
 

Oracle® Retail Merchandising Foundation Cloud 
Service/Merchandising System
Operations Guide Volume 2 - Message Publication and 
Subscription Designs 

Release 19.0 

F25654-05

May 2020



Oracle® Retail Merchandising Foundation Cloud Service/Merchandising System Operations Guide Volume 
2 - Message Publication and Subscription Designs, Release 19.0 

F25654-05

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Primary Author:  

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services, except as set forth in an applicable agreement between you and 
Oracle.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed 
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to 
Oracle. Depending upon your product and its version number, the VAR applications may include: 

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation 
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data 
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland, 
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and 
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose, 
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications. 
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or 
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR 
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades, 



enhancements, customizations or modifications of all or any portion of the VAR Applications including all 
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations 
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You 
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential 
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt, 
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the 
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional 
equivalent software, any of the VAR Applications in future releases of the applicable program.





v 

Contents

Send Us Your Comments .......................................................................................................................   xlv

Preface .............................................................................................................................................................   xlvii

Audience...................................................................................................................................................    xlvii
Documentation Accessibility .................................................................................................................    xlvii
Related Documents .................................................................................................................................    xlvii
Customer Support ..................................................................................................................................     xlviii
Improved Process for Oracle Retail Documentation Corrections ...................................................     xlviii
Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com) ..................................    xlix
Conventions ..............................................................................................................................................    xlix

1 Introduction

Message Publication and Subscription Designs................................................................................   1-1
External Subscription RIB Application Programming Interface.................................................   1-1
Parallel processing for Performance Purpose ...............................................................................   1-1

Subscription APIs........................................................................................................................   1-1
Publishing APIs...........................................................................................................................   1-1

Web Service Provider Implementations API Designs ......................................................................   1-2

2 RIB Publication Designs

Allocations Publication API...................................................................................................................   2-1
Functional Area ..................................................................................................................................   2-1
Business Overview.............................................................................................................................   2-1
Package Impact...................................................................................................................................   2-2

Business Object ID ......................................................................................................................   2-2
Create Header..............................................................................................................................   2-2
Modify Header ............................................................................................................................   2-2
Create Detail ................................................................................................................................   2-3
Modify Detail...............................................................................................................................   2-3
Approve........................................................................................................................................   2-3
Close..............................................................................................................................................   2-3
Delete ............................................................................................................................................   2-4
Package Name: RMSMFM_ALLOC.........................................................................................   2-4

Package Specification - Global Variables .........................................................................   2-4
Functional Level Description - ADDTOQ........................................................................   2-4



vi

Functional Level Description - GETNXT .........................................................................   2-5
Function Level Description - PUB_RETRY ......................................................................   2-5
Function Level Description - PROCESS_QUEUE_RECORD (local) ............................   2-5
Function Level Description - MAKE_CREATE (local)...................................................   2-6
Function Level Description - BUILD_HEADER_OBJECT (local).................................   2-7
Function Level Description - BUILD_DETAIL_OBJECTS (local) .................................   2-7
Function Level Description - BUILD_SINGLE_DETAIL (local) ...................................   2-8
Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local).............   2-8
Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)................   2-8
Function Level Description - LOCK_THE_BLOCK (local)............................................   2-8
Function Level Description - HANDLE_ERRORS (local)..............................................   2-8
Function Level Description - DELETE_QUEUE_REC (local) .......................................   2-8
Function Level Description - GET_ROUTING_TO_LOCS (local)................................   2-9
Function Level Description - GET_NOT_BEFORE_DAYS (local)................................   2-9
Function Level Description - GET_RETAIL (local).........................................................   2-9
Function Level Description - CHECK_STATUS (local) .................................................   2-9

Trigger Impact ....................................................................................................................................   2-9
Message XSD....................................................................................................................................    2-10
Design Assumptions.......................................................................................................................    2-10
Table Impact ....................................................................................................................................    2-10

ASNOUT Publication API...................................................................................................................    2-10
Functional Area ...............................................................................................................................    2-11
Business Overview..........................................................................................................................    2-11

On-line Shipping/Receiving ..................................................................................................    2-11
Franchise Order Shipment and Return.................................................................................    2-12

Package Impact................................................................................................................................    2-12
Business Object ID ...................................................................................................................    2-12
Package name: RMSMFM_SHIPMENT................................................................................    2-12
Function Level Description - GETNXT.................................................................................    2-12
Function Level Description - PUB_RETRY ..........................................................................    2-13
Function Level Description - PROCESS_QUEUE_RECORD (local) ................................    2-13
Function Level Description - BUILD_HEADER_OBJECT (local) .....................................    2-14
Function Level Description - BUILD_DETAIL_OBJECTS (local) .....................................    2-14
Function Level Description - LOCK_THE_BLOCK (local)................................................    2-15
Function Level Description - HANDLE_ERRORS (local)..................................................    2-15
Function Level Description - UPDATE_QUEUE_REC (local) ..........................................    2-15

Trigger Impact .................................................................................................................................    2-15
Message XSD....................................................................................................................................    2-15
Design Assumptions.......................................................................................................................    2-15
Table Impact ....................................................................................................................................    2-16

Available Inventory for Store Publication API ...............................................................................    2-16
Functional Area ...............................................................................................................................    2-16
Business Overview..........................................................................................................................    2-16
Package Impact................................................................................................................................    2-16

Function Level Description - ADDTOQ ...............................................................................    2-17
Function Level Description - GETNXT........................................................................................    2-17
Function Level Description - PUB_RETRY .................................................................................    2-17



vii 

Function Level Description - PROCESS_QUEUE_RECORD (local)........................................    2-17
Function Level Description - HANDLE_ERRORS (local) .........................................................    2-17
Message XSD....................................................................................................................................    2-18
Table Impact.....................................................................................................................................    2-18
Design Assumptions.......................................................................................................................    2-18

Available Inventory for WH Publication API .................................................................................    2-18
Functional Area ...............................................................................................................................    2-18
Business Overview..........................................................................................................................    2-18
Package Impact................................................................................................................................    2-19

Function Level Description - ADDTOQ ...............................................................................    2-19
Function Level Description - GETNXT........................................................................................    2-19
Function Level Description - PUB_RETRY .................................................................................    2-19
Function Level Description - PROCESS_QUEUE_RECORD (local)........................................    2-20
Function Level Description - HANDLE_ERRORS (local) .........................................................    2-20
Message XSD....................................................................................................................................    2-20
Table Impact.....................................................................................................................................    2-20
Design Assumptions.......................................................................................................................    2-20

Banner Publication API........................................................................................................................    2-20
Functional Area ...............................................................................................................................    2-21
Business Overview..........................................................................................................................    2-21
Package Impact................................................................................................................................    2-21

Create .........................................................................................................................................    2-21
Modify .......................................................................................................................................    2-22
Delete .........................................................................................................................................    2-22

Function Level Description - ADDTOQ........................................................................    2-22
Function Level Description - GETNXT..........................................................................    2-22
Function Level Description - PUB_RETRY ...................................................................    2-23

Trigger Impact .................................................................................................................................    2-23
Table Impact.....................................................................................................................................    2-24
Design Assumptions.......................................................................................................................    2-24

Company Closed Publication API .....................................................................................................    2-24
Functional Area ...............................................................................................................................    2-24
Package Impact................................................................................................................................    2-24

File name ...................................................................................................................................    2-24
Function Level Description - ADDTOQ ...............................................................................    2-24
Function Level Description - GETNXT.................................................................................    2-24
Function Level Description - PROCESS_QUEUE_RECORD (local) ................................    2-25

Design Assumptions.......................................................................................................................    2-25
Table Impact.....................................................................................................................................    2-25

Customer Order Fulfillment Confirmation Publication API .......................................................    2-25
Functional Area ...............................................................................................................................    2-25
Business Overview..........................................................................................................................    2-25
Package Impact................................................................................................................................    2-26

Business Object ID ...................................................................................................................    2-26
Function Level Description - ADDTOQ........................................................................    2-26
Function Level Description - GETNXT..........................................................................    2-26
Function Level Description - PUB_RETRY ...................................................................    2-27



viii

Function Level Description - PROCESS_QUEUE_RECORD (local) .........................    2-27
Function Level Description - BUILD_MSG_OBJECT (local) ......................................    2-28
Function Level Description - LOCK_THE_BLOCK (local).........................................    2-28
Function Level Description - HANDLE_ERRORS (local)...........................................    2-28

Trigger Impact .................................................................................................................................    2-28
Message XSD....................................................................................................................................    2-28
Design Assumptions.......................................................................................................................    2-28
Table Impact.....................................................................................................................................    2-29

Delivery Slot Publication API ............................................................................................................    2-29
Functional Area ...............................................................................................................................    2-29
Business Overview..........................................................................................................................    2-29
Package Impact................................................................................................................................    2-30

Create Delivery_Slot................................................................................................................    2-30
Update Delivery_Slot ..............................................................................................................    2-30
Delete Delivery_slot ................................................................................................................    2-30
Package Name: .........................................................................................................................    2-31
Spec File Name: ........................................................................................................................    2-31
Body File Name: .......................................................................................................................    2-31
Package Specification - Global Variables..............................................................................    2-31
Function Level Description - ADDTOQ ...............................................................................    2-31
Function Level Description - GETNXT.................................................................................    2-31
Function Level Description - PUB_RETRY ..........................................................................    2-32
Function Level Description - PROCESS_QUEUE_DLVY_SLT (local) .............................    2-32

Trigger Impact .................................................................................................................................    2-32
Message XSD....................................................................................................................................    2-32
Table Impact.....................................................................................................................................    2-33
Design Assumptions.......................................................................................................................    2-33

Differentiator Groups Publication API ............................................................................................    2-33
Functional Area ...............................................................................................................................    2-33
Business Overview..........................................................................................................................    2-33
Package Impact................................................................................................................................    2-33

Create Diff Group ....................................................................................................................    2-33
Modify Diff Group...................................................................................................................    2-34
Create Diff Group Detail.........................................................................................................    2-34
Modify Diff Group Detail .......................................................................................................    2-34
Delete Diff Group Detail .........................................................................................................    2-34
Delete Diff Group.....................................................................................................................    2-34
Function Level Description - GETNXT.................................................................................    2-35
Function Level Description – PUB_RETRY..........................................................................    2-36
Function Level Description – PROCESS_QUEUE_RECORD (local)................................    2-36
Function Level Description - HANDLE_ERRORS (local)..................................................    2-36

Trigger Impact .................................................................................................................................    2-36
Table Impact.....................................................................................................................................    2-37
Design Assumptions.......................................................................................................................    2-37

Differentiator ID Publication API .....................................................................................................    2-37
Functional Area ...............................................................................................................................    2-37
Business Overview..........................................................................................................................    2-37



ix 

Diff message processes............................................................................................................    2-37
Package Impact................................................................................................................................    2-38

Function Level Description - ADDTOQ ...............................................................................    2-38
Function Level Description - GETNXT.................................................................................    2-39
Function Level Description - PUB_RETRY ..........................................................................    2-39
Function Level Description - PROCESS_DIFFID_QUEUE (local)....................................    2-39

Trigger Impact .................................................................................................................................    2-39
Table Impact.....................................................................................................................................    2-40
Design Assumptions.......................................................................................................................    2-40

Item Publication API ............................................................................................................................    2-40
Functional Area ...............................................................................................................................    2-40
Business Overview..........................................................................................................................    2-40

Deposit items ............................................................................................................................    2-40
Catch-Weight Items .................................................................................................................    2-41
Receiving and inventory movement impact on catch-weight items................................    2-42
Item Transformation................................................................................................................    2-42
Item and Item Component Descriptions ..............................................................................    2-43
New Item Message Processes.................................................................................................    2-43
Basic Item Message ..................................................................................................................    2-44
New Item Message Publication .............................................................................................    2-44
Subordinate Data and XML Tags ..........................................................................................    2-44
Modify and Delete Messages .................................................................................................    2-44
Modify Messages .....................................................................................................................    2-45
Delete messages .......................................................................................................................    2-45
Design Overview ....................................................................................................................    2-45
Business Object Records..........................................................................................................    2-46

Package Impact................................................................................................................................    2-47
Business Object ID ...................................................................................................................    2-47
Package Specification - Global Variables..............................................................................    2-47
Function Level Description - ADDTOQ ...............................................................................    2-48
Function Level Description - GETNXT.................................................................................    2-48
Function Level Description - PUB_RETRY ..........................................................................    2-49
Function Level Description - PROCESS_QUEUE_RECORD (local) ................................    2-49
Function Level Description - MAKE_CREATE (local) .......................................................    2-50
Function Level Description - HANDLE_ERRORS (local)..................................................    2-51
Function Level Description - BUILD_MESSAGE................................................................    2-51
Function Level Description - BUILD_DELETE_MESSAGE ..............................................    2-52
Function Level Description - BUILD_HEADER_OBJECT (local) .....................................    2-52
Function Level Description - BUILD DETAIL functions (all local) ..................................    2-52
Function Level Description - GET_ITEM_INFO (local) .....................................................    2-54
Function Level Description - BUILD_DIMENSION_DESCRIPTIONS (local)................    2-54
Function Level Description - BUILD_ITEM_MASTER_CFA_EXT (local) ......................    2-54
Function Level Description - BUILD_ITEM_SUPPLIER_CFA_EXT (local) ....................    2-54
Function Level Description - BUILD_ITEM_SUPP_CTRY_CFA_EXT (local) ................    2-54

Trigger Impact .................................................................................................................................    2-54
Message XSD....................................................................................................................................    2-58
Table Impact.....................................................................................................................................    2-59



x

Design Assumptions.......................................................................................................................    2-60
Item Location Publication API ...........................................................................................................    2-60

Functional Area ...............................................................................................................................    2-60
Business Overview..........................................................................................................................    2-60
Package Impact................................................................................................................................    2-61

Function Level Description - ADDTOQ ...............................................................................    2-61
Function Level Description - GETNXT.................................................................................    2-61
Function Level Description - PUB_RETRY ..........................................................................    2-62
Function Level Description - PROCESS_QUEUE_RECORD (local) ................................    2-62
Function Level Description - BUILD_DETAIL_OBJECTS (local) .....................................    2-62
Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)....................    2-63
Function Level Description - HANDLE_ERRORS (local)..................................................    2-63
Function Level Description - BUILD_ITEM_LOC_CFA_EXT (local)...............................    2-63

Trigger Impact .................................................................................................................................    2-63
Message XSD....................................................................................................................................    2-64
Table Impact.....................................................................................................................................    2-64
Design Assumptions.......................................................................................................................    2-65

Merchandise Hierarchy Publication API..........................................................................................    2-65
Functional Area ...............................................................................................................................    2-65
Business Overview..........................................................................................................................    2-65
Package Impact................................................................................................................................    2-65

Business Object ID ...................................................................................................................    2-65
Function Level Description - ADDTOQ ...............................................................................    2-66
Function Level Description - GETNXT.................................................................................    2-66
Function Level Description - PUB_RETRY ..........................................................................    2-66
Function Level Description - PROCESS_QUEUE_RECORD (local) ................................    2-67
Function Level Description - HANDLE_ERRORS (local)..................................................    2-67
Function Level description - BUILD_DEPS_CFA_EXT......................................................    2-67
Function Level description - BUILD_CLASS_CFA_EXT ...................................................    2-67
Function Level description - BUILD_SUBCLASS_CFA_EXT ...........................................    2-67

Message XSD....................................................................................................................................    2-67
Design Assumptions.......................................................................................................................    2-68
Table Impact.....................................................................................................................................    2-68

Order Publication API..........................................................................................................................    2-69
Functional Area ...............................................................................................................................    2-69
Business Overview..........................................................................................................................    2-69

Creating of Purchase Orders ..................................................................................................    2-69
Purchase Order Messages.......................................................................................................    2-69
Order Message Processes........................................................................................................    2-69

Package Impact................................................................................................................................    2-70
Modify Pre-Approved.............................................................................................................    2-70
Approve.....................................................................................................................................    2-71
Modify in 'A' status..................................................................................................................    2-71
Redistribute...............................................................................................................................    2-71
Unapprove ................................................................................................................................    2-72
Modify .......................................................................................................................................    2-72
Close...........................................................................................................................................    2-72



xi 

Reinstate ....................................................................................................................................    2-72
Delete .........................................................................................................................................    2-73

Message XSD....................................................................................................................................    2-77
Design Assumptions.......................................................................................................................    2-78
Table Impact.....................................................................................................................................    2-78

Organization Hierarchy Publication API .........................................................................................    2-78
Functional Area ...............................................................................................................................    2-78
Business Overview..........................................................................................................................    2-78
Package Impact................................................................................................................................    2-78

Business Object ID ...................................................................................................................    2-78
Message XSD....................................................................................................................................    2-80
Design Assumptions.......................................................................................................................    2-81
Table Impact.....................................................................................................................................    2-81

Partner Publication API .......................................................................................................................    2-81
Functional Area ...............................................................................................................................    2-81
Business Overview..........................................................................................................................    2-81

External Finishers.....................................................................................................................    2-81
Package Impact................................................................................................................................    2-82

Function Level Description - ADDTOQ ...............................................................................    2-82
Function Level Description - PUB_RETRY ..........................................................................    2-82
Function Level Description - PROCESS_QUEUE_RECORD (local) ................................    2-82
Function Level Description - MAKE_CREATE (local) .......................................................    2-83
Function Level Description - BUILD_HEADER_OBJECT (local) .....................................    2-83
Function Level Description - BUILD_HEADER_OBJECT (local) .....................................    2-83
Function Level Description - BUILD_DETAIL_OBJECTS (local) ....................................    2-83
Function Level Description - BUILD_SINGLE_DETAIL (local) .......................................    2-83
Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local) .................    2-83
Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)....................    2-83
Function Level Description - LOCK_THE_BLOCK (local)................................................    2-83
Function Level Description - HANDLE_ERRORS (local)..................................................    2-84
Function Level Description - DELETE_QUEUE_REC (local)............................................    2-84
Function Level Description – BUILD_PARTNER_CFA_EXT (local) ...............................    2-84
Function Level Description - BUILD_ ADDR _CFA_EXT (local) .....................................    2-84

Message XSD....................................................................................................................................    2-84
Design Assumptions.......................................................................................................................    2-84
Table Impact.....................................................................................................................................    2-85

Receiver Unit Adjustment Publication API .....................................................................................    2-85
Functional Area ...............................................................................................................................    2-85
Business Overview..........................................................................................................................    2-85
Package Impact................................................................................................................................    2-85

Business object ID ....................................................................................................................    2-85
Package name ...........................................................................................................................    2-85

Trigger Impact .................................................................................................................................    2-87
Message XSD....................................................................................................................................    2-88
Design Assumptions.......................................................................................................................    2-88
Table Impact.....................................................................................................................................    2-88

RTV Request Publication API ............................................................................................................    2-88



xii

Functional Area ...............................................................................................................................    2-88
Business Overview..........................................................................................................................    2-88
Package Impact................................................................................................................................    2-89

Business Object ID ...................................................................................................................    2-89
Trigger Impact .................................................................................................................................    2-93
Message XSD....................................................................................................................................    2-94
Design Assumptions ......................................................................................................................    2-94
Table Impact ....................................................................................................................................    2-95

Season Phase Publication API ............................................................................................................    2-95
Functional Area ...............................................................................................................................    2-95
Business Overview..........................................................................................................................    2-95
Package Impact................................................................................................................................    2-95

Business Object ID ...................................................................................................................    2-95
Message XSD....................................................................................................................................    2-97
Design Assumptions.......................................................................................................................    2-97
Table Impact.....................................................................................................................................    2-97

Seed Data Publication API ..................................................................................................................    2-97
Functional Area ...............................................................................................................................    2-97
Business Overview..........................................................................................................................    2-97
Package Impact................................................................................................................................    2-98
Design Assumptions.......................................................................................................................    2-98
Table Impact.....................................................................................................................................    2-98

Seed Object Publication API...............................................................................................................    2-98
Functional Area ...............................................................................................................................    2-98
Business Overview..........................................................................................................................    2-98
Package Impact................................................................................................................................    2-99
Message XSD..................................................................................................................................    2-100
Table Impact...................................................................................................................................    2-100

Store Publication API .........................................................................................................................    2-100
Functional Area .............................................................................................................................    2-100
Business Overview........................................................................................................................    2-100
Package Impact..............................................................................................................................    2-100

Package Specification - Global Variables............................................................................    2-101
Public Type .............................................................................................................................    2-101
Function Level Description - ADDTOQ .............................................................................    2-101
Function Level Description - GETNXT...............................................................................    2-101
Function Level Description - PUB_RETRY ........................................................................    2-101
Function Level Description - PROCESS_QUEUE_RECORD (local) ..............................    2-102
Function Level Description - MAKE_CREATE (local) .....................................................    2-102
Function Level Description - BUILD_HEADER_OBJECT (local) ...................................    2-102
Function Level Description - BUILD_DETAIL_OBJECTS (local) ...................................    2-102
Function Level Description - BUILD_SINGLE_DETAIL (local) .....................................    2-102
Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local) ...............    2-102
Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)..................    2-102
Function Level Description - LOCK_THE_BLOCK (local)..............................................    2-102
Function Level Description - HANDLE_ERRORS (local)................................................    2-103
Function Level Description - BUILD_STORE_CFA_EXT (local) ....................................    2-103



xiii 

Function Level Description - BUILD_ ADDR _CFA_EXT (local) ...................................    2-103
Function Level Description - BUILD_STORE_HOURS_OBJECT (local) .......................    2-103

Message XSD..................................................................................................................................    2-103
Table Impact...................................................................................................................................    2-103
Design Assumptions.....................................................................................................................    2-104

Transfers Publication API..................................................................................................................    2-104
Functional Area .............................................................................................................................    2-104
Business Overview........................................................................................................................    2-104
Package Impact..............................................................................................................................    2-104

Business Object ID ................................................................................................................    2-105
Create Header.........................................................................................................................    2-105
Approve...................................................................................................................................    2-105
Modify Header .......................................................................................................................    2-105
Create Details..........................................................................................................................    2-105
Modify Details ........................................................................................................................    2-106
Delete Details..........................................................................................................................    2-106
Close.........................................................................................................................................    2-106
Delete .......................................................................................................................................    2-106

Trigger Impact ...............................................................................................................................    2-111
Message XSD..................................................................................................................................    2-111
Design Assumptions.....................................................................................................................    2-112
Table Impact...................................................................................................................................    2-112

UDA Publication API .........................................................................................................................    2-113
Functional Area .............................................................................................................................    2-113
Business Overview........................................................................................................................    2-113
Package Impact..............................................................................................................................    2-113
Design Assumptions.....................................................................................................................    2-114
Table Impact...................................................................................................................................    2-115

Vendor Publication API .....................................................................................................................    2-115
Functional Area .............................................................................................................................    2-115
Business Overview........................................................................................................................    2-115
Package Impact..............................................................................................................................    2-115

Function Level Description - ADDTOQ .............................................................................    2-115
Function Level Description - GETNXT...............................................................................    2-115
Function Level Description - PUB_RETRY ........................................................................    2-116
Function Level Description - CREATE_PREVIOUS (local) .............................................    2-116
Function Level Description - CLEAN_QUEUE (local).....................................................    2-116
Function Level Description - CAN_CREATE (local) ........................................................    2-116
Function Level Description - MAKE_CREATE (local) .....................................................    2-116
Function Level Description - DELETE_QUEUE_REC (local)..........................................    2-117
Function Level Description - CHECK_STATUS (local) ...................................................    2-117
Function Level Description - MAKE_CREATE_POU (local) ..........................................    2-117
Function Level Description - BUILD_SUPPLIER_CFA_EXT (local) ..............................    2-117
Function Level Description - MAKE_CREATE_CFA (local)...........................................    2-117
Function Level Description – PROCESS_QUEUE_RECORD (local)..............................    2-118

Message XSD..................................................................................................................................    2-118
Design Assumptions.....................................................................................................................    2-118



xiv

Table Impact...................................................................................................................................    2-118
Warehouse Publication API...............................................................................................................    2-119

Functional Area .............................................................................................................................    2-119
Business Overview........................................................................................................................    2-119
Package Impact..............................................................................................................................    2-119

Function Level Description - ADDTOQ .............................................................................    2-119
Function Level Description - GETNXT...............................................................................    2-119
Function Level Description - PUB_RETRY ........................................................................    2-120
Function Level Description - PROCESS_QUEUE_RECORD (local) ..............................    2-120
Function Level Description - DELETE_QUEUE_REC (local)..........................................    2-120
Function Level Description - MAKE_CREATE (local) .....................................................    2-120
Function Level Description - BUILD_HEADER_OBJECT (local) ...................................    2-120
Function Level Description - BUILD_HEADER_OBJECT (local) ...................................    2-120
Function Level Description - BUILD_DETAIL_OBJECTS (local) ...................................    2-120
Function Level Description - BUILD_SINGLE_DETAIL (local) .....................................    2-121
Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local) ...............    2-121
Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)..................    2-121
Function Level Description - LOCK_THE_BLOCK (local)..............................................    2-121
Function Level Description - HANDLE_ERRORS (local)................................................    2-121
Function Level Description - BUILD_WH_CFA_EXT (local)..........................................    2-121
Function Level Description - BUILD_ ADDR _CFA_EXT (local) ...................................    2-121

Message XSD..................................................................................................................................    2-121
Design Assumptions.....................................................................................................................    2-122
Table Impact...................................................................................................................................    2-122

Work Orders In Publication API ......................................................................................................    2-122
Functional Area .............................................................................................................................    2-122
Business Overview........................................................................................................................    2-122
Package Impact..............................................................................................................................    2-123

Business Object ID .................................................................................................................    2-123
Create .......................................................................................................................................    2-123
Modify .....................................................................................................................................    2-123
Delete .......................................................................................................................................    2-123

Trigger Impact ...............................................................................................................................    2-125
Message XSD..................................................................................................................................    2-126
Table Impact...................................................................................................................................    2-126
Design Assumptions.....................................................................................................................    2-126

Work Orders Out Publication API ...................................................................................................    2-126
Functional Area .............................................................................................................................    2-126
Business Overview .......................................................................................................................    2-126
Package Impact..............................................................................................................................    2-127

Business Object ID .................................................................................................................    2-127
Approve...................................................................................................................................    2-127
Delete .......................................................................................................................................    2-127
Unapproved............................................................................................................................    2-128

Trigger Impact ...............................................................................................................................    2-131
Message XSD..................................................................................................................................    2-132
Design Assumptions.....................................................................................................................    2-132



xv 

Table Impact...................................................................................................................................    2-132

3 RIB Subscription Designs

Allocation Subscription API ..................................................................................................................   3-1
Functional Area ..................................................................................................................................   3-1
Business Overview.............................................................................................................................   3-1
Package Impact...................................................................................................................................   3-2
Message XSD.......................................................................................................................................   3-6
Design Assumptions..........................................................................................................................   3-6
Table Impact........................................................................................................................................   3-6

Appointments Subscription API...........................................................................................................   3-7
Functional Area ..................................................................................................................................   3-7
Business Overview.............................................................................................................................   3-7

Appointment status ....................................................................................................................   3-7
Appointment processing............................................................................................................   3-8

Package Impact...................................................................................................................................   3-8
Message XSD....................................................................................................................................    3-10
Design Assumptions.......................................................................................................................    3-10
Table Impact.....................................................................................................................................    3-10

ASNIN Subscription API ....................................................................................................................    3-11
Functional Area ...............................................................................................................................    3-11
Business Overview..........................................................................................................................    3-11
Package Impact................................................................................................................................    3-12

Error Handling ........................................................................................................................    3-12
Private Internal Functions and Procedures..........................................................................    3-13
Validation..................................................................................................................................    3-13

Message XSD....................................................................................................................................    3-14
Design Assumptions.......................................................................................................................    3-14
Table Impact.....................................................................................................................................    3-14

ASNOUT Subscription API ................................................................................................................    3-14
Functional Area ...............................................................................................................................    3-14
Business Overview..........................................................................................................................    3-14

L10N Localization Decoupling Layer ...................................................................................    3-15
BOL Message Structure...........................................................................................................    3-15

Package Impact................................................................................................................................    3-16
Message XSD....................................................................................................................................    3-23
Design Assumptions.......................................................................................................................    3-23
Table Impact.....................................................................................................................................    3-23

COGS Subscription API .....................................................................................................................    3-25
Functional Area ...............................................................................................................................    3-25
Business Overview..........................................................................................................................    3-25
Package Impact................................................................................................................................    3-25

Business Validation Mode ......................................................................................................    3-26
DML Module ............................................................................................................................    3-26

Message XSD....................................................................................................................................    3-26
Design Assumptions.......................................................................................................................    3-26
Table Impact.....................................................................................................................................    3-26



xvi

Cost Change Subscription API ...........................................................................................................    3-26
Functional Area ...............................................................................................................................    3-26
Design Overview.............................................................................................................................    3-27

Consume Module.....................................................................................................................    3-27
Business Validation Module...................................................................................................    3-28
Cost Change Modify................................................................................................................    3-28
POPULATING RECORD........................................................................................................    3-29

Bulk or Single DML Module..........................................................................................................    3-29
Cost Change..............................................................................................................................    3-29

Message XSD....................................................................................................................................    3-29
Design Assumptions.......................................................................................................................    3-30
Table Impact.....................................................................................................................................    3-30

Currency Exchange Rates Subscription API ...................................................................................    3-30
Functional Area ...............................................................................................................................    3-30
Business Overview..........................................................................................................................    3-31

Data Flow ..................................................................................................................................    3-31
Message Structure....................................................................................................................    3-31

Package Impact................................................................................................................................    3-31
Message XSD....................................................................................................................................    3-33
Design Assumptions.......................................................................................................................    3-33
Table Impact.....................................................................................................................................    3-33

Customer Order Fulfillment Subscription API...............................................................................    3-34
Functional Area ...............................................................................................................................    3-34
Business Overview .........................................................................................................................    3-34
 Message XSD...................................................................................................................................    3-37
Design Assumptions.......................................................................................................................    3-37

Diff Group Subscription API..............................................................................................................    3-37
Functional Area ...............................................................................................................................    3-37
Design Overview.............................................................................................................................    3-37

Differentiators...........................................................................................................................    3-38
Package Impact................................................................................................................................    3-38

Business Validation Module...................................................................................................    3-39
Message XSD....................................................................................................................................    3-40
Design Assumptions.......................................................................................................................    3-41
Table Impact.....................................................................................................................................    3-41

Diff ID Subscription API.....................................................................................................................    3-41
Functional Area ...............................................................................................................................    3-41
Design Overview.............................................................................................................................    3-41
Package Impact................................................................................................................................    3-41

Business Validation Module...................................................................................................    3-42
Message XSD....................................................................................................................................    3-43
Design Assumptions.......................................................................................................................    3-43
Table Impact.....................................................................................................................................    3-43

Direct Ship Receipt Subscription API ..............................................................................................    3-43
Functional Area ...............................................................................................................................    3-44
Business Overview..........................................................................................................................    3-44
Package Impact................................................................................................................................    3-44



xvii 

Message XSD....................................................................................................................................    3-45
Design Assumptions.......................................................................................................................    3-45
Table Impact.....................................................................................................................................    3-45

DSD Deals Subscription API .............................................................................................................    3-45
Functional Area ...............................................................................................................................    3-45
Business Overview..........................................................................................................................    3-45
Package Impact................................................................................................................................    3-46

Public API Procedures:............................................................................................................    3-46
Private Internal Functions and Procedures (rmssub_dsddealss/b.pls)..................................    3-46

RMSSUB_DSDDEALS.COMPLETE_TRANSACTION......................................................    3-47
RMSSUB_DSDDEALS.HANDLE_ERRORS ........................................................................    3-47

Message XSD....................................................................................................................................    3-47
Design Assumptions.......................................................................................................................    3-47
Table Impact.....................................................................................................................................    3-47

DSD Receipt Subscription API ..........................................................................................................    3-48
Functional Area ...............................................................................................................................    3-48
Business Overview..........................................................................................................................    3-48
Package Impact................................................................................................................................    3-48
Message XSD....................................................................................................................................    3-49
Design Assumptions.......................................................................................................................    3-49
Table Impact.....................................................................................................................................    3-49

Freight Terms Subscription API .........................................................................................................    3-50
Functional Area ...............................................................................................................................    3-50
Business Overview..........................................................................................................................    3-50

Message Structure....................................................................................................................    3-50
Package Impact................................................................................................................................    3-50

Public API Procedures.............................................................................................................    3-50
Private Internal Functions and Procedures (rmssub_frttermcre.pls): ..............................    3-50
Private Internal Functions and Procedures (rmssub_fterm.pls): ......................................    3-51
Main Consume Function.........................................................................................................    3-51
XML Parsing .............................................................................................................................    3-51
Validation..................................................................................................................................    3-51

Message XSD....................................................................................................................................    3-51
Design Assumptions.......................................................................................................................    3-52
Table Impact.....................................................................................................................................    3-52

GL Chart of Accounts Subscription API...........................................................................................    3-52
Functional Area ...............................................................................................................................    3-52
Business Overview..........................................................................................................................    3-52
Package Impact................................................................................................................................    3-52

Public API Procedures:............................................................................................................    3-53
Private Internal Functions and Procedures (rmssub_glcoacreb.pls): ...............................    3-53
Private Internal Functions and Procedures (other):............................................................    3-53
XML Parsing: ............................................................................................................................    3-54
Validation..................................................................................................................................    3-54

Message XSD....................................................................................................................................    3-54
Design Assumptions.......................................................................................................................    3-55
Table Impact.....................................................................................................................................    3-55



xviii

GL Chart of Account Validation Service...........................................................................................    3-55
Functional Area ...............................................................................................................................    3-55
Overview ..........................................................................................................................................    3-55

Inventory Adjustment Subscription API .........................................................................................    3-55
Functional Area ...............................................................................................................................    3-55
Business Overview..........................................................................................................................    3-56

Inventory Quantity and Status Evaluation ..........................................................................    3-56
Stock Adjustment Transaction Codes ...................................................................................    3-56
L10N Localization Decoupling Layer ...................................................................................    3-56

Package Impact................................................................................................................................    3-57
Message XSD....................................................................................................................................    3-58
Design Assumptions.......................................................................................................................    3-59
Table Impact.....................................................................................................................................    3-59

Inventory Request Subscription API ...............................................................................................    3-59
Functional Area ...............................................................................................................................    3-59
Business Overview..........................................................................................................................    3-59
Package Impact................................................................................................................................    3-60
Message XSD....................................................................................................................................    3-61
Design Assumptions.......................................................................................................................    3-61
Table Impact.....................................................................................................................................    3-61

Item Subscription API..........................................................................................................................    3-62
Functional Area ...............................................................................................................................    3-62
Design Overview.............................................................................................................................    3-62

L10N Localization Decoupling Layer: ..................................................................................    3-63
Import Brazil-specific Fiscal Item Attributes to the Flex Attributes Extension Table (ITEM_
COUNTRY_L10N_EXT):   3-63

Package Impact................................................................................................................................    3-64
Consume Module.....................................................................................................................    3-65
Bulk or Single DML Module ..................................................................................................    3-66

Message XSD....................................................................................................................................    3-71
Design Assumptions.......................................................................................................................    3-74
Tables ................................................................................................................................................    3-74

Item Location Subscription API .........................................................................................................    3-75
Functional Area ...............................................................................................................................    3-76
Design Overview.............................................................................................................................    3-76

L10N Localization Decoupling Layer: ..................................................................................    3-76
Package Impact................................................................................................................................    3-76

Consume Module.....................................................................................................................    3-76
Business Validation Module...................................................................................................    3-77
Bulk or single DML module ...................................................................................................    3-78

Message XSD....................................................................................................................................    3-78
Tables ................................................................................................................................................    3-79

Item Reclassification Subscription API ............................................................................................    3-79
Functional Area ...............................................................................................................................    3-79
Design Overview.............................................................................................................................    3-79
Bulk or Single DML Module..........................................................................................................    3-80

Consume Module.....................................................................................................................    3-80
Business Validation Module...................................................................................................    3-81



xix 

Package Impact................................................................................................................................    3-81
Message XSD....................................................................................................................................    3-82
Design Assumptions.......................................................................................................................    3-83
Table Impact.....................................................................................................................................    3-83

Location Trait Subscription API .........................................................................................................    3-83
Functional Area ...............................................................................................................................    3-83
Design Overview.............................................................................................................................    3-83
Package Impact................................................................................................................................    3-83

Consume Module.....................................................................................................................    3-83
Business Validation Module...................................................................................................    3-84
Bulk or Single DML Module ..................................................................................................    3-85

Message XSD....................................................................................................................................    3-85
Table Impact.....................................................................................................................................    3-85

Merchandise Hierarchy Subscription API .......................................................................................    3-85
Functional Area ...............................................................................................................................    3-85
Business Overview..........................................................................................................................    3-86
Package Impact................................................................................................................................    3-86

Filename: rmssub_xmrchhrs/b.pls .......................................................................................    3-86
Filename: rmssub_xmrchhr[family_name]vals/b.pls ........................................................    3-87
Filename: rmssub_xmrchhr[family_name]sqls/b.pls ........................................................    3-87
Filename: rmssub_xmrchhrdept_cfa (rmssub_xmrchhrdept_cfas/b.pls) .......................    3-87
Filename: rmssub_xmrchhrcls_cfa (rmssub_xmrchhrcls_cfas/b.pls)..............................    3-87
Filename: rmssub_xmrchhrscls_cfa (rmssub_xmrchhrscls_cfas/b.pls) ..........................    3-87
Message XSD ............................................................................................................................    3-87

Design Assumptions.......................................................................................................................    3-88
Table Impact.....................................................................................................................................    3-88

Merchandise Hierarchy Reclassification Subscription API .........................................................    3-89
Functional Area ...............................................................................................................................    3-89
Business Overview..........................................................................................................................    3-89
Package Impact................................................................................................................................    3-89

Consume Module.....................................................................................................................    3-89
Business Validation Module...................................................................................................    3-90
Bulk or single DML module ..................................................................................................    3-91

Message XSD....................................................................................................................................    3-91
Design Assumptions.......................................................................................................................    3-91
Table Impact.....................................................................................................................................    3-92

Organizational Hierarchy Subscription API ...................................................................................    3-92
Functional Area ...............................................................................................................................    3-92
Business Overview..........................................................................................................................    3-92
Package Impact................................................................................................................................    3-92
Message XSD....................................................................................................................................    3-93
Design Assumptions.......................................................................................................................    3-93
Tables ................................................................................................................................................    3-94

Payment Terms Subscription API ......................................................................................................    3-94
Functional Area ...............................................................................................................................    3-94
Business Overview..........................................................................................................................    3-94

Data Flow ..................................................................................................................................    3-94



xx

Message Structure....................................................................................................................    3-94
Package Impact................................................................................................................................    3-94
Message XSD....................................................................................................................................    3-97
Design Assumptions.......................................................................................................................    3-97
Table Impact.....................................................................................................................................    3-97

PO Subscription API ...........................................................................................................................    3-97
Functional Area ...............................................................................................................................    3-97
Business Overview..........................................................................................................................    3-98
Package Impact................................................................................................................................    3-98
Message XSD..................................................................................................................................    3-100
Design Assumptions.....................................................................................................................    3-101
Tables ..............................................................................................................................................    3-101

Receiving Subscription API ..............................................................................................................    3-102
Functional Area .............................................................................................................................    3-102
Business Overview........................................................................................................................    3-102
Carton-Level Receiving ................................................................................................................    3-103

Actual (A) ................................................................................................................................    3-103
Overage (O).............................................................................................................................    3-103
Dummy BOL (D)....................................................................................................................    3-103
Closed (C)................................................................................................................................    3-104
Misdirected Container...........................................................................................................    3-104
Blind Receipt Processing.......................................................................................................    3-104
Doc Types................................................................................................................................    3-104
L10N Localization Decoupling Layer .................................................................................    3-105

Package Impact..............................................................................................................................    3-105
Message XSD..................................................................................................................................    3-114
Table Impact...................................................................................................................................    3-114

RTV Subscription API........................................................................................................................    3-116
Functional Area .............................................................................................................................    3-116
Business Overview........................................................................................................................    3-116

L10N Localization Decoupling Layer: ................................................................................    3-116
Package Impact..............................................................................................................................    3-116
Message XSD..................................................................................................................................    3-119
Table Impact...................................................................................................................................    3-120

Stock Order Status Subscription API..............................................................................................    3-120
Functional Area .............................................................................................................................    3-121
Business Overview........................................................................................................................    3-121

Stock Order Status Explanations .........................................................................................    3-121
Pack Considerations ..............................................................................................................    3-124

Package Impact..............................................................................................................................    3-124
Message XSD..................................................................................................................................    3-126
Table Impact...................................................................................................................................    3-126

Stock Count Schedule Subscription API .......................................................................................    3-127
Functional Area .............................................................................................................................    3-127
Business Overview........................................................................................................................    3-127
Package Impact..............................................................................................................................    3-127
Message XSD..................................................................................................................................    3-128



xxi 

Table Impact...................................................................................................................................    3-129
Store Subscription API.......................................................................................................................    3-129

Functional Area .............................................................................................................................    3-129
Business Overview........................................................................................................................    3-129
Package Impact..............................................................................................................................    3-130

Consume Module...................................................................................................................    3-130
Business Validation Module.................................................................................................    3-131
Bulk or Single DML Module ................................................................................................    3-131

Message XSD..................................................................................................................................    3-132
Design Assumptions.....................................................................................................................    3-133

Tables .......................................................................................................................................    3-133
Transfer Subscription API ................................................................................................................    3-134

Functional Area .............................................................................................................................    3-134
Integration Type ............................................................................................................................    3-134
Business Overview........................................................................................................................    3-134
Creating Transfers.........................................................................................................................    3-134

Location Validation ...............................................................................................................    3-136
Inventory Validation .............................................................................................................    3-137
Status Validation ....................................................................................................................    3-137
Transfer Type Specific Validation .......................................................................................    3-137

Administration (AD) ......................................................................................................    3-137
AIP Generated (AIP) ......................................................................................................    3-138
Book (BT)..........................................................................................................................    3-138
Confirmation (CF)...........................................................................................................    3-138
Externally Generated (EG) ............................................................................................    3-138
Intercompany (IC) ..........................................................................................................    3-138
Manual Requisition (MR) ..............................................................................................    3-139
Reallocation (RAC) .........................................................................................................    3-139
Return to Vendor (RV) ...................................................................................................    3-139
SIM Generated (SIM)......................................................................................................    3-139
All Transfer Types ..........................................................................................................    3-139

Transfers with Finishing ..............................................................................................................    3-140
Updating Transfers .......................................................................................................................    3-140
Deleting Transfers .........................................................................................................................    3-141
Publishing Updates.......................................................................................................................    3-141
Flex Attributes ...............................................................................................................................    3-141
Error Handling ..............................................................................................................................    3-141
Message XSD..................................................................................................................................    3-141

Vendor Subscription API ...................................................................................................................    3-142
Functional Area .............................................................................................................................    3-142
Business Overview........................................................................................................................    3-142
Package Impact..............................................................................................................................    3-142

Public API Procedures...........................................................................................................    3-142
Private Internal Functions and Procedures (rmssub_vendorcre.pls):............................    3-143
Private Internal Functions and Procedures (other):..........................................................    3-143

Message XSD..................................................................................................................................    3-145
Design Assumptions.....................................................................................................................    3-145



xxii

Work Order Status Subscription API ..............................................................................................    3-146
Functional Area .............................................................................................................................    3-146
Business Overview........................................................................................................................    3-146
Package Impact..............................................................................................................................    3-147
Message XSD..................................................................................................................................    3-147
Table Impact...................................................................................................................................    3-148

4 SOAP Web Services

Using SOAP Services During Batch Window ....................................................................................   4-2
Common Characteristics of Merchandising SOAP Services ...........................................................   4-2

Security ................................................................................................................................................   4-2
Standard Success Response ..............................................................................................................   4-2
Standard Error Response ..................................................................................................................   4-3
URL Path .............................................................................................................................................   4-3
Web Service APIs Process Flow .......................................................................................................   4-3
Provider Services................................................................................................................................   4-4
Consumer Services.............................................................................................................................   4-4

Provider Services ......................................................................................................................................   4-4
Allocation Service...............................................................................................................................   4-4

Functional Area ...........................................................................................................................   4-4
RSB Proxy WSDL ........................................................................................................................   4-4
Merchandising Service WSDL ..................................................................................................   4-4
Overview......................................................................................................................................   4-4
Operation XSD.............................................................................................................................   4-4

Average Cost Service .........................................................................................................................   4-5
Functional Area ...........................................................................................................................   4-5
RSB Proxy WSDL ........................................................................................................................   4-5
Merchandising Service WSDL ..................................................................................................   4-5
Overview......................................................................................................................................   4-5
Operation XSD.............................................................................................................................   4-5

Cost Change Service ..........................................................................................................................   4-6
Functional Area ...........................................................................................................................   4-6
RSB Proxy WSDL ........................................................................................................................   4-6
Merchandising Service WSDL ..................................................................................................   4-6
Overview......................................................................................................................................   4-6
Operation XSD.............................................................................................................................   4-6

Customer Credit Check Service ......................................................................................................   4-6
Functional Area ...........................................................................................................................   4-6
RSB Proxy WSDL ........................................................................................................................   4-6
Merchandising Service WSDL ..................................................................................................   4-6
Overview......................................................................................................................................   4-6
Operation XSD.............................................................................................................................   4-7

Customer Order Fulfillment Service ...............................................................................................   4-7
Functional Area ...........................................................................................................................   4-7
RSB Proxy WSDL ........................................................................................................................   4-7
Merchandising Service WSDL ..................................................................................................   4-7
Overview......................................................................................................................................   4-7



xxiii 

Operation XSD.............................................................................................................................   4-8
Customer Order Item Substitution Service ....................................................................................   4-8

Functional Area ...........................................................................................................................   4-8
RSB Proxy WSDL ........................................................................................................................   4-8
Merchandising Service WSDL ..................................................................................................   4-8
Business Overview......................................................................................................................   4-8
Assumptions ................................................................................................................................   4-9
Operation XSD.............................................................................................................................   4-9

Diff Management Service .................................................................................................................   4-9
Functional Area ...........................................................................................................................   4-9
RSB Proxy WSDL ........................................................................................................................   4-9
Merchandising Service WSDL ..................................................................................................   4-9
Overview......................................................................................................................................   4-9
Operation XSD.............................................................................................................................   4-9

Inventory Back Order Service .......................................................................................................    4-10
Functional Area ........................................................................................................................    4-10
RSB Proxy WSDL .....................................................................................................................    4-10
Merchandising Service WSDL ...............................................................................................    4-10
Overview...................................................................................................................................    4-10
Assumptions .............................................................................................................................    4-10
Operation XSD..........................................................................................................................    4-11

Inventory Lookup Service..............................................................................................................    4-11
Functional Area ........................................................................................................................    4-11
RSB Proxy WSDL .....................................................................................................................    4-11
Merchandising Service WSDL ...............................................................................................    4-11
Overview...................................................................................................................................    4-11
Assumptions .............................................................................................................................    4-11
Operation XSD..........................................................................................................................    4-12

Item Management Service..............................................................................................................    4-12
Functional Area ........................................................................................................................    4-12
RSB Proxy WSDL .....................................................................................................................    4-12
Merchandising Service WSDL ...............................................................................................    4-12
Overview...................................................................................................................................    4-12

Request Item Numbers ....................................................................................................    4-12
Create/Manage Items ......................................................................................................    4-13

Operation XSD..........................................................................................................................    4-13
Pay Term Service.............................................................................................................................    4-14

Functional Area ........................................................................................................................    4-14
RSB Proxy WSDL .....................................................................................................................    4-14
Merchandising Service WSDL ...............................................................................................    4-14
Overview...................................................................................................................................    4-14
Operation XSD..........................................................................................................................    4-15

Pricing Cost Service ........................................................................................................................    4-15
Functional Area ........................................................................................................................    4-15
RSB Proxy WSDL .....................................................................................................................    4-15
Merchandising Service WSDL ...............................................................................................    4-15
Overview...................................................................................................................................    4-15



xxiv

Assumptions .............................................................................................................................    4-15
Operation XSD..........................................................................................................................    4-16

Purchase Order Management Service..........................................................................................    4-16
Functional Area ........................................................................................................................    4-16
RSB Proxy WSDL .....................................................................................................................    4-16
Merchandising Service WSDL ...............................................................................................    4-16
Overview...................................................................................................................................    4-16

Request Order Numbers..................................................................................................    4-16
Create/Manage Purchase Orders...................................................................................    4-17

Operation XSD..........................................................................................................................    4-17
Report Locator Service ...................................................................................................................    4-17

Functional Area ........................................................................................................................    4-17
RSB Proxy WSDL .....................................................................................................................    4-18
Merchandising Service WSDL ...............................................................................................    4-18
Overview...................................................................................................................................    4-18
Operation XSD..........................................................................................................................    4-18

Store Order Service .........................................................................................................................    4-19
Functional Area ........................................................................................................................    4-19
RSB Proxy WSDL .....................................................................................................................    4-19
Merchandising Service WSDL ...............................................................................................    4-19
Overview...................................................................................................................................    4-19

Create Store Order ............................................................................................................    4-19
Modify Store Order ..........................................................................................................    4-19
Delete Store Order ............................................................................................................    4-19
Query Deals .......................................................................................................................    4-19
Query Sales ........................................................................................................................    4-20
Query Store Orders...........................................................................................................    4-20

Assumptions .............................................................................................................................    4-20
Operation XSD..........................................................................................................................    4-20

Supplier Service...............................................................................................................................    4-21
Functional Area ........................................................................................................................    4-21
RSB Proxy WSDL .....................................................................................................................    4-21
Merchandising Service WSDL ...............................................................................................    4-21
Overview...................................................................................................................................    4-21
Operation XSD..........................................................................................................................    4-21

Transfer Service ...............................................................................................................................    4-22
Functional Area ........................................................................................................................    4-22
RSB Proxy WSDL .....................................................................................................................    4-22
Merchandising Service WSDL ...............................................................................................    4-22
Overview...................................................................................................................................    4-22
Operation XSD..........................................................................................................................    4-22

Consumer Services ................................................................................................................................    4-23
Customer Address Service.............................................................................................................    4-23

Functional Area ........................................................................................................................    4-23
Overview...................................................................................................................................    4-23

Customer Order Address Service .................................................................................................    4-24
Functional Area ........................................................................................................................    4-24



xxv 

Overview...................................................................................................................................    4-24
Get Drill Back Forward URL Service ...........................................................................................    4-25

Functional Area ........................................................................................................................    4-25
Overview...................................................................................................................................    4-25

GL Chart of Accounts Validation Service....................................................................................    4-26
Functional Area ........................................................................................................................    4-26
Overview...................................................................................................................................    4-26

5 ReSTful Web Services 

Introduction...............................................................................................................................................   5-1
Common Characteristics of Retail Application ReSTful Web Services ........................................   5-2

On-Premise Deployments.................................................................................................................   5-2
Security ................................................................................................................................................   5-2
Standard Request and Response Headers......................................................................................   5-2
Standard Error Response ..................................................................................................................   5-3
Merchandising URL Paths ................................................................................................................   5-3
Sales Audit URL Paths .....................................................................................................................   5-3
Date Format.........................................................................................................................................   5-4
Paging ..................................................................................................................................................   5-4
Web Service APIs Process Flow .......................................................................................................   5-4

Merchandising ReSTful Web Services.................................................................................................   5-5
Merchandising Common Services ...................................................................................................   5-5

Vdate.............................................................................................................................................   5-5
Procurement Unit Options ........................................................................................................   5-6

Table Impact .........................................................................................................................   5-7
Functional Config Options ........................................................................................................   5-7
Inventory Movement Unit Options..........................................................................................   5-8
Currencies .................................................................................................................................    5-11
Department Search ..................................................................................................................    5-12
Department Load .....................................................................................................................    5-13

Book Transfer ReSTful Web Service.............................................................................................    5-14
Functional Area ........................................................................................................................    5-14
Business Overview...................................................................................................................    5-14
Service Type..............................................................................................................................    5-14
ReST URL ..................................................................................................................................    5-14
Input Parameters......................................................................................................................    5-14
ItemDetail RDO........................................................................................................................    5-15
Example JSON Input ...............................................................................................................    5-15
Output .......................................................................................................................................    5-16
JSON Structure .........................................................................................................................    5-16
Table Impact .............................................................................................................................    5-17

Code Detail Service .........................................................................................................................    5-17
Create Inventory Transfer Services ..............................................................................................    5-18

Functional Area ........................................................................................................................    5-19
Business Overview...................................................................................................................    5-19
Transfer Number......................................................................................................................    5-19
Search Items ..............................................................................................................................    5-19



xxvi

Load Items.................................................................................................................................    5-22
Business Overview ...........................................................................................................    5-22

Search From Location..............................................................................................................    5-24
Business Overview ...........................................................................................................    5-24
Service Type.......................................................................................................................    5-24
ReST URL...........................................................................................................................    5-24
Input Parameters...............................................................................................................    5-25
Output ................................................................................................................................    5-25
Table Impact ......................................................................................................................    5-26

Search To Location...................................................................................................................    5-27
Business Overview ...........................................................................................................    5-27
Service Type.......................................................................................................................    5-27
ReST URL...........................................................................................................................    5-27
Input Parameters...............................................................................................................    5-27
Output ................................................................................................................................    5-28
Table Impact ......................................................................................................................    5-29

Load Locations .........................................................................................................................    5-29
Business Overview ...........................................................................................................    5-29
Service Type.......................................................................................................................    5-29
ReST URL...........................................................................................................................    5-29
Input Parameters...............................................................................................................    5-29
Output ................................................................................................................................    5-30
Table Impact ......................................................................................................................    5-31

Create Transfer .........................................................................................................................    5-31
Business Overview ...........................................................................................................    5-31
Service Type.......................................................................................................................    5-31
ReST URL...........................................................................................................................    5-31
Input Parameters...............................................................................................................    5-31
Output ................................................................................................................................    5-32
Table Impact ......................................................................................................................    5-32

Create Purchase Order Services ....................................................................................................    5-32
Order Number..........................................................................................................................    5-32

Business Overview ...........................................................................................................    5-32
Service Type.......................................................................................................................    5-32
ReST URL...........................................................................................................................    5-32
Input Parameters...............................................................................................................    5-32
Output ................................................................................................................................    5-32
Table Impact ......................................................................................................................    5-33

Terms .........................................................................................................................................    5-33
Business Overview ...........................................................................................................    5-33
Service Type.......................................................................................................................    5-33
ReST URL...........................................................................................................................    5-33
Input Parameters...............................................................................................................    5-33
Output ................................................................................................................................    5-33
Table Impact ......................................................................................................................    5-33

Search Supplier.........................................................................................................................    5-33
Business Overview ...........................................................................................................    5-33



xxvii 

Service Type.......................................................................................................................    5-34
ReST URL...........................................................................................................................    5-34
Input Parameters...............................................................................................................    5-34
Output ................................................................................................................................    5-34
Table Impact ......................................................................................................................    5-36

Load Supplier ...........................................................................................................................    5-36
Business Overview ...........................................................................................................    5-36
Service Type.......................................................................................................................    5-36
ReST URL...........................................................................................................................    5-36
Input Parameters ..............................................................................................................    5-36
Output ................................................................................................................................    5-36
Table Impact ......................................................................................................................    5-38

Search Items ..............................................................................................................................    5-38
Business Overview ...........................................................................................................    5-38
Service Type.......................................................................................................................    5-38
ReST URL...........................................................................................................................    5-38
Input Parameters...............................................................................................................    5-39
Output ................................................................................................................................    5-39
Table Impact ......................................................................................................................    5-40

Load Items.................................................................................................................................    5-41
Business Overview ...........................................................................................................    5-41
Service Type.......................................................................................................................    5-41
ReST URL...........................................................................................................................    5-41
Input Parameters...............................................................................................................    5-41
Output ................................................................................................................................    5-41
Table Impact ......................................................................................................................    5-43

Search Location ........................................................................................................................    5-43
Business Overview ...........................................................................................................    5-43
Service Type.......................................................................................................................    5-44
ReST URL...........................................................................................................................    5-44
Input Parameters...............................................................................................................    5-44
Output ................................................................................................................................    5-44
Table Impact ......................................................................................................................    5-45

Load Locations .........................................................................................................................    5-45
Business Overview ...........................................................................................................    5-45
Service Type.......................................................................................................................    5-45
ReST URL...........................................................................................................................    5-45
Input Parameters...............................................................................................................    5-46
Output ................................................................................................................................    5-46
Table Impact ......................................................................................................................    5-46

Create Purchase Order ............................................................................................................    5-46
Business Overview ...........................................................................................................    5-46
Service Type.......................................................................................................................    5-46
ReST URL...........................................................................................................................    5-46
Input Parameters...............................................................................................................    5-46
Output ................................................................................................................................    5-47
Table Impact ......................................................................................................................    5-47



xxviii

Recent Inventory Transfer Services ..............................................................................................    5-47
Functional Area ........................................................................................................................    5-47
Business Overview...................................................................................................................    5-47
Transfer Location Search.........................................................................................................    5-47

Business Overview ...........................................................................................................    5-48
Service Type.......................................................................................................................    5-48
ReST URL...........................................................................................................................    5-48
Input Parameters...............................................................................................................    5-48
Output ................................................................................................................................    5-48
Table Impact ......................................................................................................................    5-49

Transfer Location Load ...........................................................................................................    5-49
Business Overview ...........................................................................................................    5-49
Service Type.......................................................................................................................    5-49
ReST URL...........................................................................................................................    5-49
Input Parameters...............................................................................................................    5-49
Output ................................................................................................................................    5-49
Table Impact ......................................................................................................................    5-50

Transfer Status List ..................................................................................................................    5-50
Business Overview ...........................................................................................................    5-50
Service Type.......................................................................................................................    5-50
ReST URL...........................................................................................................................    5-50
Input Parameters...............................................................................................................    5-50
Output ................................................................................................................................    5-50
Table Impact ......................................................................................................................    5-50

Transfer Type List ....................................................................................................................    5-50
Business Overview ...........................................................................................................    5-50
Service Type.......................................................................................................................    5-51
ReST URL...........................................................................................................................    5-51
Input Parameters...............................................................................................................    5-51
Output ................................................................................................................................    5-51
Table Impact ......................................................................................................................    5-51

Search Transfer User IDs ........................................................................................................    5-51
Business Overview ...........................................................................................................    5-51
Service Type.......................................................................................................................    5-51
ReST URL...........................................................................................................................    5-51
Input Parameters...............................................................................................................    5-51
Output ................................................................................................................................    5-51
Table Impact ......................................................................................................................    5-52

Transfer Search.........................................................................................................................    5-52
Business Overview ...........................................................................................................    5-52
Service Type.......................................................................................................................    5-52
ReST URL...........................................................................................................................    5-52
Input Parameters...............................................................................................................    5-53
Output ................................................................................................................................    5-53
Table Impact ......................................................................................................................    5-54

Get Transfer Detail...................................................................................................................    5-54
Business Overview ...........................................................................................................    5-54



xxix 

Service Type.......................................................................................................................    5-54
ReST URL...........................................................................................................................    5-55
Input Parameters...............................................................................................................    5-55
Output ................................................................................................................................    5-55
Table Impact ......................................................................................................................    5-56

Update Transfer Status............................................................................................................    5-57
Business Overview ...........................................................................................................    5-57
Service Type.......................................................................................................................    5-57
ReST URL...........................................................................................................................    5-57
Input Parameters...............................................................................................................    5-57
Output ................................................................................................................................    5-57
Table Impact ......................................................................................................................    5-57

Recent Purchase Order Services....................................................................................................    5-57
Functional Area .......................................................................................................................    5-58
Business Overview ..................................................................................................................    5-58
Cancel Reason Code List.........................................................................................................    5-58

Business Overview ...........................................................................................................    5-58
Service Type.......................................................................................................................    5-58
ReST URL...........................................................................................................................    5-58
Input Parameters...............................................................................................................    5-58
Output ................................................................................................................................    5-58
Table Impact ......................................................................................................................    5-58

Origin Code List .......................................................................................................................    5-58
Business Overview ...........................................................................................................    5-58
Service Type.......................................................................................................................    5-58
ReST URL...........................................................................................................................    5-58
Input Parameters...............................................................................................................    5-59
Output ................................................................................................................................    5-59
Table Impact ......................................................................................................................    5-59

Purchase Order Status List .....................................................................................................    5-59
Business Overview ...........................................................................................................    5-59
Service Type.......................................................................................................................    5-59
ReST URL...........................................................................................................................    5-59
Input Parameters...............................................................................................................    5-59
Output ................................................................................................................................    5-59
Table Impact ......................................................................................................................    5-60

Search Purchase Order User ID .............................................................................................    5-60
Business Overview ...........................................................................................................    5-60
Service Type.......................................................................................................................    5-60
ReST URL...........................................................................................................................    5-60
Input Parameters...............................................................................................................    5-60
Output ................................................................................................................................    5-60
Table Impact ......................................................................................................................    5-61

Purchase Order Search ............................................................................................................    5-61
Business Overview ...........................................................................................................    5-61
Service Type.......................................................................................................................    5-61
ReST URL...........................................................................................................................    5-61



xxx

Input Parameters...............................................................................................................    5-61
Output ................................................................................................................................    5-61
Table Impact ......................................................................................................................    5-62

Get Purchase Order Summary ...............................................................................................    5-62
Business Overview ...........................................................................................................    5-62
Service Type.......................................................................................................................    5-63
ReST URL...........................................................................................................................    5-63
Input Parameters...............................................................................................................    5-63
Output ................................................................................................................................    5-63
Table Impact ......................................................................................................................    5-64

Get Purchase Order Items.......................................................................................................    5-65
Business Overview ...........................................................................................................    5-65
Service Type.......................................................................................................................    5-65
ReST URL...........................................................................................................................    5-65
Input Parameters...............................................................................................................    5-65
Output ................................................................................................................................    5-65
Table Impact ......................................................................................................................    5-66

Get Purchase Order Item Locations ......................................................................................    5-66
Business Overview ...........................................................................................................    5-67
Service Type.......................................................................................................................    5-67
ReST URL...........................................................................................................................    5-67
Input Parameters...............................................................................................................    5-67
Output ................................................................................................................................    5-67
Table Impact ......................................................................................................................    5-68

Update Purchase Orders Date ...............................................................................................    5-68
Business Overview ...........................................................................................................    5-68
Service Type.......................................................................................................................    5-68
ReST URL...........................................................................................................................    5-68
Input Parameters...............................................................................................................    5-68
Output ................................................................................................................................    5-68
Table Impact ......................................................................................................................    5-69

Cancel Purchase Orders ..........................................................................................................    5-69
Business Overview ...........................................................................................................    5-69
Service Type.......................................................................................................................    5-69
ReST URL...........................................................................................................................    5-69
Input Parameters...............................................................................................................    5-70
Output ................................................................................................................................    5-70
Table Impact ......................................................................................................................    5-70

Approve Purchase Orders ......................................................................................................    5-71
Business Overview ...........................................................................................................    5-71
Service Type.......................................................................................................................    5-71
ReST URL...........................................................................................................................    5-71
Input Parameters...............................................................................................................    5-71
Output ................................................................................................................................    5-71
Table Impact ......................................................................................................................    5-72

Reject Purchase Orders ...........................................................................................................    5-74
Business Overview ...........................................................................................................    5-74



xxxi 

Service Type.......................................................................................................................    5-74
ReST URL...........................................................................................................................    5-74
Input Parameters...............................................................................................................    5-74
Output ................................................................................................................................    5-74
Table Impact ......................................................................................................................    5-75

Replenishment Schedule Services.................................................................................................    5-75
Functional Area .......................................................................................................................    5-76
Business Overview ..................................................................................................................    5-76
Create Replenishment Schedule ............................................................................................    5-76

Business Overview ...........................................................................................................    5-76
Service Type.......................................................................................................................    5-76
ReST URL...........................................................................................................................    5-76
Input Parameters...............................................................................................................    5-76
Output ................................................................................................................................    5-79
Table Impact ......................................................................................................................    5-80

Modify Replenishment Schedule...........................................................................................    5-80
Business Overview ...........................................................................................................    5-80
Service Type.......................................................................................................................    5-80
ReST URL...........................................................................................................................    5-80
Input Parameters...............................................................................................................    5-80
Output ................................................................................................................................    5-83
Table Impact ......................................................................................................................    5-84

Delete Replenishment Schedule ............................................................................................    5-85
Business Overview ...........................................................................................................    5-85
Service Type.......................................................................................................................    5-85
ReST URL...........................................................................................................................    5-85
Input Parameters...............................................................................................................    5-85
Output ................................................................................................................................    5-85
Table Impact ......................................................................................................................    5-86

VDATE Service ................................................................................................................................    5-86
Allocation Detail Service ................................................................................................................    5-87

Business Overview...................................................................................................................    5-87
Service Type..............................................................................................................................    5-87
ReST URL ..................................................................................................................................    5-87
Input Parameters......................................................................................................................    5-87
Output .......................................................................................................................................    5-87
Table Impact .............................................................................................................................    5-89

Background Process Configuration..............................................................................................    5-89
Business Overview...................................................................................................................    5-89
Service Type..............................................................................................................................    5-90
ReST URL ..................................................................................................................................    5-90
Input Parameters......................................................................................................................    5-90
Output .......................................................................................................................................    5-90
Table Impact .............................................................................................................................    5-90

Currency Rates Service...................................................................................................................    5-90
Business Overview...................................................................................................................    5-90
Service Type..............................................................................................................................    5-90



xxxii

ReST URL ..................................................................................................................................    5-90
Input Parameters......................................................................................................................    5-90
Output .......................................................................................................................................    5-91
Table Impact .............................................................................................................................    5-91

Data Privacy Access Service ..........................................................................................................    5-91
Business Overview...................................................................................................................    5-91
Service Type..............................................................................................................................    5-91
ReSTURL ...................................................................................................................................    5-91
Accept ........................................................................................................................................    5-91
Query Parameters ....................................................................................................................    5-92
Path Parameters .......................................................................................................................    5-92
Default Response .....................................................................................................................    5-92
Sample Response......................................................................................................................    5-93
Response Codes and Error Messages....................................................................................    5-94
Success Payloads ......................................................................................................................    5-94

Data Privacy Forget Service...........................................................................................................    5-94
Business Overview...................................................................................................................    5-94
Service Type..............................................................................................................................    5-94
ReSTURL ...................................................................................................................................    5-94
Accept ........................................................................................................................................    5-94
Query Parameters ....................................................................................................................    5-94
Path Parameters .......................................................................................................................    5-94
Default Response .....................................................................................................................    5-95
Response Codes and Error Messages....................................................................................    5-95
Success Payloads ......................................................................................................................    5-96

Diff Detail Service ...........................................................................................................................    5-96
Business Overview...................................................................................................................    5-96
Service Type..............................................................................................................................    5-96
ReST URL ..................................................................................................................................    5-96
Input Parameters......................................................................................................................    5-96
Output .......................................................................................................................................    5-96
Table Impact .............................................................................................................................    5-97

Half Data Budget Service ...............................................................................................................    5-97
Business Overview...................................................................................................................    5-97
Functional Area ........................................................................................................................    5-97
Modify Half Data Budget .......................................................................................................    5-97

Business Overview ...........................................................................................................    5-97
Service Type.......................................................................................................................    5-97
Rest URL: ...........................................................................................................................    5-97
Input Parameters...............................................................................................................    5-97
Output ................................................................................................................................    5-98
Table Impact ......................................................................................................................    5-99

Inventory Adjustment Service.......................................................................................................    5-99
Functional Area ........................................................................................................................    5-99
Business Overview...................................................................................................................    5-99
Inventory Adjustment .............................................................................................................    5-99

Business Overview ...........................................................................................................    5-99



xxxiii 

Service Type.......................................................................................................................    5-99
ReST URL...........................................................................................................................    5-99
Input Parameters...............................................................................................................    5-99
Output ..............................................................................................................................    5-100
Table Impact ....................................................................................................................    5-101

Item Detail Service ........................................................................................................................    5-101
Business Overview.................................................................................................................    5-101
Service Type............................................................................................................................    5-101
ReST URL ................................................................................................................................    5-101
Input Parameters....................................................................................................................    5-102
Output .....................................................................................................................................    5-102
Table Impact ...........................................................................................................................    5-104

Item Loc Inventory Detail Service ..............................................................................................    5-105
Business Overview.................................................................................................................    5-105
Service Type............................................................................................................................    5-105
ReST URL ................................................................................................................................    5-105
Input Parameters....................................................................................................................    5-105
Output .....................................................................................................................................    5-105
Table Impact ...........................................................................................................................    5-107

MerchHierarchy Detail Service ...................................................................................................    5-107
Business Overview.................................................................................................................    5-107
Service Type............................................................................................................................    5-107
ReST URL ................................................................................................................................    5-107
Input Parameters....................................................................................................................    5-107
Output .....................................................................................................................................    5-107
Table Impact ...........................................................................................................................    5-108

Purchase Order Detail Service.....................................................................................................    5-108
Business Overview.................................................................................................................    5-109
Service Type............................................................................................................................    5-109
ReST URL ................................................................................................................................    5-109
Input Parameters....................................................................................................................    5-109
Output .....................................................................................................................................    5-109
Table Impact ...........................................................................................................................    5-112

Reclass Detail Service ...................................................................................................................    5-112
Business Overview.................................................................................................................    5-112
Service Type............................................................................................................................    5-113
ReST URL ................................................................................................................................    5-113
Input Parameters....................................................................................................................    5-113
Output .....................................................................................................................................    5-113
Table Impact ...........................................................................................................................    5-113

Shipment Detail Service ...............................................................................................................    5-113
Business Overview.................................................................................................................    5-114
Service Type............................................................................................................................    5-114
ReST URL ................................................................................................................................    5-114
Input Parameters....................................................................................................................    5-114
Output .....................................................................................................................................    5-114
Table Impact ...........................................................................................................................    5-116



xxxiv

Stock Count Detail Service...........................................................................................................    5-116
Business Overview.................................................................................................................    5-116
Service Type............................................................................................................................    5-116
ReST URL ................................................................................................................................    5-116
Input Parameters....................................................................................................................    5-116
Output .....................................................................................................................................    5-116
Table Impact ...........................................................................................................................    5-118

Store Day User Service .................................................................................................................    5-118
Functional Area ......................................................................................................................    5-118
Business Overview.................................................................................................................    5-118
Create Store Day User ...........................................................................................................    5-118

Business Overview .........................................................................................................    5-118
Service Type.....................................................................................................................    5-118
ReSTURL..........................................................................................................................    5-118
Input Parameters.............................................................................................................    5-118
Output ..............................................................................................................................    5-118
Table Impact ....................................................................................................................    5-119

Delete Store Day User ...........................................................................................................    5-119
Business Overview .........................................................................................................    5-119
Service Type.....................................................................................................................    5-119
ReSTURL..........................................................................................................................    5-119
Input Parameters.............................................................................................................    5-119
Output ..............................................................................................................................    5-120
Table Impact ....................................................................................................................    5-121

Store Detail Service .......................................................................................................................    5-121
Business Overview.................................................................................................................    5-121
Service Type............................................................................................................................    5-121
ReST URL ................................................................................................................................    5-121
Input Parameters....................................................................................................................    5-121
Output .....................................................................................................................................    5-121
Table Impact ...........................................................................................................................    5-123

Supplier Detail Service .................................................................................................................    5-123
Business Overview.................................................................................................................    5-123
Service Type............................................................................................................................    5-124
ReST URL ................................................................................................................................    5-124
Input Parameters....................................................................................................................    5-124
Output .....................................................................................................................................    5-124
Table Impact ...........................................................................................................................    5-126

Transfer Detail Service .................................................................................................................    5-126
Business Overview.................................................................................................................    5-126
Service Type............................................................................................................................    5-126
ReST URL ................................................................................................................................    5-127
Input Parameters....................................................................................................................    5-127
Output .....................................................................................................................................    5-127
Table Impact ...........................................................................................................................    5-129

VAT Detail Service........................................................................................................................    5-129
Business Overview.................................................................................................................    5-129



xxxv 

Service Type............................................................................................................................    5-129
ReST URL ................................................................................................................................    5-129
Input Parameters....................................................................................................................    5-129
Output .....................................................................................................................................    5-129
Table Impact ...........................................................................................................................    5-130

Warehouse Detail Service ............................................................................................................    5-130
Business Overview.................................................................................................................    5-130
Service Type............................................................................................................................    5-130
ReST URL ................................................................................................................................    5-130
Input Parameters....................................................................................................................    5-130
Output .....................................................................................................................................    5-130
Table Impact ...........................................................................................................................    5-132

Sales Audit ReSTful Web Services ..................................................................................................    5-132
Summary of Open Store Days.....................................................................................................    5-132

Business Overview.................................................................................................................    5-132
Service Type............................................................................................................................    5-132
ReSTURL .................................................................................................................................    5-132
Input Parameters....................................................................................................................    5-132
Output .....................................................................................................................................    5-133
Table Impact ...........................................................................................................................    5-133

Summary of Errors........................................................................................................................    5-133
Business Overview.................................................................................................................    5-133
Service Type............................................................................................................................    5-133
ReST URL ................................................................................................................................    5-133
Input Parameters....................................................................................................................    5-133
Output .....................................................................................................................................    5-133
Table Impact ...........................................................................................................................    5-134

Summary of Over/Short Amount ..............................................................................................    5-134
Business Overview.................................................................................................................    5-134
Service Type............................................................................................................................    5-134
ReST URL ................................................................................................................................    5-134
Input Parameters....................................................................................................................    5-134
Output .....................................................................................................................................    5-134
Table Impact ...........................................................................................................................    5-134

Summary of Over/Short Count..................................................................................................    5-135
Business Overview.................................................................................................................    5-135
Service Type............................................................................................................................    5-135
ReST URL ................................................................................................................................    5-135
Input Parameters....................................................................................................................    5-135
Output .....................................................................................................................................    5-135
Table Impact ...........................................................................................................................    5-135

Get Store Days ...............................................................................................................................    5-136
Business Overview.................................................................................................................    5-136
Service Type............................................................................................................................    5-136
ReST URL ................................................................................................................................    5-136
Input Parameters....................................................................................................................    5-136
Output .....................................................................................................................................    5-136



xxxvi

Table Impact ...........................................................................................................................    5-137
Get Store Errors .............................................................................................................................    5-137

Business Overview.................................................................................................................    5-137
Service Type............................................................................................................................    5-138
ReST URL ................................................................................................................................    5-138
Input Parameters....................................................................................................................    5-138
Output .....................................................................................................................................    5-138
Table Impact ...........................................................................................................................    5-138

Get Store Aggregations ................................................................................................................    5-138
Business Overview.................................................................................................................    5-138
Service Type............................................................................................................................    5-138
ReST URL ................................................................................................................................    5-138
Input Parameters....................................................................................................................    5-139
Output .....................................................................................................................................    5-139
Table Impact ...........................................................................................................................    5-139

Store Search....................................................................................................................................    5-140
Business Overview.................................................................................................................    5-140
Service Type............................................................................................................................    5-140
ReST URL ................................................................................................................................    5-140
Input Parameters....................................................................................................................    5-140
Output .....................................................................................................................................    5-140
Table Impact ...........................................................................................................................    5-141

Get Store Day Date Indicator.......................................................................................................    5-141
Business Overview.................................................................................................................    5-141
Service Type............................................................................................................................    5-141
ReST URL ................................................................................................................................    5-141
Input Parameters....................................................................................................................    5-141
Output .....................................................................................................................................    5-141
Table Impact ...........................................................................................................................    5-142

Data Privacy Access Service ........................................................................................................    5-142
Business Overview.................................................................................................................    5-142
Service Type............................................................................................................................    5-142
ReSTURL .................................................................................................................................    5-142
Accept ......................................................................................................................................    5-142
Query Parameters ..................................................................................................................    5-142
Path Parameters .....................................................................................................................    5-142
Default Response ...................................................................................................................    5-143
Sample Response....................................................................................................................    5-143
Response Codes and Error Messages..................................................................................    5-143
Success Payloads ....................................................................................................................    5-144

Data Privacy Forget Service.........................................................................................................    5-144
Business Overview.................................................................................................................    5-144
Service Type............................................................................................................................    5-144
ReSTURL .................................................................................................................................    5-144
Accept ......................................................................................................................................    5-144
Query Parameters ..................................................................................................................    5-144
Path Parameters .....................................................................................................................    5-144



xxxvii 

Default Response ...................................................................................................................    5-145
Response Codes and Error Messages..................................................................................    5-145
Success Payloads ....................................................................................................................    5-146

6 Bulk Data Integration

Overview ....................................................................................................................................................   6-1
Brand Publication BDI ............................................................................................................................   6-1

Functional Area ..................................................................................................................................   6-1
Design Overview................................................................................................................................   6-1
Package Impact...................................................................................................................................   6-1

Bulk Interface Module................................................................................................................   6-1
Data Definition XML .........................................................................................................................   6-2
Table Impact........................................................................................................................................   6-2

Calendar Publication BDI.......................................................................................................................   6-2
Functional Area ..................................................................................................................................   6-2
Business Overview.............................................................................................................................   6-2
Package Impact...................................................................................................................................   6-2
Data Definition XML .........................................................................................................................   6-3
Table Impact........................................................................................................................................   6-3

Code Detail Publication BDI .................................................................................................................   6-3
Functional Area ..................................................................................................................................   6-3
Business Overview.............................................................................................................................   6-3
Package Impact...................................................................................................................................   6-3
Data Definition XML .........................................................................................................................   6-4
Table Impact........................................................................................................................................   6-4

Code Head Publication BDI ...................................................................................................................   6-4
Functional Area ..................................................................................................................................   6-4
Business Overview.............................................................................................................................   6-4
Package Impact...................................................................................................................................   6-4
Data Definition XML .........................................................................................................................   6-5
Table Impact........................................................................................................................................   6-5

Company-wide Closings and Company Closed Exceptions Publication BDI .............................   6-5
Functional Area ..................................................................................................................................   6-5
Design Overview................................................................................................................................   6-5
Package Impact...................................................................................................................................   6-5
Data Definition XML .........................................................................................................................   6-6
Tables ...................................................................................................................................................   6-6

Currency Conversion Rates Publication BDI .....................................................................................   6-6
Functional Area ..................................................................................................................................   6-6
Business Overview.............................................................................................................................   6-6
Package Impact...................................................................................................................................   6-7
Data Definition XML .........................................................................................................................   6-7
Table Impact........................................................................................................................................   6-7

Delivery Slot Publication BDI ...............................................................................................................   6-7
Functional Area ..................................................................................................................................   6-7
Business Overview.............................................................................................................................   6-7
Package Impact...................................................................................................................................   6-8



xxxviii

Data Definition XML .........................................................................................................................   6-8
Table Impact........................................................................................................................................   6-8

Diff Group Publication BDI...................................................................................................................   6-8
Functional Area ..................................................................................................................................   6-8
Business Overview.............................................................................................................................   6-8
Package Impact...................................................................................................................................   6-9
Data Definition XML .........................................................................................................................   6-9
Table Impact........................................................................................................................................   6-9

Diff ID Publication BDI..........................................................................................................................   6-9
Functional Area ..................................................................................................................................   6-9
Business Overview.............................................................................................................................   6-9
Package Impact................................................................................................................................    6-10

Bulk Interface Module.............................................................................................................    6-10
Data Definition XML ......................................................................................................................    6-10
Table Impact.....................................................................................................................................    6-10

Finance General Ledger Publication BDI.........................................................................................    6-10
Functional Area ...............................................................................................................................    6-10
Business Overview..........................................................................................................................    6-10
Package Impact................................................................................................................................    6-11
Data Definition XML ......................................................................................................................    6-11
Table Impact.....................................................................................................................................    6-11

Finisher Address Publication BDI .....................................................................................................    6-11
Functional Area ...............................................................................................................................    6-11
Business Overview..........................................................................................................................    6-11
Package Impact................................................................................................................................    6-12
Data Definition XML ......................................................................................................................    6-12
Table Impact.....................................................................................................................................    6-12

Future Available Inventory Publication BDI...................................................................................    6-12
Functional Area ...............................................................................................................................    6-12
Design Overview.............................................................................................................................    6-12
Package Impact................................................................................................................................    6-13

Bulk Interface Module.............................................................................................................    6-13
Data Definition XML ......................................................................................................................    6-13
Tables ................................................................................................................................................    6-13

Inventory Publication BDI ..................................................................................................................    6-13
Functional Area ...............................................................................................................................    6-13
Business Overview..........................................................................................................................    6-14
Package Impact................................................................................................................................    6-14
Data Definition XML ......................................................................................................................    6-14
Table Impact.....................................................................................................................................    6-14

Item Image Publication BDI ...............................................................................................................    6-14
Functional Area ...............................................................................................................................    6-14
Business Overview..........................................................................................................................    6-15
Package Impact................................................................................................................................    6-15
Data Definition XML ......................................................................................................................    6-15
Table Impact.....................................................................................................................................    6-15

Item Location Publication BDI ...........................................................................................................    6-15



xxxix 

Functional Area ...............................................................................................................................    6-15
Business Overview..........................................................................................................................    6-16
Package Impact................................................................................................................................    6-16

Bulk Interface Module.............................................................................................................    6-16
Data Definition XML ......................................................................................................................    6-16
Table Impact.....................................................................................................................................    6-16

Item Location History Publication BDI ............................................................................................    6-17
Design Overview.............................................................................................................................    6-17
Scheduling Constraints ..................................................................................................................    6-17
Restart/Recovery ............................................................................................................................    6-17
Key Tables Affected ........................................................................................................................    6-17
Integration Contract........................................................................................................................    6-17

Item Master Publication BDI ..............................................................................................................    6-18
Functional Area ...............................................................................................................................    6-18
Business Overview..........................................................................................................................    6-18
Package Impact................................................................................................................................    6-18

Bulk Interface Module.............................................................................................................    6-18
Data Definition XML ......................................................................................................................    6-18
Table Impact.....................................................................................................................................    6-18

Item Supplier Country Dim Publication BDI .................................................................................    6-19
Functional Area ...............................................................................................................................    6-19
Business Overview..........................................................................................................................    6-19
Package Impact................................................................................................................................    6-19
Data Definition XML ......................................................................................................................    6-19
Table Impact.....................................................................................................................................    6-20

Item Supplier Country Publication BDI...........................................................................................    6-20
Functional Area ...............................................................................................................................    6-20
Business Overview..........................................................................................................................    6-20
Package Impact................................................................................................................................    6-20
Data Definition XML ......................................................................................................................    6-20
Table Impact.....................................................................................................................................    6-21

Item Supplier Manufacturing Country Publication BDI ..............................................................    6-21
Functional Area ...............................................................................................................................    6-21
Business Overview..........................................................................................................................    6-21
Package Impact................................................................................................................................    6-21
Data Definition XML ......................................................................................................................    6-21
Table Impact.....................................................................................................................................    6-22

Item Supplier UOM Publication BDI ...............................................................................................    6-22
Functional Area ...............................................................................................................................    6-22
Business Overview..........................................................................................................................    6-22
Package Impact................................................................................................................................    6-22
Data Definition XML ......................................................................................................................    6-22
Table Impact.....................................................................................................................................    6-23

Item Supplier Publication BDI...........................................................................................................    6-23
Functional Area ...............................................................................................................................    6-23
Business Overview..........................................................................................................................    6-23
Package Impact................................................................................................................................    6-23



xl

Data Definition XML ......................................................................................................................    6-23
Table Impact.....................................................................................................................................    6-24

Location Closed Publication BDI.......................................................................................................    6-24
Functional Area ...............................................................................................................................    6-24
Design Overview.............................................................................................................................    6-24
Package Impact................................................................................................................................    6-24

Bulk Interface Module.............................................................................................................    6-24
Data Definition XML ......................................................................................................................    6-25
Tables ................................................................................................................................................    6-25

Merch Hierarchy Publication BDI .....................................................................................................    6-25
Functional Area ...............................................................................................................................    6-25
Business Overview..........................................................................................................................    6-25
Package Impact................................................................................................................................    6-25

Bulk Interface Module.............................................................................................................    6-25
Data Definition XML ......................................................................................................................    6-26
Table Impact.....................................................................................................................................    6-26
Functional Area ...............................................................................................................................    6-26
Business Overview..........................................................................................................................    6-26
Package Impact................................................................................................................................    6-26

Bulk Interface Module.............................................................................................................    6-26
Data Definition XML ......................................................................................................................    6-27
Table Impact.....................................................................................................................................    6-27

On Order Publication BDI...................................................................................................................    6-27
Functional Area ...............................................................................................................................    6-27
Business Overview..........................................................................................................................    6-27
Package Impact................................................................................................................................    6-27
Data Definition XML ......................................................................................................................    6-28
Table Impact.....................................................................................................................................    6-28

Organization Hierarchy Publication BDI.........................................................................................    6-28
Functional Area ...............................................................................................................................    6-28
Business Overview..........................................................................................................................    6-28
Package Impact................................................................................................................................    6-28

Bulk Interface Module.............................................................................................................    6-28
Data Definition XML ......................................................................................................................    6-29
Table Impact.....................................................................................................................................    6-29

Pack Item Publication BDI ..................................................................................................................    6-29
Functional Area ...............................................................................................................................    6-29
Business Overview..........................................................................................................................    6-29
Package Impact................................................................................................................................    6-30
Data Definition XML ......................................................................................................................    6-30
Table Impact.....................................................................................................................................    6-30

Partner Address Publication BDI.......................................................................................................    6-30
Functional Area ...............................................................................................................................    6-30
Business Overview..........................................................................................................................    6-30
Package Impact................................................................................................................................    6-30
Data Definition XML ......................................................................................................................    6-31
Table Impact.....................................................................................................................................    6-31



xli 

Partner Org Unit Publication BDI......................................................................................................    6-31
Functional Area ...............................................................................................................................    6-31
Business Overview..........................................................................................................................    6-31
Package Impact................................................................................................................................    6-32
Data Definition XML ......................................................................................................................    6-32
Table Impact.....................................................................................................................................    6-32

Partner Publication BDI .......................................................................................................................    6-32
Functional Area ...............................................................................................................................    6-32
Business Overview..........................................................................................................................    6-32
Package Impact................................................................................................................................    6-33
Data Definition XML ......................................................................................................................    6-33
Table Impact.....................................................................................................................................    6-33

Price History Publication BDI ............................................................................................................    6-33
Functional Area ...............................................................................................................................    6-33
Business Overview..........................................................................................................................    6-33
Package Impact................................................................................................................................    6-33
Data Definition XML ......................................................................................................................    6-34
Table Impact.....................................................................................................................................    6-34

Related Item Publication BDI.............................................................................................................    6-34
Functional Area ...............................................................................................................................    6-34
Business Overview..........................................................................................................................    6-34
Package Impact................................................................................................................................    6-34
Data Definition XML ......................................................................................................................    6-35
Table Impact.....................................................................................................................................    6-35

Replenishment Item Location Publication BDI ..............................................................................    6-35
Functional Area ...............................................................................................................................    6-35
Business Overview..........................................................................................................................    6-35
Package Impact................................................................................................................................    6-35
Data Definition XML ......................................................................................................................    6-36
Table Impact.....................................................................................................................................    6-36

Store Address Publication BDI...........................................................................................................    6-36
Functional Area ...............................................................................................................................    6-36
Business Overview..........................................................................................................................    6-36
Package Impact................................................................................................................................    6-36

Bulk Interface Module.............................................................................................................    6-36
Data Definition XML ......................................................................................................................    6-37
Table Impact.....................................................................................................................................    6-37

Store Available Inventory Publication BDI .....................................................................................    6-37
Functional Area ...............................................................................................................................    6-37
Business Overview..........................................................................................................................    6-37
Package Impact................................................................................................................................    6-38

Bulk Interface Module.............................................................................................................    6-38
Data Definition XML ......................................................................................................................    6-38
Table Impact.....................................................................................................................................    6-38

Store Hours Publication BDI ..............................................................................................................    6-38
Function Area ..................................................................................................................................    6-38
Design Overview.............................................................................................................................    6-38



xlii

Package Impact................................................................................................................................    6-39
Bulk Interface Module.............................................................................................................    6-39

Data Definition XML ......................................................................................................................    6-39
Tables ................................................................................................................................................    6-39

Store Publication BDI...........................................................................................................................    6-39
Functional Area ...............................................................................................................................    6-39
Business Overview..........................................................................................................................    6-39
Package Impact................................................................................................................................    6-40

Bulk Interface Module.............................................................................................................    6-40
Data Definition XML ......................................................................................................................    6-40
Table Impact.....................................................................................................................................    6-40

Supplier Address Publication BDI ....................................................................................................    6-40
Functional Area ...............................................................................................................................    6-40
Business Overview..........................................................................................................................    6-41
Package Impact................................................................................................................................    6-41
Data Definition XML ......................................................................................................................    6-41
Table Impact.....................................................................................................................................    6-41

Sups Publication BDI ...........................................................................................................................    6-41
Functional Area ...............................................................................................................................    6-42
Business Overview..........................................................................................................................    6-42
Package Impact................................................................................................................................    6-42
Data Definition XML ......................................................................................................................    6-42
Table Impact.....................................................................................................................................    6-42

Tran Data Publication BDI ..................................................................................................................    6-42
Functional Area ...............................................................................................................................    6-42
Business Overview..........................................................................................................................    6-43
Package Impact................................................................................................................................    6-43
Data Definition XML ......................................................................................................................    6-43
Table Impact.....................................................................................................................................    6-43

UDA Item Date Publication BDI........................................................................................................    6-43
Functional Area ...............................................................................................................................    6-43
Business Overview..........................................................................................................................    6-43
Package Impact................................................................................................................................    6-44
Data Definition XML ......................................................................................................................    6-44
Table Impact.....................................................................................................................................    6-44

UDA Item FF Publication BDI............................................................................................................    6-44
Functional Area ...............................................................................................................................    6-44
Business Overview..........................................................................................................................    6-44
Package Impact................................................................................................................................    6-45
Data Definition XML ......................................................................................................................    6-45
Table Impact.....................................................................................................................................    6-45

UDA Item LOV Publication BDI .......................................................................................................    6-45
Functional Area ...............................................................................................................................    6-45
Business Overview..........................................................................................................................    6-45
Package Impact................................................................................................................................    6-46
Data Definition XML ......................................................................................................................    6-46
Table Impact.....................................................................................................................................    6-46



xliii 

UDA Publication BDI...........................................................................................................................    6-46
Functional Area ...............................................................................................................................    6-46
Business Overview..........................................................................................................................    6-46
Package Impact................................................................................................................................    6-46
Data Definition XML ......................................................................................................................    6-47
Table Impact.....................................................................................................................................    6-47

UDA Values Publication BDI .............................................................................................................    6-47
Functional Area ...............................................................................................................................    6-47
Business Overview..........................................................................................................................    6-47
Package Impact................................................................................................................................    6-47
Data Definition XML ......................................................................................................................    6-48
Table Impact.....................................................................................................................................    6-48

UOM Class Publication BDI ...............................................................................................................    6-48
Functional Area ...............................................................................................................................    6-48
Business Overview..........................................................................................................................    6-48
Package Impact................................................................................................................................    6-48
Data Definition XML ......................................................................................................................    6-49
Table Impact.....................................................................................................................................    6-49

UOM Conversion Publication BDI....................................................................................................    6-49
Functional Area ...............................................................................................................................    6-49
Business Overview..........................................................................................................................    6-49
Package Impact................................................................................................................................    6-49
Data Definition XML ......................................................................................................................    6-50
Table Impact.....................................................................................................................................    6-50

Warehouse Inventory Publication BDI .............................................................................................    6-50
Functional Area ...............................................................................................................................    6-50
Business Overview..........................................................................................................................    6-50
Package Impact................................................................................................................................    6-50

Bulk Interface Module.............................................................................................................    6-50
Data Definition XML ......................................................................................................................    6-51
Table Impact.....................................................................................................................................    6-51

Warehouse Address Publication BDI ................................................................................................    6-51
Functional Area ...............................................................................................................................    6-51
Business Overview..........................................................................................................................    6-51
Package Impact................................................................................................................................    6-51

Bulk Interface Module.............................................................................................................    6-51
Data Definition XML ......................................................................................................................    6-52
Table Impact.....................................................................................................................................    6-52

Warehouse Publication BDI ................................................................................................................    6-52
Functional Area ...............................................................................................................................    6-52
Business Overview..........................................................................................................................    6-52
Package Impact................................................................................................................................    6-52

Bulk Interface Module.............................................................................................................    6-52
Data Definition XML ......................................................................................................................    6-53
Table Impact.....................................................................................................................................    6-53

Daily Demand Item Forecast Subscription BDI .............................................................................    6-53
Functional Area ...............................................................................................................................    6-53



xliv

Design Overview.............................................................................................................................    6-53
Data Definition XML ......................................................................................................................    6-53
Tables ................................................................................................................................................    6-54

Weekly Demand Item Forecast Subscription BDI ..........................................................................    6-54
Functional Area ...............................................................................................................................    6-54
Design Overview.............................................................................................................................    6-54
Data Definition XML ......................................................................................................................    6-54
Tables ................................................................................................................................................    6-54



xlv

Send Us Your Comments

Operations Guide Volume 2 - Message Publication and Subscription Designs, Release 
19.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness 
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our 
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell 
us your name, the name of the company who has licensed our products, the title and 
part number of the documentation and the chapter, section, and page number (if 
available).

