ORACLE

Oracle Utilities

Application Framework Software
Development Kit

Developer's Guide

Release 4.4.0.2.0

E63799-06

August 2019

Oracle Utilities Application Framework Software Development Kit Developer's Guide
Release 4.4.0.2.0

E63799-06

August 2019

Documentation build: 07.30.2019 15:44:44 [SDK_1564515884000]

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to
license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.Intel and Intel
Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Oracle Utilities Software Development Kit............ccooiiiiiiiiiirir s 12
L0 L= T [
OVEIVIEW. ...t
Converted COBOL Programs
Development Environment.........

OVEIVIBW.....eiiiiie ettt
The App Server is the Development Environment....
Development App Server is Local, Not Shared
Repository for Project........ccccovveviiiieniiieeeeas

Components of the Software Development Kit..............ooiuiiiiiiiiie et e e s earaa e e e enreea s
Project Development Dat@base.coeiiiiiiiiiiiiie et e e e e e e e e e s e e e e er e e e e nt e e e e ant e e e e enneeeeennnes
Project Repository e
[1=3Y7=1 T o] g 1T 01 QYA Lo <] €= (o o USRS

DiFECIONY STIUCKUIE. ... ettt ettt s h e et e e e a e e e b e sa e e eb e et e e e b e e b e e e e e be e e e eneeneeanean
LI A o o TR L= V=Tl 1Yo (o) VS SUSS

Standard App Server DireCtory STUCIUME..........oiiiiii ettt e e be e e sbeeesneeeeneeeas
Additional Directories for DEVEIOPMENL..........ooi i e e e e et e e e et e e e e s e e e eneeeeeeanseeeeens
Pertinent Directories in the App Server.
L@ 1= oL T =Y Y/ S
Synchronizing with the Project REPOSITOrY...........cocui et
Versions

MOVING UP 10 @ NEW UPAALE......ooiiiiiieeiie ettt e et e e e et e e e ettt e e e s nee e e e e enseeeeeanneneeeaannneeenannee
Moving Up to @ New Version Of @ ProQUCL............ooiii ittt e b e e sneeesnnee e
Product Single Fixes
2T o IST=T V=T SRR
Tailoring Your Oracle Utilities Application Implementation..............ocuiir oo e e 23
Preserving Customer Changes
JLIEZ 1oy T To T ATL= o TR 1 =S
Tailoring the CM Java APPICALION.oi ettt ettt e e b e e st e e s bt e e sbee e ssbeeenbeeeanseeanbeeanneeas 24
Tailoring AppViewer
LIz 11 e Ty T aTe T =1 o PSP PSP PP PP
[Rdo X511 foTa1TaTe B OFUE) (o] 4 4TS o] o) - S
Replacing the Oracle Utilities Logo
Using the Implementation VErsion File............cooi ittt e e e e e e e e et ee e e e e e e e ennneeee s 26
LI 1L e 1410 Te T PSPPSR UPTP PP UUPRRIR
Tailoring XML Schema
Tailoring Templates and USEr EXItS. ...ttt e e e e e s e e e e 27
18180y (=] T S
Standard test cases
QLIS T TS T = 14 o 1S
Testing MaiNtENANCE ClASSES......couuiiiiiiiiiie ittt ettt e et e ae e e et e e ettt e e beeesabeeebeeeaabeeaabeeabeeesnbeesnneaenneaean
Testing Add on Maintenance Class
Testing Change on Maintenance Class

Testing Delete 0N MainteNanCe ClassS.........coii it e et e e e e e e st e e e e nnaeeeeesnseeeeeaanneeeeeannneeeean 30
Test default actions on Maintenance Class........ .31
Testing Entity Page MaintenanCe ClasSES..........cuuiiiiiiiiiie ettt e e e e s e e e s e e e e neeeeesennaeeeeans 31

Testing Add on Entity Page Maintenance Class............ooiuiiiiiiiiiiiiie ettt 32
Testing Change on Entity Page Maintenance Class...........coiouiiiiiiiiiieeiiiee et e e e e e e e e 32

THE COMPAIISONS.eeutieiitie ettt ettt ettt e et te e e bt e e te e e s abeeaabeeebeeeaseeeaateeease e e eabeeaabe e e beeeaheeeambe e e sbeeambeeambeeaneeesneeennneaann 32
Test default actions on Entity Page MaintenancCe Class...........coviiiiiiiiiiiieeece et 32
Testing Business Entity Validation...............ooooiii e 33

Test handleChange / handleAdd / €1C COAE..........coiueiii it s e e e e e e e s e e e e sennee e e s nnneeeesenneee
Testing for Warnings..................
Maintenance Classes
[01 (1 AV (TS £ TP U USRI

JLICT e 2 T Te7= 1 B = 2= Vo (e [0 T o USSR
Technology Overview
L0 0 =1 o117 OSSO
{1 (4] o101 oo HO OO P PRSP
OUAF Web Services
SPL Service XML Metainfo Files..........oi ittt ettt e st e e e be e e s abe e sabe e e be e e aneeesnneeeneeens
EXamPpIe USING PAgE SEIVICE. ...ttt ettt e e et e e ettt e e e e st e e e e ns e e e e enneeeeeenseeeeeaannseeeeannneeens
Example Using Search Service....
Server ArChitECIUNE OVEIVIEW........coouiiiiiiiiiie ettt ettt sttt e et e e bt e s ae e e et et e be e e naneesaneeeanneesaneeanee
Client ArChiItECIUNE OVEIVIEW........ei ittt ettt ettt ettt e et e e te e e s ab e e e b e e e ae e e ahe e e embeeebeeeeabeeambeeaneeesnneesnseeennas

Introduction..........cccoecveeriiiniiieieee

Client ArChiteCIUIE DISCUSSION.ciiiiie ittt ettt ettt ettt e bt e e bt e e ehe e e sabeesbeeeaaeeeambeeeabeeesabeesmbeeaneeeanneeanneas

ST I 071 1=T o | N T T ST P PP U RO UPP PP

Overview........c.cccevueennee.

Client API Discussion
JavaScript INVOCAtION CONIEXL..........ciiiiiiii e e e et e e et e e e e e e e e e nnaeaeeensaeeeennees
Data Representation and Localization... .
COre JAVASCIIPE ClaSSES. ... uieiiiiieiiie ittt ettt ettt ettt e et e e a et e e st e e e abe e e beeeshbeeeabe e e aseaaabeeambeeeabeeesabeeanbeeeanneeanbeeanee
FTrEE FUNCHIONS. ...ttt ettt et e et e e bt e e b e e e s et e e et et e nbe e e san e e s neeeaneeenineenaenas

Meta-data Overview...........cccecueennee.
Generated Tab Menu Meta-data...............cc.c...
Generated Ul Program Component Meta-data............oouei ittt s sae e e aeee s 57
Menu and Navigation Meta-data............cooiiiiiiie e e e e e e e et e e e e s et e e e e s nne e e e e nnneeeeeanees 58
Table-Related Meta-aata...........oouiiiii ettt e e e e e e e e e e e e e e e 59
[V E= Tl T aE=T e ot =T @ o] 1= o1 g 1Y =1 €= B F- | - 60
Defining Generator TOOIS Meta-data..........ooiiiiiiiii ettt sttt e e st e s be e e bee e s sbeesnbeeannneaan 61

Setting up Fields.........ccccvveiiinennns e —— 61
Fields - Main........ccccocoeeviinenneene e 61
Fields - Tables Using Field.............. R 62

Setting up Foreign Key References.......... e
FK References.....................

Setting up Lookup Tables
Lookup Tables......ccccceevivveiiiienenns

Setting up Navigation Options
Navigation Option - Main..............

Setting up Services................
SEerVICES....ccovviirieiiiierieereee

Setting up Tables......
Tables - Main......
Tables - Fields....
Tables - Constraints..........ccccceevunene
Tables - Referred by Constraints.....

Setting up Menus.........ccocoeeveeiienen.

Menus - Main................
Menus - Menu Lines..........ccocoeeiieene
Setting UP MaiNtENANCE ODJECES.oiiiiii ittt ettt e et e s bt e e eab e e sabe e e be e e sbeeesabeeeneeeanbeesnneean
MaintenanCe ODJECES = MaIN..... ..o e et e e e e e e st e e s ann e e e e ennaeeeeenaaeeeeanneeeeeenneeeenn
Maintenance Objects - Options
Maintenance Objects - Algorithms
Maintenance Object - Maintenance ODJECE Tree.......cocuuii i 83
Development Process
HOOKING INTO USEI EXIES.....ceiiiiiiiiiiit ittt ettt e ettt e e e e bt e e e st et e e e et b e e e e e aab e e e e e annneee s
Hooking into Ul JAvasCript USEr EXItS........coiiiiiiiiiiiiiee ettt e e e et e e s et eeeennneeeeesnneeeeennnee
Hooking into Java User Exits (interceptors)
EXteNdiNg BUSINESS ENTIHIES.coiiiiiiie et e et e e et e e e st e e e e s st e e e eannaeeeeensaeeeeenneeeesannneeenannes
Extending the BUSINESS INTEITACE.........coiuiiiiie ettt sttt e e s e bt e bt e e st e e snteeennnas
Extending the Specialization Interface...
Creating New BUSINESS ENTIIES.coiiiiiiiiiii ettt ettt e bt et e et e e e be e e seteesabeeebeeeanneeenseeenes
Specifying the BUSINESS INTEITACE.ooiiiiiiee e e e e e e st e e e e st e e e e anneeeeeenaeeeeans
Specifying the Specialization INTEITACE.couii et sae e e as
Extending Maint@nanCe ClaSSES........coiuuiiiiiiiiiie it e et e e et e e et e e e e s st e e e e sne e e e santeeeesannseeeeaanneeeeeannneeeennees

MaINtENANCE EXEENSIONS. ..ottt e ettt e e e et e e e e b b et e e e bt et e e e e bt e e e e e nne e e e s aneneeeeanrees
Creating Business Components....
Plugging N AlGOItMS.......eeei ettt e e et e e e ettt e e e st e e e aabe e e e e eab e e e e e e e e e e e anneee s

(07T (T aTo Tl o Ty ¢= 1S I= T o 7o g =Y S SRRSO
Creating Background Processes
Testing Background Processes

Creating MOs and Maintenance TranSACHIONS.ooiuii ittt ettt e sbe e e et e e sbe e e aaeeesaneesnteeanneea e 89
Building the Application Viewer
Creating Javadocs fOr CIM SOUICE COUE.......cciuuiiiiiieiiie ittt ettt et e e b e e s ate e e be e e sabeesabeeebeeessbeesnteeeanneesanis 90
GENErate CIM JAVAUOCS.......coiuiiiiiiieiiie ettt e et ettt ettt set e e st e e eas e e st eebe e e see e e nan e e e nn e e anreearee s

Recreate the Javadoc Indices
[O70Te] (o o T CH T O ST PTPP TP U PR TOPRTRURON
HOOKING INTO USEI EXIES.....eeiiiiiiiii ittt ettt e et e e et e e e be et e e e st e e e e e e nne e e e e nnneee s
Hooking into Maintenance Class User Exits
MaINTENANCE EXIENSIONS.eiiiteii et ettt e e e a et e e e ea bt e e e bt e e e e e a b e e e e e e nne e e e e aanneeeeas
Hooking into Ul JAvasCript USEr EXItS........coeiiiuiiiiiiiiee ettt e e e e st e e s enee e e e s nnneeeeesnneeeennnnee
Miscellaneous HOW-TO'S.........ccoccuereiiinienennne
Hooking into Java User Exits (interceptors)
[=10] o] = TSP PPRUPTT
Maintaining General-Purpose Maintenance Classes....
TR e= T T o o T 1Y (ST PUR PR
Maintaining Maintenance Classes fOr IMOS........cooi it e e e e s e e e s e e e e e anneeeeeannneeeeennnes
List Maintenance Classes..........ccccocceevueennee
Maintenance List Filters.........
List Maintenance Get More............cccovoeeiiiiiiieennne
Maintaining Maintenance Objects....
Maintaining Database Meta-data.........
Maintaining Fields......
Maintaining Tables...........
Maintaining Java Classes........cccccevveieveeviiieeeenieeene
Maintaining Business Entities..............cccooieeeinnnen.
Business Entity Background......
Persistent Classes........ccooceereceriennne
Creating the Implementation Class.....
Developing Change Handlers.............
Maintaining Business Components.....
Creating Business Components..........cccocceeenveennne.
Component Replacement...........cccoooceeeviiiceeennneen.
Calling CoMPONENES......ccoveiiiiieiiie et
Maintaining Maintenance Classes, inCluding COIECHONS............oiiiiiiiiee e 116
MalNtAINING SEIVICES.ottt ettt et et e e ae e b e e ae e st e e see e e et e st e e sbe e b e e saeesaeeseeeanean 116
Maintaining Foreign Key References...... 17
Maintaining Lookup Tables..................... L1117
[V E= T e= Y1 T o TN F= 17T F= o o T) TSR 117
Maintaining Navigation Options........... e 117

Maintaining User Interfaces.......... .17
=T TaLe= T T Lo 1Y =T o LU OSSP PRRTI 117
[V E= Tl e= T T oo Y o] o] [Tor=TiloT ST =T o U Ty 1 oSS ...118
Maintaining Ul Components (TranSIation)............c.eio ittt et e e te e e sab e s beeesaneesneeeanneee e 118
Flushing Server and Client Caches
User Language......ccccccoeveeiiiieeiinnneen.
1YL e 1Y TaTe T =1 o T T 1
Modifying Transaction Titles and Tab LabelS..........ceioiiiiiiiiie et 122
Modifying Field Labels on Pages
MOdifying BUION LADEIS..........ooiiiieiiie ettt ettt et e e b e st e e b e e e e ae e e satee e be e e snbeesnneeannneenane

Modifying Messages
Plugging in Algorithms
Creating Algorithm Spot Implementation CIass...........cooiiiiiiiiie e e e eeenneeas
Review Algorithm Spot Definition.............oooi e e e
Create Algorithm Component Implementation....

F e (o I (oo 4110 0 N 1Y/ o 1= T PP T PP UPPPROPPPPPN
e o N Fo o {0 o S
Create References to New Algorithm
[\ E= Tl e= Tl T o lo I o = K300 TaTo o] o 1= SRS
IMPIEMENTING CUSIOM ZONES........eeiiiiiiiiii ettt ettt ettt ettt e ettt e ebe e e s abeeeabe e e aabeeambeeanbeeeambeeambeeanseeanseeanbeeanee
LRV I 1= =Y oo 1= g -
CreatiNg @ NEW ZONE..... . ittt ettt ettt ettt e e a et e e bt e ettt e e hee e eabe e e ase e e aabeeambeeeabeeesseeesnbeeaneeeanneeanreeanee

o 1= T 1Y/ 1= 3
Zone Metadata

7= o0 T o 1o A
Simple Example: LINKVAIUEGIIA.cc.uiiieiiiiee ettt e e e et e e e s et e e e e s e e e e ennseeeeessaeeeeansaeeeaansneeas
XSLT File (/WEB-INF/xsl/linkValueGrid.xsl)
D 1Y Tt = T [o TSRO PTOUSRUTR
Another Example: accountFinanCialHIStONY...........oii i e e e e e e e ea
XSLT File (/WEB-INF/xsl/accountFinancialHistory.xsl)
XML MELAINTO. ...ttt ekt eat e et et e ae e e st e e et et e e et e naneesaneeeenneeeareeeteeene
The ServiCe Data BUFfEI........ciiiiieiiie ettt ettt et e e a e e e st e e et e e e be e e s hb e e aabeeeaneeeanbeeanbeeansneas

XSLT Debugging
HTML Standards
Maintaining BackgroUNd PrOCESSES.ccciiuiiieiiiiiiee et e et e e e ettt e e e st e e e sae e e e s anteeeeeaneeeeeannneeeeesnsaeeeeannneneeanns
Maintaining Background Processes Overview
(7 (=71 (g JRE= T = 7= (e o X o o J SRR
The BatchJob ANNOTALION. ... et e e e e e e e e e e e e
Creating JobWork
Declaring a ThreadWorker Class
Creating a ThreadWorker
Initializing ThreadWork.....
Executing a WorkUnit......
Finalizing ThreadWork............cccocveeeennnnen.
Choosing a ThreadExecutionStrategy.......
Building the Application Viewer.....................
Creating Table XMLs....
Creating MO XMLs..............
Creating Algorithm XMLS........ccccveviiiiieiieee e
Extending Service XMLS.........ccccocoiiiiiiniiniie e
Creating Javadocs for CM Source Code..........ccccevennneeee.
Upgrade JSP t0 XSLT......ccocoiiiiiiiiiiiiieeeeee
Create User Exit Files......
Tree User Exit Changes
Change Template Code in Program Components.....
Create XML File with Ul Meta-data.........c.c.ccceernene
Delete the JSP Files.......ccccocvvevneennnn.
Log into the Application and Test....
UtIlItIeS. ..o
Environment Batch Programs....
displayEnvironment.bat...........
switchEnvironments.bat............cccoocoiiiii
createNewEnv.bat............
SEIVICES. ..ei ittt
Batch Program setupSvcXMLPrompted.bat.....
Batch Program updateXMLMetalnfo.bat..........
Eclipse Tools/Wizards...........ccccceevvivereennnnen. .
Batch Program StartECliPSE.CMIA. ..o ittt e et e ettt e e e e e e e e e e
ANNOLAHION EQITON ...ttt ettt e s bt e b e e et e e et e e e nan e e st e s ane e e anneeere e e e
Project database information
1Y =TT (=T g =T ot I @ o] 1= A 2= T o S
UPGrade JSP 0 XSLT ... ittt ettt et et e et e s ae e e et e s ae e e b e e see e e ae e st e e sae e b e e sae e aeeneeeenean
Batch Program convertTreePageExits.pl
CONVEITrEEPAGEEXItS PUIPOSE.coiiiiiiie ittt e e e s e e et e e e et e e e e anneeas
convertTreePageEXits DESCIIPION.cooii et e e et e e e e et e e e s anne e e e e snneeeeeenneeeeeeanneeas
convertTreePageExits Usage
Batch Program convertSUDPaNEIEXItS.Pl........ccoi i e e e e e s e e e s e e e eneeeeeann
CONVETSUDPANEIEXITS PUMDOSE.iiiiiiitiieiiie ettt ettt et e e b e e st e e eate e e bt e e sabeeanbeeaanseesnbeeaneeaanes
convertSubPanelExits Description...
€oNVErtSUDPANEIEXIS USAQJE.oouiiiiiiiii ettt ettt
SQL Script changeTemplateCodeSTTRANAPN.DL.......coiiiiiii it e e
changeTemplateCodesTTRANdPN Purpose
changeTemplateCodesSTTRANAPN DESCIIPON.ccciiuiiieiiiie et e e s e e e e e e nnneeas
8= 1= Lo (o T T PSP P U PR TOPPUPPN
Batch Program generateJavadoc.bat..
Batch Program reindeXJavadoC.Dat.............ooo i

[T RY =Y e o= €T - 168

OVBIVIBW.......ooi ittt e ettt e e e e e e e e e e ettt eaeeeeeeeeeeeeeeesatassseeeeeeeeeeeeaasssssseeeeaaaeeeaaaaassssssnneeeeens168
JAVA ANNOTALIONS.ottt e e e e e e e e e e et e e e e e e e e e e aa————eeaaaaaeeaaaaannrraataaaaaaeaaaaaannnnnaes169
o) [oR A o RPN ...170

SQL Return Codes

Standard Business Methods...... .71
Business Entity Public Methods............. 171
Public Methods............ccccoooe..... eee———— 171

Protected Methods.....
Data Transfer ObJeCt MEthOGS.cc.uii ittt st e bt e e sbe e e sreee e 172

[IMBENOTS. ...ttt ettt ettt e et e bt e a et et e e et et e et e e e b et e an e st e e ne e e s 172
Maintenance Class PUDIIC MELhOS.............oi ittt eb e st e e bt e e sabeesbeeebeee e 172
(0 N F= Y 2= ET o] L G LS Y) S 173

Client User Exit Flow

== T I = o = S
DIEIELE PAgE......eei it e et e et e e e b e e et e e ab e e e e e bt e e e araeeeeas
Save Page
Y (Y] o T = To 1= TSP
Prepare MOAEl FOr Ad..........ooo ettt e et e e e ettt e e et e e e et e e e s neeeeeaanneneeeanneeeeennnneeeenneee 178
(0T oTo =1 (I =Y o OO 178
External User EXit TEMPIAES.........ooi it e et e e e et e e e s e e e s enne e e e e neneeeeannaeeeeenneeens 179
TEMPIALE SETIUCIUIE. ...ttt e e et e e e ettt e e e e at e e e e e aaaeeeeassseeeeessaeaesanssaeaeesssaeeeeansaneeanns 180

Design Approach
Using the External User Exit Templates
Create an External User Exit

How Do | Control the Initial Focus Within Tab Pages/Grids/Search Pages?.......

How Do | Mark Fields that Won't Make the Model Dirty?..........oooo i 188
How Do | Control the Triggering of Defaults After @ S€arch?............oociiiiiiiiiii e 188
How Do | Avoid Automatically Setting Fields to Uppercase?.......
How Can | Force the Save Button to be Enabled?......... .ot 189
How Can | Override the Processing After @ Change/Add™?...........oooeeii oo 189
How Do | Prevent the System from Setting Focus to a Widget After an Error?.. .

How Do | Prevent Attributes from Being Copied into New List Elements?...........coooirieiiiiiiiceee e 190
How Do | Customize New List EIEMENTS?...........oo ittt sane e 190

How Do | Disregard Unwanted Search Result Columns?...........cccooiiiiiiiiniieniie e,

How Do | Format a Value Based on a Given FOrmat?..........cocii i 192
Java User Exits (interceptors) Interfaces and Classes
IAddInterceptor Interface..........ccccevevviiiiiiiiie e
PageBody aboutToAdd(RequestContext, PageBody)
void afterAdd(RequestContext, PageBOdy).........ccouiiiiiiiiiiie et
IChangelnterceptor Interface..........ccccooeiiiiiiiiiiieec e
PageBody aboutToChange(RequestContext, PageBody)..........ccueiiiiiiiiieiiiie e e 193
void afterChange(RequestContext, PageBody)...........cccoiiiiiiiiiiii e 193
(1o =Y oY [(=T o=t o) (o] g1 (] 7= o YN 194
boolean aboutToDelete(RequestContext, PageBody)..........couuiiiiiiiiiiiii et 194
void afterDelete(RequestContext, PageBody)........ccuuiiiiiiiiiiee et 194
[T o (g G gor=T o) (o gl 0] (=T = Lo YU EURRSUPRRRINE 195
PageBody aboutToRead(RequestContext, PageHeader).......... R 195
void afterRead(RequestContext, PageBody).......... e ——— 195
INterceptorError Class.........oocvvvviiiiiee e e 195
void setMessageNumber(Biglnteger messageNumber)......... ceeeeeene. 196
void setMessageCategory(Biginteger messageCategory)......196
void setMessageParameters(List messageParameters)...........c.ooiuiiiiiiiiiiiiie e 196
void setMessageParameterTypeFlags(List messageParameterTypeFlags).........coccvveviiiireiniiiiee e,196
INtErCEPLOrVWAINING CIaSS. ... ettt ettt e et e e ettt e e ettt e e e e an e e e e ninneeeeennees 196

InterceptorWarning(ServerMessage warningMessage)
InterceptorWarning(List warningMessages)
void addWarningMessage(ServerMesSage MESSAGE). uueeeiuurrreiiuireeerieeeeeaataeeeeaasneeeesasereesanseeeeesanseeessnsneess
REQUESICONEXE METNOMS.ceiiiiiii et e e e st e e e ettt e e e staeeeessaeeaeeassseeesansseeeesansaeeesannseaanansnnn
String getLanguageCode()..
Y (oo I 1Y (8T o o [TSROSOt
[2= = T o] =Y o2 S
PageHeader and PageBody Methods
(@ o] 1=Te e [(S (T o = (o NN F= T T TS
String getString(String fIRlANGME)..........oo e
boolean getBoolean(String fieldName)
Biginteger getBiginteger(String fIeldNGME).......cou it
void put(String fieldName, ODJECE VAIUE).........ooi it e e et e e e e e e nneeaeeennee
PageHeader
=T 11 = T T |
ltemList gEtLISt(SIrING NAME).....co ittt ettt ettt st e e bt e e e st e e sate e e beeesebeesbeeeraneesnneeenee
ItemList
ListHeader getHeader()
RS T e 1= £ =T 0T TS
LiSt GELLIST()..vveeeurieeiieeiiee ettt
void setList(List list)......ccccverriieerieeecee e
ListHeader
ListBody.......ccccvvveerriieennnn.
String getActionFlag().........coecvrieirniiieeienee,
CMServiceConfig.xml structure...........ccccvvvviiveennnnnnn.
ApPlIcation LOGS......coiiiiiiiiiiiieie e
Logging within Business Logic......
Configuring Logging at Runtime..........c.ccocceeiiiniinnicnneen,
Property Configuration............cccoeioiieriiiee e
Trace Flags......ccueeiiiiiiiiie e
Java Programming Standards....
Rationale...........ccccoocveeiinnnenn.
Guidelines..................
Naming Standards.....
General guidelines...............
Entity Naming Guidelines..........
Collection Naming Guidelines.......
Class NamMe........ccoiiiiiiiie e
(0701 1=Ted o] g I N\ F=T o o =S O T PO PP UPP PSPPI
Lookup Naming Guidelines
ST T=T o = I T Y SRS
'Type' Entity Controlling Characteristics for 'Instance’ Entities - Characteristic Controls......204
HQL Programming STandards...........coceeiiiiiiiieiiee ettt
Examples......ccccoooiiiiiiiiiiii
Union queries
=Ty (o] 40 T Lo SO U RO UR PR
RAW SQIL.....e ettt b et h e et h e R e E et b et h et e e Rt e e b et e ear e e e b et e tn e neneenneeeeneeennne
SQL Programming Standards
Composing SQL StatEMENES.......couiiiiiii ettt et
PrErEQUISITE. ...ttt et e e e oo oo oo aae ettt eeeee e e e e e asaeeeeeeaaaaeeeaaaannssebeeeaaaaaaaeaaaannnnnnneen
Composing a SELECT Statement
General SELECT Statement Considerations............c.oiiuiiiiiiiiii ettt e e e s ee e neeee e 207
SEIECHON LIST... .ottt b et e e et e e a e e b e et et e e anr e e enneearee s
Database-specific Features
FROM CIAUSE. ...ttt ettt ettt e a e ettt e bt e e ab e e et et et et e e ee e e et et e ae e e eabe e eabe e e neneenaneenneeeanneens
WWHERE ClAUSE.... .. ettt ettt ettt ettt et e st e ettt e ekt e e e et e e et et e am b e e ea bt e e be e e esbe e eabe e e anbeeambeeambeeeneeesnseeennnas
Sort Order
L€ o T0] o] 4 o OSSR
EXISIENCE CRECKS. ... eiiiiiiiteiee ettt h ettt ettt e b et e s e bt e e b et e e as e e e b e e et et e s br e e st e e e anneeaanee s
SQL statements to avoid
DECIMAI DIIMILET ...ttt ettt et b e et e e bt e e bt e e s et e e e be e e ear e e eaneeebeeenareeennnas
Testing SQL STAtEMENTS.ottt ettt et e e et e e e e eae e ae e e e saeeeiee s
Result Data
Performance Testing - Oracle ONY..... ..ottt ettt e e sie e e st e e e saeeesmbeesnbeeenreea e 212

OVEIVIBW. ...ttt ettt e e e e oo e e e et e e e eeeeeeeeeeesaaaaaaeeeeeeeeeeeeaasssssaeeeeaaeeeeaa s ssssssessaeaaeeeeaaannssnsseneeeeaeenns

What is an Explain Plan?................

Generate the SQL'S EXPIAIN PlAN..........coiiii ettt ettt nanee e

ANalyzing the EXPIaIN PIAN...........ooi ettt e e et e et

More Extensive Performance Testing

SQL Development and Tuning Best PractiCes.............cooiiiiiiiiiiii e 215
[F= Y =T o X= EST I 1D LY T o TSRS 217
Database ODJECt STANAAI..........ooiiiiiie ettt e bt e e et e e e s bt e e bt e e anbeeambeeabeeeaseeesabeesneeaanseeanne 217
[N E= Lo 11T IS €= 1 o =T o - 217

RS T=Y o [= 3 TS
THGQEN ..o

Column Data Type and Constraints
USEI DEfINE COUE.......eeeiiiiiiie ettt ettt e h et et e et e e ettt e ekt e e eab e e e b e e e ameeeembeeebeeesabeesaneeaaneeeanteeanteeanes
System Assigned ldentifier
D (0 =Y T 4 1oE3 = 1 oo J U URR

Fixed Length/Variable Length Character Columns

INUIT CONSEIAINTS......e ettt ettt e et e bt e h et e eat e e e be e e ear e e e et e e et et e bn e e neneeeneeeanneesaneeenee

Default Value Setting..........

Foreign Key Constraints
ST Ta Lo =14 I @7 o] 100 o TSP TSP

L@ 1= F= o

VEISION....iiiiiiieie e

Display Profile............
Installation Options....
Language Code............
To do priority and Role...........ccccooeiiiiiiiiiiinnns
Development and Implementation System Tables....
Standards.........cce i
AlGorithm TYPe...cooiiiiieeeiee e
Algorithm....................
Application Security...
Batch Control.............
Business Object......
BUSINESS SEIVICE. ... ittt ettt e et e e bt e ea et e e e bt e e be e e ek et e ea b e e eabe e e aabeeambeeebeeesabeesnbeeaneeeanneeanee
(O] EoT = Tor (=14 S (1 T T TSP PPRURTTOPPN

MEL AATA - MEBNU. ...ttt e e e et e e s st e e e ea bt et e e e bt e e e e e nn e e e e nnnr e s
Meta data - Program, Location and Services
Meta data - MaintenanCe ODJECL..........oo ittt ettt e e e b e e e sabe e sbe e e rnneeanee
Meta data - WOIK TabIEs..........oo ittt ettt e b e eser et e
Meta data - Search Object
NN E= Y7o F= oo O o] T oS
o a1 =T g Lo o] o 1= TSP PUT PP UUPPPPN
Sequence
S Tet 1T T T PRSP UUR TRt

To do Type
XAl configuration
D IS 1T Y o7 USSR OPR
Oracle Utilities Application Framework only Tables .
SYSIEM TAIE LSt.... .ottt ettt et e st st e et e et e et e st e e ete e e naee
LSSV =T T =1 T oSS
Metadata for Key Generation
Extending the Application Viewer
Building Source Code Viewer Extension INfOrmation..............coiiioiiiiiiiiiiii e
Development Performance Guidelines
Object-Relational Mapping: BaCKGrOUNG...........c.oi ittt sttt e e be e satee s bt e e saaeesmbeeaeeeas
The ORM defers database calls for PerfOrmManCe............cuuiiiiiiiiii et e e e et e e e snneeeeennes
ID Objects .
(o8] i T JRE= TR o701 1=T'c2 o o T
AVOIA UNNECESSANY WOTK......eceiiiitiiee ittt ettt ettt e e et e ettt e e e sttt e e e e s bt e e aas e et e e e aabe et e e e s b e e e e e aabbe e e e aasbe e e e e nneeeeannneeens
ORM 'Navigation' is your friend
How to Pre-load Entities USING FEICN.......cooiiiii et
SESSION CACKNE......ci ittt ettt et e e bt e a et e e b et e bt eh et e e et e ae e e e e e b et b et e nar et e ne e e ann e e aree s
Level 2 Cache Applicable for Batch
Flushing - COBOL and Save Points
Avoid Extra SQL.......ccccociviiiiinieee
Prepared statement - use binding....
Service Script vs. Java Services...............
Java Performance Patterns
Batch Performance....................
Commit CoNSIAErations............coviierieiiiiiee e
Clustered vs. Distributed Mode Performance: Clustered is Preferred....
Light BUSINESS ODJECES.....ccieiiieeiiiiee e
Data Explorer....................
Zone Configuration
Table Indices and SQL
Ul Maps and BPAS......c.cccccveennnenn..
Diagnosing Performance Issues...
Fiddler.......ooovieiie
(0187 N S o To L =Tt o T U 1 (o] USSR
Log Service times in spl_service.log............
Optimization and Performance Profiling....

Packaging Guide
CM Packaging ULilities COOKDOOK.........c.uiiiiiiiii ettt ettt e bt e e bt e e sat e e e nbee e saneesmbeesneeanee
App Server CM Packaging Overview
[N Y o] o] g o B O ST (= TSR UUR USRI
Off-SItE PrOCESS. ...ttt ettt h e a e e ettt et et e e h et e e bt e e be e e eas e e e ate e e bn e e neneenaneeeanneeanneeenee
On-site Process......
Guidelines.......ccccoceviieienicniees
App Server CM Packaging Tools.....
Post INStall SetUP.....ove i
Using the extractCMSource.plx Utility..........coeeniiiiiiiiiiieieeeee,
Display Usage.......ccccccoovvernunnnnn.
Extract From an App Server.........ccccocoeiieeaneen.
Extract From Release/Patch Install Package.............cccc........
FW Utility to extract CM sources from Unix environments........................
Using the applyCM ULility..........ocoorreiiiiii e
Using the create_ CM_Release Utility............cccooiiiiiiiiiiiiiieee
Using the create_CM_Patch Utility.........ccccoveiiininieeee
Multi-CM Application Functionality..........c..ccceriiiiiiiiiiiinieeee e,
CM System Data Packaging Tools..................
CM System Data Packaging OVEIVIEW........c..eiiueiiiiie e etie ettt stee ettt st e be e sae e e saeeesteeaateeesabeesbeeaaaeeeanseeanneesannas

10

Extract Process
Upload Process
Tailoring Your Oracle Utilities Application Implementation
Preserving Customer Changes
Tailoring Web Files........cccccovveeenn.
Tailoring the CM Java Application
IR Lo Ty Yo T Y o 0N Ao SRR
Tailoring Help........ccccceeeene
Positioning Custom Scripts
Replacing the Oracle ULIItIES LOGO.ei ittt ettt ettt e b e e be e e ae e e snteeebeeesnneeannes
Using the Implementation Version File.........
LI 1L e 141 o Te D PSSP PSPPSR OPPPP
LI T1o Ty g To T ST T o - T
Tailoring Templates and USEr EXItS........ouuiiiiiiiiiiii et e e e e e s s e e e

11

Chapter 1

Oracle Utilities Software Development Kit

Oracle Utilities Software Development Kit is a set of utilities designed to build applications based on Oracle Utilities
Application Framework, the application framework built by Oracle. It provides utilities for implementers to extend
applications without compromising upgradeability. This document describes the Software Development Kit.

This document is divided into the following parts:
» The User Guide describes how to use the Software Development Kit to customize products.

* The Developer Guide presents information that aid the development process including technical references and
standards.

» The Packaging Guide describes the procedures for taking developed code and data to the target environments.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 12

Chapter 2

User Guide

Overview

The Oracle Utilities Software Development Kit is a set of utilities designed to build applications based on Oracle Utilities
Application Framework, the application framework built by Oracle. It provides utilities for base product developers and
implementers to extend OUAF applications without compromising upgradeability. This document discusses the details of
application development using Software Development Kit, including:

The Development Environment section describes the environment that developers work on while using the Software
Development Kit.

The Build Server section describes the procedure for setting up a build server.

The Technical Architecture section describes applications developed on framework. It describes the framework
technical architecture at a high level and then describes its components in detail.

The Meta-data is the core component of applications built on framework. The meta-data section describes the purpose,
structure, and use of the meta-data tables.

The Development Process section contains high level, quick reference guides on common tasks in building applications
based on framework.

The Cookbook section describes the development tasks in detail. The Development Process section contains links to
specific sections in this section.

The Utilities section describes the tools provided with Software Development Kit. These tools include batch programs
and Perl scripts developed to automate several stages of the development process.

Converted COBOL Programs

IMPORTANT: As of Oracle Utilities Application Framework Release 4.3.0.0.0, all COBOL programs have been
converted to Java. This version of the SDK therefore does not require a COBOL runtime or compiler. The term COBOL

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 13

is still used to refer to metadata in some places, but in those and any other case, "COBOL" in this document implicitly
means "Converted COBOL Program".

Development Environment

Overview

The App Server is the Development Environment

The Software Development Kit development environment is built on a standard app server install of the product being
customized. Put another way, the app server is the development environment.

Source code is written and generated within the app server directory structure and executables are generated where the app
server expects them and are therefore ready to be executed.

For example:
» Ul code is written directly where the app server looks for them.

* The jar file for the Java programs is created directly where the app server looks for it.

Development App Server is Local, Not Shared

Each developer has a development app server in his workstation for each project. This means that a developer can code and
unit test all within his workstation. This also means work-in-progress code contained within the developer's workstation.

Repository for Project

All finished code is submitted into the project repository. As such, developers synchronize with the project repository to get
their local development environments current with the rest of the team.

The project repository is also set up as a development environment. When developers synchronize with the project
repository, they get a development environment including configuration necessary for that project.

Components of the Software Development Kit

The following diagram illustrates the development environment.

NOTE: Please see the installation guide for instructions on how to set up the Software Development Kit and its
components.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 14

Project

Development
Repository

Workstation

Sync / Submit Code

Project
Dev DB

Development Environment

Development
Client

The following are both Development
Clients:

* Project Repository

* Development Workstation

Development Clients have:
* Development App Server

Development Client

Project Development Database

Each project has a development database. This is a regular database install of the product that is being customized. System
data for customizations are stored in this database. Development processes like code generation connect to this database. In
addition, development app servers in development workstations connect to this database.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 15

Project Repository

The project repository serves the following purposes:

It is the central storage for all completed, unit-tested code.

» It provides the environment from which to build the latest state of the project.

» It provides the latest state of the project dev app server from which all developers can synchronize with.

It is the source for CM Packaging.
To support these purposes:

» It has to be accessible to all developers.

» Itis setup as a development client, e.g., similar to a development workstation (see Development Workstation below).

Development Workstation

Developers write, generate, compile, and test code on development workstations. A development client is installed for each
project that the developer works on.

The main components of a development client are the following:

» Project Dev App Server. Code is developed on and executables built into the project dev app server.

» Software Development Kit Client. This is the primary development tool of the Software Development Kit.
» Eclipse SDK. This is the Java development tool used in the Software Development Kit.

Directory Structure

The App Server Directory

As mentioned earlier, the app server is the development environment. Source code and executables are therefore placed
within the directory structure of the app server.

Standard App Server Directory Structure
A typical application server will be installed with a directory structure similar to this:

bin
cobol

H H

et

H H

java
ks

J logs

F B H

J product

H

scripks

splapp
struckures

H BH B

templates

=

trip
tools

[

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 16

Within this structure only some of the subdirectories are of interest to a developer.

The cobol directory may still exist

for some applications (e.g., CCB), but that is now obsolete as all COBOL programs

have been converted to Java for edge applications running on OUAF 4.3.0.x.

The spl app directory contains all the main application files, including the deployed custom jars (cm j ar) and Web server

files (e.g. JSP, Javascript).

= [splapp
= |21 applications
= () appViewer
|5 config
=) data
5] source
= xml
3 cm
I5) images
£ WEB-INF
= [help
H 3 ARA
) ENG
) WEB-INF

= [roat
F 1) batch
e i
I em
5 cm_templates
I3 code
I3 common
I configlab
|C5) database
H I images
5 portalul
15 report
|f| security
F 1) todo
& I il
F 1) WEE-INF
15T workflow
F I xai
50 xjs_templates

BB

l

= 55 =alapp
[WEE-INF
[billviews
=) mpl
b
[= |2 standalone
|5 config
I lib
= 5 xai
10 schemnas
[wmiMetalnfo

Additional Directories for Development

Oracle Utilities Application Framework Software Development Kit Developer's Guide < 17

Java

A directory structure with a base directory of java is used for Java development, as shown in the following image.

=) java
= I source
[= I e
) cobolServices
=l I com
= |2 sphwg
= I cm
I domain
= |[3) sourceqgen
= N e
) cobolServices
= I3 com
= |1 splwg
=]':| cm
4 () domain
L5 services
= |C5) target
B = cm
) cobolServices
= IS com
= () splwg
=2 I cm
4 () domain
51 services

» source contains the code that the developer writes or generates that is submitted to the repository. Under this is the
com.splwg.cm.domain folder, which contains the CM Java source code.

* sourcegen contains generated code that is necessary to build the project. All files in this structure are generated and
therefore must not be modified manually in any way.

* target contains the runtime files created from sour ce and sour cegen. The content of this directory is what is deployed
as a jar file to the app server. All files in this structure are generated and therefore must not be modified manually in any
way.

» The cobolServices folder contains any Converted COBOL service XML mapping files.

Project Configuration Information

Project information is stored in the SPLSDKCommon directory structure.

+ eclipselL aunchScripts contains the Eclipse launch scripts for various tools.
* eclipseProject contains the project configuration information for Eclipse.
 toolscontains the tools that are required for the project.

[= |1 SPLEDKCommon
L) eclipseLaunchScripks
) edipseProject
I tools

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 18

Pertinent Directories in the App Server

Item

Directory

Content

Java sources

java\source\cm\com\splwg\cm.domain

Java source code.

AppViewer files

splapp\applications\appViewer\data\source\CM

App viewer source code
files.

splapp\applications\appViewer\data\Xxm\CM

App viewer XML files.

Web Application

splapp\applications\root\cm

Ul code.

splapp\applications\root\WEB-INF\lib

cm.jar file is deployed here.

XAl Application

splapp\applications\XAIApp\WEB-INF\lib

CM?* jar file.

cm.jar file is deployed here.

MPL Application

splapp\mpl\lib

CM?* jar file.

Standalone Application

splapp\standalone\\lib

CM?* jar file.
cm.jar file is deployed here.

Help files splapp\applications\help\XXX\cm Help files segregated by
language.
XAl Schemas splapp\xai\schemas\CM*.xml XAl schemas.

Service XML files

splapp\xmIMetalnfo\CM*.xml

Service XMLs for Java.

Eclipse Launch Scripts

SPLSDKCommon\eclipseLaunchScripts

Eclipse launch scripts.

Eclipse Project

SPLSDKCommon\eclipseProject

Project configuration
information for Eclipse.

Software Development Kit
Tools

SPLSDKCommon\tools

Tools required by the
Software Development Kit.

Client Directory

The Oracle Utilities Application Framework (OUAF) Software Development Kit client directory contains both the Software
Development Kit itself and some project-specific information such as the Eclipse workspace.

The location of the Software Development Kit client is stored in the environment variable SPL SDKROOT.

25 auafsdk,
= [cCB_250 101
|5 edlipsevworkspace
I etc
([T CCE_250.102

The Software Development Kit Client

The Software Development Kit client is installed in SDK/ <ver si on>.

= . 50K
. eclipse
. help
. Scripks
shortcuts
. temp
. Tools

The SDK folder has the following scripts at the top level:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 19

E App.ica

[setcommanEry bat
setadkeny . bat
setspleny. bat

[spluseroptions. bat

Additionally, a copy of Eclipse is installed later into the ecl i pse directory.

NOTE: Updates are unique versions of the Software Development Kit and therefore have their own directories.

NOTE: A separate copy of Eclipse is installed per version of the Software Development Kit client because each version
may have its own set of plug-ins and the plug-ins must be in the plugins directory of Eclipse.

All of these files are not meant to be executed directly by the developer and are intended to be executed through scripts in
the shortcuts folder.

The set sdkenv. bat script specifies the OUAF SDK version version and installation folder.

The set pl env. bat scriptsets up the environment variables needed to correctly run a development environment for the
application server.

NOTE: A copy of Eclipse is installed later into the ecl i pse directory. This folder is created when the user first runs the
startEclipse shortcut script. A separate copy of Eclipse is installed per version of the Software Development Kit client
because each version may have its own set of plug-ins, and the plug-ins must be in the pl ugi ns directory of Eclipse.

Project Directories

Each project has its own directory.

= 120 ouafsdk,
= [y coB_z50_101
[# I eclipsevwarkspace
) etc

» eclipseWorkspace contains Eclipse workspace files.

* etc contains additional project-related files, including set spl env. bat , which is used to set environment variables for the
project. This script is executed before other scripts so that succeeding scripts operate on the project.

+ eclipseProject (not shown above) exists only in development workstations (not in the project repository). It is a copy of
the same directory in the app server.

NOTE: setsplenv.bat is generated when the project is created/configured.

Shortcuts Directory

The shortcuts directory contains various scripts used in development.

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 20

[ZE] buildspptievsersrexrL bat

| buildPrompted. cmd

5| commandPrompt . bat
[E] createewEny. bat

[E] displayEnwironment bat
] gereratelavadoc, bat
Ei) generateLike. bat

[E] newGenerator hat

[E] reindesxTavador. bat

58] setupSvexmiPrompted. bat

2| startEclipse. bat
[E] switehEnwironments. bat

[E] updatexMLMetalnfo, bat

Except for cormandPr onpt . bat, cr eat eNewEnv. bat , and st art Ecl i pse. bat , all of these script are intended to be
executed on the command line (see conmandPr onpt . bat).

The conmandPr onpt . bat script intializes the appropriate environment variables for a development environment so that
OUATF SDK scripts, particularly those in the shortcut directory, can be executed on the Windows command prompt.

The cr eat eNewEnv. bat script allows a developer to set up another development environment for another application server
in the workstation. The initial development environment is first created on installation of the OUAF SDK.

The st art Ecl i pse. bat script installs the Eclipse IDE and sets up the OUAF plugin in Eclipse if these are not yet installed.
Otherwise, it initializes the appropriate environment variables for a development environment that the OUAF Eclipse plugin
requires.

Synchronizing with the Project Repository

Developers synchronize the whole of the app server directory except for the following:
* java\sourcegen

* javaltarget

* splapp\xmlMetalnfo

» splapp\applications\root\WEB-INF\lib\cm.jar

» splapp\standalone\lib\cm.jar

* splapp\XAIApp\WEB-INF\lib\cm.jar

* logs\system

Versions

Version Number

The Software Development Kit version number comprises five period-delimited segments. The first four segments indicate
the Framework (FW) version number, and the fifth specifies the SDK update number

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 21

The SDK update number starts with 1 (and increments by one) for each FW version. For example, an SDK version of
4.3.0.0.1 means that it is the first first SDK developed for FW 4.3.0.0, whereas 4.3.0.1.1 would be the first SDK version for
FW 4.3.0 Service Pack 1.

Compatibility with Products
Generally, unless noted otherwise, an OUAF SDK product should only be used for its intended FW version. That general
rule applies to all previous versions of the Oracle Utilities Framework SDK.

For example, OUAF SDK FW 4.2.0.2.4 is not compatible with OUAF SDK 4.3.0.0.1, and OUAF SDK 4.3.0.0.1 and FW
4.3.0.1.1 are never compatible.

Updates

Each new version of the OUAF SDK installs to its own folder, allowing you to use several version of the SDK on the same
workstation. An OUAF SDK installation should never be used to overwrite an existing SDK installation with the intent of
"upgrading" it. You should only develop using the version of the OUAF SDK that runs the same OUAF version that your
application server runs.

New versions of the OUAF SDK can be installed and old versions uninstalled without affecting the application server.
These options allow you to migrate your application servers to a newer version of the OUAF while allowing you to still
refer to the original application server setup.

Moving Up to a New Update

Since an update of the OUAF SDK installs to its own folder, a new development workspace for your application server
must be created as well. If it has not yet been created by the OUAF SDK ClientSetup program, use the cr eat eNewEnv. bat
shortcut script to create one for your application server.

You will also need to install Eclipse through the st art Ecl i pse. bat shortcut script and create a new Eclipse project for
your project. Since the CM Java sources are already present in the application server, you need only re-run the Gener ate
Artifact launch configuration in Eclipse to generate code before you rebuild your project.

You should not run the Generate Artifact launch configuration in the Eclipse installation of the older OUAF SDK
installation at this point.

Moving Up to a New Version of a Product

Moving to a new version of a product requires creating a new development environment suited for the new version. A new
version is likely to be built on a new version of the Framework, which would mean that a new compatible version of the
Software Development Kit is required.

The steps are as follows:

1. Stabilizethe project on the old version of the product. Ensure that the project is in a stable state and that all
developers have submitted all code to the repository.

2. Preparethedatabase for the new project:
a. Copy the database of the project in the old version to a new database.

b. Upgrade this newly created database to the new version of the product by following the database upgrade
procedures of the product.

3. Set up therepository for the new project:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 22

a. Prepare a project repository as described in the installation documentation.
b. Copy source code from the repository of the previous version into the project repository.
c. Update code, if necessary, as specified in the documentation of the new version of the product.

d. Build the entire project. This includes generation of code, compilation, generation of services, etc.
e. Test the customizations.

4. Set up development workstations. At this point, developers can set up their workstations for the new project on the
new version of the product. Each developer must follow the workstation setup procedure.

Product Single Fixes

When single fixes to products are released, the following should be done for projects for which the single fixes are required:

» Stabilize the project by making sure that the project is in a stable state and that all developers have submitted all code to
the repository.

» Apply the single fix to the project repository.

» Each developer of the project must then synchronize with the project repository.

Build Server

Every enterprise has its own software development practices that cover how developers update code, how changes are
tracked and tested and how new releases are created. We generally expect that whatever practices have historically worked
within an organization will continue to work for the implementation of this application. However, a build methodology
was developed that has worked well for managing concurrent changes to the application that is based on the following
principles:

» All of the application should work all of the time. Therefore, changing one small part of the application requires that all
of the application be retested.

* Bugs are more expensive to fix the longer they stay in a system. This principle has been proven time and time again in
software engineering. This truth mostly owes to the fact that it is easiest to find the offending developer immediately
after he or she broke the system and also that developer has less recollection of how and where the system was broken as
time goes by.

* In acomplex system malfunctions can occur "far away" from the points of code modification. It is unreliable to expect
selective retesting based on what was likely to malfunction to find the all the places of actual malfunction.

Tailoring Your Oracle Utilities Application Implementation

This document describes the naming conventions and processes that must be followed to ensure a successful upgrade of the
Oracle Utilities application base product release-on-release. The implementation team responsible for tailoring the Oracle
Utilities application to meet specific customer needs must follow this guide to preserve their changes and ensure successful
upgrades. Only the changes described in this document are considered as permitted for the tailoring of the base product.
Any changes that do not conform to these rules may be overridden by the install utility during a base product upgrade.

Some naming conventions used in this document:
* $SPLEBASE (for UNIX) and %6PLEBASE%(for Windows) is the generic Oracle Utilities environment directory name.
* $SPLENVI RON (for UNIX) and %6PLEBASE%(for Windows) is the generic Oracle Utilities environment name.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 23

* $SPLDB (for UNIX) and %SPLDB%(for Windows) is the database type.

Preserving Customer Changes

For any kind of a customer modification, the file's directory structure and naming conventions are defined in this section.
The implementation team must follow these conventions to preserve the results of their work during a subsequent base
product upgrade.

» The configuration parameters of the environment being upgraded are displayed (as default parameters) during the
configuration stage of the install process. These parameters may be changed if new settings are preferred.

* The base product is shipped with examples of different kinds of modules that may be used by implementation teams. The
examples can be found in the following directories:

* $SPLEBASE/ spl app/ appl i cati ons/ root/cm t enpl at es contains Oracle Utilities Application Framework Web
file examples.

* $SPLEBASE/ spl app/ appl i cati ons/root/<application product code>/cm tenpl ates. This directory contains
Oracle Utilities application product Web file examples. The <application product code> varies by product; for
example, the Oracle Utilities Customer Care and Billing, the <application product code> is c1.

* $SPLEBASE/ scri pts/ cm exanpl es. For batch script examples, this directory has two subdirectories: FWfor
Oracle Utilities Application Framework examples, and <application product code> for Oracle Utilities application
product examples (e.g., CCB for Oracle Utilities Customer Care and Billing, TAX for Oracle Public Sector Revenue
Management).

NOTE: For simplicity, this document generally uses UNIX platform naming conventions. To apply these names to the
Windows platform, use the Windows naming conventions "%" sign instead of the "$" sign, and backslashes ("\") instead
of forward slashes ("/") as directory separators (e.g., “SPLEBASE% spl app\ appl i cati ons\root\cm tenpl at es).

Tailoring Web Files

Base product UI files are located in the directory $SPLEBASE/ spl app/ appl i cat i ons/ r oot . Implementers may develop
their own UI files under the directory $SPLEBASE/ spl app/ appl i cati ons/root/ cm No specific naming conventions are
enforced under this directory.

The root directory may be deployed in war file format for runtime environment (SPLApp. war). Use provided utilities to
incorporate your cm directory into the SPLApp. war file.

Tailoring the CM Java Application

Implementers may write their own Java classes to extend the Oracle Utilities application functionality. All Java files should
belong to the com spl wg. cmpackage. The CM Java application should be compiled into a jar file named cm j ar . The SDK
Customer Modification packaging utilities will help build this file. The cm j ar is typically deployed into the following
directories:

$SPLEBASE/ spl app/ appl i cati ons/root/WEB-INF/|lib
$SPLEBASE/ spl app/ appl i cati ons/ XAl App/ VEEB- | NF/ | i b
$SPLEBASE/ spl app/ busi nessapp/ | i b

$SPLEBASE/ spl app/ st andal one/ | i b

Additional third-party jar files can be deployed by following the cnt . j ar naming standard. Customers may use this option
to deploy any additional functionality, interfaces with other applications, and so on. These will not be built by the SDK
Customer Modification packaging utilities, but will be deployed into the application once it is supplied in jar format.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 24

The root directory may be deployed in a war file format for the runtime environment (SPLApp. war). Use the provided
utilities to incorporate your / cmdirectory into SPLApp. war file.

IMPORTANT: Allcn¥. j ar files that need to be applied must be defined in $SPLEBASE/ st ructures/cmjars_
structure. xnl . If the file does not exist in the target environment, the sample cm j ars_struct ure. xn . exanpl e file
can be copied from the SDK packaging's / et ¢ folder.

Manual cm.jar deployment

The cm j ar file is usually deployed as part of the CM packaging process (ext r act CMsour ce, appl yCM cr eat e_
CM r el ease, etc.), but in some cases it may be desirable to manually deploy the cm j ar file to one or more target
environments.

CAUTION: This should be done with care and should only be considered if the cm j ar components are self-contained
and have no external dependencies.

To manually deploy cm j ar:

1. The SPLEBASE/structures/cm_jars_structure.xml must exist and should have at least the following:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<jar_structure>
<cm j ar>
<source_dir_jar>@PLEBASE@etc/|ib</source_dir_jar>
<dest _fol ders>
<dest _fol der _1>@PLEBASE@ spl app/ appl i cati ons/ XAl App/ VEEB- | NF/ | i b</ dest _f ol der _1>
<dest _f ol der _2>@PLEBASE@ spl app/ appl i cati ons/root/WEB-1 NF/| i b</dest _fol der_2>
<dest _f ol der _3>@PLEBASE@ spl app/ busi nessapp/ | i b</ dest _f ol der _3>
<dest _f ol der _4>@PLEBASE@ spl app/ st andal one/ | i b</ dest _f ol der _4>
</ dest fol ders>
<chi | d_j vm_pat h>@PLEBASE@ spl app/ st andal one/ | i b</ chi |l d_j vm pat h>
</cmjar>
</jar_structure>

The <cm.jar> element identifies the jar file name, usually cm j ar, as defined here.

Element <source dir jar> defines the source location of the abovementioned jar. The directory in the example above
should work for most cases.

The dest _f ol der _n elements point to the target locations where the jar will be placed. The directories in this example
should work for all.

2. Manually copy the cm j ar to the directory specified in the <sour ce_di r _j ar > element, typically $SPLEBASE/ et c/
l'ib.

3. Run initialSetup.sh (or .bat on Windows) to do the rest. This will copy the cm j ar to the specified target locations and
rebuild the war and ear files.

Tailoring AppViewer
AppViewer resides in the $SPLEBASE/ spl app/ appl i cat i ons directory. Implementers can add an option to view
>Customer Modification sources, tables and columns, and scripts.

Implementers should put the Customer Modification sources in the $SPLEBASE/ spl app/ appl i cati ons/ appVi ewer /
dat a/ sour ce/ CMdirectory and Customer Modification scripts into the $SPLEBASE/ spl app/ appl i cati ons/ appVi ewer /
dat a/ xnl / CMdirectory.

The CM directories are preserved by the upgrade utility.

Data dictionary information and Java source information can be generated for a Customer Modification implementation
by a utility provided by the SDK. Since it can be regenerated at any time, however, this information is not preserved by

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 25

the upgrade process. For more information, refer to the "Defining Background Processes (addendum)" topic in the Oracle
Enterprise Taxation Management User Guide.

The AppViewer directory may be deployed in a war file format (appVi ewer . war) in the $SPLEBASE/ spl app/
appl i cati ons directory. Use the provided SDK utilities to incorporate your Customer Modification directories into an
appVi ever . war file.

Tailoring Help

Help files are defined for different languages. The directory for Help files is $SPLEBASE/ spl app/ appl i cati ons/ hel p.
Each language needs a separate directory underneath this directory (e.g., / ENG, / FRA, etc.), and each language directory
can have a / CMsubdirectory. Implementers should place their custom Help materials in the CM directory in the appropriate
language folder (e.g., $SPLEBASE/ spl app/ appl i cati ons/ hel p/ ENG CM) . .

The CM directories are preserved by the upgrade utility.

Help directories may be deployed in war file format (help.war) under the $SPLEBASE/ spl app/ appl i cat i ons directory.
Use utilities provided by the SDK Tool Suite to incorporate your CM directories into a hel p. war file.

Positioning Custom Scripts

Customers and implementers may put their scripts under the directory $SPLEBASE/ scri pt s/ cm

Replacing the Oracle Utilities Logo

Customers may want to replace the Oracle Utilities logo image on the Main menu with another logo image. To do this,
put the logo <customer logo file>.gif file into the directory $SPLEBASE/ et c/ conf/ r oot / cmand create a new "External"
Navigation Key called CM_|ogol mage.

To replace the logo, run the Oracle Utilities application from the browser with the parameters:

http://<host name>: <port>/cis.jsp?utilities=true&t ool s=true

From the Admin menu, select Navigation Key. Add the above Navigation Key with its corresponding URL Override path.
The syntax for the URL path is:

For Windows:

http://<host nanme>: <port>/cni <custoner_| ogo file>. gif

For UNIX:

http://<host nanme>: <port>/spl/cm <custoner | ogo file>. gif

The root directory may be deployed in war file format for the runtime environment (SPLApp. war). Use the provided utilities
to incorporate your cmdirectory into the SPLApp. war file.

Using the Implementation Version File

Implementers may keep the implementation version number in the CWERSI ON. t xt file in the $SPLEBASE/ et ¢ directory.
This file is preserved by the install utility.

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 26

Tailoring XAl

XAI schemas reside in the directory $SPLEBASE/ spl app/ xai / schenas.

Implementers may develop their own XAI schemas and keep them in this directory using the naming convention cnt .

Tailoring XML Schema

NOTE: This implementation option is applicable for Oracle Enterprise Taxation Management application only.

Implementers may generate their own XML schemas and store them in the directory $SPLEBASE/ spl app/ xm Met al nf o.
The implementation schemas must use the naming convention CM_* . xni .

Tailoring Templates and User Exits

The templates delivered under the folder $SPLEBASE/ t enpl at es can be overridden by the Application by creating a copy
of the template file with the same name but prefixed by "cm.". The cm copy will be customized.

Since the templates can contain user exits (special statements that allow to import external files during the template
processing). Those user exits can be overridden by creating a copy of the user exit file with the same name but prefixed by
"cm_". The cm copy will be customized.

JUnit testing

JUnit is a Java framework that supports writing unit tests that help ensure your code works as desired, and existing code
is not broken by new changes. It is often useful to create JUnit tests during development to verify that your code works as
expected, and to keep and rerun the tests in the future to ensure that later changes in your (or someone else's code) don't
unexpectedly break your code.

More information on JUnit testing philosophy is available at JUnit.org.

NOTE: This document assumes that you use Eclipse. However you can choose to use different IDE but then you have to
find how to achieve the equivalent functionality that Eclipse provides.

Assuming you have an existing JUnit test class, you can execute them directly within Eclipse by:

» Right-clicking on the class in Package Explorer
Run -> JUnit Test

All the tests for an application can be run from Eclipse by running the com spl wg. Al | Test s class in the "test" directory as
a JUnit test.

Standard test cases

There are framework classes that are helpful for specific test cases:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 27

Testing Searches

There is a convenient test superclass for search services, com spl wg. base. api . t est er s. Sear chTest Case. This test class
only requires that you override two methods:

e String get ServiceNane() - this method specifies the service name, eg CILCACCS, for the search
e List getSearchTrials() -this method should return a list of SearchTri al s

A search trial describes information about a particular invocation of a search. You need to describe the inputs (the input
fields and the search type), and then describe the expected output for that given input:

* Some expected rows, in the order expected

In order to properly test searches, the expected results is not required to contain every search result- if new rows are added
by some other process, they will not cause the test to fail. The search results, however, must contain at least all of the
expected results, in the relative order they are added.

» Possibly some prohibited rows, which the search should not find

In addition, there may be times when you want to guarantee that a certain row is definitely NOT found in the search result.
This can be accomplished by adding a prohibitedRow, in the same manner as expected rows are added to the trial.

The search test FW will then use inputs from each search trial to execute the search, and compare the expected and
prohibited results to the actual search results. It expects to find the expected rows in the order added, and should find all
of them. Any different order or missing row results in a failure. What will not result in a test failure is if new rows have
been added interspersed throughout the expected rows. These are fine. If a given search result row does not match the next
expected result row, it is compared against all of the prohibited rows. If it matches any of them, the test fails.

The search framework will also examine the information about the search, and ensure that each search type (main, alternate,
alternate2, ...) is executed at least once.

Here is a sample search test class:

package com spl wg. base. donmai n. bat ch. bat chControl ;

i mport com spl wy. base. api . | ookup. Sear chTypeLookup;
i mport com spl wy. base. api . t est ers. Sear chTest Case;

i mport com spl wg. base. api . testers. SearchTest Resul t;
i nport com spl wg. base. api . testers. SearchTri al ;

inport java.util.Arraylist;
i mport java.util.List;

/**

* @ut hor bosorio

* @ersion $Revision: #2 $

*/

public class BatchControl SearchServi ce_Test
ext ends SearchTest Case {

= [0 106 =p=oemmm e mmmme e aneseo e ne s mana s am s e mmao—c e aE e mn e e -

protected String getServiceNane() {
return "Cl LTBTCS";
}

/**
* @ee com spl wg. base. api . testers. Sear chTest Case#get Sear chTri al s()
*/
protected List getSearchTrials() {
List list = new ArrayList();

/| Search using Main Criteria
SearchTrial trial = new SearchTrial ("Min search");
trial.setSearchType(SearchTypeLookup. constants. MAIN);

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 28

trial . addl nput (Bat chCont r ol Sear chServi ce. | NPUT_MAI N. BATCH_CD,
"ADM') ;

SearchTest Resul t expectedResult = trial.newExpectedResult();

expect edResul t . put (Bat chCont r ol Sear chSer vi ce. RESULT. BATCH_CD,
"ADM') ;

list.add(trial);

/1 Search using Alternate Criteria

trial = new SearchTrial ("Search by description");
trial.setSearchType(SearchTypeLookup. const ants. ALTERNATE) ;

trial . addl nput (Bat chCont r ol Sear chServi ce. | NPUT_ALT. DESCR,
"AcCount D');

expectedResult = trial.newExpectedResult();

expect edResul t . put (Bat chCont r ol Sear chSer vi ce. RESULT. BATCH_CD,
" ADM') ;

expect edResul t. put (Bat chCont r ol Sear chSer vi ce. RESULT. DESCR,
"Account debt monitor");

list.add(trial);

return |ist;

Testing Maintenance Classes

There is a convenient test superclass for entity page maintenance,
com spl wg. base. api . test ers. Entit yPageSer vi ceTest Case. This test class requires several methods to be
implemented to handle setting up the data and validating for each action (Add, Read, Change, Delete).

In case your maintenance doesn't support add and delete, e.g. it's read and change only, then implement this method:

protected bool ean i sReadAndChangeOnl y() {
return true;
}

The test framework will only exercise the read action.

Your maintenance test class must provide the name of the service being tested, eg:

protected String getServiceNane() {
return "Cl LTBTCP";
}

Testing Add on Maintenance Class

First, in order to test an add, we need the data to add. This is provided in the method pr ot ect ed PageBody
get NewEnt i t y() . Here is an example:

prot ected PageBody get Newentity() ({
PageBody body = new PageBody();
body. put (Mai nt enance. STRUCTURE. BATCH_CD, "ZZTEST2");
body. put (Mai nt enance. STRUCTURE. PROGRAM NAME, "ZZPROG');
body. put (Mai nt enance. STRUCTURE. ACCUM ALL | NST_SW Bool ean. FALSE) ;
body. put (Mai nt enance. STRUCTURE. DESCR, "Test service");
body. put (Mai nt enance. STRUCTURE. LAST_UPDATE_DTTM
LAST_UPDATE_TI MESTAMP) ;
body. put (Mai nt enance. STRUCTURE. LAST_UPDATE | NST, Bi gl nt eger. ZERO) ;
body. put (Mai nt enance. STRUCTURE. NEXT_BATCH_NBR, Bi gl nt eger. ZERO) ;

ItenList itenList = body.new tenli st

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 29

(Mai nt enance. STRUCTURE. | i st _BCP. nane) ;

Li st Body |istBody = itenlist.newLi stBody();

i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. BATCH CD, "ZZTEST2");
i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. SEQ_NUM
Bi gl nt eger. val ueC (10));
i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. BATCH_PARM NAME,
"paraml");
i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. BATCH_PARM VAL, "val 1");
i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. REQUI RED_SW
Bool ean. FALSE) ;
i st Body. put (Mai nt enance. STRUCTURE. | i st _BCP. DESCR50, "Paraneter 1");
st Body. pr epar eToAdd() ;

return body;

(This may look like an awful lot of typing, but any IDE like e.g. Eclipse that offers code-completion will make this kind of
code entry very quick).

If the maintenance performs some server-side "defaulting" (changing of the data), and the result after the add differs from
the data above, you will need to override pr ot ect ed PageBody get NewReadEntity(PageBody ori gi nal). This method
gets the original data from the method above, and allows manipulation to bring it to the expected form after a read from the
database.

In order to actually perform the read, the read header should be specified in prot ect ed abstract PageHeader
get ReadHeader () . For example:

prot ect ed PageHeader get ReadHeader () {
PageHeader header = new PageHeader () ;
header . put (Mai nt enance. HEADER. BATCH CD, "ZZTEST2");
return header;

Testing Change on Maintenance Class

Next, a new read is performed (using the same read header above), and you can perform a change to the page body in the
method:
prot ect ed PageBody changedPageBody(PageBody ori gi nal)

Here is an example:

prot ected PageBody changedPageBody(PageBody original) {
ori gi nal . put (Mai nt enance. STRUCTURE. ACCUM ALL_| NST_SW Bool ean. TRUE) ;

ItenList list = original.getList("BCP");

Li st Body param = (ListBody) |ist.getList().get(0);

par am put (Mai nt enance. STRUCTURE. | i st _BCP. DESCR50,
"Changed parameter 1");

par am pr epar eToChange() ;

return original;

A read is performed after the above changes are sent, and the results are compared.

