 Auto-Enabling Using the PL/SQL API

You can enable a PL/SQL object using the Oracle REST Data Services PL/SQL API.

Chapter 3
Getting Started with RESTful Services

3-26

To enable the PL/SQL package, use the Oracle REST Data Services PL/SQL API as
shown in following sample code snippet:

BEGIN
 ords.enable_object(
 p_enabled => TRUE,
 p_schema => 'MY_SCHEMA',
 p_object => 'MY_PKG',
 p_object_type => 'PACKAGE',
 p_object_alias => 'my_pkg',
 p_auto_rest_auth => FALSE);
 commit;
END;
/

Example 3-1 Enabling the PL/SQL Function

To enable the PL/SQL function, use the Oracle REST Data Services PL/SQL API as
shown in following sample code snippet:

BEGIN
 ords.enable_object(
 p_enabled => TRUE,
 p_schema => 'MY_SCHEMA',
 p_object => 'MY_FUNC',
 p_object_type => 'FUNCTION',
 p_object_alias => 'my_func',
 p_auto_rest_auth => FALSE);

 commit;
END;
/

Example 3-2 Enabling the PL/SQL Procedure

To enable the PL/SQL procedure, use the Oracle REST Data Services PL/SQL API as
shown in following sample code snippet:

BEGIN
 ords.enable_object(
 p_enabled => TRUE,
 p_schema => 'MY_SCHEMA',
 p_object => 'MY_PROC',
 p_object_type => 'PROCEDURE',
 p_object_alias => 'my_proc',
 p_auto_rest_auth => FALSE);

 commit;
END;
/

Chapter 3
Getting Started with RESTful Services

3-27

3.2.5.3.2.2 Auto-Enabling the PL/SQL Objects Using SQL Developer

This section describes how to enable the PL/SQL objects using SQL Developer 4.2
and above.

To enable the PL/SQL objects (for example, package) using SQL Developer, perform
the following steps:

Note:

You can now enable, packages, functions and procedures. However, the
granularity of enabling is either at the whole package level, standalone
function level, or at the standalone procedure level.

1. In SQL Developer, right-click on a package as shown in the following figure:

Figure 3-1 Selecting the Enable REST Service Option

2. Select Enable RESTful Services to display the following wizard page:

Chapter 3
Getting Started with RESTful Services

3-28

Figure 3-2 Auto Enabling the PL/SQL Package Object

• Enable object: Enable this option (that is, enable REST access for the
package).

• Object alias: Accept registry_pkg for the object alias.

• Authorization required: For simplicity, disable this option.

• On the RESTful Summary page of the wizard, click Finish.

3.2.5.3.3 Generating the PL/SQL Endpoints
HTTP endpoints are generated dynamically per request for the enabled database
objects. Oracle REST Data Services uses the connected database catalog to generate
the endpoints using a query.

The following rules apply for all the database objects for generating the HTTP
endpoints:

• All names are converted to lowercase

• An endpoint is generated if it is not already allocated

Stored Procedure and Function Endpoints

The function or procedure name is generated into the URL in the same way as tables
and views in the same namesspace.

Chapter 3
Getting Started with RESTful Services

3-29

Example 3-3 Generating an Endpoint for the Stored Procedure

CREATE OR REPLACE PROCEDURE MY_SCHEMA.MY_PROC IS
BEGIN
 NULL;
END;

Following endpoint is generated:

http://localhost:8080/ords/my_schema/my_proc/

Example 3-4 Package Procedure and Function Endpoints

The package, function, and procedure endpoints are generated with package name as
a parent. Endpoints for functions and procedures that are not overloaded or where the
lowercase name is not already in use are generated.

If you have a package, MY_PKG as defined in the following code snippet:

CREATE OR REPLACE PACKAGE MY_SCHEMA.MY_PKG AS
 PROCEDURE MY_PROC;
 FUNCTION MY_FUNC RETURN VARCHAR2;
 PROCEDURE MY_PROC2;
 PROCEDURE "my_proc2";
 PROCEDURE MY_PROC3(P1 IN VARCHAR);
 PROCEDURE MY_PROC3(P2 IN NUMBER);
END MY_PKG;

Then the following endpoints are generated:

http://localhost:8080/ords/my_schema/my_pkg/MY_PROC
http://localhost:8080/ords/my_schema/my_pkg/MY_FUNC

Note:

Endpoints for the procedure my_proc2 is not generated because its name is
not unique when the name is converted to lowercase, and endpoints for the
procedure my_proc3 is not generated because it is overloaded.

3.2.5.3.4 Resource Input Payload
The input payload is a JSON document with values adhering to the REST standard.

The payload should contain a name/value pair for each IN or IN OUT parameter as
shown in the following code snippet:

{
 "p1": "abc",
 "p2": 123,
 "p3": null
}

Chapter 3
Getting Started with RESTful Services

3-30

Note:

Where there are no IN or IN OUT parameters, an empty JSON body is
required as shown in the following code snippet:

{

}

Oracle REST Data Services uses the database catalog metadata to unmarshal the
JSON payload into Oracle database types, which is ready to be passed to the
database through JDBC.

3.2.5.3.5 Resource Payload Response
When the PL/SQL object is executed successfully, it returns a JSON body.

The JSON body returned, contains all OUT and IN OUT output parameter values.
Oracle REST Data Services uses the database catalog metadata to marshal the
execution of the result back into JSON as shown in the following code snippet:

{
 "p3" : "abc123",
 "p4" : 1
}

Where there are no OUT or IN OUT parameters, an empty JSON body is returned as
shown in the following code snippet:

{

}

3.2.5.3.6 Function Return Value
The return value of functions do not have an associated name.

As the return value of functions do not have an associated name, the name "~ret" is
used as shown in the following code snippet:

{
 "~ret" : "abc123"
}

3.2.6 Manually Creating RESTful Services Using SQL and PL/SQL
This section describes how to manually create RESTful Services using SQL and
PL/SQL and shows how to use a JSON document to pass parameters to a stored
procedure in the body of a REST request.

Chapter 3
Getting Started with RESTful Services

3-31

This section includes the following topics:

• About Oracle REST Data Services Mechanisms for Passing Parameters

• Using SQL/JSON Database Functions

3.2.6.1 About Oracle REST Data Services Mechanisms for Passing
Parameters

This section describes the main mechanisms that Oracle REST Data Services
supports for passing parameters using REST HTTP to handlers that are written by the
developer:

• Using JSON to Pass Parameters

You can use JSON in the body of REST requests, such as the POST or PUT
method, where each parameter is a JSON name/value pair.

• Using Route Patterns to Pass Parameters

You can use route patterns for required parameters in the URI to specify
parameters for REST requests such as the GET method, which does not have a
body, and in other special cases.

• Using Query Strings for Optional Parameters

You can use query strings for optional parameters in the URI to specify
parameters for REST requests, such as the GET method, which does not have a
body, and in other special cases.

Prerequisite Setup Tasks To Be Completed Before Performing Tasks for Passing
Parameters

This prerequisite setup information assumes you have completed steps 1 and 2 in
Getting Started with RESTful Services section, where you have REST-enabled the
ordstest schema and emp database table (Step 1) and created and tested the
RESTful service from a SQL query (Step 2). You must complete these two steps
before performing the tasks about passing parameters described in the subsections
that follow.

Related Topics

• Getting Started with RESTful Services

3.2.6.1.1 Using JSON to Pass Parameters
This section shows how to use a JSON document to pass parameters to a stored
procedure in the body of a REST request, such as POST or PUT method, where each
parameter is a name/value pair. This operation performs an update on a record, which
in turn returns the change to the record as an OUT parameter.

Perform the following steps:

Chapter 3
Getting Started with RESTful Services

3-32

1. Note:

The following stored procedure performs an update on an existing record
in the emp table to promote an employee by changing any or all of the
following: job, salary, commission, department number, and manager.
The stored procedure returns the salary change as an OUT parameter.

create or replace procedure promote (l_empno IN number,
l_job IN varchar2,
 l_mgr IN number, l_sal IN number, l_comm IN
number, l_deptno IN number,
 l_salarychange OUT number)
 is
 oldsalary number;
 begin
 select nvl(e.sal, 0)into oldsalary FROM emp e
 where e.empno = l_empno;
 update emp e set
 e.job = nvl(l_job, e.job),
 e.mgr = nvl(l_mgr, e.mgr),
 e.sal = nvl(l_sal, e.sal),
 e.comm = nvl(l_comm, e.comm),
 e.deptno = nvl(l_deptno, e.deptno)
 where e.empno = l_empno;
 l_salarychange := nvl(l_sal, oldsalary) -
oldsalary;
 end;

As a privileged ordstest user, connect to the ordstest schema and create the
promote stored procedure.

2. Perform the following steps to setup a handler for a PUT request on the emp
resource to pass parameters in the body of the PUT method in a JSON document
to the promote stored procedure.

a. Using Oracle SQL Developer, in the REST Development section, right click on
the emp template and select Add Handler for the PUT method.

b. In the Create Resource Handler dialog, click the green plus symbol to add
the MIME type application/json and then click Apply to send it a JSON
document in the body of the PUT method.

c. Using the SQL Worksheet, add the following anonymous PL/SQL block: begin
promote
(:l_empno, :l_job, :l_mgr, :l_sal, :l_comm, :l_deptno, :l_salarycha
nge); end; as shown in the following figure.

Chapter 3
Getting Started with RESTful Services

3-33

Figure 3-3 Adding an Anonymous PL/SQL Block to the Handler for the
PUT Method

d. Click the Parameters tab to set the Bind Parameter as l_salarychange , the
Access Method as an OUT parameter, the Source Type as RESPONSE, and
Data Type as INTEGER as shown in the following figure. This is the promote
procedure’s output which is an integer value equal to the change in salary in a
JSON name/value format.

Figure 3-4 Setting the Bind Parameter l_salarychange to Pass for the
PUT Method

Chapter 3
Getting Started with RESTful Services

3-34

e. Click the Details tab to get the URL to call as shown in the Examples section
of the following figure. Copy this URL to your clipboard.

Figure 3-5 Obtaining the URL to Call from the Details Tab

f. Right click on the test module to upload the module. Do not forget this step.

3. To test the RESTful service, execute the following cURL command in the
command prompt:curl -i -H "Content-Type: application/json" -X PUT -d
"{ \"l_empno\" : 7499, \"l_sal\" : 9999, \"l_job\" : \"Director\",
\"l_comm\" : 300}

Note:

You can also use any REST client available to test the RESTful service.

The cURL command returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json Transfer-Encoding: chunked
{"salarychange":8399}

4. In SQL Developer SQL Worksheet, perform the following SELECT statement on the
emp table: SELECT * from emp to see that the PUT method was executed, then
select the Data tab to display the records for the EMP table.

Chapter 3
Getting Started with RESTful Services

3-35

Figure 3-6 Displaying the Results from a SQL Query to Confirm the
Execution of the PUT Method

Note:

• All parameters are optional. If you leave out a name/value pair for a
parameter in your JSON document, the parameter is set to NULL.

• The name/value pairs can be arranged in any order in the JSON
document. JSON allows much flexibility in this regard in the JSON
document.

• Only one level of JSON is supported. You can not have nested JSON
objects or arrays.

3.2.6.1.2 Using Route Patterns to Pass Parameters
This section describes how to use route patterns in the URI to specify parameters for
REST requests, such as with the GET method, which does not have a body.

First create a GET method handler for a query on the emp table that has many bind
variables. These steps use a route pattern to specify the parameter values that are
required.

Perform the following steps to use a route pattern to send a GET method with some
required parameter values:

Chapter 3
Getting Started with RESTful Services

3-36

1. In SQL Developer, right click on the test module and select Add Template to
create a new template that calls emp; however, in this case the template definition
includes a route pattern for the parameters or bind variables that is included in the
URI rather than in the body of the method. To define the required parameters, use
a route pattern by specifying a /: before the job and deptno parameters. For
example, for the URI pattern, enter: emp/:job/:deptno as shown in the following
figure.

Figure 3-7 Creating a Template Definition to Include a Route Pattern for
Some Parameters or Bind Variables

2. Click Next to go to REST Data Services — Step 2 of 3, and click Next to go to
REST Data Services — Step 3 of 3, then click Finish to complete the template.

3. Right click on the emp/:job/:deptno template and select Add Handler for the GET
method.

4. Right click on the GET method to open the handler.

5. Add the following query to the SQL Worksheet: select * from emp e where
e.job = :job and e.deptno = :deptno and e.mgr = NVL (:mgr, e.mgr) and
e.sal = NVL (:sal, e.sal); as also shown in the following figure.

Chapter 3
Getting Started with RESTful Services

3-37

Figure 3-8 Adding a SQL Query to the Handler

6. Click the Details tab to get the URL to call. Copy this URL to your clipboard.

7. Right click on the test module to upload the module. Do not forget this step.

8. Test the REST endpoint. In a web browser enter the URL:http://localhost:
8080/ords/ordstest/test/emp/SALESMAN/30 as shown in the following figure.

Chapter 3
Getting Started with RESTful Services

3-38

Figure 3-9 Using Browser to Show the Results of Using a Route Pattern to Send a GET
Method with Some Required Parameter Values

The query returns 3 records for the salesmen named Ward, Martin, and Turner.

Chapter 3
Getting Started with RESTful Services

3-39

See Also:

To learn more about Route Patterns see this document in the Oracle REST
Data Services distribution at docs/javadoc/plugin-api/route-
patterns.html and this document Oracle REST Data Services Route
Patterns

3.2.6.1.3 Using Query Strings for Optional Parameters
This section describes how to use query strings in the URI to specify parameters for
REST requests like the GET method, which does not have a body. You can use query
strings for any of the other optional bind variables in the query as you choose.

The syntax for using query strings is: ?parm1=value1&parm2=value2 …
&parmN=valueN.

For example, to further filter the query: http://localhost:8080/ords/ordstest/
test/emp/SALESMAN/30, to use a query string to send a GET method with some
parameter name/value pairs, select employees whose mgr (manager) is 7698 and
whose sal (salary) is 1500 by appending the query string ?mgr=7698&sal=1500 to the
URL as follows: http://localhost:8080/ords/ordstest/test/emp/SALESMAN/30?
mgr=7698&sal=1500.

To test the endpoint, in a web browser enter the following URL: http://localhost:8080/
ords/ordstest/test/emp/SALESMAN/30?mgr=7698&sal=1500 as shown in the following
figure:

Chapter 3
Getting Started with RESTful Services

3-40

https://blog.cdivilly.com/2015/03/10/route-patterns/
https://blog.cdivilly.com/2015/03/10/route-patterns/

Figure 3-10 Using Browser to Show the Results of Using a Query String to
Send a GET Method with Some Parameter Name/Value Pairs

The query returns one record for the salesman named Turner in department 30 who
has a salary of 1500 and whose manager is 7698.

Note the following points:

• It is a good idea to URL encode your parameter values. This may not always be
required; however, it is the safe thing to do. This prevents the Internet from
transforming something, for example, such as a special character in to some other
character that may cause a failure. Your REST client may provide this capability or
you can search the Internet for the phrase url encoder to find tools that can do
this for you.

Chapter 3
Getting Started with RESTful Services

3-41

• Never put a backslash at the end of your parameter list in the URI; otherwise, you
may get a 404 Not Found error.

See Also:

To gain more experience using JSON to pass parameter values, see Lab 4
of the ORDS Oracle By Example (OBE) and Database Application
Development Virtual Image.

3.2.6.2 Using SQL/JSON Database Functions
This section describes how to use the SQL/JSON database functions available in
Oracle Database 12c Release 2 (12.2) to map the nested JSON objects to and from
the hierarchical relational tables.

This section includes the following topics:

• Inserting Nested JSON Objects into Relational Tables

• Generating Nested JSON Objects from Hierachical Relational Data

3.2.6.2.1 Inserting Nested JSON Objects into Relational Tables
This section explains how to insert JSON objects with nested arrays into multiple,
hierarchical relational tables.

The two key technologies used to implement this functionality are as follows:

• The :body bind variable that Oracle REST Data Services provides to deliver JSON
and other content in the body of POST and other REST calls into PL/SQL REST
handlers

• JSON_TABLE and other SQL/JSON operators provided in Oracle Database 12c
Release 2 (12.2)

Some of the advantages of using these technologies for inserting data into relational
tables are as follows:

• Requirements for implementing this functionality are very minimal. For example,
installation of JSON parser software is not required

• You can use simple, declarative code that is easy to write and understand when
the JSON to relational mapping is simple

• Powerful and sophisticated capabilities to handle more complex mappings. This
includes:

– Mechanisms for mapping NULLS and boolean values

– Sophisticated mechanisms for handling JSON. JSON evolves over time.
Hence, the mapping code must be able to handle both the older and newer
versions of the JSON documents.

For example, simple scalar values may evolve to become JSON objects
containing multiple scalars or nested arrays of scalar values or objects. SQL/
JSON operators that return the scalar value can continue to work even when
the simple scalar is embedded within these more elaborate structures. A

Chapter 3
Getting Started with RESTful Services

3-42

https://apexapps.oracle.com/pls/apex/f?p=44785:24:113172122269057:ADD_BOOKMARK:::P24_CONTENT_ID:13282
https://apexapps.oracle.com/pls/apex/f?p=44785:24:113172122269057:ADD_BOOKMARK:::P24_CONTENT_ID:13282
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

special mechanism, called the Ordinality Column, can be used to determine
the structure from where the value was derived.

See Also:

The following pages for more information on JSON_TABLE and other SQL/
JSON operators and on Ordinality Column mechanism:

• json_db

• ordinality_column

3.2.6.2.1.1 Usage of the :body Bind Variable

This section provides some useful tips for using the :body bind variable.

Some of the useful tips for using the :body bind variable are as follows:

• The :body bind variable can be accessed, or de-referenced, only
once. Subsequent accesses return a NULL value. So, you must first assign
the :body bind variable to the local L_PO variable before using it in the two
JSON_Table operations.

• The :body bind variable is a BLOB datatype and you can assign it only to a BLOB
variable.

Note:

Since L_PO is a BLOB variable, you must use the FORMAT JSON phrase
after the expression in the JSON_TABLE function. section for more
information.

The :body bind variable can be used with other types of data such as image data.

See Also:

• Creating an Image Gallery for a working example of using :body bind
variable with image data .

• Database SQL Language Reference

3.2.6.2.1.2 Example of JSON Purchase Order with Nested LineItems

This section shows an example that takes the JSON Purchase Order with Nested
LineItems and inserts it into a row of the PurchaseOrder table and rows of the
LineItem table.

Chapter 3
Getting Started with RESTful Services

3-43

https://blogs.oracle.com/jsondb/
https://blogs.oracle.com/jsondb/entry/the_new_sql_json_query3

Example 3-5 Nested JSON Purchase Order with Nested LineItems

{"PONumber" : 1608,
 "Requestor" : "Alexis Bull",
 "CostCenter" : "A50",
 "Address" : {"street" : "200 Sporting Green",
 "city" : "South San Francisco",
 "state" : "CA",
 "zipCode" : 99236,
 "country" : "United States of America"},
 "LineItems" : [{"ItemNumber" : 1,
 "Part" : {"Description" : "One Magic
Christmas",
 "UnitPrice" : 19.95,
 "UPCCode" : 1313109289},
 "Quantity" : 9.0},
 {"ItemNumber" : 2,
 "Part" : {"Description" : "Lethal Weapon",
 "UnitPrice" : 19.95,
 "UPCCode" : 8539162892},
 "Quantity" : 5.0}]}'

3.2.6.2.1.3 Table Definitions for PurchaseOrder and LineItems Tables

This section provides definitions for the PurchaseOrder and LineItem tables.

The definitions for the PurchaseOrder and the LineItems tables are as follows:

CREATE TABLE PurchaseOrder (
 PONo NUMBER (5),
 Requestor VARCHAR2 (50),
 CostCenter VARCHAR2 (5),
 AddressStreet VARCHAR2 (50),
 AddressCity VARCHAR2 (50),
 AddressState VARCHAR2 (2),
 AddressZip VARCHAR2 (10),
 AddressCountry VARCHAR2 (50),
 PRIMARY KEY (PONo));

CREATE TABLE LineItem (
 PONo NUMBER (5),
 ItemNumber NUMBER (10),
 PartDescription VARCHAR2 (50),
 PartUnitPrice NUMBER (10),
 PartUPCCODE NUMBER (10),
 Quantity NUMBER (10),
 PRIMARY KEY (PONo,ItemNumber));

3.2.6.2.1.4 PL/SQL Handler Code for a POST Request

This section gives an example PL/SQL handler code for a POST request. The handler
code is used to insert a purchase order into a row of the PurchaseOrder table and
rows of the LineItem table.

Chapter 3
Getting Started with RESTful Services

3-44

Example 3-6 PL/SQL Handler Code Used for a POST Request

Declare
 L_PO BLOB;

Begin
 L_PO := :body;

INSERT INTO PurchaseOrder
 SELECT * FROM json_table(L_PO FORMAT JSON, '$'
 COLUMNS (
 PONo Number PATH '$.PONumber',
 Requestor VARCHAR2 PATH '$.Requestor',
 CostCenter VARCHAR2 PATH '$.CostCenter',
 AddressStreet VARCHAR2 PATH '$.Address.street',
 AddressCity VARCHAR2 PATH '$.Address.city',
 AddressState VARCHAR2 PATH '$.Address.state',
 AddressZip VARCHAR2 PATH '$.Address.zipCode',
 AddressCountry VARCHAR2 PATH '$.Address.country'));

INSERT INTO LineItem
SELECT * FROM json_table(L_PO FORMAT JSON, '$'
 COLUMNS (
 PONo Number PATH '$.PONumber',
 NESTED PATH '$.LineItems[*]'
 COLUMNS (
 ItemNumber Number PATH '$.ItemNumber',
 PartDescription VARCHAR2 PATH '$.Part.Description',
 PartUnitPrice Number PATH '$.Part.UnitPrice',
 PartUPCCode Number PATH '$.Part.UPCCode',
 Quantity Number PATH '$.Quantity')));
commit;
end;

3.2.6.2.1.5 Creating the REST API Service to Invoke the Handler

This section explains how to create the REST API service to invoke the handler, using
the Oracle REST Data Services.

To setup the REST API service, a URI is defined to identify the resource the REST
calls will be operating on. The URI is also used by Oracle REST Data Services to
route the REST HTTP calls to specific handlers. The general format for the URI is as
follows:

<server>:<port>/ords/<schema>/<module>/<template>/<parameters>

Here, <server>:<port> is where the Oracle REST Data Service is installed. For
testing purposes, you can use demo and test in place of module and template
respectively in the URI. Modules are used to group together related templates that
define the resources the REST API will be operating upon.

To create the REST API service, use one of the following methods:

Chapter 3
Getting Started with RESTful Services

3-45

• Use the Oracle REST Data Services PL/SQL API to define the REST service and
a handler for the POST insert. Then connect to the jsontable schema on the
database server that contains the PurchaseOrder and LineItem tables.

Note:

JSON_TABLE and other SQL/JSON operators use single quote so these
must be escaped. For example, every single quote (’) must be replaced
with double quotes (“).

• Use the Oracle REST Data Services, REST Development pane in SQL Developer
to define the REST service.

3.2.6.2.1.6 Defining the REST Service and Handler using PL/SQL API

This section shows how to define the REST Service and Handler for the POST insert
using the Oracle REST Data Services PL/SQL API.

You can alternatively use the Oracle REST Data Services REST development pane in
SQL Developer to create the modules, templates and handlers.

BEGIN
 ORDS.ENABLE_SCHEMA(
 p_enabled => TRUE,
 p_schema => 'ORDSTEST',
 p_url_mapping_type => 'BASE_PATH',
 p_url_mapping_pattern => 'ordstest',
 p_auto_rest_auth => FALSE);

 ORDS.DEFINE_MODULE(
 p_module_name => 'demo',
 p_base_path => '/demo/',
 p_items_per_page => 25,
 p_status => 'PUBLISHED',
 p_comments => NULL);
 ORDS.DEFINE_TEMPLATE(
 p_module_name => 'demo',
 p_pattern => 'test',
 p_priority => 0,
 p_etag_type => 'HASH',
 p_etag_query => NULL,
 p_comments => NULL);
 ORDS.DEFINE_HANDLER(
 p_module_name => 'demo',
 p_pattern => 'test',
 p_method => 'POST',
 p_source_type => 'plsql/block',
 p_items_per_page => 0,
 p_mimes_allowed => '',
 p_comments => NULL,
 p_source => '
declare
 L_PO BLOB := :body;
begin

Chapter 3
Getting Started with RESTful Services

3-46

INSERT INTO PurchaseOrder
 SELECT * FROM json_table(L_PO FORMAT JSON, ''$''
 COLUMNS (
 PONo Number PATH ''$.PONumber'',
 Requestor VARCHAR2 PATH ''$.Requestor'',
 CostCenter VARCHAR2 PATH ''$.CostCenter'',
 AddressStreet VARCHAR2 PATH ''$.Address.street'',
 AddressCity VARCHAR2 PATH ''$.Address.city'',
 AddressState VARCHAR2 PATH ''$.Address.state'',
 AddressZip VARCHAR2 PATH ''$.Address.zipCode'',
 AddressCountry VARCHAR2 PATH ''$.Address.country''));

INSERT INTO LineItem
SELECT * FROM json_table(L_PO FORMAT JSON, ''$''
 COLUMNS (
 PONo Number PATH ''$.PONumber'',
 NESTED PATH ''$.LineItems[*]''
 COLUMNS (
 ItemNumber Number PATH ''$.ItemNumber'',
 PartDescription VARCHAR2 PATH ''$.Part.Description'',
 PartUnitPrice Number PATH ''$.Part.UnitPrice'',
 PartUPCCode Number PATH ''$.Part.UPCCode'',
 Quantity Number PATH ''$.Quantity'')));

commit;
end;'
);

 COMMIT;
END;

Related Topics

• Using the Oracle REST Data Services PL/SQL API

• About Oracle REST Data Services Mechanisms for Passing Parameters

• Oracle REST Data Services PL/SQL Package Reference

3.2.6.2.2 Generating Nested JSON Objects from Hierachical Relational Data
This section explains how to query the relational tables in hierarchical (parent/child)
relationships and return the data in a nested JSON format using the Oracle REST
Data Services.

The two key technologies used to implement this functionality are as follows:

• The new SQL/JSON functions available with Oracle Database 12c Release 2
(12.2). You can use json_objects for generating JSON objects from the relational
tables, and json_arrayagg, for generating nested JSON arrays from nested (child)
relational tables.

• The Oracle REST Data Services media source type used for enabling the REST
service handler to execute a SQL query that in turn returns the following types of
data:

Chapter 3
Getting Started with RESTful Services

3-47

– The HTTP Content-Type of the data, which in this case is application/json

– The JSON data returned by the json_object

Some of the advantages of using this approach are as follows:

• Requirements for implementing this functionality is very minimal. For example,
installation of JSON parser software is not required.

• Simple, declarative coding which is easy to write and understand which makes the
JSON objects to relational tables mapping simple.

• Powerful and sophisticated capabilities to handle more complex mappings. This
includes mechanisms for mapping NULLS and boolean values.

For example, a NULL in the Oracle Database can be converted to either the
absence of the JSON element or to a JSON NULL value. The Oracle Database
does not store Boolean types but the SQL/JSON functions allow string or numeric
values in the database to be mapped to Boolean TRUE or FALSE values.

3.2.6.2.2.1 Example to Generate Nested JSON Objects from the Hierachical
Relational Tables

This section describes how to query or GET the data we inserted into the
PurchaseOrder and LineItem relational tables in the form of nested JSON purchase
order.

Example 3-7 GET Handler Code using Oracle REST Data Services Query on
Relational Tables for Generating a Nested JSON object

SELECT 'application/json', json_object('PONumber' VALUE po.PONo,
 'Requestor' VALUE po.Requestor,
 'CostCenter' VALUE po.CostCenter,
 'Address' VALUE
 json_object('street' VALUE po.AddressStreet,
 'city' VALUE po.AddressCity,
 'state' VALUE po.AddressState,
 'zipCode' VALUE po.AddressZip,
 'country' VALUE po.AddressCountry),
 'LineItems' VALUE (select json_arrayagg(
 json_object('ItemNumber' VALUE li.ItemNumber,
 'Part' VALUE
 json_object('Description' VALUE li.PartDescription,
 'UnitPrice' VALUE li.PartUnitPrice,
 'UPCCode' VALUE li.PartUPCCODE),
 'Quantity' VALUE li.Quantity))
 FROM LineItem li WHERE po.PONo = li.PONo))
 FROM PurchaseOrder po
 WHERE po.PONo = :id

3.2.6.2.2.2 PL/SQL API Calls for Defining Template and GET Handler

This section provides an example of Oracle REST Data Services PL/SQL API call for
creating a new template in the module created.

Chapter 3
Getting Started with RESTful Services

3-48

Example 3-8 PL/SQL API Call for Creating a New test/:id Template and GET
Handler in the demo Module

Begin
ords.define_template(
 p_module_name => 'demo',
 p_pattern => 'test/:id');

ords.define_handler(
 p_module_name => 'demo',
 p_pattern => 'test/:id',
 p_method => 'GET',
 p_source_type => ords.source_type_media,
 p_source => '

 SELECT ''application/json'', json_object(''PONumber'' VALUE po.PONo,
 ''Requestor'' VALUE po.Requestor,
 ''CostCenter'' VALUE po.CostCenter,
 ''Address'' VALUE
 json_object(''street'' VALUE po.AddressStreet,
 ''city'' VALUE po.AddressCity,
 ''state'' VALUE po.AddressState,
 ''zipCode'' VALUE po.AddressZip,
 ''country'' VALUE po.AddressCountry),
 ''LineItems'' VALUE (select json_arrayagg(
 json_object(''ItemNumber'' VALUE li.ItemNumber,
 ''Part'' VALUE
 json_object(''Description'' VALUE
li.PartDescription,
 ''UnitPrice'' VALUE li.PartUnitPrice,
 ''UPCCode'' VALUE li.PartUPCCODE),
 ''Quantity'' VALUE li.Quantity))
 FROM LineItem li WHERE po.PONo = li.PONo))
 FROM PurchaseOrder po
 WHERE po.PONo = :id '
);

Commit;
End;

3.2.6.2.3 Testing the RESTful Services
This section shows how to test the POST and GET RESTful Services to access the
Oracle database and get the results in a JSON format.

This section includes the following topics:

• Insertion of JSON Object into the Database

• Generating JSON Object from the Database

3.2.6.2.3.1 Insertion of JSON Object into the Database

This section shows how to test insertion of JSON purchase order into the database.

URI Pattern: http://<HOST>:<PORT>/ords/<SchemaAlias>/<module>/<template>

Chapter 3
Getting Started with RESTful Services

3-49

Example:

Method: POST

URI Pattern: http://localhost:8080/ords/ordstest/demo/test/

To test the RESTful service, create a file such as po1.json with the following data for
PONumber 1608 :

{"PONumber" : 1608,
 "Requestor" : "Alexis Bull",
 "CostCenter" : "A50",
 "Address" : {"street" : "200 Sporting Green",
 "city" : "South San Francisco",
 "state" : "CA",
 "zipCode" : 99236,
 "country" : "United States of America"},
 "LineItems" : [{"ItemNumber" : 1,
 "Part" : {"Description" : "One Magic
Christmas",
 "UnitPrice" : 19.95,
 "UPCCode" : 1313109289},
 "Quantity" : 9.0},
 {"ItemNumber" : 2,
 "Part" : {"Description" :
"Lethal Weapon",
 "UnitPrice" :
19.95,
 "UPCCode" :
8539162892},
 "Quantity" : 5.0}]}'

Then, execute the following cURL command in the command prompt:

curl -i -H "Content-Type: application/json" -X POST -d @po1.json "http://localhost:
8080/ords/ordstest/demo/test/"

The cURL command returns the following response:

HTTP/1.1 200 OK
Transfer-Encoding: chunked

3.2.6.2.3.2 Generating JSON Object from the Database

This section shows the results of a GET method to fetch the JSON object from the
database..

Method: GET

URI Pattern: http://<HOST>:<PORT>/ords/<SchemaAlias>/<module>/<template>/
<parameters>

Example:

To test the RESTful service, in a web browser, enter the URL http://localhost:8080 /
ords/ordstest/demo/test/1608 as shown in the following figure:

Chapter 3
Getting Started with RESTful Services

3-50

Figure 3-11 Generating Nested JSON Objects

Chapter 3
Getting Started with RESTful Services

3-51

3.2.7 About Working with Dates Using Oracle REST Data Services
Oracle REST Data Services enables developers to create REST interfaces to Oracle
Database, Oracle Database 12c JSON Document Store as quickly and easily as
possible. When working with Oracle Database, developers can use the AutoREST
feature for tables or write custom modules using SQL and PL/SQL routines for more
complex operations.

Oracle REST Data Services uses the RFC3339 standard for encoding dates in strings.
Typically, the date format used is dd-mmm-yyyy, for example, 15-Jan-2017. Oracle
REST Data Services automatically converts JSON strings in the specified format to
Oracle date data types when performing operations such as inserting or updating
values in Oracle Database. When converting back to JSON strings, Oracle REST Data
Services automatically converts Oracle date data types to the string format.

Note:

Oracle Database supports a date data type while JSON does not support a
date data type.

This section includes the following topics:

• About Datetime Handling with Oracle REST Data Services

• About Setting the Time Zone

See Also:

The following page for more information, including details on how time and
time zones are handled jsao_io_dates

3.2.7.1 About Datetime Handling with Oracle REST Data Services
As data arrives from a REST request, Oracle REST Data Services may parse ISO
8601 strings and convert them to the TIMESTAMP data type in Oracle Database. This
occurs with AutoREST (POST and PUT) as well as with bind variables in custom
modules. Remember that TIMESTAMP does not support time zone related components,
so the DATETIME value is set to the time zone Oracle REST Data Services uses during
the conversion process.

When constructing responses to REST requests, Oracle REST Data Services converts
DATETIME values in Oracle Database to ISO 8601 strings in Zulu. This occurs with
AutoREST (GET) and in custom modules that are mapped to SQL queries (GET). In the
case of DATE and TIMESTAMP data types, which do not have time zone related
components, the time zone is assumed to be that in which Oracle REST Data Services
is running and the conversion to Zulu is made from there.

Here are some general recommendations when working with Oracle REST Data
Services for REST (that is, not APEX):

Chapter 3
Getting Started with RESTful Services

3-52

https://jsao.io/2016/10/working-with-dates-using-ords/

• Ensure that Oracle REST Data Services uses the appropriate time zone as per the
data in the database (for example, the time zone you want dates going into the
database).

• Do not alter NLS settings (that is, the time_zone) mid-stream.

Note that while ISO 8601 strings are mentioned, Oracle REST Data Services actually
supports strings. RFC3339 strings are a conformant subset of ISO 8601 strings. The
default format returned by JSON.stringify(date) is supported.

WARNING:

It is important to keep the time zone that Oracle REST Data Services uses in
sync with the session time zone to prevent issues with implicit data
conversion to TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME
ZONE. Oracle REST Data Services does this automatically by default but
developers can change the session time zone with an ALTER SESSION
statement.

See Aslo:

rfc3339_date_time_format

3.2.7.2 About Setting the Time Zone
When Oracle REST Data Services is started, the JVM it runs in obtains and caches
the time zone Oracle REST Data Services uses for various time zone conversions. By
default, the time zone is obtained from the operating system (OS), so an easy way to
change the time zone Oracle REST Data Services uses is to change the time zone of
the OS and then restart Oracle REST Data Services or the application server on which
it is running. Of course, the instructions for changing the time zone vary by the
operating system.

If for any reason you do not want to use the same time zone as the OS, it is possible
to override the default using the Java environment variable Duser.timezone. Exactly
how that variable is set depends on whether you are running in standalone mode or in
a Java application server. The following topics show some examples.

Standalone Mode

When running Oracle REST Data Services in standalone mode, it is possible to set
Java environment variables by specifying them as command line options before the -
jar option.

Example 3-9 Setting the Duser.timezone Java Environment Variable in
Standalone Mode

The following code example shows how to set the timezone in standalone mode on
the command line.

$ java -Duser.timezone=America/New_York -jar ords.war standalone

Chapter 3
Getting Started with RESTful Services

3-53

https://xml2rfc.tools.ietf.org/public/rfc/html/rfc3339.html#anchor14

Java Application Server — Tomcat 8

In a Java application server, Tomcat 8, and possibly earlier and later versions too, it is
possible to set the time zone using the environment variable CATALINA_OPTS. The
recommended way to do this is not to modify the CATALINA_BASE/bin/catalina.sh
directly, but instead to set environment variables by creating a script named setenv.sh
in CATALINA_BASE/bin.

Example 3-10 Setting the Duser.timezone Java Environment Variable in a Java
Application Server

The following code example shows the contents of the setenv.sh script for setting the
timezone in a Java Application server — Tomcat 8.

CATALINA_TIMEZONE="-Duser.timezone=America/New_York"
CATALINA_OPTS="$CATALINA_OPTS $CATALINA_TIMEZONE

3.2.7.3 Exploring the Sample RESTful Services in Application Express
(Tutorial)

Oracle highly recommends to develop Oracle REST Data Services application using
SQL Developer because it supports the most recent Oracle REST Data Services
releases, that is, 3.0.X. Application Express provides a tutorial that is useful for
learning some basic concepts of REST and Oracle REST Data Services. However, the
tutorial uses the earlier Oracle REST Data Services releases, that is, 2.0.X. Following
are some of the useful tips discussed on how to use the tutorial:

If your Application Express instance is configured to automatically add the sample
application and sample database objects to workspaces, then a sample resource
module named: oracle.example.hr will be visible in the list of Resource Modules. If
that resource module is not listed, then you can click the Reset Sample Data task on
the right side of the RESTful Services Page to create the sample resource module.

1. Click on oracle.example.hr to view the Resource Templates and Resource
Handlers defined within the module. Note how the module has a URI prefix with
the value: hr/. This means that all URIs serviced by this module will start with the
characters hr/.

2. Click on the resource template named employees/{id}. Note how the template
has a URI Template with the value: employees/{id}. This means that all URIs
starting with hr/employees/ will be serviced by this Resource Template.

The HTTP methods supported by a resource template are listed under the
resource template. In this case, the only supported method is the GET method.

3. Click on the GET Resource Handler for hr/employees/{id} to view its
configuration.

The Source Type for this handler is Query One Row. This means that the resource
is expected to be mapped to a single row in the query result set. The Source for
this handler is:

select * from emp
 where empno = :id

Chapter 3
Getting Started with RESTful Services

3-54

Assuming that the empno column is unique, the query should only produce a single
result (or no result at all if no match is found for :id). To try it out, press the Test
button. The following error message should be displayed:

400 - Bad Request - Request path contains unbound parameters: id

If you look at the URI displayed in the browser, it will look something like this:

https://server:port/ords/workspace/hr/employees/{id}

where:

• server is the DNS name of the server where Oracle Application Express is
deployed

• port is the port the server is listening on

• workspace is the name of the Oracle Application Express workspace you are
logged into

Note the final part of the URI: hr/employees/{id}. The error message says that
this is not a valid URI, the problem is that you did not substitute in a concrete value
for the parameter named {id}. To fix that, press the browser Back button, then
click Set Bind Variables.

4. For the bind variable named :id, enter the value 7369, and press Test.

A new browser window appears displaying the following JSON (JavaScript Object
Notation):

{
 "empno":7369,
 "ename":"SMITH",
 "job":"CLERK",
 "mgr":7902,
 "hiredate":"1980-12-17T08:00:00Z",
 "sal":800,
 "deptno":20
}

Note also the URI displayed in the browser for this resource:

https://server:port/ords/workspace/hr/employees/7369

The {id} URI Template parameter is bound to the SQL :id bind variable, and in
this case it has been given the concrete value of 7369, so the query executed by
the RESTful Service becomes:

select * from emp
 where empno = 7369

The results of this query are then rendered as JSON as shown above.