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number 
(optional).

If you need assistance with Oracle software, then please contact your support 
representative or Oracle Support Services. 

If you require training or instruction in using Oracle software, then please contact your 
Oracle local office and inquire about our Oracle University offerings. A list of Oracle 
offices is available on our Web site at http://www.oracle.com.

Note: Before sending us your comments, you might like to check 
that you have the latest version of the document and if any concerns 
are already addressed. To do this, access the Online Documentation 
available on the Oracle Technology Network Web site. It contains the 
most current Documentation Library plus all documents revised or 
released recently.



xlvi



xlvii

Preface

The Oracle Retail Operations Guides are designed so that you can view and understand 
the applications’s 'behind-the-scenes' processing.

The Oracle Retail Merchandising Foundation Cloud Service Operations Guide, Volume 2 - 
Message Publication and Subscription Designs provides critical information about the 
processing and operating details of Oracle Retail Merchandising System (RMS), 
including the following:

■ Publication designs which describe, on a technical level, how Merchandising 
publishes messages.

■ Subscription designs which describe, on a technical level, how Merchandising 
subscribes to messages.

Audience
This guide is for: 

■ Systems administration and operations personnel

■ Systems analysts

■ Integrators and implementers 

■ Business analysts who need information about Merchandising System processes 
and interfaces 

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support 
through My Oracle Support. For information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Retail Integration 
Bus documentation set:

■ Oracle Retail Merchandising Foundation Cloud Service Release Notes



xlviii

■ Oracle Retail Merchandising Foundation Cloud Service Operations Guide, Volume 1 - 
Batch Overviews and Designs

■ Oracle Retail Merchandising Foundation Cloud Service Administration Guide

■ Oracle Retail Merchandising Foundation Cloud Service Implementation Guide

■ Oracle Retail Merchandising Foundation Cloud Service Deals and Cost Changes User 
Guide

■ Oracle Retail Merchandising Foundation Cloud Service Do the Basics Changes User 
Guide

■ Oracle Retail Merchandising Foundation Cloud Service Finance User Guide

■ Oracle Retail Merchandising Foundation Cloud Service Foundation Data User Guide

■ Oracle Retail Merchandising Foundation Cloud Service Franchise User Guide

■ Oracle Retail Merchandising Foundation Cloud Service Inventory User Guide

■ Oracle Retail Merchandising Foundation Cloud Service Items User Guide

■ Oracle Retail Merchandising Foundation Cloud Service Pricing User Guide

■ Oracle Retail Merchandising Foundation Cloud Service Purchase Orders and Contracts 
User Guide

■ Oracle Retail Merchandising Foundation Cloud Service Replenishment User Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to re-create

■ Exact error message received

■ Screen shots of each step you take

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content, 
Oracle Retail documentation may be republished whenever a critical correction is 
needed. For critical corrections, the republication of an Oracle Retail document may at 
times not be attached to a numbered software release; instead, the Oracle Retail 
document will simply be replaced on the Oracle Technology Network Web site, or, in 
the case of Data Models, to the applicable My Oracle Support Documentation 
container where they reside.

This process will prevent delays in making critical corrections available to customers. 
For the customer, it means that before you begin installation, you must verify that you 
have the most recent version of the Oracle Retail documentation set. Oracle Retail 
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html



xlix 

An updated version of the applicable Oracle Retail document is indicated by Oracle 
part number, as well as print date (month and year). An updated version uses the 
same part number, with a higher-numbered suffix. For example, part number 
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all 
previous versions.

Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com)
Oracle Retail product documentation is also available on the following Web site:

https://docs.oracle.com/en/industries/retail/index.html

(Data Model documents can be obtained through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.

https://docs.oracle.com/en/industries/retail/index.html


l



1

Introduction 1-1

1Introduction

Merchandising Operations Guide, Volume 2-Message Publication and Subscription 
Designs contains detailed technical information about how Merchandising interacts 
with the Oracle Retail Integration Bus (RIB). 

Message Publication and Subscription Designs
Oracle Retail Integration Bus (RIB) Merchandising functional overview are 
incorporated into the publication and subscription designs. The retailer can extract the 
business rationale behind each publication or subscription as well as the technical 
details that describe, on a technical level, how Merchandising publishes messages to 
the RIB or how Merchandising subscribes to the message from the RIB. 

External Subscription RIB Application Programming Interface
Subscription Application Programming Interface (API) that is designated as External is 
a set of interfaces designed for external systems that maintain the applicable data. 
Merchandising subscribes to consume the data when it is published so that the 
corresponding data in Merchandising can be kept in sync with the external system that 
maintains the data.

Parallel processing for Performance Purpose 
Parallel processing threading capability for a message family is limited by the parallel 
processing support in the publishing performed by applications. For example, the 
Inventory Adjustment (InvAdjust) message family is published by the Oracle Retail 
Warehouse Management System (RWMS) and subscribed by Merchandising. Because 
RWMS supports only single process publishing, Merchandising needs to be set up for 
single process subscription for the InvAdjust message family.

The majority of publishing and all of the subscribing APIs support parallel processing. 
The APIs that do and do not support parallel processing publication are listed in the 
following:

Subscription APIs
■ All Merchandising subscription APIs support parallel processing.

Publishing APIs
The following Merchandising publishing APIs support parallel processing:

■ RMSMFM_ALLOCB (Allocations Publication API)

■ RMSMFM_ITEMLOCB (Item Location Publication API)



Web Service Provider Implementations API Designs

1-2 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ RMSMFM_ITEMSB (Item Publication API)

■ RMSMFM_MERCHHIERB (Merchandise Hierarchy Publishing API)

■ RMSMFM_ORDERB (Order Publication API)

■ RMSMFM_RCVUNITADJB (Receiver Unit Adjustment Publication API)

■ RMSMFM_RTVREQB (RTV Request Publication API)

■ RMSMFM_SHIPMENTB (ASNOUT Publication API)

■ RMSMFM_TRANSFERSB (Transfers Publication API)

■ RMSMFM_WOINB (Work Orders in Publication API)

■ RMSMFM_WOOUTB (Work Orders out Publication API)

The following Merchandising publishing APIs do not support parallel processing:

■ RMSMFM_BANNERB (Banner Publication API)

■ RMSMFM_DIFFGRPB (Differentiator Groups Publication API)

■ RMSMFM_DIFFIDB (Differentiator ID Publication API)

■ RMSMFM_DLVYSLTB (Delivery Slot Publication API)

■ RMSMFM_PARTNERB (Partner Publication API)

■ RMSMFM_SEEDDATAB (Seed Data Publication API)

■ RMSMFM_SEEDOBJB (Seed Object Publication API)

■ RMSMFM_STOREB ()

■ RMSMFM_SUPPLIERB

■ RMSMFM_UDAB (UDA Publication API)

■ RMSMFM_WHB (Warehouse Publication API)

Web Service Provider Implementations API Designs
The Web Service Provider Implementations API Designs chapters provide a high level 
overview of the SOAP and ReST APIs. The implementation of these services, along 
with the associated Web Service Definition Language (WSDL) or Web Application 
Description Language (WADL), may be used to get a full understanding of the data 
requirements, validation rules, persistence rules, and return values associated with the 
service.



2

RIB Publication Designs 2-1

2RIB Publication Designs

This chapter provides an overview of the RIB publication APIs used in by 
Merchandising.

Allocations Publication API
This section describes the allocations publications API.

Functional Area
Allocations

Business Overview
Merchandising is responsible for communicating allocation information with external 
systems such as Oracle Retail Store Inventory Management (SIM) or Oracle Retail 
Warehouse Management System (RWMS).

Allocation data enters Merchandising through the following ways: 

■ Through the Oracle Retail Allocation.

These allocations are written to the ALLOC_HEADER and ALLOC_DETAIL tables 
in 'R'- Reserved or 'A'- Approved status. Once a detail and a header message have 
been queued and approved, a message is published to the RIB. 

■ Through the semi-automatic ordering option.

Using this replenishment method, allocations and orders are inserted into the 
ALLOC_HEADER and ALLOC_DETAIL tables in worksheet status to be 
manually approved. In order for allocation messages to be published to the RIB, 
the allocation must at least be in approved status. Worksheet messages remain on 
the queue and combined until they are approved. When it is approved, the created 
message is published to the RIB. 

■ Through automatic replenishment allocations.

These allocations are initially set in worksheet status and are approved by the 
RPLAPPRV.PC batch program (Replenishment Approve). Only messages for 
approved allocations are published to the RIB.

■ Through the Allocation subscription RIB API. 

■ Either a 3rd party Merchandise System or AIP can create allocations in 
Merchandising. Once approved, these allocations are published to the RIB. 



Allocations Publication API

2-2 Operations Guide Volume 2 - Message Publication and Subscription Designs

Allocations can be created from a warehouse to any type of stockholding location in 
Merchandising, including both company and franchise stores. Allocations include a 
store type and stockholding indicator at the detail level when allocating to stores, to 
allow SIM and RWMS to filter out the data irrelevant to their respective systems. 
When allocating to a franchise store, the linked franchise orders are not published; 
only the allocation itself is published.

An allocation and its details are not published until it is approved. Modified and 
deleted allocation information is also sent to the RIB. Allocation header modification 
messages will be sent if the status of the allocation is changed to 'C' - closed or if the 
allocation release date is changed. Allocation detail modification messages will be sent 
if the allocated quantity is changed. A header delete message signifies that the 
complete allocation can be deleted.

When publishing a header mod or a detail create, detail mod, detail delete message, a 
second full replacement message with message type 'AllocFulRep' will be published 
from Merchandising if system option PUB_FULL_OBJECTS_IND is configured to be Y 
on the PRODUCT_CONFIG_OPTIONS table. This message payload will contain a full 
snapshot of the allocation. Based on the message type, RIB will route the full 
replacement message to appropriate applications.

Package Impact
This section describes the package impact.

Business Object ID
Allocation number

Create Header
1. Prerequisites: Allocation can be created in one of the following manners: via the 

stand-alone allocations product, semi-automatic ordering, automatic ordering 
replenishment, or Allocation subscription API. 

2. Activity Detail: Once an allocation exists in Merchandising it can be modified and 
details can be attached.

3. Messages: When an allocation is created an Allocation Create message request is 
queued. The Allocation Create message is a flat message containing a full snapshot 
of the allocation at the time the message is published. The message will not be sent 
until detail records have been queued and the allocation has been approved.

Modify Header
1. Prerequisites: An allocation must exist before it can be modified.

2. Activity Detail: The user is allowed to change the status of the allocation to 'A'- 
Approved or 'C'- Closed. This change is of interest to other systems and so this 
activity results in the publication a message. 

3. Messages: When an allocation is modified, an Allocation Header Modified 
message request is queued. The Allocation Header Modified message is a flat 
message containing a full snapshot of the allocation header at the time the 
message is published. For any AllocHdrMod, a second full replacement message 
(AllocFulRep) is inserted into the queue if PUB_FULL_OBJECTS_IND on 
PRODUCT_CONFIG_OPTIONS is configured to be Y.



Allocations Publication API

RIB Publication Designs 2-3

Create Detail
1. Prerequisites: An allocation header must exist before an allocation detail can be 

created or interfaced into Merchandising. Once in Merchandising, the allocation 
can only be modified by changing its allocated quantity. 

2. Activity Detail: an Allocation Detail Create message is only queued if a Create 
Header message is also on the queue for the same allocation.

3. Messages: When an allocation detail is created, an Allocation Detail Created 
message request is queued. The Allocation Detail Create message is a flat message 
containing a full snapshot of the allocation detail at the time the message is 
published. If an Allocation Create message is also in the queue for the same 
allocation, the two messages are combined and sent as one message. When a detail 
create (AllocDtlCre) message is added to the queue, a second full replacement 
message (AllocFulRep) is inserted into the queue if PUB_FULL_OBJECTS_IND on 
PRODUCT_CONFIG_OPTIONS is configured to be Y.

Modify Detail
1. Prerequisites: An allocation detail must exist to be modified.

2. Activity Detail: The user is allowed to change allocation quantities provided they 
are not reduced below those already recorded as received. This change is of 
interest to other systems and so this activity results in the publication of a 
message. 

3. Messages: When an allocation is modified an Allocation Detail Modified message 
request is queued. The Allocation Detail Modified message is a flat message 
containing a full snapshot of the allocation detail at the time the message is 
published. When a detail create (AllocDtlMod) message is added to the queue, a 
second full replacement message (AllocFulRep) is inserted into the queue if PUB_
FULL_OBJECTS_IND on PRODUCT_CONFIG_OPTIONS is configured to be Y.

Approve
1. Prerequisites: An allocation must exist in Merchandising before it can be 

approved. Those allocations created from other sources can be entered into 
Merchandising in approved status.

2. Activity Detail: Once an allocation as been approved, it will be published from 
Merchandising.

3. Messages: When the allocation is approved an Allocation Header Modified 
message is queued. This message will be combined with any Allocation Create 
and Allocation Detail Create message to form the message that is sent to the RIB.

Close
1. Prerequisites: An allocation must be approved before it can be closed.

2. Activity Detail: Closing an allocation changes the status, which prevents further 
receiving or modification of the allocation. When an allocation is closed, a message 
is published to update other systems regarding the status change.

3. Messages: Closing an allocation queues an Allocation Header Modified message 
request. This is a flat message containing a full snapshot of the allocation at the 
time that the message is published. 



Allocations Publication API

2-4 Operations Guide Volume 2 - Message Publication and Subscription Designs

Delete
1. Prerequisites: An allocation can only be deleted when it is still in approved status 

or when it has been closed. 

2. Activity Detail: Deleting an allocation removes it from the system. External 
systems are notified by a published message.

3. Message: When an allocation is deleted, an Allocation Header Deleted message, 
which is a flat notification message, is queued. 

Package Name: RMSMFM_ALLOC
Body File Name: rmsmfm_allocb.pls

Package Specification - Global Variables  

FAMILY         CONSTANT  VARCHAR2(30) := 'alloc';
HDR_ADD        CONSTANT  VARCHAR2(30) := 'AllocCre';
HDR_UPD        CONSTANT  VARCHAR2(30) := 'AllocHdrMod';
HDR_DEL        CONSTANT  VARCHAR2(30) := 'AllocDel';
DTL_ADD        CONSTANT  VARCHAR2(30) := 'AllocDtlCre';
DTL_UPD        CONSTANT  VARCHAR2(30) := 'AllocDtlMod';
DTL_DEL        CONSTANT  VARCHAR2(30) := 'AllocDtlDel';

Functional Level Description - ADDTOQ  

FUNCTION ADDTOQ (O_error_msg             OUT   VARCHAR2,
                 I_message_type          IN    ALLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
                 I_alloc_no              IN    ALLOC_HEADER.ALLOC_NO%TYPE,
                 I_alloc_header_status   IN    ALLOC_HEADER.STATUS%TYPE,
                 I_to_loc                IN    ITEM_LOC.LOC%TYPE)

This function is called by the ALLOC_HEADER trigger and the ALLOC_DETAIL 
trigger, ec_table_alh_aiudr and ec_table_ald_aiudr, respectively.

■ For header level insert messages (HDR_ADD), insert a record in the ALLOC_
PUB_INFO table. The published flag will be set to 'N'. The correct thread for the 
business transaction will be calculated and written. Call API_LIBRARY.RIB_
SETTINGS to get the number of threads used for the publisher. The number of 
threads and the business object ID are used to calculate the thread value.

■ For all records except header level inserts (HDR_ADD), the thread_no and initial_
approval_ind will be queried from the ALLOC_PUB_INFO table.

■ If the business transaction has not been approved (initial_approval_ind = 'N') and 
the triggering message is one of DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, 
FUL_REP, no processing will take place and the function will exit.  If the allocation 
has not been published, and message type is FUL_REP, then do not publish. 

■ For detail level message deletes (DTL_DEL), we only need one (the most recent) 
record per detail in the ALLOC_MFQUEUE. Delete any previous records that exist 
on the ALLOC_MFQUEUE for the record that has been passed. If the publish_ind 
is 'N', do not add the DTL_DEL message to the queue.

Note: If the allocation is in closed status, it still cannot be deleted if 
either create or a modify message are pending for the allocation, as 
they need to take full snapshots.



Allocations Publication API

RIB Publication Designs 2-5

■ For detail level message updates (DTL_UPD), we only need one DTL_UPD (the 
most recent) record per detail in the ALLOC_MFQUEUE. Delete any previous 
DTL_UPD records that exist on the ALLOC_MFQUEUE for the record that has 
been passed.

■ For header level delete messages (HDR_DEL), delete every record in the queue for 
that allocation. 

■ For header level update message (HDR_UPD), update the ALLOC_PUB_
INFO.INITIAL_APPROVAL_IND to 'Y' if the allocation is in approved status.

■ For all records except header level inserts (HDR_ADD), insert a record into the 
ALLOC_MFQUEUE.

■ For a full replacement message (FUL_REP), any previous records that exist on the 
ALLOC_MFQUEUE for that message type can be deleted.

It returns a status code of API_CODES.SUCCESS if successful, API_
CODES.UNHANDLED_ERROR if not.

Functional Level Description - GETNXT  

PROCEDURE GETNXT(O_status_code     OUT      VARCHAR2,
                 O_error_msg       OUT      VARCHAR2,
                 O_message_type    OUT      VARCHAR2,
                 O_message         OUT      RIB_OBJECT,
                 O_bus_obj_id      OUT      RIB_BUSOBJID_TBL,
                 O_routing_info    OUT      RIB_ROUTINGINFO_TBL,
                 I_num_threads     IN       NUMBER DEFAULT 1,
                 I_thread_val      IN       NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished 
records on the ALLOC_MFQUEUE table (PUB_STATUS = 'U'). It will only need to 
execute one loop iteration in most cases. For each record retrieved, GETNXT does the 
following:

■ A lock of the queue table for the current business object. The lock is obtained by 
calling the function LOCK_THE_BLOCK. If there are any records on the queue for 
the current business object that are already locked, the current message is skipped.

■ If the lock is successful, a check for records on the queue with a status of 'H'- 
Hospital. If there are any such records for the current business object, GETNXT 
raises an exception to send the current message to the Hospital.

■ The information from the ALLOC_MFQUEUE and ALLOC_PUB_INFO table is 
passed to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build 
the Oracle Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD 
does not run successfully, GETNXT raises an exception.

■ If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY  

PROCEDURE PUB_RETRY

This procedure republishes the entity that failed to be published before. It is the same 
as GETNXT except that the record on ALLOC_MFQUEUE to be published must match 
the passed in sequence number contained in the ROUTING_INFO.

Function Level Description - PROCESS_QUEUE_RECORD (local)  



Allocations Publication API

2-6 Operations Guide Volume 2 - Message Publication and Subscription Designs

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

■ Call API_LIBRARY.RIB_SETTINGS to get the number of threads used for the 
publisher. The number of threads and the business object ID are used to calculate 
the thread value.

■ For a header delete message (HDR_DEL) that has not been initially published, 
simply remove the header delete message from the queue and loop again.

■ For a header delete message (HDR_DEL) that has been initially published i.e. for 
AllocRef.

– Build the Oracle Object to publish to RIB.

– Build the ROUTING_INFO.

– Delete the record from ALLOC_PUB_INFO.

– Delete the record from ALLOC_DETAILS_PUBLISHED.

– Remove the header delete message from the queue (ALLOC_MFQUEUE).

■ If the business object is being published for the first time (that is, if published_ind 
on the pub_info table is 'N'), the business object is being published for the first 
time. If so, call MAKE_CREATE.

■ Otherwise, For a header update message (HDR_UPD).

– Call BUILD_HEADER_OBJECT to build the Oracle Object to publish to the 
RIB.

– Update ALLOC_PUB_INFO with updated new header information.

– Build the ROUTING_INFO.

– Delete the header update message from the queue (ALLOC_MFQUEUE).

■ For a detail add (DTL_ADD) or detail update message (DTL_UPD).

– Call BUILD_DETAIL_CHANGE_OBJECTS to build the Oracle Object to 
publish to the RIB. This will also take care of any ALLOC_MFQUEUE deletes 
and ROUTING_INFO logic.

■ For a detail delete message (DTL_DEL).

– Call BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish 
to the RIB. This will also take care of any ALLOC_MFQUEUE and ALLOC_
DETAILS_PUBLISHED deletes and the ROUTING_INFO logic. 

■ If the message type is FUL_REP:

– Call BUILD_HEADER_OBJECT and BUILD_DETAIL_CHANGE_OBJECTS to 
publish the entire allocation.

– Call DELETE_QUEUE_REC to delete the record from ALLOC_MFQUEUE.

Function Level Description - MAKE_CREATE (local)  This function is used to create the 
Oracle Object for the initial publication of a Business transaction.

■ Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra 
functional holders.

■ Build some or all of the ROUTING_INFO Oracle Object. 



Allocations Publication API

RIB Publication Designs 2-7

■ Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a 
table of ALLOC_MFQUEUE rowids to delete.

■ Use the header level Oracle Object and functional holders to update the ALLOC_
PUB_INFO.

■ Delete records from the ALLOC_MFQUEUE for all rowids returned by BUILD_
DETAIL_OBJECTS. Deletes are done by rowids instead of business transaction 
keys to ensure that nothing is deleted off the queue that has not been published.

■ If the entire business transaction was added to the Oracle Object, also delete the 
ALLOC_MFQUEUE record that was picked up by GETNXT. If the entire business 
transaction was not published, we need to leave something on the ALLOC_
MFQUEUE to ensure that the rest of it is picked up by the next call to GETNXT.

■ The header and detail level Oracle Objects are combined and returned.

Function Level Description - BUILD_HEADER_OBJECT (local)  

Accepts header key values, performs necessary lookups, builds and returns a header 
level Oracle Object.

Optionally can return needed Functional Holders for the ALLOC_PUB_INFO table.

The C_ALLOC_HEAD cursor selects the context fields (context and value) from the 
ALLOC_HEADER table.

The context fields will be passed along in the parameter list of the rib object 
constructor "RIB_AllocDesc_REC()".

Function Level Description - BUILD_DETAIL_OBJECTS (local)  

The function is responsible for building detail level Oracle Objects. It builds as many 
detail Oracle Object as it can given the passed in message type and business object 
keys.

If the function is being called from MAKE_CREATE:

Select any unpublished detail records from the business transaction (use an indicator 
on the functional detail table itself or ALLOC_DETAILS_PUBLISHED). Create Oracle 
Objects for details that are selected by calling BUILD_SINGLE_DETAIL.

■ Ensure that the indicator in the functional detail table is updated as published as 
the detail info are placed into the Oracle Objects

■ Ensure that ALLOC_MFQUEUE is deleted as needed. If there is more than one 
ALLOC_MFQUEUE record for a detail level record, make sure they all get deleted. 
We only care about current state, not every change.  

■ Ensure that ROUTING_INFO is constructed if routing information is stored at the 
detail level in the Business transaction.

If the function is not being called from MAKE_CREATE:

Select any details on the ALLOC_MFQUEUE that are for the same business transaction 
and for the same message type. Create Oracle Objects for details that are selected by 
calling BUILD_SINGLE_DETAIL.

■ If the message type is a detail create (DTL_ADD), ensure that records get inserted 
into ALLOC_DETAILS_PUBLISHED or the indicator in the functional detail table 
is updated as published because the detail info are placed into the Oracle Objects.

■ Ensure that ALLOC_MFQUEUE is deleted from as needed.  



Allocations Publication API

2-8 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Ensure that ROUTING_INFO is constructed if routing information is stored at the 
detail level in the Business transaction.

The deletes are done by ROWID to make sure that records from the queue table that 
has not been published are not deleted.

Function Level Description - BUILD_SINGLE_DETAIL (local)  

Accept inputs and build a detail level Oracle Object. Perform any lookups needed to 
complete the Oracle Object.

Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)  

Either pass in a header level Oracle Object or call BUILD_HEADER_OBJECT to build 
one.

Call BUILD_DETAIL_OBJECTS to get the detail level Oracle Objects.

Perform any BULK DML statements given the output from BUILD_ DETAIL_
OBJECTS and update to ALLOC_DETAILS_PUBLISHED.

Build any ROUTING_INFO as needed.

Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)  

Either pass in a header level delete Oracle Object or build a header level delete Oracle 
Object.

Perform a cursor for loop on ALLOC_MFQUEUE and build the detail delete Oracle 
Objects.

Perform any BULK DML statements for deletion from ALLOC_MFQUEUE and 
update to ALLOC_DETAILS_PUBLISHED.

Build any ROUTING_INFO as needed.

Function Level Description - LOCK_THE_BLOCK (local)  

This function locks all queue records for the current business object. This is to ensure 
that GETNXT does not wait on any business processes that currently have the queue 
table locked and have not committed. This can occur because ADDTOQ, which is 
called from the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and 
HDR_DEL messages.

Function Level Description - HANDLE_ERRORS (local)  

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
ALLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a 
status of 'H' - Hospital to the RIB as well. It then updates the status of the queue record 
to 'H', so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of 'E' - Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H' to 'E'.  

Function Level Description - DELETE_QUEUE_REC (local)  

This function deletes a specific record on ALLOC_MFQUEUE table depending on the 
seq_no. 



Allocations Publication API

RIB Publication Designs 2-9

Function Level Description - GET_ROUTING_TO_LOCS (local)  

This function will get all the values of to_loc_vir from alloc_details_published table 
depending on a given allocation number. 

Perform a cursor for loop that will populate the Oracle Object RIB_ROUTINGINFO_
TBL. 

Function Level Description - GET_NOT_BEFORE_DAYS (local)  

This function checks if the variable (LP_nbf_days) has a value or not. If not, it will 
populate the variable based on code_detail and then assign this value to the variable 
O_days.

Function Level Description - GET_RETAIL (local)  

This function will accept inputs and pass it to PRICING_ATTRIB_SQL.GET_RETAIL 
function to get the retail value of the item.

Function Level Description - CHECK_STATUS (local)  

CHECK_STATUS raises an exception if the status code is set to 'E' - Error. This will be 
called immediately after calling a procedure that sets the status code. Any procedure 
that calls CHECK_STATUS must have its own exception handling section.

Trigger Impact
Trigger name: EC_TABLE_ALH_AIUDR

Trigger file name: ec_table_alh_aiudr.trg

Table: ALLOC_HEADER

■ Inserts: Send the allocation header level information to the ADDTOQ procedure in 
RMSMFM_ALLOC with the message type RMSMFM_ALLOC.HDR_ADD and the 
original message.

■ Updates: Send the allocation header level information to the ADDTOQ procedure 
in the RMSMFM_ALLOC with the message type RMSMFM_ALLOC.HDR_UPD 
and the original message. And optionally, RMSMFM_ALLOC.FUL_REP based on 
system configuration.

■ Deletes: Send the allocation header level info to the ADDTOQ procedure in the 
RMSMFM_ALLOC with the message type RMSMFM_ALLOC.HDR_DEL and the 
original message.

Trigger name: EC_TABLE_ALD_AIUDR

Trigger file name: ec_table_ald_aiudr.trg

Table: ALLOC_DETAIL

■ Inserts: Send the allocation detail level information to the ADDTOQ procedure in 
RMSMFM_ALLOC with the message type RMSMFM_ALLOC.DTL_ADD and the 
original message. And optionally, RMSMFM_ALLOC.FUL_REP based on system 
configuration.

■ Updates: Send the allocation detail level information to the ADDTOQ procedure 
in the RMSMFM_ALLOC with the message type RMSMFM_ALLOC.DTL_UPD 
and the original message. And optionally, RMSMFM_ALLOC.FUL_REP based on 
system configuration.



ASNOUT Publication API

2-10 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Deletes: Send the allocation detail level info to the ADDTOQ procedure in the 
RMSMFM_ALLOC with the message type RMSMFM_ALLOC.DTL_DEL and the 
original message. And optionally, RMSMFM_ALLOC.FUL_REP based on system 
configuration.

Message XSD
Here are the filenames that correspond with each message type. Please consult the 
mapping documents for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
N/A

Table Impact 

ASNOUT Publication API
This section describes the ASNOUT Publication API.

Message Types Message Type Description
SML Schema Definition 
(XSD)

AllocCre Allocation Create Message AllocDesc.xsd

AllocHdrMod Allocation Header Modify 
Message

AllocDesc.xsd

AllocDel Allocation Delete Message AllocRef.xsd

AllocDtlCre Allocation Detail Create Message AllocDesc.xsd

AllocDtlMod Allocation Detail Modify Message AllocDesc.xsd

AllocDtlDel Allocation Detail Delete Message AllocRef.xsd

AllocFulRep Allocation Full Replacement 
Message

AllocDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ALLOC_PUB_INFO Yes Yes Yes No

ALLOC_MFQUEUE Yes Yes No Yes

ALLOC_DETAILS_PUBLISHED Yes Yes Yes Yes

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

ITEM_MASTER Yes No No No

ITEM_TICKET Yes No No No

ITEM_LOC Yes No No No

WH Yes No No No

ORDHEAD Yes No No No

CODE_DETAIL Yes No No No

V_PACKSKU_QTY Yes No No No



ASNOUT Publication API

RIB Publication Designs 2-11

Functional Area
AsnOut

Business Overview
ASNOUT means the outbound message of Advanced Shipment Notification. The ASN 
out message is used to ship the merchandise against transfers or allocations. This 
message is published by Merchandising to stores or warehouses. 

Merchandising supports the following shipping functionality:

■ On-line Shipping/Receiving.

■ Franchise Order Shipment and Return.

On-line Shipping/Receiving
Two system options (ship_rcv_store and ship_rcv_wh) are used to control whether 
Merchandising on-line shipment/receiving functionality is enabled. 

■ Ship_rcv_store = 'Y' means a store inventory management application, such as 
Oracle Retail SIM, is NOT installed and shipping/receiving for stores will be done 
in Merchandising. 

■ Ship_rcv_wh = 'Y' means a warehouse management system, such as RWMS, is 
NOT installed and shipping/receiving for warehouses will be done in 
Merchandising. 

If either (but not both) of these indicators is set to 'Y', shipments created in 
Merchandising should be published to the RIB to allow the integration subsystem 
application to have visibility to the corporately created shipment. 

The possible scenarios for on-line shipping/receiving: 

Merchandising on-line shipping can involve a customer order transfer (tsf_type = 
'CO'). For a customer order transfer, customer order number, and fulfillment order 
number are pulled from the ORDCUST table and included in the published 
information. 

SIM 
Installed 
(Yes/No)

RWMS 
Installed 
(Yes/No)

System Options 
Settings

Merchandising 
Publishes 
Shipments 
(Yes/No)

Apps to 
subscribe to the 
message 
(SIM/RWMS)

Yes Yes Ship_rcv_store = N

Ship_rcv_wh = N

No No

No No Ship_rcv_store = Y

Ship_rcv_wh = Y

No No

Yes No Ship_rcv_store = N

Ship_rcv_wh = Y

Yes - for 
warehouse-to-st
ore shipments

SIM

No Yes Ship_rcv_store = Y

Ship_rcv_wh = N

Yes - for 
store-to-wareho
use shipments

RWMS



ASNOUT Publication API

2-12 Operations Guide Volume 2 - Message Publication and Subscription Designs

Franchise Order Shipment and Return
Franchise stores are a special kind of stores that are not 'owned' by the company; 
therefore any shipment to a franchise store is considered a sale. From Merchandising, 
franchise stores can order goods from company stores or warehouses; they can also 
return goods back to company stores or warehouses. These orders and returns are 
created as transfers in Merchandising. 

Merchandising supports two kinds of franchise stores - stockholding franchise stores 
(which Merchandising manages inventory and financials like regular stores) and 
non-stockholding franchise stores (which Merchandising does NOT manage inventory 
and financials).

SIM manages transactions for stockholding franchise stores, but not for 
non-stockholding franchise stores. The Shipping and Receiving of non-stockholding 
franchise orders and returns are handled within Merchandising from the Store 
perspective even if SIM is installed.

For warehouses, if a franchise return from a non-stockholding franchise store is to be 
processed, RWMS will require an ASN against which to receive. Since Merchandising 
automatically creates the shipment for non-stockholding stores upon the approval of a 
franchise return, Merchandising needs to publish those shipments for RWMS. Similar 
to on-line Shipping/Receiving, Merchandising publishes shipments of 
non-stockholding Franchise Returns to warehouses as ASNOut messages.

Package Impact
This section describes the package impact.

Business Object ID
Shipment number

Package name: RMSMFM_SHIPMENT
Function Level Description - ADDTOQ

ADDTOQ (O_error_message   IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
        I_message_type    IN       SHIPMENT_PUB_INFO.MESSAGE_TYPE%TYPE,
        I_shipment        IN       SHIPMENT.SHIPMENT%TYPE,
        I_to_loc          IN       SHIPMENT.TO_LOC%TYPE,
        I_to_loc_type     IN       SHIPMENT.TO_LOC_TYPE%TYPE)
■ Shipments created in Merchandising cannot be modified. Upon saving a shipment, 

the entire shipment is published from Merchandising as one ASNOut message. As 
a result, Merchandising only needs to support the ASNOut create message type 
('asnoutcre') for shipment publishing.

■ Validate all the input parameters to this function against NULL. If any has a NULL 
value then return from the function with the appropriate error message.

■ Insert a record in the SHIPMENT_PUB_INFO table. The published flag will be set 
to 'U'. The correct thread for the business transaction will be calculated and 
written. Call API_LIBRARY. GET_RIB_SETTINGS to get the number of threads 
used for the publisher. Using the number of threads, and the business object ID 
(For example, shipment number), calculate the thread value. 

Function Level Description - GETNXT
GETNXT (O_status_code     IN OUT   VARCHAR2,
        O_error_message   IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
        O_message_type    IN OUT   VARCHAR2,



ASNOUT Publication API

RIB Publication Designs 2-13

        O_message         IN OUT   RIB_OBJECT,
        O_bus_obj_id      IN OUT   RIB_BUSOBJID_TBL,
        O_routing_info    IN OUT   RIB_ROUTINGINFO_TBL,
        I_num_threads     IN       NUMBER DEFAULT 1,
        I_thread_val      IN       NUMBER DEFAULT 1)
Initialize LP_error_status to API_CODES.HOSPITAL at the beginning of GETNXT.

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished 
records on the SHIPMENT_PUB_INFO table (PUB_STATUS = 'U'). It will only execute 
one loop iteration in most cases. For each record retrieved, GETNXT gets the 
following:

1. A lock of the queue table for the current business objects (i.e. shipment number). 
The lock is obtained by calling the function LOCK_THE_BLOCK. If there are any 
records on the queue for the current business object that are already locked, the 
current message is skipped.

2. A check for records on the queue with a status of 'H' -Hospital. If there are any 
such records for the current business object, GETNXT raises an exception to send 
the current message to the Hospital.

3. The information from the SHIPMENT_PUB_INFO table is passed to PROCESS_
QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object 
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run 
successfully, GETNXT raises an exception.

4. If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

5. Unconditionally exit from the loop after the successful processing of PROCESS_
QUEUE_RECORD function, assuming the shipment is published successfully.

If the O_message from PROCESS_QUEUE_RECORD is NULL then, send NO_MSG in 
the status_code otherwise send the NEW_MSG in the status_code with the shipment 
number as business object Id. Also, send the message type as "asnoutcre".

Function Level Description - PUB_RETRY
PUB_RETRY (O_status_code     IN OUT   VARCHAR2, 
           O_error_message   IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
           O_message_type    IN OUT   VARCHAR2,
           O_message         IN OUT   RIB_OBJECT,
           O_bus_obj_id      IN OUT   RIB_BUSOBJID_TBL,
           O_routing_info    IN OUT   RIB_ROUTINGINFO_TBL,
           I_ref_object      IN       RIB_OBJECT)
This procedure republishes the entity that failed to be published before. It is the same 
as GETNXT except that the record on SHIPMENT_PUB_INFO to be published must 
match the passed in sequence number contained in the ROUTING_INFO.

Function Level Description - PROCESS_QUEUE_RECORD (local)
PROCESS_QUEUE_RECORD (O_error_message IN OUT        RTK_ERRORS.RTK_TEXT%TYPE,
                      O_message       IN OUT NOCOPY RIB_OBJECT,
                      O_routing_info  IN OUT NOCOPY RIB_ROUTINGINFO_TBL,
                      O_bus_obj_id    IN OUT NOCOPY RIB_BUSOBJID_TBL,
                      I_shipment      IN            SHIPMENT.SHIPMENT%TYPE,
                      I_seq_no        IN            SHIPMENT_PUB_INFO.SEQ_NO%TYPE)
This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.



ASNOUT Publication API

2-14 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ The correct thread for the business transaction will be calculated and written. Call 
API_LIBRARY. GET_RIB_SETTINGS to get the number of threads used for the 
publisher. Using the number of threads, and the business object ID (for example, 
shipment number), calculate the thread value.

■ Build the header and detail object by calling BUILD_HEADER_OBJECT.

■ Delete the current record from the queue (i.e. shipment_pub_info table) by calling 
UPDATE_QUEUE_REC function.

Function Level Description - BUILD_HEADER_OBJECT (local)
BUILD_HEADER_OBJECT (
  O_error_message       IN OUT         RTK_ERRORS.RTK_TEXT%TYPE,
  O_rib_asnoutdesc_rec  IN OUT         "RIB_ASNOutDesc_REC",
  O_routing_info        IN OUT NOCOPY  RIB_ROUTINGINFO_TBL,
  I_shipment            IN             SHIPMENT_PUB_INFO.SHIPMENT%TYPE)
■ Take all necessary data from the SHIPMENT table for the current shipment and 

put it into a "RIB_ASNOutDesc_REC" object. In addition, publish a schedule_
number of NULL and auto_receive_ind of 'N' to the "RIB_ASNOutDesc_REC" 
object.

■ The routing information has to be sent to RIB through RIB_ROUTINGINFO_REC. 
This routing info is for FROM location, TO location and source application 
(Merchandising) from which RIB receives the information. The routing location 
type for the TO location will be set to 'V' for the non stockholding company stores 
(i.e. virtual stores). Else, it will be set to 'S'. This is to ensure that shipment to a 
virtual store is not routed to SIM.

■ If the destination location is Store then, set the asn_type as 'C' (Customer Store) 
and get the information about the store by calling STORE_ATTRIB_SQL.GET_
INFO. Else, set the asn_type to 'T' (wh transfer) and get the information about WH 
by calling WH_ATTRIB_SQL.GET_WH_INFO function.

■ Call the BUILD_DETAIL_OBJECTS to get the details of the current shipment 
record.

■ The container_qty is a required field on the RIB object. So, Merchandising sends 1 
instead of NULL in SHIPMENT.NO_BOXES if it is NULL.

Function Level Description - BUILD_DETAIL_OBJECTS (local)
BUILD_DETAIL_OBJECTS (O_error_message         IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                      O_rib_asnoutdistro_tbl  IN OUT   "RIB_ASNOutDistro_TBL",
                      I_shipment_rec          IN       SHIPMENT%ROWTYPE)
The function is responsible for building detail level Oracle Objects. It builds as many 
detail Oracle Object as it can given the passed in message type and business object 
keys.

■ Fetch the detail records of the shipment from SHIPSKU for the given shipment 
number.

■ If the distro_type is 'T' then, get the transfer details by calling the TSF_ATTRIB_
SQL.GET_TSFHEAD_INFO function. Else, get the corresponding allocation details 
from the alloc_detail table for the current distro_no and to_location.

■ If the freight_code is 'E'xpedite then, set the expedite flag to 'Y' otherwise 'N'.

■ When the transfer type is Customer Order "CO", the corresponding customer 
order number and fulfillment order number from the ORDCUST table will be 
published in the distro record. 



ASNOUT Publication API

RIB Publication Designs 2-15

■ Assign the above details into "RIB_ASNOutItem_REC", "RIB_ASNOutCtn_REC" 
and "RIB_ASNOutDistro_REC" records.

■ Because the container_qty and container_id are the mandatory fields, 
Merchandising will send "1" for container_qty and "0" for container_id instead of 
NULL.

Function Level Description - LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure 
that GETNXT does not wait on any business processes that currently have the queue 
table locked and have not committed.

Function Level Description - HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
SHIPMENT_PUB_INFO record back to the RIB in the ROUTING_INFO. It sends back 
a status of 'H' - Hospital to the RIB as well. It then updates the status of the queue 
record to 'H', so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of 'E' - Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H' to 'E'.

Function Level Description - UPDATE_QUEUE_REC (local)
UPDATE_QUEUE_REC is called from PROCESS_QUEUE_RECORD once a queue 
record is formed from SHIPMENT_PUB_INFO table. This will update the pub_status 
to 'P' so as not to pick-up the same record again.

Trigger Impact
Trigger name: EC_TABLE_SPT_AIR

Trigger file name: ec_table_spt_air.trg

Table: SHIPMENT_PUB_TEMP

A trigger on the SHIPMENT_PUB_TEMP table will capture the inserts. 

■ Send the appropriate column values to the ADDTOQ procedure in the MFM with 
the message type asnoutcre.

Message XSD
Here is the filename that corresponds with the message type. Please consult the RIB 
documentation for this message type in order to get a detailed picture of the 
composition of the message.

Design Assumptions
■ Push off all DML statements as late as possible. Once DML statements have taken 

place, any error becomes a fatal error rather than a hospital error.

Message Types Message Type Description XML Schema Definition (XSD)

asnoutcre ASN Out Create Message ASNOutDesc.xsd



Available Inventory for Store Publication API

2-16 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ ASNOut messages published from Merchandising should NOT go back to 
Merchandising again.

■ ASNOut messages published from Merchandising are intended for execution 
systems like SIM and RWMS. They are never routed to Order Management System 
(OMS). OMS is responsible for managing the order through its lifecycle from 
capture at the Online Order Capture (OOC) through fulfillment.

Table Impact 

Available Inventory for Store Publication API

Functional Area
Foundation Data

Business Overview
The existing bulk store inventory feed needs to be updated to better support OMS 
requirements for ordering. The current bulk inventory feed does not consider 
customer orderable locations and does not consider pack component inventory. The 
following updates are required:

■ Consider only sellable items (item_master.sellable_ind = Y)

■ Include only stores that are customer orderable locations (store.customer_order_
loc_ind = Y) and stockholding (store.stockholding_ind = Y)

The revised calculation should be as follows:

■ Additions:

– Stock On Hand

■ Subtractions:

– Transfer Reserved Quantity

– Customer Reserved Quantity

– Non-Sellable Quantity

– RTV Quantity

Package Impact
File name: rmsmfm_coinvavails/b.pls

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes No No No

SHIPSKU Yes No No No

SHIPMENT_PUB_INFO Yes Yes Yes No

ORDCUST Yes No No No

TSFHEAD Yes No No No

ALLOC_DETAIL Yes No No No



Available Inventory for Store Publication API

RIB Publication Designs 2-17

Function Level Description - ADDTOQ
Function: ADDTOQ(
           O_error_message          OUT  VARCHAR2,
           I_message_type           IN   ITEM_LOC_SOH_MFQUEUE.MESSAGE_TYPE%TYPE,
           I_item_loc_soh_record    IN   ITEM_LOC_SOH%ROWTYPE)

This public function puts an item location stock on hand message on ITEM_LOC_
SOH_MFQUEUE for publishing to the RIB. It is called from item_loc_soh trigger 
where loc_type = 'S'. It also checks if the item is a sellable item and it also checks if the 
store is a customer_order_loc_ind = 'Y'.

Function Level Description - GETNXT
Procedure: GETNXT
        (O_status_code      OUT  VARCHAR2,
         O_error_msg        OUT  VARCHAR2,
         O_message_type     OUT  VARCHAR2,
         O_message          OUT  RIB_OBJECT,
         O_bus_obj_id       OUT  RIB_BUSOBJID_TBL,
         O_routing_info     OUT  RIB_ROUTINGINFO_TBL,
         I_num_threads   IN      NUMBER DEFAULT 1,
         I_thread_val    IN      NUMBER DEFAULT 1)

This public procedure is called from the RIB to get the next messages. It performs a 
cursor loop on the unpublished records on the ITEM_LOC_SOH_MFQUEUE table 
(PUB_STATUS = 'U').

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY
Procedure: PUB_RETRY
        (O_status_code      OUT     VARCHAR2,
         O_error_msg        OUT     VARCHAR2,
         O_message          OUT     RIB_OBJECT,
         O_message_type  IN OUT     VARCHAR2,
         O_bus_obj_id    IN OUT     RIB_BUSOBJID_TBL,
         O_routing_info  IN OUT     RIB_ROUTINGINFO_TBL)

This public procedure performs the same tasks as GETNXT except that it only loops 
for a specific row in the ITEM_LOC_SOH_MFQUEUE table. The record on ITEM_
LOC_SOH_MFQUEUE must match the passed in sequence number (contained in the 
ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the 
business transaction's key values and a message type. It contains all of the shared 
processing between GETNXT and PUB_RETRY. 

Function Level Description - HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is 
raised. I_seq_no is the sequence number of the driving ITEM_LOC_SOH_MFQUEUE 
record. 



Available Inventory for WH Publication API

2-18 Operations Guide Volume 2 - Message Publication and Subscription Designs

If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the 
driving ITEM_LOC_SOH_MFQUEUE record back to the RIB in the ROUTING_INFO. 
It sends back a status of 'H' - Hospital to the RIB as well.  It then updates the status of 
the queue record to 'H', so that it will not get picked up again by the driving cursor in 
GETNXT. 

If the error is a fatal error, a status of 'E' - Error is returned to the RIB. The error is 
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then 
the global variable LP_error_status is flipped from 'H' to 'E'.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Table Impact

Design Assumptions
Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

Available Inventory for WH Publication API
This section describes the Available Inventory for WH Publication API.

Functional Area
Foundation Data

Business Overview
The existing bulk warehouse inventory feed needs to be updated to better support 
OMS requirements for ordering. The current bulk inventory feed does not consider 
customer orderable locations and does not consider pack component inventory.  The 
following updates are required:

■ Consider only sellable items (item_master.sellable_ind = Y)

■ Include pack inventory buckets in the calculation

■ Include only warehouses that are customer orderable locations (wh.customer_
order_loc_ind = Y)

The revised calculation will be:

■ Additions:

Message Types Message Type Description XML Schema Definition (XSD)

COInvAvailMod Customer Order Store 
Inventory Available

COInvAvailDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH_MFQUEUE Yes Yes Yes Yes



Available Inventory for WH Publication API

RIB Publication Designs 2-19

– Stock On Hand

– Pack Component SOH

■ Subtractions:

– Transfer Reserved Quantity

– Pack Component Reserved

– Customer Reserved Quantity

– Pack Component Customer Reserved

– Non-Sellable Quantity

– Pack Component Non-Sellable

– Backorder

– Pack Component Backorder

– RTV Quantity

Package Impact
File name: rmsmfm_coinvavails/b.pls

Function Level Description - ADDTOQ
Function: ADDTOQ(O_error_message      OUT  VARCHAR2,
             I_message_type         IN   ITEM_LOC_SOH_MFQUEUE.MESSAGE_TYPE%TYPE,
             I_item_loc_soh_record  IN   ITEM_LOC_SOH%ROWTYPE)
This public function puts an item location stock on hand message on ITEM_LOC_
SOH_MFQUEUE for publishing to the RIB. It is called from item_loc_soh trigger 
where loc_type = 'W. It also checks if the item is a sellable item and it also checks if the 
WH is a customer_order_loc_ind = 'Y'.

Function Level Description - GETNXT
Procedure: GETNXT
        (O_status_code     OUT   VARCHAR2,
         O_error_msg       OUT   VARCHAR2,
         O_message_type    OUT   VARCHAR2,
         O_message         OUT   RIB_OBJECT,
         O_bus_obj_id      OUT   RIB_BUSOBJID_TBL,
         O_routing_info    OUT   RIB_ROUTINGINFO_TBL,
         I_num_threads     IN    NUMBER DEFAULT 1,
         I_thread_val      IN    NUMBER DEFAULT 1)
This public procedure is called from the RIB to get the next messages. It performs a 
cursor loop on the unpublished records on the ITEM_LOC_SOH_MFQUEUE table 
(PUB_STATUS = 'U'). 

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY
Procedure: PUB_RETRY
        (O_status_code      OUT     VARCHAR2,
         O_error_msg        OUT     VARCHAR2,
         O_message          OUT     RIB_OBJECT,
         O_message_type  IN OUT     VARCHAR2,



Banner Publication API

2-20 Operations Guide Volume 2 - Message Publication and Subscription Designs

         O_bus_obj_id    IN OUT     RIB_BUSOBJID_TBL,
         O_routing_info  IN OUT     RIB_ROUTINGINFO_TBL)
This public procedure performs the same tasks as GETNXT, except that it only loops 
for a specific row in the ITEM_LOC_SOH_MFQUEUE table. The record on ITEM_
LOC_SOH_MFQUEUE must match the passed in sequence number (contained in the 
ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the 
business transaction's key values and a message type. It contains all of the shared 
processing between GETNXT and PUB_RETRY.

Function Level Description - HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is 
raised. I_seq_no is the sequence number of the driving ITEM_LOC_SOH_MFQUEUE 
record.

If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the 
driving ITEM_LOC_SOH_MFQUEUE record back to the RIB in the ROUTING_INFO. 
It sends back a status of 'H' - Hospital to the RIB as well. It then updates the status of 
the queue record to 'H', so that it will not get picked up again by the driving cursor in 
GETNXT. 

If the error is a fatal error, a status of 'E' - Error is returned to the RIB. The error is 
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then 
the global variable LP_error_status is flipped from 'H' to 'E'.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Table Impact

Design Assumptions
Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

Banner Publication API
This section describes the banner publication API.

Data Flow Description XML Schema Definition (XSD)

COInvAvailMod Customer Order WH 
Inventory Available

COInvAvailDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH_MFQUEUE Yes Yes Yes Yes



Banner Publication API

RIB Publication Designs 2-21

Functional Area
Foundation

Business Overview
Merchandising publishes messages about banners and channels to the Oracle Retail 
Integration Bus (RIB). A banner provides a means of grouping channels thereby 
allowing the customer to link all brick and mortar stores, catalogs, and web stores. The 
BANNER table holds a banner identifier and name. The CHANNELS table shows all 
channels and any associated banner identifiers. 

The following diagram shows a sample of the structure of banners and channels 
within a corporation.

Figure 2–1 Banners and Channels Within a Corporation

Banner/channel publication consists of a single flat message containing information 
from the tables BANNER and CHANNELS. One message is synchronously created 
and placed in the message queue each time a record is created, modified, or deleted. 
When a record is created or modified, the flat message contains several attributes of 
the banner/channel. When a record is deleted, the message contains the unique 
identifier of the banner/channel. Messages are retrieved from the message queue in 
the order they were created.

Package Impact
This section describes the package impact.

Create
1. Prerequisites: For channel creation, the associated banner must have been created.

2. Activity Detail: Once a banner/channel has been created, it is ready to be 
published. An initial publication message is made.

3. Messages: A "Banner Create" / "Channel Create" message is queued. This message 
is a flat message that contains a full snapshot of the attributes on the BANNER or 
CHANNEL table.



Banner Publication API

2-22 Operations Guide Volume 2 - Message Publication and Subscription Designs

Modify
1. Prerequisites: banner/channel has been created.

2. Activity Detail: The user is allowed to change attributes of the banner/channel. 
These changes are of interest to other systems and so this activity results in the 
publication of a message.

3. Messages: Any modifications will cause a "banner modify" / channel modify" 
message to be queued. This message contains the same attributes as the "banner 
create" / "channel create" message.

Delete
1. Prerequisites: banner/channel has been created.

2. Activity Detail: Deleting a banner/channel removes it from the system. External 
systems are notified by a published message.

3. Messages: When a banner/channel is deleted, a "Banner Delete" / "Channel 
Delete" message, which is a flat notification message, is queued. The message 
contains the banner/channel identifier.

Package name: RMSMFM_banner

Spec file name: rmsmfm_banners.pls

Body file name: rmsmfm_bannerb.pls

Package Specification - Global Variables: None

Function Level Description - ADDTOQ  
PROCEDURE ADDTOQ(O_status             OUT   VARCHAR2,
                 O_text               OUT   VARCHAR2,
                 I_banner_message  IN       BANNER_MFQUEUE%ROWTYPE)

This procedure is called by the trigger EC_TABLE_BAN_AIUDR and takes the 
message type, banner_id and channel_value if there is one in the message itself. It 
inserts a row into the BANNER_MFQUEUE, along with the passed-in values and the 
next sequence number from the BANNER_MFSEQUENCE, setting the status to 
‘U’npublished. It returns a status code of API_CODES.SUCCESS if successful, and 
API_CODES.UNHANDLED_ERROR if not.

Function Level Description - GETNXT  
PROCEDURE GETNXT(O_status_code        OUT   VARCHAR2,
                 O_error_message      OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                 O_message_type       OUT   VARCHAR2,
                 O_message            OUT   RIB_OBJECT,
                 O_bus_obj_id         OUT   RIB_BUSOBJID_TBL,
                 O_routing_info       OUT   RIB_ROUTINGINFO_TBL,
                 I_num_threads     IN       NUMBER DEFAULT 1,
                 I_thread_val      IN       NUMBER DEFAULT 1)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its 
parameters are well defined and arranged in a specific order. 

The procedure will use the defined C_GET_MESSAGE cursor to retrieve the next 
message on the BANNER_MFQUEUE to be published to the RIB.

The information from BANNER_MFQUEUE table that is passed to PROCESS_
QUEUE_RECORD.PROCESS_QUEUE_RECORD will build the Oracle Object message 



Banner Publication API

RIB Publication Designs 2-23

to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, 
GETNXT will raise an exception.

After PROCESS_QUEUE_RECORD returns an Oracle object to pass to the RIB, this 
procedure will delete the record on BANNER_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be 
called.

Function Level Description - PUB_RETRY  
Procedure: PUB_RETRY(O_status_code      OUT    VARCHAR2,
                     O_error_msg        OUT    VARCHAR2,
                     O_message          OUT    RIB_OBJECT,
                     O_message_type  IN OUT    VARCHAR2,
                     O_bus_obj_id    IN OUT    RIB_BUSOBJID_TBL,
                     O_routing_info  IN OUT    RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT    IN        RIB_OBJECT);

Same as GETNXT, except that the record on BANNER_MFQUEUE must match the 
passed-in sequence number (contained in the ROUTING_INFO).

Trigger Impact
Trigger exists on the banner and channels tables to capture inserts, updates, and 
deletes.

Trigger name: EC_TABLE_BAN_AIUDR.TRG

Trigger file name: ec_table_ban_aiudr.trg

Table: BANNER

This trigger captures inserts/updates/deletes to the BANNER table and writes data 
into the BANNER_MFQUEUE message queue. It calls RMSMFM_BANNER.ADDTOQ 
to insert this message into the message queue.

■ Inserts: Sends banner_id to the ADDTOQ procedure with message type 
RMSMFM_FAMILY.BANNER_CRE.

■ Updates: Sends banner_id to the ADDTOQ procedure with message type 
RMSMFM_FAMILY.BANNER_MOD.

■ Deletes: Sends banner_id to the ADDTOQ procedure with message type 
RMSMFM_FAMILY.BANNER_DEL.

Trigger name: EC_TABLE_CHN_AIUDR.TRG

Trigger file name: ec_table_chn_aiudr.trg

Table: CHANNELS

This trigger captures inserts/updates/deletes to the CHANNELS table and writes 
data into the BANNER_MFQUEUE message queue. It calls RMSMFM_
BANNER.ADDTOQ to insert this message into the message queue.

■ Inserts: Sends banner_id and channel_id to the ADDTOQ procedure with message 
type RMSMFM_FAMILY.CHANNEL_CRE.

■ Updates: Sends banner_id and channel_id to the ADDTOQ procedure with 
message type RMSMFM_FAMILY.CHANNEL_MOD.

■ Deletes: Sends banner_id and channel_id to the ADDTOQ procedure with 
message type RMSMFM_FAMILY.CHANNEL_DEL.



Company Closed Publication API

2-24 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Design Assumptions
One of the primary assumptions in the current approach is that ease of code will 
outweigh performance considerations. It is hoped that the 'trickle' nature of the flow of 
data will decrease the need to dwell on performance issues and instead allow 
developers to code in the easiest and most straightforward manner.

Company Closed Publication API
This section describes the company closed publication API.

Functional Area
Foundation Data

Package Impact
This section describes the package impact.

File name
rmsmfm_company_closeds/b.pls

Function Level Description - ADDTOQ
Procedure:
ADDTOQ(O_status          OUT  VARCHAR2,
       O_text            OUT  VARCHAR2,
       I_uda_message  IN      UDA_MFQUEUE%ROWTYPE) 
This procedure is called by the trigger EC_TABLE_CO_CLOSED_AIUDR and takes 
the message type and closed_date and the message itself. It inserts a row into the 
COMPANY_CLOSED_MFQUEUE along with the passed-in values and the next 
sequence number from the COMPANY_CLOSED_MFSEQUENCE, setting the status to 
'U'npublished. It returns a status code of API_CODES.SUCCESS if successful, API_
CODES.UNHANDLED_ERROR if not.

Function Level Description - GETNXT
Procedure:
GETNXT(O_status_code        OUT   VARCHAR2,
       O_error_msg          OUT   VARCHAR2,
       O_message_type       OUT   VARCHAR2,
       O_message            OUT   RIB_OBJECT,
       O_bus_obj_id         OUT   RIB_BUSOBJID_TBL,
       O_routing_info       OUT   RIB_ROUTINGINFO_TBL,
       I_num_threads        IN    NUMBER DEFAULT 1,
       I_thread_val         IN    NUMBER DEFAULT 1)
This publicly exposed procedure is typically called by a RIB publication adaptor. This 
procedure's parameters are well defined and arranged in a specific order. 

The procedure will use the defined C_QUEUE cursor to retrieve the next message on 
the COMPANY_CLOSED_MFQUEUE to be published to the RIB.

TABLE SELECT INSERT UPDATE DELETE

BANNER_MFQUEUE Yes Yes No Yes



Customer Order Fulfillment Confirmation Publication API

RIB Publication Designs 2-25

The information from the COMPANY_CLOSED_MFQUEUE table is passed to 
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle 
Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run 
successfully, GETNXT will raise an exception.

After PROCESS_QUEUE_RECORD returns an Oracle object to pass to the RIB, this 
procedure will delete the record on COMPANY_CLOSED_MFQUEUE that was just 
processed.

Function Level Description - PROCESS_QUEUE_RECORD (local)
Function:
PROCESS_UDA_QUEUE (O_error_message    OUT RTK_ERRORS.RTK_TEXT%TYPE, 
                   O_message       IN OUT nocopy RIB_OBJECT,
                   O_bus_obj_id    IN OUT nocopy RIB_BUSOBJID_TBL,
                   I_queue_rec     IN     C_QUEUE%ROWTYPE)
This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT. In addition to building the Oracle Objects, this function will populate the 
business object ID.

Design Assumptions
N/A

Table Impact

Customer Order Fulfillment Confirmation Publication API
This section describes the customer order fulfillment confirmation publication API.

Functional Area
Customer Order

Business Overview
When Merchandising is integrated with an external OMS, one of the supported 
deployment methods is interfacing customer order fulfillment requests into 
Merchandising through the RIB JMS. When Merchandising processes customer order 
requests, it will also publish a confirmation message containing the following 
information:

■ Customer order number

■ Fulfillment order number

■ Confirm Type - 'C' (order fully created), 'P' (order partially created), or 'X' (order 
not created)

■ Confirm number - PO or Transfer in Merchandising

Table 2–1  

TABLE SELECT INSERT UPDATE DELETE

COMPANY_CLOSED_MFQUEUE Yes Yes No Yes

COMPANY_CLOSED Yes No No No



Customer Order Fulfillment Confirmation Publication API

2-26 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Item

■ Reference Item

■ Confirm quantity

■ Confirm quantity UOM

■ Item Line Number

■ Source Location ID

■ Unique System Code

Package Impact
This section describes the package impact.

Business Object ID
A customer order associated with an ordcust_no on ORDCUST is the business object 
to be published through this API.

Package name: RMSMFM_ORDCUST

Spec file name: rmsmfm_ordcusts.pls

Body file name: rmsmfm_ordcustb.pls

Package Specification - Global Variables

FAMILY        RIB_SETTINGS.FAMILY%TYPE := 'fulfilordcfm';
LP_cre_type   RIB_TYPE_SETTINGS.TYPE%TYPE := 'fulfilordcfmcre';

Function Level Description - ADDTOQ  
ADDTOQ(O_error_message  IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
       I_message_type   IN       ORDCUST_PUB_INFO.MESSAGE_TYPE%TYPE,
       I_ordcust_no     IN       ORDCUST.ORDCUST_NO%TYPE)  
■ A trigger on the ORDCUST_PUB_TEMP table will call this function to add the 

customer order number to the ORDCUST_PUB_INFO table for publishing to the 
RIB. Only the create message type ('fulfilordcfmcre') is supported.

■ Validate all the input parameters to this function against NULL. If any has NULL 
value then return from the function with the appropriate error message.

■ Insert a record in the ORDCUST_PUB_INFO table. The published flag will be set 
to 'U'. The correct thread for the business transaction will be calculated and 
written. Call API_LIBRARY. GET_RIB_SETTINGS to get the number of threads 
used for the publisher. Using the number of threads, and the business object ID 
(for example, customer order number) calculate the thread value.

Function Level Description - GETNXT  

GETNXT(O_status_code     IN OUT   VARCHAR2,
       O_error_message   IN OUT   VARCHAR2,
       O_message_type    IN OUT   VARCHAR2,
       O_message         IN OUT   RIB_OBJECT,
       O_bus_obj_id      IN OUT   RIB_BUSOBJID_TBL,
       O_routing_info    IN OUT   RIB_ROUTINGINFO_TBL,
       I_num_threads     IN       NUMBER DEFAULT 1,
       I_thread_val      IN       NUMBER DEFAULT 1) 
Initialize LP_error_status to API_CODES.HOSPITAL at the beginning of GETNXT.



Customer Order Fulfillment Confirmation Publication API

RIB Publication Designs 2-27

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished 
records on the ORDCUST_PUB_INFO table (pub_status = 'U'). It should only need to 
execute one loop iteration in most cases. For each record retrieved, GETNXT gets the 
following:

1. A lock of the queue table (ORDCUST_PUB_INFO) for the current business object. 
The lock is obtained by calling the function LOCK_THE_BLOCK. If the record for 
the current business object is locked, the current message is skipped.

2. The information from the ORDCUST_PUB_INFO table is passed to PROCESS_
QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the RIB Object 
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run 
successfully, GETNXT raises an exception.

3. If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

4. Unconditionally exit from the loop after the successful processing of PROCESS_
QUEUE_RECORD function, assuming the confirmation message is published 
successfully.

The loop will need to execute more than once if the record is locked on the queue table 
for the current business object.

Function Level Description - PUB_RETRY  
PUB_RETRY(O_status_code     IN OUT   VARCHAR2,
          O_error_message   IN OUT   VARCHAR2,
          O_message_type    IN OUT   VARCHAR2,
          O_message         IN OUT   RIB_OBJECT,
          O_bus_obj_id      IN OUT   RIB_BUSOBJID_TBL,
          O_routing_info    IN OUT   RIB_ROUTINGINFO_TBL,
          I_ref_object      IN       RIB_OBJECT)
This procedure republishes the entity that failed to be published before. It is the same 
as GETNXT except that the record on ORDCUST_PUB_INFO to be published must 
match the passed in sequence number contained in the ROUTING_INFO.

Function Level Description - PROCESS_QUEUE_RECORD (local)  
PROCESS_QUEUE_RECORD(O_error_message  IN OUT         RTK_ERRORS.RTK_TEXT%TYPE,
               O_message        IN OUT NOCOPY  RIB_OBJECT,
               O_routing_info   IN OUT NOCOPY  RIB_ROUTINGINFO_TBL,
               I_ordcust_no     IN             ORDCUST_PUB_INFO.ORDCUST_NO%TYPE,
               I_seq_no         IN              ORDCUST_PUB_INFO.SEQ_NO%TYPE)
This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

■ The correct thread for the business transaction will be calculated and written. Call 
API_LIBRARY. GET_RIB_SETTINGS to get the number of threads used for the 
publisher. Using the number of threads, and the business object ID (for example, 
customer order number), calculate the thread value.

■ Build the header and detail object by calling BUILD_MSG_OBJECT.

■ Update the pub_status to 'P' for the current record in the ORDCUST_PUB_INFO 
table.

■ Delete the current record in the ORDCUST_PUB_TEMP table.

■ Set LP_error_status to API_CODES.UNHANDLED_ERROR before any DML 
statements.



Customer Order Fulfillment Confirmation Publication API

2-28 Operations Guide Volume 2 - Message Publication and Subscription Designs

No routing information will be included since all published messages will go to OMS 
and no other applications.

Function Level Description - BUILD_MSG_OBJECT (local)  

Take all necessary data from the ORDCUST, ORDCUST_DETAIL, ORDHEAD, 
ORDLOC, TSFHEAD, TSFDETAIL and SYSTEM_OPTIONS tables and put into a 
"RIB_FulfilOrdCfmDesc_REC" where orders that are created, only partially created 
and cancelled status.

Function Level Description - LOCK_THE_BLOCK (local)  

This function locks the record for the current business object. This is to ensure that 
GETNXT does not wait on any business processes that currently have the queue table 
locked and have not committed.

Function Level Description - HANDLE_ERRORS (local)  

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
ORDCUST_PUB_INFO record back to the RIB in the ROUTING_INFO. It sends back a 
status of 'H' - Hospital to the RIB as well. It then updates the status of the queue record 
to 'H', so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of 'E' - Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H' to 'E'. 

Trigger Impact
Trigger name: EC_TABLE_ORP_AIR

Trigger file name: ec_table_orp_air.trg

Table: ORDCUST_PUB_TEMP

The trigger ORDCUST_PUB_TEMP table will capture inserts and send the appropriate 
column values to the ADDTOQ procedure in the MFM with message type RMSMFM_
ORDCUST.LP_cre_type. 

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ Merchandising will only publish confirmation 'create' messages associated to a PO 

or transfer.

■ Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

Message Types Message Type Description XML Schema Definition (XSD)

fulfilordcfmcre Customer Order Fulfillment 
Confirmation Create Message

FulfilOrdCfmDesc.xsd



Delivery Slot Publication API

RIB Publication Designs 2-29

■ OMS is the only subscriber of this message family. Since all published customer 
order fulfillment confirmation messages will be routed to OMS, no routing info is 
needed.

Table Impact

Delivery Slot Publication API
This section describes the delivery slot publication API.

Functional Area
Replenishment

Business Overview
Merchandising provides retailers the option of creating store orders for items with 
multiple delivery instructions per day for the same item. Merchandising provides this 
multiple deliveries per day support by generating multiple purchase orders and/or 
transfers based on need day and delivery slot.

Since the replenishment batch can be run during the day time, it is necessary to lock 
the important transaction tables. The following tables are locked for the intraday 
replenishment:

■ TSFDETAIL

■ ITEM_LOC_SOH

■ ORD_IMV_MGMT

■ CONTRACT_DETAIL

■ CONTRACT_HEAD

■ DEAL_HEAD

■ ALLOC_CHRG

■ ALLOC_HEADER

■ ALLOC_DETAIL

■ ORDLOC

TABLE SELECT INSERT UPDATE DELETE

ORDCUST_PUB_INFO Yes Yes Yes No

ORDCUST_PUB_TEMP Yes No No Yes

ORDCUST Yes No No No

ORDCUST_DETAIL Yes No No No

ORDHEAD Yes No No No

ORDLOC Yes No No No

TSFHEAD Yes No No No

TSFDETAIL Yes No No No

SYSTEM_OPTIONS Yes No No No



Delivery Slot Publication API

2-30 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ ORDLOC_REV

■ ORDLOC_WKSHT

■ ORDLOC_EXP

■ ORDCUST

■ ORDHEAD_REV

■ ORDSKU

■ REQ_DOC

■ TIMELINE

■ ORDLC

■ DEAL_ITEMLOC_DIV_GRP

■ DEAL_ITEMLOC_DCS

■ DEAL_ITEMLOC_ITEM

■ DEAL_ITEMLOC_PARENT_DIFF

■ DEAL_THRESHOLD

■ DEAL_DETAIL

■ DEAL_QUEUE

■ DEAL_CALC_QUEUE

■ REV_ORDERS

Delivery slot ID publication consists of a single flat message containing the delivery 
slot details from the table DELIVERY_SLOT. One message will be synchronously 
created and placed in the message queue each time a delivery_slot_id is created, 
updated or deleted from delivery_slot. When a delivery_slot_id is created or deleted, 
the flat message will contain 3 attributes i.e delivery_slot_id, deliver_slot_desc and 
delivery_slot_sequence. Messages are retrieved from the message queue in the order 
they were created.

Package Impact
This section describes the package impact.

Create Delivery_Slot
1. Prerequisites: Delivery_slot does not already exist.

2. Activity Detail: Any insert to the DELIVERY_SLOT table inserts a 'dlvysltcre' 
message_type record on the DELIVERY_SLOT_MFQUEUE table. 

Update Delivery_Slot
1. Prerequisites: Delivery_slot does already exist.

2. Activity Detail: Any update to the DELIVERY_SLOT table inserts a 'dlvysltmod' 
message_type record on the DELIVERY_SLOT_MFQUEUE table. 

Delete Delivery_slot
1. Prerequisites: Delivery_slot already exist.



Delivery Slot Publication API

RIB Publication Designs 2-31

2. Activity Detail: Deleting a delivery_slot_id removes the record from the delivery_
slot table and inserts a 'dlvysltdel' row to the DELIVERY_SLOT_MFQUEUE table.

Package Name:
RMSMFM_DLVYSLT

Spec File Name:
rmsmfm_dlvyslts.pls

Body File Name:
rmsmfm_dlvysltb.pls

Package Specification - Global Variables
 FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE := 'dlvyslt'; 
 SLT_ADD   CONSTANT   VARCHAR2 (15)       := 'dlvysltcre'; 
 SLT_UPD   CONSTANT   VARCHAR2 (15)       := 'dlvysltmod';
 SLT_DEL   CONSTANT   VARCHAR2 (15)       := 'dlvysltdel';

Function Level Description - ADDTOQ
Function:
ADDTOQ(O_status        OUT    VARCHAR2,
 O_text                OUT  VARCHAR2,
 I_message_type        IN   DELIVERY_SLOT_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_delivery_slot_id    IN   DELIVERY_SLOT_MFQUEUE.DELIVERY_SLOT_ID%TYPE,
 I_delivery_slot_desc  IN   DELIVERY_SLOT_MFQUEUE.DELIVERY_SLOT_DESC%TYPE,
 I_delivery_sequence   IN   DELIVERY_SLOT_MFQUEUE.DELIVERY_SLOT_SEQUENCE%TYPE);
An event capture trigger calls this procedure with the message type for synchronously 
captured messages. It inserts a row into the message family queue along with the 
passed in values, the next sequence number from the message family sequence, and a 
status of unpublished. Due to the very small data volume of delivery slots, no 
multi-threading is supported for this publishing. Therefore, the thread_no is always 
set to 1. It returns the standard publishing API success or failure codes.

Function Level Description - GETNXT
Procedure:
GETNXT(O_status_code   IN OUT   VARCHAR2,
       O_error_msg     IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
       O_message_type  IN OUT   DELIVERY_SLOT_MFQUEUE.MESSAGE_TYPE%TYPE,
       O_message       IN OUT   RIB_OBJECT,
       O_bus_obj_id    IN OUT   RIB_BUSOBJID_TBL,
       O_routing_info  IN OUT   RIB_ROUTINGINFO_TBL,
       I_num_threads   IN       NUMBER DEFAULT 1
       I_thread_val    IN       NUMBER DEFAULT 1);
This procedure is publicly available and is typically called by a RIB publication 
adaptor. Its parameters are well defined and arranged in a specific order. The message 
type is the RIB defined short message name ('dlvyslt') and the message is a RIB object 
("RIB_DeliverySlotDesc_REC" for a create and update message, "RIB_DeliverySlotRef_
REC" for a delete message). 

The error text parameter contains application-generated information, such as the 
application's sequence number of the message that failed, and the Oracle or other error 
that occurred when the retrieval failed. 



Delivery Slot Publication API

2-32 Operations Guide Volume 2 - Message Publication and Subscription Designs

This program loops through each message on the DELIVERY_SLOT_MFQUEUE table, 
and calls PROCESS_QUEUE_RECORD. When no messages are found, the program 
exits returning the 'N'o message found API code. 

Function Level Description - PUB_RETRY
Procedure:
PUB_RETRY(O_status_code        OUT    VARCHAR2,
          O_error_msg          OUT    VARCHAR2,
          O_message_type    IN OUT    VARCHAR2,
          O_message            OUT    RIB_OBJECT,
          O_bus_obj_id      IN OUT    RIB_BUSOBJID_TBL,
          O_routing_info    IN OUT    RIB_ROUTINGINFO_TBL,
          I_REF_OBJECT      IN        RIB_OBJECT);
Same as GETNXT except:

It only loops for a specific row in the DELIVERY_SLOT_MFQUEUE table. The record 
on DELIVERY_SLOT_MFQUEUE must match the sequence number passed in routing 
info data structure.

Function Level Description - PROCESS_QUEUE_DLVY_SLT (local)
This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

If the record from DELIVERY_SLOT_MFQUEUE is a create or update message then

■ Build and pass the RIB_DeliverySlotDesc_REC object

■ Delete the record from the delivery_slot_mfqueue table. 

If the record from DELIVERY_SLOT_MFQUEUE table is a delete then

■ Build and pass the RIB_DeliverySlotRef_REC object. 