Testing Delete on Maintenance Class

Finally, a delete is issued on the data, and it is verified that the entity no longer exists.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 30

Test default actions on Maintenance Class

In addition, all defaults that are registered for a page maintenance must also be tested. This should be done through
separate tester methods for each default, calling the FW support method publ i ¢ PageBody execut eDef aul t (PageBody
pageBody, String defaultVal ue) :

public void testDefaul tChg() {
PageBody i nput = new PageBody();

/1 TODO popul ate inputs for default

/1l e.qg.

i nput . put (Mai nt enance. STRUCTURE. FK, "FK CODE");

PageBody out put = executeDefaul t (i nput, Mi ntenance. DEFAULTS. CHG) ;

/1 TODO compare the outputs
/Il e.g.
assert Equal s("FK Descri ption",
out put . get (Mai nt enance. STRUCTURE. FK_DESCR)) ;

Here is an example to test the default on a field under a list.

public void testDefaul tAl ogrithn() {
PageBody i nput = new PageBody();

ItenList itenlist = input.new tenList
(Mai nt enance. STRUCTURE. | i st _MRRA. nang) ;

Li st Body |istBody = itenList.newListBody();

| i st Body. put (Mai nt enance. STRUCTURE. | i st _MRRA. MRR_ACTN_ALG_CD,
" MRRCRESVCCC') ;

PageBody out put = executeDefaul t (i nput, Mi ntenance. DEFAULTS. AAD) ;
Itenli st outList = output.getlList
(Mai nt enance. STRUCTURE. | i st _MRRA. nane) ;
Li st Body body = (ListBody) outlList.getList().get(0);
assert Equal s(body. get (Mai nt enance. STRUCTURE. | i st _MRRA. MRRA _DESCR) ,
"Create Service Custoner Contact");

The input page body should be populated with the expected inputs for the default action, while the output should be
compared against the expected output.

Testing Entity Page Maintenance Classes

There is a convenient test superclass for entity page maintenance,
com spl wg. base. api . testers. EntityLi st PageTest Case.

This test class requires several methods to be implemented to handle setting up the data and validating for each action (Add,
Read, Change, Delete).

The maintenance test class must provide the name of the service being tested, eg:

protected String getServiceNane() {
return "Cl LTBTCP";
}

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 31

Testing Add on Entity Page Maintenance Class

First, in order to test an add, we need the data to add. This is provided in the method pr ot ect ed voi d
popul at eRowFor Add(Li st Body row). Here is an example:

protected voi d popul at eRowFor Add(Li st Body row) {
row. put (" DESCR50", "description");
row. put ("XAl _IN SVC ID', "$"):

We also need to know the ID field, and an example ID, eg

protected String get Mai nHeader Fi el d() {
return "NT_DWN_TYPE_CD';
}

protected Stringld getTestld() {
return new Notificati onDownl oadType_Id("FOO");

Testing Change on Entity Page Maintenance Class

Also, a change is attempted, using the same keyed row given by the testld method above.

protected void popul at eChangedRow(Li st Body row) {
row. put (" DESCR50", "changed description");
row. put ("XAl _IN SVC ID', "#");

The Comparisons

After the adds and changes above (also a delete is done), the state of the row is compared against the new row. By default,
the framework implementations should work fine, and you don't need to do anything. However, in the rare case, you may
need to override the following methods:

protected void conpareAddedRow(Li st Body ori gi nal Li st Body,
Li st Body newlLi st Body)

protected void conpareChangedRow(Li st Body ori gi nal Li st Body,
Li st Body newlLi st Body)

Test default actions on Entity Page Maintenance Class

In addition, all defaults that are registered for a page maintenance must also be tested. This should be done through
separate tester methods for each default, calling the FW support method publ i ¢ PageBody execut eDef aul t (PageBody
pageBody, String defaultVal ue) :

public void testDefaultChg() {
PageBody i nput = new PageBody();

/1 TODO popul ate inputs for default

/'l e.qg.

i nput . put ("FK", "FK CODE");

PageBody out put = executeDefaul t (i nput, "CHG');

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 32

/1 TODO compare the outputs
/Il e.g.
assert Equal s("FK Descri ption", output.get("FK DESCR"));

Another example for testing the default on the field which in on the list.

public void testDefaul tAl ogrithn() {
Itenlist itenlist = new Itenlist();
itenlist.set Name(" MRRA") ;
List list = new ArrayList();
itenlist.setList(list);
Li st Body |i stBody = new Li st Body();
|'i st Body. put ("MRR_ACTN_ALG CD', "MRRCRESVCCC');
l'ist.add(listBody);

PageBody i nput = new PageBody();
i nput . addLi st (itenlist);

PageBody out put = executeDefaul t (i nput, "AAD');
Itenli st outList = output.getList("MRA");
Li st outputList = outList.getList();
Li st Body body = (ListBody) outList.getList().get(0);
assert Equal s(body. get (" MRRA_DESCR") ,

"Create Service Custoner Contact");

The input page body should be populated with the expected inputs for the default action, while the output should be
compared against the expected output.

Testing Business Entity Validation

To test our validation, a test class needs to be created. The one-off generation process has created one for each of the
existing entities in the system. The following is the one it created for the Characteristic Type entity:

public class CharacteristicType_Test extends AbstractEntityTestCase {

private static Logger |ogger = LoggerFactory. getLogger(CharacteristicType_Test.cl ass);

/**
* @ee com spl wg. base. api . testers. Abstract Enti t yTest Case#get ChangeHandl er d ass()
*
/
protected O ass get ChangeHandl er G ass() {
return CharacteristicType_CHandl er. cl ass;
}

This is a JUnit test case. Let's run it. From within Eclipse, right-click on the test class from within the Package Explorer.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 33

T Jawva - CharacteristicType_Test java - d-\cch\2 (Mools\eclipse\workspace - Eclipse Platform

File Edt Source Refactor MNavigate Search FProject Tomecat Runm Window Help

lri-H DD | EEE -0 | BHG- ™| »
J? e ¥

=E|](Qu]m || Charaet... | [J]Charact... [L

B8 billPeriod

iy 2 JUnit Test
B8 bill RouteType Team y £
-E7 bil Segment Type Compare With b (3 Aun..
EB budgetPlan Wih . —
-H3 campaign Replacs Wit !DC Declarstion mq@ Progress &
Restore from Local History...

H charactersticType
+ -[¥] CharacteristicE Properiss At<Erter
Charactenstic Tyc_ i .

-[J] CharactersticValue_Test java
-8 cisDivision

-Hf collectionAgency

=l LM S et ;" com.splwg.cis.domain.admin.charac

B gm:ccess(}mup e £ m.splwg hase apitesters AbstracteEr

-H# accourtingCalend; Open With ¥ bm.splwg.shared logging Logger:

-H accountManagem Open Type Hismarchy F4 pm.splwg.shared.logging LoggerFact

88 accourtRelationsk

EB adjustmentCancelf EfE]Co-py Ctd+C

---EB adjustment Type . Moo Chl ated Test Case for CharacteristicType

H-88 adjustment TypePr

E-H aletType % Delete Delete

B3 apRequestType Source 4h-Shf=5 » [pss CharacteristicType_Test

'"EE autopayRoute Type Fledector MpeShiaT » |15 AbstractEntityTestCase {

% :;ﬂnokpm e iy Import... cfieldsiinitializers

% E:E:gﬁ:ﬂ L) Bport... static Logger logger = LoggerFactar

- bilableChargeTem References . .

-7 bilableChargeUpla Declarations »

EB billCancelReasan

-8 billCycle " Refresh F5 e com.splwa.base.apitesters.Abstra

-8 billFactor

EB billFactorCharacter Itar Claszs aetChanneHandlerClass()

-8 bilieszse _ T AT poie s

..

..

..

..

..

=]

The following image shows the resulting output from JUnit:

T Java - Charaderistic Type Test java - Eclipse Platform

Fia Edf Souce Refacior Mawgae Seach FPrject Fun Window Halp

| i (RS - RN | g - | | 50 £ | 8liava (W Peforce [Resouce
g = t.‘,:' C_J - -
r o
Package Emore | errchy | Pendng Chrangessts (T Tedly, GG = % v =8
{Finished after 0.321 seconds
Runs: 1/1 8 Ervors: 0 8 Failures: 1 I
'*wd'rrl” = Faiue Trace :#
=g ‘:Wm‘”ﬂ] lfnml‘rarreaxma AasedisnFadadEmar, The folewng nies werne net vislated he exaetion of the test class com sphvg cis damain o1, -haryp-e(_‘herac:meIeﬂ
E‘Iw e Forsign Hey Reference i required for FK Charscierst pes: i the Characienistic Type Lockup is Foreign Key Value' then the Fonsig '

Charactenstic Type:Value Algorthm not Alowed for Frediefined Charactenistic Values: I the Charsctenstic Type Lockup is Predefined Vishue'then the Adhoo 'Jaue Algorthm is not allawed
Charachesstic Type:Vahdate Agodthm within Entty: Validates Algorithen within Entity

#t com.sphwg base api testers Abstract Bty TestCase endSuite Sxecution | bstract Entty TestCase java:114)

i com spiwg base api testers \Wrapped Test SuteHelper snd Suite Execution \Wrapped Test SuteHelpar java- 57

at com.spiveg base api testers. Wrapped Test SuteHeiper private AfterFlun Test (Wrapped Test Sute Halper java:50)

at com.sphwg bass apd testers Wrapped Test SuteHeiper afterRun Test (VWepped Test Sute Helper java 8]

&1 com.spiwg basa apl testars AbstractEntity TestCase run Tast(Sbstract Entty TestCase ava 58]

IIRIIRIIRTIRIA

&
5
E
)
5
g
i
3
»
g
2

As we see, the tests failed and told us that none of our three validation rules where validated. This is, of course true, but
some explanation is necessary. When we run entity test cases, the framework looks up the change handler class being tested

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 34

and collects all of its rules. Then it executes all the tests in the test class (basically every method starting with "test*"). At
the end of each test, it looks to see if the last rule violated was one of the rules we are testing. At the end of all the tests,
if there are still validation rules that weren't violated, the framework complains. At a minimum, the goal from this point
is to create tests that violate each of our rules at least once. Preferably, tests should be created to violate the rules for all
additional conditions that we can think of that might compromize the state of the entity.

Let's start fixing our tests with the third rule above the "Foreign Key Reference is required for FK Characteristic Values"
rule. With a little head-scratching we determine that this is a "RequireRule" and we replace it as shown below:

public static ValidationRule
f or ei gnKeyRef er encesRequi r edFor FkChar Val ueRul e() {
return RequireRul e...someFact oryMet hod. . . (

"CharacteristicType: Foreign Key Reference is required for FK
Characteristic Val ues”,

"I'f the Characteristic Type Lookup is 'Foreign Key Value' then the
Foreign Key Reference Cd is required",

some fancy stuff
f kRef er encesRequi r edFor FKChar act eri sti cVal ueMessage) ;

Here's the test that was added to the test class to test it:

/** Test foreignKeyReferencesRequiredFor FkChar Val ueRul e */
public void test FKRef erencesOnl yFor FKChar acteristics() {
/] create a new characteristic type
CharacteristicType char Type = creat eNewTest Obj ect () ;
CharacteristicType_DTO char TypeDTO = char Type. get DTQ() ;

/1 set the characteristic value to null for sone other type

char TypeDTO. set For ei gnKeyRef erence("");

char TypeDTO. set Characteri sti cType
(CharacteristicTypeLookup. PREDEFI NEDVALUE) ;

/1 this should be OK
char Type. set DTQ(char TypeDTO) ;

/1 Now make it a FK characteristic. This should violated the rule
char TypeDTO. set Char acteri sti cType
(CharacteristicTypeLookup. FOREI GNKEYVALUE) ;
try {
char Type. set DTQ(char TypeDTO) ;
fail ("An error should have been thrown");
} catch (Applicati onException e) {
/1 Make sure the correct rule was violated.
VerifyVi ol at edRul e
(CharacteristicType_CHandl er.
f or ei gnKeyRef er encesRequi r edFor FkChar Val ueRul e()) ;

NOTE: Important note: Both a valid test AND an invalid test were added to the above method.

Finally, when the test is rerun, we have one less validation rule needing to be violated.

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢« 35

& Java - Charsderisdic Type Tes java - Eolipse Platform

e [k Source Fefacior Navigsie Seach FProct Bun Window Hel
Its- @ a-fs-0-%- |Oae-|® [4@ 8-l - -

£ &lueve [ToPeforcn L[Resource

Jov Tesc the F
- public void teatTH
cretac a o

Characte

£l tesFHRafarmnoasOnly ForF Hharacteratics

o) Bestes
10 it framavion AssationFatadEree. Tha folowing rias ware not vislatad v -
Charsctenstic Type-Valus Algedthm not Alowad for Pradefinad Charsctadstic Visius
Charactenstic Type:Vadste Algorthm within Ertty: Valdates Sigecthm wihin Bty
&t com sphwg base o testens SbetractErity TestCase end SuteExecution|fbstraciEnt
&t com.sphwg bass.api testens, Wrapped Test SulleHelper end Sue SxecutionVispped
at com sphwg base api festens WroppedTest Sute Helper private A erFun Test (Wappe
at com.spiwg base.apl testers. WWrapped Test SuteHelper afterFun Test{\Wepped Test 5
at com sphwg bose api testens AbstactEntty TesiCase.un Test [Fbstact Entty Test Cast
& framework. Test Fesult 51 protect [Test Resuk javac10€)

1000010000 100

o
i

|

TyYpebI)
d have been thzowa"):

Packaga Explore | Hararcty | Pervding Changalta | gl JLii2 52 _ = 0|17 Cherset... m fberm. | [1)Sesson. | [N)Cheect. | [1)Requm. | [Prpet. | ™]
Firished after 21 571 seconds Ao = [0 - o SRR s e e S s i e b g e s e
Runs: 272 B Ervors: 0 B Failures: 1

ule

IGHEEYVALUE

]

1

Protdaces | Javados | Declaraton | Search | (3 Conacle 32

Prograss | Reusen Hiteey AR

mApped class class o
& s

1 [main]

ki RE R K

I
Ka B3 Ra

L. message Messagecs
asapgaCATalogRapOSit

HesapgalatalogRepo

g Seaz
Hessage)

ITterate Until Done

Test handleChange / handleAdd / etc code

Although there is no way to enforce testing of any coding in any of the methods

Handl eRegi st er edChange
(Busi nessEntity changedBusi nessEntity,
Regi st er edChangeDet ai | changeDet ai |)

handl eAdd(Busi nessEntity newBusi nessEntity)

handl eChange(Busi nessEntity changedEntity, DataTransferObject ol dDTO)

It is still imperative that this code should also be exercised AND verified when testing the change handler. Please ensure

that every path through these methods is exercised and the results verified.

In general, there is a specific set of classes or functionality that is required to have explicitly defined tests.

fail once, with an explicit acknowledgement of the failed rule expected.

» Every service must have a test.

» Searches must test each search type once.

Every entity (and entity extension) class must have each of its validation rules explicitly tested. That is, each rule should

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 36

» "Page" services must test their complete cycle that are available.
¢ Queries must test read
* Maintenance classes must test add/change/read/delete

» Every maintenance extension must have a test class

» Every algorithm implementation must have a test

NOTE: Currently, the above "must have" tests may still not completely cover all the cases. For example, one search
type may have several inputs, which trigger different code or queries to be executed. The testing FW as is can not know
this, so only requires a single test case for that search type. However, it is strongly recommended that each specialized
case possible be modeled with a test case, in order to achieve complete code coverage.

NOTE: In addition, there is a desire to assure that each business component or business entity method has been tested.
Currently these tests are not required. However, after a complete build server run, any business component methods or
business entity methods that have not been explicitly tested will be reported.

Testing for Warnings

In both maintenance classes and entity change handlers, there is the possibility of issuing a warning. This code should be
tested just as well as any other entity validation or default action.

Maintenance Classes

Here is complete valid example of verifying that a maintenance default action issues a proper warning.

public void testDefaul t DEFAULT_FOR ZONE_HNDL() {
PageBody i nput = new PageBody();
i nput . put (Cont ent ZoneMai nt enance. STRUCTURE. ZONE_CD, "ClI _AFH");

/] test the default and expect to get a warning

try {
execut eDef aul t (i nput, "ZH");
fail ("Should have a warning");
} catch (ApplicationWarning e) {
veri f yWar ni ngCont ai ns(e,
MessageReposi t ory. del et eZonePar anet er s\Warni ng()) ;

}
di sabl eWar ni ngs() ;

/1 test the default and do not expect to get a warning or error
PageBody out put = executeDefaul t (input, "zZH"');
assert Equal s(Bool ean. TRUE, out put.get (" DELETE SW));

NOTE: By default, warnings are enabled, thus nothing special need be done. But you should put the normal try/catch
block around the default execution, and catch an application warning. Once inside the catch block, you should verify
that the warning(s) is/are valid expected ones. (This comparison is only done via the message category and message
number. Thus, if there are parameters to the message construction, it matters not their values, since it may be difficult to
get the values.) You should then retry the default with warnings disabled.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 37

Entity tests

There was no current use of warnings in entity tests that I could easily "improve", so for now I use a slightly contrived
example. (This is slightly contrived, because Installation is a special record, and the change below is not actually allowed in
the application do to some records on the Adjustment Type table, and a valdiation on Installation.)

public void testChangeBill Segnent Freeze() {
Installation installation = getValidTestOhject();
Installation_DTO instDto = (Installation_DTO installation.getDI();

i nst Dt o. setBi | | Segnent FreezeOpti on
(Bi | | Segnent FreezeOpti onLookup. FREEZE AT W LL);
i nstallation.setDTQ(i nstDto);

i nst Dt o. setBi || Segment FreezeOpti on

(Bi || Segrment FreezeOpt i onLookup. FREEZE_AT_BI LL_COWPLETI ON) ;
i nstallation.setDTQ(i nstDto);
veri f yWar ni ngsCont ai n

(MessageReposi tory. changeBi | | Segment Fr eezeWar ni ng()) ;

Again, by default warnings are enabled, so nothing need be stated at the outset. Additionally, the conversion of warnings to
an exception occurs at a later point, so there is no ApplicationWarning to catch. Instead, after the offending statement (in
this case the setDTO method) you should just verify that the current warnings contain the specified message.

Technical Background

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 38

Technology Overview

= sz g

Web Browser J —
User Interface i = .-?_,,.l
with AJAX w =3 _E!;luiul_ll_ n

HTTP
XML
£ Application
Page Server Integration
Tool
A Cache
Weblogic Berin

WebSphere

Logic (core) ZAET
Server Plug-ins

} Java

Hibernate

Database Connectivity <
(multi-protocol)

ORACLE J’ Database
‘\ Server

Technology Overview of the OUAF System

Information is presented in a Web browser using HTML and JavaScript (not Java, e.g., no applets). The browser
communicates with a Web Application Server via HTTP.

The Web Application Server is divided into several logical tiers: presentation services, business logic, and data access.
Inbound HTTP requests are handled by Java Servlets in the presentation layer, which may in turn invoke data service
objects. In turns, these objects may route control to Java-based business entities, which use the Hibernate ORM framework
for data access and persistence.

Various static data (control tables for drop-downs, language-specific messages/labels, etc.) are cached in the presentation
layer of the Web Application Server. The presentation layer makes use of XSLT technology to create HTML for the
browser.

As the browser may need several "pages" to show all the information relating to a particular business entity, a JavaScript
"model" is used to manage the data in toto, and the Internet Explorer XMLHTTP object is used to send the data to the server
as an XML document. Data is provided to the browser as literal JavaScript. The specialized portal and dashboard areas use
server-side XSLT technology to render the final HTML directly on the server. The HTML for grids in the browser is created
using client-side MSXML XSLT transforms.

This kind of architecture is described as Asynchronous Javascript and XML (AJAX).

Portability

The system is highly portable to various hardware platforms, as web application servers are pure Java applications and run
on myriad operating systems, including Windows clients, servers, and many versions of UNIX.

In principle, any compliant Java 2 Enterprise Edition container can host the application.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 39

Distribution

The various logical components can be distributed to as many machines as desired. In particular, the web application server
architecture is stateless, so many parallel server machines can be utilized given an appropriate load-balancing architecture.

OUAF Web Services

The OUAF system makes heavy use of web services, which are data access and update services ultimately implemented in
Java, accessing Oracle databases. Each service invocation represents a distinct database transaction.

There are three kinds of services: Page, List, and Search.

A Page service defines all the data needed to display data on a single tab menu (e.g. across all child tab pages). The data
structure is logically a tree, with a root object containing attributes as field/value pairs, and recursively containing lists

of similarly structured objects. The typical maximum nesting depth is four levels of contained lists. Page service names
end with the letter "P", e.g. CILCACCP. Page services may be called in five primary "modes": Read, Change, Add, Copy,
Delete, and Default.

List services define a list of objects, possibly containing nested lists. In addition to being accessible independently for list-
oriented data, they can be used to flesh out lists contained in page services where more data is available than can fit in the
(fixed-size) buffer. List services do not support database updates.

Search services are used to support ad-hoc user searches for data. The results are structurally similar to List services. The
input is a set of criteria and a search mode, with values "MN", "AL", "A2", A3", etc.

Service requests can return a normal result, or create an error or warning. A warning displays a message with a list of
warning lines, and offers the choice of proceeding (which triggers the same call with a flag set to suppress warnings), or
cancel. Errors create descriptive messages. Search and List services can only create errors, not warnings, while all Page
services except Copy can create warnings and errors.

SPL Service XML Metainfo Files

The OUAF system represents the structure of a service using an XML document (loosely akin to an XML schema). Every
service is defined with a single XML document, which is generated based on the Java class information.

Service XML documents are created by using annotation-based metainformation combined with system metadata (stored in
the database).

Example using Page Service

The following excerpt of the CIPBSTMP.xml file will motivate the discussion.

<?xm version="1.0"?>
<l-- Service CIPBSTMP -->

<page servi ce="Cl LBSTW" >

The root element of the document has the tag "page" to reflect that this is a page service, and describes the service name as
an attribute.

<pageHeader >
<string nanme="STM I|D' size="12"/>
</ pageHeader >

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 40

The <page> element contains exactly one <pageHeader> and one <pageBody>. The <pageHeader> contains any number of
"singleton" fields. This one is a string field named "STM_ID" in the browser, and with the same name in the original Java
source. The field contains up to 12 characters (this is the "business rule" length, not physical storage).

Other types of singleton fields include <biglnteger>, <bigDecimal>, <money>, <date>, <time>, <dateTime>, and
<boolean>.

The number-related fields (<biglnteger>, <bigDecimal>, and <money>) have a "precision" attribute, which describes the
maximum number of digits that can be represented. Further, <bigDecimal> and <money> include the "scale" attribute,
describing the number of decimal digits appearing after the decimal point. Thus, an element like this <bigDecimal
precision="4" scale="2"/> can represent numbers in the range +/-99.99.

Continuing with the page service example, we have this section:

<pageBody>
<row acti onFl ag=" ROV ACTI ON_FLG' >
<string nanme="BATCH CD"
size="8"/>
<bi gl nt eger nane="BATCH NBR'
pr eci si on="10"/ >

The <pageBody> element contains <row> elements, singleton fields, and <list> elements, in any order. Here we have
another <string> field, as well as a <bigInteger> (an integer value with no decimal fraction), this one holding (up to) 10
digits. This means numbers in the range +/-9,999,999,999 can be represented.

The <row> element reflect the java entity (row). In terms of the infoset and browser the fields in the <row> element are
effectively merged into the containing <pageBody>, along with fields from any sibling <row> elements.

The "actionFlag" attribute names the field that contains a flag that determines the server action that should occur against the
TOW.

<string name="STM CNST_| D"
size="10"/>

<dat e nanme="STM DT" />

<string nanme="STM | D"
size="12"

i SPK="true"/>
<string nanme="STM STAT FLG'
size="2"/>
<bi gl nt eger nane="VERS| ON"

pr eci si on="5"/>
</ row>

The "isPK" attribute marks fields that are part of the logical prime key of the "main" object/table for this page service.

We then see a <list> element:

<list name="STM DTL" size="30" service="Cl LBSTDL" user Get Mbre="fal se">

The <list> element describes an elaborately structured array of objects. The element contains exactly one <listHeader>

and <listBody>. Every list within a service buffer has a unique name attribute. The number of possible list body objects is
given by the "size" attribute. In the event a list service exists independently for the list, it is named by the "service" attribute.
Finally the "userGetMore" attribute switches the system into one of two modes:

userGetMore="false" means the system does not require the consent of the user in order to fetch more elements, in the event
that the physical list buffer is filled to capacity with more elements available in the database. The system will autonomously
call the corresponding list service (if it exists) in order to fetch the missing elements. In this way clients making one logical
page service call may result in one physical page and several list service invocations.

userGetMore="true" means the system requires the affirmative consent of the user (e.g. via a "get more" button in the
browser) to continue fetching available data. The list buffer is truncated.

<l i st Header | astlndex="STM DTL_COLL_CNT"

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 41

acti onFl ag="LI ST_ACTI ON_FLG'
nmor eRows =" MORE_RO\N5_SW
al ert Rowl ndex="ALERT_ROW >
<string name="STM | D'
size="12"/>
<string name="LAST _STM DTL_| D"
size="12"/>
</li st Header >

The <listHeader> element has a "lastIndex" attribute giving the ficld name that holds the number of elements actually
returned, an "actionFlag" describing the operation to be performed on the list (e.g. change, delete), the "moreRows" attribute
naming the field that holds the boolean that indicates whether more data remains un-retrieved in the database for the

current list, and the "alertRowIndex" attribute, naming the field that holds an index into the list to describe the location of a
validation error, used to select the correct item in a browser when presenting the error to the user.

In addition, a <listHeader> can contain any number of singleton fields. These are typically keys describing how to access
this list, and logical "cursor" fields describing how to continue fetching more items.

<l i st Body>
<row acti onFl ag="ROW ACTI ON_FL&" >
<bi gl nt eger nane="VERS| ON'
pr eci si on="5"/>
<string nanme="STM DTL_I D'
si ze="12"
i SPK="true"/>
<string nane="STM CNST DTL_I D"
size="10"/>
<string nane="STM | D'
size="12"/>
</ r ow>
<string name="STM CNST_DTL_DESCR'
si ze="50"/>
</Ili st Body>
</list>

This finishes the <list> element. Some more singleton elements appear before finishing the <pageBody> and <page>:

<string nanme="STM CNST_ DESCR'
si ze="50"/>
<bool ean nanme="ACTI ON_GENERATE_SW />
</ pageBody>
</ page>

Example Using Search Service

List service XML files essentially contain a <list> element as the document root, and will not be described further. Search
service XML files are very similar to those for page services. Here is an example illustrating the differences:

<?xm version="1.0"?>
<l-- XM Java/ Tuxedo mappi ng Cl PCACCS
Automatical |y generated by nmakeXM_.Map Sat Nov 10 09:08: 30 2001
Sour ce copybooks: Cl CCACCS Cl CCACCH - - >
<search nanme="ACCT"
servi ce="Cl LCACCS"
si ze="300" >
<sear chHeader | ast| ndex="ACCT_COLL_CNT"
acti onFl ag="SRCH_ACTI ON_FLG'
sear chByFl ag="SEARCH_BY_FLG'>

The <search> element is the root of the document, and contains a <searchHeader> and <listBody>. The <search> element is
similar to the <list> element described above, and includes name, service, and size attributes. The <searchHeader> includes
the "lastIndex" attribute, which gives the name of the field holding the number of returned elements, "actionFlag" which

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 42

names the field containing the search action flag, and "searchByFlag" which names the field holding the search "mode".
The <searchHeader> further contains singleton fields describing search criteria. These are adorned with extra attributes
describing whether they are distinguished criteria that should always be populated from the search client (optional, defaults
to "false"), and a criteria group designation.

<string name="ACCT_| D'
size="10"
isCriteriaExtract="true"
criteriaG oup="M\"/>

<string nanme="ENTI TY_NAME"
si ze="50"
criteriaG oup="AL"/>

</ sear chHeader >

The <listBody> was described previously, and describes the structure of the elements matching the search criteria. In
addition, the "isReturn" attribute describes fields that should be returned as the result data when a particular result row is
selected (optional, defaults to "false").

<l i st Body>
<row acti onFl ag=" ROW ACTI ON_FLG' >
<string name="ACCT_| D'
si ze="10"
i SReturn="true"/>
<string name="ENTI TY_NAME"
si ze="50"/>
<string nane="ACCT_REL_DESCR'
si ze="50"/>
<string name="NAVE_TYPE _FLG'
size="4"/>
</ row>
</li st Body>
</ sear ch>

Server Architecture Overview

The Java server is logically divided into several distinct layers, with different responsibilities. Form the point of view of a
request from the browser, there are a handful of general-purpose data-centric servlets that can handle any service requests.
These servlets handle HTTP requests and transform them into data objects and commands for further processing. Once

an appropriate service is identified for handling a request, its metainfo is used to build a rich Java data structure from the
(string-based) browser data representation. This data, in turn, forms the input to a Java service class.

In our terminology, a page service is a self-contained piece of server functionality that principally acts upon a particular
"root" Java entity object (and table) and its child entities (tables). The framework automates the process of mapping data to
and from these entities by making use of the service XML metainfo. These Java objects are also known as domain objects.
These objects are made persistent via Hibernate, which offers the simpler HQL query language as an alternative to "raw"
SQL. In the simplest cases, no human-written imperative code need be written to implement a page service.

For updates, validation is handled via both automatic logic determined by database metadata, including application-level
referential integrity checking, and hand-coded validations implemented by change-handler classes.

For presentation-level requests (e.g. HTML constructs) the server uses XSL/T to create HTML from our Ul metadata
structure. Since Ul layouts are fairly static the web presentation layer uses caching to help optimize performance.

The development process is geared to keeping generated and human-maintained artifacts completely separate. For instance,
we generate superclasses that contain generated code that is e.g. required by Hibernate or the service framework, and
programmers will implement subclasses that implement methods for unusual or extra behavior.

The artifact generation is driven principally by parsing special markup in Java sources known as annotations, combined
with metadata held in the database (principally relating to tables, fields, and constraints). On a modern machine (eg. 3 GHz
P-4) artifact generation for the entire system takes only a few minutes.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 43

Client Architecture Overview

Introduction

The OUAF browser client uses many novel mechanisms in order to support the system design goals of high system
performance, including low latency and high throughput. The core design principle is that the system is stateless, meaning
only the browser client itself is aware of the session state, that is the application's context--what data is being viewed/
modified and all other information related to a user more typically associated with session state on the server. This
document discusses the important design points that implement a stateless architecture.

Client Architecture Discussion

The web browser client communicates with the Web Application Server via HTTP, and receives two kinds of dynamic
content:

Views - HTML entities that describe how things look
Model - Pure data in a convenient representation

The views are served as HTML that contain labels and HTML <SELECT> elements (drop-downs) that are localized to the
user's language. Since drop-downs are fairly static, the view objects are cached on the browser via the HTTP 1.1 Cache-
Control directive in order to avoid repeatedly accessing the Web Application Server for the same content.

The web server creates HTML using XSLT technology. The technique is as follows: the original metadata that defines
HTML documents is copied from the database into XML files residing in the server. These files are shipped as part of a
OUATF system deployment. At runtime the server converts these Ul metadata documents into HTML in two steps. First, the
logical structure is converted into a nearly-final HTML structure, lacking only language-specific information (labels and
<select> lists), via XSLT, using one of a handful of standard XSLT template files. The result object is then transformed
again, in order to inject language-specfic elements, creating the final HTML.

As a special case, for performance reasons the HTML for grids (lists and search windows) is created using client-side XSLT
(MSXML).

Data is provided via servlets, of which there are only a few. The data is represented as literal JavaScript, which happens to
be very convenient to handle by the browser (since it includes a native JavaScript parser). The model takes the form of a
"tree" of JavaScript object nodes and values, with a distinguished root node. The model is converted into an XML document
string when submitted to the server, using the HTTP POST method. This is convenient for the Web Application Server
because it is equipped with powerful Java-based XML parsers.

Here is a table of servlets, and a brief description of each:

Servlet Name HTTP Method Usage

logininfo GET Provides useful global data at login, retained for life of
session, such as a map of all system URLs and a definition
of menu structures.

pageRead GET Returns a data model object given one or more key/value
pairs.
pageChange POST Accepts a data model representing modifications that should

take place against an existing database entity, returns
modified model.

pageAdd POST Accepts a data model representing a new entity that should
be inserted into the database, returns new model.

pageDefault POST Accepts a data model describing a triggered "default"
operation, returns a model object containing default values.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 44

Servlet Name HTTP Method Usage

pageDelete POST Accepts a data model representing a database entity to be
deleted, returns nothing.

pageCopy POST Accepts a data model representing a model that should be
duplicated, returns the duplicate.

listRead GET Accepts key/value pairs describing a list of database entities,
returns said list.

Search GET Accepts key/value pairs containing search criteria, returns list
of objects satisfying said criteria.

StringSort POST Allows locale-sensitive sorting of strings. Used for sorting
strings in grids when user clicks on the column header.

It is important to remember that the servlets deal with "pure" model data, and have no visible representation. Since actual
business logic and database access resides in the app server, the servlets take the role of dispatchers and most servlets accept
a "service" parameter describing which app server back-end service to invoke.

The model data is combined with the view on the browser client whenever the model changes or the view needs to be
refreshed. This is done by a name-matching scheme where every HTML element that shows a model value has a name that
"picks out" a corresponding value from the current model. All such HTML fields must include the string "data" in their
HTML class.

The simplest case is showing a value from the "root" object, in which case the field name, also referred to as the "JS name"
simply matches the model's attribute name.

There is more complexity in the case of lists. Every list in the model has a unique name, regardless of nesting depth, so a JS
name that combines the list name with the property name suffices to uniquely identify a section of the model.

There are two sub cases of displaying properties of lists. The first is where the desired index into the list is known (e.g.
grids). In this case, the JS name combines the list name, index, and property name as follows: <LIST NAME>:POSITION
SELEMENT PROPERTY, e.g. ACCTS:38ACCT _ID. Note indexes are always 0-based in the browser (in accordance with
JavaScript arrays). This example refers to the fourth element of the ACCTS list, and retrieves the ACCT _ID.

The other case is where the desired index is inferred as the "current" index (e.g. scrolls). Every list in the model keeps track
of its current position index, which is used when no external index is provided. Hence the JS name ACCTS$ACCT _ID
refers to the ACCT _ID property of the currently selected/visible element (presumably in a scroll) of the ACCTS list.

In the rare case that header fields should be displayed, they can be accessed using the JS name pattern LIST _
NAME#HEADER PROPERTY.

Generally, whenever a value is changed in an HTML element or focus is moved after making a change, the system attempts
to "commit" the change back to the model. This involves several steps:

Validating the input for syntax, possibly according to the current locale (e.g. dates)

Identifying the relevant model node to receive the change

Updating the node

Marking the node dirty

The last step is important because we wish to know whether the user has made any changes to the model.
Saving changes to the server generally involves the following steps:

Identifying the servlet to be invoked (e.g. pageChange vs. pageAdd) depending on whether the model represents a new or
already persistent entity.

Converting the model tree into a literal XML string representation.

Submitting the XML string to the Web Application Server via the appropriate servlet using the POST method, including
a parameter describing the service. This is accomplished via the Internet Explorer XMLHTTP ActiveX object, using a
synchronous calling mechanism.

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 45

The servlet, constituting a core piece of the Web Application Server "web presentation” layer, retrieves the service
parameter, obtains the XML-based metainfo describing the service, and converts the XML request string into a Java object
tree, ready to be passed to the "data service" layer.

The data service layer converts the Java object tree into a Jolt data buffer.

The relevant app service is invoked passing in the data buffer.

The result buffer is converted into a Java object tree.

The Java object tree is converted into a literal JavaScript representation (as needed) and transmitted to the browser.
The returned data (literal JavaScript) is mapped into a new live JavaScript object model.

The user interface is refreshed with the new data.

The portal screens make use of XML and XSLT technology to create HTML. The dashboard relies on a current application
"global context" to drive it. Each distinct zone within the portal is created by a Java object known as a zone handler.

The handler is responsible for acquiring data and rendering the displayed HTML. Handlers implement the interface
com.splwg.base.web.portal.IportalZoneHandler. The usual handler is com.splwg.base.web.portal. XSLZoneHandler. This
handler requires two parameters, a page service and an XSL stylesheet. It executes the page service in read mode, converts
the resulting Java data structure into an XML document, and executes an XSLT transform with the stylesheet to create the
final HTML. The portal framework takes care of common features such as zone expand/collapse. XML stylesheets are kept
in DefaultWebApp/WEB-INF/xsl, and the include.xsl file acts as a common library of XSL templates to provide standard
behavior.

User portal preferences are obtained by the server at login and stored on the browser as XML documents represented as
JavaScript strings. These preferences are sent to the web server when displaying a portal.

SPL Client API

Overview

The OUAF system offers a large number of useful JavaScript functions in the client (browser). These allow manipulation of
widgets, data, and triggering requests to the Web Application Server to view another page and/or object.

This document discusses functions that developers of user exit functions may wish to use.

Client API Discussion

JavaScript Invocation Context

To use client-side JavaScript functions effectively you have to understand the way JavaScript partitions the client window
into independent object spaces (via iframes), and the way common JavaScript framework code is made available to those
spaces.

While this may be old hat for experienced browser-side JavaScript programmers, it is important to remember that every
window or iframe contains an independent object space, with a separate space of global variables and objects. Adding,
modifying, or deleting objects (or classes) in one iframe has no effect on any objects in other iframes. However, it is
possible to refer to objects that "live" in a different iframe with variables in a different iframe. This is somewhat dangerous;
if the iframe that instantiated the object (where its prototype lives) goes away (by being closed, or having its href modified)
the object may no longer be able to carry out any operations. However, "value" objects such as strings or numbers may
safely be shared across frames, even if the creating frame closes.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 46

An iframe can have JavaScript code defined directly into its HTML page, or it can include JavaScript code that exists in a
separate file. The latter technique allows the creation of standard "library" code that is available to many iframes, without
the network or development overhead of copying the same functions into hundreds/thousands of files.

The subtle point to remember in the foregoing is that even though the same JavaScript file may be included in different
iframes, each definition is completely independent of every other. If the included JavaScript defines a global, then every
iframe gets its own separate global variable binding.

Since there are some commonly used objects, most iframes define and initialize global variables to reference these objects.
The "main" object usually refers to the main iframe, containing cisMain.jsp. This iframe is never reloaded during a client
session, and holds the central model object. The model itself is usually available as the "model" global in most iframes.

Data Representation and Localization

The browser handles localization. The client browser object model is logically divided into a display ("view") and data
("model") layer. The responsibility for localizing the data values to the user's locale rests with the display layer, not the
model layer. All code that retrieves model values and prepares them for display makes use of formatting code, for instance
to display dates in the user's preferred fashion. Similarly, all user input is parsed in the context of the current locale to
convert the data into the internal format that is stored in the model (and passed to Servlete Container/Java/database).

The internal format for model properties is to use strings (not JavaScript numbers or dates) for everything except boolean
values.

The functions that are responsible for converting model data values into localized displayable ones

are named convertInternal XYZToLocal(internal Value), while the reverse conversions are named
convertLocalXYZTolnternal(localValue). Note that latter can fail and include extensive validation, possibly triggering error
message alerts.

Core JavaScript Classes

These classes are defined in cis.js, which is included by the main frame.

CisModel

The CisModel class plays two roles. The first role is to provide the metadata that describes the currently loaded model
instance. The methods that serve this role are static methods, e.g., defined directly on the CisModel prototype object.
These methods are accessible using the syntax CisModel.function(params), assuming you are in the main frame. If not,
use main.CisModel.function(params). Instance methods and variables are, of course, accessible through any instance of
CisModel, e.g. model.pageData or model.getValue('ACCT _ID").

Data representation

The data stored in instances of CisModel uses an internal system representation, not a localized representation. This means
code that manipulates the model is unaware of the user's locale and display preferences. For instance, date values are always
stored using the ISO 8601 string representation YYYY-MM-DD, and numbers are always stored as strings, not JavaScript
numbers (because the required precision may exceed that of JavaScript's native number type).

The data takes the form of a tree of data nodes of two classes, DataElement (the singleton node class holding data attributes
as JavaScript properties), and List, which manages an array of DataElement instances. Every list has a unique name
property, regardless of its position in the tree (e.g. independent of nesting depth), making it possible to uniquely identify
and retrieve any list by its name. The DataElement instances each keep a "dirty" flag to mark whether the user modified any
properties, representing work that needs to be persisted to the database.

Every element instance is always in one of three logical states:

Persistent

Oracle Utilities Application Framework Software Development Kit Developer's Guide < 47

New/Dirty
New/Clean (e.g. a "phantom")

Phantom elements are used to populate otherwise empty lists, to give a starting point in which to enter data. Unlike other
new objects, phantoms are initially clean so they don't participate in persistence operations until explicitly modified.

Many CisModel methods act as starting points for recursive implementation through the data tree, and methods with the
same or similar names are available on the DataElement class.

Navigation

Many methods accept list names as arguments in order to operate a unique list instance within the model data tree. Since it
is possible for lists to be nested inside other lists, the system assumes the intended list is the one identified by the "current"
list positions in the ancestor branch.

CisModel Instance Variables
» pageData

Used to access the root data node (e.g. model.pageData), an instance of the DataElement class.

Static methods
» parseNames(fieldName)

This function accepts a string containing a JS field name (the id of an HTML element) and cracks it into its constituent
components: the list name, index, and property. The result is an object with three attributes, property and listName (which
are null if missing), and position, which is actually a function that takes the current list position as an integer argument. The
reason for this is to allow the calculation of the current position (no index) and a fixed index. If the list fragment is missing
the listName and position are both null.

CisModel Instance Methods

The most commonly accessed instance of CisModel is the central model containing the data for the current page, typically
available through the "main" global variable in most frames. (Recall again that all such globals refer to the same object;
hence changes made with code running in one iframe are visible from any other iframe.)

» getValue(fieldName)

This accessor method returns the data value corresponding to the provided fieldName. The field name string will be cracked
into constituent pieces using the static parseNames() method, in order to identify the instance of DataElement within the
data "tree" that contains the desired property, and then to retrieve the property.

» getOriginalValue(fieldName)

If a model property has been modified, but the change has not yet been committed (e.g. with the Save button), the system
tracks the originally retrieved value of the property. This accessor method can be used to retrieve the original value. Useful
for implementing certain business rules having to do with logical state transitions.

» canSetValue(fieldName, value)

This method answers a boolean indicating whether the model is capable of accepting the given value for the provided
fieldName. The method would answer false if buffer capacity limits would be exceeded were the change to be accepted.

» setValue(fieldName, value)
This setter modifies the property identified by fieldName to hold the given value. Defaulting will not be triggered.
» setLocalValueWithDefault(fieldName, localValue)

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 48

Sets the property identified by the given fieldName to the specified localValue. This method does not handle conversion
errors, so the provided localValue should have already passed syntactic validation.

* setValueWithDefault(clientWindow, fieldName, value, element, afterFieldUpdateFunction, continuation, forceDefault,
skipDefault, successFunction)

Sets the property identified by the given fieldName to the specified value. This method may trigger a default, and therefore
requires further parameters:

clientWindow - the window object containing the element triggering the default.

element - the HTML element that is attempting to accept the value.

afterFieldUpdateFunction - a thread-safe continuation to be run after the value has been changed
continuation - a function to be run whether or not the value can be accepted (may be null)

forceDefault - an optional boolean that forces the default checking code to run, bypassing a shortcut execution path
(presumeably to obtain a desired side-effect from defaulting)

skipDefault - an optional boolean that bypasses the default triggering logic
successFunction - continuation to execute if the value is accepted by the default logic
NOTE: Note this function is not "thread-safe", in the sense that it cannot be safely called e.g. in a loop that may issue

several calls to this function. The workaround is to make use of the continuation function to "schedule" the follow-up
operation.

¢ setListPosition(listName, newPosition)

Sets the list identified by the given listName to the position (a zero-based integer value) given by newPosition. Useful when
you want to display a particular element in a scroll.

» getList(listName)
Answers the list object (instance of List) with the given name.
* replaceWithNewList(listName, sourceModel)

Typically called from the default handler callback, this method replaces the entire contents of the given list in the receiver
(e.g. the model whose method is being called) with the list as provided in sourceModel. All elements in the list are
considered new, and are eligible to be added to the database when the Save button is used.

* hasRealElements(listName)

Answer a boolean indicating whether the indicated list contains any persistent or dirty elements (not merely a single
phantom).

» getElement(fieldName)

Returns the data element (instance of DataElement) corresponding to the given field name. The method resolves the list
name and position index, if any, in order to navigate to the appropriate data element.

* markAsNew()

Mark the model "clean" by recursively clearing all dirty flags throughout the tree structure. Note this is a very "sensitive"
method and should only rarely be needed.

DataElement

Instances of DataElement play the role of the nodes in the data model tree. They have properties corresponding to business
attributes, and also define the tree structure by holding references to their parent data element and list(s) of children
elements. The distinguished root DataElement instance in the core model instance is accessed using with the "pageData"

property.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 49

DataElement Instance Variables
» isDirty
This boolean flag indicates whether the business attributes (stored as JavaScript object properties) have been modified since

the DataFElement was created (either using persistent database attributes or as a new object that will be added later). This
attribute should not be modified directly.

e _originallndex

An integer representing the position of this DataElement in its containing list when it was first retrieved from the server. For
non-persistent data elements this value is -1.

DataElement Instance Methods
* set(property, value)

Set the given property to the given value. This apparently simple method can trigger a variety of side effects,

including intelligently converting key attributes to uppercase (which is the default unless turned off with the
tabMenu.shouldNotAutoUppercase property). The method returns a boolean indicating whether the setter succeeded,
reasons for failure include if the existing value is identical to the current value (this is needed to avoid needlessly marking
the data element dirty), and if the mutation capacity would be exceeded.

Further, if the modified attribute represents a key value, the change is propagated recursively through all child data elements
by matching the attribute names.

In addition, the original, unmodified, property value is retained for future reference, and can be accessed using the
originalValue function.

 originalValue(property)

Returns the original, unmodified value for the given property name. This is useful for user exit code implementing business
rules that depend not only on the new attribute value but also the original value.

* isNew()

Answers a boolean indicating whether this DataElement instance is new, e.g. created by the user. Persistent instances
answer false. The method uses the _originallndex attribute to decide.

* isPersistent()

The logical opposite of isNew(); answers true only for persistent data elements. Useful for avoiding excessive use of logical
not (!) operators, thus clarifying the intentions of the code.

+ isDirty()
Answers a boolean indicating whether the message receiver data element or any descendant child data element is marked
with the _isDirty flag.

o list(listName)
Answers the list (instance of List) corresponding to the given list name.
 clearDirtyFlag()

Set the receiver's _isDirty flag to false. Potentially dangerous because it subverts the systems automatic dirty tracking
system.

» canBecomeDirty(property, value)

Answers a boolean indicating whether the receiver can accept the given value for the given property. The method answers
false for various reasons, including if the proposed value matches the previous vaule, the receiver is not dirty and its parent
list may not become dirty, and the property is not known to the metadata.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 50

List

Instances of List represent a collection of DataElement instances, held by a parent DataElement. Every List is held by a
DataElement, but the pageData "root" node has no parent list (it's held directly by the model).

List Instance Variables

* parentElement
The instance of DataElement that contains this list.

* name
The name of the list.

e position
The integer index (0-based) of the "current" element.

* header
The JavaScript object representing the list header. This is rarely accessed.

* elements
A JavaScript array containing the current list of elements (instances of DataElement).

List Instance Methods

e size()

Answers the number of elements held by the receiver. Does not include elements scheduled for deletion.

» currentElement()

Answer the DataElement instance from the elements collection referred to by the currentPosition instance variable.
» isDirty()

Answer a boolean indicating whether any element is dirty. The test is recursive, and answers true if any descendant has the
_isDirty flag set.

* markElementsAsNew()

This convenience method marks all elements in the collection as new, setting the _isDirty flag to true and setting the
originallndex to -1 for every DataElement. The method acts recursively on all descendant lists and elements.

 realSize()
Answers the number of elements, disregarding any phantom element.
* hasRealElements()

Answers true if the list contains at least one non-phantom element.

Free Functions

top.js

This is the set of "free" functions available in top.js, which is included by cis.jsp. You typically access these functions using
the top.xyz() syntax, assuming your code is running in an iframe nested under cis.jsp.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 51

The trend has been to de-emphasize the use of functions at this level, and migrate them to the main level. In the future we
plan to eliminate the distinction between the top and main frames.

» getNavigationKeyForService(service)

Answers the navigation key corresponding to the given service (string). Since there may be several nav keys for the same
service, the last one is answered. You always get the correct response for tab menus.

» getURL(navigationKey, withoutLanguage)

Answer the URL (string) corresponding to the given navigation key (also a string). If the withoutLanguage boolean is false,
the user's language code is appended to the URL as a GET parameter.

» getFieldLevelSecuritylnfo(navigationKeyOrService)

Answer the field-level security meta-data for the tab menu given by the navigation key or service. The result takes the form
of a simple JavaScript object, with security types as properties, and values as arrays of all related authentication levels. For
example, assume that adjustment maintenance has field-level security defined for a user for security type "ADJAMT", with
two associated authentication levels, "1", and "3". To retrieve the object defining all field-level security info for the service:

var info = top.getFieldLevelSecurityInfo('adjustmentMaint")

or

var info = top.getFieldLevelSecurityInfo('CILAADUP')

(Note the literal JavaScript representation of the result object would be {ADJAMT: ['1', '3']})

To determine the array of authentication levels associated with this service and security type in one step:
var authenticationLevels = top.getFieldLevelSecurityInfo(‘adjustmentMaint')['ADJAMT']

or

var authenticationLevels = top.getFieldLevelSecurityInfo(CILAADUP")['ADJAMT']

» getMain()

This heavily used function returns a reference to the window constituting the "main" iframe, containining cisMain.jsp and
the core model. The typical usage is top.getMain(), but many iframes define a global variable "main" for convenience.

* tabMenu()

This function returns a reference to the current tabMenu iframe window. The typical usage is top.tabMenu(). Many iframes
define a global variable "topMenu" for convenience.

* tabPage()

This function returns a reference to the current tabPage iframe window. The typical usage is top.tabPage(). Many iframes
define a global variable "topPage" for convenience.

* model()

This convenience accessor method returns a reference to the core model held in the "main" frame.

» openPage(navigationKey, tabName, keys, extraPageState, keepMemento, forceOpen)

This is a convenience function for the same function defined in cis.js. See the description there for a fuller description.
e getUser()

Returns the user id of the current user.

» getUser()

Returns the user id of the current user.

» getLanguage()

Returns the language code of the current user.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 52

cis.js
The cis.js file contains the bulk of the core framework functions. In addition to defining the major framework classes
(CisModel, DataElement, List, etc.) it contains a number of important functions that are described here. These functions are

typically invoked by navigating to the main level, e.g. main.xyz(), where the global main has been defined to point to the
frame containing cisMain.jsp.

* array remove element(array, element)

Remove the indicated element from the given array. Do nothing if it is not found. If the element appears more than once in
the array, remove only the first one. Uses simple object comparison (==).

* array index_ of(array, element)

Return the index (0-based) of the given element in the given array. Answer -1 if the element cannot be found. If the element
appears multiple times, answer the first (lowest) index. Uses simple object comparsion (==).

e array_remove(array, index)

Compensate for missing functionality in the built-in JavaScript Array class in early versions of JScript. Answers a new array
instance with the element at the given index removed. The length of the new array is one less than the length of the given
one.

» array_includes(array, element)

Answers a boolean indicating whether the given element is present in the given array. Uses simple object comparison (==).
e array numeric_sort(array)

Sort the elements of the given array into numeric order, using a simple a <b comparison.

» arrayDo(array, oneArgClosure)

Perform a loop over the elements of the given array, applying the function given by oneArgClosure to each element in turn.
The oneArgClosure function takes exactly one argument. Extremely useful for signalling the intention of looping structures.
For example, consider this typical code:

var max = array.length;

for (var i =0; i < max; i++) {

var element = array[i];

<do something to element>

}

This common structure can be simplified to the following:
arrayDo(array, oneArgFunction)

where oneArgFunction takes an array element as its parameter, and corresponds to the <do something to element> block
above.

 arraySelect(array, selectClosure)

Returns a new array consisting of elements from the given array that return true when applied to the selectClosure (a
function that takes one argument). For example, do this to find all numbers greater than 3 in an array:

var closure = function(each) {return each > 3};
var resultArray = arraySelect(array, closure);
» arrayReject(array, rejectClosure)

Returns a new array consisting of all elements from the given array except those that return true when applied to the
rejectClosure (a function that takes one argument). For example, do this to find all numbers not greater than 3 in an array:

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 53

var closure = function(each) {return each > 3};
var resultArray = arrayReject(array, closure);
 arrayDetect(array, detectClosure)

Returns the first element in the given array that returns true when applied to detectClosure, a one-argument function. Return
null if no element is found.

 arrayDetectIfFound(array, detectClosure, doClosure)

Similar to arrayDetect(), but proceeds to execute the one-argument function doClosure with the detected element.
 arrayDetectIndex(array, detectClosure)

Similar to arrayDetect(), but answers the index of the first element that satisfies the detectClosure function.
 arrayCollect(array, collectClosure)

Return a new array consisting of the results of applying the collectClosure one-argument function in turn to each element of
array. For example, to double the values of an array holding numbers and store the result in a new array:

var closure = function(each) {return each * 2};

var resultArray = arrayCollect(array, closure);

» arrayCopy(array)

Answers a new array holding the same elements as the given array. Also known as a "shallow copy"'.
» arrayContains(array, detectClosure)

Returns a boolean indicating whether the given array contains an element that satisfies detectClosure, a one-argument
function returning a boolean.

» arrayUniquePush(array, object)

Similar to array_push, but skips appending the given object if an identical object is already present in the array. Uses simple
equality (==) for the comparison.

» configureMainButtons()

Enable or disable the buttons on the main button bar according to the current state of the system. This method should be
triggered only if there is a reason to believe that circumstances have left the buttons in an inappropriate state.

» openPage(navigationKey, tabName, keys, extraPageState, keepMemento, forceOpen, extral.oadKeys)

Navigate the system to the tab menu identified by the given navigationKey. The particular tab page may be identified with
the given tabName (string), which can also be identified as an integer index (0-based), otherwise the first tab page is used.
To display a particular object on the tabMenu/tabPage populate the keys parameter with a key/value object holding the
logical keys that identify the object. [The extraPageState parameter is deprecated]. The boolean keepMemento parameter
identifies whether a memento should be stored for the current location, e.g. whether it will enter the history menu. If not
provided, it defaults to true. The forceOpen boolean (defaults to false) controls whether the system should still show the
tabMenu/tabPage if the desired object cannot be read (e.g. it was deleted from the database). The optional extral.oadKeys
object is merged with keys prior to performing the read query, allowing the addition or overriding of key values.

» showMessageDescription(categoryNumberFieldName, messageNumberFieldName, shortDescriptionFieldName)

Open an alert dialog box showing a server message (the long message). The category and message numbers are given
indirectly via the categoryNumberFieldName and messageNumberFieldName, which are property names in the model
from which the actual numbers are fetched. An optional a short description field name can also be provided. The
alertClientWindow is a reference to a window object that should act as "host" to the alert dialog box, in order to keep focus
on the correct window when the dialog is dismissed.

* basicShowMessageDescription(categoryNumber, messageNumber, shortDescription, alertClientWindow)

Similar to showMessageDescription() as above, but directly accepts the desired category and message numbers rather than
retrieving them from the model.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 54

» showErrorMessage(categoryNumber, messageNumber, clientSubstitutions, element, alertClientWindow)

Show the server error message identified by the given category and message numbers, and relating to the HTMLElement
given as element (optional), which should receive focus. The alertClientWindow parameter provides an optional
reference to the "client" of this dialog that can be useful to preserve the correct focus when the dialog is dismissed. The
clientSubstitutions parameter is private.

» restoreElements()

Frequently used in conjunction with setAvailableSignal(), this method clears flags that are used to implement
synchronization control.

» doSave(special ActionField, successFunction, forceSave)

Submit a change request to the server using the current model. The specialActionField, if specified, is set to boolean true
before submitting the model, without otherwise permanently changing the model. Execute the given successFunction if
the save operation succeeds. A "clean" model is not submitted to the server unless the optional forceSafe boolean is true.
The browser will refresh itself to show the version of the model as returned from the server, unless the operation resulted
in a warning or error. In the first case a dialog shows the warning message line(s), and the user can choose to redo the save
operation, ignoring further warnings. In the second case a descriptive error dialog is shown.

* doDelete()

Submit a delete request to the server using the current model. Clears the window if the operation succeeds.
» safelySetFocus(element)

Attempt to set focus to the given HTMLElement.

» updateElementFromModel(htmlElement)

Fetch the current value for the model attribute appropriate to the given htmlElement widget (using the name of the element)
and display it.

* setAvailableSignal(aWindow)

Configure the system to accept input after processing a request for the server. Implemented by disabling the cisDisabled.css
stylesheet. Typically used in conjunction with restoreElements().

« convertInternalDateTimeToLocal(value)
Convert the given internal date-time value to the user's localized format and answer it.
¢ convertLocalTolnternal(htmlElement, value)

Using the datatype associated with the given html element (as described with its className), convert the given localized
value into the internal system value and answer it.

» convertInternalMoneyToLocal(value)
Convert the given money value (a String) into its localized representation and answer it.
» updateField(event)

Update the value of the relevant HTML element based on the given event object. This may involve side effects such as
updating the model.

* moneyToWholelnteger(amount)

This utility function helps you do simple arithmetic with money amounts. Since the precision of OUAF system monetary
amounts can exceed that offered by the built-in JavaScript number types, we cannot perform arithmetic operations with
those numbers without risking loss of precision and rounding problems. The solution is to eliminate the decimal point
(if any) in the amounts in order to yield "pure" integers, which admit to exact arithmetic (for addition, subtraction, and
multiplication) to very high orders of precision. The final result is then converted back into an internal money amount.

This function accepts an internal money amount (String) and returns a JavaScript "integer" representing the value.

* wholelntegerToMoney(integer)

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 55

Reverse the moneyToWholelnteger operation to yield a monetary amount corresponding to the given integer.
 getlnstallationData(key)

» Returns the installation data (string) associated with the given key.

« isUserModified()

* Returns a boolean indicating whether the user has made any changes to the model that should be preserved (e.g. the
system will issue a warning if the changes are not saved).

Meta-data Overview

The generation of program components is dependant upon the Oracle Ultilities Application Framework meta-data. The meta-
data used by framework consists of program variables, program locations, program elements, menu options, navigation
keys, tables and fields, and many more.

The meta-data itself can be split into distinct groupings. These groupings will be covered in more detail below.

The basic principle is that a developer enters meta-data for each component to be generated. The generation process applies
the meta-data to the generator templates to create the final, deployable component, along with any necessary infrastructure
changes. This chapter defines the framework meta-data and its inter-relationships.

Generated Tab Menu Meta-data

The following entity relationship diagram describes the meta-data related to generated tab menus.

Template | » Program P Progr_am
Component Location
Program Program
Variable Tab
¥ o m e .
Tab Module+=— Module

Generated Tab Menu Meta-data ERD

NOTE: The tab menu is represented by program component in the ERD above.

Every framework user interface (UI) transaction has a tab menu, which links together the different tab pages that are
available on the transaction.

The Software Development Kit generator creates the tab menu using a specific template that is defined in the template
meta-data. The tab menu's template is maintained from the UI Program Components Object View.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 56

The generated tab menu resides in a certain physical directory in the server's file system. L ocation, the abstract name that
represents the actual location of the tab menu, is entered in the UI Program Components Object View. The actual location
information and the abstract name are maintained from the Locations Object View.

Tab menus may have one or more program variables that control its behavior and/or appearance. These variables are
maintained from the Program Variable Collection of the UI Program Components Object View.

Tab menus also have one or more program tabs, which specify the labels and sequence of the tab pages in the transaction.
These tabs are maintained from the Tab Menu Tabs Collection of the UI Program Components Object View.

The use of each tab may be restricted, based on the license key, as specified in tab module. This information is maintained
from the Tab Module Collection of the Tab Menu Tabs Collection.

Generated Ul Program Component Meta-data

The following entity relationship diagram describes the meta-data related to generated Ul programs.

Template | » Program P Progr_am
Component Location
Program Program Navigation
Variable Section Key
Program Element
S

Element Type

Element
Type

v Attributes
Program Element
Element Attribute
Attribute Type

Generated User Interface Program Component Meta-data ERD

NOTE: The Ul program component is represented by program component in the ERD above.

Each tab that is specified on the tab menu is linked to a particular Ul program component - more commonly referred to as
"UI page" or "tab page".

Every UI Program Component has a type (e.g. Search Page, List Grid, etc). The Software Development Kit generator uses
this information to know how to create a certain type of program. The types are stored in the template meta-data table.

Just like tab menus, the generated tab page resides in a certain physical directory in the server's file system. L ocation, the
abstract name that represents the actual location of the program, is specified in the UI Program Components Object View.

Oracle Utilities Application Framework Software Development Kit Developer's Guide < 57

Tab pages may have one or more program variables that control its behavior and/or appearance. These variables are
maintained from the Program Variable Collection of the UI Program Components Object View.

Each tab page has at least one programsection. Each section has at least one element of a particular type. A program
element may have one or more element attributes that control its behavior and/or appearance. For example, an element
attribute may specify whether or not a field is hidden. Elements may be as simple as input text fields or buttons, and as
complicated as trees, grids or graphs. The latter types of elements are actually contained in their own tab page and are
referenced from the calling tab page. Please refer to Ul Program Components Object View to see how these components are
created and maintained.

When UI program components are referred to from other UI program components, instead of referencing these programs
by their physical names, pseudo names/aliases (called navigation keys) are used. The navigation keys abstract the physical
name and location of the program component from the application, making it easier to change and maintain such details.
The link between this pseudo address and the actual location of the program is maintained from the Navigation Keys Object
View.

Menu and Navigation Meta-data

The following entity relationship diagram describes the meta-data related to menus and navigation.

Menu Navigation
Module Key

Navigation

i de Favorites

Foreign Key

(e Reference
Navigation
Y Option
Menu Line Campaign

Navigation | | Navigation
Option Option
Context Usage

| Menu Item
Module

— Menu Item Script Step

Menu and Navigation Meta-data ERD

Transactions within framework are accessed through menus. The menu framework uses navigation options to define the
information required in navigating between transactions. The most important attribute of a navigation option is the Target
Navigation Key. This identifies the transaction the navigation option will navigate to.

A navigation key is a logical name/pseudo address for Ul components. Its prime responsibility is to transform a logical
address to a specific URL. The link between this pseudo address and the actual location of the program is maintained from
the Navigation Key Object View.

The menu type defines how the menu is used. You have the following options:

* Main defines a menu that appears on the menu bar.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 58

» Admin is a special type of Main menu as admin menu items can be grouped alphabetically or by functional group. Refer
to the user documentation for more information about admin menu options.

¢ Context defines a context menu.

» Submenu defines a menu that appears when a menu item is selected. For example, the Main menu contains numerous
submenus. Each submenu contains the navigation options used to open a page.

Table-Related Meta-data

Table » Constraint
¥ ¥
Constraint

Table Field Field

Field

Table Meta-data ERD

Table information is used for various purposes. Table information is stored in meta-data. This includes which fields are
on the table (tablefield) and business rules for the fields. Constraints define the keys of tables. Constraints also define
relationships between tables. Constraint fields specify the fields involved in the keys or relationships between tables.

Multi-Language

The framework product is available worldwide. This means that the product must be able to display information in many
languages.

Some field and table information is language-dependent. Table, table / field and field all have child language tables that
hold descriptions specific to each supported language. When field information is retrieved, the system returns not only the
base field information, but also the descriptions associated with the user's language.

This process is also used for labels (fields with Work Switch set to Y). When a label is needed by the system, the work field
information is obtained and the description (from the language table) is displayed on the UI.

NOTE: Developers should not use plain text on the Ul All labels should be defined as work fields so that the system
will recognize the field and obtain the correct, language-based description to display.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 59

Maintenance Object Meta-data

Program
Component

MO

MO Table

O
o
=)
5,
D
@

Type

- g .

Field Table

_|
QO
28
®
A
=
®

Table Field

Maintenance Object ERD

A maintenance object (MO) represents a group of tables maintained within framework. These objects are primarily used by
the ConfigLab functionality and by the archiving engine to process archiving or purging tasks.

MOs also provide structure from which the various program components (needed to maintain an object) can be created. To
be specific, both the front-end user interface (UI) components and the back-end program components can be generated from
the MO. The MO specifies the key program component, namely:

e UI Tab Menu

MOs have at least one associated table, e.g. a primary table, sometimes referred to as the root table. In most cases, there
are child tables associated with the primary table. E.g. a language table, person name table (child of person table), etc. The
Table Role specifies whether the table is a child or a primary.

The Compare Type indicates the comparison method that is used in the ConfigLab functionality. This field is not used for
the purpose of building program components from MOs.

MO Table information is maintained from the Maintenance Object Tables Collection of the Maintenance Objects Object
View.

NOTE: Oracle recommends that customers using Oracle Utilities Application Framework version 4.2 or later and
currently using ConfigLab switch to Configuration Migration Assistant (CMA) for their configuration data migration
needs and retain ConfigLab for migration of master and transaction data migration. Also note that CMA functionality
is not available to every Framework-based product. For details, including tips and requirements for moving from

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 60

ConfigLab to CMA for configuration data migrations, see the "Configuration Migration Assistant" section in the Oracle
Utilities Application Framework Aministration Guide.

Defining Generator Tools Meta-data

Before generating new programs, you must create the meta-data to be used by the generator tools.

WARNING: Please refer to the System Table Guide for the standard naming convention of each Meta-data object below.
Compliance to the standard naming conventions is critical in ensuring the ability to upgrade.

Setting up Fields

Fields meta-data is maintained via the Fields Menu Item from the Admin Menu. Fields may describe columns on a table or
they may be labels or work fields that do not appear on a table.

Fields - Main
Select Fields from Admin Menu to navigate to the Fields View. Field M etadata can be edited in the Main Tab

ORACLE

Home Menu - & History = Duplicate Delete

Owner Framework

[]
254
a
|l
Description |Address
2 | Java Field Name |ddress 1
P
= Override Label
=
E O
- Vi
Help Text
| Test I
Z

Override Help Text

;Fes-t !
[

Field MetaData - Main Tab

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 61

FASTPATH: Ifyou change a field's label, the new label appears on ALL transactions on which the field exists.