Chapter 3
Getting Started with RESTful Services

3-55

Tip:

Reading JSON can be difficult. To make it easier to read, install a
browser extension that pretty prints the JSON. For example, Mozilla
Firefox and Google Chrome both have extensions:

• jsonview_firefox

• json_formatter_chrome

Now see what happens when you enter the URI of a resource that does not exist.

5. On the Set Bind Variables page, change the value of :id from 7369 to 1111, and
press Test.

As before, a new window pops up, but instead of displaying a JSON resource, it
displays an error message reading:

404 - Not Found

This is the expected behavior of this handler: when a value is bound to :id that
does not exist in the emp table, the query produces no results and consequently
the standard HTTP Status Code of 404 - Not Found is returned.

So, you have a service that will provide information about individual employees, if
you know the ID of an employee, but how do you discover the set of valid
employee ids?

6. Press Cancel to return to the previous page displaying the contents of the
Resource Module.

7. Click on the template named employees/.

The following steps look at the resource it generates, and later text will help you
understand its logic.

8. Click on the GET handler beneath employees/, and click Test.

A resource similar to the following is displayed (If you haven't already done so,
now would be a good time to install a JSON viewer extension in your browser to
make it easier to view the output):

{
 "next":
 {"$ref":
 "https://server:port/ords/workspace/hr/employees/?page=1"},
 "items": [
 {
 "uri":
 {"$ref":
 "https://server:port/ords/workspace/hr/employees/7369"},
 "empno": 7369,
 "ename": "SMITH"
 },
 {
 "uri":
 {"$ref":
 "https://server:port/ords/workspace/hr/employees/7499"},
 "empno": 7499,
 "ename": "ALLEN"

Chapter 3
Getting Started with RESTful Services

3-56

http://jsonview.com/
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en

 },
 ...
 {
 "uri":
 {"$ref":
 "https://server:port/ords/workspace/hr/employees/7782"},
 "empno": 7782,
 "ename": "CLARK"
 }
]
}

This JSON document contains a number of things worth noting:

• The first element in the document is named next and is a URI pointing to the
next page of results. (An explanation of how paginated results are supported
appears in later steps)

• The second element is named items and contains a number of child elements.
Each child element corresponds to a row in the result set generated by the
query.

• The first element of each child element is named uri and contains a URI
pointing to the service that provides details of each employee. Note how the
latter part of the URI matches the URI Template: employees/{id}. In other
words, if a client accesses any of these URIs, the request will be serviced by
the employees/{id} RESTful service previously discussed.

So, this service addresses the problem of identifying valid employee IDs by
generating a resource that lists all valid employee resources. The key thing to
realize here is that it does not do this by just listing the ID value by itself and
expecting the client to be able to take the ID and combine it with prior knowledge
of the employees/{id} service to produce an employee URI; instead, it lists the
URIs of each employee.

Because the list of valid employees may be large, the service also breaks the list
into smaller pages, and again uses a URI to tell the client where to find the next
page in the results.

To see at how this service is implemented, continue with the next steps.

9. Press the Back button in your browser to return to the GET handler definition.

Note the Source Type is Query, this is the default Source Type, and indicates that
the resource can contain zero or more results. The Pagination Size is 7, which
means that there will be seven items on each page of the results. Finally, the
Source for the handler looks like this:

select empno "$uri", empno, ename from (
 select emp.*,
 row_number() over (order by empno) rn
 from emp
) tmp
 where
 rn between :row_offset and :row_count

In this query:

• The first line states that you want to return three columns. The first column is
the employee id: empno, but aliased to a column name of $uri (to be explained

Chapter 3
Getting Started with RESTful Services

3-57

later), the second column is again the employee ID, and the third column is the
employee name, ename.

• Columns in result sets whose first character is $ (dollar sign) are given special
treatment. They are assumed to denote columns that must be transformed into
URIs, and these are called Hyperlink Columns. Thus, naming columns with a
leading $ is a way to generate hyperlinks in resources.

When a Hyperlink Column is encountered, its value is prepended with the URI
of the resource in which the column is being rendered, to produce a new URI.
For example, recall that the URI of this service is https://server:port/ords/
workspace/hr/employees/. If the value of empno in the first row produced by
the this service's query is 7369, then the value of $uri becomes: https://
server:port/ords/workspace/hr/employees/7369.

• JSON does not have a URI data type, so a convention is needed to make it
clear to clients that a particular value represents a URI. Oracle REST Data
Services uses the JSON Reference proposal, which states that any JSON
object containing a member named $ref, and whose value is a string, is a
URI. Thus, the column: $uri and its value: https://server:port/ords/
workspace/hr/employees/7369 is transformed to the following JSON object:

{"uri":
 {"$ref":
 "https://server:port/ords/workspace/hr/employees/7369"
 }
 }

• The inner query uses the row_number() analytical function to count the
number of rows in the result set, and the outer WHERE clause constrains the
result set to only return rows falling within the desired page of results. Oracle
REST Data Services defines two implicit bind parameters, :row_offset
and :row_count, that always contain the indicies of the first and last rows that
should be returned in a given page's results.

For example, if the current page is the first page and the pagination size is 7,
then the value of :row_offset will be 1 and the value of :row_count will be 7.

To see a simpler way to do both hyperlinks and paged results, continue with the
following steps.

10. Click on the GET handler of the employeesfeed/ resource template.

Note that the Source Type of this handler is Feed and Pagination Size is 25.

11. Change the pagination size to 7, and click Apply Changes.

The Source of the handler is just the following:

select empno, ename from emp
 order by deptno, ename

As you can see, the query is much simpler than the previous example; however, if
you click Test, you will see a result that is very similar to the result produced by
the previous example.

• The Feed Source Type is an enhanced version of the Query Source Type that
automatically assumes the first column in a result set should be turned into a
hyperlink, eliminating the need to alias columns with a name starting with $. In
this example, the empno column is automatically transformed into a hyperlink
by the Feed Source Type.

Chapter 3
Getting Started with RESTful Services

3-58

• This example demonstrates the ability of Oracle REST Data Services to
automatically paginate result sets if a Pagination Size of greater than zero is
defined, and the query does not explicitly dereference the :row_offset
or :row_count bind parameters. Because both these conditions hold true for
this example, Oracle REST Data Services enhances the query, wrapping it in
clauses to count and constrain the number and offset of rows returned. Note
that this ability to automatically paginate results also applies to the Query
Source Type.

See Also:

json_ref

3.3 Configuring Secure Access to RESTful Services
This section describes how to configure secure access to RESTful Services

RESTful APIs consist of resources, each resource having a unique URI. A set of
resources can be protected by a privilege. A privilege defines the set of roles, at least
one of which an authenticated user must possess to access a resource protected by a
privilege.

Configuring a resource to be protected by a particular privilege requires creating a
privilege mapping. A privilege mapping defines a set of patterns that identifies the
resources that a privilege protects.

Topics:

• Authentication

• About Privileges for Accessing Resources

• About Users and Roles for Accessing Resources

• About the File-Based User Repository

• Tutorial: Protecting and Accessing Resources

3.3.1 Authentication
Users can be authenticated through first party cookie-based authentication or third
party OAuth 2.0-based authentication

Topics:

• First Party Cookie-Based Authentication

• Third Party OAuth 2.0-Based Authentication

3.3.1.1 First Party Cookie-Based Authentication
A first party is the author of a RESTful API. A first party application is a web application
deployed on the same web origin as the RESTful API. A first party application is able
to authenticate and authorize itself to the RESTful API using the same cookie session
that the web application is using. The first party application has full access to the
RESTful API.

Chapter 3
Configuring Secure Access to RESTful Services

3-59

http://tools.ietf.org/html/draft-pbryan-zyp-json-ref

3.3.1.2 Third Party OAuth 2.0-Based Authentication
A third party is any party other than the author of a RESTful API. A third party
application cannot be trusted in the same way as a first party application; therefore,
there must be a mediated means to selectively grant the third party application limited
access to the RESTful API.

The OAuth 2.0 protocol defines flows to provide conditional and limited access to a
RESTful API. In short, the third party application must first be registered with the first
party, and then the first party (or an end user of the first party RESTful service)
approves the third party application for limited access to the RESTful API, by issuing
the third party application a short-lived access token.

See Also:

ietf_rfc6749

3.3.1.2.1 Two-Legged and Three-Legged OAuth Flows
Some flows in OAuth are defined as two-legged and others as three-legged.

Two-legged OAuth flows involve two parties: the party calling the RESTful API (the
third party application), and the party providing the RESTful API. Two-legged flows are
used in server to server interactions where an end user does not need to approve
access to the RESTful API. In OAuth 2.0 this flow is called the client credentials flow. It
is most typically used in business to business scenarios.

Three-legged OAuth flows involve three parties: the party calling the RESTful API,
the party providing the RESTful API, and an end user party that owns or manages the
data to which the RESTful API provides access. Three-legged flows are used in client
to server interactions where an end user must approve access to the RESTful API. In
OAuth 2.0 the authorization code flow and the implicit flow are three-legged flows.
These flows are typically used in business to consumer scenarios.

For resources protected by three-legged flows, when an OAuth client is registering
with a RESTful API, it can safely indicate the protected resources that it requires
access to, and the end user has the final approval decision about whether to grant the
client access. However for resources protected by two-legged flows, the owner of the
RESTful API must approve which resources each client is authorized to access.

3.3.2 About Privileges for Accessing Resources
A privilege for accessing resources consists of the following data:

• Name: The unique identifier for the Privilege. This value is required.

• Label: The name of the privilege presented to an end user when the user is being
asked to approve access to a privilege when using OAuth. This value is required if
the privilege is used with a three-legged OAuth flow.

• Description: A description of the purpose of the privilege. It is also presented to the
end user when the user is being asked to approve access to a privilege. This value
is required if the privilege is used with a three-legged OAuth flow.

Chapter 3
Configuring Secure Access to RESTful Services

3-60

https://tools.ietf.org/html/rfc6749

• Roles: A set of role names associated with the privilege. An authenticated party
must have at least one of the specified roles in order to be authorised to access
resources protected by the privilege. A value is required, although it may be an
empty set, which indicates that a user must be authenticated but that no specific
role is required to access the privilege.

For two-legged OAuth flows, the third party application (called a client in OAuth
terminology) must possess at least one of the required roles.

For three-legged OAuth flows, the end user that approves the access request from the
third party application must possess at least one of the required roles.

Related Topics

• Two-Legged and Three-Legged OAuth Flows

3.3.3 About Users and Roles for Accessing Resources
A privilege enumerates a set of roles, and users can possess roles. but where are
these Roles defined? What about the users that possess these roles? Where are they
defined?

A privilege enumerates a set of roles, and users can possess roles. Oracle REST Data
Services delegates the task of user management to the application server on which
Oracle REST Data Services is deployed. Oracle REST Data Services is able to
authenticate users defined and managed by the application server and to identify the
roles and groups to which the authenticated user belongs. It is the responsibility of the
party deploying Oracle REST Data Services on an application server to also configure
the user repository on the application server.

Because an application server can be configured in many ways to define a user
repository or integrate with an existing user repository, this document cannot describe
how to configure a user repository in an application server. See the application server
documentation for detailed information.

3.3.4 About the File-Based User Repository
Oracle REST Data Services provides a a simple file-based user repository
mechanism. However, this user repository is only intended for the purposes of
demonstration and testing, and is not supported for production use.

See the command-line help for the user command for more information on how to
create a user in this repository:

java -jar ords.war help user

Format:

java -jar ords.war user <user> <roles>

Arguments:

• <user> is the user ID of the user.

• <roles> is the list of roles (zero or more) that the user has.

Related Topics

• Tutorial: Protecting and Accessing Resources

Chapter 3
Configuring Secure Access to RESTful Services

3-61

3.3.5 Tutorial: Protecting and Accessing Resources
This tutorial demonstrates creating a privilege to protect a set of resources, and
accessing the protected resource with the following OAuth features:

• Client credentials

• Authorization code

• Implicit flow

It also demonstrates access the resource using first-party cookie-based authentication.

Topics:

• OAuth Flows and When to Use Each

• Assumptions for This Tutorial

• Steps for This Tutorial

3.3.5.1 OAuth Flows and When to Use Each
This topic explains when to use various OAuth flow features.

Use first party cookie-based authentication when accessing a RESTful API from a web
application hosted on the same origin as the RESTful API.

Use the authorization code flow when you need to permit third party web applications
to access a RESTful API and the third party application has its own web server where
it can keep its client credentials secure. This is the typical situation for most web
applications, and it provides the most security and best user experience, because the
third party application can use refresh tokens to extend the life of a user session
without having to prompt the user to reauthorize the application.

Use the implicit flow when the third party application does not have a web server
where it can keep its credentials secure. This flow is useful for third party single-page-
based applications. Because refresh tokens cannot be issued in the Implicit flow, the
user will be prompted more frequently to authorize the application.

Native mobile or desktop applications should use the authorization code or implicit
flows. They will need to display the sign in and authorization prompts in a web browser
view, and capture the access token from the web browser view at the end of the
authorization process.

Use the client credentials flow when you need to give a third party application direct
access to a RESTful API without requiring a user to approve access to the data
managed by the RESTful API. The third party application must be a server-based
application that can keep its credentials secret. The client credentials flow must not be
used with a native application, because the client credentials can always be
discovered in the native executable.

3.3.5.2 Assumptions for This Tutorial
This tutorial assumes the following:

• Oracle REST Data Services is deployed at the following URL: https://
example.com/ords/

Chapter 3
Configuring Secure Access to RESTful Services

3-62

• A database schema named ORDSTEST has been enabled for use with Oracle
REST Data Services, and its RESTful APIs are exposed under: https://
example.com/ords/ordstest/

• The ORDSTEST schema contains a database table named EMP, which was
created as follows:

create table emp (
 empno number(4,0),
 ename varchar2(10 byte),
 job varchar2(9 byte),
 mgr number(4,0),
 hiredate date,
 sal number(7,2),
 comm number(7,2),
 deptno number(2,0),
 constraint pk_emp primary key (empno)
);

• The resources to be protected are located under: https://example.com/ords/
ordstest/examples/employees/

3.3.5.3 Steps for This Tutorial
Follow these steps to protect and access a set of resources.

1. Enable the schema. Connect to the ORDSTEST schema and execute the
following PL/SQL statements;

begin
 ords.enable_schema;
 commit;
end;

2. Create a resource. Connect to the ORDSTEST schema and execute the following
PL/SQL statements:

begin
ords.create_service(
 p_module_name => 'examples.employees' ,
 p_base_path => '/examples/employees/',
 p_pattern => '.' ,
 p_items_per_page => 7,
 p_source => 'select * from emp order by empno desc');
commit;
end;

The preceding code creates the /examples/employees/ resource, which you will
protect with a privilege in a later step.

You can verify the resource by executing following cURL command:

curl -i https://example.com/ords/ordstest/examples/employees/

The result should be similar to the following (edited for readability):

Content-Type: application/json
Transfer-Encoding: chunked

{
 "items":
 [

Chapter 3
Configuring Secure Access to RESTful Services

3-63

 {"empno":7934,"ename":"MILLER","job":"CLERK","mgr":
7782,"hiredate":"1982-01-23T00:00:00Z","sal":1300,"comm":null,"deptno":10},
 ...
],
 "hasMore":true,
 "limit":7,
 "offset":0,
 "count":7,
 "links":
 [
 {"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
 {"rel":"describedby","href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
 {"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
 {"rel":"next","href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
]
}

3. Create a privilege. While connected to the ORDSTEST schema, execute the
following PL/SQL statements:

begin
 ords.create_role('HR Administrator');

 ords.create_privilege(
 p_name => 'example.employees',
 p_role_name => 'HR Administrator',
 p_label => 'Employee Data',
 p_description => 'Provide access to employee HR data');
 commit;
end;

The preceding code creates a role and a privilege, which belong to the
ORDSTEST schema.

• The role name must be unique and must contain printable characters only.

• The privilege name must be unique and must conform to the syntax specified
by the OAuth 2.0 specification, section 3.3 for scope names.

• Because you will want to use this privilege with the three-legged authorization
code and implicit flows, you must provide a label and a description for the
privilege. The label and description are presented to the end user during the
approval phase of three-legged flows.

• The values should be plain text identifying the name and purpose of the
privilege.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGES view.

select id,name from user_ords_privileges where name = 'example.employees';

The result should be similar to the following:

ID
NAME

Chapter 3
Configuring Secure Access to RESTful Services

3-64

----- -----------------
10260 example.employees

The ID value will vary from database to database, but the NAME value should be
as shown.

4. Associate the privilege with resources. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
 ords.create_privilege_mapping(
 p_privilege_name => 'example.employees',
 p_pattern => '/examples/employees/*');
 commit;
end;

The preceding code associates the example.employees privilege with the resource
pattern /examples/employees/.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGE_MAPPINGS view.

select privilege_id, name, pattern from user_ords_privilege_mappings;

The result should be similar to the following:

PRIVILEGE_ID NAME PATTERN
------------ -------------------- ---------------------
10260 example.employees /examples/employees/*

The PRIVILEGE_ID value will vary from database to database, but the NAME and
PATTERN values should be as shown.

You can confirm that the /examples/employees/ resource is now protected by the
example.employees privilege by executing the following cURL command:

curl -i https://example.com/ords/ordstest/examples/employees/

The result should be similar to the following (reformatted for readability):

HTTP/1.1 401 Unauthorized
Content-Type: text/html
Transfer-Encoding: chunked

<!DOCTYPE html>
<html>
...
</html>

You can confirm that the protected resource can be accessed through first party
authentication, as follows.

a. Create an end user. Create a test user with the HR Administrator role,
required to access the examples.employees privilege using the file-based user
repository. Execute the following command at a command prompt

java -jar ords.war user "hr_admin" "HR Administrator"

When prompted for the password, enter and confirm it.

b. Sign in as the end user. Enter the following URL in a web browser:

https://example.com/ords/ordstest/examples/employees/

Chapter 3
Configuring Secure Access to RESTful Services

3-65

On the page indicating that access is denied, click the link to sign in.

Enter the credentials registered for the HR_ADMIN user, and click Sign In.

Confirm that the page redirects to https://example.com/ords/ordstest/
examples/employees/ and that the JSON document is displayed.

5. Register the OAuth client. While connected to the ORDSTEST schema, execute
the following PL/SQL statements:

begin
 oauth.create_client(
 p_name => 'Client Credentials Example',
 p_grant_type => 'client_credentials',
 p_privilege_names => 'example.employees',
 p_support_email => 'support@example.com');
 commit;
end;

The preceding code registers a client named Client Credentials Example, to
access the examples.employees privilege using the client credentials OAuth flow.

You can verify that the client was registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select client_id,client_secret from user_ords_clients where name = 'Client
Credentials Example';

The result should be similar to the following:

CLIENT_ID CLIENT_SECRET
-------------------------------- ------------------------
o_CZBVkEMN23tTB-IddQsQ.. 4BJXceufbmTki-vruYNLIg..

The CLIENT_ID and CLIENT_SECRET values represent the secret credentials for
the OAuth client. These values must be noted and kept secure. You can think of
them as the userid and password for the client application.

6. Grant the OAuth client a required role. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
 oauth.grant_client_role(
 'Client Credentials Example',
 'HR Administrator');
 commit;
end;

The preceding code registers a client named Client Credentials Example, to
access the examples.employees privilege using the client credentials OAuth flow.

You can verify that the client was granted the role by executing the following SQL
statement:

select * from user_ords_client_roles where client_name = 'Client Credentials
Example';

The result should be similar to the following:

 CLIENT_ID CLIENT_NAME ROLE_ID ROLE_NAME
---------- --------------------------- -------- ----------------------
 10286 Client Credentials Example 10222 HR Administrator

7. Obtain an OAuth access token using client credentials.

Chapter 3
Configuring Secure Access to RESTful Services

3-66

The OAuth protocol specifies the HTTP request that must be used to create an
access token using the client credentials flow[rfc6749-4.4.].

The request must be made to a well known URL, called the token endpoint. For
Oracle REST Data Services the path of the token endpoint is always oauth/token,
relative to the root path of the schema being accessed. The token endpoint for this
example is:

https://example.com/ords/ordstest/oauth/token

Execute the following cURL command:

curl -i --user clientId:clientSecret --data "grant_type=client_credentials"
https://example.com/ords/ordstest/oauth/token

In the preceding command, replace clientId with the CLIENT_ID value in
USER_ORDS_CLIENTS for Client Credentials Example, and replace
clientSecret with the CLIENT_SECRET value shown in USER_ORDS_CLIENTS
for Client Credentials Example. The output should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "access_token": "2YotnFZFEjr1zCsicMWpAA",
 "token_type": "bearer",
 "expires_in":3600
}

In the preceding output, the access token is of type bearer, and the value is
specified by the access_token field. This value will be different for every request.
The expires_in value indicates the number of seconds until the access token
expires; in this case the token will expire in one hour (3600 seconds).

8. Access a protected resource using the access token. Execute the following
cURL command:

curl -i -H"Authorization: Bearer accessToken" https://example.com/ords/ordstest/
examples/employees/

In the preceding command, replace accessToken with the value of the
access_token field shown in the preceding step. The output should be similar to
the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
 "items":
 [
 {"empno":7934,"ename":"MILLER","job":"CLERK","mgr":
7782,"hiredate":"1982-01-23T00:00:00Z","sal":1300,"comm":null,"deptno":10},
 ...
],
 "hasMore":true,
 "limit":7,
 "offset":0,
 "count":7,
 "links":
 [
 {"rel":"self","href":"https://example.com/ords/ordstest/examples/

Chapter 3
Configuring Secure Access to RESTful Services

3-67

employees/"},
 {"rel":"describedby","href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
 {"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
 {"rel":"next","href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
]
}

9. Register the client for authorization code. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
 oauth.create_client(
 p_name => 'Authorization Code Example',
 p_grant_type => 'authorization_code',
 p_owner => 'Example Inc.',
 p_description => 'Sample for demonstrating Authorization Code Flow',
 p_redirect_uri => 'http://example.org/auth/code/example/',
 p_support_email => 'support@example.org',
 p_support_uri => 'http://example.org/support',
 p_privilege_names => 'example.employees'
);
 commit;
end;

The preceding code registers a client named Authorization Code Example, to
access the examples.employees privilege using the authorization code OAuth flow.
For an actual application, a URI must be provided to redirect back to with the
authorization code, and a valid support email address must be supplied; however,
this example uses fictitious data and the sample example.org web service.

You can verify that the client is now registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select id, client_id, client_secret from user_ords_clients where name =
'Authorization Code Example';

The result should be similar to the following:

 ID CLIENT_ID CLIENT_SECRET
---------- -------------------------------- --------------------------------
 10060 IGHso4BRgrBC3Jwg0Vx_YQ.. GefAsWv8FJdMSB30Eg6lKw..

To grant access to the privilege, an end user must approve access. The
CLIENT_ID and CLIENT_SECRET values represent the secret credentials for the
OAuth client. These values must be noted and kept secure. You can think of them
as the userid and password for the client application.

10. Obtain an OAuth access token using an authorization code. This major step
involves several substeps. (You must have already created the HR_ADMIN end
user in a previous step.)

a. Obtain an OAuth authorization code.

The end user must be prompted (via a web page) to sign in and approve
access to the third party application. The third party application initiates this
process by directing the user to the OAuth Authorization Endpoint. For Oracle
REST Data Services, the path of the authorization endpoint is always oauth/
auth, relative to the root path of the schema being accessed. The token
endpoint for this example is:

Chapter 3
Configuring Secure Access to RESTful Services

3-68

https://example.com/ords/ordstest/oauth/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must
include certain parameters in the query string:

The response_type parameter must have a value of code.

The client_id parameter must contain the value of the applications client
identifier. This is the client_id value determined in a previous step.

The state parameter must contain a unique unguessable value. This value
serves two purposes: it provides a way for the client application to uniquely
identify each authorization request (and therefore associate any application
specific state with the value; think of the value as the application's own
session identifier); and it provides a means for the client application to protect
against Cross Site Request Forgery (CSRF) attacks. The state value will be
returned in the redirect URI at the end of the authorization process. The client
must confirm that the value belongs to an authorization request initiated by the
application. If the client cannot validate the state value, then it should assume
that the authorization request was initiated by an attacker and ignore the
redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://example.com/ords/ordstest/oauth/auth?
response_type=code&client_id=cliendId&state=uniqueRandomValue

In the preceding URI, replace clientId with the value of the CLIENT_ID
column that was noted previously, and replace uniqueRandromValue with a
unique unguessable value. The client application must remember this value
and verify it against the state parameter returned as part of the redirect at the
end of the authorization flow.

If the client_id is recognized, then a sign in prompt is displayed. Enter the
credentials of the HR_ADMIN end user, and click Sign In; and on the next
page click Approve to cause a redirect to redirect URI specified when the
client was registered. The redirect URI will include the authorization code in
the query string portion of the URI. It will also include the same state
parameter value that the client provided at the start of the flow. The redirect
URI will look like the following:

http://example.org/auth/code/example/?
code=D5doeTSIDgbxWiWkPl9UpA..&state=uniqueRandomValue

The client application must verify the value of the state parameter and then
note the value of the code parameter, which will be used in to obtain an
access token.

b. Obtain an OAuth access token.

After the third party application has an authorization code, it must exchange it
for an access token. The third party application's server must make a HTTPS
request to the Token Endpoint. You can mimic the server making this request
by using a cURL command as in the following example:

curl --user clientId:clientSecret --data
"grant_type=authorization_code&code=authorizationCode" https://example.com/
ords/ordstest/oauth/token

Chapter 3
Configuring Secure Access to RESTful Services

3-69

In the preceding command, replace clientId with the value of the CLIENT_ID
shown in USER_ORDS_CLIENTS for Authorization Code Example, replace
clientSecret with the value of the CLIENT_SECRET shown in
USER_ORDS_CLIENTS for Authorization Code Example, and replace
authorizationCode with the value of the authorization code noted in a
previous step (the value of the code parameter).

The result should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "access_token": "psIGSSEXSBQyib0hozNEdw..",
 "token_type": "bearer",
 "expires_in":3600,
 "refresh_token": "aRMg7AdWPuDvnieHucfV3g.."
}

In the preceding result, the access token is specified by the access_token
field, and a refresh token is specified by the refresh_token field. This refresh
token value can be used to extend the user session without requiring the user
to reauthorize the third party application.

c. Access a protected resource using the access token.

After the third party application has obtained an OAuth access token, it can
use that access token to access the protected /examples/employees/
resource:

curl -i -H"Authorization: Bearer accessToken" https://example.com/ords/
ordstest/examples/employees/

In the preceding command, accessToken with the value of the access_token
field shown in a previous step.

The result should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
 "items":
 [
 {"empno":7934,"ename":"MILLER","job":"CLERK","mgr":
7782,"hiredate":"1982-01-23T00:00:00Z","sal":1300,"comm":null,"deptno":10},
 ...
],
 "hasMore":true,
 "limit":7,
 "offset":0,
 "count":7,
 "links":
 [
 {"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
 {"rel":"describedby","href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
 {"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
 {"rel":"next","href":"https://example.com/ords/ordstest/examples/
employees/?offset=7"}

Chapter 3
Configuring Secure Access to RESTful Services

3-70

]
}

d. Extend the session using a refresh token.

At any time, the third party application can use the refresh token value to
generate a new access token with a new lifetime. This enables the third party
application to extend the user session at will. To do this, the third party
application's server must make an HTTPS request to the Token Endpoint. You
can mimic the server making this request by using a cURL command as in the
following example:

curl --user clientId:clientSecret --data
“grant_type=refresh_token&refresh_token=refreshToken" https://example.com/
ords/ordstest/oauth/token

In the preceding command, replace clientId with the value of the CLIENT_ID
shown in USER_ORDS_CLIENTS for Client Credentials Client, replace
clientSecret with the value of the CLIENT_SECRET shown in
USER_ORDS_CLIENTS for Client Credentials Client, and replace
refreshToken with the value of refresh_token obtained in a previous step.

The result should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "access_token": "psIGSSEXSBQyib0hozNEdw..",
 "token_type": "bearer",
 "refresh_token": "aRMg7AdWPuDvnieHucfV3g..",
 "expires_in": 3600
}

In the preceding result, the access token is specified by the access_token
field, a new refresh token is specified by the refresh_token field. This refresh
token value can be used to extend the user session without requiring the user
to reauthorize the third party application. (Note that the previous access token
and refresh token are now invalid; the new values must be used instead.)

11. Register the client for implicit flow. While connected to the ORDSTEST
schema, execute the following PL/SQL statements:

begin
 oauth.create_client(
 p_name => 'Implicit Example',
 p_grant_type => 'implicit',
 p_owner => 'Example Inc.',
 p_description => 'Sample for demonstrating Implicit Flow',
 p_redirect_uri => 'http://example.org/implicit/example/',
 p_support_email => 'support@example.org',
 p_support_uri => 'http://example.org/support',
 p_privilege_names => 'example.employees'
);
 commit;
end;

The preceding code registers a client named Implicit Example to access the
examples.employees privilege using the implicit OAuth flow. For an actual
application, a URI must be provided to redirect back to with the authorization code,

Chapter 3
Configuring Secure Access to RESTful Services

3-71

and a valid support email address must be supplied; however, this example uses
fictitious data and the sample example.org web service.

You can verify that the client is now registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select id, client_id, client_secret from user_ords_clients where name =
'Implicit Example';

The result should be similar to the following:

 ID CLIENT_ID CLIENT_SECRET
---------- -------------------------------- --------------------------------
 10062 7Qz--bNJpFpv8qsfNQpS1A..

To grant access to the privilege, an end user must approve access.

12. Obtain an OAuth access token using implicit flow. (You must have already
created the HR_ADMIN end user in a previous step.)

The end user must be prompted (via a web page) to sign in and approve access to
the third party application. The third party application initiates this process by
directing the user to the OAuth Authorization Endpoint. For Oracle REST Data
Services, the path of the authorization endpoint is always oauth/auth, relative to
the root path of the schema being accessed. The token endpoint for this example
is:

https://example.com/ords/ordstest/oauth/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must include
certain parameters in the query string:

The response_type parameter must have a value of token.

The client_id parameter must contain the value of the applications client
identifier. This is the client_id value determined in a previous step.

The state parameter must contain a unique unguessable value. This value serves
two purposes: it provides a way for the client application to uniquely identify each
authorization request (and therefore associate any application specific state with
the value; think of the value as the application's own session identifier); and it
provides a means for the client application to protect against Cross Site Request
Forgery (CSRF) attacks. The state value will be returned in the redirect URI at the
end of the authorization process. The client must confirm that the value belongs to
an authorization request initiated by the application. If the client cannot validate the
state value, then it should assume that the authorization request was initiated by
an attacker and ignore the redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://example.com/ords/ordstest/oauth/auth?
response_type=token&client_id=cliendId&state=uniqueRandomValue

In the preceding URI, replace clientId with the value of the CLIENT_ID column
that was noted previously, and replace uniqueRandromValue with a unique
unguessable value. The client application must remember this value and verify it
against the state parameter returned as part of the redirect at the end of the
authorization flow.

If the client_id is recognized, then a sign in prompt is displayed. Enter the
credentials of the HR_ADMIN end user, and click Sign In; and on the next page

Chapter 3
Configuring Secure Access to RESTful Services

3-72

click Approve to cause a redirect to redirect URI specified when the client was
registered. The redirect URI will include the access token in the query string
portion of the URI. It will also include the same state parameter value that the
client provided at the start of the flow. The redirect URI will look like the following:

http://example.org/auth/code/example/
#access_token=D5doeTSIDgbxWiWkPl9UpA..&type=bearer&expires_in=3600&state=uniqueRa
ndomValue

The client application must verify the value of the state parameter and then note
the value of the access token.

13. Access a protected resource using an access token. Execute the following
cURL command:

curl -i -H "Authorization: Bearer accessToken" https://example.com/ords/ordstest/
examples/employees/

In the preceding command, replace accessToken with the value of the
access_token field shown in the preceding step. The output should be similar to
the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
 "items":
 [
 {"empno":7934,"ename":"MILLER","job":"CLERK","mgr":
7782,"hiredate":"1982-01-23T00:00:00Z","sal":1300,"comm":null,"deptno":10},
 ...
],
 "hasMore":true,
 "limit":7,
 "offset":0,
 "count":7,
 "links":
 [
 {"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
 {"rel":"describedby","href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
 {"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
 {"rel":"next","href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
]
}

Related Topics

• Using the Oracle REST Data Services PL/SQL API

3.4 About Oracle REST Data Services User Roles
Oracle REST Data Services defines a small number of predefined user roles:

• RESTful Services - This is the default role associated with a protected RESTful
service.

Chapter 3
About Oracle REST Data Services User Roles

3-73

• OAuth2 Client Developer - Users who want to register OAuth 2.0 applications
must have this role.

• oracle.dbtools.autorest.any.schema - Users who want to access all AutoREST
services.

• SQL Developer - Users who want to use Oracle SQL Developer to develop
RESTful services must have this role.

• SODA Developer - This is the default role that is required to access the SODA
REST API. For more information about this role, see Oracle REST Data Services
SODA for REST Developer's Guide.

• Listener Administrator - Users who want to administrate an Oracle REST Data
Services instance through Oracle SQL Developer must have this role. Typically,
only users created through the java -jar ords.war user command will have this
role.

Because the Listener Administrator role enables a user to configure an Oracle
REST Data Services instance, and therefore has the capability to affect all
Application Express workspaces served through that instance, Application Express
users are not permitted to acquire the Listener Administrator role.

Topics:

• About Oracle Application Express Users and Oracle REST Data Services Roles

• Controlling RESTful Service Access with Roles

3.4.1 About Oracle Application Express Users and Oracle REST Data
Services Roles

By default, Oracle Application Express users do not have any of the Oracle REST
Data Services predefined user roles. This means that, by default, Application Express
users cannot:

• Invoke protected RESTful Services

• Register OAuth 2.0 applications

• Use Oracle SQL Developer to develop RESTful services.

This applies to all Application Express users, including Application Express developers
and administrators. It is therefore important to remember to follow the steps below to
add Application Express users to the appropriate user groups, so that they can
successfully perform the above actions.

Topics:

• Granting Application Express Users Oracle REST Data Services Roles

• Automatically Granting Application Express Users Oracle REST Data Services
Roles

3.4.1.1 Granting Application Express Users Oracle REST Data Services Roles
To give an Application Express User any of the roles above, the user must be added
to the equivalent Application Express user group. For example, to give the
RESTEASY_ADMIN user the RESTful Services role, follow these steps:

Chapter 3
About Oracle REST Data Services User Roles

3-74

1. Log in to the RESTEASY workspace as a RESTEASY_ADMIN.

2. Navigate to Administration and then Manage Users and Groups.

3. Click the Edit icon to the left of the RESTEASY_ADMIN user.

4. For User Groups, select RESTful Services.

5. Click Apply Changes.

3.4.1.2 Automatically Granting Application Express Users Oracle REST Data
Services Roles

Adding Application Express users to the appropriate user groups can be an easily
overlooked step, or can become a repetitive task if there are many users to be
managed.

To address these issues, you can configure Oracle REST Data Services to
automatically grant Application Express users a predefined set of RESTful Service
roles by modifying the defaults.xml configuration file.

In that file, Oracle REST Data Services defines three property settings to configure
roles:

• apex.security.user.roles - A comma separated list of roles to grant ordinary
users, that is, users who are not developers or administrators.

• apex.security.developer.roles - A comma separated list of roles to grant users
who have the Developer account privilege. Developers also inherit any roles
defined by the apex.security.user.roles setting.

• apex.security.administrator.roles - A comma separated list of roles to grant
users who have the Administrator account privilege. Administrators also inherit
any roles defined by the apex.security.user.roles and
apex.security.developer.roles settings.

For example, to automatically give all users the RESTful Services privilege and all
developers and administrators the OAuth2 Client Developer and SQL Developer
roles, add the following to the defaults.xml configuration file:

<!-- Grant all Application Express Users the ability
 to invoke protected RESTful Services -->
<entry key="apex.security.user.roles">RESTful Services</entry>
<!-- Grant Application Express Developers and Administrators the ability
 to register OAuth 2.0 applications and use Oracle SQL Developer
 to define RESTful Services -->
<entry key="apex.security.developer.roles">
 OAuth2 Client Developer, SQL Developer</entry>

Oracle REST Data Services must be restarted after you make any changes to the
defaults.xml configuration file.

3.4.2 Controlling RESTful Service Access with Roles
The built-in RESTful Service role is a useful default for identifying users permitted to
access protected RESTful services.

However, it will often also be necessary to define finer-grained roles to limit the set of
users who may access a specific RESTful service.

Chapter 3
About Oracle REST Data Services User Roles

3-75

Topics:

• About Defining RESTful Service Roles

• Associating Roles with RESTful Privileges

3.4.2.1 About Defining RESTful Service Roles
A RESTful Service role is an Application Express user group. To create a user group
to control access to the Gallery RESTful Service, follow these steps. (

1. Log in to the RESTEASY workspace as a workspace administrator.

2. Navigate to Administration and then Manage Users and Groups.

3. Click the Groups tab.

4. Click Create User Group.

5. For Name, enter Gallery Users.

6. Click Create Group.

3.4.2.2 Associating Roles with RESTful Privileges
After a user group has been created, it can be associated with a RESTful privilege. To
associate the Gallery Users role with the example.gallery privilege, follow these
steps.

1. Navigate to SQL Workshop and then RESTful Services.

2. In the Tasks section, click RESTful Service Privileges.

3. Click Gallery Access.

4. For Assigned Groups, select Gallery Users.

5. Click Apply Changes.

With these changes, users must have the Gallery Users role to be able to access the
Gallery RESTful service.

See Also:

The steps here use the image gallery application in Creating an Image
Gallery as an example.

Chapter 3
About Oracle REST Data Services User Roles

3-76

3.5 Authenticating Against WebLogic Server and GlassFish
User Repositories

Note:

GlassFish Server support will be desupported in a future release. Oracle
recommends that you use the following alternatives instead:

• Oracle WebLogic Server

• Oracle REST Data Services standalone mode

• Apache Tomcat

Oracle REST Data Services can use APIs provided by WebLogic Server and
GlassFish to verify credentials (username and password) and to retrieve the set of
groups and roles that the user is a member of.

This section walks through creating a user in the built-in user repositories provided by
WebLogic Server and GlassFish, and verifying the ability to authenticate against that
user.

This document does not describe how to integrate WebLogic Server and GlassFish
with the many popular user repository systems such as LDAP repositories, but Oracle
REST Data Services can authenticate against such repositories after WebLogic Server
or GlassFish has been correctly configured. See your application server
documentation for more information on what user repositories are supported by the
application server and how to configure access to these repositories.

Topics:

• Authenticating Against WebLogic Server

• Authenticating Against GlassFish

3.5.1 Authenticating Against WebLogic Server
Authenticating a user against WebLogic Server involves the following major steps:

1. Creating a WebLogic Server User

2. Verifying the WebLogic Server User

3.5.1.1 Creating a WebLogic Server User
To create a sample WebLogic Server user, follow these steps:

1. Start WebLogic Server if it is not already running

2. Access the WebLogic Server Administration Console (typically http://server:
7001/console), enter your credentials.

3. In the navigation tree on the left, click the Security Realms node

Chapter 3
Authenticating Against WebLogic Server and GlassFish User Repositories

3-77

4. If a security realm already exists, go to the next step. If a security realm does not
exist, create one as follows:

a. Click New.

b. For Name, enter Test-Realm, then click OK.

c. Click Test-Realm.

d. Click the Providers tab.

e. Click New, and enter the following information:

Name: test-authenticator

Type: DefaultAuthenticator

f. Restart WebLogic Server if you are warned that a restart is necessary.

g. Click Test-Realm.

5. Click the Users and Groups tab.

6. Click New, and enter the following information:

• Name: 3rdparty_dev2

• Password: Enter and confirm the desired password for this user.