■ Delete the record from the delivery_slot_mfqueue table.

Trigger Impact
Create a trigger on Delivery_Slot table to capture inserts and deletes.

Trigger name: EC_TABLE_DLVY_AIUDR.TRG

Trigger file name: ec_table_dlvy_aiudr.trg

Table: Delivery_Slot

■ Inserts: Send the I_delivery_slot_id, I_delivery_slot_desc, I_delivery_sequence 
and a message type of 'dlvysltcre' to the ADDTOQ procedure.

■ Updates: Send the I_delivery_slot_id, I_delivery_slot_desc, I_delivery_sequence 
and a message type of 'dlvysltmod' to the ADDTOQ procedure.

■ Deletes: Send the I_delivery_slot_id, I_delivery_slot_desc, I_delivery_sequence 
and a message type of 'dlvysltdel' to the ADDTOQ procedure.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.



Differentiator Groups Publication API

RIB Publication Designs 2-33

Table Impact

Design Assumptions
■ It is not possible for the trigger to know the status of anything modified by 

GETNXT. If a trigger is trying to delete queue records that GETNXT currently has 
locked, it will have to wait until GETNXT is finished and removes the lock. It is 
assumed that this time will be fairly short (at most 2-3 seconds). This also has to 
occur at the same time GETNXT is processing the current business object.

■ Delay all DML statements to as late a time as possible. Once DML statements have 
taken place, any error becomes a fatal error rather than a hospital error.

Differentiator Groups Publication API
This section describes the differentiator groups publication API.

Functional Area
Foundation

Business Overview
Differentiator (Diff) Group publication consists of a single flat message containing diff 
group attributes from the tables DIFF_GROUP_HEAD and DIFF_GROUP_DETAIL. A 
message is synchronously created and placed in the message queue each time a diff 
group (DIFF_GROUP_HEAD) is created, modified, or deleted or when a diff (DIFF_
GROUP_DETAIL) is created, modified, or deleted from a diff group. When a diff 
group (DIFF_GROUP_HEAD) is created or modified, the flat message contains 
numerous attributes of the group. When a diff group is deleted, the message contains 
the both unique identifier of the group, and the diff_group_id. When a diff (diff_
group_detail) is created or modified, the flat message contains numerous attributes of 
the diff. When a diff is deleted, the message contains the unique identifier of the diff 
group and the diff, diff_group_id and diff_id. A Message is retrieved from the message 
queue in the order they were created.

Package Impact
This section describes the package impact.

Create Diff Group
1. Prerequisites: Diff Group does not already exist.

2. Activity Detail: Any change to the DIFF_GROUP_HEAD table inserts a 
DiffGrpHdrCre message_type record on the DIFFGRP_MFQUEUE table. 

Message Types Message Type Description XML Schema Definition (XSD)

Dlvysltcre Delivery slot Create Message DeliverySlotDesc.xsd

Dlvysltdel Delivery slot delete Message DeliverySlotRef.xsd

TABLE SELECT INSERT UPDATE
DELET
E

DELIVERY_SLOT_MFQUEUE Yes Yes Yes Yes



Differentiator Groups Publication API

2-34 Operations Guide Volume 2 - Message Publication and Subscription Designs

3. Messages: The DiffGrpHdrDesc message is created. It is a flat, synchronous 
message containing a full snapshot of the diff group at the time the message is 
published.

Modify Diff Group
1. Prerequisites: Diff Group exists.

2. Activity Detail: Any change to the DIFF_GROUP_HEAD table inserts a 
DiffGrpHdrMod message_type record on the DIFFGRP_MFQUEUE table. 

3. Messages: The DiffGrpHdrDesc message is created. It is a flat, synchronous 
message containing a full snapshot of the diff group at the time the message is 
published.

Create Diff Group Detail
1. Prerequisites: A Diff Group already exists, and the diff ID exists on diff_ids, but 

the diff ID does not exist within the diff group.

2. Activity Detail: Any Differentiators added to a diff group inserts a record to the 
DIFF_GROUP_HEAD table. A DiffGrpDtlCre message type record is also inserted 
on the DIFFGRP_MFQUEUE table. A foreign key to the DIFF_GROUP_HEAD 
table checks the existence of the diff group the value is created to supplement.

3. Messages: DiffGrpDtlDesc message type is created. It is a hierarchical, 
synchronous message containing a snapshot of the DIFF_GROUP_DETAIL table at 
the time the message is published.

Modify Diff Group Detail
1. Prerequisites: Diff Group and the Diff ID within the diff group (DIFF_GROUP_

DETAIL record) exist.

2. Activity Detail: Any change to the diffs within a diff group modifies a record to 
the DIFF_GROUP_HEAD table. A DiffGrpDtlMod message type record is also 
inserted on the DIFFGRP_MFQUEUE table. A foreign key to the DIFF_GROUP_
HEAD table checks the existence of the diff group the value is created to 
supplement.

3. Messages: DiffGrpDtlDesc message is created. It is a flat, synchronous message 
containing a snapshot of the DIFF_GROUP_DETAIL table at the time the message 
is published.

Delete Diff Group Detail
1. Prerequisites: Diff Group and the Diff ID within the diff group (DIFF_GROUP_

DETAIL record) exist.

2. Activity Detail: Deleting a diff from a Diff Group removes it from the DIFF_
GROUP_DETAIL table and inserts a DiffGrpDtlDel row to the DIFFGRP_
MFQUEUE table.

3. Message: A DiffGrpDtlRef message is created. It is a flat, synchronous message 
containing the primary key with which the external systems can remove it from 
their systems.

Delete Diff Group
1. Prerequisites: Diff Group exists and a diff ID within the diff group (DIFF_

GROUP_DETAIL record) may or may not exist.



Differentiator Groups Publication API

RIB Publication Designs 2-35

2. Activity Detail: Deleting a Diff Group removes it from the DIFF_GROUP_HEAD 
table and inserts a DiffGrpDel row to the DIFFGRP_MFQUEUE table. Because the 
Diff Group Maintenance form in Merchandising automatically removes any child 
records on the DIFF_GROUP_DETAIL table when the diff group is removed, there 
will be a row inserted to the DIFFGRP_MFQUEUE table for each DIFF_GROUP_
DETAIL record associated with the deleted diff group as well. These will receive 
the lower sequence numbers so that these will be acted upon first in the message 
queue. They will look like the DELETE DIFF_GROUP_DETAIL message detailed 
in the section above.  

3. Message: A DiffGrpRef message is created for the diff group only. It is a flat, 
synchronous message containing the primary key with which the external systems 
can remove it from their systems.

Package name: RMSMFM_DIFFGRP

Spec file name: rmsmfm_diffgrps.pls

Body file name: rmsmfm_diffgrpb.pls

Function Level Description - ADDTOQ

PROCEDURE ADDTOQ(O_status               OUT   VARCHAR2,
                 O_error_message        OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                 I_diffgrp_message   IN       DIFFGRP_MFQUEUE%ROWTYPE);
This procedure is called by the trigger EC_TABLE_DGH_AIUDR, which takes the 
message type, diff_group_id and EC_TABLE_DGD_AIUDR, then takes the message 
type, diff_group_id and diff_id. It inserts a row into the DIFFGRP_MFQUEUE along 
with the passed-in values and the next sequence number from DIFFGRP_
MFSEQUENCE, setting the status to ‘U’npublished. It returns a status code of API_
CODES.SUCCESS if successful, API_CODES.UNHANDLED_ERROR if not.

Function Level Description - GETNXT
PROCEDURE GETNXT(O_status_code       OUT   VARCHAR2,
                 O_error_message     OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                 O_message_type      OUT   VARCHAR2,
                 O_message           OUT   RIB_OBJECT,
                 O_bus_obj_id        OUT   RIB_BUSOBJID_TBL,
                 O_routing_info      OUT   RIB_ROUTINGINFO_TBL,
                 I_num_threads    IN       NUMBER DEFAULT 1,
                 I_thread_val     IN       NUMBER DEFAULT 1);
This publicly exposed procedure is typically called by a RIB publication adaptor. This 
procedure’s parameters are well defined and arranged in a specific order. 

The procedure will use the defined C_GET_MESSAGE cursor to retrieve the next 
message on the DIFFGRP_MFQUEUE to be published to the RIB.

The information from DIFFGRP_MFQUEUE table is passed to PROCESS_QUEUE_
RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object message to pass 
back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, GETNXT 
should raise an exception.

After PROCESS_QUEUE_RECORD returns an Oracle object to pass to the RIB, this 
procedure will delete the record on DIFFGRP_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be 
called.



Differentiator Groups Publication API

2-36 Operations Guide Volume 2 - Message Publication and Subscription Designs

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY(O_status_code        OUT        VARCHAR2,
                     O_error_msg          OUT        VARCHAR2,
                     O_message            OUT        RIB_OBJECT,
                     O_message_type   IN  OUT        VARCHAR2,
                     O_bus_obj_id     IN  OUT        RIB_BUSOBJID_TBL,
                     O_routing_info   IN  OUT        RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT     IN             RIB_OBJECT);
This procedure is the same as GETNXT except that the record on DIFFGRP_
MFQUEUE must match the passed in sequence number (contained in the ROUTING_
INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

It builds the Oracle Object to publish to the RIB. This will also take care of any 
DIFFGRP_MFQUEUE deletes and ROUTING_INFO logic.

Function Level Description - HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
DIFFGRP_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a 
status of 'H'ospital to the RIB as well. It then updates the status of the queue record to 
'H'ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of 'E'rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H'ospital to 'E'rror.

Trigger Impact
A trigger exists on the DIFF_GROUP_HEAD and DIFF_GROUP_DETAIL table to 
capture inserts, updates, and deletes.

Trigger name: EC_TABLE_DGH_AIUDR.TRG

Trigger file name: ec_table_dgh_aiudr.trg

Table: DIFF_GROUP_HEAD

■ Inserts: Send the I_diff_group_id to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_DIFFGRP.DIFFGRP_HDR_CRE.

■ Updates: Send the I_diff_group_id to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_DIFFGRP.DIFFGRP_HDR_CRE.

■ Deletes: Send the I_diff_group_id to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_DIFFGRP.DIFFGRP_HDR_DEL.

Trigger name: EC_TABLE_DGD_AIUDR.TRG

Trigger file name: ec_table_dgd_aiudr.trg

Table: DIFF_GROUP_DETAIL



Differentiator ID Publication API

RIB Publication Designs 2-37

■ Inserts: Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_DIFFGRP.DIFFGRP_DTL_CRE.

■ Updates: Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_DIFFGRP.DIFFGRP_DTL_MOD

■ Deletes: Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_DIFFGRP.DIFFGRP_HDR_DEL.

Table Impact

Design Assumptions
■ It is not possible for a detail trigger to accurately know the status of a header table.

■ It is not possible for a header trigger or a detail trigger to know the status of 
anything modified by GETNXT. If a header trigger or detail trigger is trying to 
delete queue records that GETNXT currently has locked, it will have to wait until 
GETNXT is finished and removes the lock. It is assumed that this time will be 
fairly short (at most 2-3 seconds). It is also assumed that this will occur rarely 
because it involves updating/deleting detail records on a business object that has 
already been approved. This also has to occur at the same time GETNXT is 
processing the current business object.

■ Delay all DML statements to as late a time as possible. Once DML statements have 
taken place, any error becomes a fatal error rather than a hospital error.

Differentiator ID Publication API
This section describes the differentiator ID publication API.

Functional Area
Foundation

Business Overview
Merchandising publishes messages for differentiator (diff) identifiers (diff IDs), and 
diff groups. 

When differentiators are created in Merchandising and need to be sent to other 
systems, they are sent out via diff ID publication. When the external system receives 
information about an item that includes the new diff ID, that system understands what 
the diff ID refers to.

Diff message processes
Diff message publication processes begin whenever a trigger 'fires' on one of the diff 
tables. When that occurs, the trigger extracts the affected row on the table and 
publishes the data to the corresponding message family queue staging table. A total of 
nine messages can be published; however, they group into these three categories:

■ Group Header

TABLE SELECT INSERT UPDATE DELETE

DIFFGRP_MFQUEUE Yes Yes No Yes



Differentiator ID Publication API

2-38 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Group Details

■ Diff IDs

Diff ID publication consists of a single flat message containing diffattributes from the 
table DIFF_IDS. One message will be synchronously created and placed in the 
message queue each time a diff (diff_ids) is created, modified, or deleted. When a diff 
(diff_ids) is created or modified, the flat message will contain numerous attributes of 
the diff. When a diff is deleted, the message will simply contain the unique identifier 
of the diff, the diff_id. Messages are retrieved from the message queue in the order 
they were created.

Package Impact
Create Diff Id:

1. Prerequisites: Diff ID does not already exist.

2. Activity Detail: Any change to the DIFF_IDS table inserts a DiffCre message_type 
record on the DIFFID_MFQUEUE table. 

3. Messages: The DiffDesc message is created. It is a flat, synchronous message 
containing a full snapshot of the diff ID at the time the message is published.

Modify Diff Id

1. Prerequisites: Diff ID exists.

2. Activity Detail: Any change to the DIFF_IDS table inserts a DiffMod message_
type record on the DIFFID_MFQUEUE table. 

3. Messages: The DiffDesc message is created. It is a flat, synchronous message 
containing a full snapshot of the diff ID at the time the message is published.

Delete Diff Id

1. Prerequisites: Diff ID exists.

2. Activity Detail: Deleting a Diff ID removes it from the DIFF_IDS table and inserts 
a DiffDel row to the DIFFID_MFQUEUE table. 

3. Message: A DiffRef message is created. It is a flat, synchronous message 
containing the primary key with which the external systems can remove it from 
their systems.

Package name: RMSMFM_DIFFID

Spec file name: rmsmfm_diffids.pls

Body file name: rmsmfm_diffidb.pls

Package Specification - Global Variables

None

Function Level Description - ADDTOQ
PROCEDURE ADDTOQ(O_status          OUT      VARCHAR2,
                 O_error_message   OUT      RTK_ERRORS.RTK_TEXT%TYPE,
                 I_diffgrp_message IN       DIFFGRP_MFQUEUE%ROWTYPE);
This procedure is called by the trigger EC_TABLE_DID_AIUDR, which takes the 
message type and diff_id. It inserts a row into the DIFFID_MFQUEUE along with the 
passed-in values and the next sequence number from DIFFID_MFSEQUENCE, setting 
the status to 'U'npublished. It returns a status code of API_CODES.SUCCESS if 
successful, API_CODES.UNHANDLED_ERROR if not.



Differentiator ID Publication API

RIB Publication Designs 2-39

Function Level Description - GETNXT
PROCEDURE GETNXT(O_status_code       OUT     VARCHAR2,
                 O_error_message     OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                 O_message_type      OUT   VARCHAR2,
                 O_message           OUT   RIB_OBJECT,
                 O_bus_obj_id        OUT   RIB_BUSOBJID_TBL,
                 O_routing_info      OUT   RIB_ROUTINGINFO_TBL,
                 I_num_threads    IN       NUMBER DEFAULT 1,
                 I_thread_val     IN       NUMBER DEFAULT 1);
This publicly exposed procedure is typically called by a RIB publication adaptor. This 
procedure's parameters are well defined and arranged in a specific order.

The procedure will use the defined C_GET_MESSAGE cursor to retrieve the next 
message on the DIFFID_MFQUEUE to be published to the RIB.

The information from DIFFID_MFQUEUE table is passed to PROCESS_DIFFID_
QUEUE. PROCESS_DIFFID_QUEUE will build the Oracle Object message to pass back 
to the RIB. If PROCESS_DIFFID_QUEUE does not run successfully, GETNXT should 
raise an exception.

After PROCESS_DIFFID_QUEUE returns an Oracle object to pass to the RIB, this 
procedure will delete the record on DIFFGRP_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_DIFFID_QUEUE, HANDLE_ERRORS should be called.

Function Level Description - PUB_RETRY
Procedure: PUB_RETRY(O_status_code         OUT        VARCHAR2,
                     O_error_msg           OUT        VARCHAR2,
                     O_message             OUT        RIB_OBJECT,
                     O_message_type    IN  OUT        VARCHAR2,
                     O_bus_obj_id      IN  OUT        RIB_BUSOBJID_TBL,
                     O_routing_info    IN  OUT        RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT      IN             RIB_OBJECT);
Same as GETNXT, except the record on DIFFID_MFQUEUE must match the passed in 
sequence number (contained in the ROUTING_INFO).

Function Level Description - PROCESS_DIFFID_QUEUE (local)
This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

It builds the Oracle Object to publish to the RIB. This will also take care of any 
DIFFID_MFQUEUE deletes and ROUTING_INFO logic.

Trigger Impact
A trigger exists on the DIFF_IDS and DIFFID_MFQUEUE tables to capture Inserts, 
Updates, and Deletes.

Trigger name: EC_TABLE_DID_AIUDR.TRG

Trigger file name: ec_table_did_aiudr.trg

Table: DIFF_IDs 

This trigger checks for the action being performed on the DIFF_IDS table prior to 
invoking the RMSMFM_DIFFID.ADDTOQ procedure. Depending on the action 
performed, the message type is set, and the key value is assigned to the variable to be 
passed in the call to the ADDTOQ procedure.



Item Publication API

2-40 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Design Assumptions
■ One of the primary assumptions in the current approach is that ease of code will 

outweigh performance considerations. It is hoped that the 'trickle' nature of the 
flow of data will decrease the need to dwell on performance issues and instead 
allow developers to code in the easiest and most straight forward manner.

■ The adaptor is only setup to call stored procedures, not stored functions. Any 
public program then needs to be a procedure.

Item Publication API
This section describes the item publication API.

Functional Area
Foundation

Business Overview
Merchandising publishes messages about items to the Oracle Retail Integration Bus 
(RIB). In situations where a retailer creates a new item in Merchandising, the message 
that ultimately is published to the RIB contains a hierarchical structure of the item 
itself along with all components that are associated with that item. Items and item 
components make up what is called the Items message family. 

After the item creation message has been published to the RIB for use by external 
applications, any modifications to the basic item or its components cause the 
publication of individual messages specific to that component. Deletion of an item and 
component records has similar effects on the message modification process, with the 
exception that the delete message holds only the key(s) for the record.

When publishing an item header mod, packitem cre, packitem mod, packitem delete, 
reference item add, reference item mod and reference item del, a second full 
replacement message with message type 'itemfulrep' will be published from 
Merchandising if system options PUB_FULL_OBJECTS_IND is configured to be 'Y' in 
the PRODUCT_CONFIG_OPTIONS table. This message payload will contain a full 
snapshot of the item. Based on the message type, RIB will route the full replacement 
message to appropriate applications.

Deposit items
A deposit item is a product that has a portion which is returnable to the supplier and 
sold to the customer, with a deposit taken for the returnable portion. Because the 
contents portion of the item and the container portion of the item have to be managed 
in separate financial accounts (as the container item would be posted to a liabilities 
account) with different attributes, the retailer must set up two separate items. All 
returns of used deposit items (the returned item) are managed as a separate product, 

TABLE SELECT INSERT UPDATE DELETE

DIFFID_MFQUEUE Yes Yes No Yes

DIFF_IDS Yes No No No

DIFF_TYPE Yes No No No



Item Publication API

RIB Publication Designs 2-41

to track these products separately and as a generic item not linked to the actual deposit 
item (for example, bottles being washed and having no label).

Only content items can be included on a transfer and container items are never 
allowed. While creating return to vendors (RTVs), if content items are added then 
associated container items are included automatically.

Deposit item attributes in Merchandising enable contents, container and crate items to 
be distinguished from one another. Additionally, it is possible to link a contents item to 
a container item for the purposes of inventory management.

In addition to contents and container items, many deposit items are delivered in 
plastic crates, which are also given to the customer on a deposit basis. These crates are 
sold to a customer as an additional separate product. Individual crates are not linked 
with contents or container items. Crates are specified in the system with a deposit item 
attribute.

From a receiving perspective, only the content item can be received. The receipt of a 
PO shows the container item but the receipt of a transfer does not. Similar to RTV 
functionality, online purchase order functionality automatically adds the container. 
The system automatically replicates all transactions for the container item in the stock 
ledger. In sum, for POs and RTVs, the container item is included; for transfers, no 
replication occurs.

Catch-Weight Items
Retailers can order and manage products for the following types of catch-weight item:

■ Type 1: Purchase in fixed weight simple packs: sell by variable weight (for 
example, bananas).

■ Type 2: Purchase in variable weight simple packs: sell by variable weight (for 
example, ham on the bone sold on a delicatessen counter).

■ Type 3: Purchase in fixed weight simple packs containing a fixed number of 
eaches: sell by variable weight eaches (for example, pre-packaged cheese).

■ Type 4: Purchase in variable weight simple packs containing a fixed number of 
eaches: sell by variable weight eaches (for example, pre-packaged sirloin steak).

In order for catch-weight items to be managed in Merchandising, the following item 
attributes are available:

■ Cost UOM: All items in Merchandising will be able to have the cost of the item 
managed in a separate unit of measure (UOM) from the standard UOM. Where 
this is in a different UOM class from the standard UOM, case dimensions must be 
set up.

■ Catch-weight item pack details: Tolerance values and average case weights are 
stored for catch-weight item cases to allow the retailer to report on the sizes of 
cases received from suppliers.

■ Maximum catch-weight tolerance threshold.

■ Minimum catch-weight tolerance threshold.

Retailers can set up the following properties for a catch-weight item: 

Note: Oracle Retail suggests that catch-weight item cases be 
managed through the standard simple pack functionality. 



Item Publication API

2-42 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Order type 

■ Sale type

Retailers can also specify the following, at the item-supplier-country level:

■ Cost unit of measure (CUOM).

Receiving and inventory movement impact on catch-weight items
Inventory transaction messages include purchase order receiving, stock order 
receiving, returns to vendor, direct store delivery receiving, inventory adjustments and 
bill of lading. These messages include attributes that represent, for catch-weight items, 
the actual weight of goods involved in a transaction. These attributes are weight and 
weight UOM.

When Merchandising subscribes to inventory transaction messages containing such 
weight data, the transaction weight will be used for two purposes:

■ To update weighted average cost (WAC) using the weight rather than the number 
of units and to update the average weight value of simple packs.

Item Transformation
Item transformation allows retailers to manage items where the actual transformation 
of a product cannot be adequately recorded due to in-store processes. 

With product transformation, new 'transform' items are set up as either sellable only or 
orderable only. 

■ Sellable only items: A sellable only item has no inventory in the system, so 
inventory records cannot be viewed from the item maintenance screens. Sellable 
only items do not hold any supplier links and therefore have no cost prices 
associated with them. 

■ Orderable only items: Orderable only items hold inventory, but are not sellable at 
the POS system. Therefore, no information is sent to the POS system for these 
items, and no unit retail prices by zone are held for these items. 

To hold the relationship between the orderable items and the sellable items, 
Merchandising stores the transformation details. These details are used to process 
sales and inventory transactions for the items. 

The following diagram shows how item transformation works:

Note: The WAC calculation does not apply to return to vendors 
(RTVs).



Item Publication API

RIB Publication Designs 2-43

Figure 2–2 Item Transformation

Item and Item Component Descriptions
The item message family is a logical grouping for all item data published to the RIB. 
The components of item messages and their base tables in Merchandising are:

■ Item from the ITEM_MASTER table

■ Item-supplier from ITEM_SUPPLIER

■ Item-supplier-country from ITEM_SUPP_COUNTRY

■ Item-supplier-country-dimension from ITEM_SUPP_COUNTRY_DIM (DIM is the 
each, inner, pallet, and case dimension for the item, as specified)

■ Item-image from ITEM_IMAGE

■ Item-UDA identifier-UDA value from UDA_ITEM_LOV (UDA is a user-defined 
attribute and LOV is list of values)

■ Item-UDA identifier from UDA_ITEM_DATE (for the item and UDA date)

■ Item-UDA identifier from UDA_ITEM_FF (for UDA, free-format data beyond the 
values for LOV and date)

■ Item-pack components (Bill of Material [BOM]) from PACKITEM_BREAKOUT

■ Item UPC reference from ITEM_MASTER.ITEM_NUMBER_TYPE (values held as 
code type 'UPCT' on code_head and code_detail tables)

■ Item ticket from ITEM_TICKET

■ Item relationship details from RELATED_ITEM_HEAD

■ Related Items details from RELATED_ITEM_DETAIL 

New Item Message Processes
The creation of a new item in Merchandising begins with an item in a worksheet status 
on the ITEM_MASTER table. At the time an item is created, other relationships are 
being defined as well, including the item, supplier, and country relationships, 
user-defined attributes (UDAs), related items and others. These item relationship 
processes in effect become components of a new item message published to the RIB. 
This section describes the item creation message process and includes the basic item 
message itself along with the other component relationship messages that become part 
of the larger item message. 



Item Publication API

2-44 Operations Guide Volume 2 - Message Publication and Subscription Designs

Basic Item Message
As described in the preceding section, item messages can originate in a number of 
Merchandising tables. Each of these tables holds a trigger, which fires each time an 
insert, update, or delete occurs on the table. The new item record itself is displayed on 
the ITEM_MASTER table. The trigger on this table creates a new message (in this case, 
a message of the type ItemHdrCre), then calls the message family manager RMSMFM_
ITEMS and its ADDTOQ public procedure. ADDTOQ populates the message to the 
ITEM_MFQUEUE staging table by inserting the following:

■ Appropriate value into the message_type column.

■ Message itself to the message column. Messages are of the data type CLOB 
(character large object).

New Item Message Publication
The publication of a new item and its components to the RIB is done using a 
hierarchical message. Here is how the process works: 

1. A new item is held on ITEM_MASTER in a status of W (Worksheet) until it is 
approved. 

2. On the ITEM_MFQUEUE staging table, a Worksheet status item is displayed in the 
message_type column as a value of ItemCre. 

3. As the item continues to be built on ITEM_MASTER, an ItemHdrMod value is 
inserted into the queue's message_type column.

4. After the item is approved (ITEM_MASTER's status column value of A 
[Approved], the trigger causes the insertion of a value of Y (Yes) in the approve_
ind column on the queue table. 

5. A message with a top-level XML tag of ItemDesc is created that serves as a 
message wrapper. 

At the same time, a sub-message with an XML tag of ItemHdrDesc is also created. This 
subordinate tag holds a subset of data about the item, most of which is derived from 
the ITEM_MASTER table. 

Subordinate Data and XML Tags
While a new item is being created, item components are also being created. Described 
earlier in this overview, these component item messages pertain to the item-supplier, 
item-supplier-country, UDAs, and so on. For example, a new item-supplier record 
created on ITEM_SUPPLIER causes the trigger on this table to add an ItemSupCre 
value to the message_type column of the ITEM_MFQUEUE staging table. When the 
item is approved, a message with an XML tag of ItemSupDesc is added underneath 
the ItemDesc tag.

Similar processes occur with the other item components. Each component has its own 
Desc XML tag, for example: ItemSupCtyDesc, ISCDimDesc. 

Modify and Delete Messages
Updates and deletions of item data can be included in a larger ItemDesc (item 
creation) message. If not part of a larger hierarchical message, they are published 
individually as a flat, non-hierarchical message. Update and delete messages are much 
smaller than the large hierarchy in a newly created item message (ItemDesc). 



Item Publication API

RIB Publication Designs 2-45

Modify Messages
If an existing item record changes on the ITEM_MASTER table, for example, the 
trigger fires to create an ItemHdrMod message and message type on the queue table. 
In addition, an ItemHdrDesc message is created. If no ItemCre value already exists in 
the queue, the ItemHdrDesc message is published to the RIB.

Similarly, item components like item-supplier that are modified, result in an 
ItemSupMod message type inserted on the queue. If an ItemCre and an ItemSupCre 
already exist, the ItemSupMod is published as part of the larger ItemDesc message. 
Otherwise, the ItemSupMod is published as an ItemSupDesc message. 

Delete messages
Delete messages are published in the same way that modify messages are. For 
example, if an item-supplier-country relationship is deleted from Merchandising' 
ITEM_SUP_COUNTRY table, the dependent record on ITEM_SUPP_COUNTRY_DIM 
is also deleted. 

1. An ItemSupCtyDel message type is displayed on the item queue table. 

2. If the queue already holds an ItemCre or ItemSupCtyCre message, any 
ItemSupCtyCre and ItemSupCtyMod messages are deleted. 

Otherwise, ItemSupCtyDel is published by itself as an ItemSupCtyRef message to the 
RIB.

Design Overview 
The item message family manager is a package of procedures that adds item family 
messages to the item queue and publishes these messages for the integration bus to 
route. Triggers on all the item family tables call a procedure from this package to add a 
"create", "modify" or "delete" message to the queue. The integration bus calls a 
procedure in this package to retrieve the next publishable item message from the 
queue. 

All the components that comprise the creation of an item, the item/supplier for 
example, remain in the queue until the item approval modification message has been 
published. Any modifications or deletions that occur between item creation in 
"W"(worksheet) status and "A"(Approved) status are applied to the "create" messages 
or deleted from the queue as required. For example, if an item UDA is added before 
item approval and then later deleted before item approval, the item UDA "create" 
message would be deleted from the queue before publishing the item. If an 
item/supplier record is updated for a new item before the item is approved, the 
"create" message for that item/supplier is updated with the new data before the item is 
published. When the "modify" message that contains the "A" (Approved) status is the 
next record on the queue, the procedure formats a hierarchical message that contains 
the item header information and all the child detail records to pass to the integration 
bus.

Additions, modifications, and deletions to item family records for existing approved 
items are published in the order that they are placed on the queue.

Unless otherwise noted, item publishing includes most of the columns from the item_
master table and the entire item family child tables included in the publishing 
message. Sometimes only certain columns are published, and sometimes additional 
data is published with the column data from the table row. The item publishing 
message is built from the following tables:

Family Header
item_master  -  transaction level items only



Item Publication API

2-46 Operations Guide Volume 2 - Message Publication and Subscription Designs

descriptions for the code values
names for department, class and subclass
diff types
base retail price
Item Family Child Tables
item_supplier
item_supp_country
item_supp_country_dim
    descriptions for the code values
item_master  -  reference items
    item, item_number_type, item_parent, primary_ref_ind, format_id, prefix
packitem_breakout
    pack_no, item, packitem_qty
item_image
item_ticket
uda_item_ff
uda_item_lov
uda_item_date
related_item_head
related_item_detail

Business Object Records
Create the following business objects to assist the publishing process:

1. Create a type for a table of rowids.

TYPE ROWID_TBL is TABLE OF ROWID;

2. Create a record of ROWID_TBL types for keeping track of rowids to update and 
delete. There should be a ROWID_TBL for ITEM_MFQUEUE deletion, ITEM_
MFQUEUE updating, ITEM_PUB_INFO deletion, and ITEMLOC_MFQUEUE 
deletion.

TYPE ITEM_ROWID_REC is RECORD
      (queue_rowid_tbl       ROWID_TBL,
       pub_info_rowid_tbl    ROWID_TBL,
       queue_upd_rowid_tbl   ROWID_TBL,
       itemloc_rowid_tbl     ROWID_TBL
      );

3. Create a record to assist in publishing the ItemBOM node. This record type was 
originally in ITEMBOM_XML, but since ITEMBOM_XML is being removed, it is 
being moved to RMSMFM_ITEMS.

TYPE bom_rectype IS RECORD
   (pack_no                  VARCHAR2(25),
    seq_no                    NUMBER(4),
    item                      VARCHAR2(25),
    item_parent               VARCHAR2(25),
    pack_tmpl_id              NUMBER(8),
    comp_pack_no              VARCHAR2(25),
    item_qty                  NUMBER(12,4),
    item_parent_pt_qty        NUMBER(12,4),
    comp_pack_qty             NUMBER(12,4),
    pack_item_qty             NUMBER(12,4));
 
TYPE bom_tabtype is TABLE of bom_rectype
    INDEX BY BINARY_INTEGER;



Item Publication API

RIB Publication Designs 2-47

Package Impact
This section describes the package impact.

Business Object ID
The business object ID for item publisher is item, which uniquely identifies an item for 
publishing. 

The RIB uses the business object ID to determine message dependencies when sending 
messages to a subscribing application. If a Create message has already failed in the 
subscribing application, and a Modify/Delete message is about to be sent from the RIB 
to the subscribing application, the RIB will not send the modify/delete message if it 
has the same business object ID as the failed Create message. Instead, the 
Modify/Delete message will go directly to the hospital.

Item type X, item A, message type 'ItemCre' fails in subscriber.

Item type X, item B, message type 'ItemCre' processes successfully in subscriber.

Item type X, item A, message type 'ItemMod' goes directly from RIB to hospital.

Item type X, item B, message type 'ItemMod' goes from RIB to subscriber.

Item type X, item A, message type 'ItemDel' goes directly from RIB to hospital.

Package name: RMSMFM_ITEMS

Spec file name: rmsmfm_itemss.pls

Body file name: rmsmfm_itemsb.pls

Package Specification - Global Variables
FAMILY        CONSTANT    RIB_SETTINGS.FAMILY%TYPE    'ITEM';
ITEM_FULREP   CONSTANT    VARCHAR2(30)                'ItemFulRep';
ITEM_ADD      CONSTANT    VARCHAR2(30)                'itemcre';
ITEM_UPD      CONSTANT    VARCHAR2(30)                'itemhdrmod';
ITEM_DEL      CONSTANT    VARCHAR2(30)                'itemdel';
ISUP_ADD      CONSTANT    VARCHAR2(30)                'itemsupcre';
ISUP_UPD      CONSTANT    VARCHAR2(30)                'itemsupmod';
ISUP_DEL      CONSTANT    VARCHAR2(30)                'itemsupdel';
ISC_ADD       CONSTANT    VARCHAR2(30)                'itemsupctycre';
ISC_UPD       CONSTANT    VARCHAR2(30)                'itemsupctymod';
ISC_DEL       CONSTANT    VARCHAR2(30)                'itemsupctydel';
ISCD_ADD      CONSTANT    VARCHAR2(30)                'iscdimcre';
ISCD_UPD      CONSTANT    VARCHAR2(30)                'iscdimmod';
ISCD_DEL      CONSTANT    VARCHAR2(30)                'iscdimdel';
UPC_ADD       CONSTANT    VARCHAR2(30)                'itemupccre';
UPC_UPD       CONSTANT    VARCHAR2(30)                'itemupcmod';
UPC_DEL       CONSTANT    VARCHAR2(30)                'itemupcdel';
BOM_ADD       CONSTANT    VARCHAR2(30)                'itembomcre';
BOM_UPD       CONSTANT    VARCHAR2(30)                'itembommod';
BOM_DEL       CONSTANT    VARCHAR2(30)                'itembomdel';
UDAF_ADD      CONSTANT    VARCHAR2(30)                'itemudaffcre';
UDAF_UPD      CONSTANT    VARCHAR2(30)                'itemudaffmod';
UDAF_DEL      CONSTANT    VARCHAR2(30)                'itemudaffdel';
UDAD_ADD      CONSTANT    VARCHAR2(30)                'itemudadatecre';
UDAD_UPD      CONSTANT    VARCHAR2(30)                'itemudadatemod';
UDAD_DEL      CONSTANT    VARCHAR2(30)                'itemudadatedel';
UDAL_ADD      CONSTANT    VARCHAR2(30)                'itemudalovcre';
UDAL_UPD      CONSTANT    VARCHAR2(30)                'itemudalovmod';
UDAL_DEL      CONSTANT    VARCHAR2(30)                'itemudalovdel';
IMG_ADD       CONSTANT    VARCHAR2(30)                'itemimagecre';



Item Publication API

2-48 Operations Guide Volume 2 - Message Publication and Subscription Designs

IMG_UPD       CONSTANT    VARCHAR2(30)                'itemimagemod';
IMG_DEL       CONSTANT    VARCHAR2(30)                'itemimagedel';
TCKT_ADD      CONSTANT    VARCHAR2(30)                'itemtcktcre';
TCKT_DEL      CONSTANT    VARCHAR2(30)                'itemtcktdel';
RIH_ADD       CONSTANT    VARCHAR2(30)                'relitemheadcre';
RIH_UPD       CONSTANT    VARCHAR2(30)                'relitemheadmod';
RIH_DEL       CONSTANT    VARCHAR2(30)                'relitemheaddel';
RID_ADD       CONSTANT    VARCHAR2(30)                'relitemdetcre';
RID_UPD       CONSTANT    VARCHAR2(30)                'relitemdetmod';
RID_DEL       CONSTANT    VARCHAR2(30)                'relitemdetdel';

bom_table  bom_tabtype;
empty_bom  bom_tabtype;

Function Level Description - ADDTOQ
Function: ADDTOQ
            (O_error_message        OUT    VARCHAR2,
             I_queue_rec            IN     ITEM_MFQUEUE%ROWTYPE,
             I_sellable_ind         IN     ITEM_PUB_INFO.SELLABLE_IND%TYPE,
             I_tran_level_ind       IN     ITEM_PUB_INFO.TRAN_LEVEL_IND%TYPE)

This public function puts an item message on ITEM_MFQUEUE for publishing to the 
RIB. It is called from the item trigger and the detail triggers (ITEM_SUPPLIER, ITEM_
SUPP_COUNTRY, ITEM_SUPP_COUNTRY_DIM, PACKITEM, UDA_ITEM, UDA_
VALUES, ITEM_IMAGE, RELATED_ITEM_HEAD, RELATED_ITEM_DETAIL). The I_
queue_rec contains item and, optionally, other detail keys.

For header level insert messages (HDR_ADD), insert a record in the ITEM_PUB_INFO 
table. The published flag should be set to 'N'. For all message types except header level 
inserts (HDR_ADD), insert a record into the ITEM_MFQUEUE.

Function Level Description - GETNXT
Procedure: GETNXT
                (O_status_code        OUT    VARCHAR2,
                 O_error_msg          OUT    VARCHAR2,
                 O_message_type       OUT    VARCHAR2,
                 O_message            OUT    RIB_OBJECT,
                 O_bus_obj_id         OUT    RIB_BUSOBJID_TBL,
                 O_routing_info       OUT    RIB_ROUTINGINFO_TBL,
                 I_num_threads        IN     NUMBER DEFAULT 1,
                 I_thread_val         IN     NUMBER DEFAULT 1)

Modify the existing function as follows:

■ Change the signature of this package per this specification. 

■ Replace the code that is in the current function with the functionality in this 
design. 

This public procedure is called from the RIB to get the next messages. It performs a 
cursor loop on the unpublished records on the ITEM_MFQUEUE table (PUB_STATUS 
= 'U'). It should only need to execute single loop iteration in most cases. For each 
record retrieved, GETNXT gets the following:

1. A lock of the queue table for the current business object (item). The lock is 
obtained by calling the function LOCK_THE_BLOCK. If there are any records on 
the queue for the current business object that are already locked, the current 
message is skipped and picked up again in the next loop iteration. 



Item Publication API

RIB Publication Designs 2-49

2. A check for records on the queue with a status of 'H'ospital. If there are any such 
records for the current business object, GETNXT raises an exception to send the 
current message to the Hospital.

3. Get the published indicator from the ITEM_PUB_INFO table. 

4. Call PROCESS_QUEUE_RECORD with the current business object. 

The loop must be execute for more than one iteration in the following cases:

1. When a header delete message exists on the queue for a business object that has 
not been initially published. In this case, simply remove the header delete message 
from the queue and loop again.

2. The queue is locked for the current business object. This can occur because 
ADDTOQ, which is called from the triggers, deletes from the queue table for DTL_
UPD, DTL_DEL, and HDR_DEL messages.

The information from the ITEM_MFQUEUE and ITEM_PUB_INFO table is passed to 
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle 
Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run 
successfully, GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called. 

If PROCESS_QUEUE_RECORD fails, the record that keeps track of which mfqueue 
records to delete/update should be reset. Therefore, a snapshot of the struct is taken 
before the call to PROCESS_QUEUE_RECORD. If the function fails, the record is reset 
back to the snapshot.

Function Level Description - PUB_RETRY
Procedure: PUB_RETRY
                 (O_status_code  OUT            VARCHAR2,
                 O_error_msg     OUT            VARCHAR2,
                 O_message       OUT            RIB_OBJECT,
                 O_message_type  IN OUT         VARCHAR2,
                 O_bus_obj_id    IN OUT NOCOPY  RIB_BUSOBJID_TBL,
                 O_routing_info  IN OUT NOCOPY  RIB_ROUTINGINFO_TBL)

This public procedure performs the same tasks as GETNXT except that it only loops 
for a specific row in the ITEM_MFQUEUE table. The record on ITEM_MFQUEUE 
must match the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the 
business transaction's key values and a message type. It contains all of the shared 
processing between GETNXT and PUB_RETRY.

Get relevant publishing info for the item in ITEM_PUB_INFO, including the published 
indicator and approved upon create indicator. 

If I_hdr_published is either 'N' (not published) 

■ If I_hdr_published is 'N', check to see if the current message should cause the item 
to be published. This will be true if the status has changed to 'A'pproved or if an 
ITEM_SUPP_COUNTRY record has been added to an item that was approved 
upon create. If the item is ready to be published for the first time, the message type 
is a header create (HDR_ADD). If it is not ready to be published, add the record's 
ROWID to the structure that keeps track of ROWIDs to delete.



Item Publication API

2-50 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Call MAKE_CREATE to build the DESC Oracle Object to publish to the RIB. This 
will also take care of any ITEM_MFQUEUE deletes, updating ITEM_PUB_
INFO.PUBLISHED to 'Y' or 'I', and bulk updating the detail tables publish_ind 
column to 'Y' for those detail rows that have been published. 

If the message type is an update or creates message type at any level (for example, 
ITEM_ADD, ISUP_ADD, ISUP_UPD, and others):

■ Call RMSMFM_ITEMS_BUILD.BUILD_MESSAGE to build the DESC Oracle 
Object to publish to the RIB.

■ RMSMFM_ITEMS_BUILD.BUILD_MESSAGE will return an indicator specifying if 
the record exists. The record in question is the record on the functional table 
corresponding to the current MFQUEUE record being processed. For example, for 
ITEM_ADD or ITEM_UPD message, the record exists indicator specifies whether 
or not the ITEM_MASTER record for the item still exists. For an ISUP_ADD or 
ISUP_UPD message, the record exists indicator specifies whether or not the ITEM_
SUPPLIER record for the item/supplier combination still exists. If the record does 
not exist, the current message cannot be published.

– If the record does not exist and the message type is an update, delete the 
current MFQUEUE record (that is, add the ROWID to the list of ROWIDs to be 
eventually deleted).

– If the record does not exist and the message type is a create, update the current 
MFQUEUE record's pub_status to 'N' so that the record will be skipped but 
remain on the queue (that is, add the ROWID to the list of ROWIDs to be 
eventually updated).

If the message type is a delete message type at any level (for example, ITEM_DEL, 
ISUP_DEL, and others):

■ Call RMSMFM_ITEMS_BUILD.BUILD_DELETE_MESSAGE to build the REF 
Oracle Object to publish to the RIB. 

■ For the current delete message, there could be a corresponding create message 
earlier on the queue if the create message could not be published (see 
update/create message type section above). If there is a corresponding create 
message earlier on the queue, delete both create and delete messages (that is, add 
the ROWIDs to the list of ROWIDs to be eventually deleted), and do not publish 
anything.

Finally, perform DML cleanup if a message is going to be published.

■ Call UPDATE_QUEUE_TABLE to perform DML using the global record that keeps 
track of QUEUE records to update/delete.

■ If the message type is ITEM_ADD, update the item's ITEM_PUB_INFO to 
published = 'Y'. Delete other records for the same item if message type is 
RMSMFM_ITEMS.ITEM_FULREP to ensure that this will not be published for 
ITEM_CRE messages.

■ If the message type is ITEM_DEL, delete the item's ITEM_PUB_INFO record.

Function Level Description - MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a 
business transaction. I_business_object contains the item header key values (item). I_
rowid is the rowid of the item_mfqueue row fetched from GETNXT.

■ Call BUILD_HEADER_OBJECT to get a header level Oracle Object.



Item Publication API

RIB Publication Designs 2-51

■ Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a 
table of ITEM_MFQUEUE rowids to delete with and a table of detail table rowids 
to update publish_ind with.

■ Update ITEM_PUB_INFO.published to 'Y' or 'I' depending on if all details are 
published.

■ Delete records from the ITEM_MFQUEUE for all rowids returned by BUILD_
DETAIL_OBJECTS. Deletes are done by rowids instead of business transaction 
keys to ensure that nothing is deleted off the queue that has not been published.

■ If the entire business transaction was added to the Oracle Object, also delete the 
ITEM_MFQUEUE record that was picked up by GETNXT. If the entire business 
transaction was not published, the system must leave something on the ITEM_
MFQUEUE to ensure that the rest of it is picked up by the next call to GETNXT.

■ Update the detail tables publish_ind column to 'Y' by each detail table of rowids 
returned from BUILD_DETAIL_OBJECTS.

■ The header and detail level Oracle Objects are combined and returned.

Function Level Description - HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is 
raised. I_seq_no is the sequence number of the driving ITEM_MFQUEUE record. I_
function_keys contains detail level key values (item and optional detail keys). 

If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the 
driving ITEM_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends 
back a status of 'H'ospital to the RIB as well. It then updates the status of the queue 
record to 'H'ospital, so that it will not get picked up again by the driving cursor in 
GETNXT. 

If the error is a fatal, a status of 'E'rror is returned to the RIB. The error is considered 
non-fatal if no DML has occurred yet. Whenever DML has occurred, then the global 
variable LP_error_status is flipped from 'H'ospital to 'E'rror. 

Package name: RMSMFM_ITEMS_BUILD

Spec file name: rmsmfm_items.pls

Body file name: rmsmfm_itemb.pls

Function Level Description - BUILD_MESSAGE
Function: BUILD_MESSAGE 
    (O_error_msg      OUT            VARCHAR2,
     O_message        IN OUT NOCOPY  "RIB_ItemDesc_REC",
     O_rowids_rec     IN OUT NOCOPY  ROWIDS_REC, 
     O_record_exists  IN OUT         BOOLEAN,
     I_message_type   IN             ITEM_MFQUEUE.MESSAGE_TYPE%TYPE,
     I_tran_level_ind IN             ITEM_PUB_INFO.TRAN_LEVEL_IND%TYPE,
     I_queue_rec      IN             ITEM_MFQUEUE%ROWTYPE)

The private function is responsible for building detail level DESC Oracle Objects. It 
builds as many detail Oracle Object as it can given the passed in message type and 
business object keys (item).

Call the following:

■ BUILD_HEADER_DETAIL

■ BUILD_SUPPLIER_DETAIL



Item Publication API

2-52 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ BUILD_COUNTRY_DETAIL

■ BUILD_DIM_DETAIL

■ BUILD_UDA_LOV_DETAIL

■ BUILD_UDA_FF_DETAIL

■ BUILD_UDA_DATE_DETAIL

■ BUILD_IMAGE_DETAIL

■ BUIILD_UPC_DETAIL

■ BUILD_BOM_DETAIL

■ BUILD_TICKET_DETAIL

■ BUILD_RELATED_ITEMS_HEAD

■ BUILD_RELATED_ITEMS_DETAIL (The object built in this function will be a 
child of the object built in the BUILD_ RELATED_ITEMS_HEAD function based 
on the relationship_id)

■ BUILD_ITEM_MASTER_CFA_EXT

■ BUILD_ITEM_SUPPLIER_CFA_EXT

■ BUILD_ITEM_SUPP_CTRY_CFA_EXT

Function Level Description - BUILD_DELETE_MESSAGE
Function: BUILD_DETAIL_CHANGE_OBJECTS
            (O_error_msg       OUT            VARCHAR2,
             O_message         IN OUT NOCOPY  "RIB_ItemDesc_REC",
             I_message_type    IN             ITEM_MFQUEUE.MESSAGE_TYPE%TYPE,
             I_business_obj    IN             ITEM_KEY_REC)

This function builds a REF Oracle Object to publish to the RIB for all delete message 
types (for example, ITEM_DEL, ISUP_DEL, ISC_DEL, and others).

The function also checks to see if there is a corresponding Create message for the 
current delete message. If so, O_create_rowid is set. This is used to determine if the 
Delete message should be published (see PROCESS_QUEUE_RECORD description 
above). If both Create and Delete messages are on the queue, neither are published.

Detail creates and detail update messages (DTL_ADD, DTL_UPD). I_business_obj 
contains the header level key values (item).

Function Level Description - BUILD_HEADER_OBJECT (local)
This private function accepts item header key values (item), builds and returns a 
header level DESC Oracle Object. Call GET_ITEM_INFO to retrieve data 
supplementary to ITEM_MASTER. If the item is not found on ITEM_MASTER, O_
record_exists is set to FALSE.

Function Level Description - BUILD DETAIL functions (all local)
The following functions have the same format:

■ BUILD_SUPPLIER_DETAIL

■ BUILD_COUNTRY_DETAIL

■ BUILD_DIM_DETAIL

■ BUILD_UDA_LOV_DETAIL



Item Publication API

RIB Publication Designs 2-53

■ BUILD_UDA_FF_DETAIL

■ BUILD_UDA_DATE_DETAIL

■ BUILD_IMAGE_DETAIL

■ BUIILD_UPC_DETAIL

■ BUILD_BOM_DETAIL

■ BUILD_TICKET_DETAIL

■ BUILD_RELATED_ITEMS_HEAD

■ BUILD_RELATED_ITEMS_DETAIL

They have the same specifications, except as noted below.

The functions for building detail nodes for the ITEMDESC message work in the same 
way. The functions build as many detail Oracle Objects as they can, given the passed 
in message type and business object keys.

The difference between the different detail functions lies in the data being accessed. 
BUILD_SUPPLIER_DETAIL retrieves information from ITEM_SUPPLIER, BUILD_
COUNTRY_DETAIL retrieves information from ITEM_SUPP_COUNTRY, and so on.

BUILD_SUPPLlER_DETAIL and BUILD_COUNTRY_DETAIL are the only functions 
that have the input parameter I_orderable_item. This is used to validate orderable 
items. If an item is orderable, and the initial ITEM_ADD message is being created, at 
least one supplier node and one supplier/country node are required. This is the only 
business validation done by the item publisher.

The BUILD_ RELATED_ITEMS_HEAD function retrieves data (item relationship 
details) from the RELATED_ITEM_HEAD table and builds detail nodes for the 
ITEMDESC message. Each of these detail nodes has child nodes if the item 
relationship contains related items records in the RELATED_ITEM_DETAIL table. 
These child nodes are built by the BUILD_ RELATED_ITEMS_DETAIL function which 
is called within the BUILD_ RELATED_ITEM_HEAD function. These child nodes are 
optional for the detail nodes.

If the original create message is being published (I_message_type would be ITEM_
ADD)

■ Select all detail records for the business transaction. Return a table of ITEM_
MFQUEUE rowids for each message that is placed into the Oracle Object. 

■ Since the message being published is ITEM_ADD, there may not be a record on 
the MFQUEUE table for each detail record that needs to be retrieved. Therefore, no 
inner join to the MFQUEUE table is done. However, if there are any MFQUEUE 
records for details, they should be deleted. Therefore, a UNION to a second query 
is done to select all relevant MFQUEUE records for deletion.

If the message being published is a detail add or detail update (for example, ISUP_
ADD, ISUP_UPD, ISC_ADD, ISC_UPD)

■ Select all detail records for the business transaction. Return a table of ITEM_
MFQUEUE rowids for each message that is placed into the Oracle Object. 

■ Since the message being published is a detail create or update, the only details that 
should be added to the message are those details that have a record on the 
MFQUEUE table. Therefore, an inner join between the MFQUEUE table and the 
business detail table is performed. Any MFQUEUE records retrieved will have 
their ROWIDs added to the list of ROWIDs that will eventually be deleted.



Item Publication API

2-54 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ If no records are retrieved for the detail record query, O_records_exist is set to 
FALSE.

A concern here is making sure that the system does not delete information from the 
queue table that has not been published. For this reason, the system does deletes by 
ROWID. The system also tries to get everything in the same cursor to ensure that the 
message published matches the deletes that are performed from the ITEM_MFQUEUE 
table regardless of trigger execution during GETNXT calls.

Function Level Description - GET_ITEM_INFO (local)
This private function gets ITEM_MASTER as input and retrieves supplementary data. 
For example, each item has a department, class, and subclass. GET_ITEM_INFO will 
retrieve the descriptions for these three fields. This function is called from BUILD_
HEADER_OBJECT.

Function Level Description - BUILD_DIMENSION_DESCRIPTIONS (local)
This private function is similar to GET_ITEM_INFO in that it retrieves supplementary 
data. This function, however, is called when item/supplier/country/dimension 
message nodes are being populated. This function is called from BUILD_DIM_
DETAIL.

Function Level Description - BUILD_ITEM_MASTER_CFA_EXT (local)
This private function construct a CFA_BASE_TABLE_PRIMARY_KEY_REC object 
with the Merchandising base table item_master and entity key value (item). Calls 
CFA_API_SQL.BUILD_NAME_VALUE_PAIR to build and return the entity's 
customer attributes through RIB_CustFlexAttriVo_TBL. Additionally, query and return 
the rowids and seq_nos of ITEM_MFQUEUE related to the CFAS change for the entity 
down the queue. These rows will be deleted by RMSMFM_ITEMS.PROCESS_
QUEUE_RECORD.

Function Level Description - BUILD_ITEM_SUPPLIER_CFA_EXT (local)
This private function construct a CFA_BASE_TABLE_PRIMARY_KEY_REC object 
with the Merchandising base table item_supplier and entity key values (item,supplier). 
Calls CFA_API_SQL.BUILD_NAME_VALUE_PAIR to build and return the entity's 
customer attributes through RIB_CustFlexAttriVo_TBL. Additionally, query and return 
the rowids and seq_nos of ITEM_MFQUEUE related to the CFAS change for the entity 
down the queue. These rows will be deleted by RMSMFM_ITEMS.PROCESS_
QUEUE_RECORD.

Function Level Description - BUILD_ITEM_SUPP_CTRY_CFA_EXT (local)
This private function construct a CFA_BASE_TABLE_PRIMARY_KEY_REC object 
with the Merchandising base table item_supp_country and entity key values 
(item,supplier,origin_country_id). Calls CFA_API_SQL.BUILD_NAME_VALUE_PAIR 
to build and return the entity's customer attributes through RIB_CustFlexAttriVo_TBL. 
Additionally, query and return the rowids and seq_nos of ITEM_MFQUEUE related to 
the CFAS change for the entity down the queue. These rows will be deleted by 
RMSMFM_ITEMS.PROCESS_QUEUE_RECORD.

Trigger Impact
Trigger name: EC_TABLE_IEM_AIUDR.TRG (mod)

Trigger file name: ec_table_iem_aiudr.trg (mod)



Item Publication API

RIB Publication Designs 2-55

Table: ITEM_MASTER

Modify the trigger on the ITEM table to capture Inserts, Updates, and Deletes. Remove 
all of the code except the code that checks the item_level and tran_level. This is needed 
to determine which message type to send to the queue, item or UPC (reference item).

Inserts

■ Send the header level item info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.ITEM_ADD or RMSMFM_ITEM.UPC_ADD.

Updates

■ Send the header level item info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.ITEM_UPD or RMSMFM_ITEM.UPC_UPD.

■ Send another header level item info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEMS.ITEM_FULREP if SYSTEM_OPTIONS.PUB_
FULL_OBJECTS_IND is 'Y' and current item message types ITEM_UPD, UPC_
ADD, UPC_UPD

Deletes

■ Send the header level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.ITEM_DEL or RMSMFM_ITEM.UPC_DEL.

■ Send another header level item info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEMS.ITEM_FULREP if  SYSTEM_OPTIONS.PUB_
FULL_OBJECTS_IND is 'Y' and current item message type is UPC_DEL

In all these cases, build the function keys for ADDTOQ with item.

Trigger name: EC_TABLE_ISP_AIUDR.TRG (mod)

Trigger file name: ec_table_isp_aiudr.trg (mod)

Table: ITEM_SUPPLIER

Populate the ITEM_MFQUEUE table according to the message type. Make sure that 
only transaction level items are added to the ITEM_MFQUEUE table.

■ Inserts: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_ADD. 

■ Updates: Send the detail level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEM.DTL_UPD.

■ Deletes: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item and supplier.

Trigger name: EC_TABLE_ISC_AIUDR.TRG (mod)

Trigger file name: ec_table_isc_aiudr.trg (mod)

Table: ITEM_SUPP_COUNTRY

Populate the ITEM_MFQUEUE table according to the message type. Make sure that 
only transaction level items are added to the ITEM_MFQUEUE table.

■ Inserts: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_ADD.

■ Updates: Send the detail level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEM.DTL_UPD.



Item Publication API

2-56 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Deletes: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, supplier and origin_
country_id.

Trigger name: EC_TABLE_ISD_AIUDR.TRG (mod)

Trigger file name: ec_table_isd_aiudr.trg (mod)

Table: ITEM_SUPP_COUNTRY_DIM

Populate the ITEM_MFQUEUE table according to the message type. Make sure that 
only transaction level items are added to the ITEM_MFQUEUE table.

■ Inserts: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_ADD.

■ Updates: Send the detail level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEM.DTL_UPD.

■ Deletes: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, supplier, origin_
country_id.

Trigger name: EC_TABLE_PKS_AIUDR.TRG (mod)

Trigger file name: ec_table_pks_aiudr.trg (mod)

Table: PACKITEM_BREAKOUT

This trigger captures inserts, updates and deletes on the table. It populates a PL/SQL 
table of records, RMSMFM_ITEMS.BOM_TABLE, which will be used in the statement 
trigger to build an XML message and place it on the item queue.

Trigger name: EC_TABLE_PKS_IUDS.TRG (mod)

Trigger file name: ec_table_pks_aiudr.trg (mod)

Table: PACKITEM_BREAKOUT

This trigger will group all of the data currently stored in the PL/SQL table of records 
populated by the EC_TABLE_PKS_AIUDR trigger, and call RMSMFM_ADDTOQ for 
every pack component in the table of records.

Send another detail level info to the ADDTOQ procedure in the MFM with an input 
mssage type RMSMFM_ITEM.ITEM_FULREP if SYSTEM_OPTIONS.PUB_FULL_
OBJECTS_IND is 'Y' and current record's message type is BOM_CRE, BOM_MOD, 
BOM_DEL.

Trigger name: EC_TABLE_UIT_AIUDR.TRG (mod)

Trigger file name: ec_table_uit_aiudr.trg (mod)

Table: UDA_ITEM_DATE

Populate the ITEM_MFQUEUE table according to the message type. Make sure that 
transaction level items and above are added to the ITEM_MFQUEUE table.

■ Inserts: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_ADD.

■ Updates: Send the detail level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEM.DTL_UPD.



Item Publication API

RIB Publication Designs 2-57

■ Deletes: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, uda_id.

Trigger name: EC_TABLE_UIF_AIUDR.TRG (mod)

Trigger file name: ec_table_uif_aiudr.trg (mod)

Table: UDA_ITEM_FF

Populate the ITEM_MFQUEUE table according to the message type. Make sure that 
transaction level items and above are added to the ITEM_MFQUEUE table.

■ Inserts: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_ADD.

■ Updates: Send the detail level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEM.DTL_UPD.

■ Deletes: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, uda_id.

Trigger name: EC_TABLE_UIL_AIUDR.TRG (mod)

Trigger file name: ec_table_uil_aiudr.trg (mod)

Table: UDA_ITEM_LOV

Populate the ITEM_MFQUEUE table according to the message type. Make sure that 
transaction level items and above are added to the ITEM_MFQUEUE table.

■ Inserts; Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_ADD.

■ Updates: Send the detail level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEM.DTL_UPD.

■ Deletes: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, uda_id and uda_
value.

Trigger name: EC_TABLE_RIH_AIUDR.TRG (mod)

Trigger file name: ec_table_rih_aiudr.trg (mod)

Table: RELATED_ITEM_HEAD

Populate the ITEM_MFQUEUE table according to the message type. Make sure that 
only transaction level items are added to the ITEM_MFQUEUE table.

■ Inserts: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_ADD. 

■ Updates: Send the detail level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEM.DTL_UPD.

■ Deletes: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item and relationship_id.

Trigger name: EC_TABLE_RID_AIUDR.TRG (mod)

Trigger file name: ec_table_rid_aiudr.trg (mod)



Item Publication API

2-58 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table: RELATED_ITEM_DETAIL

Populate the ITEM_MFQUEUE table according to the message type. Make sure that 
only transaction level items are added to the ITEM_MFQUEUE table.

■ Inserts: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_ADD.  

■ Updates: Send the detail level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ITEM.DTL_UPD.

■ Deletes: Send the detail level info to the ADDTOQ procedure in the MFM with the 
message type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, relationship_id and 
related_item.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

itemcre Item Create Message ItemDesc.xsd

itemmod Item Modify Message ItemDesc.xsd

itemdel Item Delete Message ItemRef.xsd

itemsupcre Item Supplier Create Message ItemSupDesc.xsd

itemsupmod Item Supplier Modify Message ItemSupDesc.xsd

itemsupdel Item Supplier Delete Message ItemSupRef.xsd

itemsupctycre Item Supplier Country Create 
Message

ItemSupCtyDesc.xsd

itemsupctymod Item Supplier Country Modify 
Message

ItemSupCtyDesc.xsd

itemsupctydel Item Supplier Country Delete 
Message

ItemSupCtyRef.xsd

iscdimcre Item Supplier Country 
Dimension Create Message

ISCDimDesc.xsd

iscdimmod Item Supplier Country 
Dimension Modify Message

ISCDimDesc.xsd

iscdimdel Item Supplier Country 
Dimension Delete Message

ISCDimRef.xsd

itemupccre Item UPC Create Message ItemUPCDesc.xsd

itemupcmod Item UPC Modify Message ItemUPCDesc.xsd

itemupcdel Item UPC Delete Message ItemUPCRef.xsd

itembomcre Item BOM Create Message ItemBOMDesc.xsd

itembommod Item BOM Modify Message ItemBOMDesc.xsd

itembomdel Item BOM Delete Message ItemBOMRef.xsd

itemudaffcre Item UDA Free Form TextCreate 
Message

ItemUDAFFDesc.xsd



Item Publication API

RIB Publication Designs 2-59

Table Impact

itemudaffmod Item UDA Free Form Text 
Modify Message

ItemUDAFFDesc.xsd

itemudaffdel Item UDA Free Form Text 
Delete Message

ItemUDAFFRef.xsd

itemudalovcre Item UDA LOV Create Message ItemUDALOVDesc.xsd

itemudalovmod Item UDA LOV Modify 
Message

ItemUDALOVDesc.xsd

itemudalovdel Item UDA LOV Delete Message ItemUDALOVRef.xsd

itemudadatecre Item UDA Date Create Message ItemUDADateDesc.xsd

itemudadatemod Item UDA Date Modify 
Message

ItemUDADateDesc.xsd

itemudadatedel Item UDA Date Delete Message ItemUDADateRef.xsd

itemimagecre Item Image Create Message ItemImageDesc.xsd

itemimagemod Item Image Modify Message ItemImageDesc.xsd

itemimagedel Item Image Delete Message ItemImageRef.xsd

relitemheadcre Item Relationship Create 
Message

RelatedItemDesc.xsd

relitemheadmod Item Relationship Modify 
Message

RelatedItemDesc.xsd

relitemheaddel Item Relationship Delete 
Message

RelatedItemRef.xsd

relitemdetcre Related Item Create Message RelatedItemDesc.xsd

relitemdetmod Related Item Modify Message RelatedItemDesc.xsd

relitemdetdel Related Item Delete Message RelatedItemRef.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_MFQUEUE Yes Yes Yes Yes

ITEM_PUB_INFO Yes Yes Yes Yes

ITEMLOC_MFQUEUE Yes No No Yes

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UDA_ITEM_LOV Yes No No No

UDA_ITEM_DATE Yes No No No

UDA_ITEM_FF Yes No No No

ITEM_IMAGE Yes No No No

PACKITEM_BREAKOUT Yes No No No

V_PACKSKU_QTY Yes No No No

Message Types Message Type Description XML Schema Definition (XSD)



Item Location Publication API

2-60 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
■ It is not possible for a detail trigger to accurately know the status of a header table.

■ In order for the detail triggers to accurately know when to add a message to the 
queue, Merchandising should not allow approval of a business object while detail 
modifications are being made.

■ It is not possible for a header trigger or a detail trigger to know the status of 
anything modified by GETNXT. If a header trigger or detail trigger is trying to 
delete queue records that GETNXT currently has locked, it will have to wait until 
GETNXT is finished and removes the lock. It is assumed that this time will be 
fairly short (at most 2-3 seconds). It is also assumed that this will occur rarely, as it 
involves updating/deleting detail records on a business object that has already 
been approved. This also has to occur at the same time GETNXT is processing the 
current business object.

■ Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

Item Location Publication API
This section describes the item location publication API.

Functional Area
Foundation

Business Overview
Merchandising defines and publishes item-location relationships. The details about 
item-location relationship creation, updation and de-activation are important for other 
systems for smooth functioning of several business processes. For example, when an 
new item-location relationship is created, the Point-Of-Sale system needs to be made 
aware of this information so that it can smoothly process subsequent sales and return 

ITEM_TICKET Yes No No No

CODE_DETAIL Yes No No No

DEPS Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No

V_DIFF_ID_GROUP_TYPE Yes No No No

ITEM_ZONE_PRICE Yes No No No

PACKITEM Yes No No No

RELATED_ITEM_HEAD Yes No No No

RELATED_ITEM_DETAIL Yes No No No

ITEM_MASTER_CFA_EXT  Yes No No No

ITEM_SUPPLIER_CFA_EXT Yes No No No

ITEM_SUPP_COUNTRY_CFA_EXT Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Item Location Publication API

RIB Publication Designs 2-61

activities at the Point-of-sale. The purpose of this API is to publish such information to 
be subscribed and consumed by other systems.

Package Impact
As and when item-location relationships are created or modified as part of various 
business processes, such events are captured as using triggers on the item location set 
of tables. The trigger then invokes methods from this API to successfully publish the 
captured information.

Package name: RMSMFM_ITEMLOC

Spec file name: rmsmfm_itemlocs.pls

Body file name: rmsmfm_itemlocb.pls

Package Specification - Global Variables

FAMILY        CONSTANT  VARCHAR2(64)  'ItemLoc';
ITEMLOC_ADD   CONSTANT  VARCHAR2(20)  'ItemLocCre';
ITEMLOC_UPD   CONSTANT  VARCHAR2(20)  'ItemLocMod';
ITEMLOC_DEL   CONSTANT  VARCHAR2(20)  'ItemLocDel';
REPL_UPD      CONSTANT  VARCHAR2(20)  'ItemLocReplMod';

Function Level Description - ADDTOQ
Function: ADDTOQ
      (O_error_message          OUT  VARCHAR2,
       I_message_type           IN   ITEMLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
       I_itemloc_record         IN   ITEM_LOC%ROWTYPE,
       I_prim_repl_supplier     IN   REPL_ITEM_LOC.PRIMARY_REPL_SUPPLIER%TYPE,
       I_repl_method            IN   REPL_ITEM_LOC.REPL_METHOD%TYPE,
       I_reject_store_ord_ind   IN   REPL_ITEM_LOC.REJECT_STORE_ORD_IND%TYPE,
       I_next_delivery_date     IN   REPL_ITEM_LOC.NEXT_DELIVERY_DATE%TYPE,
       I_mult_runs_per_day_ind  IN   REPL_ITEM_LOC.MULT_RUNS_PER_DAY_IND%TYPE)
This will call the API_LIBRARY.GET_RIB_SETTINGS if the LP_num_threads is NULL 
and insert the family record into ITEMLOC_MFQUEUE table. The call for HASH_
ITEM will insert the I_itemloc_record.item information into ITEMLOC_MFQUEUE 
table.

Function Level Description - GETNXT
Procedure: GETNXT(O_status_code     OUT   VARCHAR2,
                  O_error_msg       OUT   VARCHAR2,
                  O_message_type    OUT   VARCHAR2,
                  O_message         OUT   RIB_OBJECT,
                  O_bus_obj_id      OUT   RIB_BUSOBJID_TBL,
                  O_routing_info    OUT   RIB_ROUTINGINFO_TBL,
                  I_num_threads  IN       NUMBER DEFAULT 1,
                  I_thread_val   IN       NUMBER DEFAULT 1);
Make sure to initialize LP_error_status to API_CODES.HOSPITAL at the beginning of 
GETNXT.

The RIB calls GETNXT to get messages. The driving cursor will query for unpublished 
records on the ITEMLOC_MFQUEUE table (PUB_STATUS = 'U').

Because ITEMLOC records should not be published before ITEM records a clause is 
included in the driving cursor that checks for ITEM CREATE messages on the ITEM_
MFQUEUE table. The ITEMLOC_MFQUEUE record will not be selected from the 
driving cursor if the ITEM CREATE message still exists on ITEM_MFQUEUE. Also, 
ITEMLOC_MFQUEUE cleanup is included in ITEM_MFQUEUE cleanup. When the 



Item Location Publication API

2-62 Operations Guide Volume 2 - Message Publication and Subscription Designs

item publisher RMSMFM_ITEMS encounters a DELETE message for an item that has 
never been published, it deletes all records for the item from the ITEM_MFQUEUE 
table. This is done in the program unit CLEAN_QUEUE. CLEAN_QUEUE also deletes 
from ITEMLOC_MFQUEUE when a DELETE message for a non-published item is 
encountered.

After retrieving a record from the queue table, GETNXT checks for records on the 
queue with a status of 'H'ospital. If there are any such records for the current business 
object, GETNXT raises an exception to send the current message to the hospital.

The information from the ITEMLOC_MFQUEUE table is passed to PROCESS_
QUEUE_RECORD. PROCESS_QUEUE_RECORD builds the Oracle Object message to 
pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, 
GETNXT will raise an exception.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY
Procedure: PUB_RETRY(O_status_code      OUT    VARCHAR2,
                     O_error_msg        OUT    VARCHAR2,
                     O_message          OUT    RIB_OBJECT,
                     O_message_type  IN OUT    VARCHAR2,
                     O_bus_obj_id    IN OUT    RIB_BUSOBJID_TBL,
                     O_routing_info  IN OUT    RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT    IN        RIB_OBJECT);
Same as GETNXT except:

The record on ITEMLOC_MFQUEUE must match the passed in sequence number 
(contained in the ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

If the record from ITEMLOC_MFQUEUE table is an add or update (ITEMLOC_ADD, 
ITEMLOC_UPD) the function will call BUILD_DETAIL_OBJECTS to build the Oracle 
Object to publish to the RIB. This will also take care of any ITEMLOC_MFQUEUE 
deletes and ROUTING_INFO logic.

If the record from ITEMLOC_MFQUEUE table is a delete (ITEMLOC_DEL) the 
function will call BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to 
publish to the RIB. This will also take care of any ITEMLOC_MFQUEUE deletes and 
the ROUTING_INFO logic. 

Function Level Description - BUILD_DETAIL_OBJECTS (local)
The function is responsible for the Oracle Object used for a DESC message (inserts and 
updates). It adds as many mfqueue records to the message as it can given the 
passed-in message type and business object keys.

■ Selects all records on the ITEMLOC_MFQUEUE that are for the same item. The 
records are fetched in order of seq_no on the MFQUEUE table. The records are 
fetchee into a table using BULK COLLECT, with MAX_DETAILS_TO_PUBLISH as 
the LIMIT clause.

■ The records in the BULK COLLECT table are looped through. If the record's 
message_type differs from the message type passed into the function, it will exit 



Item Location Publication API

RIB Publication Designs 2-63

from the loop. Otherwise, it will add the data from the record to the Oracle Object 
being used for publication. If the input message type is not REPL_UPD then the 
Purchase Type for the item's department is retrieved and it is added to the oracle 
object.

■ Ensures that ITEMLOC_MFQUEUE is deleted from as needed. 

■ Ensures that ROUTING_INFO is constructed if routing information is stored at the 
detail level in the business transaction. 

Make sure to set LP_error_status to API_CODES.UNHANDLED_ERROR before any 
DML statements.

A concern here is making sure that the system does not delete records from the queue 
table that have not been published. For this reason, the system performs deletes by 
ROWID. The system will also get everything in the same cursor. This should ensure 
that the message published matches the deletes performed from the ITEMLOC_
MFQUEUE table regardless of trigger execution during GETNXT calls. 

Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
This function works the same way as BUILD_DETAIL_OBJECTS, except for the fact 
that a REF object is being created instead of a DESC object.

Function Level Description - HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
ITEMLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a 
status of 'H'ospital to the RIB as well. It then updates the status of the queue record to 
'H'ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal, a status of 'E'rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H'ospital to 'E'rror.

Function Level Description - BUILD_ITEM_LOC_CFA_EXT (local)
This private function construct a CFA_BASE_TABLE_PRIMARY_KEY_REC object 
with the Merchandising base table item_loc and entity key values (item,loc). Calls 
CFA_API_SQL.BUILD_NAME_VALUE_PAIR to build and return the entity's 
customer attributes through RIB_CustFlexAttriVo_TBL.

Trigger Impact
A trigger exists on the ITEM_LOC to capture inserts, updates, and deletes. 

Only transaction-level items should be processed. If the item is not transaction-level, 
the trigger will exit before calling ADDTOQ.

Trigger name: EC_TABLE_ITL_AIUDR.TRG (mod)

Trigger file name: ec_table_itl_aiudr.trg (mod)

Table: ITEMLOC

■ Inserts: Sends the L_record (I_item, I_loc, and the I_loc_type) to the ADDTOQ 
procedure in the MFM with the message type RMSMFM_ITEMLOC.ITEMLOC_
ADD.



Item Location Publication API

2-64 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Updates: Sends the L_prim_repl_supplier, L_repl_method, L_reject_store_ord_ind, 
L_next_delivery_date to the ADDTOQ procedure in the MFM with the message 
type RMSMFM_ITEMLOC.ITEMLOC_UPD.

– The only updates that need to be captured are updates to the columns receive_
as_type, source_wh, store_price_ind, primary_supp, status, source_method, 
local_item_desc, primary_cntry, local_short_desc, and taxable_ind.

■ Deletes: Sends the L_record (I_item, I_loc, and the I_loc_type ) to the ADDTOQ 
procedure in the MFM with the message type RMSMFM_ITEMLOC.ITEMLOC_
DEL.

The trigger will fire not only for stores (loc_type = 'S') but also for warehouses (loc_
type = 'W').

Trigger name: EC_TABLE_RIL_AIUDR.TRG (mod)

Trigger file name: ec_table_ril_aiudr.trg (mod)

Table: REPL_ITEM_LOC

Create a trigger on the table REPL_ITEM_LOC to capture inserts, updates, and deletes.

Updates:

■ Sends the L_prim_repl_supplier, L_repl_method, L_reject_store_ord_ind, L_next_
delivery_date and the L_record ( I_item, I_loc, and the I_loc_type ) to the 
ADDTOQ procedure in the MFM with the message type RMSMFM_
ITEMLOC.REPL_UPD.

■ The only updates that need to be captured are updates to the columns primary_
repl_supplier, repl_method, reject_store_ord_ind, and next_delivery_date.

Deletes: Sends the L_record ( I_item, I_loc, and the I_loc_type ) to the ADDTOQ 
procedure in the MFM with the message type RMSMFM_ITEMLOC.REPL_UPD.

Message XSD
Below are the filenames that correspond with each message type. Please consult the 
RIB documentation for each message type in order to get a detailed picture of the 
composition of each message.

Table Impact

Message Types Message Type Description
XML Schema 
Definition (XSD)

ItemLocCre Item Loc Create Message ItemLocDesc.xsd

ItemLocMod Item Loc Modify Message ItemLocDesc.xsd

ItemLocDel Item Loc Delete Message ItemLocRef.xsd

ItemLocReplMod Item Loc Replenishment Modify 
Message

ItemLocDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_MFQUEUE Yes No No No

ITEMLOC_
MFQUEUE

Yes Yes Yes Yes

ITEM_MASTER Yes No No No



Merchandise Hierarchy Publication API

RIB Publication Designs 2-65

Design Assumptions
■ It is not possible for a detail trigger to accurately know the status of a header table.

■ In order for the detail triggers to accurately know when to add a message to the 
queue, Merchandising should not allow approval of a business object while detail 
modifications are being made.

■ It is not possible for a header trigger or a detail trigger to know the status of 
anything modified by GETNXT. If a header trigger or detail trigger is trying to 
delete queue records that GETNXT currently has locked, it will have to wait until 
GETNXT is finished and removes the lock. It is assumed that this time will be 
fairly short (at most 2-3 seconds). It is also assumed that this will occur rarely 
because it involves updating/deleting detail records on a business object that has 
already been approved. This also has to occur at the same time GETNXT is 
processing the current business object.

■ Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

Merchandise Hierarchy Publication API
This section describes the merchandise hierarchy publication API.

Functional Area
Foundation Data

Business Overview
This API publishes information regarding all the levels of the merchandise hierarchy 
to the RIB such that all the downstream applications may subscribe to it and have 
merchandise hierarchy information in sync with Merchandising.

Package Impact
This section describes the package impact.

Business Object ID
The RIB uses the business object ID to determine message dependencies when sending 
messages to a subscribing application. If a create message has already failed in the 
subscribing application, and a modify/delete message is about to be sent from the RIB 
to the subscribing application, the RIB will not send the modify/delete message if it 
has the same business object ID as the failed create message. Instead, the 
modify/delete message will go directly to the hospital.

If the message relates to divisons, the business object ID will be the division. If the 
message relates to groups, the business object ID will be the group number. If the 
message relates to a department, the department number is the business object ID. If 
the message relates to a class, the business object ID will be the department number 

DEPS Yes No No No

ITEM_LOC_CFA_
EXT

Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Merchandise Hierarchy Publication API

2-66 Operations Guide Volume 2 - Message Publication and Subscription Designs

and the class number. Finally, if the message relates to a subclass, the business object 
ID will be the department, class and subclass.

File name: rmsmfm_merchhiers/b.pls

Function Level Description - ADDTOQ
Function: ADDTOQ(O_error_msg     OUT   VARCHAR2,
                 I_message_type  IN    MERCHHIER_MFQUEUE.MESSAGE_TYPE%TYPE,
                 I_division      IN    DIVISION.DIVISION%TYPE,
                 I_division_rec  IN    DIVISION%ROWTYPE,
                 I_group_no      IN    GROUPS.GROUP_NO%TYPE,
                 I_groups_rec    IN    GROUPS%ROWTYPE,
                 I_dept          IN    DEPS.DEPT%TYPE,
                 I_deps_rec      IN    DEPS%ROWTYPE,
                 I_class         IN    CLASS.CLASS%TYPE,
                 I_class_rec     IN    CLASS%ROWTYPE,
                 I_subclass      IN    SUBCLASS.SUBCLASS%TYPE,
                 I_subclass_rec  IN    SUBCLASS%ROWTYPE)
                 I_group_id      IN    MERCHHIER_MFQUEUE.GROUP_ID%TYPE DEFAULT 
NULL)
If multi-threading is being used, call API_LIBRARY.RIB_SETTINGS to get the number 
of threads used for the publisher. Using the number of threads, and the business object 
ID, calculate the thread value.

Insert a record into the MERCHHIER_MFQUEUE.

Function Level Description - GETNXT
Procedure: GETNXT(O_status_code  OUT    VARCHAR2,
                  O_error_msg    OUT    VARCHAR2,
                  O_message_type OUT    VARCHAR2,
                  O_message      OUT    RIB_OBJECT,
                  O_bus_obj_id   OUT    RIB_BUSOBJID_TBL,
                  O_routing_info OUT    RIB_ROUTINGINFO_TBL,
                  I_num_threads  IN     NUMBER DEFAULT 1,
                  I_thread_val   IN     NUMBER DEFAULT 1)
The RIB calls GETNXT to get messages. The procedure will use the C_QUEUE cursor 
defined in the specification of the package body to find the next message on the 
MERCHHIER_MFQUEUE to be published to the RIB.

After retrieving a record from the queue table, GETNXT checks for records on the 
queue with a status of 'H' - Hospital. If there are any such records for the current 
business object, GETNXT should raise an exception to send the current message to the 
hospital.

The information from the MERCHHIER_MFQUEUE table is passed to PROCESS_
QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object message 
to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, 
GETNXT should raise an exception.

After PROCESS_QUEUE_RECORD returns an Oracle object to pass to the RIB, this 
procedure will delete the record on MERCHHIER_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be 
called.

Function Level Description - PUB_RETRY
Procedure: PUB_RETRY(O_status_code      OUT    VARCHAR2,
                     O_error_msg        OUT    VARCHAR2,



Merchandise Hierarchy Publication API

RIB Publication Designs 2-67

                     O_message_type  IN OUT    VARCHAR2,
                     O_message          OUT    RIB_OBJECT,
                     O_bus_obj_id    IN OUT    RIB_BUSOBJID_TBL,
                     O_routing_info  IN OUT    RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT    IN        RIB_OBJECT);
Same as GETNXT except the record on MERCHHIER_MFQUEUE must match the 
passed in sequence number (contained in the ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY. In addition to building the Oracle Objects, this function 
will populate the business object ID. If the message is for a division, group or 
department, the business object ID will be the division, group, or department 
respectively. If the message is for a class, the business object will be the class and 
department combination. If the message is for a subclass, the business object ID will be 
the subclass, class and department combination.

Function Level Description - HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised. If the error is a non-fatal error, GETNXT passes the sequence number of the 
driving MERCHHIER_MFQUEUE record back to the RIB in the ROUTING_INFO. It 
sends back a status of 'H' -Hospital to the RIB as well. It then updates the status of the 
queue record to 'H' so that it will not get picked up again by the driving cursor in 
GETNXT. If the error is a fatal error, a status of 'E' - Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H' to 'E'. 

Function Level description - BUILD_DEPS_CFA_EXT
BUILD_DEPS_CFA_EXT is called from PROCESS_QUEUE_RECORD. This private 
function will build and return entity's customer attributes from DEPS_CFA_EXT table 
through RIB_CustFlexAttriVo_TBL.

Function Level description - BUILD_CLASS_CFA_EXT
BUILD_CLASS_CFA_EXT is called from PROCESS_QUEUE_RECORD. This private 
function will build and return entity's customer attributes from CLASS_CFA_EXT 
table through RIB_CustFlexAttriVo_TBL.

Function Level description - BUILD_SUBCLASS_CFA_EXT
BUILD_SUBCLASS_CFA_EXT is called from PROCESS_QUEUE_RECORD. This 
private function will build and return entity's customer attributes from SUBCLASS_
CFA_EXT table through RIB_CustFlexAttriVo_TBL.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Types
Message Type 
Description

XML Schema 
Definition (XSD)

divisoncre Division Create Message MrchHrDivDesc.xsd



Merchandise Hierarchy Publication API

2-68 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
Delay all DML statements as late as possible. Once DML statements have taken place, 
any error becomes a fatal error rather than a hospital error.