WARNING: A field's label can be overridden for a specific table. If this is the case and you change the field's name
on this transaction, the change will have no effect when the field is displayed for that specific table. If you find this
to be true, change the field's label on the respective table on which it was overridden. You do this using the Table
Maintenance transaction (for details see the Oracle Utilities Application Framework Administration Guide).

Properties Description
Open this page using Admin Menu, Field.

Many fields on this page are protected as only the product development group may change them. The following describes
fields you may change for records that are part of the base product. Fields containing information that may be of interest are
also described.

Field Name uniquely identifies this field.

FASTPATH: If you introduce new fields, you must prefix the field with CM. If you do not do this, there is a possibility
that a future release of the application could introduce a new field with the name you allocated.

Owner indicates if this field is owned by the base package or by your implementation (Customer M odification). The
system sets the owner to Customer M odification when you add a field. This information is display-only.

Base Field

Data Type indicates if the field will hold Character, Date, DateTime, Number, Time, or Varchar 2 data.

Ext Data Type

Precision defines the length of the field. In the case of variable length fields, it is the maximum length possible.
Scale

Sign

Level

88 Cpybk

Description contains the label of the field. This is the label of the field that appears on the various pages on which the field
is displayed. Note, the field's label can be overridden for a specific table (by specifying an Override Label on the table/field
information; for details see the Oracle Utilities Application Framework Administration Guide).

Java Field Name

Override Label

Check Work Field if the field does not represent a database table column.
Help Text

Special Notescontains any notes or special information about the field.

Fields - Tables Using Field

Select Admin Menu, Field and navigate to the Tables Using Field tab to view the tables that contain a field.

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 62

Preferences Help Logout

Home Menu - & History = Duplicate Delete

Main Tables U=ing Field

|ADDRE551 Address C& Owner Framework
Table Table Type Description Table Figld Description | Owner
=5 | CI_AD]_APREQ Table 4P Check Request Base
=53 | CI_BILL_ROUTING Table Bill Routings (Recipients) Base
=43 | CI_CURR_CUST_WW | View Current Active (SP-Based) Customers View Base
=53 | CI_EMRL_ADDR Tahle Order Address Base
=53 | CI_PER Table Person Address Line 1 Base
=53 | CI_PER_ADDR_OVRD| Table Person Address Qverride Address Line 1 Base
= =5 | CI_PER_ADDR_SEAS | Table Person Seasonal Address Base
E‘ =53 | CI_PREM Table Premise Base
E =53 | CI_PRM_ALT_ADDR. | Table Premise Alternate Address Base
P =% | CI_QUOTE_RTG Tahle Quote Routing Base
=43 | CI_SS_ADDR_QYRD | Table Start/Stop Mail Addr Override Base
=53 | CX_PER View Conversion view Base
=5 CX_PREM View Conversion view Base

Fields - Tables Using Field Tab
Description of Page

The grid on this page contains the Tables that reference the Field. You can use the adjacent go to button to open the Table
Maintenance transaction.

Setting up Foreign Key References

This object view is used to maintain meta-data related to foreign key references. This meta-data is used by Foreign Key
(compound) element types.

FK References

Select FK Reference from Admin Menu to navigate to the Foreign Key References Window. The Main tab of the FK
Refer ences Window maintains the meta-data related to foreign key references on the FK ReferencesList.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 63

Preferences Help Logout

Home Menu + & History = Foreign Key Reference Duplicate Delete

FK Reference IFl-BUSOB '»g Owner Framework

.Business Object .
F1_BUS_OBJ ‘% Business Chject
BUS_0BJ_CD
|BusinessObjectFkRef Cﬁ, Business Object
Java i:_V_|
com.splwg.base.domain, common. foreignkeyReference, DescriptionRetriever "E] C’g
F 1_CONTEXT_BUS_OBJ Q
businessObjectSearchPage | Cg

= Bl = !

- Main [i8¢]

= =

= F1-BOSRCH "4, Business Object Search

= o

|| Search Tooltip SEARCH_FOR_BUS_CBJ "<, Search for Business Object

FK Reference Property Editor

The FK Reference Property Editor maintains the properties of a foreign key reference record and the metadata can be
edited in this Window.

Properties Description

Enter an easily recognizable FK (foreign key) Reference code and Description for the table.

Enter the name of the Table whose primary key is referenced as a characteristic value. After selecting a Table, the columns
in the table's primary key are displayed adjacent to Table PK Sequence.

The remaining fields control the behavior of the foreign key reference. See the description that appears above the page
snapshot for more information about these fields.

Use Navigation Option to define the page to which the user will be transferred when they press the go to button that
prefixes a characteristic value.

The Info Program Type indicates whether the program that returns the information displayed adjacent to a characteristic
value is written in Java.

+ If the Program Type is Java, use I nfo Program Name to enter the Java class name.
Use Context Menu Nameto specify the context menu that appears to the left of the value.

NOTE: Context Menu Name. This attribute is only applicable to user interface elements utilizing the foreign key
compound element type. Report parameters that reference foreign key characteristics are an example.

Use Search Navigation Key to define the search page that will be opened when a user searches for valid characteristic
values.
Use Sear ch Type to define the default set of search criteria used by the Search Navigation Key's search page.

Use Search Tooltip to define a label that describes the Sear ch Navigation Key's search page.

NOTE: Search Type and Search Tooltip. These attributes are only applicable to user interface elements utilizing the
foreign key compound element type. Report parameters that reference foreign key characteristics are an example.

Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI FK REF.

Oracle Utilities Application Framework Software Development Kit Developer's Guide - 64

Setting up Lookup Tables

Some special fields have values that are defined by the base-package development group. These fields are called "lookup
fields" because the system has to "look up" the descriptions on the Lookup table when they are displayed on a transaction.

Lookup Tables

Select Admin Menu, L ook Up to maintain lookup values.

ORACLE Preferences Help Logout

Home Menu « & History = Duplicate Delete

Field Mame |ACT_TYPE_FLG q, Cwner Base
Custom
Java Field Mame |accountActivityType
Field value Description Java value Mame Status Detailed Description ‘g
' pa
"{F‘ = 'C.l | Cut E\l'ent . .cutEvent] Active :V
Fd
o} T T " 1 - .
L G'i.': = |C2 | | |CutProcess cutProcess || | Active [v] =
=]| et
=
5
< 4
= |ca Case |case Active L_fJ
‘2-‘—' = |ce Customer Contact .:customerCnntact .;ﬁctive [VJ
[&
= [ce [callection Event ::cnllecﬁonE'-f'ent 1| Tactive [v]
i

Lookup Tables Object View
Properties Description

Field Name is the name of the field whose lookup values are maintained in the grid. If you need to add a new lookup field,
you must first add a Field with an extended data type of Flag. For details, see "Defining Field Options" in the Oracle
Utilities Application Framework Administration Guide.

Owner indicates if this lookup field is owned by the base package or by your implementation (Customer M odification).
This information is display-only.

Custom switch is used to indicate whether you are allowed to add valid values for a lookup field whose owner is not
Customer Modification.

 If this switch is turned on, you may add new values to the grid for system owned lookup fields.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 65

 If this switch is turned off, you may not add, remove or change any of the values for system owned lookup fields, with
the exception of the override description.

This field is always protected for system owned lookup fields because you may not change a field from customizable to
non-customizable (or vice versa).

Java Field Name indicates the name of the field as it is referenced in Java code.
The grid contains the look up values for a specific field. The following fields may be modified:

Field Value This is the unique identifier of the lookup value. If you add a new value, it must begin with an X or Y (in order
to allow future upgrades to differentiate between your implementation-specific values and base-package values).

Description This is the name of the lookup value that appears on the various transactions in the system
Java Value Name This indicates the unique identifier of the lookup value as it is referenced in Java code.

Status This indicates if the value is Active or I nactive. The system does not allow I nactive values to be used (the reason
we allow I nactive values is to support historical data that references a value that is no longer valid).

Detailed Description A detailed description for a lookup value is provided in certain cases.
Override Description Enter a value in this field if your implementation wishes to override the description of the value
provided by the product.

NOTE: If you wish the override descriptions of your lookup values to appear in the application viewer, you must
regenerate the data dictionary application viewer background process.

Owner Indicates if this lookup value is owned by the base package or by your implementation (Customer M odification).
The system sets the owner to Customer Modification when you add lookup values to a field. This information is display-
only.

Setting up Navigation Options
Every time a user navigates to a transaction, the system retrieves a navigation option to determine which transaction should

open. For example,

* A navigation option is associated with every menu item. When a user selects a menu item, the system retrieves the
related navigation option to determine which transaction to open.

* A navigation option is associated with every favorite link. When a user selects a favorite link, the system retrieves the
related navigation option to determine which transaction to open.

* A navigation option is associated with every node in the various trees. When a user clicks a node in a tree, the system
retrieves the related navigation option to determine which transaction to open.

¢ FEtc.

Many navigation options are shipped with the base package and cannot be modified as these options support core
functionality. As part of your implementation, you will probably add additional navigation options to support your specific
business processes. For example,

* When you set up a campaign, you can optionally indicate that a transaction should open when an order linked to the
campaign is completed. You do this by specifying the appropriate navigation option on the campaign.

» A script steps a user through a business process. While a script executes, one or more transactions can be opened. You
indicate which transaction is opened by specifying the appropriate navigation option on one of the script's steps.

* A user can define their home page on their user preferences. They do this by selecting a navigation option.
* Etc.

WARNING: In order to improve response times, navigation options are cached the first time they are used after a web
server is started. If you change a navigation option and you don't want to wait for the cache to rebuild, you must clear

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 66

the cached information so it will be immediately rebuilt using current information. A special button has been provided
on the Main tab of the navigation option transaction that performs this function. Please refer to Caching Overviewfor
information on the various caches.

Navigation Option - Main
Select Navigation Options from Object Explorer to navigate to the Navigation Options Object View.

Preferences Help Logout

Home Menu & History = Navigation Option Duplicate Delete

Mavigation Option |accountBi|IPayHistory ‘_J% | Flush System Login Info Ciiner Basa
Description |Account Bil Payment History Usage
n Option Type -Transacﬁbﬁ-{r_\{__[Mavigation Usage Owner
on Mode | changs Mode [w] | = |[Menu [v]| Base
E |accountBilPayHistoryTabMeny ‘_\-g
=tie] Q
E |accountSearchPage C\g
arch Ty Main [v]
Script I 4
5 S
= [Go To Tooltip S
=
=
=
e
Context Fields
Field key Field | Qwner
% | = |[accT_m | @ Account Base

Navigation Options - Main
Description of Page
Enter a unique Navigation Option code and Description.

The Flush System L ogin I nfo button is used to flush the cached navigation options so you can use any modified navigation
options. Refer to Caching Overview for more information.

Owner indicates if this navigation option is owned by the base package or by your implementation (Customer
M odification). This field is display-only. The system sets the owner to Customer M odification when you add a navigation

option.

NOTE: You may not change navigation options that are owned by the base package.

Use Navigation Option Typeto define if the navigation option navigates to a Transaction or launches a BPA Script.

For navigation option types of Transaction, enter the related information:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 67

Navigation M ode indicates if the Target Transaction should be opened in Add Mode or Change M ode. You may also
specify a Tab Pageif you want to open a tab other than the main tab (e.g., you can leave this field blank if you want the
main tab to be displayed when the transaction opens).

» Add Mode should be used if the option is used to navigate to a transaction ready to add a new object. You can use the
Context Fields at the bottom of the page if you want to transfer the contents of specific fields to the transactionwhen it
opens.

» Change Mode should be used if the option is used to navigate to a transaction ready to update an object. You have two
ways to define the object to be changed:

* Define the name of the fields that make up the unique identifier of the object in the Context Fields (and make sure to
turn on Key Field for each such field).

* Define the SearchTransaction if you want to open a search window to retrieve an object before the target transaction
opens. Select the appropriate Sear ch Type to define which search method should be used. The options in the drop
down correspond with the sections in the search (where Main is the first section, Alter nate is the 2nd section,
Alternate 2 is the 3rd section, etc.). You should execute the search window in order to determine what each section
does. When you select a Search Type, the system defaults the related fields in Context Fields. This means the system
will try to pre-populate the search transaction with these field values when the search first opens. Keep in mind that
if a search is populated with field values the search is automatically triggered and, if only one object is found that
matches the search criteria, it is selected and the search window closes.

NOTE: Findingtransaction navigation keys. When populating the Target Transaction and Search Transaction you
are populating an appropriate navigation key. Because the system has a large number of transactions, we recommend
using the "%" metaphor when you search for the transaction identifier. For example, if you want to find the currency
maintenance transaction, enter "%currency"” in the search criteria.

Sear ch Group is only visible if the Development Tools module is not turned off. It is used to define the correlation
between fields on the search page and the tab page. You can view a tab page's Search Groups by viewing the HTML
source and scanning for allFieldPairs.

For navigation option types of script, indicate the Script to launch. You can use the Context Fields at the bottom of the
page if you want to transfer the contents of specific fields to temporary storage variables available to the script. The script
engine creates temporary storage variables with names that match the Context Field names.

The Go To Tooltip is used to specify the label associated with the tool tip that appears when hovering over a Go To object.
Refer to Usage grid below.

The Usage grid defines the objects on which this navigation option is used:

» Choose Favoritesif the navigation option can be used as a favorite link.

* Choose Menusif the navigation option can be used as a user's home page or as a menu or context menu item.
» Choose Script if the navigation option can be used in a script.

» Choose Foreign Key if the navigation option can be used as a foreign key reference.

* Choose Go To if the navigation option can be used as a "go to" destination ("go to" destinations are used on Go To
buttons, tree nodes, algorithm parameters, and hyperlinks).

* Choose Notification Upload Typeif the navigation option can be used on a notification upload type.

» If you have Oracle Utilities Customer Care and Billing, you may choose Campaign if the navigation option can be
used as a "post completion" transaction on a campaign. For more information refer to that product's documentation for
campaigns.

The Context Fields grid contains the names of the fields whose contents will be passed to the Target Transaction
or Script. The system retrieves the values of these fields from the "current” page and transfers them to the tar get
transactionor to the script's temporary storage.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 68

NOTE: No context from menu bar. The standard followed for the base menu navigation options is that navigation
options launched from the menu bar are configured with no context; navigation options launched from context menus
include context.

Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI NAV_OPT.

Preferences Help Lo

Home Menu « & History = Havigation Option Duplicate Delete

wan [RIEEN

vigation Option |accountBi|IPayHistory

Cﬁ, Account Bill Payment History Cwner Base

= ‘S Mavigation Option - accountBillPayHistary
(23 Menu - CT_CONTEXTACCOUNT, CI27056133

Navigation Options - Tree

This page contains a tree that shows how a navigation option is used. Select Admin Menu, Navigation Option and
navigate to the Treetab to view this page.

Description of Page

The tree shows every menu item, favorite link, and tree node that references the navigation option. This information is
provided to make you aware of the ramifications of changing a navigation option.

Setting up Services

This object view defines the available services.

Services

Select Admin Menu, Service Program to maintain service programs.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 69

Preferences Help Lo

Home Menu « & History = Service Program

Service Mame |CILBSEGS Q,

Description Bill Segment Search

Service Type [Cabol Based Service IVJ

Program Com ID Program Caom Mame

F|= 1172 G, | bilsegmentSearchData

4k | = | |cIs8 ‘d, | billSegmentSearchPage

Admin Manu

-t% Service Mame - CILBSEGS - Bill Segment Search

Services Object View
Description of Page
Define a Service Name for your new service.

WARNING: If you introduce new services, you must prefix them with CM. If you do not do this, there is a possibility
that a future release of the application could introduce a new service name with the name you allocated.

Owner indicates if this service is owned by the base package or by your implementation (Customer Modification). The
system sets the owner to Customer Modification when you add a service. This information is display-only.

Description describes the service.
Service Type indicates whether the service is a Java Based Service.

This Program Component grid shows the list of program user interface components associated with the service. For a
stand-alone XAl service this list is optional.

Where Used
Follow this link to open the data dictionary where you can view the tables that reference CI MD_SVC.

Setting up Tables

This object view is used to maintain meta-data related to a table. A table represents a database table used to store framework
data or a database view.

Oracle Utilities Application Framework Software Development Kit Developer's Guide < 70

Tables - Main

Select Admin Menu, Table to view information about a table, define the fields whose changes should be audited, and to
override a field's label on a specific table.

Preferences Help Logout

Home Menu - @ History =

mTatﬂa Field Consirainis Referred By Constraints

Account

D Enable Referential Integrity E
CACCT Table Usa [v]
Table [w] Local Legal Time [
Master Table [w] [Medium Volume [3e]
CI_AUCIT Q Upgrade Keep |w|
COBOL _\;] Data Conversion Role Convert (New PK) ;r_]
crzaota | [Q auditwal

= Enable Data Dictionary

% CI_ACCT K Q | System-generated [v]

:E I ¥ Length 0 account

= Mot Cached _V] Ahvays Check Unigueness ii
Ci_BPO1Custinfo_Maintaining_Accounts

i Fisld | Labe! verride Label ':

5 | ACCESS_GRP_CD 8
4] | ACCT_DATA_AREA
w8 | ACCT_ID

=51 | ACCT_MGMT_GRP_CD
) | ALERT_INFO

45 | BILL_AFTER DT

4E) | BILL_CYC_CD

%8| BILL_PRT_INTERCEPT
&

|

| BUD_PLAN_CD

3

| c15_prvision

Tables Object View - Main
Description of Page

NOTE: Many fields cannot be changed. You cannot change most attributes on tables that are owned by the base-
package (e.g., those whose Owner is not Customer Modification).

Description contains a brief description of the table.
System Table defines if the table holds rows that are owned by the base-package.

Enable Referential Integrity defines if the system performs referential integrity validation when rows in this table are
deleted.

Data Group ID is used for internal purposes.

Table Usage defines how the table is used in the application. In the current release, only tables that are part of Oracle
Utilities Business Intelligence make use of this field.

Table Type defines if the table is a View or a physical Table.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 71

Date/ Time Data Type defines if the system shows times on this table in Local Legal Time or in Standard Time (Local
Legal Time is the time as adjusted for daylight savings).

Audit Tableis the name of the table on which this table's audit logs are stored. Refer to The Audit Trail File for more
information.

Use AuditProgram Type to define if the audit program is written in Java. Audit Program is the name of the program that
is executed to store an audit log. Refer to Turn On Auditing For a Table for more information.

» Ifthe Program Type is Java, enter the Java class name.
NOTE: View the source. If the program is shipped with the base package, you can use the adjacent button to display

the source code of this program in the source viewer or Java docs viewer. For details, see "Source Code Viewer" and
"Java Docs Viewer" sections in the Oracle Utilities Application Framework Administration Guide.

Upgrade controls what happens to the rows in this table when the system is upgraded to a new release:
* Keep means that the rows on this table are not touched during an upgrade
* Mergemeans that the rows on this table are merged with rows owned by the base package

» Refresh means that the rows on this table are deleted and refreshed with rows owned by the base package.
Data Conversion Role controls if/how the table is used by the conversion tool:

» Convert (Retain PK) means that the table's rows are populated from the conversion schema and the prime key in the
conversion schema is used when the rows are converted is not assigned by the system.

» Convert (New PK) means that the table's rows are populated from the conversion schema and the prime key is
reassigned by the system during conversion.

* Not Converted means that the table's rows are not managed by the conversion tool.

* View of Production means that the conversion tool uses a view of the table in production when accessing the rows in
the table. For example, the customer class table would be set up using this value so that the conversion tool will use the
customer classes in production when it needs to access customer class codes.

A Language Tableis specified when fields containing descriptions are kept in a child table. The child table keeps a
separate record for each language for which a description is translated.

Enable Data Dictionary defines if the table is to be included in the Data Dictionary application viewer.

A Key Tableis specified when the prime-key is assigned by the system. This table holds the identity of the prime keys
allocated to both live and archived rows.

Type of Key specifies how prime key values are generated when records are added to the table:

» Other means a foreign-system allocates the table's prime-key (e.g., the fact and dimension tables within Oracle Utilities
Business Intelligence have their keys assigned by Oracle Warehouse Builder).

» Sequential means a sequence number is incremented whenever a record is added to the table. The next number in the
sequence determines the key value.

» System-generated means a program generates a random key for the record when it is added. If the record's table is the
child of another table, it may inherit a portion of the random number from its parent's key.

» User-defined means the user specifies the key when a record is added.

Inherited Key Prefix Length defines the number of most significant digits used from a parent record's primary key value
to be used as the prefix for a child record's key value. This is only specified when the Type of Key is System-generated and
the high-order values of the table's key is inherited from the parent table.

Help URL is the link to the user documentation that describes this table.

Special Notes contains any notes or special information about the table.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 72

The grid contains an entry for every field on the table. Drilling down on the field takes you to the Table Field tab where
you may modify certain attributes. The following fields may also be modified from the grid: Description, Override L abdl,
Audit Delete, Audit Insert and Audit Update. Refer to the Table Field tab for descriptions of these fields.

Tables - Fields

Select Admin Menu, Table and navigate to the Table Field tab to define the fields whose changes should be audited and
to override a field's label on a specific table (note, you can also maintain a subset of this information in the grid on the Main

tab).

Home Menu = & History =

Main Table Field NSNS Referred By Constraints

Table Name CI_ACCT qQ,
Fielde 4aE00 1or23 MIEp o =
Field Mame 5 ACCESS_GRP_CD "—-\ﬁ Access Group Java Field Mame accessGroup

Field Spedial Motes

Validate
Audit Update

TOEC

L

Sequence 2

Admin Manu

Label

Owverride Label

[Test
[a]

Field Usage

Tables Object View - Fields List
Description of Page

Many fields on this page are protected as only the product development group may change them. The following describes
fields you may change for records that are part of the base product. Fields containing information that may be of interest are
also described.

Turn on Audit Delete if an audit record should be stored for this field when a row is deleted. Refer to How To Enable
Auditing for more information

Turn on Audit Insert if an audit record should be stored for this field when a row is added. Refer to How To Enable
Auditing for more information.

Turn on Audit Update if an audit record should be stored for this field when it is changed. Refer to How To Enable
Auditing for more information.

The Label column only contains a value if the base-product indicates a value other than the field's label should be shown on
the various pages in the system. The field's label is shown above, adjacent to the field's code.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 73

The Override Label is provided in case you want to override the base-package's label. If specified, it will be displayed
throughout the application.

NOTE: If you want the Override Label to be shown in the data dictionary, you must regenerate the data dictionary.

Special Notes contains any notes or special information about the table.

Field Usage defines how the field is used in the application. In the current release, only tables that are part of Oracle
Utilities Business Intelligence make use of this field.

Tables - Constraints

Select Admin Menu, Table and navigate to the Constraintstab to view the constraints defined on the table.

ORACLE - T

Home Menu = & History =

Main Table Field Referred By Constraints

Table Name cracct 9
Constraints @EEH 1 of 11 EI[IEIE> 4‘? —
Constraint ID ICI_CUU‘E’SES

Base r Base
Foreign Key (%] . .cf_c:x'cnsppn Q,
fity ing Constraint Teble SHgE] CI_CUST_CL
Constraint Field(s) Referring Constraint Field(s)
Field Sequence Field Sequence
4 | = |[cusT a_cp Q.| 1 CUST_CL_CD| 1

Admin Manu

Tables Object View - Constraints
Description of Page
The fields on this page are protected as only the product development group may change them.

This page represents a collection of constraints defined for the table. A constraint is a field (or set of fields) that represents
the unique identifier of a given record stored in the table or a field (or set of fields) that represents a given record's
relationship to another record in the system.

Constraint 1D is a unique identifier of the constraint.

Owner indicates if this is owned by the base package or by your implementation (Customer Modification)

Constraint Type Flag defines how the constraint is used in the system:

» Primary Key represents the field or set of fields that represent the unique identifier of a record stored in a table.

» Logical Key represents an alternate unique identifier of a record based on a different set of fields than the Primary key.

» Foreign Key represents a field or set of fields that specifies identifying and non-identifying relationships to other tables
in the application. A foreign key constraint references the primary key constraint of another table.

» Conditional Foreign Key represents rare relationships between tables where a single field (or set of fields) may
reference multiple primary key constraints of other tables within the application as a foreign key.

When Enable Referential Integrity is checked, the system validates the integrity of the constraint when a row in the table
is modified.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 74

Referring Constraint Owner indicates if this is owned by the base package or by your implementation (Customer

M odification).

Referring Constraint ID is the Primary Key constraint of another table whose records are referenced by records stored in
this table.

Referring Constraint Table displays the table on which the Referring Constraint ID is defined. You can use the adjacent
go-to button to open the table.

Additional Conditional SQL Text is only specified when the constraint is a Conditional Foreign Key. The SQL
represents the condition under which the foreign key represents a relationship to the referring constraint table.

NOTE: Additional Conditional SQL Syntax. When specifying additional conditional SQL text, all table names are
prefixed with a pound (#) sign.

The Constraint Field grid at the bottom of the page is for maintaining the field or set of fields that make up this constraint.
Field The name of the table's field that is a component of the constraint.

Sequence The rank of the field as a component of the constraint.

The Referring Constraint Field grid at the bottom of the page displays the field or set of fields that make up the Primary
key constraint of the referring constraint.

Field The name of the table's field that is a component of the referring constraint.

Sequence The rank of the field as a component of the referring constraint.

Tables - Referred by Constraints

Select Admin Menu, Table and navigate to the Referred By Constraintstab to view the constraints defined on other
tables that reference the Primary Key constraint of this table.

ORACLE I——

Home Menu - & History =

Main Table Field Constraints Referred By Constraints

Table Name cracet G

Constraints Cﬂﬂﬂﬂ 1 of 28 HHEIE>

Referred By Con tID CI_C0049063 Prime Key Constraint ID CI_CXM143P0
1 By Consty er Base Prime Key Cwner Base

CI_STM_CNST_DTL

Field Sequence

ACCT ID| 1

Admin Menu

Tables Object View - Referred By Constraints

Description of Page

This page is used to display the collection of constraints defined on other tables that reference the table.

Referred By Constraint 1d is the unique identifier of the constraint defined on another table.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 75

Referred By Constraint Owner indicates if this constraint is owned by the base package or by your implementation
(Customer Modification).

PrimeKey Constraint 1d is the Primary Key constraint of the current table.

Prime Key Owner indicates if this prime key is owned by the base package or by your implementation (Customer
M odification).

Referred By Constraint Table is the table on which Referred By Constraint Idis defined.

When Enable Referential Integrity is checked, the system validates the integrity of the constraint when a row in the table
is modified.

The grid at the bottom of the page displays the Field and Sequence for the fields that make up the constraint defined on the
other table.

Setting up Menus

This meta-data represents the root of a menu "tree". A menu contains a list of menu "lines", which, in turn, contains a list of
menu "items". Lines can define navigation keys and/or associated actions, or further submenus.

Menus - Main

This transaction is used to define / change any menu in the system. Navigate to this page using Admin Menu, Menu.

ORACLE

Home Menu = & History =

Menu Mame |CI_ADMINMENU % Flush Menu
Menu Type Admin 'V_i
Long Label Adrmin Menu
ar Description Admin Menu
[

Menu Line ID | Sequence | Mavigation COption/Submenu Long Label Item Count Owner
49k | = |8 | c1o0000418 50 Submenu Database 1 Framework
9= | = | =8| cro0000420 50 Submenu Audit Query 1 Framework.

2 dt | = |48 | c100000438 50 Submenu System 1 Framework

% Gﬁ“-' = | =45 | CIO0000441 50 Submenu Conversion 1 Base

E -:E:: = | =5 | CI00000544 50 Submenu XAl 1 Framework

= cﬂ: = |=4%3 | CI01100915 .Slj Submenu Geographic 1 Framework
q9F | = |=8 | cro1419744 50 Submenu Security 1 Framework
9 | = |=8| ci0s4g7104 50 Submenu Sales & Marketing 1 Base

Menus - Main

Description of Page
Enter a meaningful, unique MenuName.

Owner indicates if this menu line is owned by the base package or by your implementation (Customer M odification). The
system sets the owner to Customer Modification when you add a menu line. This information is display-only.

The Flush Menu button is used to flush the cached menu items so you can see any modified or newly created menus. For
details, see "Caching Overview" in the Oracle Utilities Application Framework Administration Guide.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 76

Menu Type defines how the menu is used. You have the following options:

» Enter Admin for the administration menu. The Admin menu is a special type of Main menu as admin menu items can be
grouped alphabetically or by functional group. For details, see the description of the Admin Menu order in "Installation
Options - Main" in the Oracle Ultilities Application Framework Administration Guide.

» Enter Context to define a context menu
* Enter Main to define a menu that appears on the menu bar.

» Enter Submenu to define a menu that appears when a menu item is selected. For example, the Main menu contains
numerous submenus. Each submenu contains the navigation options used to open a page.

Long Label is only enabled for Admin and Main menus. It contains the text displayed to identify the menu when the Menu
Button is clicked. For details, see the "Menu List" topic in the Oracle Utilities Application Framework Administration
Guide.

Menu Bar Description is only enabled for Admin and Main menus. It contains the text displayed to identify the menu in
the menu bar. For details, see the "Menu - Main" topic in the Oracle Utilities Application Framework Administration Guide.

Sequence is only enabled for Admin and Main menus. It controls the order of the menu in the list of menus that appears
when the menu button is clicked.

The grid contains a summary of the menu's lines. For details on how to add items to a menu line, see "Menu - Menu Items"
in the Oracle Utilities Application Framework Administration Guide.

* Menu LinelD is the unique identifier of the line on the menu. This information is display-only.

» Sequence is the relative position of the line on the menu. Note, if two lines have the same Sequence, the system
organizes the lines alphabetically (based on the L ong L abel, which is defined on the next tab).

» Navigation Option / Submenu contains information about the line's items. If the line's item invokes a submenu, the
submenu's unique identifier is displayed. If the line's item(s) invoke a transaction, the description of the first item's
navigation option is displayed. For details, see "Defining Navigation Options" in the Oracle Utilities Application
Framework Administration Guide.

» LongLabel is the verbiage that appears on the menu line.
* |tem Count is the number of menu items on the line.

» Owner indicates if this menu line is owned by the base package or by your implementation (Customer M odification).
The system sets the owner to Customer Modification when you add a menu line. This information is display-only.

Menus - Menu Lines

After a menu has lines (these are maintained on the main tab), you use this page to maintain a menu line's items.

Each menu line can contain one or two menu items. The line's items control what happens when a user selects an option on
the menu.

There are two types of menu items: one type causes a transaction to be invoked when it's selected; the other type causes a
submenu to appear. For example,

* The following is an example of a menu line with two items: one opens the account transaction in update mode, the other
(the + icon) opens the account transaction in add mode:

[[Account -|-I

» The following is an example of a menu line with a single item that opens a submenu:

ICustDmerInfﬂrmatiun bl

If you want to display an existing menu line's items:

* Navigate to Admin Menu, Menu and display the menu in question.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 77

* Click the go to button on the line whose menu items should be displayed on this tab.
If you want to add a new line to an existing menu line:
» Navigate to Admin Menu, Menu and display the menu in question.

* Click the + button to add a new line to the grid.

» Use Sequence to specify the relative position of the line on the menu. Note, if two lines have the same Sequence, the
system organizes the lines alphabetically (based on the Long L abel,which is defined on the next tab).

¢ Save the new line.

* Click the go to button on the new line

ORACLE e

Home Menu - & History =

ame CI_ADMIMNMENU
ID CIDDO00418

Items @DEE 1.0f 1 EIEI[IE; :'h;w =

CI00000547 Owner Framework
=6g=] | CI_IMPDATABASECONTROL Q,

1

Q

o] Image Width a
Databasze

.Database

Admin Menu

Application Service 3 qh

I [v]

Access Mode

Menus - Menu Lines List
Menu Name is the name of the menu on which the line appears. Menu Line ID is the unique identifier of the line on the
menu. Owner indicates if this menu is owned by the base package or by your implementation (Customer M odification).
This information is display-only.
The Menu Line ltems scroll contains the line's menu items. The following points describe how to maintain a line's items:
* Menu Item ID is the unique identifier of the item.
* Owner indicates if this item is owned by the base package or by your implementation (Customer M odification).
* If the menu item should invoke a submenu (as opposed to a transaction):

* Use Sub-menu Name to identify the menu that should appear when the line is selected

* Use Long Label to define the verbiage that should appear on the menu line
» If'the item should invoke a transaction (as opposed to a submenu):

» Use Sequence to define the order the item should appear in the menu line (we recommend this be setto L or 2as a
menu line can have a maximum of 2 menu items).

» Use Navigation Option to define the transaction to open (and how it should be opened). For details, see "Defining
Navigation Options" in the Oracle Utilities Application Framework Administration Guide.

» If you want an icon to appear on the menu line (as opposed to text)

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 78

» Use Image GIF Location and Nameto define the location in which the icon resides on the web server. For example,
you could enter /images/contextAdd.gif if you want the classic "+" icon to appear. Your icons can be located on the
product's web server or on an external web server. To add a new icon to the product web server, place it under the /
cm/images directory under the DefaultWebApp. Then, in the URL field, specify the relative address of the icon. For
example, if the icon's file name is mylcon.gif, the URL would be /cm/images/myl con.gif. If the icon resides on an
external web server, the URL must be fully qualified (for example, http://myWebServer /images/myl con.gif).

* Use Image Height and Image Width to define the size of the icon.
» Use Balloon Description if you want a tool tip to appear when the cursor hovers over the icon.

» Use Long Label to describe what this menu item does (note, this won't appear on the menu because you are
specifying an icon; it's just good practice).

» If you want text to appear on the menu line (as opposed to an icon), use Long L abel to define the text.

» The Override Label is provided in case you want to override the base-package's label.

NOTE: Owner indicates if this menu line is owned by the base package or by your implementation (Customer
M odification). The system sets the owner to Customer M odification when you add a menu line. This information is
display-only.

Setting up Maintenance Objects

A maintenance object represents a grouping of tables that are maintained together on the user interface. When you add a
new maintenance transaction, be sure to add a maintenance object that specifies the tables that are maintained together.

Using a MO, you have access to the back-end program components as well as to the front-end UI program components
created using the Maintenance Object. This Component allows you to easily identify the objects that are associated with the
primary table when you are developing and maintaining custom transactions.

Maintenance Objects - Main

Select Admin Menu, Maintenance Object to view information about a maintenance object.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 79

Home Menu - History -

Maintenance Object

Algorithms Maintenance Object Tree

m Options

Account
CIPCACC) *-g Driver for Account Page Maintenance.
Service Mame CILCACCP Q, Account Wiew XML View MO
Table Table Role Parent Constraint ID Compare Method Cramier
4 | = |[cracer @, Account prmary (vl Large Table [a] | Base
4 | = | [c1_accT_MERT @, Account Alert Child Cl_Co047877 |, CI_ACCT Mormal w| | Bass
db | = |[c1_aceT_apay QY Account Automatic Payment | [child cI_coo47a?s | S CIACCT Mormal] |Base
E g4k | = | [c1_accT_cHAR &y, Account Characteristics Child CI_C0047382 G, C1_ACCT Mormal] |Base
E ds | = | [c1_accT M5 @, Account Bill Messages child C1 C0047888 | @, CI_ACCT Normal [w] | Base
?Ec & | = .CE_ACCT_I-’:SG_PRM 4, Account Message Parameters | | Child CI_C0047890 5 CI_ACCT MSG | Mormal VJ Base
& | = | [c1_accT_per | @, Account Person Relationship | [Child [ci_cooszsss | Q,ClACCT | Normal [w] |Base
o= | = | [c1_som_rvw _scH @), Credit Review Schedule child [s]| [ct_coodrsar |G ClACCT | Normal [w] |Base
97 | = | [CI_CR_RAT_HIST @, Credit Rating History Child C1_co04g2z3 | R CIACCT | Normal [w] |Base
45 | = |[cinen @ Mon Cash Deposit Child CI_C0048660 |, CIACCT | Normal [w] |Base
&= CI_FER_ADDR_OVRD @ Person Address Qverride Child v: CI_C0049505 @, CI_ACCT PER | [Mormal _\J Base
9 | = | [CI_SS_ADDR_OWRD G, Start/Stop Mail Addr Overrice | | Child [c_coo4g044 | QI AccT Nomal] |Base
4 | = | [ci_ss_pronE_ovRD @, Start/Stop Telephane Override | [chid J|lcicisoiia7 |QCTACCT | [normal [w] | Base

Maintenance Object - Main
Description of Page

Most maintenance objects are provided with the base package. An implementation can introduce custom maintenance
objects when needed. Most fields may not be changed if owned by the base package.

Enter a unique M aintenance Object name and Description. Ownerindicates if this business object is owned by the base
package or by your implementation (Customer M odification).

Program Com ID is the name of the program used to call the maintenance object's page program for validating constraints
when objects are archived, purged, or compared.

Service Name is the name of the internal service associated with the maintenance object.
The grid displays the following for each table defined under the maintenance object:
Table The name of a given table maintained as part of the maintenance object.

Table Role The table's place in the maintenance object hierarchy. Only one Primary table may be specified within a
maintenance object, but the maintenance object may contain many Child tables.

Parent Constraint I D Specifies the constraint used to link the table to its parent table within the maintenance object table
hierarchy.

Compare Method Either Normal or L arge Table; specifies the comparison method used by the compare utility in the
ConfigLab utility.

Owner Indicates if this is owned by the base package or by your implementation (Customer M odification).
Click the View XML hyperlink to view the XML document associated with the maintenance object service in the Service

XML Viewer.

NOTE: Oracle recommends that customers using Oracle Utilities Application Framework version 4.2 or later and
currently using ConfiglLab switch to Configuration Migration Assistant (CMA) for their configuration data migration

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 80

needs and retain ConfigLab for migration of master and transaction data migration. Also note that CMA functionality

is not available to every Framework-based product. For details, including tips and requirements for moving from
ConfigLab to CMA for configuration data migrations, see the "Configuration Migration Assistant" section in the Oracle
Utilities Application Framework Aministration Guide.

Maintenance Objects - Options

Use this page to maintain a maintenance object's options. Open this page using Admin Menu, M aintenance Object and
then navigate to the Optionstab.

Home Menu - & History = Maintenance Object

Algnrithrns Maintenance CObject Tree
Object IACCDUNT % Account

Option Type Sequence value Detailed Description Qwner

valid values: ¥ /M. Indicates whether the MO allows
‘{'F P | Py i?vll : 1-. f data maintenance via a BO {(add, update, and

b — delete). MNote, regardless of this option, a BO may
always be read,

Base

Before a business object is updated, the framework
reads the instance being updated. If this option is
set to ¥, only those elements referenced in the BO's
schema are retrieved, If this option is not specified
or it is set to M, the framewark uses the

T4 | = Optimize Read Before BO Update {Y,/M) [_!'I 1 M maintenance object's service to read the instance Base
')) 11 {thus refrieving every column on every table linked
to the maintenance object). Setting this to ' can
improve performance. The option value should be ¥
on maintenance object's authored in Java, and M
for those authored in Cobol.

Admin Manu

Maintenance Object - Options
Description of Page

The optionsgrid allows you to configure the maintenance object to support extensible options. Select the Option Type drop-
down to define its Value. Detailed Description may display additional information on the option type. Set the Sequence

to 1 unless the option can have more than one value. Ownerindicates if this is owned by the base package or by your
implementation (Customer Modification).

NOTE: You can add new option types. Your implementation may want to add additional maintenance option types. For
example, your implementation may have plug-in driven logic that would benefit from a new option. To do that, add your
new values to the customizable lookup field MAINT_OBJ OPT_FLG.

Maintenance Objects - Algorithms

Use this page to maintain a maintenance object's algorithms. Open this page using Admin Menu, Maintenance Object and
then navigate to the Algorithmstab.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 81

Home Menu - & History =

| Options Algorithms Maintenance Cbiect Tree

Maintenance Object

biect [accounT Gy Account

System Event Seguence Algorithm

+|= o [l [

Script

Qwner

Maintenance Object - Algorithms
Description of Page

The Algorithms grid contains algorithms that control important functions for instances of this maintenance object. You

must define the following for each algorithm:

» Specify the System Event with which the algorithm is associated (see the table that follows for a description of all

possible events).

» Specify the Sequence Number and Algorithm for each system event. You can set the Sequence Number to 10 unless
you have a System Event that has multiple Algorithms. In this case, you need to tell the system the Sequence in which

they should execute.

 Ifthe algorithm is implemented as a script, a link to the Script is provided. Refer to Plug-in Scripts for more

information.

» Ownerindicates if this is owned by the base package or by your implementation (Customer M odification).

The following table describes each System Event.

System Event Optional / Required

Description

Determine BO Optional

Algorithm of this type is used to determine the Business
Object associated with an instance of the maintenance

object. It is necessary to plug in such an algorithm on a
Maintenance Object to enable the business object rules
functionality.

The system invokes a single algorithm of this type. If more
than one algorithm is plugged-in the system invokes the one
with the greatest sequence number.

Information Optional

We use the term "Maintenance Object Information" to
describe the basic information that appears throughout the
system to describe an instance of the maintenance object.
The data that appears in this information description is
constructed using this algorithm.

The system invokes a single algorithm of this type. If more
than one algorithm is plugged-in the system invokes the one
with the greatest sequence number.

Transition Optional

The system calls algorithms of this type upon each
successful state transition of a business object as well as
when it is first created. These are typically used to record the
transition on the maintenance object's log.

Note that some base maintenance objects are already
shipped with an automatic logging of state transitions. In
this case you may use these algorithms to override the base
logging functionality with your own.

Transition Error Optional

The system calls this type of algorithm when a state
transition fails and the business object should be saved

in its latest successful state. The algorithm is responsible

for logging the transition error somewhere, typically on the
maintenance object's log. For details see "Keeping An Entity
In Its Last Successful State" in the Oracle Utilities Application
Framework Administration Guide.

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 82

System Event

Optional / Required Description

Notice that in this case, the caller does NOT get an error
back but rather the call ends successfully and the exception
is recorded somewhere, as per the plug-in logic.

The system invokes a single algorithm of this type. If more
than one algorithm is plugged-in the system invokes the one
with the greatest sequence number.

Maintenance Object - Maintenance Object Tree

You can navigate to the Maintenance Object Tree to see an overview of the tables and table relationships associated with

the maintenance objects.

Home Menu - &

Main

Options

History -

Algorithms

Object [ACCOUNT Q,

Maintenance Object Tree

Admin Menu

Business Object -
Business Object -
Business Object
Business Object
Business Obiject
Business Object
Business Obiject
Business Object
Business Obiject
Business Object
Business Object
Business Object
Business Object
Business Object
Business Obiject
Business Object
Business Obiject
Business Object -

=] _t% Maintenance Object - ACCOUNT
+ % Primary - CI_ACCT - Account

ACCOUNT - Account Business Object - Person
ACCOUTBUS - Account Business Object - Business

- C1-AccountBillMessage - Account Bill Message

- C1-AccountBudget - Account Budget

- C1-AccountCreditReviewSchedule - Account Credit Review Schedule
- C1-AccountCurrency - Account - Get Currency Code

- C1-AccountMainPerson - Account - Get Main Person ID

- C1-AccountManagementAccount - Account - Account Management

- C1-AccountMandateInfo - Account Mandate Information

- C1-CustomerMaintenanceAccount - Siebel Account Custamer Maintenance
- C1-MDM 1Account - Account Information for MDM 1 SA Sync

- C1-MDM2Account - MDM2 Account

- C1-MMSAccount - Account Information for MMS Sync

- C1-OrderAccount - Order Account

- CMACCOUMT - Account

- CM_fAccountBO - CM Account Business Object - Person

- OU_IndvaAcct - Individual Account

Maintenance Object - Maintenance Object Tree

Description of Page

This page is dedicated to a tree that shows the maintenance object's tables as well as business objects, if you have defined
any. You can use this tree to both view high-level information about these objects and to transfer to the respective page in

which an object is maintained.

Development Process

This chapter provides a quick reference for common development tasks. The details are described in the Cookbook chapter.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 83

Maintenance Object

Hooking into User Exits

Hooking into Ul Javascript User Exits

UI pages can have various events extended in order to add to or possibly override base product behavior. To create a
Javascript user exit:

* Identify the page to extend.
» Create a JSP extension file (.xjs file) for the given page containing the necessary method for the given action.
 Identify user exits to code.

* Code the desired user exit logic into the JSP extension file.

Hooking into Java User Exits (interceptors)

Interceptors allow additional logic to be executed before or after the invocation of a service. To implement an interceptor:
 Identify the page to extend.

* Identify the interceptor interface to implement.

» Create an interceptor class.

* Code the desired logic into the interceptor class.

» Register the class in CMServiceConfig.xml.

Extending Business Entities

Business entities are the Java representation of persistent data in the system. These objects are transparently initialized
and persisted into the database. Many entities are already defined by the base application but may be extended through
customization. Likewise, new entities may be created which expose custom tables as business entities.

There are two kinds of hand-coded logic associated with business entities: logic that exposes useful methods to the outside
world and logic that is used within the entity itself to perform validation and handle the cascading effects of its changes in
state.

Logic exposed to outside callers is what is coded on the business entity's implementation class (the "Impl") class. These
"business methods" are then generated onto the entity's "business interface" (e.g. the Person interface). The business
interface is the contract that the entity has with other objects.

Quite another thing is how an entity validates and otherwise deals with its changes of state. This is event-driven logic

that is not exposed to outside callers and never belongs on the business interface. This type of interface is commonly
referred as a "specialization interface" rather than a "business interface" and is coded in change handlers. Unlike a business
interface, which receives messages from other objects, a specialization interface is one that provides a mechanism purely for
extension of some baseline behavior. In that spirit, the framework design clearly separates the two kinds of code.

Extending the Business Interface

* Create a new implementation class.

» Specify appropriate annotations for an extension implementation class.

Oracle Utilities Application Framework Software Development Kit Developer's Guide - 84

Code business methods.
Generate artifacts.
Create a JUnit test.
Generate artifacts.

Run JUnit tests.

Deploy to runtime.

Test in runtime.

Extending the Specialization Interface

Create a new change handler.

Specify appropriate annotations for a change handler.
Code specialization interface.

Generate artifacts.

Create a JUnit test.

Generate artifacts.

Run JUnit tests.

Deploy to runtime.

Test in runtime.

Creating New Business Entities

Business entities are the object representation of persistent data in the database. To create a new business entity the
tables, fields and other meta-data should have already been defined in corresponding meta-data tables. Likewise, the
schema objects must already be in the database. Having completed these steps, the business entity is defined to the Java
programming and runtime environment by:

Specifying the Business Interface

Create a new implementation class.

Specify appropriate annotations for an implementation class.
Code business methods.

Create a JUnit test.

Generate artifacts.

Run JUnit tests.

Deploy to runtime.

Test in runtime.

Specifying the Specialization Interface

Create a new change handler.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 85

* Specify appropriate annotations for a change handler.
* Code specialization interface, if any.

* Create a JUnit test.

* Generate artifacts.

* Run JUnit tests.

* Deploy to runtime.

¢ Test in runtime.

Extending Maintenance Classes

The topics in this section describe maintenance class extension procedures.

Maintenance extensions

Not all maintenance logic can go in the initial application's Maintenance. For instance, how can you retrieve the description
of a foreign key whose table does not exist in that application?
An "extension" methodology exists whereby an existing page can have behavior added to it at predetermined plug-in points.

This is done by having a list of maintenance extensions that can be supplied for any given maintenance. At runtime, this list
is kept and when a maintenance is initialized, new instances of its extensions are created. These extensions are called after
any original maintenance behavior, and in the order of loaded applications. This means that the extensions should have no
dependence on what other extensions have run, excepting the original maintenance having run.

To extend a maintenance:

« Create a new maintenance extension class.

* Specify the annotations required for a maintenance extension.

* Code desired logic in appropriate methods (see Abst r act Mai nt enanceExt ensi on).
» Generate artifacts.

e Code JUnit tests.

e Run JUnit tests.

* Deploy to runtime.

e Test in runtime.

Creating Business Components

Business Components provide a mechanism to provide non-persistent business logic (as opposed to business entities that
add to persistent objects). An example business component is as follows:

/**

* Conponent used to query for {@ink Person} instances based on various
* predefined criteria.
*
* @usi nessConponent
* (customi zati onRepl aceabl e = fal se)
*/
public class PersonFi nders_| npl
ext ends Generi cBusi nessConponent
i npl ement's Per sonFi nders

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 86

/**

* @aram nanmeType a nane type
* @eturn count of names by nane type

*

* @usi nessMet hod (custom zationCallable = true)
*/
public int findCountByNameType(Lookup naneType) ({
Query query = createQuery
(" FROM Per sonNane nane wher e name. naneType = :type");
query. bi ndLookup("type", nameType);

return (int) query.listSize();

To add a new component:

* Create a new implementation class.

» Specify appropriate annotations for a business component implementation class.
* Code business methods.

» Specify appropriate annotations for business methods.

* Create a JUnit test.

* Generate artifacts.

* Run JUnit tests.

* Deploy to runtime.

¢ Test in runtime.

Plugging in Algorithms
Algorithms provide a powerful and flexible way of extending applications that use the Oracle Utilities Software
Development Kit.

Algorithm spots in the application identify different areas that can be extended or customized by implementers. Each
algorithm spot defines a set of inputs (typically via set- methods) and output (typically by get- methods).

During implementation, implementers can either re-use existing algorithm types or create new plug-in algorithm. To add a
new plug-in algorithm, an implementer will follow these steps:

* Identify the plug-in spot.

e Create an algorithm component.

» Specify appropriate annotations for algorithm component.
* Code the desired logic into the invoke() method.

* Code methods to implement the algorithm spot interface.
* Create a JUnit test.

* Generate artifacts.

¢ Run JUnit tests.

* Deploy to runtime.

» Create a java class to perform a special plug-in action. This typically would be a modified version of an existing plug-
in class. Refer to the algorithm spot definition for the various parameters that are available. In writing it, look out for
possible soft parameters that will add flexibility to the plug-in.

* Add an Algorithm Type to correspond to the new plug-in behavior. This includes naming the java class that was created
in the previous step. In addition, the soft parameters that are expected by the algorithm are also defined here.

Oracle Utilities Application Framework Software Development Kit Developer's Guide ¢ 87

» Create Algorithm specifying the specific algorithm parameter values where applicable. If the algorithm type is flexible
enough, it may end up being reused in multiple algorithms, each having a different set of soft parameter values.

* Add the algorithm to the appropriate control table's algorithms. With this step, the plug-in is available to the application.

¢ Test in runtime.

Creating Portals and Zones

The framework application supports one portal, Dashboard, which can contain a configurable set of zones that show diverse
information.

To create a custom zone:

* Meta-data to define the zone and its parameters
* A Java handler class

To create a new zone:

» Use the ServiceZoneHandler class

» Create a Page Service containing required data
* Create or reuse XSLT template file

* Define meta-data declaring the zone and its parameters

Creating Background Processes

To create a background process, there are three important classes that need to be created.
* An implementation of com.splwg.base.api.batch.BatchJob. This is the "driver" and should:
* Include a "BatchJob" class annotation

» Extend a generated superclass. In the case where the batch job is named "Foo", the generated superclass will be "Foo
Gen".

* An implementation of com.splwg.base.api.batch.ThreadWorker. This is responsible for processing the work distributed
to a processing thread. By convention, this is coded as a static inner class within the BatchJob class implementation
described above. If the file becomes excessively large, the worker can be split into its own source file. The worker class
extends a generated abstract superclass. In the case of the "Foo" batch job, the worker should be named FooWorker and
extend "FooWorker Gen".

* Atleast one test class extending com.splwg.base.api.testers.BatchJobTestCase. This class will perform automated tests
on the batch process. The runs are performed within the test thread and transaction and all changes are rolled back at the
end of the test.

After creating the background process, a corresponding entry should be made in the Batch Control table referencing the
created BatchJob's class.

An example batch Job is com.splwg.base.domain.todo.batch.BatchErrorToDoCreation and the test is
BatchErrorToDoCreationTest.

Testing Background Processes

BatchJob classes can be tested with JUnit in two ways:

» Extending the BatchJobTestCase class and implementing abstract methods.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 88

Calling the submitBatchJob(SubmissionParameters) method in any ContextTestCase. This allows testing a mix of one or
more background process and other business logic to be tested.

In both of these approaches, the normal commit and rollback logic of BatchJobs is subverted so that all updates performed
by the batch process are rolled back when the test completes, either successfully or unsuccessfully. Therefore, these JUnit
tests provide a safe way to test batch processes without making irreversible database updates.

Creating MOs and Maintenance Transactions

A typical development of a new MO and its corresponding maintenance transaction entails the following steps:

Create database objects, e.g., tables, indexes, etc.

Enter database type of meta-data using online application from the Admin Menu. This includes:
» Field

e Table

* Table/Field

» Constraints

Enter MO meta-data using the online system from the Admin Menu.

Create the entity, changeHandler, and maintenance impl (implementation) classes using Eclipse.

Generate artifacts based on the impl classes using the Artifact Generator. The artifact generator must also be executed
whenever annotations and/or meta-data are changed.

Add business rules on either the entity or changehandler using Eclipse.
Create business components, if necessary, in Eclipse.
Create test classes and then execute JUnit tests in Eclipse.

If necessary, update maintenance impl class annotation to include fields with derived values using Eclipse. Regenerate
artifacts after changing annotation. This generates the service metainfo.

Add business logic on maintenance impl classes using Eclipse.

Create maintenance test classes and then execute JUnit tests in Eclipse.
Create search impl classes using Eclipse.

Create search test classes and then execute JUnit tests in Eclipse.

Create a new Maintenance Object from the Admin Menu -> Maintenance Object. This would automaticaly create the
Tab Menus and Tab Pages necessary for a new transaction. This will also create the appropriate navigation key for each
program component.

Create javascript user exits for UI program components (e.g. tab menu, tab page, list grid, etc.).
Add security access to the new application service.
Create Menu entry for new application service.

Launch Tomcat server and test the new application service.

Building General Purpose Maintenance Classes

The steps for developing general-purpose maintenance classes are similar to those for MO-based maintenance classes, as
described above, but without the need to rely on entity or MO metadata.

Create the maintenance impl (implementation) classes using Eclipse.

Generate artifacts based on the impl classes using the Artifact Generator. The artifact generator must also be executed
whenever annotations and/or meta-data are changed.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 89

» Create business components, if necessary, in Eclipse.
* Create test classes and then execute JUnit tests in Eclipse.

» Ifnecessary, update maintenance impl class annotation to include fields with derived values using Eclipse. Regenerate
artifacts after changing annotation. This generates the service metainfo.

* Add business logic on maintenance impl classes using Eclipse.

» Create maintenance test classes and then execute JUnit tests in Eclipse.

» Create javascript user exits for UI program components (e.g. tab menu, tab page, list grid, etc.).
* Add security access to the new application service.

* Create Menu entry for new application service.

* Launch Tomcat server and test the new application service.

Building the Application Viewer

The Application Viewer is used to display information extracted from products. This information is stored in the form of
XML files. These files are built using a combination of batch jobs (run from Batch Job Submission) and utility scripts.

Each process (batch job or utility tool) can be run independently as each of them is responsible for creating separate
Application Viewer components.

Creating Javadocs for CM Source Code

Sun's reference on the Javadoc tool can be found at the following location: http://java.sun.com/j2se/javadoc/reference/
index.html. Please refer to the documentation concerning how to write tags, troubleshoot warnings and errors, and any other
Javadoc tool questions.

Some known warnings are generated as part of the CM Javadoc process. The following two warnings are safe to ignore:

» The product's annotations currently use tags that are unrecognized by the Javadoc tool. Currently, the Javadoc tool
is reporting these as warnings. These warnings are safe to ignore. For the list of tags that are relevant, please refer
to the reference guide. For example, the Javadoc tool emits the following warning when it encounters the product's
EntityPageMaintenance annotation. It is safe to ignore.
warni ng - @ntityPageMai ntenance is an unknown tag

» The Javadocs tool may also generate warnings that appear from the generated artifacts. These are easily identifiable
by looking at the path for the name "sourcegen." For example the following warning can be ignored since path name
includes the "sourcegen" directory.

C:\sp\CCB_PROIJ1\java\sour cegen\cm\com\splwg\cm\domain\common\cmCisDiv\CmCisDivisionMaintenance
Gen.java:437

For all other warnings, please refer to the Sun's documentation.
To generate Javadocs, run the utility script generateJavadoc.bat.

To integrate CM and the product's Javadocs, run the utility script reindexJavadoc.bat to recreate the indices to reflect current
environment.

Generate CM Javadocs

Prerequisite: all artifacts need to be generated and the code needs to be compiled without errors.

The first step is to generate Javadocs for CM code. The standard behavior of the Javadoc tool is to create indices that show
the packages and classes of the source code that the tool was run on. The resulting indices will only show links to the CM

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 90

http://java.sun.com/j2se/javadoc/reference/index.html
http://java.sun.com/j2se/javadoc/reference/index.html

classes and not the product's. To recreate the indices so that they include both the CM and the product's Javadocs, follow the
next step.

Recreate the Javadoc Indices

A utility script can recreate the Javadoc indices to include both the CM and the product's Javadocs. The script will scan the
files in the Javadoc directory and recreate the indices based on the files that it finds.

Cookbook

Hooking into User Exits

Hooking into Maintenance Class User Exits

Maintenance extensions

Not all maintenance logic can go in the initial application's Maintenance. For instance, how can you retrieve the description
of a foreign key whose table doesn't exist in that application?

Therefore, an "extension" methodology needs to exist whereby an existing page can have behavior added to it at
predetermined plug-in points.

This is done by having a list of maintenance extensions that can be supplied for any given maintenance. At runtime, this list
is kept and when a maintenance is initialized, new instances of its extensions are created. These extensions are called after
any original maintenance behavior, and in the order of loaded applications. This means that the extensions should have no
dependence on which other extensions have run, excepting the original maintenance having run.

Developing Maintenance Extensions

Maintenance extensions must use the same buffer structure as the original maintenance. The only change allowed is to add
possible new default values. Thus a maintenance extension with its annotation might look like this:

/**
* @ersion $Revision: #1 $
* @i nt enanceExt ensi on (serviceNane = Cl LTALTP,
* newDef aul t s={ @avaNaneVal ue (val ue = TEST, name = test)
* }
*
*/)
public class Al gorithmTypeMai nt enanceExt ensi on
ext ends Al gorithnTypeMi nt enanceExt ensi on_Gen {

}

The maintenance extension will have its superclass generated to give easy access to the STRUCTURE definition and
HEADER and DEFAULT constants, as well as provide an easy hook for any future functionality that might need to be
inserted.

You must use the constants on the STRUCTURE or HEADER structure definitions to reference input header fields or
which output fields to populate.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 91

The maintenance extension can then override any methods needed to provide its functionality. Some examples of methods
available are:

/**

* Process a default
* @aram defaul t Val ue the raw string value of the default (can conpare

* agai nst DEFAULTS const ant s)

* @aramitemthe itemto be nodified with default val ues

*/

public void processDefaul t(String defaultValue, DataElenent iten) {}
/**

* Process the data after the whole add (root and chidren) action is
* done.

* @aramoriginalltemthe input item

*/

public void afterAdd(Dat aEl ement originallten) {}

/**

* Process the data after the whole read (root and children) action is
* done.

* @aramresult the output item

*/

public void afterRead(Dat aEl ement result) {}

/**
* Process the data after an el ement of the given list has been read.
* @aram|listNane the |ist nanme
* @ar am out put El ement the out put el enent
* @aram sourceEntity the just read entity
*/
public void afterPopul at eEl ement (String |istNane,
Dat aEl ement out put El ement, Busi nessEntity sourceEntity) {}
/**

* Process the data after an el enment of the given |list has been changed.
* @aramlistName the |ist name
* @aram i nput El ement the input el ement
* @aram changedEntity the changed entity
*/
public void afterChangeEl enent (String |istNane,
Dat aEl ement i nput El enent, Busi nessEntity changedEntity) {}

Il

The complete list can be found in the hierarchy of the extension class (e.g., Abst r act Mai nt enanceExt ensi on) http://
www.python.org/

Hooking into Ul Javascript User Exits

The client-side external user exits are designed to give implementers flexibility and power to extend the base package user
interface. Implementers have the ability to add additional business logic without changing base html files. These user exits
were developed such that developers can create an include-like file based on external user exit templates.

There are two types of client user exits available. There are process-based user exits that wrap the similar product user exit
code with pre- and post- external user exit calls, and there are also data-based user exits that simply allow the implementer
to add/delete data from the product returned data.

Both types of external user exit are only called if the function exists in the implementer's external include JSP file. All
available user exits are listed online in the system through the relative URL: /code/availableUserExits.jsp, with definition
examples and links to the Framework code that executes the call.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 92

http://www.python.org/
http://www.python.org/

‘7 Available User exits - Microsoft Internet Explorer]
[| Fie Edt Wiew Favoies Took Help E
|JAddrm]@ hatp: /7 ni-borg 6020/ code /avaiableLlse sits jsp =] @G
| Calling file Eﬁ]’;‘: Base exit name Return type liufsrwl example Product declaration ‘ example CM dec
I . "
: ; \fumction exdCrremdeContexd,
cis s tbMenu |ovemideContethooowtld (String yuetion ovmisConetorostiBl T tprodutRetumbabwe)(
It
; : [furetion extOverrideContex]
sin o lbMeny [lovamideContaxtParsanld String ?"’"mmmmmmh”md‘“ It productRetumValue)(
, ; x \furrteon extCremdeContext]
sis o ieblisny [lovemidsContaxtPrmissld String ?”'mmmmmmpmm{ (produtRetumadu)
1
iz s thMenn |showldNotsutol pperease BoaleanValue self shouldi ot & utoUppercase = filse %{Eﬁ;ﬁﬁ“wmﬁml
'r.__.
: ; [funetion extNotUppemaseFy
risjs tablvlenu motU ppercaseFields Bay i}'wlwn satllgp FialdsO | product RetumValue) {
T—r -
= : : function exdlgnoreldodifiedF
£ tMenu ignoreModifiedFields Anay i (produztRetumValue){
i
: funetion extDont CopykeyH
cis js tablvlenu dontCopyKeytlames Bay List im'mmcupmeNms—me {product RetumWValue j{
1
function mitializeMewElement_LIST funection extinitializeNewEle
cis js fabvlenu iratializeHewElement reond List (dataElement){ {dataElernant){
i i
’ ; function exdFieldsTolnchodel
sis lstOnd [feldsTolnclodelnlist®ML ||hmey i}‘“"‘"m fabeTolsclodelnl SRIMLOL (productRetumelus){
}
i P ; \function extSaveButtonEnabl
sis jo lbMenn lsoveButionErablngOverrils ([Boclean ?m'msm“"“mwmm (productRetumVelus){

Miscellaneous How-To's

The following are some how-to examples of typical behavior utilizing some of the standard user exits.

The examples are written for cases of modifying new CM transaction pages, where the function definitions are put into
"extended JavaScipt" files (.xjs) that are meant to contain JavaScript user exits directly for a page.

If, on the other hand, an implementer wishes to modify the behavior of a shipped product page, each of the functions below
have a corresponding "ext" function that can defined in a /cm/extXXX.jsp file corresponding to the desired page that will
fire after any product function call (see above an example of hiding the Sequence column in the algorithm maintenance

page).

How Do | Control the Initial Focus Within Tab Pages/Grids/Search Pages?

The system automatically places the initial focus on an appropriate widget (generally input fields) within a Tab Page/Search

Page/Grid.

By default it will place focus on the first enabled field with a data class defined on it. (If input fields do not have the Field
Name / Table Name defined within Meta Data they will have no data class)

If there are no fields satisfying this criteria within the tab page it will continue to look (recursively) into all the contained

frames (e.g. list grids etc.)

If no field is found then no element receives focus.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 93

You can override the default behavior at each level via the provision of a focusWidgetOverride() function within the user
exit file which will return the Name of the Field to receive the focus or null.

If null is returned it will ignore all fields within this document and continue to search in lower level documents.
E.G.
From within a Tab Page (If you want focus to go on to a sub document)

function focusWdget Override() {
return null;
}

From within a List Grid

function focusWdget Override() {
return "TD TYPE DRLKY: 0$TBL_NAME";
}

from within a Search Page

function focusWdget Override() {
return "LAST_NAME";

}

NOTE: These functions can be as simple or complicated as you want. You could conditionally return a field name or
null and this code will run each time the window loads. Also, if a tab page has a popup window or a search window
open as it is loading then the initial focus will not be set to the tab page but stay with the popup window

How Do | Mark Fields that Won't Make the Model Dirty?

In certain windows, we have a concept of a "locator" field, which typically acts as a filter on some lists of the object you're
looking at. Examples are user group's filter on description, and several IB windows' filter by date.

With the warning about loss of data when throwing away a dirty model, this results in the use of locator fields giving this
warning, which wouldn't be expected. In order to avoid this warning on locator fields, you can add a function like the one
that follows that enumerates the locator fields:

function ignoreMdifiedFields(){
return [' START_DTTM]
}

You can include any nunber of fields in the array, e.g.
return ['FIELD 1', 'FIELD 2', 'FIELD 3']

How Do | Control the Triggering of Defaults After a Search?

If a search returns multiple fields and more than one of these fields can trigger default, then it might be more efficient to
only have one of these fields trigger the defaulting.

This is accomplished by creating a new function called overrideDefaultTrigger sFor_ SEARCHGROUP within the tab
page that contains the search, where SEARCHGROUP is the name of the searchGroup you want to override.

The function must return an object with the triggering field(s) are attributes with a true value.

For example

function overrideDefaul t Tri ggersFor_SRCH1() {
var triggers = {};

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 94

triggers["ACCT_ID'] = true;
triggers["SA | D'] =true;

return triggers;

How Do | Avoid Automatically Setting Fields to Uppercase?

Model attributes that are also key fields are automatically coerced to be in uppercase. You can block this behavior on a
field-by-field basis by defining the notUppercaseFields() function in your TabMenu's user exit file to return an array of field
names that should not be converted.

Example:

function not UppercaseFi el ds() {
return [' ELEM ATTSAT_NAME']

You can also provide a "global" override for an entire TabMenu by setting the shouldNotAutoUppercase variable to true:

var shoul dNot Aut oUpper case = true;

How Can | Force the Save Button to be Enabled?

The save button usually synchronizes itself to the state of the model such that if it hasn't been "dirtied" the button is
disabled. You may wish to control the state of the save button e.g. because a save should always/never be allowed.

Simply define the function saveButtonEnablingOverride() on your TabMenu user exit file to return a boolean indicating
whether the save button should be enabled. You can simply return a literal boolean, or perform any desired processing to
determine the return value.

Example:

function saveButtonEnablingOverride() {
return fal se;
}

How Can | Override the Processing After a Change/Add?

If you need to intervene in the processing after the system successfully completes a Change or Add operation, define the
function privatePostChangeSucceeded() or privatePostAddSucceeded() in your TabMenu user exit file. The function should
return a boolean to indicate whether the system should refresh the UI with the newly returned server data. You'd want to
return false if e.g. you navigate to a different TabMenu.