7. Click OK.

8. Click the Groups tab.

9. Click New., and enter the following information:

• Name: OAuth2 Client Developer (case sensitive)

10. Click OK.

11. Click the Users tab.

12. Click the 3rdparty_dev2 user.

13. Click the Groups tab.

14. In the Chosen list, add OAuth2 Client Developer .

15. Click Save.

You have created a user named 3rdparty_dev2 and made it a member of a group
named OAuth2 Client Developer. This means the user will acquire the OAuth2
Client Developer role, and therefore will be authorized to register OAuth 2.0
applications.

Now verify that the user can be successfully authenticated.

3.5.1.2 Verifying the WebLogic Server User
To verify that the WebLogic Server user created can be successfully authenticated,
follow these steps:

1. In your browser, go to a URI in the following format:

https://server:port/ords/resteasy/ui/oauth2/clients/

2. Enter the credentials of the 3rdparty_dev2 user, and click Sign In.

Chapter 3
Authenticating Against WebLogic Server and GlassFish User Repositories

3-78

The OAuth 2.0 Client Registration page should be displayed, with no applications
listed. If this page is displayed, you have verified that authentication against the
WebLogic Server user repository is working.

However, if the sign-on prompt is displayed again with the message User is not
authorized to access resource, then you made mistake (probably misspelling the
Group List value).

3.5.2 Authenticating Against GlassFish
Authenticating a user against GlassFish involves the following major steps:

1. Creating a GlassFish User

2. Verifying the GlassFish User

3.5.2.1 Creating a GlassFish User
To create a sample GlassFish user, follow these steps:

1. Start GlassFish if it is not already running

2. Access the GlassFish Administration Console (typically http://server:4848); and
if you have configured a password, enter your credentials.

3. Navigate to the Security Configuration pages:

4. In the navigation tree on the left, expand the Configurations node, and then
expand the following nodes: server-config, Security, Realms, file.

5. Click Manage Users.

6. Click New, and enter the following information:

• Name: 3rdparty_dev2

• Group List: OAuth2 Client Developer (case sensitive)

• Password: Enter and confirm the desired password for this user.

7. Click OK.

You have created a user named 3rdparty_dev2 and made it a member of a group
named OAuth2 Client Developer. This means the user will acquire the OAuth2
Client Developer role, and therefore will be authorized to register OAuth 2.0
applications.

Now verify that the user can be successfully authenticated.

3.5.2.2 Verifying the GlassFish User
To verify that the WebLogic Server user created in Creating a GlassFish User can be
successfully authenticated, follow these steps:

1. In your browser, go to a URI in the following format:

https://server:port/ords/resteasy/ui/oauth2/clients/

2. Enter the credentials of the 3rdparty_dev2 user, and click Sign In.

Chapter 3
Authenticating Against WebLogic Server and GlassFish User Repositories

3-79

The OAuth 2.0 Client Registration page should be displayed, with no applications
listed. If this page is displayed, you have verified that authentication against the
WebLogic Server user repository is working.

However, if the sign-on prompt is displayed again with the message User is not
authorized to access resource, then you made mistake (probably misspelling the
Group List value).

3.6 Integrating with Existing Group/Role Models
The examples in other sections demonstrate configuring the built-in user repositories
of WebLogic Server and GlassFish. In these situations you have full control over how
user groups are named. If a user is a member of a group with the exact same (case
sensitive) name as a role, then the user is considered to have that role.

However, when integrating with existing user repositories, RESTful service developers
will often not have any control over the naming and organization of user groups in the
user repository. In these situations a mechanism is needed to map from existing
"physical" user groups defined in the user repository to the "logical" roles defined by
Oracle REST Data Services and/or RESTful Services.

In Oracle REST Data Services, this group to role mapping is performed by configuring
a configuration file named role-mapping.xml.

Topics:

• About role-mapping.xml

3.6.1 About role-mapping.xml
role-mapping.xml is a Java XML Properties file where each property key defines a
pattern that matches against a set of user groups, and each property value identifies
the roles that the matched user group should be mapped to. It must be located in the
same folder as the defaults.xml configuration file. The file must be manually created
and edited.

Consider this example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="webdevs">RESTful Services</entry>
</properties>

This role mapping is straightforward, stating that any user who is a member of a group
named: webdevs is given the role RESTful Services, meaning that all members of the
webdevs group can invoke RESTful Services.

A mapping can apply more than one role to a group. For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="webdevs">RESTful Services, SQL Developer</entry>
</properties>

Chapter 3
Integrating with Existing Group/Role Models

3-80

This rule gives members of the webdevs group both the RESTful Services and SQL
Developer roles.

Topics:

• Parameterizing Mapping Rules

• Dereferencing Parameters

• Indirect Mappings

3.6.1.1 Parameterizing Mapping Rules
Having to explicitly map from each group to each role may not be scalable if the
number of groups or roles is large. To address this concern, you can parameterize
rules. Consider this example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="{prefix}.webdevs">RESTful Services</entry>
</properties>

This example says that any group name that ends with .webdevs will be mapped to the
RESTful Services role. For example, a group named: HQ.webdevs would match this
rule, as would a group named: EAST.webdevs.

The syntax for specifying parameters in rules is the same as that used for URI
Templates; the parameter name is delimited by curly braces ({}).

3.6.1.2 Dereferencing Parameters
Any parameter defined in the group rule can also be dereferenced in the role rule.
Consider this example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="cn={userid},ou={group},dc=MyDomain,dc=com">{group}</entry>
</properties>

This example maps the organizational unit component of an LDAP distinguished name
to a role. It says that the organizational unit name maps directly to a role with same
name. Note that it refers to a {userid} parameter but never actually uses it; in effect, it
uses {userid} as a wildcard flag.

For example, the distinguished name cn=jsmith,ou=Developers,dc=MyDomain,dc=com
will be mapped to the logical role named Developers.

3.6.1.3 Indirect Mappings
To accomplish the desired role mapping, it may sometimes be necessary to apply
multiple intermediate rules. Consider this example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="cn={userid},ou={group},dc=example,dc=com">{group}</entry>
 <entry key="{prefix},ou={group},dc=acquired,dc=com">{group}</entry>

Chapter 3
Integrating with Existing Group/Role Models

3-81

 <entry key="Developers">RESTful Services, SQL Developer</entry>
</properties>

This example maps the organizational unit component of an LDAP distinguished name
to some roles. Complicating matters is the fact that users can come from two different
organizations, resulting in differing distinguishing name patterns.

• Users from example.com always have a single common name (CN) identifying
their user id, followed by the organizational unit (OU) and the domain name (DC).
For example: cn=jsmith,ou=Developers,dc=example,dc=com.

• Users from acquired.com have varying numbers of common name (CN) prefixes,
but the organizational unit is the field you are interested in. For example:
cn=ProductDev,cn=abell,ou=Engineering,dc=acquired,dc=com.

• Both organizations identify software engineers with ou=Developers.

You want to map engineers in both organizations to the RESTful Services and SQL
Developer roles.

• The first rule maps engineers in the example.com organization to the intermediate
Developers role.

• The second rule maps engineers in the acquired.com organization to the
intermediate Developers role.

• The final rule maps from the intermediate Developers role to the RESTful
Services and SQL Developer roles.

3.7 Using the Oracle REST Data Services PL/SQL API
Oracle REST Data Services has a PL/SQL API (application programming interface)
that you can use as an alternative to the SQL Developer graphical interface for many
operations. The available subprograms are included in the following PL/SQL
packages:

• Oracle REST Data Services, documented in Oracle REST Data Services PL/SQL
Package Reference

• OAUTH, documented in OAUTH PL/SQL Package Reference

To use the Oracle REST Data Services PL/SQL API, you must first:

• Install Oracle REST Data Services in the database that you will use to develop
RESTful services.

• Enable one or more database schemas for REST access.

Topics:

• Creating a RESTful Service Using the PL/SQL API

• Testing the RESTful Service

Related Topics

• Automatic Enabling of Schema Objects for REST Access (AutoREST)

Chapter 3
Using the Oracle REST Data Services PL/SQL API

3-82

3.7.1 Creating a RESTful Service Using the PL/SQL API
You can create a RESTful service by connecting to a REST-enabled schema and
using the ORDS.CREATE_SERVICE procedure.

The following example creates a simple "Hello-World"-type service:

begin
 ords.create_service(
 p_module_name => 'examples.routes' ,
 p_base_path => '/examples/routes/',
 p_pattern => 'greeting/:name',
 p_source => 'select ''Hello '' || :name || '' from '' ||
nvl(:whom,sys_context(''USERENV'',''CURRENT_USER'')) "greeting" from dual');
 commit;
end;
/

The preceding example does the following:

• Creates a resource module named examples.routes.

• Sets the base path (also known as the URI prefix) of the module to /examples/
routes/.

• Creates a resource template in the module, with the route pattern
greeting/:name.

• Creates a GET handler and sets its source as a SQL query that forms a short
greeting:

– GET is the default value for the p_method parameter, and it is used here
because that parameter was omitted in this example.

– COLLECTION_FEED is the default value for the p_method parameter, and it is
used here because that parameter was omitted in this example

• An optional parameter named whom is specified.

Related Topics

• ORDS.CREATE_SERVICE

3.7.2 Testing the RESTful Service
To test the RESTful service that you created, start Oracle REST Data Services if it is
not already started:

java -jar ords.war

Enter the URI of the service in a browser. The following example displays a "Hello"
greeting to Joe, by default from the current user because no whom parameter is
specified.:

http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe

In this example:

• Oracle REST Data Services is running on localhost and listening on port 8080.

• Oracle REST Data Services is deployed at the context-path /ords.

Chapter 3
Using the Oracle REST Data Services PL/SQL API

3-83

• The RESTful service was created by a database schema named ordstest.

• Because the URL does not include the optional whom parameter, the :whom bind
parameter is bound to the null value, which causes the query to use the value of
the current database user (sys_context(''USERENV'',''CURRENT_USER''))
instead.

If you have a JSON viewing extension installed in your browser, you will see a result
like the following:

{
 "items": [
 {
 "greeting": "Hello Joe from ORDSTEST"
 }
],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 1,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/"
 },
 {
 "rel": "describedby",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/routes/
greeting/"
 },
 {
 "rel": "first",
 "href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe"
 }
]
}

The next example is like the preceding one, except the optional parameter whom is
specified to indicate that the greeting is from Jane.

http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe?whom=Jane

This time, the result will look like the following:

{
 "items": [
 {
 "greeting": "Hello Joe from Jane"
 }
],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 1,
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/"
 },
 {
 "rel": "describedby",
 "href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/routes/

Chapter 3
Using the Oracle REST Data Services PL/SQL API

3-84

greeting/"
 },
 {
 "rel": "first",
 "href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe"
 }
]
}

Notice that in this result, what follows "from" is Jane and not ORDSTEST, because
the :whom bind parameter was bound to the Jane value.

3.8 Oracle REST Data Services Database Authentication
This section describes how to use the database authentication feature to provide basic
authentication for PL/SQL gateway calls.

Database authentication feature is similar to dynamic basic authentication provided by
mod-plsql where the user is prompted for the database credentials to authenticate and
authorize access to PL/SQL stored procedures.

3.8.1 Installing Sample Database Scripts
This section describes how to install the sample database scripts.

The unzipped Oracle REST Data Services installation kit contains the sample
database scripts that create a basic demo scenario for the database authentication.

The following code snippet shows how to install the sample database schema:

db_auth $ cd sql/
sql $ sql sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) ******
Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQL> @install <chosen-password>

Chapter 3
Oracle REST Data Services Database Authentication

3-85

Note:

• You need to adjust the SQLcl connect string and the user credentials to
suit your environment. For this demo scenario, SQLcl connects to the
database with service name orcl

• <chosen-password> is the password you assigned to EXAMPLE_USER1 and
EXAMPLE_USER2 database users. Make a note of this password value for
later reference.

The sample database schema creates the following database users:

• SAMPLE_PLSQL_APP: A database schema where the protected SAMPLE_PROC
will be installed.

• EXAMPLE_USER1: A database user granted with execute privilege on
SAMPLE_PLSQL_APP.SAMPLE_PROC procedure.

• EXAMPLE_USER2: A second database user granted with execute privilege on
SAMPLE_PLSQL_APP.SAMPLE_PROC procedure.

3.8.2 Enabling the Database Authentication
This section describes how to enable the database authentication feature.

To enable the database authentication feature, do one of the following:

• For fresh installation of Oracle REST Data Services, update the /u01/ords/
params/ords_params properties file with the following entry:

jdbc.auth.enabled=true

• For existing Oracle REST Data Services installation, run the following commands:

cd /u01/ords
$JAVA_HOME/bin/java -jar ords.war set-property jdbc.auth.enabled true

This setting is applicable to PL/SQL gateway pools (for example, apex.xml), it does
not apply to other pool types such as the ORDS_PUBLIC_USER pool (for example,
apex_pu.xml).

Note:

The jdbc.auth.enabled setting can be configured per database pool.
Alternatively, it can be configured in defaults.xml file so that it is enabled
for all pools.

Chapter 3
Oracle REST Data Services Database Authentication

3-86

Example 3-11 Setting Enabled for all Pools

This example code snippet shows how jdbc.auth.enabled setting is enabled for all
pools.

ords $ java -jar ords.war set-property jdbc.auth.enabled true
Mar 23, 2018 2:23:49 PM oracle.dbtools.rt.config.setup.SetProperty execute
INFO: Modified: /tmp/cd/ords/defaults.xml, setting: jdbc.auth.enabled =
true

After you update the configuration settings, restart the Oracle REST Data Services for
the changes to take effect.

3.8.3 Configuring the Request Validation Function
This section describes how to temporarily disable the request validation function.

If you want to invoke only a whitelisted set of stored procedures in the database
through the PL/SQL gateway, then you must configure Oracle REST Data Services to
use a request validation function (especially when you are using Oracle Application
Express).

The demo sample procedure used for testing the database authentication feature is
not whitelisted, so you must temporarily disable the request validation function.

To disable the request validation function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Open the defaults.xml file.

3. Look for security.requestValidationFunction entry and remove it from the file.

4. Save the file.

5. Restart Oracle REST Data Services, if it is already running.

Note:

In production environment, you must use a custom request validation
function that whitelists the stored procedures you want to access for your
application

3.8.4 Testing the Database Authenticated User
This section describes how to test if the database user is authenticated.

Assuming that Oracle REST Data Service is running in a standalone mode on local
host and on port 8080, access the following URL in your web browser:

http://localhost:8080/ords/sample_plsql_app.sample_proc

The browser prompts you to enter credentials. Enter example_user1 for user name
and enter the password value you noted while installing the sample schema.

Chapter 3
Oracle REST Data Services Database Authentication

3-87

The browser displays 'Hello EXAMPLE_USER1!' to demonstrate that the database
user was authenticated and the identity of the user was propagated to the database
through the OWA CGI variable named REMOTE_USER..

3.8.5 Uninstalling the Sample Database Schema
To uninstall the database schema, run the commands as shown in the following code
snippet:

db_auth $ cd sql/
sql $ sql sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) ******
Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production
SQL> @uninstall

3.9 Overview of Pre-hook Functions
This section explains how to use PL/SQL based pre-hook functions that are invoked
prior to an Oracle REST Data Services (ORDS) based REST call.

A pre-hook function is typically used to implement application logic that needs to be
applied across all REST endpoints of an application. For example a pre-hook enables
the following functionality:

• Configure application specific database session state: Configure the session
to support a VPD policy.

• Custom authentication and authorization: As the pre-hook is invoked prior to
dispatching the REST service, it is used to inspect the request headers and
determine the user who is making the request, and also find if that user is
authorized to make the request.

• Auditing or metrics gathering: To track information regarding the REST APIs
invoked.

Topics:

• Configuring the Pre-hook Function

• Using a Pre-hook Function

• Processing of a Request

• Identity Assertion of a User

• Aborting Processing of a Request

• Ensuring Pre-hook is Executable

• Exceptions Handling by Pre-hook Function

• Pre-hook Function Efficiency

Chapter 3
Overview of Pre-hook Functions

3-88

• Pre-Hook Examples

3.9.1 Configuring the Pre-hook Function
This section describes how to configure a pre-hook function.

The pre-hook function is configured using procedure.rest.preHook setting. The value
of this setting must be the name of a stored PL/SQL function.

3.9.2 Using a Pre-hook Function
This section explains how the pre-hook function is used.

A pre-hook must be a PL/SQL function with no arguments and must return a BOOLEAN
value. The function must be executable by the database user to whom the request is
mapped. For example, if the request is mapped to an ORDS enabled schema, then
that schema must be granted the execute privilege on the pre-hook function (or to
PUBLIC).

If the function returns true, then it indicates that the normal processing of the request
must continue. If the function returns false, then it indicates that further processing of
the request must be aborted.

ORDS invokes a pre-hook function in an OWA (Oracle Web Agent) that is a PL/SQL
Gateway Toolkit environment. This means that the function can introspect the request
headers and the OWA CGI environment variables, and use that information to drive its
logic. The function can also use the OWA PL/SQL APIs to generate a response for the
request (for example, in a case where the pre-hook function needs to abort further
processing of the request, and provide its own response).

3.9.3 Processing of a Request
The pre-hook function must return true if it determines that the processing of a
request must continue. In such cases, any OWA response produced by the pre-hook
function is ignored (except for cases as detailed in the section Identity Assertion of a
User), and the REST service is invoked as usual.

3.9.4 Identity Assertion of a User
This section describes how pre-hook function can make assertions about the identity
of the user.

When continuing processing, a pre-hook can make assertions about the identity and
the roles assigned to the user who is making the request. This information is used in
the processing of the REST service. A pre-hook function can determine this by setting
one or both of the following OWA response headers.

• X-ORDS-HOOK-USER: Identifies the user making the request, the value is bound to
the :current_user implicit parameter and the REMOTE_IDENT OWA CGI
environment variable.

• X-ORDS-HOOK-ROLES: Identifies the roles assigned to the user. This information is
used to determine the authorization of the user to access the REST service. If this
header is present then X-ORDS-HOOK-USER must also be present.

Chapter 3
Overview of Pre-hook Functions

3-89

Note:

X-ORDS-HOOK-USER and X-ORDS-HOOK-ROLES headers are not included in the
response of the REST service. These headers are only used internally by
ORDS to propagate the user identity and roles.

Using these response headers, a pre-hook can integrate with the role based
access control model of ORDS. This enables the application developer to
build rich integrations with third party authentication and access control
systems.

3.9.5 Aborting Processing of a Request
This section explains how the pre-hook function aborts the processing of a request.

If a pre-hook determines that the processing of the REST service should not continue,
then the function must return false value. This value indicates to ORDS that further
processing of the request must not be attempted.

If the pre-hook does not produce any OWA output, then ORDS generates a 403
Forbidden error response page. If the pre-hook produces any OWA response, then
ORDS returns the OWA output as the response. This enables the pre-hook function to
customize the response that client receives when processing of the REST service is
aborted.

3.9.6 Ensuring Pre-hook is Executable
If a schema cannot invoke a pre-hook function, then ORDS generates a 503 Service
Unavailable response for any request against that schema. Since a pre-hook has
been configured, it would not be safe for ORDS to continue processing the request
without invoking the pre-hook function. It is very important that the pre-hook function is
executable by all ORDS enabled schemas. If the pre-hook function is not executable,
then the REST services defined in those schemas will not be available.

3.9.7 Exceptions Handling by Pre-hook Function

When a pre-hook raises an error condition, for example, when a run-time error occurs,
a NO DATA FOUND exception is raised. In such cases, ORDS cannot proceed with
processing of the REST service as it would not be secure. ORDS inteprets any
exception raised by the pre-hook function as a signal that the request is forbidden and
generates a 403 Forbidden response, and does not proceed with invoking the REST
service. Therefore, if the pre-hook raises an unexpected exception, it forbids access to
that REST service. It is highly recommended that all pre-hook functions must have a
robust exception handling block so that any unexpected error conditions are handled
appropriately and do not make REST Services unavailable.

3.9.8 Pre-hook Function Efficiency
A pre-hook function is invoked for every REST service call. Therefore, the pre-hook
function must be designed to be efficient. If a pre-hook function is inefficient, then it
has a negative effect on the performance of the REST service call. Invoking the pre-

Chapter 3
Overview of Pre-hook Functions

3-90

hook involves at least one additional database round trip. It is critical that the ORDS
instance and the database are located close together so that the round-trip latency
overhead is minimized.

3.9.9 Pre-Hook Examples
This section provides some sample PL/SQL functions that demonstrate different ways
in which the pre-hook functionality can be leveraged.

Source code for the examples provided in the following sections is included in the
unzipped Oracle REST Data Services distribution archive examples/pre_hook/sql
sub-folder.

3.9.9.1 Installing the Examples
This section describes how to install the pre-hook examples.

To install the pre-hook examples, execute examples/pre_hook/sql/install.sql
script. The following code snippet shows how to install the examples using Oracle
SQLcl command line interface:

pre_hook $ cd examples/pre_hook/sql/
sql $ sql sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) ******
Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQL> @install <chosen-password>

• You need to adjust the SQLcl connect string and the user credentials to suit your
environment. For these demo scenarios, SQLcl connects to the database with
service name orcl.

• <chosen-password> is the password you assigned to the PRE_HOOK_TEST database
user. Make a note of this password value for later reference.

• The examples/pre_hook/sql/install.sql command creates the following two
databases schemas:

– The PRE_HOOK_DEFNS schema where the pre-hook function is defined along
with a database table named custom_auth_users, where user identities are
stored. This table is populated with a single user joe.bloggs@example.com,
whose password is the value assigned for <chosen-password>.

– The PRE_HOOK_TESTS schema where ORDS based REST services that are
used to demonstrate the pre-hooks are defined.

Chapter 3
Overview of Pre-hook Functions

3-91

3.9.9.1.1 Example: Denying all Access
The simplest pre-hook is one that unilaterally denies access to any REST Service.

To deny access to any REST service, the function must always return false as shown
in the following code snippet:

create or replace function deny_all_hook return boolean as
begin
 return false;
end;
/
grant execute on deny_all_hook to public;

Where:

• The deny_all_hook pre-hook function always returns false value.

• Execute privilege is granted to all users. So, any ORDS enabled schema can
invoke this function

Configuring ORDS

To enable deny_all_hook pre-hook function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Open the defaults.xml file and add:

<entry key="procedure.rest.preHook">pre_hook_defns.deny_all_hook</entry>

3. Save the file.

4. Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service which can be
accessed at the following URL (assuming ORDS is deployed on localhost and
listening on port 8080) :

http://localhost:8080/ords/pre_hook_tests/prehooks/user

Access the URL in a browser. You should get a response similar to the following:

403 Forbidden

This demonstrates that the deny_all_hook pre-hook function was invoked and it
prevented the access to the REST service by returning a false value.

Chapter 3
Overview of Pre-hook Functions

3-92

3.9.9.1.2 Example: Allowing All Access
Modify the source code of the deny_all_hook pre-hook function to allow access to all
REST service requests as shown in the following code snippet:

create or replace function deny_all_hook return boolean as
begin
 return true;
end;
/

Try it out

Access the following test URL in a browser:

http://localhost:8080/ords/pre_hook_tests/prehooks/user

The response should include JSON similar to the following code snippet:

{
 "authenticated_user": "no user authenticated"
}

Note:

The REST service executes because the pre-hook function authorized it.

Related Topics

• Identity Assertion of a User
This section describes how pre-hook function can make assertions about the
identity of the user.

3.9.9.1.3 Example: Asserting User Identity
The following code snippet demonstrates how the pre-hook function makes assertions
about the user identity and the roles they possess:

create or replace function identity_hook return boolean as
begin
 if custom_auth_api.authenticate_owa then
 custom_auth_api.assert_identity;
 return true;
 end if;
 custom_auth_api.prompt_for_basic_credentials('Test Custom Realm');
 return false;
end;

The pre-hook delegates the task of authenticating the user to the
custom_auth_api.authenticate_owa function. If the function indicates that the user is

Chapter 3
Overview of Pre-hook Functions

3-93

authenticated, then it invokes the custom_auth_api.assert_identity procedure to
propagate the user identity and roles to ORDS.

Configuring ORDS

To enable pre-hook function, perform the following steps:

1. Locate the folder where the Oracle REST Data Services configuration file is
stored.

2. Open the defaults.xml file and add:

<entry key="procedure.rest.preHook">pre_hook_defns.identity_hook</
entry></entry>

3. Save the file.

4. Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service that can be
accessed at the following URL (assuming ORDS is deployed on localhost and listening
on port 8080):

http://localhost:8080/ords/pre_hook_tests/prehooks/user

In a web browser access the preceding URL.

Note:

The first time you access the URL, the browser will prompt you to enter your
credentials. Enter the user name as joe.bloggs@example.com and for the
password, use the value you assigned for <chosen-password> when you
executed the install script. Click the link to sign in.

In response a JSON document is displayed with the JSON object in it.

{"authenticated_user":"joe.bloggs@example.com"}

3.9.9.2 Uninstalling the Examples
This section explains how to uninstall the examples.

The following code snippet shows how to uninstall the examples:

pre_hook $ cd sql/
sql $ sql sys as sysdba

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) ******
Connected to:

Chapter 3
Overview of Pre-hook Functions

3-94

Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production

SQL> @uninstall

Chapter 3
Overview of Pre-hook Functions

3-95

4
REST-Enabled SQL Service

The REST-Enabled SQL service is a HTTPS web service that provides access to the
Oracle Database SQL engine. You can POST SQL statements to the service. The
service then runs the SQL statements against Oracle Database and returns the result
to the client in a JSON format.

Statically defined RESTful services use predefined SQL statements that are useful
when you need a fixed and repeatable service. The REST- Enabled SQL service
enables you to define SQL statements dynamically and run them against the database
without predefined SQL statements. This makes your data more accessible over
REST.

Typical Use Case: Your Oracle Database is in the cloud and you want to make it
available through a REST API over HTTPS.

Predefined REST APIs provide common operations such as returning the results of
reports and providing an API for updating common tables in your database. There is a
need for client developers to run their own queries or queries that can only be written
at run time. In these cases, a REST- Enabled SQL service is useful.

Note:

If you have Oracle REST Data Services installed and if you do not have
SQL*Net (JDBC, OCI) to establish an network connection to Oracle
Database, then a REST-Enabled SQL service provides an easy mechanism
to query and run SQL, SQL*Plus, and SQLcl statements against the REST-
enabled Oracle Database schema.

Topics:

• REST-Enabled SQL Service Terminology

• Configuring the REST-Enabled SQL Service

• Using cURL with REST-Enabled SQL Service

• Getting Started with the REST-Enabled SQL Service

4.1 REST-Enabled SQL Service Terminology
This section introduces some common terms that are used throughout this document.

• REST- Enabled SQL service: A HTTPS web service that provides SQL access to
the database. SQL statements can be posted to the service, and the results are
returned in a JSON format to the client.

• HTTPS: Hyper Text Transfer Protocol Secure (HTTPS) is the secure version
of HTTP, the protocol over which data is sent between your browser and the
website to which you are connected. The ‘S’ stands for secure. It means that all

4-1

communications between your browser and Oracle REST Data Services are
encrypted.

• cURL: cURL is a command-line tool used to transfer data. It is free and open
source software that can be downloaded from the following location: curl_haxx.

• SQL*Net (or Net8): SQL*Net is the networking software of Oracle that enables
remote data access between programs and Oracle Database.

4.2 Configuring the REST-Enabled SQL Service
By default, the REST- Enabled SQL service is turned off. To configure REST- Enabled
SQL service settings, see Configuring REST-Enabled SQL Service Settings.

4.3 Using cURL with REST-Enabled SQL Service
This section explains how to use cURL commands to access the REST-Enabled SQL
service.

You can use the HTTPS POST method to access the REST-Enabled SQL service. To
access the REST-Enabled SQL service, you can use the command-line tool named
cURL. This powerful tool is available for most platforms, and enables you to connect
and control the data that you send to and receive from a REST-Enabled SQL service.

Example 4-1 Example cURL Command

Request: curl -i -X POST --user ORDSTEST:ordstest --data-binary "select
sysdate from dual" -H "Content-Type: application/sql" -k https://
localhost:8088/ords/ordstest/_/sql

Where:

• The-i option displays the HTTP headers returned by the server.

• The -k option enables cURL to proceed and operate even for server connections
that are otherwise considered to be insecure.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"query",
 "statementPos":{
 "startLine":1,
 "endLine":2
 },
 "statementText":"select sysdate from dual",
 "response":[

Chapter 4
Configuring the REST-Enabled SQL Service

4-2

https://curl.haxx.se/

],
 "result":0,
 "resultSet":{
 "metadata":[
 {
 "columnName":"SYSDATE",
 "jsonColumnName":"sysdate",
 "columnTypeName":"DATE",
 "precision":0,
 "scale":0,
 "isNullable":1
 }
],
 "items":[
 {
 "sysdate":"2017-07-21T08:06:44Z"
 }
],
 "hasMore":false,
 "limit":1500,
 "offset":0,
 "count":1
 }
 }
]
}

4.4 Getting Started with the REST-Enabled SQL Service
The REST- Enabled SQL service is provided only through HTTPS POST method.

Topics:

• REST-Enabling the Oracle Database Schema

• REST-Enabled SQL Authentication

• REST-Enabled SQL Endpoint

4.4.1 REST-Enabling the Oracle Database Schema
You must REST-enable the Oracle database schema on which you want to use the
REST- Enabled SQL service. To REST-enable the Oracle Database schema, you can
use SQL Developer or the PL/SQL API.

The following code snippet shows how to REST-enable the Oracle Database schema
ORDSTEST:

SQL> CONNECT ORDSTEST/*****;
Connected
SQL> exec ords.enable_schema;
anonymous block completed
SQL> commit;

Chapter 4
Getting Started with the REST-Enabled SQL Service

4-3

Commit complete.
SQL>

Related Topics

• Auto-Enabling Using the PL/SQL API

4.4.2 REST-Enabled SQL Authentication
This section explains how to authenticate the schema on which you want to use the
REST-Enabled SQL service.

Before using the REST-Enabled SQL service, you must authenticate using the SQL
Developer role.

The Following are the different types of authentications available:

• First Party Authentication (Basic Authentication): For this authentication,
create a user in Oracle REST Data Services with the SQL Developer role. This
Oracle REST Data Services user will be able to run SQL for any Oracle database
schema that is REST-enabled.

• Schema Authentication: For this authentication, use the Oracle Database
schema name in uppercase and the Oracle database schema password (for
example, HR and HRPassword). This type of user will be able to run SQL for the
specified schema. It will be given the SQL Developer role by Oracle REST Data
Services.

• OAuth 2 Client Credentials: For this authentication, perform the following steps
to grant the SQL Developer role to the client in Oracle REST Data Services:

1. Create a client using OAUTH.create_client.

2. Grant the SQL Developer role to the client.

3. Acquire the access token using the client_id and client_secret of the
client.

4. Specify the access token in subsequent REST-Enabled SQL requests.

4.4.3 REST-Enabled SQL Endpoint
This section shows the format or pattern used to access the REST- Enabled SQL
service.

If Oracle REST Data Services is running in a Java EE Application Server, then the
REST-Enabled SQL service is only accessible through HTTPS. If Oracle REST Data
Services is running in standalone mode, then Oracle REST Data Services can be
configured to use HTTPS. The examples in this document use this configuration.

The following example URL locates the REST-Enabled SQL service for the specified
schema alias:

Pattern: https://<HOST>/ords/<SchemaAlias>/_/sql

Example: https://host/ords/ordstest/_/sql

Where: The default port is 443

Chapter 4
Getting Started with the REST-Enabled SQL Service

4-4

Content Type and Payload Data Type Supported

The HTTPS POST request consists of the following:

• Header Content-Type

– application/sql: for SQL statements

– application/json: for JSON documents

• Payload data type

– SQL: SQL, PL/SQL, SQL*Plus, SQLcl statements

– JSON document: A JSON document with SQL statements and other options
such as bind variables

4.5 REST-Enabled SQL Service Examples
This section provides different HTTPS POST request examples that use Oracle REST
Data Services standalone setup with secure HTTPS access.

The payload data of the HTTPS POST request message can be in one of the following
formats:

• POST Requests Using application/sql Content-Type

• POST Requests Using application/json Content-Type

4.5.1 POST Requests Using application/sql Content-Type
For POST requests with Content-Type as application/sql , the payload is specified
using SQL, SQL*Plus, and SQLcl statements. The payload can be a single line
statement, multiple line statements, or a file that consists of multiline statements as
shown in the following examples:

• Using a Single SQL Statement

• Using Multiple SQL Statements

• Using a File with cURL

4.5.1.1 Using a Single SQL Statement
The following example uses Schema Authentication to run a single SQL statement
against the demo Oracle Database schema:

Request:

curl -i -X POST --user DEMO:demo --data-binary "select sysdate from dual"
-H "Content-Type: application/sql" -k https://localhost:8088/ords/
demo/_/sql
Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

Chapter 4
REST-Enabled SQL Service Examples

4-5

{
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"query",
 "statementPos":{
 "startLine":1,
 "endLine":2
 },
 "statementText":"select sysdate from dual",
 "response":[

],
 "result":0,
 "resultSet":{
 "metadata":[
 {
 "columnName":"SYSDATE",
 "jsonColumnName":"sysdate",
 "columnTypeName":"DATE",
 "precision":0,
 "scale":0,
 "isNullable":1
 }
],
 "items":[
 {
 "sysdate":"2017-07-21T08:06:44Z"
 }
],
 "hasMore":false,
 "limit":1500,
 "offset":0,
 "count":1
 }
 }
]
}

Where:

• DEMO is the Oracle Database schema name.

• demo is the Oracle Database schema password.

• select sysdate from dual is the SQL statement that will run in the DEMO Oracle
Database schema.

• Content-Type: application/sql is the content type. Only application/sql and
application/json are supported.

• https://localhost:8088/ords/demo/_/sql is the location of the REST- Enabled
SQL service for the demo Oracle Database schema.

Chapter 4
REST-Enabled SQL Service Examples

4-6

4.5.1.2 Using a File with cURL
For multiline SQL statements, using a file as payload data in requests is useful.

File: simple_query.sql

SELECT 10
FROM dual;

Request:

curl -i -X POST --user DEMO:demo --data-binary "@simple_query.sql" -H
"Content-Type: application/sql" -k https://localhost:8088/ords/demo/_/sql

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

{
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"query",
 "statementPos":{
 "startLine":1,
 "endLine":1
 },
 "statementText":"SELECT 10 FROM dual",
 "response":[

],
 "result":0,
 "resultSet":{
 "metadata":[
 {
 "columnName":"10",
 "jsonColumnName":"10",
 "columnTypeName":"NUMBER",
 "precision":0,
 "scale":-127,
 "isNullable":1
 }
],
 "items":[
 {
 "10":10
 }
],

Chapter 4
REST-Enabled SQL Service Examples

4-7

 "hasMore":false,
 "limit":1500,
 "offset":0,
 "count":1
 }
 }
]
}

4.5.1.3 Using Multiple SQL Statements
You can run one or more statements in each POST request. Statements are
separated similar to Oracle Database SQL*Plus script syntax, such as, end of line for
SQL*Plus statements, a semi colon for SQL statements, and forward slash for PL/SQL
statements.

File: script.sql:

CREATE TABLE T1 (col1 INT);
DESC T1
INSERT INTO T1 VALUES(1);
SELECT * FROM T1;
BEGIN
INSERT INTO T1 VALUES(2);
END;
/
SELECT * FROM T1;

Request:curl -i -X POST --user DEMO:demo --data-binary "@script.sql" -H
"Content-Type: application/sql" -k https://localhost:8088/ords/demo/_/sql

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

{
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"ddl",
 "statementPos":{
 "startLine":1,
 "endLine":1
 },
 "statementText":"CREATE TABLE T_EXAMPLE1 (col1 INT)",
 "response":[
 "\nTable T_EXAMPLE1 created.\n\n"
],

Chapter 4
REST-Enabled SQL Service Examples

4-8

 "result":0
 },
 {
 "statementId":2,
 "statementType":"sqlplus",
 "statementPos":{
 "startLine":2,
 "endLine":2
 },
 "statementText":"DESC T_EXAMPLE1",
 "response":[
 "Name Null\n Type \n---- ----- ---------- \nCOL1
NUMBER(38) \n"
],
 "result":0
 },
 {
 "statementId":3,
 "statementType":"dml",
 "statementPos":{
 "startLine":3,
 "endLine":3
 },
 "statementText":"INSERT INTO T_EXAMPLE1 VALUES(1)",
 "response":[
 "\n1 row inserted.\n\n"
],
 "result":1
 },
 {
 "statementId":4,
 "statementType":"query",
 "statementPos":{
 "startLine":4,
 "endLine":4
 },
 "statementText":"SELECT * FROM T_EXAMPLE1",
 "response":[

],
 "result":1,
 "resultSet":{
 "metadata":[
 {
 "columnName":"COL1",
 "jsonColumnName":"col1",
 "columnTypeName":"NUMBER",
 "precision":38,
 "scale":0,
 "isNullable":1
 }
],
 "items":[
 {
 "col1":1

Chapter 4
REST-Enabled SQL Service Examples

4-9

 }
],
 "hasMore":false,
 "limit":1500,
 "offset":0,
 " count":1
 }
 },
 {
 "statementId":5,
 "statementType":"plsql",
 "statementPos":{
 "startLine":5,
 "endLine":8
 },
 "statementText":"BEGIN\n INSERT INTO T_EXAMPLE1 VALUES(2);
\nEND;",
 "response":[
 "\nPL\/SQL procedure successfully completed.\n\n"
],
 "result":1
 },
 {
 "statementId":6,
 "statementType":"query",
 "statementPos":{
 "startLine":9,
 "endLine":9
 },
 "statementText":"SELECT * FROM T_EXAMPLE1",
 "response":[

],
 "result":1,
 "resultSet":{
 "metadata":[
 {
 "columnName":"COL1",
 "jsonColumnName":"col1",
 "columnTypeName":"NUMBER",
 "precision":38,
 "scale":0,
 "isNullable":1
 }
],
 "items":[
 {
 "col1":1
 },
 {
 "col1":2
 }
],
 "hasMore":false,
 "limit":1500,

Chapter 4
REST-Enabled SQL Service Examples

4-10

 "offset":0,
 "count":2
 }
 },
 {
 "statementId":7,
 "statementType":"ddl",
 "statementPos":{
 "startLine":10,
 "endLine":10
 },
 "statementText":"DROP TABLE T_EXAMPLE1",
 "response":[
 "\nTable T_EXAMPLE1 dropped.\n\n"
],
 "result":1
 }
]
}

4.5.2 POST Requests Using application/json Content-Type
Using a JSON document as the payload enables you to define more complex requests
as shown in the following sections:

• Using a File with cURL

• Specifying the Limit Value in a POST Request for Pagination

• Specifying the Offset Value in a POST Request for Pagination

• Defining Binds in a POST Request

4.5.2.1 Using a File with cURL
The following example posts a JSON document (within the simple_query.json file) to
the REST-Enabled SQL service.

File: simple_query.json

{ "statementText":"SELECT TO_DATE('01-01-1976','dd-mm-yyyy') FROM dual;"}

Request: curl -i -X POST --user DEMO:demo --data-binary
"@simple_query.json" -H "Content-Type: application/json" -k https://
localhost:8088/ords/demo/_/sql

Where:

• The statementText holds the SQL statement or statements.

• The Content-Type is application/json.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

Chapter 4
REST-Enabled SQL Service Examples

4-11

{
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"query",
 "statementPos":{
 "startLine":1,
 "endLine":1
 },
 "statementText":"SELECT TO_DATE('01-01-1976','dd-mm-yyyy')
FROM dual",
 "response":[
],
 "result":0,
 "resultSet":{
 "metadata":[
 {
 "columnName":"TO_DATE('01-01-1976','DD-MM-YYYY')",
 "jsonColumnName":"to_date('01-01-1976','dd-mm-
yyyy')",
 "columnTypeName":"DATE",
 "precision":0,
 "scale":0,
 "isNullable":1
 }
],
 "items":[
 {
 "to_date('01-01-1976','dd-mm-
yyyy')":"1976-01-01T00:00:00Z"
 }
],
 "hasMore":false,
 "limit":1500,
 "offset":0,
 "count":1
 }
 }
]
}

4.5.2.2 Specifying the Limit Value in a POST Request for Pagination
You can specify the limit value in a POST JSON request for the pagination of a large
result set returned from a query.