Table Impact

divisonmod Division Modify Message MrchHrDivDesc.xsd

divisiondel Division Delete Message MrchHrDivRef.xsd

groupcre Group Detail Create 
Message

MrchHrGrpDesc.xsd

groupmod Group Detail Modify 
Message

MrchHrGrpDesc.xsd

groupdel Group Detail Delete 
Message

MrchHrGrpRef.xsd

deptcre Department Detail Create 
Message

MrchHrDeptDesc.xsd

deptmod Department Detail 
Modify Message

MrchHrDeptDesc.xsd

deptdel Department Detail Delete 
Message

MrchHrDeptRef.xsd

classcre Class Detail Create 
Message

MrchHrClsDesc.xsd

classmod Class Detail Modify 
Message

MrchHrClsDesc.xsd

classdel Class Detail Delete 
Message

MrchHrClsRef.xsd

subclasscre Subclass Detail Create 
Message

MrchHrSclsDesc.xsd

subclassmod Subclass Detail Modify 
Message

MrchHrSclstDesc.xsd

subclassdel Subclass Detail Delete 
Message

MrchHrSclsRef.xsd

TABLE SELECT INSERT UPDATE DELETE

MERCHHIER_MFQUEUE Yes Yes Yes Yes

DIVISION Yes No No No

DEPT Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No

DEPS_CFA_EXT Yes No No No

CLASS_CFA_EXT Yes No No No

SUBCLASS_CFA_EXT Yes No No No

Message Types
Message Type 
Description

XML Schema 
Definition (XSD)



Order Publication API

RIB Publication Designs 2-69

Order Publication API
This section describes the order publication API.

Functional Area
Purchase Orders.

Business Overview
Purchase order (PO) functionality in Merchandising consists of order messages 
published to the Oracle Retail Integration Bus (RIB), and batch modules that internally 
process purchase order data and uploads EDI transmitted order. This overview 
describes how both order messages and batch programs process this data. 

Creating of Purchase Orders
A purchase order is created using the following: 

■ Through online using the ordering dialog.

■ Replenishment processes. 

■ When the supplier contract type is 'B'.

■ By a supplier, in a vendor managed inventory environment.

■ Direct store delivery (defined as delivery of merchandise or a service that does not 
result from the prior creation of a PO). For more information, see Oracle Retail 
Merchandising System Operations Guide, Volume 1 - Batch Overviews and 
Designs, Chapter Purchase Order.

■ Buyer Worksheet dialog.

■ Truck splitting.

■ Customer Order webservice/RIB.

■ Franchise Order.

Purchase Order Messages
After purchase orders are published to the RIB, the following associated activity 
occurs:

■ Work orders associated with items on the PO are published to the RIB through the 
work order message process.

■ An allocation (also known as pre-distribution) of items on the PO is published to 
the RIB through the stock order message process.

■ A PO can be closed only after all appointments against the purchase order are 
closed. A closed appointment indicates that all merchandise has been received. 
Merchandising subscribes to appointment messages from the RIB. 

■ 'Version' refers to any change to a purchase order by a retailer's buyer; whereas 
'Revision' refers to any change to a purchase order initiated by a supplier.

Order Message Processes
Merchandising publishes two sets of PO messages to RIB for two kinds of subscribing 
applications. The first set of messages contains only virtual locations in 



Order Publication API

2-70 Operations Guide Volume 2 - Message Publication and Subscription Designs

Merchandising. Applications that understand virtual locations subscribe to these 
messages. 

Merchandising publishes a second set of PO messages for applications that can 
subscribe only to conventional, physical location data, such as a Warehouse 
Management System. 

Ordering publication is primarily based off of the ORDHEAD, ORDSKU, and 
ORDLOC tables. 

ORDHEAD is the parent table containing high level ordering information such as 
what supplier is being ordered from, when the order must take place, and so on. 
ORDSKU is a child of ORDHEAD and contains the item(s) that are ordered, the size of 
the pack being ordered. 

ORDLOC is a child of ORDSKU that contains the location(s) each item on the order is 
going to and how much of each item is ordered. Based on this table hierarchy, two 
levels of messages exist for order publishing. A header message is primarily driven off 
of the ORDHEAD table and the detail message that is primarily driven off both the 
ORDSKU and ORDLOC tables.

If the purchase order is a customer order (order_type = 'CO' with a stockholding 
store), the Customer Order Number and Fulfillment Order Number retrieved from the 
ORDCUST table will be included in the header message and published. 

Each message level contains three types of messages; Create, Modify, and Delete. The 
'POCre' or 'POHdrMod' message is created when an insertion or modification to the 
ORDHEAD table is made respectively. The 'PODel' message is created when an order 
is deleted from the ORDHEAD table. 'PODtlCre' or 'PODtlMod' message is created 
when a record is inserted or modified on the ORDLOC table respectively. 'PODtlDel' is 
created when an ORDLOC record is deleted.

When publishing a header mod or a detail create, detail mod, or detail delete message, 
a second full replacement message with message type 'POFulRep' will be published 
from Merchandising if system option PUB_FULL_OBJECTS_IND is configured to be Y 
on the PRODUCT_CONFIG_OPTIONS table. This message payload will contain a full 
snapshot of the PO. Based on the message type, RIB will route the full replacement 
message to appropriate applications.

Package Impact
This section describes the package impact.

1. Prerequisites: Orders are created through various methods. Orders created 
manually by a user, through a replenishment process (order can be created in 
either worksheet or approved status), uploaded from a vendor, through a contract, 
through customer order creation or through a franchise order creation.

2. Activity Detail: At this point, the order is not seen externally from Merchandising. 

3. Messages: When the order is created, a header message 'POCre' is written to the 
ordering queue table. Upon detail additions, each will have a 'PODtlCre' message 
written to the ordering queue. Ordering messages are added, updated, and 
removed from the queue as the order is modified prior to approval.

Modify Pre-Approved
1. Prerequisites: Order is still in worksheet status and has not been approved and is 

set back to worksheet.



Order Publication API

RIB Publication Designs 2-71

2. Activity Detail: At this point, items are modified, added or removed from the 
order. The order is split, scaled, and rounded in addition to having deals, brackets 
applied.

3. Messages: Each change causes a 'POHdrMod' or 'PODtlMod' message. These 
messages replaces previous create messages if there was a modification, delete a 
previous message if there was a delete, or add a new message to the queue for 
inserts.

Approve
1. Prerequisites: Line items must exist for the order to be approved. Relevant dates 

(not before, not after, pickup) must exist, plus certain other business validation 
rules based on system options.

2. Activity Detail: At this point, the order is initially approved which means external 
systems will now have constant visibility to all ordering transactions. The user can 
no longer delete line items: Instead, they are cancelled. Canceling decrements the 
order quantity by amount already received. 

3. Messages: The approval message sets an indicator signifying the approval creates 
message must be built. This is a hierarchical snapshot synchronous message built 
in the family manager by attaching all of the 'PODtlDesc' messages with the 
'POHdrDesc' message creates a 'POCre' message.

Modify in 'A' status
1. Prerequisites: Order must be currently approved.

2. Activity Detail: Numerous fields at the header level (none at the detail level) can 
be changed while the order is approved. This change creates a message.

3. Messages: A 'POHdrMod' message is created for order at the end of the session 
the order was modified. This message is published immediately as the order is 
already been published. If the order has not been published, then this message 
follows the create message sent out. For any POHdrMod other than approving or 
unapproving a PO, a second full replacement message (POFulRep) is inserted into 
the queue if PUB_FULL_OBJECTS_IND on PRODUCT_CONFIG_OPTIONS is 
configured to be Y. Since approving and unapproving a PO will result in 
publishing a PO create (POCre) a second full replacement message is not needed.

Redistribute
1. Prerequisites: Order must be in approved or worksheet status. Order must not be 

a contract order. No shipments/appointments may exist against the order. Items 
with allocations cannot be redistributed.

2. Activity Detail: User chooses which items to redistribute. Each chosen details are 
removed from the order. This creates delete messages for each one. A new location 
is then chosen to redistribute the items to. Each item/location record creates a 
message. 

Note: If user chooses to redistribute records, then cancels out of 
redistribution, delete and create messages for the chosen records is 
inserted into the queue even though no changes were actually made 
online.



Order Publication API

2-72 Operations Guide Volume 2 - Message Publication and Subscription Designs

3. Messages: A 'PODtlDel' message is created for each item/location removed from 
the order. If the order has not yet been approved, then these messages removes 
previous create messages. For already approved orders, then a message is 
published. For each redistributed item, a 'PODtlCre' message is created.

Unapprove
1. Prerequisites: Order must currently be in approved status. 

Shipments/Appoinments may exist against the order.

2. Activity Detail: This changes the status of the order back to worksheet. This 
creates a message. Existing details is modifiable. New records may be added to the 
order. Items may not be deleted from the order. However, the order quantity of the 
items can be canceled down to the received or appointment expected quantity.

3. Messages: A 'POHdrMod' message is created for order at the end of the session 
the order was modified. This message is published immediately as the order is 
already have been published. If the order has not been published, then this 
message follows the create message sent out.

Modify
1. Prerequisites: Order must be in worksheet status and have already been 

approved.

2. Activity Detail: If modification occurs at the header level, a header message is 
created. A detail message is created for each modified or added detail record. 
Detail records cannot be deleted; only their quantities can be canceled.

3. Message: A 'POHdrMod' message is created for order at the end of the session if 
the header was modified. A 'PODtlCre' or 'PODtlMod' message is created for each 
detail record added or modified respectively. When a detail create (PODtlCre) 
message is added to the queue, a second full replacement message (POFulRep) is 
inserted into the queue if PUB_FULL_OBJECTS_IND on PRODUCT_CONFIG_
OPTIONS is configured to be Y.

Close
1. Prerequisites: Order must currently be in an approved status or in worksheet 

status and which is already approved. No outstanding shipments/appointments 
may exist against any line items of the order.

2. Activity Detail: The status changes to closed. This creates a message. Any 
outstanding unreceived quantity is canceled out. No detail is modifiable while the 
order is in this status.

3. Message: A 'POHdrMod' message is created for order at the end of the session the 
order was modified. A 'PODtlMod' message is created for each line item that had 
outstanding un-received quantity. These messages are published immediately as 
the order is already published. If the order has not been published, then this 
message follows the create message sent out. Additionally, a second full 
replacement message (POFulRep) is inserted into the queue if PUB_FULL_
OBJECTS_IND on PRODUCT_CONFIG_OPTIONS is configured to be Y.

Reinstate
1. Prerequisites: Order must be in closed status. Orders that have been fully received 

(closed through receiving dialogue) cannot be reinstated.



Order Publication API

RIB Publication Designs 2-73

2. Activity Detail: The status changes to worksheet. This creates a header level 
message. All canceled quantities is added back to order quantities. Details are 
modifiable. 

3. Message: A 'POHdrMod' message is created for order at the end of the session the 
order was modified. A 'PODtlMod' message is created for each line item that had 
outstanding canceled quantity. These messages are published immediately as the 
order is already published. If the order are not published, then this message 
follows the create message sent out.

Delete
1. Prerequisites: If the user deletes the order manually, then the order needs to be in 

worksheet status and never been approved. Else, for approved orders, the 
following explanation details the business validation for deleting orders. If the 
import indicator on the SYSTEM OPTIONS table (import_ind) is 'N' and if invoice 
matching is not installed, then all details associated with an order are deleted 
when the order has been closed for more months than specified in UNIT_
OPTIONS (order_history_months). If invoice matching is installed, then all details 
associated with an order are deleted when the order has been closed for more 
months than specified in UNIT_OPTIONS (order_history_months). Orders are 
deleted only if shipments from the order have been completely matched to 
invoices or closed, and all those invoices have been posted. If the import indicator 
on the SYSTEM OPTIONS table (import_ind) is 'Y' and if invoice matching is not 
installed, then all details associated with the order are deleted when the order has 
been closed for more months than specified in UNIT_OPTIONS (order_history_
months) , as long as all ALC records associated with an order are in 'Processed' 
status, specified in ALC_HEAD (status). If invoice matching is installed, then all 
details associated with an order are deleted when the order has been closed for 
more months than specified in UNIT_OPTIONS (order_history_months), as long 
as all ALC records associated with an order are in 'Processed' status, specified in 
ALC_HEAD (status), and as long as all shipments from the order have been 
completely matched to invoices or closed, and all those invoices have been posted.

2. Activity Detail: Deleting orders will create a message for each detail attached to 
the order plus the header record. When a detail delete (PODtlDel) message is 
added to the queue, a second full replacement message (POFulRep) is inserted 
into the queue if PUB_FULL_OBJECTS_IND on PRODUCT_CONFIG_OPTIONS 
is configured to be Y.

3. Messages: If the order has not been approved, then the 'PODel' and 'PODtlDel' 
messages created will remove all the previous messages on the ordering queue 
table. If the order has been approved, then a 'PODtlDel' message will be created 
for each detail record and a 'PODel' message for the header. 

Filename: rmsmfm_orderb.pls

Function Level Description - ADDTOQ

Function: ADDTOQ(O_error_message        OUT  VARCHAR2,
                 I_message_type         IN   ORDER_MFQUEUE.MESSAGE_TYPE%TYPE,
                 I_order_no             IN   ORDHEAD.ORDER_NO%TYPE,
                 I_order_type           IN   ORDHEAD.ORDER_TYPE%TYPE,
                 I_order_header_status  IN   ORDHEAD.STATUS%TYPE,
                 I_supplier             IN   ORDHEAD.SUPPLIER%TYPE,
                 I_item                 IN   ORDLOC.ITEM%TYPE,
                 I_location             IN   ORDLOC.LOCATION%TYPE,
                 I_loc_type             IN   ORDLOC.LOC_TYPE%TYPE,
                 I_physical_location    IN   ORDLOC.LOCATION%TYPE)



Order Publication API

2-74 Operations Guide Volume 2 - Message Publication and Subscription Designs

This procedure is called by either the ORDHEAD or ORDLOC row trigger, and takes 
the message type, table primary key values (order_no for ORDHEAD table and order_
no, item, location (virtual) and physical location for ORDLOC table) and the message 
itself. It inserts a row into the message family queue along with the passed in values 
and the next sequence number from the message family sequence. The pub status will 
always be 'U' except for PO create messages, then it will be 'N'. The approve indicator 
will always be 'N' except when the order is approved for the first time, then it will be 
'Y'. It returns error codes and strings according to the standards of the application in 
which it is being implemented. For a full replacement message (FUL_REP), any 
previous records that exist on the ORDER_MFQUEUE for the record can be deleted.

Function Level Description - GETNXT

Procedure: GETNXT(O_status_code   OUT  VARCHAR2,
                  O_error_msg     OUT  VARCHAR2,
                  O_message_type  OUT  VARCHAR2,
                  O_message       OUT  RIB_OBJECT,
                  O_bus_obj_id    OUT  RIB_BUSOBJID_TBL,
                  O_routing_info  OUT  RIB_ROUTINGINFO_TBL,
                  I_num_threads   IN   NUMBER DEFAULT 1,
                  I_thread_val    IN   NUMBER DEFAULT 1)
This publicly exposed procedure is typically called by a RIB publication adaptor. Its 
parameters are well defined and arranged in a specific order. The message type is the 
RIB defined short message name, the message is the xml message, and the family 
key(s) (order_no for ORDHEAD table and order_no, item, location (virtual) and 
physical location for ORDLOC table) are the key for the message as pertains to the 
family, not all of which will necessarily be populated for all message types. 

This program loops through each message on the ORDER_MFQUEUE table, and calls 
PROCESS_QUEUE_RECORD. When no messages are found, the program exits 
returning the 'N'o message found API code. 

The error text parameter contains application-generated information, such as the 
application's sequence number of the message that failed, and the Oracle or other error 
that occurred when the retrieval failed.

Function Level Description - PUB_RETRY

PUB_RETRY(O_status_code       OUT    VARCHAR2,
          O_error_msg         OUT    VARCHAR2,
          O_message_type   IN OUT    VARCHAR2,
          O_message           OUT    RIB_OBJECT,
          O_bus_obj_id     IN OUT    RIB_BUSOBJID_TBL,
          O_routing_info   IN OUT    RIB_ROUTINGINFO_TBL,
          I_REF_OBJECT     IN        RIB_OBJECT);
Same as GETNXT except:

It only loops for a specific row in the ORDER_MFQUEUE table. The record on 
ORDER_MFQUEUE must match the passed in sequence number (contained in the 
ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

Check to see if the business object is being published for the first time. If the 
published_ind on the pub_info table is 'N', then it is not yet published.

If the record from ORDER_MFQUEUE table is a header delete (HDR_DEL) and 
published_ind is 'N':



Order Publication API

RIB Publication Designs 2-75

■ Delete the record from the pub info table.

■ Call DELETE_QUEUE_REC.

If the record from ORDER_MFQUEUE table is a header delete (HDR_DEL):

■ Build and pass the RIB_PORef_REC object.

■ Call GET_ROUTING_TO_LOCS.

■ Delete the record from the pub info table.

■ Delete the record from the order_details_published table.

■ Call DELETE_QUEUE_REC.

If the published_ind is 'N' or 'I':

■ If the publish_ind is 'N' call MAKE_CREATE with the message_type 'HDR_ADD'.

■ Otherwise, call MAKE_CREATE with the message_type 'DTL_ADD'.

If the record from ORDER_MFQUEUE table is a header update (HDR_UPD):

■ Call BUILD_HEADER_OBJECT.

■ Update order_pub_info by setting the published indicator to 'Y'.

■ Call GET_ROUTING_TO_LOCS.

■ Call DELETE_QUEUE_REC.

If the record from ORDER_MFQUEUE table is a detail insert (DTL_ADD) or detail 
update (DTL_UPD):

■ Call BUILD_DETAIL_CHANGE_OBJECTS.

■ If the record from ORDER_MFQUEUE table is a detail delete (DTL_DEL).

■ Call BUILD_DETAIL_DELETE .

■ Call ROUTING_INFO_ADD.

If the message type is FUL_REP:

■ Call BUILD_HEADER_OBJECT

■ Call BUILD_DETAIL_CHANGE_OBJECTS 

■ Call DELETE_QUEUE_REC

Function Level Description - MAKE_CREATE (local)

This function is used to create the Oracle Object for the initial publication of a business 
transaction.

■ Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra 
functional holders.

■ Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a 
table of ORDER_MFQUEUE rowids to delete.

■ Use the header level Oracle Object and functional holders to update the ORDER_
PUB_INFO.

■ Delete records from the ORDER_MFQUEUE for all rowids returned by BUILD_
DETAIL_OBJECTS. Deletes are done by rowids instead of business transaction 
keys to ensure that nothing is deleted off the queue that has not been published.

■ If the entire business transaction was added to the Oracle Object, also delete the 
ORDER_MFQUEUE record that was picked up by GETNXT. If the entire business 



Order Publication API

2-76 Operations Guide Volume 2 - Message Publication and Subscription Designs

transaction was not published we need to leave something on the ORDER_
MFQUEUE to ensure that the rest of it is picked up by the next call to GETNXT.

■ The header and detail level Oracle Objects are combined and returned.

Function Level Description - BUILD_HEADER_OBJECT (local)

Accepts header key values, performs necessary lookups, builds and returns a header 
level Oracle Object.

Call GET_MSG_HEADER.

Function Level Description - BUILD_DETAIL_OBJECTS (local)

The function is responsible for building detail level Oracle Objects. It builds as many 
detail Oracle Object as it can given the passed in message type and business object 
keys.

If the function is being called from MAKE_CREATE:

■ Select any unpublished detail records from the business transaction (use an 
indicator on the functional detail table itself or ORDER_DETAILS_PUBLISHED). 
Create Oracle Objects for details that are selected by calling BUILD_SINGLE_
DETAIL.

If the function is not being called from MAKE_CREATE:

■ Select any details on the ORDER_DETAILS_PUBLISHED that are for the same 
business transaction and for the same message type. Create Oracle Objects for 
details that are selected by calling BUILD_SINGLE_DETAIL.

Create other necessary Oracle objects and insert into and update the ORDER_
DETAILS_PUBLISHED table for details that were published. 

Function Level Description - BUILD_SINGLE_DETAIL (local)

Accept inputs and build a detail level Oracle Object. Perform any lookups needed to 
complete the Oracle Object.

Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)

Either pass in a header level Oracle Object or call BUILD_HEADER_OBJECT to build 
one.

Call BUILD_SINGLE_DETAIL to get the delete level Oracle Objects. 

Perform any BULK DML statements given the output from BUILD_ DETAIL_
OBJECTS.

Build any ROUTING_INFO as needed.

Function Level Description - BUILD_DETAIL_DELETE (local)

Either pass in a header level ref Oracle Object or build a header level ref Oracle Object.

Perform a cursor for loop on ORDER_MFQUEUE and build as many detail ref Oracle 
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH. 

Perform any BULK DML statements for deletion from ORDER_MFQUEUE and 
ORDER_DETAILS_PUBLISHED.

Call BUILD_DETAIL_DELETE_WH for Warehouses.

Function Level Description - DELETE_QUEUE_REC (local)

Delete the passed in data from the queue table.

Function Level Description - BUILD_DETAIL_DELETE_WH (local)



Order Publication API

RIB Publication Designs 2-77

Builds Oracle objects based on the records found in the queue table that are from the 
ORDLOC table.

Function Level Description - ROUTING_INFO_ADD (local)

Build any ROUTING_INFO.

Function Level Description - GET_ROUTING_TO_LOCS (local)

Build the ROUTING_INFO by adding locations.

Function Level Description - GET_MSG_HEADER (local)

Perform any lookups to complete the header information.

Function Level Description - LOCK_THE_BLOCK (local)

This function locks all queue records for the current business object. This is to ensure 
that GETNXT does not wait on any business processes that currently have the queue 
table locked and have not committed. This can occur because ADDTOQ, which is 
called from the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and 
HDR_DEL messages.

Function Level Description - HANDLE_ERRORS (local)

PROCEDURE HANDLE_ERRORS
             (O_status_code        IN OUT  VARCHAR2,
              O_error_message      IN OUT  VARCHAR2,
              O_message            IN OUT  nocopy RIB_OBJECT,
              O_bus_obj_id         IN OUT  nocopy RIB_BUSOBJID_TBL,
              O_routing_info       IN OUT  nocopy RIB_ROUTINGINFO_TBL,
              I_seq_no             IN      order_mfqueue.seq_no%TYPE,
              I_order_no           IN      order_mfqueue.order_no%TYPE,
              I_item               IN      order_mfqueue.item%TYPE,
              I_physical_location  IN      order_mfqueue.physical_location%TYPE,
              I_loc_type           IN      order_mfqueue.loc_type%TYPE)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
ORDER_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a 
status of 'H'ospital to the RIB as well. It then updates the status of the queue record to 
'H'ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of 'E'rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H'ospital to 'E'rror.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Types Message Type Description
XML Schema 
Definition (XSD)

POCre Purchase Order Create Message PODesc.xsd

POHdrMod Purchase Order Modify Message PODesc.xsd

PODel Purchase Order Delete Message PORef.xsd



Organization Hierarchy Publication API

2-78 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
■ One of the primary assumptions in the current approach is that ease of code will 

outweigh performance considerations. It is hoped that the 'trickle' nature of the 
flow of data will decrease the need to dwell on performance issues and instead 
allow developers to code in the easiest and most straight forward manner.

■ The adaptor is only setup to call stored procedures, not stored functions. Any 
public program then needs to be a procedure.

Table Impact

Organization Hierarchy Publication API
This section describes the organization hierarchy publication API.

Functional Area
Foundation Data.

Business Overview
This API publishes the create, update, delete of all the levels of the organizational 
hierarchy (chain, area, region, and district) to the RIB such that all the downstream 
applications (including an external system) may subscribe to it and have 
organizational hierarchy information in sync with Merchandising.

Package Impact
This section describes the package impact.

Business Object ID
The RIB uses the business object ID to determine message dependencies when sending 
messages to a subscribing application. If a create message has already failed in the 

PODtlCre Purchase Order Detail Create Message PODesc.xsd

PODtlMod Purchase Order Detail Modify Message PORef.xsd

PODtlDel Purchase Order Detail Delete Message PORef.xsd

POFulRep Purchase Order with Full payload Message PODesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ORDHEAD Yes No No No

ORDLOC Yes No No No

ORDSKU Yes No No No

ORDER_MFQUEUE Yes Yes Yes Yes

ORDER_PUB_INFO Yes Yes Yes Yes

ORDER_DETAILS_PUBLISHED Yes Yes Yes Yes

Message Types Message Type Description
XML Schema 
Definition (XSD)



Organization Hierarchy Publication API

RIB Publication Designs 2-79

subscribing application, and a modify/delete message is about to be sent from the RIB 
to the subscribing application, the RIB will not send the modify/delete message if it 
has the same business object ID as the failed create message. Instead, the 
modify/delete message will go directly to the hospital.

For the organizational hierarchy publishing API, the business object ID will contain 
two entries - the hierarchy level and the hierarchy id:

■ If the message relates to chain, the business object ID will contain a hierarchy level 
of 'CH' and the chain number. 

■ If the message relates to area, the business object ID will contain a hierarchy level 
of 'AR' and the area number. 

■ If the message relates to a region, the business object ID will contain a hierarchy 
level of 'RE' and the region number. 

■ If the message relates to a district, the business object ID will contain a hierarchy 
level of 'DI' and the district number. 

File name: rmsmfm_orghiers/b.pls

Function Level Description - ADDTOQ

FUNCTION ADDTOQ(O_error_msg     OUT RTK_ERRORS.RTK_TEXT%TYPE,
                I_message_type  IN  ORGHIER_MFQUEUE.MESSAGE_TYPE%TYPE,
                I_hier_level    IN  VARCHAR2,
                I_chain         IN  CHAIN.CHAIN%TYPE,
                I_chain_rec     IN  CHAIN%ROWTYPE,
                I_area          IN  AREA.AREA%TYPE,
                I_area_rec      IN  AREA%ROWTYPE,
                I_region        IN  REGION.REGION%TYPE,
                I_region_rec    IN  REGION%ROWTYPE,
                I_district      IN  DISTRICT.DISTRICT%TYPE,
                I_district_rec  IN  DISTRICT%ROWTYPE,
                I_parent_level  IN  VARCHAR2)
RETURN BOOLEAN;
The RIB publishing triggers on chain, area, region, district tables call ADDTOQ to 
insert a record into the ORGHIER_MFQUEUE based on the message type. Since 
multi-threading is NOT used for this publishing API, always set the thread_no to 1. 

Function Level Description - GETNXT

Procedure: GETNXT(O_status_code       OUT  VARCHAR2,
                  O_error_msg         OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                  O_message_type      OUT  VARCHAR2,
                  O_message           OUT  RIB_OBJECT,
                  O_bus_obj_id        OUT  RIB_BUSOBJID_TBL,
                  O_routing_info      OUT  RIB_ROUTINGINFO_TBL,
                  I_num_threads    IN      NUMBER DEFAULT 1,
                  I_thread_val     IN      NUMBER DEFAULT 1);
The RIB calls GETNXT to get messages. The procedure will use the C_QUEUE cursor 
to find the next message on the ORGHIER_MFQUEUE to be published to the RIB.

After retrieving a record from the queue table, GETNXT checks for records on the 
queue with a status of 'H' - Hospital. If there are any such records for the current 
business object, GETNXT should raise an exception to send the current message to the 
hospital.

The information from the ORGHIER_MFQUEUE table is passed to PROCESS_
QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object message 
to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, 
GETNXT should raise an exception.



Organization Hierarchy Publication API

2-80 Operations Guide Volume 2 - Message Publication and Subscription Designs

After PROCESS_QUEUE_RECORD returns an Oracle object to pass to the RIB, this 
procedure will delete the record on ORGHIER_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be 
called.

Function Level Description - PUB_RETRY

Procedure: PUB_RETRY(O_status_code         OUT   VARCHAR2,
                     O_error_msg           OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                     O_message_type    IN  OUT   VARCHAR2,
                     O_message             OUT   RIB_OBJECT,
                     O_bus_obj_id      IN  OUT   RIB_BUSOBJID_TBL,
                     O_routing_info    IN  OUT   RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT      IN        RIB_OBJECT)
Same as GETNXT except the record on ORGHIER_MFQUEUE must match the passed 
in sequence number (contained in the ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY. In addition to building the Oracle Objects, this function 
will populate the business object ID with the organizational hierarchy level and id 
being published. Organizational hierarchy levels are: 'CH' for chain, 'AR' for area, 'RE' 
for region, and 'DI' for district. 

Function Level Description - HANDLE_ERRORS (local)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised. If the error is a non-fatal error, GETNXT passes the sequence number of the 
driving ORGHIER_MFQUEUE record back to the RIB in the ROUTING_INFO. It 
sends back a status of 'H' -Hospital to the RIB as well. It then updates the status of the 
queue record to 'H' so that it will not get picked up again by the driving cursor in 
GETNXT. If the error is a fatal error, a status of 'E' - Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H' to 'E'.  

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Types Message Type Description
XML Schema 
Definition (XSD)

chaincre Chain Create Message OrgHierDesc.xsd

chainmod Chain Modify Message OrgHierDesc.xsd

chaindel Chain Delete Message OrgHierRef.xsd

areacre Area Create Message OrgHierDesc.xsd

areamod Area Modify Message OrgHierDesc.xsd

areadel Area Delete Message OrgHierRef.xsd

regioncre Region Create Message OrgHierDesc.xsd

regionmod Region Modify Message OrgHierDesc.xsd



Partner Publication API

RIB Publication Designs 2-81

Design Assumptions
Delay all DML statements as late as possible. Once DML statements have taken place, 
any error becomes a fatal error rather than a hospital error.

Table Impact

Partner Publication API
This section describes the partner publication API.

Functional Area
Foundation Data

Business Overview
Merchandising publishes data about partners in messages to Retail Integration Bus 
(RIB). Other application that needs to keep their partner synchronized with 
Merchandising subscribe to these messages. 

External Finishers
External finishers are created as partners in Merchandising, and given the Partner 
Type 'E', indicating that the partner is an External finisher. Once a new external 
finisher is set up in Merchandising, a trigger on the partner table adds the external 
finisher to a new queue table. Information on that table is published via the RIB. A 
conversion of this RIB message converts the external finisher to a 'Location' so that it 
can be consumed by the location APIs of external systems such as RWMS.

RWMS and other integration subsystems subscribe to the external finisher through 
their location subscription APIs. A RIB TAFR parses the partner messages of partner 
type 'E' and returns location attributes for RWMS and other integration subsystems to 
subscribe to. Merchandising ensures that there will never be duplicates among the 
partner ID, store ID and warehouse ID.

regiondel Region Delete Message OrgHierRef.xsd

districtcre District Create Message OrgHierDesc.xsd

districtmod District Modify Message OrgHierDesc.xsd

districtdel District Delete Message OrgHierRef.xsd

TABLE SELECT INSERT UPDATE DELETE

ORGHIER_MFQUEUE Yes Yes Yes Yes

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

Message Types Message Type Description
XML Schema 
Definition (XSD)



Partner Publication API

2-82 Operations Guide Volume 2 - Message Publication and Subscription Designs

The RWMS transfer subscription process does not check for location types. As a result, 
transfers involving an external finisher are treated like any other location types. 

To facilitate the routing of external finisher and primary address of the primary 
address type, header level routing info will contain the name of 'partner_type' with 
value 'E'. Detail level routing info will contain the name of 'primary_addr_type_ind' 
with value of 'Y' or 'N' and the name of 'primary_addr_ind' with value of 'Y' or 'N'. 

This will allow the RIB to route the external finishers and their addresses to the correct 
applications.

Merchandising will publish to the RIB create, mod and delete messages of partners 
along with their multiple addresses via a partner publishing message. 

The insert/update/delete on the partner table and the addr table with module 'PTNR' 
(for partner) will be published. The output message will be in hierarchical structure, 
with partner information at the header level and the address information at the detail 
level. Because this is a low volume publisher, multi-threading capability is not 
supported. In addition, the system assumes that it only needs to publish the current 
state of the partner, not every change. 

If multiple addresses are associated with a partner, this publisher is designed with the 
assumption that RWMS and other integration subsystems only subscribe to the 
primary address of the primary address type. 

Package Impact
Filename: rmsmfm_partnerb.pls

Function Level Description - ADDTOQ
Function: ADDTOQ(O_error_mesage    OUT  VARCHAR2,
                 I_message_type    IN   VARCHAR2,
                 I_functional_keys IN   PARTNER_KEY_REC)
This public function puts a partner message on PARTNER_MFQUEUE for publishing 
to the RIB. It is called from both partner trigger and address trigger. The I_functional_
keys will contain partner_type, partner_id and optionally, addr_key.

The information from the PARTNER_MFQUEUE and PARTNER_PUB_INFO table is 
passed to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the 
Oracle Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does 
not run successfully, GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY
This public procedure performs the same tasks as GETNXT except that it only loops 
for a specific row in the PARTNER_MFQUEUE table. The record on PARTNER_
MFQUEUE must match the passed in sequence number (contained in the ROUTING_
INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the 
business transaction's key values and a message type. It contains all of the shared 
processing between GETNXT and PUB_RETRY. 



Partner Publication API

RIB Publication Designs 2-83

Function Level Description - MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a 
business transaction. I_business_object contains the partner header key values (partner 
type and partner_id). I_rowid is the rowid of the partner_mfqueue row fetched from 
GETNXT.

Function Level Description - BUILD_HEADER_OBJECT (local)
Function:
BUILD_HEADER_OBJECT(O_error_msg               OUT         VARCHAR2,
                    O_rib_partnerdesc_rec  IN OUT NOCOPY  "RIB_PartnerDesc_REC",
                    I_business_obj         IN             PARTNER_KEY_REC)
This private function accepts partner header key values (partner type and partner ID), 
builds and returns a header level DESC Oracle Object.

Function Level Description - BUILD_HEADER_OBJECT (local)
This overloaded private function accepts partner header key values (partner type and 
partner ID), builds and returns a header level REF Oracle Object.

This function calls the BUILD_PARTNER_CFA_EXT to build the RIB_
CustFlexAttriVo_TBL for partner's customer attributes and attach it to the header level 
REF Oracle Object.

Function Level Description - BUILD_DETAIL_OBJECTS (local) 
This private function is responsible for building detail level DESC Oracle Objects. It 
builds as many detail Oracle Objects as it can given the passed in message type and 
business object keys (partner type and partner ID).

Function Level Description - BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object. 
Also it determines if the address is the primary address of the primary address type 
and set the DESC Oracle Object accordingly. This function calls the BUILD_ADDR_
CFA_EXT to build the RIB_CustFlexAttriVo_TBL for partner's address 's customer 
attributes and attach it to the detail level REF Oracle Object.

Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail 
create and detail update messages (DTL_ADD, DTL_UPD). I_business_obj contains 
the header level key values (partner type and partner ID).

Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete 
messages (DTL_DEL). I_business_obj contains the header level key values (partner 
type and partner ID).

Function Level Description - LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (partner 
type and partner ID). This is to ensure that GETNXT and PUB_RETRY do not wait on 
any business processes that currently have the queue table locked and have not 
committed. This can occur because ADDTOQ, which is called from the triggers, 
deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL messages.



Partner Publication API

2-84 Operations Guide Volume 2 - Message Publication and Subscription Designs

Function Level Description - HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is 
raised. I_seq_no is the sequence number of the driving PARTNER_MFQUEUE record. 
I_function_keys contains detail level key values (partner_type, partner_id, addr_key). 

If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the 
driving PARTNER_MFQUEUE record back to the RIB in the ROUTING_INFO. It 
sends back a status of 'H' - Hospital to the RIB as well. It then updates the status of the 
queue record to 'H', so that it will not get picked up again by the driving cursor in 
GETNXT. 

If the error is a fatal error, a status of 'E' - Error is returned to the RIB. The error is 
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then 
the global variable LP_error_status is flipped from 'H' to 'E'. 

Function Level Description - DELETE_QUEUE_REC (local)
This private function will delete the records from PARTNER_MFQUEUE table for the 
sequence no passed in as input parameter.

Function Level Description – BUILD_PARTNER_CFA_EXT (local)
This private function will build and return entity's customer attributes from 
PARTNER_CFA_EXT table.

Function Level Description - BUILD_ ADDR _CFA_EXT (local)
This private function will build and return entity's address customer attributes of the 
entity from ADDR_CFA_EXT table.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

Message Types Message Type Description
XML Schema Definition 
(XSD)

PartnerCre Partner Create Message PartnerDesc.xsd

PartnerMod Partner Modify Message PartnerDesc.xsd

PartnerDel Partner Delete Message PartnerRef.xsd

PartnerDtlCre Partner Detail Create 
Message

PartnerDtlDesc.xsd

PartnerDtlMod Partner Detail Modify 
Message

PartnerDtlDesc.xsd

PartnerDtlDel Partner Detail Delete 
Message

PartnerDtlRef.xsd



Receiver Unit Adjustment Publication API

RIB Publication Designs 2-85

Table Impact

Receiver Unit Adjustment Publication API
This section describes the receiver unit adjustment publication API.

Functional Area
Receiver Unit Adjustment.

Business Overview
When mistakes are made during the receiving process at the store or warehouse, 
receiver unit adjustments (RUAs) are made to correct the mistake. Merchandising 
publishes messages about receiver unit adjustments to the Oracle Retail Integration 
Bus (RIB).

When RUAs are initiated through Oracle Retail Invoice Matching (ReIM) or created 
through Merchandising forms, a message is published to a store management system 
(such as SIM) and a warehouse management system. 

Package Impact
This section describes the package impact.

Business object ID
None

Package name
RMSMFM_RCVUNITADJ

Spec file name: rmsmfm_rcvunitadjs.pls

Body file name: rmsmfm_rcvunitadjb.pls

TABLE SELECT INSERT UPDATE DELETE

PARTNER_PUB_INFO Yes Yes Yes Yes

PARTNER_MFQUEUE Yes Yes  Yes Yes

PARTNER Yes No No No

ADDR Yes No Yes No

ADD_TYPE_MODULE Yes No No No

RIB_SETTINGS Yes No No No

PARTNER_CFA_EXT Yes No No No

ADDR_CFA_EXT Yes No No No

Note: Oracle Retail's warehouse management system RWMS does 
NOT subscribe to Receiver Unit Adjustment messages). Because these 
systems only have access to the original receipt, the message 
communicates the original receipt number and not the child receipt 
number. 



Receiver Unit Adjustment Publication API

2-86 Operations Guide Volume 2 - Message Publication and Subscription Designs

Package Specification - Global Variables

FAMILY           CONSTANT  RIB_SETTINGS.FAMILY%TYPE  'rcvunitadj';
RCVUNITADJ_ADD   CONSTANT  VARCHAR2(15)              'rcvunitadjcre';
If multi-threading is being used, call API_LIBRARY.RIB_SETTINGS to get the number 
of threads used for the publisher. Using the number of threads and the location ID, 
calculate the thread value.

Insert a record into the RCVUNITADJ_MFQUEUE.

Function Level Description - GETNXT

GETNXT (O_status_code   OUT  VARCHAR2,
        O_error_msg     OUT  VARCHAR2,
        O_message_type  OUT  VARCHAR2,
        O_message       OUT  RIB_OBJECT,
        O_bus_obj_id    OUT  RIB_BUSOBJID_TBL,
        O_routing_info  OUT  RIB_ROUTINGINFO_TBL,
        I_num_threads   IN   NUMBER DEFAULT 1,
        I_thread_val    IN   NUMBER DEFAULT 1)
The RIB calls GETNXT to get messages. The driving cursor will query for unpublished 
records on the RCVUNITADJ_MFQUEUE table (PUB_STATUS = 'U').

GETNXT should check for records on the queue with a status of 'H'ospital for the 
current business object, GETNXT should raise an exception to send the current 
message to the Hospital.

The information from the RCVUNITADJ_MFQUEUE table is passed to PROCESS_
QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object message 
to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, 
GETNXT should raise an exception.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be 
called.

Function Level Description - PUB_RETRY

PUB_RETRY (O_status_code       OUT    VARCHAR2,
           O_error_msg         OUT    VARCHAR2,
           O_message_type  IN  OUT    VARCHAR2,
           O_message           OUT    RIB_OBJECT,
           O_bus_obj_id    IN  OUT    RIB_BUSOBJID_TBL,
           O_routing_info  IN  OUT    RIB_ROUTINGINFO_TBL,
           I_ref_object    IN         RIB_OBJECT)
This procedure republishes the entity that failed to be published before. It is the same 
as GETNXT except that the record on RCVUNITADJ_MFQUEUE to be published must 
match the passed in sequence number contained in the ROUTING_INFO.

Function Level Description - PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

The function first calls MAKE_CREATE to build the appropriate oracle object. It then 
calls the DELETE_QUEUE_REC to delete the RUA_MFQUEUE for the passed-in 
rowid.

Function Level Description - MAKE_CREATE (local)

This function is used to create the Oracle Object for the initial publication of a business 
transaction.



Receiver Unit Adjustment Publication API

RIB Publication Designs 2-87

■ Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra 
functional holders.

■ Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and add 
the detail level Oracle Objects to the header object.

Function Level Description - BUILD_HEADER_OBJECT (local)

Accepts header key values, performs necessary lookups, builds and returns a header 
level Oracle Object.

This function also builds the routing information object using the location.

Function Level Description - BUILD_DETAIL_OBJECTS (local)

The function is responsible for the Oracle Object used for a DESC message (inserts and 
updates). It adds as many mfqueue records to the message as it can given the passed 
in message type and business object keys.

■ Call BUILD_SINGLE_DETAIL passing in the I_business_obj record.

■ Ensure that ROUTING_INFO is constructed if routing information is stored at the 
detail level in the business transaction. 

Function Level Description - BUILD_SINGLE_DETAIL (local)

Accept inputs and builds a detail level Oracle Object. If the adjustment quantity is 
negative, the from disposition should be 'ATS' and the to disposition should be NULL. 
If the adjustment quantity is positive, the to disposition should be NULL and the from 
disposition should be 'ATS'.

Function Level Description - LOCK_THE_BLOCK (local)

This function locks all queue records for the current business object. This is to ensure 
that GETNXT does not wait on any business processes that currently have the queue 
table locked and have not committed. This can occur because ADDTOQ, which is 
called from the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and 
HDR_DEL messages.

Function Level Description - HANDLE_ERRORS (local)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
RCVUNITADJ_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends 
back a status of 'H'ospital to the RIB as well. It then updates the status of the queue 
record to 'H'ospital, so that it will not get picked up again by the driving cursor in 
GETNXT.

If the error is a fatal error, a status of 'E'rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H'ospital to 'E'rror. 

Function Level Description - DELETE_QUEUE_REC (local)

This private function will delete the records from rcvunitadj_mfqueue table for the 
rowid passed in as input parameter.

Trigger Impact
Trigger name: EC_TABLE_RUA_AIR.TRG

Trigger file name: ec_table_rua_air.trg



RTV Request Publication API

2-88 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table: RAU_RIB_INTERFACE

Inserts:

■ Send the appropriate column values to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_RCVUNITADJ.RCVUNITADJ_ADD.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
Each receiver unit adjustment contains the delta quantity to be adjusted. As such they 
can be processed in any order by the subscribing application. There is no dependency 
between different RUA messages.

Table Impact

RTV Request Publication API
This section describes the RTV request publication API.

Functional Area
Return to Vendor

Business Overview
A return to vendor (RTV) order is used to send merchandise back to the supplier. The 
RTV message is published by Merchandising to the store or warehouse. For an RTV, 
the initial transfer of stock to the store is a distinctly different step from the RTV itself. 
Once the transferred stock arrives at the store, the user then creates the RTV. RTVs are 
created by the following:

1. Adding one supplier.

2. Selecting the sending locations.

3. Adding the items, either individually or through the use of item lists.

In order to return items to a vendor from multiple stores as part of one operation, the 
items must go through a single warehouse. The transfer of items from several different 
stores to one warehouse is referred to as a mass return transfer (MRT). The items are 
subsequently returned to the vendor from the warehouse.

Return to vendor requests created in Merchandising should be published to the RIB to 
provide the integration subsystem application with visibility to the corporately created 

Message Types Message Type Description XML Schema Definition (XSD)

RcvUnitAdjCre Receiver Unit Adjustment 
Create Message

RcvUnitAdjDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

RUA_MFQUEUE Yes Yes Yes Yes



RTV Request Publication API

RIB Publication Designs 2-89

RTV. Consequently, when the integration subsystem application ships the RTV, it must 
communicate the original RTV order number back to Merchandising so that 
Merchandising can correctly update the original RTV record.

When publishing a header mod or a detail create, detail mod, detail delete message, a 
second full replacement message with message type 'RtvReqfulrep' will be published 
from Merchandising if system option PUB_FULL_OBJECTS_IND is configured to be Y 
on the PRODUCT_CONFIG_OPTIONS table. This message payload will contain a full 
snapshot of the RTV. Based on the message type, RIB will route the full replacement 
message to appropriate applications.

Package Impact
This section describes the package impact.

Business Object ID
RTV order number.

Package name: RMSMFM_RTVREQ

Spec file name: rmsmfm_rtvreqs.pls

Body file name: rmsmfm_rtvreqb.pls

Function Level Description - ADDTOQ

ADDTOQ (O_error_msg      IN OUT    VARCHAR2,
        I_message_type   IN        VARCHAR2,
        I_rtv_order_no   IN        RTV_HEAD.RTV_ORDER_NO%TYPE,
        I_status         IN        RTV_HEAD.STATUS_IND%TYPE,
        I_rtv_seq_no     IN        RTV_DETAIL.SEQ_NO%TYPE,
        I_item           IN        RTV_DETAIL.ITEM%TYPE,
        I_publish_ind    IN        RTV_DETAIL.PUBLISH_IND%TYPE)

There are some tasks relating to streamlining the queue cleanup process that need to 
occur in ADDTOQ. The goal is to have at most one record on the queue for business 
transactions up until their initial publication.

■ For header level insert messages (HDR_ADD), inserts a record in the RTVREQ_
PUB_INFO table. The published flag is set to 'N'. The correct thread for the 
business transaction is calculated and written. Calls API_LIBRARY.RIB_
SETTINGS to get the number of threads used for the publisher. Using the number 
of threads, and the business object id, calculates the thread value.

■ For all records except header level inserts (HDR_ADD), the thread_no, initial_
approval_ind, shipped_ind, and published indicator are queried from the 
RTVREQ_PUB_INFO table. 

■ If the business transaction has not been approved (initial_approval_ind = 'N') or it 
has already been shipped (shipped_ind = 'Y') and the triggering message is one of 
DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, no processing will take place and 
the function exits.

■ If the business transaction has not been approved (initial_approval_ind = 'N') and 
if it has not been already published (published = 'N'), no processing will take place 
and the function exits.

■ For detail level messages deletes (DTL_DEL), the system only needs one (the most 
recent) record per detail in the RTVREQ_MFQUEUE. Any previous records that 
exist on the RTVREQ_MFQUEUE for the record that has been passed are deleted. 
If the publish_ind is 'N', the DTL_DEL message is not added to the queue.



RTV Request Publication API

2-90 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ For detail level message deletes (DTL_UPD), the system only needs one DTL_UPD 
(the most recent) record per detail in the RTVREQ_MFQUEUE. Any previous 
DTL_UPD records that exist on the RTVREQ_MFQUEUE for the record that has 
been passed are deleted. The system does not want to delete any detail inserts that 
exist on the queue for the detail. The system ensures subscribers are not passed a 
detail modification message for a detail that they do not yet have.

■ For header level delete messages (HDR_DEL), deletes every record in the queue 
for the business transaction. 

■ For header level update message (HDR_UPD), updates the RTVREQ_PUB_
INFO.INITIAL_APPROVAL_IND to 'Y' if the business transaction is in approved 
status (status of '10').

■ For header level update message (HDR_UPD), updates the RTVREQ_PUB_
INFO.SHIPPED_IND to 'Y' if the business transaction is in shipped status (status 
of '15').

■ For all records except header level inserts (HDR_ADD), inserts a record into the 
RTVREQ_MFQUEUE.

■ For a full replacement message (FUL_REP), any previous records that exist on the 
RTVREQ_MFQUEUE for the record can be deleted.

Function Level Description - GETNXT

GETNXT (O_status_code   OUT    VARCHAR2,
        O_error_msg     OUT    VARCHAR2,
        O_message_type  OUT    VARCHAR2,
        O_message       OUT    RIB_OBJECT,
        O_bus_obj_id    OUT    RIB_BUSOBJID_TBL,
        O_routing_info  OUT    RIB_ROUTINGINFO_TBL,
        I_num_threads   IN     NUMBER DEFAULT 1,
        I_thread_val    IN     NUMBER DEFAULT 1)

LP_error_status is initialized to API_CODES.HOSPITAL at the beginning of GETNXT.

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished 
records on the RTVREQ_MFQUEUE table (PUB_STATUS = 'U'). It only needs to 
execute one loop iteration in most cases. For each record retrieved, GETNXT gets the 
following:

1. A lock of the queue table for the current business object. The lock is obtained by 
calling the function LOCK_THE_BLOCK. If there are any records on the queue for 
the current business object that are already locked, the current message is skipped.

2. The published indicator from the RTVREQ_PUB_INFO table. 

3. A check for records on the queue with a status of 'H'ospital. If there are any such 
records for the current business object, GETNXT raises an exception to send the 
current message to the Hospital.

The loop executes more than one iteration in the following cases:

1. When a header delete message exists on the queue for a business object that has 
not been initially published. In this case, it removes the header delete message 
from the queue and loops again.

2. The queue is locked for the current business object.

The information from the RTVREQ_MFQUEUE and RTVREQ_PUB_INFO table is 
passed to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD builds the 



RTV Request Publication API

RIB Publication Designs 2-91

Oracle Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does 
not run successfully, GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY

PUB_RETRY(O_status_code         OUT      VARCHAR2,
          O_error_msg           OUT      VARCHAR2,
          O_message_type    IN  OUT      VARCHAR2,
          O_message             OUT      RIB_OBJECT,
          O_bus_obj_id      IN  OUT      RIB_BUSOBJID_TBL,
          O_routing_info    IN  OUT      RIB_ROUTINGINFO_TBL,
          I_REF_OBJECT      IN           RIB_OBJECT)

This procedure republishes the entity that failed to be published before. It is the same 
as GETNXT except that the record on RTVREQ_MFQUEUE to be published must 
match the passed in sequence number contained in the ROUTING_INFO.

Function Level Description - PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

It checks to see if the business object is being published for the first time. If the 
published_ind on the PUB_INFO table is 'N' or 'I', the business object is being 
published for the first time. If so, calls MAKE_CREATE.

Otherwise,

If the record from RTVREQ_MFQUEUE table is a full replace (FUL_REP)

■ Calls BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB. 
This will also populate the ROUTING_INFO.

■ Calls BUILD_DETAIL_CHANGE_OBJECTS to build the detail portion of the 
Oracle Object

■ Deletes the record from the RTVREQ_MFQUEUE table.

If the record from RTVREQ_MFQUEUE table is a header update (HDR_UPD).

■ Calls BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB. 
This will also populate the ROUTING_INFO.

■ Updates RTVREQ_PUB_INFO with updated new header information

■ Deletes the record from the RTVREQ_MFQUEUE table.

If the record from RTVREQ_MFQUEUE table is a detail add or update (DTL_ADD, 
DTL_UPD).

■ Calls BUILD_HEADER_OBJECT to build the header portion of the Oracle Object 
to publish to the RIB. This also populates the ROUTING_INFO.

■ Calls BUILD_DETAIL_CHANGE_OBJECTS to build the detail portion of the 
Oracle Object. This also takes care of any RTVREQ_MFQUEUE deletes.

If the record from RTVREQ_MFQUEUE table is a detail delete (DTL_DEL).

■ Calls BUILD_HEADER_OBJECT to build the header portion of the Oracle Object 
to publish to the RIB. This also populates the ROUTING_INFO.



RTV Request Publication API

2-92 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Calls BUILD_DETAIL_DELETE_OBJECTS to build the detail portion of the Oracle 
Object. This also takes care of any RTVREQ_MFQUEUE deletes.

Function Level Description - MAKE_CREATE (local)

This function is used to create the Oracle Object for the initial publication of a business 
transaction.

■ Calls BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB. 
This also populates the ROUTING_INFO.

■ Calls BUILD_DETAIL_OBJECTS with a message type of HDR_ADD to get all 
detail-level Oracle objects.

■ Deletes the current record (HDR_ADD) from the RTVREQ_MFQUEUE. Deletes 
are done by rowids instead of business transaction keys to ensure that noting is 
deleted off the queue that has not been published.

■ If the entire business transaction was added to the Oracle Object, also deletes the 
RTVREQ_MFQUEUE record that was picked up by GETNXT. If the entire business 
transaction was not published we need to leave something on the RTVREQ_
MFQUEUE to ensure that the rest of it is picked up by the next call to GETNXT.

■ The header and detail level Oracle Objects are combined and returned.

Function Level Description - BUILD_HEADER_OBJECT (local)

Take all necessary data from RTV_HEAD table and put it into a "RIB_RTVReqDesc_
REC" and "RIB_RTVReqRef_REC" object.

Puts the location into the ROUTING_INFO.

Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)

Calls BUILD_DETAIL_OBJECTS.

BUILD_DETAIL_OBJECTS creates a table of RTVREQ_MFQUEUE ROWIDs to delete. 
Deletes these records.

Make sure to set LP_error_status to API_CODES.UNHANDLED_ERROR before any 
DML statements.

Function Level Description - BUILD_DETAIL_OBJECTS (local)

The function is responsible for building the detail level Oracle Objects. It builds as 
many detail Oracle Object as it can given the passed in message type and business 
object keys.

If the function is being called from MAKE_CREATE (HDR_ADD or FUL_REP):

■ Selects all detail records from the business transaction. Creates Oracle Objects for 
details that are selected by calling BUILD_SINGLE_DETAIL.

■ Ensures that RTVREQ_MFQUEUE is deleted from as needed. If there is more than 
one RTVREQ_MFQUEUE record for a detail level record, makes sure they all get 
deleted. The system only cares about current state, not every change. A table of 
ROWIDs to delete is created in BUILD_DETAIL_OBJECTS. The actual delete 
statement occurs in BUILD_DETAIL_CHANGE_OBJECTS using this table of 
ROWIDS.

If the function is not being called from MAKE_CREATE:

■ Selects any records on the RTVREQ_MFQUEUE that are for the same business 
object ID. Fetches the records in order of seq_no on the MFQUEUE table. 



RTV Request Publication API

RIB Publication Designs 2-93

■ Ensures that RTVREQ_MFQUEUE is deleted from as needed. A table of ROWIDs 
to delete will be created in BUILD_DETAIL_OBJECTS. The actual delete statement 
occurs in BUILD_DETAIL_CHANGE_OBJECTS using this table of ROWIDS.

A concern here is making sure that the system does not delete information from the 
queue table that has not been published. For this reason, the system performs deletes 
by ROWID. The system also attempts to get everything in the same cursor to ensure 
that the message we published matches the deletes we perform from the RTVREQ_
MFQUEUE table regardless of trigger execution during GETNXT calls. 

Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)

This function works the same way as BUILD_DETAIL_OBJECTS, except for the fact 
that a REF object is being created instead of a DESC object.

Function Level Description - BUILD_SINGLE_DETAIL (local)

Puts the inputted information in a RIB_RTVREQDTL_TBL object.

Function Level Description - LOCK_THE_BLOCK (local)

This function locks all queue records for the current business object. This is to ensure 
that GETNXT does not wait on any business processes that currently have the queue 
table locked and have not committed. This can occur because ADDTOQ, which is 
called from the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and 
HDR_DEL messages.

Function Level Description - DELETE_QUEUE_REC (local)

Deletes a record from the RTVREQ_MFQUEUE table, using the passed in sequence 
number.

Function Level Description - HANDLE_ERRORS (local)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
ITEMLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a 
status of 'H'ospital to the RIB as well. It then updates the status of the queue record to 
'H'ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of 'E'rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H'ospital to 'E'rror. 

Function Level Description - BUILD_RTV_HEAD_CFA_EXT (local)

BUILD_RTV_HEAD_CFA_EXT is called from BUILD_HEADER_OBJECT to build the 
CFAs name-value pair for HDR_ADD and HRD_UPD messages and attaches it to 
"RIB_RTVReqDesc_REC" object.

Trigger Impact
Trigger name: EC_TABLE_RHD_AIUDR.TRG

Trigger file name: ec_table_rhd_aiudr.trg

Table: RTV_HEAD

■ Inserts: Sends the appropriate column values to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_RTVREQ.HDR_ADD.



RTV Request Publication API

2-94 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Updates: Sends the appropriate column values to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_RTVREQ.HDR_UPD and optionally, 
RMSMFM_RTVREQ.FUL_REP based on system configuration.

■ Deletes: Sends the appropriate column values to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_RTVREQ.HDR_DEL.

A trigger on the RTV_HEAD table captures Inserts, Updates, and Deletes. 

Trigger name: EC_TABLE_RDT_AIUDR.TRG

Trigger file name: ec_table_rdt_aiudr.trg

Table: RTV_DETAIL

A trigger on the RTV_DETAIL table captures Inserts, Updates, and Deletes. 

■ Inserts: Sends the appropriate column values to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_RTVREQ.DTL_ADD and optionally, 
RMSMFM_RTVREQ.FUL_REP based on system configuration.

■ Updates: Sends the appropriate column values to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_RTVREQ.DTL_UPD and optionally, 
RMSMFM_RTVREQ.FUL_REP based on system configuration.

■ Deletes: Sends the appropriate column values to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_RTVREQ.DTL_DEL and optionally, 
RMSMFM_RTVREQ.FUL_REP based on system configuration.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions 
■ It is not possible for a detail trigger to accurately know the status of a header table.

■ In order for the detail triggers to accurately know when to add a message to the 
queue, Merchandising should not allow approval of a business object while detail 
modifications are being made.

■ It is not possible for a header trigger or a detail trigger to know the status of 
anything modified by GETNXT. If a header trigger or detail trigger is trying to 

Message Types Message Type Description XML Schema Definition (XSD)

RtvReqCre RTV Request Create Message RTVReqDesc.xsd

RtvReqMod RTV Request Modify Message RTVReqDesc.xsd

RtvReqDel RTV Request Delete Message RTVReqRef.xsd

RtvReqDtlCre RTV Request Detail Create 
Message

RTVReqDesc.xsd

RtvReqDtlMod RTV Request Detail Modify 
Message

RTVReqDesc.xsd

RtvReqDtlDel RTV Request Detail Delete 
Message

RTVReqRef.xsd

RtvReqFulRep RTV Request Full Replacement 
Message

RTVReqDesc.xsd



Season Phase Publication API

RIB Publication Designs 2-95

delete queue records that GETNXT currently has locked, it will have to wait until 
GETNXT is finished and remove the lock. It is assumed that this time will be fairly 
short (at most 2-3 seconds). It is also assumed that this will occur rarely because it 
involves updating/deleting detail records on a business object that has already 
been approved. This also has to occur at the same time GETNXT is processing the 
current business object.

■ Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

■ RTV_HEAD_CFA_EXT changes will NOT trigger a FUL_REP message

Table Impact 

Season Phase Publication API
This section describes the season phase publicatoin API.

Functional Area
Foundation Data

Business Overview
This API publishes the create, update, delete of seasons and phases to the RIB such 
that all the downstream applications (including an external system) may subscribe to it 
and have information in sync with Merchandising.

Package Impact
This section describes the package impact.

Business Object ID
The RIB uses the business object ID to determine message dependencies when sending 
messages to a subscribing application. If a create message has already failed in the 
subscribing application, and a modify/delete message is about to be sent from the RIB 
to the subscribing application, the RIB will not send the modify/delete message if it 
has the same business object ID as the failed create message. Instead, the 
modify/delete message will go directly to the hospital.

When publishing the seasons data, the business object ID is the season id.  When 
publishing the phases data, the business object id contains the compound key of the 
season id and the phase id.

File name: rmsmfm_seasons/b.pls

Function Level Description - ADDTOQ

TABLE SELECT INSERT UPDATE DELETE

RTVREQ_MFQUEUE Yes Yes Yes Yes

RTVREQ_PUB_INFO Yes Yes Yes Yes

RTV_HEAD Yes No No No

RTV_DETAIL Yes No No No

SYSTEM_OPTIONS Yes No No No



Season Phase Publication API

2-96 Operations Guide Volume 2 - Message Publication and Subscription Designs

FUNCTION ADDTOQ(O_error_msg     OUT     RTK_ERRORS.RTK_TEXT%TYPE,
                I_message_type  IN      SEASON_MFQUEUE.MESSAGE_TYPE%TYPE,
                I_season_id     IN      SEASONS.SEASON_ID%TYPE,
                I_season_rec    IN      SEASONS%ROWTYPE,
                I_phase_id      IN      PHASES.PHASE_ID%TYPE,
                I_phase_rec     IN      PHASES%ROWTYPE)
RETURN BOOLEAN;
The RIB publishing triggers on seasons and phases tables call ADDTOQ to insert a 
record into the SEASON_MFQUEUE based on the message type. Since 
multi-threading is NOT used for this publishing API, always set the thread_no to 1. 

Function Level Description - GETNXT

Procedure: GETNXT(O_status_code      OUT  VARCHAR2,
                  O_error_msg        OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                  O_message_type     OUT  VARCHAR2,
                  O_message          OUT  RIB_OBJECT,
                  O_bus_obj_id       OUT  RIB_BUSOBJID_TBL,
                  O_routing_info     OUT  RIB_ROUTINGINFO_TBL,
                  I_num_threads   IN      NUMBER DEFAULT 1,
                  I_thread_val    IN      NUMBER DEFAULT 1)
The RIB calls GETNXT to get messages. The procedure will use the C_QUEUE cursor 
to find the next message on the SEASON_MFQUEUE to be published to the RIB.

After retrieving a record from the queue table, GETNXT checks for records on the 
queue with a status of 'H' - Hospital. If there are any such records for the current 
business object, GETNXT should raise an exception to send the current message to the 
hospital.

The information from the SEASON_MFQUEUE table is passed to PROCESS_QUEUE_
RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object message to pass 
back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, GETNXT 
should raise an exception.

After PROCESS_QUEUE_RECORD returns an Oracle object to pass to the RIB, this 
procedure will delete the record on SEASON_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be 
called.

Function Level Description - PUB_RETRY

Procedure: PUB_RETRY(O_status_code         OUT   VARCHAR2,
                     O_error_msg           OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                     O_message_type    IN  OUT   VARCHAR2,
                     O_message             OUT   RIB_OBJECT,
                     O_bus_obj_id      IN  OUT   RIB_BUSOBJID_TBL,
                     O_routing_info    IN  OUT   RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT      IN        RIB_OBJECT)
Same as GETNXT except the record on SEASON_MFQUEUE must match the passed 
in sequence number (contained in the ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY. In addition to building the Oracle Objects, this function 
will populate the business object ID with the season id (for seasons) or the season id 
and phase id (for phases). 

Function Level Description - HANDLE_ERRORS (local)



Seed Data Publication API

RIB Publication Designs 2-97

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.  If the error is a non-fatal error, GETNXT passes the sequence number of the 
driving SEASON_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends 
back a status of 'H' -Hospital to the RIB as well. It then updates the status of the queue 
record to 'H' so that it will not get picked up again by the driving cursor in GETNXT. If 
the error is a fatal error, a status of 'E' - Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H' to 'E'.  

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
Delay all DML statements as late as possible. Once DML statements have taken place, 
any error becomes a fatal error rather than a hospital error.

Table Impact

Seed Data Publication API
This section describes the seed data publication API.

Functional Area
Foundation Data

Business Overview
Seed data publication to the RIB allows Merchandising to send some basic foundation 
data information to external systems to seed their database. The data contained in this 
API is usually fairly static and does not frequently change after initial implementation.

Message Types Message Type Description XML Schema Definition (XSD)

seasoncre Seasons Create Message SeasonDesc.xsd

seasonmod Seasons Modify Message SeasonDesc.xsd

seasondel Seasons Delete Message SeasonRef.xsd

seasondtlcre Phases Create Message SeasonDesc.xsd

seasondtlmod Phases Modify Message SeasonDesc.xsd

seasondtldel Phases Delete Message SeasonRef.xsd

TABLE SELECT INSERT UPDATE DELETE

SEASON_MFQUEUE Yes Yes Yes Yes

SEASONS Yes No No No

PHASES Yes No No No



Seed Object Publication API

2-98 Operations Guide Volume 2 - Message Publication and Subscription Designs

Some examples of seed data include diff types, item types, carriers, shipping methods, 
supplier types, location types, order types and return reasons. 

Package Impact
File name: rmsmfm_seeddatas/b.pls

Function Level Description - GETNXT

PROCEDURE GETNXT(O_status_code       OUT   VARCHAR2,
                 O_error_message     OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                 O_message_type      OUT   VARCHAR2,
                 O_message           OUT   RIB_OBJECT,
                 O_bus_obj_id        OUT   RIB_BUSOBJID_TBL,
                 O_routing_info      OUT   RIB_ROUTINGINFO_TBL,
                 I_num_threads    IN       NUMBER DEFAULT 1,
                 I_thread_val     IN       NUMBER DEFAULT 1);
This publicly exposed procedure is typically called by a RIB publication adaptor. This 
procedure’s parameters are well defined and arranged in a specific order. 

DIFF_TYPE and CODE_HEAD/CODE_DETAIL are published under the same 
message family of 'seeddata' with a single RIB adaptor that calls this procedure. Due to 
backward compatibility, the RIB interface cannot be changed. To separate out CODES 
and DIFF_TYPE publishing logic on the Merchandising side, we introduced 2 
mfqueues (codes_mfqueue and difftype_mfqueue). The GETNXT will try to pull 
message from the CODES_MFQUEUE first; if no message is found, it will pull 
message from the DIFFTYPE_MFQUEUE. Because both are low-volume interfaces 
with slow change of data, the risk of starving one entity over another is low.

Design Assumptions
N/A

Table Impact
N/A

Seed Object Publication API
This section describes the seed object publication API.

Functional Area
Foundation Data

Business Overview
Seed object publication to the RIB allows Merchandising to send country information 
as well as currency rates so that external systems will have all of the latest information 
regarding countries and currency rates. 

Seed object publication consists of a message containing country and currency rate 
information from the tables COUNTRY and CURRENCY_RATES. One message will 
be synchronously created and placed in the message queue each time a COUNTRY 
and CURRENCY_RATES record is created, modified or deleted in Merchandising. 
When a COUNTRY or CURRENCY_RATES record is created or modified, the message 
will contain a full snapshot of the modified record. When a COUNTRY record is 



Seed Object Publication API

RIB Publication Designs 2-99

deleted, the message will contain a partial snapshot of the deleted record. Messages 
are retrieved from the message queue in the order they were created.

Package Impact
File name: rmsmfm_seedobjs/b.pls

Function Level Description - ADDTOQ

PROCEDURE: ADDTOQ(
       O_error_message   IN OUT    VARCHAR2,
       I_message_type    IN        SEEDOBJ_MFQUEUE.MESSAGE_TYPE%TYPE,
       I_country_id      IN        SEEDOBJ_MFQUEUE.COUNTRY_ID%TYPE,
       I_currency_code   IN        SEEDOBJ_MFQUEUE.CURRENCY_CODE%TYPE,
       I_country_desc    IN        SEEDOBJ_MFQUEUE.COUNTRY_DESC%TYPE,
       I_effective_date  IN        SEEDOBJ_MFQUEUE.EFFECTIVE_DATE%TYPE,
       I_exchange_type   IN        SEEDOBJ_MFQUEUE.EXCHANGE_TYPE%TYPE,
       I_exchange_rate   IN        SEEDOBJ_MFQUEUE.EXCHANGE_RATE%TYPE)
RETURN BOOLEAN;
This function is called by either the COUNTRY or CURRENCY_RATES row trigger, 
and takes the message type and the table values (country_id for COUNTRY table and 
currency_code for CURRENCY_RATES table). It inserts a row into the message family 
queue along with the passed in values and the next sequence number from the 
message family sequence. The pub status will always be 'U' except for create messages, 
then it will be 'N'. It returns error codes and strings according to the standards of the 
application in which it is being implemented.

Function Level Description - GETNXT

PROCEDURE GETNXT(O_status_code    IN OUT    VARCHAR2,
                 O_error_msg      IN OUT    RTK_ERRORS.RTK_TEXT%TYPE,
                 O_message_type   IN OUT    VARCHAR2,
                 O_message        IN OUT    RIB_OBJECT,
                 O_bus_obj_id     IN OUT    RIB_BUSOBJID_TBL,
                 O_routing_info   IN OUT    RIB_ROUTINGINFO_TBL,
                 I_num_threads    IN        NUMBER DEFAULT 1,
                 I_thread_val     IN        NUMBER DEFAULT 1)
The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished 
records on the SEEDOBJ_MFQUEUE table (PUB_STATUS = 'U'). It will only execute 
one loop iteration in most cases. For each record retrieved, GETNXT checks for records 
on the queue with a status of 'H' - Hospital. If there are any such records for the 
current business object, GETNXT raises an exception to send the current message to 
the Hospital.

The information from the SEEDOBJ_MFQUEUE and table is passed to PROCESS_
QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object message 
to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, 
GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY

Procedure: PUB_RETRY(O_status_code       OUT    VARCHAR2,
                     O_error_msg         OUT    VARCHAR2,
                     O_message_type  IN  OUT    VARCHAR2,
                     O_message           OUT    RIB_OBJECT,
                     O_bus_obj_id    IN  OUT    RIB_BUSOBJID_TBL,
                     O_routing_info  IN  OUT    RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT    IN         RIB_OBJECT);



Store Publication API

2-100 Operations Guide Volume 2 - Message Publication and Subscription Designs

Same as GETNXT except it only loops for a specific row in the SEEDOBJ_MFQUEUE 
table. The record on SEEDOBJ_MFQUEUE must match the passed in sequence number 
(contained in the ROUTING_INFO).

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Table Impact

Store Publication API
This section describes the store publication API.

Functional Area
Foundation Data

Business Overview
Merchandising publishes data about stores in messages to the Oracle Retail Integration 
Bus (RIB) for other applications that needs to keep their locations synchronized with 
Merchandising. Merchandising publishes messages to the RIB to create, modify, and 
delete store events for all store types. These messages are triggered by 
insert/update/delete on the Merchandising STORE table and/or the ADDR table with 
module 'ST' (for store). The system only publishes the current state of the store, not 
every change. 

Only the primary address and primary address type are published through this 
message, as it is assumed that integration subsystems only require one address. 

Package Impact
File name: rmsmfm_stores/b.pls

Message Types Message Type Description XML Schema Definition (XSD)

countrycre Code Head Create Message CountryDesc.xsd

countrymod Code Head Modify Message CountryDesc.xsd

countrydel Code Head Delete Message CountryRef.xsd

curratecre Code Detail Create Message CurrRateDesc.xsd

curratemod Code Detail Modify Message CurrRateDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

SEEDOBJ _MFQUEUE Yes Yes No Yes

COUNTRY Yes Yes Yes Yes

CURRENCY_RATES Yes Yes Yes No



Store Publication API

RIB Publication Designs 2-101

Package Specification - Global Variables
FAMILY   CONSTANT RIB_SETTINGS.FAMILY%TYPE := 'STORES';
HDR_ADD   CONSTANT VARCHAR2(15) := 'storecre';
HDR_UPD   CONSTANT VARCHAR2(15) := 'storemod';
HDR_DEL   CONSTANT VARCHAR2(15) := 'storedel';
DTL_ADD   CONSTANT VARCHAR2(15) := 'storedtlcre';
DTL_UPD   CONSTANT VARCHAR2(15) := 'storedtlmod';
DTL_DEL   CONSTANT VARCHAR2(15) := 'storedtldel';
SHR_ADD   CONSTANT VARCHAR2(15) := 'storehrcre';
SHR_UPD   CONSTANT VARCHAR2(15) := 'storehrmod';

Public Type
TYPE STORE_KEY_REC IS RECORD
(
  STORE              NUMBER,
  ADDR_KEY           NUMBER,
  STORE_TYPE         VARCHAR2(1),
  STOCKHOLDING_IND   VARCHAR2(1),
  GROUP_ID           NUMBER,
  DAY_NO             NUMBER
);

Function Level Description - ADDTOQ
Function: ADDTOQ(O_error_msg           OUT  VARCHAR2,
                 I_message_type      IN     VARCHAR2,
                 I_store_key_rec     IN     STORE_KEY_REC,
                 I_addr_publish_ind  IN     ADDR.PUBLISH_IND%TYPE)
This public function puts a store message on STORE_MFQUEUE for publishing to the 
RIB. It is called from both store trigger and address trigger. The I_functional_keys will 
contain store and, optionally, addr_key.

Function Level Description - GETNXT
Procedure: GETNXT(O_status_code      OUT  VARCHAR2,
                  O_error_msg        OUT  VARCHAR2,
                  O_message_type     OUT  VARCHAR2,
                  O_message          OUT  RIB_OBJECT,
                  O_bus_obj_id       OUT  RIB_BUSOBJID_TBL,
                  O_routing_info     OUT  RIB_ROUTINGINFO_TBL,
                  I_num_threads   IN      NUMBER DEFAULT 1,
                  I_thread_val    IN      NUMBER DEFAULT 1)
This public procedure is called from the RIB to get the next messages. It performs a 
cursor loop on the unpublished records on the STORE_MFQUEUE table (PUB_
STATUS = 'U'). 

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY
Procedure: PUB_RETRY(O_status_code      OUT   VARCHAR2,
                     O_error_msg        OUT   VARCHAR2,
                     O_message          OUT   RIB_OBJECT,
                     O_message_type  IN OUT   VARCHAR2,
                     O_bus_obj_id    IN OUT   RIB_BUSOBJID_TBL,
                     O_routing_info  IN OUT   RIB_ROUTINGINFO_TBL)



Store Publication API

2-102 Operations Guide Volume 2 - Message Publication and Subscription Designs

This public procedure performs the same tasks as GETNXT except that it only loops 
for a specific row in the STORE_MFQUEUE table. The record on STORE_MFQUEUE 
must match the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the 
business transaction's key values and a message type. It contains all of the shared 
processing between GETNXT and PUB_RETRY. 

Function Level Description - MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a 
business transaction. I_business_object contains the store header key values (store). I_
rowid is the rowid of the store_mfqueue row fetched from GETNXT.

Function Level Description - BUILD_HEADER_OBJECT (local)
This private function accepts store header key value (store), builds and returns a 
header level DESC Oracle Object.

This overloaded private function accepts store header key value (store), builds and 
returns a header level REF Oracle Object.

This function calls the BUILD_STORE_CFA_EXT to build the RIB_CustFlexAttriVo_
TBL for store customer attributes and attach it to the header level REF Oracle Object.

Function Level Description - BUILD_DETAIL_OBJECTS (local)
The private function is responsible for building detail level DESC Oracle Objects. It 
builds as many detail Oracle Object as it can given the passed in message type and 
business object keys (store).

Function Level Description - BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object. 
Also find out if the address is the primary address of the primary address type and set 
the DESC Oracle Object accordingly.

This function calls the BUILD_ADDR_CFA_EXT to build the RIB_CustFlexAttriVo_
TBL for store's address customer attributes and attach it to the detail level REF Oracle 
Object.

Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail 
create, detail update, header update, store hour create, and store hour mod messages 
(DTL_ADD, DTL_UPD, HDR_UPD,SHR_ADD, SHR_UPD). I_business_obj contains 
the header level key values (store).

Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete 
messages (DTL_DEL). I_business_obj contains the header level key values (store).

Function Level Description - LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (store). 
This is to ensure that GETNXT and PUB_RETRY do not wait on any business 
processes that currently have the queue table locked and have not committed. This can 



Store Publication API

RIB Publication Designs 2-103

occur because ADDTOQ, which is called from the triggers, deletes from the queue 
table for DTL_UPD, DTL_DEL, and HDR_DEL messages.

Function Level Description - HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is 
raised. I_seq_no is the sequence number of the driving STORE_MFQUEUE record. I_
function_keys contains detail level key values (store, addr_key). 

If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the 
driving STORE_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends 
back a status of 'H' - Hospital to the RIB as well. It then updates the status of the queue 
record to 'H', so that it will not get picked up again by the driving cursor in GETNXT. 

If the error is a fatal error, a status of 'E' - Error is returned to the RIB. The error is 
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then 
the global variable LP_error_status is flipped from 'H' to 'E'. 

Function Level Description - BUILD_STORE_CFA_EXT (local)
This private function will build and return entity's customer attributes from STORE_
CFA_EXT table.

Function Level Description - BUILD_ ADDR _CFA_EXT (local)
This private function will build and return store's address customer attributes of the 
entity from ADDR_CFA_EXT table for Store.

Function Level Description - BUILD_STORE_HOURS_OBJECT (local)
This private function is responsible for building store hour level DESC Oracle Objects. 
It builds as many store hour Oracle Object as it can, given the passed-in message type 
and business object keys (store).

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Table Impact

Message Types Message Type Description
XML Schema 
Definition (XSD)

StoreCre Store Create Message StoreDesc.xsd

StoreMod Store Modify Message StoreDesc.xsd

StoreDel Store Delete Message StoreRef.xsd

TABLE SELECT INSERT UPDATE DELETE

STORE_PUB_INFO Yes Yes Yes Yes

ADDR Yes No Yes No

STORE_MFQUEUE Yes Yes Yes Yes

ADD_TYPE_
MODULE

Yes No No No



Transfers Publication API

2-104 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

Transfers Publication API
This section describes the transfers publication API.

Functional Area
Transfer

Business Overview
A transfer is a movement of stock on hand from one stockholding location within the 
company to another. 

The transfer publication processing publishes transfers in 'Approved' status. 

Transfers consist of header level information in which source and destination locations 
are specified, and detail information regarding what items and the quantity of each 
item is to be transferred. Both of the main transfer tables, TSFHEAD and TSFDETAIL, 
include triggers that track inserts, deletes, and modifications. These triggers insert or 
update into TSF_MFQUEUE or TRANSFERS_PUB_INFO tables. The transfer family 
manager is responsible for pulling transfer information from this queue and sending it 
to the external system(s) at the appropriate time and in the correct sequence.

The transfer messages that are published by the family manager vary. A complete 
message including header information, detail information, and component ticketing 
information (if applicable) is created when a transfer is approved. When the transfer is 
unapproved, the RIB processes it as a TransferDel message when publishing it to 
external systems. When the transfer is re-approved, the transfer is processed as a new 
transfer for publishing.

For a customer order transfer (tsf_type = 'CO'), customer related information is pulled 
from ORDCUST table. Additional trigger is put on ORDCUST to capture delivery and 
billing change for the customer order transfer through the transfer message family.

When publishing a header mod or a detail create, detail mod, detail delete message, a 
second full replacement message with message type 'transferfulrep' will be published 
from Merchandising if system option PUB_FULL_OBJECTS_IND is configured to be Y 
on the PRODUCT_CONFIG_OPTIONS table. This message payload will contain a full 
snapshot of the transfer.  Based on the message type, RIB will route the full 
replacement message to appropriate applications.

Package Impact
This section describes the package impact.

STORE Yes No No No

STORE_CFA_EXT Yes No No No

ADDR_CFA_EXT Yes No No No

STORE_HOURS Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Transfers Publication API

RIB Publication Designs 2-105

Business Object ID 
Transfer number

Create Header
1. Prerequisites: None. 

2. Activity Detail: The first step to creating a transfer is creating the header level 
information. 

3. Messages: When a transfer is created, a record is inserted into TRANSERS_PUB_
INFO table and is not published onto the queue until the transfer has been 
approved.

Approve
1. Prerequisites: A transfer must exist and have at least one detail before it can be 

approved. 

2. Activity Detail: Approving a transfer changes the status of the transfer. This 
change in status signifies the first time systems external to Merchandising will 
have an interest in the existence of the transfer, so this is the first part of the life 
cycle of a transfer that is published.

3. Messages: When a transfer is approved, a "TransferHdrMod" message is inserted 
into the queue with the initial_approval_ind on the TRANSFER_PUB_INFO table 
set to 'Y', signifying that the transfer was approved. The family manager uses this 
indicator to create a hierarchical message containing a full snapshot of the transfer 
at the time the message is published. 

Modify Header
1. Prerequisites: The transfer header can only be modified when the status is not 

approved. Once the transfer is approved, the only fields that are modifiable are the 
status field and the comments field. 

2. Activity Detail: The user is allowed to modify the header but only certain fields at 
certain times. If a transfer is in input status the 'to and from' locations may be 
modified until details have been added. Once details have been added, the 
locations are disabled. The freight code is modifiable until the transfer has been 
approved. Comments can be modified at any time. 

3. Messages: When the status of the header is either changed to 'C'losed or 
'A'pproved, a message (TransferHdrMod) is inserted into the queue. (Look above 
at Approve activity and below at Close activity for further details). For any 
TransferHdrMod other than approving or unapproving a transfer, a second full 
replacement message (TransferFulRep) is inserted into the queue if PUB_FULL_
OBJECTS_IND on PRODUCT_CONFIG_OPTIONS is configured to be Y. Since 
approving and unapproving a transfer will result in publishing a transfer create 
(TransferCre) and transfer delete (TransferDel) message, a second full replacement 
message is not needed.

Create Details
1. Prerequisites: A transfer header record must exist before transfer details can be 

created. 

2. Activity Detail: The user is allowed to add items to a transfer but only until it has 
been approved. Once a transfer has been approved, details can longer be added 
unless the transfer is set back to Input status.  



Transfers Publication API

2-106 Operations Guide Volume 2 - Message Publication and Subscription Designs

3. Messages: No messages are created on the queue until the transfer is approved. 
When a detail create (TransferDtlCre) message is added to the queue, a second full 
replacement message (TransferFulRep) is inserted into the queue if PUB_FULL_
OBJECTS_IND on PRODUCT_CONFIG_OPTIONS is configured to be Y. 

Modify Details
1. Prerequisites: Only modifications to transfer quantities are sent to the queue, and 

only when the transfer quantity is decreased manually, and not because of an 
increase in cancelled quantity will it be sent to the queue.

2. Activity Detail: The user is allowed to change transfer quantities provided they 
are not reduced below those already shipped. The transfer quantity can also be 
decreased by an increase in the cancelled quantity, which is always initiated by the 
external system. This change, then, would be of no interest to the external system 
because it was driven by it. 

3. Messages: No messages are created on the queue until the transfer is approved. 
When a detail create (TransferDtlCre) message is added to the queue, a second full 
replacement message (TransferFulRep) is inserted into the queue if PUB_FULL_
OBJECTS_IND on PRODUCT_CONFIG_OPTIONS is configured to be Y.

Delete Details
1. Prerequisites: Only a detail that has not been shipped may be deleted, and it 

cannot be deleted if it is currently being worked on by an external system. A user 
is not allowed to delete details from a closed transfer. 

2. Activity Detail: A user is allowed to delete details from a transfer but only if the 
item has not been shipped. 

3. Messages: No messages are created on the queue until the transfer is approved. 
When a detail delete (TransferDtlDel) message is added to the queue, a second full 
replacement message (TransferFulRep) is inserted into the queue if PUB_FULL_
OBJECTS_IND on PRODUCT_CONFIG_OPTIONS is configured to be Y.

Close
1. Prerequisites: A transfer must be in shipped status before it can be closed, and it 

cannot be in the process of being worked on by an external system.

2. Activity Detail: Closing a transfer changes the status, which prevents any further 
modifications to the transfer. When a transfer is closed, a message is published to 
update the external system(s) that the transfer has been closed and no further 
work (in Merchandising) is performed on it.  

3. Messages: Closing a transfer queues a "TransferHdrMod" request. This is a flat 
message containing a snapshot of the transfer header information at the time the 
message is published. Additionally, a second full replacement message 
(TransferFulRep) is inserted into the queue if PUB_FULL_OBJECTS_IND on 
PRODUCT_CONFIG_OPTIONS is configured to be Y.

Delete
1. Prerequisites: A transfer can only be deleted when it is still in approved status or 

when it has been closed. 