Example :

function privatePost AddSucceeded() {
var nodel = parent. nodel;
var nodeFl ag = nodel . get Val ue(' COWPL_NAV_MODE FLG);
var navKey = nodel . get Val ue(' COVWPL_NAV_KEY');

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 95

var conpl Sw = nodel . get Val ue(' CMPLT_CLI CKED_SW) ;
if (conpl Sw && nodel . get Val ue(' ENRL_STATUS FLG) == '30') {
i f (npdeFl g && navKey) {
if (nmdeFlag == 'G) {
par ent . t abPage. got oCont ext (navKey) ;
return fal se;
} else |f(rmdeFIag = "A) {
par ent . t abPage. addCont ext (navKey) ;
return fal se;

}

return true,

How Do | Prevent the System from Setting Focus to a Widget After an Error?

When a service receives an error and shows a message after calling a back-end service, the browser attempts to set focus to
the relevant widget in error. If you don't need this behavior, you can define the TabMenu variable dontSetFocusOnError to
boolean "true.

Example:

var dont Set FocusOnError = true;

How Do | Prevent Attributes From Being Copied into New List Elements?

The system automatically copies key fields (based on name matching) from a parent list element into new child elements
(e.g. created by using the scroll '+' button), in order to keep their prime keys consistent. If you want to inhibit this operation
for certain fields, define the TabMenu function dontCopyKeyNames <LIST NAME> to return an array of fields that should
not be copied into new elements of the list named LIST NAME

Example:

function dont CopyKeyNanmes ENRL_FLD() {
return [' SEQ NUM]

How Do | Customize New List Elements?

When you use '+ button on a grid or scroll you get a new, empty list element. If you want to customize the object, define a
function in the TabMenu's user exit file named initializeNewElement <LIST NAME>(newElement).

Example:

function initializeNewEl enent ENRL_LOJ neV\EI ement) {
newEl enent . set (' ENRL_LOG TYPE FLG , ' USER);
newEl enent . set (' USER | NFO , parent . nodel . get Val ue(' CURRENT _USER | NFO));

How Can | Get My Sequence Numbers to Default Properly on My List Grid?

If you are working with a List Grid that uses some type of sequence field (e.g. SEQNO, LINE_SEQ, SORT _SEQ), there is
a handy bit of technology that you can use that will cause the Ul to do this job for you.

Just follow the steps below and you'll have the problem solved in no time. The sequence field will be populated in your
"empty line" and any elements that are added from then on will have an appropriate value in the sequence field. If the user
edits the sequence field at any point, the next element added to the list will incorporate the change without any problems.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 96

NOTE: The default Sequence Number functionality will default the next nearest tens value from the highest sequence.
The defaulting will do nothing after the sequence reaches the highest number it can hold.

 In the user exit file of the Tab Menu - not the main Page or the List Grid - copy this JavaScript code:

function initializeNewEl ement LI ST_NAME(newEl enent) {
var nyLi stName = "LI ST_NAME";
var nyLi st SegNane = "FlI ELD_ NAME';
var nyLi st MaxSeq = 999;
def aul t SequenceNunber (myLi st Nane, nyLi st SeqNane, nyLi st MaxSeq, newEl enent)

}

</ SCRI PT>
<SCRI PT src="/zz/ def aul t SequenceNunber/ def aul t SequenceNunber . j s"></ SCRI PT>
<SCRI PT>

e For LIST_NAME, substitute your List Grid's list name. Be careful not to lose that underscore [_] just in front of LIST_
NAME in the first line! Remember that JavaScript is case-sensitive and make sure that you use all UPPERCASE letters
as shown here.

* For FIELD_NAME, substitute the name of your sequence field, whatever that might be in your List. Don't lose the
quotes ["]! Again, use all UPPERCASE Ietters.

How Do | Override the Tab Page Shown After an Error in a List (Grid/Scroll)?

When the system receives an error (e.g. after a Save) it attempts to set focus on the relevant widget, which might
require flipping to a different tab page. If the error relates to a list (grid or scroll) the system might not choose the tab
page you'd prefer. In that event you can control the tab page that should be opened by defining the TabMenu function
overrideErrorTabPage <LIST NAME>().

Example:

function overrideError TabPage_BPA() {
return ' bussProcessAssi st ant St epPage’ ;
}

How Do | Disregard Unwanted Criteria from a Search Triggered by a Search
Button?

When a search button (currently implemented as an IMG) is pushed, the system launches a search and "pulls" all applicable
criteria values from the current model. It might be that certain criteria fields should be ignored in a particular case. You can
define the function addIgnoreFieldsFor <triggerFieldName>() on a tab or search page's user exit file to specify fields to
ignore whenever the IMG button named triggerFieldName is pushed on that page.

The function takes a single argument, fields, and you should add key/value pairs where the key is a field name to ignore,
and the value is true.

Example:

addl gnor eFi el dsFor ADDRESS1 _SRCH = function(fields) {
fields[' CITY_SRCH] = true

addl gnor eFi el dsFor_PER I D = function(fields) {
fields['ENTITY_NAME SRCH] = true

Oracle Utilities Application Framework Software Development Kit Developer's Guide < 97

How Do | Disregard Unwanted Search Result Columns?

When you accept the result of a NOLOAD search the system tries to populate the selected search result row into the current
model. Sometimes this doesn't make sense e.g. because there is no corresponding attribute for a display-only column. You
can exclude a column from being returned as part of a search result by defining the search client's (Tab Page or Search
window) function ignoreResultColumns() in the corresponding page's user exit file. Return an object with keys specifying
attributes and values all set to boolean "true".

Example:

function ignoreResul t Col ums() {
return { ADDRESS1: true, CITY: true, POSTAL: true };
}

Since Searches can be shared by many search clients, it is possible that some clients want to get a specific column, but
others don't. In that case, define the TabMenu function ignoreResultColumnsFor <service> as above.

Example:

function ignoreResult Col umsFor _ClI LCCOPS() ({
return { CONT_OPT _TYPE CD: true}
}

How Do | Format a Value Based on a Given Format?

If you need to format a value based on a given format, for example, on Person ID Number, if you select ID Type as SSN
(999-99-9999), you can always format the Person ID Number before committing it to the server.

To do so, you can call the formatValue javascript function.

* In the user exit file of the tab page include the following lines:

</ SCRI PT>
<SCRI PT src="/zz/format Val ue/ f or mat Val ue. j s" ></ SCRI PT>
<SCRI PT>

» Now, you can start using the function to format a value. To use this function, you need to pass in both the value and the
format into the function.

var phFormat = nyDat a. get Val ue(pur eLi st Namre + ' PHONE_TYPE_FORMAT') ;
i f (pureFieldName == ' PHONE') {
updat eFi el d(pur eLi st Nane + ' PHONE'
f or mat Val ue(myDat a. get Val ue(pur eLi st Nane + ' PHONE'), phFormat));

Hooking into Java User Exits (interceptors)

Create a class implementing any of the following Interceptor Java Interfaces whenever processing is required before or
after the invocation of a service. The CMServiceConfig.xml file contains the mapping between services and corresponding
classes that implement pre/post processing plug-ins. The files should reside in the same directory as the service xml files,
that is, in the <classpath>/services folder. This can be arranged by placing the files in the web application server's WEB-
INF/classes/services folder, or placing them in an existing jar file.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 98

NOTE: Note: CM interceptors defined on the CMServiceConfig.xml override base product interceptors on the same
service and action.

To implement an interceptor:
» Creating a class implementing any of the Interceptor Java Interfaces.

» Register the class in CMServiceConfig.xml.

Example
The following is a sample interceptor and configuration file, where one interceptor class implements all four interfaces.

Configuration file CMServiceConfig.xml:

<Servi cel nterceptors
<Servi ce nanme="CM.TBTCP" >
<Interceptor action="add">
com splwg. cis.interceptortest.|nterceptorTest
</l nterceptor>
<I nterceptor action="change">
com splwg. cis.interceptortest.|nterceptorTest
</Interceptor>
<Interceptor action="del ete">
com splwg. cis.interceptortest.|nterceptorTest
</Interceptor>
<I nterceptor action="read">
com splwg. cis.interceptortest.|nterceptorTest
</l nterceptor>
</ Servi ce>
</ Servi cel nt er cept or s>

Class com.splwg.cm.interceptortest.InterceptorTest:

package com splwg.cminterceptortest;

i nport com spl wy. base. api . servi cei nterception. | Addl nterceptor;

i mport com spl wg. base. api . servi cei nterception. | Changel nt ercept or;
i nport com spl wg. base. api . servi cei nterception.|Del etelnterceptor;
i mport com spl wg. base. api . servi cei nterception. | Readl nterceptor;

i nport com spl wg. base. api . servi ce. PageBody;

i nport com spl wy. base. api . servi ce. PageHeader ;

i nport com spl wg. base. api . servi ce. Request Cont ext ;

public class InterceptorTest inplenents |Addlnterceptor, |Changelnterceptor,
| Del etel nterceptor, |Readlnterceptor {

publ i ¢ PageBody about ToAdd(Request Cont ext context, PageBody in) {
System out. printl n("about ToAdd: " + in);
return null;

}

public void afterAdd(Request Cont ext context, PageBody added) ({
Systemout.println("afterAdd: " + added);

b

publ i ¢ PageBody about ToChange(Request Cont ext context, PageBody in) {
System out . printl n("about ToChange: " + in);
return null;

IE

public void afterChange(Request Cont ext context, PageBody changed) {
System out. println("afterChange: " + changed);

publ i ¢ bool ean about ToDel et e(Request Cont ext context, PageBody in) {

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 99

System out. println("about ToDel ete: " + in);
return true;

}

public void afterDel et e(Request Cont ext context, PageBody in) {
Systemout.printin("afterDelete: " + in);

}

publ i ¢ PageBody about ToRead(Request Cont ext context, PageHeader in) ({
System out . printl n("about ToRead: " + in);

return null;

}

public voi d afterRead(Request Cont ext context, PageBody result) {
Systemout.println("afterRead: " + result);

}

Maintaining General-Purpose Maintenance Classes

While most page maintenance classes are actually Entity-based (see Maintaining MO's, below), it is sometimes necessary to

write a general-purpose maintenance class for some specific purpose.

To develop such a Page Maintenance class, you need to create a hand-coded implementation class. This class subclasses a
class (to be generated) with the same name (and package) as your class, but with the suffix " Gen". For example, if your
class is named Sanpl ePageMai nt enance, you'll subclass Sanpl ePageMai nt enance_Gen. Your class must include an
annotation providing the metadata that describes the maintenance. This annotation is essentially a subset of the annotation
for an entity page maintenance (aka MO maintenance), but leaves out details specific to the entity model (also known as the

domain model). For example, the RowFi el d annotation is not supported, since it links directly to an entity.

Here is an example of a simple PageMai nt enance annotation:

@ageMai nt enance (secured = fal se, service = Cl LABCDE,
body = @at aEl enent (contents = { @ataField (nane = DATA FI ELD1, overri deFi el dNanme
, @ataField (DATA VALUE1)}),
actions = { "read"},
header = { @ataField (nane = | NPUT_FI ELD1, overri deFi el dName = FLD_NAME)
, @ataField (name = | NPUT_VALUEL)},
headerFields = { @ataField (nane = CONTEXT_NAME1l, overri deFi el dName = FLD_NAME)
, @pataField (nane CONTEXT_VALUE1, overrideFi el dNane = FK VALUEL)
, @ataField (name CONTEXT_NAME2, overrideFi el dName = FLD_NAME)
, @ataField (name = CONTEXT_VALUE10, overrideFi el dNane = FK_VALUEL)},
modul es = { "foundation"})

This example doesn't use any lists, but they are described and supported as are any entity maintenance classes. By
definition, any lists here are unmapped--that is, they are not populated by the framework from the entity model.

FLD_NAME)

The supported actions are r ead, change, add, and del et e. You can leave out the actions annotation completely if you
intend to support all four of these actions. Otherwise, it's useful to declare what methods you'll support, so the framework

can create an appropriate error message when an unsupported method is invoked.

You must implement one or more of the following action methods.

prot ect ed Dat aEl enent read(PageHeader header)
protected void change(Dat aEl enent item

prot ect ed PageHeader add(Dat aEl enment item)
prot ected PageHeader copy(PageHeader header)
protected void del et e(Dat aEl enent itemn

The body of the implementation is completely up to you. The available API is largely the same as for entity page

maintenance, e.g. you have a current session/transaction in which to execute queries, can access the entity model, etc. You
are expected to throw Appl i cati onError or Appl i cati onWar ni ng Java exceptions, as appropriate (e.g. via addEr r or ()

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 100

and addWar ni ng()), unless a serious or unforeseen problem occurs, in which case you should throw a LoggedExcept i on,
or simply let the underlying Java runtime exception "bubble up".

The usual implementation of the read method would be to retrieve one or more parameters from the input page header, and
construct a Dat aEl ement holding the desired return values, including any lists (which may be recursive).

For the change method, the usual behavior would be to examine the provided Dat aEl enent object, perform some
operation, and return a different data element to hold the "changed" values.

The add method is similar to change in that it accepts an input Dat aEl ement , and returns the "newly added" Dat aEl enent
instance (which should be a different instance than the input).

The del et e method accepts a Dat aEl enent , but returns nothing after the conclusion of the operation.

Maintaining MOs

Maintaining Maintenance Classes for MOs

For a new MO, use the Eclipse plugin to create the skeletal class structure for a new maintenance object class.
For other services not linked to a MO, you will need to write a new maintenance subclass and create the annotation.

To develop an Entity Page Maintenance class, you need to create a hand-coded implementation class. This class must
include an annotation providing the metadata that describes the maintenance. In addition, the business entities that "back"
the maintenance must already have been created.

Let's take a look at a simple maintenance annotation example to illustrate its properties:

@nt it yPageMai nt enance (

program = Cl PTBTCP,

servi ce = Cl LTBTCP,

entity = batchControl,

copy = true,

body = @at aEl ement (

contents = {@ataFi eld (DEFAULT _FOR FLG

, @owrield (nanme=foo, entity=batchControl)
, @i stField(name=BCP, owner=fo0o0, property = paraneters)

}

)
lists = {@ist (name = BCP, size = 50, copy = true,
progr am=Cl PTBCPL, const ant Name="Cl - CONST- CT- MAX- FI FTY- COLL",
body = @at aEl ement (contents = { @owri el d (bat chControl Paraneter)}))

)

First we see that this tag is an EntityPageMaintenance, meaning it is a page maintenance for a single entity root object.

Here it is a batch control, but account, person, premise, etc. would also be examples. The idea here is that, by default, the
maintenance framework tries to read, save, and delete the tree of data that starts with an instance of batch control. (Another
kind of page maintenance is EntityListPageMaintenance, where you maintain a list of entities without a single root object. It
has slightly different attributes than those discussed below.)

Next we list some attributes of the top-level annotation. The required pr ogr amattribute gives the equivalent Converted
COBOL Program page module name that we're replacing.

The servi ce is the name of the page service that we are implementing. This is required so the Framework knows that it
should route requests for this service directly to this Java class.

The required ent i t y property names the entity that this maintenance uses for its root. It should match an entity that is
defined within the system, else the maintenance obviously can't work!

The copy attribute signals that certain copy fields should be defined in the service. Making the framework explicitly aware
of these fields is preferable to "dumb" coding of these fields.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 101

Now we hit the two major structural elements, the body and | i st s attributes.

The body attribute always resolves to a DataElement, which is simply a way to organize the collection of "rows", "loose
fields", and lists that belong to a particular level in the service data structure. These contents are simply held in the

cont ent s array, which here starts with a simple datafield, DEFAULT _FOR _FLG. Note that you simply reference the field
name, and the generator uses the field metadata to infer its type and size. The next element of the cont ent s array in this
example is RowField. This is essentially a way of naming a reference to the properties of a single entity/table, including its
language fields, if appropriate. You need to specify its ent i t y and name. Here I use a dummy name, "foo". Finally we have
a ListField, which consists of a reference to a list structure that is defined in a separate tag (I i st s). Here we merely name
the referenced list by name, provide the owner which matches the name of the "parent" row, and the property, which tells
the system how to access the list from the parent. Here we deduce that the get Par anet er s() method on a batch control will
yield the desired child list.

List Maintenance Classes

Writing a new list maintenance class requires you to create a new class, that provides an annotation with metadata, and lets
you implement any user exits you need.

The class should subclass a generated class with the same name, but with suffix _Gen.

The annotation is @.i st Ser vi ce, and is the same annotation structure that is used for lists within PageMaintenance. The
service name should end with "L".

If there are child lists, you need to declare them with the | i st s annotation, just like for PageMaintenance.

You should specify any query criteria (from clause, where clause, order by clause) in the List Service annotation, see
MaintenanceListFilter on how to implement that.

The default test superclass simply tests that at least one result row is returned.

Here is an example for testing this list maintenance:

package com spl wg. base. donai n. bat ch. bat chRun;

i nport com spl wg. base. api . servi ce. Li st Header ;
i mport com spl wg. base. api . testers. Li st Servi ceTest Case;

i nport java. nat h. Bi gl nt eger;

public class ThreadLi stlnquiry_Test
extends Li st ServiceTest Case {
/|~ Met hods

public String getServiceName() {
return "Cl LTBTHL";
}

/**
* @ee com splwg. base. api . testers. Li st Servi ceTest Case#get ReadLi st Header ()
*/
protected ListHeader getReadLi stHeader() {
Li st Header header = new Li st Header();
header . put ("BATCH CD', "TD- BTERR');
header . put ("BATCH _NBR', Bi gl nteger.val ueC(1));
header . put (" BATCH_RERUN_NBR', Bi gl nteger.val ue(0));

return header;

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 102

Maintenance List Filters

A given list on a maintenance may not need to return all the data in the list. Instead, a filter can be applied to return a subset
of the data. You get the main list by default. And now, you can modify the SQL that will be used for the list retrieval by
writing HQL to filter the list. This HQL goes into the @.i st annotation's "fromClause" and "whereClause" properties.

This is written as an HQL filter HQL, where the main table (and its language alias, if one exists) already "exists" in the
background, and can be referenced by the alias "this" (and "thisLang" for the language row). New entities can be added to
the 'from’ clause, and a 'where' clause can be specified. A select clause should not be specified (instead results can be added
in the bindList user exit - see below), and neither should an order by (the order by is specified separately).

Additionally, if there are extra values that can be retrieved via a join, the loose data fields can be specified as
@.i st Dat aFi el d , with an hqlPath property specifying the hql path to select the result. And finally, you can bind
parameters and also specify extra results into the query in the bindList user exit specific for the given list.

List Maintenance Get More

When a list is too large to send to the Ul in one shot, there is the ability to "get more" rows.

An @List can simply have its order set (separate from any other Maintenance List Filter properties). Everything else is
automated by the FW. There is no need to add special LAST _ fields to the annotation/service, nor even to add the parent's
PKs.

The order of a maintenance's list can be given in two ways:

* The order can come from the domain _Impl class. However, this is limited as it may only use fields on the entity table
itself (not even language properties).

* The order can be specified on the @List annotation as a string "orderBy", written in hql form, using the special entity
alias "this" to refer to the row (and "thisLang" to refer to the language row if one exists), and including any other aliases
available from the fromClause property.

The list will retrieve rows in chunk sizes given by the size property on the @List annotation.

An example of using this filtering to join extra information is available on the class Mai nt enanceQObj ect Mai nt enance.
Another example on a Li st Ser vi ce, is available on the class Navi gati onOpt i onMenuLi st .

Besides using a MaintenanceListFilter and knowing how to deal with list get mores, lists in a page maintenance will
automatically retrieve (and cache) the language row associated with the main row of the list. This helps the n+1 select
problem (only a single SQL is issued, instead of the main one, plus an extra one for each of the rows' language row), and
also provides the ability to have short hand for the orderBy property of a list. If the order is simply by a language property,
then you can reference it by t hi sLang.property, without having to supply a filterClause.

Maintaining Maintenance Objects
A maintenance object is a group of tables maintained together within the system.

NOTE: For detailed information about Maintenance Objects, please refer to user document Framework Administration,
Database Tools, Defining Maintenance Object Options

Maintaining Database Meta-data

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 103

Maintaining Fields
Field represents a column on a database table. A Field must exist before it can be defined on a Table.

NOTE: For detailed information about fields, please refer to user document Framework Administration, Database
Tools, Defining Field Options.

Maintaining Tables
Table represents a database table used to store data or a database view.

NOTE: For detailed information about menus, please refer to user document Framework Administration, Database
Tools, Defining Table Options.

Maintaining Java Classes

Maintaining Business Entities

Business Entity Background

A central framework concept is the Business Entity that allows for persistent data in the database to be interacted with as
objects. In general there is at least one Business Entity class corresponding to each table in the system. Likewise an instance
of one of these classes corresponds to a row in the database. Here are some things to remember about Business Entities:

* When you create a new instance of a Business Entity and the current transaction commits, a new row is committed to
the database. Likewise when instances are deleted or changed, corresponding deletes or updates are performed on the
database. There is no concept of a transient entity in our architecture; application logic is dealing with only persistent
objects.

* When the actual insert, update and delete statements are issued to the database is controlled by the framework and may
be deferred for performance reasons. The framework is, however, expected to issue DML with sufficient timeliness to
maintain data consistency so that application code need not concern itself with when statements are actually executed.

* When you use the query language (HQL) the returned objects are Business Entities (or scalars in the case of "count" or
other aggregate functions). These objects may be modified by application code and those changes will be persisted to the
database.

» The way you change the properties on entities is via the Data Transfer Objects corresponding to the entity.

How Do | Create a New Business Entity Instance?

Creating a new entity is equivalent to inserting a new row into the database. The first thing you need is to have the
framework create a new instance of the correct Data Transfer Object for you so that you can set properties for the new entity
instance. This can be done via one of the standard framework methods accessible from the abstract superclasses of classes
holding business logic. This method can be told which DTO to create by passing the business interface class for the entity.
In the example below, we are creating a new Person DTO.

Per son_DTO personDTO = (Person_DTO creat eDTQ(Person. cl ass);

Oracle Utilities Application Framework Software Development Kit Developer's Guide - 104

Alternatively, if you find that you have a reference to an Id class, the appropriate DTO can be created via a method
generated onto that Id class.

Person_I d aPersonld = new Person_|d("123467890");
Per son_DTO per sonDTO = aPer sonl d. newDTQ() ;

Now let's set some values for the new Person instance:

personDTO. set St atel d(state.getld());
per sonDTO set Languagel d(| anguage. get 1 d());

Finally we try to create a persistent instance based on these values. This is equivalent to doing the insert against the
underlying table except that: (1) required validation occurs and (2) the timing of actual insert occurs at the discretion of the
framework.

Person person = (Person) createBusinessEntity(personDTO);

That's it. When the current transaction is committed, a new person will be added to the database.

How Do | Change Values on an Existing Business Entity Instance?
There are really three steps:

» Ask the existing entity for its DTO.

* Change the appropriate values on the DTO.

» Call setDTO() on the entity instance.

Per son_DTO dto = person. get DTQ() ;
dt 0. set Address1("invalid val ue");
per son. set DTQ(dt 0) ;

Necessary Change Handlers will fire to validate the change to this "person" object as well as other cascading events as
specified in the entity's change handlers.

How Do | Delete a Business Entity Instance?
There are a number of ways to delete entities.

1. Delete an instance that you have a reference to:

person. del ete();

2. Delete an instance where you have only its Id:

del et e(personl d);

3. Delete the results of a query

Query query = createQuery("from Person person where exists (
+ " from PersonNane as per Name where person = perNane.id. person and "
+ "perNane. i sPrimaryNane = :systenBool and per Nane. entityNane "
+ "like :nanme)");
qguery. bi ndLi kabl eStri ng("nanme", "ABC', 64);
query. bi ndBool ean("syst emBool ", com spl wg. base. api . dat at ypes. Bool . TRUE) ;

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 105

Il ong rowsDel eted = query.delete();

Persistent Classes

Behind the scenes, the persistence and validation mechanisms are quite complex and require the collaboration of many
classes and pieces of configuration data. Thankfully, most of this complexity is hidden from the application programmer.
Still, there are various classes that the application programmer will deal with:

» Framework Classes that act as an application programming interface. These API classes are directly referenced by
application code.

» Generated Classes that are created for each business entity that serve two purposes:

» They provide convenient methods (like property "getters" and "setters") based on the structure of the specific entity,
it's fields, child collections and key structure for example.

* They are necessary for the persistence mechanisms to work correctly.

* Handcoded classes that the application programmer is expected to write. Many of the handcoded classes are read by the
artifact generator so the framework can "wire up" the handcoded functionality.

Some examples of the above classes are shown below.

AbstractDataTransferObiect Stringld | AbstractBusinessEntity

Person_DTO Person_Id Person_Gen

AbstractEntityList

|SimpleEntityl ist|

-id

PersonNames_Impl

addrasat winlerfacer
3 e Porsonames K-+
rgethddressi() | ';PI'\”]:T_;'\-'E'I'I
-ramework Class
uinterfaces
Persan _ Persceg: infol Generated Class
Bl tgetinfof) Handcoded Class

Creating the Implementation Class

There is very little that needs to be done by application developers to create a basic business entity. In addition to the setup
of the CI MD_* tables describing the entity and its constraints only an implementation class (or "Impl" for short) needs to
be added. In this case a developer added Person Impl. The following is a simple example of an "Impl" class for the Person
entity.

/**

* @Busi nessEntity
* (tabl eNanme = Cl _PER,

* oneToManyCol | ections = { @hild(collectionNane = nanes,
* chi | dTabl eName = Cl _PER_NAME,
* order ByCol umNanes = { SEQ NUM })
*
}
*
*/)

public class Person_I npl

ext ends Person_Gen {
/**

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 106

* @eturn the U Display "info" for this person
*/
public String getlnfo() {
return "PrimaryNane: " + getPrimaryNane().getlnfo();
}

}

Important parts of the implementation class are described below:

* Theimplementation class name must end with the suffix " _Impl" . For example, if the entity has a name of "person"
then the implementation class name of "some.package.Person Impl". It also means that the generated business interface
will have a name of "some.package.Person".

* A Class Annotation which declares:
* What table this entity represents
* What the owned-child tables are and what they should be called
* Other information. Please see the BusinessEntityAnnotation class for more details.

» Theclassextends an abstract superclass having the suffix of " _Gen" . Continuing the example of an entity named
"person", the implementation class would extend a not-yet-created abstract superclass named "some.package.Person_
Gen". This superclass is created by the artifact generator based on metadata about the table and contains:

* Getter methods for properties including parent objects and collections
e The getDTO() and setDTO(...) methods that allow for properties to be changed
* Access to standard framework methods like createQuery(...)

» Business methods. Any hand coded public methods are automatically exported onto the generated business interface
(e.g. "some.package.Person"). Client code can then access the added business method as follows:

Person aPerson = sone logic retrieving a person instance
String thePersonslnfo = aPerson. getlnfo();

» Constants. Any hand coded public static final variables are automatically exported onto the generated business interface.
This will be useful for constants related to the entity.

» Having created a new entity, it is likely that validation rules and other behaviors should be added to it. Please see Adding
Change Handlers for more information.

Developing Change Handlers

The creation of Business Entities allows business logic to interact with rows in database tables as objects and in doing so
allows business methods to be invoked on those objects to perform some business function. Quite another thing is how the
entities react to proposed changes in their state. Outside callers have no business being exposed to the internal validations
and cascading state changes within the objects that they interact with. Because of object encapsulation, they should not be
exposed to such issues. Nonetheless, there needs to be a way to program the internal logic of entities. This is the reason for
Change Handlers, to provide for objects to react to proposed changes in their state.

Change Handlers are classes that add behavior to entities. This behavior takes two forms.

» Validation rules. This allows for proposed changes to be validated against business rules. These rules are expected
to be "side effect free" meaning that the validation does not change the state of the system. By calling side effect free
validations only after all changes to entity state have been performed, the framework can avoid many complex scenarios
where invalid data can "slip past" validations.

» Cascading changelogic. This allows changes to this entity to cause changes to other entities.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 107

Creating the Change Handler Class

A Business Entity may have more than one Change Handler. The framework will call each handler associated with an entity
when an attempt is made to modify the state of the underlying entity. The following are the important parts of a Change
Handler class:

* The class should extend the AbstractChangeHandler class and have a class name ending with " CHandler".
* The @ChangeHandler class annotation. This tells the framework which entity to attach the change handler to at runtime.

* Implement any "handle" methods. These are methods that can implement any cascading effects of the proposed change
to the entity's state.

» Construct Validation Rules that are returned by public static methods on the change handler class. There should be one
static method per rule. The reason for exposing these methods is to facilitate testing (see below). Static methods are used
instead of static variables to prevent timing problems associated with the static initialization of static variables.

* Return an array of the rules created above via the getValidationRules() method. The framework invokes this method at
runtime to retrieve the rules.

» Make sure to run the artifact generator and rebuild source code after adding a Change Handler or modifying its
annotation.

Testing the Change Handler Class

When adding behavior to an entity, it is desirable to do the following:

* Break the rules into modular pieces that can be independently maintained and tested.
» Test that each behavior works by creating a JUnit test for each distinct behavior.

The following steps are recommended when adding new change handlers so that the additional behavior is sufficiently
tested.

* Add each rule to the change handler at once using instances of the PlaceHolderRule class. Use an appropriate Ruleld and
Description as self-documentation of what the rule is supposed to do.

* Add a new test class by extending AbstractEntityTestCase. This class should reference the change handler being added
and will insure that each rule is violated by at least one test. The test class name should end with "Test".

* Run the test class as a JUnit test. The test class should complain that there was at least one rule that was not violated by
the test class. For the rule that was not violated, add a test method to the test class and also add the "real" validation logic
to the change handler class. Try executing the test class again. Continue implementing more test methods and rules until
all rules are tested and the JUnit class completes successfully. Below is an example, test method for a rule that tests both
a successful change and an unsuccessful change. It is important to insure that the validation error is thrown by the actual
rule being tested.

public void test AddressOnelLabel Requi redl f AddressOnel sAvai | abl e() {
/| pass
Country country = (Country) createQuery(
"from Country country").firstRow();
Country_DTO countryDto = country. get DTQ() ;
country. set DTQ(countryDt 0) ;

[/fail
countryDt 0. set Addr ess1Avai | abl e(Bool . TRUE) ;
countryDt 0. set LanguageAddress1("");
try {

country. set DTQ(countryDt 0) ;

fail("A validation error should have been thrown");
} catch (Applicati onException e) {

veri fyVi ol at edRul e(Count ry_Chandl er
. addr essOnelLabel Requi r edl f Addr essOnel sAvai |l abl e(), e);

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 108

——

* Add other test methods to test "handle" methods on the change handler as well as business methods that may have been
added.

Validation Rules

Validation rules are the mechanism for describing to the runtime system how it should validate business entities. There are a
few important characteristics of these rules:

* The coding style is declarative. That is, every attempt has been made so the programmer specifies what makes data
valid, not how or when the validation should take place.

* Only in the case of "custom rules" does the programmer need to build the step-by-step logic specifying how the
validation should take place.

* Validation rules are side-effect free. That is, they cannot change the persistent state of the system. This insures that all
the validations are performed on the complete set of changes. Likewise, it allows for the startChange()/saveChanges()
logic to safely defer the firing of rules until the end of the coherent set of changes.

The Rules

A number of useful rules are provided in the interest that the application programmer can use them with a minimum of
programming. These are classes that implement ValidationRule and can be used by application logic:

» ProtectRule will protect one or more properties on an entity.

* RequireRule will require that a property be populated.

» AllowRule allows a value to be populated.

» AllowAndRequireRule both allows and requires that a property be populated.
» DecimalRule provides some common validations against decimal data types.

» CustomRule will create a rule out of a CustomValidation class implementing logic that just cannot be handled by
existing rules.

» RestrictRule will restrict a property to a set of values

Each of the rules above provides standard rules that represent similarly configured rules that are used repeatedly in the
system. These standard rules can be created via static "factory" methods on the rules themselves. Consider the following
standard rule:

/**

* Protect the dependant property when the primary property is equal to the supplied | ookup val ue.

* @aramruleld a unique ruleld

* @aram description a description

* @aram prinmaryProperty the property that the conditi on depends on

* @ar am dependant Property the property that is protected when the condition is true

* @aram pri maryLookupVal ue a { @i nk Lookup} value that the primary property nust equal for the dependant pr
* to be protected

* @eturn a new rul e

*/

public static ProtectRule
dependant Pr opert yWhenPr i mar yMat hesLookup
(String ruleld,
String description,
Si ngl eVal ueProperty primaryProperty,
Si ngl eVal ueProperty dependant Property,
Lookup pri maryLookupVal ue)

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 109

What this rule does is prevent one property from being changed (the "dependant” property) when another property (the
"primary" property) matches a certain value. An example would be the "freeze date/time cannot be changed when the status
is 'frozen". In this case, the dependant property would be the freeze date/time and the primary property would be the status.
The lookup value of "frozen" would be passed in as the lookup value.

Custom Rules

There are situations when custom rules need to be coded. These are for situations too complex for a declarative rule. The
process is as follows:

* Create a class that extends AbstractCustomValidation. Implement one or more of the abstract methods corresponding to
various "events" that may occur with respect to the underlying entity.

» Within any change handler requiring this rule, instantiate a CustomRule passing in the class created above.
For details on the "events" that can be processed by the custom validation, please refer to the JavaDocs.

When coding a CustomValidation that will be used by a CustomRule. It is important to understand when these events
fire.

» Eager Validations fire "immediately" when the underlying entity is changed (either via delete, setDTO(), or
createEntity()).
validateAdd() fires only on an add

validateChange() fires only when an existing entity is changed
validateAddOrChange fires in addition to either validateAdd() or validateChange()
validateDelete fires when the entity is being deleted

validateRegisteredChange() fires when "some other object is changed" (like a child). This can be any random entity
instance that feels like notifying you regarding a change of state or, more commonly, the framework automatically
registers a change when a child collection is manipulated. Your custom code can determine if a change has been made
to a child it's interested in by calling the getChangeToList() method on the change detail passed in. You just pass in the
class of your child collection and it passes back changes, if any.

» Lazy Validations fire when a "coherent set of changes" is complete.
validateSave() can be used to implement validations that needs to be performed "at the end" of some set of changes.
By default a set of changes is both started and saved within individual calls to setDTO or createBusinessEntity, etc.
However, this can be controlled programmatically by calling the startChanges() and saveChanges() methods that are
available from within all business objects (change handlers, entities, components, etc). Any type of change (add, change,
deleted, register change) will trigger validateSave().

Conditions

The rules wouldn't be very useful if all you could do was always protect or require properties. This behavior is usually based
on conditions. Rules take as input one or more Conditions (e.g. objects implementing the Condition interface). Right now,
there are several conditions that can be used:

» Equals. This condition can compare properties to each other or to constants (lookup values, Strings, etc). Likewise, the
size of a collection can be compared using Equals (e.g. determine personNames' size equals 0 would mean there are no
names for a person). Finally, null values can be tested using a special constant value "Constant. NULL".

* Not. This is the basic boolean operator that can change the value of other conditions.

* And. This is the basic boolean operator that takes two child condtions, and return true if each of them are true. This is
evaluated "lazily" and won't even evaluate the second condition if the first is false (a performance enhancement).

» Or. This is the basic boolean operator that takes two child conditions, and return true if either of them are true. This is
evaluated "lazily" and won't even evaluate the second condition if the first is true (a performance enhancement).

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 110

» GreaterThan / Greater ThanOr Equals. This evaluates whether one property/constant is greater than (or greater than or
equal to) to another property/constant.

» LessThan/LessThanOrEquals. This evaluates whether one property/constant is less than (or less than or equal to) to
another property/constant.

» Contains. These are conditions for a collection of children- at least one element has condition x, at most 2 elements
match condition y, etc). The child condition's properties should be referenced from the point-of-view of the child row.

Each of these conditions is accessible from the corresponding property or condition. There should be no reason in normal
development to use the constructors for the conditions above. Instead, you could say, for instance
Condi tion isPrimaryName = PersonNane. properties.isPrimaryNane.isTrue();

or

Condi tion isAlias
= PersonNane. properties. naneType. i sEqual To(NanmeTypeLookup. ALI AS) ;

or

Condi ti on greaterThan
= PersonNane. properties. sequence. i sG eat er Than(Bi gl nt eger . ZERO) ;

or

Condi ti on hasOnePri mar yNane
= Person. properties. nanes. cont ai nsAt Least One(i sPri mar yNane) ;

or

Condition notAlias = isAlias.not();

Change Handler Helpers for Maintenance Objects

The Business Object based Maintenance objects have some standard validations. The Helper classes described below will
help in reusing the validation code. The Change Handler Helpers have been created for the following objects:

* BO based MO
» Standard MO Log table
» Standard MO Log Parameter table

BO-Based MO

The com spl wg. base. api . mai nt enanceCbj ect . BOBasedMai nt enanceCbj ect CHandl er Hel per can be used for the BO-
based MO Change Handler validations.

The following standard validations are provided by this helper class:
* The Business Object cannot be changed

* The Business Object must be for the correct MO

 Status is required if the Business Object has a lifecycle

» Status must be a valid lifecycle status

The following methods are provided by this helper class:

* Adding log entries for entity creation and entity status change (if the MO does not already have a transition algorithm)

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 111

To use the validations, create an instance of the helper class in the MO Change Handler and get the validation rules from the
Helper, as illustrated in the following sample code.

Change Handler Sample Code

public class QutboundCrossRef erenceMessage_CHandl er ext ends Abstract ChangeHandl er <Qut boundCr ossRef er enceMessa

{

private final BOBasedMi nt enanceQbj ect CHandl er Hel per hel per = new BOBasedMai nt enanceOhj ect CHandl er Hel per <
Qut boundCr ossRef er enceMessage> (new Mai nt enanceObj ect _| d(" O2- OXREFMSG') ,

Qut boundCr ossRef er enceMessage. properti es,

Qut boundCr ossRef er enceMessage. properti es. | ookOnBusi nessQject());

publ i ¢ void handl eAddOr Change (Qut boundCr ossRef er enceMessage changedQut boundCr ossRef er enceMessage,
Dat aTr ansf er Cbj ect < Qut boundCr ossRef er enceMessage> ol dDTO)

{

hel per. handl eAddOr Change(changedQut boundCr ossRef er enceMessage, ol dDTO);
}

public ValidationRule[] getValidationRules()

return hel per. getValidationRul es();

}
}

Change Handler Junit Test Code

public void testBoCannot BeChanged()

{

st art Changes();

Qut boundCr ossRef er enceMessage_DTO dt o = (Qut boundCr ossRef er enceMessage_DTO)

cr eat eDTQ(Qut boundCr ossRef er enceMessage. cl ass) ;

dt 0. set Busi nessCbj ect | d(new Busi nessObj ect _| d(" ZZ- OXREFBQO")) ;

set Dt oDat a(dt o) ;

Qut boundCr ossRef er enceMessage out boundCr ossRef erenceMessage = dto. neweEntity();
saveChanges();

try

{

dt 0. set Busi nessCbj ect | d(new Busi nessObj ect _|d("ZzZ- CASE")) ;
out boundCr ossRef er enceMessage. set DTQ(dt 0) ;

saveChanges();

fail ("An error should have been thrown");

}

catch (ApplicationError e)

veri fyVi ol at edRul e(BOBasedMai nt enanceObj ect CHandl er Hel per . boCannot BeChanged(
Qut boundCr ossRef er enceMessage. properties, Qut boundCrossRef erenceMessage. properties
.| ookOnBusi nessoj ect()), e);

}
}

Standard MO Log Table

The com spl wg. base. api . mai nt enancebj ect . Mai nt enanceLogCHandl er Hel per can be used for the Standard MO
Log Table Change Handler validations.

The following standard validations are provided by this helper class:

» Log entry cannot be deleted if of type:Created, Exception, Status Transition, Status Transition Error, System, User
Details

* Validates the characteristic value possibly stored on the log entry
* Long description or message are required, but not both
» User details must provide long description

The following default methods for Add are provided by this helper class:

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 112

* Log dateTime to system date time

e User to current system user

* Log sequence to next highest number

» Status to the parent entity's status (will warn if specified input differs from parent status)

To use the validations, create an instance of the helper class in the MO Change Handler and get the validation rules from the
Helper. First you must create a new Characteristic Entity in the Characteristic Entity Lookup for your object. This entity can
be selected on any Characteristic Type to indicate that that characteristic type can be used in the log messages for this log.
Sample code follows.

Change Handler Sample Code

public class Qut boundCrossRef erenceMessagelLog_CHandl er ext ends Abstract ChangeHandl er <Qut boundCr ossRef er enceMe

private final MintenanceLogCHandl er Hel per hel per = new Mi nt enanceLogCHandl er Hel per <Qut boundCr ossRef er enceMe
Qut boundCr ossRef er enceMessage>(new Mai nt enanceCbj ect | d(" O2-

OXREFMSG'), Qut boundCr ossRef er enceMessagelog. properties,

Qut boundCr ossRef er enceMessagelLog. properti es. | ookOnPar ent Qut boundCr ossRef er enceMessage(),
CharacteristicEntityLookup.constants. OQUTBOUND CROSS REFERENCE_MESSAGE LOG) ;

public voi d prepareToAdd(Dat aTr ansf er Cbj ect <Qut boundCr ossRef er enceMessagelLog> newDTO)

{

hel per. prepar eToAdd(newDTO) ;

public voi d prepareToChange(Qut boundCr ossRef er enceMessagelLog unchangedEntity,
Dat aTr ansf er Cbj ect <Qut boundCr ossRef er enceMessagelLog> newDTO)

{

hel per. prepar eToChange(unchangedEntity, newDTO);
}

public ValidationRule[] getValidationRul es()

{
return hel per.getValidationRul es();
}
}

Change Handler Junit Test Code

public void testLongDescRequiredlfLogTypel sUserDetail s()

{

st art Changes() ;

Qut boundCr ossRef er enceMessage_DTO dt o = (Qut boundCr ossRef er enceMessage_DTO) creat eDTQ(Qut boundCr ossRef er encel
dt 0. set Busi nessCbj ect | d(new Busi nessObj ect _| d(" ZZ- OXREFBQO")) ;

out Xr ef MsgTest . set Dt oDat a(dt o) ;

Qut boundCr ossRef er enceMessage out boundCr ossRef erenceMessage = dto. neweEntity();

Qut boundCr ossRef er enceMessagelLog_DTO out boundCr ossRef er enceMessageLogDt 01 = (Qut boundCr ossRef er enceMessagelog
cr eat eDTQ(Qut boundCr ossRef er enceMessagelog. cl ass) ;

out boundCr ossRef er enceMessagelLogDt 0l. set LogEnt ryType(LogEnt r yTypeLookup. const ant s. USER_DETAI LS) ;

try

{

out boundCr ossRef er enceMessage. get Logs() . add(out boundCr ossRef er enceMessagelLogDt 01, null);
saveChanges();

fail ("An error should have been thrown");

}
catch (ApplicationError e)

verifyVi ol at edRul e(Mai nt enanceLogCHandl er Hel per

.l ongDescri ptionl sRequiredl fLogTypel sUser Det ai | s
(Qut boundCr ossRef er enceMessagelog. properties), e);
}

}

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 113

Standard MO Log Parameter Table

The com spl wg. base. api . mai nt enancebj ect . Mai nt enancelLogPar amet er CHandl er Hel per can be used for the
Standard MO Log Parameter Table Change Handler.

The following standard methods on Add are provided by this helper class:
* Parameter sequence to next highest number

To use the Helper, create an instance of the helper class in the MO Change Handler and get the validation rules from the
Helper, as illustrated in the following sample code.

Change Handler Sample Code

public class Qut boundCr ossRef er enceMessagelogPar anet er _CHandl er
ext ends Abstract ChangeHandl er <Qut boundCr ossRef er enceMessagelogPar anet er >

{

private final MintenanceLogParanet er CHandl er Hel per hel per = new Mi nt enancelLogPar anet er CHandl er Hel per <
Qut boundCr ossRef er enceMessagelLogPar anet er, Qut boundCr ossRef er enceMessagelLog>(new Mai nt enanceCbj ect | d(" O2-
OXREFMSG')

Qut boundCr ossRef er enceMessagelLogPar anet er . properti es,

Qut boundCr ossRef er enceMessagelLogPar anet er . properti es.

| ookOnPar ent Qut boundCr ossRef er enceMessagelLog()) ;

publ ic void prepareToAdd(Dat aTr ansf er Obj ect newDTO)

{
hel per. prepar eToAdd(newDTO) ;

public ValidationRule[] getValidationRules()

return hel per. getValidationRul es();

}
}

Additional Validations

Using Helper Class Validations Only

If only validations from the helper class are required, use the Change Handlers get Val i dati onRul es() method to return
the hel per . get Val i dati onRul es() . This will enforce all the validations in the Helper class on the Change Handler.

Sample code:

public ValidationRule[] getValidationRules() {
return hel per. getValidationRul es();

}

Using Helper and Change Handler Validations

Create an Array of ValidationRules in the get Val i dati onRul es() method of the Change Handler and pass this array to
the hel per . get Val i dati onRul es() method. The Helper class adds the rules passed to it to the standard set to provided
validations.

Sample code:

public ValidationRule[] getValidationRules() {
return hel per.getValidationRul es(<Array of Validation Rul es>);

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 114

Maintaining Business Components

Business Components are business objects having two important characteristics.

» They are non-persistent holders of business logic. That is, they are the place to put business logic not tied to a single
business entity instance (e.g. a single "Account” or "Person".) This makes them analogous to "common routines".

* When allowed, implementations of business components may be replaced at runtime by custom classes implementing the
same business interface. An example of this includes "info" logic.

Creating Business Components

Much like Business Entities, it is necessary to create an implementation (* Impl) class containing the actual logic that is
then processed by the artifact generator. Below is an example that would be created by hand:

/**

* Conmponent used to query for {@ink Person} instances based on various
* predefined criteria.

*

* @Busi nessConmponent
* (cust om zati onRepl aceabl e = fal se)
*/
public class PersonFi nders_| npl
ext ends Generi cBusi nessConponent
i mpl ement s Per sonFi nders

/**

* @aram nanmeType a nanme type
* @eturn count of names by nanme type

*

* @usi nessMet hod (custom zationCallable = true)
*/
public int findCountByNaneType(Lookup nanmeType) ({
Query query = createQuery
(" FROM Per sonNane nane wher e nanme. naneType = :type");
query. bi ndLookup("type", nameType);
return (int) query.listSize();

}

This example shows a "finder" component that is responsible for holding queries related to the "person" entity. These
queries are not related to any particular person because, in that case, they would rightfully belong on the entity
implementation class itself. Our (cooked up) example shows a single method that returns a count of PersonName instances
by name type.

Let's look at various parts of the component:
* @BusinessComponent class annotation.

+ customizationReplaceable attribute specifies whether or not customers can replace this component at runtime. The
default is false. If a component is "replaceable”, its methods are assumed to be "customizationCallable".

* GenericBusinessComponent is extended which gives this class access to framework methods.

» PersonFindersis implemented. This is the name of the generated business interface. Any customized replacement of the
business component would implement this interface as well.

* The business method findCountByNameType. For the method to be exported to the business interface (and therefore
callable by other business objects), it must be public.

* @BusinessMethod is an optional method-level annotation.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 115

» customizationCallable specifies that this method is part of the "supported” API. That is, our customers are entitled
to call this method from their customizations and therefore, we must change this method with great reluctance in
future release.

Component Replacement

Business Components provide a simple extension mechanism where base-package code can be made available to be
replaced by customizations. For this to take place, two things must take place:

* A component is added as described above with the customizationReplaceable annotation attribute set to true.

* A replacement component is created that implements the business interface of the original component and also sets the
replacementComponent attribute to true.

An example, replacement of the PersonFinders component is shown below. Component implementations are registered in
the same order as the "application stack", that is "base" followed by "ccb" then followed by "cm". After the component is
defined in one application, derived applications (higher on the stack) can replace the implementation.

package com abcutilities.cis.custom zations. person;

/**
* @Busi nessConponent
* (repl acenent Conponent = true)
*/
public class Custom zedPer sonFi nder sl npl
ext ends Generi cBusi nessConponent
i mpl ement s PersonFinders {

public Integer findCountByNanmeType(PerOrBusLookup nameType) {
custom zed code ...
}

Calling Components

Business Components are accessed via their business interfaces. Following is an example of how to call the above
component from some other business object:

Per sonFi nders finders = PersonFinders. Factory. newl nstance();
int count = finders.findCount ByNameType(NameTypeLookup. const ants. PRI MARY) ;
| ogger.info(count + " primary nanes found");

Maintaining Maintenance Classes, including collections

Maintaining Services

This defines services available in the system. These include user interface services as well as stand-alone XAl services. Use
this transaction to introduce a new user interface or stand-alone XAl service.

NOTE: For detailed information about service programs, please refer to user document Framework Administration,
XML Application Integration, Setting Up Your XAl Environment, Setting Up Your Registry, Service Program.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 116

Maintaining Foreign Key References

You need to setup foreign key references if you have characteristics whose valid values are defined in another table (e.g., if
you use "foreign key reference" characteristic types).

NOTE: For detailed information about foreign keys, see "Primary and Foreign Keys" in the Oracle Utilities Application
Framework Administration Guide.

Maintaining Lookup Tables

Some special fields are defined as "lookups" in the system. These fields have a predefined set of values for which language-
dependent descriptions are supplied to be displayed in the online system.

NOTE: For detailed information about lookups, please refer to user document Framework Administration, Database
Tools, Defining Look Up Options.

Maintaining Navigation Keys

Each location to which a user can navigate (e.g., transactions, tab pages, tab menus, online help links, etc.) is identified by a
navigation key. A navigation key is a logical identifier for a URL.

NOTE: For detailed information about navigation keys, please refer to user document Framework Administration, User
Interface Tools, Defining Navigation Keys.

Maintaining Navigation Options

Every time a user navigates to a transaction, the system retrieves a navigation option to determine which transaction should
open. Many navigation options are shipped with the base package and cannot be modified as these options support core
functionality, but you may need to add additional navigation options to support your specific business processes.

NOTE: For detailed information about navigation options, please refer to user document Framework Administration,
User Interface Tools, Defining Navigation Options.

Maintaining User Interfaces

The configuration tools allow you to extend the front-end user interface. The main component of this is a Ul Map,
supported by Business Objects and Business Services.

NOTE: For detailed information about user interfaces, please refer to user document Framework Administration,
Configuration Tools.

Maintaining Menus

This metadata represents the root of a menu "tree". A menu contains a list of menu "lines", which, in turn, contains a list of
menu "items". Lines can define navigation keys and/or associated actions, or further submenus.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 117

NOTE: For detailed information about menus, please refer to user document Framework Administration, User Interface
Tools, Defining Menu Options.

Maintaining Application Security

Application security defines how a particular application service is used, namely:
* Which user groups can access the service
* What actions may be performed within the service

NOTE: For detailed information on how to define application security, please refer to user document Framework
Administration, Defining Security & User Options.

Maintaining Ul Components (Translation)

You can use the override fields on some of the system data tables to modify and customize the labels, buttons, titles,

tab names and messages on the standard user interface. This may be helpful to correct minor interface inconsistencies

and inappropriate translations as well as to provide translations for any single fixes that you may have applied to your
environment. (Single fixes release without translation, so you may need to translate any labels and descriptions for new Ul
components or messages.)

You can manually modify the descriptions or translations of the following items:
» Dialog titles

* Transaction titles and tab labels

» Field labels on tab pages

* Button labels

* Messages

Flushing Server and Client Caches

A great deal of information in the user interface changes infrequently, including field labels, menu items, and drop down
lists. In order to avoid accessing the database every time this type of information is required by an end-user, the system
maintains a cache of static information on the web server. Additionally, depending on how you set up the preferences on
your Web browser, these items may also be cached in the browser.

After you make a change to a user interface item, such as a field label, you may need to flush the appropriate cache on the
Web server as well as the client.

NOTE: For information about flushing caches on the Web server, refer to the Caching Overview section in the Defining
General Options chapter of the Oracle Utilities Application Framework Administration documentation.

User Language

You must log in as a user ID that has the same language as the items for which you want to modify the description. For
example, if you want to modify a French message, you must log in with a user ID that is set to use French. The instructions
in the following sections assume that you are logged in with a user ID that has the appropriate language set.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 118

Modifying Dialog Titles

A dialog can be a search window or dialogs that provide additional functionality, such as the Start / Stop Confirmation
Dialog or the Generate Bill dialog.

Home Menu + @® History ~

m Correspondence info Charactenstics Persons Person Portal

ma Q Person Search - Windows Internet Explorer g
I.;:'err.:r Mame I | |

g;r

PersonfBusinesy

®ee

Person hName | PersonID | ID Type | 1D Wumber | Mame Type

in Menu

Dialog Title
To modify a dialog title:
» Navigate to and open the dialog with the title that you want to change.

» Right-click near the top of the dialog and select View Source from the pop-up menu.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 119

Home Menu v & Hitory ~ Person

m Correspondence info Characteristics Persons Person Portal

el 5"‘0'“'-*‘__ € Person Search - Windows Internet Explorer

Ll I Person Name

_j|Person ID

. Person hlame | ?elrsorl ID | ID Type | 1D Mumber | Mame Type

Person Names

Select Al

Main Menu

Create Shartout

Add to Favorites...
Vieye Source % o
Encoding 4

Print...
Print Praview...
Refresh

Person Phones

Export to Microsoft Excel
Send To Bluetooth

Propertizs

View Dialog Source

NOTE: Many dialogs and windows have multiple source files; so if you can't locate the field you are looking for, try
right clicking in a different area (closer to the label you want to modify). For example, if you right-click in the grid area
of the Person Search illustrated above, you will open a different source file. If you already know the name of the field
you want to modify, you can skip this step.

 In the displayed source file, locate the field name that has the value you want to modify. The field for the dialog title is
clearly labelled and the current value of the field is displayed after the hyphen.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 120

Home Meny « .'; History - Person

m Correspondence Info Characie

Person/Business

-::37-,;1; [el & |

[F———————| Fle Edit Format
]

|~

Main Menu

ragnSearchFage

T T pp—
ci/person

(element type="IM'

Person IDs P

Title Field Name

* To modify the field override via the application, navigate to Admin Menu - Database - Field in the Oracle Utilities
Application Framework application.

* When the field search dialog appears, enter the name of the field as it appears in the source.

» Enter an Override Label with a title description to suit your needs and save your changes.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 121

Home Menu » & History ~

B Tovkes Using Fieid

Field Mame I'ITI'LE_GPCPE!FSP <
|

Data Type | Character ﬂ

Ext Data Type o ‘_i!

Predision 30

Scale g

Person Search

!:!erz-anSea‘rdj

Admin Menu

Help Text | Test I

Override Help Text M

Database - Field

* Flush the server and browser caches and verify that the new dialog title appears correctly.

Modifying Transaction Titles and Tab Labels

You can modify the transaction title and or the tab labels that appear on a transaction.

Preferences Help Logout

Home Menu - & History - Account

Main Auto Pay Persons Financial Balances Bill Messages C&C Budget Deposits. Characleristics Alerts Account Portal

Tab Labels Transaction Title account D 4E]

count Auto Pay \/;:"]]ﬂ Hewr EIZIEE; :'l"‘ — [
- End Date | At
Q,
5| Maximum hdraveal Amount
]
= &
£|| Comments
=

Transaction Title and Tab Labels
To modify the transaction title and/or tab labels:

» Navigate to the transaction that has the title and/or tab name you want to modify.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 122

» Right-click in the empty area to the right or left of the tab bar and select View Source from the drop-down menu.

Preferences Help Logout

Home Menu & Hstory « Account

Deposis

View Image
Copy Image
Copy Image Location

Save Image As.., — = — —_—

Email Image.... End Date Auto Pay ID
Sat As Desktop Background....
| View Image Info I
External Account ID | ThiiFramc » | Shaw Only This Frame

Open Frame in Newy Tab

I t Element (Q) : &
Inspeck Element (Q) Open Frame in New Window

[oy
asicm Withdrawal 4 X Inspect Element with Firebug

Reload Frame

Better Bug Keyword. .. Bookpark This Frame &
Save Frame As...

Main Manu

Print Frame...

View Frame Source Q
View Frame Info

View Transaction Title/Tab Source

NOTE: Many dialogs and windows have multiple source files; so if you can't locate the field you are looking for, try
right-clicking in a different area (closer to the label you want to modify). To view the source for the transaction title
and tab bar, right-click directly to the right or left of the tab bar. If you already know the name of the field you want to
modify, you can skip this step.

 In the displayed source file, locate the field name that has the value you want to modify. The fields for the transaction
titles and tab labels are clearly labelled and the current values of the fields are displayed after the hyphens.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 123

Home Menu - & History =

Account

Main = o S L S e 5 2 i S 2 2 :
— -
- @ Source of: http://r it i m mt s ¥ Sy e n e mpaget . - . (- [OJR9
Accol
File Edit Wew Help
Account Auto Pay _ o _ _ o _ ~
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitiomal//EN">
Start Date <html dir="1tr" lang="en-uUs":>
<head>
Auto Pay Source Co <META http-equiv="Content-Type"™ content="text/html; charset=UIF-8">>
ey <title>fAccount Tabs</title>
External Account ID
<=
Expires On B T T T T T T T T T T T T T T T T T e
MName + Prog
5 | Maximum Withdrawa e
] * Prog
= *+ Prog
E || Comments L,
m * Temp
= I
* Templ
+ Tnclmn
& COMMmon
*
* Titles:
*
+ Fah 25!
*
% BL
* ; TLE
* 5 TL
L2 TLEL
* S TL
- R TL
% ¥ TLEL
* §C1 ACCT PRT.
E R R
=+ XML
* Service
(]
<] (2]
Line 22, Col 12

Transaction Title and Tab Field Names

NOTE: Subsystem Name. If you modify the subsystem field description, your changes will appear on every transaction

that is part of the subsystem.

* To modify the field override via the application, navigate to Admin Menu - Database - Field in the Oracle Utilities

Application Framework application.

* When the field search dialog appears, enter the name of the field as it appears in the source.

* Enter an Override Label with a title or tab description to suit your needs and save your changes.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 124

Preferences Help Logout

Home Menu & Hstory - Duplicate Delete

B raves using Fiew

Field Mame I#UTCP-W_TI.BI. Q Owner Base
Character i—]
]
30
Scale]
Levef B8 Cpyhi
Description Auto Pay
2| Java Field Name |autoPay
g L
< i
(=
£
3 Enter Auto Pay detals to update the selected accounts automatic payment information. [_/
 il
- <li»Select Cancel Existing Autopay to expire auto pay for selected account's that currently pay ther bills automatically. e
Help Text Auto pay end date is sat to the current date, <fi> b [Test |
<li=Enter aute pay detals to use when updating selected accounts who wish to pay their bills automatically (e.g., by direct debiter |M
credit card) < fi>
Override Help Text TES-K-
Database - Field

* Flush the server and browser caches and verify that the new field label appears correctly.

Modifying Field Labels on Pages

You can modify field labels that appear on transactions.

Preferences Help Logout

Home Menu - & History - Account

Main Auto Pay Persons Financial Balances Bill Messages - &C Deposits Characteristics Alerts Account Portal

T =
Auto Pay Source Code ':k \ Field Labels |
Expires C

ol

g

= &

% Comments

=

Field Labels

WARNING: Field labels may be reused! A field label may be reused on multiple transactions and tabs. If you override
the field's label, your changes affect all pages and transactions on which that field label appears.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 125

To modify the field labels that appear on transactions:

* Navigate to the transaction that has the field name you want to modify.

* Right-click in an empty area near the label and select View Source from the drop-down menu.

5 Preferences Help Logout
0

Home Menu ~ % History Account
Main Auto Pay Perzons Financial Balances Bill Messages C&acC Budget Deposits Characteristics Alerts Account Portal
Account Account ID G
ey 4 =
Back
End Date
T gload 1
Q, B
Bookmark This Page
Save Page As.,
b Sedect Al |
§ ERT aveal Amo This Frame F| show Only This Frame
= View P Open Frame in New Tab
.% Comments Le Fage :swn'e Open Frame in New Windaw
= View Page [nfo
= Reload Frame
Inspect Element (Q)
Bogkmark This Frame
-i.“:' Inspect Elament with Firebug Save Erame As
Print Frame...
View Frame Source
View Frame Info
View Page Source

NOTE: Many dialogs and windows have multiple source files; so if you can't locate the field you are looking for, try
right-clicking in a different area (closer to the label you want to modify). If you already know the name of the field you
want to modify, you can skip this step.

 In the displayed source file, locate the field name that has the value you want to modify. The fields for the labels are
clearly identified and the current values of the fields are displayed after the hyphens.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 126

@ source of

: http:/fs

Ead
<!DOCTYPE html PUBLIC “-//W3C//DID HTML 4.0 Transitional//EN">
<html dir="lcr" lang="en-U5"> 3
<head>

<META http-equiv="Ccontent-Ivpe" content="text/html; charsec=UIF-2">

-

0 [T

R T T L T T T T T T Lt L T T T T e

i

/uiXSL/tabPages. xsl

+ JsName="'Ma acctinext’')

JsName='ACCT IDV)

Line 20, Col 23

Field Label Names and Values

NOTE: Table-specific Fields. Note that some labels may be specific to the table on which they appear, while other

labels are generic throughout the application. If a field label is specific to a table, the table name appears before the $ in
the field list.

 If the label is table-specific, navigate to Admin Menu - Database - Table in the Oracle Utilities Application Framework
application and search for the name of the table.

Table Name

Description

®
| ®

Table |Desn:ription |

Search for Table

» Navigate to the Table Field tab and scroll to the field whose label you wish to modify.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 127

Preferences Help Logout

Home Menu - & Hitory ~ Delete

Table Ficld Constraints Referred By Constraints

Table Name CI_ACCT_APAY Q Crwner Base

I“:c:s i.‘:":"]ﬂ 10f13 EDEIE:} c'];.. =

Field Mama Eﬁ'ﬁ ACCT_APAY_ID L-L Auto Pay ID Java Field Name accountiutoPayld Omer Basa

Field Special Notes

Admin Menu

Table Field
* Enter an Override Label to suit your needs and save your changes.
+ If the label is not table-specific, navigate to Admin Menu - Database - Field and search for the field name.

* When the field appears, enter an Override Label to suit your needs and save your changes.

Preferences Help Logout

Home Menu - & History = Dupbcate Delste

B oo Using Fed

Character ZI

Account

A0Count

Admin Menu

Help Text Test

Cverride Help Text Test

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 128

Database - Field

* Flush the server and browser caches and verify that the new field label appears correctly.

Modifying Button Labels

Button labels are just like field labels; they are stored in the field table. You can modify button labels just like you can field
labels.

ORACLE Preferences Help Logout

Home Menu - & History -

m Bill Segments Bill Routings Bill Messages Characteristics

|
]
|»'-.c::-.:—: n] 1588939257 ‘:k Garden Equipment Inc - VAT Commercial

Create Date/Time
Completion Date Teme
Bill Segment | Current Amount | Status ikemarks
=
=
&
=
£ Button labels
3
Total Generated Charge Q.00
Bi Generate | | |
B | : | |
Button Labels

To modify button labels:
» Navigate to the transaction that has the button label you want to modify.

» Right-click in an empty area near the label and select View Source from the drop-down menu.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 129

Preferences Help Logout

Home Menu * History

mBm Segments Bill Routings Bill Messages

1583839257 | G

Back

Reload Amount | Status | Remarks

Bookmark This Page
Save Page As...

Main Manu

Select Al y
This Frame P| Show Only This Frame

| Open Frame in New Tab
Open Frame in New Window

View Page Source
View Page Info

e Reload Frame
Inspect Element ()

Bookmark This Frame

iy Inspect Element with Frebug R
Better Bug Keyword... Brint Frame..,
View Frame Source

View Frame Info

Total Generated Charge 0.00

Bill Segment Action | Generate | 11 |

Bl Action |] |

View Page Source

NOTE: Many dialogs and windows have multiple source files; so if you can't locate the field you are looking for, try
right clicking in a different area (closer to the label you want to modify). If you already know the name of the field you
want to modify, you can skip this step.

 In the displayed source file, locate the field name that has the value you want to modify. The fields for the labels are
clearly identified and the current values of the fields are displayed after the hyphens.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 130

Help Logout

History -

4 @) Source of: http: /el wn o m
Fle Edit View Help

P

E - SACCOUNT CONTEX

Main Menu
*

Bill Segment Action

m
=
n
2
5

Field Label Names and Values

» Navigate to Admin Menu - Database - Field in the Oracle Utilities Application Framework application and search for
the field name.

* When the field appears, enter an Override Label to suit your needs and save your changes.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 131

ORACLE Preferences Help Logout

Home Menu - & History - Du

m“ha Using Field

\-\k Owner Bass
%
Character V_l
]
1
0
O
Generate
generate
5]
e
5'-.r: o Text Test
7
| Qverride Help Text Test
Database - Field

* Flush the server and browser caches and verify that the new field label appears correctly.

Modifying Messages

You can modify the message text and description for messages, such as error, warning and validation messages. The
following example shows a validation message:

Microsoft Internet Explorer |

& Tame field missing

& mandatory field has been left blank, Please enter a value and retry wour request,

If vou need support please supply the Fallowing info to syskem suppaort:

Message number: 3, 253
Zall sequence; ;CIPCPMNMA; CIPCPHML; CIPCPERF; CIPZS0LN

Message

To edit messages, you need to know the message category and number. The category is the part of the message number that
appears before the comma. In the example message above, the category is 3. The number is the part of the message number
that appears after the comma. In the example message above, the message number is 253.

To edit the message text or description:
» Navigate to Admin Menu - System - Message.
* Specify the message category in the search dialog.

* Specify the starting message number and click the search icon.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 132

Help Logout

Home

Menu - * i Message

Message Mumber Message Text Owiner
. ' [l
W5 4 | = 253 %1 field missmg Bace 1
iy = it ;
i %1 field not numeric Base |
o To Message Detalls |— [|"
Rl q [= 255 compute overflove at position %1 Base —
5| g | = 258 341 562 field invalid Base
=1
(= N
1] | 4 | = 257 Record not found for %e1 %2 %3 %4 %S Base —
gl .| = - Il
System - Message

» Click the go to button for the message you want to edit. You are transferred to the Details tab for that message.

Preferences Help Logout

& History - Message

253 Cwner Base

%1 field missing

A mandatory field has been left blank. Please enter a value and retry your request. r

Detaided Description

Admin Menu

Customer Spedific Description

Message Details
» Enter the customer specific message text and description as appropriate for your needs.
NOTE: Message Variables. Messages may have one or more variables. Variables are indicated by a percent sign

(%) followed by a number. A value is substituted for the variable before the message is displayed. Do not modify the
message variables and make sure that your custom message contains the same number of variables as the original.

» Save your changes.
If possible, you can attempt to verify that the message was changed correctly. However, it is not always easy to determine
and duplicate the situations where a specific message may appear.