File: limit.json

{
 "statementText": "
 WITH data(r) AS (

Chapter 4
REST-Enabled SQL Service Examples

4-12

 SELECT 1 r FROM dual
 UNION ALL
 SELECT r+1 FROM data WHERE r < 100
)
 SELECT r FROM data;",
 "limit": 5
}

Request: curl -i -X POST --user DEMO:demo --data-binary "@limit.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/_/sql

Where: The limit is the maximum number of rows returned from a query.

Note:

The maximum number of rows returned from a query is based on the
misc.pagination.maxRows value set in default.xml file.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
 {
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"query",
 "statementPos":{
 "startLine":1,
 "endLine":1
 },
 "statementText":" WITH data(r) AS (SELECT 1 r FROM dual UNION
ALL SELECT r+1 FROM data WHERE r < 100) SELECT r FROM data",
 "response":[
],
 "result":0,
 "resultSet":{
 "metadata":[
 {
 "columnName":"R",
 "jsonColumnName":"r",
 "columnTypeName":"NUMBER",
 "precision":0,
 "scale":-127,
 "isNullable":1
 }
],
 "items":[

Chapter 4
REST-Enabled SQL Service Examples

4-13

 {
 "r":1
 },
 {
 "r":2
 },
 {
 "r":3
 },
 {
 "r":4
 },
 {
 "r":5
 }
],
 "hasMore":true,
 "limit":5,
 "offset":0,
 "count":5
 }
 }
]
}

Related Topics

• Configuring the Maximum Number of Rows Returned from a Query

4.5.2.3 Specifying the Offset Value in a POST Request for Pagination
You can specify the offset value in a POST JSON request. This value specifies the
first row that must be returned and is used for pagination of the result set returned
from a query.

File: offset_limit.json

{
 "statementText": "
 WITH data(r) AS (
 SELECT 1 r FROM dual
 UNION ALL
 SELECT r+1 FROM data WHERE r < 100
)
 SELECT r FROM data;",
 "offset": 25,
 "limit": 5
}

Request: curl -i -X POST --user DEMO:demo --data-binary
"@offset_limit.json" -H "Content-Type: application/json" -k https://
localhost:8088/ords/demo/_/sql

Chapter 4
REST-Enabled SQL Service Examples

4-14

Where: offset is the first row to be returned in the result set. Typically, this is used to
provide the pagination for a large result set that returns the next page of rows in the
result set.

Note:

Each request made to the REST-Enabled SQL service is performed in its
own transaction, which means that you cannot ensure that the rows returned
will match the previous request. To avoid these risks, queries that need
pagination should use the ORDER BY clause on a primary key.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
 {
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"query",
 "statementPos":{
 "startLine":1,
 "endLine":1
 },
 "statementText":" WITH data(r) AS (SELECT 1 r FROM dual UNION
ALL SELECT r+1 FROM data WHERE r < 100) SELECT r FROM data",
 "response":[
],
 "result":0,
 "resultSet":{
 "metadata":[
 {
 "columnName":"R",
 "jsonColumnName":"r",
 "columnTypeName":"NUMBER",
 "precision":0,
 "scale":-127,
 "isNullable":1
 }
],
 "items":[
 {
 "r":26
 },
 {
 "r":27
 },
 {

Chapter 4
REST-Enabled SQL Service Examples

4-15

 "r":28
 },
 {
 "r":29
 }
 {
 "r":30
 }
],
 "hasMore":true,
 "limit":5,
 "offset":25,
 "count":5
 }
 }
]
}

4.5.2.4 Defining Binds in a POST Request
You can define binds in JSON format. This functionality is useful when calling
procedures and functions that use binds as the parameters.

Example 4-2 Binds in POST Request

File: binds.json

{
 "statementText": "CREATE PROCEDURE TEST_OUT_PARAMETER (V_PARAM_IN INT IN,
V_PARAM_OUT INT OUT) AS BEGIN V_PARAM_OUT := V_PARAM_IN + 10; END;
/
EXEC TEST_OUT_PARAMETER(:var1, :var2)",
 "binds":[
 {"name":"var1","data_type":"NUMBER","value":10},
 {"name":"var2","data_type":"NUMBER","mode":"out"}
]
}

Request: curl -i -X POST --user DEMO:demo --data-binary "@binds.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/_/sql

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
 {
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,

Chapter 4
REST-Enabled SQL Service Examples

4-16

 "statementType":"plsql",
 "statementPos":{
 "startLine":1,
 "endLine":2
 },
 "statementText":"CREATE PROCEDURE TEST_OUT_PARAMETER
(V_PARAM_IN IN INT, V_PARAM_OUT OUT INT) AS BEGIN V_PARAM_OUT :=
V_PARAM_IN + 10; END;",
 "response":[
 "\nProcedure TEST_OUT_PARAMETER compiled\n\n"
],
 "result":0,
 "binds":[
 {
 "name":"var1",
 "data_type":"NUMBER",
 "value":10
 },
 {
 "name":"var2",
 "data_type":"NUMBER",
 "mode":"out",
 "result":null
 }
]
 },
 {
 "statementId":2,
 "statementType":"sqlplus",
 "statementPos":{
 "startLine":3,
 "endLine":3
 },
 "statementText":"EXEC TEST_OUT_PARAMETER(:var1, :var2)",
 "response":[
 "\nPL\/SQL procedure successfully completed.\n\n"
],
 "result":0,
 "binds":[
 {
 "name":"var1",
 "data_type":"NUMBER",
 "value":10
 },
 {
 "name":"var2",
 "data_type":"NUMBER",
 "mode":"out",
 "result":20
 }
]
 }
]
}

Chapter 4
REST-Enabled SQL Service Examples

4-17

Example 4-3 Complex Bind in POST Request

Filecomplex_bind_example.json

{
 "statementText":"
declare
 type t is table of number index by binary_integer;
 l_in t := :IN;
 l_out t;
 begin
 for i in 1..l_in.count loop
 l_out(i) := l_in(i) * 2;
 end loop;
 :L_OUT := l_out;
 end;
",
 "binds":[
 {
 "name":"IN",
 "data_type":"PL/SQL TABLE",
 "type_name":"",
 "type_subname":"",
 "type_components":[
 {
 "data_type":"NUMBER"
 }
],
 "value":[
 2,
 4,
 7
]
 },
 {
 "name":"L_OUT",
 "data_type":"PL/SQL TABLE",
 "type_name":"",
 "type_subname":"",
 "type_components":[
 {
 "data_type":"NUMBER"
 }
],
 "mode":"out"
 }
]
}

Request: curl -i -X POST --user DEMO:demo --data-binary
"@complex_bind_example.json" -H "Content-Type: application/json" -k
https://localhost:8088/ords/demo/_/sql

Chapter 4
REST-Enabled SQL Service Examples

4-18

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"plsql",
 "statementPos":{
 "startLine":2,
 "endLine":12
 },
 "statementText":"declare \n type t is table of number index by
binary_integer; \n l_in t := :IN; \n l_out t; \n begin \n for
i in 1..l_in.count loop \n l_out(i) := l_in(i) * 2; \n end loop;
\n :L_OUT := l_out; \n end;",
 "response":[
],
 "result":1,
 "binds":[
 {
 "name":"IN",
 "data_type":"PL/SQL TABLE",
 "type_components":[
 {
 "data_type":"NUMBER"
 }
],
 "type_name":"",
 "type_subname":"",
 "value":[
 2,
 4,
 7
]
 },
 {
 "name":"L_OUT",
 "data_type":"PL/SQL TABLE",
 "mode":"out",
 "type_components":[
 {
 "data_type":"NUMBER"
 }
],
 "type_name":"",
 "type_subname":"",
 "result":[
 4,

Chapter 4
REST-Enabled SQL Service Examples

4-19

 8,
 14
]
 }
]
 }
]
}

4.5.2.5 Specifying Batch Statements in a POST Request
This section shows the examples with batch statements and batch bind values in a
POST request.

Example 4-4 Batch statements

File: batch_example.json

{
 "statementText":[
 "insert into adhoc_table_simple values(1)",
 "insert into adhoc_table_simple values(2)",
 "delete from adhoc_table_simple"
]
}

Request :curl -i -X POST --user DEMO:demo --data-binary
"@batch_example.json" -H "Content-Type: application/json" -k https://
localhost:8088/ords/demo/_/sql

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"dml",
 "statementPos":{
 "startLine":0,
 "endLine":0
 },
 "statementText":[
 "insert into adhoc_table_simple values(1)",
 "insert into adhoc_table_simple values(2)",
 "delete from adhoc_table_simple"

Chapter 4
REST-Enabled SQL Service Examples

4-20

],
 "response":[
 "\n1 row inserted.\n\n",
 "\n1 row inserted.\n\n",
 "\n2 rows inserted.\n\n"
],
 "result":[
 1,
 1,
 2
]
 }
]
}

Example 4-5 Batch bind values

File: batch_bind_example.json

{
 "statementText":"INSERT INTO ADHOC_TABLE_DATE VALUES(?,?)",

 "binds":[
 {
 "index":1,
 "data_type":"NUMBER",
 "batch":true,
 "value":[
 3,
 6,
 9,
 13,
 17
]
 },
 {
 "index":2,
 "data_type":"DATE",
 "batch":true,
 "value":[
 "2017-02-21T06:12:20Z",
 "2017-02-21T06:12:20Z",
 "2017-02-21T06:12:20Z",
 "2017-02-21T06:12:20Z",
 "2017-02-21T06:12:20Z"
]
 }
]
}

Request: curl -i -X POST --user DEMO:demo --data-binary
"@batch_bind_example.json" -H "Content-Type: application/json" -k https://
localhost:8088/ords/demo/_/sql

Chapter 4
REST-Enabled SQL Service Examples

4-21

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
 "env":{
 "defaultTimeZone":"Europe/London"
 },
 "items":[
 {
 "statementId":1,
 "statementType":"dml",
 "statementPos":{
 "startLine":1,
 "endLine":2
 },
 "statementText":"INSERT INTO ADHOC_TABLE_DATE VALUES(?,?)",
 "response":[
 "\n1 row inserted.\n\n",
 "\n1 row inserted.\n\n",
 "\n1 row inserted.\n\n",
 "\n1 row inserted.\n\n",
 "\n1 row inserted.\n\n"
],
 "result":[
 1,
 1,
 1,
 1,
 1
],
 "binds":[
 {
 "index":1,
 "data_type":"NUMBER",
 "batch":true,
 "value":[
 3,
 6,
 9,
 13,
 17
]
 },
 {
 "index":2,
 "data_type":"DATE",
 "batch":true,
 "value":[
 "2017-02-21T06:12:20Z",
 "2017-02-21T06:12:20Z",
 "2017-02-21T06:12:20Z",
 "2017-02-21T06:12:20Z",

Chapter 4
REST-Enabled SQL Service Examples

4-22

 "2017-02-21T06:12:20Z"
]
 }
]
 }
]
}

4.5.3 Example POST Request with DATE and TIMESTAMP Format

Example 4-6 Oracle REST Data services Time Zone Set as Europe/London

Oracle Database DATE and TIMESTAMP data types do not have a time zone
associated with them. The DATE and TIMESTAMP values are associated with the
time zone of the application. Oracle REST Data Services and the REST- Enabled SQL
service return values in a JSON format. The standard for JSON is to return date and
timestamp values using the UTC Zulu format. Oracle REST Data Services and the
REST- Enabled SQL service return Oracle Database DATE and TIMESTAMP values
in the Zulu format using the time zone in which Oracle REST Data Services is running.

Oracle recommends running Oracle REST Data Services using the UTC time zone to
make this process easier.

File: date.json

{
 "statementText":"SELECT TO_DATE('2016-01-01 10:00:03','yyyy-mm-dd
hh24:mi:ss') winter, TO_DATE('2016-07-01 10:00:03','yyyy-mm-dd
hh24:mi:ss') summer FROM dual;"
}

Request: curl -i -X POST --user DEMO:demo --data-binary "@date.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/_/sql

Response:

Note:

In this example, both DATE values are specified as 10 a.m. The "summer"
value is returned as 9 a.m. Zulu time. This is due to British Summer Time.

HTTP/1.1 200 OK
Date: Wed, 26 Jul 2017 14:59:27 GMT
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
Server: Jetty(9.2.21.v20170120)
{
 "env":{
 "defaultTimeZone":"Europe/London"

Chapter 4
REST-Enabled SQL Service Examples

4-23

 },
 "items":[
 {
 "statementId":1,
 "statementType":"query",
 "statementPos":{
 "startLine":1,
 "endLine":1
 },
 "statementText":"SELECT TO_DATE('2016-01-01 10:00:03','yyyy-mm-
dd hh24:mi:ss') winter, TO_DATE('2016-07-01 10:00:03','yyyy-mm-dd
hh24:mi:ss') summer FROM dual",
 "response":[
],
 "result":0,
 "resultSet":{
 "metadata":[
 {
 "columnName":"WINTER",
 "jsonColumnName":"winter",
 "columnTypeName":"DATE",
 "precision":0,
 "scale":0,
 "isNullable":1
 },
 {
 "columnName":"SUMMER",
 "jsonColumnName":"summer",
 "columnTypeName":"DATE",
 "precision":0,
 "scale":0,
 "isNullable":1
 }
],
 "items":[
 {
 "winter":"2016-01-01T10:00:03Z",
 "summer":"2016-07-01T09:00:03Z"
 }
],
 "hasMore":false,
 "limit":1500,
 "offset":0,
 "count":1
 }
 }
]
}

Chapter 4
REST-Enabled SQL Service Examples

4-24

4.5.4 Data Types and Formats Supported
The following code snippet shows the different data types and the formats supported:

{

"statementText":"SELECT ?,?
,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,? FROM dual",
 "binds":[
 {
 "index":1,
 "data_type":"NUMBER",
 "value":1233
 },
 {
 "index":2,
 "data_type":"NUMERIC",
 "value":123
 },
 {
 "index":3,
 "data_type":"DECIMAL",
 "value":123
 },
 {
 "index":4,
 "data_type":"DEC",
 "value":123
 },
 {
 "index":5,
 "data_type":"NUMBER",
 "value":123
 },
 {
 "index":6,
 "data_type":"INTEGER",
 "value":123
 },
 {
 "index":7,
 "data_type":"INT",
 "value":123
 },
 {
 "index":8,
 "data_type":"SMALLINT",
 "value":123
 },
 {
 "index":9,
 "data_type":"FLOAT",
 "value":123

Chapter 4
REST-Enabled SQL Service Examples

4-25

 },
 {
 "index":10,
 "data_type":"DOUBLE PRECISION",
 "value":123
 },
 {
 "index":11,
 "data_type":"REAL",
 "value":123
 },
 {
 "index":12,
 "data_type":"BINARY_FLOAT",
 "value":123
 },
 {
 "index":13,
 "data_type":"BINARY_DOUBLE",
 "value":123
 },
 {
 "index":14,
 "data_type":"CHAR",
 "value":"abc"
 },
 {
 "index":15,
 "data_type":"CHARACTER",
 "value":"abc"
 },
 {
 "index":16,
 "data_type":"VARCHAR",
 "value":"abc"
 },
 {
 "index":17,
 "data_type":"VARCHAR2",
 "value":"abc"
 },
 {
 "index":18,
 "data_type":"CHAR VARYING",
 "value":"abc"
 },
 {
 "index":19,
 "data_type":"CHARACTER VARYING",
 "value":"abc"
 },
 {
 "index":20,
 "data_type":"NCHAR",
 "value":"abc"

Chapter 4
REST-Enabled SQL Service Examples

4-26

 },
 {
 "index":21,
 "data_type":"NATIONAL CHAR",
 "value":"abc"
 },
 {
 "index":22,
 "data_type":"NATIONAL CHARACTER",
 "value":"abc"
 },
 {
 "index":23,
 "data_type":"NVARCHAR",
 "value":"abc"
 },
 {
 "index":24,
 "data_type":"NVARCHAR2",
 "value":"abc"
 },
 {
 "index":25,
 "data_type":"NCHAR VARYING",
 "value":"abc"
 },
 {
 "index":26,
 "data_type":"NATIONAL CHAR VARYING",
 "value":"abc"
 },
 {
 "index":27,
 "data_type":"NATIONAL CHARACTER VARYING",
 "value":"abc"
 },
 {
 "index":28,
 "data_type":"DATE",
 "value":"01-Jan-2016"
 },
 {
 "index":29,
 "data_type":"TIMESTAMP",
 "value":"1976-02-01T00:00:00Z"
 },
 {
 "index":30,
 "data_type":"TIMESTAMP",
 "value":"1976-02-01T00:00:00Z"
 },
 {
 "index":31,
 "data_type":"TIMESTAMP WITH LOCAL TIME ZONE",
 "value":"1976-02-01T00:00:00Z"

Chapter 4
REST-Enabled SQL Service Examples

4-27

 },
 {
 "index":32,
 "data_type":"TIMESTAMP WITH TIME ZONE",
 "value":"1976-02-01T00:00:00Z"
 },
 {
 "index":33,
 "data_type":"INTERVALYM",
 "value":"P10Y10M"
 },
 {
 "index":34,
 "data_type":"INTERVAL YEAR TO MONTH",
 "value":"P10Y10M"
 },
 {
 "index":35,
 "data_type":"INTERVAL YEAR(2) TO MONTH",
 "value":"P10Y10M"
 },
 {
 "index":36,
 "data_type":"INTERVALDS",
 "value":"P11DT10H10M10S"
 },
 {
 "index":37,
 "data_type":"INTERVAL DAY TO SECOND",
 "value":"P11DT10H10M10S"
 },
 {
 "index":38,
 "data_type":"INTERVAL DAY(2) TO SECOND(6)",
 "value":"P11DT10H10M10S"
 },
 {
 "index":39,
 "data_type":"ROWID",
 "value":1
 },
 {
 "index":40,
 "data_type":"RAW",
 "value":"AB"
 },
 {
 "index":41,
 "data_type":"LONG RAW",
 "value":"AB"
 },
 {
 "index":42,
 "data_type":"CLOB",
 "value":"clobvalue"

Chapter 4
REST-Enabled SQL Service Examples

4-28

 },
 {
 "index":43,
 "data_type":"NCLOB",
 "value":"clobvalue"
 },
 {
 "index":45,
 "data_type":"LONG",
 "value":"A"
 }
]

}

4.6 REST-Enabled SQL Request and Response
Specifications

The following sections provide REST-Enabled SQL request and response
specifications:

• Request Specification

• Response Specification

4.6.1 Request Specification

Request Specification for application/sql

The body of the request is in plain UTF8 text. Statements can be separated by their
usual SQL*Plus terminator.

Specification for application/json

JSONPath Typ
e

Description Example Default
Value

Possible Values

$.statementTex
t

Strin
g

Specifies the SQL
statements to
execute.

"select 1
from dual"

Not
applicable

Not applicable

$.statementTex
t

Arra
y

Specifies batch
DML statements
using an array.
One DML
statement is
specified per string
in an array.

["insert
into test1
values(1)",
"update
test1 set
col1=2"]

Not
applicable

Not applicable

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-29

JSONPath Typ
e

Description Example Default
Value

Possible Values

$.offset Num
ber

Specifies the
number of rows to
offset the query
result. This is used
for pagination of
the result set
returned from a
query.

25 0 Between 0 to
misc.pagination
.maxRows.

$.limit Num
ber

Specifies the
maximum number
of rows returned
from a query.

Values greater
than the value of
the
misc.paginatio
n.maxRows
property, specified
in the
default.xml, is
ignored.

500 misc.pag
ination.
maxRows

Between 0 to
misc.pagination
.maxRows.

$.binds Arra
y

Specifies an array
of objects
specifying the bind
information.

"binds":
[{ "name":
"mybind1",
"data_type"
:"NUMBER",
"mode":"out
" },
{ "name":"m
ybind2",
"data_type"
:"NUMBER",
"value":
7 }]

Not
applicable

Not applicable

$.binds[*].nam
e

Strin
g

Specifies the
name of the bind,
when you are
using named
notation.

"mybind" Not
applicable

Not applicable

$.binds[*].ind
ex

Num
ber

Specifies the index
of bind, when you
are using
positional notation.

1 Not
applicable

Between 1 to n

$.binds[*].dat
a_type

Strin
g

Specifies Oracle
data type of the
bind.

"NUMBER" Not
applicable

For more
information, refer to
Oracle Built-in
Types

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-30

JSONPath Typ
e

Description Example Default
Value

Possible Values

$.binds[*].val
ue

Any
valu
e

Specifies the value
of the bind.

"value to
insert"

null Can be one of the
following data-
types:
• Number
• String
• Array
For more
information, refer to
Oracle Built-in
Types

$.binds[*].mod
e

Strin
g

Specifies the
mode in which the
bind is used.

"out" "in" ["in" ,
"inout",
"out"]

$.binds[*].bat
ch

Bool
ean

Specifies whether
or not you want to
perform a batch
bind. If you want to
perform a batch
bind, then set the
value to true.

If the value is set
to true,
then $binds[*]
must consist of an
array of values.

true false [true, false]

$.binds[*].typ
e_name

Strin
g

Required when
you are
using $binds[*].
data_type =
"PL/SQL TABLE"

Currently, only an
empty string is
accepted as the
value.

"" Not
applicable

Not applicable

$.binds[*].typ
e_subname

Strin
g

Required when
you are
using $binds[*].
data_type =
"PL/SQL TABLE"

Currently, only an
empty string is
accepted as the
value.

"" Not
applicable

Not applicable

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-31

JSONPath Typ
e

Description Example Default
Value

Possible Values

$.binds[*].typ
e_components

Arra
y

Specifies an array
of data types in
the PL/SQL
TABLE

Required when
you are
using $binds[*].
data_type =
"PL/SQL TABLE"

[{"data_typ
e":"NUMBER"
}]

Not
applicable

Not applicable

$.binds[*].typ
e_components[*
].data_type

Strin
g

Specifies Oracle
data type of a
column in the
PL/SQL TABLE.

Required when
you are
using $binds[*].
data_type =
"PL/SQL TABLE"

"NUMBER" Not
applicable

For more
information, refer to
Oracle Built-in
Types

4.6.2 Response Specification

JSONPath Data
type

Description Example
Values

Possible values

$.env Object Specifies the
information about
the Oracle REST
Data Services
environment.

Not
applicable

Not applicable

$.env.defaultTimeZone String Specifies the
timezone in which
Oracle REST Data
Services server is
running on.

"Europe/
London"

Not applicable

$.items Array Specifies that there
is one item for each
statement
executed.

Not
applicable

Not applicable

$.items[*].statementI
d

Number Specifies the
sequence number
of the statement.

1
Not applicable

$.items[*].statementT
ype

String Specifies the type
of statement.

"query" ["query" , "dml",
"ddl", "plsql" ,
"sqlplus" , "ignore",
"transaction-
control", "session-
control", "system-
control", "jdbc",
"other"]

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-32

JSONPath Data
type

Description Example
Values

Possible values

$.items[*].statementP
os

Object Specifies
information about
the position of a
specified
statement.

Not
applicable

Not applicable

$.items[*].statementP
os.startLine

Number Specifies start line
of the statement.

Not
applicable

Not applicable

$.items[*].statementP
os.endLine

Number Specifies end line
of the statement.

Not
applicable

Not applicable

$items[*].statementTe
xt

String Specifies the SQL
statement to be
executed.

"select 1
from
dual"

Not applicable

$items[*].statementTe
xt

Array Specifies batch
DML statements
can be specified
using an array.

One DML
statement specified
per string in an
array.

["insert
into
test1
values(1)
","update
test1 set
col1=2"]

Not applicable

$.items[*].response Array Specifies array of
Strings. The
response
generated when
running the
statement.

["\n1
row
inserted.
\n\n"]

Not applicable

$.items[*].result Number Specifies the result
generated when
running the
statement.

For DML
statements, this will
be the number of
rows affected.

5
Not applicable

$.items[*].result Array Specifies the result
generated when
running each of the
batch statements.

For DML
statements, this will
be the number of
rows affected.

[1, 1,
2]

Not applicable

$.items[*].resultSet Object Specifies
information about
the result set
generated from a
query.

Not
applicable

Not applicable

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-33

JSONPath Data
type

Description Example
Values

Possible values

$.items[*].resultSet.
metadata

Array Specifies each
object in the array
provides
information about
the metadata of a
column.

Not
applicable

Not applicable

$.items[*].resultSet.
metadata[*].columnNam
e

String Specifies the name
of the column used
in the Oracle
Database.

Not
applicable

Not applicable

$.items[*].resultSet.
metadata[*].jsonColum
nName

String Specifies the name
of the column used
in

$.items[*].resu
ltSet.items[*].
<columnname>

Not
applicable

Not applicable

$.items[*].resultSet.
metadata[*].columnTyp
eName

String Specifies the
Oracle Database
data type of the
column.

Not
applicable

Not applicable

$.items[*].resultSet.
metadata[*].precision

Number Specifies the
precision of the
column.

Not
applicable

Not applicable

$.items[*].resultSet.
metadata[*].scale

Number Specifies the scale
of the column.

Not
applicable

Not applicable

$.items[*].resultSet.
metadata[*].isNullabl
e

Number Specifies whether
the column is
nullable or not.

0, if the column is
not nullable.

1, if the column is
nullable.

Not
applicable

Not applicable

$.items[*].resultSet.
items

Array Specifies the list of
all rows returned in
the result set.

Not
applicable

Not applicable

$.items[*].resultSet.
items[*].<columnname>

Any
type

Specifies the value
of a particular
column and row in
the result set.

Not
applicable

Not applicable

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-34

JSONPath Data
type

Description Example
Values

Possible values

$.items[*].resultSet.
hasMore

Boolean Specifies whether
result set has more
rows. Value is set
to true if the result
set has more rows,
otherwise set to
false.

The rows in the
result set depend
on
misc.pagination
.maxRows value
configured in
defaults.xml file
or as specified in
the request.

false [true , false]

$.items[*].resultSet.
count

Number Specifies the
number of rows
returned.

Not
applicable

Not applicable

$.items[*].resultSet.
offset

Number Specifies the
number of rows to
offset the query
result. This is used
for pagination of
the result set
returned from a
query.

25 Between 0 to
misc.pagination
.maxRows

$.items[*].resultSet.
limit

Number Specifies the
maximum number
of rows returned
from a query.

Values greater
than
misc.pagination
.maxRows value
specified in
default.xml file
are ignored.

500 Between 0 to
misc.pagination
.maxRows

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-35

JSONPath Data
type

Description Example
Values

Possible values

$.items[*].binds Array Specifies an array
of objects
specifying the bind
information.

"binds":
[{ "name
":"mybind
1",
"data_typ
e":"NUMBE
R",
"mode":"o
ut" },
{ "name":
"mybind2"
,
"data_typ
e":"NUMBE
R",
"value":
7 }]

Not applicable

$.items[*].binds[*].n
ame

String Specifies the name
of the bind, when
you are using
named notation.

"mybind"
Not applicable

$.items[*].binds[*].i
ndex

Number specifies iIndex of
bind, when you are
using positional
notation.

1 1 - n

$.items[*].binds[*].d
ata_type

String Specifies the
Oracle data type of
the bind.

"NUMBER" For more
information, refer to
Oracle Built-in
Types

$.items[*].binds[*].v
alue

Any type Specifies the value
of the bind.

"value to
insert"

Can be one of the
following data
types:

• Number
• String
• Array
For more
information, refer to
Oracle Built-in
Types

$.items[*].binds[*].r
esult

Any type Specifies the result
of an OUT bind.

Not
applicable

Not applicable

$.items[*].binds[*].m
ode

String Specifies the mode
in which the bind is
used.

"out" ["in" ,
"inout",
"out"]

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-36

JSONPath Data
type

Description Example
Values

Possible values

$.items[*].binds[*].b
atch

Boolean Specifies whether
or not you want to
perform a batch
bind. If you want to
perform a batch
bind, then set the
value to true.

If a batch bind is to
be performed, then
the value is set to
true.

If the value is set to
true,
then $binds[*]
value must be an
array of values.

true [true, false]

$.items[*].binds[*].t
ype_name

String Required when
using $binds[*].
data_type =
"PL/SQL TABLE".

Currently, only an
empty string is
accepted as the
value.

"" Not applicable

$.items[*].binds[*].t
ype_subname

String Required when
using $binds[*].
data_type =
"PL/SQL TABLE".

Currently, only an
empty string is
accepted as the
value.

"" Not applicable

$.items[*].binds[*].t
ype_components

Array Array of data types
in the PL/SQL
TABLE

Required when
using $binds[*].
data_type =
"PL/SQL TABLE".

[{"data_t
ype":"NUM
BER"}]

Not applicable

$.items[*].binds[*].t
ype_components[*].dat
a_type

String The Oracle data
type of a column in
the PL/SQL
TABLE.

Required when
using $binds[*].
data_type
= "PL/SQL
TABLE"

"NUMBER" For more
information, refer to
Oracle Built-in
Types

Chapter 4
REST-Enabled SQL Request and Response Specifications

4-37

4.7 Supported SQL, SQL*Plus, and SQLcl Statements
This section lists all the supported SQL, SQL*Plus and SQLcl statements for REST-
Enabled SQL service.

Topics

• Supported SQL Statements

• Supported PL/SQL Statements

• Supported SQL*Plus Statements

• Supported SQLcl Statements

4.7.1 Supported SQL Statements
This section describes the SQL statements that the REST- Enabled SQL service
supports.

REST- Enabled SQL service supports all SQL commands. If the specified Oracle
Database schema has the appropriate privileges, then you can run them. Oracle
REST Data Services makes all queries into in-line views before execution to provide
pagination support. Queries are made in-line irrespective of the format in which you
provide the query. All the other nonquery SQL statements are executed as they are.

In-line views have the following limitations:

• All column names in a query must be unique because the views and in-line views
cannot have ambiguous column names.

• Cursor expressions are not displayed in view or in-line views.

• WITH FUNCTION clause is not supported in in-line views.

Related Topics

• SQL_statements_ref

4.7.2 Supported PL/SQL Statements
The REST- Enabled SQL service supports PL/SQL statements and blocks.

Example 4-7 PL/SQL Statement

DECLARE v_message VARCHAR2(100) := 'Hello World';
BEGIN
 FOR i IN 1..3 LOOP
 DBMS_OUTPUT.PUT_LINE (v_message);
 END LOOP;
END;
/

Related Topics

• plsql_block

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

4-38

http://docs.oracle.com/database/122/SQLQR/SQL-Statements.htm#SQLQR109
http://docs.oracle.com/database/122/LNPLS/block.htm#LNPLS01303

4.7.3 Supported SQL*Plus Statements
This section lists all the SQL*Plus statements that the REST- Enabled SQL service
supports.

REST- Enabled SQL service supports most of the SQL*Plus statements except those
statements that are related to formatting. The specific Oracle Database schema must
have the appropriate privileges to run the SQL*Plus statemments.

The following is a list of supported SQL*Plus statements:

• SET system_variable value

Note:

system_variable and value represent one of the clauses described in
Set System Variables section.

• / (slash)

• DEF[INE] [variable] | [variable = text]

• DESC[RIBE] {[schema.]object[@connect_identifier]}

• EXEC[UTE] statement

• HELP | ? [topic]

• PRINT [variable ...]

• PRO[MPT] [text]

• REM[ARK]

• SHO[W] [option]

• TIMI[NG] [START text | SHOW | STOP]

• UNDEF[INE] variable ...

• VAR[IABLE] [variable [type][=value]]

Related Topics

• sqlplus_commands

4.7.3.1 Set System Variables

The following is a list of possible values for system_variable and value:

Note:

The command SET CMDS[EP] {; | c | ON | OFF} is obsolete.

• SET APPI[NFO]{ON | OFF | text}

• SET AUTOP[RINT] {ON | OFF}

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

4-39

https://docs.oracle.com/database/122/SQPUG/SQL-Plus-command-summary.htm#SQPUG02345

• SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]

• SET BLO[CKTERMINATOR] {. | c | ON | OFF}

• SET CMDS[EP] {; | c | ON | OFF}

• SET COLINVI[SIBLE] [ON | OFF]

• SET CON[CAT] {. | c | ON | OFF}

• SET COPYC[OMMIT] {0 | n}

• SET DEF[INE] {& | c | ON | OFF}

• SET DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM {ON | OFF}] [INDENT {ON |
OFF}]

• SET ECHO {ON | OFF}

• SET ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename] [TRUNCATE]
[IDENTIFIER identifier]

• SET ESC[APE] {\ | c | ON | OFF}

• SET FEED[BACK] {6 | n | ON | OFF | ONLY}]

• SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}] [FOR[MAT]
{WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]}]

• SET SHOW[MODE] {ON | OFF}

• SET SQLBL[ANKLINES] {ON | OFF}

• SET SQLP[ROMPT] {SQL> | text}

• SET TI[ME] {ON | OFF}

• SET TIMI[NG] {ON | OFF}

• SET VER[IFY] {ON | OFF}

Related Topics

• set-system_var_summary

4.7.3.2 Show System Variables
This section lists the possible values for option which is either a term or a clause used
in the SHO[W] option command.

The following is a list of possible values for the option variable:

Note:

The commands SHOW CMDSEP and SHOW DESCR[IBE] are obsolete.

• SHOW system_variable

• SHOW EDITION

• SHOW ERR[ORS] [{ ANALYTIC VIEW | ATTRIBUTE DIMENSION | HIERARCHY |
FUNCTION | PROCEDURE | PACKAGE | PACKAGE BODY | TRIGGER | VIEW | TYPE
| TYPE BODY | DIMENSION | JAVA CLASS } [schema.]name]

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

4-40

https://docs.oracle.com/database/122/SQPUG/SET-system-variable-summary.htm#SQPUG060

• SHOW PDBS

• SHOW SGA

• SHOW SQLCODE

• SHOW COLINVI[SIBLE]

• SHOW APPIN[FO]

• SHOW AUTOT[RACE]

• SHOW BINDS

• SHOW BLO[CK TERMINATOR]

• SHOW CMDSEP

• SHOW COPYTYPECHECK

• SHOW COPYCOMMIT

• SHOW DEFINE

• SHOW DEFINES

• SHOW DESCR[IBE]

• SHOW ECHO

• SHOW EDITION

• SHOW ERRORL[OGGING]

• SHOW ESC[APE]

• SHOW FEEDBACK

• SHOW CONCAT

• SHOW SHOW[MODE]

• SHOW RECYC[LEBIN]

• SHOW RELEASE

• SHOW SQLBL[ANKLINES]

• SHOW SCAN

• SHOW SERVEROUT[PUT]

• SHOW SPACE

• SHOW TABLES

• SHOW TIMI[NG]

• SHOW USER

• SHOW VER[IFY]

• SHOW XQUERY

Related Topics

• show_command

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

4-41

https://docs.oracle.com/database/122/SQPUG/SHOW.htm#SQPUG124

4.7.4 Supported SQLcl Statements
This section lists the SQLcl statements that the REST- Enabled SQL service supports.

REST- Enabled SQL service supports some of the SQLcl statements. The specific
Oracle Database schema must have the appropriate privileges to run the SQLcl
statements.

The following is a list of supported SQLcl statements:

• CTAS

• DDL

• SET DDL

Chapter 4
Supported SQL, SQL*Plus, and SQLcl Statements

4-42

5
Migrating from mod_plsql to ORDS

This chapter demonstrates how a mod_plsql application is migrated to Oracle REST
Data Services (ORDS).

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server
and mod_plsql. An Oracle HTTP Server mod_plsql application can be migrated to
ORDS by defining new ORDS configuration files. The mod_plsql database resources
such as before procedures, after procedures, request validation functions,
owa_custom packages, doc upload procedures and doc tables require no change
when you are migrating to ORDS.

Topics:

• Oracle HTTP Server mod_plsql Authentication

• Example Oracle HTTP Server DAD file

• Mapping mod_plsql Settings to ORDS

• Example ORDS Configuration Files

• Example ORDS URL Mapping

• Example ORDS Default Configuration

• ORDS Authentication

• ORDS Features

5.1 Oracle HTTP Server mod_plsql Authentication
Oracle HTTP Server mod_plsql applications are configured in a database access
descriptor (DAD) file.

The following example mod_plsql application provides the methods to authenticate the
requests against the Oracle Database:

• Basic authentication: The username and password are stored in the DAD file
and so the end user is not required to log in. This method is useful for web pages
that provide public information.

• Basic dynamic authentication: The users provide credentials in a browser HTTP
basic authentication dialog box. The only way to log out is to close all the
instances of the browser.

• Custom authentication: Enables applications to invoke a user-written
authentication function to authenticate the users within the application and not at
the database level.

Related Topics

• Oracle HTTP Server mod_plsql

5-1

unilink:Oracle_HTTP_Server_mod_plsql

5.2 Example Oracle HTTP Server DAD file
This section provides an example Oracle HTTP Server DAD file.

The following dads.conf file includes three locations demonstrating the basic, basic
dynamic and custom authentications and the following directives:

• PlsqlBeforeProcedure

• PlsqlAfterProcedure

• PlsqlRequestValidationFunction

• PlsqlDocumentTablename

• PlsqlDocumentProcedure

Example 5-1 dads.conf file

===
=
mod_plsql DAD Configuration File

===
=
<Location /pls/basic_auth>
 SetHandler pls_handler
 Order deny,allow
 Allow from all
 AllowOverride None
 PlsqlDatabaseUsername PRIVILEGED_USER
 PlsqlDatabasePassword passwordF0R$0RD5Example
 PlsqlDatabaseConnectString oracle-ee:1521:ORCLPDB1
ServiceNameFormat
 PlsqlAuthenticationMode Basic
 PlsqlBeforeProcedure sample_plsql_app_metadata.beforeProc
 PlsqlAfterProcedure sample_plsql_app_metadata.afterProc
 PlsqlRequestValidationFunction
sample_plsql_app_metadata.validationFunc
 PlsqlDocumentTablename privileged_user.doc_table
 PlsqlDocumentProcedure privileged_user.upload
</Location>
<Location /pls/basic_dynamic_auth>
 SetHandler pls_handler
 Order deny,allow
 Allow from all
 AllowOverride None
 PlsqlDatabaseConnectString oracle-ee:1521:ORCLPDB1
ServiceNameFormat
 PlsqlAuthenticationMode Basic
 PlsqlBeforeProcedure sample_plsql_app_metadata.beforeProc
 PlsqlAfterProcedure sample_plsql_app_metadata.afterProc
 PlsqlRequestValidationFunction
sample_plsql_app_metadata.validationFunc

Chapter 5
Example Oracle HTTP Server DAD file

5-2

</location>
<Location /pls/custom_auth>
 SetHandler pls_handler
 Order deny,allow
 Allow from all
 AllowOverride None
 PlsqlDatabaseUsername PRIVILEGED_USER
 PlsqlDatabasePassword passwordF0R$0RD5Example
 PlsqlDatabaseConnectString oracle-ee:1521:ORCLPDB1
ServiceNameFormat
 PlsqlAuthenticationMode CustomOwa
 PlsqlBeforeProcedure sample_plsql_app_metadata.beforeProc
 PlsqlAfterProcedure sample_plsql_app_metadata.afterProc
 PlsqlRequestValidationFunction
sample_plsql_app_metadata.validationFunc
</location>

5.3 Mapping mod_plsql Settings to ORDS
This section shows the mappings of mod_plsql settings to ORDS.

ORDS allows you to specify configuration files that are similar to a location defined in
an Oracle HTTP Server mod_plsql DAD file. Each configuration file is defined in
ords_conf/ords/conf directory and the configuration file is then mapped to a
particular URL using the ords_conf/ords/url-mapping.xml file. ORDS provides the
following configurable parameters that can be used when migrating mod_plsql
directives:

Table 5-1 Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting ORDS Setting Description

PlsqlDatabaseUserName db.username Specifies the username to use
to log in to the database.