2. Activity Detail: Deleting a transfer removes it from the system. External systems 
are notified by a published Delete message that contains the number of the 
transfer to be deleted.



Transfers Publication API

RIB Publication Designs 2-107

3. Message: When a transfer is deleted, a "TransferDel", which is a flat notification 
message, is queued.

Package name: RMSMFM_TRANSFERS

Spec file name: rmsmfm_transferss.pls

Body file name: rmsmfm_transfersb.pls

Package Specification - Global Variables

FAMILY      VARCHAR2(64) := 'transfers';

HDR_ADD     VARCHAR2(64) := 'TransferCre';
HDR_UPD     VARCHAR2(64) := 'TransferHdrMod';
HDR_DEL     VARCHAR2(64) := 'TransferDel';
HDR_UNAPRV  VARCHAR2(64) := 'TransferUnapp';
DTL_ADD     VARCHAR2(64) := 'TransferDtlCre';
DTL_UPD     VARCHAR2(64) := 'TransferDtlMod';
DTL_DEL     VARCHAR2(64) := 'TransferDtlDel';
Function Level Description - ADDTOQ

ADDTOQ (O_error_mesage     OUT    VARCHAR2,
        I_message_type     IN     VARCHAR2,
        I_tsf_no           IN     tsfhead.tsf_no%TYPE,
        I_tsf_type         IN     tsfhead.tsf_type%TYPE,
        I_tsf_head_status  IN     tsfdetail.status%TYPE,
        I_item             IN     tsfdetail.item%TYPE,
        I_publish_ind      IN     tsfdetail.publish_ind%TYPE)
This function is called by both the tsfhead trigger and the tsfdetail trigger, the EC_
TABLE_THD_AIUDR and EC_TABLE_TDT_AIUDR respectively. 

■ Book transfers, non-sellable transfers and externally generated transfers (except 
for delete messages) are never published to external systems.

■ For header level insert messages (HDR_ADD), inserts a record in the 
TRANSFERS_PUB_INFO table. The published flag is set to 'N'. The correct thread 
for the Business transaction is calculated and written. The functionAPI_
LIBRARY.RIB_SETTINGS is called to get the number of threads used for the 
publisher. Using the number of threads, and the Business object ID, the thread 
value is calculated.

■ For all records except header level inserts (HDR_ADD), the thread_no and initial_
approval_ind are queried from the TRANSFERS_PUB_INFO table. 

■ If the Business transaction has not been published before (published = 'N') and the 
triggering message is one of DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, HDR_
UPD, HDR_UNAPPRV, FUL_REP, no processing will take place and the function 
exits. For a HDR_DEL message, the transfers_pub_info record is deleted.

■ For detail level message deletes (DTL_DEL), only the most recent record per detail 
in the TSF_MFQUEUE is required. Any previous records that exist on the TSF_
MFQUEUE for the record that has been passed are deleted.

■ For detail level message updates (DTL_UPD), only the most recent DTL_UPD 
record per detail in the TSF_MFQUEUE is required. Any previous DTL_UPD 
records that exist on the TSF_MFQUEUE for the record that has been passed are 
deleted. The system does not want to delete any detail inserts that exist on the 
queue for the detail. It ensures subscribers have not passed a detail modification 
message for a detail that they do not yet have.

■ For header level delete messages (HDR_DEL), deletes every record in the queue 
for the Business transaction. 



Transfers Publication API

2-108 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ For header level update message (HDR_UPD), updates the TRANSFERS_PUB_
INFO.INITIAL_APPROVAL_IND to 'Y' if the Business transaction is in approved 
status.

■ For all records except header level inserts (HDR_ADD), inserts a record into the 
TSF_MFQUEUE.

■ For a full replacement message (FUL_REP), any previous records that exist on the 
TSF_MFQUEUE for the record can be deleted.

It returns a status code of API_CODES.SUCCESS if successful, API_
CODES.UNHANDLED_ERROR if not.

Function Level Description - GETNXT

GETNXT (O_status_code         OUT    VARCHAR2,
        O_error_msg           OUT    VARCHAR2,
        O_message_type        OUT    VARCHAR2,
        O_message             OUT    RIB_OBJECT,
        O_bus_obj_id          OUT    RIB_BUSOBJID_TBL,
        O_routing_info        OUT    RIB_ROUTINGINFO_TBL,
        I_num_threads         IN     NUMBER DEFAULT 1,
        I_thread_val          IN     NUMBER DEFAULT 1)
The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished 
records on the TSF_MFQUEUE table (PUB_STATUS = 'U'). It only needs to execute one 
loop iteration in most cases. For each record retrieved, GETNXT gets the following:

1. A lock of the queue table for the current Business object. The lock is obtained by 
calling the function LOCK_THE_BLOCK. If there are any records on the queue for 
the current Business object that are already locked, the current message is skipped.

2. The published indicator from the TRANSFERS_PUB_INFO table. 

3. A check for records on the queue with a status of 'H'ospital. If there are any such 
records for the current Business object, GETNXT raises an exception to send the 
current message to the Hospital.

The loop executes more than one iteration for the following cases:

1. When a header delete message exists on the queue for a business object that has 
not been initially published. In this case, it removes the header delete message 
from the queue and loop again.

2. A detail delete message exists on the queue for a detail record that has not been 
initially published. In this case, it removes the detail delete message from the 
queue and loop again.

3. The queue is locked for the current Business object.

The information from the TSF_MFQUEUE and TRANSFERS_PUB_INFO table is 
passed to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD builds the 
Oracle Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does 
not run successfully, GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description - PUB_RETRY

PUB_RETRY(O_status_code         OUT      VARCHAR2,
          O_error_msg           OUT      VARCHAR2,
          O_message_type    IN  OUT      VARCHAR2,
          O_message             OUT      RIB_OBJECT,
          O_bus_obj_id      IN  OUT      RIB_BUSOBJID_TBL,



Transfers Publication API

RIB Publication Designs 2-109

          O_routing_info    IN  OUT      RIB_ROUTINGINFO_TBL,
          I_REF_OBJECT      IN           RIB_OBJECT)
This procedure republishes the entity that failed to be published before. It is the same 
as GETNXT except that the record on TSF_MFQUEUE to be published must match the 
passed in sequence number contained in the ROUTING_INFO.

Function Level Description - PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

If the message type is HDR_DEL or HDR_UNAPRV and it has not been published:

■ Calls DELETE_QUEUE_REC to delete the record from TSF_MFQUEUE. Also 
deletes from TRANSFER_PUB_INFO.

If the message type is HDR_DEL and the record has been published:

■ Generates a "flat" file to be sent to the RIB. Call DELETE_QUEUE_REC to delete 
from the queue.

If the message type is HDR_UNAPRV:

■ Processes it just like a hdr_del except the published indicator on TRANSFERS_
PUB_INFO is set to 'N'.

If the transfer has not been published:

■ Calls MAKE_CREATE to publish the entire transfer. as a HDR_ADD message.

If the message type is FUL_REP:

■ Calls BUILD_HEADER_OBJECT and BUILD_DETAIL_CHANGE_OBJECTS to 
publish the entire transfer. Call DELETE_QUEUE_REC to delete the record from 
TSF_MFQUEUE.

If the record from TSF_MFQUEUE table is HDR_UPD:

■ Calls BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB 
and deletes from the queue.

If the record from TSF_MFQUEUE table is DTL_ADD or DTL_UPD:

■ Calls BUILD_HEADER_OBJECT and BUILD DETAIL_CHANGE_OBJECTS to 
build the Oracle Object to publish to the RIB.

If the record from TSF_MFQUEUE table is a detail delete (DTL_DEL):

■ Calls BUILD HEADER_OBJECT and BUILD_DETAIL_DELETE_OBJECTS to build 
the Oracle Object to publish to the RIB. 

This function puts the following in the routing info (RIB_ROUTING_INFO_TBL):

■ ’from_phys_loc' - transfer from location. In case of warehouse, it's the physical 
warehouse.

■ 'from_phys_loc_type' -  transfer from location type - 'S' for store, 'W' for 
warehouse, 'E' for external finisher.

■ 'to_phys_loc' - transfer to location. In case of warehouse, it's the physical 
warehouse.

■ 'to_phys_loc_type' - transfer to location type. In case of store, 'S' for physical store 
(i.e. stockholding company store), 'V' for virtual store (i.e. non-stockholding 
company store).



Transfers Publication API

2-110 Operations Guide Volume 2 - Message Publication and Subscription Designs

Function Level Description - MAKE_CREATE (local)

This function is used to create the Oracle Object for the initial publication of a business 
transaction. It combines the current message and all previous messages with the same 
key in the queue table to create the complete hierarchical message. It first creates a new 
message with the hierarchical document type. It then gets the header create message 
and adds it to the new message. The remainder of this procedure gets each of the 
details grouped by their document type and adds them to the new message. When it is 
finished creating the new message, it deletes all the records from the queue with a 
sequence number less than or equal to the current records sequence number. This new 
message is passed back to the RIB. The MAKE_CREATE function will not be called 
unless the initial_approval_ind is 'Y'es and published is 'N'o on transfers_pub_info  
(meaning the transfer has been approved but not yet published, and it is ready to be 
published for the first time to the external system(s)). 

Function Level Description - BUILD_HEADER_OBJECT (local)

Accepts header key values, performs necessary lookups, builds and returns a header 
level Oracle Object. 

Function Level Description - BUILD_DETAIL_OBJECTS (local)

This function is responsible for fetching the detail info and ticket type to be sent to 
RWMS. The logic that gets the detail info as well as the ticket type was separated to 
remove the primary key constraint.

Function Level Description - BUILD_SINGLE_DETAIL (local)

Accept inputs and build a detail level Oracle Object. Perform any lookups needed to 
complete the Oracle Object.

Function Level Description - GET_RETAIL (local)

Gets the price and selling unit of measure (UOM) of the item.

Function Level Description - GET_GLOBALS (local)

Get all the system options and variables needed for processing.

Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)

Calls BUILD_DETAIL_OBJECT to publish the record. Deletes the record from TSF_
MFQUEUE.

Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)

Either pass in a header level ref Oracle Object or build a header level ref Oracle Object.

Performs a cursor for loop on TSF_MFQUEUE and builds detail ref Oracle Objects. 

Deletes from TSF_MFQUEUE when done.

Function Level Description - LOCK_THE_BLOCK (local)

This function locks all queue records for the current business object. This is to ensure 
that GETNXT does not wait on any business processes that currently have the queue 
table locked and have not committed. This can occur because ADDTOQ, which is 
called from the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and 
HDR_DEL messages.

Function Level Description - DELETE_QUEUE_REC (local)

This procedure deletes a specific record from TSF_MFQUEUE. It deletes based on the 
sequence number passed in.

Function Level Description - HANDLE_ERRORS (local)



Transfers Publication API

RIB Publication Designs 2-111

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised. The function was updated to conform with the changes made to the ADDTOQ 
function.

Trigger Impact
A trigger on the TSFHEAD and TSFDETAIL exists to capture Inserts, Updates, and 
Deletes.

Trigger name: EC_TABLE_THD_AIUDR.TRG

Trigger file name: ec_table_thd_aiudr.trg

Table: TSFHEAD

■ Inserts: Sends the tsf_no and tsf_type level info to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_Transfers.HDR_ADD.

■ Updates: Sends the tsf_no and tsf_type level info to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_Transfers.HDR_UPD and optionally, 
RMSMFM_Transfers.FUL_REP based on system configuration.

■ Deletes: Sends the tsf_no and tsf_type level info to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_Transfers.HDR_DEL.

Trigger name: EC_TABLE_TDT_AIUDR.TRG

Trigger file name: ec_table_tdt_aiudr.trg

Table: TSFDETAIL

■ Inserts: Sends the tsf_no and item level info to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_Transfers.DTL_ADD and optionally, 
RMSMFM_Transfers.FUL_REP based on system configuration.

■ Updates: Sends the tsf_no and item level info to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_Transfers.DTL_UPD and optionally, 
RMSMFM_Transfers.FUL_REP based on system configuration.

■ Deletes: Sends the tsf_no and item level info to the ADDTOQ procedure in the 
MFM with the message type RMSMFM_Transfers.DTL_DEL and optionally, 
RMSMFM_Transfers.FUL_REP based on system configuration.

Trigger name: EC_TABLE_ORC_AUR.TRG

Trigger file name: ec_table_orc_aur.trg

Table: ORDCUST

■ Updates: For ORDCUST associated with a published 'CO' transfer, send the tsf_no 
and tsf_type level info to the ADDTOQ procedure in the MFM with the message 
type RMSMFM_Transfers.HDR_UPD and optionally, RMSMFM_Transfers.FUL_
REP based on system configuration.

Message XSD
Here are the filenames that correspond with each message type. See Oracle Retail 
Integration Bus documentation for each message type in order to get a detailed picture 
of the composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

TransferCre Transfer Create Message TsfDesc.xsd



Transfers Publication API

2-112 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
■ After a transfer has been approved, Oracle Retail assumes the freight code of the 

transfer (on the TSFHEAD table) cannot be updated.

■ One of the primary assumptions in the current approach is that ease of code will 
outweigh performance considerations. It is hoped that the 'trickle' nature of the 
flow of data will decrease the need to dwell on performance issues and instead 
allow developers to code in the easiest and most straight forward manner.

■ The adaptor is only set up to call stored procedures, not stored functions. Any 
public program then needs to be a procedure.

■ TSFHEAD_CFA_EXT changes will NOT trigger a FUL_REP message.

Table Impact

TransferHdrMod Transfer Modify Message TsfDesc.xsd

TransferDel Transfer Delete Message TsfRef.xsd

TransferDtlCre Transfer Detail Create 
Message

TsfDesc.xsd

TransferDtlMod Transfer Detail Modify 
Message

TsfDesc.xsd

TransferDtlDel Transfer Detail Delete 
Message

TsfRef.xsd

transferfulrep Transfer Full Replacement 
Message

TsfDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

TRANSFERS_PUB_INFO Yes No No No

TSF_MFQUEUE Yes No No No

TSFDETAIL Yes No No No

TSFHEAD Yes No No No

WH Yes No No No

ORDCUST Yes No No No

ORDCUST_DETAIL Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

ITEM_TICKET Yes No No No

V_PACKSKU_QTY Yes No No No

CODE_DETAIL Yes No No No

SYSTEM_OPTIIONS Yes No No No

RIB_SETTINGS Yes No No No

Message Types Message Type Description XML Schema Definition (XSD)



UDA Publication API

RIB Publication Designs 2-113

UDA Publication API
This section describes the UDA publication API.

Functional Area
Foundation Data

Business Overview
Merchandising publishes messages about user-defined attributes (UDAs) to the Oracle 
Retail Integration Bus (RIB). UDAs provide a method for defining attributes and 
associating the attributes with specific items, items on an item list, or items in a 
specific department, class, or subclass. UDAs are useful for information and reporting 
purposes. Unlike traits or indicators, UDAs are not interfaced with external systems. 
UDAs do not have any programming logic associated with them. UDA messages are 
specific to basic UDA identifiers and values defined in Merchandising. The UDAs can 
be displayed in one or more of three formats: Dates, Freeform Text, or a List of Values 
(LOV).

Messages are added to the UDA_MFQUEUE table, which must be published in the 
same order as they occur in the Merchandising database. 

Package Impact
File name: rmsmfm_udas/b.pls

Function Level Description - ADDTOQ

Procedure:
ADDTOQ(O_status          OUT    VARCHAR2,
       O_text            OUT    VARCHAR2,
       I_uda_message  IN        UDA_MFQUEUE%ROWTYPE) 
This procedure is called by the triggers EC_TABLE_UDA_AIUDR and EC_TABLE_
UDV_AIUDR and takes the message type, uda_id and uda_value if there is one and 
the message itself. It inserts a row into the UDA_MFQUEUE along with the passed in 
values and the next sequence number from the UDA_MFSEQUENCE, setting the 
status to ‘U’npublished. It returns a status code of API_CODES.SUCCESS if successful, 
API_CODES.UNHANDLED_ERROR if not.

Function Level Description - GETNXT

Procedure:
GETNXT(O_status_code        OUT    VARCHAR2,
       O_error_msg          OUT   VARCHAR2,
       O_message_type       OUT   VARCHAR2,
       O_message            OUT   RIB_OBJECT,
       O_bus_obj_id         OUT   RIB_BUSOBJID_TBL,
       O_routing_info       OUT   RIB_ROUTINGINFO_TBL,
       I_num_threads     IN       NUMBER DEFAULT 1,
       I_thread_val      IN       NUMBER DEFAULT 1)
This publicly exposed procedure is typically called by a RIB publication adaptor. This 
procedure's parameters are well defined and arranged in a specific order.

The procedure will use the defined C_GET_MESSAGE cursor to retrieve the next 
message on the UDA_MFQUEUE to be published to the RIB.

The information from the UDA_MFQUEUE table is passed to PROCESS_UDA_
QUEUE. PROCESS_UDA_QUEUE will build the Oracle Object message to pass back 



UDA Publication API

2-114 Operations Guide Volume 2 - Message Publication and Subscription Designs

to the RIB. If PROCESS_UDA_QUEUE does not run successfully, GETNXT should 
raise an exception.

After PROCESS_UDA_QUEUE returns an Oracle object to pass to the RIB, this 
procedure will delete the record on UDA_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_UDA_QUEUE, HANDLE_ERRORS should be called.

Function Level Description – PUB_RETRY

Procedure:
PUB_RETRY(O_status_code          OUT   VARCHAR2,
          O_error_message        OUT   RTK_ERRORS.RTK_TEXT%TYPE,
          O_message_type      IN OUT   UDA_MFQUEUE.MESSAGE_TYPE%TYPE,
          O_message              OUT   RIB_OBJECT,
          O_bus_obj_id        IN OUT   RIB_BUSOBJID_TBL,
          O_routing_info      IN OUT   RIB_ROUTINGINFO_TBL,
          I_ref_object        IN       RIB_OBJECT)
Same as GETNXT, except the record on UDA_MFQUEUE must match the passed-in 
sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_UDA_QUEUE (local)

Function:
PROCESS_UDA_QUEUE (O_error_message    OUT RTK_ERRORS.RTK_TEXT%TYPE, 
                   O_message       IN OUT nocopy RIB_OBJECT,
                   O_bus_obj_id    IN OUT nocopy RIB_BUSOBJID_TBL,
                   I_queue_rec     IN     C_GET_MESSAGE%ROWTYPE)
This function controls the building of Oracle Objects given the business transaction’s 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY. In addition to building the Oracle Objects, this function 
will populate the business object ID.

Function Level Description – HANDLE_ERRORS (local)

Function:
HANDLE_ERRORS(O_status_code    IN OUT  VARCHAR2,
              O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
              O_message        IN OUT  NOCOPY RIB_OBJECT,
              O_bus_obj_id     IN OUT  NOCOPY RIB_BUSOBJID_TBL,
              O_routing_info   IN OUT  NOCOPY RIB_ROUTINGINFO_TBL,
              I_rec            IN      C_GET_MESSAGE%ROWTYPE)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised. If the error is a non-fatal error, GETNXT passes the sequence number of the 
driving UDA_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends 
back a status of ‘H’ -Hospital to the RIB as well. It then updates the status of the queue 
record to ‘H’ so that it will not get picked up again by the driving cursor in GETNXT. 
If the error is a fatal error, a status of ‘E’ – Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from ‘H’ to ‘E’.

Design Assumptions
None



Vendor Publication API

RIB Publication Designs 2-115

Table Impact

Vendor Publication API
This section describes the vendor publication API.

Functional Area
Foundation Data

Business Overview
Merchandising publishes suppliers and supplier address information to the RIB for 
use by RWMS and other integration subsystems. Supplier information is published 
when new suppliers are created, updates are made to existing suppliers or existing 
suppliers are deleted. Similarly, addresses are published when they are added, 
modified or deleted. The address types that are published as part of this message are 
Returns (3), Order (4), and Invoice (5). 

As suppliers and addresses are added in Merchandising, an event capture trigger 
creates a message that is added to the SUPPLIER_MFQUEUE table.

Package Impact
File name: rmsmfm_vendors/b.pls

Function Level Description - ADDTOQ
PROCEDURE ADDTOQ(O_status               OUT    VARCHAR2,
                 O_text                 OUT    RTK_ERRORS.RTK_TEXT%TYPE,
                 I_supplier_message  IN        SUPPLIER_MFQUEUE%ROWTYPE)
This procedure is called by the triggers, and takes the message type, supplier, addr_
seq_no, addr_type, ret_allow_ind, org_unit and group_id. It inserts a row into the 
supplier message family queue along with the passed-in values and the next sequence 
number from the supplier message family sequence, setting the status to unpublished. 
It returns error codes and strings.

Function Level Description - GETNXT
PROCEDURE GETNXT(O_status_code   OUT  VARCHAR2,
                 O_error_msg     OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                 O_message_type  OUT  VARCHAR2,
                 O_message       OUT  RIB_OBJECT,
                 O_bus_obj_id    OUT  RIB_BUSOBJID_TBL,
                 O_routing_info  OUT  RIB_ROUTINGINFO_TBL,
                 I_num_threads   IN   NUMBER DEFAULT 1,
                 I_thread_val    IN   NUMBER DEFAULT 1)
This publicly exposed procedure is typically called by a RIB publication adaptor. This 
procedure’s parameters are well-defined and arranged in a specific order.

TABLE SELECT INSERT UPDATE DELETE

UDA_MFQUEUE Yes Yes No No

UDA Yes Yes Yes Yes

UDA_VALUES Yes Yes Yes Yes



Vendor Publication API

2-116 Operations Guide Volume 2 - Message Publication and Subscription Designs

The procedure will use the defined C_QUEUE cursor to retrieve the next message on 
the SUPPLIER_MFQUEUE to be published to the RIB.

The information from SUPPLIER_MFQUEUE table is passed to PROCESS_QUEUE_
RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object message to pass 
back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully, GETNXT 
will raise an exception.

After PROCESS_QUEUE_RECORD returns an Oracle object to pass to the RIB, this 
procedure will delete the record on DIFFGRP_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be 
called.

Function Level Description - PUB_RETRY
Procedure: PUB_RETRY(O_status_code    OUT     VARCHAR2,
                     O_error_msg    OUT     VARCHAR2,
                     O_message      OUT     RIB_OBJECT,
                     O_message_type  IN OUT     VARCHAR2,
                     O_bus_obj_id    IN OUT     RIB_BUSOBJID_TBL,
                     O_routing_info  IN OUT     RIB_ROUTINGINFO_TBL)
This public procedure performs the same tasks as GETNXT, except that it only loops 
for a specific row in the SUPPLIER_MFQUEUE table. The record on SUPPLIER_
MFQUEUE must match the passed-in sequence number (contained in the ROUTING_
INFO).

Function Level Description - CREATE_PREVIOUS (local)
This procedure determines if a supplier create already exists on the queue table for the 
same supplier and with a sequence number less than the current records sequence 
number.

Function Level Description - CLEAN_QUEUE (local)
This procedure cleans up the queue by eliminating modification messages. It is only 
called if CREATE_PREVIOUS returns true. For each address modification message 
type, it finds the previous address create message type. For each delete message type, 
it finds the previous, corresponding create message type. It then calls DELETE_
QUEUE_REC to delete the create message record. For each supplier modification 
message type, it deletes the modification message and calls DELETE_QUEUE_REC to 
delete the modify record. It deletes the VendorFullRep message.

Function Level Description - CAN_CREATE (local)
This procedure determines if a complete hierarchical supplier message can be created 
from the current address and prior address messages in the queue for the same 
supplier. It checks to see if there is a type 3, 4, or 5 address already in the queue. If the 
ret_allow_ind is 'Y' and there is a type 3 address, then a ret_flag is set to true. If the 
invc_match_ind is 'Y' and there is a type 5 address, then a invc_flag is set to true. If all 
the flags are true, then it returns true because the complete hierarchical message can be 
created.

Function Level Description - MAKE_CREATE (local)
This procedure combines the current message and all previous messages with the 
same supplier in the queue table to create the complete hierarchical message. It first 
checks if there is are any VendourOU data in SUPPLIER_MFQUEUE. It then creates a 



Vendor Publication API

RIB Publication Designs 2-117

VendourOUDesc table. It will then check if there is any VendourAddr data in 
SUPPLIER_MFQUEUE, a VendourAddrDesc table will be created. VendourHdrDesc 
will now be created. If the current sequence number has a group ID attached, it will 
then call BUILD_SUPPLIER_CFA_EXT and generate a CustoFlexAttriVo table. A 
VendourDesc record will now be generated. It will then delete all the records from the 
queue with a sequence number less than or equal to the current records sequence 
number. This new message is passed back to RIB.

When the message type is VendorFullRep, then the complete hierarchy of the vendor 
description message is sent. The VendorFulRep message is built and sent only when 
system_options_rec.pub_full_objects_ind = 'Y'.This is sent whenever there are 
deletion/modifications on the Vendor-related tables

Function Level Description - DELETE_QUEUE_REC (local)
This procedure deletes a specific record from the queue. It deletes based on the 
sequence number passed in.

Function Level Description - CHECK_STATUS (local)
This procedure raises an exception if the status code is set to Error. This will be called 
immediately after calling a procedure that sets the status code. Any procedure that 
calls CHECK_STATUS must have its own exception handling section.

Function Level Description - MAKE_CREATE_POU (local)
This procedure is called when message type is 'VendorOUCre', 'VendorOUDel', 
’VendorDel’ or ’VendorAddrDel’.

For VendorOUCre,it first creates a new message with the VendorDesc document type. 
It then gets the Vendor OrgUnit create message and adds it to the new message.

For VendorOUDel, VendorOURef will be generated passing in SUPPLIER_
MFQUEUE.ORG_UNIT_ID.

For VendorDel, VendorRef will be generated passing in SUPPLIER_
MFQUEUE.SUPPLIER.

For VendorAddrDel, VendorAddrRef will be generated passing in SUPPLIER, ADDR_
SEQ_NO and ADDR_TYPE from SUPPLIER_MFQUEUE.

This new message is passed back to RIB.

Function Level Description - BUILD_SUPPLIER_CFA_EXT (local)
This private function will build and return entity's customer attributes from SUPS_
CFA_EXT table.

Function Level Description - MAKE_CREATE_CFA (local)
This procedure is called when the message type is 'VendorAddrMod' or 
'VendorHdrMod' from the PROCESS_QUEUE_RECORD function. It first creates a new 
message with the VendorDesc record. It then calls the BUILD_SUPS_CFA_EXT and/or 
BUILD_ADDR_CFA_EXT if the current sequence number has a group ID attached to 
build a sub-node object of the supplier's customer attributes and build a sub-node 
object of the supplier's address customer attributes. Finally, the two sub-nodes created 
are attached to the main root node of supplier. This new node is passed back to the 
RIB.



Vendor Publication API

2-118 Operations Guide Volume 2 - Message Publication and Subscription Designs

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction's 
key values and a message type by calling the local procedures. It contains all of the 
processing in GETNXT. It builds the Oracle Object to publish to the RIB.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ The adaptor is only setup to call stored procedures, not stored functions. Any 

public program then needs to be a procedure.

■ Once all criteria are met for a valid create message, the messages will be combined 
and sent to the RIB. 

■ Messages for supplier and address modifications and deletions will be sent as they 
are created. An address modification can be sent without the supplier information.

■ When multiple set of books is enabled in Merchandising, org units are required 
elements when creating a supplier. Addition and deletes from this table are sent 
either as standalone message or part of the supplier create message. 

■ When Supplier Sites functionality is enabled, only supplier site data is published. 
The Supplier level data are not published.

Table Impact

Message Types Message Type Description XML Schema Definition (XSD)

VendorCre Vendor Create VendorDesc.xsd

VendorHdrMod Vendor Header Modify VendorHdrDesc.xsd

VendorDel Vendor Delete VendorRef.xsd

VendorAddrCre Vendor Address Create VendorAddrDesc.xsd

VendorAddrMod Vendor Address Modify VendorAddrDesc.xsd

VendorAddrDel Vendor Address Delete VendorAddrRef.xsd

VendorOUCre Vendor OrgUnit Create VendorOUDesc.xsd

VendorOUDel Vendor OrgUnit Delete VendorOURef.xsd

VendorFulRep Vendor FullRep VendorDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

SUPS Yes No No No

ADDR Yes No No No

SUPPLIER_MFQUEUE Yes Yes Yes Yes

DUAL Yes No No No

PARTNER_ORG_UNIT Yes No No No

SUPS_CFA_EXT Yes No No No



Warehouse Publication API

RIB Publication Designs 2-119

Warehouse Publication API
This section describes the warehouse publication API.

Functional Area
Foundation Data

Business Overview
Merchandising publishes data about warehouses in messages to the Oracle Retail 
Integration Bus (RIB). Other applications that need to keep their locations 
synchronized with Merchandising subscribe to these messages. Merchandising 
publishes information about all the warehouses, including both physical and virtual. 
Those applications on the RIB that understands virtual locations can subscribe to all 
warehouse messages that Merchandising publishes. Those applications that do not 
have virtual location logic, such as SIM and RWMS, it depends on RIB to transform 
Merchandising warehouse messages for physical warehouses only. 

These RIB messages are triggered on inserting, updating, and deleting of warehouse 
and warehouse address in the Merchandising WH table, and the ADDR table with the 
module 'WH'. Only the primary address of the primary address type is included in 
this message. Oracle Retail publishes only the current state of the warehouse, not 
every change. 

Package Impact
File name: rmsmfm_whs/b.pls

Function Level Description - ADDTOQ
Function: ADDTOQ(O_error_mesage         OUT   VARCHAR2,
                 I_message_type      IN       VARCHAR2,
                 I_wh_key_rec        IN       WH_KEY_REC,
                 I_addr_publish_ind  IN       ADDR.PUBLISH_IND%TYPE)
This public function puts a warehouse message on WH_MFQUEUE for publishing to 
the RIB. It is called from both wh trigger and address trigger. The I_functional_keys 
contains wh and, optionally, addr_key.

Function Level Description - GETNXT
Procedure: GETNXT(O_status_code     OUT  VARCHAR2,
                  O_error_msg       OUT  VARCHAR2,
                  O_message_type    OUT  VARCHAR2,
                  O_message         OUT  RIB_OBJECT,
                  O_bus_obj_id      OUT  RIB_BUSOBJID_TBL,
                  O_routing_info    OUT  RIB_ROUTINGINFO_TBL,
                  I_num_threads  IN      NUMBER DEFAULT 1,
                  I_thread_val   IN      NUMBER DEFAULT 1);
This public procedure is called from the RIB to get the next messages. It performs a 
cursor loop on the unpublished records on the WH_MFQUEUE table (PUB_STATUS = 
'U'). If any exception is raised in GETNXT, including the exception raised by an 
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

ADDR_CFA_EXT Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Warehouse Publication API

2-120 Operations Guide Volume 2 - Message Publication and Subscription Designs

Function Level Description - PUB_RETRY
This public procedure performs the same tasks as GETNXT except that it only loops 
for a specific row in the WH_MFQUEUE table. The record on WH_MFQUEUE must 
match the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the 
business transaction's key values and a message type. It contains all of the shared 
processing between GETNXT and PUB_RETRY. 

Function Level Description - DELETE_QUEUE_REC (local)
This private function deletes a record in WH_MFQUEUE table given the row ID.

Function Level Description - MAKE_CREATE (local)
Procedure: MAKE_CREATE(O_error_msg       OUT         VARCHAR2,
                       O_message      IN OUT NOCOPY  RIB_OBJECT,
                       O_routing_info IN OUT NOCOPY  RIB_ROUTINGINFO_TBL,
                       I_wh_key_rec   IN             WH_KEY_REC,
                       I_rowid        IN             ROWID)
This private function is used to create the Oracle Object for the initial publication of a 
business transaction. I_business_object contains the warehouse header key values 
(wh). I_rowid is the rowid of the wh_mfqueue row fetched from GETNXT.

Function Level Description - BUILD_HEADER_OBJECT (local)
Procedure: BUILD_HEADER_OBJECT
                   (O_error_msg         OUT         VARCHAR2,
                    O_routing_info   IN OUT NOCOPY  RIB_ROUTINGINFO_TBL,
                    O_rib_whdesc_rec    OUT         RIB_WH_DESC,
                    I_wh_key_rec     IN             WH_KEY_REC)
This private function accepts warehouse header key values (wh), builds and returns a 
header level DESC Oracle Object.

This function calls the BUILD_WH_CFA_EXT to build the RIB_CustFlexAttriVo_TBL 
for warehouse's customer attributes and attach it to the header level REF Oracle 
Object.

Function Level Description - BUILD_HEADER_OBJECT (local)
This overloaded private function accepts warehouse header key value (wh), builds 
and returns a header level REF Oracle Object.

Function Level Description - BUILD_DETAIL_OBJECTS (local)
The private function is responsible for building detail level DESC Oracle Objects. It 
builds as many detail Oracle Object as it can given the passed in message type and 
business object keys (wh).

This function calls the BUILD_ADDR_CFA_EXT to build the RIB_CustFlexAttriVo_
TBL for warehouse's address customer attributes and attach it to the detail level REF 
Oracle Object.

Note: The message_type of HDR_ADD can potentially be changed to 
a DTL_ADD in PROCESS_QUEUE_RECORD).



Warehouse Publication API

RIB Publication Designs 2-121

Function Level Description - BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object. 
Also find out if the address is the primary address of the primary address type and set 
the DESC Oracle Object accordingly.

Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail 
create and detail update messages (DTL_ADD, DTL_UPD). I_business_obj contains 
the header level key values (wh).

Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete 
messages (DTL_DEL). I_business_obj contains the header level key values (wh).

Function Level Description - LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (wh). This 
is to ensure that GETNXT and PUB_RETRY do not wait on any business processes that 
currently have the queue table locked and have not committed. This can occur because 
ADDTOQ, which is called from the triggers, deletes from the queue table for DTL_
UPD, DTL_DEL, and HDR_DEL messages.

Function Level Description - HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is 
raised. I_seq_no is the sequence number of the driving WH_MFQUEUE record. I_
function_keys contains detail level key values (wh, addr_key). 

Function Level Description - BUILD_WH_CFA_EXT (local)
This private function will build and return entity's customer attributes from WH_
CFA_EXT table.

Function Level Description - BUILD_ ADDR _CFA_EXT (local)
This private function will build and return store's address customer attributes of the 
entity from ADDR_CFA_EXT table.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

WHCre WH Create Message WHDesc.xsd

WHMod WH Modify Message WHDesc.xsd

WHDel WH Delete Message WHRef.xsd

WHDtlCre WH Detail Create Message WHDesc.xsd

WHDtlMod WH Detail Modify Message WHDesc.xsd

WHDtlDel WH Detail Delete Message WHRef.xsd

WHAddCre WH Address Create WHAddrDesc.xsd



Work Orders In Publication API

2-122 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
Push off all DML statements as late as possible. Once DML statements have taken 
place, any error becomes a fatal error rather than a hospital error.

Table Impact

Work Orders In Publication API
This section describes the work order in publication API.

Functional Area
Purchase Orders

Business Overview
A work order provides direction to a warehouse management system (such as RWMS) 
about work that needs to be completed on items contained in a recent purchase order. 
Merchandising publishes work orders soon after it publishes the purchase order itself. 
This is referred to as a 'work order in' message. This message is not to be confused 
with a 'work order out' message, which pertains to transfers. 

Work order publication consists of a message containing attributes from the WO_
DETAIL table plus the order number from the WO_HEAD table. One message is 
created each time a WO_DETAIL record is created, modified, or deleted. The primary 
key for the WO_DETAIL consists of the work order ID, warehouse, item, location, and 
sequence number. Thus, one work order can have multiple Work Order Create 
messages. When a WO_DETAIL record is created or modified, the message contains a 
full snapshot of the WO_DETAIL record. When a WO_DETAIL record is deleted, the 
message contains a partial snapshot of the WO_DETAIL record. Messages are 
retrieved from the message queue in the order they were created.

Work orders attached to purchase orders will have their messages published after the 
order has been published. Work orders attached to previously published, approved 
orders will have their messages published immediately.

Work orders are defined at the physical location level. The message family manager 
will send the warehouse at which the work order will be done. This is used by the RIB 
publication adaptor for routing messages to the appropriate warehouse.

WHAddMod WH Address Modify WHAddrDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

WH_MFQUEUE Yes Yes Yes Yes

WH_PUB_INFO Yes Yes Yes Yes

WH Yes No No No

ADDR Yes No Yes No

ADD_TYPE_MODULE Yes No No No

WH_CFA_EXT Yes No No No

ADDR_CFA_EXT Yes No No No

Message Types Message Type Description XML Schema Definition (XSD)



Work Orders In Publication API

RIB Publication Designs 2-123

Package Impact
This section describes the package impact.

Business Object ID
Work Order Id

Create
1. Prerequisites: An order has been distributed by item and location. 

2. Activity Detail: A work order is ready to be published as soon as the order it is 
attached has been published. An initial publication message is made.

3. Messages: A "Work Order Create" message is queued. This message contains a 
snapshot of the attributes on the WO_DETAIL table.

Modify
1. Prerequisites: Work order has been created.

2. Activity Detail: The user is allowed to change attributes of the work order detail 
record. These changes are of interest to other systems and so this activity results in 
the publication of a message. Work orders attached to purchase orders will have 
their messages published after the order has been published. Work orders attached 
to previously published, approved orders will have their messages published 
immediately.

3. Messages: Any modifications to a work order detail record will cause a "Work 
Order Modify" message to be queued. This message contains the same attributes 
as the "Work Order Create" message.

Delete
1. Prerequisites: Work order has been created.

2. Activity Detail: Deleting a work order detail record removes it from the system. 
External systems are notified by a published message.

3. Messages: When a work order detail record is deleted a "Work Order Delete" 
message is queued. The message contains a partial snapshot of the WO_DETAIL 
table.

Package name: RMSMFM_WOIN

Spec file name: rmsmfm_woins.pls

Body file name: rmsmfm_woinb.pls

Package Specification - Global Variables

FAMILY    VARCHAR2(64)    'woin';
WO_ADD    CONSTANT      VARCHAR2(20)    'InBdWOCre';
WO_UPD    CONSTANT      VARCHAR2(20)    'InBdWOMod';
WO_DEL    CONSTANT      VARCHAR2(20)    'InBdWODel';

Function Level Description - ADDTOQ

Function: ADDTOQ(O_error_msg       OUT   VARCHAR2,
                 I_queue_rec    IN       WOIN_MFQUEUE%ROWTYPE, 
                 I_publish_ind  IN       WO_DETAIL.PUBLISH_IND%TYPE)
This procedure is called by EC_TABLE_WDL_AIUDR, and takes a record type variable 
that consists of columns from the WO_DETAIL table and message type. It inserts a 



Work Orders In Publication API

2-124 Operations Guide Volume 2 - Message Publication and Subscription Designs

row into the message family queue WOIN_MFQUEUE along with the passed in values 
and the next sequence number from the message family sequence, and sets the status 
to unpublished. It returns a status code of API_CODES.SUCCESS if successful, API_
CODES.UNHANDLED_ERROR if not.

Function Level Description - GETNXT

Procedure: GETNXT(O_status_code      OUT   VARCHAR2,
                  O_error_msg        OUT   VARCHAR2,
                  O_message_type     OUT   VARCHAR2,
                  O_message          OUT   RIB_OBJECT,
                  O_bus_obj_id       OUT   RIB_BUSOBJID_TBL,
                  O_routing_info     OUT   RIB_ROUTINGINFO_TBL,
                  I_num_threads   IN       NUMBER DEFAULT 1,
                  I_thread_val    IN       NUMBER DEFAULT 1)
This publicly exposed procedure is typically called by a RIB publication adaptor. Its 
parameters are well defined and arranged in a specific order. The message type is the 
RIB defined short message name. Status code is one of five values. These codes are 
defined in the RIB_CODES package. 

The error text parameter contains application-generated information, such as the 
application's sequence number of the message that failed, and the Oracle or other error 
that occurred when the retrieval failed.

Function Level Description - PUB_RETRY

Procedure: PUB_RETRY(O_status_code       OUT   VARCHAR2,
                     O_error_msg         OUT   VARCHAR2,
                     O_message_type  IN  OUT   VARCHAR2,
                     O_message           OUT   RIB_OBJECT,
                     O_bus_obj_id    IN  OUT   RIB_BUSOBJID_TBL,
                     O_routing_info  IN  OUT   RIB_ROUTINGINFO_TBL,
                     I_REF_OBJECT    IN        RIB_OBJECT);
Same as GETNXT except:

It only loops for a specific row in the WOIN_MFQUEUE table. The record on WOIN_
MFQUEUE must match the passed in sequence number (contained in the ROUTING_
INFO).

Function Level Description - PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

If the record from WOIN_QUEUE table is an insert or update (WO_ADD, WO_UPD):

■ Builds the header object that contains work order ID and order number.

■ Calls BUILD_DETAIL_OBJECTS to build the Oracle Object to publish to the RIB.

If the record from WOIN_QUEUE table is a delete (WO_DEL):

■ Builds the header object that contains work order ID and order number.

■ Calls BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish to 
the RIB. 

Function Level Description - BUILD_DETAIL_OBJECTS (local)

The function is responsible for building detail level Oracle Objects. It builds as many 
detail Oracle Object as it can given the passed in message type and business object key 
(work order ID).



Work Orders In Publication API

RIB Publication Designs 2-125

Select any details on the WOIN_MFQUEUE that are for the same work order ID and 
for the same message type. 

■ WOIN_MFQUEUE records that contain information being published are deleted. 

■ Each location represented in the published message is added to the ROUTING_
INFO object.

■ No more than the MAX_DETAILS_TO_PUBLISH numbers of records are put into 
Oracle Objects. 

To avoid deleting information from the queue table that has not been published, 
deletes are accomplished using ROWIDs. All information is fetched using the same 
cursor; this ensures that the published message matches the deletes from the WOIN_
MFQUEUE table regardless of trigger execution during GETNXT calls. 

Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)

Perform a cursor for loop on WOIN_MFQUEUE and build as many detail ref Oracle 
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH. 

Perform any BULK DML statements for deletion from WOIN_MFQUEUE. 

Each location represented in the published message will be added to the ROUTING_
INFO object.

Function Level Description - LOCK_THE_BLOCK (local)

This function locks all queue records for the current business object. This is to ensure 
that GETNXT does not wait on any business processes that currently have the queue 
table locked and have not committed. This can occur because ADDTOQ, which is 
called from the triggers, deletes from the queue table for WO_DEL messages.

Function Level Description - ROUTING_INFO_ADD (local)

This function is called from within the BUILD_DETAIL_OBJECTS and BUILD_
DETAIL_DELETE_OBJECTS. It will add the location from the message to the routing_
info whenever a new location is added to the object being published.

Function Level Description - HANDLE_ERRORS (local)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is 
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving 
WOIN_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a 
status of 'H'ospital to the RIB as well. It then updates the status of the queue record to 
'H'ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of 'E'rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has 
occurred, then the global variable LP_error_status is flipped from 'H'ospital to 'E'rror. 

Trigger Impact
Create a trigger on the WO_DETAIL to capture Inserts, Updates, and Deletes.

Trigger name: EC_TABLE_WDL_AIUDR.TRG

Trigger file name: ec_table_wdl_aiudr.trg

Table: WO_DETAIL

This trigger will capture inserts/updates/deletes to the WO_DETAIL table and write 
data into the WOIN_MFQUEUE message queue. 



Work Orders Out Publication API

2-126 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Inserts: Sends the header level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_WOIN.WO_ADD.

■ Updates: Sends the header level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ WOIN.WO_UPD.

■ Deletes: Sends the header level info to the ADDTOQ procedure in the MFM with 
the message type RMSMFM_ WOIN.WO_DEL.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Table Impact

Design Assumptions
■ One of the primary assumptions in the current approach is that ease of code will 

outweigh performance considerations. It is hoped that the 'trickle' nature of the 
flow of data will decrease the need to dwell on performance issues and instead 
allow developers to code in the easiest and most straightforward manner.

■ The adaptor is only setup to call stored procedures, not stored functions. Any 
public program then needs to be a procedure.

Work Orders Out Publication API
This section describes the Work Orders out Publication API.

Functional Area
Transfers

Business Overview 
This publication API facilitates the transmission of outbound work orders (OWO) 
from Merchandising to external systems. Only transfers that pass through a finisher 
before reaching the final location may be associated with work orders. The work 
orders are published upon approval of their corresponding transfers. The work order 

Message Types Message Type Description XML Schema Definition (XSD)

InBdWOCre Work Order Create Message WODesc.xsd

InBdWOMod Work Order Modify Message WODesc.xsd

InBdWODel Work Order Delete Message WORef.xsd

TABLE SELECT INSERT UPDATE DELETE

WOIN_MFQUEUE Yes Yes No Yes

WO_DETAIL Yes No No No

WOIN_MFQUEUE Yes Yes Yes Yes

WO_DETAIL Yes No Yes No



Work Orders Out Publication API

RIB Publication Designs 2-127

provides instructions for one or more of the following tasks to be completed at the 
finisher location:

■ Perform some activity on an item, such as monogramming.

■ Transform an item from one thing into another, such as dyeing a white t-shirt 
black.

■ Combine bulk items into a pack or break down a pack into its component items. 

Outbound work orders have their own message family because they cannot be 
bundled with transfer messages. This is because multi-legged transfers can be routed 
to either internal finishers (held as virtual warehouses) or external finishers (held as 
partners). Transfers to and from an internal finisher involve at least one book transfer. 
Because external systems may be unaware of virtual warehouses, book transfers are 
not communicated to external systems. 

Outbound work order data is only published upon approval of the associated transfer. 
As such, all work order activity, transformation and packing data are contained in the 
same message. Because Merchandising does not allow users to modify work order 
activity, transformation or packing information for an approved transfer, detail-level 
messages of any type (create, delete, update) are never published. Outbound work 
order delete messages are published when the second leg of a multi-legged transfer is 
unapproved. This can be accomplished through the un-approval of an entire 
multi-legged transfer or the un-approval of the second leg only. A two-leg transfer that 
has had the first leg shipped can be set back to 'In Progress' status in order to make 
changes to the work order activities and the final location. When action has occurred, 
only the second leg is really set back to in progress. The first leg remains in shipped 
status.

Package Impact
This section describes the package impact.

Business Object ID
Transfer Work Order ID

Approve
1. Prerequisites: A multi-legged transfer must be approved and have work order 

details for each transfer detail. 

2. Activity Detail: Approving a transfer changes the status of the transfer. This 
change in status signifies the first time systems external to Merchandising will 
have an interest in the existence of the transfer and work order.

3. Messages: When a transfer with finishing is approved, an "outbdwocre" message 
is inserted into the queue. The family manager creates a hierarchical message 
containing a full snapshot of the transfer work order details at the time the 
message is published. 

Delete
1. Prerequisites: The associated transfer has finishing and is being deleted.

2. Activity Detail: Deleting a transfer removes it, and the associated work order from 
the system. External systems are notified by a published Delete message that 
contains the number of the transfer work order to be deleted.



Work Orders Out Publication API

2-128 Operations Guide Volume 2 - Message Publication and Subscription Designs

3. Message: When a transfer with finishing is deleted, an "outbdwodel", which is a 
flat notification message, is queued.

Unapproved
1. Prerequisites: A transfer with finishing is unapproved

2. Activity Detail: Not approving a transfer changes the status to input, which 
allows modification to the work order, transformation, packing, and item details. 
External systems are notified by a published Delete message that contains the 
number of the transfer work order to be deleted.

3. Messages: Not approving a transfer queues an "outbdwounaprv" request. This 
results in an "outbdwodel" message being published, which is a flat notification 
message.

Package name: RMSMFM_WOOUT

Spec file name: rmsmfm_woouts.pls

Body file name: rmsmfm_wooutb.pls

Package Specification - Global Variables

None

Function Level Description - ADDTOQ

Function: ADDTOQ(O_error_mesage     OUT  VARCHAR2,
                 I_message_type  IN      VARCHAR2,
                 I_tsf_wo_id     IN      tsf_wo_head.tsf_wo_id%TYPE)
There are some tasks relating to streamlining the queue clean up process that need to 
occur in ADDTOQ. The goal is to have at most one record on the queue for business 
transactions up until their initial publication. 

■ For header level insert messages (HDR_ADD), inserts a record in the WOOUT_
PUB_INFO table. The work order number passed to the function should be 
inserted into the TSF_WO_ID column, and the published column should contain 
'N'. 

■ If the business transaction has not been approved (woout_pub_info.publish_ind = 
'N') and the triggering message is one of HDR_DEL and HDR_ANAPPRV, the 
record is not added to queue.

Function Level Description - GETNXT

Procedure: GETNXT(O_status_code     OUT  VARCHAR2,
                  O_error_msg       OUT  VARCHAR2,
                  O_message_type    OUT  VARCHAR2,
                  O_message         OUT  RIB_OBJECT,
                  O_bus_obj_id      OUT  RIB_BUSOBJID_TBL,
                  O_routing_info    OUT  RIB_ROUTINGINFO_TBL,
                  I_num_threads  IN      NUMBER DEFAULT 1,
                  I_thread_val   IN      NUMBER DEFAULT 1)
This function fetches a record from the WOOUT_MFQUEUE table. The function 
fetches the record that has the lowest sequence number among queue records that 
have a pub_status of 'U' and a thread_no that matches the I_thread_val. 

The LOCK_THE_BLOCK function is called. If it determines that WOOUT_MFQUEUE 
is locked for a particular work order, set the sequence limit local variable to the current 
sequence number. This will prevent the GETNXT function from attempting to lock and 
process the same work order message over and over again in the loop. 



Work Orders Out Publication API

RIB Publication Designs 2-129

The WOOUT_MFQUEUE table is queried to determine if any records for the work 
order have been sent to the error hospital. If so, produce the 'SEND_TO_HOSP' error 
message and halt processing. 

The PROCESS_QUEUE_RECORD function is called. If the break loop indicator 
returned from process_queue_record is TRUE, set the O_message_type output 
parameter to the message type fetched from the queue and return TRUE.If the 
message type is null, the status code output parameter is set to API_CODES.NO_MSG. 
Otherwise, it is set to API_CODES.NEW_MSG and the O_bus_obj_id parameter is set 
to RIB_BUSOBJID_TBL(L_tsf_wo_id).

Function Level Description - PUB_RETRY

This procedure is called from the RIB for woout_mfqueue.seq_no's that have been 
placed in the RIB's error hospital. It functions similarly to GETNEXT, except that it 
only fetches the record from WOOUT_MFQUEUE that contains the sequence number 
passed by the RIB.

If the message's tsf_wo_id is null, an API_CODES.NO_MSG error is raised. Then 
LOCK_THE_BLOCK is called. If the queue record is locked by another process, the 
status code is set to API_CODES.HOSPITAL. If the queue record is not locked by 
another process, PROCESS_QUEUE_RECORD is called. If the message returned from 
process_queue_record is null, the API_CODES.NO_MSG error is raised. Otherwise, if 
the message object is populated, it populates the business object table with the current 
work order number.

Function Level Description - PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction's 
key values and a message type. It contains all of the shared processing between 
GETNXT and PUB_RETRY.

Check to see if the business object is being published for the first time. If the 
published_ind on the pub_info table is 'N', the business object is being published for 
the first time.

This function will set the O_break_loop parameter to FALSE in the following 
scenarios:

1. Processing a HDR_UNAPRV message for a work order that has a woout_pub_
info.published of 'N'.

2. Processing a HDR_DEL message for a work order that has a woout_pub_
info.published of 'N'.

The loop is not broken in these scenarios because they do not necessitate the 
publication of a message. Therefore, processing should continue so a message can be 
outputted.

If the message type is HDR_DEL and the work order has been published the function 
creates a work order ref object, and routing info object. 

Note: The only scenario in which a hospitalized record with the 
same tsf_wo_id as the message currently is processed would be found 
is if the initial HDR_ADD message had been hospitalized and a 
subsequent HDR_DEL or HDR_UNAPRV was being processed.

Note: WO out routing info requires a 'to_loc' string and value.



Work Orders Out Publication API

2-130 Operations Guide Volume 2 - Message Publication and Subscription Designs

If the message type is a HDR_UNAPRV and the work order has been published create 
a work order ref object and a routing info object. For all records associated with the 
work order on the tsf_wo_detail, tsf_xform_detail and tsf_packing tables, the publish_
ind is set to 'N'.

If the published indicator is 'N', the message type is set to HDR_ADD and the MAKE_
CREATE function is called.

If the published indicator is 'I', the message type is set to DTL_ADD and the MAKE_
CREATE function is called.

Function Level Description - MAKE_CREATE (local)

This function first calls the BUILD_HEADER_OBJECT function.

■ It then calls the BUILD_DETAIL_OBJECTS function and updates the woout_pub_
info column. 

■ It also updates the published_ind columns on TSF_WO_DETAIL, TSF_XFORM_
DETAIL and TSF_PACKING.

Function Level Description - BUILD_HEADER_OBJECT (local)

This function fetches the transfer number and transfer parent number associated with 
the passed in work order number. It then calls the constructor for the rib_wooutdesc_
rec, passing in the work order number, transfer number, and transfer parent number. 
Finally, it builds the routing info object.

Function Level Description - BUILD_DETAIL_OBJECTS (local)

The function is responsible for building detail level Oracle Objects. It builds as many 
detail Oracle Object as it can given the passed in message type and business object 
keys.

If the function is being called from MAKE_CREATE:

■ Selects any unpublished detail records from the business transaction (tsf_wo_
detail, tsf_xfrom_detail, tsf_packing). 

– Ensures that WOOUT_MFQUEUE is deleted from as needed. If there is more 
than one WOOUT_MFQUEUE record for a detail level record, it makes sure 
they all get deleted. Current state should be considered, not every change. 

– Ensures that ROUTING_INFO is constructed if routing information is stored 
at the detail level in the business transaction.

– Ensures that no more than MAX_DETAILS_TO_PUBLISH records are put into 
Oracle Objects. 

– Ensures that the detail records being added to the object have not already been 
published. This can happen if GETNXT was previously called for the current 
business object, and the MAX_DETAILS_TO_PUBLISH limit had been 
reached. 

Function Level Description - DELETE_QUEUE_REC (local)

Note: A published value of 'I'n progress indicates that the work 
order was being published but it had more detail records than allowed 
for a single message. The maximum detail per message value can be 
found on the rib_settings table for each message family. 



Work Orders Out Publication API

RIB Publication Designs 2-131

This function deletes a record from the outbound work order queue table based on a 
passed-in sequence number.

Function Level Description - BUILD_WODTL_OBJECT (local)

This function fetches the activity_id, unit_cost and comments for all records from tsf_
wo_detail containing the passed in item and work order ID. For each record found:

Populates the wooutactivity record with the activity_id, unit_cost and comments. 
Then, adds the wooutactivity record to the wooutactivity table.

After all details are processed, the WOOUTACTIVITY table is added to the wooutdtl 
record that was passed into the function.

Function Level Description - BUILD_PACKING_OBJECT (local)

Procedure: BUILD_PACKING_OBJECT(
              O_error_msg             IN OUT VARCHAR2,
              O_packing_message       IN OUT nocopy RIB_WOOUTPACKING_TBL,
              IO_rib_wooutpacking_rec IN OUT nocopy RIB_WOOUTPACKING_REC,
              I_tsf_packing_id        IN     tsf_packing.tsf_packing_id%TYPE))
This function first constructs the "RIB_WOOutpackFrom_REC" object by fetching tsf_
packing_detail.item where the tsf_packing_id matches that which was passed into the 
function and the record_type is 'F' (from). Once complete, adds the 
WOOUTPACKFROM table to the wooutpacking_rec passed to the function.

Next, the "RIB_WOOutpackTo_REC" object is constructed. Fetches the tsf_packing_
detail.item where the tsf_packing_id matches that which was passed into the function 
and the record_type is 'R' (result). Once complete, adds the WOOUTPACKTO table to 
the wooutpacking_rec passed to the function. 

Function Level Description - LOCK_THE_BLOCK (local)

The function locks all records on the queue table for the business object. It has an O_
queue_locked output that specifies whether some process other than the current 
process has the queue locked.

Function Level Description - HANDLE_ERRORS (local)

This procedure handles error status values of 'H'ospital. If the LP_error_status value is 
'H'ospital, it populates the business object table with the current work order number, 
then creates a routing info object and populates it with the sequence number of the 
queue record. Finally a WOOutRef object is created and added to the O_message 
object.

The woout_mfqueue is updated by setting the pub_status equal to API_
CODES.HOSPITAL.

Trigger Impact
A trigger on the WO_DETAIL and TSFHEAD exists to capture Inserts, Updates, and 
Deletes.

Trigger file name: ec_table_thd_aiudr.trg

Table: TSFHEAD

■ Inserts: Sends the tsf_wo_id level info to the RMSMFM_WOOUT.ADDTOQ 
procedure in the MFM with the message type RMSMFM_WOOUT.HDR_ADD.

■ Updates:

– Sends the tsf_wo_id level info to the RMSMFM_WOOUT.ADDTOQ procedure 
in the MFM with the message type RMSMFM_WOOUT.HDR_UNAPRV.



Work Orders Out Publication API

2-132 Operations Guide Volume 2 - Message Publication and Subscription Designs

– When a transfer is placed in 'A'pproved status the message type for this action 
will be outbdwocre. When a transfer's status is updated to 'D'eleted, the family 
manager inserts a record into the queue with a message_type = outbdwodel. 
When the status is set to 'I'nput from Approved, the family manager inserts a 
record into the queue with message type = outbdwounaprv.

■ Deletes: Sends the level info to the RMSMFM_WOOUT.ADDTOQ procedure in 
the MFM with the message type RMSMFM_WOOUT.HDR_DEL.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ The order upon which transfer and work order messages arrive at locations 

participating in a multi-legged transfer does not need to be programmatically 
controlled.

■ Work order information is never published solely at a detail level. That is, 
insertions, deletions and updates to work order records may not happen once the 
work order has been approved. In order to modify work order information, the 
user will need to unapprove the associated transfer. This will cause a work order 
header delete message to be published. 

■ When a work order is unapproved or deleted, header level reference information 
only can be published. Reference information at the detail level is not required to 
be published, because work order publication is never done at the individual 
detail level.

Table Impact

Message Types Message Type Description
XML Schema 
Definition (XSD)

OutBdWoCre Work Order Create Message WODesc.xsd

OutBdWoDel Work Order Delete Message WORef.xsd

TABLE SELECT INSERT UPDATE DELETE

WOOUT_MFQUEUE Yes Yes Yes Yes

WOPUT_PUB_INFO Yes Yes Yes Yes

TSFHEAD Yes No No No

TSF_WO_HEAD Yes No No No

TSF_WO_DETAIL Yes No Yes No

TSF_XFORM Yes No No No

TSF_XFORM_DETAIL Yes No Yes No

TSF_PACKING Yes No Yes No

TSFDETAIL Yes No No No

TSF_PACKING_DETAIL Yes No No No



3

RIB Subscription Designs 3-1

3RIB Subscription Designs

This chapter provides an overview of the RIB subscription APIs used in by 
Merchandising.

Allocation Subscription API
This section describes the allocation subscription API.

Functional Area
Allocation

Business Overview
The allocation subscription API allows an external application to create, update, and 
delete allocations within Merchandising. The main reason for doing so is to 
successfully interface and track all dependent bills of lading (BOL) and receipt 
messages into Merchandising, as well as to calculate stock on hand correctly.

The allocation subscription API can be used by a 3rd party merchandise system to 
create, update and delete allocations based on warehouse inventory or cross-dock. The 
Oracle Retail Allocation product does NOT use this API to interface allocations to 
Merchandising. From an Oracle Retail perspective, this API is used by AIP to support 
the creation of cross dock POs, based on POs sent to Merchandising using the Order 
Subscription API. 

Allocations only involve stockholding locations. This includes the ability to process 
allocations to both company and franchise stores, as well as any stockholding 
warehouse location, excepting internal finishers. If an allocation for a franchise store is 
received, Merchandising will also create a corresponding franchise order. This API 
supports either warehouse-to-warehouse or warehouse-to-store allocations, but no 
mix-match in a single allocation. 

Allocation details can be created, edited, or deleted within the allocation message. 
Detail line items must exist on an allocation header create message for an allocation to 
be created. New item location relationships will be created for allocation detail line 
items entering Merchandising that do not previously exist within Merchandising. 

New locations can be added to existing allocations, or current locations can be 
modified on existing allocations. If modifying an existing location, Merchandising 
assumes the passed in quantity is an adjustment to the current quantity as opposed to 
an over write. For example, if the current qty_allocated on ALLOC_DETAIL is 10, and 
a detail modification message for the same item contains a qty_allocated of 8, ALLOC_
DETAIL will be updated with qty_allocated of 10+8 =18.



Allocation Subscription API

3-2 Operations Guide Volume 2 - Message Publication and Subscription Designs

Details can be individually removed from an allocation if the detail is not in-transit or 
received or in progress. An entire allocation can be deleted if none of details are 
in-transit or received or in progress.

In addition to RIB, Merchandising also exposes an Allocation web service to allow an 
external application to create, update, and delete allocations in Merchandising. The 
web service takes in a collection of allocations and will return success and failure 
through the service response object.

Package Impact
Filename: AllocationServiceProviderImplSpec.pls 
AllocationServiceProviderImplBody.pls 

For a web service deployment, a new web service 'Allocation' with supported 
operations is available for an external system to send Allocation requests to 
Merchandising. Each supported operation will invoke the public interfaces in the 
AllocationServiceProviderImpl package as follows:

■ create - createXAllocDesc

■ createDetail - createDetailXAllocDesc

■ modifyHeader - modifyHeaderXAllocDesc

■ modifyDetail - modifyDetailXAllocDesc

■ delete- deleteXAllocColRef

■ deleteDetail - deleteDetailXAllocColDesc

These public interfaces will call the corresponding procedures in svcprov_xalloc, 
which will in turn call rmssub_xalloc.consume to do the major processing logic.

Filename: svcprov_xallocs/b.pls 

Procedures called from Allocation web service public interfaces in the 
AllocationServiceProviderImpl package to perform major processing. 

For delete messages, it loops through and calls RMSSUB_XALLOC.CONSUME for 
each "RIB_XAllocRef_REC" object in the input collection ("RIB_XAllocColRef_REC"). 

If error happens, it calls SVCPROV_UTLITY.BUILD_SERVICE_OP_STATUS  to build 
and return "RIB_ServiceOpStatus_REC"with a failure message; if no errors, it builds 
and returns "RIB_InvocationSuccess_REC" with a success message. 

Filename: rmssub_xallocs/b.pls

RMSSUB_XALLOC.CONSUME
                    (O_status_code    IN OUT  VARCHAR2,
                     O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                     I_message        IN      RIB_OBJECT,
                     I_message_type   IN      VARCHAR2) 

This procedure needs to initially ensure that the passed in message type is a valid type 
for Allocation messages. If the message type is invalid, a status of "E" will be returned 
to the external system along with an appropriate error message informing the external 
system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the 
actual object using Oracle's treat function. If the downcast fails, a status of "E" will be 
returned to the external system along with an appropriate error message informing the 
external system that the object passed in is invalid.



Allocation Subscription API

RIB Subscription Designs 3-3

If the downcast is successful, then consume needs to verify that the message passes all 
of Merchandising's business validation. It calls the RMSSUB_XALLOC_
VALIDATE.CHECK_MESSAGE function to determine whether the message is valid. If 
the message passed Merchandising business validation, the function returns true, 
otherwise it returns false. If the message has failed Merchandising business validation, 
a status of "E" will be returned to the external system along with the error message 
returned from the CHECK_MESSAGE function.

Once the message has passed Merchandising business validation, it will be persisted 
to the Merchandising database. It calls the RMSSUB_XALLOC_SQL.PERSIST_
MESSAGE() function. If the database persistence fails, the function returns false. A 
status of "E" will be returned to the external system along with the error message 
returned from the PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", will be returned to the external system 
indicating that the message has been successfully received and persisted to the 
Merchandising database.

RMSSUB_XALLOC.HANDLE_ERROR() is the standard error handling function that 
wraps the API_LIBRARY.HANDLE_ERROR function.

Filename: rmssub_xallocvals/b.pls

RMSSUB_XALLOC_VALIDATE.CHECK_MESSAGE 
                                 (O_error_message  IN OUT  VARCHAR2,
                                  O_alloc_rec         OUT  ALLOC_REC,
                                  I_message        IN      RIB_XAllocDesc,
                                  I_message_type   IN      VARCHAR2)

This function performs all business validation associated with message and builds the 
allocation record for persistence. 

ALLOCATION CREATE

■ Check required fields

■ If item is a pack, verify receive as type is Pack for from location (warehouse).

■ Verify details exist

■ Default fields (status at header, qty pre-scaled, non scale ind)

■ Build allocation records

■ Perform following steps if allocation is not cross-docked from an order

– Retrieve and build all to-locations that the item does not currently exist at.

– Build price history records.

ALLOCATION MODIFY

■ Check required fields

■ Populate record.

ALLOCATION DELETE

Note: Some of the business validation is referential or involves 
uniqueness. This validation is handled automatically by the referential 
integrity constraints and the unique indexes implemented on the 
database and is not described below.



Allocation Subscription API

3-4 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Check required fields

■ Verify the allocation is not in-transit or received or in progress. An allocation in 
progress will have processed_ind equal to 'Y'. An allocation in-transit or received 
will have a value (other than zero) for any of the following fields: distro quantity, 
selected quantity, canceled quantity, received quantity, or PO received quantity.

ALLOCATION DETAIL CREATE

■ Check required fields

■ Verify details exist

■ Build allocation records.

■ Perform following steps if allocation is NOT cross-docked from an order

– Retrieve and build all to-locations that the item does not currently exist at.

– Build price history records.

ALLOCATION DETAIL MODIFY

■ Check required fields

■ If existing allocation records are being modified, 

– Verify the allocation is not in-transit or received or in progress

– Verify modification to quantity does not fall to zero or below.

ALLOCATION DETAIL DELETE

■ Check required fields

■ Verify the allocation is not in-transit or received or in progress

■ Check if deleting detail(s) removes all records from allocation.  If so, process 
message as allocation delete.

Filename: rmssub_xallocsqls/b.pls

RMSSUB_XALLOC_SQL.PERSIST
                       (O_error_message  IN OUT  VARCHAR2,
                        I_dml_rec        IN      ALLOC_RECTYPE , 
                        I_message        IN      RIB_XAllocDesc)

ALLOCATION CREATE

■ Insert a record into the allocation header table.

■ Insert a record into the allocation header table.

■ Insert a record into the allocation charge table.

■ Insert records into the franchise order tables, if allocating to franchise stores.

■ For an approved non-cross dock allocation, update transfer reserved for 
from-location. If a pack item is allocated from a warehouse with pack receive_as_
type of 'P' - pack, also update pack component reserved qty for the from-location.

■ For an approved non-cross dock allocation, update transfer expected for 
to-location. If a pack item is allocated to a warehouse with pack receive_as_type of 
'P' - pack, also update pack component expected qty for the to-location.

■ If item is not ranged to the to-location, call NEW_ITEM_LOC to create 
item-location on the fly with ranged_ind of 'Y'. This will insert a record into ITEM_
LOC, ITEM_LOC_SOH, ITEM_SUPP_COUNTRY_LOC, PRICE_HIST tables and 



Allocation Subscription API

RIB Subscription Designs 3-5

put a new item-loc event on the future cost event queue. For Brazil localized, item 
country relationship must exist for the item-location being created.

ALLOCATION MODIFY 

■ Update header record (alloc desc and release date).

ALLOCATION DETAIL CREATE

■ Same as Allocation Create, except that there is no need to insert into ALLOC_
HEADER table.

ALLOCATION DETAIL MODIFY

■ Update the allocation detail table by adjusting the existing allocated quantity 
using the passed in quantity. This can either increase or decrease the existing 
quantity.

■ Update franchise order quantity if allocating to franchise stores.

■ For an approved non-cross dock allocation, update transfer reserved for 
from-location. If a pack item is allocated from a warehouse with pack receive_as_
type of 'P' - pack, also update pack component reserved qty for the from-location.

■ For an approved non-cross dock allocation, update transfer expected for 
to-location. If a pack item is allocated to a warehouse with pack receive_as_type of 
'P' - pack, also update pack component expected qty for the to-location.

ALLOCATION DETAIL DELETE

■ Delete the record from the allocation detail table.

■ Delete the record from the allocation charge table.

■ Delete records from the franchise order tables if the details deleted involve 
franchise stores.

■ If deleting details from an approved non-cross dock allocation, update transfer 
reserved for from-location. If a pack item is allocated from a warehouse with pack 
receive_as_type of 'P' - pack, also update pack component reserved qty for the 
from-location.

■ If deleting details from an approved non-cross dock allocation, update transfer 
expected for to-location. If a pack item is allocated to a warehouse with pack 
receive_as_type of 'P' - pack, also update pack component expected qty for the 
to-location.

ALLOCATION DELETE

■ Update the allocation header to Cancelled ('C') status.

■ Update the linked franchise order to Cancelled ('C') status.

■ Delete all associated record from the allocation charge table.

■ If deleting an approved non-cross dock allocation, update transfer reserved for 
from-location. If a pack item is allocated from a warehouse with pack receive_as_
type of 'P' - pack, also update pack component reserved qty for the from-location.

If deleting an approved non-cross dock allocation, update transfer expected for 
to-location. If a pack item is allocated to a warehouse with pack receive_as_type of 'P' - 
pack, also update pack component expected qty for the to-location



Allocation Subscription API

3-6 Operations Guide Volume 2 - Message Publication and Subscription Designs

Message XSD
Here are the filenames that correspond with each message type. Refer to the mapping 
documents for each message type for details about the composition of each message.

Design Assumptions
■ This API only applies to store level zone pricing.

■ This API does not currently handle inner packs when needing to create pack 
component location information.

■ Passed in item is at transaction level.

■ From location is a non-finisher stockholding warehouse (i.e. a virtual warehouse). 

■ Because the allocation quantities are not generated based upon Merchandising 
inventory positions, Merchandising provides no stock on hand or inventory 
validation.

Table Impact

Message Type Message Type Description
XML Schema 
Definition (XSD)

Create Create Allocation Service Operation XAllocDesc.xsd

CreateDetail Create Allocation Detail Service 
Operation

XAllocDesc.Xsd

ModifyHeader Modify Allocation Header Service 
Operation

XAllocDesc.xsd

ModifyDetail Modify Allocation Detail Service 
Operation     

XAllocDesc.xsd

Delete Delete Allocation Service Operation  XAllocColRef.xsd

DeleteDetail Create Allocation Service Operation XAllocColRef.xsd

AllocCre External Allocation Create via RIB XAllocDesc.xsd

XAllocDel External Allocation Delete via RIB XAllocRef.xsd

XAllocDtlCre External Allocation Detail Create via RIB XAllocDesc.xsd

XAllocDtlDel External Allocation Detail Delete Via RIB XAllocRef.xsd

XAllocDtlMod External Allocation Detail Modification 
Via RIB

XAllocDesc.xsd

XAllocMod External Allocation Modification via RIB XAllocDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes Yes Yes No

ALLOC_DETAIL Yes Yes Yes Yes

ALLOC_CHRG Yes Yes No Yes

ITEM_SUPP_
COUNTRY

Yes No No No

ITEM_SUPP_
COUNTRY_LOC

Yes Yes No No

ITEM_LOC_SOH Yes Yes No No



Appointments Subscription API

RIB Subscription Designs 3-7

Appointments Subscription API
This section describes the appointments subscription API.

Functional Area
Appointments

Business Overview
An appointment is information about the arrival of merchandise at a location. From 
the RIB, Merchandising subscribes to appointment messages that are published by an 
external application, such as a warehouse management system (for example, RWMS). 
Merchandising processes these messages and attempts to receive against and close out 
the appointment. In addition, Merchandising attempts to close the document that is 
related to the appointment. A document can be a purchase order, a transfer, or an 
allocation. 

Appointment status
Appointment messages cause the creation, update, and closure of an appointment in 
Merchandising. Typically the processing of a message results in updating the status of 
an appointment in the APPT_HEAD table's status column. Valid values for the status 
column include:

STORE Yes No No No

WH Yes No No No

ITEM_LOC Yes Yes No No

SYSTEM_OPTIONS Yes No No No

ORDHEAD Yes No No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

WF_ORDER_HEAD Yes Yes Yes No

WF_ORDER_
DETAIL

Yes Yes Yes No

WF_ORDER_EXP Yes Yes Yes No

WF_CUSTOMER Yes No No No

WF_CUSTOMER_
GROUP

Yes No No No

WF_COST_
RELATIONSHIP

Yes No No No

WF_COST_
BUILDUP_TMPL_
HEAD

Yes No No No

WF_COST_
BUILDUP_TMPL_
DETAIL

Yes No No No

FUTURE_COST Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Appointments Subscription API

3-8 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ SC-Scheduled

■ MS-Modified Scheduled

■ AR-Arrived

■ AC-Closed

A description of appointment processing follows.

Appointment processing
The general appointment message processes occur in this order:

1. An appointment is created for a location with a store or warehouse type from a 
scheduled appointment message. It indicates that merchandise is about to arrive at 
the location. Such a message results in a 'SC' status. At the same time, the APPT_
DETAIL table is populated to reflect the purchase order, transfer, or allocation that 
the appointment corresponds to, along with the quantity of the item scheduled to 
be sent.

2. Messages that modify the earlier created appointment update the status to 'MS'.

3. Once the merchandise has arrived at the location, the appointment is updated to 
an 'AR' (arrived) status.

4. Another modification message that contains a receipt identifier prompts 
Merchandising to insert received quantities into the APPT_DETAIL table.

5. After all items are received, Merchandising attempts to close the appointment by 
updating it to an 'AC' status. 

6. Merchandising will close the corresponding purchase order, transfer, or allocation 
'document' if all appointments are closed. 

Appointment records indicate the quantities of particular items sent to various 
locations within the system. The basic functional entity is the appointment record. It 
consists of a header and one or more detail records. The header is at the location level; 
the detail record is at the item-location level (with ASN as well, if applicable). 
Documents are stored at the detail level; a unique appointment ID is stored at the 
header level. In addition, a receipt number is stored at the detail level and is inserted 
during the receiving process within Merchandising.

Package Impact
Filename: rmssub_receivings/b.pls

PROCEDURE CONSUME(O_status_code          IN OUT   VARCHAR2,
                  O_error_message        IN OUT   VARCHAR2,
                  I_message              IN       RIB_OBJECT,
                  I_message_type         IN       VARCHAR2)

This is the procedure called by the RIB. This procedure will make calls to receiving or 
appointment functions based on the value of I_message_type. If I_message type is 
RECEIPT_ADD, RECEIPT_UPD, or RECEIPT_ORDADD, then a call is made to 
RMSSUB_RECEIPT.CONSUME, casting the message as a RIB_RECEIPTDESC_REC. If 
I_message_type is APPOINT_HDR_ADD, APPOINT_HDR_UPD, APPOINT_HDR_
DEL, APPOINT_DTL_ADD, APPOINT_DTL_UPD, or APPOINT_DTL_DEL, then a 
call is made to RMSSUB_APPOINT.CONSUME. 



Appointments Subscription API

RIB Subscription Designs 3-9

RMSSUB_RECEIVING.HANDLE_ERRORS
                            (O_status_code     IN OUT  VARCHAR2,
                             IO_error_message  IN OUT  VARCHAR2,
                             I_cause           IN      VARCHAR2,
                             I_program         IN      VARCHAR2)

Standard error handling function that wraps the API_LIBRARY.HANDLE_ERROR 
function.

Filename: rmssub_appoints/b.pls

RMSSUB_APPOINT.CONSUME.CONSUME
                            (O_status_code    IN OUT  VARCHAR2,
                             O_error_message  IN OUT  VARCHAR2,
                             I_message        IN      RIB_OBJECT,
                             I_message_type   IN      VARCHAR2)

This function validates that the message type is valid for appointment subscription. If 
not, it returns a status of 'E' - Error along with an error message to the calling function. 

If it is valid, it casts the message as "RIB_APPOINTDESC_REC" for create and 
modification message types (APPOINT_HDR_ADD, APPOINT_HDR_UPD, 
APPOINT_DTL_ADD, APPOINT_DTL_UPD), or "RIB_APPOINTREF_REC" for delete 
message types (APPOINT_HDR_DEL, APPOINT_DTL_DEL). It then calls local 
procedures HDR_ADD_CONSUME, HDR_UPD_CONSUME, HDR_DEL_CONSUME, 
DTL_ADD_CONSUME, DTL_UPD_CONSUME and DTL_DEL_CONSUME to 
perform the actual subscription logic.

Appointment Create

■ Location must be a valid store or warehouse.

■ Document must be valid based on document type ('P' for purchase order, 'T', 'D', 
'V' for transfer, 'A' for allocations).

■ Item must be a valid item.

■ Insert header to APPT_HEAD if a record does not exist; otherwise, the header 
insert is skipped.

■ Insert details to APPT_DETAIL if records do not already exist. Details that already 
exist are skipped.

Appointment Modify

■ Location must be a valid store or warehouse.

■ Item must be a valid item.

■ Update or insert into APPT_HEAD. Call APPT_DOC_CLOSE_SQL.CLOSE_DOC 
to close the document if the new appointment status is 'AC'.

Appointment Delete

■ Location must be a valid store or warehouse.

■ Delete both header and detail records in APPT_HEAD and APPT_DETAIL.

Appointment Detail Create

■ Location must be a valid store or warehouse.

Note: The receiving process RMSSUB_RECEIPT.CONSUME is 
described in a separate Receiving Subscription API document.



Appointments Subscription API

3-10 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Document must be valid based on document type ('P' for purchase order, 'T', 'D', 
'V' for transfer, 'A' for allocations).

■ Item must be a valid item.

■ Insert details to APPT_DETAIL if records do not already exist. Details that already 
exist are skipped.

Appointment Detail Modify

■ Location must be a valid store or warehouse.

■ Update or insert into APPT_DETAIL. 

Appointment Detail Delete

■ Location must be a valid store or warehouse.

■ Delete from APPT_DETAIL. 

Message XSD
Here are the filenames that correspond with each message type. Please see RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ The adaptor is only set up to call stored procedures, not stored functions. Any 

public program needs to be a procedure.

■ Detail records may contain the same PO/item combination, differentiated only by 
the ASN number; however, the ASN field will be NULL for detail records which 
are not associated with an ASN.

Table Impact

Message Types Message Type Description
XML Schema 
Definition (XSD)

Appointcre Appointment Create Message AppointDesc.xsd

Appointhdrmod Appointment Header Modify Message AppointDesc.xsd

Appointdel Appointment Delete Message AppointRef.xsd

Appointdtlcre Appointment Detail Create Message AppointDesc.xsd

Appointdtlmod Appointment Detail Modify Message AppointDesc.xsd

Appointdtldel Appointment Detail Delete Message AppointRef.xsd

TABLE SELECT INSERT UPDATE DELETE

APPT_HEAD Yes Yes Yes Yes

APPT_DETAIL Yes Yes Yes Yes

ORDHEAD Yes No Yes No

TSFHEAD Yes No Yes No

ALLOC_HEADER Yes No Yes No

STORE Yes No No No



ASNIN Subscription API

RIB Subscription Designs 3-11

ASNIN Subscription API
This section describes the ASNIN subscription API.

Functional Area
Advance shipping notice (ASN) from a supplier

Business Overview
A supplier or consolidator will send an advanced shipping notice (ASN) to 
Merchandising through the Oracle Retail Information Bus (RIB). Merchandising 
subscribes to the ASN information and places the information onto Merchandising 
tables depending upon the validity of the records enclosed within the ASN message.

The ASN message will consist of a header record, a series of order records, carton 
records, and item records. For each message, header, order and item record(s) will be 
required. The carton portion of the record is optional. If a carton record is present, 
however, then that carton record must contain items in it.

The header record will contain information about the shipment as a whole. The order 
records will identify which orders are associated with the merchandise being shipped. 
If the shipment is packed in cartons, carton records will identify which items are in 
which cartons. The item records will contain the items on the shipments, along with 
the quantity shipped. The items on the shipment should be on the ORDLOC table for 
the order and location specified in the header and order records.

The location that is contained on the ASN will represent the expected receiving 
location for the order. If the location is a non-stockholding store in Merchandising, 
then the shipment will also be automatically received when the ASN is processed. Two 
types of non-stockholding stores orders are supported in this integration - franchise 
stores and drop ship customer orders. 

WH Yes No No No

ITEM_MASTER Yes No No No

ORDLOC Yes No No No

DEAL_CALC_QUEUE Yes No No Yes

OBLIGATION Yes No No No

OBLIGATION_COMP Yes No No No

ALC_HEAD Yes No No Yes

ALC_COMP_LOC Yes No No Yes

V_PACKSKU_QTY Yes No No No

TSFDETAIL Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No Yes No

ALLOC_DETAIL Yes No No No

TABLE SELECT INSERT UPDATE DELETE



ASNIN Subscription API

3-12 Operations Guide Volume 2 - Message Publication and Subscription Designs

Package Impact
Filename: rmssub_asnins/b.pls

RMSSUB_ASNIN.CONSUME
                  (O_STATUS_CODE    IN OUT  VARCHAR2,
                   O_ERROR_MESSAGE  IN OUT  VARCHAR2,
                   I_MESSAGE        IN      RIB_OBJECT,
                   I_MESSAGE_TYPE   IN      VARCHAR2);

The following is a description of the RMSSUB_ASNIN.COMSUME procedure:

1. The public procedure checks if the message type is create (ASNINCRE), modify 
(ASNINMOD), or delete (ASNINDEL). 

2. If the message type is ASNINDEL then,

■ It will cast the message to type "RIB_ASNInRef_REC". 

■ If a message exists in the record then it will call the private function 
PROCESS_DELETE to delete the ASN record from the appropriate shipment 
and invoice database tables depending upon the success of the validation.

■ If no messages exist in the record then it will raise a program error that no 
message was deleted.

3. If the message type is ASNINCRE or ASNINMOD then:

■ It will cast the message to type "RIB_ASNInDesc_REC". 

■ It will parse the message by calling the private function PARSE_ASN.

■ After parsing the message, it will check if the message contains a PO record. A 
program error will be raised if either the message type is invalid, or if there is 
no PO record.

■ If the records are valid after parsing, the detail records are retrieved and 
processed in a loop.

Inside the loop:

a. Records are passed on to the private function PARSE_ORDER.

b. Delete container and item records from the previous order.

c. Check if CARTON_IND is equal to 'C'.

d. If CARTON_IND equal to 'C', call private functions PARSE_CARTON and 
PARSE_ITEM to parse cartons and items within a carton.

e. If CARTON_IND is NOT equal to 'C', call private function PARSE_ITEM to 
parse items that are not part of a container. 

f. Call private function PROCESS_ASN with parsed data on ASN, order, carton, 
and item records. The records are place in the appropriate shipment and 
ordering database tables depending upon the success of the validation. 

Error Handling 
If an error occurs in this procedure or any of the internal functions, this procedure 
places a call to HANDLE_ERRORS in order to parse a complete error message and 
pass back a status to the RIB. 

HANDLE_ERRORS
            (O_status          IN OUT  VARCHAR2,
             IO_error_message  IN OUT  VARCHAR2,



ASNIN Subscription API

RIB Subscription Designs 3-13

             I_cause           IN      VARCHAR2,
             I_program         IN      VARCHAR2)

This function is used to put error handling in one place in order to make future error 
handling enhancements easier to implement. All error handling in the internal 
RMSSUB_ASNIN package and all errors that occur during subscription in the ASN_
SQL package (and whatever packages it calls) will flow through this function. 