NOTE: For more information about system messages, please refer to user document Framework Administration, User
Interface Tools, Defining System Messages.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 133

Plugging in Algorithms

The following will illustrate the steps to create a new plug-in algorithm. This example will create a new Adhoc
characteristic validation algorithm that is very similar to a delivered plug-in.

Creating Algorithm Spot Implementation Class

Review Algorithm Spot Definition

The algorithm spot definition identifies the purpose of the algorithm spot and the required methods per implementation. It
may also help to look at existing implementations of the relevant algorithm spot.

The relevant algorithm spot in this example is AdhocCharacteristicValueValidationAlgorithmSpot in
com.splwg.base.domain.common.characteristicType.

Create Algorithm Component Implementation

Copy the existing numeric validation plug-in "AdhocDateValidationAlgComp_Impl and name it as "
AdhocDateAgeValidationiiiAlgComp Impl" where iii is your initials.

Modify the annotation to replace the last Date Format soft parameter with two decimal parameters (ageFrom and ageTo).

In addition, modify the validateDateInRange method to check that the age (given date less the system's current date /
365.25) will be greater than the soft parameter ageFrom (if non-zero), and will be less than the ageTo (if non-zero). Make
sure that negative numbers are allowed so that this plug-in can be used to compare against some future "expiration date"
kind of scenarios.

Generate and build the java classes.

NOTE: The various "Adhoc characteristic value validation" algorithms that come with the Oracle Utilities Software
Development Kit are good references for algorithm plug-ins.

Add Algorithm Type

Add a new algorithm type copying most of the entries for ADHV-DTD:
* Algorithm Type: CM ADHV-iiiJ where iii is your initials.
» Description: Validate Date Field (Age)

» Long Description: <Copy ADHV-DTD description here>. The Parameters From Age and To Age are optional
decimals. Thealgorithm will check the" age" (current system date lessthe characteristic date/ 365.25) isnot less
than the From Age (if non-zero) and isnot morethan To Age (if non-zer o).

» Algorithm Entity: Char Type- Adhoc Value Validation
* Program Type: Java

* Program name: com.splwg.cm.domain.common.characteristicType. AdhocDateAgeValidationiiiAlgComp where iii
is your initials.

¢ Parameters:

* Sequence: 1, Parameter: From Date, Required: Not Checked

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 134

* Sequence:

* Sequence:

2, Parameter: To Date, Required: Not Checked
3, Parameter: Date Format1 (Stored Format), Required: Checked

* Sequence: 4, Parameter: Date Format2, Required: Not Checked

* Sequence:
* Sequence:
e Sequence:
¢ Sequence:
* Sequence:

ORACLE

Home Menu - &

5, Parameter: Date Format3, Required: Not Checked
6, Parameter: Date Format4, Required: Not Checked
7, Parameter: Date Format5, Required: Not Checked
8, Parameter: Age From, Required: Not Checked

9, Parameter: Age To, Required: Not Checked

Preferences Help Logout

History Algorithm Type Duplicate Delete

Cwmer Customer Modification

D

1

etaled Desciption

Validate Date Field

This algorithm is used to validate that an ad hoc characteristic value is a date or a dateftime. ~| /

The Parameters From Date and To Date are both optional. The algorithm will check that the date is later than the From Date (if
entered) andfor earlier than the To Date (if entered). If sither value is specified, they must be in the format YYYYMMOD.
These paramsters are ignored if the characteristic value is a date ftime fisld,

The various Date Format parameters are used to control the format in which the dateftime is entered by a user, You must
supply at lsast one format in parameter 3, The other parameters exist in case you alow multiple date formats to be used.
Examples of date formats indude: YVYYMMDD, DDMMAYYY, DD-MM-TYYY, MMDOMYYY, YYY-MM-DD, etc. However, only

three types of date/time formats can be used: VY Y-MM-DD-HH:MI, MM-DD-OYY-HHMISS, and DD-MM-AMYY-HHMISS, V

E A Characteristic Type - Adhoc Validation 1] @

i Java "1]

E Program Name com, sphvg, base. domain.common, characteristicType, AdhocDateAge validationAHPAGComp 'EI \1@

i Sequence Parameter Reguired | Cnwner

%- = 1 From Date O Customer Madification
% ' = 2| ||ToDate O Customer Modification
&= 3| | Date Formatl (Stored Format) = Customer Madification
4 l = 4| | |Date Format2 O Customer Modification
4= | = 5| ||Date Format3 El Customer Madification
4+ I = & | |Date Formats | Custemer Modification
= 7| | |Date Formats | Customer Madification
a4 : — 8| ||From age | Customer Modification
9~ - 3| ||To Age El Customer Medification

Algorithm Type

Add Algorithm

Add a new algorithm as follows:

+ Algorithm: CM EXPDT-iii.

* Description: Date must be a future date
* Algorithm Type: CM ADHV-iiiJ
 Effective Date: 1/1/2005

¢ Parameters:

* Sequence:

1, Parameter: blank

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 135

* Sequence: 2, Parameter: blank

* Sequence: 3, Parameter: YYYY-MM-DD
* Sequence: 4, Parameter: YYYY/MM/DD
¢ Sequence: 5, Parameter: MM-DD-YYYY
* Sequence: 6, Parameter: MM/DD/YYYY
» Sequence: 7, Parameter: MM.DD.YYYY
* Sequence: 8, Parameter: 0.001

* Sequence: 9, Parameter: O

Create References to New Algorithm

Create an ad hoc characteristic type and reference the previously created algorithm on it.
* Char type: CM J-iii

* Description: iii's Adhoc validation test / Expiration Date

* Type of Characteristic Value: Ad hoc Value

+ Validation rule: CM EXPDT -iii

» Allow Search by Char Val: Not Allowed

Characteristic entity: choose Notification Upload Staging.

Maintaining Portals and Zones

The framework system has the dashboard, which can contain a configurable set of zones that show diverse information.
Each product can have its own set of portals for e.g. the Oracle Utilities Customer Care and Billing system has two portals,
the account information page in Control Central and the customer information page apart from the dashboard.

+ Alerts

Last Contact: 03-21-2013 01:29PM
2 Weh Self Service Logins in the
last 60 days

Example Zone

This section describes how to create and implement your own custom zones and use them on the existing portals provided
by the application.

NOTE: Required Background. As a zone developer you should have some familiarity with HTML. Further,
experience with Extensible Markup Language (XML) and XML Stylesheet Language Transform (XSLT) is very useful,
because XSLT technology provides the easiest way to render information returned from service calls.

NOTE: For more information on this topic, please refer to user documents Framework Administration, User Interface
Tools, The Big Picture of Portals and Zones and Setting Up Portals and Zones.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 136

Implementing Custom Zones

Portal zones are implemented as pieces of a single portal HTML page. The portal framework wraps each zone inside a di v
element, and provides a title bar and collapse/expand widgets. Note that zones are not implemented as independent iframes
(though the internals of a zone could be).

Zones can be configured to be initially collapsed when the portal page loads, and then execute a deferred load when they are
expanded. This imposes some technical limitations that are discussed below.

While most zones do not depend on anything other than the current global context keys, some dashboard zones are context-
sensitive, meaning they depend on the keys of the current object being displayed.

There are two components that define a portal zone:
* Metadata to define the zone and its parameters

¢ A Java handler class

Key Dependence

Zones usually depend on one or more of the global context keys. These keys are derived from the global context lookup.
These are lookup values that each application defines for itself. When the web app server boots, the application will
enumerate the available lookup values and make this information available to the browser. For e.g. Oracle Utilities
Customer Care and Billing has ACCT ID, PER _ID and PREM _ID as its global context keys.

In addition, context-sensitive zones can depend on model keys. For performance reasons, zones are reloaded intelligently as
needed. Hence, non-context dashboard zones generally redisplay only when one of the context keys changes.

Creating a New Zone

The simplest way to create a new zone is as follows:
* Use the ServiceZoneHandler

» Create a Page Service containing required data

» Create or reuse XSLT template file

» Define metadata declaring the zone and its parameters

Zone Types

A content zone is associated with a Java class (actually the interface com.splwg.base.web.portal.IPortalZoneHandler)

that is responsible for creating the zone's HTML. When a portal needs to be rendered, the server instantiates a new
handler instance for every zone for the request. In principle the handler could do anything within the bounds of the J2EE
architecture to create its content. In practice, the vast majority of zones need to make a service call and create HTML
from the result. Fortunately the SimpleZoneHandler has been designed to make this easy, and uses XSLT to perform the
transformation from the result data (as an XML document) into HTML. You will usually not need to implement your own
handler classes.

Zone Type Interfaces

The interface for the IPortalZoneHandler is illustrated below:

package com spl wg. base. web. portal ;

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 137

i mport java.io.| CException;
i nport java.io.QutputStream

i mport javax.servlet. Servl et Excepti on;
public interface |Portal ZoneHandl er {
voi d handl eRequest (| User Zone zone, CQutputStream out Streanm) throws Servl et Exception, | CExcepti on;

voi d setParaneter(String paraneterNane, String val ue);

The interface for the IUserZone is illustrated below:

package com spl wg. base. web. portal ;

i nport java.io.| OException;
i mport java.io. QutputStream

i mport javax.servlet. Servl et Cont ext;
i mport javax.servlet.http.HttpServl et Request;

public interface |UserZone {
Ht t pSer vl et Request get Request () ;
Servl et Cont ext get Servl et Cont ext () ;
String getLanguage();
bool ean i sLanguageLTR() ;
String get Sequencel d();
String get Nanme();
voi d em t ZonelLi m t Message(Qut put Stream out) throws | OExcepti on;

void em tGet All (Qutput Stream out) throws | OExcepti on;

NOTE: OutputStream is a binary stream for UTF-8 encoded characters.

Service Zone Type

You will usually use the ServiceZoneHandler, which also requires you to define a page service to provide the underlying
business data for the zone. The ServiceZoneHandler is a powerful, generic handler that is suitable for a large number of
practical zone implementations.

This handler:

» Retrieves a page service buffer and converts it to XML with appropriate localization
» Executes XSLT transform on the result

» Can display errors

 Is performance optimized with stylesheet caching

In a development environment you may want to flush the stylesheet cache. Simply invoke the flushPortalMetalnfo.jsp to
clear it.

The following table describes the ServiceZoneHandler parameters:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 138

Parameter Description
SERVICE The page service to retrieve data, e.g. CILFAFHP
XSLURL Path to XSLT file (for example, WEB-INF/xsl/linkValueGrid.xsl)

Your files should be under /cm/xsl.

ALLOW GET_ALL

Allow display of "Get All" button if the data that you want to show won't
fit in one buffer.

KEY1 - KEY5

Defines required keys. If one of these keys is empty the zone is not
rendered (unless null keys are allowed, see below).

ALLOW_NULL_KEYS

If ALLOW_NULL_KEYS is "Y", only one of the keys is required (any will
work).

The following diagram illustrates example parameters for the service zone type:

Zone CD: CI ALERTS

Zone Handler CD: SERVICE

App Svc: CILCALZP

Zone Width HALF

Value

Tux Service

CILCALZP

X5L URL

WEB-INF xsllinkValueGrid xsl

EEN:

ACCT ID

KEY 2

PER_ID

KEY 3

PREM_ID

ATLTLOW_NULL

i

Example Metadata for Service Zone Type

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 139

Zone Metadata

Maintained on User / My
Preference

User User Porta | Portal Page Application
B 2 Service
Favorites User Zone | Portal Zone Content Zone Type
[~ Zone
[UT Resource Confext- Zone Zone Type
(CGavizationKev] | Sensifive Parameter Parameter
Zone

Portal Zone Metadata

Portals can contain multiple zones, and zones can be used in several portals. Each user can have an independent definition
of zones for his portal, via User Portal and User Zone. A zone requires a zone type class, which takes parameters. In
addition, context-sensitive zones are associated with Ul transactions (tab menus). For security reasons a content zone is
associated with an application service.

Debugging
There are several debugging facilities that help make portal zone development easier.

First, you should get the service working properly before worrying about the zone's HTML. For e.g you can invoke the
service through a browser and see the result (as localized XML) using this URL from a browser already logged-in to the
Oracle Utilities Customer Care and Billing system:

http://<server>:<port>/portal ?type=raw&service=CILFAFHP&ACCT ID=5922116763&PER _ID=...
Note the required parameters are the service and the keys. Don't put quotes around string arguments.

The example below shows the output of the CILCALZP service (http://<server>:<port>/portal?
type=raw&service=CILCALZP&ACCT ID=5922116763):

<?xm version="1.0" encodi ng="UTF-8" ?>
<pageBody acti onFl ag="" net al nf oKey="Cl LCALZP" >
<list nane="ZONE">
<l i st Header/ >
<l i st Body>
<field type="string" name="FlI ELD LABEL"></fi el d>
<field type="string" name="F|l ELD VALUE">Coment Exists On Account</fiel d>
<field type="string" name="TOOLTI P_LBL_FI ELD'>G0 TO ACCOUN LBL</fi el d>
<field type="bool ean" nane="CH LD_ROW >f al se</fi el d>
<field type="string" nanme="SORT_KEY">ACCT</fi el d>
<field type="string" nanme="NAVI GATI ON_KEY" >account Mai nt</fi el d>
<field type="string" nanme="MENU NAME'></fi el d>
<list name="KEY">
<l'i st Header/ >
<l i st Body>
<field type="string" name="KEY_NAME">ACCT_| D</fi el d>

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 140

<field type="string" nanme="KEY_VALUE">5922116763</fi el d>
</li st Body>
</list>
</li st Body>
<l i st Body>
<field type="string" name="Fl ELD LABEL"></fi el d>
<field type="string" name="FI ELD_VALUE">Account used in Billing test Plan</field>
<field type="string" nane="TOOLTI P_LBL_FI ELD'>G0 TO ACCOUN LBL</fi el d>
<field type="bool ean" nane="CH LD_ROW >f al se</fi el d>
<field type="string" name="SORT_KEY">ACCALT</fi el d>
<field type="string" name="NAVI GATI ON_KEY" >account Mai nt: 9</fi el d>
<field type="string" name="MENU_NAME"'></fi el d>
<list nane="KEY">
<l i st Header/ >
<l i st Body>
<field type="string" name="KEY_NAME">ACCT_I| D</fi el d>
<field type="string" nanme="KEY_VALUE"'>5922116763</fi el d>
</li st Body>
</list>
</li st Body>
<l'i st Body>
<field type="string" name="F|I ELD LABEL"></fi el d>
<field type="string" nanme="Fl ELD_VALUE">Cabl e Custoner</fiel d>
<field type="string" name="TOOLTI P_LBL_FI ELD'>G0 TO SERVI C LBL</fi el d>
<field type="bool ean" nane="CH LD_ROW >f al se</fi el d>
<field type="string" nanme="SORT_KEY">SATYPE</fi el d>
<field type="string" name="NAVI GATI ON_KEY" >saMai nt</fi el d>
<field type="string" nanme="MENU NAME'></fi el d>
<list name="KEY">
<l i st Header/ >
<l i st Body>
<field type="string" name="KEY_NAME">ACCT_| D</fi el d>
<field type="string" name="KEY_VALUE"'>5922116763</fi el d>
</li st Body>
</list>
</li st Body>

S <list>
</ pageBody>

Simple Example: LinkValueGrid

The LinkValueGrid is a generic XSLT template that takes a standard copybook structure and creates an HTML table of
clickable links. It uses a standard include.xsl file. As an example, consider the Alert grid.

Alerts [-
Last Conkact: 03-21-2003 01:29PM

2 Web Self Service Login in the last 60
days

Alerts Zone

XSLT File (/WEB-INF/xsl/linkValueGrid.xsl)

The XSLT transform extracts fields by name from the service buffer XML document, and injects them into the HTML
output.

Field Role

FIELD_VALUE Supplies displayed text.
NAVIGATION_KEY Provides navigation option.

KEY List of up to six context keys.
CHILD_ROW Boolean that forces a slight left-indent.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 141

The LabelValueGrid is similar, but it uses MENU NAME to define the desired context menu.
(Reuse directly).

<?xm version="1.0" encodi ng="UTF-8" ?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSLTr ansf or n{' >
<xsl : out put method="htm" />
<xsl :strip-space el enents="*" />
<xsl : par am nane="sequencel d" />
<xsl : param name="servi ce" />
<xsl :include href="include.xsl" />
<xsl :include href="val ueGidl nclude.xsl" />
<xsl:tenplate match="1i st Body" >
<xsl :vari abl e nane="navKey" sel ect="fi el d[@anme=" NAVI GATI ON_KEY']" />
<xsl : choose>
<xsl :when test="string-|ength($navkey) > 0">
<xsl :vari abl e name="oncl i ck">
<xsl : text />handl eGot oCont ext (' <xsl : val ue-of sel ect ="$navKey"/>' <xsl :text />
<xsl:cal |l -tenpl ate name="enmnit Keys" />
<xsl:text />)<xsl:text />
</ xsl : vari abl e>
<tr>
<xsl :vari abl e nanme="| abel ">
<xsl:call-tenplate nane="title" />
</ xsl :vari abl e>
<xsl:call-tenpl ate name="rowd ass" />
<xsl:call-tenpl ate name="Ii nkVal ueCel | ">
<xsl : w t h- par am nanme="val ue" sel ect="fi el d[@ane="' Fl ELD VALUE 1" />
<xsl : wi t h- param nane="oncl i ck" sel ect ="$onclick" />
<xsl : wi t h- param nane="i ndent" sel ect="fiel d[@ane=' CH LD ROV]" />
<xsl : wi t h- param name="1 abel " sel ect =" $l abel " />
</ xsl:call-tenpl at e>
</tr>
</ xsl : when>
<xsl : ot herw se>
<xsl:call-tenpl ate nane="val ueCel | ">
<xsl :wit h- param nane="val ue" sel ect="fiel d[@anme='FI ELD_ VALUE' |" />
<xsl:with-param name="i ndent" sel ect="fiel d[@ane='"CH LD ROWN]" />
</ xsl:call-tenpl at e>
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl:tenpl at e>
</ xsl : styl esheet >

XML Meta Info
The following excerpt shows the XML Meta Info for the link value grid

<?xm version="1.0"7?>
<page service="Cl LCALZP" >
<pageHeader >
<bool ean nane="PAGE _READ SW/>
<string name="ACCT_| D' size="10"/>
<string nane="PER_|D' size="10"/>
<string nanme="PREM | D' size="10"/>
<string name="LAST_KEY_COVBI NATI ON' size="100"/>
</ pageHeader >
<pageBody>
<list nanme="ZONE" size="60">
<l i st Header | ast|ndex="ZONE_COLL_CNT"></|i st Header >
<l i st Body>
<string name="F|I ELD_LABEL" size="50"/>
<string name="Fl ELD VALUE" size="254"/>
<string name="TOOLTI P_LBL_FI ELD" size="18"/>
<bool ean nanme="CHI LD ROW/ >
<string name="SORT_KEY" size="30"/>
<string name="NAVI GATI ON_KEY" size="30"/>
<string name="MENU_NAME" size="30"/>
<list name="KEY" size="6">

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 142

<listHeader |astlndex="KEY_COLL_CNT"></|i st Header >

<l i st Body>
<string name="KEY_NAME" size="18"/>
<string nanme="KEY_VALUE" size="30"/>

</li st Body>

<list>
</Ili st Body>
</list>
</ pageBody
</ page>

Another Example: accountFinancialHistory

Zones for regular grids are not generic, but do contain a number of common components. Clicking a column header sorts
that column, according to its data type (string, number, date).

Account Financial History =
Arrears Date Financial Transaction Type Current Amount Current Balance | Payoff Amount Payoff Balance
S| Eill Segment +20.89 $C|,E|E|.] 40,00
152 | 04-03-2003 Pay Segment $-15.39 $-20.89| $-20,689
¥ | 03-17-2003 Pay Segment $-5.50 $-5.50 : $-5.50
=¥ | 03-06-2003 Pay Segment $-493.86 $0.DD% 40,00
=5 | 07-03-2002 Bill Segment $177.42 $498.865 12 $493,86

Example Account Financial History Grid

XSLT File ((WEB-INF/xsl/accountFinancialHistory.xsl)
The XSLT transform "pulls" data from the XML result document into HTML by name-matching.

In examining the XSLT file, note the split between header/data rows. You can see how the metainfo defining the data types
for the columns is introduced, via the numberLabelCell and dateLabelCell. You can see that the XSLT file minimizes
explicit formatting (for example, of column widths), preferring to let the browser lay things out as it sees fit.

<?xm version="1.0" encodi ng="UTF-8" ?>
<xsl : styl esheet version="1.0" xm ns:xsl="http://ww. w3. org/ 1999/ XSLTr ansf or n{' >
<xsl :out put method="htm" />
<xsl :strip-space el enents="*" />
<xsl : par am nanme="sequencel d" />
<xsl :include href="include.xsl" />
<xsl:tenplate match="/">
<xsl:variable nane="list" sel ect="/pageBody/Ilist[@anme="ACCT_FT_HI ST']/Ii stBody" />
<xsl:if test="count($list) > 0">
<t abl e cl ass="dat aTabl e" cel | paddi ng="2" cel | spaci ng="0">
<tr class="zoneG i dLabel ">
<xsl:call-tenpl ate name="emptyCel | " />
<xsl:call-tenpl ate name="dat eLabel Cel | ">
<xsl : wi t h- param nane="key" sel ect="'$ARS DT' " />
</xsl:call-tenplate>
<xsl:call-tenpl ate name="I abel Cel | ">
<xsl : wi t h- par am nanme="key" sel ect=""'$FT_TYPE FLG " />
</ xsl:call-tenpl at e>
<xsl:call-tenpl at e name="nunber Label Cel | ">
<xsl : w t h- par am nanme="key" sel ect=""'Cl _FT$CUR AMI" " />
</ xsl:call-tenpl ate>
<xsl:call-tenpl at e name="nunber Label Cel | ">
<xsl : wi t h- param nane="key" sel ect ="' $CURRENT_BALAN WRK' " />
</ xsl:call-tenpl at e>
<xsl:call-tenpl at e name="nunber Label Cel | ">
<xsl : wi t h- par am nane="key" sel ect=""'Cl _FT$TOT_AMI" " />
</ xsl:call-tenpl ate>
<xsl:call-tenpl ate nane="nunber Label Cel | ">
<xsl : wi t h- par am nane="key" sel ect ="' $DERI VED_ AMI_WRK' " />
</ xsl:call-tenpl ate>

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 143

</

</tr>

<xsl : appl y-tenpl ates select="$list" />
</t abl e>
xsl:if>

</ xsl:tenpl at e>

<xsl

:tenpl ate match="1i st Body" >

<xsl :vari abl e nane="fi nanci al Transacti onType" >

</

<xsl : val ue-of sel ect="field[@anme=' FT_TYPE FLG " />
xsl :vari abl e>

<xsl :vari abl e name="payEvent|d">

</

<xsl :val ue-of select="field @anme='PAY EVENT ID 1" />
xsl :vari abl e>

<xsl :vari abl e nane="parent|d">

</

<xsl : val ue-of sel ect="field[@anme=" PARENT_ID]" />
xsl :vari abl e>

<xsl :vari abl e nane="si bl i ngl d">

</
<t

set s="

</

<xsl :val ue-of select="field @ame='SIBLINGID]" />
xsl :vari abl e>
r>
<xsl:attribute name="position">
<xsl : val ue-of select="position()" />
</xsl:attribute>
<xsl:call-tenpl ate nane="rowC ass" />
<td class="gridTd" w dth="1">
<ing src="/inmages/goto_smgif" xsl:use-attribute-

i mgeBut t on" oncl i ck="handl eAccount Fi nanci al Hi st oryCont ext (' {$fi nanci al Transacti onType}', '{$payEventld

</td>
<xsl :vari abl e name="current Amount" sel ect="fi el d[@ane=' CUR_AMI" | " />
<xsl :vari abl e nane="current Bal ance" sel ect="fiel d[@anme='CUR BAL']" />
<xsl :vari abl e nane="payof f Anount" sel ect="fiel d[@anme=' TOT_AMI" " />
<xsl : vari abl e name="payof f Bal ance" sel ect="fi el d[@anme=" TOT_BAL']" />
<xsl:call-tenpl ate name="dateCel | ">

<xsl : wi t h- par am nanme="val ue" sel ect="fi el d[@anme="' ARS DT']" />
</ xsl:call-tenpl at e>
<xsl:call-tenpl ate nanme="val ueCel | ">

<xsl : w t h- par am name="val ue" sel ect="fi el d[@anme='DESCR |" />
</xsl:call-tenpl ate>
<xsl:call-tenpl ate name="nunber Cel | ">

<xsl : wi t h- par am nane="val ue" sel ect ="$current Amount" />
</ xsl:call-tenpl at e>
<xsl:call-tenpl ate name="nunber Cel | ">

<xsl : wi t h- param nane="val ue" sel ect ="$current Bal ance" />
</ xsl:call-tenpl at e>
<xsl:call-tenpl ate nane="nunber Cel | ">

<xsl : wi t h- par am name="val ue" sel ect =" $payof f Amount " />

<xsl : wi t h- par am nanme="di med" sel ect ="$current Amount = $payof f Amount" />
</ xsl:call-tenpl at e>
<xsl:call-tenpl ate name="nunber Cel | ">

<xsl : wi t h- par am nanme="val ue" sel ect =" $payof f Bal ance" />

<xsl : wi t h- par am nanme="di med" sel ect =" $current Bal ance = $payof f Bal ance" />
</ xsl:call-tenpl at e>
tr>

<script type="text/javascript" defer="defer">

function handl eAccount Fi nanci al Hi st oryCont ext (fi nanci al Transacti onType, payEventld, parentld,
switch (financial Transacti onType) {

case 'PS
case 'PX :
handl eGot oCont ext (' paynent Event Mai nt', ' PAY_EVENT_ID , payEventld);
br eak;
case 'BS
case 'BX :
handl eGot oContext (" bill Maint', 'BILL_ID, parentld);
br eak;
case 'AD

case ' AX {
handl eCGot oCont ext (' adj ustment Maint', 'ADJ_ID, siblingld);
br eak;

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 144

sib

</script>
</ xsl:tenpl at e>
</ xsl : styl esheet >

XML Metainfo

The following excerpt shows the XML Meta Info for the Account Financial History.

<?xm version="1.0"7?>
<page servi ce="Cl LFAFHP" >
<pageHeader >
<bool ean nane="PAGE_READ SW/>
<string nane="ACCT_I D' size="10"/>
<bool ean nane="LIM TED_SW/ >
</ pageHeader >
<pageBody>
<string name="ENTI TY_NAMVE" size="64"/>
<string name="ACCT_I|I D' size="10"/>
<list name="ACCT_FT_HI ST" size="25" service="Cl LFAFHL" >
<l i st Header/ >
<string nanme="ACCT_I D' size="10"/>
<bool ean nane="LI M TED_SW/ >
<string name="LAST_PARENT_I D' size="14"/>
<dat e name="LAST_ARS DT"/>
<string name="LAST_CURRENCY_CD' size="3"/>
<string nane="LAST_FT_TYPE FLG' size="2"/>
<money nanme="LAST_CUR _AMI" preci si on="15" scal e="2"/>
<nmoney nane="LAST_TOT_AMI" precision="15" scal e="2"/>
<money nane="LAST_CUR BAL" precision="15" scal e="2"/>
<money name="LAST_TOT_BAL" preci sion="15" scal e="2"/>
</li st Header >
<l i st Body>
<string name="ACCT_|I D' size="10"/>
<dat e name="ARS_DT"/>
<string name="PARENT_I D' size="14"/>
<string name="PAY_EVENT_| D' size="12"/>
<string nane="SIBLING I D' size="12"/>
<string name="FT_TYPE_FLG' size="2"/>
<string name="DESCR' size="50"/>
<money nanme="CUR_AMI" preci si on="15" scal e="2"/>
<money name="TOT_AMI" preci si on="15" scal e="2"/>
<money nanme="CUR _BAL" precision="15" scal e="2"/>
<money nane="TOT_BAL" precision="15" scal e="2"/>
<currency tuxedo="CURRENCY_CD'/ >
</li st Body>
</list>
</ pageBody>
</ page>

The Service Data Buffer

The following example output shows the Account Financial History Service data buffer converted to XML.

<?xm version="1.0" encodi ng="UTF-8" ?>
<pageBody acti onFl ag="" net al nf oKey="Cl LFAFHP" >
<field type="string" name="ENTI TY_NAME">Brazil, Mark J - Commercial </fiel d>
<field type="string" name="ACCT | D'>5922116763</fi el d>
<list nanme="ACCT_FT_H ST" service="Cl LFAFHL" >
<l i st Header acti onFl ag="" hasMoreRows="true" al ert Rowl ndex="0">
<field type="string" name="ACCT_| D'>5922116763</fi el d>
<field type="bool ean" name="LI M TED_SW >f al se</fi el d>
<field type="string" name="LAST_PARENT_ | D'>592211607251</fi el d>
<field type="date" nane="LAST_ARS DT">1998-02-16</fi el d>

Oracle Utilities Application Framework Software Development Kit Developer's Guide 145

<field type="string" nanme="LAST_CURRENCY_CD'>USD</fi el d>
<field type="string" name="LAST _FT_TYPE FLG'>PS</fi el d>
<field type="noney" nanme="LAST_CUR AMI">-159. 33</fi el d>
<field type="npney" nanme="LAST_TOT_ AMI">-159. 33</fi el d>
<field type="noney" nanme="LAST_CUR BAL">0.00</fiel d>
<field type="noney" nane="LAST TOT BAL">0.00</fi el d>

</li st Header >

<l'i st Body actionFl ag="">
<field type="string" name="ACCT_| D'>5922116763</fi el d>
<field type="date" nane="ARS DT"></fiel d>
<field type="string" name="PARENT_| D'>592211609883</fi el d>
<field type="string" name="PAY_EVENT_| D'></fiel d>
<field type="string" name="SIBLI NG | D'>592211683162</fi el d>
<field type="string" name="FT_TYPE_FLG >BS</fi el d>
<field type="string" name="DESCR'>Bi || Segnent</field>
<field type="noney" nanme="CUR _AMI">177.42</field>
<field type="noney" name="TOI _AMI">177.42</fi el d>
<field type="noney" nanme="CUR _BAL">-5.50</fiel d>
<field type="noney" nane="TOI_BAL">-5.50</fi el d>
<field type="currency" nane="CURRENCY_CD'>USD</fi el d>

</li st Body>

<l i st Body actionFl ag="">
<field type="string" nanme="ACCT_I| D'>5922116763</fi el d>
<field type="date" nane="ARS DT">2003-03-17</fiel d>
<field type="string" nanme="PARENT_| D'>592211687290</fi el d>
<field type="string" nanme="PAY_EVENT | D'>592211628707</fi el d>
<field type="string" name="SIBLI NG | D'>592211605468</fi el d>
<field type="string" name="FT_TYPE FLG' >PS</fi el d>
<field type="string" name="DESCR'>Pay Segnent</fiel d>
<field type="noney" nanme="CUR AMI">-5. 50</fiel d>
<field type="noney" nanme="TOI_AMI">-5.50</fiel d>
<field type="noney" name="CUR BAL">-182.92</fiel d>
<field type="noney" nanme="TOI_BAL">-182.92</fiel d>
<field type="currency" nanme="CURRENCY_CD'>USD</fi el d>

</li st Body>

</list>
</ pageBody>

XSLT Debugging

There are some techniques to help debug your XSLT files. Malformed XSLT will cause error messages to appear in the
WebLogic console. In addition, you can test the layout of a portal zone in isolation using this URL from a browser that is
logged-in to the Oracle Utilities Customer Care and Billing system:

http:<server>:<port>/portal ?type=xslTest&service=CILCALZP&xslURL=/WEB-INF/xsl/linkValueGrid.xsl&ACCT _
ID=5922116763

(Ignore any JavaScript errors)

The important parameters are the service, the xslURL, and the service keys.

HTML Standards

Since portal zones are simply di v elements within a single HTML page, they must co-exist harmoniously (for example,
don't assume HTML IDs are unique).

Here are some tips to avoid problems:

Avoid hard-coding sizes (e.g. widths). It's best to let the browser manage the resizing of zones when the browser window is
resized by the user. One tip: Use width 100% for tables and divs.

There is an IE Bug with JavaScript in documents loaded after the main page has loaded, so-called deferred loading. To
support deferred loading, JavaScript tags must use the defer attribute:

<script type="text/javascript" defer="defer">

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 146

Further, such JavaScript code should appear at the bottom of the zone. Refer to the existing XSLT files for examples.

Rely on the standard Oracle Utilities Customer Care and Billing cascading style sheets (cisDisabled.css), which are
automatically loaded in the portal page. Some useful style classes are "normal", "label", and "biggerText".

Since an HTML page provides a single global namespace for widget IDs, avoid hard-coding HTML IDs. If you absolutely
must, you may want to make use of the sequencel d XSLT template variable, which provides a unique ID to every zone
when it renders.

Maintaining Background Processes

Maintaining Background Processes Overview

Each new background processes require the creation of two new classes: a BatchJob and a ThreadWorker. These classes
fit into the "master-worker" pattern used by the background process runtime infrastructure to overcome the throughput
limitations encountered by single-threaded processes. By splitting work among many concurrent threads often on multiple
physical nodes background processes can achieve excellent scalability and react to changing work demands without
additional programming. In this pattern:

» A BatchlJob is responsible for determining the work to be processed for a batch run and then splitting that work into
pieces that each ThreadWorker will process. When running a single process, a single BatchJob object is instantiated by
the framework. The framework then makes calls to the BatchJob instance at the appropriate time. One such set of calls
to the BatchJob instance is to return to the framework a collection of ThreadWork instances that will be distributed for
execution.

» A ThreadWorker is responsible for processing a single ThreadWork instance for a run. Within the ThreadWork there are
many WorkUnits representing the fine-grained units of work to be processed. In many cases the WorkUnits represent
a complete database transaction, for example, a bill being created for an account. Whether or not the ThreadWorker
executes on the same computer as other ThreadWorkers or the BatchJob that created its work is left as a configuration
choice to be made at runtime. Within a single process, there may be many ThreadWorker objects. In general, each
ThreadWorker instantiated in a batch run has a corresponding row in the Batch Instance table. The Batch Instance rows
provide persistent state that is needed for the ThreadWorkers to operate correctly in failure/restart situations.

BatchJob

Creates

¢ Work

- -
ThreadWorkUnits
Consumes

Work

ThreadWorker ThreadWorker ThreadWorker

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 147

Creating a BatchJob

A BatchlJob class is responsible for determining what work needs to be done within the run and splitting the work among
ThreadWorkers.

The BatchJob Annotation

Each BatchJob class must declare a BatchJob annotation that specifies important attributes of the job. An example is shown
below:

@Bat chJob (rerunnable = fal se,

mul ti Threaded = true,

nodul es={t odo},

soft Paraneters = { @Bat chJobSoft Paranet er
(nane=QUTPUT- DI R, type=string) },

toDoCreati on = @oDoCreation (drill KeyEntity = user,
sortKeys = {last Nanme, firstNane},

nessagePar aneters = {firstNane, |astNanme}

)
)

The annotation declares if the job can be rerun, supports more than one thread of operation, the modules that the job belongs
to, its nonstandard runtime parameters and the details of how "ToDo" entries should be created in the case of errors. When
not specified in the annotation, default values will be used.

Creating JobWork

The most important goal of a BatchJob class is to return an instance of JobWork describing what work should be done
(ThreadWorkUnits) and have that work split into manageable chunks (ThreadWork) that can be processed by a single
ThreadWorker.

Most commonly, ThreadWorkUnits contain only the ID values of the entities to be processed. For example, one can
envision a process that performs an operation on a set of accounts. In general, one would expect that each ThreadWorkUnit
would contain a single Accountld. The ThreadWorker objects would then be constructed in such a way that when asked to
execute for a ThreadWorkUnit it would pull out the embedded Accountld and then perform the required business function.

There are convenience methods available from the AbstractBatchJob that make it easier to create JobWork instances. For
example, the createJobWorkForEntityQuery(Query) method will accept a query returning BusinessEntity instances and
create a JobWork instance containing the appropriate number of ThreadWork instances each containing (notwithstanding
rounding) the same number of ThreadWorkUnits.

Declaring a ThreadWorker Class

It is the responsibility of the BatchJob to declare what class defines the ThreadWorkers that should perform the work. By
returning a Class instance rather than ThreadWorker instances, the framework controls ThreadWorker instantiation which
may occur on a different JVM than the one that the BatchJob instance resides.

Creating a ThreadWorker

The ThreadWorker performs the "heavy lifting" of a batch process. For a given run, there will ThreadWorkers created equal
in number to the "thread count" parameter provided when a process is requested.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 148

Initializing ThreadWork

Each ThreadWorker instance can expect to have its initializeThreadWork() method called once by the framework before
any actual work is to be performed. This method may be implemented to do any setup necessary for that thread's execution,
most commonly output files opened or variables initialized.

WARNING: It is very important that any setup necessary to execute a WorkUnit is done here and not in the creation

of JobWork, this includes accessing batch parameters. There is no guarantee that static variables set at the time of
JobWork creation will be available at this time. The framework may be calling ThreadWork in a different process from
the creation of JobWork.

Executing a WorkUnit

The ThreadWorker can expect that its executeWorkUnit method will be called once for each ThreadWorkUnit that that
ThreadWorker will process. For example, if the batch process will act upon 10,000 accounts and the process is submitted
with a ThreadCount=10, we can expect that there are 10 ThreadWorkers created by the framework and each worker will
have its executeWorkUnit method called by the framework for each of the 1,000 ThreadWorkUnits allocated to that thread.

Finalizing ThreadWork

Each ThreadWorker instance can expect to have its finalizeThreadWork() method called once after all ThreadWorkUnits
have been processed. This gives the opportunity to close any open files or to do any other "tear down" processing for the
ThreadWorker.

Choosing a ThreadExecutionStrategy

ThreadWork instances need to provide a strategy defining the execution policies for its work. That is, how the work for a
thread will be processed. The interface that is implemented is ThreadExecutionStrategy. The most important aspect of this is
how exceptions will be treated with respect to transactions.

» Should all the ThreadWorkUnits be wrapped in a single transaction with a single rollback on an exception?
* Should each ThreadWorkUnit be in its own transaction?

* Should the framework attempt to process many ThreadWorkUnits within a single transaction?

» If an exception occurs should the framework "back up" and reprocess the successful units?

* In general, new background processes are expected to chose from existing instances of ThreadExecutionStrategy, not
create new ones. Please scan for existing implementations of ThreadExecutionStrategy.

Building the Application Viewer

Creating Table XMLs

Run batch process FIAVGTBL.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 149

Creating MO XMLs

Run batch process FIAVGMO.

Creating Algorithm XMLs

Run batch process FIAVGALG.

Extending Service XMLs

When new application services are created, new Service XMLs are also created as part of the process. These files may be
accessed via the Application Viewer by copying them to the CM folder for Service XMLs.

"AVLOC\data\xmI\CM"
Where AVLOC is the path to the Application Viewer folder (e.g., C:\appViewer).

Creating Javadocs for CM Source Code

Javadocs can be created for CM source code. They are designed to be integrated into the product's Javadocs that are
delivered in the Application Viewer.

The product's Javadocs are only delivered for objects or supporting objects that are intended to be referenced by CM code.
For instance, only the domain and api packages are included, and some of the files created by the artifact generator are not
delivered since they have no practical relevance to CM code. These files have been deliberately and explicitly omitted when
creating the product's Javadocs.

Note that the process that generates Javadocs on CM source code is not selective, and running Javadocs on CM source code
may include more object types than what is delivered with the product's Javadocs.

There is one location that is used for both the product and CM Javadocs. Because they share the same location, there are
two steps involved in creating CM Javadocs.

Upgrade JSP to XSLT

Trees and subpanels should be upgraded to use the application's XSLTs instead of the JSPs used in v1.5.x. This section
describes the upgrade process.

Note that all other JSPs (tab pages, list grids, etc) must have been upgraded to XSLTs in v1.5.x. Thus, there is no tool to
upgrade such code in V2.

Create User Exit Files

The user exits in the JSP-based system were directly placed within the JSP as code snippets within specially located
markers. In the XSLT system, the meta-data is separated from the user exit, and resides in an .xjs file with the same name as
the JSP file, with only user exits and each user exit function explicitly defined in the file.

Going from JSP to XSLT user exits is thus not trivial. However, a set of supplied scripts will create a new user exit .xjs file
for each of the different JSP template files in your system. The following table lists the scripts to run for each template file:

Sub Panel convertSubPanel.pl

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 150

Tree Page convertTreePage.pl

Tree User Exit Changes

Since the XSLT user exits are now callout functions, five tree user exits need to be coded differently. The main purpose of
these five user exits is to change a variable's value. The analogous new XSLT user exits return the desired value instead.

The user exits have been renamed to more accurately reflect their new function. Below is a comparison of names and
purpose of JSP-based user exits versus XSLT-based user exits.

JSP name Main purpose XSLT name Main purpose

setServicelndex Sets the desired servicelndex overrideServicelndex Returns the desired index of the
variable. service.

setNavKey Sets the desired newNavKey overrideNavKey Returns the desired nav key.
variable.

setNavKeylndex Sets the desired navKeylndex overrideNavKeylndex Returns the desired index of the
variable. nav key.

setimageOpenindex Sets the desired imagelndex overridelmageOpenindex Returns the desired index of the
variable. open image.

setimageClosedindex Sets the desired imagelndex overridelmageClosedIindex Returns the desired index of the
variable. closed index.

Each user exit is passed the variable's original value. If the user exit does not return a value, the original variable's value will
be used.

Below is an example of a JSP user exit and a converted XSLT user exit inside an .xjs file.

Here is the JSP user exit.

/1 $#BSES SETSERVI CE

i f (nodeName == 'newtype') ({
var nylLetter = pageKeys.FT_TYPE. substr (0, 1);
if (nyLetter == "A") {

servi cel ndex = 1;

}
if (nyLetter == "'B") {
servi cel ndex = 2;

}
if (nmyLetter == 'C) {
servi cel ndex = 3;

}
if (myLetter =="P") {
servi cel ndex = 4;

}
/1 $#BSEE SETSERVI CE

Here is the same user exit coded in an .xjs file:

function overrideServi cel ndex(nodeNane, services, pageKeys, servicelndex) {
var overridel ndex;

if (nodeNane == 'newtype') {

var nylLetter = pageKeys.FT_TYPE. substr (0, 1);

if (nyLetter == "A") {
overridel ndex = 1;

}

if (nyLetter == 'B'") {
overridel ndex = 2;

}

if (nmyLetter == "'C) {
overri del ndex = 3;

}

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 151

if (nmyLetter == "'P") {
overridel ndex = 4;

}
}

return overridel ndex;

Change Template Code in Program Components

The meta-data on the database for the CM JSP program component pages needs to point to the new XSLT template codes.
There is a set of SQL scripts that update all the CM tree and sub panel program components with the correct template.

Run the SQLs in the script changeTemplateCodesTTRAndPN.sql against your database to perform this change.

Create XML File with Ul Meta-data

The XSLT framework uses the meta-data at run-time to drive the transform. However, it does not query the database for
this, and instead relies upon an intermediate representation in the form of an XML file stored with the same name (but with
an .xjs extension) and location as the original JSP file.

The XML file is automatically created by the framework the first time the page is viewed if an existing XML file does
not exist. Delete the existing XML file, if one exists, located in the same directory as the original JSP file. The XML file
is named after the program component's name. To generate the XML file, view the program component from within the
application.

Delete the JSP Files

Once the meta-data is changed and the new files are properly placed, there is no longer a need for the JSP files for the
converted program components, and it would be a good idea to delete them to avoid confusion.

Find the JSP files in the file system and delete them.

Log into the Application and Test

For the new XSLT pages to be used by the system, instead of the system looking for the old JSPs, some server and browser
caches need to be flushed. The easiest thing to do is restart the app server and start a new browser session.

Login and visit the converted pages to test functionality.

Utilities

Environment Batch Programs

displayEnvironment.bat

Property Detail

Purpose Displays the current configuration.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 152

Property Detail

Description Displays a set of environment variables and settings that may be
needed to diagnose compile issues.

Usage displayEnvironment.bat

Parameters None.

switchEnvironments.bat

Property Detail

Purpose Sets the current development environment (project) for the Software
Development Kit.

Description Displays a list of development environments on the development client,
allows the user to select one, and sets it as the current development
environment for the Software Development Kit.

Usage switchEnvironments.bat

Parameters None.

createNewEnv.bat

Property Detail

Purpose Creates a new development environment (project) or configures
a development environment to use the version of the Software
Development Kit used for the current development environment.

Description Configures a new app server to be a development environment.
Also, executing this for an existing development environment configures
that development environment to use the version of the Software
Development Kit used by the current development environment.

Usage createNewEnNv.bat -a <appServerDir>

Parameters

+ -a<appServerDir>. Specify the base directory of the app server to
configure.

Services

Batch Program setupSvcXMLPrompted.bat

Property Detail

Purpose Setup service XML.

Description After prompting the user for the program name of the service, this script
sets up a service by creating the service XML file.

Usage setupSveXmlPrompted.bat

Parameters None.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 153

Batch Program updateXMLMetalnfo.bat

Property Detail
Purpose Updates the XML Metainfo directory with the latest service XMLs.
Description Updates the XML Metainfo directory of the current development

environment with the latest service XMLs. This is needed, for example,
for creating schemas for XAl.

Usage updateXMLMetainfo.bat

Parameters None.

Eclipse Tools/Wizards

There are a few wizards and tools available for developing against the framework within Eclipse plugins.

Batch Program startEclipse.cmd

Property Detail

Purpose Launch the Ecliipse SDK for the current development environment
(project).

Description Launches the Eclipse SDK for the current development environment.

Usage startEclipse.cmd.

Parameters None.

Annotation Editor

A lot of the Java classes that will be created to add behavior to the application require Annotations to provide meta-data
about the implementation (see Java Annotations chapter in the Developer Guides).

The annotation editor plugin provides a convenient way to edit the annotations on these classes. It is available on any class
that has an existing annotation, under the Package Explorer panel in Eclipse. Right click on the file in the Package Explorer,
and there will be a menu item "Edit Annotation".

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 154

& Java - BatchJobClassSearch. java - C:\SPLAFW\2.0. 6\Code\tools\eclipselw

File Edit Source Refactor Mavigabe Search Project Fun Window Help
£ - € [$-0-%- (% |BHS-|®
Init = B || [J] ReportoptionListm

S
-l :;5- Base [sF—pdnt—DDS.splwg.com:1686;RCOnne|I_v2]. '
+ (8 gen
= iava
E (default package)
=57 com.sphag
- 5 base
+- 1 api
+- £ charter
+- 4 cobal.zz
+--H3 common
=18 domain
+- £ applicationtiewer
-3 batch
= £3 batchControl
+-1J] BatchControl_CHandler.java #1/
+ ¥ BatchControl_Impl.java #1/1 <te
+-1J] BatchControlMaintenance. java #
+-1J] BatchControlParameter_CHandle
+-1J] BatchControlParameter_Impl.jav.
-

=

7] BatchControlsearchservice.java

=-10)

+- 3 batchlobQuey Mew

+-f batchRun o

+-1J] BatchMessage| ;

Open With
+- i common .
+-FF conversion Open Type Hisrarchy
datab

+- £} database B
+- £} dataManagement | °=

-
+- £ portal [Paste
=8 report ¥ Delete

| toefiniti

- reportDefinitio g ooy

+-- 3 reportHistory

-3 reportOption Saurce

+-17) ReportOpt Refackor
+ m ReportCph
| g
4 m RepnrtOpt.uImpDrt'”
+-F reportSubmissi g7 Export.,.
+--m ReportAction.]

+ m ReportMessag References
+-f7 security Declarations
+- 1 todo 2
' S
+- T workflow o Refresh
+- 7 xai
: Format
+ I standardMessages o

+-EH messaging Run As
+- T8 support Debug As
4 :‘E wieh Edit Annotation

package com.s

simport com.spl

= I
*@SearchSer
= mains
= f
* i
= returnk
2o
i

—public class B:
extends Batc

Ji~Methods -
public Searcl

String qual
return cor

3
F3

»
F4
Chrl+C
Chrly
Delete

3

Alt+shift+3 ¥
Alt+shift+T ¥

F5

Choosing this menu item will cause a new dialog window to appear, and the file to open into an editor if it is not already
open. The dialog that appears will allow maintenance of the file's current annotation contents.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 155

& Edit annotation for, ReportQOptionlistMaintenance. java

Annotation Editor

This page allows editing of an annokation,

Default Cobol Copybook: |

Enikiky: | reporkOption
Program: | cIPzRROP
Secured: v

Service: | c1LzRPOP

Body: Edit DataElemeant. ..
Default For Add Yalue: Edit KeyValue, .,

Actions: Edit array of Skrings... |

Default Yalues: | Edit array of JavaMametalue, .. |
Header Fields: Edit array of Header Fields. .. |
Lisks: Edit array of List. ..

Modules: Edit arraw of Strings. .. |

Finish Cancel

The appearance of the dialog is dependent upon the particular annotation, but the standard dialog will present a layout of
two columns, a label and an input for each annotation property. The bottom of the dialog will always present the Finish and
Cancel buttons. The Cancel button is always available, and will throw away any changes made, leaving the file with the
annotation unchanged.

The Finish button will only be enabled when the annotation has no errors. The annotation is validated after any change, and
errors will be displayed near the top of the dialog and the Finish button disabled.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 156

& Edit annotation for, BatchJohClassSearch. java

Annotation Editor

€3 Service is required

Service: |

Language Dependent: [

Returned Entity Mame: |

Returns Entity: I

Main Search: Edit SearcherviceCriteria... |

Al Search: Edit SearcherviceCriteria... |

Al Searchz: Edit SearcherviceCriteria... |

Al Searchs: Edit SearcherviceCriteria... |

Al Searchd: Edit SearcherviceCriteria... |

Al Searchs: Edit SearcherviceCriteria... |

Al Searche: Edit SearcherviceCriteria... |
Return Fields: Edit arrav of SearchReturnField, . |

| Zancel

When the property value is itself a list of values or another annotation, there will a button instead of an input text box.
Clicking the button will bring up another dialog to edit its information. In the case of lists, there is a standard dialog where
elements can be added, deleted, or reordered.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 157

€ Edit list returnFields 3

array edit

edit array

PR C0n 1D return=true

down

B3
=2

Finish Zancel

To add a new element, click the '+' button. This will popup a new dialog for the annotation being added (or sometimes a
choice of the new annotation's type might need to be chosen first). Clicking the '-' button will delete the highlighted element.
The 'up' and 'down' buttons can be used to move the highlighted element up or down within the list. To modify an existing
element, double click its row in the list dialog, and a new dialog will open to edit its values.

Finally, there is a special list dialog for lists of strings. Instead of editing the elements in the list in a new dialog, a single
input field near the bottom of the dialog is used to edit the highlighted entry.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 158

€ Edit list nullableKeyFields X

array edit

edit array

up

down

AR

PER_ID

Finish | Cancel

When the finish button is finally pressed, the annotation (and only the annotation) in the file will change to contain the new
values entered into the annotation dialogs. The changed file's annotation may be slightly reformatted. The changed file will
also remain unsaved, pending user review of the annotation's changes.

Project database information

In order to use the Maintenance Object Wizard described in the next section, some information will have to be provided in
order for Eclipse to connect to the database to retrieve the Maintenance Object metadata.

There are two ways to specify the database connection information.

The first is a way for each project to possibly specify different connection information. This is done in the . pr oj ect file
stored in the project's directory. This is an XML file that describes the project. The database information can be supplied in
a buildCommand node under buildSpec under the projectDescription root node:

<bui | dSpec>

<bui | dComrand>

<nane>com spl wg. t ool s. dbConnect i on</ name>
<ar gunent s>

<di cti onary>
<key>ur| </ key>

<val ue><URL></ val ue>

</ di ctionary>

<di cti onary>

<key>user nane</ key>

<val ue><USERNAME></ val ue>
</ dictionary>

<di cti onary>
<key>passwor d</ key>

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 159

<val ue><PASSWORD></ val ue>
</dictionary>

</ ar gurment s>

</ bui | dConmmand>

</ bui | dSpec>

The values <URL>, <USERNAME>, <PASSWORD> should be replaced (including the surrounding '<' and ">") with the
appropriate values for the database for the project.

This file will need to be hand edited, and Eclipse should be restarted after the edit is complete.

The second way is to provide a workspace-wide database connection. This is available in an Eclipse preference- go to
"Window | Preferences...". Then in the tree pane on the left of the Preferences dialog, choose "SPL Preferences". Under
OUATF preferences, choose "Database Connection". The preference pane on the right will now show inputs for the database
connection information.

£ Preferences |;|@@

tvpe filker text - Database Connection Preferences =T

+- General

S Ant SPL Incremental Builder Preferences

Checkdipse I Override Default DB Connection

+-Data
Database
Help Database Connection UserMame |
InstallfUpdate
Internet
Jalopy
Jawa
Plug-in Developrment
RunfDebug
Server
SPL Preferences
Cobol Conversion Pre
Database Connection|
+- Team

‘alidation
+- Yelocity LI
+-Web and XML
+-Web Services

Database Connection LIRL |

Database Connection Password |

[] e [[[[

Restore Defaulks | applhy |

oK | Zancel |

Click the override default DB connection if the database contains materialized views to the true development database for
performance reasons. Enter the information into the appropriate text boxes and click OK. This will take effect immediately,
without need of restarting Eclipse.

Maintenance Object wizard

In cases where a whole new "Maintenance object" is being added to the application, and the data is first entered onto the
CI_MD_MO and related tables, there is a wizard that will use that meta data as a starting point and with some developer
input, create all of the manually coded Java Entity Impl classes with their proper tree structure, and also optionally create a
Java Maintenance class "starting point".

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 160

The "Maintenance Object Wizard" is available under the "New .." menu item, either under the file menu, or by right
clicking a node in the package explorer (the package explorer option is recommended, as it will default the project and
source directory selected). From the list of new wizards available, choose "Other...".

=08 m CobolReportParame. ., | Ky
2 | = <ﬁ==5 i import com.sphvg hase domr
" i s L e 1 import com.splwo.base.dorr
T - - oiect...
. Golnko :
1 @ Package
Zipen in Mew window
i (& Class I
Zipen Twpe Hierarchy F4
i € Interface
d 3=
= Copy Chrl+C 6, B
=1
[[£) Paste Chrl+Y @, — :
_|
¥ Delste Delete | &% Source Folder
Build Path 4
: | % Folder i
Source Ale+Shift+5 ¥ N
Refactar Ale+shife+T »| L File Y
. [Untitled Text File B
Import... r
= [EF Junit Test Case
£ Export... : :
- - =
[Example...
5 Refresh F5
Close Project

This will open a new dialog, where the maintenance object wizard is under SPL:

Select a wizard —

Wjzards:

| >

+(= Cobol Conversion

G CVS

= Data

|- [= Eclipse Modeling Frameawork
|- [Example EMF Madel Creation Wizards
|- Java

|- [Java Emitter Templates
|[= Plug-in Development

|- [= Server

|- [= Simple

- [E SPL

o o e o O w w B w w

- Mainkenan t Implementation

+ [Weh

+ = Weh Services n
F [®ML

i€

| Tk = | Cancel

(Note that you can configure Eclipse so that in the future the "Maintenance Object implementation classes" wizard appears
directly under the first "New..." menu.)

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 161

The first page of the wizard asks for the project and source path to place the new files. Then it asks for the some information
it uses to construct the package name for the new files. The standard is that the new classes go under the application's
domain path, with a possible extra sub package (e.g., a subsystem, like 'common' or 'customerInformation'), followed by the

top level entity's name (e.g., account). The top level entity's name, along with lots of data used by the next page, comes from
the maintenance object itself.

& New Maintenance Object Implementation Classes @

Maintenance Object and Location information
@ Maintenance Object must be specified

Source folder: | Base/gen Browse. ..

Application | base
Sub Package | common
Package

Maintenance Object | | Browse. .,

@enerate LI Maintenance v

< Back | | Cancel |

Finally, you can optionally choose to Generate the UI Maintenance (the default is to generate it).

The maintenance object input has a "Browse..." button associated with it that will launch a search dialog where the

maintenance object can be searched for by either the Maintenance Object's code, or by the primary table for the
maintenance object.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 162

& Search for Maintenance Object |:|@@

Maintenance Object | | Search by MO Code

Priraty Table Name Search by Table

Maintenance Object | Primary Table |

oK | Zancel

Both of these searches are "likable" in that partial matches starting with the input will be shown.

Pressing OK on the search or double clicking a row will bring the selected maintenance object back into the Maintenance
Object input on the main wizard.

Once the main wizard's inputs are specified, the next button can be pressed. This will display the second detailed wizard
page. A tree view is displayed with the tree representation of the Maintenance object selected, with its child tables.

£ New Maintenance Object Implementation Classes @

Maintenance Object's Entities - More info

@ Tables [MD_TBL, CI_MD_CONST, CI_MD_CONST_FLD, CI_MD_TEL_FLD]
have not been verified,

Maintenance Object table relationships

S8 oot - Eable (CI_MD_TEL) has |

s Language Table *

= conskraints {CI_MD_CORST) *Mok werified™
figlds (CI_MD_COMNST_FLD) *Mot verified®

fields {CI_MD_TBL_FLLD) has Language Table *Mot verified®

Info
Entity name
Table

Lisk property Name |

Crder By |

Clustering Parent property |
Allow mixed case Id i
Yerified)|

< Back | | Cancel

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 163

Each node in the tree must be visited in order to enter some information or at least verify that the default data is correct. The
nodes themselves show the list property name, the table, whether the table has a language table, and whether the node has
been verified.

The selected node's data is shown in the "Info" box below the tree. Only editable information is available to be changed-
other values may be disabled. The values that can be changed for each node include the list property name, the order by
fields, the clustering parent property, and whether the Id can contain mixed case.

The list property name is the name on the parent that the child collection will be accessed by. For example, in the above
Maintenance Object for Table, the table's child collection of rows on the table CI MD_CONST will be accessed via the
property 'constraints'. And likewise, each constraint will then have a child collection called fields.

The order by is an optional property. It is a comma-separated list of columns that specify the order in which the list will be
retrieved when the collection is read from the database. An example for the constraints collection would be "CONST ID,
OWNER FLG".

The clustering parent property comes into play for generated IDs. In some cases, it is beneficial to cluster the generated
keys for related objects so that batch threading is more efficient. An example is every Service Agreement can have its ID
generated with some portion of its account ID. The account will be accessed off of a serviceAgreement via the property
account. Thus the Service Agreement root node in the above dialog would probably have a value of 'account' for the
clustering parent property.

In case of user defined string keys, most of the time the application only uses uppercase keys. However, in some cases,
mixed case keys are allowed. The "Allow mixed case Id" check box should be checked in this event.

Finally, to ensure that the developer reviews each node's values, the Verified check box must be checked for each node,
prior to proceeding to the next page or finishing.

If the option to generate the Maintenance was not chosen, the Finish button will be enabled when the tree nodes' data is
complete and valid. Clicking finish will cause all of the entity classes to be created in the specified package, and will open
an editor window on each new class.

If the option to generate the Maintenance was chosen on the first page, the "Next>" button should be enabled after all the
tree nodes data is finished and valid. Clicking "Next" will then present the final wizard page, where information about the
maintenance class can be entered.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 164

& New Maintenance Qbject Implementation Classes @

Maintenance information

€3 Service is required

Maintenance class name |

Maintenance Type |Entity j

Edit annokation

Cancel

On this page, the maintenance class name and maintenance type can be chosen. The maintenance class name is something
like the root entity name followed by 'Maintenance" by convention, although it can differ. The maintenance type choices
are 'Entity', which is a standard maintenance for a single instance of the maintenance object at a time, with nested child lists,
etc. The other choice is 'List", which is a simplified maintenance where many instances of the maintenance object are edited
at once in a grid. This is usually limited to simple objects with a code and description, and maybe one or two other fields.
Anything more complex would be difficult to present in the single grid.

(Note that changing the Maintenance Type will clear out any existing information on the annotation.)

After the class name and maintenance type is chosen, there is more information required to be edited on the Annotation. See
Java Annotation in the Developer Guide for details about annotations. Clicking on the "Edit Annotation" button will launch
a new dialog window for editing the annotation. The most important information that every maintenance must specify on
the annotation is the service name. This field is immediately visible on the main dialog for the annotation, and must have

a value entered. Most everything else will have been defaulted with appropriate values from the Maintenance Object meta
data. See the developer guide mentioned above for more information on using the annotation editor.

After the maintenance information and annotation is complete and valid, pressing finish will cause the entity files and an
empty maintenance class to be created, and editor windows opened on each of them.

Upgrade JSP to XSLT

NOTE: JSPs other than trees and subpanels must have been upgraded to XSLTs in v1.5.x. Thus, there is no tool to
upgrade such code in V2.

Batch Program convertTreePageEXxits.pl

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 165

convertTreePageExits Purpose

Creates user exit files from tree JSP files.

convertTreePageExits Description

This program creates user exit .xjs files for all tree JSP files under the current and child directories. The .xjs file will be
created in the same directory with the same name as the JSP.

This should be run from a command prompt in the directory or parent directory of the JSP files.

convertTreePageExits Usage

Perl convertTreePageExits.pl

Batch Program convertSubPanelExits.pl

convertSubPanelExits Purpose

Creates user exit files from subpanel JSP files.

convertSubPanelExits Description

This program creates .xjs files for all subpanel JSP files under the current and child directories. The .xjs file will be created
in the same directory with the same name as the JSP.

This should be run from a command prompt in the directory or parent directory of the JSP files.

convertSubPanelExits Usage

Perl convertSubPanelExits.pl

SQL Script changeTemplateCodesTTRANndPN.pl

changeTemplateCodesTTRAndPN Purpose

Changes the tree and subpanel template codes to the XSLT template codes.

changeTemplateCodesTTRANdPN Description

This changes the template codes of from JSP to XSLT template codes. This template code instructs the application to use
the XSLT engine instead of the referring to a JSP.

These SQL commands should be run against the database.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 166

Javadocs

Batch Program generateJavadoc.bat

Property Detail
Purpose Create javadocs from custom source code.
Description This script runs the javadoc tool bundled with the jdk against CM source

code in the standard directory and targets the javadocs directory in
the Application Viewer. To integrate the javadocs with the product's
javadocs the reindex tool needs to be run.

Usage generateJavadoc.bat

Parameters None.

Batch Program reindexJavadoc.bat

Property Detail
Purpose Recreate the Javadoc indices.
Description This script recreates the Javadoc indices so that it shows all of the

Javadocs in the Javadoc folder. If Javadocs have been generated for
CM code, this will update the indices to include both the CM and the
product's classes and packages.

Usage reindexJavadoc.bat

Parameters None.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 167

Chapter 3

Developer Guide

Overview

The Oracle Utilities Application Framework provides a rich environment for developing applications. This document
provides a reference for various topics that will help developers make the most of this application development framework.
The sections in this document include:

» The Java Annotations section describes the meta-data that can be embedded in Java code for various purposes.

» The Public API section describes available methods, interfaces, etc., in the various Java classes like entities,
maintenance classes, etc.

» The Application L ogs section describes how logs are set up and used.

» The Java Programming Standar ds section describes Java coding practices that promote efficient development and
maintenance as well as upgradeability.

» The HQL Programming Standar ds section describes HQL coding practices that promote efficient development and
maintenance as well as upgradeability.

* The SQL Programming Standards section describes SQL coding practices that promote efficient development and
maintenance as well as upgradeability.

» The Database Design Standar ds section describes database design practices that promote an efficient database,
maintenance as well as upgradeability.

» The System Table Guide section describes the set of database tables that contain crucial information for the
configuration and operation of the application. It also describes standards to be followed to ensure upgradeability.

» The Key Generation section describes the automatic generation of random and sequential primary keys.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 168

Java Annotations

In order to direct the application how to deal with the code in certain classes, annotations are employed. These annotations
can direct the generator how to generate the superclass, how to register the class, and at runtime can effect the behavior of
the class. The annotations are potent metadata used at several levels in the application.

Technically, the annotations are structures described inside a JavaDoc comment prior to the start of classes or methods.
They are structured via starting with a '@' sign, followed by the annotation name, and the body of the annotation inside
parenthesis. The body can be either comma separated key=value pairs or a single value which specifies a value for a unique
default key. The values can be any of strings (needing to be bound by quotes if there are special characters inside the string
itself), lists (of either annotations or strings) bound by curly braces {} and separated by commas, or other annotations.

Each managed class (entity, change handler, business component, maintenance, etc.) typically has its own annotation. Each
of these annotations has an underlying Java class in the com.splwg.shared.annotations package, where the name of the class
is the name of the annotation suffixed by Annotation. The JavaDoc comments of these annotation classes should give more
detail for each specific annotation.

An example will help illuminate:

Here is the entity annotation for batch control:

/**

* @usi nessEntity (tableName = Cl _BATCH CTRL,
oneToManyCol | ections = { @hild (collectionName = paraneters, childTabl eNane = Cl _BATCH CTRL_P,
order ByCol utmNanes = { "SEQ NUM'})})
*/
public class BatchControl _I npl

The name of the annotation is BusinessEntity. It has specified properties tableName, and oneToManyCollections (there
are others available, but they need not all be specified). The property tableName specifies the CI BATCH_CTRL table
as the table that this entity maintains. It also contains some oneToMany child collections, specified by the list of Child
annotations. In this case, there is a single child, with a collection name of parameters, pointing to the child table CI
BATCH_CTRL_P, with a native order given by the column name SEQ NUM.

Once an annotation exists, the annotation wizard (in the Eclipse editors plugin) can be used to maintain the annotation,
showing all of the available annotation properties, and with some validation of the values entered. Thus, one way to create
an annotation from scratch is to create a purely empty annotation with the correct name at the start of the class, and then
use the annotation editor to fill in the details, and assure against typographical errors and not have to hunt down the allowed
properties.

Here is a list of top-level annotations and their corresponding purpose or managed class type, and a pointer to an example
class in the FW code where available.

BatchJobAnnotation for batch jobs, defining such properties as whether the batch is multithreaded and what soft parameters
it uses. An example batch job in Java is defined in the class com.splwg.base.domain.todo.batch .BatchErrorToDoCreation.

BusinessComponentAnnotation for business components. This will register the business component either as a new one
(and define whether it can be replaced or not), or a replacement of an existing one. An example business component is
com.splwg.base.domain.todo.toDoEntry. ToDoEntryAssigner Impl.

AlgorithmComponentAnnotation for defining algorithm implementations. This is used to create a new algorithm
implementation, defining which algorithm spot it is for, and what soft parameters it uses. An example algorithm component
is com.splwg.base.domain.common.characteristicType. AdhocNumericValidationAlgComp_Impl.

EntityChangeAuditorAnnotation for implementing audit behavior when an entity is modified. An example auditing
component is com.splwg.base.domain.common.audit.DefaultTableAuditor Impl.