ORDS and mod_plsql are
equivalent.

PlsqlDatabasePassword db.password Specifies the password to use
to log in to the database.

ORDS and mod_plsql are
equivalent.

PlsqlDatabaseConnectStr
ing

Multiple Settings such as:

• db.hostname
• db.port
• db.servicename
• db.sid

Specifies the connection to an
Oracle database.

ORDS and mod_plsql are
equivalent.

Chapter 5
Mapping mod_plsql Settings to ORDS

5-3

Table 5-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting ORDS Setting Description

PlsqlAuthenticationMode security.requestAuthent
icationFunction

Specifies the authentication
mode to use to allow access.

When
security.requestAuthent
icationFunction is not
specified, ORDS behavior is
same as Basic mode of
mod_plsql.

When
security.requestAuthent
icationFunction is
specified, ORDS can perform
the same action as example
dad directive
PlsqlAuthenticationMode
CustomOwaof mod_plsql.

Example ORDS equivalent
configuration parameter:

<entry
key="security.requestAu
thenticationFunction">p
rivileged_user.owa_cust
om.authorize</entry>
ORDS and mod_plsql are
equivalent.

PlsqlBeforeProcedure procedure.preProcess Specifies the procedure to be
invoked before calling the
requested procedure.

ORDS and mod_plsql are
equivalent.

PlsqlAfterProcedure procedure.postProcess Specifies the procedure to be
invoked after calling the
requested procedure.

ORDS and mod_plsql are
equivalent.

PlsqlRequestValidationF
unction

security.requestValidat
ionFunction

Specifies an application-
defined PL/SQL function that
can allow or disallow further
processing of the requested
procedure.

ORDS and mod_plsql are
equivalent.

PlsqlDocumentTablename owa.docTable Specifies the table in the
database to which all
documents are uploaded.

ORDS and mod_plsql are
equivalent.

Chapter 5
Mapping mod_plsql Settings to ORDS

5-4

Table 5-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting ORDS Setting Description

PlsqlDocumentProcedure N/A Specifies the procedure to call
when a document download is
initiated.

In ORDS the document
procedure is the requested
resource. It is not defined in
the configuration file.

ORDS and mod_plsql are
equivalent.

PlsqlDocumentPath N/A ORDS has no equivalent.

PlsqlDefaultPage misc.defaultPage Specifies the default
procedure to call if none is
specified in the URL.

ORDS and mod_plsql are
equivalent.

PlsqlErrorStyle debug.printDebugToScree
n

Specifies the error reporting
mode for mod_plsql errors.

debug.printDebugToScree
n is equivalent to
PlsqlErrorStyle
DebugStyle, otherwise there
is no equivalent.

ORDS and mod_plsql are
equivalent.

PlsqlExclusionList security.exclusionList Specifies a pattern for
procedures, packages, or
schema names which are
forbidden to be directly run
from a browser.

See Understanding
Configurable Parameters.

ORDS and mod_plsql are
equivalent.

PlsqlIdleSessionCleanup
Interval

jdbc.InactivityTimeout Specifies the time (in minutes)
in which the idle database
sessions should be closed and
cleaned.

Value can be 0 to N seconds.
Where, 0 (default) means that
the idle connections are not
removed from pool.

ORDS and mod_plsql are
equivalent.

Chapter 5
Mapping mod_plsql Settings to ORDS

5-5

Table 5-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting ORDS Setting Description

PlsqlMaxRequestsPerSess
ion

jdbc.MaxConnectionReuse
Count

Specifies the maximum
number of requests a pooled
database connection should
service before it is closed and
re-opened.

Default value is 1000.

ORDS and mod_plsql are
equivalent.

PlsqlInfoLogging N/A See Understanding
Configurable Parameters.

PlsqlLogDirectory N/A See Understanding
Configurable Parameters.

PlsqlLogEnable N/A See Understanding
Configurable Parameters.

PlsqlSessionStateManage
ment

N/A Specifies how package and
session state should be
cleaned up at the end of each
request.

ORDS always performs:
dbms_session.modify_pac
kage_state(dbms_session.
reinitialize) at the end of
each request.

PlsqlAlwaysDescribeProc
edure

N/A Specifies whether the
mod_plsql application should
describe a procedure before
trying to run it.

ORDS always describes
procedure on first access, and
then the definition is cached.
Changes in signature are
detected and recached.

PlsqlConnectionValidati
on

N/A Specifies the mechanism the
mod_plsql module should use
to detect terminated
connections in its connection
pool.

ORDS always validates
connections on borrow.

PlsqlFetchBufferSize N/A Specifies the number of rows
of content to fetch from the
database for each trip, using
either owa_util.get_page
or owa_util.get_page_raw.

ORDS materializes results as
a 32K VARCHAR or CLOB if
results are greater than 32K,
so not applicable.

Chapter 5
Mapping mod_plsql Settings to ORDS

5-6

Table 5-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting ORDS Setting Description

PlsqlNLSLanguage N/A Specifies the NLS_LANG
variable.

ORDS, Java, and JDBC use
unicode.

PlsqlTransferMode N/A PlsqlTransferMode
specifies the transfer mode for
data from the database back
to the mod_plsql application.

ORDS always uses unicode.

PlsqlBindBucketLengths N/A Specifies the rounding size to
use while binding the number
of elements in a collection
bind.

Rarely used in mod_plsql, and
JDBC has no equivalent
concept.

PlsqlBindBucketWidths N/A Specifies the rounding size to
use while binding the number
of elements in a collection
bind.

Rarely used in mod_plsql and
JDBC has no equivalent
concept.

PlsqlCacheCleanupTime N/A ORDS has no equivalent.

PlsqlDMSEnable N/A ORDS does not support DMS.

PlsqlSessionCookieName N/A ORDS does not offer session
management for PL/SQL
Gateway calls.

PlsqlCacheDirectory N/A ORDS has no equivalent.

PlsqlCacheEnable N/A ORDS has no equivalent.

PlsqlCacheMaxAge N/A ORDS has no equivalent.

PlsqlCacheMaxSize N/A ORDS has no equivalent.

PlsqlCacheTotalSize N/A ORDS has no equivalent.

PlsqlCGIEnvironmentList N/A ORDS has no equivalent.

PlsqlConnectionTimeout N/A ORDS has no equivalent.

PlsqlPathAlias N/A ORDS has no equivalent.

PlsqlPathAliasProcedure N/A ORDS has no equivalent.

PlsqlUploadAsLongRaw N/A ORDS has no equivalent.

Chapter 5
Mapping mod_plsql Settings to ORDS

5-7

5.4 Example ORDS Configuration Files
The following sections show how the example mod_plsql application can be migrated
to ORDS.

Topics:

• Example Configuration File for Basic Authentication

• Example Configuration File for Basic Dynamic Authentication

• Example Configuration file for Custom Authentication

5.4.1 Example Configuration File for Basic Authentication
Example 5-2 ords_conf/ords/conf/basic_auth.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>Saved on Wed Jul 25 10:22:37 UTC 2018</comment>
 <entry key="db.username">PRIVILEGED_USER</entry>
 <entry key="db.password">!passwordF0R$0RD5Example</entry>
 <!-- Example url -->
 <!-- See url-mapping.xml -->
 <!-- http://localhost:8086/ords/pls/basic_auth/
sample_plsql_app.sample_public_proc-->
 <!-- http://localhost:8086/ords/pls/basic_auth/
sample_plsql_app.privileged_public_proc-->
 <entry
key="procedure.postProcess">sample_plsql_app_metadata.afterProc</entry>
 <entry
key="procedure.preProcess">sample_plsql_app_metadata.beforeProc</entry>
 <entry
key="security.requestValidationFunction">sample_plsql_app_metadata.validati
onFunc</entry>
 <entry key="owa.docTable">sample_plsql_app.doc_table</entry>
</properties>

5.4.2 Example Configuration File for Basic Dynamic Authentication
Example 5-3 ords_conf/ords/conf/basic_dynamic_auth.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>Saved on Wed Jul 25 10:22:37 UTC 2018</comment>
 <!-- NOTE THAT IF THIS USER HAS EXECUTE PRIVILEGE ON THE RESOURCE
THEN jdbc.auth.enabled IS IGNORED -->
 <!-- IF THIS USER DOES NOT HAVE EXECUTE PRIVILEGE ON THE RESOURCE
THEN jdbc.auth.enabled IS INVOKED AND THE CREDENTIALS OF A PRIVILEGED USER

Chapter 5
Example ORDS Configuration Files

5-8

HAS TO BE PROVIDED-->
 <entry key="db.username">NON_PRIVILEGED_USER</entry>
 <entry key="db.password">!passwordF0R$0RD5Example</entry>
 <entry key="jdbc.auth.enabled">true</entry>
 <!-- Example url -->
 <!-- See url-mapping.xml -->
 <!-- INVOKE jdbc.auth.enabled : http://localhost:8086/ords/pls/
basic_dynamic_auth/sample_plsql_app.sample_privileged_proc -->
 <!-- IGNORE jdbc.auth.enabled : http://localhost:8086/ords/pls/
basic_dynamic_auth/sample_plsql_app.sample_public_proc -->
 <!-- Because jdbc.auth.enabled is ignored when referencing the
sample_public_app, the beforeProc,afterProc and validationFunc must be
accessible by NON_PRIVILEGED_USER -->
 <!-- The following objects are executed by the same credentials used
to access the resource -->
 <!-- If the resource can be accessed by the db.username then that
connection is used to access these methods -->
 <!-- If the resource cannot be accessed by the db.username then
jdbc.auth.enabled is invoked and those credentials as used to access these
methods -->
 <entry
key="procedure.postProcess">sample_plsql_app_metadata.afterProc</entry>
 <entry
key="procedure.preProcess">sample_plsql_app_metadata.beforeProc</entry>
 <entry
key="security.requestValidationFunction">sample_plsql_app_metadata.validati
onFunc</entry>
</properties>

5.4.3 Example Configuration file for Custom Authentication
Example 5-4 ords_confs/ords/conf/custom_auth.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>Saved on Wed Jul 25 10:22:37 UTC 2018</comment>
 <entry key="db.username">PRIVILEGED_USER</entry>
 <entry key="db.password">!passwordF0R$0RD5Example</entry>
 <!-- Example url -->
 <!-- See url-mapping.xml -->
 <!-- http://localhost:8086/ords/pls/custom_auth/
sample_plsql_app.sample_proc -->
 <!-- privileged_user.owa_custom.authorize requires the following as
the custom login -->
 <entry
key="procedure.postProcess">sample_plsql_app_metadata.afterProc</entry>
 <entry
key="procedure.preProcess">sample_plsql_app_metadata.beforeProc</entry>
 <entry
key="security.requestValidationFunction">sample_plsql_app_metadata.validati
onFunc</entry>
 <entry

Chapter 5
Example ORDS Configuration Files

5-9

key="security.requestAuthenticationFunction">privileged_user.owa_custom.aut
horize</entry>
</properties>

5.5 Example ORDS URL Mapping
This section shows the example mapping between base-path url and the configuration
files.

Example 5-5 ords_conf/ords/url-mapping.xml

<?xml version="1.0" encoding="UTF-8"?>
<pool-config xmlns="http://xmlns.oracle.com/apex/pool-config">
 <pool name="basic_auth" base-path="/pls/basic_auth"
updated="2018-07-17T20:52:29.045Z" />
 <pool name="basic_dynamic_auth" base-path="/pls/basic_dynamic_auth"
updated="2018-07-17T20:52:29.045Z" />
 <pool name="custom_auth" base-path="/pls/custom_auth"
updated="2018-07-17T20:52:29.045Z" />
</pool-config>

5.6 Example ORDS Default Configuration
This section shows the example default configuration setting for ORDS.

The default.xml file provides the database connection details used by all
configurations.

Note:

To turn off procedure validation caching, set security.maxEntries value to
0. This is necessary to emulate Oracle HTTP Server mod_plsql.

Example 5-6 ords_conf/ords/default.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <!-- by default security.maxEntries = 2000 which means 2000 procedures
validity will be cached-->
 <!-- this is fine for applications like apex where the validation of a
procedure does not change -->
 <!-- for applications migrating from mod_plsql the cache should be
disabled so that procedures validity is determined for each request -->
 <!-- this is done by setting security.maxentries to 0 -->
 <entry key="security.maxEntries">0</entry>
 <entry key="db.hostname">oracle-ee</entry>
 <entry key="db.port">1521</entry>
 <entry key="db.servicename">orclpdb1</entry>
</properties>

Chapter 5
Example ORDS URL Mapping

5-10

5.7 ORDS Authentication
ORDS has the ability to perform HTTP Basic Authentication by providing a one to one
mapping from mod_plsql. In ORDS more secure methods of authentication are
available.

Topics:

• Basic Authentication

• Basic Dynamic Authentication

• Custom Authentication

Related Topics

• Developing Oracle REST Data Services Applications

5.7.1 Basic Authentication
This section describes the basic authentication implemented using ORDS.

The database credentials are specified in the ORDS configuration file. The
db.username must have the required privileges to access the resources.

Note:

The entry security.requestAuthenticationFunction is not specified.

5.7.2 Basic Dynamic Authentication
This section describes how basic dynamic authentication is implemented using ORDS.

A default db.username and db.password must be specified in ORDS configuration file
when providing basic dynamic authentication for accessing the resources.

The resources that cannot be accessed using this type of authentication can be
accessed if the following conditions are satisfied:

• The value for <entry key="jdbc.auth.enabled">true</entry> entry must be
true..

• The security.requestAuthenticationFunction entry must not be specified.

• When ORDS response prompts a Basic HTTP Authentication dialog box in a
browser, the credentials provided by the user must have the required privileges,
then the resource is made available.

Chapter 5
ORDS Authentication

5-11

Note:

If the credentials are provided through the browser HTTP authentication
dialog box, then the only way to log out is to close all the instances of the
browser.

5.7.3 Custom Authentication
This section describes how custom authentication is implemented using ORDS.

A function is specified to perform the custom authentication. This function has access
to the owa variables. Resources are only available if the following function returns a
TRUE value:

<entry
key="security.requestAuthenticationFunction">privileged_user.owa_custom.au
thorize</entry>

The authentication function must have signature as shown in the following code
snippet:

/**
* OWA_CUSTOM used in mod_plsql when the following is used in the dad
configuration file
 PlsqlAuthenticationMode Custom
 In ORDS environment this can reside in any schema as long as the
connection has execute privileges
 In mod_plsql this has to reside in the connections schema as you cannot
specify the name of the schema,package or function
 ex: PlsqlAuthenticationMode CustomOwa
*/
CREATE OR REPLACE PACKAGE OWA_CUSTOM AS
/**
 * Response:
 >IF Failed
 WWW-Authenticate in response header
 Authorization Required
 You are not authorized to access the requested resource. Check the
supplied credentials (e.g., username and password).
 */
FUNCTION authorize RETURN BOOLEAN;
END OWA_CUSTOM ;
/

5.8 ORDS Features
This section describes the ORDS features that are useful when you are migrating from
a mod_plsql application to ORDS.

Topics:

• Request Validation Function

Chapter 5
ORDS Features

5-12

• Pre Process Feature

• Post Process Feature

• File Upload Feature

5.8.1 Request Validation Function
This section explains the use of request validation function.

The request validation function restricts the access to resources. The request
validation function is provided with the name of the resource being requested and
returns TRUE or FALSE value in response.

If the request validation function returns a FALSE value, then ORDS terminates the
request.

Example 5-7 security.requestValidationFunction

<entry
key="security.requestValidationFunction">sample_plsql_app_metadata.validati
onFunc</entry>

You can choose any name for the validation function. However, the signature must be
in the following format:

CREATE OR REPLACE FUNCTION validationfunc(procedure_name VARCHAR2) RETURN
BOOLEAN IS.

5.8.2 Pre Process Feature
This section describes the procedure.preProcess ORDS configuration parameter.

The procedure.preProcess ORDS configuration parameter allows a comma delimited
list of procedures that are executed before the requested resource.

Example 5-8 procedure.preProcess

Following example code snippet shows a use case for logging in:

<entry key="procedure.preProcess">sample_plsql_app_metadata.beforeProc</
entry>

5.8.3 Post Process Feature
This section describes the procedure.postProcess ORDS configuration parameter.

The procedure.postProcess ORDS configuration parameter allows a comma
delimited list of procedures that are executed after the requested resource.

Example 5-9 procedure.postProcess

Following example code snippet shows a use case for logging out:

<entry key="procedure.postProcess">sample_plsql_app_metadata.afterProc</
entry>

Chapter 5
ORDS Features

5-13

5.8.4 File Upload Feature
This section describes the ORDS file upload feature.

The ORDS configuration parameter owa.docTable, defines the table name where the
uploaded files persist.

Example 5-10 Table upload

CREATE TABLE DOC_TABLE (
 NAME VARCHAR(256) UNIQUE NOT NULL,
 MIME_TYPE VARCHAR(128),
 DOC_SIZE NUMBER,
 DAD_CHARSET VARCHAR(128),
 LAST_UPDATED DATE,
 CONTENT_TYPE VARCHAR(128),
 CONTENT LONG RAW,
 BLOB_CONTENT BLOB);

Example 5-11 Procedure upload

You can choose to have any name for the upload function. However, the signature
must match the following POST request:

--The parameters of the procedure should match the parameters of the
request
--The procedure is called after ORDS performs the file upload/insert.
--This procedure can rollback the file INSERT as it is in the same
transaction as the INSERT
CREATE OR REPLACE PROCEDURE upload (filename VARCHAR2 DEFAULT NULL)

Example 5-12 Curl command for file upload

curl -i -X POST -F 'filename=@helloworld.txt' "http://localhost:8086/
ords/pls/basic_auth/example_user1.upload

Chapter 5
ORDS Features

5-14

6
Oracle REST Data Services PL/SQL
Package Reference

The Oracle REST Data Services PL/SQL package contains subprograms (procedures
and functions) for developing RESTful services using Oracle REST Data Services.

Related Topics

• Using the Oracle REST Data Services PL/SQL API

6.1 ORDS.CREATE_ROLE
Format

ORDS.CREATE_ROLE(
 p_role_name IN sec_roles.name%type);

Description

CREATE_ROLE creates an Oracle REST Data Services role with the specified name.

Parameters

p_role_name
Name of the role.

Usage Notes

After the role is created, it can be associated with any Oracle REST Data Services
privilege.

Examples

The following example creates a role.

EXECUTE ORDS.CREATE_ROLE(p_role_name=>'Tickets User');

6.2 ORDS.CREATE_SERVICE

Note:

ORDS.CREATE_SERVICE is deprecated. Use ORDS.DEFINE_SERVICE
instead.

6-1

Format

ORDS.CREATE_SERVICE(
 p_module_name IN ords_modules.name%type,
 p_base_path IN ords_modules.uri_prefix%type,
 p_pattern IN ords_templates.uri_template%type,
 p_method IN ords_handlers.method%type DEFAULT 'GET',
 p_source_type IN ords_handlers.source_type%type
 DEFAULT ords.source_type_collection_feed,
 p_source IN ords_handlers.source%type,
 p_items_per_page IN ords_modules.items_per_page%type DEFAULT 25,
 p_status IN ords_modules.status%type DEFAULT 'PUBLISHED',
 p_etag_type IN ords_templates.etag_type%type DEFAULT 'HASH',
 p_etag_query IN ords_templates.etag_query%type DEFAULT NULL,
 p_mimes_allowed IN ords_handlers.mimes_allowed%type DEFAULT NULL,
 p_module_comments IN ords_modules.comments%type DEFAULT NULL,
 p_template_comments IN ords_modules.comments%type DEFAULT NULL,
 p_handler_comments IN ords_modules.comments%type DEFAULT NULL);

Description

Creates a new RESTful service.

Parameters

p_module_name
The name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_pattern
A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (matches a request for the item
in the emp resource with id of 101) and will also match /objects/emp/ (matches a
request for the emp resource, because the :id parameter is annotated with the ? or
question mark modifier, which indicates that the id parameter is optional).

p_method
The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

• source_type_collection_feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

• source_type_collection_item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

Chapter 6
ORDS.CREATE_SERVICE

6-2

• source_type_media. Executes a SQL query conforming to a specific format and
turns the result set into a binary representation with an accompanying HTTP
Content-Type header identifying the Internet media type of the representation.
Result Format: Binary

• source_type_plsql. Executes an anonymous PL/SQL block and transforms any
OUT or IN/OUT parameters into a JSON representation. Available only when the
HTTP method is DELETE, PUT, or POST. Result Format: JSON

• source_type_query || source_type_csv_query. Executes a SQL query and
transforms the result set into either an Oracle REST Data Services legacy
JavaScript Object Notation (JSON) or CSV representation, depending on the
format selected. Available when the HTTP method is GET. Result Format: JSON
or CSV

• source_type_query_one_row. Executes a SQL query returning one row of data
into an Oracle REST Data Services legacy JSON representation. Available when
the HTTP method is GET. Result Format: JSON

• source_type_feed. Executes a SQL query and transforms the results into a
JSON Feed representation. Each item in the feed contains a summary of a
resource and a hyperlink to a full representation of the resource. The first column
in each row in the result set must be a unique identifier for the row and is used to
form a hyperlink of the form: path/to/feed/{id}, with the value of the first
column being used as the value for {id}. The other columns in the row are
assumed to summarize the resource and are included in the feed. A separate
resource template for the full representation of the resource should also be
defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page
The default pagination for a resource handler HTTP operation GET method, that is,
the number of rows to return on each page of a JSON format result set based on a
database query. Default: NULL (defers to the resource module setting).

p_status
The publication status. Valid values: 'PUBLISHED' (default) or 'NOT_PUBLISHED'.

p_etag_type
A type of entity tag to be used by the resource template. An entity tag is an HTTP
Header that acts as a version identifier for a resource. Use entity tag headers to avoid
retrieving previously retrieved resources and to perform optimistic locking when
updating resources. Valid values: 'HASH' or 'QUERY' or 'NONE'.

• HASH - Known as Secure HASH: The contents of the returned resource
representation are hashed using a secure digest function to provide a unique
fingerprint for a given resource version.

• QUERY - Manually define a query that uniquely identifies a resource version. A
manually defined query can often generate an entity tag more efficiently than
hashing the entire resource representation.

• NONE - Do not generate an entity tag.

p_etag_query
A query that is used to generate the entity tag.

Chapter 6
ORDS.CREATE_SERVICE

6-3

p_mimes_allowed
A comma-separated list of MIME types that the handler will accept. Applies to PUT
and POST only.

p_module_comments
Comment text.

p_template_comments
Comment text.

p_handler_comments
Comment text.

Usage Notes

Creates a resource module, template, and handler in one call.

This procedure is deprecated. Use ORDS.DEFINE_SERVICE instead.

Examples

The following example creates a simple service.

BEGIN
 ORDS.CREATE_SERVICE(
 p_module_name => 'my.tickets',
 p_base_path => '/my/tickets/',
 p_pattern => '.',
 p_source => 'select t.id "$.id", t.id, t.title from tickets t' ||
 ' where t.owner = :current_user order by t.updated_on desc'
);
END;
/

6.3 ORDS.DEFINE_HANDLER
Format

ORDS.DEFINE_HANDLER(
p_module_name IN ords_modules.name%type,
p_pattern IN ords_templates.uri_template%type,
p_method IN ords_handlers.method%type DEFAULT 'GET',
p_source_type IN ords_handlers.source_type%type
DEFAULT ords.source_type_collection_feed,
p_source IN ords_handlers.source%type,
p_items_per_page IN ords_handlers.items_per_page%type DEFAULT NULL,
p_mimes_allowed IN ords_handlers.mimes_allowed%type DEFAULT NULL,
p_comments IN ords_handlers.comments%type DEFAULT NULL);

Description

DEFINE_HANDLER defines a module handler. If the handler already exists, then the
handler and any existing handlers will be replaced by this definition; otherwise, a new
handler is created.

Chapter 6
ORDS.DEFINE_HANDLER

6-4

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

p_method
The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

• source_type_collection_feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

• source_type_collection_item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

• source_type_media. Executes a SQL query conforming to a specific format and
turns the result set into a binary representation with an accompanying HTTP
Content-Type header identifying the Internet media type of the representation.
Result Format: Binary

• source_type_plsql. Executes an anonymous PL/SQL block and transforms any
OUT or IN/OUT parameters into a JSON representation. Available only when the
HTTP method is DELETE, PUT, or POST. Result Format: JSON

• source_type_query || source_type_csv_query. Executes a SQL query and
transforms the result set into either an Oracle REST Data Services legacy
JavaScript Object Notation (JSON) or CSV representation, depending on the
format selected. Available when the HTTP method is GET. Result Format: JSON
or CSV

• source_type_query_one_row. Executes a SQL query returning one row of data
into an Oracle REST Data Services legacy JSON representation. Available when
the HTTP method is GET. Result Format: JSON

• source_type_feed. Executes a SQL query and transforms the results into a
JSON Feed representation. Each item in the feed contains a summary of a
resource and a hyperlink to a full representation of the resource. The first column
in each row in the result set must be a unique identifier for the row and is used to
form a hyperlink of the form: path/to/feed/{id}, with the value of the first
column being used as the value for {id}. The other columns in the row are
assumed to summarize the resource and are included in the feed. A separate
resource template for the full representation of the resource should also be
defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

Chapter 6
ORDS.DEFINE_HANDLER

6-5

p_items_per_page
The default pagination for a resource handler HTTP operation GET method, that is,
the number of rows to return on each page of a JSON format result set based on a
database query. Default: NULL (defers to the resource module setting).

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and
POST only.

p_comments
Comment text.

Usage Notes

Only one handler for each HTTP method (source type) is permitted.

Examples

The following example defines a POST handler to the /my/tickets/ resource to
accept new tickets.

BEGIN
 ORDS.DEFINE_HANDLER(
 p_module_name => 'my.tickets',
 p_pattern => '.',
 p_method => 'POST',
 p_mimes_allowed => 'application/json',
 p_source_type => ords.source_type_plsql,
 p_source => '
 declare
 l_owner varchar2(255);
 l_payload blob;
 l_id number;
 begin
 l_payload := :body;
 l_owner := :owner;
 if (l_owner is null) then
 l_owner := :current_user;
 end if;
 l_id := ticket_api.create_ticket(
 p_json_entity => l_payload,
 p_author => l_owner
);
 :location := ''./'' || l_id;
 :status := 201;
 end;
 '
);
END;
/

6.4 ORDS.DEFINE_MODULE
Format

ORDS.DEFINE_MODULE(
 p_module_name IN ords_modules.name%type,
 p_base_path IN ords_modules.uri_prefix%type,
 p_items_per_page IN ords_modules.items_per_page%type DEFAULT 25,

Chapter 6
ORDS.DEFINE_MODULE

6-6

 p_status IN ords_modules.status%type DEFAULT 'PUBLISHED',
 p_comments IN ords_modules.comments%type DEFAULT NULL);

Description

DEFINE_MODULE defines a resource module. If the module already exists, then the
module and any existing templates will be replaced by this definition; otherwise, a new
module is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_items_per_page
The default pagination for a resource handler HTTP operation GET method, that is,
the number of rows to return on each page of a JSON format result set based on a
database query. Default: 25.

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBLISHED.

p_comments
Comment text.

Usage Notes

(None.)

Examples

The following example creates a simple module.

BEGIN
 ORDS.DEFINE_MODULE(
 p_module_name => 'my.tickets',
 p_base_path => '/my/tickets/'
);
END;
/

6.5 ORDS.DEFINE_PARAMETER
Format

ORDS.DEFINE_PARAMETER(
 p_module_name IN ords_modules.name%type,
 p_pattern IN ords_templates.uri_template%type,
 p_method IN ords_handlers.method%type,
 p_name IN ords_parameters.name%type ,
 p_bind_variable_name IN ords_parameters.bind_variable_name%type
 DEFAULT NULL,
 p_source_type IN ords_parameters.source_type%type DEFAULT 'HEADER',
 p_param_type IN ords_parameters.param_type%type DEFAULT 'STRING',

Chapter 6
ORDS.DEFINE_PARAMETER

6-7

 p_access_method IN ords_parameters.access_method%type DEFAULT 'IN',
 p_comments IN ords_parameters.comments%type DEFAULT NULL);

Description

DEFINE_PARAMETER defines a module handler parameter. If the parameter already
exists, then the parameter will be replaced by this definition; otherwise, a new
parameter is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

p_method
The owning handler HTTP Method. Valid values: GET (retrieves a representation of a
resource), POST (creates a new resource or adds a resource to a collection), PUT
(updates an existing resource), DELETE (deletes an existing resource).

p_name
The name of the parameter, as it is named in the URI Template or HTTP Header.
Used to map names that are not valid SQL parameter names.

p_bind_variable_name
The name of the parameter, as it will be referred to in the SQL. If NULL is specified,
then the parameter is unbound.

p_source_type
The type that is identified if the parameter originates in the URI Template or a HTTP
Header. Valid values: HEADER, RESPONSE, URI.

p_param_type
The native type of the parameter. Valid values: STRING, INT, DOUBLE, BOOLEAN, LONG,
TIMESTAMP.

p_access_method
The parameter access method. Indicates if the parameter is an input value, output
value, or both. Valid values: IN, OUT, INOUT.

p_comments
Comment text.

Usage Notes

All parameters must have unique names and variable names for the same handler.

Examples

The following example defines an outbound parameter on the POST handler to store
the location of the created ticket.

BEGIN
 ORDS.DEFINE_PARAMETER(
 p_module_name => 'my.tickets',
 p_pattern => '.',

Chapter 6
ORDS.DEFINE_PARAMETER

6-8

 p_method => 'POST',
 p_name => 'X-APEX-FORWARD',
 p_bind_variable_name => 'location',
 p_source_type => 'HEADER',
 p_access_method => 'OUT'
);
END;
/

The following example defines an outbound parameter on the POST handler to store
the HTTP status of the operation.

BEGIN
 ORDS.DEFINE_PARAMETER(
 p_module_name => 'my.tickets',
 p_pattern => '.',
 p_method => 'POST',
 p_name => 'X-APEX-STATUS-CODE',
 p_bind_variable_name => 'status',
 p_source_type => 'HEADER',
 p_access_method => 'OUT'
);
END;
/

6.6 ORDS.DEFINE_PRIVILEGE
Format

ORDS.DEFINE_PRIVILEGE(
 p_privilege_name IN sec_privileges.name%type,
 p_roles IN owa.vc_arr,
 p_patterns IN owa.vc_arr,
 p_modules IN owa.vc_arr,
 p_label IN sec_privileges.label%type DEFAULT NULL,
 p_description IN sec_privileges.description%type DEFAULT NULL,
 p_comments IN sec_privileges.comments%type DEFAULT NULL);
or
ORDS.DEFINE_PRIVILEGE(
 p_privilege_name IN sec_privileges.name%type,
 p_roles IN owa.vc_arr,
 p_patterns IN owa.vc_arr,
 p_label IN sec_privileges.label%type DEFAULT NULL,
 p_description IN sec_privileges.description%type DEFAULT NULL,
 p_comments IN sec_privileges.comments%type DEFAULT NULL);
or
ORDS.DEFINE_PRIVILEGE(
 p_privilege_name IN sec_privileges.name%type,
 p_roles IN owa.vc_arr,
 p_label IN sec_privileges.label%type DEFAULT NULL,
 p_description IN sec_privileges.description%type DEFAULT NULL,
 p_comments IN sec_privileges.comments%type DEFAULT NULL);

Description

DEFINE_PRIVILEGE defines an Oracle REST Data Services privilege. If the privilege
already exists, then the privilege and any existing patterns and any associations with
modules and roles will be replaced by this definition; otherwise, a new privilege is
created.

Chapter 6
ORDS.DEFINE_PRIVILEGE

6-9

Parameters

p_privilege_name
Name of the privilege. No spaces allowed.

p_roles
The names of the roles, at least one of which the privilege requires. May be empty, in
which case the user must be authenticated but does not require any specific role;
however, must not be null. Unauthenticated users will be denied access.

p_patterns
A list of patterns.

p_modules
A list of module names referencing modules created for the current schema.

p_label
Name of this security constraint as displayed to an end user. May be null.

p_description
A brief description of the purpose of the resources protected by this constraint.

p_comments
Comment text.

Usage Notes

p_roles, p_patterns, and p_modules do not accept null values. If no value is to be
passed, then either choose the appropriate procedure specification or pass an empty
owa.vc_arr value.

Examples

The following example creates a privilege connected to roles, patterns, and modules:

DECLARE
 l_priv_roles owa.vc_arr;
 l_priv_patterns owa.vc_arr;
 l_priv_modules owa.vc_arr;
BEGIN
 l_priv_roles(1) := 'Tickets User';
 l_priv_patterns(1) := '/my/*';
 l_priv_patterns(2) := '/comments/*';
 l_priv_patterns(3) := '/tickets_feed/*';
 l_priv_patterns(4) := '/tickets/*';
 l_priv_patterns(5) := '/categories/*';
 l_priv_patterns(6) := '/stats/*';

 l_priv_modules(1) := 'my.tickets';

 ords.create_role('Tickets User');

 ords.define_privilege(
 p_privilege_name => 'tickets.privilege',
 p_roles => l_priv_roles,
 p_patterns => l_priv_patterns,
 P_modules => l_priv_modules,
 p_label => 'Task Ticketing Access',
 p_description => 'Provides the ability to create, ' ||

Chapter 6
ORDS.DEFINE_PRIVILEGE

6-10

 'update and delete tickets ' ||
 'and post comments on tickets'
);
END;
/

The following example creates a privilege connected to roles and patterns:

DECLARE
 l_priv_roles owa.vc_arr;
 l_priv_patterns owa.vc_arr;
BEGIN
 l_priv_roles(1) := 'Tickets User';
 l_priv_patterns(1) := '/my/*';
 l_priv_patterns(2) := '/comments/*';
 l_priv_patterns(3) := '/tickets_feed/*';
 l_priv_patterns(4) := '/tickets/*';
 l_priv_patterns(5) := '/categories/*';
 l_priv_patterns(6) := '/stats/*';

 ords.create_role('Tickets User');

 ords.define_privilege(
 p_privilege_name => 'tickets.privilege',
 p_roles => l_priv_roles,
 p_patterns => l_priv_patterns,
 p_label => 'Task Ticketing Access',
 p_description => 'Provides the ability to create, ' ||
 'update and delete tickets ' ||
 'and post comments on tickets'
);
END;
/

The following example creates a privilege connected to roles:

DECLARE
 l_priv_roles owa.vc_arr;
BEGIN
 l_priv_roles(1) := 'Tickets User';

 ords.create_role('Tickets User');

 ords.define_privilege(
 p_privilege_name => 'tickets.privilege',
 p_roles => l_priv_roles,
 p_label => 'Task Ticketing Access',
 p_description => 'Provides the ability to create, ' ||
 'update and delete tickets ' ||
 'and post comments on tickets'
);
END;
/

6.7 ORDS.DEFINE_SERVICE
Format

ORDS.DEFINE_SERVICE(
 p_module_name IN ords_modules.name%type,

Chapter 6
ORDS.DEFINE_SERVICE

6-11

 p_base_path IN ords_modules.uri_prefix%type,
 p_pattern IN ords_templates.uri_template%type,
 p_method IN ords_handlers.method%type DEFAULT 'GET',
 p_source_type IN ords_handlers.source_type%type
 DEFAULT ords.source_type_collection_feed,
 p_source IN ords_handlers.source%type,
 p_items_per_page IN ords_modules.items_per_page%type DEFAULT 25,
 p_status IN ords_modules.status%type DEFAULT 'PUBLISHED',
 p_etag_type IN ords_templates.etag_type%type DEFAULT 'HASH',
 p_etag_query IN ords_templates.etag_query%type DEFAULT NULL,
 p_mimes_allowed IN ords_handlers.mimes_allowed%type DEFAULT NULL,
 p_module_comments IN ords_modules.comments%type DEFAULT NULL,
 p_template_comments IN ords_modules.comments%type DEFAULT NULL,
 p_handler_comments IN ords_modules.comments%type DEFAULT NULL);

Description

DEFINE_SERVICE defines a resource module, template, and handler in one call. If
the module already exists, then the module and any existing templates will be replaced
by this definition; otherwise, a new module is created.

Parameters

p_module_name
Name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module.

p_pattern
A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (matches a request for the item
in the emp resource with id of 101) and will also match /objects/emp/. (Matches a
request for the emp resource, because the :id parameter is annotated with the ?
modifier, which indicates that the id parameter is optional.)

p_method
The HTTP Method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

• source_type_collection_feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

• source_type_collection_item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available
when the HTTP method is GET. Result Format: JSON

• source_type_media. Executes a SQL query conforming to a specific format and
turns the result set into a binary representation with an accompanying HTTP
Content-Type header identifying the Internet media type of the representation.
Result Format: Binary

Chapter 6
ORDS.DEFINE_SERVICE

6-12

• source_type_plsql. Executes an anonymous PL/SQL block and transforms any
OUT or IN/OUT parameters into a JSON representation. Available only when the
HTTP method is DELETE, PUT, or POST. Result Format: JSON

• source_type_query || source_type_csv_query. Executes a SQL query and
transforms the result set into either an Oracle REST Data Services legacy
JavaScript Object Notation (JSON) or CSV representation, depending on the
format selected. Available when the HTTP method is GET. Result Format: JSON
or CSV

• source_type_query_one_row. Executes a SQL query returning one row of data
into an Oracle REST Data Services legacy JSON representation. Available when
the HTTP method is GET. Result Format: JSON

• source_type_feed. Executes a SQL query and transforms the results into a
JSON Feed representation. Each item in the feed contains a summary of a
resource and a hyperlink to a full representation of the resource. The first column
in each row in the result set must be a unique identifier for the row and is used to
form a hyperlink of the form: path/to/feed/{id}, with the value of the first
column being used as the value for {id}. The other columns in the row are
assumed to summarize the resource and are included in the feed. A separate
resource template for the full representation of the resource should also be
defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page
The default pagination for a resource handler HTTP operation GET method, that is,
the number of rows to return on each page of a JSON format result set based on a
database query. Default: NULL (defers to the resource module setting).

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBLISHED.

p_etag_type
A type of entity tag to be used by the resource template. An entity tag is an HTTP
Header that acts as a version identifier for a resource. Use entity tag headers to avoid
retrieving previously retrieved resources and to perform optimistic locking when
updating resources. Valid values are HASH, QUERY, NONE:

• HASH (known as Secure HASH): The contents of the returned resource
representation are hashed using a secure digest function to provide a unique
fingerprint for a given resource version.

• QUERY: Manually define a query that uniquely identifies a resource version. A
manually defined query can often generate an entity tag more efficiently than
hashing the entire resource representation.

• NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and
POST only.

Chapter 6
ORDS.DEFINE_SERVICE

6-13

p_module_comments
Comment text.

p_template_comments
Comment text.

p_handler_comments
Comment text.

Usage Notes

Creates a resource module, template, and handler in one call.

Use this procedure instead of the deprecated ORDS.CREATE_SERVICE procedure.

Examples

The following example defines a REST service that retrieves the current user's tickets.

BEGIN
 ORDS.DEFINE_SERVICE(
 p_module_name => 'my.tickets',
 p_base_path => '/my/tickets/',
 p_pattern => '.',
 p_source => 'select t.id "$.id", t.id, t.title from tickets t' ||
 ' where t.owner = :current_user order by t.updated_on desc'
);
END;
/

The following example defines a REST service that retrieves tickets filtered by
category.