The function should consist of a call to API_LIBRARY.HANDLE_ERRORS. API_
LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and 
potentially an unparsed error message if one has been created through a call to SQL_
LIB.CREATE_MESSAGE. The function uses these input variables to parse a complete 
error message and pass back a status, depending upon the message and error type, 
back up through the consume function and up to the RIB.  

Private Internal Functions and Procedures
PARSE_ASN 

This function will be used to extract the header level information from "RIB_
ASNInDesc_REC" and place that information onto an internal ASN header record. 

TYPE asn_record IS RECORD(asn               SHIPMENT.ASN%TYPE,
                          destination       SHIPMENT.TO_LOC%TYPE,
                          ship_date         SHIPMENT.SHIP_DATE%TYPE,
                          est_arr_date      SHIPMENT.EST_ARR_DATE%TYPE,
                          carrier           SHIPMENT.COURIER%TYPE,
                          ship_pay_method   ORDHEAD.SHIP_PAY_METHOD%TYPE,
                          inbound_bol       SHIPMENT.EXT_REF_NO_IN%TYPE,
                          supplier          ORDHEAD.SUPPLIER%TYPE,
                          carton_ind        VARCHAR2(1));

PARSE_ORDER

This function will be used to extract the order level information from "RIB_ASNInPO_
REC" and ASN number from shipment table, and place that information onto an 
internal order record. 

PARSE_CARTON

This function will be used to extract the carton level information from "RIB_
ASNInCtn_REC" and ASN and ORDER number from shipment table, and place that 
information onto an internal carton record. 

PARSE_ITEM

This function will be used to extract the item level information from "RIB_ASNInItem_
REC", ASN and ORDER number in the shipment table, and CARTON number from 
carton table, and place that information onto an internal item record. 

Validation
PROCESS_ASN

After the values are parsed for a particular order in an ASN record, RMSSUB_
ASNIN.CONSUME will call this function, which will in turn call various functions 
inside ASN_SQL in order to validate the values and process the ASN depending upon 
the success of the validation.  

Only one ASN and order record will be passed in at a time, whereas multiple cartons 
and items will be passed in as arrays into this function. If one order, carton or item 



ASNOUT Subscription API

3-14 Operations Guide Volume 2 - Message Publication and Subscription Designs

value is rejected, then current functionality dictates that the entire ASN message will 
be rejected. 

PROCESS_DELETE

In the event of a delete message, this function will be called rather than PROCESS_
ASN. This function will take the asn_no from the parsing function and pass it into 
ASN_SQL in order to delete the ASN record from the appropriate shipment and 
invoice tables. A received shipment cannot be deleted.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
None

Table Impact

ASNOUT Subscription API
This section describes the ASNOUT subscription API.

Functional Area
ASNOUT

Business Overview
An internal advance shipment notification (ASN) message holds data that is used by 
Merchandising to create or modify a shipment record. Also known as a bill of lading 
(BOL), internal ASNs are published by an application that is external to 
Merchandising, such as a store system (SIM, for example) or a warehouse management 

Message Types Message Type Description
XML Schema Definition 
(XSD)

asnincre ASN Inbound Create Message ASNInDesc.xsd

asnindel ASN Inbound Delete Message ASNInRef.xsd

asninmod ASN Inbound Modify Message ASNInDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes Yes Yes Yes

SHIPSKU Yes Yes No Yes

CARTON No Yes No Yes

INVC_XREF No No No Yes

STORE Yes No No No

WH Yes No No No

ORDHEAD Yes No No No



ASNOUT Subscription API

RIB Subscription Designs 3-15

system (RWMS, for example). In contrast to a BOL is the external ASN, which is 
generated by a supplier and shows merchandise movement from the supplier to a 
retailer location, like a warehouse or store. This overview describes the BOL type of 
advance shipment notification. For external ASN from suppliers, see ASNIN 
Subscription API.

Internal ASNs are a notification to Merchandising that inventory is moving from one 
location to another. Merchandising subscribes to BOL messages from the Oracle Retail 
Integration Bus (RIB). 

The external application publishes these ASN messages for:

■ Pre-existing allocations.

■ Pre-existing transfers.

■ Externally generated transfers, created in the store or warehouse (created as 
transfer type of 'EG' within Merchandising).

Individual stock orders are held on the transfer and allocation header tables in 
Merchandising. A message may contain data about multiple transfers or allocations, 
and as a result, the shipment record in Merchandising would reflect these multiple 
movements of merchandise. A bill of lading number on the shipment record is a 
means of tracking one or more transfers and allocations back through the respective 
stock order records. 

This API also supports shipment notification for customer order transfers. There are 
two special handlings of these shipment notifications: 

■ When store inventory is used to fulfill a customer request, SIM will send an 
ASNOut message without a ship-to location. In that case, Merchandising will 
ignore these ASNOut messages, as these are not associated with a transfer or 
allocation in Merchandising.

■ When a warehouse directly ships to a customer, RWMS will send an ASNOut 
message with a virtual store as the ship-to location. In that case, Merchandising 
will auto-receive the shipment. 

Additionally, this API supports shipment notifications for franchise order and return 
transactions. Shipping of franchise orders to a stockholding franchise store, as well as 
shipping of franchise returns from a stockholding franchise store, is managed in a 
similar way as a regular store transaction, except that different transaction codes are 
used for TRAN_DATA. Shipping of franchise orders to a non-stockholding franchise 
store from a warehouse or a company store will be auto-received in Merchandising 
when the ASN is processed. 

L10N Localization Decoupling Layer
This is a layer of code which enables decoupling of localization logic that is only 
required for certain country-specific configuration. This layer affects the RIB API flows 
including ASNOut subscription. This allows Merchandising to be installed without 
requiring customers to install or use this localization functionality, where not required. 

BOL Message Structure
Because Merchandising uses a BOL message only to create a new shipment record, 
there is one subscribed BOL message. The message consists of a header, a series of 
transfers or allocations (called 'Distro' records), carton records, and item records. Thus 
the structure of a BOL hierarchical message would be:

■ Message header - This is data about the entire shipment including all distro 
records, cartons, and items.



ASNOUT Subscription API

3-16 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Distro record - The individual transfer or allocation being shipped.

■ Carton - Carton numbers and location, as well as carton records will identify 
which items are in which cartons.

■ Items - Details about all items in the carton, including shipped quantity.

When external locations (stores or warehouses) ship products, they send a BOL 
message (otherwise known as an outbound ASN message) to let Merchandising know 
that they are shipping the stock and to let the receiving locations know that the stock is 
on the way. The external locations can create BOL messages for three scenarios: a 
transfer was requested (Merchandising knows about it), an allocation was requested 
(Merchandising knows about it), and on their own volition (externally generated - EG). 
A single BOL message can contain records generated for any or all of these 
transactions. 

Merchandising allows multiple transfers and allocations per shipment, which supports 
the operational process whereby a stock order shipment is often a group of transfers or 
allocations on one truck. These transfers or allocations are grouped together using a 
single BOL number. This number will be stored on the header record for the shipment. 
All shipments will be associated with a BOL number.

Package Impact
Filename: rmssub_asnouts/b.pls

RMSSUB_ASNOUT.CONSUME
                   (O_status_code    IN OUT  VARCHAR2,
                    O_error_message  IN OUT  VARCHAR2,
                    I_message        IN      RIB_OBJECT,
                    I_message_type   IN      VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for 
ASNOUT messages. 

If the message type is invalid, a status of 'E' should be returned to the external system 
along with an appropriate error message informing the external system that the status 
is invalid.

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object 
using the Oracle's treat function. If the downcast fails, a status of "E" is returned to the 
external system along with an appropriate error message informing the external 
system that the object passed in is invalid.

If the downcast is successful, then consume will parse the message, verify that the 
message passes all of Merchandising's business validation and persist the information 
to the Merchandising database. It does this by calling CONSUME_SHIPMENT. 

RMSSUB_ASNOUT.CONSUME_SHIPMENT
               (O_status_code       IN OUT  VARCHAR2,
                O_error_message     IN OUT  VARCHAR2,
                I_message           IN      RIB_OBJECT,
                I_message_type      IN      VARCHAR2,
                I_check_l10n_ind    IN      VARCHAR2)

Perform localization check. If localized, invoke RFM's logic through L10N_SQL 
decoupling layer for procedure key 'CONSUME_SHIPMENT'. If not localized, call 
CONSUME_SHIPMENT for normal processing.

RMSSUB_ASNOUT.CONSUME_SHIPMENT
               (O_error_message     IN OUT  VARCHAR2,
                IO_L10N_RIB_REC     IN OUT  L10N_OBJ)



ASNOUT Subscription API

RIB Subscription Designs 3-17

Public function to call RMSSUB_ASNOUT.CONSUME_SHIPMENT_CORE.

RMSSUB_ASNOUT.CONSUME_SHIPMENT_CORE
               (O_error_message     IN OUT  VARCHAR2,
                I_message           IN      RIB_OBJECT,
                I_message_type      IN      VARCHAR2)

This function contains the main processing logic:

■ Calls PARSE_BOL to parse the shipment level information on the message. Insert 
or update shipment based on the bill of lading number (bol_nbr).

■ One shipment can contain multiple distros (transfers and allocations in 
Merchandising). Within each distro, call PARSE_DISTRO and PARSE_ITEM to 
parse and build a collection of items that are transferred or allocated.

■ For break-to-sell items, if the sellable item is on the message, call CHECK_ITEMS 
and GET_ORDERABLE_ITEMS to convert the sellable item(s) to the 
corresponding orderable item(s). The orderable items will be inserted or updated 
on transfer/allocation and shipment tables.

■ For catch weight items, validate and aggregate weight for the same item. 

■ Call PROCESS_DISTRO to perform business logic associated with shipping a 
transfer or an allocation, including insert or update transfer/allocation header and 
detail, insert or update SHIPSKU, move inventory to in transit buckets on ITEM_
LOC_SOH, write stock ledger. 

■ Bulk inserts and updates are performed to improve performance.

If an error occurs in the process, a status of 'E' is returned to the external system along 
with the failure message. Otherwise, a success status, 'S', is returned to the external 
system indicating that the message has been successfully received and persisted to the 
Merchandising database.

PARSE_BOL

This function parses the "RIB_ASNOutDesc_Rec" and builds an API bol_record for 
processing. It also calls RMSSUB_ASNOUT.PROCESS_BOL to check the existence of 
SHIPMENT based on the bol number.

PROCESS_BOL

This function calls BOL_SQL.PUT_BOL to check the existence of SHIPMENT based on 
the BOL number.

PARSE_DISTRO

This function parses the "RIB_ASNOutDesc_Rec" and builds an API distro_record for 
processing. 

PARSE_ITEM 

This function builds a collection of API item_table that contains item level information 
for the transfer or allocation. For a simple pack catch weight item, it also aggregates 
the weight for the same item. 

PROCESS_DISTRO

Depending on the distro type (transfer or allocation), this function calls BOL_
SQL.PUT_TSF, BOL_SQL.PUT_TSF_ITEM, and BOL_SQL.PROCESS_TSF, or BOL_
SQL.PUT_ALLOC, BOL_SQL.PUT_ALLOC_ITEM and BOL_SQL.PROCESS_ALLOC 
to perform the bulk of the business logic for shipping a transfer or an allocation.



ASNOUT Subscription API

3-18 Operations Guide Volume 2 - Message Publication and Subscription Designs

CHECK_ITEMS

This function separates the item details on the message into two groups: one contains 
sellable items and one contains non-sellable items. The sellable items will be converted 
into orderable items for shipment.

GET_ORDERABLE_ITEMS

This function builds a collection of orderable items based on the sellable items. 
Depending on the distro type, it calls ITEM_XFORM_SQL.TSF_ORDERABLE_ITEM_
INFO (for transfers) or ITEM_XFORM_SQL.ALLOC_ORDERABLE_ITEM_INFO (for 
allocations) to distribute the sellable quantities among the orderable items.

HANDLE_ERRORS

This function calls API_LIBRARY.HANDLE_ERRORS to perform error handling. 

Filename: bolsqls/b.pls 

BOL_SQL.PUT_BOL

This function checks the existence of a shipment based on the BOL number, and 
creates a shipment if it does not exist. 

BOL_SQL.PUT_TSF

This function checks the existence of a transfer in Merchandising based on the transfer 
number and does the following: 

■ If the transfer exists, it updates the transfer to shipped status.

■ If the transfer does not exist, it creates a transfer of type 'EG' (externally 
generated). Since the sending location is already aware of the transfer, the new 
transfer will not be published to the RIB again. 

BOL_SQL.PUT_TSF_ITEM

This function checks the existence of an item on a transfer based on the transfer 
number and the item number. It does the following: 

■ If the input item is a referential item, fetch and use its transactional level item.

■ If the item exists on the transfer, update the quantity buckets on TSFDETAIL.

■ If the item does not exist on the transfer, create TSFDETAIL. However, new items 
cannot be added to a closed transfer.

■ If sending a pack from a warehouse, reject the message if the sending location does 
not stock packs, unless the sending location is a finisher. 

■ For an 'EG' type of transfer to or from a warehouse, a physical warehouse is on the 
transfer instead of a virtual warehouse. Distribute the transferred quantity to 
virtual locations based on distribution rules by creating an inventory flow 
structure and save it on SHIPITEM_INV_FLOW. 

BOL_SQL.PROCESS_TSF

This function calls BOL_SQL.SEND_TSF to perform the bulk of the transfer shipment 
business logic. The key updates performed by this function are: 

■ If the sending location of the transfer is a finisher, this is the second leg of a 
multi-legged transfer. Call TSF_WO_COMP_SQL.WO_ITEM_COMP to perform 
any necessary item transformations, including adjusting inventory and average 
cost of the old and new items, and writing TRAN_DATA for the adjusted 
inventory.



ASNOUT Subscription API

RIB Subscription Designs 3-19

■ Update inventory (stock_on_hand and tsf_reserved_qty) for the item transferred 
at the sending location.

■ Update inventory (in_transit_qty and tsf_expected_qty) and average cost for the 
item transferred at the receiving location. 

■ When the item shipped is a pack item, if the pack item is stocked as a pack at the 
sending and/or receiving location, inventory is updated for both the pack item 
(stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty) and the pack 
component items (pack_comp_soh, pack_comp_resv, pack_comp_intran, pack_
comp_exp). On the other hand, if the pack item is not stocked as a pack at the 
sending and/or receiving location, inventory is updated for the component items 
only (stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty). 

■ When the item shipped is a simple pack catch weight item, average weight on 
ITEM_LOC_SOH is updated.

■ When the item shipped is a simple pack catch weight item and the pack 
component's standard UOM is a mass UOM (for example, LBS), the component's 
inventory is updated by the actual weight shipped.

■ Call STKLEDGR_SQL.WRITE_FINANCIALS to write TRAN_DATA records for 
the sending and receiving locations if the transaction does NOT include a 
franchise location as the shipping OR receiving location, or if BOTH locations are 
franchise stores: :

– 30/32 - for intra-company transfer in/out, in which case the sending and 
receiving locations belong to the same transfer entity. The transfer is valued at 
the transfer cost on TSFDETAIL if defined. If not, it is valued at the sending 
location's WAC. WAC is dependent on the accounting method used, which 
could be retail accounting or standard cost accounting or average cost 
accounting. Both WAC and transfer cost are in the sending location's currency. 

– 11/13 - for intra-company markup/markdown. It records the total retail 
difference between the sending and receiving locations. It is written against 
either the sending or the receiving location, depending on the settings on the 
system options (tsf_md_store_to_store_snd_rcv, tsf_md_wh_to_store_snd_rcv, 
tsf_md_store_to_wh_snd_rcv, tsf_md_wh_to_wh_snd_rcv).

– 71/72 - for intra-company cost variance. It records the total cost variance as a 
result of the difference between the sending location's WAC and the transfer 
cost. It is written against the sending location.

– 37/38 - for inter-company transfer in/out, in which case the sending and 
receiving locations belong to different transfer entities. The transfer is valued 
at the transfer price on TSFDETAIL. Transfer price is defined in the sending 
location's currency.

– 17/18 - for inter-company markup/markdown. It records the total retail 
difference between the transfer price and the sending location's unit retail. It is 
written against the sending location.

– 65 - for transfer restocking fees if a restocking percentage is defined on the 
transfer detail. It can be for an inter-company or an intra-company transfer. It 
is written against the sending locations.

Note: The average cost is never recalculated for a franchise return at 
the receiving location, as it is considered a customer return and the 
average cost of the receiving location is used.



ASNOUT Subscription API

3-20 Operations Guide Volume 2 - Message Publication and Subscription Designs

– 28 - for up charges. 

* When a deposit content item is shipped, a TRAN_DATA record is also 
written for the container item for trans code 30/32 and 37/38. The total 
cost should be based on the cost of the container.

* When a simple pack catch weight item is shipped, the total cost is 
evaluated at the weight shipped. As a result, TRAN_DATA.total_cost 
reflects the weight shipped for tran codes 37/38, 30/32, 71/72 and 65. 
However, all the retail calculation is not weight-based. As a result, TRAN_
DATA.total_retail and tran codes 17/18, 11/13 do not reflect the actual 
weight. 

* Call STKLEDGR_SQL.WF_WRITE_FINANCIALS to write TRAN_DATA 
records for the sending and receiving locations if the transaction is a 
franchise transaction.

– 20/82 - for franchise order in/out, in which case the sending location is a 
company location and the receiving location is a franchise store. The transfer is 
valued at the pricing cost on WF_ORDER_DETAIL (fixed_cost if defined; 
customer_cost if fixed_cost is not defined). Tran-data 20 is only written if the 
franchise location is stockholding.

– 24/83 - for franchise return in/out, in which case the sending location is a 
franchise store and the receiving location is a company location. The transfer is 
valued at the return unit cost on WF_RETURN_DETAIL. Tran-data 24 is only 
written if the franchise location is stockholding.

– 84/85 - for franchise markup/markdown. It records the total retail difference 
between the pricing cost (for franchise orders) or return cost (for franchise 
returns) and the company location's VAT exclusive unit retail. It is written 
against the company location.

– 87 - for VAT-in cost, posted in the tran_data.total_cost column against the 
franchise location: 

* In case of a franchise order, it records the Total Cost in tran_code 20 * Cost 
VAT Rate at the franchise location. 

* In case of a franchise return, it records the Total Cost in tran_code 24 * 
Cost VAT Rate at the franchise location, with a negative value for total_
cost but positive value for units. 

– 88 - for VAT-out retail, posted in the tran_data.total_retail column against the 
company location: 

* In case of a franchise order, it records the vat-exclusive Total Retail in tran_
code 82 * Retail VAT Rate at the company location. 

* In case of a franchise return, it records the vat-exclusive Total Retail in 
tran_code 83 * Retail VAT Rate at the company location, with a negative 
value for total_retail but positive value for units. 

– 22/23 - for stock adjustment in case of a franchise return with destroy on site. It 
is only applicable to franchise returns and is written against the company 
location. If the reason code associated with franchise return destroy on site has 
a cogs_ind of 'Y', use tran_code 23; otherwise, use tran_code 22.

– 86 - for franchise restocking fees if a restocking percentage is defined on the 
franchise return detail. It is only applicable to franchise returns and is written 
against the company location.



ASNOUT Subscription API

RIB Subscription Designs 3-21

– 65 - for franchise restocking fees if a restocking percentage is defined on the 
franchise return detail. It is only applicable to franchise returns and is written 
against stockholding franchise locations only.

– 71/72 - for cost variance retail/cost accounting. It records the total cost 
variance as a result of the difference between the franchise location's WAC and 
the return unit cost. It is written against the franchise location for franchise 
returns, if the franchise store is stockholding.

– When a deposit content item is shipped on a franchise transaction, a TRAN_
DATA record is also written for the container item. The total cost should be 
based on the pricing/return cost of the container as defined on wf_order_
detail and wf_return_detail.

– Creates shipsku for the item. For a simple pack catch weight item, weight_
expected and weight_expected_uom are written along with the qty_expected.

– For a non-franchise transaction, shipsku.unit_retail is the sending location's 
unit retail. When a break to sell orderable item is shipped, its unit retail is 
derived from its sellable items. Similarly, in a multi-legged transfer scenario, 
the sending location can be a finisher. Because a finisher does not have unit 
retail, the unit retail at the receiving location is used.

– For a franchise order, shipsku.unit_cost contains the sending location's WAC 
at the time of shipment; shipsku.unit_retail contains the pricing cost. For a 
franchise return, shipsku.unit_cost is based on the return unit cost; 
shipsku.unit_retail contains the franchise location's unit retail if it's a 
stockholding location, or the return unit retail if it is a non-stockholding 
location. 

– For a customer order transfer that is shipped directly to the customer, call 
STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM to receive the shipment. 

– For a franchise transaction, call WF_BOL_SQL.WRITE_WF_BILLING_SALES 
or WF_BOL_SQL.WF_BILLING_RETURNS to write franchise billing tables. 

BOL_SQL.PUT_ALLOC

This function checks the existence of an allocation based on the allocation number, 
item number and warehouse. If the input item is a referential item, its transactional 
level item is used. Reject the message if the allocation does not exist.

BOL_SQL.PUT_ALLOC_ITEM

This function checks the existence of allocation detail based on the allocation number 
and the receiving location. It does the following:

■ If the store exists on allocation detail, update the quantity buckets on ALLOC_
DETAIL.

■ If the store does not exist on allocation detail, create ALLOC_DETAIL.

■ If any virtual warehouse in the input physical warehouse does not exist on 
allocation detail, create ALLOC_DETAIL for the primary virtual warehouse.

■ If there are multiple virtual warehouses in the same physical warehouse that exist 
on allocation detail, distribute the transferred quantity to virtual locations based 
on distribution rules by creating an inventory flow structure.

BOL_SQL.PROCESS_ALLOC

This function calls BOL_SQL.SEND_ALLOC to perform the bulk of the allocation 
shipment business logic. It does the following: 



ASNOUT Subscription API

3-22 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Update inventory (stock_on_hand and tsf_reserved_qty) for the item allocated at 
the sending location.

■ Update inventory (in_transit_qty and tsf_expected_qty) and average cost for the 
item allocated at the receiving location. 

■ When the item shipped is a pack item, if the pack item is stocked as a pack at the 
sending/receiving location, inventory is updated for both the pack item (stock_
on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty) and the pack 
component items (pack_comp_soh, pack_comp_resv, pack_comp_intran, pack_
comp_exp). On the other hand, if the pack item is not stocked as a pack at the 
sending/receiving location, inventory is updated for the pack component items 
only (stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty). 

■ When the item shipped is a simple pack catch weight item, average weight on 
ITEM_LOC_SOH is updated if the pack is stocked as a pack at the 
sending/receiving location.

■ When the item shipped is a simple pack catch weight item and the pack 
component's standard UOM is a mass UOM (for example, OZ), component's 
inventory is updated by the actual weight shipped.

■ Call STKLEDGR_SQL.WRITE_FINANCIALS to write TRAN_DATA records for 
the sending and receiving locations if the transaction does not include NOT a 
franchise transaction:

– 37/38 - for inter-company allocation in/out, in which case the sending and 
receiving locations belong to different transfer entities. Allocations are valued 
at the sending location's WAC. 

– 30/32 - for intra-company allocation in/out, in which case the sending and 
receiving locations belong to the same transfer entity. Allocations are valued at 
the sending location's WAC. 

– 11/13 - for intra-company markup/markdown. It records the total retail 
difference between the sending and receiving locations. It is written against 
either the sending or the receiving location, depending on the settings on the 
system options (tsf_md_store_to_store_snd_rcv, tsf_md_wh_to_store_snd_rcv, 
tsf_md_store_to_wh_snd_rcv, tsf_md_wh_to_wh_snd_rcv).

– 8 - for up charges. 

– When a deposit content item is shipped, a TRAN_DATA record is also written 
for the container item for tran codes 30/32 and 37/38. The total cost should be 
based on the cost of the container.

■ Call STKLEDGR_SQL.WF_WRITE_FINANCIALS to write TRAN_DATA records 
for the sending and receiving locations if the transaction is a franchise transaction:

Note: Similar to shipping a transfer, the retail values are not 
weight-based for a simple pack catch weight item. 

Note: Check the PROCESS_TSF for tran-codes posted for a franchise 
transaction. Since allocation is always from a warehouse, it is only 
possible to have allocations linked to a franchise order, not a franchise 
return. 



ASNOUT Subscription API

RIB Subscription Designs 3-23

■ Creates shipsku for the item. For a simple pack catch weight item, weight_
expected and weight_expected_uom are written along with the qty_expected. For 
an allocation with multiple virtual warehouses in the same physical warehouse on 
allocation detail, only one shipsku record is written with the qty_expected equal to 
the ship quantity for the item.

■ For an allocation linked to a franchise order, call WF_BOL_SQL.WRITE_WF_
BILLING_SALES to write franchise billing tables.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ The ASNOut subscription process supports the break to sell functionality. 

Transfers, allocations and shipments in Merchandising will only contain break to 
sell orderable items. Inventory adjustment and stock ledger will be performed on 
the orderable only, not the sellable. 

■ The ASNOut subscription process supports the catch weight functionality. It is 
assumed that a break to sell sellable item cannot be a simple pack catch weight 
item. 

■ Catch weight functionality is not completely rounded out in this release. For 
instance, it is not applied to the following areas:

– Any of the retail calculations (including total_retail on TRAN_DATA and retail 
markup/markdown);

– Open to buy buckets;

– When a catch weight component item's standard UOM is a MASS UOM, 
TRAN_DATA.units is based on V_PACKSKU_QTY.qty instead of the actual 
weight.

■ An externally generated transfer will contain physical locations. When system 
options INTERCOMPANY_TSF_IND = 'Y', the stock order receiving process 
currently does not support the receiving of an externally generated transfer that 
involves a warehouse to warehouse transfer. This is because a physical location 
does not have transfer entities. 

Table Impact

Message Types Message Type Description
XML Schema 
Definition (XSD)

asnoutcre ASN Outbound Create Message ASNOutDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes Yes Yes No

TSFDETAIL Yes Yes Yes No

TRANSFERS_PUB_INFO No Yes No No

ALLOC_HEADER Yes Yes Yes No



ASNOUT Subscription API

3-24 Operations Guide Volume 2 - Message Publication and Subscription Designs

ALLOC_DETAIL Yes Yes Yes No

SHIPMENT Yes Yes Yes No

SHIPSKU Yes Yes Yes No

TRAN_DATA No Yes No No

ITEM_LOC_HIST No Yes No No

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes Yes No No

ITEM_ZONE_PRICE Yes Yes No No

PRICE_HIST No Yes No No

SHIPITEM_INV_FLOW No Yes No No

STORE Yes No No No

WH Yes No no No

ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

TSF_XFORM Yes No No No

TSF_XFORM_DETAIL Yes No Yes No

TSF_ITEM_COST Yes No Yes No

TSF_ITEM_WO_COST Yes No No No

WO_ACTIVITY Yes No No No

INV_ADJ_REASON Yes No No No

INV_ADJ Yes No No No

INV_STATUS_QTY Yes Yes Yes Yes

DEPS Yes No No No

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

WEEK_DATA Yes No No No

MONTH_DATA Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UOM_CLASS Yes No No No

WF_ORDER_HEAD Yes No No No

WF_ORDER_DETAIL Yes No Yes No

WF_RETURN_HEAD Yes No No No

WF_RETURN_DETAIL Yes No Yes No

TABLE SELECT INSERT UPDATE DELETE



COGS Subscription API

RIB Subscription Designs 3-25

COGS Subscription API 
This section describes the COGS subscription API.

Functional Area
COGS Subscription

Business Overview
The Cost Of Goods Sold (COGS) interface lets a retailer make replacements, which is 
similar to exchanges. However, replacements involve a different accounting process 
than exchanges. In a replacement, a retailer replaces a previously purchased item with 
an equivalent unit. To make this replacement, retailer first places the request and ships 
the undesirable unit out and later the replacement unit is shipped to the retailer. In 
Merchandising, the cost of goods sold interface allows the retailer to make this 
replacement despite the fact that the exchange is not made simultaneously.

The interface writes the value of the transaction to the transaction data tables. An 
external system (such as Oracle Retail Data Warehouse) can then extract that data.

The subscription process for COGS adjustment involves an interface which contains 
item, location, quantity, date, order header media, order line media, and a reason code. 
These records are inserted into the TRAN_DATA table to affect the stock ledger. 
Message processing includes a call to STKLEDGER_SQL.TRAN_DATA_INSERT to 
insert the new transaction to the TRAN_DATA table. 

Merchandising subscribes to integration subsystem COGS messages. This process 
records the inventory and financial transactions associated with a cost of goods sold 
message.

Package Impact
Filename: rmssub_cogsb/s.pls

PROCEDURE CONSUME
                (O_status_code    IN OUT  VARCHAR2,
                 O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                 I_message        IN      RIB_OBJECT,
                 I_message_type   IN      VARCHAR2) 

CONSUME simply calls different functions within the corresponding VALIDATE and 
SQL packages.

Before calling any functions, CONSUME narrows I_message down to the specific 
object being used, depending on the message_type. For example, a 'Cre' or 'Mod' 
message type usually means a 'Desc' object is being used. A 'Del' message usually 
means a 'Ref' object is being used. Object narrowing is done using the TREAT function. 
If the narrowing fails, then the CONSUME function should return an error message to 
the RIB stating that the object is not valid for this message family.

CONSUME first calls the family's VALIDATE package to validate the contents of the 
message. The family's SQL package is then called to perform DML.

WF_BILLING_SALES No Yes No No

WF_BILLING_RETURNS No Yes No No

TABLE SELECT INSERT UPDATE DELETE



Cost Change Subscription API

3-26 Operations Guide Volume 2 - Message Publication and Subscription Designs

Business Validation Mode
Filename: rmssub_cogsvalb/s.pls

This function first calls the CHECK_FIELDS function to make sure all required fields 
are not NULL. Then, the function calls other function as needed to validate all of the 
information that has been passed to it from the RIB.

DML Module
Filename: rmssub_cogssqlb/s.pls 

PERSIST
      (O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
       I_message_type   IN      VARCHAR2,
       I_cogs_rec       IN      RMSSUB_COGS.COGS_REC_TYPE)

This function performs the inventory and financial transactions associated with the 
COGS transaction. The inventory is adjusted at the store location based on the reason 
code (replacement in/out) provided in the message. In addition a net sale and 
permanent markdown financial transaction is written to the stock ledger.

Message XSD
Here are the filenames that correspond with each message type. Please consult the 
mapping documents for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
The subscriber makes some assumptions about the publisher's ability to maintain data 
integrity. The subscriber does not check for duplicate Create messages. It will not 
check for missing messages because it has no way of knowing what would be missing. 
It also assumes that messages are sent in the correct sequence.

Table Impact

Cost Change Subscription API
This section describes the cost change subscription API.

Functional Area
Cost Change

Message Types Message Type Description XML Schema Definition (XSD)

CogsCre COGS Create Message CogsDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC Yes No No No

ITEM_LOC_SOH No No Yes No

TRAN_DATA No Yes No No



Cost Change Subscription API

RIB Subscription Designs 3-27

Design Overview
A cost change is performed at the following levels of the organization hierarchy: chain, 
area, region, district, and store. Unit cost is updated for all stores within the location 
group. Because warehouses are not part of the organization hierarchy, they are only 
impacted by cost changes applied at the warehouse level. 

The subscription does not create cost change events; it updates the cost of an item in 
real time. It is intended for use only when Merchandising is not the system of record 
for cost changes.

The cost change subscription updates unit costs for item/locations that already exist in 
Merchandising. It does not create or delete item/locations in Merchandising tables.

Merchandising exposes an API that allows external systems to update unit cost within 
Merchandising.

This Merchandising API subscribes to external cost change modify messages for the 
purpose of integrating external cost changes maintained in an external system into 
Merchandising. It updates unit costs in Merchandising and writes cost history. 

In addition to RIB, Merchandising also exposes a Cost Change web service to allow an 
external application to create cost changes in Merchandising. The web service takes in 
a collection of cost changes and will return success and failure through the service 
response object. 

The RIB_XCostChgDesc_REC message is modified to include RIB_CustFlexAttriVo_
TBL message to enable the subscription of the custom flex attributes.

Consume Module
Filename: CostChangeServiceProviderImplSpec.pls, 
CostChangeServiceProviderImplBody.pls 

For a web service deployment, a new web service 'Cost Change' is available for an 
external system to send Cost Change create requests to Merchandising. The supported 
operation will invoke the public interface in the CostChangeServiceProviderImpl 
package as follows:

■ create - createXCostChgColDesc

This public interface will call the corresponding procedure in svcprov_xcostchg, which 
will in turn call rmssub_xcostchg.consume to do the major processing logic.

Filename: svcprov_xcostchgs/b.pls 

Procedure called from Cost Change web service public interface in the 
CostChangeServiceProviderImpl package to perform major processing. 

For create messages, it loops through and calls RMSSUB_XCOSTCHG.CONSUME for 
each RIB_XCostChgDesc_REC object in the input collection (RIB_XCostChgColDesc_
REC). 

If error happens, it calls SVCPROV_UTILITY.BUILD_SERVICE_OP_STATUS to build 
and return RIB_ServiceOpStatus_REC with a failure message; if no errors, it builds 
and returns RIB_InvocationSuccess_REC with a success message. 

Filename: rmssub_xcostchgs/b.pls

RMSSUB_XCOSTCHG.CONSUME
                      (O_status_code    IN OUT  VARCHAR2,
                       O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                       I_message        IN      RIB_OBJECT,
                       I_message_type   IN      VARCHAR2) 



Cost Change Subscription API

3-28 Operations Guide Volume 2 - Message Publication and Subscription Designs

This procedure initially ensures that the passed-in message type is a valid type for cost 
change messages. There is only one valid message type for Cost change messages, 
XCostchgMod. If the message type is invalid, a status of "E" is returned to the external 
system along with an appropriate error message informing the external system that 
the status is invalid.

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object 
using the Oracle treat function. If the downcast fails, a status of "E" is returned to the 
external system along with an appropriate error message informing the external 
system that the object passed in is invalid.

If the downcast is successful, then the consume verifies that the message passes all of 
Merchandising's business validation by calling the RMSSUB_XCOSTCHG_
VALIDATE.CHECK_MESSAGE function. If the message passed Merchandising 
business validation, then the function returns true; otherwise, it returns false. If the 
message has failed Merchandising business validation, a status of "E" is returned to the 
external system along with the error message returned from the CHECK_MESSAGE 
function.

Once the message has passed Merchandising business validation, it is persisted to the 
Merchandising database by calling the RMSSUB_XCOSTCHG_SQL.PERSIST_
MESSAGE() function. If the database persistence fails, the function returns false. A 
status of "E" is returned to the external system along with the error message returned 
from the PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", is returned to the external system 
indicating that the message has been successfully received and persisted to the 
Merchandising database.

The package RMSSUB_XCOSTCHG_CFA enables the subscription of the custom flex 
attributes. RMSSUB_XCOSTCHG_CFA.CONSUME is called to process the custom flex 
attributes.

RMSSUB_XCOSTCHG.HANDLE_ERROR() - This is the standard error handling 
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves 
uniqueness. This validation is handled automatically by the referential integrity 
constraints and the unique indexes implemented on the database.

Filename: rmssub_xcostchgvals/b.pls

RMSSUB_XCOSTCHG_VALIDATE.CHECK_MESSAGE 
                             (O_error_message    IN OUT  VARCHAR2,
                              O_cost_change_rec     OUT  COST_CHANGE_REC,
                              I_message          IN      RIB_XCostChgDesc,
                              I_message_type     IN      VARCHAR2)

This function performs all business validation associated with message and builds the 
cost change record for persistence. 

Cost Change Modify
■ Checks required fields.

■ Verifies supplier's currency.

■ Verifies item status.



Cost Change Subscription API

RIB Subscription Designs 3-29

■ If diff IDs are passed in, verifies they are valid for passed in item.

■ Verifies item passed in is not a buyer pack.

POPULATING RECORD
■ Retrieves the item's transaction level children if the passed-in item is a parent.

■ Retrieves all locations based on passed in hierarchy type and value.

■ Determines if a location to be updated is the primary location; if so, retrieves the 
item-supplier-country record to be updated.

■ Retrieves all item/location combinations where passed-in supplier/country is the 
primary supplier/country at an item location.

■ Retrieves all orderable buyers pack that the passed-in item, or its children if above 
transaction level.

■ If the recalculate order indicator is 'Y', retrieves all item/locations on approved 
(and worksheet) orders.

■ Populates record with message data.

Bulk or Single DML Module
Filename: rmssub_xcchgsqls/b.pls

RMSSUB_XCOSTCHG_SQL.PERSIST
                        (O_error_message  IN OUT  VARCHAR2,
                         I_dml_rec        IN      COST_CHANGE_RECTYPE , 
                         I_message        IN      RIB_XCostChgDesc)

Cost Change
■ Updates the unit cost on item supplier country location table for all 

item/locations.

■ If one of the locations was a primary location, updates the item supplier country 
table. Inserts into price history all records for all item/locations related to the 
supplier/country as the primary supplier/country.

■ If average cost method is not used (system option ECL_IND = N), updates the unit 
cost on item location stock on hand table for all item/locations related to the 
supplier/country as the primary supplier/country (packs do not have cost 
updated).

■ If the recalculate order indicator is 'Y', updates all relevant order/item/locations 
unit cost.

■ If pack processing is necessary, repeats the above steps except updating item 
location stock on hand.

Message XSD
Here are the filenames that correspond with the message type. Please consult the RIB 
documentation to get a detailed picture of the composition of the message.

Message Type Message Type Description XML Schema Definition (XSD)

create Create Cost Change Service 
Operation

XCostChgDesc.xsd



Currency Exchange Rates Subscription API

3-30 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
■ Required fields are shown in the RIB documentation.

■ Updating the order cost does not take into account any aspects of building the 
order cost (estimated landed cost, deals, bracket cost, and so on) and will not work 
for a base solution.

■ This API does not take into account estimated landed cost.

■ This API assumes 'A'verage cost accounting. Hence no logic exists for 'S'tandard 
(last received) cost accounting.

Table Impact

Currency Exchange Rates Subscription API 
This section describes the currency exchange rates subscription API.

Functional Area
Currency Exchange Rates 

Xcostchgmod External Cost Change Modify XCostChgDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_COUNTRY Yes No Yes No

ITEM_SUPP_COUNTRY_LOC Yes No Yes No

ITEM_LOC_SOH Yes No Yes No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

DIFF_GROUP_HEAD Yes No No No

DIFF_GROUP_DETAIL Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

ITEM_LOC Yes No No No

ORDLOC Yes No Yes No

ORDHEAD Yes No No No

PRICE_HIST No Yes No No

SYSTEM_OPTIONS Yes No No No

COST_SUPS_SUP_HEAD_CFA_
EXT

No Yes No No

Message Type Message Type Description XML Schema Definition (XSD)



Currency Exchange Rates Subscription API

RIB Subscription Designs 3-31

Business Overview
Currency exchange rates constitute financial information that is published to the 
Oracle Retail Integration Bus (RIB). A currency exchange rate is the price of one 
country's currency expressed in another country's currency. 

Data Flow
An external system will publish a currency exchange rate, thereby placing the 
currency exchange rate information onto the RIB. Merchandising will subscribe to the 
currency exchange rate information as published from the RIB and place the 
information onto Merchandising tables depending upon the validity of the records 
enclosed within the message. 

Message Structure
The currency exchange rate message is a flat message that will consist of a currency 
exchange rate record. 

The record will contain information about the currency exchange rate as a whole. 

Package Impact
Filename: rmssub_curratecres/b.pls

Subscribing to a currency exchange rate message entails the uses of one public 
consume procedure. This procedure corresponds to the type of activity that can be 
done to currency exchange rate record (in this case create/update).

Public API Procedures:

PROCEDURE CONSUME (O_status_code      IN OUT   VARCHAR2,
                   O_error_message    IN OUT   VARCHAR2,
                   I_message          IN       RIB_OBJECT,
                   I_message_type     IN       VARCHAR2)

This procedure accepts an XML file in the form of an RIB Object from the RIB 
(I_message). This message contains a currency exchange rate message consisting of the 
aforementioned record. The procedure calls the main RMSSUB_CUR_
RATES.CONSUME function in order to validate the XML file format and, if successful, 
parses the values within the RIB Object. The values extracted from the RIB Object are 
then passed on to private internal functions, which validate the values and place them 
on the currency exchange rate table depending upon the success of the validation.

Private Internal Functions and Procedures (rmssub_curratecre.pls)

Error Handling:

If an error occurs in this procedure, a call is placed to HANDLE_ERRORS in order to 
parse a complete error message and pass back a status to the RIB. 

HANDLE_ERRORS
             (O_status          IN OUT  VARCHAR2,

Note: When the Merchandising and the financial system are initially 
set up, identical currency information (3-letter codes, exchange rate 
values) is entered into both. If a new currency needs to be used, it 
must be entered into both the financial system and Merchandising 
before a rate change is possible. No functionality currently exists to 
bridge this data.



Currency Exchange Rates Subscription API

3-32 Operations Guide Volume 2 - Message Publication and Subscription Designs

              IO_error_message  IN OUT  VARCHAR2,
              I_cause           IN      VARCHAR2,
              I_program         IN      VARCHAR2))

This function is used to put error handling in one place in order to make future error 
handling enhancements easier to implement. All error handling in the internal 
RMSSUB_CUR_RATES package and all errors that occur during subscription in the 
RMSSUB_CURRATECRE package (and whatever packages it calls) flow through this 
function. 

The function consists of a call to API_LIBRARY.HANDLE_ERRORS. API_
LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and 
potentially an unparsed error message if one has been created through a call to SQL_
LIB.CREATE_MESSAGE. The function uses these input variables to parse a complete 
error message and pass back a status, depending upon the message and error type, 
back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):

All of the following functions exist within RMSSUB_CUR_RATES. 

Main Consume Function:

RMSSUB_CUR_RATES.CONSUME
                 (O_error_message    OUT  VARCHAR2,
                  I_message       IN      "RIB_CurrRateDesc_REC"))

This procedure accepts a XML file in the form of a RIB Object data type from the RIB 
(I_message) from the aforementioned public curratecre procedure whenever a message 
is made available by the RIB. This message consists of the aforementioned record. 

The procedure then validates the XML file format and, if successful, parses the values 
within the RIB Object. The values extracted from the RIB Object are then passed on to 
private internal functions, which validate the values and place them on the 
appropriate currency exchange rate database table depending upon the success of the 
validation. 

XML Parsing:

■ PARSE_HEADER: This function is used to extract the currency exchange rate 
level information from the currency exchange rate xml file and place that 
information onto an internal currency exchange rate record. 

Validation:

■ PROCESS_HEADER: After the values are parsed for a particular currency 
exchange rate record, RMSSUB_CUR_RATES.CONSUME calls this function, 
which in turn calls various functions inside RMSSUB_CUR_RATES in order to 
validate the values and place them on the appropriate currency exchange rate 
table depending upon the success of the validation. CONVERT TYPE is called to 
validate the passed in currency rate if it exists in the FIF_CURRENCY_XREF table. 
PROCESS_RATES is called to actually insert or update the currency exchange rate 
table.

■ CONVERT_TYPE: This function takes in the current record's exchange rate type 
and returns the Merchandising exchange type from the table FIF_CURRENCY_
XREF. If no data is found, it should return an error message. 

■ PROCESS_RATES: This function calls VALIDATE_RATES to ensure that the 
values passed from the message are valid. If all the values are valid, it checks if the 
currency code exists in the currency exchange rate table. If the currency code does 



Currency Exchange Rates Subscription API

RIB Subscription Designs 3-33

not exist yet, the function INTEREST RATES is called. If not, UPDATE RATES is 
called. 

■ VALIDATE_RATES: This function passes each value from the record to the 
function CHECK_NULLS. CHECK_SYSTEM is used for conversion date.

■ CHECK_NULLS: This function checks if the values passed are NULL. If the 
passed value is NULL, then an invalid parameter error message is returned.

■ CHECK_SYSTEM: This function fetches the vdate and the currency code from the 
period and system options table respectively. If the vdate is greater than the 
conversion date, an error message is returned. If the passed in currency rate is not 
the same as the currency rate fetched from the system options table, an error 
message is returned.

DML Module:

INSERT_RATES: This function inserts into the currency exchange rate table after all of 
the validations of the values are done. 

UPDATE_RATES: This function locks the CURRENCY_RATES table first. After that 
the table is locked it updates the record in the currency exchange rate table. 

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ One of the primary assumptions in the current API approach is that ease of code 

will outweigh performance considerations. It is hoped that the 'trickle' nature of 
the flow of data will decrease the need to dwell on performance issues and instead 
allow developers to code in the easiest and most straight forward manner.

■ The adaptor is only setup to call stored procedures, not stored functions. Any 
public program then needs to be a procedure.

Table Impact

Message Types Message Type Description XML Schema Definition (XSD)

CurrRateCre Currency Rate Create Message CurrRateDesc.xsd

CurrRateCre Currency Rate Modify 
Message

CurrRateDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

CURRENCY_RATES Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

PERIOD Yes No No No

FIF_CURRENCY_XREF Yes No No No



Customer Order Fulfillment Subscription API

3-34 Operations Guide Volume 2 - Message Publication and Subscription Designs

Customer Order Fulfillment Subscription API

Functional Area
Customer Order Fulfillment 

Business Overview 
Merchandising provides an interface to process Customer Order Fulfillment requests 
from an external order management system (OMS). If the system option OMS_IND = 
'Y', then Merchandising expects to receive customer orders via this API. If the system 
option PERSIST_CUSTOMER_DATA_IND = ‘N’, personal information will not be 
stored in the customer order table in Merchandising.

Merchandising supports two integration methods for processing Customer Order 
Fulfillment messages from OMS - either through RIB or Web service. At 
implementation time, clients should decide on either one or the other integration 
method, but not both. The same core logic is used to validate and persist customer 
orders to Merchandising tables.

■ In a RIB implementation, Merchandising subscribes to Customer Order 
Fulfillment messages. When a customer order is created, or partially or fully 
cancelled, the customer order information is sent from the Order Management 
System (OMS) to the RIB. Merchandising subscribes to the customer order 
information as published from the RIB and places the information onto 
Merchandising tables.

■ In a web service implementation, Merchandising exposes a FulfillOrder Web 
service to create or cancel a customer order in Merchandising. OMS will invoke 
the service with customer order details to place the information on Merchandising 
tables. See Customer Order Fulfillment Service in the "SOAP Web Services" 
chapter of this document for more details on this method.

The Customer Order Fulfillment message staged will go through a process of 
validation. Records that pass validation will create new customer order records. If any 
validation error occurs, transaction will be rolled back and no customer orders will be 
created. 

There are two scenarios where a customer order fulfillment request cannot be created 
in Merchandising:

1. Due to data validation errors (for example, invalid item). 

2. Due to 'No Inventory' - There is not enough inventory available at the source 
location or item is not ranged or inactive at the source location, or item is not 
supplied by the supplier (in a PO scenario).

The Customer Order Fulfillment messages contain information such as delivery type, 
source type and destination type. Based on these, the system should proceed to create 
a Purchase Order, Transfer or Inventory Reservation. The table below shows the 
customer order scenarios for the combination of delivery type, source type and 
destination type.



Customer Order Fulfillment Subscription API

RIB Subscription Designs 3-35

Scenario #
Source 
Location

Fulfillment 
Location Delivery Type Transaction created

1 Warehouse Store Pickup in 
Store

Virtual WH to Physical Store 
Transfer + Reservation.

FulfilOrdDesc will contain: 

1st leg: source_loc_type = 'WH', 
fulfill_loc_type = 'S'

2nd leg: source_loc_type = NULL, 
fulfill_loc_type = 'S'.

2 Warehouse Store Ship to 
Customer

Virtual WH to Physical Store 
Transfer + Reservation.

FulfilOrdDesc will contain: 

1st leg: source_loc_type = 'WH', 
fulfill_loc_type = 'S'

2nd leg: source_loc_type = NULL, 
fulfill_loc_type = 'S'.

3 Store A Store B Pickup in 
Store

Physical Store to Physical Store 
Transfer + Reservation.

FulfilOrdDesc will contain: 

1st leg: source_loc_type = 'ST', 
fulfill_loc_type = 'S'

2nd leg: source_loc_type = NULL, 
fulfill_loc_type = 'S'.

4 Store A Store B Ship to 
Customer

Physical Store to Physical Store 
Transfer + Reservation.

FulfilOrdDesc will contain: 

1st leg: source_loc_type = 'ST', 
fulfill_loc_type = 'S'

2nd leg: source_loc_type = NULL, 
fulfill_loc_type = 'S'.

5 NULL Store Pickup in 
Store

Reservation.

FulfilOrdDesc will contain: 

Single-leg: source_loc_type = 
NULL, fulfill_loc_type = 'S'.

6 NULL Store Ship to 
Customer

Reservation.

FulfilOrdDesc will contain: 

Single-leg: source_loc_type = 
NULL, fulfill_loc_type = 'S'.

7 NULL Warehouse Ship to 
Customer

Virtual WH to Virtual Store 
Transfer.

FulfilOrdDesc will contain: 

Single-leg: source_loc_type = 'WH', 
fulfill_loc_type = 'V'.



Customer Order Fulfillment Subscription API

3-36 Operations Guide Volume 2 - Message Publication and Subscription Designs

The customer order subscription API supports create and cancel operations using the 
following message types belonging to the 'fulfilord' message family:

■ fulfilordapprdel - used by Merchandising to cancel customer orders. 

■ fulfilordreqdel - used by SIM to request a customer order cancellation. This 
message type is used only by SIM and is ignored by Merchandising.

■ fulfilordpocre - used to create purchase orders as a result of customer order 
fulfillment requests.

■ fulfilordtsfcre - used to create transfers as a result of customer order fulfillment 
requests.

■ fulfilordstdlvcre - used to perform inventory reservation as a result of customer 
order fulfillment requests.

In a RIB implementation, once fulfillment create messages are processed in 
Merchandising, Merchandising will publish to the RIB a customer order fulfillment 
confirmation message with a message type of 'fulfilordcfmcre' via the customer order 
fulfillment confirmation publishing API. Confirmation messages will only be sent for 
customer order fulfillment creates requests that result in creating purchase orders and 
transfers in Merchandising. It will not be sent for cancel requests, or for customer 
order fulfillment requests that result in inventory reservation.

■ If a customer order is partially fulfilled, a confirmation message with status 'P' will 
be sent with details of fulfilled order quantity. 

■ If a customer order is not fulfilled at all due to unavailable inventory, a 
confirmation message with status 'X' will be sent without any details.

■ If a customer order is fulfilled completely due to available inventory, a 
confirmation message with status 'C' will be sent with details for the fulfilled order 
quantity.

8 Vendor Store Pickup in 
Store

Purchase Order to Physical Store + 
Reservation.

FulfilOrdDesc will contain: 

1st leg: source_loc_type = 'SU', 
fulfill_loc_type = 'S'

2nd leg: source_loc_type = NULL, 
fulfill_loc_type = 'S'.

9 Vendor Store Ship to 
Customer

Purchase Order to Physical Store+ 
Reservation.

FulfilOrdDesc will contain: 

1st leg: source_loc_type = 'SU', 
fulfill_loc_type = 'S'

2nd leg: source_loc_type = NULL, 
fulfill_loc_type = 'S'.

10 NULL Vendor Ship to 
Customer

Purchase Order to Virtual Store

FulfilOrdDesc will contain: 

Single-leg: source_loc_type = 'SU', 
fulfill_loc_type = 'V'.

Scenario #
Source 
Location

Fulfillment 
Location Delivery Type Transaction created



Diff Group Subscription API

RIB Subscription Designs 3-37

See Customer Order Fulfillment Confirmation Publication API in the "RIB Publication 
Designs" chapter for more details on the confirmation message sent.

 Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
1. Non-stockholding franchise stores cannot part of a customer order, either as a 

sourcing location or as a fulfillment location.

2. Only approved, inventoried and sellable items will be published to OMS. 
Therefore, item types like catch weight and transformable sellable items will NOT 
be published to OMS, and will NOT be supported by this interface. To sell items 
that can vary by weight, like bananas, through online channels, setup should be 
done as a regular (non-catch weight) item with a unit cost and standard UOM 
defined in items of eaches.

3. If you It is assumed that customer orders will be captured in the selling UOM in 
OMS, but that all transactions will be communicated to Merchandising in standard 
UOM. 

4. If the same customer order fulfillment request is sent for a different item or for an 
existing item but with a different item line number, the existing PO or transfer will 
be updated.

Diff Group Subscription API
This section describes the Diff group subscription API.

Functional Area
Diff Group

Design Overview
Differentiator subscriptions come into Merchandising from an external system. With a 
differentiator group subscription, you create the differentiator group in the external 
system, and then send that information to Merchandising. Once the subscription has 
been received, Merchandising users can now use the differentiator group that comes 
from the external system. The group is always sent first; its IDs are sent second. 

Message Types Message Type Description XML Schema Definition (XSD)

Fulfilordapprdel Fulfilment Cancel Message FulfilOrdRef.xsd

Fulfilordreqdel Fulfilment Cancel Request 
Message

FulfilOrdRef.xsd

Fulfilordpocre Fulfilment PO Create Message FulfilOrdDesc.xsd

Fulfilordtsfcre Fulfilment Transfer Create 
Message

FulfilOrdDesc.xsd

Fulfilordstdlvcre Fulfilment Store Delivery Create 
Message

FulfilOrdDesc.xsd



Diff Group Subscription API

3-38 Operations Guide Volume 2 - Message Publication and Subscription Designs

Differentiators
Differentiators augment Merchandising' item level structure by allowing you to define 
more discrete characteristics of an item. You attach differentiators to items to 
distinguish one item from another. Differentiators (diffs) give you the means to further 
track merchandise sales transactions. Common types of diffs are size, color, flavor, 
scent, or pattern.

Diffs consist of: 

■ Diff types; Generic categories of diff IDs such as Size, Color, or Flavor.

■ Diff IDs: Specific attributes such as black, white, red; small, medium; strawberry, 
blueberry.

■ Diff groups; Logical groupings of related diff IDs such as: Women's Pant Sizes, 
Shirt Colors, or Yogurt Flavors.

This API allows external systems to create, edit, and delete diff groups within 
Merchandising. The transaction will be performed immediately upon message receipt 
so success or failure can be communicated to the calling application.

Diff ID details can be created, edited, or deleted within the diff group message. Diff ID 
details must be created within a diff group on a diff group create message, they can 
also be passed in with their own specific message type. Diff ID detail create and 
modify messages will send a snapshot of the diff group record. Diff ID detail delete 
messages will be processed separately from the diff group delete because they have 
their own message types.

Package Impact
Filename: rmssub_xdiffgrps/b.pls

RMSSUB_XDIFFGRP.CONSUME
                      (O_status_code    IN OUT  VARCHAR2,
                       O_error_message  IN OUT  VARCHAR2,
                       I_message        IN      RIB_OBJECT,
                       I_message_type   IN      VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid 
type for diff IDs messages. If the message type is invalid, a status of "E" should be 
returned to the external system along with an appropriate error message informing the 
external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT need to be downcast to the actual 
object using the Oracle's treat function. If the downcast fails, a status of "E" should be 
returned to the external system along with an appropriate error message informing the 
external system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all 
of Merchandising's business validation. It calls the RMSSUB_XDIFFGRP_
VALIDATE.CHECK_MESSAGE function to determine whether the message is valid. If 
the message passed Merchandising business validation, then the function will return 
true; otherwise, it will return false. If the message has failed Merchandising business 
validation, a status of "E" should be returned to the external system along with the 
error message returned from the CHECK_MESSAGE function.

Once the message has passed Merchandising business validation, it can be persisted to 
the Merchandising database. It calls the RMSSUB_XDIFFGRP_SQL.PERSIST_
MESSAGE() function. If the database persistence fails, the function will return false. A 



Diff Group Subscription API

RIB Subscription Designs 3-39

status of "E" should be returned to the external system along with the error message 
returned from the PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success, "S", status should be returned to the external 
system indicating that the message has been successfully received and persisted to the 
Merchandising database.

RMSSUB_XDIFFGRP.HANDLE_ERROR() - This is the standard error handling 
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves 
uniqueness. This validation is handled automatically by the referential integrity 
constraints and the unique indexes implemented on the database.

Filename: rmssub_xdiffgrpvals/b.pls

RMSSUB_XDIFFGRP_VALIDATE.CHECK_MESSAGE 
                                (O_error_message  IN OUT  VARCHAR2,
                                 O_diffgroup_rec     OUT  DIFF_GROUP_REC,
                                 I_message        IN      RIB_XdiffgrpDesc,
                                 I_message_type   IN      VARCHAR2)

This function performs all business validation associated with the messages and builds 
the diff group record for persistence. 

DIFF GROUP CREATE

■ Check required fields.

■ Verify diff group ID not used in diff ID table.

■ Verify diff ID detail node is populated.

■ Verify diff ID details are on diff ID table (not diff group table).

■ Populate record with message data.

DIFF GROUP MODIFY

■ Check required fields.

■ Verify the Diff group exists.

■ Verify diff group is not attached to any items or pack templates.

■ Populate record with message data.

DIFF GROUP DELETE

■ Check required fields.

■ Verify the Diff group exists.

■ Verify diff group is not attached to any items or pack templates.

■ Populate record with message data.

DIFF ID CREATE

■ Check required fields.

■ Verify diff ID detail node is populated.

■ Verify diff ID details are on diff ID table (not diff group table).

■ Populate record with message data.



Diff Group Subscription API

3-40 Operations Guide Volume 2 - Message Publication and Subscription Designs

DIFF ID MODIFY

■ Check required fields.

■ Verify diff group exists.

■ Verify diff ID detail node is populated.

■ Verify diff ID details are on diff ID table (not diff group table).

■ Verify diff ID details on diff group detail table.

DIFF ID DELETE

■ Check required fields.

■ Verify diff group exists.

■ Verify the diff ID exists on diff group table.

■ Verify no items or pack templates are using that diff group detail diff ID.

■ Populate record with message data.

Bulk or Single DML Module

All insert, update and delete SQL statements are located in the family package. This 
package is DIFF_GROUP_SQL. The private functions will call this package.

Filename: rmssub_xdiffgrpsqls/b.pls

RMSSUB_XDIFFGRP_SQL.PERSIST_MESSAGE
                              (O_error_message   IN OUT  VARCHAR2,
                               I_diff_group_rec  IN      DIFF_GROUP_REC,
                               I_message_type    IN      VARCHAR2,)

This function determines what type of database transaction it will call based on the 
message type.

DIFF GROUP CREATE

■ Create messages get added to the Diff group head table.

■ Diff group details get added to the diff group detail table.

DIFF GROUP MODIFY

■ Modify messages directly update the Diff group head table with changes.

DIFF GROUP DELETE 

■ Delete messages directly remove Diff group head records.

DIFF GROUP DETAIL CREATE

■ Create messages get added to the Diff group detail table.

DIFF GROUP DETAIL MODIFY

■ Modify messages directly update the Diff group detail table with changes.

DIFF GROUP DETAIL DELETE 

■ Delete messages directly remove Diff group detail records.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.



Diff ID Subscription API

RIB Subscription Designs 3-41

Design Assumptions
Required fields are shown in the RIB documentation.

Diff IDs and Diff groups must be validated for uniqueness, as they cannot overlap.

Table Impact

Diff ID Subscription API
This section describes the Diff ID subscription API.

Functional Area
Foundation

Design Overview
The diff ID subscription API provides a means to keep Merchandising in sync with an 
external system. 

This API allows an external system to create, edit, and delete Diff Ids within 
Merchandising. These transactions are performed immediately upon message receipt 
so success or failure can be communicated to the calling application.

Package Impact
Filename: rmssub_xdiffids/b.pls

RMSSUB_XDIFFID.CONSUME
                    (O_status_code    IN OUT  VARCHAR2,
                     O_error_message  IN OUT  VARCHAR2,
                     I_message        IN      RIB_OBJECT,
                     I_message_type   IN      VARCHAR2)

Message Type Message Type Description XML Schema Definition (XSD)

Xdiffgrpdtlcre Create a diff group detail XDiffGrpDesc.xsd

Xdiffgrpdtldel Delete a diff group detail XDiffGrpRef.xsd

xdiffgrpdtlmod Modify a diff group detail XDiffGrpDesc.xsd

xdiffgrpcre Create a diff group header XDiffGrpDesc.xsd

xdiffgrpdel Delete an entire diff group XDiffGrpRef.xsd

xdiffgrpmod Modify a diff group header XDiffGrpDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

DIFF_IDS Yes No No No

DIFF_GROUP_HEAD Yes Yes Yes Yes

DIFF_GROUP_DETAIL Yes Yes Yes Yes

ITEM_MASTER Yes No No No

PACK_TMPL_HEAD Yes No No No

DIFF_RANGE_HEAD Yes No No No



Diff ID Subscription API

3-42 Operations Guide Volume 2 - Message Publication and Subscription Designs

This procedure initially ensures that the passed in message type is a valid type for diff 
IDs messages. If the message type is invalid, a status of "E" is returned to the external 
system along with an appropriate error message informing the external system that 
the status is invalid.

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object 
using the Oracle treat function. If the downcast fails, a status of "E" is returned to the 
external system along with an appropriate error message informing the external 
system that the object passed in is invalid.

If the downcast is successful, then consume verifies that the message passes all of 
Merchandising's business validation calling the RMSSUB_XDIFFID_
VALIDATE.CHECK_MESSAGE function. If the message passes Merchandising 
business validation, then the function returns true; otherwise it returns false. If the 
message has failed Merchandising business validation, a status of "E" is returned to the 
external system along with the error message returned from the CHECK_MESSAGE 
function.

Once the message has passed Merchandising business validation, it is persisted to the 
Merchandising database by calling the RMSSUB_XDIFFID_SQL.PERSIST_MESSAGE() 
function. If the database persistence fails, the function returns false. A status of "E" is 
returned to the external system along with the error message returned from the 
PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success, "S", status is returned to the external system 
indicating that the message has been successfully received and persisted to the 
Merchandising database.

RMSSUB_XDIFFID.HANDLE_ERROR() - This is the standard error handling function 
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves 
uniqueness. This validation is handled automatically by the referential integrity 
constraints and the unique indexes implemented on the database.

Filename: rmssub_xdiffidvals/b.pls

RMSSUB_XDIFFID_VALIDATE.CHECK_MESSAGE 
                           (O_error_message  IN OUT  VARCHAR2,
                            O_diffid_rec        OUT  DIFF_ID_REC,
                            I_message        IN      RIB_XDiffIDDesc,
                            I_message_type   IN      VARCHAR2)

This function performs all business validation associated with messages and builds the 
diff ID record for persistence. 

DIFF ID CREATE

■ Checks required fields.

■ Verifies diff ID not used in diff group head table.

■ Populates record with message data.

DIFF ID MODIFY

■ Checks required fields.

■ Verifies the Diff Id exists.



Direct Ship Receipt Subscription API

RIB Subscription Designs 3-43

■ Populates record with message data.

DIFF ID DELETE

■ Checks required fields.

■ Verifies the Diff Id exists.

■ Deletes the record with diff ID contained in the message data.

Bulk or single DML module

All insert, update and delete SQL statements are located in the family package. This 
package is DIFF_ID_SQL. The private functions will call this package.

Filename: rmssub_xdiffidsqls/b.pls

This function determines what type of database transaction it will call based on the 
message type.

DIFF ID CREATE

■ Create messages get added to the Diff ID table.

DIFF ID MODIFY

■ Modify messages directly update the Diff ID table with changes.

DIFF ID DELETE 

■ Delete messages directly remove Diff ID records.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
Required fields are shown in mapping document.

Table Impact

Direct Ship Receipt Subscription API
This section describes the Direct ship receipt subscription API.

Message Type Message Type Description
XML Schema 
Definition (XSD)

xdiffidcre External Differentiator Create XDiffIDDesc.xsd

xdiffiddel External Differentiator Delete XDiffIDRef.xsd

xdiffidmod External Differentiator 
Modify

XDiffIDDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

DIFF_IDS Yes Yes Yes Yes

DIFF_GROUP_HEAD Yes No No No



Direct Ship Receipt Subscription API

3-44 Operations Guide Volume 2 - Message Publication and Subscription Designs

Functional Area
Direct Ship Receipt Subscription.

Business Overview
In the direct ship receipt process, a retailer does not own inventory, but still records a 
sale on their books. 

An external integration subsystem takes the order and sends it to a supplier. 

When an integration subsystem is notified that a direct ship order is sent from the 
supplier, it publishes a new direct ship (DS) receipt message to the RIB for 
Merchandising' subscription purposes. Merchandising can then account for the data in 
the stock ledger.

Processing in conjunction with the subscription ensures that the weighted average cost 
for the item is recalculated.

Merchandising subscribes to integration subsystem direct ship receipt (DSR) messages. 
This records the inventory and financial transactions associated with the direct 
shipment of merchandise.

Package Impact
Filename: rmssub_dsrcpts/b.pls

RMSSUB_DSRCPT.CONSUME
                   (O_status_code    IN OUT  VARCHAR2,
                    O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                    I_message        IN      RIB_OBJECT,
                    I_message_type   IN      VARCHAR2)

CONSUME simply calls different functions within the corresponding VALIDATE and 
SQL packages.

Before calling any functions, CONSUME narrows I_message down to the specific 
object being used, depending on the message_type. For example, a 'Cre' or 'Mod' 
message type usually means a 'Desc' object is being used. A 'Del' message usually 
means a 'Ref' object is being used. Object narrowing is done using the TREAT function. 
If the narrowing fails, then the CONSUME function should return an error message to 
the RIB stating that the object is not valid for this message family.

CONSUME first calls the family's VALIDATE package to validate the contents of the 
message. The family's SQL package is then called to perform DML.

Filename: rmssub_dsrcpt_vals/b.pls 

CHECK_MESSAGE
            (O_error_message  IN OUT         RTK_ERRORS.RTK_TEXT%TYPE,
             O_dsrcpt_rec        OUT NOCOPY  RMSSUB_DSRCPT.DSRCPT_REC_TYPE,
             I_message        IN             "RIB_XOrderDesc_REC",
             I_message_type   IN             VARCHAR2)

This function first calls the CHECK_FIELDS function to make sure all required fields 
are not NULL. Then, the function will call other functions as needed to validate all of 
the information that has been passed to it from the RIB.

Filename: rmssub_dsrcpt_sqls/b.pls 

RMSSUB_DSRCPT_SQL.PERSIST
                       (O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,



DSD Deals Subscription API

RIB Subscription Designs 3-45

                        I_dsrcpt_rec     IN      RMSSUB_DSRCPT.DSRCPT_REC_TYPE,
                        I_message_type   IN      VARCHAR2)

This function will perform the inventory and financial transactions associated with the 
direct ship receipt. This includes updating the stock on hand and average cost for the 
item at the virtual store against which the direct shipment is being received, and, 
booking the associated purchase to the stock ledger for the item / virtual store.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
The subscriber makes some assumptions with the publisher's ability to maintain data 
integrity. The subscriber will not check for duplicate create messages. It will not check 
for missing messages because it has no way of knowing what would be missing. It also 
assumes that messages are sent in the correct sequence.

Table Impact

DSD Deals Subscription API 
This section describes the DSD deals subscription API.

Functional Area
DSD deals subscription

Business Overview
Direct Store Delivery (DSD) is a delivery of merchandise and/or services to a store 
without the benefit of a pre-approved purchase order, such as when the supplier drops 
off merchandise directly in the retail er's store. This process is common in convenience 
and grocery stores, where suppliers routinely come to restock merchandise. 

In these cases, the invoice may or may not be given to the store (as opposed to sent to 
corporate), and the invoice may or may not be paid for out of the register. 

Message Types Message Type Description
XML Schema 
Definition (XSD)

Dsrcptcre Dsrcpt Create Message DsrcptDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes No No No

PACKITEM Yes No No No

ITEM_LOC_SOH Yes No Yes No

TRAN_DATA No Yes No No



DSD Deals Subscription API

3-46 Operations Guide Volume 2 - Message Publication and Subscription Designs

Merchandising subscribes to DSD messages from the RIB. These messages notify 
Merchandising of a direct store delivery transaction at a location so that it may record 
the purchase order and account for it in the store's inventory.

The receipt message that enters Merchandising includes information such as unit 
quantity, location, and others. Based on the data, Merchandising performs the 
following functionality, as necessary. 

■ Creates a purchase order.

■ Applies any deals

■ Creates a shipment

■ Receives a shipment. 

■ Creates an invoice

Package Impact
Filename: rmssub_dsds/b.pls

Subscribing to a DSD deals message entails the use of one public consume procedure. 
This procedure corresponds to the type of activity that can be done to DSD deals 
record (in this case create/update).

Public API Procedures:
RMSSUB_DSD.CONSUME
                (O_status_code   IN OUT  VARCHAR2,
                 O_error_message IN OUT  VARCHAR2,
                 I_message       IN      RIB_OBJECT,
                 I_message_type  IN      VARCHAR2)

This procedure accepts a XML file in the form of RIB Object from the RIB (I_message). 
This message contains a currency exchange rate message consisting of the 
aforementioned record. The procedure calls the RMSSUB_DSDDEALS.CONSUME 
function in order to validate the XML file format and, if successful, parses the values 
within the RIB Object. The values extracted from the RIB Object are then passed on to 
private internal functions, which validate the values and place them on Merchandising 
tables depending upon the success of the validation.

Private Internal Functions and Procedures (rmssub_dsddealss/b.pls)
Filename: rmssub_dsddealss/b.pls

RMSSUB_DSDDEALS.CONSUME
                      (O_status_code           IN OUT  VARCHAR2,
                       O_error_message         IN OUT  VARCHAR2,
                       I_rib_dsddealsdesc_rec  IN      "RIB_DSDDealsDesc_REC",
                       I_message_type          IN      VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for 
DSD deals. The valid message type for DSD deals messages are listed in a section 
below.

Note: If ReIM is not running, invoices are not created.



DSD Deals Subscription API

RIB Subscription Designs 3-47

If the message type is invalid, a status of "E" will be returned to the external system 
along with an appropriate error message informing the external system that the status 
is invalid.

For each header level data in the DSD deals table, call the function COMPLETE_
TRANSACTION to persist data to the Merchandising database.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", is returned to the external system 
indicating that the message has been successfully received and persisted to the 
Merchandising database.

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in 
order to parse a complete error message and pass back a status to the RIB.

RMSSUB_DSDDEALS.COMPLETE_TRANSACTION
This function checks for a shipment record on the shipment table for the DSD being 
processed. If no shipment record exists, it applies any applicable deals to the DSD 
order being processed and inserts shipment records into the shipment and shipsku 
tables for the newly created purchase order. After creating the new shipment, it 
receives the shipment and approves the order. If the DSD message contains invoice 
information, it creates the invoice.

RMSSUB_DSDDEALS.HANDLE_ERRORS
The function consists of a call to API_LIBRARY.HANDLE_ERRORS. API_
LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and 
potentially an unparsed error message if one has been created through a call to SQL_
LIB.CREATE_MESSAGE. 

The function uses these input variables to parse a complete error message and pass 
back a status, depending upon the message and error type, back up through the 
consume function and up to the RIB.

Message XSD
Here are the filenames that correspond with each message type. Please see RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
None

Table Impact

Message Types Message Type Description
XML Schema 
Definition (XSD)

dsddealscre DSD Deals Create Message DSDDealsDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes Yes No No

SHIPSKU No Yes No No

ORDAUTO_TEMP Yes No No Yes



DSD Receipt Subscription API

3-48 Operations Guide Volume 2 - Message Publication and Subscription Designs

DSD Receipt Subscription API
This section describes the DSD receipt subscription API.

Functional Area
DSD Receipt

Business Overview
Direct store delivery (DSD) is the delivery of merchandise and/or services to a store 
without the benefit of a pre-approved purchase order. When the delivery occurs, the 
integration subsystem informs Merchandising of the receipt so a purchase order is 
created and it is counted in the store's inventory.

Package Impact
Filename: rmssub_dsds/b.pls

RMSSUB_DSD.CONSUME

PROCEDURE CONSUME(O_status_code    IN OUT  VARCHAR2,
                  O_error_message  IN OUT  VARCHAR2,
                  I_message        IN      RIB_OBJECT,
                  I_message_type   IN      VARCHAR2)

The passed-in message type is validated to ensure it is a valid type for DSD receipts. 
The valid message type for DSD Receipts messages are listed in a section below. 

If the message type is invalid, a status of "E" will be returned to the external system 
along with an appropriate error message informing the external system that the status 
is invalid.

If the message type is DSD_CRE, it performs validation on the values in the message. 
If the data is valid, it processes the non-merchandise data for delivery costs and detail 
level data before persisting the data to Merchandising databases.

If the message type is DSD_MOD, call the GET_ORDER_NO function to find the order 
number for the DSD.

RMSSUB_DSD consumes "RIB_DSDReceiptDesc_REC" (message_types 'dsdreceiptcre' 
and 'dsdreceiptmod') and returns "RIB_DSDDealsDesc_REC" (message_type 
'dsddealscre'), which is consumed by RMSSUB_DSDDEALS.

RMSSUB_DSDDEALS - calls APPLY_DEALS_TO_ORDER (dealordcall.pls). As part of 
the Merchandising16 SaaS C Library change requirement, APPLY_DEALS_TO_
ORDER no longer invokes a ProC library function; instead it calls a PLSQL function 
DEAL_ORD_LIB_SQL.EXTERNAL_SHARE_APPLY_DEALS (dealordlibb.pls).

As such, RMSSUB_DSD does NOT need to publish back "RIB_DSDDealsDesc_REC". 
Instead, RMSSUB_DSD can call RMSSUB_DSDDEALS.CONSUME to complete the 
process of applying deals to order in a single transaction.

If the message type is not create, then the O_rib_dsddeals_rec should be set to null.

ORDSKU Yes No No No

ORDLOC Yes No No No

TABLE SELECT INSERT UPDATE DELETE



DSD Receipt Subscription API

RIB Subscription Designs 3-49

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", is returned to the external system 
indicating that the message has been successfully received and persisted to the 
Merchandising database.

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in 
order to parse a complete error message and pass back a status to the RIB.

RMSSUB_DSD.GET_ORDER_NO

GET_ORDER_NO (O_error_message   IN OUT  VARCHAR2,
              O_order_no        IN OUT  ordhead.order_no%TYPE,
              I_ext_receipt_no  IN      shipment.ext_ref_no_in%TYPE,
              I_store           IN      store.store%TYPE,
              I_supplier        IN      sups.supplier%TYPE)

This function is called for message type DSD_MOD. This function retrieves the current 
order number by searching the shipment tables using the external receipt number, 
store number and supplier.

RMSSUB_DSD.HANDLE_ERRORS

RMSSUB_DSD.HANDLE_ERRORS
                      (O_status          IN OUT   VARCHAR2,
                       IO_error_message  IN OUT   VARCHAR2,
                       I_cause           IN       VARCHAR2,
                       I_program         IN       VARCHAR2)

The function consists of a call to API_LIBRARY.HANDLE_ERRORS. API_
LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and 
potentially an unparsed error message if one has been created through a call to SQL_
LIB.CREATE_MESSAGE. 

The function uses these input variables to parse a complete error message and pass 
back a status, depending upon the message and error type, back up through the 
consume function and up to the RIB.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
None

Table Impact

Message Types Message Type Description
XML Schema 
Definition (XSD)

dsdreceiptcre DSD Receipt Create Message DSDReceiptDesc.xsd

dsdreceiptmod DSD Receipt Modify Message DSDReceiptDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes No No No



Freight Terms Subscription API

3-50 Operations Guide Volume 2 - Message Publication and Subscription Designs

Freight Terms Subscription API
This section describes the freight terms subscription API.

Functional Area
Foundation

Business Overview
Freight terms are financial arrangement information that is published to the Oracle 
Retail Integration Bus (RIB) from a financial system. Freight terms are the terms for 
shipping (for example, the freight terms could be a certain percentage of the total cost; 
a flat fee per order, and so on). Merchandising subscribes to freight terms messages 
held on the RIB. After confirming the validity of the records enclosed within the 
message, the Merchandising database is updated with the information.

Required fields in the message include a unique freight terms ID and a description.

Message Structure
The freight term message is a flat message that will consist of a freight term record. 

Package Impact
Filename: rmssub_frttermcres/b.pls

                  rmssub_fterms/b.pls

Subscribing to a freight term message entails the uses of one public consume 
procedure. This procedure corresponds to the type of activity that can be done to a 
freight term record (in this case create/update). 

Public API Procedures
PROCEDURE CONSUME(O_status_code      IN OUT  VARCHAR2,
                  O_error_message    IN OUT  VARCHAR2,
                  I_message          IN      RIB_OBJECT,
                  message_type       IN      VARCHAR2);

This procedure accepts an XML file in the form of a RIB Object data type from the RIB 
(I_message). This message will contain a freight term message consisting of the 
aforementioned record. The procedure will then place a call to the main RMSSUB_
FTERM.CONSUME function to validate the XML file format and, if successful, parse 
the values within the RIB Object. The values extracted from the RIB Object will then be 
passed on to private internal functions, which will validate the values and place them 
on the freight term table, depending upon the success of the validation.

Private Internal Functions and Procedures (rmssub_frttermcre.pls):
Error Handling

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in 
order to parse a complete error message and pass back a status to the RIB. 

HANDLE_ERRORS

ORDHEAD Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Freight Terms Subscription API

RIB Subscription Designs 3-51

             (O_status          IN OUT  VARCHAR2,
              IO_error_message  IN OUT  VARCHAR2,
              I_cause           IN      VARCHAR2,
              I_program         IN      VARCHAR2);

All error handling in the internal RMSSUB_FTERM package and all errors that occur 
during subscription in the RMSSUB_FRTTERMCRE package (and whatever packages 
it calls) will flow through this function. 

The function consists of a call to API_LIBRARY.HANDLE_ERRORS. API_
LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and 
potentially an unparsed error message if one has been created through a call to SQL_
LIB.CREATE_MESSAGE. The function uses these input variables to parse a complete 
error message and pass back a status, depending upon the message and error type, 
back up through the consume function and up to the RIB. 

Private Internal Functions and Procedures (rmssub_fterm.pls):
All of the following functions exist within RMSSUB_FTERM. 

Main Consume Function
RMSSUB_FTERM.CONSUME
             (O_status_code    IN OUT  VARCHAR2,
              O_error_message  IN OUT  VARCHAR2,
              I_message        IN      "RIB_FrtTermDesc_REC")

This procedure accepts an XML file in the form of an RIB Object from the RIB 
(I_message) from the aforementioned public rmssub_frttermcre procedure whenever a 
message is made available by the RIB. This message will consist of the aforementioned 
record. 

The procedure then validates the XML file format and, if successful, parses the values 
within the RIB Object through a series of calls to RIB_XML. The values extracted from 
the RIB Object will then be passed on to private internal functions, which will validate 
the values and place them on the appropriate freight term database table depending 
upon the success of the validation. 

XML Parsing
PARSE_FTERM 

This function will used to extract the freight term level information from the Freight 
Term XML file and place that information onto an internal freight term record. 

Validation
PROCESS_FTERM 

After the values are parsed for a particular freight term record, RMSSUB_
FTERM.CONSUME will call this function, which will in turn call various functions 
inside RMSSUB_FTERM in order to validate the values and place them on the 
appropriate FREIGHT_TERMS table depending upon the success of the validation. 

Message XSD
Below are the filenames that correspond with each message type. Please consult the 
RIB documentation for each message type in order to get a detailed picture of the 
composition of each message.



GL Chart of Accounts Subscription API

3-52 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
■ One of the primary assumptions in the current API approach is that ease of code 

will outweigh performance considerations. It is hoped that the 'trickle' nature of 
the flow of data will decrease the need to dwell on performance issues and instead 
allow developers to code in the easiest and most straight forward manner.

■ The adaptor is only setup to call stored procedures, not stored functions. Any 
public program then needs to be a procedure.

Table Impact

GL Chart of Accounts Subscription API
This section describes the GL chart of accounts subscription API.

Functional Area
GL Chart of Accounts

Business Overview
Before Merchandising publishes stock ledger data to an external financial application, 
it must receive that application's General Ledger Chart Of Accounts (GLCOA) 
structure. Merchandising accomplishes this through a subscription process.

A chart of account is essentially the financial application's debit and credit account 
segments (for example, company, cost center, account, and others) that applies to the 
Merchandising product hierarchy. In some financial applications, this is known as 
Code Combination IDs (CCID). On receiving the GLCOA message data, 
Merchandising populates the data to the FIF_GL_ACCT table. The GL cross-reference 
form is used to associate the appropriate department, class, subclass, and location data 
to a CCID that allows the population of that data to the GL_FIF_CROSS_REF table.

An external system publishes GL Chart of Accounts, thereby placing the GL chart of 
accounts information to RIB (Retail Integration Bus). Merchandising subscribes the GL 
chart of accounts information as published from the RIB and places the information in 
Merchandising tables depending upon the validity of the records enclosed within the 
message. 

Package Impact
Subscribing to a GL chart of accounts message entails the use of one public consume 
procedure. This procedure corresponds to the type of activity that can be done to 
currency exchange rate record (in this case create/update). 

Message Types Message Type Description
XML Schema 
Definition (XSD)

FrtTermCre Freight Term Create Message FrtTermDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

FREIGHT_TERMS Yes Yes Yes No



GL Chart of Accounts Subscription API

RIB Subscription Designs 3-53

Public API Procedures:
Filename: rmssub_glcoacreb.pls

PROCEDURE CONSUME(O_status_code      IN OUT   VARCHAR2,
                  O_error_message    IN OUT   VARCHAR2,
                  I_message          IN       RIB_OBJECT,
                  I_message_type     IN       VARCHAR2)

This procedure accepts an XML file in the form of a RIB Object from the RIB 
(I_message). This message contains a GL chart of accounts message consisting of the 
aforementioned record. The procedure places a call to the main RMSSUB_
GLCACCT.CONSUME function in order to validate the XML file format and, if 
successful, parse the values within the RIB Object. The values extracted from the RIB 
Object are then passed to private internal functions, which validate the values and 
place them on the GL chart of accounts table depending upon the success of the 
validation. 

Private Internal Functions and Procedures (rmssub_glcoacreb.pls):
Error Handling:

If an error occurs in this procedure, a call is placed to HANDLE_ERRORS in order to 
parse a complete error message and pass back a status to the RIB. 

HANDLE_ERRORS
              (O_status         IN OUT VARCHAR2,
               IO_error_message IN OUT VARCHAR2,
               I_cause          IN     VARCHAR2,
               I_program        IN     VARCHAR2)

All error handling in the internal RMSSUB_GLCACCT package and all errors that 
occur during subscription in the RMSSUB_GLCOACRE package (and whatever 
packages it calls) flows through this function. 

The function consists of a call to API_LIBRARY.HANDLE_ERRORS. API_
LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and 
potentially an unparsed error message if one has been created through a call to SQL_
LIB.CREATE_MESSAGE. The function uses these input variables to parse a complete 
error message and pass back a status, depending upon the message and error type, 
back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
Filename: rmssub_glcacctb.pls

Main Consume Function:

RMSSUB_GLCACCT.CONSUME
               (O_ERROR_MESSAGE    OUT  VARCHAR2,
                I_MESSAGE       IN      "RIB_GLCOADesc_REC")

This procedure accepts an XML file in the form of an RIB Object from the RIB 
(I_message) from the public rmssub_glcoacre.consume procedure whenever a message 
is available in RIB. This message consists of the aforementioned record. 