BusinessEntity Annotation for defining or extending business entities, with properties defining the table maintained and any
one-to-many child tables, etc. An example entity is com.splwg.base.domain.batch.batchControl.BatchControl Impl.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 169

ChangeHandlerAnnotation for extending entity persistence behavior- adding validations, or
adding extra code to execute on add/change/delete actions. An example change handler is
com.splwg.base.domain.common.characteristicType.CharacteristicType CHandler.

CodeDescriptionQueryAnnotation for adding services to handle drop down lists for the UI. There are no examples of this
general component- the Oracle Utilities Application Framework implements only entity code descriptions.

EntityCodeDescriptionQueryAnnotation for adding services to handle drop down lists for the
U, that are directly related to entities. An example of an entity code description component is
com.splwg.base.domain.common.country.CountryCodeDescriptionQuery.

MaintenanceExtensionAnnotation for extending a maintenance. There are no examples of maintenance extensions in the
framework. It is purely an implementer component. Please see Maintenance Extensions (User Guide: Cookbook: , Hooking
into User exits: Hooking into Maintenance Class User Exits).

QueryPageAnnotation for creating a new query page service. An example is
com.splwg.base.domain.todo.toDoQueryByCriteria. ToDoQueryByCriteriaMaintenance.

PageMaintenanceAnnotation for creating a new generic page maintenance. An example is
com.splwg.base.domain.security.user.SwitchUserLanguageMaintenance.

EntityListPageMaintenanceAnnotation for creating a new maintenance for an entity-type, with a list based front end. An
example is com.splwg.base.domain.common.phoneType.PhoneTypeListMaintenance.

EntityPageMaintenanceAnnotation for creating a new entity maintenance, that maintains a single instance at a time. An
example is com.splwg.base.domain.batch.batchControl.BatchControlMaintenance.

ListServiceAnnotation for creating a list service (read only), meant for trees for example. An example is
com.splwg.base.domain.security.user.UserAccessGroupCountListInquiry.

Public API

SQL Return Codes

The framework generally returns the database-specific return codes from SQL execution. However, the framework returns
SPL-specific return codes for commonly-used SQL execution result messages. These SPL-specific return codes are the
same regardless of the database. This allows programs to be portable across different databases.

The following lists the SPL-specific return codes:

SQL Execution Result SPL Return Code
OK 0

* Unnumbered SQL Error 999999990

Warning 999999991

End / no (more) row retrieved 999999992
Duplicate / unique index violation 999999993

More / multiple rows retrieved in single-row select 999999994
Deadlock 999999995

No connection 999999996

* Application Error 999999997

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 170

SQL Execution Result SPL Return Code

* Hibernate Error 999999998

* Programmatic Error 999999999

NOTE: The SQL return codes marked with an asterisk ("*") are for errors peripheral to the actual execution of the SQL
and do not have equivalent database return codes.

Standard Business Methods

In general, classes that are created to implement business logic, including change handlers, business entities, maintenance
classes, and business components have access to standard methods intended to give application code access to framework
functionality. Commonly, these classes extend the GenericBusinessObject class within their inheritance hierarchy. Below
are some general descriptions of the provided methods. Please refer to the JavaDocs for more detail.

 createQuery(String)-Create an HQL query.
» createPreparedStatement(String)-Create a "raw" SQL statement. It is preferable to use the createQuery method.
» getActiveContextLanguage()/getActiveContextUser()-Get the language and user associated with the current request.

» createDTO(Class)-Create a new DataTransferObject instance for the entity corresponding to the provided business
interface class.

» getDynamicComponent(various)-Get a Business Component instance corresponding to the input business interface for
the component.

» getSystemDateTime()-Get the current DateTime instance appropriate for business logic.
* IsNull(Object)/notNull(Object)-Methods that answer the question if an object is null or is equivalent to null.

* isNullOrBlank(String)/notBlank(String)-Methods that answer the question if a String reference is null, zero length, or all
blank.

» startChanges()/saveChanges()-Used to defer validation when making complex changes to entities. It may be the case
where a valid entity can only be constructed by passing through one or more invalid states. By calling startChanges()
at the beginning of the set of changes and saveChanges() at the end, some validations may be deferred until the entire
coherent change is complete.

Business Entity Public Methods

BusinessEntity classes implement a combination of methods inherited from their generated superclasses as well as the
framework classes that those generated superclasses extend. The generated methods are typically "convenience" methods
based on the specific features of the entity. The framework methods are ones implemented by many or all entities.

Similarly, some methods are expected to be invoked from other objects (public methods) and others are to facilitate business
logic coded into the entities' business methods themselves.

Public Methods

These methods are exposed via the generated "business interface" of the entity.

» registerChange(Change) - Allows for another entity to register the fact that that entity has changed so that any dependant
change handler logic in this entity may fire. This is most useful in situations where the changed object and the dependant
object (the one needing to know about the change) are not directly related by parent-child relationships.

* getDTO() - Get a DataTransferObject representing the current state of the entity.
» setDTO(DataTransferObject) - Update the state of the entity based on the passed values in the DTO.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 171

» getld() - Each entity has a method by this name with retrieves and Id instance of the appropriate class for the entity.
» getFoo() - Get the value of the persistent property "foo".

» fetchBar() - Convenience method that will fetch the value of "bar" where "bar" is a parent entity referenced by an
optional foreign key refernce. The word "fetch" is used to denote that navigation to that entity is not provided from
within HQL.

» getBazzes() - Get the EntityList containing members of the entity "baz". For example, a getPersonNames() method on
the "person" entity might return an instance of an EntityList containing PersonName instances.

Protected Methods

These methods are exposed via the extended generated superclass of an entity (the " _Gen" class) for the use of business
methods implemented on the entity. With few exceptions, the methods exposed as public methods on business entities are
also exposed "within" the entity as protected methods for the convenience of business logic. Additionally, the following
methods are added:

« thisEntity()-Returns the instance of the current entity. Generally, this is used when an entity needs to pass itself as an
argument in a method call.

» addError(ServerMessage)-Add an error relating to the current entity.
* addError(ServerMessage, Property)-Add an error relating to the passed property on the current entity.

* addWarning(ServierMessage)-Add a warning to the current warning list.

Data Transfer Object Methods

DataTransferObjects (or DTOs) are transient objects meaning that changes to their state are not directly persisted. They
provide a mechanism where the set of properties of an entity can be passed around in business logic without the implication
that changes to their values will be transparently persisted to the database.

» getFoo()/setFoo(Bar)-Get or set the value of the property "foo".

» newEntity()-Create a new persistent entity based on the values currently held in the DTO.

Id Methods

Entities generally have an Id class created for them by the artifact generator. This provides clarity in the application code
as to what "kind" of Id is being held or passed. Likewise, there are useful methods on these Id classes. Id instances are
immutable.

» getEntity()-Get the business entity that this Id refers to or null if no such entity instance exists.

» getFoo()-In the case where the Id contains a persistent entity "foo", return that entity.

getBarld()-Get the contained Id referring to the entity "bar".

newDTO()-Create a new DTO instance with the Id property already set to this Id's value.

Maintenance Class Public Methods

Please refer to the Javadocs for the public API.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 172

Ul Javascript User Exits

The client-side external user exits are designed to give implementers flexibility and power to extend the user interface
of a OUAF products. Implementers have the ability to add additional business logic without changing OUAF product
HTML files. These user exits were developed such that developers can create an include-like file based on external user exit

templates.

There are two types of client user exits available. There are process-based user exits that wrap the similar product user exit
code with pre- and post- external user exit calls, and there are also data-based user exits that simply allow the implementer

to add/delete data from the product returned data.

Both types of external user exit are only called if the function exists in the implementers external include JSP file. All
available user exits are listed online in the system through the relative URL: /code/availableUserExits.jsp, with definition
examples and links to the framework code that executes the call.

3 Available User exits - Microsolt Internet Explorer B =] 3
| Fie Edt View Favoites Took Hep E
| Addiess [&] hitp: /ni-boig B120/code/svaisbleliseiEsils jsp =] @te |
Calling file Called Base exit name Return iype ||, ., JoF example Product declaration exangle CM dee
Client lstiservice... xany
i ; function exdOrvemideContexd.
i 3o whMers [lovenidsContsnthocountld Stiing yuetion ovmisConetorostiBl T tprodutRetumbabwe)(
i
; ; furetion extOverideContext)
sin o \bsny [lovemidsContsxtParsonld String ?"’"mmmmmmh”md“ (productRetumVelus){
\ ; : function extCrvermdeContexd]
sis o ieblisny [lovemidsContaxtPrmissld String ?”'mmmmmmpmm{ (productRetumelus){
}
iz s thMenn |showldNotsutol pperease BoaleanValue self shouldi ot & utoUppercase = filse igﬁtxﬁﬁn"mm‘n‘ml
: ; funetion extotUppecaseF
risjs tablvlenu motU ppercaseFields Bay ;'m:lwn satllgp FialdsO { product RetumWalue }{
i
) : : function extlgnoreldodifiedF
£ tMenu ignoreModifiedFields Anay i (produztRetumValue){
i
: funetion extDont CopykeyH
ki tbMens | omiCopyKeyH: hviag List f‘”"““d“““c"”m””m‘—mm{ {productRetumValue){
i
function mitializeMewElement_LIST funection extinitializeNewEle
cis js fabvlenu iratilizeHewElerment reond List (dataElement){ {dataElernant){
i i
’ ; function exdFieldsTolnchodel
sis lstOnd [feldsTolnclodelnlist®ML ||hmey i}‘“"‘"m fabeTolsclodelnl SRIMLOL (productRetumelus){
}
i P ; function exdtSaveButionEnabl
sis jo lbMenn lsoveButionErablngOverrils ([Boclean ?”msm“"“mwmm (productRetumVelus){

Ul Available User Exits - Online Reference

The location of the external JSP file is the \cm directory under the web application root directory:

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 173

".llcm"
External
- Includes J5p

This document assumes that you are familiar with the framework architecture and its Ul program component templates
(XSLT) and that you know how the base exits work. It also assumes that you are proficient in JavaScript and HTML.

Client User Exit Flow

The following flowcharts illustrate the most common user exit functions used to modify the user interface. The flowcharts
are designed to help you see the coordination of processing between the client and the server as well as where the pre and
post external user exits can be used.

The following diagram explains the shapes used on subsequent flowcharts:

@ Start of a function A function that is illustrated in
greater detail in another
diagram

Location where a pre user

exit can be insered
A call to a page maintenance
program on the server

Location where a post user
exit can be inserted
A decision based on a

parameter value

A function End or return to main
function

Flowchart Legend

Whenever you see a request for a server-side page service, you can refer to the Page Maintenance Program flowchart to see
the server-side processing. You can determine the Page Action based on the service being requested: Read, Add, Change,
Delete, or Default.

Read Page

The Read Page function is executed whenever data needs to be presented from the database to the user. It is called after a
root item is selected from a search page or when navigating to another transaction via a Go To button or a Context menu.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 174

Do Page Read

Load Object
Model

Redisplay
Page

|

Delete Page

The Delete Page function is executed when the user clicks the Delete icon.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 175

Do Page Delete

Prepars
Model for Add

l

Refresh
Page

|

Save Page

The Save Page function is called whenever a user clicks the save icon (or the associated accelerator key). If the user has
displayed an existing object on a maintenance page, the Action Flag and therefore the Change Page Service is requested. If
an existing object is not displayed on a maintenance page and the user presses save (e.g., they are adding a new object to the
database), the Action Flag does not equal change and therefore the Add Page Service is called.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 176

Do Page Save

¥

Leoad Object
Model

|

Refre=h
Page

Refresh Page

The Refresh Page function is called from the Read, Delete, and Save page processes. It is also called when the user clicks
the Refresh Page icon (or the related accelerator key) or when the user navigates to a different tab page.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 177

The pre/post Tab Page Window Load user exit is a good place to implement Field Level Security logic. By using the
getFieldLevelSecuritylnfo() function found on the "top" object (please refer to the Free Functions section found within the
Technical Background chapter of the Development Tools documentation), an implementer can extend the behavior or look
of the window. For example, a field can be made "read-only" if the user's Field Level security is lower than the required
security level. This prevents the user from changing the value of the field.

You can use pre/post List Grid Row Processing exit to manipulate fields within the grid. For example, you can calculate the
default value of a column depending on the values of other columns.

Prepare Model for Add

Prepare Model for Add is called when a user enters a page in Add mode (e.g., they click the + button next to a menu item).
It is also called by Delete Page to load an empty model, which displays page with empty fields.

Update Field

The Update Field function is called when a user changes the focus from one field on the page to another (e.g., when a user
tabs out of a field or clicks on another field).

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 178

The pre/post After Field Update user exit is a good place to manipulate HTML elements (e.g., hiding/unhiding or enabling/
disabling) depending on the value entered by a user.

External User Exit Templates

Below is the list of all available external template files. They are located under the "\cm_templates" folder of the application
root directory.

NOTE: The flowcharts above illustrate user exits in the Tab Page and List Grid templates only; these are the templates
in which most of your customizations will occur.

Accordion: accordionPage.jsp
Graph Panel: graphPanelExit.jsp
List Grid: listGridExit.jsp

Search Data: newSearchDataExit.jsp
Search Page: newSearchPageEXxit.jsp
Sub Panel: subPanelExit.jsp

Tab Page: tabPageExit.jsp

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 179

Tree Page: treePageExit.jsp

Template Structure

Each template has three main sections into which you insert your code.

» User Variable Declaration contains global variable declarations. (Do not declare any global variables unless it is
absolutely necessary.)

» User Function Declarations contains your own functions. Your own functions are not called from the corresponding
JSP file. Take coupling and cohesion into consideration when you design your functions.

» Functions Called from the Corresponding HTML page contains functions that are called from the HTML page.
Uncomment the functions you need to use and add your code. You can find more technical information about the
behavior of these functions in the external template files.

Design Approach

Examine the partial template below to see how the external include file looks. As you might notice everything is
commented out. If you want to call a certain function, you have to uncomment the functions and/or sections. Please note
that only declared functions in the external files can be called from the HTML Page. To see the entire external file templates
or available functions, examine the "\cm_templates" folder under the application root directory.

<%@dage content Type="text/htnl ; charset =UTF- 8" %
<v@taglib uri="spl.tld" prefix="spl" %
<spl:initializeLocal e/>

<l--
R I O I O R I O S O R R S R S R Ik O S S R R I O o
* *
* Copyright (c) 2000, 2007, Oracle. Al rights reserved. *
* *
EJE IR I O I O o O O S S
* *
$#BSES* REVI SION-I NFO Start Exit, Do not nodify - Dev. Only.
* $Dat eTi me$
* $File$

* $Revi si on$
$#BSEE* REVI SI ON- I NFO End Exit, Do not nodify - Dev. Only.

hkhkkkkhkhhkhkkkhhhhhhhhhhhdhhhkhkhdhhhhdhhhhhhdhhkhkhdhhdddhhrhrdddrrrddhxrdddx

-->
<script type="text/javascript">

/ User Variabl e Decl arati ons
Repl ace Wth Your Code

/ User Function Decl arations

/*
Repl ace Wth Your Code

Il User Functions That Are CALLED From According JSP File
/

function ext PreOnW ndowLoadNoLi st Before(){
/1 This shoul d be used to set values/attributes when the page | oads.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 180

//This includes actions after a default.

/1

//This function is called BEFORE SPL's internal functions are called
/'l Your Code

}

*/

The following discussion explains how the external file is included. The external file is a JSP file. This JSP is executed
with appropriate HTTP request header data from within the XSLT engine that creates the HTML from the Ul meta-data.
The XSLT engine will output the rendered JSP code textually into the final HTML. If the file does not exist the server will
not include the external file, otherwise every defined function (uncommented) in the file will be included and called at the
appropriate times.

Using the External User Exit Templates

All the external user exit templates are located in the \cm_templates directory. Once the UI Program to be extended is
known, the appropriate user exit template can be selected from the templates directory.

» Use any editor that supports the JSP file editing and open the approprite user exit.
* Determine the base user exit around which to insert your external user exit.
* Uncomment the necessary functions, and add your code.

» Save the external user exit file as ext <JSPfilename>.jsp under the \cm directory. Where JSPfilename is the JSP file you
want to extend.

e Test.

Create an External User Exit

The following example shows the process of creating an external user exit. In this example, we would like to disable the
Start Date on the Pay Plan page and default it to "today's" date.

Find the Name of the JSP File

In Utilities CC& B, navigate to the Pay Plan Maintenance page (Main Menu -> Credit & Collection -> Pay Plan) and find
the section where the Start Date field is displayed. From the screenshot below we can see that Start Date is under the main
section of the page.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 181

Menu &

Fay Plan

Home History

| Prefe Help Logout

Pay Plan ID |

|

Account ID q@
Status Active

Created by

Last Updated by

Scheduled Payments

Scheduled Date

| =

Scheduled Amount

Type I C&
Debt Class
Current Balance 0.00
5||Delinquent Debt. 0.00
g Third Party Payor [I 4,
E Payor Account ID
Start Date |02-23-2013 _{'\@
Pay Method | W [‘LI
Total Amount 0,00
Comments j

Pay Plan Maintenance Page

Determine the name of the program component we need to extend. Right click on the page and select the menu option View

Source.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 182

Preferences Help Logout

Home Menu - & History +

M
|F'E|'-f' Plan PayPlanID | | C&

Account ID [JE=% Scheduled Payments
Scheduled Date Scheduled Amount

Status

Created by SYSUSER Cancel * | =]l | H.

Last Updated by

Type ' Q&
Debt Class

CurrentBalance 0.00

Delinguent Debt 0,00 =

b2
!
L\ Third Party Payor [I 4 Save Background As..
'g Payor Account ID 2 =
Start Date |0z-z3-2m3 | [EH :
Pay Method | [i] Select Al
Create Shortout
Add to Favorites... | _/)
Comments mm [\
Encoding 4
Print...
Print Preview. ..
Refresh

Export to Microsoft Excel
Send To Bluetooth

Properties

Pay Plan Maintenance Page - View Source

View Source would open the page source in a text editor.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 183

Preferences Help Logout | ‘You are logged in as Englsh System (O

Home Menu « & History ~

EarFen g.Http:!isf-ugbu-3.2.us.orncll.e.cam: iﬂDﬂ'ﬂ!goIElIuiPa.gefpnyﬂianhhiniﬁlanhage?hnguage-mc - Dr{g.inﬁi Source g@ﬁ
A I0 File Edit

0 Transiticnal//EN"> e

SYSUEY

L T BT . TR R P R

Main Menu
|l

JSP Source Code View - payPlanMaintPlanPage

From the menu bar or the program file information section you can identify the program name as payPlanM aintPlanPage
(look for the Program name in the source code comments).

Determine the Base User Exit

For this example, we want to disable the input element corresponding to the start date and display a message that
the start date is disabled. This means we want to disable the field when the page loads; and therefore we want to
insert our code inside the onWindowLoad() function. The external user exit function that allows us to do this is the
extPostOnWindowLoad() function.

You can check the field names under the payPlanMaintPlanPage's Labels section.

* Program nane: payPl anMai nt Pl anPage

* Program |l ocation: /ci/payPlan

* Program ver si on: 68

* Programtenplate: U XTP

* Tenplate file: /1 FW 2. 2. 0/ Code/ nodul es/ web/ sour ce/ r oot / WEB- | NF/ ui XSL/ t abPage2. xsl
* Tenpl ate revision: 4

* Included XSL versions:

* conmon

* commonPage

* commonPageSi ngl eRecord 3

*

* Label s:

* Tabl e$Field - | abel (el ement type, js_nane)

* $PP_LBL - Pay Plan (el enent type='L' , jsNanme='PP_LBL')

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 184

deé'.[. | nf o:
Wdget _ID, Elenent Type - |abel info - |abel

* % kX X

START DT, IT - $START DT - Start Date

PAY_ METH CD, IS - $PAY_METH CD - Pay Met hod

The two important pieces of information in this source view are:
The Program name definition - payPlanMainPlanPage in this example;

The Templatefile definition - tabPage2.xdl in this example.

Uncomment the Function and Add Code

Once the program name to be extended (e.g. payPlanMainPlanPage) and the template (e.g. tabPage2.xdl) to use are
known, the associated template jsp file can be copied from the web application source's /cm_templates directory to the /cm
directory and renamed to have the form ext_ XXXX.jsp, where "XXXX" is the name of the program to be extended.

For example, in this case the jsp user exit template ./cm_examples/tabPageEXxit.jsp would be copied and renamed to ./cm/
ext_payPlanMaintPlanPage.jsp. The following coding change inside the extPostOnWindowLoad() function would then be
made for the modified behavior.

function ext Post OnW ndowlLoad() {

/1 This shoul d be used to set values/attributes when the page | oads.
//This includes actions after a default.

// This function is called AFTER SPL's internal functions are called

prot ect Fi el d(" START_DT") ;
alert ("Start Date Field is disabled. Defaulted to Current Date.");

}

Test Your Code

Now let's see if it works. First make sure that the user exit file is copied under the \cm folder of the application root
directory. Reload the page by right-clicking the page and choosing Refresh from the context menu.

NOTE: You may need to delete the browser cache before refreshing the page.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 185

Preferences Help Log

Home Menu & History = Pay Plan

D XE| ' [Q% Scheduled Payments
Scheduled Date Scheduled Amount

Status

| Created by SYSUSER
!Lasi Updated by

| T -
Type |

| Debt Class
|

Microsoft Internet Explorer

| Current Balance 0.00

1 } Start Date Field is disabled. Defaulked to Current Date.
.

| Payor Account ID
Start Date I L?;]

.
g T
Pay Method | [*| ‘I

Main Menu

!!Tc-tai Amount 0,00

Comments

Pay Plan Main Page after implementing External User Exit

Field-level Security Client-Side User Exit Example

Field level security information is exposed on the browser side.
Use the following function to retrieve a user's field level security for a given service or Navigation Key:
top.getFieldL evel Securityl nfo(ser viceNameOr NavigationK ey) ---> returns an Object keyed by security type.

The following example illustrates how to implement security for adjustment amount on the client. In the example, User
Group 1 is authorized to freeze adjustments less than $10,000, and User Group 2 can authorize any adjustment. We want to
disable the Freeze button, if the user's security doesn't meet the condition. There is a security type ADJAMT defined for the
Adjustment Maintenance.

FASTPATH: Refer to Field Level Security in the Administration Guide, Defining General Options chapter for
information about the data setup.

The following example code would be added to the extPreOnWindowLoad user exit:

var seclnfo = top.getFieldLevel Securitylnfo("adjustnentMaint");
var adj Amt Secl nfo = seclnfo["ADJAMI"];
if (adj Amt Seclnfo < "2" && parseFl oat (npdel . get Val ue("ADJ_AMI")) > 10000) {
//disable the field
prot ect Fi el d(" FREEZE_SW)
}

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 186

How-To

The following are some how-to examples of typical behavior utilizing some of the standard user exits.

The examples are written for cases of modifying new CM transaction pages, where the function definitions are put into
"extended JavaScipt" files (.xjs) that are meant to contain JavaScript user exits directly for a page.

If, on the other hand, an implementer wishes to modify the behavior of a shipped product page, each of the function below
have a corresponding "ext" function that can defined in a /cm/extXXX.jsp file corresponding to the desired page that will
fire after any product function call (see above example of hiding the Sequence column in the algorithm maintenance page).

How Do | Control the Initial Focus Within Tab Pages/Grids/Search Pages?

The system automatically places the initial focus on an appropriate widget (generally input fields) within a Tab Page/Search
Page/Grid.

By default it will place focus on the first enabled field with a data class defined on it. (If input fields do not have the Field
Name / Table Name defined within Meta Data they will have no data class)

If there are no fields satisfying this criteria within the tab page it will continue to look (recursively) into all the contained
frames (e.g. list grids etc.)

If no field is found then no element receives focus.

You can override the default behavior at each level via the provision of a focusWidgetOverride() function within the user
exit file which will return the Name of the Field to receive the focus or null.

If null is returned it will ignore all fields within this document and continue to search in lower level documents.
E.G.

From within a Tab Page (If you want focus to go on to a sub document)

function focusWdget Override() {
return null;
}

From within a List Grid

function focusWdget Override() {
return "TD_TYPE_DRLKY: 0$TBL_NAME";
}

from within a Search Page

function focusWdget Override() {
return "LAST_NAME";

}

NOTE: These functions can be as simple or complicated as you want. You could conditionally return a field name or
null and this code will run each time the window loads. Also, if a tab page has a popup window or a search window
open as it is loading then the initial focus will not be set to the tab page but stay with the popup window

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 187

How Do | Mark Fields that Won't Make the Model Dirty?

In certain windows, we have a concept of a "locator" field which typically acts as a filter on some lists of the object you're
looking at. Examples are user group's filter on description, and several IB windows filter by date.

With the warning about loss of data when throwing away a dirty model, this results in the use of locator fields giving this
warning, which wouldn't be expected. In order to avoid this warning on locator fields, you can add a function like the one
that follows that enumerates the locator fields:

function ignoreMdifiedFields(){
return [' START_DTTM]
}

You can include any nunber of fields in the array, e.g.
return ['FIELD 1', 'FIELD 2', 'FIELD 3']

How Do | Control the Triggering of Defaults After a Search?

If a search returns multiple fields and more than one of these fields can trigger default, then it might be more efficient to
only have one of these fields trigger the defaulting.

This is accomplished by creating a new function called overrideDefaultTrigger sFor_ SEARCHGROUP within the tab
page that contains the search. Where SEARCHGROUP is the name of the searchGroup you want to override.

The function must return an object with the triggering field(s) are attributes with a true value.

For example

function overrideDefaul t Tri ggersFor _SRCH1() ({
var triggers = {};

triggers["ACCT_ID'] = true;
triggers["SA I D']=true;

return triggers;

}

How Do | Avoid Automatically Setting Fields to Uppercase?

Model attributes that are also key fields are automatically coerced to be in uppercase. You can block this behavior on a
field-by-field basis by defining the notUppercaseFields() function in your TabMenu's user exit file to return an array of field
names that should not be converted.

Example:

function not UppercaseFi el ds() {
return [' ELEM ATT$AT_NAME']
}

You can also provide a "global" override for an entire TabMenu by setting the shouldNotAutoUppercase variable to true:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 188

var shoul dNot Aut oUpper case = true;

How Can | Force the Save Button to be Enabled?

The save button usually synchronizes itself to the state of the model such that if it hasn't been "dirtied" the button is
disabled. You may wish to control the state of the save button e.g. because a save should always/never be allowed.

Simply define the function saveButtonEnablingOverride() on your TabMenu user exit file to return a boolean indicating
whether the save button should be enabled. You can simply return a literal boolean, or perform any desired processing to
determine the return value.

Example:

function saveButtonEnablingQOverride() {
return fal se;
}

How Can | Override the Processing After a Change/Add?

If you need to intervene in the processing after the system successfully completes a Change or Add operation, define the
function privatePostChangeSucceeded() or privatePostAddSucceeded() in your TabMenu user exit file. The function should
return a boolean to indicate whether the system should refresh the UI with the newly returned server data. You'd want to
return false if e.g. you navigate to a different TabMenu.

Example :

function privat ePost AddSucceeded() {
var nodel = parent. nodel ;
var nodeFl ag = nodel . get Val ue(' COWPL_NAV_MODE FLG);
var navKey = nodel . get Val ue(' COWL_NAV_KEY') ;
var conpl Sw = nodel . get Val ue(' CMPLT_CLI CKED_SW) ;
i f (conpl Sw && nodel . get Val ue(' ENRL_STATUS FLG) == '30') {
i f (nmodeFl g && navKey){
if (nmdeFlag == 'G) {
par ent . t abPage. got oCont ext (navKey) ;
return fal se;
} else if(mdeFlag == "A") {
par ent . t abPage. addCont ext (navKey) ;
return fal se;
}
}

return true,

How Do | Prevent the System from Setting Focus to a Widget After an
Error?

When a service receives an error and shows a message after calling a back-end service, the browser attempts to set focus to
the relevant widget in error. If you don't need this behavior, you can define the TabMenu variable dontSetFocusOnError to
boolean "true.

Example:

var dont Set FocusOnError = true;

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 189

How Do | Prevent Attributes from Being Copied into New List Elements?

Key fields are automatically copied (based on name matching) from a parent list element into new child elements (e.g.
created by using the scroll '+' button), in order to keep their prime keys consistent. If you want to inhibit this operation for
certain fields, define the TabMenu function dontCopyKeyNames <LIST NAME> to return an array of fields that should
not be copied into new elements of the list named LIST NAME

Example:

function dont CopyKeyNanmes ENRL_FLD() {
return [' SEQ NUM]
}

How Do | Customize New List Elements?

When you use '+ button on a grid or scroll you get a new, empty list element. If you want to customize the object, define a
function in the TabMenu's user exit file named initializeNewElement <LIST NAME>(newElement).

Example:

function initializeNewEl ement ENRL_LOG newEl ement) {
newEl ement . set (' ENRL_LOG TYPE_FLG, 'USER);
newEl enent . set (' USER_| NFO , parent. nodel . get Val ue(' CURRENT_USER | NFO));

How Can | Get My Sequence Numbers to Default Properly on My List Grid?

If you are working with a List Grid that uses some type of sequence field (e.g. SEQNO, LINE_SEQ, SORT_SEQ), there is
a handy bit of technology that you can use that will cause the Ul to do this job for you.

Just follow the steps below and you'll have the problem solved in no time. The sequence field will be populated in your
"empty line" and any elements that are added from then on will have an appropriate value in the sequence field. If the user
edits the sequence field at any point, the next element added to the list will incorporate the change without any problems.

NOTE: The default Sequence Number functionality will default the next nearest tens value from the highest sequence.
The defaulting will do nothing after the sequence reaches the highest number it can hold.

 In the user exit file of the Tab Menu - not the main Page or the List Grid - copy this JavaScript code:

function initializeNewEl ement LI ST_NAME(newEl enent) {

var nyListName = "LI ST_NAME";

var nyLi st SegNane = "FlI ELD_NAME";

var nyLi st MaxSeq = 999;

def aul t SequenceNunber (myLi st Nanme, nyLi st SeqNane, nyLi st MaxSeq, newEl enent)
}

</ SCRI PT>
<SCRI PT src="/zz/ def aul t SequenceNunber/ def aul t SequenceNunber . j s"></ SCRI PT>
<SCRI PT>

* For LIST_NAME, substitute your List Grid's list name. Be careful not to lose that underscore [_] just in front of LI1ST_
NAME in the first line! Remember that JavaScript is case-sensitive and make sure that you use all UPPERCASE letters
as shown here.

* For FIELD_NAME, substitute the name of your sequence field, whatever that might be in your List. Don't lose the
quotes ["]! Again, use all UPPERCASE letters.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 190

How Do | Override the Tab Page Shown After an Error in a List (Grid/
Scroll)?

When an error is received (e.g. after a Save) it attempts to set focus on the relevant widget, which might require flipping to
a different tab page. If the error relates to a list (grid or scroll) the system might not choose the tab page you'd prefer. In that
event you can control the tab page that should be opened by defining the TabMenu function overrideErrorTabPage <LIST
NAME>().

Example:

function overrideError TabPage_BPA() {
return ' bussProcessAssi st ant St epPage’ ;
}

How Do | Disregard Unwanted Criteria from a Search Triggered by a
Search Button?

When a search button (currently implemented as an IMG) is pushed, the system launches a search and "pulls" all applicable
criteria values from the current model. It might be that certain criteria fields should be ignored in a particular case. You can
define the function addIgnoreFieldsFor <triggerFieldName>() on a tab or search page's user exit file to specify fields to
ignore whenever the IMG button named triggerFieldName is pushed on that page.

The function takes a single argument, fields, and you should add key/value pairs where the key is a field name to ignore,
and the value is true.

Example:

addl gnor eFi el dsFor _ADDRESS1_SRCH = function(fields) {
fields[' CITY_SRCH] = true
}

addl gnoreFi el dsFor _PER I D = function(fields) {
fields['ENTITY NAVE SRCH] = true
}

How Do I Disregard Unwanted Search Result Columns?

When you accept the result of a NOLOAD search the system tries to populate the selected search result row into the current
model. Sometimes this doesn't make sense e.g. because there is no corresponding attribute for a display-only column. You
can exclude a column from being returned as part of a search result by defining the search client's (Tab Page or Search
window) function ignoreResultColumns() in the corresponding page's user exit file. Return an object with keys specifying
attributes and values all set to boolean "true".

Example:

function ignoreResult Col ums() {
return { ADDRESS1: true, CITY: true, POSTAL: true };
}

Since Searches can be shared by many search clients, it is possible that some clients want to get a specific column, but
others don't. In that case, define the TabMenu function ignoreResultColumnsFor <service> as above.

Example:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 191

function ignoreResult Col umsFor _ClI LCCOPS() ({
return { CONT_OPT _TYPE CD: true}
}

How Do | Format a Value Based on a Given Format?

If you need to format a value based on a given format, for example, on Person ID Number, if you select ID Type as SSN
(999-99-9999), you can always format the Person ID Number before committing it to the server.

To do so, you can call the formatValue javascript function.

* In the user exit file of the tab page include the following lines:

</ SCRI PT>
<SCRI PT src="/zz/format Val ue/ f or mat Val ue. j s" ></ SCRI PT>
<SCRI PT>

» Now, you can start using the function to format a value. To use this function, you need to pass in both the value and the
format into the function.

var phFormat = nyDat a. get Val ue(purelLi st Name + ' PHONE_TYPE_FORMAT') ;
i f (pureFieldName == ' PHONE') {
updat eFi el d(pur eLi st Nane + ' PHONE'
f or mat Val ue(nyDat a. get Val ue(pur eLi st Name + ' PHONE'), phFornat));

Java User Exits (interceptors) Interfaces and Classes

The following are the interfaces used for Java User Exits (interceptors).

IAddinterceptor Interface

This interface defines the processing plug-in spots before or after invoking a service in add mode.
I nter face com.splwg.base.api.serviceinter ception.l Addl nter ceptor
Methods

PageBody aboutToAdd(RequestContext, PageBody)
This method is called before the service is invoked.

Input

* RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

* PageBody - The input page body to be added.

Return value

» PageBody or null -- If a page body is returned, this is considered the result of the service and the underlying service will
not be executed. If null is returned, the service will run normally.

Throws

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 192

InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

void afterAdd(RequestContext, PageBody)

This method is called after the service invoked in add mode.

Input

* RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

» PageBody - This contains the information that was added by the underlying service.
Return value

* Void.

Throws

InterceptorError - throw this exception when an error occurs

InterceptorWarning - throws this exception to signal an application warning

IChangelnterceptor Interface

This interface defines the processing plug-in spots before or after invoking a page service in change mode.
I nter face com.splwg.base.api.serviceinter ception.l Changel nter ceptor
Methods

PageBody aboutToChange(RequestContext, PageBody)

This method is called before the service invoked in change mode.

Input

* RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

» PageBody - this object contains the information that is to be submitted to the underlying service.
Return value

PageBody or null - if a page body is returned, this is considered the result of the invocation and the underlying service will
not be called. If null is returned, the underlying service will be invoked normally.

Throws
InteceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

void afterChange(RequestContext, PageBody)

This method is called after change action is invoked in change mode.

Input

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 193

* RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

» PageBody - This holds the result of the underlying change service.

Return value

* Void.

Throws

InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

IDeletelnterceptor Interface

This interface defines the processing plug-in spots before or after invoking a service in delete mode.
Interface com.splwg.base.api.serviceinterception.[DeleteInterceptor

Methods

boolean aboutToDelete(RequestContext, PageBody)

This method is called before the service with a delete action.

Input

* RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

* PageBody - the data to be deleted.

Return value

* Boolean - indicates whether or not to continue processing of the service. If true, continue with the normal underlying
invocation. If false, do not continue (but the service returns "success" to the client invoker).

Throws
InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

void afterDelete(RequestContext, PageBody)

This method is called after the service invoked in delete mode.

Input

* RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

» PageBody - the data that was deleted by the underlying service

Return value

* Void.

Throws

InterceptorError - throw this exception when an error occurs.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 194

InterceptorWarning - throws this exception to signal an application warning

IReadInterceptor Interface

This interface defines the processing plug-in spots before or after a service retrieves information.
Interface com.splwg.base.api.serviceinterception.IReadInterceptor

Methods

PageBody aboutToRead(RequestContext, PageHeader)

This method is called before a service retrieves information.

Input

* RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

* PageHeader - The data describing the information that should be read.

* Return value

PageBody or null - If a page body is returned, this is considered the result of the service and underlying will not be
invoked. If null is returned, the underlying service will be invoked normally.

Throws
InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

void afterRead(RequestContext, PageBody)

This method is called after the service retrieved the information.

Input

* RequestContext - contains session parameters, such as, language cd, user id and etc.
Input/Output

* PageBody - result of read service

Return value

¢ Void.

Throws

InterceptorError - throw this exception when an error occurs.

InterceptorWarning - throws this exception to signal an application warning

InterceptorError class

The class com.splwg.base.api.serviceinterception.InterceptorError subclasses the java.lang.Exception class. This class
contains information regarding an error condition that occurred during the pre/post processing plug-in. This exception is
caught by the framework and is used to build the appropriate application error object.

Attributes

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 195

» Message Category

¢ Message Number

» List of Parameters (Strings) and types
Methods

void setMessageNumber(Biginteger messageNumber)

Set the message number (required)

void setMessageCategory(Biginteger messageCategory)

Set the message category (required)

void setMessageParameters(List messageParameters)

Set the message parameters list

void setMessageParameterTypeFlags(List messageParameterTypeFlags)

Set the message parameter type flags list. The size should match the message parameters list.

InterceptorWarning class

The class com.splwg.base.api.serviceinterception.InterceptorWarning subclasses the java.lang.Exception class. This class
contains information regarding one or more warning conditions that occurred during the pre/post processing plug-in. This
exception is caught by the framework and is used to build the appropriate application warning object(s).

Attributes
» List of warning server messages

Constructors

InterceptorWarning(ServerMessage warningMessage)

Create a new InterceptorWarning with the given warning message as its sole message

InterceptorWarning(List warningMessages)
Create a new InterceptorWarning with the given List of warning messages

Methods

void addWarningMessage(ServerMessage message)

Add the given server message to the list of warning messages

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 196

RequestContext Methods

Class com.splwg.base.api.service.RequestContext includes the following accessor methods:

String getLanguageCode()

Returns the current user's language code

String getUserld()

Return the user id

Data Objects

Both PageHeader and PageBody are "wrappers" on underlying Maps that hold datatypes of various types, keyed by field
names (Strings). The valid field names for a service are described in the service meta info file (an xml document). Null
values are not allowed; use empty strings to represent missing values (e.g. for null date).

Note that most system datatypes are represented in these Java objects as simple Strings. Note the following:
* Booleans are represented by the Java Boolean class

» Date values are represented as Strings in the format YYYY-MM-DD

» Date/Time values are represented as Strings in the format YYYY-MM-DD-HH:MM:SS

* Time values are represented as Strings in the format HH:MM:SS

» Biglnteger values are represented as Java BigInteger values

» BigDecimal and Money values are represented as Java BigDecimal values, with the appropriate scale.

PageHeader and PageBody Methods

Both PageHeader and PageBody implement the methods described in the following topics.

Object get(String fieldName)

Returns the Object value of the field named fieldName (may need to cast the result to the appropriate datatype)

String getString(String fieldName)

Convenience method that returns the String value of the field named fieldName.

boolean getBoolean(String fieldName)

Convenience method that returns the Boolean value of the field named fieldName.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 197

Biginteger getBiginteger(String fieldName)

Convenience method that returns the Biglnteger value of the field name fieldName.

void put(String fieldName, Object value)

Set the value at the given fieldName to the given value.

PageHeader

The methods for class com.splwg.base.api.service.PageHeader are described above.

PageBody

Class com.splwg.base.api.service.PageBody implements the methods described above. In addition, it supports the following
methods:

ItemList getList(String name)

Return the ItemList with the given name

ItemList

Class com.splwg.base.api.service.ItemList is the Java representation of a list header and list children objects. The methods
are as follows:

ListHeader getHeader()

Return the list header object.

String getName()

Return the ItemList's name

List getList()

Return the java.util.List of ListBody child objects.

void setList(List list)

Set the underlying list to the provided list of ListBody instances.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 198

ListHeader

The class com.splwg.base.api.service.ListHeader is functionally equivalent to the class PageHeader, above.

ListBody

The class com.splwg.base.api.service.ListBody is functionally identical to the class PageBody, above. In addition, it has this
useful method:

String getActionFlag()

Return the flag describing the pending action for this ListBody (e.g. add, change, delete).

CMServiceConfig.xml structure

The ServiceConfig.xml and CMServiceConfig.xml will look similar to the following:

<Servi cel nt er cept or s>
<Servi ce nanme=" CMLPXXXX" >
<Interceptor action="add">
com spl wg. i nt er cept or . CMLPXXXXAddI nt er cept or
</Interceptor>
<I nterceptor action="change">
com spl wg. i nt er cept or . CMLPXXXXChangel nt er cept or
</Interceptor>
</ Servi ce>
</ Servi cel nt er cept or s>

The above example illustrates how interceptors are defined for the service CMLPXXXX. You can define one or more
interceptors, depending on the action, for each service. The valid actions are "add", "change", "delete", and "read".

NOTE: It is valid to have the same interceptor class for more than one action as long as the class implements the
corresponding interceptor interface.

Application Logs

Logging has many purposes. Notably, it allows tracing of what is happening when something goes wrong. However, a user/
developer does not always want to see EVERY log entry-besides clutter, it may slow down the application. In this light, the
framework has wrapped the powerful and flexible log4j logging framework as an API. There are two important aspects:

» Placing logging statements within application code so that logging entries may be created at runtime.

» Configuring logging at runtime so that the appropriate logging entries are created and directed to the appropriate log
destination.

Logging within Business Logic

The following describes how to implement logging when adding a class that implements business logic:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 199

* Add a constant referencing the logger for the class. By convention logger should be named "logger" and should pass the
declaring class as its argument. For example, a logger in the Adjustment CHandler class would be declared as follows:

private static final Logger |ogger
= Logger Fact ory. get Logger (Adj ust ment _CHandl er. cl ass) ;

nn nn

* Add entries with the appropriate logging level. The levels are: "debug", "info", "warn",
will log a warning entry to the log:

error” and "fatal". The following
| ogger . war n(" Unexpected status for frozen adjustment: " + status);

» In general, we expect entries of level "info" or more severe to be rare and therefore not to impose a substantial
performance penalty. However, "debug" entries we can expect to be very fine grained and that they usually will not find
their way to actual logs but will be filtered out via runtime configuration. To lessen the performance impact of debug
logging, the logging statement should be wrapped as follows:

i f (logger.isDebugEnabled()) {
| ogger . debug(" Processi ng adj ustment " + adjustnent.getld());

* There are times when you want to know how long code block takes to execute. In general, the logging provides the time
each log statement is issued. However, it is clearer to see an actual elapsed time of some process being investigated. In
this case, there are some additional methods on the logger:

debugSt art (nessage) or infoStart(nmessage)
debugTi ne(nmessage, start) or infoTi ne(nmessage, start)

* These should be used in the pairs given, as follows:

long start = debugStart("Starting process");
/l... code for process
debugTi ne("End process", start);

» This will cause each statement to be logged, plus the final "End Process" statement will give the elapsed time since
debugStart was called.

Please refer to the JavaDocs on the com.splwg.shared.logging.Logger class for more detail.

Configuring Logging at Runtime

Having instrumented the code to create logging entries, the question remains, how to cause the various logger level
messages to actually trigger at runtime? A very detailed description of this can be found at http://logging.apache.org/log4j/
docs/manual.html.

Property Configuration

Control of log4j occurs based on properties typically set in the log4j.properties file in the application classpath. You can
change the log level of a given logger in this file. Note, however, that values may be overridden on the command line by
specifying system properties (e.g. via "-Dlog4;..."). Note that "inheritance" of logger levels works such that (in our standard
of qualified class name as the logger name) you can change a whole package's log level by specifying only a portion of the
logger name. Note that you may commonly desire to enable ("global") debug logging on your local environment. To do this,
you can simply change the line

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 200

http://logging.apache.org/log4j/docs/manual.html
http://logging.apache.org/log4j/docs/manual.html

| og4j .1 ogger.com spl wg=i nfo

to

| og4j . 1 ogger. com spl wg=debug

Trace Flags

Trace flags allow for specialized logging that cuts across many classes. They can be set for user requests by entering
the online system in "debug" mode and setting the "trace" flags appropriately. Likewise, they can be set in batch
either by interactive prompts for the trace flag values when a job starts or by setting system property values. See the
JobSubmitterConfiguration class for specific system property names.

o traceSQL - Causes special detail of the submitted SQL. This can be useful when troubleshooting performance problems.

» traceTime - This can only be enabled for online requests or JUnit tests by setting traceTime(true) on the request context.
Enabling time tracing will cause special profiling entries to be placed in the application log for the purpose of attributing
request latency to the various layers of the application or to specific SQL statements. These entries are queued in
memory until after profiling entries are no longer being generated and then spooled to the logs so as not to corrupt the
performance instrumentation with logging overhead. The ProfilingReport standalone Java program can be run to post-
process these logs, or a portion of them and generate a report.

Java Programming Standards

Rationale

In order to make it easier for programmers working on the same codebase to easily read each other's (and their own!)
code, we need to enforce certain standard coding conventions. These conventions will also be helpful when comparing
code revisions under version control, as the code should be formatted consistently and no irrelevant formatting-related
differences will appear in the diff.

Guidelines

First, Sun has their own code standards guidelines here: http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html.
Like most coding guidelines, these are quite reasonable and differ only in minor details from other guidelines.

The web page http://geosoft.no/development/javastyle.html also has some very nice tips. Note that we won't prefix instance
variable names with underscores--instead we use Eclipse syntax coloring to make ivars easily visible.

We use the prefix fetch in method names in entity implementation classes, in order to perform object navigations that aren't
already defined by Hibernate mappings.

Here are some additional notes:

Not surprisingly, a lot can be learned from good Smalltalk style. The books "Smalltalk With Style" (Klimas, Skublics,
Thomas) and "Smalltalk Best Practices Patterns" (Kent Beck) provide a lot of good ideas for code organization and naming
that are applicable to Java as well as Smalltalk.

All code should be:

Written with tabs equal to 4 spaces, not "hard" tabs. Each level of indentation should be one "tab".

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 201

http://geosoft.no/development/javastyle.html

Generally free of hard-coded "magic" strings or numbers (e.g. max number of items in some list). If you need such a string
or number value, you should use (or create) a constant or property.

Classes should use specific, not package-based imports, where practical. I.e. import com.foo.UsefulClass, not com.foo.*.

Variables should generally be private. Only create accessor (e.g. get/set) methods when absolutely needed ("Dont reveal
your private parts").

Prefix "getter" methods with "get", e.g. "getFoo()", setters with "set", e.g. "setBar(aBar)". Don't use "Flag" or "Switch",
or abbreviations thereof, e.g. "getAllowedSw()" should be "getlsAllowed(), and "setAllowedSw(aBoolean)" should be
"setlsAllowed(aBool)".

Use camel-case instance and parameter variable names, without underscore prefixes or suffixes (do use uppercase for
constants, as suggested in the guidelines reference above). Instance variables start with lower-case letters.

Methods should generally be public or private (again, to allow future subclassing). Use of interfaces is encouraged to
declare useful sets of public methods.

Don't abbreviate except for standard industry abbreviations (e.g. HTML, HTTP). Use long, meaningful class, method, and
variable names.

Methods should be short and clear. Instead of placing comments before a section of code in a method, rather create another
method that describes what is being done by the method name.

When using Java API collections, reference them through generic interfaces, not specific implementation classes, e.g.

Li st soneList = new ArraylList();

Map soneMap = new HashMap() ;

This lets you change your mind about implementation (e.g. ArrayList to LinkedList) without breaking any code.

Naming Standards

General guidelines

Don't use reserved java words

Don't use spaces

Don't abbreviate

Don't use punctuation

Don't start the name with a number

Here are our project guidelines for naming properties:

Generally, don't abbreviate. The exceptions are SA, SP when the name would get too long if written as e.g.
ServiceAgreement as part of a much longer field name

In line with the above, spell out amount and total

Boolean values (SW) are prefixed with is, has, can, are, or should, according to what is grammatically correct.
Date fields end with Date

Time fields end with Time

Datetime fields end with DateTime

Id is spelled I d

Don't include a final Flag (FLG) or Code (CD)

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 202

Use min instead of minimum, and max instead of maximum
Can be generic- that is, for the field BILL_STATUS, you can just name it Sstatus

Entity Naming Guidelines

Be specific- the name MUST be unique
Language tables (_L) don't need to be named
Don't append "View" to a view.

Don't abbreviate

Don't use plural names (e.g. BillMessages)

Collection Naming Guidelines

Class Name

The class name for a collection includes the owning entity name and the collection name in singular form.
<owning_entity><collection_name in_singular_form>

Examples:

AdjustmentTypeAlgorithm

AdjustmentTypeCharacteristic

BillableChar geTemplateL ine

Collection Name

For collections, the one-off generation created a large number of collection names. Many of these are overly verbose, and
should be shortened. Simply modify the collectionName in the entity annotation. Here are guidelines:

Shorten adjustmentTypeAlgorithmsto algorithms

Shorten adjustmentTypeChar acteristics to characteristics (in rare cases you may have more than one kind of
characteristic, in which case you need more specific names)

Remove the owning entity name from the front of the collection name, e.g. billableChar geT emplatel ines becomes lines

Lookup Naming Guidelines

Here are guidelines for naming Lookups (on the Lookup Field maintenance):
Be specific- the name MUST be unique across all lookups

Don't include a final standard suffix Flag or Lookup (The suffix Lookup is automatically added by the generator to the
classes generated for each Lookup field.)

Examples:
WO_STATUS FLG -> writeOffStatus
STM_RTG METH_FLG -> statementRoutingMethod

Here are guidelines for naming Lookups Value properties (on Lookup Value maintenance):

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 203

Try to word the name in a way that makes sense when prepended by is, and is also valid when standing alone as a constant.
(eg {isComplete, COMPLETE}, {isFrozen, FROZEN})

The name might match the english description of the lookup value.
Examples:

HOW_TO USE FLG : - -> subtractive

ITEM_STATUS FLG: A -> active

DGRP_PRIO FLG : 10 -> highest10

DGRP_PRIO FLG : 20 -> priority20

Special Cases

'Type' Entity Controlling Characteristics for ‘'Instance’ Entities -
Characteristic Controls
There are 'type' entities that control the characteristics for their 'instance' entities. These are tables typically named Cl _

CHTY_<type entity>, e.g., CI CHTY_CCTY. These type entities specify a list for its instances the valid characteristic
types, default characteristic types, required characteristic types, etc. This list is the type entity's Characteristic Controls.

The following are the naming conventions for the characteristic controls:

Characteristic control class <type_entity>CharacteristicControl

Characteristic control collection characteristicControls

For example, the class name for characteristic control of Customer Contact Type is
Customer ContactTypeCharacteristicControl.

And the collection is defined as follows:

/**
* @ersion $Revision: #1 $
* @usi nessEntity (tableNanme = Cl _CC TYPE,
oneToManyCol | ections = { @hild (collectionName = characteristicControls, childTabl eNanme = CI _CHTY_CCTY
*/

HQL Programming Standards

The applications use an object relational mapping library called Hibernate (information available at http://
www.hibernate.org/). This library handles persistence operations against the database for changed entities, and also provides
a querying language.

The Hibernate Query Language (http://www.hibernate.org/hib_docs/reference/en/html/queryhql.html) provides a more
object oriented approach to querying against the database. Joins can more clearly be indicated via "navigation" to the related
foreign key, letting hibernate fill in the join when it constructs the SQL.

Note that in most situations only a subset of the hibernate query language is used. For instance, when constructing a query
whose order is important, the query must programmatically specify the order by, as opposed to placing the order by clause
into the HQL itself. This allows the application to perform additional operations upon the HQL that may be required for
different databases, and also to apply validations to the HQL.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 204

http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/hib_docs/reference/en/html/queryhql.html

Here are some examples of creating and using queries. The convenience methods to create the query are available on
any "context managed object"- that is, entities, change handlers, business components, maintenance classes, and the
implementer extensions of any of them.

To select all algorithms with a given algorithm type:

Al gorit hnfype al gorithnlype = ... ;

Query query = createQuery("from Al gorithm al gorithmwhere " +
"al gorithm al gorithmlype = :al gorithniype");

query. bi ndEntity("al gorithnType", algorithniype);

List algorithns = query.list();

The above algorithms list will contain as elements the algorithms for that algorithm type.

To sort the above query by the algorithm's code/id:

Al gorithnType al gorithnilype = ... ;

Query query = createQuery("from Al gorithm al gorithm where
"al gorithm al gorithnType = :al gorithnType");

query. bi ndEntity("al gorithniType", algorithnlype);

guery. addResul t ("al gorithnt, "algorithm');

query. addResul t ("al gorithm d", "algorithmid");

query. orderBy("al gorithmd", Query.ASCENDI NG);

Li st queryResults = query.list();

(L.

The above queryResults list will contain as elements instances of the interface QueryResultRow. Each query result row
will have two values, keyed by "algorithm" and "algorithmId". The list will be ordered (on the database) ascending by the
algorithm's IDs.

Since HQL works with the entity's properties instead of the tables' column names, there may be extra research required
when writing queries. The source of the property information is in the hibernate mapping document for each entity class-
they are documents that exist in the same package as the entity, have the same root file name as the entity's interface, and
end with .hbm.xml. These files will give the list of properties available for each entity that can be referenced when writing
HQL.

More information can be found in the JavaDocs associated with the Query interface.

Examples

Even with all of the above, there are a few cases that stand out with possibly needing examples in order to help. Notably,
dealing with language entries and lookups may be confusing.

Here is an example of selecting all algorithm types where the description is like some input:

String |ikeDescription = ...;

Query query = createQuery("from Al gorithnlype_Language al gTypeLang joi n al gTypeLang. i d. parent al gType where a
query. bi ndEntity("l anguage", getActiveContextLanguage());

guery. addResul t ("al gType", "al gType);

query. bi ndLi kabl eSt ri ngProperty("li keDescription", Al gorithnilype. properties.|anguageDescription, |ikeDescript
Li st al gorithmlypes = query.list();

The algorithmTypes list will contain as elements the algorithm types whose description is like likeDescription. Note that the
string likeDescription will have a trailing '%" appended when it is bound to the query.

Here is an example of selecting particular lookup values, with descriptions like an input value:

String description = header. get Stri ng(STRUCTURE. HEADER. DESCR) ;
Query query = createQuery("from LookupVal ue_Language | ookupVal Lang "
+ "where upper (| ookupVal Lang. description) |ike upper(:description) and | ookupVal Lang. i d. | ang
+ "l ookupVal Lang. i d. parent.id.fieldName = ' RPT_OPT_FLG);
query. bi ndLi kabl eStri ngProperty("description", LookupVal ue. properties.|anguageDescription, descriptio
query. bi ndEntity("l anguage", getActiveContextLanguage());
query. addResul t ("1 ookupVal ue", "I ookupVal Lang.id. parent");

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 205

query. addResul t ("descri ption", "l ookupVal Lang. description");
query. order By("description");
List results = query.list();

The list results will contain QueryResultRows, with values keyed by "lookupValue" and "description".

Union queries

You may note that hibernate's HQL does not allow unions, as this does not reconcile with the object oriented approach

of HQL. However, as this can be a common technique to apply, a programmatic union has been provided in the Oracle
Utilities Application Framework. The application will actually open two cursors and flip back and forth between rows from
each cursor when each would be the next one, based upon the order by clause. This should at most read one extra row from
each cursor opened than may be needed (in the case of limited maximum rows).

In order to union two queries, they must have identical result columns, order by clauses, and max rows setting. Note that
some of the properties of the union query be modified directly, leaving the individual queries to omit those properties.

Creating a union query is simple. Given two queries that need to be unioned together, simply issue:
UnionQuery union = query.unionWith(query2);

If a third (or later) query needs to be unioned, add it to the union directly:
union.addQueryToUnion(query3);

Performance

In order to evaluate the performance of HQL queries, it is necessary to first run the HQL through the hibernate engine at
run-time in order to produce the equivalent SQL. First, code the initial HQL into the application or a unit test or standalone
executable program. Start the application or test program with SQL tracing turned on. When the HQL under construction
executes, grab the SQL from the log/console. Then follow the directions in ??? 07 SQL Programming Standards to check
the performance of the SQL.

In general, most of the advice under the SQL programming standards applies equally for coding HQL when applicable at
all.

Raw SQL

In rare cases, it may be necessary to forgo the use of HQL and instead use raw SQL. This is not a preferred approach, as the
data returned will not be Java entities, but columns of primitive data types. However, for possible performance reasons (no
db hints are allowed in HQL) or if a table is not mapped into a Java entity, this approach exists.

There are parallel methods available on subclasses of GenericBusinessObject that create PreparedStatements, instead of
Query objects. So, instead of createQuery, the method createPreparedStatement should be called on a Raw SQL statement.

The PreparedStatement is similar to the regular jdbc PreparedStatement, but has some extra functionality, and a slightly
different interface so that it is similar to the regular HQL Query interface (they are interchangeable in some cases).

The main difference is that the prepared statement is created with raw SQL. Use the actual table and column names instead
of the Java entity names and property names. Also, the select clause must exist as in normal SQL but not HQL.

Additionally, this break-out into raw SQL allows SQL statements that update table data. Again, this is normally frowned
upon, and instead should be done by entity manipulation. However, in cases where a set-based SQL could update many
rows at once, this option is available, whereas HQL is ONLY meant for querying without any updates.

For more help on constructing raw SQL queries please see SQL Programming Standards.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 206

SQL Programming Standards

This document describes the SQL programming standards to be used in any database query. These standards will ensure that
all database queries across the system have been structured properly and thus have less chance to cause performance issues.
All developers must adhere to these standards.

Composing SQL Statements

Prerequisite

This document assumes that you have a basic knowledge of SQL syntax and database functions.

Composing a SELECT Statement

General SELECT Statement Considerations

» Before composing an SQL statement, you should have in front of you the ERD of the tables involved in that SQL. You
should make sure you fully understand the relationships between the tables.

* Asyou may know, an SQL may return a single record or a set of records as its result set. When a set is to be returned, it
is managed by a cursor that loops through that set and issues a separate database call for each record in the set.

* Therefore, when you design your SQL, think carefully if the task can be easily achieved in a single SQL or rather that
the nature of task is such that a row-by-row processing would make more sense. Examples for the latter could be a list
processing or simply because the calculation per row is too complicated to be handled by the database.

Selection List

» Ifalist of fields is to be returned, specify them prefixed by their table's alias name as specified in the From Clause.

» Use the DISTINCT option when the result list of records may contain duplicate rows in respect to the specified list of
fields AND only one copy of the duplicated rows is needed.

* For top-level batch programs, always specify the WITH HOLD keyword on the main SQL of a cursor based processing.
This is to keep the cursor open after a commit or rollback. Without this, main cursor will be closed and fetch of the next
record or restart processing will fail (specific to DB2) with SQL error 501.

Database-specific Features

Oracle

e Oracle7 and later provides new approach for optimization: cost-based optimization (CBO). CBO evaluates the cost to,
or impact on, your system of the execution path for each specific query and then select the lowest-cost path. The CBO
was designed to save you the trouble of fiddling with your queries. Occasionally, it is not giving you the results you want
and you have exhausted all other possible problem areas, you can specify hints to direct the CBO as it evaluates a query

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 207

and creates an execution plan. If you have used hints before, you know that a hint starts with /*+ and ends with */. A hint
applies only to the statement in which it resides; nested statements consider as separate statement and require their own
hints. Furthermore, a hint currently has a 255-character limit. Since the use of hint is database-specific, we should make
use of Database Functions to accomplish it.

¢ The most effective hints for use with the CBO are:

FULL - tells the optimizer to perform a full table scan on the table specified in the hint
SELECT /*+FULL(table name)*/ COLUMNI1,COLUMN2.....
INDEX - tells the optimizer to use one or more indexes for executing a given query.

Note: If you just want to ensure the optimizer doesn't perform a table scan, use INDEX hint without specifying an
index name and the optimizer will use the most restrictive index. A specific index should not be used as the actual
index name may differ on the client's site.

SELECT /*+INDEX(table name index namel indexname?...) */
COLUMNI, COLUM2

ORDERED - tells the optimizer to access tables in particular order, based on the order in the query's FROM clause
(often referred to as the driving order for a query)

SELECT /*+ORDERED*/ COLUMNI1, COLUMN2
FROM TABLEl, TABLE2

ALL_ROWS- tells the optimizer to choose the fastest path for retrieving all the rows of a query, at the cost of
retrieving a single row more slowly.

SELECT /*+ALL_ROWS*/ COLUMNI1, COLUMN?2...
FIRST_ROWS- tells the optimizer to choose the approach that returns the first row as quickly as possible.

Note: the optimizer will ignore the first rows hint in DELETE and UPDATE statements and in SELECT statements
that contain any of the following: set operators, group by clauses, for update clause, group functions, and the distinct
operators.

SELECT /*+FIRST_ROWS*/ COLUMNI1, COLUMN?2...

USE_NL - tells the optimizer to use nested loops by using the tables listed in the hint as the inner (non-driving) table
of the nested loop. Note: if you use an alias for a table in the statement, the alias name, not the table name, must
appear in the hint, or the hint will be ignored.

SELECT /*+USE_NL(tableA table B) */ COLUMNI1, COLUMN?2...

» Hints are an Oracle specific feature and are not supported by the DB2 SQL syntax.

» If you need to add a hint to your SQL make sure that a different SQL version is used for DB2 where the hint is not used.

» Base product developers should not duplicate their SQL in this case but rather use the special database functions file
"dbregex.txt". In this file you should add a new hint-code that in Oracle translates into the specific hint whereas in DB2 it
translates into an empty string.

FROM Clause

* Any table that has least one of its fields specified in the Selection List and/or any table that is directly referred to in the
Where Clause (excluding sub-selects if any) must be specified in this section.

» Label each table with a meaningful short alias and use this alias to reference the table anywhere in the SQL.

WHERE Clause

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 208

General WHERE Clause Considerations

All tables specified in the From Clause must participate in a join statement with another table. Table left not joined,
would cause a Cartesian join to be applied for this table and any other table on the list, resulting in an incorrect result list
let alone very poor performance.

Note that there is no such thing as "conditional" join where the only join statement for a table is under a condition.
In cases where the condition is not met and thus the join is not performed, one would end up with the same problem
described previously.

The final result set is built up by taking the full population of the tables involved and applying the restricting criteria

to it one after another where the intermediate result population of one step is the input for the next step. Therefore, it is
recommended to specify the most restrictive criteria first so that at the end of one step, lesser records are processed in the
next step.

This is of course a very schematic and simplified way to describe the internal process. This is not necessarily how the
database is actually processing the statements. However, setting up the criteria as described would direct the database to
use the right path.

Use of Sub-Selects

When you need to further test each processed record in the Where clause for meeting an additional condition, AND that
condition can NOT be checked directly on the Where clause level, you probably need a sub-select.

As it is performed once for each outer level record it is considered as quite an expensive tool. Therefore if the criteria
checked in a sub-select can be moved to the outer where clause level, it is preferable. If you still need to use a sub-select,
it is very important to restrict the outer where clause population to the very minimum possible so that lesser records
would need to be further checked for the sub-select condition.

When no value needs to be returned from the sub-select query but rather simply use it to check if a certain condition is
true or false, use the EXISTS function as follows:

* Select ...
* From ...
e Where ... AND EXISTS (<sub-select>)

A sub-select query may refer to any value of the outer level record as its input parameters. Notice that if your sub-select
does NOT refer to any of the processed record fields, it means that the result set of the sub-select would be the same for
ALL the processed records.

Note that this could, but not necessarily, be an indication that your sub-select is set up wrong. One case where it is
definitely wrong is when the sub-select result is input to an EXISTS function.

Use of in Function

Whenever a field needs to be tested against a list of valid values it is recommended to use the IN function and not
compare the field against each and every value.

Wrong way:

* Select ...

* From ...

e Where ... (A ="10"or A="20" or A='30")
Right way:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 209

¢ Select ...
¢ From ...

* Where ... AIN ('10',20','30")

Use of Database Functions

* Not all database functions available for one database are valid for others. Make sure that when you do use a database
function the SQL works properly on every database supported by the product.

* Avoid using LIKE as this will cause table scans. To achieve the 'LIKE' function where the first part of the string is
specified, e.g., "CM%", BETWEEN may be used with the input criteria padded with high and low values.

Other

* Depending on the data distribution, search on optional index column will likely to cause time out. See example -
* Select BSEG ID

* From CI BSEG

* Where MASTER BSEG _ID = &IN.MASTER-BSEG-ID

» For such cases, consider additional restrictions or re-create the index to become composite - MASTER BSEG ID +
BSEG _ID.

Sort Order

* When a result list should be displayed in a specific order, sorting should take place on the database level and NOT on
the client. This is especially important in cases when the list cannot be returned in full but rather in batches of records.
Sorting each batch of records separately would not guarantee the sort order between records of different batches.

* Columns in the sort order list must be specified in the selection list.
» Prefix each field used in this clause with its table's alias name.

» Explicitly specify whether sorting should be ascending or descending and do not rely on database defaults.

Grouping

* When a set of records needs to be grouped together by a simple and straightforward condition, it is recommended to use
the database Group By Clause. In this case only the final summarized records are to be returned to the client resulting in
a lesser number of database calls as opposed to processing the full list let alone a simpler program without any special
grouping logic.

Existence Checks

* The common technique used to check whether a certain condition is met or not, obviously when no data needs to be
returned, is simply COUNT how many records match that condition. A zero number indicates that no record has met that
condition.

* Notice that this is not very efficient as we are asking the database to scan the records for an accurate number that we
don't really care about. All we really want to know if there is at least one such record and NOT how many they are.

* When the tables involved are of low volume there should be no problem using this technique. It is very simple and uses
common SQL syntax to all databases.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 210

However, when that condition is checked against a high volume table that many of its records meet that condition,
scanning all the matching records to get a count we don't need should be avoided.

In this case use the EXISTS function as follows:

Select 'x'

From <The main table of the searched field, where it is defined as the PK of that table>

Where <search field> = <search value> and

EXISTS

(<sub-select with the desired condition. This is the high volume table>);

For example :
Select 'x'

From CI_UOM

Where UOM_CD = input UOM_CD and

EXISTS (select 'x'
From CI BSEG CALC LN

Where UOM_CD = input UOM_CD);

If this does not work for your special case, use the following option :

Select 'x'
From CI_INSTALLATION
Where EXISTS

(<sub-select with the desired condition>) ;

Remember : This type of existence check using the Installation Options record should only be used in rare cases and
should be consulted with the DBA first before implementation.

Note that we use CI_ INSTALLATION as this table has only one row.