BEGIN
 ORDS.DEFINE_SERVICE(
 p_module_name => 'by.category',
 p_base_path => '/by/category/',
 p_pattern => ':category_id',
 p_source => 'select ''../../my/tickets/'' ||
 t.id "$.id", t.id, t.title' ||
 ' from tickets t, categories c, ticket_categories tc' ||
 ' where c.id = :category_id and c.id = tc.category_id and' ||
 ' tc.ticket_id = t.id order by t.updated_on desc'
);
END;
/

6.8 ORDS.DEFINE_TEMPLATE
Format

ORDS.DEFINE_TEMPLATE(
 p_module_name IN ords_modules.name%type,
 p_pattern IN ords_templates.uri_template%type,
 p_priority IN ords_templates.priority%type DEFAULT 0,
 p_etag_type IN ords_templates.etag_type%type DEFAULT 'HASH',
 p_etag_query IN ords_templates.etag_query%type DEFAULT NULL,
 p_comments IN ords_templates.comments%type DEFAULT NULL);

Chapter 6
ORDS.DEFINE_TEMPLATE

6-14

Description

DEFINE_TEMPLATE defines a resource template. If the template already exists, then
the template and any existing handlers will be replaced by this definition; otherwise, a
new template is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (matches a request for the item
in the emp resource with id of 101) and will also match /objects/emp/. (Matches a
request for the emp resource, because the :id parameter is annotated with the ?
modifier, which indicates that the id parameter is optional.)

p_priority
The priority for the order of how the resource template should be evaluated: 0 (low
priority. the default) through 9 (high priority).

p_etag_type
A type of entity tag to be used by the resource template. An entity tag is an HTTP
Header that acts as a version identifier for a resource. Use entity tag headers to avoid
retrieving previously retrieved resources and to perform optimistic locking when
updating resources. Valid values are HASH, QUERY, NONE:

• HASH (known as Secure HASH): The contents of the returned resource
representation are hashed using a secure digest function to provide a unique
fingerprint for a given resource version.

• QUERY: Manually define a query that uniquely identifies a resource version. A
manually defined query can often generate an entity tag more efficiently than
hashing the entire resource representation.

• NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_comments
Comment text.

Usage Notes

he resource template pattern must be unique with a resource module.

Examples

The following example defines a resource for displaying ticket items.

BEGIN
 ORDS.DEFINE_TEMPLATE(
 p_module_name => 'my.tickets',
 p_pattern => '/:id'
);

Chapter 6
ORDS.DEFINE_TEMPLATE

6-15

END;
/

6.9 ORDS.DELETE_MODULE
Format

ORDS.DELETE_MODULE(
 p_module_name IN ords_modules.name%type);

Description

DELETE_MODULE deletes a resource module.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

Usage Notes

If the module does not already exist or is accessible to the current user, then no
exception is raised.

Examples

The following example deletes a resource module.

EXECUTE ORDS.DELETE_MODULE(p_module_name=>'my.tickets');

6.10 ORDS.DELETE_PRIVILEGE
Format

ORDS.DELETE_PRIVILEGE(
 p_name IN sec_privileges.name%type);

Description

DELETE_PRIVILEGE deletes a provilege.

Parameters

p_name
Name of the privilege.

Usage Notes

If the privilege does not already exist or is not accessible to the current user, then no
exception is raised.

Examples

The following example deletes a privilege.

EXECUTE ORDS.DELETE_PRIVILEGE(p_name=>'tickets.privilege');

Chapter 6
ORDS.DELETE_MODULE

6-16

6.11 ORDS.DELETE_ROLE
Format

ORDS.DELETE_ROLE(
 p_role_name IN sec_roles.name%type);

Description

DELETE_ROLE deletes the named role.

Parameters

p_name
Name of the role.

Usage Notes

This will also delete any association between the role and any privileges that reference
the role.

No exception is produced if the role does not already exist.

Examples

The following example deletes a role.

EXECUTE ORDS.DELETE_ROLE(p_role_name=>'Tickets User');

6.12 ORDS.DROP_REST_FOR_SCHEMA
Format

ORDS.DROP_REST_FOR_SCHEMA(
 p_schema ords_schemas.parsing_schema%type DEFAULT NULL);

Description

DROP_REST_FOR_SCHEMA deletes all auto-REST Oracle REST Data Services
metadata for the associated schema.

Parameters

p_schema
Name of the schema.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS.Enable_Schema
procedure.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata
for the TICKETS schema.

EXECUTE ORDS.DROP_REST_FOR_SCHEMA('tickets');

Chapter 6
ORDS.DELETE_ROLE

6-17

Related Topics

• ORDS.ENABLE_SCHEMA

6.13 ORDS.ENABLE_OBJECT
Format

ORDS.ENABLE_OBJECT(
 p_enabled IN boolean DEFAULT TRUE,
 p_schema IN ords_schemas.parsing_schema%type DEFAULT NULL,
 p_object IN ords_objects.parsing_object%type,
 p_object_type IN ords_objects.type%type DEFAULT 'TABLE',
 p_object_alias IN ords_objects.object_alias%type DEFAULT NULL,
 p_auto_rest_auth IN boolean DEFAULT NULL);

Description

ENABLE_OBJECT enables Oracle REST Data Services access to a specified table or
view in a schema.

Parameters

p_enabled
TRUE to enable access; FALSE to disable access.

p_schema
Name of the schema for the table or view.

p_object
Name of the table or view.

p_object_type
Type of the object: TABLE (default) or VIEW.

p_object_alias
Alias of the object.

p_auto_rest_auth
Controls whether Oracle REST Data Services should require user authorization
before allowing access to the Oracle REST Data Services metadata for this object. If
this value is TRUE, then the service is protected by the following roles:

• oracle.dbtools.autorest.any.schema

• oracle.dbtools.role.autorest.<SCHEMANAME>.<OBJECTNAME>

Usage Notes

Only database users with the DBA role can enable/access to objects that they do now
own.

Examples

The following example enables a table named CATEGORIES.

EXECUTE ORDS.ENABLE_OBJECT(p_object=>'CATEGORIES');

The following example enables a view named TICKETS_FEED.

Chapter 6
ORDS.ENABLE_OBJECT

6-18

BEGIN
 ORDS.ENABLE_OBJECT(
 p_object => 'TICKETS_FEED',
 p_object_type => 'VIEW'
);
END;
/

6.14 ORDS.ENABLE_SCHEMA
Format

ORDS.ENABLE_SCHEMA
 p_enabled IN boolean DEFAULT TRUE,
 p_schema IN ords_schemas.parsing_schema%type DEFAULT NULL,
 p_url_mapping_type IN ords_url_mappings.type%type DEFAULT 'BASE_PATH',
 p_url_mapping_pattern IN ords_url_mappings.pattern%type DEFAULT NULL,
 p_auto_rest_auth IN boolean DEFAULT NULL);

Description

ENABLE_SCHEMA enables Oracle REST Data Services to access the named
schema.

Parameters

p_enabled
TRUE to enable Oracle REST Data Services access; FALSE to disable Oracle REST
Data Services access.

p_schema
Name of the schema. If the p_schema parameter is omitted, then the current schema
is enabled.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

p_auto_rest_auth
For a schema, controls whether Oracle REST Data Services should require user
authorization before allowing access to the Oracle REST Data Services metadata
catalog of this schema.

Usage Notes

Only database users with the DBA role can enable or disable a schema other than
their own.

Examples

The following example enables the current schema.

EXECUTE ORDS.ENABLE_SCHEMA;

Chapter 6
ORDS.ENABLE_SCHEMA

6-19

6.15 ORDS.PUBLISH_MODULE
Format

ORDS.PUBLISH_MODULE(
 p_module_name IN ords_modules.name%type,
 p_status IN ords_modules.status%type DEFAULT 'PUBLISHED');

Description

PUBLISH_MODULE changes the publication status of an Oracle REST Data Services
resource module.

Parameters

p_module_name
Current name of the RESTful service module. Case sensitive.

p_status
Publication status. Valid values: PUBLISHED (default) or NOT_PUBLISHED.

Usage Notes

(None.)

Examples

The following example publishes a previously defined module named my.tickets.

EXECUTE ORDS.PUBLISH_MODULE(p_module_name=>'my.tickets');

6.16 ORDS.RENAME_MODULE
Format

ORDS.RENAME_MODULE(
 p_module_name IN ords_modules.name%type,
 p_new_name IN ords_modules.name%type DEFAULT NULL,
 p_new_base_path IN ords_modules.uri_prefix%type DEFAULT NULL);

Description

RENAME_MODULE lets you change the name or the base path, or both, of an Oracle
REST Data Services resource module.

Parameters

p_module_name
Current name of the RESTful service module. Case sensitive.

p_new_name
New name to be assigned to the RESTful service module. Case sensitive. If this
parameter is null, the name is not changed.

Chapter 6
ORDS.PUBLISH_MODULE

6-20

p_new_base_path
The base of the URI to be used to access this RESTful service. Example: hr/ means
that all URIs starting with hr/ will be serviced by this resource module. If this
parameter is null, the base path is not changed.

Usage Notes

Both the new resource module name and the base path must be unique within the
enabled schema.

Examples

The following example renames resource module my.tickets to old.tickets.

BEGIN
 ORDS.RENAME_MODULE(
 p_module_name =>'my.tickets',
 p_new_name=>'old.tickets',
 p_new_base_path=>'/old/tickets/');
END;
/

6.17 ORDS.RENAME_PRIVILEGE
Format

ORDS.RENAME_PRIVILEGE(
 p_name IN sec_privileges.name%type,
 p_new_name IN sec_privileges.name%type);

Description

RENAME_PRIVILEGE renames a privilege.

Parameters

p_name
Current name of the privilege.

p_new_name
New name to be assigned to the privilege.

Usage Notes

(None.)

Examples

The following example renames the privilege tickets.privilege to
old.tickets.privilege.

BEGIN
 ORDS.RENAME_PRIVILEGE(
 p_name =>'tickets.privilege',
 p_new_name=>'old.tickets.privilege');
END;
/

Chapter 6
ORDS.RENAME_PRIVILEGE

6-21

6.18 ORDS.RENAME_ROLE
Format

ORDS.RENAME_ROLE(
 p_role_name IN sec_roles.name%type,
 p_new_name IN sec_roles.name%type);

Description

RENAME_ROLE renames a role.

Parameters

p_role_name
Current name of the role.

p_new_name
New name to be assigned to the role.

Usage Notes

p_role_name must exist.

Examples

The following example renames an existing role.

BEGIN
 ORDS.RENAME_ROLE(
 p_role_name=>'Tickets User',
 p_new_name=>'Legacy Tickets User');
END;
/

6.19 ORDS.SET_MODULE_ORIGINS_ALLOWED
Format

ORDS.SET_MODULE_ORIGINS_ALLOWED
 p_module_name IN ords_modules.name%type,
 p_origins_allowed IN sec_origins_allowed_modules.origins_allowed%type);

Description

SET_MODULE_ORIGINS_ALLOWED configures the allowed origins for a resource
module. Any existing allowed origins will be replaced.

Parameters

p_module_name
Name of the resource module.

Chapter 6
ORDS.RENAME_ROLE

6-22

p_origins_allowed
A comma-separated list of URL prefixes. If the list is empty, any existing origins are
removed.

Usage Notes

To indicate no allowed origins for a resource module (and remove any existing allowed
origins), specify an empty p_origins_allowed value.

Examples

The following restricts the resource module my.tickets to two specified origins.

BEGIN
 ORDS.SET_MODULE_ORIGINS_ALLOWED(
 p_module_name => 'my.tickets',
 p_origins_allowed => 'http://example.com,https://example.com');
END;
/

6.20 ORDS.SET_URL_MAPPING
Format

ORDS.SET_URL_MAPPING
 p_schema IN ords_schemas.parsing_schema%type DEFAULT NULL,
 p_url_mapping_type IN ords_url_mappings.type%type,
 p_url_mapping_pattern IN ords_url_mappings.pattern%type);

Description

SET_URL_MAPPING configures how the specified schema is mapped to request
URLs.

Parameters

p_schema
Name of the schema to map. The default is the schema of the current user.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

Usage Notes

Only DBA users can update the mapping of a schema other than their own.

Examples

The following example creates a BASE_PATH mapping for the current user.

BEGIN
 ORDS.SET_URL_MAPPING(
 p_url_mapping_type => 'BASE_PATH',
 p_url_mapping_pattern => 'https://example.com/ords/ticketing'
);

Chapter 6
ORDS.SET_URL_MAPPING

6-23

END;
/

Chapter 6
ORDS.SET_URL_MAPPING

6-24

7
Oracle REST Data Services Administration
PL/SQL Package Reference

The Oracle REST Data Services (ORDS) ADMIN PL/SQL package contains
subprograms (procedures and functions) for developing and administering the
RESTful services using Oracle REST Data Services for a privileged user.

Any user who has the execution rights on the ORDS_ADMIN package is considered to be
an administrator. The predefined database role, ORDS_ADMINISTRATOR_ROLE is
provided for this purpose.

The ORDS_ADMIN package is identical to the ORDS package except for the AUTHID
CURRENT_USER right, without the deprecated methods and a p_schema parameter
for every method where the target schema must be specified.

Related Topics

• Oracle REST Data Services PL/SQL Package Reference

7.1 Example Subprograms for Developing and
Administering RESTful Services

This section provides example subprograms that are used for developing and
administering the RESTful services using ORDS.

Following are some of the example subprograms:

Example 7-1 ORDS_ADMIN.CREATE_ROLE

Format

ORDS_ADMIN.CREATE_ROLE(
 p_schema IN ords_schemas.parsing_schema%type,
 p_role_name IN sec_roles.name%type);

The following example creates a role:

ORDS_ADMIN.CREATE_ROLE(
 p_schema IN ords_schemas.parsing_schema%type,
 p_role_name IN sec_roles.name%type);

BEGIN
 ORDS_ADMIN.CREATE_ROLE(
 p_schema => 'tickets',
 p_role_name => 'Tickets User');
 };

7-1

END;
/

Example 7-2 ORDS_ADMIN.DEFINE_PARAMETER

Format

ORDS_ADMIN.DEFINE_PARAMETER(
 p_schema IN ords_schemas.parsing_schema%type,
 p_module_name IN ords_modules.name%type,
 p_pattern IN ords_templates.uri_template%type,
 p_method IN ords_handlers.method%type,
 p_name IN ords_parameters.name%type ,
 p_bind_variable_name IN ords_parameters.bind_variable_name%type
 DEFAULT NULL,
 p_source_type IN ords_parameters.source_type%type DEFAULT
'HEADER',
 p_param_type IN ords_parameters.param_type%type DEFAULT
'STRING',
 p_access_method IN ords_parameters.access_method%type DEFAULT 'IN',
 p_comments IN ords_parameters.comments%type DEFAULT NULL);

The following example defines an outbound parameter on the POST handler to store
the location of the created ticket:

BEGIN
 ORDS_ADMIN.DEFINE_PARAMETER(
 p_schema => 'tickets',
 p_module_name => 'my.tickets',
 p_pattern => '.',
 p_method => 'POST',
 p_name => 'X-APEX-FORWARD',
 p_bind_variable_name => 'location',
 p_source_type => 'HEADER',
 p_access_method => 'OUT'
);
END;
/

Table 7-1 p-schema Parameter Description

Parameter Description

p_schema Specifies the name of the schema. This
parameter is mandatory.

Chapter 7
Example Subprograms for Developing and Administering RESTful Services

7-2

8
Implicit Parameters

This chapter describes the implicit parameters used in REST service handlers that are
not explicitly declared. Oracle REST Data Services (ORDS) adds these parameters
automatically to the resource handlers.

8.1 List of Implicit Parameters
The following table lists the implicit parameters:

Note:

Parameter names are case sensitive. For example, :CURRENT_USER is not
a valid implicit parameter.

Table 8-1 List of Implicit Parameters

Name Type Access
Mode

HTTP
Header

Descri
ption

Introdu
ced

:body BLOB IN N/A Specifie
s the
body of
the
request
as a
tempora
ry
BLOB.

2.0

:body_
text

CLOB IN N/A Specifie
s the
body of
the
request
as a
tempora
ry
CLOB.

18.3

8-1

Table 8-1 (Cont.) List of Implicit Parameters

Name Type Access
Mode

HTTP
Header

Descri
ption

Introdu
ced

:conte
nt_typ
e

VARCH
AR

IN Conten
t-Type

Specifie
s the
MIME
type of
the
request
body,
as
indicate
d by the
Content
-Type
request
header.

2.0

:curre
nt_use
r

VARCH
AR

IN N/A Specifie
s the
authenti
cated
user for
the
request.
If no
user is
authenti
cated,
then the
value is
set to
null.

2.0

:forwa
rd_loc
ation

VARCH
AR

OUT X-
ORDS-
FORWAR
D-
LOCATI
ON

Specifie
s the
location
where
Oracle
REST
Data
Service
s must
forward
a GET
request
to
produce
the
respons
e for
this
request.

18.3

Chapter 8
List of Implicit Parameters

8-2

Table 8-1 (Cont.) List of Implicit Parameters

Name Type Access
Mode

HTTP
Header

Descri
ption

Introdu
ced

:fetch
_offse
t

NUMBE
R

IN N/A Specifie
s the
zero-
based
offset of
the first
row to
be
displaye
d on a
page.

18.3

:fetch
_size

NUMBE
R

IN N/A Specifie
s the
maximu
m
number
of rows
to be
retrieve
d on a
page.

18.3

:page_
offset

NUMBE
R

IN N/A Specifie
s the
zero
based
page
offset in
a
paginat
ed
request.

Note:
The :p
age_of
fset
paramet
er is
depreca
ted.
Use :r
ow_off
set
paramet
er
instead.

2.0

Chapter 8
List of Implicit Parameters

8-3

Table 8-1 (Cont.) List of Implicit Parameters

Name Type Access
Mode

HTTP
Header

Descri
ption

Introdu
ced

:page_
size

NUMBE
R

IN N/A Specifie
s the
maximu
m
number
of rows
to be
retrieve
d on a
page.

The :pa
ge_siz
e
paramet
er is
depreca
ted.
Use :f
etch_s
ize
parame
ter
instead.

2.0

:row_o
ffset

NUMBE
R

IN N/A Specifie
s the
one-
based
index of
the first
row to
be
displaye
d in a
paginat
ed
request.

3.0

:row_c
ount

NUMBE
R

IN N/A Specifie
s the
one-
based
index of
the last
row to
be
displaye
d in a
paginat
ed
request.

3.0

Chapter 8
List of Implicit Parameters

8-4

Table 8-1 (Cont.) List of Implicit Parameters

Name Type Access
Mode

HTTP
Header

Descri
ption

Introdu
ced

:statu
s_code

NUMBE
R

OUT X-
ORDS-
STATUS
-CODE

Specifie
s the
HTTP
status
code for
the
request.

18.3

8.1.1 About the :body parameter

The :body implicit parameter is used in the resource handlers to receive the contents
of the request body as a temporary BLOB.

Note:

Only POST or PUT requests can have a request body. The HTTP
specification does not permit request bodies on GET or DELETE requests.

Example 8-1 Example

The following example illustrates a PL/SQL block that stores the request body in a
database table:

begin
 insert into tab (content) values (:body);
end;

Note:

The :body implicit parameter must be dereferenced exactly once in a
PL/SQL block. If it is dereferenced more than once, then the second and
subsequent dereferences will appear to be empty. This is because the client
sends the request body only once.

The following example will not work as intended because it dereferences the :body
parameter twice:

begin
 insert into tab1(content) values (:body); -- request body will be inserted
 insert into tab2(content) values (:body); -- an empty blob will be
inserted
end;

Chapter 8
List of Implicit Parameters

8-5

To avoid this limitation, the :body parameter value must be assigned to a local PL/SQL
variable before it is used. This enables the local variable to be dereferenced more than
once:

declare
 l_content blob := :body;
begin
 insert into tabl(content) values(l_content);
 insert into tab2(content) values(l_content);
end;

8.1.2 About the :body_text Parameter

The :body_text implicit parameter is used in the resource handlers to receive the
contents of the request body as a temporary CLOB. Typically, the content of the
request body is textual (for example JSON or HTML content) and so, receiving the
request body as a CLOB saves the resource handler author from the effort of
converting the :body BLOB parameter to a CLOB instance. Similar to the :body
parameter, the :body_text parameter must be dereferenced only once in a PL/SQL
block.

It is recommended to assign the :body_text value to a local PL/SQL variable, and the
PL/SQL variable is used throughout the PL/SQL block.

8.1.3 About the :content_type Parameter

The :content_type implicit parameter provides the value of the Content-Type request
header supplied with the request. If no Content-Type header is present in the request,
then a null value is returned.

8.1.4 About the :current_user Parameter

The :current_user implicit parameter provides the identity of the user authenticated
for the request.

Note:

In a scenario, where the user is not authenticated, the value is set to null. For
example, if the request is for a public resource, then the value will be set to
null.

8.1.5 About the :status_code Parameter

The :status_code implicit parameter enables a resource handler to indicate the HTTP
status code value to include in a response. The value must be one of the numeric
values defined in the HTTP Specification document.

Chapter 8
List of Implicit Parameters

8-6

https://tools.ietf.org/html/rfc7231#section-6

8.1.6 About the :forward_location Parameter

The :forward_location implicit parameter provides a mechanism for PL/SQL based
resource handlers to produce a response for a request.

Consider a POST request that results in the creation of a new resource. Typically, the
response of a POST request for REST APIs contains the location of the newly created
resource (in the Location response header) along with the representation of the new
resource. The presence of the Location header in the response indicates that there
must be a GET resource handler that can produce a response for the specified
location.

Instead of applying logic to the POST resource handler to render the representation of
the new resource in the response, the resource handler can delegate that task to the
existing GET Resource Handler.

The following resource handler defines a POST handler that delegates the generation
of the response to a GET resource handler:

ords.define_handler(
 p_module_name => 'tickets.collection',
 p_pattern => '.',
 p_method => 'POST',
 p_mimes_allowed => 'application/json',
 p_source_type => ords.source_type_plsql,
 p_source => '
 declare
 l_owner varchar2(255);
 l_payload clob;
 l_id number;
 begin
 l_payload := :body_text;
 l_owner := :current_user;
 l_id := ticket_api.create_ticket(
 p_json_entity => l_payload,
 p_author => l_owner
);
 :forward_location := ''./'' || l_id;
 :status_code := 201;
 end;
 '
);

Where:

• The ords.define_handler API is used to add a POST handler to an existing
resource module named tickets.collection.

• The p_pattern with value '.' indicates that the POST handler should be bound to
the root resource of the resource module. If the base path of the
tickets.collection' is /tickets/, then the POST handler is bound to the /
tickets/ URL path.

Chapter 8
List of Implicit Parameters

8-7

• The p_mimes_allowed value indicates that the POST request must have a
Content-Type header value of application/json'.

• The p_source_type value indicates that the source of the POST handler is a
PL/SQL block.

• The p_source value contains the source of the PL/SQL block:

Where:

Note:

The :body_text implicit parameter is assigned to a local variable, so
that it can be dereferenced more than once.

– The identity of the user, making the POST request, is determined from
the :current_user implicit parameter.

– The PL/SQL block, delegates the task of storing the request payload to a
PL/SQL package level function. The PL/SQL block should only contain logic to
bridge from the HTTP request to the PL/SQL package invocation.

Note:

When all the data modification operations are wrapped in a PL/SQL
API, the PL/SQL block can be independently unit tested. Long and
complicated PL/SQL blocks are an anti-pattern indicative of code
that is difficult to test and maintain.

– The PL/SQL package level function returns the ID of the newly created
resource.

– The :forward_location implicit parameter is assigned the value of './' ||
l_id. For example, if the value of l_id is 4256, then the value
of :forward_location is /tickets/4256 .

When ORDS evaluates the preceding PL/SQL block and checks the value
assigned to the :forward_location implicit parameter, it initiates a GET
request against the specified location (for example, /tickets/4256) and return
the response generated by the GET request as the response of the POST
request. In addition, ORDS includes a location response header with the fully
resolved URL of the :forward_location value.

– The :status_code implicit parameter is assigned the HTTP response status
code value. The 201 (Created) status code indicates that a new resource is
created. This value will override the status code generated by the GET
request.

8.1.7 About the Pagination Implicit Parameters

The following table lists the pagination implicit parameters:

Chapter 8
List of Implicit Parameters

8-8

Note:

Oracle REST Data Services reserves the use of the query parameters, page,
offset, and limit. It is not permitted to define REST services that use
named bind parameters with any of the preceding query parameter names.
Alternatively, REST services must use the appropriate pagination implicit
parameters defined in the following table:

Table 8-2 Pagination Implicit Parameters

Name Description Status

:page_offset Specifies the zero based page
offset in a pagination request.

Deprecated

:page_size Specifies the maximum
number of rows to be retrieved
on a page.

Deprecated

:row_offset Specifies the index of the first
row to be displayed in a
pagination request.

Not Recommended

:row_count Specifies the index of the last
row to displayed in a
pagination request.

Not Recommended

:fetch_offset Specifies the zero based index
of the first row to be displayed
on a page.

Recommended

:fetch_size Specifies the maximum
number of rows to be retrieved
on a page.

Recommended

8.1.7.1 About the :page_offset Parameter

The :page_offset implicit parameter is provided for backward compatibility, so it is
used only with source_type_query source type resource handlers.

Note:

• The source_type_query source type is deprecated, instead use the
source_type_collection feed parameter.

• The :page_offset implicit parameter is deprecated, instead use
the :row_offset implicit parameter.

8.1.7.2 About the :page_size Parameter

The :page_size implicit parameter is used to indicate the maximum number of rows to
be retrieved on a page. :page_size parameter is provided for backward compatibility.
This parameter is deprecated, instead use :fetch_size implicit parameter.

Chapter 8
List of Implicit Parameters

8-9

8.1.7.3 About the :row_offset Parameter

The :row_offset implicit parameter indicates the number of the first row to be
displayed on a page. The :row_offset implicit parameter is used when you are using
both a wrapper pagination query and row_number() (used in Oracle 11g and earlier
releases). Starting Oracle 12c or later releases, Oracle recommends using
the :fetch_offset implicit parameter and a row limiting clause instead of
the :row_offset parameter.

8.1.7.4 About the :row_count Parameter

The :row_count implicit parameter is used to indicate the number of rows to be
displayed on a page. The :row_count value is the value of the sum of :row_offset
and the pagination size. The :row_count implicit parameter is useful when
implementing pagination using a wrapper pagination query and row_number()method
that was used in Oracle database 11g and earlier releases. Starting Oracle Database
release 12c or later, Oracle recommends that you use :fetch_size parameter and a
row limiting clause instead.

8.1.7.5 About the :fetch_offset Parameter

The :fetch_offset implicit parameter is used to indicate the zero based offset of the
first row to display in a given page. The :fetch_offset implicit parameter is used
when you implement pagination using a row limiting clause, which is recommended for
use with Oracle 12c and later releases.

8.1.7.6 About the :fetch_size Parameter

The :fetch_size implicit parameter is used to indicate the maximum number of rows
to retrieve on a page. ORDS always sets the value of :fetch_size to the pagination
size plus one. The presence or absence of the extra row helps ORDS in determining if
there is a subsequent page in the results or not.

Note:

The extra row that is queried is never displayed on the page.

8.1.7.7 About Automatic Pagination
This section describes the automatic pagination process.

If a GET resource handler source type, source_type_collection_feed or
source_type_query has a non zero pagination size (p_items_per_page) and the
source of the GET resource handler does not dereference any of the implicit
pagination parameters discussed in the preceding sections, then ORDS automatically
wraps the query in a pagination clause to constrain the query results to include only
the values from the requested page. With automatic pagination, the resource handler

Chapter 8
List of Implicit Parameters

8-10

author needs to specify only the pagination size, and ORDS automatically handles the
remaining effort in paginating the resource.

Note:

All resource modules have a default pagination size (p_items_per_page) of
25. So, by default automatic pagination is enabled.

8.1.7.8 About Manual Pagination
This section describes the manual pagination process.

In some scenarios, a GET resource handler needs to perform pagination on its own
rather than delegating the pagination process to ORDS. In such cases, the source of
the GET resource handler will dereference one or more implicit pagination parameters
discussed in the preceding sections.

Note:

The GET resource handler must specify the desired pagination size so that
ORDS can correctly calculate the required values for the implicit pagination
parameters.

Examples

Manual pagination example using row limiting clause

The following example defines a REST service that uses a row limiting clause to
paginate the query result set. This is the recommended way to implement manual
pagination:

begin
 ords.define_service(
 p_module_name => 'example.paging',
 p_base_path => '/example/',
 p_pattern => '/paged',
 p_items_per_page => 7,
 p_source => 'select * from emp e order by empno desc
offset :fetch_offset rows fetch next :fetch_size rows only'
);
 commit;
end;

Manual pagination example using row_number() method

The following example defines a REST service that uses a wrapper query and
row_number() method. This approach is not recommended.

begin
ords.define_service(
 p_module_name => 'example.paging',

Chapter 8
List of Implicit Parameters

8-11

 p_base_path => '/example/',
 p_pattern => '/paged',
 p_items_per_page => 7,
 p_source => 'select * from (select q_.* , row_number() over (order by
1) rn__ from (select * from emp e order by empno desc) q_)where rn__
between :row_offset and :row_count'
);
 commit;
end;

Chapter 8
List of Implicit Parameters

8-12

9
OAUTH PL/SQL Package Reference

The OAUTH PL/SQL package contains procedures for implementing OAuth
authentication using Oracle REST Data Services.

Related Topics

• Using the Oracle REST Data Services PL/SQL API

9.1 OAUTH.CREATE_CLIENT
Format

OAUTH.CREATE_CLIENT(
 p_name VARCHAR2 IN,
 p_grant_type VARCHAR2 IN,
 p_owner VARCHAR2 IN DEFAULT NULL,
 p_description VARCHAR2 IN DEFAULT NULL,
 p_allowed_origins VARCHAR2 IN DEFAULT NULL,
 p_redirect_uri VARCHAR2 IN DEFAULT NULL,
 p_support_email VARCHAR2 IN DEFAULT NULL,
 p_support_uri VARCHAR2 IN DEFAULT NULL,
 p_privilege_names VARCHAR2 IN)

Description

Creates an OAuth client registration.

Parameters

p_name
Name for the client, displayed to the end user during the approval phase of three-
legged OAuth. Must be unique.

p_grant_type
Must be one of authorization_code, implicit, or client_credentials.

p_owner
Name of the party that owns the client application.

p_description
Description of the purpose of the client, displayed to the end user during the approval
phase of three-legged OAuth. May be null if p_grant_type is client_credentials;
otherwise, must not be null.

p_allowed_origins
A comma-separated list of URL prefixes. If the list is empty, any existing origins are
removed.

9-1

p_redirect_uri
Client-controlled URI to which redirect containing an OAuth access token or error will
be sent. May be null if p_grant_type is client_credentials; otherwise, must not be
null.

p_support_email
The email where end users can contact the client for support.

p_support_uri
The URI where end users can contact the client for support. Example: http://
www.myclientdomain.com/support/

p_privilege_names
List of comma-separated privileges that the client wants to access.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples

The following example creates an OAuth client registration.

BEGIN
 OAUTH.create_client(
 'CLIENT_TEST',
 'authorization_code',
 'test_user',
 'This is a test description.',
 '',
 'https://example.org/my_redirect/#/',
 'test@example.org',
 'https://example.org/help/#/',
 'MyPrivilege'
);
 COMMIT;
END;
/

9.2 OAUTH.DELETE_CLIENT
Format

OAUTH.DELETE_CLIENT(
 p_name VARCHAR2 IN);

Description

Deletes an OAuth client registration.

Parameters

p_name
Name of the client registration to be deleted.

Chapter 9
OAUTH.DELETE_CLIENT

9-2

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples

The following example deletes an OAuth client registration.

BEGIN
 OAUTH.delete_client(
 'CLIENT_TEST'
);
 COMMIT;
END;
/

9.3 OAUTH.GRANT_CLIENT_ROLE
Format

OAUTH.GRANT_CLIENT_ROLE(
 p_client_name VARCHAR2 IN,
 p_role_name VARCHAR2 IN);

Description

Grant an OAuth client the specified role, enabling clients performing two-legged OAuth
to access privileges requiring the role.

Parameters

p_client_name
Name of the OAuth client.

p_role_name
Name of the role to be granted.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples

The following example creates a role and grants that role to an OAuth client.

BEGIN
 ORDS.create_role(p_role_name => 'CLIENT_TEST_ROLE');

 OAUTH.grant_client_role(
 'CLIENT_TEST',
 'CLIENT_TEST_ROLE'
);
 COMMIT;
END;
/

Chapter 9
OAUTH.GRANT_CLIENT_ROLE

9-3

9.4 OAUTH.RENAME_CLIENT
Format

OAUTH.RENAME_CLIENT(
 p_name VARCHAR2 IN,
 p_new_name VARCHAR2 IN);

Description

Renames a client.

Parameters

p_name
Current name for the client.

p_new_name
New name for the client.

Usage Notes

The client name is displayed to the end user during the approval phase of three-
legged OAuth.

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples

The following example renames a client.

BEGIN
 OAUTH.rename_client(
 'CLIENT_TEST',
 'CLIENT_TEST_RENAMED'
);
 COMMIT;
END;
/

9.5 OAUTH.REVOKE_CLIENT_ROLE
Format

OAUTH.REVOKE_CLIENT_ROLE(
 p_client_name VARCHAR2 IN,
 p_role_name VARCHAR2 IN);

Description

Revokes the specified role from an OAuth client, preventing the client from accessing
privileges requiring the role through two-legged OAuth.

Chapter 9
OAUTH.RENAME_CLIENT

9-4

Parameters

p_client_name
Name of the OAuth client.

p_role_name
Name of the role to be revoked

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

Examples

The following example revokes a specified role from an OAuth client.

BEGIN
 OAUTH.revoke_client_role(
 'CLIENT_TEST_RENAMED',
 'CLIENT_TEST_ROLE'
);
 COMMIT;
END;
/

9.6 OAUTH.UPDATE_CLIENT
Format

OAUTH.UPDATE_CLIENT(
 p_name VARCHAR2 IN,
 p_description VARCHAR2 IN,
 p_origins_allowed VARCHAR2 IN,
 p_redirect_uri VARCHAR2 IN,
 p_support_email VARCHAR2 IN,
 p_suppor_uri VARCHAR2 IN,
 p_privilege_names t_ords_vchar_tab IN);

Description

Updates the client information (except name). Any null values will not alter the existing
client property.

Parameters

p_name
Name of the client that requires the owner, description, origins allowed, support e-
mail, support URI, and/or privilege modification.

p_description
Description of the purpose of the client, displayed to the end user during the approval
phase of three-legged OAuth.

Chapter 9
OAUTH.UPDATE_CLIENT

9-5

p_redirect_uri
Client-controlled URI to which a redirect containing the OAuth access token/error will
be sent. If this parameter is null, the existing p_redirect_uri value (if any) is not
changed.

p_support_email
The email address where end users can contact the client for support.

p_support_uri
The URI where end users can contact the client for support. Example: http://
www.myclientdomain.com/support/

p_privilege_names
List of names of the privileges that the client wishes to access.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this
procedure.

If you want to rename the client, use the OAUTH.RENAME_CLIENT procedure.

Example to Updates the Description of the Specified Client

The following example updates the description of the client with the name matching
the value for p_name.

BEGIN
 ORDS_METADATA.OAUTH.update_client(
 p_name => 'CLIENT_TEST_RENAMED',
 p_description => 'The description was altered',
 p_origins_allowed => null,
 p_redirect_uri => null,
 p_support_email => null,
 p_support_uri => null,
 p_privilege_names => null);
 COMMIT;
END;
/

Example 9-1 Example to Add Multiple Privileges

The following example adds a second privilege:

declare
 my_privs t_ords_vchar_tab := t_ords_vchar_tab ();
begin
 my_privs.EXTEND (3);
 my_privs(1):='tst.privilege1';
 my_privs(2):='tst.privilege2';
.
 oauth.update_client(
 p_name => 'Test_Client',
 p_owner => 'scott',
 p_description => 'Description',
 p_grant_type => 'client_credentials',
 p_redirect_uri => '/abc/efg/',
 p_privilege_names => my_privs);
commit;
end;

Chapter 9
OAUTH.UPDATE_CLIENT

9-6

Related Topics

• OAUTH.RENAME_CLIENT

Chapter 9
OAUTH.UPDATE_CLIENT

9-7

A
Oracle REST Data Services Third-Party
License Information

A.1 Oracle REST Data Services Third Party List

Licensed
Technology ID

Licensed
Technology

Version License

7521 xml-apis.jar 1.3.04 Apache 2.0

22401 Commons Logging 1.0.4 Apache 2.0

29682 Font Awesome 4.6 SIL OFL 1.1

36065 Commons FileUpload 1.3.3 Apache 2.0

36854 Javassist 3.22.0-CR2 Apache 2.0

37851 avalon.framework.jar 4.3.1 Apache 2.0

39174 commons-io 2.2 Apache 2.0

39830 JavaScript Extension
Toolkit (JET)

4.1.0 Oracle

42191 jackson-core 2.9.5 Apache 2.0

43662 Batik SVG Toolkit 1.10 Apache 2.0

43724 Jetty 9.4.11 Apache 2.0

44177 Apache FOP 2.3 Apache 2.0

44297 PDFBox 2.0.11 Apache 2.0

44826 XML Graphics
Commons

2.3 Apache 2.0

44904 Google Guava 26.0 Apache 2.0

A-1

B
Oracle REST Data Services Database
Type Mappings

This appendix describes the REST Data Services database type mappings along with
the structural database types.

B.1 Oracle Built-in Types

Data Type JSON
Data
Type

REST
Versi
on

Value Example Description

NUMBER number v1 "big" :
1234567890

"bigger" :
1.2345678901e1
0

Represented with all significant
digits. An exponent is used when
the number exceeds 10 digits.

RAW string Custo
m

"code" :
"SEVMTE8gV09ST
EQh"

Base64 bit encoding is used

DATE string v1.2 "start" :
"1995-06-02T04
:29:11Z"

Represented using ISO 8601 format
in UTC time zone

TIMESTAMP string v1.2 when :
"1995-06-02T04
:29:11.002Z"

Represented using ISO 8601 format
in UTC time zone

TIMESTAMP WITH
LOCAL TIME
ZONE

string v1.2 "at" :
"1995-06-02T04:2
9:11.002Z"

Represented using ISO 8601
format. The local time zone is
converted to UTC time zone as the
local time zone specification does
not apply for a transfer encoding.

CHAR string v1 "message" :
"Hello World!
"

Represented with trailing spaces.
This may be required as padding for
PUT or POST methods. For
example, "abc ".

ROWID string Custo
m

"id" :
"AAAGq9AAEAAAA
0bAAA"

Output as the native Oracle textual
representation. For example,
equivalent to the following
conversion: SELECT
ROWIDTOCHAR(id) id FROM
DUAL.

B-1

Data Type JSON
Data
Type

REST
Versi
on

Value Example Description

UROWID string Custo
m

"uid" :
"AAAGq9AAEAAAA
0bAAA"

Output as the native Oracle textual
representation. For example,
equivalent to the following
conversion: SELECT CAST(uid as
VARCHAR(4000)) id FROM DUAL.

FLOAT number v1 *as NUMBER

NCHAR string v1 "message" :
"Hello World!
"

Represented using unicode
character where the character is not
supported by the body character
set.

NVARCHAR2 string v1 "message" :
"Hello World!"

Represented using unicode
character where the character is not
supported by the body character
set.

VARCHAR2 string v1 "message" :
"Hello World!"

BINARY_FLOAT number v1 *as NUMBER

BINARY_DOUBLE number v1 *as NUMBER

TIMESTAMP WITH
TIME ZONE

object v1.2
"event" :
"1995-06-02T0
4:29:11.002Z"
"when" :
"1995-06-02T0
4:29:11.002Z"

Represented using ISO 8601 format
in UTC time zone. The value
represents the same point in time
but the original time zone is lost.