The procedure then validates the XML file format and, if successful, parses the values 
within the RIB Object. The values extracted from the RIB Object are passed on to 
private internal functions, which will validate the values and place them on the 
appropriate GL chart of accounts database table, depending upon the success of the 
validation. 



GL Chart of Accounts Subscription API

3-54 Operations Guide Volume 2 - Message Publication and Subscription Designs

XML Parsing:
PARSE_HEADER
            (O_ERROR_MESSAGE    OUT  VARCHAR2,
             O_GLACCT_RECORD    OUT  GLACCT_RECTYPE,
             I_GLACCT_ROOT   IN OUT  "RIB_GLCOADesc_REC")

This function extracts the GL chart of accounts level information from the GL Chart of 
Accounts XML file and places the information to an internal GL Chart of Accounts 
record.

Record is based upon the record type glacct_rectype.

Validation
PROCESS_HEADER

After the values are parsed for a particular GL chart of accounts record, RMSSUB_
GLCACCT.CONSUME calls this function, which in turn calls various functions inside 
RMSSUB_GLCACCT. In order to validate the values and place them on the 
appropriate GL chart of accounts table depending upon the success of the validation. 
PROCESS_GLACCT is called to insert or update the GL chart of accounts table.

PROCESS_GLACCT 

Function PROCESS_GLACCT takes the input GL record and places the information to 
a local GL record which is used in the package to manipulate the data. It calls a series 
of support functions to perform all business logic on the record.

INSERT_GLACCT

Function INSERT_GLACCT inserts any valid account on the GL table. It is called from 
PROCESS_GLACCT.

UPDATE_GLACCT

Function UPDATE_GLACCT updates any valid account on the GL table. It is called 
from PROCESS_GLACCT.

VALIDATE_GLACCT

Function VALIDATE_GLACCT is a wrapper function which is used to call CHECK_
NULLS, CHECK_ATTRS for any GL record input into the package.

CHECK_NULLS 

Function CHECK_NULLS checks an input value if it is null. If so, an error message is 
created based on the passed in record type.

CHECK_ATTRS 

Function CHK_ATTRS is called within the validation function of this package to 
ensure that Merchandising will not accept incomplete data from a financial interface 
when sent through RIB. This function checks to ensure that each description that is 
input also has an attribute that it describes.

Message XSD
The GL chart of accounts message is a flat message that consists of a GL chart of 
accounts record. 

The record contains information about the GL chart of accounts as a whole.



Inventory Adjustment Subscription API

RIB Subscription Designs 3-55

Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type to get detailed information of the composition 
of each message.

Design Assumptions
Required fields are shown in the RIB documentation.

Many ordering functionalities that are available on-line are not supported through this 
API. Triggers related to these functionalities must be turned off.

Table Impact

GL Chart of Account Validation Service
This section describes the GL Chart of Accounts Subscription API.

Functional Area
Financial Integration

Overview
When using Oracle Retail Financials Integration (RFI) to manage General Ledger 
integration an Oracle financial solution, a validation service is used to ensure that the 
segment combinations mapped to by Merchandising and Sales Audit users are valid 
combinations in the General Ledger. This validation is called from Merchandising and 
Sales Audit when creating General Ledger cross-reference mappings.

As part of your implementation, you will need to configure the URL for the service call 
in the RETAIL_SERVICE_REPORT_URL table for code RAV. For cloud service 
implementations, configuration of this service call should be done in coordination 
with the Oracle Cloud Operations team by logging an SR. For more information, see 
the RFI Implementation Guide.

Inventory Adjustment Subscription API
This section describes the Inventory Adjustment Subscription API.

Functional Area
Inventory Adjustment

Message Types Message Type Description XML Schema Definition (XSD)

Glcoacre Glco Create Message GLCOADesc.xsd

TABLE SELECT INSERT UPDATE DELETE

FIF_GL_ACCT Yes Yes Yes No

Note: This validation is also used by Oracle Retail Invoice Matching.



Inventory Adjustment Subscription API

3-56 Operations Guide Volume 2 - Message Publication and Subscription Designs

Business Overview
Merchandising receives requests for inventory adjustments from an integration 
subsystem through the inventory adjustment subscription. The requests contain 
information about the item, the stockholding location, the quantity, the specific 
disposition change, and the reason for the adjustment. Merchandising uses data in 
these requests to:

■ Adjust overall quantities of stock on hand for an item at a location

■ Adjust the availability of item-location quantities. For unavailable inventory 
adjustments, all quantity adjustment goes to the non-sellable bucket.

After initial processing from the integration subsystem Merchandising performs the 
following tasks:

■ Validates the item-location combinations and adjustment reasons

■ Updates stock on hand data for the item at the location

■ Inserts stock adjustment transaction codes on the Merchandising stock ledger 

■ Adjusts quantities by inventory status for item/location combination

■ Create an audit trail for the inventory adjustment by item, location, inventory 
status and reason 

Inventory Quantity and Status Evaluation
Merchandising evaluates inventory adjustments to decide if overall item-location 
quantities have changed, or if the statuses of quantities have changed.

The FROM_DISPOSITION and TO_DISPOSITION tags in the message are evaluated 
to determine if there is a change in overall quantities of an item at a location. For the 
given item and quantity reported in the message, if either tag contains a null value, 
Merchandising evaluates that as a change in overall quantity in inventory. 

In addition, if the message shows a change to the status of existing inventory, 
Merchandising evaluates this to determine if that change makes a quantity of an item 
unavailable.

Stock Adjustment Transaction Codes
Whenever the status or quantity of stock changes, Merchandising writes transaction 
codes to adjust inventory values in the stock ledger. The two types of inventory 
adjustment transaction codes are:

■ Adjustments to total stock on hand, where positive and negative adjustments are 
made to total stock on hand. In this case, a 'Stock Adjustment' transaction (TRAN_
CODE = '22' or '23' if the cost of goods indicator associated with the inventory 
adjustment reason code is 'Y') is inserted on the Stock Ledger (TRAN_DATA table 
) for both the retail and cost value of the adjustment

■ Adjustments to unavailable (non-sellable) inventory. In this case, an 'Unavailable 
Inventory Transfer' transaction (TRAN_CODE = '25') is inserted on the Stock 
Ledger (TRAN_DATA table).

L10N Localization Decoupling Layer
This is a layer of code which enables decoupling of localization logic that is only 
required for certain country-specific configuration. This layer affects the RIB API flows 
including Inventory Adjustment subscription. This allows Merchandising to be 



Inventory Adjustment Subscription API

RIB Subscription Designs 3-57

installed without requiring customers to install or use this localization functionality, 
where not required. 

Package Impact
Filename: rmssub_invadjusts/b.pls

This procedure will initially ensure that the passed in message type is a valid type for 
inventory adjustment messages. The valid message type for an inventory adjustment 
message is listed in a section below. 

If the message type is invalid, a status of "E" should be returned to the external system 
along with an appropriate error message informing the external system that the status 
is invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the 
actual object using Oracle's treat function. 

There will be an object type that corresponds with each message type. If the downcast 
fails, a status of "E" is returned to the external system along with an appropriate error 
message informing the external system that the object passed in is invalid.

RMSSUB_INVADJUST.CONSUME_INVADJ
                         (O_status_code       IN OUT  VARCHAR2,
                          O_error_message     IN OUT  VARCHAR2,
                          I_message           IN      RIB_OBJECT,
                          I_message_type      IN      VARCHAR2,
                          I_check_l10n_ind    IN      VARCHAR2)

Perform localization check. If localized, invoke localization logic through L10N_SQL 
decoupling layer for procedure key 'CONSUME_INVADJ'. If not localized, call 
CONSUME_INVADJ for normal processing.

RMSSUB_INVADJUST.CONSUME_INVADJ
                        (O_error_message     IN OUT  VARCHAR2,
                         IO_L10N_RIB_REC     IN OUT  L10N_OBJ)

Public function to call RMSSUB_INVADJUST.CONSUME_INVADJUST_CORE.

RMSSUB_INVADJUST.CONSUME_INVADJ_CORE
                         (O_error_message    IN OUT  VARCHAR2,
                          I_message          IN      RIB_OBJECT,
                          I_message_type     IN      VARCHAR2)

This function contains the main processing logic.

If the downcast is successful, then consume needs to verify that the message passes all 
of Merchandising's business validation. It calls the INVADJ_SQL function to perform 
validation and to insert or update records in the database when the message is valid. If 
the message passed Merchandising business validation and is successfully persisted in 
the database then a successful status is returned to the CONSUME. If the message fails 
Merchandising business validation or encounters any other errors, a status of "E" is 
returned to the external system along with the error message.

RMSSUB_INVADJUST.PROCESS_INVADJ
(O_error_message IN OUT VARCHAR2,
 I_message IN "RIB_InvAdjustDesc_REC")

This function calls CHECK_ITEMS, an internal function that checks for any sellable 
only "break to sell" items and separates these items into an object table for further 
processing. A table of the corresponding orderable items and quantities for the sellable 



Inventory Adjustment Subscription API

3-58 Operations Guide Volume 2 - Message Publication and Subscription Designs

items is built to submit to the inventory adjustment process. INVADJ_SQL.PROCESS_
INVADJ is called for the table of regular items and the table of "break to sell" items to 
perform all business validation and desired functionality associated with an inventory 
adjustment message. 

Filename: invadjs/b.pls

INVADJ_SQL.BUILD_PROCESS_INVADJ

This function performs business validation and desired functionality for an inventory 
adjustment message. It includes the following:

■ Check required fields: item, location, adj_qty, user_id, adj_date. 

■ Verify that the to_disposition or from_disposition or both fields are populated. 
Both cannot be NULL.

■ Verify that an orderable but non-sellable and non-inventory item cannot be an 
inventory adjustment item.

■ If the item is a simple pack catch weight item, verify that weight and weight UOM 
are either both defined or both NULL, and, if populated, that the weight UOM is 
in the MASS UOM class.

■ Verify that the item is a tran-level or a reference item. When a reference item is 
passed in, its parent item's inventory is adjusted.

■ Verify that the item/loc relation exists and create it if it does not exist.

■ If adjusting a pack at a warehouse, receive_as_type must be 'P' (pack) on ITEM_
LOC.

■ Verify that from disposition and to disposition are valid inventory status codes (on 
INV_STATUS_CODES).

■ If the location is a warehouse, then physical location is on the message. The 
adjusted quantity is distributed among the virtual locations of the physical 
location.

■ For available stock on hand, the items are added to the update records for 
updating the ITEM_LOC_SOH table and a tran code 22 or 23 is prepared for 
writing the TRAN_DATA records. For external finisher location type and for 
transformable orderable items, the unit_retail is a calculated value, based on 
package calls for these two exception cases. 

■ If cost of goods indicator of the inventory adjustment reason code is 'Y', use tran_
code 23 instead of 22. 

■ For unavailable stock on hand, the unavailable quantities are computed before the 
items or the pack components are added to the update records for updating the 
ITEM_LOC_SOH table and a tran code 25 data is prepared for writing the TRAN_
DATA records. For external finisher location type and for transformable orderable 
items, the unit_retail is calculated with the appropriate package call for these two 
exception cases.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.



Inventory Request Subscription API

RIB Subscription Designs 3-59

Design Assumptions
None

Table Impact

Inventory Request Subscription API 
This section describes the inventory request subscription API.

Functional Area
Inventory Request Subscription

Business Overview
Merchandising receives requests for inventory from an integration subsystem through 
the inventory request subscription. 

Store ordering allows for all items to be ordered by the store and fulfilled by an 
Merchandising process. Merchandising fulfills a store's request regardless of 
replenishment review cycles, delivery dates, and any other factors that may restrict a 
request from being fulfilled. However, delivery cannot always be guaranteed on or 
before the store requested due date, due to supplier or warehouse lead times and other 
supply chain factors that may restrict on-time delivery.

Store ordering can be used to request inventory for any items that are on the 'Store 
Order' type of replenishment. The store order replenishment process requires the store 
to request a quantity and builds the recommended order quantity (ROQ) based on the 
store's requests. Requests for store order items that will not be reviewed prior to the 
date requested by the store are fulfilled through a one-off process (executed real-time 

Message Types Message Type Description XML Schema Definition (XSD)

invadjustcre Inventory Adjustment Create 
Message

InvAdjustDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH Yes Yes Yes No

TRAN_DATA(VIEW) No Yes No No

INV_ADJ No Yes No No

INV_STATUS_QTY No Yes Yes Yes

INV_ADJ_REASON Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

INV_STATUS_CODES Yes No No No

TSFHEAD Yes No No No

SHIPSKU Yes No No No



Inventory Request Subscription API

3-60 Operations Guide Volume 2 - Message Publication and Subscription Designs

through the API) that creates warehouse transfers and/or purchase orders to fulfill the 
requested quantities.

This API can also be used for items setup on other types of replenishment. In this case 
the store requested quantities will be added 'above and beyond' the calculated 
recommended order quantities. This API can also be used for items not setup on 
auto-replenishment. In this case the one-off process described above will be used to 
create a PO or transfer utilizing attributes defined for the item/location.

Package Impact
Filename: rmssub_invreqs/b.pls

RMSSUB_INVREQ.CONSUME(O_status_code     IN OUT  VARCHAR2,
                      O_error_message   IN OUT  VARCHAR2,
                      I_message         IN      RIB_OBJECT,
                      I_message_type    IN      VARCHAR2)

This procedure initially downcasts the generic RIB_OBJECT to the actual object using 
the Oracle treat function. 

If the downcast is successful, it will empty out the cache of inserts and updates to the 
store_orders table and to the PL/SQL ITEM_TBL table. This is done by calling INV_
REQUEST_SQL.INIT function. This is called before processing any item/store order 
request. 

Input from the header level info is then validated. If any of the required header level 
info is NULL, the entire request is rejected.

Each item is processed by calling INV_REQUEST_SQL.PROCESS. 

The cache for the STORE_ORDERS table and the PL/SQL ITEM_TBL table is 
populated by calling INV_REQUEST_SQL.FLUSH function. 

Filename: invrequests/b.pls 

INV_REQUEST_SQL.PROCESS 
                     (O_error_message IN OUT  VARCHAR2,
                      I_store         IN      STORE_ORDERS.STORE%TYPE,
                      I_request_type  IN      VARCHAR2,
                      I_item          IN      STORE_ORDERS.ITEM%TYPE,
                      I_need_qty      IN      STORE_ORDERS.NEED_QTY%TYPE,
                      I_uop           IN      UOM_CLASS.UOM%TYPE,
                      I_need_date     IN      STORE_ORDERS.NEED_DATE%TYPE)

This function does all the validation and processing of the inventory request. It creates 
a record for STORE_ORDERS or LP_ITEM_TBL (PL/SQL table for adhoc requests). 

INV_REQUEST_SQL.VERIFY_REPL_INFO (local)

This function retrieves the replenishment information. If the request type is 'IR' and 
the item is not set up on replenishment, set adhoc to 'Y'. Item requests with request 
type of 'SO' or NULL must have store order replenishment set up in Merchandising for 
that item. The need date must be after the next replenishment delivery date if the store 
order has been rejected by replenishment. If the need date is before the next 
replenishment review date for both request types, set adhoc to 'Y'.

INV_REQUEST_SQL.FUNCTION CONVERT_NEED_QTY (local)

This function converts the need quantity to 'E'aches for Packs.

INV_REQUEST_SQL.PREPARE_AD_HOC (local)



Inventory Request Subscription API

RIB Subscription Designs 3-61

This function is called if the Adhoc indicator is set to 'Y'. It writes the request to the 
PL/SQL table that will be passed to the function call CREATE_ORD_TSF_
SQL.CREATE_ORD_TSF to create an order or transfer.

INV_REQUEST_SQL.VERIFY_ON_STORE (local)

This function checks to see if the item request already exists on STORE_ORDER. If it 
exists, call PREPARE_UPDATE to update the need quantity to include the new need 
quantity. If it does not, call PREPARE_INSERT to insert into STORE_ORDER table.

INV_REQUEST_SQL. PREPARE_INSERT (local)

This function checks the PL/SQL table that contains the BULK INSERT records. If a 
record exists on the PL/SQL table, update the qty.

INV_REQUEST_SQL. PREPARE_UPDATE (local)

This function adds a record to the PL/SQL table that contains the BULK UPDATE 
records.

INV_REQUEST_SQL. FLUSH (local)

This function does the actual insert or update to STORE_ORDERS. 

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ Merchandising will round quantities using the store order multiple when an order 

is created for a warehouse.

■ Up charges will always be applied to a transfer when they can be defaulted.

■ Merchandising will validate that all items belong to the same department when 
department level ordering (supplier) or department level transfers (warehouse) 
are being used.

■ Merchandising will validate that a store is open when the store is being transferred 
to. 

■ This API supports non-fatal error processing. If an error is encountered in one 
inventory request detail, it will log and return the error to the RIB through 
O_error_message.

Table Impact

Message Types Message Type Description XML Schema Definition (XSD)

InvReqCre Inventory Request Create 
Message

InvReqDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

STORE_ORDERS Yes Yes Yes No

REPL_ITEM_LOC Yes No No No

ITEM_LOC Yes No No No



Item Subscription API

3-62 Operations Guide Volume 2 - Message Publication and Subscription Designs

Item Subscription API
This section describes the item subscription API.

Functional Area
Item

Design Overview
When this API accepts messages with create message types, it inserts the data into the 
staging tables, SVC_ITEM_MASTER, SVC_PACKITEM (in the case of a pack), SVC_
ITEM_SUPPLIER, SVC_ITEM_COUNTRY, SVC_ITEM_SUPP_COUNTRY,  SVC_
ITEM_SUPP_COUNTRY_DIM, SVC_ITEM_SUPP_MANU_COUNTRY, SVC_UDA_
ITEM_LOV, SVC_UDA_ITEM_FF, SVC_UDA_ITEM_DATE, SVC_ITEM_IMAGE, 
SVC_ITEM_MASTER_TL, SVC_ITEM_SUPPLIER_TL, SVC_ITEM_IMAGE_TL, SVC_
ITEM_HTS, SVC_ITEM_HTS_ASSESS, SVC_ITEM_EXPENSES, SVC_ITEM_TICKET, 
SVC_ITEM_SEASONS, SVC_ITEM_MASTER_CFA_EXT and SVC_ITEM_SUPPLIER_
CFA_EXT.

The SVC_VAT_ITEM table is populated with data defaulted from the item's 
department. Optionally, the records can be inserted into the SVC_VAT_ITEM table to 
override these defaults. The messages with modify message types consist of snapshots 
of records for updating the ITEM_MASTER, ITEM_SUPPLIER,  ITEM_SUPP_
COUNTRY, ITEM_SUPP_COUNTRY_DIM, ITEM_SUPP_MANU_COUNTRY,  ,ITEM_
IMAGE, ITEM_MASTER_TL, ITEM_SUPPLIER_TL, ITEM_IMAGE_TL, ITEM_HTS, 
ITEM_HTS_ASSESS, ITEM_EXP_HEAD, ITEM_EXP_DETAIL, ITEM_TICKET and 
ITEM_SEASONS tables after being processed from the corresponding staging tables. 

Item messages include the required detail nodes for the supplier and 
supplier/country. If the item is not a non-sellable pack, the item/zone/price node is 
also required. Optional nodes can be included in the message for supplier/country, 
pack components, and item/vat relationships.

The RIB_XItemDesc_REC message includes the RIB_CustFlexAttriVo_TBL message to 
enable the subscription of the custom flex attributes.

Items must be created and maintained following a logical hierarchy as outlined by the 
referential integrity of the item database tables: Item parents before child items; item 
components before items that are packs; items before item-suppliers; item/suppliers 
before item/supplier/countries; items before item/locations (a separate API), and so 
on. Failing to do so results in message failure. 

ITEM_SUPP_
COUNTRY

Yes No No No

ITEM_MASTER Yes No No No

SUPS Yes No No No

ITEM_LOC_SOH Yes No No No

TSFHEAD No Yes Yes No

TSFDETAIL Yes Yes Yes No

ORDHEAD No No Yes No

TABLE SELECT INSERT UPDATE DELETE



Item Subscription API

RIB Subscription Designs 3-63

The create and modify messages are hierarchical with required detail nodes of 
suppliers and supplier/countries and optional nodes for price zones, 
supplier/country and vat codes. If the item is a pack item, the pack component node is 
required. 

In the header modify message, the detail nodes are not populated, but the full header 
node is sent. The detail level create or modify messages contains the item header 
record and one to many detail records in the node or nodes. For example, the message 
type of XItemSupMod could have one or more supplier details to update in the ITEM_
SUPPLIER table. The modify messages contain a snapshot of the record for update 
rather than only the fields to be changed. 

The auto-creation of item children using differentiator records attached to an item 
parent, as currently occurs using Merchandising online processes, is not supported in 
this API. 

The delete messages contain only the primary key field for the item, supplier, 
supplier/country or vat/item record that is to be deleted. When a delete message is 
processed, the item is not immediately deleted; rather, it is added to the daily purge 
table. Deleting the item is a batch process. 

A major functionality that was added to Merchandising is the support of Brazil 
Localization. This introduced a layer of code to enable decoupling of localization logic 
that is only required for country-specific configuration. This layer affects the RIB API 
flows including the Xitem subscription. 

L10N Localization Decoupling Layer:
Oracle Retail Fiscal Management (ORFM) is designed as an add-on product to 
Merchandising to handle Brazil-specific fiscal management. 

Even though ORFM and Merchandising exist in the same database schema and ORFM 
cannot be installed separately without Merchandising, Oracle Retail ensures that 
Merchandising is decoupled from ORFM. This is so that non-Brazilian clients can 
install Merchandising without RFM. To achieve that, an L10N decoupling layer was 
introduced.

In the context of the XItem subscription API, when Merchandising consumes an XItem 
message from an external system, if the message involves a localized country, the 
message must be routed to a third party application (for example, Mastersaf) to 
calculate tax and/or to ORFM for the setting up of fiscal item attributes. In that case, 
Merchandising's XItem subscription API (rmssub_xitem and related packages) call 
Mastersaf and/or ORFM through an L10N decoupling layer.

Import Brazil-specific Fiscal Item Attributes to the Flex Attributes Extension Table 
(ITEM_COUNTRY_L10N_EXT):
XItem API supports the importing of Brazil fiscal item attributes to Merchandising 
through the 'xitemctrycre' (create item country) messsage type. The client must 
populate the "RIB_BrXItemCtryDesc_TBL" node in the XItemDesc message family. The 
XItem API writes data to the ITEM_COUNTRY_L10N_EXT table based on the 
meta-data definition of the 'ITEM_COUNTRY' entity.

The structure of the XItemDesc message family is the following:

"RIB_XItemDesc_REC"
       -- XItemCtryDesc_TBL "RIB_XItemCtryDesc_TBL"                 
                --  LocOfXItemCtryDesc_TBL "RIB_LocOfXItemCtryDesc_TBL"
                     --  BrXItemCtryDesc_TBL "RIB_BrXItemCtryDesc_TBL"        
This is where client should populate the Brazilian fiscal item attributes.



Item Subscription API

3-64 Operations Guide Volume 2 - Message Publication and Subscription Designs

Supported fiscal item attributes include:

■ SERVICE_IND

■ ORIGIN_CODE

■ CLASSIFICATION_ID

■ NCM_CHAR_CODE

■ EX_IPI

■ PAUTA_CODE

■ SERVICE_CODE

■ FEDERAL_SERVICE

■ STATE_OF_MANUFACTURE  

■ PHARMA_LIST_TYPE 

When the message is persisted to the database, if the message type is 'xitemctrycre' 
(that is, create Item Country), then the above Brazilian fiscal item attributes are 
imported to the corresponding extension table of ITEM_COUNTRY_L10N_EXT 
through an L10N localization layer.

Support of translation within the ITEM_MASTER, ITEM_SUPPLIER and ITEM_
IMAGE tables.

The XItem API contains additional nodes to support translation of certain information 
into one or more languages via the following message types:

■ Xitemtlcre

■ Xitemtlmod

■ Xitemtldel

■ Xitemsuptlcre

■ Xitemsuptlmod

■ Xitemsuptldel

■ Xitemimagetlcre

■ Xitemimagetlmod

■ Xitemimagetldel

The following nodes need to be populated in the XItemDesc/XItemRef message family 
to populate the item_master_tl, item_supplier_tl and item_image_tl tables:

■ RIB_LangOfXItemImage_TBL / RIB_LangOfXItemImageRef_TBL

■ RIB_LangOfXItemSupDesc_TBL / RIB_LangOfXItemSupRef_TBL

■ RIB_LangOfXItemDesc_TBL / RIB_LangOfXItemRef_TBL

In addition to RIB, Merchandising also exposes an Item Management web service to 
allow an external application to create, update, and reclassify items in Merchandising. 
The web service takes in a collection of items (except for reclass item) and will return 
success and failure through the service response object.

Package Impact
This section describes the package impact.



Item Subscription API

RIB Subscription Designs 3-65

Consume Module
Filename: ItemManagementServiceProviderImplSpec.pls    
ItemManagementServiceProviderImplBody.pls 

For a web service deployment, the Item Management service with supported 
operations is available for an external system to send Item requests to Merchandising. 
Each supported operation will invoke the public interfaces in the 
ItemManagementServiceProviderImpl package as follows:

■ createItem

■ modifyItem

■ createSupplier

■ modifySupplier

■ deleteSupplier

■ createSupplierCountry

■ modifySupplierCountry

■ deleteSupplierCountry

■ createSupplierCountryDim

■ modifySupplierCountryDim

■ deleteSupplierCountryDim

■ createItemReclass

■ deleteItemReclass

■ createItemReclassDetail

■ deleteItemReclassDetail

■ createUDA

■ modifyUDA

■ deleteUDA

These public interfaces will call the corresponding procedures in svcprov_xitem, 
which will in turn call rmssub_itemsxitem.consume to do the major processing logic.

The item reclassification interfaces are an exception. These call the corresponding 
procedures in svcprov_xitem, which will in turn call rmssub_xitemrcls.consume to do 
the reclassification logic.

Filename: svcprov_xitems/b.pls 

Procedures called from Item Management web service public interfaces in the 
ItemManagementServiceProviderImpl package to perform major processing. 

If an error occurs, it calls SVCPROV_UTLITY.BUILD_SERVICE_OP_STATUS to build 
and return RIB_ServiceOpStatus_REC with a failure message; if there are no errors, it 
builds and returns RIB_InvocationSuccess_REC with a success message. 

Filename: rmssub_items/b.pls

RMSSUB_XITEM.CONSUME (O_status_code       IN OUT VARCHAR2,
                      O_error_message     IN OUT VARCHAR2,
                      I_message           IN     RIB_OBJECT,
                      I_message_type      IN     VARCHAR2)



Item Subscription API

3-66 Operations Guide Volume 2 - Message Publication and Subscription Designs

This procedure will need to initially ensure that the passed in message type is a valid 
type for organizational hierarchy messages. The valid message types for 
organizational hierarchy messages are listed in a section below. 

If the message type is invalid, a status of "E" should be returned to the external system 
along with an appropriate error message informing the external system that the status 
is invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the 
actual object using the Oracle's treat function. There will be an object type that 
corresponds with each message type. If the downcast fails, a status of "E" is returned to 
the external system along with an appropriate error message informing the external 
system that the object passed in is invalid.

If the downcast is successful, then consume calls the RMSSUB_XITEM_POP_
RECORD.POPULATE function to populate all the fields in the item collections. It is 
then persisted to the Merchandising database via RMSSUB_XITEM_SQL.PERSIST 
function where contents of the collections are inserted into the staging tables in 
preparation for the upload into the Merchandising item tables via the Item Induction 
package. A record is inserted into svc_process_tracker with template_type = 'XITEM' 
and process_source = 'EXT' (external). A parameter called attempt_rms_load which 
determines the final destination of the XItem messages is also populated. It can either 
be 'Merchandising' (default), which indicates that the message will be uploaded to the 
Merchandising item tables, or 'STG' which means that the message will only be 
inserted into the Merchandising staging tables for further enrichment, without data 
validation. Loading of records from staging to Merchandising will be performed via 
the induction process.

Once a record is successfully inserted into svc_process_tracker, and the attempt_rms_
load parameter is set to 'RMS', the ITEM_INDUCT_SQL.EXEC_ASYNC function calls 
the CORESVC_ITEM.PROCESS function to perform the bulk of the validations and 
persistence from staging into the Merchandising tables.

The function contains validations that exist in item creation via the UI and via item 
induction, which the XItem messages will be subject to. After having passed the data 
level validations, the items will be inserted into the main Merchandising item tables.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", is returned to the external system 
indicating that the message has been successfully received and persisted to the staging 
tables in the Merchandising database 

If the database persistence fails, the function returns false. A status of "E" is returned to 
the external system along with the error message returned from the PERSIST function.

RMSSUB_ITEM.HANDLE_ERROR () - This is the standard error handling function 
that wraps the API_LIBRARY.HANDLE_ERROR function.

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family packages. The 
private functions call these packages.

Filename: rmssub_xitemsqls/b.pls

RMSSUB_XITEM_SQL.PERSIST
                      (O_error_message  IN OUT  VARCHAR2,
                       I_message_type   IN      VARCHAR2,
                       I_message        IN      RIB_XItemDesc,
                       I_item_rec       IN      RMSSUB_ITEM.ITEM_API_REC)



Item Subscription API

RIB Subscription Designs 3-67

This function checks the message type to route the object to the appropriate internal 
functions that perform DML insert and update processes on staging tables. 

ITEM CREATE

■ Inserts a record in the SVC_ITEM_MASTER table

■ Calls all the "insert" functions to insert records into the following tables:

– SVC_ITEM_COUNTRY

– SVC_ITEM_SUPPLIER

– SVC_ITEM_SUPP_COUNTRY

– SVC_ITEM_SUPP_MANU_COUNTRY

– SVC_PACKITEM (optional)

– SVC_VAT_ITEM (optional)

– SVC_UDA_ITEM_FF(optional)

– SVC_UDA_ITEM_LOV(optional)

– SVC_UDA_ITEM_DATE(optional)

– SVC_ITEM_IMAGE(optional)

– SVC_ITEM_MASTER_TL(optional)

– SVC_ITEM_SUPPLIER_TL(optional)

– SVC_ITEM_IMAGE_TL(optional)

– SVC_ITEM_HTS (optional)

– SVC_ITEM_HTS_ASSESS (optional)

– SVC_ITEM_SEASONS (optional)

– SVC_ITEM_EXPENSES(optional)

– SVC_ITEM_TICKET(optional)

– SVC_ITEM_EXPENSES(optional)

– SVC_ITEM_TICKET(optional)

– SVC_ITEM_CHRG(optional)

ITEM MODIFY

■ Inserts a record in SVC_ITEM_MASTER. It will be used to update the ITEM_
MASTER table.

ITEM DELETE

■ Inserts a record in the SVC_ITEM_MASTER. The record will be processed and 
inserted into the DAILY_PURGE table.

ITEM COUNTRY CREATE

■ Inserts records in SVC_ITEM_COUNTRY. It will be used to insert records into the 
ITEM_COUNTRY table.

■ For Brazil, the records in SVC_ITEM_COUNTRY will be used to update the ITEM_
COUNTRY_L10N_EXT table through L10N decoupling layer (L10N_FLEX_API_
SQL.PERSIST_L10N_ATTRIB)

ITEM_COUNTRY DELETE



Item Subscription API

3-68 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Inserts record in the SVC_ITEM_COUNTRY table. This will be used to delete 
records in the ITEM_COUNTRY table and ITEM_COUNTRY_L10N_EXT table.

ITEM_SUPPLIER CREATE

■ Inserts records in the SVC_ITEM_SUPPLIER table. This will be used to insert 
records in ITEM_SUPPLIER.

ITEM_SUPPLIER MODIFY

■ Inserts records in the SVC_ITEM_SUPPLIER table. This will be used to modify the 
ITEM_SUPPLIER table.

ITEM_SUPPLIER DELETE

■ Inserts records in the SVC_ITEM_SUPPLIER table for item. This will be used to 
delete from the ITEM_SUPPLIER table.

ITEM_SUPP_COUNTRY CREATE

■ Inserts records in SVC_ITEM_SUPP_COUNTRY. This will be used to insert into 
the ITEM_SUPP_COUNTRY table

ITEM_SUPP_COUNTRY MODIFY

■ Inserts records in the SVC_ITEM_SUPP_COUNTRY table. This will be used to 
update the ITEM_SUPP_COUNTRY table.

ITEM_SUPP_COUNTRY DELETE

■ Inserts records in the SVC_ITEM_SUPP_COUNTRY table. This will be used to 
delete records from the ITEM_SUPP_COUNTRY table.

ITEM_SUPP_MANU_COUNTRY CREATE

■ Inserts records in the SVC_ITEM_SUPP_MANU_COUNTRY table. This will be 
used to insert into the ITEM_SUPP_MANU_COUNTRY table.

ITEM_SUPP_MANU_COUNTRY MODIFY

■ Inserts records in the SVC_ITEM_SUPP_MANU_COUNTRY table. This will be 
used to update the ITEM_SUPP_MANU_COUNTRY table.

ITEM_SUPP_MANU_COUNTRY DELETE

■ Inserts records in the SVC_ITEM_SUPP_MANU_COUNTRY table. This will be 
used to delete from the ITEM_SUPP_MANU_COUNTRY table.

ITEM_SUPP_COUNTRY_DIM CREATE

■ Inserts records in the SVC_ITEM_SUPP_COUNTRY_DIM table. This will be used 
to insert into the ITEM_SUPP_COUNTRY_DIM table.

ITEM_SUPP_COUNTRY_DIM MODIFY

■ Inserts records in the SVC_ITEM_SUPP_COUNTRY_DIM table. This will be used 
to update the ITEM_SUPP_COUNTRY_DIM table.

ITEM_SUPP_COUNTRY_DIM DELETE

■ Inserts records in the SVC_ITEM_SUPP_COUNTRY_DIM table. This will be used 
to delete records from the ITEM_SUPP_COUNTRY_DIM table.

PACKITEM CREATE

■ Inserts records in the SVC_PACKITEM table. Records from the staging table will 
be used to insert into PACKITEM and SVC_PACKITEM AND update ITEM_



Item Subscription API

RIB Subscription Designs 3-69

SUPP_COUNTRY_LOC and/or ITEM_SUPP_COUNTRY with calculated unit_
cost.

VAT_ITEM CREATE

■ Inserts records in the SVC_VAT_ITEM table. The records will then be inserted into 
VAT_ITEM or replace any default records that were created from 
department/VAT.

VAT_ITEM DELETE

■ Inserts records in the SVC_VAT_ITEM table. The records will be used to delete 
from VAT_ITEM.

ITEM_UDA CREATE

■ Inserts records into the SVC_UDA_ITEM_DATE, SVC_UDA_ITEM_LOV and 
SVC_UDA_ITEM_FF tables. The records will then be inserted into the 
corresponding Merchandising base tables.

ITEM_UDA MODIFY

■ Inserts records into the SVC_UDA_ITEM_DATE, SVC_UDA_ITEM_LOV and 
SVC_UDA_ITEM_FF tables. The records will then be used to update records in the 
corresponding Merchandising base tables.

ITEM_UDA DELETE

■ Inserts records into the SVC_UDA_ITEM_DATE, SVC_UDA_ITEM_LOV and 
SVC_UDA_ITEM_FF tables. The records will then be used to update records from 
the corresponding Merchandising base tables.

ITEM_IMAGE CREATE

■ Inserts records into the SVC_ITEM_IMAGE table. The records will then be 
inserted into the corresponding Merchandising base table.

ITEM_IMAGE MODIFY

■ Inserts records into the SVC_ITEM_IMAGE table. The records will then be used to 
update records in the corresponding Merchandising base table.

ITEM_IMAGE DELETE

Inserts records into the SVC_ITEM_IMAGE table. The records will then be used to 
delete records from the corresponding Merchandising base table.ITEM_MASTER_TL 
CREATE

■ Inserts records into the SVC_ITEM_MASTER_TL table. The records will then be 
used to insert records to the corresponding Merchandising base table.

ITEM_MASTER_TL MODIFY

■ Inserts records into the SVC_ITEM_MASTER_TL table. The records will then be 
used to update records in the corresponding Merchandising base table.

ITEM_MASTER_TL DELETE

■ Inserts records into the SVC_ITEM_MASTER_TL table. The records will then be 
used to delete records from the corresponding Merchandising base table.

ITEM_SUPPLIER_TL CREATE

■ Inserts records into the SVC_ITEM_SUPPLIER_TL table. The records will then be 
used to insert records in the corresponding Merchandising base table.

ITEM_SUPPLIER_TL MODIFY



Item Subscription API

3-70 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Inserts records into the SVC_ITEM_SUPPLIER_TL table. The records will then be 
used to update records in the corresponding Merchandising base table.

ITEM_SUPPLIER_TL DELETE

■ Inserts records into the SVC_ITEM_SUPPLIER_TL table. The records will then be 
used to delete records from the corresponding Merchandising base table.

ITEM_IMAGE_TL CREATE

■ Inserts records into the SVC_ITEM_IMAGE_TL table. The records will then be 
used to insert records in the corresponding Merchandising base table.

ITEM_IMAGE_TL MODIFY

■ Inserts records into the SVC_ITEM_IMAGE_TL table. The records will then be 
used to update records in the corresponding Merchandising base table.

ITEM_IMAGE_TL DELETE

■ Inserts records into the SVC_ITEM_IMAGE_TL table. The records will then be 
used to delete records from the corresponding Merchandising base table.

ITEM_HTS CREATE

■ Inserts records into the SVC_ITEM_HTS table. The records will then be used to 
create records in the corresponding Merchandising base table.

ITEM_HTS MODIFY

■ Inserts records into the SVC_ITEM_HTS table. The records will then be used to 
update records in the corresponding Merchandising base table.

ITEM_HTS DELETE

Inserts records into the SVC_ITEM_HTS table. The records will then be used to delete 
records from the corresponding Merchandising base table.

ITEM_HTS_ASSESS CREATE

■ Inserts records into the SVC_ITEM_HTS_ASSESS table. The records will then be 
used to create records in the corresponding Merchandising base table.

ITEM_HTS_ASSESS MODIFY

■ Inserts records into the SVC_ITEM_ASSESS table. The records will then be used to 
update records in the corresponding Merchandising base table.

ITEM_HTS_ASSESS DELETE

■ Inserts records into the SVC_ITEM_ASSESS table. The records will then be used to 
delete records from the corresponding Merchandising base table.

ITEM_EXPENSES CREATE

■ Inserts records into the SVC_ITEM_EXPENSES table. The records will then be 
used to create records in the corresponding Merchandising base table.

ITEM_EXPENSES MODIFY

■ Inserts records into the SVC_ITEM_EXPENSES table. The records will then be 
used to update records in the corresponding Merchandising base table.

ITEM_EXPENSES DELETE

■ Inserts records into the SVC_ITEM_EXPENSES table. The records will then be 
used to delete records from the corresponding Merchandising base table.

ITEM_TICKET CREATE



Item Subscription API

RIB Subscription Designs 3-71

■ Inserts records into the SVC_ITEM_TICKET table. The records will then be used to 
create records in the corresponding Merchandising base table.

ITEM_TICKET MODIFY

■ Inserts records into the SVC_ITEM_TICKET table. The records will then be used to 
update records in the corresponding Merchandising base table.

ITEM_TICKET DELETE

■ Inserts records into the SVC_ITEM_TICKET table. The records will then be used to 
delete records from the corresponding Merchandising base table.

ITEM_SEASONS CREATE

■ Inserts records into the SVC_ITEM_SEASONS table. The records will then be used 
to create records in the corresponding Merchandising base table.

ITEM_SEASONS DELETE

■ Inserts records into the SVC_ITEM_SEASONS table. The records will then be used 
to delete records from the corresponding Merchandising base table.

ITEM UP CHARGE CREATE

■ Inserts records into the SVC_ITEM_CHRG table.  The records will then be used to 
create records in the corresponding Merchandising base table.

ITEM UP CHARGE MODIFY

■ Inserts records into the SVC_ITEM_CHRG table.  The records will then be used to 
update existing records in the corresponding Merchandising base table.

ITEM UP CHARGE DELETE

■ Inserts records into the SVC_ITEM_CHRG table.  The records will then be used to 
delete existing records from the corresponding Merchandising base table.

Message XSD
Below are the filenames that correspond with each message type. These are the 
message types available through RIB. Consult the RIB documentation for each 
message type in order to get a detailed picture of the composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

XItemCre Item Create Message XItemDesc.xsd

XItemMod Item Modify Message XItemDesc.xsd

XItemDel Item Delete Message XItemRef.xsd

XItemSupCre Item/Supplier Create Message XItemDesc.xsd

XItemSupMod Item/Supplier Modify 
Message

XItemDesc.xsd

XItemSupDel Item/Supplier Delete Message XItemRef.xsd

XItemSupCtyCre Item/Supplier/Country 
Create Message

XItemDesc.xsd

XItemSupCtyMod Item/Supplier/Country 
Modify Message

XItemDesc.xsd

XItemSupCtyDel Item/Supplier/Country 
Delete Message

XItemRef.xsd



Item Subscription API

3-72 Operations Guide Volume 2 - Message Publication and Subscription Designs

XISCMfrCre Item/Supplier/Country of 
Manufacture Create Message

XItemDesc.xsd

XISCMfrMod Item/Supplier/ Country of 
Manufacture Modify Message

XItemDesc.xsd

XISCMfrDel Item/Supplier/ Country of 
Manufacture Delete Message

XItemRef.xsd

XISCDimCre Item/Supplier/Country/Dim
ension Create Message

XItemDesc.xsd

XISCDimMod Item/Supplier/Country/Dim
ension Modify Message

XItemDesc.xsd

XISCDimDel Item/Supplier/Country/Dim
ension Delete Message

XItemRef.xsd

XItemVatCre Item/Vat Create Message XItemDesc.xsd

XItemVatDel Item/Vat Delete Message XItemRef.xsd

XitemCtryCre Item/Country Create Message XItemCtryDesc.xsd

XitemCtryDel Item/Country Delete Message XItemCtryRef.xsd

XitemUdaCre Item/UDA Create Message XItemDesc.xsd

XitemUdaDel Item/UDA Delete Message XItemRef.xsd

XitemImageCre Item/Image Create Message XItemDesc.xsd

XitemImageMod Item/Image Modify Message XItemDesc.xsd

XitemImageDel Item/Image Delete Message XItemRef.xsd

XitemTLCre Item Master translated 
language Create Message

XItemDesc.xsd

XitemTLMod Item Master translated 
language Modify Message

XItemDesc.xsd

XitemTLDel Item Master translated 
language Delete Message

XItemRef.xsd

XitemSupTLCre Item/Supplier translated 
language Create Message

XItemSupDesc.xsd

XitemSupTLMod Item/Supplier translated 
language Modify Message

XItemSupDesc.xsd

XitemSupTLDel Item/Supplier translated 
language Delete Message

XItemSupRef.xsd

XitemImageTLCre Item/Image translated 
language Create Message

XItemImageDesc.xsd

XitemImageTLMod Item/Image translated 
language Modify Message

XItemImageDesc.xsd

XitemImageTLDel Item/Image translated 
language Delete Message

XItemImageRef.xsd

XItemHTSCre Item/HTS create message XItemDesc.xsd

XItemHTSMod Item/HTS modify message XItemDesc.xsd

XItemHTSDel Item/HTS delete message XItemRef.xsd

XItemHTSAssessCre Item/HTS assess create 
message

XItemDesc.xsd

Message Types Message Type Description XML Schema Definition (XSD)



Item Subscription API

RIB Subscription Designs 3-73

These are the message types supported by the Item Management Web Service. Refer to 
"Package Impact" "Consume Module" section for the list of procedures that correspond 
to these message types.

XItemHTSAssessMod Item/HTS assess modify 
message

XItemDesc.xsd

XItemHTSAssessDel Item/HTS assess delete 
message

XItemRef.xsd

XItemExpensesCre Item/Expenses create message XItemDesc.xsd

XItemExpensesMod Item/Expenses modify 
message

XItemDesc.xsd

XItemExpensesDel Item/Expenses delete message XItemRef.xsd

XItemTicketCre Item/Ticket create message XItemDesc.xsd

XItemTicketMod Item/Ticket modify message XItemDesc.xsd

XItemTicketDel Item/Ticket delete message XItemRef.xsd

XItemSeasonCre Item/Seasons create message XItemDesc.xsd

XItemSeasonDel Item/Seasons delete message XItemRef.xsd

xitemchgcre Item up charge create message XItemDesc.xsd

xitemchgdtlmod Item up charge modify 
message

XItemDesc.xsd

xitemchgdel Item up charge delete message XItemRef.xsd

Message Types Message Type Description XML Schema Definition (XSD)

createItem Create Item Service Operation XItemDesc.xsd

createSupplier Create Item Supplier Service 
Operation

XItemDesc.xsd

modifySupplier Modify Item Supplier Service 
Operation

XItemDesc.xsd

deleteSupplier Delete Item Supplier Service 
Operation

XItemRef.xsd

createSupplierCountry Create Item Supplier Country 
Service Operation

XItemDesc.xsd

modifySupplierCountry Modify Item Supplier Country 
Service Operation

XItemDesc.xsd

deleteSupplierCountry Delete Item Supplier Country 
Service Operation

XItemDesc.xsd

modifyItem Modify Item Service Operation XItemDesc.xsd

createSupplierCountryDim Create Item Supplier Country 
Dimension Service

XItemDesc.xsd

modifySupplierCountryDim Modify Item Supplier Country 
Dimension Service

XItemDesc.xsd

deleteSupplierCountryDim Delete Item Supplier Country 
Dimension Service

XItemRef.xsd

createItemReclass Create Item Reclass Service 
Operation 

XItemRclsDesc.xsd

Message Types Message Type Description XML Schema Definition (XSD)



Item Subscription API

3-74 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
■ Item/Supplier/Country/Location relationships are not addressed by this API.

■ Item/location relationships are not addressed by this API; they are addressed in a 
separate Item Location Subscription API.

■ Oracle Retail Price Management (RPM_ is called to set the initial pricing for the 
item. This populates tables in the RPM system.

■ Item reclassification is not addressed by this API; they are addressed in a separate 
Item Reclassification Subscription API.

Tables

deleteItemReclass Delete Item Reclass Service 
Operation

XItemRclsRef.xsd

createItemReclassDetail Create Item Reclass Detail 
Service Operation

XItemRclsDesc.xsd

deleteItemReclassDetail Delete Item Reclass Detail 
Service Operation

XItemRclsRef.xsd

createUDA Create Item UDA Service 
Operation

XItemDesc.xsd

modifyUDA Modify Item UDA Service 
Operation

XItemDesc.xsd

deleteUDA Delete Item UDA Service 
Operation

XItemRef.xsd

TABLE SELECT INSERT UPDATE DELETE

SVC_ITEM_MASTER Yes Yes Yes No

SVC_ITEM_SUPPLIER Yes Yes Yes No

SVC_ITEM_SUPP_COUNTRY Yes Yes Yes No

SVC_ITEM_SUPP_MANU_
COUNTRY

Yes Yes Yes No

SVC_ITEM_SUPP_COUNTRY_DIM Yes Yes Yes No

SVC_PACKITEM Yes Yes Yes No

SVC_VAT_ITEM Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

SVC_ITEM_COUNTRY Yes Yes No No

SVC_UDA_ITEM_DATE Yes Yes Yes Yes

SVC_UDA_ITEM_FF Yes Yes Yes Yes

SVC_UDA_ITEM_LOV Yes Yes Yes Yes

SVC_ITEM_IMAGE Yes Yes Yes Yes

SVC_ITEM_MASTER_TL Yes Yes Yes Yes

SVC_ITEM_SUPPLIER_TL Yes Yes Yes Yes

SVC_ITEM_HTS Yes Yes Yes Yes

Message Types Message Type Description XML Schema Definition (XSD)



Item Location Subscription API

RIB Subscription Designs 3-75

Item Location Subscription API
This section describes the item location subscription API.

SVC_ITEM_HTS_ASSESS Yes Yes Yes Yes

SVC_ITEM_EXPENSES Yes Yes Yes Yes

SVC_ITEM_TICKET Yes Yes Yes Yes

SVC_ITEM_SEASONS Yes Yes Yes Yes

SVC_ITEM_IMAGE_TL Yes Yes Yes Yes

SVC_ITEM_CHRG Yes Yes Yes Yes

SVC_PROCESS_TRACKER Yes Yes No No

ITEM_MASTER Yes Yes Yes No

ITEM_SUPPLIER Yes Yes Yes Yes

ITEM_SUPP_COUNTRY Yes Yes Yes Yes

ITEM_SUPP_MANU_COUNTRY Yes Yes Yes Yes

ITEM_SUPP_COUNTRY_DIM Yes Yes Yes Yes

PACKITEM Yes Yes Yes Yes

PACKITEM_BREAKOUT Yes Yes Yes Yes

VAT_ITEM Yes Yes Yes Yes

ITEM_COUNTRY Yes Yes Yes Yes

UDA_ITEM_DATE Yes Yes Yes Yes

UDA_ITEM_FF Yes Yes Yes Yes

UDA_ITEM_LOV Yes Yes Yes Yes

ITEM_IMAGE Yes Yes Yes Yes

ITEM_MASTER_TL Yes Yes Yes Yes

ITEM_SUPPLIER_TL Yes Yes Yes Yes

ITEM_IMAGE_TL Yes Yes Yes Yes

ITEM_HTS Yes Yes Yes Yes

ITEM_HTS_ASSESS Yes Yes Yes Yes

ITEM_EXP_HEAD Yes Yes Yes Yes

ITEM_EXP_DETAIL Yes Yes Yes Yes

ITEM_TICKET Yes Yes Yes Yes

ITEM_SEASONS Yes Yes Yes Yes

ITEM_SUPPLIER_CFA_EXT No Yes No No

ITEM_MASTER_CFA_EXT No Yes No No

ITEM_SUPP_COUNTRY_CFA_EXT No Yes No No

ITEM_CHRG_HEAD Yes Yes Yes Yes

ITEM_CHRG_DETAIL Yes Yes Yes Yes

TABLE SELECT INSERT UPDATE DELETE



Item Location Subscription API

3-76 Operations Guide Volume 2 - Message Publication and Subscription Designs

Functional Area
Items-Locations

Design Overview
Item locations can be maintained at the following levels of the organization hierarchy: 
chain, area, region, district, and store. Records are maintained for all stores within the 
location group. Because warehouses are not part of the organization hierarchy, they are 
only impacted by records maintained at the warehouse level. If building item-locations 
by organizational hierarchy, only locations in the hierarchy that do not already exist on 
item-location will be built.

Item locations can only be created for a single item. However, levels of the 
organization hierarchy are available for maintenance in order to facilitate 
location-level processing into Merchandising. The detail node is required for both 
create and modify messages.

Item supplier country locations will be created for the passed-in primary 
supplier/country if they do not already exist. If primary supplier/country locations 
are not passed in, then they will default from the item's primary supplier/country and 
a location will be created, if it does not already exist.

Item locations are required to be interfaced into Merchandising in active status. There 
is no delete function in this API. Instead, item locations can be put into inactive, 
discontinued, or deleted status. However, they will be deleted if the associated item is 
purged. If building item-locations by store or warehouse, then each passed-in location 
must not already exist as an item-location. 

A major functionality added to Merchandising is the support of Brazil Localization. 
This introduced a layer of code to enable decoupling of localization logic that is only 
required for country-specific configuration. This layer affects the RIB API flows 
including XItemLoc subscription.

The RIB_XItemLocDtl_REC message is modified to include RIB_CustFlexAttriVo_TBL 
message to enable the subscription of the custom flex attributes.

L10N Localization Decoupling Layer:
Oracle Fiscal Management (ORFM) was designed as an add-on product to 
Merchandising to handle Brazil-specific fiscal management. Even though RFM and 
Merchandising exist in the same database schema and RFM cannot be installed 
separately without Merchandising, Oracle Retail ensures that Merchandising is 
decoupled from RFM. This is so that non-Brazilian clients can install Merchandising 
without RFM. To achieve that, an L10N decoupling layer was introduced.

In the context of XITEMLOC subscription API, when Merchandising consumes an 
XITEMLOC message from an external system, the message must be routed to a third 
party tax application (for example, Mastersaf) for tax calculation if the message 
involves ranging an item to a new Brazilian location. In that case, Merchandising's 
XItemLoc subscription API (rmssub_xitemloc and related packages) will call Mastersaf 
through an L10N de-coupling layer.

Package Impact
This section describes the package impact.

Consume Module
Filename: rmssub_xitemlocs/b.pls



Item Location Subscription API

RIB Subscription Designs 3-77

RMSSUB_XITEMLOC.CONSUME
                      (O_status_code    IN OUT  VARCHAR2,
                       O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                       I_message        IN      RIB_OBJECT,
                       I_message_type   IN      VARCHAR2) 

This procedure needs to initially ensure that the passed in message type is a valid type 
for item location messages. If the message type is invalid, a status of "E" should be 
returned to the external system along with an appropriate error message informing the 
external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the 
actual object using the Oracle's treat function. If the downcast fails, a status of "E" 
should be returned to the external system along with an appropriate error message 
informing the external system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all 
of Merchandising's business validation. It calls the RMSSUB_XITEMLOC_
VALIDATE.CHECK_MESSAGE function to determine whether the message is valid. If 
the message passed Merchandising business validation, then the function will return 
true; otherwise, it will return false. If the message has failed Merchandising business 
validation, a status of "E" should be returned to the external system along with the 
error message returned from the CHECK_MESSAGE function.

The package RMSSUB_XITEMLOC_CFA enables the subscription of the custom flex 
attributes. RMSSUB_XITEMLOC_CFA.CONSUME is called to process the custom flex 
attributes.

Once the message has passed Merchandising business validation, it can be persisted to 
the Merchandising database. It calls the RMSSUB_XITEMLOC_SQL.PERSIST_
MESSAGE() function. If the database persistence fails, the function returns false. A 
status of "E" should be returned to the external system along with the error message 
returned from the PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", should be returned to the external 
system indicating that the message has been successfully received and persisted to the 
Merchandising database.

RMSSUB_XITEMLOC.HANDLE_ERROR() - This is the standard error handling 
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Also detail RIB object RIB_XItemLocDtl_REC is modified to support Store 
serialization.

Business Validation Module
It should be noted that some of the business validation is referential or involves 
uniqueness. This validation is handled automatically by the referential integrity 
constraints and the unique indexes implemented on the database.

Filename: rmssub_xitemlocvals/b.pls

RMSSUB_XITEMLOC_VALIDATE.CHECK_MESSAGE 
                              (O_error_message  IN OUT  VARCHAR2,
                               O_ITEMLOC_rec       OUT  ITEMLOC_REC,
                               I_message        IN      RIB_XItemLocDesc,
                               I_message_type   IN      VARCHAR2)

This function performs all business validation associated with message and builds the 
item locations record for persistence. 



Item Location Subscription API

3-78 Operations Guide Volume 2 - Message Publication and Subscription Designs

ITEMLOC CREATE

■ Check required fields

■ Verify primary supplier/country exists on Item-supplier-country

■ If creating locations by store or warehouse, verify passed in locations do not 
currently exist.

■ If item is a buyer pack, verify receive as type is valid based on item's order as type.

■ Default required fields not provided (store order multiple, taxable indicator, local 
item description, primary supplier/country, receive as type).

■ Build item-location records.

■ Build price history records.

ITEMLOC MODIFY

■ Check required fields

■ Populate item-location record.

Bulk or single DML module
Filename: rmssub_xitemlocsqls/b.pls

RMSSUB_XITEMLOC_SQL.PERSIST
                         (O_error_message  IN OUT  VARCHAR2,
                          I_dml_rec        IN      ITEMLOC_RECTYPE, 
                          I_message        IN      RIB_XITEMLOCDesc)

ITEMLOC CREATE

■ Insert a record into the item-location table.

■ Insert a record into the item-location-stock on hand table

■ If necessary, insert a record into the item supplier country location table.

■ Insert a record into the price history table.

ITEMLOC MODIFY 

■ Update item-location table.

Message XSD
Below are the filenames that correspond with each message type. Consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Type Message Type Description
XML Schema 
Definition (XSD)

xitemloccre External item locations create XItemlocDesc.xsd

xitemlocMod External item locations 
odification

XItemlocDesc.xsd



Item Reclassification Subscription API

RIB Subscription Designs 3-79

Tables

Item Reclassification Subscription API
This section describes the item reclassification subscription API.

Functional Area
Items - Reclassification

Design Overview
Merchandising subscribes to item reclassification messages that are published by an 
external system. This subscription is necessary in order to keep Merchandising in sync 
with the external system. The retailer can view the pending reclassifications online in 
Merchandising. 

This API allows external systems to create and delete item reclassification events 
within Merchandising. 

At least one detail must be passed for a valid reclassification message. Reclassification 
items can be created or deleted within the reclassification message. Reclass item 
creates will send a snapshot of the reclass event. However, reclass item deletes do not 

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes Yes No

STORE Yes No No No

WH Yes No No No

ITEM_LOC Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

PACKITEM Yes No No No

RPM_ITEM_ZONE_PRICE Yes No No No

CURRENCIES Yes No No No

ELC_TABLES Yes No No No

VAT_ITEM Yes No No No

PARTNER Yes No No No

ITEM_LOC_CFA_EXT No Yes No No



Item Reclassification Subscription API

3-80 Operations Guide Volume 2 - Message Publication and Subscription Designs

require any header information as items are unique for reclassification and items may 
be deleted across reclass events.

Only level one items can be interfaced via this API. If the item is a pack, only 
non-simple packs can be interfaced. Simple pack items will be reclassified when their 
component is reclassified.

During the reclassification batch process, it will determine if any pack items exist in 
Merchandising that contain the items or any of that item's children being reclassified. 

If such a pack exists and contains no other items, the batch process adds the pack to 
the reclassification event being created in Merchandising.

It is valid for a reclassification event to be created for a department/class/subclass not 
yet existing but planning to exist. This is valid as long as they 
department/class/subclass is scheduled to be created on or prior to the reclassification 
taking effect.

Deleting reclassifications can either occur by: 

■ Items on a reclass event or across events.

■ A single reclassification event.

■ All reclassification events on a particular event date (deletion through the use of 
the reclass_date may result in the deletion of numerous reclass events).

■ All reclassification events.

Deleting a reclassification header will require either a reclass no, reclass date, or purge 
all ind.

Bulk or Single DML Module
This section describes the bulk or single DML module.

Consume Module
Filename: rmssub_xitemrclss/b.pls

RMSSUB_XITEMRCLS.CONSUME
                      (O_status_code   IN OUT  VARCHAR2,
                       O_error_message IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                       I_message       IN      RIB_OBJECT,
                       I_message_type  IN      VARCHAR2)

This procedure needs to initially ensure that the passed in message type is a valid type 
for item reclassification messages. If the message type is invalid, a status of "E" should 
be returned to the external system along with an appropriate error message informing 
the external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the 
actual object using the Oracle's treat function. If the downcast fails, a status of "E" 
should be returned to the external system along with an appropriate error message 
informing the external system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all 
of Merchandising's business validation. It calls the RMSSUB_XITEMRCLS_
VALIDATE.CHECK_MESSAGE function to determine whether the message is valid. If 
the message passed Merchandising business validation, then the function will return 
true; otherwise, it will return false. If the message has failed Merchandising business 
validation, a status of "E" should be returned to the external system along with the 
error message returned from the CHECK_MESSAGE function.



Item Reclassification Subscription API

RIB Subscription Designs 3-81

Once the message has passed Merchandising business validation, it can be persisted to 
the Merchandising database. It calls the RMSSUB_XITEMRCLS_SQL.PERSIST_
MESSAGE() function. If the database persistence fails, the function returns false. A 
status of "E" should be returned to the external system along with the error message 
returned from the PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", should be returned to the external 
system indicating that the message has been successfully received and persisted to the 
Merchandising database.

RMSSUB_XITEMRCLS.HANDLE_ERROR() - This is the standard error handling 
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves 
uniqueness. This validation is handled automatically by the referential integrity 
constraints and the unique indexes implemented on the database.

Package Impact
Filename: rmssub_xitemrclsvals/b.pls

RMSSUB_XITEMRCLS_VALIDATE.CHECK_MESSAGE
                                    (O_error_message IN OUT  VARCHAR2,
                                     O_ITEMRCLS_rec     OUT  ITEMRCLS_REC,
                                     I_message       IN      RIB_XITEMRCLSDesc,
                                     I_message_type  IN      VARCHAR2)

This function performs all business validation associated with message and builds the 
item reclassification record for persistence. 

ITEMRCLS CREATE

■ Check required fields

■ Verify items not on existing reclassification

■ Validate the reclassification date (must be today or greater).

■ Verify hierarchy of item being reclassified to (either an existing hierarchy or a 
pending hierarchy that will be created prior to the item reclassification)

■ Verify no unit and dollar stocks performed on items

■ Build reclassification records

ITEMRCLS DELETE

■ Check required fields

■ For reclassification header deletes, verify deleting by either reclassification 
number, reclassification (event) date, or purging all reclassifications

■ Populate record

ITEMRCLS DETAIL CREATE

■ Check required fields

■ Verify items not on existing reclassification

■ Validate the reclassification date (must be today or greater).



Item Reclassification Subscription API

3-82 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Verify hierarchy of item being reclassified to (either an existing hierarchy or a 
pending hierarchy that will be created prior to the item reclassification)

■ Verify no unit and dollar stocks performed on items

■ Build reclassification records

ITEMRCLS DETAIL DELETE

■ Check required fields

■ Populate record.

Filename: rmssub_xitemrclssqls/b.pls

RMSSUB_XITEMRCLS_SQL.PERSIST
                          (O_error_message IN OUT  VARCHAR2,
                           I_dml_rec       IN      ITEMRCLS_RECTYPE , 
                           I_message       IN      RIB_XITEMRCLSDesc)

ITEMRCLS CREATE

■ Insert a record into the reclass header table

■ Insert a record into the reclass item table

ITEMRCLS DETAIL DELETE

■ Delete from the reclass item table.

ITEMRCLS DELETE

■ If purging all records, delete all from reclass item table.

■ If purging all records, delete all from reclass header table.

■ If not purging, delete from reclass item for reclass number or all reclass for an 
event date.

■ If not purging, delete from reclass header for reclass number or all reclass for an 
event date.

ITEMRCLS DELETE

■ Delete from reclass item for all items on record.

■ If no items exist for an event, delete the reclass event.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

xitemrclscre External item reclassification 
create

XItemRclsDesc.xsd

xitemrclsdtlcre External item reclassification 
detail create

XItemRclsDesc.xsd

Xitemrclsdel External item reclassification 
delete

XitemRclsRef.xsd

Xitemrclsdtldel External item reclassification 
detail delete

XItemRclsRef.xsd



Location Trait Subscription API

RIB Subscription Designs 3-83

Design Assumptions
Orderable buyer packs as 'E'aches will not be allowed to be reclassified if department 
level ordering is Y in Merchandising.

Table Impact

Location Trait Subscription API
This section describes the location trait subscription API.

Functional Area
Location Trait

Design Overview
The Location Trait Subscription API processes incoming data from an external system 
to create, edit and delete location traits in Merchandising. This data is processed 
immediately upon message receipt so success or failure can be communicated to the 
external application.

Package Impact
This section describes the package impact.

Consume Module
Filename: rmssub_xloctrts/b.pls

RMSSUB_XLOCTRT.CONSUME
                     (O_status_code    IN OUT  VARCHAR2,
                      O_error_message  IN OUT  VARCHAR2,
                      I_message        IN      RIB_OBJECT,
                      I_message_type   IN      VARCHAR2) 

This procedure will need to initially ensure that the passed in message type is a valid 
type for loc traits messages. If the message type is invalid, a status of "E" should be 
returned to the external system along with an appropriate error message informing the 
external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT need to be downcast to the actual 
object using the Oracle's treat function. If the downcast fails, a status of "E" should be 
returned to the external system along with an appropriate error message informing the 
external system that the object passed in is invalid.

TABLE SELECT INSERT UPDATE DELETE

RECLASS_HEAD Yes Yes No Yes

RECLASS_ITEM Yes Yes No Yes

ITEM_MASTER Yes No No No

PACKITEM Yes No No No

PACKITEM_
BREAKOUT

Yes No No No

V_MERCH_HIER Yes No No No



Location Trait Subscription API

3-84 Operations Guide Volume 2 - Message Publication and Subscription Designs

If the downcast is successful, then consume needs to verify that the message passes all 
of Merchandising's business validation. It calls the RMSSUB_XLOCTRT_
VALIDATE.CHECK_MESSAGE function to determine whether the message is valid. If 
the message passed Merchandising business validation, then the function will return 
true, otherwise it will return false. If the message has failed Merchandising business 
validation, a status of "E" should be returned to the external system along with the 
error message returned from the CHECK_MESSAGE function.

Once the message has passed Merchandising business validation, it can be persisted to 
the Merchandising database. It calls the RMSSUB_XLOCTRT_SQL.PERSIST_
MESSAGE() function. 

If the database persistence fails, the function will return false. A status of "E" should be 
returned to the external system along with the error message returned from the 
PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success, "S", status should be returned to the external 
system indicating that the message has been successfully received and persisted to the 
Merchandising database.

RMSSUB_XLOCTRT.HANDLE_ERROR() - This is the standard error handling 
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves 
uniqueness. This validation is handled automatically by the referential integrity 
constraints and the unique indexes implemented on the database.

Filename: rmssub_xloctrtvals/b.pls

RMSSUB_XLOCTRT_VALIDATE.CHECK_MESSAGE 
                                 (O_error_message  IN OUT  VARCHAR2,
                                  O_loctrait_rec      OUT  LOC_TRAITS_REC,
                                  I_message        IN      RIB_XLocTraitDesc,
                                  I_message_type   IN      VARCHAR2)

This function performs all business validation associated with messages and builds the 
location trait record for persistence. 

LOCATION TRAIT CREATE

■ Check required fields.

■ Populate record with message data.

LOCATION TRAIT MODIFY

■ Check required fields.

■ Verify the location trait exists.

■ Populate record with message data.

LOCATION TRAIT DELETE

■ Check required fields.

■ Verify the location trait exists.

■ Populate record with message data.



Merchandise Hierarchy Subscription API

RIB Subscription Designs 3-85

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family package. This 
package is LOC_TRAITS_SQL. The private functions will call this package.

Filename: rmssub_xloctrtsqls/b.pls

RMSSUB_XLOCTRT_SQL.PERSIST_MESSAGE
                             (O_error_message  IN OUT  VARCHAR2,
                              I_loc_trait_rec  IN      LOC_TRAIT_REC,
                              I_message_type   IN      VARCHAR2,)

This function determines what type of database transaction it will call based on the 
message type.

LOCATION TRAIT CREATE

■ Create messages get added to the location trait table.

LOCATION TRAIT MODIFY

■ Modify messages directly update the location trait table with changes.

LOCATION TRAIT DELETE 

■ Delete messages directly remove location trait records.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Required fields are shown in RIB documentation.

Table Impact

Merchandise Hierarchy Subscription API
This section describes the merchandise hierarchy subscription API.

Functional Area
Foundation Data

Message Type
Message Type 
Description

XML Schema 
Definition (XSD)

xloctrtcre External Location 
Trait Create

XLocTrtDesc.xsd

xloctrtdel External Location 
Trait Delete

XLocTrtRef.xsd

xloctrtmod External Location 
Trait Modification

XLocTrtDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS Yes Yes Yes Yes



Merchandise Hierarchy Subscription API

3-86 Operations Guide Volume 2 - Message Publication and Subscription Designs

Business Overview
The merchandise hierarchy allows the retailer to create the relationships that are 
necessary to support the product management structure of a company. This hierarchy 
reflects a classification of merchandise into multi-level descriptive categorizations to 
facilitate the planning, tracking, reporting, and management of merchandise within 
the company.

If Merchandising is not the system of record for merchandise hierarchy information for 
an implementation, then this API may be used to create, update or delete elements of 
the merchandise hierarchy, including division, group, department, class, and subclass, 
based on an external system. 

Division and group deletes also occur immediately upon receipt of the message. 
However, departments, classes, and subclasses will not actually be deleted from the 
system upon receipt of the message. Instead, they will be added to the DAILY_PURGE 
table, where validation will occur to ensure the records can be deleted. 

For more on this batch process, see the Retail Merchandising System Operations Guide, 
Volume 1 - Batch Overviews and Designs. 

Department VAT records can be created and edited within the department message 
(VAT records are not deleted). VAT creates can be passed in with a department create 
message, or they can be passed in with their own specific message type. VAT region 
and VAT codes records must exist prior to creating department VAT records. Also, 
when passing in a new VAT region to an existing department with attached items, the 
VAT information will default to all items.

The merchandise hierarchy must be created from the highest level down. Conversely, 
the hierarchy must be deleted from the lowest level up. Each lower level references a 
parent level. This means a department is associated with a group; a class is associated 
with a department; and a subclass is associated with department/class combination 
because classes are not unique across departments.

Package Impact
This section describes the package impact.

Filename: rmssub_xmrchhrs/b.pls
RMSSUB_XMRCHHR.CONSUME
                     (O_status_code    IN OUT  VARCHAR2,
                      O_error_message  IN OUT  VARCHAR2,
                      I_message        IN      RIB_OBJECT,
                      I_message_type   IN      VARCHAR2) 

This procedure will call the appropriate merchandise hierarchy family package based 
on the message type passed in.

■ Any company message type will call RMSSUB_XMRCHHRCOMP.CONSUME

■ Any division message type will call RMSSUB_XMRCHHRDIV.CONSUME

■ Any group message type will call RMSSUB_XMRCHHRGRP.CONSUME

■ Any department message type will call RMSSUB_XMRCHHRDEPT.CONSUME

■ Any class message type will call RMSSUB_XMRCHHRCLS.CONSUME

■ Any subclass message type will call RMSSUB_XMRCHHRSCLS.CONSUME



Merchandise Hierarchy Subscription API

RIB Subscription Designs 3-87

Filename: rmssub_xmrchhr[family_name]vals/b.pls
RMSSUB_XMRCHHR[family_name]_VALIDATE.CHECK_MESSAGE
               (O_error_message      IN OUT         VARCHAR2,
                O_[family_name]_rec     OUT NOCOPY  MERCH_SQL.[FAMILY_NAME]_TYPE,
                I_message            IN             RIB_XMrchHr[family_name]Desc,
                I_message_type       IN             VARCHAR2)

This function performs all business validation associated with messages and builds the 
merchandise hierarchy record for persistence. It should be noted that some of the 
business validation is referential or involves uniqueness. This validation is handled 
automatically by the referential integrity constraints and the unique indexes 
implemented on the database.

Filename: rmssub_xmrchhr[family_name]sqls/b.pls
RMSSUB_XMRCHHR[family_name]__SQL.PERSIST_MESSAGE
                   (O_error_message     IN OUT  VARCHAR2,
                    I_[family_name]_rec IN      MERCH_SQL.[FAMILY_NAME]_TYPE,
                    I_message_type      IN      VARCHAR2,)

Filename: rmssub_xmrchhrdept_cfa (rmssub_xmrchhrdept_cfas/b.pls)
Consume- This function will take RIB_ XMrchHrDeptDesc_REC as the input. Process 
the CustFlexAttriVo_TBL in the RIB object and write to DEPS_CFA_EXT table.

Filename: rmssub_xmrchhrcls_cfa (rmssub_xmrchhrcls_cfas/b.pls)
Consume - This function will take RIB_ XMrchHrClsDesc_REC as the input. Process 
the CustFlexAttriVo_TBL in the RIB object and write to CLASS_CFA_EXT table. 

Filename: rmssub_xmrchhrscls_cfa (rmssub_xmrchhrscls_cfas/b.pls)
Consume- This function will take RIB_ XMrchHrSclsDesc_REC as the input. Process 
the CustFlexAttriVo_TBL in the RIB object and write to SUBCLASS_CFA_EXT table. 

Message XSD
All insert, update and delete SQL statements are located in the family package. This 
package is MERCH_SQL. The private functions will call this package. This function 
determines what type of database transaction it will call based on the message type.

Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

xmrchhrclscre External Create Class XMrchHrClsDesc.xsd

xmrchhrcompcre External Create Company XMrchHrCompDesc.xsd

xmrchhrdeptcre External Create Department XMrchHrDeptDesc.xsd

xmrchhrdivcre External Create Division XMrchHrDivDesc.xsd

xmrchhrgrpcre External Create Group XMrchHrGrpDesc.xsd

xmrchhrsclscre External Create Subclass XMrchHrSclsDesc.xsd

xmrchhrclsdel External Delete Class XMrchHrClsRef.xsd

xmrchhrdeptdel External Delete Department XMrchHrDeptRef.xsd



Merchandise Hierarchy Subscription API

3-88 Operations Guide Volume 2 - Message Publication and Subscription Designs

Design Assumptions
Either the budget markup percent or the budget intake percent must be passed in. If 
RPM is installed, the average tolerance percent and maximum average counter must 
be greater than zero.

Table Impact
This section does not include the tables checked in the Daily Purge batch process. 

xmrchhrdivdel External Delete Division XMrchHrDivRef.xsd

xmrchhrgrpdel External Delete Group XMrchHrGrpRef.xsd

xmrchhrsclsdel External Delete Subclass XMrchHrSclsRef.xsd

xmrchhrvatcre External Merch Hierarchy 
VAT create

XMrchHrDeptDesc.xsd

xmrchhrvatmod External Merch Hierarchy 
VAT modify

XMrchHrDeptDesc.xsd

xmrchhrclsmod External Modify Class XMrchHrClsDesc.xsd

xmrchhrcompmod External Modify Company XMrchHrCompDesc.xsd

xmrchhrdeptmod External Modify 
Department

XMrchHrDeptDesc.xsd

xmrchhrdivmod External Modify Division XMrchHrDivDesc.xsd

xmrchhrgrpmod External Modify Group XMrchHrGrpDesc.xsd

xmrchhrsclsmod External Modify Subclass XMrchHrSclsDesc.xsd

xmrchhrdeptchrgcre External Merch Hier Dept 
Up-Charge create

XMrchHrDeptDesc.xsd

xmrchhrdeptchrgmod External Merch Hier Dept 
Up-Charge modify

XMrchHrDeptDesc.xsd

xmrchhrdeptchrgdel External Merch Hier Dept 
Up-Charge delete

XMrchHrDeptRef.xsd

TABLE SELECT INSERT UPDATE DELETE

COMPHEAD Yes Yes Yes No

DIVISION Yes Yes Yes Yes

DAILY_PURGE No Yes No No

GROUPS Yes Yes Yes Yes

DEPS Yes Yes Yes No

VAT_DEPS Yes Yes Yes No

CLASS Yes Yes Yes No

SUBCLASS Yes Yes Yes No

DEPS_CFA_EXT Yes Yes Yes Yes

CLASS_CFA_EXT Yes Yes Yes Yes

SUBCLASS_CFA_EXT Yes Yes Yes Yes

Message Type Message Type Description XML Schema Definition (XSD)



Merchandise Hierarchy Reclassification Subscription API

RIB Subscription Designs 3-89

Merchandise Hierarchy Reclassification Subscription API
This section describes the merchandise hierarchy reclassification subscription API.

Functional Area
Merchandise Hierarchy Reclassification

Business Overview
Merchandising can subscribe to merchandise hierarchy reclassification messages that 
are published by an external system for retailers who manage their hierarchies in a 
system outside Merchandising. This API allows for pending merchandise hierarchy 
reclassification events to be created, modified or deleted. A separate batch process will 
read the information off the pending merchandise hierarchy table and create or modify 
the merchandise hierarchy information in Merchandising once the change effective 
date arrives. This API does not accept messages to delete an existing merchandise 
hierarchy. Any deletion should be done through the Merchandise Hierarchy 
Subscription API instead. Furthermore, this API will not allow moving a class or 
subclass between departments. In Merchandising, a new class and/or subclass needs 
to be created and the items moved as part of an item reclassification and then the old 
class and/or subclass deleted. 

Package Impact
This section describes the package impact.

Consume Module
Rmssub_xmrchhrclss/b.pls

RMSSUB_XMRCHHRRCLS.CONSUME
                        (O_status_code   IN OUT  VARCHAR2,
                        O_error_message  IN OUT  VARCHAR2,
                        I_message        IN      RIB_OBJECT,
                        I_message_type   IN      VARCHAR2) 

This procedure will initially ensure that the passed in message type is a valid type for 
merchandise hierarchy reclassification messages. If the message type is invalid, a 
status of 'E' - Error will be returned to the external system along with an appropriate 
error message informing the external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT will be downcast to the actual 
object using the Oracle's Treat function. If the downcast fails, a status of 'E' will be 

UP_CHARGE_TEMP Yes Yes No Yes

COST_COMP_UPD_STG Yes Yes Yes Yes

DEPT_CHRG_HEAD Yes Yes No Yes

DEPT_CHRG_DETAIL Yes Yes Yes Yes

FROM_LOC_TEMP Yes Yes No Yes

TO_LOC_TEMP Yes Yes No Yes

ELC_COMP Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Merchandise Hierarchy Reclassification Subscription API

3-90 Operations Guide Volume 2 - Message Publication and Subscription Designs

returned to the external system along with an appropriate error message informing the 
external system that the object passed in is invalid.

If the downcast is successful, then consume will verify that the message passes all of 
Merchandising's business validation. If the message has failed Merchandising business 
validation, a status of 'E' will be returned to the external system along with the error 
message returned from the CHECK_MESSAGE function.

Once the message has passed Merchandising business validation, it can be persisted to 
the Merchandising database. If the database persistence fails, the function will return 
false. 

A status of 'E' will be returned to the external system along with the error message 
returned from the PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, 'S', will be returned to the external system 
indicating that the message has been successfully received and persisted to the 
Merchandising database.

RMSSUB_ XMRCHHRRCLS.HANDLE_ERROR() - This is the standard error handling 
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves 
uniqueness. This validation is handled automatically by the referential integrity 
constraints and the unique indexes implemented on the database.

Filename: rmssub_xmrchhrrclsvals/b.pls

RMSSUB_XMRCHHRRCLS_VALIDATE.CHECK_MESSAGE
                        (O_error_message        IN OUT  VARCHAR2,
                         O_pend_merch_hier_rec     OUT  PEND_MERCH_HIER%ROWTYPE,
                         I_message              IN      "RIB_XMrchHrRclsDesc_REC",
                         I_message_type         IN      VARCHAR2)

This function performs all business validation associated with the messages and builds 
the merchandise hierarchy record for persistence. 

CREATE

■ Check required fields. Required fields vary based on hierarchy level.

Adding New Hierarchy

– Verify passed in hierarchy does not already exist.

– Verify parent hierarchy already exists on merchandise hierarchy or pending 
merchandise hierarchy tables.

Modifying Existing Hierarchy

– Verify passed in hierarchy already exists.

– Verify that class and subclass hierarchies have passed in parent hierarchy in an 
existing hierarchy (i.e. classes and subclasses are not allowed to be reclassified 
into another department).

■ Populate record with message data

MODIFY

– Check required fields.

– Verify the hierarchy is already pending.



Merchandise Hierarchy Reclassification Subscription API

RIB Subscription Designs 3-91

– Populate record with message data.

DELETE

– Check required fields.

– Verify a pending hierarchy event exists.

– Verify no pending hierarchy events exist for levels below the passed in 
hierarchy level.

– Populate record with message data.

Bulk or single DML module 
All insert, update and delete SQL statements are located in the family package. This 
package is MERCH_RECLASS_SQL. The private functions will call this package.

Filename: rmssub_ xmrchhrrclssqls /b.pls

RMSSUB_XMRCHHRRCLS_SQL.PERSIST_MESSAGE
                          (O_error_message        IN OUT  VARCHAR2,
                           I_pend_merch_hier_rec  IN      PEND_MERCH_HIER%ROWTYPE,
                           I_message_type         IN      VARCHAR2)

This function determines what type of database transaction it will call based on the 
message type.

CREATE

■ Create messages get added to the pending merchandise hierarchy table.

MODIFY

■ Modify messages directly update the pending merchandise hierarchy table with 
changes.

DELETE

■ Delete messages get removed from the pending merchandise hierarchy table.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
None

Message Type Message Type Description XML Schema Definition (XSD)

xmrchhrrclscre Create Merchandise 
Hierarchy Reclassification 

XMrchHrRclsDesc.xsd

xmrchhrrclsdel Delete Merchandise 
Hierarchy Reclassification 

XMrchHrRclsRef.xsd

xmrchhrrclsmod Modify Merchandise 
Hierarchy Reclassification 

XMrchHrRclsDesc.xsd



Organizational Hierarchy Subscription API

3-92 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Organizational Hierarchy Subscription API
This section describes the organizational hierarchy subscription API.

Functional Area
Foundation Data

Business Overview
If Merchandising is not the system of record for organizational hierarchy information 
for an implementation, then this API may be used to create, update or delete elements 
of the hierarchy, including chain based on an external system. The organization 
hierarchy subscription also assigns existing location traits to or deletes them from 
elements of the organization hierarchy. Although stores are part of the organization 
hierarchy, they differ sufficiently to require their own subscription API.

Merchandising exposes an API that allows external systems to create, edit, and delete 
chain. All creates, updates, and deletes occur immediately upon receipt of the 
message.

The organizational hierarchy must be created from the highest level down. Conversely, 
the hierarchy must be deleted from the lowest level up. 

Package Impact
Filenamermssub_xorghrs/b.pls

RMSSUB_XORGHR.CONSUME
                    (O_status_code    IN OUT  VARCHAR2,
                     O_error_message  IN OUT  VARCHAR2,
                     I_message        IN      RIB_OBJECT,
                     I_message_type   IN      VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for 
organizational hierarchy messages. The valid message types for organizational 
hierarchy messages are listed in a section below.

If the message type is valid, the generic RIB_OBJECT will be downcast to the actual 
object using the Oracle's treat function. There will be an object type that corresponds 
with each message type. If the downcast is successful, then consume will verify that 
the message passes all of Merchandising's business validation. It calls the RMSSUB_
XORGHR_VALIDATE.CHECK_MESSAGE function to determine whether the 
message is valid. Once the message has passed Merchandising business validation, it 

TABLE SELECT INSERT UPDATE DELETE

DIVISION Yes No No No

GROUPS Yes No No No

DEPS Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No

PEND_MERCH_
HIER

Yes Yes Yes Yes



Organizational Hierarchy Subscription API

RIB Subscription Designs 3-93

is persisted to the Merchandising database. Once the message has been successfully 
persisted, a success status, "S", is returned to the external system indicating that the 
message has been successfully received and persisted to the Merchandising database.

RMSSUB_ XORGHIER.HANDLE_ERROR()-This is the standard error handling 
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Filename rmssub_xorghrvals/b.pls

RMSSUB_XORGHR_VALIDATE.CHECK_MESSAGE
                    (O_error_message IN OUT         VARCHAR2,
                     O_org_hier_rec     OUT NOCOPY  ORGANIZATION_SQL.ORG_HIER_REC,
                     I_message       IN             RIB_XOrgHrDesc,
                     I_message_type  IN             VARCHAR2)

This function performs all business validation associated with messages and builds the 
organizational hierarchy record for persistence. 