SQL statements to avoid

Decimal Delimiter

In Europe the decimal delimiter is often set to be comma character. DB2 database configured this way will return SQL
syntax error in the following cases:

select,1,

insertvalues(...1,2,3...)
insertvalues(...1 ,2,...)
order by 1,2,3

order by 1,2

update...set abc=1,def="XX'

case (? as varchar(50),12

To avoid this problem, surround the comma with spaces.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 211

Testing SQL Statements

Result Data

Once your SQL is ready, it is essential to test that it actually returns the expected result.

Create sample data for each condition checked by your SQL. Then execute the SQL and make sure it returns the expected
result for each case.

Performance Testing - Oracle Only

Overview

An SQL may perform reasonably well even if not efficiently written in cases where the volume of processed data is low,
like in a development environment. However, the same SQL may perform very poorly when executed in a real high volume
environment. Therefore, any SQL should be carefully checked to make sure it would provide reasonable performance at
execution time.

Obviously there could be many reasons for an SQL to perform poorly and not all of them are easy to predict or track.
In general, these could be subcategorized into two main groups:

* Basic issues related to the SQL code. These may be missing JOIN statements, inefficient path to the desired data,
inefficient use of database functions, etc.

* More complicated issues having to do with lack of indexes, database tuning and handling of high volume of data,
efficiency of I/O system etc.

The latter group of issues may only be truly tested on a designated environment simulating a real production configuration.
These performance tests are typically conducted by a team of database and operating system experts as part of a thorough
performance testing of a predefined set of process.

It is the first group of issues that can and should be tested by the programmer at this stage. This is done by analysis of the
SQL's Explain Plan result.

What is an Explain Plan?
An explain plan is a representation of the access path that is taken when an SQL is executed within Oracle.

The optimal access path for an SQL is determined by the database optimizer component. With the Rule Based Optimizer
(RBO) it uses a set of heuristics to determine access path. With the Cost Based Optimizer (CBO) we use statistics to
analyze the relative costs of accessing objects.

Since the Cost Based optimizer relies on actual data volume statistics to determine the access path, to generate an accurate
Explain Plan using the cost based optimizer requires a database set up with the proper statistics of a real high volume data
environment.

NOTE: A cost based optimizer Explain Plan generated on an inadequate database, would be totally inaccurate and
misleading!

Obviously, our development database does not qualify as an optimal environment of cost based optimizations. Since the
Rule Based optimizer is not data dependant it would provide a more reliable Explain Plan for this database.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 212

NOTE: An efficient rule based Explain Plan does not guarantee an efficient cost based one when the SQL is finally
executed on the real target database. However, a poor rule based Explain Plan would most probably remain such on a
database with a higher volume of data.

NOTE: When the SQL is complicated and mainly designed to process high volume tables it is recommended to also
analyze its Explain Plan on an appropriate high volume database.

Generate the SQL's Explain Plan

e Let's assume this is the SQL to be checked

SELECT
pA1.INTYU_DATA_SET_ID
FROH
CI_INTU_DATA_SET DA1
WHERE

DA1.INTU_PF_ID = :S-ERRDS-IH-DATA.RES-IHTU-PF-ID

AND DA1.SET_STATUS_FLG =
S-ERRD3-IN-DATA.ERROR-STATUS-FLG

AND HOT EXISTS

(SELECT "X°*

FROH CI_IHTU_DATA DB1

WHERE DB1.INTU_DATA_SET_ID = DA1.IHTVU_DATA_SET_ID)

QL To Check
e Adjust the SQL Statement:

» Extract the tested SQL into the SQL Developer editor.

* Replace the COBOL name of each Host Variable with the equivalent database identifier :b<n> where n is a unique
number identifying that host variable. If the same variable appears more than one in the SQL use the same database
host variable id in all occurrences.

» Force the database to analyze the SQL in Rule Base mode by introducing the RULE database hint phrase.

DE%'%E& @f&; @.é’@ J.E 0 seconds

Warksheet Query Builder

1|=SELECT /*+ EULE */

2 DA1.INTYV_DATA 3ET_ID

3| FROM

4 CI_INTY_DATAL SET Dil

3| 'HWHERE

E| DAL.INTY_PF_ID = :hl

7| AHD Dal.3ET STATUS_FLG = :bZ

g AHD HOT EXTSTS

9] (SELECT 'X'

10 FROM CI_INTY_DATA DEL

11| WHERE DEL.INTV DATA SET ID = DAL.INTV DATa SET ID):
Adjust the SQL Satement

» Generate the Explain Plan:
* Position the cursor on the SQL statement.

* Run the Explain Plan by hitting F10(or right-click anywhere on the SQL statement and click Explain Plan... from the
context menu).

* The generated plan will appear in the output tab.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 213

lEEprain Plan *
A S0l | 0seconds

OPERATICN OBIECT_MAME =
=} 40 SELECT STATEMENT
=40 FILTER
68 INDEY, (RANGE SCAN) 723351
18 TNDEX, (RANGE SCAN) %T234P0
Explain Plan

Analyzing the Explain Plan

Access Methods
Oracle finds the data to read by using the following methods:
* Full Table Scan (FTS). Using this method the whole table is read.

* Index Lookup (unique & non-unique). Using this method, data is accessed by looking up key values in an index and
returning rowids where a rowid uniquely identifies an individual row in a particular data block.

* Rowid. This is the quickest access method available. Oracle simply retrieves the block specified and extracts the rows it
is interested in. Most frequently seen in explain plans as Table access by Rowid.

Common Issues to Be Aware of

Cartesian Product

* A Join is a predicate that attempts to combine 2 row sources. Cartesian Product is created when there are no join
conditions between 2 row sources and there is no alternative method of accessing the data. Typically this is caused by a
coding mistake where a join has been left out. The CARTESIAN keyword in the Explain Plan indicates this situation.

Full Table Scan

* A Full Table Scan, e.g. TABLE ACCESS FULL phrase, found in the Explain Plan usually indicates an inefficient access
path. This means that the only way the database found to get to the desired data is by reading every single row in the
table.

* Notice that if the logic indeed requires reading all data, then this database decision is indeed correct. However, if you
intended to get a small subset of rows from a large table and ended up reading all of it this is definitely not efficient and
should be fixed. If this is the case, try and find a better SQL structure that would avoid a full table access. If you can't
find such, please consult a DBA as this SQL may require an additional Index to be created for the table.

» Sometimes there would be a proper index on a particular table but still a full table scan would be chosen for the access
path of that table. This may be as result of an inefficient Join Order. Please see details below.

Join Order

A Join is a predicate that attempts to combine 2 row sources. We only ever join 2 row sources together. Join steps are
always performed serially even though underlying row sources may have been accessed in parallel. The join order makes a

Oracle Utilities Application Framework Software Development Kit Developer's Guide 214

significant difference to the way in which the query is executed. By accessing particular row sources first, certain predicates
may be satisfied that are not satisfied by with other join orders. This may prevent certain access paths from being taken.

* Make sure the join between 2 tables is done via indexed fields as much as possible.

* Also, if such an index exists, make sure you specify fields in the order they are defined by that index.

Nested Loops

This is a common type of processing a join between 2 row sources. First we return all the rows from row source 1, then we
probe row source 2 once for each row returned from row source 1.

Row source 1

Row 1 --mmmmmmmeeeee Probe -> Row source 2
Row 2 --mmmmeee e - Probe -> Row source 2
Row 3 - - Probe -> Row source 2

Row source 1 is known as the outer table. Row source 2 is known as the inner table. Accessing row source 2 is known

a probing the inner table. For nested loops to be efficient it is important that the first row source returns as few rows as
possible as this directly controls the number of probes of the second row source. Also it helps if the access method for row
source 2 is efficient as this operation is being repeated once for every row returned by row source 1.

Sort

Sorts are expensive operations especially on large tables where the rows do not fit in memory and spill to disk.
There are a number of different operations that promote sorts:

* Order by clauses

* Group by

* Sort merge join

Note that if the row source is already appropriately sorted then no sorting is required. In other words, if the fields you sort
by happen to be defined by an Index in that particular order then sort operation is avoided. Therefore, whenever you see that
an explicit sort operation has taken place, check if it can be avoided by using an index or sometimes just by making sure
your are using an index's fields in the right order.

If no such index exists and the number of rows to be sorted is of high volume, please consult a DBA as this may justify
adding a new index.

More Extensive Performance Testing

Special attention should be paid to background processes that are designed to process high volume tables. A thorough
performance testing exercise in a benchmark format may be called upon.

SQL Development and Tuning Best Practices

* Length of the DataType Matters.

For example if you define a column with VARCHAR2(4000) (just the maximum limit) then you may outflow you array
as given in the example below.

Oracle Utilities Application Framework Software Development Kit Developer's Guide 215

Varchar2(n) where n is "right sized"

Varchar2(4000) for everything (just in case)

Assume 10 columns, average width is 40 characters (some are 80,
some are 10...).

Assume 10 columns, average, minimum, maximum width is 4000.

400 bytes per row on a fetch.

40,000 bytes per row on a fetch.

Assume array fetch of 100 rows, so array fetch buffer or 40,000
bytes.

Assume array fetch of 100 rows, so array fetch buffer or 4,000,000
bytes.

Assume 25 open cursors, so 1,000,000 bytes of array fetch buffers.

Assume 25 open cursors, so 100,000,000 bytes.

Assume connection pool with 30 connections — 30MB.

Assume connection pool with 30 connections — 3GB.

NOT Null columns should be preferred over Null able columns. The reason is if you have an Index on a Null able
column then it would not be used by the SQL as the optimizer thinks that it would not find any values in some of the
columns so prefer a full scan.

As a workaround for columns with NULL data types the Index create SQL should look like:
Create | NDEX ABC ON TAB1L (COLUW1, O0);

This will make sure that in case the Columnl1 is null the optimizer will consider the value as 0 and leads to index scan as
compared to Full scans.

Always try to substitute the Bind Variables in a SQL with the actual constant value if there is only one possible. Having
too much Bind variables sometimes confuses the Optimizer to take the right access path. So this is good for the stability
of the SQL plans.

Fields which are foreign keys to other tables and are used in SQLs for the Join criterion are good candidates for creating
Indexes on.

Do not create any objects in the database of which the name may collide with any SQL reserved words.

Views are generally used to show specific data to specific users based on their interest. Views are also used to restrict
access to the base tables by granting permission only on views. Yet another significant use of views is that they simplify
your queries. Incorporate your frequently required, complicated joins and calculations into a view so that you don't have
to repeat those joins/calculations in all your queries. Instead, just select from the view.

Avoid creating views within views as it affects the performance.

Offload tasks, like string manipulations, concatenations, row numbering, case conversions, type conversions etc., to the
front-end applications if these operations are going to consume more CPU cycles on the database server. Also try to do
basic validations in the front-end itself during data entry. This saves unnecessary network roundtrips.

Always be consistent with the usage of case in your code. On a case insensitive server, your code might work fine, but it
will fail on a case-sensitive server if your code is not consistent in case.

Make sure you normalize your data at least to the 3rd normal form. At the same time, do not compromise on query
performance. A little bit of denormalization helps queries perform faster.

Consider indexing those columns if they are frequently used in the ORDER clause of SQL statements.
Use tools like Tkprofs and AWR Report for measuring the Performance of your SQLs.
In the SQL Explain Plans, usage of Nested Loops are good when there are table joins involved.

Always looks for Autotrace to measure the SQL plan as it is closer to the plan which the optimizer takes during the
actual execution of the SQL. This can be get easily through SQL Developer and other database monitoring tools.

While looking at the Autotrace Plans look for consistent gets and make sure they are low. The other thing reported by the
Autotrace is COST. Do not worry too much about cost if the Consistent gets is low and you are getting a desirable Plan.

Make sure that the Statistics are current and not stale while you are trying to Tune a SQL.

Having Secondary Unique Indexes help in achieving Index Unique scans. This will eliminate the Table scans. It is worth
trying and see if that makes a difference.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 216

* Oracle Optimizer executes the explain plans of a SQL from Inner to the outer area and from bottom to the top. So make
sure that the cardinality of the inner most Join criterion should be low.

* Always keep in mind the usage of the SQL in a real production scenario where the data in the tables can go
exponentially. Make sure that the SQLs can handle it and the Explain plan should be accordingly tuned.

* Usage of <<, = make the Index NOT to be used. Instead of this use the greater than or less than statements.

» Ifyou wrap a column a column with some functions like TO DATE, TO CHAR, SUBSTR and so on then the Index on
the Column would not be used.

» Avoid using UNION and make sure you use UNION ALL if possible. This will boost performance.
» Using EXISTS , NOT EXISTS are better than using IN , NOT IN statements respectively.
* Usage of Leading Hints helps in choosing what Table should be the first table in the join order.

/*+ LEADI NG Tabl el Tabl e2) */

* When writing comments within SQL statements make sure that the comments are not added at the beginning because
DB2 will not be able to parse it. You can instead put the Comments at the end and it will work. For Oracle this is not an
issue.

LA JDEC connection to the target has succeeded.

—————————————————————————————— Eomuands - EREEHE —SEtsaas s o gt S e e

select * f* IN 2QL Comment */ from CI_MD_TEL &f* POBT BQL Comment */

Besults for a single query are displayed on the Query Besults tab.

100 rowi(s) returned successfully.

Additional Resources

Additional information on optimizing SQL in your OUAF applications can be found in the Oracle Utilities Application
Framework - Technical Best Practices whitepaper available on the My Oracle Support (MOS) Knowledge Base (article
560367.1).

Database Design

The objective of this document is to provide a standard for database objects (such as tables, columns, and indexes) for
products using Oracle Utilities Application Framework. This standard is introduced to insure clean database design, to
promote communications, and to reduce errors leading to smooth integration and upgrade processes. Just as Oracle Utilities
Application Framework goes thorough innovation in every release of the software, it is also inevitable that the product will
take advantage of various database vendors' new features in each release. The recommendations in the database installation
section include only the ones that have been proved by vigorous QA processes, field tests and benchmarks.

Database Object Standard

This section discusses the rules applied to naming database objects and the attributes that are associated with these objects.

Naming Standards

The following naming standards must be applied to database objects.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 217

https://support.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?id=836362.1&type=DOCUMENT&displayIndex=4
https://support.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?id=836362.1&type=DOCUMENT&displayIndex=4
https://support.oracle.com

Table

Table names are prefixed with the owner flag value of the product. For customer modification CM must prefix the table
name. The length of the table names must be less than or equal to 30 characters. A language table should be named by
suffixing L to the main table. The key table name should be named by suffixing K to the main table.

It is recommended to start a table name with the 2-3 letter acronym of the subsystem name that the table belongs to. For
example, M D stands for meta-data subsystem and all meta data table names start with CI_MD.

Some examples are:

CI_ADJ TYPE
CI_ADJ TYPE L

NOTE: A language table stores language sensitive columns such as a description of a code. The primary key of a
language table consists of the primary key of the code table plus language code (LANGAGUE_CD).

NOTE: A key table accompanies a table with a surrogate key column. A key value is stored with the environment id that
the key value resides in the key table.

NOTE: The tables prior to V2.0.0 are prefixed with CI_or SC .

Columns

The length of a column name must be less than or equal to 30 characters. The following conventions apply when you define
special types of columns in the database.

Use the suffix FL G to define a lookup table field. Flag columns must be CHAR(4). Choose lookup field names carefully as
these column names are defined in the lookup table (CI LOOKUP_FLD) and must be prefixed by the product owner flag
value.

Use the suffix CD to define user-defined codes. User-defined codes are primarily found as the key column of the admin
tables.

Use the suffix I D to define system assigned key columns.

Use the suffix SW to define Boolean columns. The valid values of the switches are "Y' or 'N'. The switch columns must be
CHAR(1)

Use the suffix DT to define Date columns.

Use the suffix DTTM to define Date Time columns.

Use the suffix TM to define Time columns.

Some examples are:

ADJ_STATUS_FLG
CAN_RSN_CD

Indexes

Index names are composed of the following parts:
[X][C/M/TINNN[P/S]

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 218

X - letter X is used as a leading character of all base index names prior to Version 2.0.0. Now the first character of product
owner flag value should be used instead of letter X. For client specific implementation index in Oracle, use CM.

C/M/T - The second character can be either C or M or T. C is used for control tables (Admin tables). M is for the master
tables. T is reserved for the transaction tables.

NNN - A three-digit number that uniquely identifies the table on which the index is defined.

P/S/IC - P indicates that this index is the primary key index. Sis used for indexes other than primary keys. Use C to indicate
a client specific implementation index in DB2 implementation.

Some examples are:
* XCO001PO

* XT206S1

* XT206C2

* CM206S2

WARNING: Do not use index names in the application as the names can change due to unforeseeable reasons.

Sequence

The base sequence name must be prefixed with the owner flag value of the product.

Trigger

The base trigger name must be prefixed with the owner flag value of the product.

NOTE: When implementers add database objects, such as tables, triggers and sequences, the name of the objects should
be prefixed by CM. For example, Index names in base product are prefixed by X; the Implementers' index name must
not be prefixed with X.

Column Data Type and Constraints

User Define Code

User Defined Codes are defined as CHAR type. The length can vary by the business requirements but a minimum of
eight characters is recommended. You will find columns defined in less than eight characters but with internationalization
in mind new columns should be defined as CHAR(10) or CHAR(12). Also note that when the code is referenced in the
application the descriptions are shown to users in most cases.

System Assigned Identifier

System assigned random numbers is defined as CHAR type. The length of the column varies to meet the business
requirements. Number type key columns are used when a sequential key assignment is allowed or number type is required
to interface with external software. For example, Notification Upload Staging ID is a Number type because most EDI
software uses a sequential key assignment mechanism. For sequential key assignment implementation, the DBMS sequence
generator is used in conjunction with Number Type ID columns.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 219

Date/Time/Timestamp

Date, Time and Timestamp columns are defined physically as DATE in Oracle. In DB2 the DATE, TIME and
TIMESTAMP column types, respectively, are used to implement them. Non-null constraints are implemented only for the
required columns.

Number

Numeric columns are implemented as NUMBER type in Oracle and DECIMAL type in DB2. The precision of the number
should always be defined. The scale of the number might be defined. Non-null constraints are implemented for all number
columns.

Fixed Length/Variable Length Character Columns

When a character column is a part of the primary key of a table define the column in CHAR type. For the non-key character
columns, the length should be the defining factor. If the column length should be greater than 10, use VARCHAR?2 type in
Oracle and VARCHAR type in DB2.

Null Constraints
The Non-null constraints are implemented for all columns except optional DATE, TIME or TIMESTAMP columns.

Default Value Setting
The rule to set the database default value is the following:

* When a predefined default value is not available, set the default value of Non-null CHAR or VARCHAR columns to
blank except the primary key columns.

* When a predefined default value is not available, set the default value Non-null Number columns to 0 (zero) except the
primary key columns.

* No database default values should be assigned to the Non Null Date, Time, and Timestamp columns.

Foreign Key Constraints

Referential Integrity is enforced by the application. In database, do not define FK constraints. Indexes are created on most
of Foreign Key columns to increase performance.

Standard Columns

Owner Flag

Owner Flag (OWNER_FLG) columns exist on the system tables that are shared by multiple products. Oracle Utilities
Application Framework limits the data modification of the tables that have owner flag to the data owned by the product.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 220

Version

The Version column is used to for optimistic concurrency control in the application code. Add the Version column to all
tables that are maintained by a Row Maintenance program.

System Table Guide

This document lists the system tables owned by the Oracle Application Framework product V2.2.0 and explains the

data standards of the system tables. The data standards are required for the Oracle Utilities Application Framework
installation, development within the Oracle Utilities Application Framework, configuration of Oracle Utilities products, and
customization of the Oracle Utilities products. Adhering to the data standards is a prerequisite for seamless upgrade to the
next release of the product(s).

What are system tables?

System tables are a subset of the tables that must be populated at the time of installation of the product(s). They include
Meta Data tables and configuration tables. The data stored in the system tables are the information that Oracle Utilities
Application Framework product operations are based on.

As the product adds more functionality, the list of system table can grow. The complete list of the system tables can be
found in System Table List section.

Why the standard must be observed?

This standard must be observed for the following reasons

» The product installation and upgrade process and customer modification data extract processes depend on the data prefix
and owner flag values to determine the system data owned by each product.

* The standard ensures that there will be no data conflict in the product being developed and the future Oracle Utilities
Application Framework release.

¢ The standard ensures that there will be no data conflict between customer modifications and future Oracle Utilities
product releases.

» The data prefix is used to prevent the test data from being released to production.

NOTE: Developer's Note > All test data added to the system data tables must be prefixed by ZZ (all upper case) in
order for the installation and upgrade utility to recognize them as test data.

Guidelines for System Table Updates

Business Configuration Tables

The majority of data in the tables in this group belongs to the customer. But these tables are shipped with some initial data
in order for the customer to login to the system and begin configuring the product. Unless specified otherwise, the initial
Data is maintained by Oracle Utilities Application Framework and subject to subsequent upgrade.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 221

Application Security and User Profile

These tables define the access rights of a User Group to Application Services and Application Users.

Properties Description

Tables SC_ACCESS_CNTL, SC USER, SC_USR_GRP_PROF, SC_USR_
GRP_USR, SC_USER_GROUP, SC_USER_GROUP_L

Initial Data User Group All SERVICES and default system user SYSUSER.

Upon installation the system default User Group All SERVICES is
given unrestricted accesses to all services defined in Oracle Utilities
Application Framework.

NOTE: Developer's Note> When a new service is added to the system, all actions defined for the service must be made
available to the User Group All SERVICES.

Currency Code

The ISO 4217 three-letter codes are taken as the standard code for the representation of the currency.

Properties Description

Tables CI_LANGUAGE

Initial Data United States Dollar (USD).

DB Process

Properties Description

Tables CI_DB_PROC, CI_DB_PROC_L, CI_DB_INSTR, CI_DB_INSTR_L, CI_
DB_INSTR_OVRD

Initial Data Copy DB Process (CL-COPDB). This DB process allows users to copy

a DB process from one database to another using Config Lab utility.

Display Profile
The Display Profile Code is referenced in User (SC_USER) table.

Properties Description
Tables Cl_DISP_PROF, CI_DISP_PROF_L
Initial Data North America (NORTHAM) and Europe (EURO).

Installation Options

Installation option has only one row that is shipped with the initial installation of the Oracle Utilities Application
Framework. The updatable columns in these tables are customer data and will not be overridden by the upgrade process
unless a special script is written and included in the upgrade process.

Properties Description

Tables F1_INSTALLATION, CI_INSTALL_ALG, CI_INSTALL_MSG, CI_
INSTALL_MSG_L, CI_INSTALL_PROD

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 222

Properties Description

Initial Data Option 11111.

NOTE: The system data owner of an environment is defined in the Installation Option. This Owner Flag value is
stamped on all system data that is added to this environment. The installation default value is Customer Modification
(CM). This value must be changed in the base product development environments.

Language Code

Language code must be valid code defined in ISO 639-2 Alpha-3. Adding a new language code to the table without
translating all language dependent objects in the system can cause errors when a user chooses the language.

Properties Description
Tables CI_LANGUAGE
Initial Data English (ENG).

To do priority and Role

New To Do Types released will be linked to the default To Do Role and set to the product assigned priority value initially.
These initial settings can be overridden by the implementation.

Properties Description
Tables CI_ROLE(L), CI_TD_VAL_ROLE
Initial Data F1_DFLT

Development and Implementation System Tables

This chapter defines the standard for the system tables that contain data that are for the application development. The data
in these tables implement business logic and Ul functions shared by various products and product extensions in the same
database.

Standards

* When adding a new data, the owner flag value of the environment must prefix certain fields of these tables. For example,
when a developer adds a new algorithm type to an Oracle Utilities Business Intelligence development environment B1
should prefix the new Algorithm Type code. The fields that are subject to this rule are listed in Standard Data Fields
property.

* The data that is already in these tables are not allowed for modification if the data owner is different from your
environment owner. This is to prevent the developers from accidentally modifying system data that belong to Oracle
Utilities Application Framework or other Base products. However, some fields are exempt from this rule and can be
modified by Customer Modification. These fields are listed in Customer Modification Fields property.

NOTE: Starting V2.2, we introduce a new system data upgrade rule - override Owner flag. If duplicate data rows (data
row with same primary key values) found at the time of upgrade, the owner flag values will get overridden. The lower
level application system data will override the upper level system data. For example, F1 overrides C1, F1&C1 overrides
CM etc. This rule will be applied to the following tables: CI CHAR ENTITY, CI MD MO ALG, F1_ BUS OBJ_
ALG, F1 BUS OBJ STATUS ALG, CI MD MO OPT, F1 BUS OBJ OPT,Fl BUS OBJ STATUS OPT,F1_
BUS OBJ STATUS, F1_BUS OBJ STATUS L

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 223

Algorithm Type

Properties

Description

Tables

CI_ALG_TYPE, CI_ALG_TYPE_L, CI_ALG_TYPE_PRM, Cl_ALG_
TYPE_PRM_L

Standard Data Fields

Algorithm Type (ALG_TYPE_CD)

Customer Modification None

Algorithm

Properties Description

Tables CIL_ALG, CI_ALG _L, CI_ALG_PARM, CI_ALG_VER

Standard Data Fields

Algorithm (ALG_CD)

Customer Modification None

Application Security

Properties Description

Tables SC_APP_SERVICE, SC_APP_SERVICE_L, CI_APP_SVC_ACC

Standard Data Fields

Application Service Id (APP_SVC_ID). CC&B product prior to version
2.0 will continue to use Cl as prefix of the application service.

Customer Modification None

Batch Control

Properties Description

Tables CI_BATCH_CTRL, CI_BATCH_CTRL_L, CI_BATCH_CTRL_P, CI_

BATCH_CTRL P_L

Standard Data Fields

Batch Process (BATCH_CD),Program Name(PROGRAM_NAME)

Customer Modification

* Next Batch Number (NEXT_BATCH_NBR), Last Update Instance
(LAST_UPDATE_INST), Last Update Date time (LAST_UPDATE_
DTTM). These columns are updated by the batch processes.

+ Batch Parameter Value (BATCH_PARM_VAL)

Business Object

Properties

Description

Tables

F1_BUS_OBJ, F1_BUS_OBJ_L, F1_BUS_OBJ_ALG, F1_BUS_OBJ_
OPT, F1_BUS_OBJ_STATUS, F1_BUS_OBJ_STATUS_L, F1_BUS_
OBJ_STATUS_ALG, F1_BUS_OBJ_STATUS_OPT, F1_BUS_OBJ_
TR_RULE, F1_BUS_OBJ_TR_RULE_L

Standard Data Fields

Business Object(BUS_OBJ_CD)

Oracle Utilities Application Framework Software Development Kit Developer's Guide 224

Properties Description
Customer Modification
* None
Business Service
Properties Description
Tables F1_BUS_SVC, F1_BUS_SVC_L

Standard Data Fields

Business Service(BUS_SVC_CD)

Customer Modification

* None
Characteristics
Properties Description
Tables CI_CHAR_TYPE, CI_CHAR_TYPE_L, C|_CHAR_ENTITY, C|_CHAR_

VAL, CI_CHAR_VAL_L

Standard Data Fields

Characteristic TypeCHAR_TYPE_CD)

Customer Maodification

* Adhoc Characteristic Value Validation Rule (ADHOC_VAL_ALG_

CD) on Characteristic Entity Table (CI_CHAR_ENTITY)

Data Area
Properties Description
Tables F1_DATA_AREA, F1_DATA_AREA L

Standard Data Fields

Data Area Code (DATA_AREA_CD)

Customer Modification None

Display Icon

Properties Description

Tables CI_DISP_ICON, CI_DISP_ICON_L

Standard Data Fields

Display Icon Code (DISP_ICON_CD)

Customer Modification None

Foreign Key Reference

Properties Description

Tables Cl_FK_REF, CI_FK_REF_L

Standard Data Fields

FK reference code (FK_REF_CD)

Customer Modification

None

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 225

Lookup

Properties Description
Tables Cl_LOOKUP_FIELD, CI_LOOKUP_VAL, C|_LOOKUP_VAL_L
Standard Data Fields Field Name (FIELD_NAME)

» Alookup field name must have a corresponding field meta data.
The name of the lookup field column must be assigned to avoid
conflicts among different products. If you follow the standard of
database field name, a Customer Modification lookup field name will
be automatically Customer Modification prefixed.

Field Value (FIELD_VALUE)

» If alookup field is customizable, Customer Modification can insert
new lookup values. X or Y must prefix when implementers introduce
a new lookup value.

» Product development can extend the Oracle Utilities Application
Framework owned lookup field's value with caution. When it needs
to be extended, prefix the first letter of the Owner Flag to the value.
For example, when adding a new value to the algorithm entity flag
(ALG_ENTITY_FLG), prefix with B1 if you are developing a Oracle
Utilities Business Intelligence product.

Customer Modification Override Description (DESCR_OVRD)

NOTE: A new Feature option is defined through adding a value to EXT SYS TYP FLG. The field value for this look
up field must be prefixed by the Owner flag value.

Map

Properties Description

Tables F1_MAP, F1_MAP_L

Standard Data Fields Map ode (MAP_CD)

Customer Modification None

Messages

Properties Description

Tables CI_MSG_CATEGORY, CI_MSG_CATEGORY_L, CI_MSG, CI_MSG_L
Standard Data Fields Message Category (MESSAGE_CAT_NBR)

* Messages are grouped in categories and each category has
message numbers between 1 and 99999. A range of message
categories is assigned to a product. You must use only the assigned
category for your product.

» Oracle Utilities Customer Care and Billing and Oracle Utilities
Business Intelligence - 00001 thru 00100

» Oracle Utilities Application Framework Java - 11001 thru 11100

» Oracle Utilities Customer Care and Billing Java - 11101 thru 11200
» Oracle Utilities Business Intelligence Java - 11201 thru 11300

* Implementer Legacy - 90000

* Implementer WSS - 90001

» Implementer Java - 90002

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 226

Properties Description

* Reserved for Tests - 99999

Message Number (MESSAGE_NBR) for Converted COBOL Program
message categories

* Message numbers below 1000 are reserved for common messages.
Implementers must not use message numbers below 1000.

» Message Number (MESSAGE_NBR) for Java message categories
* Subsystem Standard Messages - 00001 thru 02000

* Reserved - 02001 thru 09999

» Published Messages - 10001 thru 11000

» Package Messages - 10001 thru 90000

* Reserved - 90001 thru 99999

» Each package is allocated 100 message numbers, each starting
from 101.

* Published Messages are messages that are special-interest
messages that implementations need to know about and
are therefore published in the user docs. Examples of these
include messages that are highly likely to be changed for an
implementation, or messages that are embedded into other texts/
messages and therefore the message number is never shown

* Reserved message number ranges are for future use and therefore
must not be used by all products.

Customer Modification Override Description (DESCRLONG_OVRD), Message Text
Override (MESSAGE_TEXT_OVRD)

Meta data - Table and Field

Properties Description

Tables Cl_MD_TBL, CI_MD_TBL_FLD, CI_MD_TBL_L, CI_MD_TBL_FLD _L,
CI_MD_FLD, C|_MD_FLD_L

Standard Data Fields
» Table Name(TBL_NAME)

+ Table names must match with the physical table name or view name

in the database.
Field Name(FLD_NAME)

» Field name must match with the physical column name in the
database unless the field is a work field. Field name does not have
to follow the prefixing standard unless the field is a work field or
customer modification field.

Customer Modification Audit Switches (AUDIT_INSERT_SW, AUDIT_UPDATE_SW, AUDIT_
DELETE_SW), Audit Program Name (AUDIT_PGM_NAME), Audit
Table Name (AUDIT_TBL_NAME), Override label (OVRD_LABEL)

Meta data - Constraints

Properties Description

Tables Cl_MD_CONST, C|_MD_CONST_FLD

Standard Data Fields A
* Constraint Id (CONST_ID)

* AA_CXXXXXPO0O0 for Primary Constraints
* AA_CXXXXXRnn for Foreign Key Constraints Where

* AA: Product owner flag value

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 227

Properties Description

* XXXXX: First 5 letters of the primary index name of the table
* nn:integer 01..99

Customer Modification None

Meta data - Menu

Menus can be extended to support multiple products by adding a new menu line to an existing menu. The sequence number
on the menu line language table (CI MD MENU _LINE L) determines the order the menu lines appear. Within the same
sequence, alphabetic sorting is used.

Properties Description

Tables CI_MD_MENU, CI_MD_MENU_L, CI_MD_MENU_ITEM, CI_MD_
MENU_ITEM_L, CI_MD_MENU_LINE, CI_MD_MENU_LINE_L

Standard Data Fields Menu Name (MENU_NAME), Menu Item Id (MENU_ITEM_ID), Menu
Line Id (MENU_LINE_ID)

Customer Modification None

Meta data - Program, Location and Services

Properties Description

Tables Cl_MD_PRG_COM, C|_MD_PRG_LOC, C|_MD_SVC, C|_MD_SVC_L,
CI_MD_SVC_PRG, C|_MD_PRG_REF, CI_MD_PRG_MOD, CI_MD_
PRG_EL_AT, CI_MD_PRG_ELEM, CI_MD_PRG_SEC, C|_MD_PRG_
SQL, CI_MD_PRG_VAR, CI_MD_PRG_TAB

Standard Data Fields Program Component Id (PROG_COM_ID), Location Id (LOC_ID),
Program Component Name (PROG_COM_NAME), Service Name
(SVC_NAME), Navigation Key (NAVIGATION_KEY)

Customer Modification User Exit Program Name (USER_EXIT_PGM_NAME on CI_MD_
PRG_COM),

Meta data - Maintenance Object

Properties Description

Tables Cl_MD_MO, CI_MD_MO_L, CI_MD_MO_TBL, CI_MD_MO_OPT, CI_
MD_MO_ALG

Standard Data Fields Maintenance Object Name (MO_NAME)

Customer Modification None

Meta data - Work Tables

Properties Description

Tables CI_MD_WRK_TBL, CI_MD_WRK_TBL_L, CI_MD_WRK_TBLFLD, CI_
MD_MO_WRK

Standard Data Fields Work Table Name (WRK_TBL_NAME)

Customer Modification None

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 228

Meta data - Search Object

Properties

Description

Tables

Cl_MD_SO, CI_MD_SO_L, Cl_MD_SO_RSFLD, CI_MD_SO_
RSFLDAT, C|_MD_SOCG, Cl_MD_SOCG_FLD, C|_MD_SOCG_
FLDAT, CI_MD_SOCG_L, C|_MD_SOCG_SORT

Standard Data Fields

Search Object Name (SO_CD)

Customer Modification None

Navigation Option

Properties Description

Tables CI_NAV_OPT, CI_NAV_OPT_L, C|_NAV_OPT_CTXT, CI_NAV_OPT_

USG, CI_MD_NAV

Standard Data Fields

Navigation Option Code (NAV_OPT_CD), Navigation
KeyNAVIGATION_KEY)

Customer Modification

Navigation Key Override (NAV_KEY_OVRD)

Portal and Zone

Properties

Description

Tables

Cl_PORTAL_ZONE, C|_ZONE, CI_ZONE_L, C|_ZONE_PARM, CI_
ZONE_HDL, CI_ZONE_HDL_L, CI_ZONE_HDL_PRM, Cl_ZONE_
HDL_PRM_L, Cl_UI_ZONE

Standard Data Fields

* Portal Code (PORTAL_CD), Zone Code (ZONE_CD), Zone Type
Code (ZONE_HDL_CD)

* A new Zone can be added to the Product owned Portal Pages.

* The existing Zones cannot be removed from the Product owned
Portal Pages.

Customer Modification

Sort Sequence (SORT_SEQ)

Sequence
Properties Description
Tables CI_SEQ

Standard Data Fields

Sequence Name (SEQ_NAME)

Customer Modification

Sequence Number (SEQ_NBR)

» This field is updated by the application process and must be set to 1
initially.

Schema

Oracle Utilities Application Framework Software Development Kit Developer's Guide 229

Properties

Description

Tables

F1_SCHEMA

Standard Data Fields

Schema Name (SCHEMA_NAME)

Customer Modification

* None
Script
Properties Description
Tables CI_SCR, CI_SCR_L, CI_SCR_CRT, C|_SCR_CRT_GRP, Cl_SCR_

CRT_GRP_L, CI_SCR_DA, CI_SCR_FLD_MAP, CI_SCR_PRMPT, CI_
SCR_PRMPT_L, C|_SCR_STEP, C|_SCR_STEP_L

Standard Data Fields

Script Code (SCR_CD)

Customer Modification None

To do Type

Properties Description

Tables CI_TD_TYPE, CI_TD_TYPE_L, CI_TD_SRTKEY_TY, CI_TD_

DRLKEY_TY, CI_TD_SRTKEY_TY_L

Standard Data Fields

To Do Type Code (TD_TYPE_CD)

Customer Modification

Creation Batch Code (CRE_BATCH_CD), Route Batch Code (RTE_
BATCH_CD), Priority Flag (TD_PRIORITY_FLG)

XAl configuration

Properties

Description

Tables

CI_XAI_ADAPTER, CI_XAl_ADAPTER_L, Cl_XAI_CLASS, CI_XAl_
CLASS_L, CI_XAI_ENV_HNDL , CI_XAI_ENV_HNDL_L, CI_XAIl_
FORMAT, CI_XAl_FORMAT _L, CI_XAI_RCVR, CI_XAl_RCVR_L, CI_
XAI_RCVR_CTX, CI_XAI_RCVR_RSP, CI_XAI_RCVR_RGRP, CI_
XAI_SENDER, C|_XAI_SERNDER_L, Cl_XAIl_SNDR_CTX, CI_XAl_
OPTION

Standard Data Fields

Adapter Id (XAI_ADAPTER_ID), Class Id (XAI_CLASS_ID), Envelope
Handler Id (XAI_ENV_HNDL_ID), XAl Format Id (XAI_FORMAT_ID),
Receiver Id (XAI_RCVR_ID), Sender Id (XAI_SENDER_ID)

Customer Modification

Option Value (OPTION_VALUE on CI_XAI_OPTION)

FASTPATH: The following XAl tables might have system data installed upon the initial installation but a subsequence
system data upgrade process will not update the content of these table unless the change is documented in the database

upgrade guide : CI_ XAI RCVR, CI XAI RCVR L, CI XAI RCVR CTX, CI XAI RCVR RSP, CI XAI RCVR

RGRP, CI_XAI SENDER, CI XAI SERNDER L, CI XAI SNDR CTX

XAl Services

Properties

Description

Tables

CI_XAI_IN_SVC, CI_XAI_IN_SVC_L, CI_XAI_SVC_PARM

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 230

Properties Description

Standard Data Fields To Do Type Code (TD_TYPE_CD), XAl Inbound Service Id (XAI_IN_
SVC_ID), XAl Inbound Service Name (XAI_IN_SVC_NAME)

Customer Maodification
XAI_IN_SVC_ID, XAI_IN_SVC_NAME, XAl_VERSION_ID, POST_

ERROR_SW

Oracle Utilities Application Framework only Tables

« All data of the tables in this group belong to the Oracle Utilities Application Framework. No data modification or
addition is allowed for these tables by base product development and customer modification. When an environment is
upgraded to the next release of the Oracle Utilities Application Framework, the upgrade process will refresh the data in
these tables.

« CI_MD_AT DTL/CI_MD AT DTL L

« CI_MD _ATT TY

« CI.MD CTL/CIMD CTL L

« CI MD CTL _TMPL

« CI.MD ELTY/CI MD ELTY L

« CI_MD ELTY AT

+ CI_MD_LOOKUP/CI_MD_LOOKUP_F

« CI_MD_PDF/CI_MD _PDF VAL

« CI_MD MSG/CI MD MSG L

« CI_MD_SRC _TYPE/CI MD SRC TYPE L

« CIMD TMPL/CI MD TMPL L

« CI_MD_TMPL ELTY

« CI_MD_TMPL_VAR/CI_ MD_TMPL VAR L
« CI_MD_VAR/CI_MD VAR DTL/CI MD VAR DTL L
« CI_XAI EXECUTER/CI _XAI EXECUTER L

System Table List

This section contains the names of system tables, upgrade actions, and a brief description of the tables. The upgrade actions
are explained below.

Keep (KP): The data of the table in the customer's database is kept untouched. No insert or delete is performed to this table
by the upgrade process. The initial installation will add necessary data for the system

Merge (MG): The non-base product data of the table in the database is kept untouched. If the data belongs to the base
product, any changes pertaining to the new version of the software are performed.

Refresh (RF): The existing data in the table is replaced with the data from the base product table.

New product data is also inserted into tables marked as 'Merge'. If implementers add rows for a customer specific
enhancement, it can cause duplication when the system data gets upgraded to the next version. We strongly recommend
following the guidelines on how to use designated range of values or prefixes to segregate the implementation data from the
base product data.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 231

Table Name Upgrade Action Description

CI_ALG MG Algorithm

CI_ALG_L MG Algorithm Language
CI_ALG_PARM MG Algorithm Parameters
CI_ALG_TYPE MG Algorithm Type

CI_ALG_TYPE_L MG Algorithm Type Language
CI_ALG_TYPE_PRM MG Algorithm Type Parameter
CI_ALG_TYPE_PRM_L MG Algorithm Type Parameter Language
CI_ALG_VER MG Algorithm Version
CI_APP_SVC_ACC MG Application Service Access Mode
CI_BATCH_CTRL MG Batch Control
CI_BATCH_CTRL_L MG Batch Control Language
CI_BATCH_CTRL_P MG Batch Control Parameters
CI_BATCH_CTRL_P_L MG Batch Control Parameters Language
CI_CHAR_ENTITY MG Characteristic Type Entity
CI_CHAR_TYPE MG Characteristic Type
CI_CHAR_TYPE_L MG Characteristic Type Language
CI_CHAR_VAL MG Characteristic Type Value
CI_CHAR_VAL_L MG Characteristic Type Value Language
CI_DISP_ICON MG Display Icon

CI_DISP_ICON_L MG Display Icon Language
CI_FK_REF MG Foreign Key Reference
CI_FK_REF_L MG Foreign Key Reference Language
CI_LANGUAGE MG Language Code
Cl_LOOKUP_FIELD MG Lookup Field

CI_LOOKUP_VAL MG Lookup Field Value
CI_LOOKUP_VAL_L MG Lookup Field Value Language
CI_MD_ATT_TY RF MD Element Attribute Type
CI_MD_AT_DTL RF MD Element Attribute Type Detail
CI_MD_AT_DTL_L RF MD Element Attribute Type Detail Language
CI_MD_CONST MG Constraints

CI_MD_CONST_FLD MG Constraint Fields

CI_MD_CTL RF Generator Control

CI_MD_CTL_L RF Generator Control Language
CI_MD_CTL_TMPL RF Generator Control Template
CI_MD_ELTY RF MD Element Type
CI_MD_ELTY_AT RF Element Type Attributes
CI_MD_ELTY_L RF Element Type Language
CI_MD_FLD MG Field

CI_MD_FLD_L MG Field Language
ClI_MD_LOOKUP RF MD Lookup Field Value
Cl_MD_LOOKUP_F RF MD Lookup Field

CI_MD_MENU MG Menu Information
CI_MD_MENU_IMOD MG Menu Item Module Maint
Cl_MD_MENU_ITEM MG Menu ltem
CI_MD_MENU_ITEM_L MG Menu Item Language
CI_MD_MENU_L MG Menu Language
Cl_MD_MENU_LINE MG Menu Line

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 232

Table Name

Upgrade Action

Description

Cl_MD_MENU_LINE_L

MG

Menu Line Language

ClI_MD_MENU_MOD MG Menu Product Components
ClI_MD_MO MG Maintenance Object
CI_MD_MO_ALG MG Maintenance Object Algorithm
CI_MD_MO_L MG Maintenance Object Language
CI_MD_MO_OPT MG Maintenance Object Option
CI_MD_MO_TBL MG Maintenance Object Table
CI_MD_MO_WRK MG Maintenance Object Work Tables
CI_MD_MSG RF MD Message

CI_MD_MSG_L RF MD Message Language
CI_MD_NAV MG Navigation Key

CI_MD_PDF RF Predefined Fields
CI_MD_PDF_VAL RF Predefined Values
ClI_MD_PRG_COM MG Program Components
CI_MD_PRG_ELEM MG Ul Page Elements
CI_MD_PRG_EL_AT MG Ul Page Element Attributes
CI_MD_PRG_LOC MG Program Location
ClI_MD_PRG_MOD MG Program Module
CI_MD_PRG_SEC MG Ul Page Sections
CI_MD_PRG_SQL MG MD SQL Meta Data
CI_MD_PRG_TAB MG Ul Tab Meta Data
CI_MD_PRG_VAR MG Program Variable

ClI_MD_SO MG Search Object

CI_MD_SOCG MG Search Object Criteria Group
CI_MD_SOCG_FLD MG Search Object Criteria Group Field
CI_MD_SOCG_FLDAT MG Search Object Criteria Group Field Attribute
CI_MD_SOCG_L MG Search Object Criteria Group Language
CI_MD_SOCG_SORT MG Search Object Criteria Group Result Sort Order
CI_MD_SO_L MG Search Object Language
CI_MD_SO_RSFLD MG Search Object Result Field
CI_MD_SO_RSFLDAT MG Search Object Result Field Attribute
CI_MD_SRC_TYPE RF Source Type
CI_MD_SRC_TYPE_L RF Source Type Language
ClI_MD_svC MG MD Service

CI_MD_SVC_L MG MD Service Language
CI_MD_SVC_PRG MG MD Service Program
CI_MD_TAB_MOD MG Ul Tab Module

Cl_MD_TBL MG MD Table

CI_MD_TBL_FLD MG MD Table Field
CI_MD_TBL_FLD_L MG MD Table Field Language
CI_MD_TBL_L MG MD Table Language
Cl_MD_TMPL RF Template

CI_MD_TMPL_ELTY RF Template Element Types
CI_MD_TMPL_L RF Template Language
CI_MD_TMPL_VAR RF Template Variable
CI_MD_TMPL_VAR_L RF Template Variable Language
CI_MD_VAR RF Variable

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 233

Table Name Upgrade Action Description
CI_MD_VAR_DTL RF Variable Detail
Cl_MD_VAR_DTL_L RF Variable Detail Language
CI_MD_WRK_TBL MG Work Table
CI_MD_WRK_TBLFLD MG Work Table Field
CI_MD_WRK_TBL_L MG Work Table Language
CI_MSG MG Message
CI_MSG_CATEGORY MG Message Category
CI_MSG_CATEGORY_L MG Message Category Language
CI_MSG_L MG Message Language
CI_NAV_OPT MG Navigation Option
CI_NAV_OPT_CTXT MG Navigation Option Context
CI_NAV_OPT_L MG Navigation Option Language
CI_NAV_OPT_USG MG Navigation Option Usage
CI_PORTAL MG Portal Page

CI_PORTAL_L MG Portal Page Language
CI_PORTAL_ZONE MG Portal Zone

CI_SCR MG Script

CI_SCR_CRT MG Script Criteria
CI_SCR_CRT_GRP MG Script Criteria Group
CI_SCR_CRT_GRP_L MG Script Criteria Group Language
CI_SCR_DA MG Script Data Area
CI_SCR_FLD_MAP MG Script Field Mapping
CI_SCR_L MG Script Language
CI_SCR_PRMPT MG Script Prompt
CI_SCR_PRMPT_L MG Script Prompt Language
CI_SCR_STEP MG Script Step

CI_SCR_STEP_L MG Script Step Language

CI_SEQ MG Sequence
CI_TD_DRLKEY_TY MG To Do Type Drill Key
CI_TD_SRTKEY_TY MG To Do Type Sort Key
CI_TD_SRTKEY_TY_L MG To Do Type Sort Key Language
CI_TD_TYPE MG To Do Type

CI_TD_TYPE_L MG To Do Type Language
CI_XAI_ADAPTER MG XAl Adapter
CI_XAI_ADAPTER_L MG XAl Adapter Lang
CI_XAI_CLASS MG XAl Class

CI_XAI_CLASS L MG XAl Class Language
CI_XAI_ENV_HNDL MG XAl Envelope Handler
CI_XAI_ENV_HNDL_L MG XAl Envelope Handler Language
CI_XAI_EXECUTER RF XAl Executer
CI_XAI_EXECUTER_L RF XAl Executer Language
CI_XAI_FORMAT RF XAl Format
CI_XAI_FORMAT_L RF XAl Format Language
CI_XAI_IN_SVC MG XAl Inbound Service
CI_XAI_IN_SVC_L MG XAl Inbound Service Language
CI_XAI_SVC_PARM MG XAl Inbound Service Parameters
CI_XAI_SVC_VERS MG XAl Inbound Service Version

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 234

Table Name Upgrade Action

Description

CI_XAI_SVC_VERS_L MG XAl Inbound Service Version Language
CI_ZONE MG Zone

CI_ZONE_HDL MG Zone Type

CI_ZONE_HDL_L MG Zone Type Language
CI_ZONE_HDL_PRM MG Zone Type Parameters
CI_ZONE_HDL_PRM_L MG Zone Type Parameters Language
CI_ZONE_L MG Zone Language

CI_ZONE_PRM MG Zone Parameters

F1_BUS_OBJ MG Business Object
F1_BUS_OBJ_ALG MG Business Object Algorithm
F1_BUS_OBJ_L MG Business Object Language
F1_BUS_OBJ_OPT MG Business Object Option
F1_BUS_OBJ_STATUS MG Business Object Status
F1_BUS_OBJ_STATUS_ALG MG Business Object Status Algorithm
F1_BUS_OBJ_STATUS_L MG Business Object Status Language
F1_BUS_OBJ_STATUS_OPT MG Business Object Status Option
F1_BUS_OBJ_TR_RULE MG Business Object Transition Rule
F1_BUS_OBJ_TR_RULE_L MG Business Object Transition Rule Language
F1_BUS_SVC MG Business Service
F1_BUS_SVC_L MG Business Service Language
F1_DATA_AREA MG Data Area

F1_DATA_AREA_L MG Data Area Language

F1_MAP MG Ul Map

F1_MAP_L MG Ul Map Language

F1_SCHEMA MG Schema

SC_ACCESS_CNTL MG User Group Access Control
SC_APP_SERVICE MG Application Service
SC_APP_SERVICE_L MG Application Service Language
SC_USR_GRP_PROF MG User Group Profile

Key Generation

Key generation is performed for tables that have sequential or system generated prime key. This is performed automatically

for Java instances via the OUAF enTegrity.

Tables with a system-generated key contain their own unique key that is replicated in a related 'key table' suffixed with ' K'.
The purpose of the key table is to store the table identifier as well as the identifier of the environment in which the data row
exists. An example is the Account table containing the Account identifier and the Account Key table containing the Account

identifier and the Environment identifier.

These key tables support the Archiving and ConfigLab functionality by ensuring that a key will be unique across

environments.

NOTE: Oracle recommends that customers using Oracle Utilities Application Framework version 4.2 or later and
currently using ConfiglLab switch to Configuration Migration Assistant (CMA) for their configuration data migration
needs and retain ConfigLab for migration of master and transaction data migration. Also note that CMA functionality
is not available to every Framework-based product. For details, including tips and requirements for moving from

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 235

ConfigLab to CMA for configuration data migrations, see the "Configuration Migration Assistant" section in the Oracle
Utilities Application Framework Aministration Guide.

Metadata for Key Generation

The required table metadata that is used by the key generator indicates:
» The type of key, e.g. whether it is system-generated or sequential

* The key table in which key values are stored

* The length of the inherited portion of the key.

ORACLE

Home Menu « ® History =

T roveries | Constraints | Referred By Constraints
Table Mame ICI_SJ‘ '-‘k Owner Bass

SA [Service Agresment)

ame D

Sy '
Data Group ID CSVAT v
[Table] |LocalLegal Tme__[ne]
on Type :i\’-aster Table E able Vol Medium Yoluma E‘
CLsA Q, ograde Keep ﬂ
[cosor [w] Data Conversion Role Convert (New PK)]
. cpzapTa | [Q, AuditTral
[=
E K CI SA K % T System-generated ﬂ
3, 7 % ame servicedgreement
._?"ot Cached Fj Always Check Uniqueness __*-l
Help URL C1_BPO1CUstInfo_Maintaining_Serice_Agreements

Example Table Metadata Key Information

In the Service Agreement table metadata example above, the metadata key information is shown by the values in the fields
Key Table, Type of Key and Inherited Key Prefix Length.

The primary key constraint is used to retrieve the name of the key field for the table from the field metadata.

The field metadata provides the field data type and length.

NOTE: Key Types. Although there are more types of keys indicated in metadata drop-down list, the only types
currently supported by the key generator in the Oracle Utilities Application Framework are system-generated and
sequential.

NOTE: Special Annotation. If a table's inherited key prefix length is non-zero, a special entry
"clusteringParentProperty" must be in the business entity annotation for this table.

Extending the Application Viewer

This document describes the how to add extension (e.g., CM or customer modification) information into the OUAF
Application Viewer.

Oracle Utilities Application Framework Software Development Kit Developer's Guide * 236

Building Source Code Viewer Extension Information

NOTE: Prerequisite. You must have a valid OUAF Development Environment defined on the computer in order to run
this process.

You will need a local folder in which to build the information. This may be called anything you wish and it may reside
anywhere (locally) you desire as long as you have write access to the folder.

NOTE: If you have run this process previously, old Source Code XML files will still be present. Previous information is
NOT deleted.

Open a command window and run the script buildAppViewer SrcXML .bat. This script is available in the SDK shortcuts
folder (e.g., C: \ ouaf sdkXXX\ SDK\ short cut s.

This will prompt you for the location of the Source Code Folder, the location of the Destination Folder and the location of
the "desc.wrk" file.

Enter the FULL path name to the folder where the source code resides (quotes are not required). Source in this location will
be processed to build the required XML files. The process does NOT drill down through different levels of folders; only the
folder specified is examined. For example:

C: \'spl \ <CCB_I NSTALLATI ON>\ cobol \ source\ cm

Enter the FULL path name to the folder where the information is to be built (quotes are not required). These folders need to
exist before the script is run. Script will not create the folders. For example:

C:. \t enp\ appVi ewer Dat a

Enter the FULL path name to the location of the "desc.wrk" file. This is normally found in the Application Viewer under /
data/source. This file can be copied locally or used from the Application Viewer location (it is not updated). For example:

C: \ spl \ <CCB_I NSTALLATI ON>\ spl app\ appl i cati ons\ appVi ewer\ dat a\ sour ce
The process will then run automatically displaying each source file being processed.

Each source file is processed twice. This first pass extracts a program description from the source file. This should be a
quick process as the file is only examined until a description is located. The second pass reads the entire source file and
builds the XML file. This process also accesses the current database to check the meta-data for tables used by SQLs within
the source.

When the process is complete, the extension information will be present under the destination folder you specified. The
structure under the destination will mirror the structure under the data/source/ folder of the Application Viewer (only the
CM folder is created). Move the XML files from the CM folder to the corresponding CM folder under the Application
Viewer. The information is immediately available.

e.g. if the destination directory is c:\temp\appViewerData then the processed data is available at c:\temp\appViewerData
\source\CM. Copy the contents under c:\temp\appViewerData\source\CM to Application Viewer folder C:\spI\<CCB _
INSTALLATION>\splapp\applications\app Viewer\data\source\CM.

Development Performance Guidelines

This document includes information, guidelines, and strategies to help designers and developers understand performance
impacts when developing a feature using the Oracle Utilities Application Framework.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 237

Object-Relational Mapping: Background

OUATF uses an Object-Relational Mapping (ORM) engine, which maps tables to entities using the system's table, table/field,
field, and constraint metadata to guide the creation of mapping definitions during artifact generation.

Entities represent database tables. They are created as Java objects during a database "session", which has the lifetime of a
single DB transaction.

DONT: Entities are not safe to use for reference, calling methods, etc., after the session that created them has ended.
For example, don't copy entities into application caches. DO: Instead, let the application cache do the data retrieval and
return the data to the session. ID objects are safe to store across sessions. Note in the following example that the entity
AlgorithmType is not stored:

public class AlgorithnTypel nf oCache inplenments ApplicationCache {
private static final Al gorithnlypel nfoCache | NSTANCE = new Al gorithnTypel nf oCache();
private final ConcurrentMap<Al gorithnilype | d, Al gorithnilTypel nfo> al gorithnilypel nfoByld = new Concurrent Hash
protected Al gorithnilypel nfoCache() { ContextHol der. get Context().registerCache(this); }
public String getNane() { return "Al gorithmlypel nfoCache"; }
public void flush() {al gorithnTypel nfoByld.clear(); }
public static Al gorithnTypel nfo getAl gorithmlypel nfo(Al gorithnmlype_Id al gTypeld) {
return | NSTANCE. pri vat eGet Al gori t hmTypel nfo(al gTypel d);
}

private Al gorithnTypelnfo privateGetAl gorithnTypel nfo(Al gorithniType_Id al gTypeld) {
Al gorit hmlypel nfo al gTypel nfo = al gorithmlypel nf oByl d. get (al gTypel d) ;
if (algTypelnfo != null) return al gTypel nfo;
Al gorithnlype type = al gTypeld. getEntity();
if (type == null) return null;
Al gorithnmlypelnfo info = new Al gorithnTypel nfo(type);
Al gorithnTypel nfo prev = al gorithniTypel nfoByl d. put | f Absent (al gTypeld, info);
if (prev !'= null) return prey;
return info;

}

}

DO: it is safe to use XML documents (to be consumed by BOs, BSs, or SSs) for moving data between sessions.

Every entity has a unique corresponding "id" class, e.g. BatchControl has BachControlld. The ORM framework
automatically generates correct SQL to perform the following essential tasks:

* Read, update, insert, delete one entity (row) from the database.

» Navigate between related entities as per their key/constraint relationships, for example from a parent entity to a collection
of children.

The ORM defers database calls for performance

The ORM tries to be as "lazy" as possible; its basic stance is to avoid loading any data from the DB until the last possible
moment. Let's use the following example to describe how the data is only loaded at last moment possible:

Bat chControl someBat chControl = batchControlld.getEntity();

Bat chCont r ol Par anet ers parns = sonmeBat chControl . get Paraneters();
for (BatchControl Paranmeter each : parms) {

String nane = each. get Bat chPar anmet er Nane() ;

}

In the above example, the getEntity() call only retrieves the parent ID as a proxy. The "someBatchControl" is not fully
"hydrated" until some other property is accessed. "Hydrating Entities" is the process of taking a row from the database and
turning it into an entity.

The getParameters() call only retrives the child IDs, again as proxies.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 238

Only when the getBatchParameterName() is called, is a row (the child row) actually retrieved.

ID Objects

* When you create an ID, the ID object will not be null. After you use an ID to retrieve an entity (using getEntity()), that is
when you find out if the entity actually exists. Just because an ID exists, doesn't mean the entity itself exists! DO: So you
must check for null before attempting to use the entity you retrieved. For example:

BatchControlld id = ...
Bat chControl batchControl = id.getEntity();
if (batchControl == null) { /* oh oh */ }

Counting a collection

DO: If you want to count the number of batch control parameters that belong to a parent batch control, use the size() method
as in the following example:

Bat chControl soneBatchControl = ...;
Bat chCont r ol Par anet ers parns = sonmeBat chControl . get Paraneters();
int count = parns.size();

The framework implementation code has an optimized implementation of the size() method, which either counts the
existing in-memory collection elements, if they are already present, or issues a SQL count(*) query, if they aren't.

Avoid unnecessary work

DON'T: In the example, below, the call to listSize() is unnessary. In most cases, you shouldn't need to write something to
loop over a collection:

if(query.listSize() > 0) {
while (iter.next()) { }
}

The call to listSize() will make an unnecessary call to "select count(*)". Let the iterator do the work. Avoid the extra call to
the database.

ORM 'Navigation' is your friend

Don't be tempted to hand-write queries that are equivalent to navigations between entities:

Bat chControl Id batchControlld = ...

Quer y<Bat chCont r ol Par amet er > query = createQuery("from Bat chContr ol Paraneter parm where parm id. batchControl |
query. bi ndl d(" parentld", batchControlld);

Li st <Bat chControl Paraneter> |list = query.list();

DO: Use this instead - it'll use the cache and will almost certainly be faster:
Bat chControl bat chContr ol d.getEntity();

=i
if (batchControl == null) { /* oh oh */ }
Bat chControl Paranmeters |ist = batchControl.getParaneters();

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 239

How to Pre-load Entities Using Fetch

This technique is for performance intensive jobs that are doing too many single-row SQL retrieves. The "fetch" command
will pre-load the entities, resulting in one fewer database calls.

Write a query using "left join fetch" to select all data. The ORM will fetch the associated collection for every retrieved table
into the session cache. Subsequent navigation to the underlying collection is then an in-memory operation with no database
10. Again, PREFER code that performs standard navigation.

* As a general strategy:
* For most jobs, navigation is just fine.
* Write code using navigation first, then ADD the fetch query later, only if it's needed.

This is a link to the Hibernate help on "fetch": http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/
#performance-fetching

Session Cache

If an entity is retrieved previously within a session it does not, in most cases, have to be retrieved again since it is stored in
the session cache.

As a result, multiple BO reads against Java-backed MOs do not re-execute SQL.

Level 2 Cache Applicable for Batch

Hibernate's Level 2 cache is a second level of caching that allows sharing of data between sessions. This is useful for static,
admin data like rates, type codes, etc., since objects that are added to this cache cannot be updated. The caching is enabled
per entity on the Table transaction's Caching Regime Flag with values of "Not Cached" and "Cached for Batch." By default,
the product is not configured to have Log and Language tables as not cached.

Flushing - COBOL and Save Points

Flushing means writing the changes to the database. It syncs the database with the session cache. Flushing is expensive but
necessary to maintain data integrity. The system flushes under the following conditions:

* Before commit

» Before raw SQL queries

» Before most HQL queries

* When specifically requested

* Savepoints

Avoid Extra SQL

Inspect generated SQL for extra calls. Tools like Oracle's tkprof, Yourkit java profiler, or debug application logs can
help identify extra database calls. The screen capture below shows how Yourkit is able to reveal SQL statements behind
PreparedStatement calls.

Yourkit Demo: http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 240

http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching
http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching
http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

@oru| = L) " & @

=] =])
T [yl Hicke mested JEEE cols [] Group quertes by 50U type [Inchude prepareStatementiprepareCall)

cal Time: (ms) Irvocation count |
Coll brewn ll the mschi tugetber) = SELECT 160
Call o By thrmiae]
Mok spets sebenct uperll_id ol i, ueierlviriion il viriion] _, uierllure 841 &0 15
Hathed kst seleck rolel)_id aa i _0_, rolel_ name s riseed) 01, roledl_ descriphion ss 58 1%
seleck rolasl]_user_id as user]_0_, rolesl)_nobs_id 2 nole2_0_ from uses_n 41 1%
i sebect wobs0_id a0 _, wobsll_ rsmes s nasmeat]_, wods0_ description a5 desn 1 3
TIEE statistics T i
s DELETE M
: = UPDATE]
;J'.c‘l""]s"-""'“ updat 8pp_USer 56t VErGaN=T, USEIName=T, password=T, first_name=7, b LI 2
& INSERT 1
P s babivrtry

Hame | = Time (ms) |
= B, orgepache.commaon:, dp DelegatingPreparedStstement setStringlint, Sring) 1
= B, org.hibemats type String Type. setiPrapsredttstamant, Object, nth
%, oeg.hibernate type. Nullable Type nullSafeSet{(Frepared stement, Otject, int)
= W, oeg spadne comimons. dbop PaolingDat aSource$Pool Guard Connec boewr S piepane SEat emnendts 1
= ®, org.hibermabe. jicbe AbstractBakcher getPrepanedStatement] Connecton, String, bockean, bookean,
Uisedul actions # B, geg.hibernate. ibc AbstractBatcher. prepareStatement|String, bookan, String])
WG o i i ¥ W orgoapacte comions, dep. DelegatingPreparedStabement. exsostelipdate()
the omsnt skecticn

Lgend

Prepared statement - use binding

DON'T: Never concatenate values - DO: use binding instead. Besides helping to reduce security concerns with SQL
injection, concatenation results in reparsing of SQL statements by the database. You could also lose the benefits of any
PreparedStatement caching by the jdbc drivers.

Service Script vs. Java Services

Service Scripts perform slower than java services. There is an overhead on scripting that comes from xml manipulation and
xpath evaluation. Lots of moves, complicated XPath - proportional to amount of XPath. Here are some tips:

* One complicated XPath expression should be faster than several smaller ones - the overhead is in the setup.

» Smaller documents will process faster - think about that when designing script schemas - only send what you need.

Java Performance Patterns

* Loop over entryset of a hashmap, not the entities
» Concatenate strings using StringBuilder

» Use Findbugs - it will help expose patterns to be avoided.

Batch Performance

Commit Considerations

DON'T: Do not commit too frequently. For example, we do not commit ever record since each commit has overhead at the
database; however, sessions with lots of objects in the cache should commit more frequently. Adjust your default value
accordingly.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 241

Clustered vs. Distributed Mode Performance: Clustered is Preferred

No coding changes required for clustered mode and no reason to use the distributed mode anymore.

Clustered mode was created for stability, not performance; however, clustered mode should have less overhead because
"tspace" table is not continually accessed. This tspace table stored the batch job's instructions and information used by the
distributed mode and accessed by the batch threads. There have been cases where this table is in high contention.

Light Business Objects

Sometimes it is possible to create a smaller schema that only accesses the objects that are needed for a particularly
performance-instensive process. This can be particularly important if there are many child collections that are referenced by
a particular business object (BO). When a child collection on the maintenance object (MO) is not mapped, the application
does not issue a read. While a large BO with many collections might be acceptable for online transactions, a process used in
a batch could benefit by a smaller subset of elements. These smaller BOs are referred to as Light or "Lite" BOs.

When any XML-mapped field is referenced, the application must parse the XML's columns data. Depending on how much
data is mapped, there could be some minor savings gained by avoiding the XML data since it will not need to be parsed.