INTERVAL YEAR
TO MONTH

object Custo
m "until" :

"P-123Y3M"
"until" :
"P3M"

Represented using ISO 8601
"Duration" format. Zero duration
components are considered
optional.

INTERVAL DAY TO
SECOND

object Custo
m "until" :

"P-5DT3H55M"
"until" :
"PT3H55M"

Represented using ISO 8601
"Duration" format. Zero duration
components are considered optional

LONG string v1 *as VARCHAR

LONG RAW string Custo
m

"long_code" :
{ "SEVMTE8gV09
STEQh"

Appendix B
Oracle Built-in Types

B-2

Data Type JSON
Data
Type

REST
Versi
on

Value Example Description

BLOB string Custo
m "bin" : {

"base64_value
" :
"bGVhc3VyZS4=
"
}

CLOB string Custo
m "text" : {

"value" :
"Hello World!
"
}

BFILE Object Custo
m "file" : {

"locator" :
"TARGET_DIR",
"filename" :
"myfile"
}

BOOLEAN true|
false

v1
"right" :
true
"wrong" :
false

B.2 Handling Structural Database Types
This section explains how structural database types are handled.

Object Types

An exception to this is where ORDS has adopted an accepted encoding for an
Industry Standard type such as GeoJSON.

Following is a sample code snippet:

"address" : {

"number" : 42,

"street" : "Wallaby Way",

Appendix B
Handling Structural Database Types

B-3

"city" : "Sydney"

}

Inheritance

Object type inheritance is not supported. For marshalling purposes, all object types are
treated as if they are left concrete types.

PL/SQL Records

PL/SQL Records are not supported.

VARRAYS

VARRAYS are mapped directly to the JSON array type.

Following is a sample code snippet:

"addresses" : [

{

"__db_type" : "MY_SCHEMA.AUS_ADDRESS",

"number" : 42,

"street" : "Wallaby Way",

"city" : "Sydney"

},

{

"__db_type" : "MY_SCHEMA.UK_ADDRESS"

"number : 1,

"street" : "Oracle Parkway"

"city" : "Reading"

"postcode" : "RG6 1RA"

}

]

Element Inheritance

If the type of a VARRAY element instance is a sub-type of the defined type, then it
becomes mandatory to add the __db_type named value, as explained in the object
types section.

Appendix B
Handling Structural Database Types

B-4

Associative Arrays

Associative arrays (formally known as PL/SQL table or index-by table) fall into
following two categories:

• Indexed by an integer value: A sparsely populated indexed array. This type of
array may not yield a value for a given index. When this type of array is converted
to and from JSON, the index is ignored, removing the indexable value gaps. This
will have the side-effect that a sparsely populated indexed array that is passed as
an IN/OUT parameter through a PL/SQL procedure without any changes, could
still appear to have been changed, as the indexable value gaps would have been
removed.

Following is a sample code snippet:

"avg_values" : [

34,

57,

86,

3235

]

:

• Not indexed by an integer value: For example, VARCHAR. This category is
rarely used and not supported by the Oracle JDBC API.

B.3 Oracle Geospacial Encoding
Oracle Geospacial types comprises of more than the predefined Oracle Object types.
However, recognized JSON encoding call, GeoJSON is used to encode the instance
data.

Related Topics

• GeoJSON standard documentation

B.4 Enabling Database Mapping Support
This section shows how to enable the extended database mapping support.

To enable the extended database mapping support, the following code snippet must
be added to the Oracle REST Data Services defaults.xml file, which is located in the
Oracle REST Data Services configuration ords directory:

<entry key="misc.datatypes.enable">true</entry>

Appendix B
Oracle Geospacial Encoding

B-5

http://geojson.org/

C
About the Oracle REST Data Services
Configuration Files

The section describes the Oracle REST Data Services configuration files.

Topics:

• Locating Configuration Files

• Setting the Location of the Configuration Files

• Understanding the Configuration Folder Structure

• Understanding the Configuration File Format

• Understanding Configurable Parameters

C.1 Locating Configuration Files
Use the configdir command to display the current location of the configuration files:

java -jar ords.war configdir

If the configuration folder has not yet been configured, the message: The config.dir
setting is not set, is displayed. If it has been configured, the current value of the
setting is displayed.

C.2 Setting the Location of the Configuration Files
To change the location of the configuration folder use the configdir command:

java -jar ords.war configdir </path/to/config>

Where:

• </path/to/config> is the location where the configuration files are stored.

C.3 Understanding the Configuration Folder Structure
The configuration folder has the following structure:

 ./
 |
 +-defaults.xml
 +-apex.properties*
 +-url-mapping.xml
 |
 +conf/
 |
 +-apex.xml
 +-apex_al.xml

C-1

 +-apex_rt.xml
 +-apex_pu.xml
 |
 ...
 +-(db-name).xml
 +-(db-name)_al.xml
 +-(db-name)_rt.xml
 +-(db-name)_pu.xml

Global settings that apply to all database connections are stored in defaults.xml.

Settings specific to a particular database connection (for example, the default apex
connection) are stored in conf/<db-name>.xml, where <db-name> is the name of the
database connection.

If the database connection uses Oracle Application Express RESTful Services, the
files with names including _al.xml, _rt.xml, and _pu.xml store the configuration for
the APEX_LISTENER, APEX_REST_PUBLIC_USER, and ORDS_PUBLIC_USER database users,
respectively.

If the database connection uses Oracle REST Data Services RESTful Services, the
file <db-name>_pu.xml stores the configuration for the ORDS_PUBLIC_USER database
user.

C.4 Understanding the Configuration File Format
Configuration files use the standard Java XML properties file format, where each
configuration setting contains a key and a corresponding value. The following is an
example of a defaults.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="db.connectionType">basic</entry>
<entry key="db.hostname">localhost</entry>
<entry key="db.port">1521</entry>
<entry key="db.sid">orcl</entry>

<entry key="jdbc.DriverType">thin</entry>
<entry key="jdbc.InitialLimit">3</entry>
<entry key="jdbc.MinLimit">1</entry>
<entry key="jdbc.MaxLimit">10</entry>
<entry key="jdbc.MaxStatementsLimit">10</entry>
<entry key="jdbc.InactivityTimeout">1800</entry>
<entry key="jdbc.statementTimeout">900</entry>
<entry key="jdbc.MaxConnectionReuseCount">1000</entry>

</properties>

C.4.1 Understanding the url-mapping.xml File Format
The url-mapping.xml file stores the rules that route requests to the appropriate
database when more than one database is configured. The following is an example of
a url-mapping.xml file:

<pool-config xmlns="http://xmlns.oracle.com/apex/pool-config">
 <pool name="sales_db"

Appendix C
Understanding the Configuration File Format

C-2

 base-path="/sales"
 workspace-id="sales_rest"/>
</pool-config>

C.5 Understanding Configurable Parameters
Table C-1 lists editable parameters for the defaults.xml and (db-name).xml
configuration files.

Note:

Oracle recommends users to use the Oracle REST Data Services command-
line interface and Oracle SQL Developer Oracle REST Data Services
Administration to edit the configuration files.

Table C-1 Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

apex.docTable string This parameter is deprecated,
instead use owa.docTable
parameter.

MYDOCTABLE Pool specific

cache.caching boolean Supported values:

• true
• false (default)
For caching to be enabled, this
must be set to true and the
procedureNameList must have
a procedure.

true Global

cache.directory string The directory location for the
cache files.

C:\data
\cachefiles

Global

cache.duration string Supported values:

• days (default)
• minutes
• hours
Required for expire cache type.

days Global

cache.expiration numeric Required for expire cache type.

Defaults to 7.
7 Global

cache.maxEntries numeric Required for lru cache type.

Defaults to 500.
500 Global

cache.monitorInterval numeric Interval time is specified in
minutes.

If the cache type is expire, Oracle
REST Data Services, checks the
cache every NN minutes for files
that have expired. For example, if
the monitorInterval is 60,
then it checks the cache every 60
minutes.

Defaults to 60.

60 Global

Appendix C
Understanding Configurable Parameters

C-3

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

cache.procedureNameList string Specifies the procedure names to
allow for caching of their files.

Procedure names can contain the
wildcard characters asterisk (*)
or question mark (?). Use an
asterisk (*) to substitute zero or
more characters and a question
mark (?) to substitute for any one
character.

Each procedure name must be
separated by a comma.

p,
download_file

Global

cache.type string Supported values:

• expire
• lru (default)

lru Global

db.connectionType string The type of connection.
Supported values:

• basic
• tns
• customurl

basic Pool specific

db.customURL string Specifies the JDBC URL
connection to connect to the
database.

jdbc:oracle:t
hin:@(DESCRIP
TION=(ADDRESS
=(PROTOCOL=TC
P)
(HOST=myhost)
(PORT=1521))
(CONNECT_DATA
=(SERVICE_NAM
E=ora111.exam
ple.com)))

Pool specific

db.hostname string Specifies the host system for the
Oracle database.

myhostname Pool specific

db.password string Specifies the password of the
specified database user. Include
an exclamation at the beginning
of the password so that it can be
stored encrypted.

!
password4user

Pool specific

db.port numeric Specifies the database listener
port.

1521 Pool specific

db.servicename string Specifies the network service
name of the database.

ora111.exampl
e.com

Pool specific

Appendix C
Understanding Configurable Parameters

C-4

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

db.serviceNameSuffix string Specifies that the pool points to a
CDB, and that the PDBs
connected to that CDB should be
made addressable by Oracle
REST Data Services (see Making
All PDBs Addressable by Oracle
REST Data Services (Pluggable
Mapping)).

apex_pu Pool specific

db.sid string Specifies the name of the
database.

ora111 Pool specific

db.tnsAliasName string Specifies the TNS alias name
that matches the name in the
tnsnames.ora file.

MY_TNSALIAS Pool specific

db.tnsDirectory string The directory location of your
tnsnames.ora file.

C:\ORACLE
\NETWORK
\ADMIN

Pool specific

db.username string Specifies the name of the
database user for the connection.

APEX_PUBLIC_U
SER

Pool specific

debug.printDebugToScreen boolean Specifies whether to display error
messages on the browser.

Supported values:

• true
• false (default)

false Global

error.keepErrorMessages boolean Specifies whether to retain the
error messages.

Supported values:

• true
• false (default)

true Global

error.maxEntries numeric Specifies the total number of
error messages to retain.

Defaults to 50.

50 Global

error.externalPath string Specifies the path to a folder that
contains the custom error page.

/path/to/
error/pages/
folder/

Global

icap.port numeric Specifies the Internet Content
Adaptation Protocol (ICAP) Port
to virus scan files.

The icap.port is required to
have a value.

5555 Global

icap.server string Specifies the Internet Content
Adaptation Protocol (ICAP)
Server name to virus scan files.

The icap.server is required to
have a value.

servername Global

Appendix C
Understanding Configurable Parameters

C-5

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

jdbc.DriverType string Specifies the JDBC driver type.
Supported values:

• thin
• oci8

thin Pool specific

jdbc.InactivityTimeout numeric Specifies how long an available
connection can remain idle
before it is closed. The inactivity
connection timeout is in seconds.

Defaults to 1800.

1800 Pool specific

jdbc.InitialLimit numeric Specifies the initial size for the
number of connections that will
be created.

Defaults to 3. (The default is low,
and should probably be set
higher in most production
environments.)

10 Pool specific

jdbc.MaxConnectionReuseCo
unt

numeric Specifies the maximum number
of times to reuse a connection
before it is discarded and
replaced with a new connection.

Defaults to 1000.

1000 Pool specific

jdbc.MaxLimit numeric Specifies the maximum number
of connections.

Defaults to 10. (Might be too low
for some production
environments.)

20 Pool specific

jdbc.auth.enabled boolean Specifies if the PL/SQL Gateway
calls can be authenticated using
database users. If the value is
true then this feature is enabled.
If the value is false, then this
feature is disabled. The default
value is false. Oracle
recommends not to use this
feature. This feature used only to
facilitate customers migrating
from mod_plsql.

false Pool specific

jdbc.MaxStatementsLimit numeric Specifies the maximum number
of statements to cache for each
connection.

Defaults to 10.

10 Pool specific

jdbc.MinLimit numeric Specifies the minimum number of
connections.

Defaults to 1.

1 Pool specific

Appendix C
Understanding Configurable Parameters

C-6

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

jdbc.statementTimeout numeric Specifies how long a borrowed
(in use) connection can remain
unused before it is considered as
abandoned and reclaimed. The
abandoned connection timeout is
in seconds.

Defaults to 900.

900 Pool specific

log.logging boolean Specifies whether to retain the
log messages.

Supported values:

• true
• false (default)

true Global

log.maxEntries numeric Specifies the total number of log
messages to retain.

Defaults to 50.

50 Global

log.procedure boolean Specifies whether procedures are
to be logged.

Supported values:

• true
• false (default)

false Global

misc.defaultPage string Specifies the default page to
display. The Oracle REST Data
Services home page, apex, is
commonly used.

apex Pool specific

misc.pagination.maxRows numeric Specifies the maximum number
of rows that will be returned from
a query when processing a
RESTful service and that will be
returned from a nested cursor in
a result set. Affects all RESTful
services generated through a
SQL query, regardless of whether
the resource is paginated.

Defaults to 10000.

300 Pool specific

Appendix C
Understanding Configurable Parameters

C-7

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

owa.docTable string Specifies the name of the
document table used by the file
upload.

Defaults
to FLOWS_FILES.WWV_FLOW_FIL
E_OBJECTS$ value.

No

te:

For
AP
EX
4.x
and
abo
ve
this
par
am
eter
sho
uld
not
be
use
d.

MYDOCTABLE Pool specific

procedure.postProcess string Specifies the procedure name(s)
to execute after executing the
procedure specified on the URL.
Multiple procedure names must
be separated by commas.

SCHEMA1.SUBMI
T.REQUEST,FIN
ISHTASK

Pool specific

procedure.preProcess string Specifies the procedure name(s)
to execute prior to executing the
procedure specified on the URL.
Multiple procedure names must
be separated by commas.

SCOTT.PREPROC
1,
INITIALIZE,
PKG1.PROC

Pool specific

Appendix C
Understanding Configurable Parameters

C-8

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

procedure.rest.preHook string Specifies the function to be
invoked prior to dispatching each
Oracle REST Data Services
based REST Service. The
function can perform
configuration of the database
session, perform additional
validation or authorization of the
request. If the function returns
true, then processing of the
request continues. If the function
returns false, then processing
of the request is aborted and an
HTTP 403 Forbidden status is
returned.

MYAPP.VALIDAT
E_REST_CALL

Pool specific

security.disableDefaultEx
clusionList

boolean If this value is set to true, then
the Oracle REST Data Services
internal exclusion list is not
enforced.

Note: The Oracle REST Data
Services internal exclusion list
blocks the users from accessing
the following:
• sys.*
• dbms_*
• utl_*
• owa_*
• owa.*
• htp.*
• htf.*
• wpg_docload.*

Supported values:

• true
• false (default)
Oracle recommends that you do
not set this value to true. That
is, do not disable the default
internal exclusion list. The only
possible exception is temporarily
disabling the internal exclusion
list for debugging purposes.

false Global

Appendix C
Understanding Configurable Parameters

C-9

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

security.exclusionList string Specifies a pattern for
procedures, packages, or
schema names which are
forbidden to be directly executed
from a browser.

Procedure names can contain the
wildcard characters asterisk (*)
or question mark (?). Use an
asterisk (*) to substitute zero or
more characters and a question
mark (?) to substitute for any one
character.

Note: Separate multiple patterns
using commas.

customer_acco
unt,bank*,
employe?

Global

security.inclusionList string Specifies a pattern for
procedures, packages, or
schema names which are
allowed to be directly executed
from a browser.

Procedure names can contain the
wildcard characters asterisk (*)
or question mark (?). Use an
asterisk (*) to substitute zero or
more characters and a question
mark (?) to substitute for any one
character.

Note: Separate multiple patterns
using commas.

apex, p, v,
f, wwv_*, y*,
c*

Global

security.maxEntries numeric Specifies the maximum number
of cached procedure validations.
Defaults to 2000. Set this value to
0 to force the validation
procedure to be invoked on each
request.

2000 Global

security.requestAuthentic
ationFunction

string Specifies an authentication
function to determine if the
requested procedure in the URL
should be allowed or disallowed
for processing. The function
should return true if the
procedure is allowed; otherwise,
it should return false. If it returns
false, Oracle REST Data
Services will return WWW-
Authenticate in the response
header.

owa_custom.au
thorize

Pool specific

Appendix C
Understanding Configurable Parameters

C-10

Table C-1 (Cont.) Oracle REST Data Services Configuration Files Parameters

Key Type Description Example Setting Type

security.requestValidatio
nFunction

string Specifies a validation function to
determine if the requested
procedure in the URL should be
allowed or disallowed for
processing. The function should
return true if the procedure is
allowed; otherwise, return false.

CHECK_VALID_P
ROCEDURE

Pool specific

security.verifySSL boolean Specifies whether HTTPS is
available in your environment.

Supported values:

• true (default)
• false
If you change the value to false,
see Using OAuth2 in Non-HTTPS
Environments.

true Global

soda.defaultLimit string When using the SODA REST
API, specifies the default number
of documents returned for a GET
request on a collection when a
limit is not specified in the URL.
Must be a positive integer, or
"unlimited" for no limit.

Defaults to 100.

75 Pool specific

soda.maxLimit string When using the SODA REST
API, specifies the maximum
number of documents that will be
returned for a GET request on a
collection URL, regardless of any
limit specified in the URL. Must
be a positive integer, or
"unlimited" for no limit.

Defaults to 1000.

700 Pool specific

restEnabledSql.active boolean Specifies whether the REST-
Enabled SQL service is active.
Supported values:
• true
• false (default)

true Pool specific

See Also:

For more information, see Configuring and Installing Oracle REST Data
Services and "Oracle REST Data Services Administration" in Oracle SQL
Developer User's Guide.

Appendix C
Understanding Configurable Parameters

C-11

D
Troubleshooting Oracle REST Data
Services

This appendix contains information on troubleshooting Oracle REST Data Services.

Topics:

• Enabling Detailed Request Error Messages

• Configuring Application Express Static Resources with Oracle REST Data
Services

D.1 Enabling Detailed Request Error Messages
To enable detailed request error messages, add the following setting to the Oracle
REST Data Services configuration file named: defaults.xml:

<entry key="debug.printDebugToScreen">true</entry>

When this setting is present in defaults.xml, any request that produces an error
response includes a detailed message, including a stack trace. This setting must not
be enabled on productions systems due to the risk of sensitive information being
revealed to an attacker.

D.2 Configuring Application Express Static Resources with
Oracle REST Data Services

When using Oracle REST Data Services, a blank page might be displayed when
attempting to access an Oracle Application Express page, for example, when
attempting to display https://example/ords/. This problem is caused by an improper
configuration of Application Express static resources, which causes the JavaScript and
CSS resources required by Application Express not to be found and the Application
Express page not to render correctly.

The specific cause can be any of the following:

• Forgetting to ensure that the Application Express static images are located on the
same server as the Oracle REST Data Services instance

• Forgetting to deploy i.war on WebLogic Server or GlassFish

• Specifying an incorrect path when using the java -jar ords.war static
command to generate i.war

• Configuring Application Express to use a nondefault context path for static
resources (/i) and not specifying the same context path (using the --context-
path option) when using java -jar ords.war static

• Moving, renaming, or deleting the folder pointed to by i.war after deploying i.war

D-1

• When running in Standalone mode, entering an incorrect path (or not specifying a
path) when prompted on the first run of Standalone mode

• When running in Standalone mode, entering an incorrect path with the --static-
images option

• Upgrading to a new version of Application Express and forgetting to reconfigure
and redeploy i.war to point to the static resources for the new Application Express
version, or in Standalone mode forgetting to update the location by using the --
apex-images option

To help in diagnosing the problem, you can try to access the apex_version.txt file.
For example, if your Application Express deployment is located at https://
example.com/ords/ and your static resources have been deployed at https://
example.com/i/, use a browser to access the following URL:

https://example.com/i/apex_version.txt

If you get a 404 Not Found error, then check the preceding list of possible specific
causes, including i.war not being deployed or not pointing to a folder containing
Application Express static resources.

If a plain text file is displayed, it should contain text like the following:

Application Express Version: 4.2.1

Check that the version number matches the version of Application Express that is
deployed on the database. If the numbers do not match, check if you have made an
error mentioned in the last item in the preceding list of possible specific causes,
because Oracle REST Data Services is not configured to use the correct version of the
Application Express static resources to match the Application Express version in the
database.

If you need help in solving the problem, check the information in this book about
creating and deploying i.war for your environment, such as WebLogic Server or
Glassfish.

You can also get detailed help on the static listener command by entering the following
at a command prompt:

java -jar ords.war help static

Appendix D
Configuring Application Express Static Resources with Oracle REST Data Services

D-2

E
Creating an Image Gallery

This tutorial explains an extended example that builds an image gallery service for
storing and retrieving images. This tutorial uses Oracle Application Express.

Topics:

• Before You Begin

• Creating the Gallery Database Table

• Creating the Gallery RESTful Service Module

• Trying Out the Gallery RESTful Service

• Creating the Gallery Application

• Trying Out the Gallery Application

• Securing the Gallery RESTful Services

• Accessing the RESTful Services from a Third Party Application

See Also:

To do this tutorial, you must be familiar with the concepts and techniques
covered in Developing Oracle REST Data Services Applications.

E.1 Before You Begin
This section describes some common conventions used in this example as well as
best practices regarding API entry points.

Topics:

• About URIs

• About Browser Support

• Creating an Application Express Workspace

E.1.1 About URIs
Throughout this example, URIs and URI Templates are referenced using an
abbreviated form that omits the host name, context root and workspace path prefix.
Consider the following example:

gallery/images/

To access this URI in your Web browser, you would use a URI in the following format:

https://<host>:<port>/ords/<workspace>/gallery/images/

E-1

https://docs.oracle.com/cd/E56351_01/doc.30/e87809/developing-REST-applications.htm#AELIG3000

where

• <host> is the host on which Oracle REST Data Services is running.

• <port> is the port on which Oracle REST Data Services is listening.

• /ords is the context root where Oracle REST Data Services is deployed.

• /<workspace>/ is the workspace path prefix of the Oracle Application Express
workspace where the RESTful Service is defined.

E.1.2 About Browser Support
This example uses many modern features defined in HTML5 and related
specifications. It has only been tested in Mozilla Firefox and Google Chrome. It has not
been tested in Microsoft Internet Explorer or on smart-phone/tablet web browsers.
Please use recent versions of either Mozilla Firefox or Google Chrome for this
example.

E.1.3 Creating an Application Express Workspace
To follow the instructions for creation the Gallery example application and related
objects, first, create a new Oracle Application Express Workspace (in Full
Development mode). See the Oracle Application Express Documentation for details on
how to do this.

Call the workspace resteasy and call the administrator user of the workspace
resteasy_admin. Ensure the resteasy_admin user is a a member of the RESTful
Services user group.

E.2 Creating the Gallery Database Table
To create the Gallery database table, follow these steps:

1. Log into the resteasy workspace.

2. Navigate to SQL Workshop and then SQL Commands.

3. Enter or copy and paste in the following SQL:

CREATE SEQUENCE GALLERY_SEQ
/
CREATE TABLE GALLERY (
 ID NUMBER NOT NULL ENABLE,
 TITLE VARCHAR2(1000) NOT NULL ENABLE,
 CONTENT_TYPE VARCHAR2(1000) NOT NULL ENABLE,
 IMAGE BLOB NOT NULL ENABLE,
 CONSTRAINT GALLERY_PK PRIMARY KEY (ID) ENABLE
)
/
CREATE OR REPLACE TRIGGER BI_GALLERY
 before insert on GALLERY for each row
 begin
 if :NEW.ID is null then
 select GALLERY_SEQ.nextval into :NEW.ID from sys.dual;
 end if;
 end;
 /

Appendix E
Creating the Gallery Database Table

E-2

 ALTER TRIGGER BI_GALLERY ENABLE
 /

E.3 Creating the Gallery RESTful Service Module
To create the Gallery RESTful services module, follow these steps:

1. Navigate to SQL Workshop and then RESTful Services.

2. Click Create on the right side, and enter the following information:

• Name: gallery.example

• URI Prefix: gallery/

• URI Template: images/

• Method: POST

• Source: Enter or copy and paste in the following:

declare
 image_id integer;
begin
 insert into gallery (title,content_type,image)
 values (:title,:content_type,:body)
 returning id into image_id;
 :status := 201;
 :location := image_id;
end;

3. Click Create Module.

4. Click the POST handler under images/

5. For Requires Secure Access, select No.

6. Click Create Parameter, and enter the following:

• Name: Slug

• Bind Variable Name: title

7. Click Create.

8. Click Create Parameter on the bottom right, and enter the following information:

• Name: X-APEX-FORWARD

• Bind Variable Name: location

• Access Method: OUT

9. Click Create.

10. Click Create Parameter on the bottom right, and enter the following information:

• Name: X-APEX-STATUS-CODE

• Bind Variable Name: status

• Access Method: OUT

• Parameter Type: Integer

11. Click Create.

Appendix E
Creating the Gallery RESTful Service Module

E-3

At this point you have created the module with a single service that can store new
images. Next, add a service to display the list of stored images:

1. Navigate to SQL Workshop and then RESTful Services.

2. Click the module named gallery.example.

3. Click Create Handler under images/, and enter the following information:

• Method: GET

• Source Type: Feed

• Requires Secure Access: No

• Source: Enter or copy and paste in the following:

select id,title,content_type from gallery order by id desc

4. Click Create.

At this point you have created the service to store and list images. Next, add a service
to display individual images:

1. Navigate to SQL Workshop and then RESTful Services.

2. Click the module named gallery.example.

3. Click Create Template under gallery.example, and enter the following information:

• URI Template: images/{id}

4. Click Create.

5. Click Create Handler under images/{id}, and enter the following information:

• Method: GET

• Source Type: Media Resource

• Requires Secure Access: No

• Source: Enter or copy and paste in the following:

select content_type, image from gallery where id = :id

6. Click Create.

E.4 Trying Out the Gallery RESTful Service
To try out the Gallery RESTful Service, follow these steps:

1. Navigate to SQL Workshop and then RESTful Services.

2. Click the module named gallery.example.

3. Click the GET handler located under images/.

4. Click Test.

The following URI should be displayed in the browser:

https://<host>:<port>/ords/resteasy/gallery/images/

Content similar to the following should be displayed:

{"next":
 {"$ref":

Appendix E
Trying Out the Gallery RESTful Service

E-4

 "http://localhost:8080/ords/resteasy/gallery/images/?page=1"
 },
 "items":[]
}

• The content is a JSON document that lists the location of each image in the
gallery, but since you have not yet added any images, the list (the items[]
element) is empty.

• The JSON has no extra white space to minimize its size, this can make it
difficult to decipher, it is recommended to add a JSON viewing plugin to your
browser to make viewing the JSON easier.

To create an Oracle Application Express application to enable users to add and view
images in the gallery, see Creating the Gallery Application.

E.5 Creating the Gallery Application
To create an Oracle Application Express application that uses the gallery RESTful
Services, follow these steps:

1. Navigate to Application Builder.

2. Click Create.

3. Choose Database, then click Next.

4. Enter Image Gallery in the Name field, then click Next.

5. Click Create Application, and then Create Application again to confirm creation
of the application.

6. Click page 1, Home.

7. Under Regions click the + (plus sign) icon to create a new region.

8. For Region Type, choose HTML and click Next, then click Next on the next page.

9. For Region Template, choose No Template.

10. For Title, enter Tasks, and click Next.

11. For Enter HTML Text Region Source, specify:

Upload Image

12. Click Create Region.

13. Under Regions, click the + (plus sign) icon to create a new region.

14. For Region Type, choose HTML, and click Next, then Next again.

15. For Region Template, choose DIV Region with ID.

16. For Title, enter Images.

17. Click Create Region.

18. Click the Images region and click the Attributes tab.

19. For Static ID, enter images, and click Apply Changes.

20. Under Page, click the Edit icon, then click the JavaScript tab.

21. For Function and Global Variable Declaration, enter or copy and paste in the
following:

Appendix E
Creating the Gallery Application

E-5

var workspace_path_prefix = 'resteasy';
 var gallery_url = './' + workspace_path_prefix + '/gallery/images/';
 function uploadFiles(url, fileOrBlob, onload) {
 var name = 'unspecified';
 if (fileOrBlob['name']) {
 name = fileOrBlob.name;
 }
 var xhr = new XMLHttpRequest();
 xhr.open('POST', url, true);
 xhr.setRequestHeader('Slug',name);
 xhr.onload = onload;
 xhr.send(fileOrBlob);
 }

 function createUploader() {
 var $upload = $('<div id="uploader" title="Image Upload"\
 style="display:none">\
 <form>\
 <fieldset>\
 <label for="file">File</label>\
 <input type="file" name="file" id="file"\
 class="text ui-widget-content ui-corner-all"/>\
 </fieldset>\
 </form>\
 </div>');
 $(document.body).append($upload);
 $upload.dialog({
 autoOpen:false,
 modal: true,
 buttons: {
 "Upload": function() {
 var file = document.querySelector('input[type="file"]');
 uploadFiles(gallery_url,file.files[0],function() {
 $('#uploader').dialog("close");
 getImages();
 });
 },
 "Cancel": function() {
 $('#uploader').dialog("close");
 }
 }
 });
 $('#upload-btn').click(function() {
 $('#uploader').dialog("open");
 });
 }

 function getImages() {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', gallery_url);
 xhr.onload = function(e) {
 var data = JSON.parse(this.response);
 $('#image-list').remove();
 var $images = $('<ol id="image-list">');
 for (i in data.items) {
 var item = data.items[i];
 var uri = item.uri['$ref'];
 var $image = $('')
 .append('<a href="' + uri + '" + title="' +
 item.title + '"><img src="graphics/'+ uri +
 '">');

Appendix E
Creating the Gallery Application

E-6

 $images.append($image);
 }
 $('#images').append($images);
 }
 xhr.send();
 }

22. For Execute when Page Loads, enter or copy and paste in the following:

createUploader();
getImages();

23. Click Apply Changes.

24. Under Page, click the Edit icon, then click the CSS tab.

25. For Inline, enter or copy and paste in the following:

a img { border:none; }
#images ol { margin: 1em auto; width: 100%; }
#images li { display: inline; }
#images a { background: #fff; display: inline; float: left;
 margin: 0 0 27px 30px; width: auto; padding: 10px 10px 15px;
 textalign: center; text-decoration: none; color: #333;
 font-size: 18px; -webkit-box-shadow: 0 3px 6px rgba(0,0,0,.25);
 -moz-boxshadow: 0 3px 6px rgba(0,0,0,.25); }
#images img { display: block; width: 190px; margin-bottom: 12px; }
label {font-weight: bold; text-align: right;float: left;
 width: 120px; margin-right: 0.625em; }
label :after {content(":")}
input, textarea { width: 250px; margin-bottom: 5px;textalign: left}
textarea {height: 150px;}
br { clear: left; }
#images a:after { content: attr(title); }
.button {
 border-top: 1px solid #96d1f8;
 background: #65a9d7;
 background:
 -webkit-gradient(linear,left top,left bottom,
 from(#3e779d),to(#65a9d7));
 background:
 -webkit-linear-gradient(top, #3e779d, #65a9d7);
 background:
 -moz-linear-gradient(top, #3e779d, #65a9d7);
 background: -ms-linear-gradient(top, #3e779d, #65a9d7);
 background: -o-linear-gradient(top, #3e779d, #65a9d7);
 padding: 5px 10px;
 -webkit-border-radius: 8px;
 -moz-border-radius: 8px;
 border-radius: 8px;
 -webkit-box-shadow: rgba(0,0,0,1) 0 1px 0;
 -moz-box-shadow: rgba(0,0,0,1) 0 1px 0;
 box-shadow: rgba(0,0,0,1) 0 1px 0;
 text-shadow: rgba(0,0,0,.4) 0 1px 0;
 color: white;
 font-size: 14px;
 text-decoration: none;
 vertical-align: middle;
 }

 .button:hover {
 border-top-color: #28597a;

Appendix E
Creating the Gallery Application

E-7

 background: #28597a;
 color: #ccc;
 cursor: pointer;
 }

 .button:active {
 border-top-color: #1b435e;
 background: #1b435e;
 }

26. Click Apply Changes.

E.6 Trying Out the Gallery Application
To try out the Gallery application, follow these steps:

1. Navigate to Application Builder.

2. Click Run beside the Image Gallery application.

3. Log in as the resteasy_admin user.

4. Click Upload Image.

5. Choose an image file (a JPEG or PNG file) and click Upload.

The application displays the uploaded image.

E.7 Securing the Gallery RESTful Services
It is not wise to allow public access to the image uploading service, and it is probably
not ideal to allow public access to the images in the gallery either. Therefore, you
should protect access to the RESTful services.

RESTful Services support two kinds of authentication:

• First Party Authentication. This is authentication intended to be used by the party
who created the RESTful service, enabling an Application Express application to
easily consume a protected RESTful service. The application must be located with
the RESTful service, that is, it must be located in the same Oracle Application
Express workspace. The application must use the standard Oracle Application
Express authentication.

• Third Party Authentication. This is authentication intended to be used by third party
applications not related to the party who created the RESTful service. Third party
authentication relies on the OAuth 2.0 protocol.

Topics:

• Protecting the RESTful Services

• Modifying the Application to Use First Party Authentication

E.7.1 Protecting the RESTful Services
To protect the RESTful services, follow these steps:

1. Navigate to SQL Workshop and then RESTful Services.

Appendix E
Trying Out the Gallery Application

E-8

2. Click RESTful Service Privileges in the section labeled Tasks.

3. Click Create, and enter the following:

• Name: example.gallery

• Label: Gallery Access

• Assigned Groups: RESTful Services

• Description: View and Post images in the Gallery

• Protected Modules: gallery.example

4. Click Create.

To check that access to the RESTful Service is now restricted, follow these steps:

1. Navigate to SQL Workshop and then RESTful Services.

2. Click the module named gallery.example.

3. Click the GET handler located under images/.

4. Click Test.

The URI in the following format should be displayed in the browser:

https://<host>:<port>/ords/resteasy/gallery/images

An error page should be displayed with the error message:

401 Unauthorized.

See Also:

This is the expected result, because a protected RESTful Service cannot be
accessed unless proper credentials are provided. To add the required
credentials to the request, see Modifying the Application to Use First Party
Authentication

E.7.2 Modifying the Application to Use First Party Authentication
First Party Authentication relies on the cookie and user session established by the
Application Express application, but Oracle REST Data Services needs additional
information to enable it to verify the cookie. It needs to know the application ID and the
current session ID. This information is always known to the Application Express
application, and must be included with the request made to the RESTful service by
adding the custom Apex-Session HTTP header to each request sent to a RESTful
Service. The application ID and session ID are sent as the value of the header,
separated from each other by a comma delimiter. For example:

GET /ords/resteasy/gallery/images/
Host: server.example.com
Apex-Session: 102,6028968452563

Sometimes it is not possible to include a custom header in the HTTP request. For
example, when displaying an image in an HTML page using the tag, an
alternative mechanism is used for these scenarios. The application ID and session ID
are included in a query parameter named _apex_session, which is added to the

Appendix E
Securing the Gallery RESTful Services

E-9

Request URI, which contains the application ID and session ID separated by a
comma. For example:

Note that this approach must only be used when it is not possible to use a custom
header. Otherwise, this approach is discouraged because of the increased risk of the
session ID being inadvertently stored or disclosed due to its inclusion in the URI.

To modify the application to add the first party authentication information to each
request, follow these steps:

1. Navigate to Application Builder.

2. Click the Edit button beside the Image Gallery application.

3. Click the first page, named Home.

4. Under Page click the Edit icon, and click the JavaScript tab.

5. Add the following at the start of the Function and Global Variable Declaration
field:

function setApexSession(pathOrXhr) {
 var appId = $v('pFlowId');
 var sessionId = $v('pInstance');
 var apexSession = appId + ',' + sessionId;
 if (typeof pathOrXhr === 'string') {
 var path = pathOrXhr;
 if (path.indexOf('?') == -1) {
 path = path + '?_apex_session=' + apexSession;
 } else {
 path = path + '&_apex_session=' + apexSession;
 }
 return path;
 } else {
 var xhr = pathOrXhr;
 xhr.setRequestHeader('Apex-Session',apexSession);
 return xhr;
 }
}

6. This defines a JavaScript function named setApexSession() which will add the
first party authentication information to an XMLHttpRequest object or a string
containing a path.

Now you must modify the existing JavaScript code to add call this function when
appropriate.

7. After the line reading xhr.open('POST',url,true);, add the following line:

setApexSession(xhr);

8. After the line reading xhr.open('GET', gallery_url);, add the following line:

setApexSession(xhr);

9. Change the line reading var uri = item.uri['$ref']; to:

var uri = setApexSession(item.uri['$ref']);

10. Click Apply Changes.

11. Try running the application as before. It should work, because it is now providing
the RESTful Services with the required authentication information.

Appendix E
Securing the Gallery RESTful Services

E-10

E.8 Accessing the RESTful Services from a Third Party
Application

If third parties want to consume and use the Gallery RESTful services, they must
register the third party application in order to gain OAuth 2.0 credentials, which can
then be used to initiate an interactive process by which users can authorize the third
party application to access the RESTful Services on their behalf.

Once an application is registered, it can then acquire an access token. The access
token must be provided with each request to a protected RESTful Service. Oracle
REST Data Services verifies the access token before allowing access to the RESTful
service.

OAuth 2.0 defines a number of different protocol flows that can be used by
applications to acquire an access token. Oracle REST Data Services supports two of
these protocol flows:

• Authorization Code. This flow is used when the third party application is able to
keep its client credentials secure, for example, a third party website that is properly
secured.

• Implicit Grant. This flow is used when the third party application cannot assure
that its credentials would remain secret, for example, a JavaScript-based browser
application or a native smartphone application.

The first step is to register the third party application. To demonstrate this, you will
create a user representing the third party developer, and then use that user to register
an application.

The steps in the related topics create a user in the RESTEASY workspace user
repository and perform related actions.

Note:

In addition to authenticating users defined in workspace user repositories,
Oracle REST Data Services can also authenticate against any user
repository accessible from WebLogic Server or GlassFish. For information,
see Authenticating Against WebLogic Server and GlassFish User
Repositories.

Topics:

• Creating the Third Party Developer User

• Registering the Third Party Application

• Acquiring an Access Token

• Using an Access Token

• About Browser Origins

• Configuring a RESTful Service for Cross Origin Resource Sharing

• Acquiring a Token Using the Authorization Code Protocol Flow

Appendix E
Accessing the RESTful Services from a Third Party Application

E-11

• About Securing the Access Token

E.8.1 Creating the Third Party Developer User
To create the third party developer user (the user account for the third party developer
who wants to register an application to access the RESTful services), follow these
steps:

1. Navigate to Administration.

2. Click Manage Users and Groups.

3. Click Create User, and enter the following information:

• Username: 3rdparty_dev

• Email Address: Email address for this developer user

• Password: Password for this user

• User Groups: OAuth 2.0 Client Developer

4. Click Create User.

E.8.2 Registering the Third Party Application
To register the third party application to use the Implicit Grant OAuth 2.0 protocol
flow, follow these steps:

1. Go to the following URI in your browser:

https://server:port/ords/resteasy/ui/oauth2/clients/

2. Enter the credentials of the 3rdparty_dev user created above, and click Sign In.

3. Click Register Client, and enter the following information:

• Name: 3rd Party Gallery

• Description: Demonstrates consuming the Gallery RESTful Service

• Response Type: Token

• Redirect URI: https://example.org/

• Support Email: Desired email address

• Required Scopes: Gallery Access

4. Click Register.

5. Click 3rd Party Gallery in the list that appears on the next page.

6. Note the values of the Client Identifier and the Authorization URI fields.

E.8.3 Acquiring an Access Token
To acquire an access token, a user must be prompted to approve access. To initiate
the approval process, direct the user to the approval page using the following URI:

https://server:port/ords/resteasy/oauth2/auth?response_type=token&\
 client_id=CLIENT_IDENTIFIER&\
 state=STATE

Appendix E
Accessing the RESTful Services from a Third Party Application

E-12

where:

• CLIENT_IDENTIFIER is the Client Identifier assigned to the application when it was
registered.