Here is an example of a very large BO:

<schema fwRel ="2">

<mai nSecti on type="group" ndFi eI d="Cl_TAXFORM MAI N _LBL"/>

<sel ect TaxFor m_abel type- group" ndFi el d="Cl_SELECT_TAXFORM LBL"/>

<t axForml d napFi el d="TAX_FORM | D' i sPri meKey="true" fkRef="Cl- TXFRM'/ >

<f or niType mapFl el d="FORM TYPE_CD" fkRef="C1- FRMTY"/ >

<bo mapFi el d="BUS_OBJ_CD" fkRef ="F1- BUSOB" suppress="true"/>

<boSt at us mapFi el d="BO_STATUS_CD'/ >

<st at usUpdat eDat eTi me napFi el d=" STATUS_UPD DTTM' suppress="true"/>

<t ot al Anbunt DueOver pai d mapFi el d="Cl_TOTAL_OWED OVERPAI D'/ >

<rem ttanceAnount mapFi el d="Cl1_FORM PYMNT_AMT"/ >

<f or mSour ce mapFi el d="Cl_FORM SRCE_CD" fkRef =" C1- FRVBC'/ >

<fornDet ai | sl nfoSection type="group” ndFi el d="Cl_| TF_FORM DTLS | NFO'/ >

<denogr aphi cl nf oSecti on type="group" ndFi el d="Cl1_TF_DEMO | NFO LBL"/>

<t axpayer Denogr aphi cl nf or mati on type="group">

<i ncl udeDA name="Cl- Taxpayer Denol nf 0"/ >

</t axpayer Denogr aphi cl nf or mat i on>

<lineltensl nfoSecti on type="group" ndFiel d="Cl_TF LINE | TEMS LBL"/>

<obligationld nmapFi el d="SA | D' fkRef="SA"/>

<recei veDat e mapFi el d="RECV_DT" required="true"/>

<taxFornFili ngType mapFi el d="TAX FORM FI LI NG _TYPE_FLG' defaul t="C1OR' required="true"/>
<f or nBat chHeader | d mapFi el d="FORM BATCH HDR 1 D" fkRef ="Cl1- FBHDR'/ >

<docunent Locat or mapFi el d="DOC_LOC_NBR'/ >

<adj ust Reason dat aType="1 ookup™ ndFi el d="C1_TXF_ADJRSN FLG' mapXM.="BO DATA AREA'/>
<transf er Reason dat aType="1ookup" nuFi el d="Cl_TXF_TFRRSN FLG' napXM.="BO DATA AREA"/ >
<rever seReason dat aType="1| ookup" ndFi el d="Cl_TXF_RVSRSN FLG' napXI\/L " BO_DATA_AREA"/ >
<cancel Reason dat aType="1 ookup" mdFi el d="Cl_TXF_CANRSN FLG' nmapXM.="BO DATA AREA"/>
<i ssuesSection type="group" ndField="Cl_TF_| SSUES LBL"/>

<suspensel ssueli st type="group" mapXM.="BO DATA AREA">

<i ncl udeDA nanme="Cl-|ssuesList"/>

</ suspensel ssuelLi st >

<wai ti ngFor | nfol ssueLi st type="group" mapXM.="BO DATA AREA">

<i ncl udeDA nane="Cl- | ssuesList"/>

</ wai ti ngFor | nf ol ssueLi st >

<t axpayer Personl D f kRef =" PER' ndFi el d="PER_| D' mapXM.="BO _DATA_ AREA"/>

<account fkRef="ACCT" ndFi el d="ACCT_I D' mapXM.="BO_DATA AREA"/ >

<t axRol e fkRef="Cl- TXRL" ndFi el d=" TAX_R(lE_I D' mapXM.="BO_DATA AREA"/ >

<transf er Adj ust Secti on type="group" ndFi el d="Cl1_TF_TRANSFER ADJUST"/ >

<adj ust edFr onfor m f kRef =" Cl TXFRM' mapXM.="BO_ DATA AREA" ndFi el d="Cl1_TF_ADJUSTED FROM'/ >
<tr ansf err edFr onFor m f kRef =" C1- TXFRM' mapXM.=" BO DATA AREA" nuFi el d="Cl_TF_TRANSFERRED FROM'/ >
<adj ust edToFor m f kRef =" C1- TXFRM' mapXM_="BO_DATA_AREA" ndFi el d="Cl_TF_ADJUSTED TO'/>
<transf erredToFor m f kRef =" C1- TXFRM' mapXM.=" BO_DATA AREA" mdFi el d="Cl_TF_TRANSFERRED TO'/>
<versi on mapFi el d="VERS|I ON' suppress="true"/>

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 242

</ schema>

This performance-sensitive process only required a subset of the BO, so the following light BO was created:

<schema fwRel ="2">

<taxForm d mapFi el d="TAX_FORM_ | D" i sPri meKey="true" fkRef="Cl-TXFRM'/>

<f or mMype mapFi el d="FORM TYPE_CD" f kRef =" Cl- FRMIY"/ >

<bo mepFi el d="BUS_OBJ_CD"' fkRef ="F1-BUSOB" suppress="true" required="true"/>
<boSt at us mapFi el d="BO_STATUS_CD'/ >

<recei veDat e mapFi el d="RECV_DT"/ >

<f or nChangeReasons type="group" mapXM.="BO_DATA AREA">

<f or mChangeReasonsLi st type="list">

<f or nChangeReason ndFi el d="FORM CHG RSN _CD' i sPri neKey="true" fkRef="Cl-FRCHR'/>
</ f or mChangeReasonsLi st >

</ f or mChangeReasons>

<f or mChangeComrent s ndFi el d=" COMMENTS" nmapXM.="BO _DATA AREA'/ >

<versi on mapFi el d="VERSI ON' suppress="true"/>

</ schema>

Benefits of Light BOs
* Not mapping unneeded child collections removes the need to read the child table from the database.

* The "read" benefits extend to BO updates as well, though in a minor way. The light BO would be used for the read
when finishing an update. However, this benefit may be reduced by the availability of the updateWithoutRead action,
which would do the update with whatever BO was presented, and then not do a read at the end. This would achieve an
optimization as well as the light BO update.

* XML document size reduction. There are performance penalties when transmitting and parsing large XML documents.

Disadvantage of Light BOs

While this is not really a disadvantage of the concept, creating additional BOs results in more objects to maintain.

Tips and Conventions

* The light BO Code ends with "Light" or "Lite" and description ends with "Light". The rest of the code and description
should follow the normal BO naming standard.

¢ Instance Control is set to "Do not allow new instances".

* Each MO has one parent light BO. The parent light BO schema would contain just the first level elements and no
collections.

» Each "child" light BO for the MO has the parent light BO as its parent. This is important for the BO Hierarchy dashboard
zone.

* When to update an existing light BO versus creating a new light BO: Generally reuse and update an existing light BO
if the level or "collection level" of the element to add is in an existing light BO. A new light BO is warranted if a new
"collection level" is needed. If multiple levels and many elements are needed, you may consider reading the actual BO
instead of the light BO.

Data Explorer

It is important to understand that Data Explorers process ALL records returned from the database, even if they are not
displayed. For example, FK ref info strings, BS calls, SS calls, Inhibit Row in Explorers - all can cause per-row processing
even if they are not displayed.

Data Explorers are rendered using JavaScript. They are not designed to display many records, and trying to do so will result
in possibly unacceptable performance. DO: Consider limiting the results returned and asking Users to add additional filter
criteria to narrow down the results. DON'T: Don't try to display hundreds of records.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 243

Zone Configuration
* DO: Consider limiting the number of rows retrieved by the database limiting the query size. Specify this on the zone
parameter and the query will use the "rownum" technique to restrict the number of rows returned.

* DO: As a rule-of-thumb: 10 columns (even if not visible) in a data explorer zone should be an alert to really think about
performance implications.

* DO: Try to perform all processing in the SQL instead of fkInfo, BS, or SS calls in other columns. As described earlier,
these would be additional processes run on a per-row basis. If a description exists, consider using the description and
a Navigation Option instead of the Foreign Key. For example, replace the Person fkRef with Person Name and its
Navigation Option.

Table Indices and SQL

Here are some more common patterns to look out for. (This is not meant to be a complete SQL tuning guide.)

* Put Indexes on the most commonly used criteria. If there is no proper index, the optimizer does a full table scan.
Consider:

* Primary keys, foreign keys, ORDER BY fields.
* Secondary Unique Indexes
* DO: Use a JOIN instead of EXISTS. This is faster for unique scan indexes.

* DO: Use EXISTS instead of IN when working with ID fields, use '=' instead of LIKE. Using LIKE on a system-
generated key isn't "reasonable"

* CONSIDER: Using functions like TO_DATE(), SUBSTR() etc. means indexes on those fields won't be used! Use only
when necessary.

* DO: Use the power of optional filters - and not just in the WHERE clause.

FROM d1_tou_map tm dl_tou_map_| tm
FROM d1_tou map tm [(F1) dil_tou map | tm,]

* DO: Only include necessary tables:

SELECT A.usg _grp_cd, A usg rule_cd, A exe_seq,A referred_usg grp_cd, A usg rule cat flg, B.crit_seq, C. descr
FROM D1_USG RULE A, dl1_usg_rule_elig crit B, dl_usg rule_elig_crit_|I C

WHERE A. usg grp_cd= : Hl

AND A. usg_grp_cd = B.usg_grp_cd

AND A.usg rule_cd = B.usg _rule cd

AND b. usg_grp_cd = C. usg_grp_cd

AND b. usg_rule_cd = C usg_rule_cd

AND b.crit_seq = C.crit_seq

AND C. | anguage_cd= : | anguage

Note that Table B is not necessary; you could instead simply link directly from A to C.

* Offload tasks, like string manipulations, concatenations, row numbering, case conversions, type conversions etc., to the
front-end applications

* Do basic validations in the front-end during data entry. This saves unnecessary network roundtrips.
* Avoid using UNION - use UNION ALL if it is possible.
* Operators <> and != will NOT use the index! Also the word "NOT" Use the Greater Than or Less Than operators.

select * fromci_scr_step where (scr_cd <> 'ZZCMN3') has cost 68

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 244

select * fromci_scr_step where (scr_cd > 'ZZCW3' or scr_cd < 'ZzZCW3') has cost 1!!!

Ul Maps and BPAs

UI maps will not be able to display many rows very quickly. DONT display hundreds of rows in a Ul Map. Alternatively,
the zone type "SERVICE" can display a large number of records faster.

DO: Ensure that the html code is proper. Malformed HTML in UI maps (for example, opening a <div> and not closing it)
can cause significant performance degradations at the browser. It is possible to copy and paste HTML into Eclipse to check
its validity. There are also various tools like html tidy that can help to identify bad html.

DO: Minimize browser-to-server calls. Namely, invokeBO/BS/SS will perform a call to a server to retrieve the data, which
can be slow. Many of these such calls on load of the UI Map will result in slow performance.

» Use service script instead of BPA if multiple calls need to be made to BO, BS, SS.

* Create a "bulk" processing service script instead of calling the same one multiple times. Instead of multiple invokeBS
calls on load of a UI map, write a pre-processing service script instead.

Diagnosing Performance Issues

Execution times can be obtained in a number of ways.

Fiddler

In a Ul-oriented scenario, the first recommended analysis tool is to use an http logger like fiddler (http://
www.fiddler2.com). This tool should make it apparent if there are excessive calls from the client browser to the server and
the server response times as seen from the browser. The timings can then be categorized as server-side or client side calls.
When using fidder be sure to enable the following:

¢ "Time-to-Last-Byte"

* "Response Timestamp"

OUAF 'Show Trace' button

Enable debug mode by adding debug=true to the url. Then use the "Start Debug", "Stop Debug" and "Show Trace" buttons

User

Startebug | <or o-o0o]

Log Service times in spl_service.log

In log4j2 properties, add the following, including adding "serviceDispatcher” to the comma-separated named loggers, to log
service execution times:

| ogger. servi ceDi spat cher. nane = com spl wg. base. api . servi ce. Servi ceDi spat cher
| ogger . servi ceDi spat cher. appender Ref . user Log. ref = userlLog

| ogger . servi ceDi spat cher. | evel = debug

| ogger . servi ceDi spatcher. additivity = fal se

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 245

http://www.fiddler2.com
http://www.fiddler2.com

Optimization and Performance Profiling

To squeeze every second of a given program for mission critical optimizations, it may be necessary to craft a repeatable unit
test and profile the results using a profiling tool such as YourKit (www.yourkit.com). This section will include some code
samples to log execution times. Attaching a profiler could give clues to optimization points. A common pattern to follow in
testing code is to allow the System to "warm up," for example to load up the necessary application caches which are only
done once and are not relevant to the code being optimized.

Basic Logging

The following code can be placed in a junit test to log execution times:

long start = | ogger.debugStart("Starti ng process");
/l... code for process
| ogger . debugTi me("End process", start);

Timing code (‘'shootout’):

The code below will run a BO Update 100 times and report the amount of time taken. Note the 5 "warmup" executions
before the repeated 100 runs.

public void testMiltiplePluginScripts() throws Exception {
String docStringl = "<DR Short Createl nterval Records><fact| d>219250542869</
fact | d><l ongDescr >REEE</ | ongDescr ></ DR_Short Cr eat el nt er val Recor ds>";
Docunment docl = Docunent Hel per. parseText (docStringl);

String docString2 = "<DR Short Createl nterval Records2><fact| d>219250542869</
fact | d><l ongDescr >REEE</ | ongDescr ></ DR_Short Cr eat el nt er val Recor ds2>";
Docunent doc2 = Docunent Hel per. par seText (docString2);

/1 war mups

for (int i =0; i <5; i++)
Busi nessObj ect Di spat cher. execut e(docl, Busi nessObj ect Acti onLookup. const ants. FAST_UPDATE) ;
rol | backAndCont i nue();
Busi nessObj ect Di spat cher. execut e(doc2, Busi nessObj ect Acti onLookup. const ants. FAST_UPDATE) ;
rol | backAndCont i nue() ;

}

| ong total El apsed = 0;

/'l speed

for (int i =0; i < 100; i++) {

long start = System nanoTi ne();

Busi nessbj ect Di spat cher. execut e(docl, Busi nessObj ect Acti onLookup. const ants. FAST_UPDATE) ;
flush();

t ot al El apsed += System nanoTinme() - start;

rol | backAndCont i nue();

}
Systemout.println("Script (100): " + total El apsed / 1000000 + "ns");

t ot al El apsed = O;
for (int i =0; i < 100; i++) {
| ong start = System nanoTi ne();
Busi nessObj ect Di spat cher. execut e(doc2, Busi nessObj ect Acti onLookup. const ants. FAST_UPDATE) ;
flush();
tot al El apsed += System nanoTine() - start;
rol | backAndCont i nue();

}
Systemout.println("Java (100): " + total El apsed / 1000000 + "ns");

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 246

http://www.yourkit.com

Using PerformanceTestResult helpers

A performance helper suite of classes was introduced, allowing "shoot-out"s like the above to be more simple:

Cal | abl e<Voi d> expr Cal | abl e = new Cal | abl e<Voi d>() {
@verride
public Void call () throws Exception {
expr essi on. val ue(context);
return null;

}

b
Cal | abl e<Voi d> j avaCal | abl e = new Cal | abl e<Voi d>() {
@verride
public Void call () throws Exception {
function(x);
return null;

b
Per f or manceTest Cal | abl e exprPerf Cal | abl e = new Perfor manceTest Cal | abl e(" Expression "
+ expression. get Expressi onString(), exprCallable);
Per f or manceTest Cal | abl e j avaPerf Cal | abl e = new PerformanceTest Cal | abl e("Java", javaCall able);

Per f or manceTest Resul t conpareResult = PerformanceTest Hel per. conpare(20, 200000, exprPerfCall abl e,
j avaPerf Cal | abl e);
conpareResul t. printResul ts();

The API is com.splwg.base.api.testers.performance.PerformanceTestHelper:

public static PerformanceTest Result conpare(int warnmups, int reps, PerformanceTestCallable... callables)
t hrows Exception {

Each of the performance callables is treated the same. It gets a series of warmup executions, in order to populate caches, and
allow hotspot JVM optimizations of any methods. Then the accurate system nano timing (e.g., System.nanoTime()) is called
around the loop of the given number of reps.

Profiling

The code below uses YourKit's controll classes to create a snapshot.

public void testProfilePluginScripts() throws Exception {
String docString = "<DR Short Createl nterval Records><fact|d>219250542869</
fact | d><l ongDescr >REEE</ | ongDescr ></ DR_Short Cr eat el nt er val Recor ds>";
Docunent doc = Documnent Hel per. parseText (docStri ng);

/1 war mups

for (int i =0; i <5; i++)
Busi nessObj ect Di spat cher. execut e(doc, Busi nessObj ect Acti onLookup. const ants. FAST _UPDATE) ;
rol | backAndCont i nue();

}

Control Il er controller = new Controller();

control ler.forceGX);

control l er.start CPUProfiling(ProfilingMdes. CPU SAMPLI NG Controller. DEFAULT_FI LTERS) ;

for (int i =0; i <500; i++) {
Busi nessObj ect Di spat cher. execut e(doc, Busi nessObj ect Acti onLookup. const ants. FAST _UPDATE) ;
rol | backAndCont i nue();

}
control | er. captureSnapshot (ProfilingMdes. SNAPSHOT W THOUT _HEAP) ;

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 247

PerformanceTestHelper API

As before, the PerformanceTestHelper helps by providing a seamless interface into the yourkit profiler, for various options
of sampling, tracing, monitoring threads or timing in threads:

public static PerformanceTest Cal | abl eResult profil eSanpl e(int warmups, int reps, PerformanceTestCall able
throws Exception {

public static PerfornmanceTest Cal | abl eResult profil eTrace(int warnmups, int reps, PerformanceTestCallable c
throws Exception {

public static PerformanceTest Cal | abl eResult nonitor(int warmups, int reps, int nunihreads,
Per f or manceTest Cal | abl e cal | abl e) throws Exception {

public static PerformanceTest Cal | abl eResult tinelnThreads(int warmups, int reps, int nunrlhreads,
Per f or manceTest Cal | abl e cal | abl e) throws Exception {

The PerformanceTestHelper utility class uses reflection to know whether the yourkit library is available or not. If it is

not available (such as on the build server), the behavior reverts to simple timing protocols of the corresponding callable
iterations. If it is available (such as on a developer's workstation, and they want to profile a test), then the yourkit profiler is
connected to. This would require actually running the test under a profile session, else an error is produced.

Profiling a callable is somewhat similar to the simple timing of a callable, except for some added steps:
Performs some warmups
Forces garbage collection via the yourkit API

1
2
3. Starts the given profile type (sample vs trace)- the test should be run without automatically starting the profiler
4. Wrap the repetition loop in a timer

5

Capture a snapshot

This design approach allows profile/performance tests to be checked into version control, for re-profiling at a later point,
and for documentation examples of how to profile code, etc.

References and Additional Resources

Batch programs and strategies:

For details on writing batch programs, using threads for performance improvements, and other batch-related information,
see the Batch Best Practices whitepaper available on the My Oracle Support (MOS) Knowledge Base (article 836362.1).

Hibernate fetching strategies:
http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching
Yourkit profiling demo:

http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

Oracle Utilities Application Framework Software Development Kit Developer's Guide 248

https://support.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?id=836362.1&type=DOCUMENT&displayIndex=4
https://support.oracle.com
http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching
http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

Chapter 4
Packaging Guide

CM Packaging Utilities Cookbook

This document describes the installation, configuration, and operation of the packaging utilities provided with the Software
Development Kit. These utilities enable developers to prepare releases of their custom modifications, called CM releases, to
the products.. Releases prepared using these utilities may be installed on top of an existing base product environment.

NOTE: CM releases will correspond to a specific base product version and can only be installed on base product
environments of that version. Customers installing a CM release must first verify the corresponding base product version
with the Implementation team.

NOTE: This document describes CM packaging utilities operation for Oracle database only. The application server can
be Unix or Windows/DOS operating system. In Unix you must execute the script with .sh suffix, in window the script
with .cmd suffix. They both will execute the same Perl script with .plx suffix. For instance:

* applyCM .sh: Unix driver script
» applyCM.cmd: Windows driver script
» applyCM .plx: Perl script

All the examples in this document are related to Unix. If you are in Windows/DOS simply execute the same scripts, but
using .cmd extension instead .sh.

App Server CM Packaging Overview

The following diagrams describe the app server CM packaging procedure.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 249

extractCMSource Pac kagi ng
Directory

ﬁ create_CM_Release

Release
Install Package

Project
Repository

Packaging
App Server

7]

—
r——
=
—
—
——
L

—

The starting point of packaging the app server component is the project repository. The tool extractCM Sour ce is used to
get the source from the project repository into the packaging directory.

NOTE: The packaging directory must not be used for any other purpose except for storing the extracts. Mixing other
files into the packaging directory will result in errors in succeeding processes.

applyCM copies the extracted source to the packaging app server. It then does all the necessary steps like generate,
compile, etc., to update the packaging app server runtime based on the extracted source.

create CM_Release is then used to create CM release install package from the packaging app server. The CM release
install package contains all CM code that has been applied to the packaging app server.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 250

Project QA
App Server

Production
App Server

install

[—==
—T1
T
——T)
L

The install tool applies the CM release install files to either QA or production app servers.

NOTE: Release install packages are usually applied only to fresh environments, e.g., to apply the first batch of CM code
or when upgrading to a new version of the product. To install additional code to an existing environment, patch install
packages (described next) are used.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 251

create_CM_Patch

Old Release
Install Package

Patch
nstall Package

New Release
Install Package

CM patch install packages are used to update an existing installation with the changes since it was last updated. A patch
install package is created by create CM_Patch as the difference between two CM release install packages (a newer one

and an older one), e.g., for a monthly update schedule, CM release install packages are created every month and every
month, a cm patch install package is created using the release install packages from the previous and the current month.

To create a patch install package, a new release install package must be created first. Note that a release (not patch) install
package must be available for the previous period. Executing create CM_Patch with the two CM release install packages as
input creates the patch install package.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 252

Project QA
App Server

Production
App Server

install

[——==
]
—]
E—Ty
Ll

Developing Off-site

When developing off-site, there may be no available environments on the target platform. In this case, development and QA
must be done off-site, but packaging and QA must be re-done on-site using environments on the target platform.

Off-site Process

Development and QA (and the packaging) is done using the same procedure as on-site except for the following:
* Packaging and QA are done on environments that may not match the target platform.

» Instead of sending a release or patch install package to the implementation site, only the source from the install package
is sent. This package is called the release/patch source package. It is created by executing extractCMSource with the
data directory of the install package as the source directory.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 253

Packaging
App Server

Release/Patch
Source Package

=

Off-site Devel opment Release

On-site Process

Upon receiving the release/patch source package, the on-site team proceeds with the regular packaging procedure starting
from the applyCM step using the release/patch source package as the source directory.

applyCM

Packaging

Release/Patch App Server

Source Package

=

On-site Packaging

Guidelines

Applying a CM patch install package to QA or production app servers is the same as for release install package, e.g., it is
done simply by executing the install tool from the the package directory. By using these scripts, implementation developers
can prepare an installation package containing the contents of their custom modifications. Developers need to build a
packaging environment on a server of the same operating system platform as used by the target environment to create

CM release packages. A version number must be used to identify each custom modifications (CM) release version. Once
developers select a version number format, the version number must be stored on the environment in the file $SPL EBASE/
etc/CMVERSION.txt, to achieve this place CMVERSION.txt file in etc subdirectory in your patch directory.

Implementers are strongly recommended to use CM packaging utilities for implementation delivery to customer site. It will
ensure the correct installation complying with base product rules and will keep an environment upgradable. Please, note,
that web files can be also packaged in archive war format (if $isExpanded environment variable is set to false), in that case
it is not possible to just manually copy changes to the directories.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 254

App Server CM Packaging Tools

The following utilities are provided in this package for maintaining the packaging environment and creating release versions
of customer modifications (CM):

extractCM Sour ce utility, used to extract source from an app server or from a release or patch install package.
applyCM utility, used to apply a CM patch to a packaging environment.

create CM_Release utility, used to create a full CM release version.

create CM_Patch utility, used to create CM patch release version utility.

Instructions for using these utilities are described in the following sections.

Post Install Setup

After the CM Packaging Tools installation, it is required to copy the proper spl-tools-<VERSION> jar to the actual jar
location, e.g.:

cp <CM script dir>/tools/spl-tools-4.2.0.jar <CM script dir>/1ib/

Using the extractCMSource.plx Utility

This utility written in perl extracts source code from an app server, typically the project repository, or from a release or
patch install package.

NOTE: extractCMSource.plx is a Windows-only utility.

Display Usage

To display the usage information, execute the utility without any parameters from the Windows command prompt.

perl extract CMSour ce. pl x

extract CMsource. pl x -s sourceDirectory -d destinationDirectory -v Version

[-n subDirectoryNanme] [-m CrOaner |

-v Version
The Version Nunmber to attach to this rel ease of
the Custoner Modifications.

-s sourceDirectory
sourceDirectory is the location to extract from

-d destinationD rectory
destinationDirectory is the location in which the extracted files
are placed. The programthen creates a subdirectory under the
destinationDirectory to hold the patch.

-n subDirector yNane
Subdi rectory under "Directory" in which this patch will be placed.
If this paraneter is not provided, an autonmtic directory nane
i s generated based on the environment nane and date/tine.

- m CrOwner
Used for a Miulti-CMjar enhancenent, this optional paraneter
specifies the CM owner that needs to be extracted fromthe
project directory (e.g., "cnD1"). If not specified, the script
uses the default "cni.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 255

Extract From an App Server

To extract the source from a development app server, specify the app server directory as the source directory. For example,
the following invocation extracts source from an app server named CM_PROIJ1 in the C:\SPL directory into C:\CMExtarct
and marks the extract as version CM1.0:

perl extract CMsource.plx -s C\SPL\CM PRQJ1 -d C\CMExtract -v CML.0

Extract From Release/Patch Install Package

To extract the source from a release or patch install package, specify the data directory in the install package as the source
directory. For example, the following invocation extracts source from a patch install package named CM1.0 1 in the C:
\CMInstall directory into C:\CMExtract and marks the extract as version CM1.0_1:

perl extract CMsource.plx -s C\CMnstall\CML. 0_1\ CMCCB\ dat a
-d C\CvExtract -v CML.0_1

FW Utility to extract CM sources from Unix environments

The following utility, delivered with the Oracle Utility Application Framework, is to extract CM sources from a Unix
environment (note that extractCM Sour ce.plx is the Window only utility):

$SPL EBASE/bin/extractCM Sour ceUNI X.sh

Usage:

-v <version>

The Version Number to attach to this release of the Customer Modifications. (Example: CM001)
-t <target directory>

Target Direcory is where the extracted files will be placed. This program will then create a subdirectory under that directory
for the patch with a timestamp. with a timestamp.

-e

Include CM Application Viewer and Help files (optional).
-l

Language Code when extracting CM Help files (optional).

Using the applyCM Utility

After an Implementation team has completed CM development on a Windows server or prepared a fix in a development
environment, they'll need to copy and apply the CM modules to a packaging environment on the same platform as the target
(e.g. production, testing). In other words, if the target system is a Unix platform, the packaging environment must be on
Unix as well.

The applyCM .sh utility (applyCM.cmd for Windows installations) serves this need. It can be used to copy and apply all
CM development modules to a packaging environment or any specific extract (patch) of CM development. The script needs
to be executed using the full pathname (this is necessary because you need to be located in a different folder, see below). In
addition, you need to be set to a target environment (e.g. packaging environment).

Script: <CM scripts>/applyCM .sh

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 256

Usage:
(no options)

Apply patch on top of the existing base product and possibly CM integration environment. This mode will add new CM
files from patch to the environment and replace the changed ones. But it will not delete the previously existing in the
environment CM modules that are not part of the patch.

It needs to be executed from the source root folder.
-d

Remove all previous CM modules from the environment and apply patch on clean base product environment. This option is
useful when needed to create the CM integration environment from scratch.

It needs to be executed from the source root folder.
-b

Recompile the existing sources in current environemnt. Usually it is used to execute full recompile a development
environment.

It needs to be executed from the application folder root, e.g. $SPLEBASE.
-n

It won't stop/start automatically the target environment.

The input for applyCM .sh utility is current folder (source root folder), which contains the following subfolders:
* java

* scripts

* etc

e services

* splapp

These subdirectories contain only CM modules created according to the rules of the document "Naming conventions for
tailoring application implemetation" (see Installation Guide of the product). This directory structure should be prepared and
filled with relevant CM modules on development Windows server, then copied over to the server that hosts a packaging
environment by ftp utility. After that you can apply the patch to the packaging environment. M odules that are not created
using these conventionswill beignored by applyCM .sh utility. You have to reside in the patch directory to apply

the patch. ApplyCM utility will generate and compile java code, will create java jar file (cm.jar) required for customer
implementation platform.

Using the create_CM_Release Utility

The create CM_Release.sh utility is used to create a CM full release package that will contain only customer modification
(CM) files. This is used to install a full set of customizations on top of the base product environment.

In order to build a CM release version that is compatible with the target platform, you need a packaging environment on
the same operating system as the one on which the receiving product is installed. The target environment for installing the
release version on a customer site can either be a pure base product environment, or an environment that already contains
previous CM versions. In the second case, all previous CM modules will be removed by the install utility at the beginning
of the installation process.

It is mandatory that every implementation version is identified by its own release ver sion number. This number may be
in any free standard and must be recorded in the $SPL EBASE/etc/CMVERSION.txt file on the environment.

Here are the detailed instructions for creating the full release version for CMs:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 257

* Log in to the server with the administrator user id and initialize a packaging environment. You will use this environment
to create the CM release version.

* Change the directory to the directory that contains the Developers Tool Suite utilities (CM _packaging).

» Execute the utility using the following command:
./create_CM Rel ease.sh -e $SPLENVI RON -v $VERNO - d $RELEASEHOVE,

where
$SPLENVIRON is the target packaging environment
$VERNO is the CM version number (the content of the file CMVERSI ON.txt)

$RELEASEHOME is the name of the directory on the server where you want to place the resulting CM release
package.

For example:
Jcreate CM_Reélease.sh -e M4 Q1 SUNDB2 -v M.4.0.0 -d /versions

Tar and zip the resulting CM release directory for Unix platform or zip it for Windows platform and ship it to your
customer.

The customer who wishes to install the delivered package onsite will follow the instructions:
* Decompress and untar the installation media to a temporary directory for the Unix server or unzip it for Windows server.
* Change directory to the target directory.
* Login and initialize the target environment.
* Change to the Installation directory using the following command
cd CMCCB. $VERNO
where
$VERNO is the version number (the content of the file CMVERSI ON.txt)

* Run the following script
Jinstall.sh - for Unix

install.cmd - for Windows

Using the create_CM_Patch Utility

The utility create CM_Patch.sh is used to create a patch release of CMs. A patch release version is created as a difference
between a previous CM version and a new CM version. This type of release may be useful if the implementation team
wants to ship only an update of the previously released version by preparing a smaller package that can be delivered easily
by email or ftp to the customer.

FASTPATH: Before executing the utility, be sure that both packages are available in the same directory on the server.
During the installation process at the customer site, the patch install utility will not remove the previous version of CM
modules, and will only install the patch content on top of the previous CM version.

Here is the process for creating a patch release CM version:
* Log in to the server with the administrator user id.
* Change directory to the name of the directory that contains the SDK packaging utilities (CM _packaging).

» Execute the utility by entering the following command:
./create_CM Patch. sh -d $RELEASEHOVE

where:

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 258

$RELEASEHOME is the directory that currently holds your CM full release packages - and where you also want to put
your new patch package.

Tar and zip the resulting CM patch directory for Unix platform or zip it for Windows platform and ship it to your customer.
The customer who wishes to install the delivered package onsite will follow the instructions:

* Decompress and untar the installation media (on Unix) or unzip (on Windows) to a temporary directory.
* Change directory to that directory.
» Login and initialize the target environment.

» Change to the Installation directory by using the following command
cd CMCCB. $VERNO

where
$VERNO is the version number (the content of the file CMVERSI ON.txt)

* Run the following script
Jinstall.sh - on Unix

install.cmd - on Windows

Multi-CM Application Functionality

The Multi-CM Jar functionality allows multiple teams to develop features of the application separately.

Each team is identified by a CM application owner. For example, a team in one geographic location may be identified by
CM application owner cmO01, whereas another team will be cmO02.

Teams can have independent project repositories, packaging directories, packaging app servers, releases, and patches.

The different CM application releases/patches are then installed into a target QA or production app server so that they
contain all cm applications, e.g., a target environment will contain cm01, cm02, cm3, etc.

The Multi-CM application is activated by using the "-m" option when running ext r act CMSour ce. pl x. With this option,
only the source code for the given CM application owner is extracted from the project repository. It creates a file (et c/ cm_
owner . t xt) in the packaging directory identifying the CM application owner.

If the cm_owner.txt file exists, all subsequent utilities, namely, applyCM, create CM_release, create. CM_patch, and install
operate using the designated CM application owner. The installation of the final CM package removes the previously-
installed CM application owner's files and modules, replaces them with the ones from the installation package, and, finally,
appends the owner to the existing cm_owner.txt file in the target environment.

If the Multi-CM application is activated, the applyCM script applies to the packaging environment all the jar files extracted
from development (excluding <CmOwner>.jar, which is compiled and created by applyCM). Such jar files are added to the
Classpath for the Java compilation. The create CM_release, in case the Multi-CM application is activated, copies only the
<CmOwner> jar to the installable package:

perl extract CMsource.plx -s C\SPL\CM PRQJ1 -d C.\CMExtract -v CML.0 —m cnD1
Each CM owner development requires separate CM jar structures, e.g., struct ures/ cn01_j ars_structure. xni .
Each CM owner development can also contain customized user exits, and if there are additional templates, each must be

defined in the relevant structure, e.g.:

tenpl at es/ cnD1_web. xm . exit _end. i ncl ude
structures/cnDl_tenpl ate_structure. xm

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 259

CM System Data Packaging Tools

CM System Data Packaging Overview

CM System Data Packaging Tools allow implementers to extract and package Customer Modification ("CM') system data
from their databases and deliver it to their customers.

The following example uses the Oracle database platform to illustrate the extract and upload process.

As a standard release process, the implementers can add the CM system and Meta data records to the base product database
or change base product system and Meta data records according to the specific rules (see "System Table Guide" document
in the Installation Guide of the product). Implementers can then choose to migrate the CM data to a customer database as a
full extract of CM data, or incremental differences between the current version of the system data on the customer site and
the new version of the implementation development database.

Project Project Blueprint

Dev DB Release DB File
— Create Copy n— System Data (o

& {E_'—;f;f “

Packaging CM system data starts by creating a copy of the project dev database into a project release database. A
blueprint file of the system data is then created by executing the OraSDBP tool.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 260

Project

Blueprint
File

&

Production
DB

To apply the latest changes to a QA or production database, execute OraSDUp with the blueprint file as input and then
specifying the target database.

Extract Process

Extract process involves extracting CM system data based on the rules defined in a parameter file and packaging it in a
binary file - blueprint. This file can then be used as an input source by the data upload process.

The following example uses the Oracle database platform to illustrate the extract and upload process.

OraSdBp.exe, included in this package, is the extract utility that reads an input parameter file for the list of Oracle database
tables, extracts data from these tables and compresses into a binary file (blueprint).

A sample extract parameter file extract cmsystbls.Ist is included in this package to provide the implementers a starting
point. This parameter file, as can be seen, defines rules for the tool to extract CM data based on their key definition.
However, in some cases, CM data may be stored on 'CI' rows. The column user_exit pgm on CI MD PRG_COM table

is one such case. For cases like these, the implementers can choose to change the extraction rules in this file to match their
requirements.

To extract your data, make a copy of extract_cmsystbls.Ist file and edit it to match your requirements. Execute the extract
process from a Command-window and provide it with the required parameter when prompted.

The data in input parameter must match the following format:
CI_ ALG TYPE L;LANGUAGE _CD ='ENG";VERSION

Where, the first field stores the table name, second field stores the selection criteria (where clause for selecting data) and the
third field stores the list of column that should be ignored during extraction. The character semi-colon is used as the field
separator. If there are multiple columns that need to be ignored (not included in the data being extracted), comma can be
used in the third field as the separator.

OraSdBp accepts the following parameters:

¢ -d Connect String

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 261

Where the Connect String contains:
Schema owner name (say CISADM)
Password for schema owner.

Database name.
This is a mandatory parameter. If not entered, the utility will prompt the user to build the connect string.

Connect String should be entered in the following format:
CISADM,CISADMPSWD,DBNAME
(Comma-separated and no space).

-1 Input Parameter file name.
Name of the input parameter file that the utility reads to get the list of tables and their selection criteria. This parameter is
optional. The default input parameter file name is CDXSdBp.Inp.

-0 Output File Name.
This is the name of the binary file that the utility creates. This parameter is optional. The default output file name is
"OraSdBp" (without extension).

-¢ NLS characterset of the target database

The utility uses this parameter to set the NLS LANG parameter on the client side. This parameter is then validated
against the character set of the source database and is saved in the blueprint. This is mandatory parameter and is
prompted for if not set by the user.

-h Help.

This option will list all the accepted parameters with a brief description.

Upload Process

Data upload process compares the data included in the blueprint file (generated by the extract process) and that extracted
from a target database and generates output SQL to synchronize them.

The utility OraSdUpg, included in this package, is used by the process utility to compare and synchronize the data in the
target database with that in the input blueprint file.

OraSdUpg reads an input parameter file for the list of the tables to be upgraded along with the selection criteria and upgrade
rules for each table.

Each table has a corresponding record in the file with following 6 fields separated by semi-colon:

Table Name

The instance of the table. This number should be always set to 1. The cases where more than one instances of a table are
processed are extremely rare and are not discussed here.

Selection Criteria for the table.

Insert allowed indicator (T/F): Whether records should be inserted into the target database table if they missing in the
database but exist in the binary file.

Update allowed indicator (T/F): Whether records should be updated in the table if they have different values than in the
binary file.

Delete allowed indicator (T/F): Whether the obsolete data in table in the target database. Obsolete records exist in target
database but not in the binary file.

Fresh Install Indicator (T/F): Whether the table should be seeded during the very first install. This indicator is only used
when the utility is invoked with "-f" switch.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 262

* List of columns not updated can be specified in the sixth field. Use a comma to separate the column names if multiple
columns are to be ignored during updates. These columns will be inserted but will not be updated during the data
synchronization process.

Following is the example of how these records should look like in the file:

CI_LOOKUP;1;LANGUAGE_CD ='"ENG";T;T;F;T;DESCR

A sample file upload cmsystbls.Ist has been included in this package. Implementer can make a copy of this file and edit it to
match their requirements.

Before making connection to the target database, the utility reads the header from the blueprint and sets NLS LANG
environment variable on the client machine. It then validates this character set setting to the character set of the target db
after making a connection and warns user if there is a mismatch.

The utility can be executed in verification and modification modes. In verification modes, the action SQL statements are
simply written to the log file but in modification mode they are applied the target database.

It is very important to note that the primary requirement for OraSdUpg is definition (column and primary key) of tables
being upgrade in the target database should be same as that in the database from which the binary file was extracted.

Be careful while selecting the table and the selection criteria because to compare the data, the utility, for each table, first
loads the data from the binary file and the database in the memory. If a table has huge amount of data and selection criteria
set causes the utility to work on large quantity of data, it may run out of memory.

To avert unique key constraint violation error that can be caused by improper sequence of data deletion and insertion on
a table and also the foreign key issues, the utility first gathers all the generated action statements for all the tables before
executing them. The execution of all the generated statements is done in multiple iterations. After each iteration, all the
failed statements during that iteration are collected and executed again in the next iteration. The iterations are repeated till
either all the statements in iteration are executed successfully or they fail.

The utility disables and enables all the triggers on the tables being upgraded before and after applying database changes. No
triggers get executed during the system data upgrade.

OraSdUpg accepts the following parameters:

* -d Connect String
Where the Connect String contains:

* Schema owner name (say CISADM)
¢ Password for schema owner.

» Database name.
This is a mandatory parameter. If not entered, the utility will prompt the user to build the connect string.

Connect String should be entered in the following format:
CISADM,CISADMPSWD,DBNAME
(Comma-separated and no space).

» -b Bypass the database character set validation.
Before upgrading data in database, the utility validates character set stored in the blueprint by OraSDBp against that of
target database. The user can bypass this validation step by setting this switch.

* -p Input Parameter file name.
Name of the input parameter file that the utility reads to get the list of tables and their selection criteria. This parameter is
mandatory.

e -iInput Binary File.
This is the name of the binary file that the utility reads to extract the data that it then uses to upgrade the target database.
This is a mandatory parameter.

. f

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 263

Treats the data synchronize process as New install. When set, the flag forces OraSdUpg to use "fresh install indicator"
for the tables where INSERT indicator is set to false and compels it to insert missing records in all of them. Optional.

e -u
Makes OraSdUpg run in the modification mode. Optional.

* -1Log File Name.
This is the name of the file that OraSdUpg creates, if it is missing and starts appending the information about the action it
is performing.

* -h Help.
This option will list all the accepted parameters with a brief description.

NOTE: It is recommend that the implementers execute the upload process first in the verification mode and review the
SQL before running the tool in the modification mode.

Tailoring Your Oracle Utilities Application Implementation

This document describes the naming conventions and processes that must be followed to ensure a successful upgrade of the
Oracle Utilities application base product release-on-release. The implementation team responsible for tailoring the Oracle
Utilities application to meet specific customer needs must follow this guide to preserve their changes and ensure successful
upgrades. Only the changes described in this document are considered as permitted for the tailoring of the base product.
Any changes that do not conform to these rules may be overridden by the install utility during a base product upgrade.

Some naming conventions used in this document:

* $SPLEBASE (for UNIX) and %8PLEBASE%(for Windows) is the generic Oracle Utilities environment directory name.
e $SPLENVI RON (for UNIX) and %6PLEBASE%(for Windows) is the generic Oracle Utilities environment name.

* $SPLDB (for UNIX) and %SPLDBY(for Windows) is the database type.

Preserving Customer Changes

For any kind of a customer modification, the file's directory structure and naming conventions are defined in this section.
The implementation team must follow these conventions to preserve the results of their work during a subsequent base
product upgrade.

* The configuration parameters of the environment being upgraded are displayed (as default parameters) during the
configuration stage of the install process. These parameters may be changed if new settings are preferred.

* The base product is shipped with examples of different kinds of modules that may be used by implementation teams. The
examples can be found in the following directories:

* $SPLEBASE/ spl app/ appl i cati ons/root/cm t enpl at es contains Oracle Utilities Application Framework Web
file examples.

* $SPLEBASE/ spl app/ appl i cati ons/root/<application product code>/cmtenpl ates. This directory contains
Oracle Utilities application product Web file examples. The <application product code> varies by product; for
example, the Oracle Utilities Customer Care and Billing, the <application product code> is c1.

* $SPLEBASE scri pts/ cm exanpl es. For batch script examples, this directory has two subdirectories: FWfor
Oracle Utilities Application Framework examples, and <application product code> for Oracle Utilities application
product examples (e.g., CCB for Oracle Utilities Customer Care and Billing, TAX for Oracle Public Sector Revenue
Management).

Oracle Utilities Application Framework Software Development Kit Developer's Guide 264

NOTE: For simplicity, this document generally uses UNIX platform naming conventions. To apply these names to the
Windows platform, use the Windows naming conventions "%" sign instead of the "$" sign, and backslashes ("\") instead
of forward slashes ("/") as directory separators (e.g., “SPLEBASE% spl app\ appl i cati ons\root\cm t enpl at es).

Tailoring Web Files

Base product Ul files are located in the directory $SPLEBASE/ spl app/ appl i cati ons/ r oot . Implementers may develop
their own UI files under the directory $SPLEBASE/ spl app/ appl i cati ons/r oot/ cm No specific naming conventions are
enforced under this directory.

The root directory may be deployed in war file format for runtime environment (SPLApp. war). Use provided utilities to
incorporate your cm directory into the SPLApp. war file.

Tailoring the CM Java Application

Implementers may write their own Java classes to extend the Oracle Utilities application functionality. All Java files should
belong to the com spl wg. cmpackage. The CM Java application should be compiled into a jar file named cm j ar. The SDK
Customer Modification packaging utilities will help build this file. The cm j ar is typically deployed into the following
directories:

$SPLEBASE/ spl app/ appl i cati ons/root/WEB-INF/1ib
$SPLEBASE/ spl app/ appl i cati ons/ XAl App/ VEEB- | NF/ | i b
$SPLEBASE/ spl app/ busi nessapp/lib

$SPLEBASE/ spl app/ st andal one/li b

Additional third-party jar files can be deployed by following the cnt . j ar naming standard. Customers may use this option
to deploy any additional functionality, interfaces with other applications, and so on. These will not be built by the SDK
Customer Modification packaging utilities, but will be deployed into the application once it is supplied in jar format.

The root directory may be deployed in a war file format for the runtime environment (SPLApp. war). Use the provided
utilities to incorporate your / cmdirectory into SPLApp. war file.

IMPORTANT: Allcnt. | ar files that need to be applied must be defined in $SPLEBASE/ st ruct ures/cm jars_
structure. xnl . If the file does not exist in the target environment, the sample cm j ars_struct ure. xn . exanpl e file
can be copied from the SDK packaging's / et ¢ folder.

Manual cm.jar deployment

The cm j ar file is usually deployed as part of the CM packaging process (ext r act CMsour ce, appl yCM creat e_
CM r el ease, etc.), but in some cases it may be desirable to manually deploy the cm j ar file to one or more target
environments.

CAUTION: This should be done with care and should only be considered if the cm j ar components are self-contained
and have no external dependencies.

To manually deploy cm j ar:

1. The SPLEBASE/structures/cm_jars_structure.xml must exist and should have at least the following:

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<j ar_structure>
<cmj ar>
<source_dir_jar>@PLEBASE@ et c/|ib</source_dir_jar>
<dest fol ders>
<dest _f ol der _1>@PLEBASE@ spl app/ appl i cat i ons/ XAl App/ VEEB- | NF/ | i b</ dest _f ol der _1>
<dest _f ol der _2>@PLEBASE@ spl app/ appl i cati ons/root/WEB-1 NF/ | i b</dest _f ol der_2>
<dest _f ol der _3>@PLEBASE@ spl app/ busi nessapp/ | i b</ dest _f ol der _3>

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 265

<dest _f ol der _4>@PLEBASE@ spl app/ st andal one/ | i b</ dest _f ol der _4>
</ dest _f ol der s>
<chi | d_j vm pat h>@PLEBASE@ spl app/ st andal one/ | i b</chi | d_j vm pat h>
</cmjar>
</jar_structure>

The <cm.jar> element identifies the jar file name, usually cm j ar, as defined here.

Element <source dir_jar> defines the source location of the abovementioned jar. The directory in the example above
should work for most cases.

The dest _f ol der _n elements point to the target locations where the jar will be placed. The directories in this example
should work for all.

2. Manually copy the cm j ar to the directory specified in the <sour ce_di r _j ar > element, typically $SPLEBASE/ et ¢/
l'ib.

3. Run initialSetup.sh (or .bat on Windows) to do the rest. This will copy the cm j ar to the specified target locations and
rebuild the war and ear files.

Tailoring AppViewer

AppViewer resides in the $SPLEBASE/ spl app/ appl i cati ons directory. Implementers can add an option to view
>Customer Modification sources, tables and columns, and scripts.

Implementers should put the Customer Modification sources in the $SPLEBASE/ spl app/ appl i cat i ons/ appVi ewer /
dat a/ sour ce/ CMdirectory and Customer Modification scripts into the $SPLEBASE/ spl app/ appl i cati ons/ appVi ewer /
dat a/ xm / CMdirectory.

The CM directories are preserved by the upgrade utility.

Data dictionary information and Java source information can be generated for a Customer Modification implementation
by a utility provided by the SDK. Since it can be regenerated at any time, however, this information is not preserved by
the upgrade process. For more information, refer to the "Defining Background Processes (addendum)" topic in the Oracle
Enterprise Taxation Management User Guide.

The AppViewer directory may be deployed in a war file format (appVi ewer . war) in the $SPLEBASE/ spl app/
appl i cati ons directory. Use the provided SDK utilities to incorporate your Customer Modification directories into an
appVi ewer . war file.

Tailoring Help

Help files are defined for different languages. The directory for Help files is $SPLEBASE/ spl app/ appl i cati ons/ hel p.
Each language needs a separate directory underneath this directory (e.g., / ENG, / FRA, etc.), and each language directory
can have a / CMsubdirectory. Implementers should place their custom Help materials in the CM directory in the appropriate
language folder (e.g., $SPLEBASE/ spl app/ appl i cati ons/ hel p/ ENG CM) . .

The CM directories are preserved by the upgrade utility.

Help directories may be deployed in war file format (help.war) under the $SPLEBASE/ spl app/ appl i cat i ons directory.
Use utilities provided by the SDK Tool Suite to incorporate your CM directories into a hel p. war file.

Positioning Custom Scripts

Customers and implementers may put their scripts under the directory $SPLEBASE/ scri pts/ cm

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 266

Replacing the Oracle Utilities Logo

Customers may want to replace the Oracle Utilities logo image on the Main menu with another logo image. To do this,
put the logo <customer logo file>.gif file into the directory $SPLEBASE/ et c/ conf/ r oot / cmand create a new "External"
Navigation Key called CM_logol mage.

To replace the logo, run the Oracle Utilities application from the browser with the parameters:

http://<host nane>: <port>/cis.jsp?utilities=true& ool s=true

From the Admin menu, select Navigation Key. Add the above Navigation Key with its corresponding URL Override path.
The syntax for the URL path is:

For Windows:

http://<host name>: <port>/cni <customer_| ogo file>. gif

For UNIX:

http://<host name>: <port>/spl/cnm <customer_| ogo file>. gif

The root directory may be deployed in war file format for the runtime environment (SPLApp. war). Use the provided utilities
to incorporate your cmdirectory into the SPLApp. war file.

Using the Implementation Version File

Implementers may keep the implementation version number in the CWERSI ON. t xt file in the $SPLEBASE/ et ¢ directory.
This file is preserved by the install utility.

Tailoring XAl

XAI schemas reside in the directory $SPLEBASE/ spl app/ xai / schenas.

Implementers may develop their own XAI schemas and keep them in this directory using the naming convention cnt .

Tailoring XML Schema

NOTE: This implementation option is applicable for Oracle Enterprise Taxation Management application only.

Implementers may generate their own XML schemas and store them in the directory $SPLEBASE/ spl app/ xm Met al nf o.
The implementation schemas must use the naming convention CM_* . xni .

Tailoring Templates and User Exits

The templates delivered under the folder $SPLEBASE/ t enpl at es can be overridden by the Application by creating a copy
of the template file with the same name but prefixed by "cm.". The cm copy will be customized.

Since the templates can contain user exits (special statements that allow to import external files during the template
processing). Those user exits can be overridden by creating a copy of the user exit file with the same name but prefixed by
"cm_". The cm copy will be customized.

Oracle Utilities Application Framework Software Development Kit Developer's Guide « 267

	Contents
	Oracle Utilities Software Development Kit
	User Guide
	Overview
	Converted COBOL Programs
	Development Environment
	Overview
	The App Server is the Development Environment
	Development App Server is Local, Not Shared
	Repository for Project

	Components of the Software Development Kit
	Project Development Database
	Project Repository
	Development Workstation

	Directory Structure
	The App Server Directory
	Standard App Server Directory Structure
	Additional Directories for Development
	Java
	Project Configuration Information

	Pertinent Directories in the App Server
	Client Directory
	The Software Development Kit Client
	Project Directories
	Shortcuts Directory

	Synchronizing with the Project Repository
	Versions
	Version Number
	Compatibility with Products
	Updates
	Moving Up to a New Update
	Moving Up to a New Version of a Product

	Product Single Fixes

	Build Server
	Tailoring Your Oracle Utilities Application Implementation
	Preserving Customer Changes
	Tailoring Web Files
	Tailoring the CM Java Application
	Tailoring AppViewer
	Tailoring Help
	Positioning Custom Scripts
	Replacing the Oracle Utilities Logo
	Using the Implementation Version File
	Tailoring XAI
	Tailoring XML Schema
	Tailoring Templates and User Exits

	JUnit testing
	Standard test cases
	Testing Searches
	Testing Maintenance Classes
	Testing Add on Maintenance Class
	Testing Change on Maintenance Class
	Testing Delete on Maintenance Class
	Test default actions on Maintenance Class

	Testing Entity Page Maintenance Classes
	Testing Add on Entity Page Maintenance Class
	Testing Change on Entity Page Maintenance Class
	The Comparisons
	Test default actions on Entity Page Maintenance Class

	Testing Business Entity Validation
	Test handleChange / handleAdd / etc code
	Testing for Warnings
	Maintenance Classes
	Entity tests

	Technical Background
	Technology Overview
	Portability
	Distribution

	OUAF Web Services
	SPL Service XML Metainfo Files
	Example using Page Service
	Example Using Search Service

	Server Architecture Overview
	Client Architecture Overview
	Introduction
	Client Architecture Discussion

	SPL Client API
	Overview
	Client API Discussion
	JavaScript Invocation Context
	Data Representation and Localization
	Core JavaScript Classes
	CisModel
	Data representation
	Navigation
	CisModel Instance Variables
	Static methods
	CisModel Instance Methods

	DataElement
	DataElement Instance Variables
	DataElement Instance Methods

	List
	List Instance Variables
	List Instance Methods

	Free Functions
	top.js
	cis.js

	Meta-data Overview
	Generated Tab Menu Meta-data
	Generated UI Program Component Meta-data
	Menu and Navigation Meta-data
	Table-Related Meta-data
	Maintenance Object Meta-data
	Defining Generator Tools Meta-data
	Setting up Fields
	Fields - Main
	Fields - Tables Using Field

	Setting up Foreign Key References
	FK References

	Setting up Lookup Tables
	Lookup Tables

	Setting up Navigation Options
	Navigation Option - Main

	Setting up Services
	Services

	Setting up Tables
	Tables - Main
	Tables - Fields
	Tables - Constraints
	Tables - Referred by Constraints

	Setting up Menus
	Menus - Main
	Menus - Menu Lines

	Setting up Maintenance Objects
	Maintenance Objects - Main
	Maintenance Objects - Options
	Maintenance Objects - Algorithms
	Maintenance Object - Maintenance Object Tree

	Development Process
	Hooking into User Exits
	Hooking into UI Javascript User Exits
	Hooking into Java User Exits (interceptors)

	Extending Business Entities
	Extending the Business Interface
	Extending the Specialization Interface
	Creating New Business Entities
	Specifying the Business Interface
	Specifying the Specialization Interface

	Extending Maintenance Classes
	Maintenance extensions

	Creating Business Components
	Plugging in Algorithms
	Creating Portals and Zones
	Creating Background Processes
	Testing Background Processes

	Creating MOs and Maintenance Transactions
	Building the Application Viewer
	Creating Javadocs for CM Source Code
	Generate CM Javadocs
	Recreate the Javadoc Indices

	Cookbook
	Hooking into User Exits
	Hooking into Maintenance Class User Exits
	Maintenance extensions
	Developing Maintenance Extensions

	Hooking into UI Javascript User Exits
	Miscellaneous How-To's
	How Do I Control the Initial Focus Within Tab Pages/Grids/Search Pages?
	How Do I Mark Fields that Won't Make the Model Dirty?
	How Do I Control the Triggering of Defaults After a Search?
	How Do I Avoid Automatically Setting Fields to Uppercase?
	How Can I Force the Save Button to be Enabled?
	How Can I Override the Processing After a Change/Add?
	How Do I Prevent the System from Setting Focus to a Widget After an Error?
	How Do I Prevent Attributes From Being Copied into New List Elements?
	How Do I Customize New List Elements?
	How Can I Get My Sequence Numbers to Default Properly on My List Grid?
	How Do I Override the Tab Page Shown After an Error in a List (Grid/Scroll)?
	How Do I Disregard Unwanted Criteria from a Search Triggered by a Search Button?
	How Do I Disregard Unwanted Search Result Columns?
	How Do I Format a Value Based on a Given Format?

	Hooking into Java User Exits (interceptors)
	Example

	Maintaining General-Purpose Maintenance Classes
	Maintaining MOs
	Maintaining Maintenance Classes for MOs
	List Maintenance Classes
	Maintenance List Filters
	List Maintenance Get More

	Maintaining Maintenance Objects

	Maintaining Database Meta-data
	Maintaining Fields
	Maintaining Tables

	Maintaining Java Classes
	Maintaining Business Entities
	Business Entity Background
	How Do I Create a New Business Entity Instance?
	How Do I Change Values on an Existing Business Entity Instance?
	How Do I Delete a Business Entity Instance?

	Persistent Classes
	Creating the Implementation Class
	Developing Change Handlers
	Creating the Change Handler Class
	Testing the Change Handler Class
	Validation Rules
	The Rules
	Custom Rules
	Conditions

	Change Handler Helpers for Maintenance Objects
	BO-Based MO
	Standard MO Log Table
	Standard MO Log Parameter Table
	Additional Validations

	Maintaining Business Components
	Creating Business Components
	Component Replacement
	Calling Components

	Maintaining Maintenance Classes, including collections

	Maintaining Services
	Maintaining Foreign Key References
	Maintaining Lookup Tables
	Maintaining Navigation Keys
	Maintaining Navigation Options
	Maintaining User Interfaces
	Maintaining Menus
	Maintaining Application Security
	Maintaining UI Components (Translation)
	Flushing Server and Client Caches
	User Language
	Modifying Dialog Titles
	Modifying Transaction Titles and Tab Labels
	Modifying Field Labels on Pages
	Modifying Button Labels
	Modifying Messages

	Plugging in Algorithms
	Creating Algorithm Spot Implementation Class
	Review Algorithm Spot Definition
	Create Algorithm Component Implementation

	Add Algorithm Type
	Add Algorithm
	Create References to New Algorithm

	Maintaining Portals and Zones
	Implementing Custom Zones
	Key Dependence
	Creating a New Zone
	Zone Types
	Zone Type Interfaces
	Service Zone Type

	Zone Metadata

	Debugging
	Simple Example: LinkValueGrid
	XSLT File (/WEB-INF/xsl/linkValueGrid.xsl)
	XML Meta Info

	Another Example: accountFinancialHistory
	XSLT File (/WEB-INF/xsl/accountFinancialHistory.xsl)
	XML Metainfo

	The Service Data Buffer
	XSLT Debugging
	HTML Standards

	Maintaining Background Processes
	Maintaining Background Processes Overview
	Creating a BatchJob
	The BatchJob Annotation
	Creating JobWork
	Declaring a ThreadWorker Class

	Creating a ThreadWorker
	Initializing ThreadWork
	Executing a WorkUnit
	Finalizing ThreadWork
	Choosing a ThreadExecutionStrategy

	Building the Application Viewer
	Creating Table XMLs
	Creating MO XMLs
	Creating Algorithm XMLs
	Extending Service XMLs
	Creating Javadocs for CM Source Code

	Upgrade JSP to XSLT
	Create User Exit Files
	Tree User Exit Changes
	Change Template Code in Program Components
	Create XML File with UI Meta-data
	Delete the JSP Files
	Log into the Application and Test

	Utilities
	Environment Batch Programs
	displayEnvironment.bat
	switchEnvironments.bat
	createNewEnv.bat

	Services
	Batch Program setupSvcXMLPrompted.bat
	Batch Program updateXMLMetaInfo.bat

	Eclipse Tools/Wizards
	Batch Program startEclipse.cmd
	Annotation Editor
	Project database information
	Maintenance Object wizard

	Upgrade JSP to XSLT
	Batch Program convertTreePageExits.pl
	convertTreePageExits Purpose
	convertTreePageExits Description
	convertTreePageExits Usage

	Batch Program convertSubPanelExits.pl
	convertSubPanelExits Purpose
	convertSubPanelExits Description
	convertSubPanelExits Usage

	SQL Script changeTemplateCodesTTRAndPN.pl
	changeTemplateCodesTTRAndPN Purpose
	changeTemplateCodesTTRAndPN Description

	Javadocs
	Batch Program generateJavadoc.bat
	Batch Program reindexJavadoc.bat

	Developer Guide
	Overview
	Java Annotations
	Public API
	SQL Return Codes
	Standard Business Methods
	Business Entity Public Methods
	Public Methods
	Protected Methods
	Data Transfer Object Methods
	Id Methods

	Maintenance Class Public Methods
	UI Javascript User Exits
	Client User Exit Flow
	Read Page
	Delete Page
	Save Page
	Refresh Page
	Prepare Model for Add
	Update Field

	External User Exit Templates
	Template Structure
	Design Approach
	Using the External User Exit Templates

	Create an External User Exit
	Find the Name of the JSP File
	Determine the Base User Exit
	Uncomment the Function and Add Code
	Test Your Code

	Field-level Security Client-Side User Exit Example
	How-To
	How Do I Control the Initial Focus Within Tab Pages/Grids/Search Pages?
	How Do I Mark Fields that Won't Make the Model Dirty?
	How Do I Control the Triggering of Defaults After a Search?
	How Do I Avoid Automatically Setting Fields to Uppercase?
	How Can I Force the Save Button to be Enabled?
	How Can I Override the Processing After a Change/Add?
	How Do I Prevent the System from Setting Focus to a Widget After an Error?
	How Do I Prevent Attributes from Being Copied into New List Elements?
	How Do I Customize New List Elements?
	How Can I Get My Sequence Numbers to Default Properly on My List Grid?
	How Do I Override the Tab Page Shown After an Error in a List (Grid/Scroll)?
	How Do I Disregard Unwanted Criteria from a Search Triggered by a Search Button?
	How Do I Disregard Unwanted Search Result Columns?
	How Do I Format a Value Based on a Given Format?

	Java User Exits (interceptors) Interfaces and Classes
	IAddInterceptor Interface
	PageBody aboutToAdd(RequestContext, PageBody)
	void afterAdd(RequestContext, PageBody)

	IChangeInterceptor Interface
	PageBody aboutToChange(RequestContext, PageBody)
	void afterChange(RequestContext, PageBody)

	IDeleteInterceptor Interface
	boolean aboutToDelete(RequestContext, PageBody)
	void afterDelete(RequestContext, PageBody)

	IReadInterceptor Interface
	PageBody aboutToRead(RequestContext, PageHeader)
	void afterRead(RequestContext, PageBody)

	InterceptorError class
	void setMessageNumber(BigInteger messageNumber)
	void setMessageCategory(BigInteger messageCategory)
	void setMessageParameters(List messageParameters)
	void setMessageParameterTypeFlags(List messageParameterTypeFlags)

	InterceptorWarning class
	InterceptorWarning(ServerMessage warningMessage)
	InterceptorWarning(List warningMessages)
	void addWarningMessage(ServerMessage message)

	RequestContext Methods
	String getLanguageCode()
	String getUserId()

	Data Objects
	PageHeader and PageBody Methods
	Object get(String fieldName)
	String getString(String fieldName)
	boolean getBoolean(String fieldName)
	BigInteger getBigInteger(String fieldName)
	void put(String fieldName, Object value)

	PageHeader
	PageBody
	ItemList getList(String name)

	ItemList
	ListHeader getHeader()
	String getName()
	List getList()
	void setList(List list)

	ListHeader
	ListBody
	String getActionFlag()

	CMServiceConfig.xml structure

	Application Logs
	Logging within Business Logic
	Configuring Logging at Runtime
	Property Configuration
	Trace Flags

	Java Programming Standards
	Rationale
	Guidelines
	Naming Standards
	General guidelines
	Entity Naming Guidelines
	Collection Naming Guidelines
	Class Name
	Collection Name

	Lookup Naming Guidelines
	Special Cases
	'Type' Entity Controlling Characteristics for 'Instance' Entities - Characteristic Controls

	HQL Programming Standards
	Examples
	Union queries
	Performance
	Raw SQL

	SQL Programming Standards
	Composing SQL Statements
	Prerequisite
	Composing a SELECT Statement
	General SELECT Statement Considerations
	Selection List
	Database-specific Features
	Oracle

	FROM Clause
	WHERE Clause
	General WHERE Clause Considerations
	Use of Sub-Selects
	Use of in Function
	Use of Database Functions
	Other

	Sort Order
	Grouping

	Existence Checks
	SQL statements to avoid
	Decimal Delimiter

	Testing SQL Statements
	Result Data
	Performance Testing - Oracle Only
	Overview
	What is an Explain Plan?
	Generate the SQL's Explain Plan
	Analyzing the Explain Plan
	Access Methods
	Common Issues to Be Aware of
	Cartesian Product
	Full Table Scan
	Join Order
	Nested Loops
	Sort

	More Extensive Performance Testing
	SQL Development and Tuning Best Practices

	Database Design
	Database Object Standard
	Naming Standards
	Table
	Columns
	Indexes
	Sequence
	Trigger

	Column Data Type and Constraints
	User Define Code
	System Assigned Identifier
	Date/Time/Timestamp
	Number
	Fixed Length/Variable Length Character Columns
	Null Constraints
	Default Value Setting
	Foreign Key Constraints

	Standard Columns
	Owner Flag
	Version

	System Table Guide
	What are system tables?
	Why the standard must be observed?
	Guidelines for System Table Updates
	Business Configuration Tables
	Application Security and User Profile
	Currency Code
	DB Process
	Display Profile
	Installation Options
	Language Code
	To do priority and Role

	Development and Implementation System Tables
	Standards
	Algorithm Type
	Algorithm
	Application Security
	Batch Control
	Business Object
	Business Service
	Characteristics
	Data Area
	Display Icon
	Foreign Key Reference
	Lookup
	Map
	Messages
	Meta data - Table and Field
	Meta data - Constraints
	Meta data - Menu
	Meta data - Program, Location and Services
	Meta data - Maintenance Object
	Meta data - Work Tables
	Meta data - Search Object
	Navigation Option
	Portal and Zone
	Sequence
	Schema
	Script
	To do Type
	XAI configuration
	XAI Services

	Oracle Utilities Application Framework only Tables

	System Table List

	Key Generation
	Metadata for Key Generation

	Extending the Application Viewer
	Building Source Code Viewer Extension Information

	Development Performance Guidelines
	Object-Relational Mapping: Background
	The ORM defers database calls for performance
	ID Objects
	Counting a collection
	Avoid unnecessary work
	ORM 'Navigation' is your friend
	How to Pre-load Entities Using Fetch
	Session Cache
	Level 2 Cache Applicable for Batch
	Flushing - COBOL and Save Points

	Avoid Extra SQL
	Prepared statement - use binding
	Service Script vs. Java Services
	Java Performance Patterns
	Batch Performance
	Commit Considerations
	Clustered vs. Distributed Mode Performance: Clustered is Preferred

	Light Business Objects
	Data Explorer
	Zone Configuration
	Table Indices and SQL

	UI Maps and BPAs
	Diagnosing Performance Issues
	Fiddler
	OUAF 'Show Trace' button
	Log Service times in spl_​service.log

	Optimization and Performance Profiling
	Basic Logging
	Timing code ('shootout'):
	Using PerformanceTestResult helpers
	Profiling
	PerformanceTestHelper API

	References and Additional Resources

	Packaging Guide
	CM Packaging Utilities Cookbook
	App Server CM Packaging Overview
	Developing Off-site
	Off-site Process
	On-site Process

	Guidelines

	App Server CM Packaging Tools
	Post Install Setup
	Using the extractCMSource.plx Utility
	Display Usage
	Extract From an App Server
	Extract From Release/Patch Install Package
	FW Utility to extract CM sources from Unix environments

	Using the applyCM Utility
	Using the create_​CM_​Release Utility
	Using the create_​CM_​Patch Utility
	Multi-CM Application Functionality

	CM System Data Packaging Tools
	CM System Data Packaging Overview
	Extract Process
	Upload Process

	Tailoring Your Oracle Utilities Application Implementation
	Preserving Customer Changes
	Tailoring Web Files
	Tailoring the CM Java Application
	Tailoring AppViewer
	Tailoring Help
	Positioning Custom Scripts
	Replacing the Oracle Utilities Logo
	Using the Implementation Version File
	Tailoring XAI
	Tailoring XML Schema
	Tailoring Templates and User Exits