• STATE is a unique value generated by the application used to prevent Cross Site
Request Forgery (CSRF) attacks.

Note the following about the Oracle REST Data Services OAuth 2.0 implementation:

• The OAuth 2.0 specification allows two optional parameters to be supplied in the
above request:

– redirect_uri: Identifies the location where the authorization server will
redirect back to after the user has approved/denied access.

– scope: Identifies the RESTful Service Privileges that the client wishes to
access.

Oracle REST Data Services does not support either of these parameters: both of
these values are specified when the client is registered, so it would be redundant
to repeat them here. Any values supplied for these parameters will be ignored.

• The OAuth 2.0 specification recommends the use of the state parameter, but
Oracle REST Data Services requires the use of the parameter because of its
importance in helping to prevent CSRF attacks.

• The response type is also specified when the application is registered, and thus
the response_type parameter is also redundant; however, the OAuth 2.0
specification states the parameter is always required, so it must be included. It is
an error if the response_type value differs from the registered response type.

When the preceding URI is accessed in a browser, the user is prompted to sign on,
and then prompted to review the application's request for access and choose whether
to approve or deny access.

If the user approves the request, then the browser will be redirected back to the
registered redirect URI, and the access token will be encoded in the fragment portion
of the URI:

https://example.org/#token_type=bearer&\
 access_token=ACCESS_TOKEN&\
 expires_in=TOKEN_LIFETIME&\
 state=STATE

where:

• example.org is used for illustrative purposes only. In a real application
example.org will be replaced with the URL of the third party application that is
requesting access.

• ACCESS_TOKEN is the unique, unguessable access token assigned to the current
user session, and which must be provided with subsequent requests to the
RESTful service.

• TOKEN_LIFETIME is the number of seconds for which the access token is valid.

• STATE is the unique value supplied by the application at the start of the
authorization flow. If the returned state value does not match the initial state
value, then there is an error condition, and the access token must not be used,
because it is possible an attacker is attempting to subvert the authorization
process through a CSRF attack.

Appendix E
Accessing the RESTful Services from a Third Party Application

E-13

Note:

You can modify the default OAuth access token duration (or lifetime) for all
the generated access tokens. To achieve this, add the
security.oauth.tokenLifetime entry to the defaults.xml configuration file
in the following way, with the OAuth access token duration specified in
seconds:
<entry key="security.oauth.tokenLifetime”>600</entry>

If the user denies the request, or the user is not authorized to access the RESTful
Service, the browser will be redirected back to the registered redirect URI, and an
error message will be encoded in the fragment portion of the URI:

https://example.org/#error=access_denied&state=STATE

where:

• error=access_denied informs the client that the user is not authorized to access
the RESTful Service, or chose not to approve access to the application.

• STATE is the unique value supplied by the application at the start of the
authorization flow. If the returned state value does not match the initial state
value, then there is an error condition, the client should ignore this response. It is
possible an attacker is attempting to subvert the authorization process via a CSRF
attack.

E.8.4 Using an Access Token
After the application has acquired an access token, the access token must be included
with each request made to the protected RESTful service. To do this, an
Authorization header is added to the HTTP request, with the following syntax:

Authorization: Bearer ACCESS_TOKEN

where:

• ACCESS_TOKEN is the access token value.

For example, a JavaScript-based browser application might invoke the Gallery service
as follows:

var accessToken = ... /* initialize with the value of the access token */
var xhr = new XMLHttpRequest();
xhr.open('GET', 'https://server:port/ords/resteasy/gallery/images/',true);
/* Add the Access Token to the request */
xhr.setRequestHeader('Authorization', 'Bearer ' + accessToken);
xhr.onload = function(e) {
 /* logic to process the returned JSON document */
 ...
};
xhr.send();

The preceding example uses the XMLHttpRequest.setRequestHeader(name,value)
function to add the Authorization header to the HTTP request. If the access token is

Appendix E
Accessing the RESTful Services from a Third Party Application

E-14

valid, then the server will respond with a JSON document listing the images in the
gallery.

E.8.5 About Browser Origins
One of the key security concepts of web browsers is the Same Origin Policy, which
permits scripts running on pages originating from the same web site (an Origin) to
access each other's data with no restrictions, but prevents access to data originating
from other web sites.

An origin is defined by the protocol, host name and port of a web-site. For example
https://example.com is one origin and https://another.example.com is a different
origin, because the host name differs. Similarly, http://example.com is a different
origin than https://example.com because the protocol differs. Finally, http://
example.com is a different origin from http://example.com:8080 because the port
differs.

For example, if a third party client of the Gallery RESTful service is located at:

https://thirdparty.com/gallery.html

and the Gallery RESTful service is located at:

https://example.com/ords/resteasy/gallery/images/

then the Same Origin Policy will prevent gallery.html making an XMLHttpRequest to
https://example.com/ords/resteasy/gallery/images/, because scripts in the
https://thirdparty.com origin can only access data from that same origin, and
https://example.com is clearly a different origin.

This is proper if the authors of https://example.com do not trust the authors of
https://thirdparty.com. However, if the authors do have reason to trust each other,
then the Same Origin Policy is too restrictive. Fortunately, a protocol called Cross
Origin Resource Sharing (CORS), provides a means for https://example.com to
inform the web browser that it trusts https://thirdparty.com and thus to instruct the
browser to permit gallery.html to make an XMLHttpRequest to https://
example.com/ords/resteasy/gallery/images/.

E.8.6 Configuring a RESTful Service for Cross Origin Resource
Sharing

To configure a RESTful service for Cross Origin Resource Sharing, follow these steps:

1. Navigate to SQL Workshop and then RESTful Services.

2. Click the module named gallery.example.

3. For Origins Allowed, enter the origins that are permitted to access the RESTful
service (origins are separated by a comma).

4. Press Apply Changes

E.8.7 Acquiring a Token Using the Authorization Code Protocol Flow
Other sections have explained acquiring an access token using the OAuth 2.0 Implicit
protocol flow. This section explains how to do the same using the Authorization Code

Appendix E
Accessing the RESTful Services from a Third Party Application

E-15

protocol flow. The process is slightly more involved than for the Implicit protocol flow,
because it requires exchanging an authorization code for an access token.

This section will mimic this exchange process using cURL.

Topics:

• Registering the Client Application

• Acquiring an Authorization Code

• Exchanging an Authorization Code for an Access Token

• Extending OAuth 2.0 Session Duration

E.8.7.1 Registering the Client Application
[To register the client, follow these steps:

1. Go to the following URI in your browser:

https://server:port/ords/resteasy/ui/oauth2/clients/

2. Enter the credentials of the 3rdparty_dev user, and click Sign In.

3. Click Register Client, and enter the following information:

• Name: Another Gallery

• Description: Demonstrates using the Authorization Code OAuth 2.0
Protocol Flow

• Response Type: Code

• Redirect URI : https://gallery.example.demo

• Support EMail: any desired email address

• Required Scopes: Gallery Access

4. Click Register.

5. Click 3rd Party Gallery in the list that appears on the next page.

6. Note the values of the Client Identifier, Client Secret, and the Authorization URI
fields.

E.8.7.2 Acquiring an Authorization Code
The first step in the Authorization Code protocol flow is to acquire an authorization
code. An authorization code is a short lived token that when presented along with the
application's client identifier and secret can be exchanged for an access token.

To acquire an access token, the user must be prompted to approve access. To initiate
the approval process, direct the user to the approval page using a URI in the following
format:

https://server:port/ords/resteasy/oauth2/auth?response_type=code&\
 client_id=CLIENT_IDENTIFIER&\
 state=STATE

where:

Appendix E
Accessing the RESTful Services from a Third Party Application

E-16

• CLIENT_IDENTIFIER is the Client Identifier assigned to the application when it was
registered.

• STATE is a unique value generated by the application used to prevent Cross Site
Request Forgery (CSRF) attacks.

If the user approves the request, then the browser will be redirected back to the
registered redirect URI, and the access token will be encoded in the query string
portion of the URI:

https://gallery.example.demo?code=AUTHORIZATION_CODE&state=STATE

where:

• AUTHORIZATION_CODE is the authorization code value.

• STATE is the unique value supplied by the application at the start of the
authorization flow. If the returned state value does not match the initial state
value, then there is an error condition, the authorization code must not be used. It
is possible an attacker is attempting to subvert the authorization process via a
CSRF attack.

Because the registered https://gallery.example.demo redirect URI does not
exist, the browser will report a server not found error, but for the purposes of this
example, this does not matter, because you can still see the authorization code
value encoded in the URI. Note the value of the code parameter, because it will be
used while Exchanging an Authorization Code for an Access Token.

E.8.7.3 Exchanging an Authorization Code for an Access Token
In this section you will use cURL to exchange the authorization code for an access
token. To exchange an authorization code the application must make an HTTP
request to the Oracle REST Data Services OAuth 2.0 token endpoint, providing the
authorization code and its client identifier and secret. If the credentials are correct,
Oracle REST Data Services responds with a JSON document containing the access
token. Note that the application makes the HTTP request from its server side (where
the client identifier and secret are securely stored) directly to Oracle REST Data
Services; the web-browser is not involved at all in this step of the protocol flow.

Use a cURL command in the following format to exchange the authorization code for
an access token:

curl -i -d "grant_type=authorization_code&code=AUTHORIZATION_CODE" \
 --user CLIENT_IDENTIFER:CLIENT_SECRET \
 https://server:port/ords/resteasy/oauth2/token

where:

• AUTHORIZATION_CODE is the authorization code value (which was encoded in the
code parameter of the query string in the redirect URI in the previous section).

• CLIENT_IDENTIFER is the client identifier value.

• CLIENT_SECRET is the client secret value.

cURL translates the above commands into an HTTP request like the following:

POST /ords/resteasy/oauth2/token HTTP/1.1
Authorization: Basic Q0xJRU5UX0lERU5USUZJRVI6Q0xJRU5UX1NFQ1JFVA==
Host: server:port
Accept: */*

Appendix E
Accessing the RESTful Services from a Third Party Application

E-17

Content-Length: 59
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=AUTHORIZATION_CODE

where:

• The request is an HTTP POST to the oauth2/token OAuth 2.0 token endpoint.

• The Authorization header uses the HTTP BASIC authentication protocol to
encode the client identifier and secret to assert the application's identity.

• The Content-Type of the request is form data (application/x-www-form-
urlencoded) and the content of the request is the form data asserting the OAuth
2.0 token grant type and the OAuth 2.0 authorization code value.

The preceding HTTP request will produce a response like the following:

HTTP/1.1 200 OK
ETag: "..."
Content-Type: application/json

{
 "access_token":"04tss-gM35uOeQzR_2ve4Q..",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"UX4FVHhPFJl6GokvTXYw0A.."
}

The response is a JSON document containing the access token along with a refresh
token. After the application has acquired an access token, the access token must be
included with each request made to the protected RESTful Service. To do this an
Authorization header is added to the HTTP request, with the following syntax:

Authorization: Bearer ACCESS_TOKEN

Related Topics

• Extending OAuth 2.0 Session Duration

E.8.7.4 Extending OAuth 2.0 Session Duration
To extend the lifetime of an OAuth 2.0 session, a refresh token can be exchanged for
a new access token with a new expiration time. Note that refresh tokens are only
issued for the Authorization Code protocol flow.

The application makes a similar request to that used to exchange an authorization
code for an access token. Use a cURL command in the following format to exchange
the refresh token for an access token:

curl -i -d "grant_type=refresh_token&refresh_token=REFRESH_TOKEN" \
 --user CLIENT_IDENTIFER:CLIENT_SECRET \
 https://server:port/ords/resteasy/oauth2/token

where:

• REFRESH_TOKEN is the refresh token value returned when the access token was
initially issued.

• CLIENT_IDENTIFER is the client identifier value.

• CLIENT_SECRET is the client secret value.

Appendix E
Accessing the RESTful Services from a Third Party Application

E-18

cURL translates the above commands into an HTTP request like the following:

POST /ords/resteasy/oauth2/token HTTP/1.1
Authorization: Basic Q0xJRU5UX0lERU5USUZJRVI6Q0xJRU5UX1NFQ1JFVA==
Host: server:port
Accept: */*
Content-Length: 53
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=REFRESH_TOKEN

where:

• The request is an HTTP POST to the oauth2/token OAuth 2.0 token endpoint.

• The Authorization header uses the HTTP BASIC authentication protocol to
encode the client identifier and secret to assert the application's identity.

• The Content-Type of the request is form data (application/x-www-form-
urlencoded) and the content of the request is the form data asserting the OAuth
2.0 token grant type and the refresh token value.

The preceding HTTP request will produce a response like the following:

HTTP/1.1 200 OK
ETag: "..."
Content-Type: application/json

{
 "access_token":"hECH_Fc7os2KtXT4pDfkzw..",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"-7OBQKc_gUQG93ZHCi08Hg.."
}

The response is a JSON document containing the new access token along with a new
refresh token. The existing access token and refresh token are invalidated, and any
attempt to access a service using the old access token will fail.

E.8.8 About Securing the Access Token
In OAuth 2.0 the access token is the sole credential required to provide access to a
protected service. It is, therefore, essential to keep the access token secure. Follow
these guidelines to help keep the token secure:

• It is strongly recommended to use HTTPS for all protected RESTful Services. This
prevents snooping attacks where an attacker may be able to steal access tokens
by eavesdropping on insecure channels. It also prevents attackers from viewing
the sensitive data that may be present in the payload of the requests.

• Ensure that the client application is not located in a browser origin with other
applications or scripts that cannot be trusted. For example assume that user Alice
has a client application hosted at the following location:

https://sharedhosting.com/alice/application

If another user (such as Fred) is also able to host his application in the same
origin, for example, at:

https://sharedhosting.com/fred/trouble

Appendix E
Accessing the RESTful Services from a Third Party Application

E-19

then it will be easy for /fred/trouble to steal any access token acquired by /
alice/application, because they share the same origin https://
sharedhost.com, and thus the browser will not prevent either application from
accessing the other's data.

To protect against this scenario, Alice's application must be deployed in its own
origin, for example:

https://alice.sharedhosting.com/application

or:

https://application.alice.sharedhosting.com

or:

https://aliceapp.com

Appendix E
Accessing the RESTful Services from a Third Party Application

E-20

Index

A
access token

acquiring, E-12
securing, E-19
using, E-14

Apache Tomcat, 1-2
about, 1-35
configuring Oracle REST Data Services

images, 1-35
deploying to, 1-35
downloading, 1-35

authentication
against WebLogic and GlassFish user

repositories, 3-77

B
bequeath connection, 1-38
browser origins, E-15

C
command-line interface, 1-4
configdir command, C-1

locating configuration files, C-1
locating configuration folder, C-1

configuration file editable parameters
jdbc.MaxConnectionReuseCount, C-6
jdbc.MinLimit, C-6
security.requestValidationFunction, C-11
security.verifySSL, C-11
soda.defaultLimit, C-11
soda.maxLimit, C-11

configuration files, C-1
format of, C-2
locating using configdir command, C-1

configuration folder
setting location, C-1
structure of, C-1

CORS (Cross Origin Resource Sharing), E-15
CREATE_CLIENT procedure, 9-1
CREATE_ROLE procedure, 6-1
CREATE_SERVICE procedure (deprecated), 6-1
Cross Origin Resource Sharing (CORS), E-15

Cross Site Request Forgery (CSRF) attacks,
E-13

CSRF (Cross Site Request Forgery) attacks,
E-13

cURL, 3-5

D
database users, 1-4
defaults.xml

enabling detailed request error messages,
D-1

defaults.xmll, file format, C-2
DEFINE_HANDLER procedure, 6-4
DEFINE_MODULE procedure, 6-6
DEFINE_PARAMETER procedure, 6-7
DEFINE_PRIVILEGE procedure, 6-9
DEFINE_SERVICE procedure, 6-11
DEFINE_TEMPLATE procedure, 6-14
DELETE_CLIENT procedure, 9-2
DELETE_MODULE procedure, 6-16
DELETE_PRIVILEGE procedure, 6-16
DELETE_ROLE procedure, 6-17
deploy options

Apache Tomcat, 1-35
deployment options

GlassFish Server, 1-31
Oracle WebLogic Server, 1-27

DER
converting private key to DER, 1-25

downloading
Apache Tomcat, 1-35
GlassFish Server, 1-32
Oracle WebLogic Server, 1-27

DROP_REST_FOR_SCHEMA procedure, 6-17

E
ENABLE_OBJECT procedure, 6-18
ENABLE_SCHEMA procedure, 6-19

Index-1

G
GlassFish Server, 1-2

about, 1-32
creating a WAR file for images, 1-33
deploy to, 1-31
downloading, 1-32
installing the deployment, 1-34, 1-36

GRANT_CLIENT_ROLE procedure, 9-3
graphical user interface administration, 1-22

I
image gallery example, E-1
installation options

standalone mode, 1-24
installation overview, 1-3

J
Java EE application servers

about supported, 1-2
JSON

using to pass parameters, 3-32

M
multiple database configuration, 2-1

about the request URL, 2-1
configuring additional databases, 2-2
routing request rules, 2-3
routing requests based on URL prefix, 2-4

O
OAUTH package

CREATE_CLIENT, 9-1
DELETE_CLIENT, 9-2
GRANT_CLIENT_ROLE, 9-3
RENAME_CLIENT, 9-4
REVOKE_CLIENT_ROLE, 9-4
UPDATE_CLIENT, 9-5

OAuth2, default behavior, 1-23
Oracle GlassFish Server

launching Administration Console, 1-33
Oracle REST Data Services

about, 1-1
about upgrading, 1-36
administering with graphical user interface,

1-22
bequeath connection, 1-38
caching, 2-11
configuration files, C-1
configuring, 1-3, 1-6, 2-1

Oracle REST Data Services (continued)
configuring multiple databases, 2-1
configuring with command-line interface, 1-4,

1-6
database users, 1-4
developing RESTful services, 2-12
downloading, 1-3
environment, 2-11
Excel settings, 2-11
installation overview, 1-3
installing, 1-3
PL/SQL API

PL/SQL API for Oracle REST Data
Services, 3-82

pre- and post- processing, 2-11
running in standalone mode, 1-24
security, 2-11
system requirements, 1-2

Oracle REST Data Services configuration file
enabling detailed request error messages,

D-1
Oracle REST Data Services package

CREATE_SERVICE (deprecated), 6-1
Oracle WebLogic Server, 1-2

about, 1-27
deploy to, 1-27
downloading, 1-27
installing, 1-27
installing the deployment, 1-29

ORDS package
CREATE_ROLE, 6-1
DEFINE_HANDLER, 6-4
DEFINE_MODULE, 6-6
DEFINE_PARAMETER, 6-7
DEFINE_PRIVILEGE, 6-9
DEFINE_SERVICE, 6-11
DEFINE_TEMPLATE, 6-14
DELETE_MODULE, 6-16
DELETE_PRIVILEGE, 6-16
DELETE_ROLE, 6-17
DROP_REST_FOR_SCHEMA, 6-17
ENABLE_OBJECT, 6-18
ENABLE_SCHEMA, 6-19
PUBLISH_MODULE, 6-20
RENAME_MODULE, 6-20
RENAME_PRIVILEGE, 6-21
RENAME_ROLE, 6-22
SET_MODULE_ORIGINS_ALLOWED, 6-22
SET_URL_MAPPING, 6-23

P
passing parameters

using JSON, 3-32
using query strings, 3-40

Index

Index-2

passing parameters (continued)
using route patterns, 3-36

private key
converting to DER, 1-25

PUBLISH_MODULE procedure, 6-20

R
RENAME_CLIENT procedure, 9-4
RENAME_MODULE procedure, 6-20
RENAME_PRIVILEGE procedure, 6-21
RENAME_ROLE procedure, 6-22
resource handler, 3-3
resource module, 3-3
resource template, 3-3
RESTful services

about, 3-2
accessing from third-party application, E-11
configuring for cross-origin resource sharing,

E-15
developing, 2-12
getting started with, 3-2
image gallery example, E-1
integrating with existing group/role models,

3-80
sample services, 3-54
securing, E-8
terminology, 3-3
user roles, 3-73
using cURL, 3-5

REVOKE_CLIENT_ROLE procedure, 9-4
role-mapping.xml file, 3-80
route pattern, 3-3

S
Same Origin Policy, E-15

SET_MODULE_ORIGINS_ALLOWED
procedure, 6-22

SET_URL_MAPPING procedure, 6-23
SQL Developer Oracle REST Data Services

Administration, 1-22
standalone mode

starting, 1-24
stopping the server, 1-26

standalone mode, running in, 1-24
structure of configuration folder, C-1
supported Java EE application servers, 1-2
system requirements, 1-2

T
troubleshooting, D-1

enabling detailed request error messages,
D-1

U
UPDATE_CLIENT procedure, 9-5
upsert operation, 3-15
URI pattern, 3-3
URI template, 3-3
url-mapping.xml

file format, C-2
request rules routing, C-2

user roles for RESTful services, 3-73
using query strings

to pass optional parameters, 3-40
using route patterns

for passing required parameters, 3-36

Index

3

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Third-Party License Information

	Changes in This Release for Oracle REST Data Services Installation, Configuration, and Development Guide
	Changes in Oracle REST Data Services Release 18.4
	New Features

	Changes in Oracle REST Data Services Release 18.3
	New Features
	Other Changes

	Changes in Oracle REST Data Services Release 18.2
	New Features
	Desupported Feature
	Other Changes

	Changes in Oracle REST Data Services Release 18.1
	New Features

	1 Installing Oracle REST Data Services
	1.1 About Oracle REST Data Services
	1.2 Understanding the Installation Process
	1.2.1 Supported Java EE Application Servers
	1.2.2 System Requirements
	1.2.3 About Installing Oracle REST Data Services

	1.3 Configuring and Installing Oracle REST Data Services
	1.3.1 About Using the Command-Line Interface
	1.3.2 About the Database Users Used by Oracle REST Data Services
	1.3.3 Privileges Granted by Oracle REST Data Services
	1.3.4 Downloading, Configuring and Installing Oracle REST Data Services
	1.3.4.1 Advanced Installation Using Command-Line Prompts
	1.3.4.1.1 Descriptions for Advanced Installation Prompts

	1.3.4.2 Silent Installation Using a Parameter File
	1.3.4.2.1 Parameters for Installing in Silent Mode
	1.3.4.2.1.1 Parameters for Database Connection
	1.3.4.2.1.2 Parameters for Installing Oracle REST Data Services
	1.3.4.2.1.3 Parameters for Installing into the CDB
	1.3.4.2.1.4 Parameters for Installing Application Express
	1.3.4.2.1.5 Parameters for Installing in Standalone Mode
	1.3.4.2.1.6 Miscellaneous Parameters

	1.3.4.3 Validating the Oracle REST Data Services Installation
	1.3.4.4 If You Want to Reinstall or Uninstall (Remove) Oracle REST Data Services

	1.3.5 Using SQL Developer Oracle REST Data Services Administration (Optional)
	1.3.5.1 About SQL Developer Oracle REST Data Services Administration
	1.3.5.2 Configuring an Administrator User

	1.3.6 Using OAuth2 in Non-HTTPS Environments

	1.4 Running in Standalone Mode
	1.4.1 Starting in Standalone Mode
	1.4.1.1 Converting a Private Key to DER (Linux and Unix)

	1.4.2 Stopping the Server in Standalone Mode
	1.4.3 Configuring a Doc Root for Non-Application Express Static Resources

	1.5 Deploying to Oracle WebLogic Server
	1.5.1 About Oracle WebLogic Server
	1.5.2 Downloading, Installing, and Configuring Oracle REST Data Services
	1.5.3 Configuring Oracle Application Express Images
	1.5.4 Launching the Administration Server Console
	1.5.5 Installing the Oracle WebLogic Server Deployment
	1.5.6 Configuring WebLogic to Handle HTTP Basic Challenges Correctly
	1.5.7 Verifying the State and Health of ords and i

	1.6 Deploying to GlassFish Server
	1.6.1 About GlassFish Server
	1.6.2 Downloading, Installing, and Configuring Oracle REST Data Services
	1.6.3 Configuring Oracle Application Express Images
	1.6.4 Launching the Administration Server Console
	1.6.5 Installing the GlassFish Server Deployment

	1.7 Deploying to Apache Tomcat
	1.7.1 About Apache Tomcat
	1.7.2 Downloading, Installing, and Configuring Oracle REST Data Services
	1.7.3 Configuring Oracle Application Express Images
	1.7.4 Installing the Apache Tomcat Deployment

	1.8 Upgrading Oracle REST Data Services
	1.9 Using a Bequeath Connection to Install, Upgrade, Validate, or Uninstall Oracle REST Data Services

	2 Configuring Oracle REST Data Services (Advanced)
	2.1 Configuring Multiple Databases
	2.1.1 About the Request URL
	2.1.2 Configuring Additional Databases
	2.1.3 Routing Based on the Request Path Prefix
	2.1.3.1 Example of Routing Based on the Request Path Prefix

	2.1.4 Routing Based on the Request URL Prefix
	2.1.4.1 Example of Routing Based on the Request URL Prefix

	2.2 Using the Multitenant Architecture with Oracle REST Data Services
	2.2.1 Installing Oracle REST Data Services in a CDB Environment
	2.2.1.1 Installation Enabling Multiple Releases
	2.2.1.1.1 Command Line Installation
	2.2.1.1.2 Advanced Installation
	2.2.1.1.3 Silent Installation

	2.2.2 Upgrading Oracle REST Data Services in a CDB Environment
	2.2.2.1 Migrating Oracle REST Data Services in the CDB to Enable Multiple Releases

	2.2.3 Making All PDBs Addressable by Oracle REST Data Services (Pluggable Mapping)
	2.2.4 Uninstalling Oracle REST Data Services in a CDB Environment

	2.3 Support for Oracle RAC Fast Connection Failover
	2.4 Configuring Security, Caching, Pre- and Post Processing, Environment, and Excel Settings
	2.5 Configuring REST-Enabled SQL Service Settings
	2.6 Configuring the Maximum Number of Rows Returned from a Query
	2.7 Configuring the Custom Error Pages
	2.8 Developing RESTful Services for Use with Oracle REST Data Services

	3 Developing Oracle REST Data Services Applications
	3.1 Introduction to Relevant Software
	3.1.1 About Oracle Application Express
	3.1.2 About RESTful Web Services

	3.2 Getting Started with RESTful Services
	3.2.1 RESTful Services Terminology
	3.2.2 About Request Path Syntax Requirements
	3.2.3 "Getting Started" Documents Included in Installation
	3.2.4 About cURL and Testing RESTful Services
	3.2.5 Automatic Enabling of Schema Objects for REST Access (AutoREST)
	3.2.5.1 Examples: Accessing Objects Using RESTful Services
	3.2.5.1.1 Get Schema Metadata
	3.2.5.1.2 Get Object Metadata
	3.2.5.1.3 Get Object Data
	3.2.5.1.4 Get Table Data Using Paging
	3.2.5.1.5 Get Table Data Using Query
	3.2.5.1.6 Get Table Row Using Primary Key
	3.2.5.1.7 Insert Table Row
	3.2.5.1.8 Update/Insert Table Row
	3.2.5.1.9 Delete Using Filter
	3.2.5.1.10 Post by Batch Load

	3.2.5.2 Filtering in Queries
	3.2.5.2.1 FilterObject Grammar
	3.2.5.2.2 Examples: FilterObject Specifications

	3.2.5.3 Auto PL/SQL
	3.2.5.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects
	3.2.5.3.2 Auto-Enabling the PL/SQL Objects
	3.2.5.3.2.1 Auto-Enabling Using the PL/SQL API
	3.2.5.3.2.2 Auto-Enabling the PL/SQL Objects Using SQL Developer

	3.2.5.3.3 Generating the PL/SQL Endpoints
	3.2.5.3.4 Resource Input Payload
	3.2.5.3.5 Resource Payload Response
	3.2.5.3.6 Function Return Value

	3.2.6 Manually Creating RESTful Services Using SQL and PL/SQL
	3.2.6.1 About Oracle REST Data Services Mechanisms for Passing Parameters
	3.2.6.1.1 Using JSON to Pass Parameters
	3.2.6.1.2 Using Route Patterns to Pass Parameters
	3.2.6.1.3 Using Query Strings for Optional Parameters

	3.2.6.2 Using SQL/JSON Database Functions
	3.2.6.2.1 Inserting Nested JSON Objects into Relational Tables
	3.2.6.2.1.1 Usage of the :body Bind Variable
	3.2.6.2.1.2 Example of JSON Purchase Order with Nested LineItems
	3.2.6.2.1.3 Table Definitions for PurchaseOrder and LineItems Tables
	3.2.6.2.1.4 PL/SQL Handler Code for a POST Request
	3.2.6.2.1.5 Creating the REST API Service to Invoke the Handler
	3.2.6.2.1.6 Defining the REST Service and Handler using PL/SQL API

	3.2.6.2.2 Generating Nested JSON Objects from Hierachical Relational Data
	3.2.6.2.2.1 Example to Generate Nested JSON Objects from the Hierachical Relational Tables
	3.2.6.2.2.2 PL/SQL API Calls for Defining Template and GET Handler

	3.2.6.2.3 Testing the RESTful Services
	3.2.6.2.3.1 Insertion of JSON Object into the Database
	3.2.6.2.3.2 Generating JSON Object from the Database

	3.2.7 About Working with Dates Using Oracle REST Data Services
	3.2.7.1 About Datetime Handling with Oracle REST Data Services
	3.2.7.2 About Setting the Time Zone
	3.2.7.3 Exploring the Sample RESTful Services in Application Express (Tutorial)

	3.3 Configuring Secure Access to RESTful Services
	3.3.1 Authentication
	3.3.1.1 First Party Cookie-Based Authentication
	3.3.1.2 Third Party OAuth 2.0-Based Authentication
	3.3.1.2.1 Two-Legged and Three-Legged OAuth Flows

	3.3.2 About Privileges for Accessing Resources
	3.3.3 About Users and Roles for Accessing Resources
	3.3.4 About the File-Based User Repository
	3.3.5 Tutorial: Protecting and Accessing Resources
	3.3.5.1 OAuth Flows and When to Use Each
	3.3.5.2 Assumptions for This Tutorial
	3.3.5.3 Steps for This Tutorial

	3.4 About Oracle REST Data Services User Roles
	3.4.1 About Oracle Application Express Users and Oracle REST Data Services Roles
	3.4.1.1 Granting Application Express Users Oracle REST Data Services Roles
	3.4.1.2 Automatically Granting Application Express Users Oracle REST Data Services Roles

	3.4.2 Controlling RESTful Service Access with Roles
	3.4.2.1 About Defining RESTful Service Roles
	3.4.2.2 Associating Roles with RESTful Privileges

	3.5 Authenticating Against WebLogic Server and GlassFish User Repositories
	3.5.1 Authenticating Against WebLogic Server
	3.5.1.1 Creating a WebLogic Server User
	3.5.1.2 Verifying the WebLogic Server User

	3.5.2 Authenticating Against GlassFish
	3.5.2.1 Creating a GlassFish User
	3.5.2.2 Verifying the GlassFish User

	3.6 Integrating with Existing Group/Role Models
	3.6.1 About role-mapping.xml
	3.6.1.1 Parameterizing Mapping Rules
	3.6.1.2 Dereferencing Parameters
	3.6.1.3 Indirect Mappings

	3.7 Using the Oracle REST Data Services PL/SQL API
	3.7.1 Creating a RESTful Service Using the PL/SQL API
	3.7.2 Testing the RESTful Service

	3.8 Oracle REST Data Services Database Authentication
	3.8.1 Installing Sample Database Scripts
	3.8.2 Enabling the Database Authentication
	3.8.3 Configuring the Request Validation Function
	3.8.4 Testing the Database Authenticated User
	3.8.5 Uninstalling the Sample Database Schema

	3.9 Overview of Pre-hook Functions
	3.9.1 Configuring the Pre-hook Function
	3.9.2 Using a Pre-hook Function
	3.9.3 Processing of a Request
	3.9.4 Identity Assertion of a User
	3.9.5 Aborting Processing of a Request
	3.9.6 Ensuring Pre-hook is Executable
	3.9.7 Exceptions Handling by Pre-hook Function
	3.9.8 Pre-hook Function Efficiency
	3.9.9 Pre-Hook Examples
	3.9.9.1 Installing the Examples
	3.9.9.1.1 Example: Denying all Access
	3.9.9.1.2 Example: Allowing All Access
	3.9.9.1.3 Example: Asserting User Identity

	3.9.9.2 Uninstalling the Examples

	4 REST-Enabled SQL Service
	4.1 REST-Enabled SQL Service Terminology
	4.2 Configuring the REST-Enabled SQL Service
	4.3 Using cURL with REST-Enabled SQL Service
	4.4 Getting Started with the REST-Enabled SQL Service
	4.4.1 REST-Enabling the Oracle Database Schema
	4.4.2 REST-Enabled SQL Authentication
	4.4.3 REST-Enabled SQL Endpoint

	4.5 REST-Enabled SQL Service Examples
	4.5.1 POST Requests Using application/sql Content-Type
	4.5.1.1 Using a Single SQL Statement
	4.5.1.2 Using a File with cURL
	4.5.1.3 Using Multiple SQL Statements

	4.5.2 POST Requests Using application/json Content-Type
	4.5.2.1 Using a File with cURL
	4.5.2.2 Specifying the Limit Value in a POST Request for Pagination
	4.5.2.3 Specifying the Offset Value in a POST Request for Pagination
	4.5.2.4 Defining Binds in a POST Request
	4.5.2.5 Specifying Batch Statements in a POST Request

	4.5.3 Example POST Request with DATE and TIMESTAMP Format
	4.5.4 Data Types and Formats Supported

	4.6 REST-Enabled SQL Request and Response Specifications
	4.6.1 Request Specification
	4.6.2 Response Specification

	4.7 Supported SQL, SQL*Plus, and SQLcl Statements
	4.7.1 Supported SQL Statements
	4.7.2 Supported PL/SQL Statements
	4.7.3 Supported SQL*Plus Statements
	4.7.3.1 Set System Variables
	4.7.3.2 Show System Variables

	4.7.4 Supported SQLcl Statements

	5 Migrating from mod_plsql to ORDS
	5.1 Oracle HTTP Server mod_plsql Authentication
	5.2 Example Oracle HTTP Server DAD file
	5.3 Mapping mod_plsql Settings to ORDS
	5.4 Example ORDS Configuration Files
	5.4.1 Example Configuration File for Basic Authentication
	5.4.2 Example Configuration File for Basic Dynamic Authentication
	5.4.3 Example Configuration file for Custom Authentication

	5.5 Example ORDS URL Mapping
	5.6 Example ORDS Default Configuration
	5.7 ORDS Authentication
	5.7.1 Basic Authentication
	5.7.2 Basic Dynamic Authentication
	5.7.3 Custom Authentication

	5.8 ORDS Features
	5.8.1 Request Validation Function
	5.8.2 Pre Process Feature
	5.8.3 Post Process Feature
	5.8.4 File Upload Feature

	6 Oracle REST Data Services PL/SQL Package Reference
	6.1 ORDS.CREATE_ROLE
	6.2 ORDS.CREATE_SERVICE
	6.3 ORDS.DEFINE_HANDLER
	6.4 ORDS.DEFINE_MODULE
	6.5 ORDS.DEFINE_PARAMETER
	6.6 ORDS.DEFINE_PRIVILEGE
	6.7 ORDS.DEFINE_SERVICE
	6.8 ORDS.DEFINE_TEMPLATE
	6.9 ORDS.DELETE_MODULE
	6.10 ORDS.DELETE_PRIVILEGE
	6.11 ORDS.DELETE_ROLE
	6.12 ORDS.DROP_REST_FOR_SCHEMA
	6.13 ORDS.ENABLE_OBJECT
	6.14 ORDS.ENABLE_SCHEMA
	6.15 ORDS.PUBLISH_MODULE
	6.16 ORDS.RENAME_MODULE
	6.17 ORDS.RENAME_PRIVILEGE
	6.18 ORDS.RENAME_ROLE
	6.19 ORDS.SET_MODULE_ORIGINS_ALLOWED
	6.20 ORDS.SET_URL_MAPPING

	7 Oracle REST Data Services Administration PL/SQL Package Reference
	7.1 Example Subprograms for Developing and Administering RESTful Services

	8 Implicit Parameters
	8.1 List of Implicit Parameters
	8.1.1 About the :body parameter
	8.1.2 About the :body_text Parameter
	8.1.3 About the :content_type Parameter
	8.1.4 About the :current_user Parameter
	8.1.5 About the :status_code Parameter
	8.1.6 About the :forward_location Parameter
	8.1.7 About the Pagination Implicit Parameters
	8.1.7.1 About the :page_offset Parameter
	8.1.7.2 About the :page_size Parameter
	8.1.7.3 About the :row_offset Parameter
	8.1.7.4 About the :row_count Parameter
	8.1.7.5 About the :fetch_offset Parameter
	8.1.7.6 About the :fetch_size Parameter
	8.1.7.7 About Automatic Pagination
	8.1.7.8 About Manual Pagination

	9 OAUTH PL/SQL Package Reference
	9.1 OAUTH.CREATE_CLIENT
	9.2 OAUTH.DELETE_CLIENT
	9.3 OAUTH.GRANT_CLIENT_ROLE
	9.4 OAUTH.RENAME_CLIENT
	9.5 OAUTH.REVOKE_CLIENT_ROLE
	9.6 OAUTH.UPDATE_CLIENT

	A Oracle REST Data Services Third-Party License Information
	A.1 Oracle REST Data Services Third Party List

	B Oracle REST Data Services Database Type Mappings
	B.1 Oracle Built-in Types
	B.2 Handling Structural Database Types
	B.3 Oracle Geospacial Encoding
	B.4 Enabling Database Mapping Support

	C About the Oracle REST Data Services Configuration Files
	C.1 Locating Configuration Files
	C.2 Setting the Location of the Configuration Files
	C.3 Understanding the Configuration Folder Structure
	C.4 Understanding the Configuration File Format
	C.4.1 Understanding the url-mapping.xml File Format

	C.5 Understanding Configurable Parameters

	D Troubleshooting Oracle REST Data Services
	D.1 Enabling Detailed Request Error Messages
	D.2 Configuring Application Express Static Resources with Oracle REST Data Services

	E Creating an Image Gallery
	E.1 Before You Begin
	E.1.1 About URIs
	E.1.2 About Browser Support
	E.1.3 Creating an Application Express Workspace

	E.2 Creating the Gallery Database Table
	E.3 Creating the Gallery RESTful Service Module
	E.4 Trying Out the Gallery RESTful Service
	E.5 Creating the Gallery Application
	E.6 Trying Out the Gallery Application
	E.7 Securing the Gallery RESTful Services
	E.7.1 Protecting the RESTful Services
	E.7.2 Modifying the Application to Use First Party Authentication

	E.8 Accessing the RESTful Services from a Third Party Application
	E.8.1 Creating the Third Party Developer User
	E.8.2 Registering the Third Party Application
	E.8.3 Acquiring an Access Token
	E.8.4 Using an Access Token
	E.8.5 About Browser Origins
	E.8.6 Configuring a RESTful Service for Cross Origin Resource Sharing
	E.8.7 Acquiring a Token Using the Authorization Code Protocol Flow
	E.8.7.1 Registering the Client Application
	E.8.7.2 Acquiring an Authorization Code
	E.8.7.3 Exchanging an Authorization Code for an Access Token
	E.8.7.4 Extending OAuth 2.0 Session Duration

	E.8.8 About Securing the Access Token

	Index