Filename: rmssub_xorghr_sqls/b.pls

RMSSUB_XORGHR_SQL.PERSIST_MESSAGE
                        (O_error_message IN OUT  VARCHAR2,
                         I_hier_level    IN      VARCHAR2,
                         I_org_hier_rec  IN      ORGANIZATIONAL_SQL.ORG-HIER_REC,
                         I_message_type  IN      VARCHAR2,)

This function determines what type of database transaction it will call based on the 
message type. All insert, update and delete SQL statements are located in the family 
package. This package is ORGANIZATIONAL_SQL. The private functions will call 
this package.

Message XSD
Below are the filenames that correspond with each message type. Consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ Location trait records must exist prior to attaching them to any hierarchy. 

■ Chains do not have location traits associated with them.

■ Some of the business validation is referential or involves uniqueness. This 
validation is handled automatically by the referential integrity constraints and the 
unique indexes implemented on the database.

Message Type Message Type Description XML Schema Definition (XSD)

XOrgHrCre External Create Organizational 
Hiearchy

XOrgHrDesc.xsd

XOrgHrLocTrtCre External Create Location Trait XOrgHrDesc.xsd

XOrgHrDel External Delete Organizational 
Hiearchy

XOrgHrRef.xsd

XOrgHrLocTrtDel External Delete Location Trait XOrgHrRef.xsd

XOrgHrMod External Modify 
Organizational Hiearchy

XOrgHrDesc.xsd



Payment Terms Subscription API

3-94 Operations Guide Volume 2 - Message Publication and Subscription Designs

Tables

Payment Terms Subscription API
This section describes the payment terms subscription API.

Functional Area
Payment Terms 

Business Overview
Payment terms are supplier-related financial arrangement information that is 
published to the Oracle Retail Integration Bus (RIB), along with the supplier and the 
supplier address, from the financial system. Payment terms are the terms established 
for paying a supplier (for example, 2.5% for 30 days, 3.5% for 15 days, 1.5% monthly, 
and so on). Merchandising subscribes to a payment terms message that is held on the 
RIB. After confirming the validity of the records enclosed within the message, 
Merchandising updates its tables with the information.

Data Flow
An external system will publish a payment term, thereby placing the payment term 
information onto the RIB. Merchandising will subscribe to the payment term 
information as published from the RIB and place the information onto Merchandising 
tables depending upon the validity of the records enclosed within the message. 

Message Structure
The payment term message will consist of a payment term record header and detail. 

The record will contain information about the payment term as a whole. 

Package Impact
Filename: rmssub_ptrms/b.pls

Subscribing to a payment term message entails the use of one public consume 
procedure. This procedure corresponds to the type of activity that can be done to a 
payment term record (in this case create/update).

All of the following procedures exist within RMSSUB_PAYTERM.

CONSUME
       (O_status_code      OUT  VARCHAR2,
        O_error_message    OUT  VARCHAR2,  
        I_message       IN      RIB_OBJECT,
        I_message_type  IN      VARCHAR2)

TABLE SELECT INSERT UPDATE DELETE

CHAIN Yes Yes Yes Yes

AREA Yes Yes Yes Yes

REGION Yes Yes Yes Yes

DISTRICT Yes Yes Yes Yes

LOC_TRAITS_MATRIX Yes Yes No Yes



Payment Terms Subscription API

RIB Subscription Designs 3-95

This procedure initially checks that the passed in message type is a valid type for 
Terms messages. The valid message types for Terms messages are: paytermCre, 
paytermMod, paytermdtlCre and paytermdtlMod. If the message type is invalid, a 
status of "E" should be returned to the external system along with an appropriate error 
message informing the external system that the status is invalid. 

If the message type is valid, the generic RIB_OBJECT will need to be downcast to the 
actual object using the Oracle's treat function. There will be an object type that 
corresponds with each message type. If the downcast fails, a status of "E" should be 
returned to the external system along with an appropriate error message informing the 
external system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all 
of Merchandising's business validation. It does not actually perform any validation 
itself; instead, it calls the RMSSUB_PAYTERM_VALIDATE.CHECK_MESSAGE 
function to determine whether the message is valid. This function is overloaded so 
simply passing the object in should be sufficient. If the message passed Merchandising 
business validation, then the function will return true, otherwise it will return false. If 
the message has failed Merchandising business validation, a status of "E" should be 
returned to the external system along with the error message returned from the 
CHECK_MESSAGE function.

Once the message has passed Merchandising business validation, it can be persisted to 
the Merchandising database. The consume function does not have to have any 
knowledge of how to persist the message to the database, it calls the RMSSUB_
PAYTERM_SQL.PERSIST() function. This function is overloaded so simply passing the 
object should be sufficient. If the database persistence fails, the function will return 
false. A status of "E" should be returned to the external system along with the error 
message returned from the PERSIST() function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", should be returned to the external 
system indicating that the message has been successfully received and persisted to the 
Merchandising database.

Internal Procedure:

HANDLE_ERROR
           (O_status_code   IN OUT  VARCHAR2,
            O_error_message IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
            I_cause         IN      VARCHAR2,
            I_program       IN      VARCHAR2) 

This is the standard error handling function that wraps the API_LIBRARY.HANDLE_
ERROR function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS. API_
LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and 
potentially an unparsed error message if one has been created through a call to SQL_
LIB.CREATE_MESSAGE. The function uses these input variables to parse a complete 
error message and pass back a status, depending upon the message and error type, 
back up through the consume function and up to the RIB.

Business Validation Mode

Filename: rmssub_ptrmvals/b.pls 

This function performs all business validation associated with Terms create and 
modify messages. It is important that the signature uses IN for the message and not IN 
OUT. When IN is used, the parameter is passed by reference. Passing by reference 
keeps the server from duplicating the memory allocation.



Payment Terms Subscription API

3-96 Operations Guide Volume 2 - Message Publication and Subscription Designs

All of the following functions exist within RMSSUB_PAYTERM_VALIDATE.

CHECK_MESSAGE
           (O_error_message   OUT  RTK_ERRORS.RTK_TEXT%TYPE,  
            O_dml_rec         OUT  TERMS_SQL.PAYTERM_REC,
            I_message      IN      "RIB_PayTermDesc_REC",
            I_message_type IN      VARCHAR2)

This function performs all business validation associated with create/modify 
messages and builds the order API record with default values for persistence in the 
payment terms related tables. Any invalid records passed at any time results in 
message failure.

This function calls CHECK_REQUIRED_FIELDS to make sure that all required fields 
are not NULL. CHECK_ENABLED is called to check for the validity of records with 
start_date_active and end_date_active with enabled flag. CHECK_TERMS_HEAD and 
CHECK_TERMS_DETAIL are called to check for header and detail records before 
inserting and updating TERMS_DEATIL table. Finally, the payment terms record used 
for DML is populated within the POPULATE_RECORD function and passed back to 
RMSSUB_PAYTERM.CONSUME.

Internal Functions:

CHECK_REQUIRED_FIELDS

This function ensures that all required fields in the message are NOT NULL.

POPULATE_RECORDS

This function populates the payment terms output record with the values sent in the 
message.

CHECK_ENABLED

This function in a loop checks for start_date_active and end_date_active with the 
enabled_flag setting from RIB_MESSAGE. Declare cursor to retrieve vdate from table 
period and another cursor to retrieve start_date_active and end_date_active for the 
terms and terms_seq inputted from TERMS_DETAIL table. In a loop assign terms_seq 
to a local variable. Open cursor to retrieve start_date_active and end_date_Active from 
TERMS_DETAIL table. If terms_detail.start_date_active is after period.vdate and if 
enabled_flag from the rib message is 'Y', then raise program error. If end_date_active is 
< vdate and enabled_flag from the rib message is 'Y' then raise program error. If vdate 
> = start_date_active and <= end_date_active and enabled_flag is 'N' then raise a 
program error.

CHECK_TERMS_HEAD

This function will be responsible for checking TERMS_HEAD record before 
populating TERMS_DETAIL table for new terms record. Calling TERM_
SQL.HEADER_EXISTS function will perform this check.

CHECK_TERMS_DETAIL

This function checks existence of terms_detail records before updating detail record. 
Calling TERM_SQL.DETAIL_EXISTS function will perform this check.

DML Module

Filename: rmssub_ptrm_sqls/b.pls 

The following function exists within RMSSUB_PAYTERM_SQL.

PERSIST
       (O_error_message    OUT  RTK_ERRORS.RTK_TEXT%TYPE,  



PO Subscription API

RIB Subscription Designs 3-97

        I_message       IN      TERMS_SQL.PAYTERM_REC,
        I_message_type  IN      VARCHAR2)

Perform INSERT/UPDATE statements by calling the appropriate functions according 
to the message type and passing the data in a record to these functions.

For the message type indicating a header insert, populate the header record defined in 
the term_sql package and call the term_sql.insert_header function with this header 
record. For the message type indicating a header or a detail insert, call the term_
sql.insert_detail function and pass to it the detail node from the message.

For the message type indicating a header update, populate the header record defined 
in the term_sql package and call the term_sql.update_header function with this header 
record. For the message type indicating a detail update, call the term_sql.update_detail 
function and pass to it the detail node from the message.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Design Assumptions
■ One of the primary assumptions in the current API approach is that ease of code 

will outweigh performance considerations. It is hoped that the 'trickle' nature of 
the flow of data will decrease the need to dwell on performance issues and instead 
allow developers to code in the easiest and most straight forward manner.

■ The adaptor is only setup to call stored procedures, not stored functions. Any 
public program then needs to be a procedure.

Table Impact

PO Subscription API 
This section describes the PO subscription API.

Functional Area
Purchase Orders

Message Types Message Type Description XML Schema Definition (XSD)

PayTermCre Payment Terms Create Message PayTermDesc.xsd

PayTermMod Payment Terms Modify Message PayTermDesc.xsd

PayTermDtlCre Payment Terms Detail Create 
Message

PayTermDesc.xsd

PayTermDtlMod Payment Terms Detail Modify 
Message

PayTermDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

TERMS_DETAIL Yes Yes Yes No

TERMS_HEAD Yes Yes Yes No



PO Subscription API

3-98 Operations Guide Volume 2 - Message Publication and Subscription Designs

Business Overview
This subscription API is used to keep Merchandising in sync with an external system 
that is responsible for maintaining purchase orders. 

It is assumed that externally generated non-EDI purchase orders are being interfaced 
expressly for the facilitation of inventory movement in Merchandising.

This API also default expenses and HTS, applies rounding, defaults inventory 
management parameters, applies bracket costs, updates OTB, and inserts a record into 
the deals queue. 

This API allows external systems to create, edit, and delete purchase orders within 
Merchandising. These transactions are performed immediately upon message receipt 
so success or failure can be communicated to the calling application.

Purchase order messages are sent across the Oracle Retail Integration Bus (RIB). POs 
can be created, modified or deleted at the header or the detail level, each with its own 
message type.

If the Purchase order is a Franchise PO (location is a Franchise store), a corresponding 
Franchise order is created along with the PO. 

In addition to RIB, Merchandising also exposes a Purchase Order Management web 
service to allow an external application to create, update, and delete purchase orders 
in Merchandising. The web service takes in a collection of purchase orders and will 
return success and failure through the service response object.

Package Impact
Filename: OrderManagementServiceProviderImplSpec.pls 
OrderManagementServiceProviderImplBody.pls 

For a web service deployment, the 'Purchase Order Management' service with 
supported operations is available for an external system to send Purchase Order 
requests to Merchandising. Each supported operation will invoke the public interfaces 
in the PurchaseOrderManagementService package as follows:

■ create - createXOrderColDesc

■ createDetail - createDetail

■ modifyHeader - modifyHeader

■ modifyDetail - modifyDetail

■ deleteDetail - deleteDetail

These public interfaces will call the corresponding procedures in svcprov_xorder, 
which will in turn call rmssub_xorder.consume to do the major processing logic.

Filename: svcprov_xorders/b.pls 

Procedures called from Purchase Order web service public interfaces in the 
PurchaseOrderManagementService package to perform major processing. 

If error happens, it calls SVCPROV_UTLITY.BUILD_SERVICE_OP_STATUS to build 
and return RIB_ServiceOpStatus_REC with a failure message; if no errors, it builds 
and returns RIB_InvocationSuccess_REC with a success message. 

Filename: rmssub_xorders/b.pls

RMSSUB_XORDER.CONSUME
                   (O_status_code     IN OUT  VARCHAR2,
                    O_error_message   IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,



PO Subscription API

RIB Subscription Designs 3-99

                    I_message         IN      RIB_OBJECT,
                    I_message_type    IN      VARCHAR2)

This procedure initially ensures that the passed in message type is a valid type for 
purchase order messages. The valid message types for purchase order messages are 
listed in a section below.

If the message type is invalid, a status of "E" is returned to the external system along 
with an appropriate error message informing the external system that the status is 
invalid.

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object 
using the Oracle treat function. There is an object type that corresponds with each 
message type. If the downcast fails, a status of "E" is returned to the external system 
along with an appropriate error message informing the external system that the object 
passed in is invalid.

If the downcast is successful, then consume will verify that the message passes all of 
Merchandising's business validation. It calls the RMSSUB_XORDER.BUILD_
RECORDS function to validate and populate the header and detail records. The 
VALIDATE_MESSAGE function within the BUILD_RECORDS function performs 
XOrder message specific validations. If the message passes these validations, then the 
function returns true, otherwise it returns false. If the message fails Merchandising 
business validation, a status of "E" is returned to the external system along with the 
error message returned from the VALIDATE_MESSAGE function.

Once the message has passed XOrder specific validations, it is persisted to the 
Merchandising database. It calls the RMSSUB_XORDER_SQL.PERSIST() function to 
insert into the svc_ordhead and svc_orddetail staging tables in preparation for the 
upload in to the Merchandising purchase order tables via the PO induction package. 

The custom flex attributes in the message are subscribed by calling the function 
RMSSUB_XORDER_CFA.CONSUME(). This will insert the CFAS data into the table 
svc_cfa_ext.

A record is inserted into svc_process_tracker with template_type = 'XORDER' and 
process_source = 'EXT' (external). A parameter called attempt_rms_load which 
determines the final destination of the XOrder messages is also populated. It can either 
be 'Merchandising', which indicates that the message will be uploaded to the 
Merchandising purchase order tables, or 'STG' which means that the message will only 
be inserted into the Merchandising staging tables for further enrichment. Loading of 
records from staging to Merchandising will be performed via the induction process.

Once a record is inserted into svc_process_tracker, and the attempt_rms_load 
parameter is set to 'Merchandising' (which is the default), the PO Induction package 
function, PO_INDUCT_SQL.EXEC_ASYNC is responsible for performing the bulk of 
the validations and persistence into the Merchandising tables, is called. It contains 
validations that exist in PO creation via the UI and via PO induction, which the 
XOrder messages will be subject to. If the inserts into the ordering tables fails, the 
function returns false. A status of "E" is returned to the external system along with the 
error message returned from the PO_INDUCT_SQL.EXEC_ASYNC()function.

Once the message has been successfully persisted, there is nothing more for the 
consume procedure to do. A success status, "S", is returned to the external system 
indicating that the message has been successfully received and persisted to the 
Merchandising database.

Filename: rmssub_xorder_sqls/b.pls 

RMSSUB_XORDER_SQL.PERSIST
                    (O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,



PO Subscription API

3-100 Operations Guide Volume 2 - Message Publication and Subscription Designs

                     I_order_rec      IN      ORDER_SQL.ORDER_REC,
                     I_message_type   IN      VARCHAR2)

This function checks the message type to route the object to the appropriate internal 
functions that perform the inserts into the svc_ordhead and svc_orddetail staging 
tables.

ORDER CREATE

■ Inserts records in the SVC_ORDHEAD and SVC_ORDDETAIL tables. 

ORDER MODIFY

■ Inserts a record into the SVC_ORDHEAD table.

ORDER DELETE

■ Inserts a record into the SVC_ORDHEAD table.

ORDER DETAIL CREATE

■ Inserts records into the SVC_ORDDETAIL table.

ORDER DETAIL MODIFY

■ Inserts records into the SVC_ORDDETAIL table.

ORDER DETAIL DELETE

■ Inserts records into the SVC_ORDDETAIL table.

Filename: rmssub_xorder_cfas/b.pls

RMSSUB_XORDER_CFA.CONSUME
                 (O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                  I_message        IN      "RIB_XOrderDesc_REC",
                  I_message_type   IN      VARCHAR2,
                  I_process_id     IN      SVC_PROCESS_TRACKER.PROCESS_ID%TYPE)

This function inserts the CFAS data in to svc_cfa_ext table by calling the function   
CFA_API_SQL.INSERT_SVC_CFA_EXT ().

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

create Create Order Service Operation XOrderDesc.xsd

createDetail Create Order Detail Service 
Operation

XOrderDesc.xsd

modifyHeader Modify Order Service Operation XOrderDesc.xsd

modifyDetail Modify Order Detail Service 
Operation

XOrderDesc.xsd

deleteDetail Delete Order Detail Service 
Operation

XOrderRef.xsd

XorderCre Order Create Message XOrderDesc.xsd

XorderMod Order Modify Message XOrderDesc.xsd

XorderDel Order Delete Message XOrderRef.xsd



PO Subscription API

RIB Subscription Designs 3-101

Design Assumptions
Quantities and dates processed by this API are treated as the actual values that are 
used to insert/update the Merchandising ordering tables.

Tables

XorderDtlCre Order Detail Create Message XOrderDesc.xsd

XorderDtlMod Order Detail Modify Message XOrderDesc.xsd

XorderDtlDel Order Detail Delete Message XOrderRef.xsd

TABLE SELECT INSERT UPDATE DELETE

SVC_ORDHEAD Yes Yes Yes Yes

SVC_ORDDETAIL Yes Yes Yes Yes

SVC_PROCESS_TRACKER Yes Yes Yes No

CORESVC_PO_ERR No Yes No No

SVC_ORDER_PARAMETER_
CONFIG

Yes No No No

CORESVC_PO_CHUNKS Yes Yes Yes Yes

ORDHEAD Yes Yes Yes Yes

ORDSKU Yes Yes Yes Yes

ORDLOC Yes Yes Yes Yes

ITEM_SUPPLIER Yes Yes No No

ITEM_SUPP_COUNTRY Yes Yes No No

ITEM_SUPP_MANU_COUNTRY Yes Yes No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes No No

PRICE_HIST No Yes No No

ITEM_ZONE_PRICE Yes No No No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

APPT_DETAIL Yes No No No

ALLOC_HEADER Yes No No Yes

ALLOC_DETAIL Yes No No Yes

STORE Yes No No No

WAREHOUSE Yes No No No

SUPS Yes No No No

Message Types Message Type Description XML Schema Definition (XSD)



Receiving Subscription API

3-102 Operations Guide Volume 2 - Message Publication and Subscription Designs

Receiving Subscription API
This section describes the receiving subscription API.

Functional Area
Receipt subscription:

■ Purchase Order Receiving.

■ Stock Order Receiving (including Transfers and Allocations).

Business Overview
Merchandising receives against purchase orders, transfers, and allocations. Transfers 
and allocations are collectively referred to as stock orders. The receipt subscription API 
processes carton-level receipts and a number of carton-level exceptions for stock 
orders receipts.

Purchase orders continue to be received only at the item level. If errors are 
encountered during purchase order receiving, the entire message is rejected and 
processing of the message stops.

Stock orders may be received at the bill of lading (BOL), carton, or item level. The 
following exceptions are automatically processed by the stock order receiving package:

■ Receiving against the wrong BOL

■ Receiving at a location which is a walk-through store for the intended location

■ Wrong store receiving

■ Unwanded cartons (those that have not been scanned)

■ Misdirected container (those that are shipped to one store and received at another 
store)

■ Zero receipt

DEPS Yes No No No

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

TERMS Yes No No No

SYSTEM_OPTIONS Yes No No No

UNIT_OPTIONS Yes No No No

ADDR Yes No No No

WF_ORDER_HEAD Yes Yes Yes Yes

WF_ORDER_DETAIL Yes Yes Yes Yes

CFA_EXT_ENTITY Yes No No No

CFA_ATTRIB_GROUP_SET Yes No No No

CFA_ATTRIB_GROUP Yes No No No

CFA_ATTRIB Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Receiving Subscription API

RIB Subscription Designs 3-103

Once Merchandising determines the appropriate receiving process for a carton, the 
shipment detail records are identified and existing line item level receiving is 
executed. The items are received into stock and transactions are updated.

Stock orders may be received at the BOL (receiving the entire shipment without 
checking the details), carton (receiving the entire carton on SHIPSKU without checking 
the details), or item level. When an error is encountered during stock order receiving, 
an error record is created for the BOL, carton, or item in error. Processing continues for 
the remainder of the stock order receipt message. When the entire message has been 
processed, all of the error records are then handled. Error records are grouped together 
based on the type of error and a complete receipt message is created for each group. 
All errors will be collected in an error table, which will then be passed back to the RIB 
for further processing or hospitalization.

Carton-Level Receiving
The process for handling carton level receipts is as follows:

1. Merchandising determines whether a message type contains a receipt or an 
appointment.

2. If a receipt, Merchandising determines whether the document type is purchase 
order (P), transfer (T), or allocation (A). 

3. If a stock order (transfer or allocation), Merchandising determines whether the 
receipt is an item level receipt (SK) or a carton level receipt (BL).

4. If a carton level receipt, two scenarios are possible. The message may contain (a) a 
bill of lading number but no carton numbers or (b) a bill of lading and one or more 
carton numbers. 

■ Bill of lading/no cartons: Merchandising receives all cartons associated with 
the BOL along with their contents (line items). 

■ Bill of lading/with cartons: Merchandising receives only the specified cartons 
and their contents (line items).

5. The status of the cartons determines how the cartons/items are processed. The 
status may be Actual (A), Overage (O), Dummy BOL (D), or Closed (C).

Actual (A)
The cartons are received at the correct location against the correct bill of lading. 

Overage (O)
The carton does not belong to the current BOL. Merchandising attempts to match the 
contents with the correct BOL. 

■ If the carton belongs to a BOL at the given location, Merchandising receives the 
carton against the correct BOL at the given location. 

■ If the carton belongs to a BOL at a related walk-through store, Merchandising 
receives the carton against the intended BOL at the intended location. 

■ If the carton belongs to a BOL at an unrelated location, Merchandising uses the 
wrong store receiving process. 

Dummy BOL (D)
Cartons were received under a dummy bill of lading (BOL) number. Merchandising 
attempts to match the contents with a valid BOL.



Receiving Subscription API

3-104 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ If the carton belongs to a valid BOL at the given location, Merchandising receives 
the carton against the intended BOL at the given location.

■ If the carton belongs to a valid BOL at a related walk-through store, 
Merchandising receives the carton against the intended BOL at the intended 
location.

■ If the carton belongs to a valid BOL at an unrelated location, Merchandising uses 
the wrong store receiving process. 

Closed (C)
The BOL or the carton is closed. It indicates that no more receipts are expected against 
the BOL or the carton. Merchandising will adjust any outstanding 
shipped-but-not-received quantity to accurately reflect the stock position.

The wrong_st_receipt_ind system option controls whether wrong store receiving is 
available in Merchandising. The wrong_st_receipt_ind must be set to Y (Yes) to turn on 
this functionality. Wrong store receiving is done at the line item level. Inventory, 
average costs, and transactions for both the intended location and actual location are 
adjusted to accurately reflect the actual location of the items.

Misdirected Container
When a carton is shipped to one store but received at another store, the Store system 
(for example, SIM) can send the original carton ID in the ref_container_id field of 
RIB_ReceiptDtl_REC for Merchandising to identify and reconcile the original 
shipment and receive the items into the actual location. This is only supported for 
item-level receiving of stock orders at stores when the wrong_st_receipt_ind system 
option is set to Y. If the intended store sends a BOL-level or carton-level zero receipt to 
report the missing item, the zero receipt may arrive before or after the misdirected 
container receipt:

■ Zero receipt comes before the misdirected container receipt: when Merchandising 
processes the zero receipt, it will adjust any outstanding shipped-but-not-received 
quantity at the intended store; when Merchandising processes the misdirected 
container receipt, it will receive the items as overage at the actual store, because 
the original SHIPSKU has already been adjusted.

■ Zero receipt comes after the misdirected container receipt: the zero receipt will 
have no effect, because the original SHIPSKU has already been received and there 
is nothing to adjust.

Blind Receipt Processing
A blind receipt is generated by an external application whenever a movement of goods 
is initiated by that application. Merchandising has no prior knowledge of blind 
receipts. Merchandising handles blind receipts when it runs STOCK_ORDER_RCV_
SQL (transfers and allocations) or PO_RCV_SQL (purchase orders). If no appointment 
record exists on APPT_DETAIL, the respective function writes a record to the DOC_
CLOSE_QUEUE table.

Doc Types
Receipts are processed based upon the document type indicator in the message. The 
indicator serves as a flag for RMSSUB_RECEIPT.CONSUME to use when calling the 
appropriate function that validates the data and writes the data to the base tables. The 
following are the document types and respective package and function names:

■ A - for allocation. STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM



Receiving Subscription API

RIB Subscription Designs 3-105

■ P - for purchase order. ORDER_RCV_SQL .PO_LINE_ITEM

■ T - for transfer. STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM

When a transfer, PO or allocation is received at a location, the external location (store 
or warehouse) will publish a receipt message to the RIB indicating that the stock has 
arrived. Merchandising will subscribe to the receipt message and update the 
appropriate tables, including shipment, transfer/allocation/purchase order, inventory 
and stock ledger. 

For stock order receiving the ownership of the goods moves to the receiving location at 
the time of shipment. As a result, financial transaction records are written for the 
goods shipped when Merchandising processes a BOL message. At the receiving time, 
financial transaction records will only need to be written for the overage receiving.

The receipt message is a hierarchical message that can contain a series of receipts. Each 
receipt corresponds to a transfer or an allocation or a PO, and can contain carton or 
item details. Purchase orders are only received at the item level.

When receiving a customer order at stores, SIM will send a receipt message to both 
Merchandising and OMS, using a new message type of 'receiptordadd'. Merchandising 
will process 'receiptordadd' message in the same way as 'receiptadd'.

L10N Localization Decoupling Layer
This is a layer of code which enables decoupling of localization logic that is only 
required for certain country-specific configuration. This layer affects the RIB API flows 
including Receiving subscription. This allows Merchandising to be installed without 
requiring customers to install or use this localization functionality, where not required. 

Package Impact
Filename: rmssub_receivings/b.pls

CRMSSUB_RECEIVING.ONSUME(O_status_code          IN OUT  VARCHAR2,
                         O_error_message        IN OUT  VARCHAR2,
                         I_message              IN      "RIB_ReceiptDesc_REC",
                         I_message_type         IN      VARCHAR2)

This procedure will make calls to receiving or appointment functions based on the 
value of I_message_type. If I_message type is RECEIPT_ADD or RECEIPT_UPD or 
RECEIPT_ORDADD, then a call is made to RMSSUB_RECEIPT.CONSUME, casting 
the message as a "RIB_ReceiptDesc_REC". If I_message_type is APPOINT_HDR_ADD, 
APPOINT_HDR_UPD, APPOINT_HDR_DEL, APPOINT_DTL_ADD, APPOINT_
DTL_UPD, or APPOINT_DTL_DEL, then a call is made to RMSSUB_
APPOINT.CONSUME. This is the procedure called by the RIB.

RMSSUB_RECEIVING.HANDLE_ERRORS
                             (O_status_code     IN OUT  VARCHAR2,
                              IO_error_message  IN OUT  VARCHAR2,
                              I_cause           IN      VARCHAR2,
                              I_program         IN      VARCHAR2)

Standard error handling function that wraps the API_LIBRARY.HANDLE_ERROR 
function.

Filename: rmssub_receipts/b.pls

RMSSUB_RECEIPT.CONSUME(O_status_code          IN OUT  VARCHAR2,
                       O_error_message        IN OUT  VARCHAR2,
                       I_rib_receiptdesc_rec  IN      "RIB_ReceiptDesc_REC",



Receiving Subscription API

3-106 Operations Guide Volume 2 - Message Publication and Subscription Designs

                       I_message_type         IN      VARCHAR2,
                       O_rib_otbdesc_rec         OUT  "RIB_OTBDesc_REC",
                       O_rib_error_tbl           OUT  RIB_ERROR_TBL)

This function performs PO receiving and stock order receiving for each receipt in the 
message. Document type 'P' is for purchase order receiving, 'A' for allocation 
receiving, and 'T', 'V', 'D' for transfer receiving. All other document types are invalid.

The RIB object "RIB_ReceiptDesc_REC" is included in RIB_ReceiptOverage_REC" to 
accommodate for Overages.

Calls are made to ORDER_RCV_SQL.INIT_PO_ASN_LOC_GROUP, STOCK_ORDER_
RCV_SQL.INIT_TSF_ALLOC_GROUP, and RMSSUB_RECEIPT_ERROR.INIT. These 
functions initialize global variables and clean out cached info. 

■ The process then loops through each receipt in the message and performs 
localization check. If localized, invoke localization logic through L10N_SQL 
decoupling layer for procedure key 'CONSUME_RECEIPT'. If not localized, call 
CONSUME_RECEIPT for normal processing:

■ If the document type is 'P' (purchase order), it calls ORDER_RCV_SQL.PO_LINE_
ITEM to receive the items on the PO.

■ If the document type is 'T', 'D', 'V' (transfer) or 'A' (allocation), it calls RMSSUB_
STKORD_RECEIPT.CONSUME to receive the items on the transfer or allocation.

■  If the document type is not 'P', 'T', 'D', 'V' or 'A' the message processing is stopped 
and an error message returned.

After processing all receipts, call ORDER_RCV_SQL.FINISH_PO_ASN_LOC_GROUP, 
STOCK_ORDER_RCV_SQL.FINISH_TSF_ALLOC_GROUP, and RMSSUB_RECEIPT_
ERROR.FINISH. These functions wrap up the processing for receiving and error logic.

If any records exist on the rib_otb_tbl returned by ORDER_RCV_SQL.FINISH_PO_
ASN_LOC_GROUP, then create a rib_otbdesc_rec object and add the rib_otb_tbl to the 
object.

Filename: rmssub_stkord_receipts/b.pls

RMSSUB_STKORD_RECEIPT.CONSUME
                   (O_status_code     IN OUT  VARCHAR2,
                    O_error_message   IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                    I_appt            IN      APPT_HEAD.APPT%TYPE,
                    I_rib_receipt_rec IN     "RIB_Receipt_REC")

This function will process stock order receiving for all records within the rib_receipt_
rec passed in. First, this function calls RMSSUB_RECEIPT_ERROR.BEGIN_RECEIPT. 
This function holds onto the header level information (appt_nbr and rib_receipt_rec), 
which may be used to create error objects.

Next, RMSSUB_RECEIPT_VALIDATE.CHECK_RECEIPT is called, which does 
validation at the receipt level. If the validation fails the receipt is rejected by calling 
RMSSUB_RECEIPT_ERROR.ADD_ERROR. 

The package does carton-level receiving when receipt_type = 'BL', and item-level 
receiving when receipt_type = 'SK'.

There are two scenarios for carton-level receiving: 

1. The rib_receipt_rec contains a bol_no and no cartons (no detail nodes). In this case 
the function RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_BOL is called, 
which does business level validation for the BOL. If the validation succeeds then 



Receiving Subscription API

RIB Subscription Designs 3-107

RMSSUB_STKORD_RECEIPT_SQL.PERSIST_BOL is called. If the validation fails 
the BOL receipt is rejected by calling RMSSUB_RECEIPT_ERROR.ADD_ERROR.

2. The rib_receipt_rec contains a bol_no and 1 or more cartons (detail nodes). In this 
case, the process loops through each carton in the receipt and calls the function 
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_CARTON. This function does 
business level validation for a carton. If the validation succeeds RMSSUB_
STKORD_RECEIPT_SQL.PERSIST_CARTON is called. If the validation fails 
because the carton is a duplicate (by checking the returned validation_code), then 
the call to PERSIST_CARTON is skipped and processing continues. Duplicates are 
ignored with no error. If the validation fails for any other reason then the carton is 
rejected by calling RMSSUB_RECEIPT_ERROR.ADD_ERROR.

Item (SKU) Level Receiving:

If the receipt is item-level ('SK') the process loops through the detail records and calls 
the function RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_ITEM, which does 
business level validation for the item details. If the validation succeeds then RMSSUB_
STKORD_RECEIPT_SQL.PERSIST_LINE_ITEM is called to execute existing line item 
receiving package calls. If the validation fails then the item is rejected by calling 
RMSSUB_RECEIPT_ERROR.ADD_ERROR.

When all details for the receipt have been processed, or if the entire receipt itself is 
rejected, then RMSSUB_RECEIPT_ERROR.END_RECEIPT is called. This function 
groups all similar errors and creates the appropriate error objects.

If a break to sell sellable item is on the message, a call to CHECK_ITEM and GET_
ORDERABLE_ITEMS is made to convert the sellable to its orderable items. For a break 
to sell item, the orderable items are on the transfers, allocations, shipment, inventory 
and stock ledger.

Filename: rmssub_stkord_rct_vals/b.pls

RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_RECEIPT
                      (O_error_message    IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                       O_valid               OUT  BOOLEAN,
                       O_validation_code     OUT  VARCHAR2,
                       I_rib_receipt_rec  IN      "RIB_Receipt_REC")

This function performs business validation for a receipt. If any of the validations fail 
then O_validation_error is populated with the specified error code and O_valid is set 
equal to FALSE. Otherwise, O_validation_error is left as NULL and O_valid is set 
equal to TRUE.

RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_BOL
             (O_error_message       IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
              O_valid               IN OUT  BOOLEAN,
              O_validation_code     IN OUT  VARCHAR2,
              O_shipment            IN OUT  SHIPMENT.SHIPMENT%TYPE,
              O_item_table          IN OUT  STOCK_ORDER_RCV_SQL.ITEM_TAB,
              O_qty_expected_table  IN OUT  STOCK_ORDER_RCV_SQL.QTY_TAB,
              O_inv_status_table    IN OUT  STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
              O_carton_table        IN OUT  STOCK_ORDER_RCV_SQL.CARTON_TAB,
              O_distro_no_table     IN OUT  STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
              O_tampered_ind_table  IN OUT  STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,
              I_bol_no              IN      SHIPMENT.BOL_NO%TYPE,
              I_to_loc              IN      SHIPMENT.TO_LOC%TYPE)

This function performs business validation for receipts using BOL-level receiving. 
During validation this function selects data from the SHIPMENT and SHIPSKU tables 
and passes this information out through the parameters. This is done so that these 



Receiving Subscription API

3-108 Operations Guide Volume 2 - Message Publication and Subscription Designs

tables do not have to be hit again during the receiving (persist) process. If any of the 
validations fail then O_validation_error is populated with the specified error code and 
O_valid is set equal to FALSE. Otherwise, O_validation_error is left as NULL and O_
valid is set equal to TRUE. 

RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_CARTON
      (O_error_message            IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
       O_valid                    IN OUT  BOOLEAN,
       O_validation_code          IN OUT  VARCHAR2,
       O_ctn_shipment             IN OUT  SHIPMENT.SHIPMENT%TYPE,
       O_ctn_to_loc               IN OUT  SHIPMENT.TO_LOC%TYPE,
       O_ctn_bol_no               IN OUT  SHIPMENT.BOL_NO%TYPE,
       O_item_table               IN OUT  STOCK_ORDER_RCV_SQL.ITEM_TAB,
       O_qty_expected_table       IN OUT  STOCK_ORDER_RCV_SQL.QTY_TAB,
       O_inv_status_table         IN OUT  STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
       O_carton_table             IN OUT  STOCK_ORDER_RCV_SQL.CARTON_TAB,
       O_distro_no_table          IN OUT  STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
       O_tampered_ind_table       IN OUT  STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,
       O_wrong_store_ind          IN OUT  VARCHAR2,
       O_wrong_store              IN OUT  SHIPMENT.TO_LOC%TYPE,
       I_bol_no                   IN      SHIPMENT.BOL_NO%TYPE,
       I_to_loc                   IN      SHIPMENT.TO_LOC%TYPE,
       I_from_loc                 IN      SHIPMENT.FROM_LOC%TYPE,
       I_from_loc_type            IN      SHIPMENT.FROM_LOC_TYPE%TYPE,
       I_rib_receiptcartondtl_rec IN      "RIB_ReceiptCartonDTL_REC")

This function performs business validation for receipts using carton-level receiving. 
Based on the carton status, a carton can be received to the intended store only, or as a 
dummy carton or to the walk-through store of the intended store.

During validation this function selects data from SHIPMENT and SHIPSKU tables and 
passes this information out through the parameters. This is done so that these tables 
do not have to be hit again during the receiving (persist) process. If any of the 
validations fail then O_validation_error is populated with the specified error code and 
O_valid is set equal to FALSE. Otherwise, O_validation_error is left as NULL and O_
valid is set equal to TRUE. 

RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_ITEM
                             (O_error_message    IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                              O_valid               OUT BOOLEAN,
                              O_validation_code     OUT VARCHAR2,
                              I_distro_no        IN     SHIPSKU.DISTRO_NO%TYPE,
                              I_dummy_carton_ind IN     VARCHAR2)

This function performs business validation for item details. If any of the validations 
fail then O_validation_error is populated with the specified error code and O_valid is 
set equal to FALSE. Otherwise, O_validation_error is left as NULL and O_valid is set 
equal to TRUE.

RMSSUB_STKORD_RECEIPT_SQL.PERSIST_BOL
               (O_error_message       IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                I_appt                IN     APPT_HEAD.APPT%TYPE,
                I_doc_type            IN     APPT_DETAIL.DOC_TYPE%TYPE,
                I_shipment            IN     SHIPMENT.SHIPMENT%TYPE,
                I_to_loc              IN     SHIPMENT.TO_LOC%TYPE,
                I_bol_no              IN     SHIPMENT.BOL_NO%TYPE,
                I_item_table          IN     STOCK_ORDER_RCV_SQL.ITEM_TAB,
                I_qty_expected_table  IN     STOCK_ORDER_RCV_SQL.QTY_TAB,
                I_inv_status_table    IN     STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
                I_carton_table        IN     STOCK_ORDER_RCV_SQL.CARTON_TAB,
                I_distro_no_table     IN     STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,



Receiving Subscription API

RIB Subscription Designs 3-109

                I_tampered_ind_table  IN     STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB)

This function calls STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON (for transfers) and 
STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON (for allocations) to perform BOL 
level receiving.

RMSSUB_STKORD_RECEIPT_SQL.PERSIST_CARTON
            (O_error_message      IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
            I_appt               IN     APPT_HEAD.APPT%TYPE,
            I_doc_type           IN     APPT_DETAIL.DOC_TYPE%TYPE,
            I_shipment           IN     SHIPMENT.SHIPMENT%TYPE,
            I_to_loc             IN     SHIPMENT.TO_LOC%TYPE,
            I_bol_no             IN     SHIPMENT.BOL_NO%TYPE,
            I_receipt_no         IN     APPT_DETAIL.RECEIPT_NO%TYPE,
            I_disposition        IN     INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
            I_receipt_date       IN     SHIPMENT.RECEIVE_DATE%TYPE,
            I_item_table         IN     STOCK_ORDER_RCV_SQL.ITEM_TAB,
            I_qty_expected_table IN     STOCK_ORDER_RCV_SQL.QTY_TAB,
            I_weight             IN     ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
            I_weight_uom         IN     UOM_CLASS.UOM%TYPE,
            I_inv_status_table   IN     STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
            I_carton_table       IN     STOCK_ORDER_RCV_SQL.CARTON_TAB,
            I_distro_no_table    IN     STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
            I_tampered_ind_table IN     STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,
            I_wrong_store_ind    IN     VARCHAR2,
            I_wrong_store        IN     SHIPMENT.TO_LOC%TYPE)

This function calls STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON (for transfers) and 
STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON (for allocations) to perform 
carton level receiving.

RMSSUB_STKORD_RECEIPT_SQL.PERSIST_LINE_ITEM
                     (O_error_message      IN     OUT RTK_ERRORS.RTK_TEXT%TYPE,
                      I_location           IN     SHIPMENT.TO_LOC%TYPE,
                      I_bol_no             IN     SHIPMENT.BOL_NO%TYPE,
                      I_distro_no          IN     SHIPSKU.DISTRO_NO%TYPE,
                      I_distro_type        IN     VARCHAR2,
                      I_appt               IN     APPT_HEAD.APPT%TYPE,
                      I_rib_receiptdtl_rec IN     "RIB_ReceiptDTL_REC")

This function calls STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM (for transfers) and 
STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM (for allocations) to perform item 
level receiving. 

Filename: stkordrcvs/b.pls

STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON
               (O_error_message      IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                I_appt               IN     APPT_HEAD.APPT%TYPE,
                I_shipment           IN     SHIPMENT.SHIPMENT%TYPE,
                I_to_loc             IN     SHIPMENT.TO_LOC%TYPE,
                I_bol_no             IN     SHIPMENT.BOL_NO%TYPE,
                I_receipt_no         IN     APPT_DETAIL.RECEIPT_NO%TYPE,
                I_disposition        IN     INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
                I_tran_date          IN     PERIOD.VDATE%TYPE,
                I_item_table         IN     ITEM_TAB,
                I_qty_expected_table IN     QTY_TAB,
                I_weight             IN     ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
                I_weight_uom         IN     UOM_CLASS.UOM%TYPE, 
                I_inv_status_table   IN     INV_STATUS_TAB,
                I_carton_table       IN     CARTON_TAB,



Receiving Subscription API

3-110 Operations Guide Volume 2 - Message Publication and Subscription Designs

                I_distro_no_table    IN     DISTRO_NO_TAB,
                I_tampered_ind_table IN     TAMPERED_IND_TAB,
                I_wrong_store_ind    IN     VARCHAR2,
                I_wrong_store        IN     SHIPMENT.TO_LOC%TYPE)

This function performs the BOL or carton level receiving for a transfer. It does the 
following:

■ Update shipment to received status along with the received date.

■ For each item on the SHIPSKU, builds an API record for transferring the item. An 
orderable but non-sellable and non-inventory item cannot be transferred. The 
message contains physical locations, but a transfer created in Merchandising 
(non-'EG' type) contains virtual locations only. The physical locations are 
converted to virtual locations if necessary.

■ Because an externally generated transfer (type 'EG') holds physical locations on 
TSFHEAD, and physical warehouses do not have transfer entities, this API does 
not support the receiving of an externally generated warehouse to warehouse 
transfer when system option INTERCOMPANY_TSF_IND is 'Y'. However, it does 
allow store to warehouse 'EG' transfer, because it is assumed that store is sending 
merchandise to the virtual warehouse within the same channel, hence the same 
transfer entity. 

■ When receiving a transfer to a finisher location, all stock will be received into the 
available bucket regardless of the inventory disposition on the message.

■ When system option WRONG_ST_RECEIPT is 'Y', stock can be received at a store 
not originally intended. Inventory and stock ledger is adjusted for both the 
intended and the actual receiving store.

■ The received quantity on TSFDETAIL is updated. If it is a wrong store receiving, 
the reconciled quantity on TSFDETAIL is updated.

■ The received quantity and received weight on SHIPSKU are updated. If SHIPSKU 
is not found, a new receipt is created. 

■ For an 'EG' type of transfer, the received quantity is distributed among the virtual 
locations of the physical location based on SHIPMENT_INV_FLOW, and the 
received quantity on SHIPMENT_INV_FLOW is updated. 

■ For an 'MRT' type of transfer, the received quantity on MRT_ITEM_LOC is 
updated. 

■ The table APPT_DETAIL is updated if an appointment exists for the transfer 
detail; otherwise, a record is inserted into DOC_CLOSE_QUEUE.

■ A call to DETAIL_PROCESSING to perform the bulk of the transfer receiving 
logic, including moving inventory from the in transit to the stock on bucket for the 
receiving location is made. For overage receiving, the stock on hand is adjusted for 
both the sending and receiving locations, the av_cost for the receiving location is 
adjusted and records are written to the stock ledger.

STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM
                 (O_error_message    IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                  I_loc              IN     ITEM_LOC.LOC%TYPE,
                  I_item             IN     ITEM_MASTER.ITEM%TYPE,
                  I_qty              IN     TRAN_DATA.UNITS%TYPE,
                  I_weight           IN     ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
                  I_weight_uom       IN     UOM_CLASS.UOM%TYPE,
                  I_transaction_type IN     VARCHAR2, 
                  I_tran_date        IN     PERIOD.VDATE%TYPE,



Receiving Subscription API

RIB Subscription Designs 3-111

                  I_receipt_number   IN     APPT_DETAIL.RECEIPT_NO%TYPE,
                  I_bol_no           IN     SHIPMENT.BOL_NO%TYPE,
                  I_appt             IN     APPT_HEAD.APPT%TYPE,
                  I_carton           IN     SHIPSKU.CARTON%TYPE,
                  I_distro_type      IN     VARCHAR2,
                  I_distro_number    IN     TSFHEAD.TSF_NO%TYPE,
                  I_disp             IN     INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
                  I_tampered_ind     IN     SHIPSKU.TAMPERED_IND%TYPE,
                  I_dummy_carton_ind IN     SYSTEM_OPTIONS.DUMMY_CARTON_IND%TYPE)

Similar to TSF_BOL_CARTON, this function performs transfer receiving for one line 
item. In addition, if the item is indicated as a dummy carton on the message, it writes 
staging records to the DUMMY_CARTON_STAGE table. The actual matching and 
receiving of dummy carton transfers is performed during the batch cycle via 
dummyctn.pc. 

STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON
               (O_error_message      IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                I_appt               IN     APPT_HEAD.APPT%TYPE,
                I_shipment           IN     SHIPMENT.SHIPMENT%TYPE,
                I_to_loc             IN     SHIPMENT.TO_LOC%TYPE,
                I_bol_no             IN     SHIPMENT.BOL_NO%TYPE,
                I_receipt_no         IN     APPT_DETAIL.RECEIPT_NO%TYPE,
                I_disposition        IN     INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
                I_tran_date          IN     PERIOD.VDATE%TYPE,
                I_item_table         IN     ITEM_TAB,
                I_qty_expected_table IN     QTY_TAB,
                I_weight             IN     ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
                I_weight_uom         IN     UOM_CLASS.UOM%TYPE,
                I_inv_status_table   IN     INV_STATUS_TAB,
                I_carton_table       IN     CARTON_TAB,
                I_distro_no_table    IN     DISTRO_NO_TAB,
                I_tampered_ind_table IN     TAMPERED_IND_TAB,
                I_wrong_store_ind    IN     VARCHAR2,
                I_wrong_store        IN     SHIPMENT.TO_LOC%TYPE)

This function performs the BOL or carton level receiving for an allocation. It does the 
following:

■ Updates the shipment to received status along with the received date.

■ For each item on the SHIPSKU, builds an API record for allocating the item. An 
orderable but non-sellable and non-inventory item cannot be allocated.

■ Validates that item is on the allocation.

■ When system option WRONG_ST_RECEIPT is 'Y', stock can be received at a store 
not originally intended. Inventory and stock ledger are adjusted for both the 
intended and the actual receiving store.

■ Validates that ALLOC_DETAIL exists. Updates received quantity on ALLOC_
DETAIL. If it is a wrong store receiving, updates the reconciled quantity on 
ALLOC_DETAIL.

■ Updates received quantity and received weight on SHIPSKU. If SHIPSKU is not 
found, creates a new receipt for that. 

■ Updates APPT_DETAIL if appointment exists for the allocation detail; otherwise, 
inserts into DOC_CLOSE_QUEUE.

■ Calls DETAIL_PROCESSING to perform the bulk of the allocation receiving logic, 
including moving inventory from the in transit to the stock on bucket for the 



Receiving Subscription API

3-112 Operations Guide Volume 2 - Message Publication and Subscription Designs

receiving location. For overage receiving, adjusts stock on hand for both the 
sending and receiving locations, adjusts av_cost for the receiving location and 
writes stock ledger.

STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM
                     (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                      I_loc IN ITEM_LOC.LOC%TYPE,
                      I_item IN ITEM_MASTER.ITEM%TYPE,
                      I_qty IN TRAN_DATA.UNITS%TYPE,
                      I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
                      I_weight_uom IN UOM_CLASS.UOM%TYPE,
                      I_transaction_type IN VARCHAR2, 
                      I_tran_date IN PERIOD.VDATE%TYPE,
                      I_receipt_number IN APPT_DETAIL.RECEIPT_NO%TYPE,
                      I_bol_no IN SHIPMENT.BOL_NO%TYPE,
                      I_appt IN APPT_HEAD.APPT%TYPE,
                      I_carton IN SHIPSKU.CARTON%TYPE,
                      I_distro_type IN VARCHAR2,
                      I_distro_number IN ALLOC_HEADER.ALLOC_NO%TYPE,
                      I_disp IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
                      I_tampered_ind IN SHIPSKU.TAMPERED_IND%TYPE,
                      I_dummy_carton_ind IN SYSTEM_OPTIONS.DUMMY_CARTON_IND%TYPE)

Similar to ALLOC_BOL_CARTON, this function performs allocation receiving for one 
line item. In addition, if the item is indicated as a dummy carton on the message, it 
writes staging records to the DUMMY_CARTON_STAGE table. The actual matching 
and receiving of dummy carton allocations is performed during the batch cycle via 
dummyctn.pc.

STOCK_ORDER_RCV_SQL.INIT_TSF_ALLOC_GROUP
                            (O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE)

For performance reasons, bulk processing is used for stock order receiving. This 
function initializes global variables for bulk processing and populates system options.

STOCK_ORDER_RCV_SQL.FINISH_TSF_ALLOC_GROUP
                            (O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE)

For performance reasons, bulk processing is used for stock order receiving. This 
function bulk updates APPT_DETAIL, bulk updates DOC_CLOSE_QUEUE and 
TRAN_DATA.

Filename: ordrcvs/b.pls 

ORDER_RCV_SQL.PO_LINE_ITEM
                 (O_error_message  IN OUT   rtk_errors.rtk_text%TYPE,
                  I_loc            IN       item_loc.loc%TYPE,
                  I_order_no       IN       ordhead.order_no%TYPE,
                  I_item           IN       item_master.item%TYPE,
                  I_qty            IN       tran_data.units%TYPE,
                  I_tran_type      IN       VARCHAR2,
                  I_tran_date      IN       DATE,
                  I_receipt_number IN       appt_detail.receipt_no%TYPE,
                  I_asn            IN       shipment.asn%TYPE,
                  I_appt           IN       appt_head.appt%TYPE,
                  I_carton         IN       shipsku.carton%TYPE,
                  I_distro_type    IN       VARCHAR2,
                  I_distro_number  IN       alloc_header.alloc_no%TYPE,
                  I_destination    IN       alloc_detail.to_loc%TYPE,
                  I_disp           IN       inv_status_codes.inv_status_code%TYPE,
                  I_unit_cost      IN       ordloc.unit_cost%TYPE,



Receiving Subscription API

RIB Subscription Designs 3-113

                  I_shipped_qty    IN       shipsku.qty_expected%TYPE,
                  I_weight         IN       item_loc_soh.average_weight%TYPE,
                  I_weight_uom     IN       UOM_CLASS.UOM%TYPE,
                  I_online_ind     IN       VARCHAR2)
This function is called once for each PO line item received. It validates input and calls 
RCV_LINE_ITEM for each item/location. 

■ If the PO received is a cross-dock PO to a warehouse, an allocation must exist for 
the PO/allocation/item/warehouse combination. The message will contain a 
physical warehouse, whereas ALLOC_HEADER will contain a virtual warehouse.

■ If the item is received to a physical warehouse, then this function calls the 
distribution logic to determine each item/virtual warehouse/quantity, and calls 
RCV_LINE_ITEM for each of these combinations.

■ If a simple pack catch weight item is received, it also updates SHIPSKU weight 
received and weight received UOM. 

ORDER_RCV_SQL.RCV_LINE_ITEM
                   (O_error_message  IN OUT rtk_errors.rtk_text%TYPE,
                    I_phy_loc        IN     item_loc.loc%TYPE,
                    I_loc            IN     item_loc.loc%TYPE,
                    I_loc_type       IN     item_loc.loc_type%TYPE,
                    I_order_no       IN     ordhead.order_no%TYPE,
                    I_item           IN     item_master.item%TYPE,
                    I_qty            IN     tran_data.units%TYPE,
                    I_tran_type      IN     VARCHAR2,
                    I_tran_date      IN     DATE,
                    I_receipt_number IN     appt_detail.receipt_no%TYPE,
                    I_asn            IN     shipment.asn%TYPE,
                    I_appt           IN     appt_head.appt%TYPE,
                    I_carton         IN     shipsku.carton%TYPE,
                    I_distro_type    IN     VARCHAR2,
                    I_distro_number  IN     tsfhead.tsf_no%TYPE,
                    I_destination    IN     alloc_detail.to_loc%TYPE,
                    I_disp           IN     inv_status_codes.inv_status_code%TYPE,
                    I_unit_cost      IN     ordloc.unit_cost%TYPE,
                    I_shipped_qty    IN     shipsku.qty_expected%TYPE,
                    I_weight         IN     item_loc_soh.average_weight%TYPE,
                    I_weight_uom     IN     UOM_CLASS.UOM%TYPE,
                    I_online_ind     IN     VARCHAR2)

This function is called for each item/location combination. It validates input and 
performs PO receiving logic for each item.

■ Receiving (tran_type = 'R') must be against a valid approved order; adjustment 
(tran_type = 'A') must be against a valid approved or closed order.

■ Item on the message may be a referential item. Get its transaction level item.

■ An orderable, but non-sellable and non-inventory item cannot be received.

■ For a deposit content item, its container item is also received and added to the 
order if not already on the order.

■ Inserts or updates ORDLOC for quantity received.

■ Updates APPT_DETAIL if appointment exists; otherwise, insert into DOC_
CLOSE_QUEUE.

■ Inserts or updates SHIPMENT to received status.

■ Inserts or updates SHIPSKU for received quantity. If SHIPSKU.QTY_RECEIVED is 
updated, also updates INVC_MATCH_WKSHT.MATCH_TO_QTY. 



Receiving Subscription API

3-114 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ If no deals exist for this order/item/loc, then INVC_SQL.UPDATE_INVOICE is 
called to perform invoice matching logic.

■ Updates average cost and stock on hand for the stock received. If a pack is on the 
order, the updates are performed for the component items.

■ Writes TRAN_DATA records (tran code 20) for the stock received. If a pack is on 
the order, TRAN_DATA records are written for the component items.

■ Writes SUP_DATA. 

■ Request tickets to be printed if location is a store.

■ If this is an adjustment to a closed order, sets the status back to 'A'pproved.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

1. The stock order subscription process supports the break-to-sell functionality. 
Transfers, allocations and shipments in Merchandising will only contain break to 
sell orderable items. Inventory adjustment and stock ledger will be performed on 
the orderable only, not the sellable. 

2. The stock order and order subscription process supports the catch weight 
functionality. It is assumed that a break-to-sell sellable item cannot be a simple 
pack catch weight item. 

3. An externally generated transfer will contain physical locations. When system 
options INTERCOMPANY_TSF_IND = 'Y', the stock order receiving process 
currently does not support the receiving of an externally generated transfer that 
involves a warehouse to warehouse transfer. This is because a physical location 
does not have transfer entities. 

4. Wrong store receiving is not supported for franchise transactions.

Table Impact

Message Types Message Type Description
XML Schema 
Definition (XSD)

receiptcre Receipt Create Message ReceiptDesc.xsd

receiptordcre Receipt Create Message ReceiptDesc.xsd

receiptmod Receipt Modify (Adjustment) 
Message

ReceiptDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes No Yes No

TSFDETAIL Yes Yes Yes No

ALLOC_HEADER Yes No Yes No

ALLOC_DETAIL Yes No Yes No

ORDHEAD Yes No Yes No

ORDSKU Yes Yes Yes No



Receiving Subscription API

RIB Subscription Designs 3-115

ORDLOC Yes Yes Yes No

SHIPMENT Yes Yes Yes No

SHIPSKU Yes Yes Yes No

TRAN_DATA No Yes No No

SUP_DATA No Yes No No

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes Yes No No

ITEM_ZONE_PRICE Yes Yes No No

PRICE_HIST No Yes No No

SHIPITEM_INV_FLOW Yes Yes Yes No

MRT_ITEM_LOC Yes No Yes No

APPT_DETAIL Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

DUMMY_CARTON_STAGE No Yes No No

ALC_HEAD Yes Yes Yes No

CONTRACT_HEADER Yes No Yes No

CONTRACT_DETAIL Yes No Yes No

INVC_MATCH_WKSHT Yes No Yes No

INVC_HEAD Yes Yes Yes No

INVC_DETAIL Yes Yes Yes No

INVC_TOLERANCE Yes Yes Yes Yes

INVC_XREF Yes Yes No No

INVC_MATCH_VAT Yes Yes Yes No

TERMS Yes No No No

SUPS Yes No No No

VAT_REGION Yes No No No

DEPS Yes No No No

WEEK_DATA Yes No No No

MONTH_DATA Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UOM_CLASS Yes No No No

NWP Yes Yes Yes No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

TABLE SELECT INSERT UPDATE DELETE



RTV Subscription API

3-116 Operations Guide Volume 2 - Message Publication and Subscription Designs

RTV Subscription API
This section describes the RTV subscription API.

Functional Area
Return to Vendor

Business Overview
Merchandising subscribes to return-to-vendor (RTV) messages from the RIB. When an 
RTV is shipped out from a warehouse or store, the RTV information is sent from the 
external system (such as RWMS and SIM) to the RIB. Merchandising subscribes to the 
RTV information as published from the RIB and places the information onto 
Merchandising tables, depending on the validity of the records enclosed within the 
message. 

The RTV message can be processed as a flat message when the header description 
contains information for one RTV item. The message can also be processed as a 
hierarchical message when the detail node is populated with one or more RTV items. 
Merchandising primarily uses these messages to update inventory quantities and 
stock ledger values.

L10N Localization Decoupling Layer:
This is a layer of code which enables decoupling of localization logic that is only 
required for certain country-specific configuration. This layer affects the RIB API flows 
including RTV subscription. This allows Merchandising to be installed without 
requiring customers to install or use this localization functionality, where not required. 

Package Impact
Filename: rmssub_rtvs/b.pls

RMSSUB_RTV.CONSUME
                (O_status_code IN OUT VARCHAR2,
                 O_error_message IN OUT VARCHAR2,
                 I_message IN RIB_OBJECT,
                 I_message_type IN VARCHAR2)

This procedure initially ensures that the passed in message type is a valid type for RTV 
messages. The valid message types for RTV messages are listed in the Message XSD 
section below. 

If the message type is invalid, a status of "E" is returned to the external system along 
with an appropriate error message informing the external system that the message 
type is invalid.

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

TABLE SELECT INSERT UPDATE DELETE



RTV Subscription API

RIB Subscription Designs 3-117

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object 
using the Oracle treat function. If the downcast fails, a status of "E" is returned to the 
external system along with an appropriate error message informing the external 
system that the object passed in is invalid.

If the downcast is successful, then consume parses the message, verifies that the 
message passes all of Merchandising's business validation and persists the information 
to the Merchandising database. It does this by calling CONSUME_RTV.

RMSSUB_RTV.CONSUME_RTV
                    (O_status_code       IN OUT  VARCHAR2,
                     O_error_message     IN OUT  VARCHAR2,
                     I_message           IN      RIB_OBJECT,
                     I_message_type      IN      VARCHAR2,
                     I_check_l10n_ind    IN      VARCHAR2)

Performs localization check. If localized, invoke RFM's logic through L10N_SQL 
decoupling layer for procedure key 'CONSUME_RTV'. If not localized, call 
CONSUME_RTV for normal processing.

RMSSUB_RTV.CONSUME_RTV
                (O_error_message     IN OUT  VARCHAR2,
                 IO_L10N_RIB_REC     IN OUT  L10N_OBJ)

Public function to call RMSSUB_RTV.CONSUME_RTV_CORE.

RMSSUB_RTV.CONSUME_RTV_CORE
                (O_error_message     IN OUT  VARCHAR2,
                 I_message           IN      RIB_OBJECT,
                 I_message_type      IN      VARCHAR2)

This function contains the main processing logic:

If the downcast is successful, then consume calls PARSE_RTV to parse the RTV 
message and PROCESS_RTV to perform business validation and desired functionality. 
Any time the message fails business validation, a status of "E" is returned to the 
external system along with an appropriate error message.

Once the message has been successfully processed, a success status, "S", is returned to 
the external system indicating that the message has been successfully received and 
persisted to the Merchandising database.

PARSE_RTV

This function parses the RIB_OBJECT and builds an API rtv_record for processing.

Gross cost can be included in the detail RIB_RTVDtl_REC. If the gross cost is present, 
then it is stored as unit_cost and unit_cost is stored as extended_base_cost.

Jurisdiction code also is determined based on supplier.

PROCESS_RTV

This function calls RTV_SQL.APPLY_PROCESS to perform all business validation and 
desired functionality associated with a RTV message. 

For break to sell items, if a sellable only item is on the message, CHECK_ITEMS and 
GET_ORDERABLE_ITEMS are called to convert the sellable item(s) to the 
corresponding orderable item(s). The orderable items are inserted or updated on the 
tables affected by an RTV.

The RTV_SQL.APPLY_PROCESS is called for each of the orderable items and each of 
the regular items. 



RTV Subscription API

3-118 Operations Guide Volume 2 - Message Publication and Subscription Designs

CHECK_ITEMS

This function separates the item details on the message into two groups: one contains 
sellable only items and one contains regular items. 

GET_ORDERABLE_ITEMS

This function builds a collection of orderable items based on the sellable items. It calls 
ITEM_XFORM_SQL.RTV_ORDERABLE_ITEM_INFO to distribute the sellable 
quantities among the orderable items.

Filename: rtvs/b.pls

RTV_SQL.APPLY_PROCESS

This function performs business validation and desired functionality for a RTV 
message. It includes the following:

■ Verifies that an orderable but non-sellable and non-inventory item cannot be an 
RTV item.

■ Verifies that an RTV item must be a tran-level or above tran-level item.

■ If the RTV item is a simple pack catch weight item, verifies that weight and weight 
unit of measure (UOM) are either both defined or both NULL, and weight UOM is 
in the MASS UOM class.

■ Verifies that the item supplier relation exists.

■ Verifies that the location is a valid store or warehouse.

■ Verifies that the item/loc relation exists.

■ If returning a pack to a warehouse, the pack must be received as pack at the 
warehouse.

■ Verifies that from disposition is a valid inventory status code (on INV_STATUS_
CODES).

■ Verifies that the reason code is a valid RTV reason code (code type 'RTVR' on 
CODE_DETAIL).

■ For an externally generated RTV, if the location is a warehouse, then physical 
location is on the message. RTV quantity will be distributed among the virtual 
locations of the physical location.

■ Checks for the existence of RTV in RTV_HEAD based on: a) rtv_order_no; b) ext_
ref_no and location. An RTV is updated if it already exists and inserted if not. The 
RTV is marked as shipped.

■ Checks for the existence of RTV item in RTV_DETAIL based on: rtv_order_no, 
item, reason and inventory status. An RTV_DETAIL is updated if it already exists 
and inserted if not.

■ If the RTV item is a content item of a deposit item, RTV_DETAIL is inserted or 
updated for the associated container item.

■ Determines RTV unit cost as the following: 

– Uses the unit cost on the RTV message if defined. It is in location currency. 
Otherwise.

– Uses RTV_DETAIL.unit_cost if exists. It is in supplier currency. Otherwise.

– Uses the last receipt cost if exists. It is in location currency. Otherwise.

– Uses item's WAC at the location. It is in location currency.



RTV Subscription API

RIB Subscription Designs 3-119

– The unit cost is used to evaluate the cost of the RTV goods. The cost values on 
RTV tables are written in supplier currency, but all TRAN_DATA records are 
written in location currency. 

■ If the RTV item is a simple pack catch weight item, the total RTV cost is based on 
weight.

■ Updates the following stock buckets on ITEM_LOC_SOH: RTV_QTY, STOCK_
ON_HAND, PACK_COMP_SOH. For a simple pack catch weight item at the 
warehouse, also updates average weight.

■ Writes the following TRAN_DATA records: 

– 24 - for RTV. It writes units, total_cost and total_retail.

– 71/72 - for cost variance between item's WAC at the location and RTV unit 
cost. It writes units and total_cost.

– 65 - for restocking fees. For a non-MRT type of RTV, the restocking fee is 
written for the RTV location. For an MRT type of RTV, the restocking fee is 
distributed among the MRT locations. It writes units and total_cost. 

– 22 - for stock adjustment, if stock counting has already happened at the store 
for the item.

– If the RTV item is a pack, TRAN_DATA is written for component items. If the 
RTV location is a physical warehouse, TRAN_DATA is written for virtual 
locations. TRAN_DATA total cost and total retail are always written in 
location currency.

■ Creates or updates INVC_HEAD and INVC_DETAIL for the RTV. 

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

1. Catch weight functionality is not applied to the following areas:

■ Any of the retail calculations (including total_retail on TRAN_DATA and retail 
markup/markdown).

■ The total amount on SUP_DATA.

■ Open to buy buckets.

■ When a catch weight component item's standard UOM is a MASS UOM, 
TRAN_DATA.units is based on V_PACKSKU_QTY.qty instead of the actual 
weight.

2. MRT RTV can only be created in Merchandising. Therefore it will only contain 
virtual locations. Physical location distribution logic does not apply to MRT RTVs.

Message Types Message Type Description XML Schema Definition (XSD)

rtvcre RTV Create Message RTVDesc.xsd



Stock Order Status Subscription API

3-120 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Stock Order Status Subscription API
This section describes the stock order status subscription API.

TABLE SELECT INSERT UPDATE DELETE

RTV_HEAD Yes Yes Yes No

RTV_DETAIL Yes Yes Yes No

ITEM_LOC_SOH Yes No Yes No

TRAN_DATA No Yes No No

INV_STATUS_CODES Yes No No No

CODE_DETAIL Yes No No No

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_LOC Yes No No No

STORE Yes No No No

WH Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

DEPS Yes No No No

SUPS Yes No No No

ADDR Yes No No No

UOM_CLASS Yes No No No

V_PACKSKU_QTY Yes No No No

MRT_ITEM_LOC Yes No No No

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

INVC_HEAD Yes Yes Yes Yes

INVC_DETAIL Yes Yes No Yes

INVC_NON_MERCH No Yes No Yes

INVC_MERCH_VAT Yes Yes Yes Yes

INVC_DETAIL_VAT Yes No No Yes

INVC_MATCH_QUEUE Yes No No Yes

INVC_DISCOUNT Yes No No Yes

INVC_TOLERANCE Yes No No Yes

ORDLOC_INVC_COST Yes No Yes No

NON_MERCH_CODE_HEAD Yes No No No



Stock Order Status Subscription API

RIB Subscription Designs 3-121

Functional Area
Stock Order Status

Business Overview
A stock order is an outbound merchandise request from a warehouse or store. In 
Merchandising, a stock order takes the form of either a transfer or allocation. 
Merchandising subscribes to stock order status messages from the RIB, published by 
an external application, such as a store system (SIM, for example) or a warehouse 
management system (RWMS, for example) to communicate the status of a specific 
stock order. This communication provides for the synchronization of data between 
RWMS/SIM and Merchandising. The information from RWMS and SIM has only one 
level, in other words no detail records. Merchandising uses the data contained in the 
messages to:

■ Update the following tables when the status of the 'distro' changes at the store or 
warehouse: 

– ALLOC_DETAIL

– ITEM_LOC_SOH

– TSFDETAIL

■ To determine when the store or warehouse is processing a transfer or allocation. 
In-process transfers or allocations cannot be edited and are determined by the 
initial and final quantities to be filled by the external system.

■ When Merchandising is integrated with an external Order Management System 
(OMS), OMS will subscribe to SOStatus messages published from SIM and WMS 
when a store or warehouse cannot fulfill a customer order. OMS, in turn, sends a 
customer order cancellation request to Merchandising. In order to prevent 
duplicate processing for the same cancellation message, this subscription API will 
ignore 'no inventory' statuses received from RWMS and SIM for a customer order 
transfer.

Stock Order Status Explanations
The following tables describe the stock order statuses for both transfers and allocation 
document types and what occurs in Merchandising after receiving the respective 
status. Document_types of 'T', 'D' and 'S' indicate if the transfer is initiated in 
Merchandising, a warehouse system, or a store system respectively. Statuses other than 
listed below are ignored by Merchandising.

Stock order status received in message on a 
transfer where 'distro_document_type' = 'T', 
'D', 'S') What Merchandising does

SI (Stock Increased)

When SIM or RWMS publishes a message on a 
transfer with a status of SI (Stock Increased), 
Merchandising will insert or update TSFDETAIL 
for the transfer/item combination.

Insert or increase tsfdetail.tsf_qty

Increase item_loc_soh.tsf_reserved_qty 
for the from location and item_loc_
soh.tsf_expected_qty for the to location

SD (Stock Decreased)

When SIM or RWMS publishes a message on a 
transfer with a status of SD (Stock Decreased), 
Merchandising will delete or update TSFDETAIL 
for the transfer/item combination.

Delete or decrease tsfdetail.tsf_qty.

Decrease item_loc_soh.tsf_reserved_qty 
for the from location and item_loc_
soh.tsf_expected_qty for the to location



Stock Order Status Subscription API

3-122 Operations Guide Volume 2 - Message Publication and Subscription Designs

DS (Details Selected)

When RWMS publishes a message on a transfer 
with a status of DS (Details Selected), 
Merchandising will increase the selected quantity 
on TSFDETAIL for the transfer/item combination.

Increase tsfdetail.selected_qty

DU (Details Un-selected)

When RWMS publishes a message on a transfer 
with a status of DU (Details Un-Selected), 
Merchandising decreases the selected quantity on 
TSFDETAIL for the transfer/item combination.

Decrease tsfdetail.selected_qty

NI (WMS Line Cancellation)

When RWMS publishes a message on a transfer 
with a status of NI (No Inventory - WMS Line 
Cancellation), Merchandising will decrease the 
selected quantity by the quantity on the message. 
Merchandising will also increase the cancelled 
quantity, decrease the transfer quantity, decrease 
the reserved quantity* for the from location, and 
decrease the expected quantity* for the to location 
by the lesser of 1). the quantity on the message; 2). 
the transfer quantity - shipped quantity.

 *If the transfer status is not Closed.

Decrease tsfdetail.selected_qty and 
tsfdetail.tsf_qty, increase 
tsfdetail.cancelled_qty, decrease item_
loc_soh.tsf_reserved_qty for the from 
location and item_loc_soh.tsf_
expected_qty for the from location

Put transfer on doc_close_queue

PP (Distributed)

When RWMS publishes a message on a transfer 
with a status of PP (Pending Pick - Distributed), 
Merchandising will decrease the selected quantity 
and increase the distro quantity.

Decrease tsfdetail.selected_qty, increase 
tsfdetail.distro_qty

PU (Un-Distribute)

When RWMS publishes a message on a transfer 
with a status of PU (Un-Distribute), 
Merchandising will decrease the distributed qty.

Decrease tsfdetail.distro_qty

RS (Return To Stock)

When RWMS published a message on a transfer 
with a status of RS (Return To Stock), 
Merchandising will decrease the distributed qty. 
Merchandising will also increase the cancelled 
quantity, decrease the transfer quantity, decrease 
the reserved quantity* for the from location, and 
decrease the expected quantity* for the to location 
by the lesser of 1). the quantity on the message; 2). 
the transfer quantity - shipped quantity.

 *If the transfer status is not Closed.

Decrease tsfdetail.distro_qty and 
tsfdetail.tsf_qty, increase 
tsfdetail.cancelled_qty, decrease item_
loc_soh.tsf_reserved_qty for the from 
location and item_loc_soh.tsf_
expected_qty for the from location

EX (Expired)

When RWMS publishes a message on a transfer 
with a status of EX (Expired), Merchandising will 
increase the cancelled quantity, decrease the 
transfer quantity, decrease the reserved quantity* 
for the from location, and decrease the expected 
quantity* for the to location by the lesser of 1). the 
quantity on the message; 2). the transfer quantity - 
shipped quantity.

*If the transfer status is not Closed.

Increase tsfdetail.cancelled_qty, 
decrease tsfdetail.tsf_qty, item_loc_
soh.tsf_reserved_qty for the from 
location and item_loc_soh.tsf_
expected_qty for the To location

Put transfer on doc_close_queue

Stock order status received in message on a 
transfer where 'distro_document_type' = 'T', 
'D', 'S') What Merchandising does



Stock Order Status Subscription API

RIB Subscription Designs 3-123

SR (Store Reassign)

When RWMS publishes a message on a transfer 
with a status of SR (Store Reassign) the quantity 
can be either positive or negative. In either case it 
will be added to the distro_qty (adding a negative 
will have the same effect as subtracting it). 

Add to tsfdetail.distro_qty

SI (Stock Increased)

When SIM or RWMS publishes a message on an 
allocation with a status of SI (Stock Increased), 
Merchandising will increase ALLOC_DETAIL for 
the allocation/item combination.

Increase alloc_detail.qty_allocated

Increase item_loc_soh.tsf_reserved_qty 
for the from location and item_loc_
soh.tsf_expected_qty for the To location

SD (Stock Decreased)

When SIM or RWMS publishes a message on an 
allocation with a status of SD (Stock Decreased), 
Merchandising will decrease ALLOC_DETAIL for 
the allocation/item combination.

Decrease alloc_detail.qty_allocated.

Decrease item_loc_soh.tsf_reserved_qty 
for the from location and item_loc_
soh.tsf_expected_qty for the To location

DS (Details Selected)

When RWMS publishes a message on an 
allocation with a status of DS (Details Selected), 
Merchandising will increase the selected quantity 
on alloc_detail for the allocation/item/location 
combination.

Increase alloc_detail.selected_qty

DU (Details Un-Selected)

When RWMS publishes a message on an 
allocation with a status of DU (Details 
Un-Selected), Merchandising will decrease the 
selected quantity on alloc_detail for the 
allocation/item combination.

Decrease alloc_detail.selected_qty

NI (WMS Line Cancellation)

When RWMS publishes a message on an 
allocation with a status of NI (No Inventory - 
WMS Line Cancellation), Merchandising will 
decrease the selected quantity by the quantity on 
the message. Merchandising will also increase the 
cancelled quantity, decrease the allocated 
quantity, decrease the reserved quantity* for the 
from location, and decrease the expected 
quantity* for the to location by the lesser of 1). the 
quantity on the message; 2). the allocation 
quantity - shipped quantity.

 *If the allocation status is not Closed and the 
allocation is a stand alone allocation.

Decrease alloc_detail.qty_ selected and 
alloc_detail.qty_allocated, increase 
alloc_detail.cancelled_qty, decrease 
item_loc_soh.tsf_reserved_qty for the 
from location and item_loc_soh.tsf_
expected_qty for the to location

Put allocation on doc_close_queue

PP (Distributed)

When RWMS publishes a message on an 
allocation with a status of PP (Pending Pick - 
Distributed), Merchandising will decrement the 
selected quantity and increment the distro 
quantity

Decrease alloc_detail.qty_selecteded, 
increase alloc_detail.qty_distro

PU (Un-Distribute)

When RWMS publishes a message on an 
allocation with a status of PU (Un-Distribute), 
Merchandising will decrease the distributed qty.

Decrease alloc_detail.qty_distro

Stock order status received in message on a 
transfer where 'distro_document_type' = 'T', 
'D', 'S') What Merchandising does



Stock Order Status Subscription API

3-124 Operations Guide Volume 2 - Message Publication and Subscription Designs

Pack Considerations
Whenever the from location is a warehouse, a check if the item is a pack or an each is 
performed. If the item is not a pack item, no special considerations are necessary. For 
each warehouse-pack item combination, the receive_as_type on ITEM_LOC is checked 
to determine if it is received into the warehouse as a pack or a component item. If it is 
received as an each, ITEM_LOC_SOH for the component item is updated. If it is 
received as a pack, ITEM_LOC_SOH for the pack item and the component item are 
updated. 

Package Impact
Filename: rmssub_sostatuss/b.pls

CONSUME

RMSSUB_SOSTATUS.CONSUME(O_status_code IN OUT VARCHAR2,
                        O_error_message IN OUT VARCHAR2,
                        I_message IN "RIB_SOStatusDesc_REC",
                        I_message_type IN VARCHAR2);

This procedure accepts Stock Order Status information in the form of an Oracle Object 
data type from the RIB (I_message) and a message type of 'sostatuscre'. 

RS (Return to Stock)

When RWMS published a message on an 
allocation with a status of RS (Return to Stock), 
Merchandising will decrease the distributed qty. 
Merchandising will also increase the cancelled 
quantity, decrease the allocated quantity, decrease 
the reserved quantity* for the from location, and 
decrease the expected quantity* for the to location 
by the lesser of 1). the quantity on the message; 2). 
the allocation quantity - shipped quantity.

 *If the allocation status is not Closed and the 
allocation is a stand alone allocation.

Decrease alloc_detail.qty_distro and 
alloc_detail.qty_allocated, increase 
alloc_detail.cancelled_qty, decrease 
item_loc_soh.tsf_reserved_qty for the 
from location and item_loc_soh.tsf_
expected_qty for the to location

EX (Expired)

When RWMS publishes a message on an 
allocation with a status of EX (Expired), 
Merchandising will increase the cancelled 
quantity, decrease the allocated quantity, decrease 
the reserved quantity* for the from location, and 
decrease the expected quantity* for the to location 
by the lesser of 1). the quantity on the message; 2). 
the transfer quantity - shipped quantity.

*If the allocation status is not Closed and the allocation 
is a stand alone allocation.

Decrease alloc_detail.qty_allocated, 
increase alloc_detail.qty_cancelled, 
decrease item_loc_soh.tsf_reserved_qty 
for the from location and item_loc_
soh.tsf_expected_qty for the to location

Put allocation on doc_close_queue

SR (Store Reassign)

When RWMS publishes a message on an 
allocation with a status of SR (Store Reassign) the 
quantity can be either positive or negative. In 
either case, it will be added to the qty_distro 
(adding a negative will have the same affect as 
subtracting it). 

Add to alloc_detail.qty_distro

Stock order status received in message on a 
transfer where 'distro_document_type' = 'T', 
'D', 'S') What Merchandising does



Stock Order Status Subscription API

RIB Subscription Designs 3-125

The procedure first calls the RESET function to initialize internal variables. The 
procedure then extracts the values from the oracle object. These are then passed on to 
private internal functions which validate the values and place them on the database 
depending upon the success of the validation. 

BUILD_XTSFDESC

This function builds a RIB_XTsfDesc_REC object to be passed in the RMSSUB_
XTSF.CONSUME function.

HANDLE_ERRORS 

HANDLE_ERRORS(O_status       IN OUT  VARCHAR2,
  IO_error_message IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
  I_cause      IN  VARCHAR2,
  I_program          IN  VARCHAR2);
If an error occurs in this procedure or any of the internal functions, this procedure 
places a call to HANDLE_ERRORS in order to parse a complete error message and 
pass back a status to the RIB. 

This function is used to put error handling in one place in order to make future error 
handling enhancements easier to implement. The function consists of a call to API_
LIBRARY.HANDLE_ERRORS. API_LIBRARY.HANDLE_ERRORS accepts a program 
name, the cause of the error and potentially an unparsed error message if one has been 
created through a call to SQL_LIB.CREATE_MESSAGE. The function uses these input 
variables to parse a complete error message and pass back a status, depending upon 
the message and error type, back up through the consume function and up to the RIB.

PARSE_SOS 

This function first calls VALIDATE to check that the transfer or allocation from the 
oracle object exists in Merchandising. If the transfer or allocation exists, the function 
breaks down the message into its component parts and sends these parts into 
PROCESS_SOS. For customer order transfers, the customer order number and fulfill 
order number is also validated against the corresponding record in ORDCUST.

When Merchandising is integrated to OMS, this function skips processing for 'NI', 'EX', 
'SI', 'SD', 'PP', 'PU' statuses received from RWMS and SIM for customer order transfers.

PROCESS_SOS 

Based on the status sent from RWMS and SIM, quantity fields on either TSFDETAIL or 
ALLOC_DETAIL and ITEM_LOC_SOH are updated. 

VALIDATE

Validates the distro is valid. A distro refers to either a transfer or an allocation.

UPDATE_TSF

Updates the record on TSFDETAIL, if the message is for a transfer.

UPDATE_ALLOC 

Updates the record on ALLOC_DETAIL, if the message is for an allocation.

UPD_FROM_ITEM_LOC 

Updates item_loc_soh.tsf_reserved_qty for the From Location. If the comp_level_upd 
indicator is 'Y' then it will also update the item_loc_soh.pack_comp_resv field for the 
item passed in.

UPD_TO_ITEM_LOC 



Stock Order Status Subscription API

3-126 Operations Guide Volume 2 - Message Publication and Subscription Designs

Updates item_loc_soh.tsf_expected_qty for the To Location. If the comp_level_upd 
indicator is 'Y' then it will also update the item_loc_soh.pack_comp_exp field for the 
item passed in.

GET_RECEIVE_AS_TYPE 

This function gets the Receive as type value from ITEM_LOC for the passed-in item 
and location combination.

POPULATE_DOC_CLOSE_QUEUE 

This function is called to populate an array which holds stock order information that 
will be placed on the DOC_CLOSE_QUEUE table.

RESET

This function deletes any values that are currently held in the package's global 
variables.

DO_BULK

This function is used to do bulk inserts or updates of the ALLOC_DETAIL, 
TSFDETAIL, TSFHEAD and DOC_CLOSE_QUEUE tables. The tables are 
updated/inserted using the arrays that were built in the rest of the package.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

■ One of the primary assumptions in the current API approach is that ease of code 
will outweigh performance considerations. It is hoped that the 'trickle' nature of 
the flow of data will decrease the need to dwell on performance issues and instead 
allow developers to code in the easiest and most straight forward manner.

■ The adaptor is only setup to call stored procedures, not stored functions. Any 
public program then needs to be a procedure.

■ SOStatus supports transfers and allocations linked to a franchise order or return. 
For an existing transfer and allocation modified by a stock order status message, 
the quantity change is NOT reflected on the franchise order or return since the 
franchise order or return would have been approved already.

Table Impact

Message Types Message Type Description
XML Schema Definition 
(XSD)

sostatuscre Stock Order Status Create 
Message 

SOStatusDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes No No No

ALLOC_DETAIL Yes No Yes No

ALLOC_HEADER Yes No No No



Stock Count Schedule Subscription API

RIB Subscription Designs 3-127

Stock Count Schedule Subscription API 
This section describes the stock count schedule subscription API.

Functional Area
Inventory - Stock Counts

Business Overview
Stock count schedule messages are published to the RIB by an integration subsystem, 
such as a store inventory management system, to communicate unit and value stock 
count schedules to Merchandising. Merchandising uses stock count schedule data to 
help synchronize the inventories of another application and Merchandising. The other 
application performs a physical inventory count and uploads the results, and 
Merchandising compares the discrepancies.

This API allows external systems to create, update, and delete stock counts within 
Merchandising. Only Unit and Value stock counts (stocktake_type = 'B') are subscribed 
by Merchandising at this time. Department, class and subclass can be null; if not 
provided a full count is presumed.

If the other application requires at year-end to consolidate annual and booking 
numbers, the annual count can be initiated by the other application and uploaded into 
Merchandising. Merchandising accepts the unit variances and processes these 
automatically. The financial values will need user input from the central office. 

Package Impact
Filename: rmssub_stakeschedules/b.pls 

CONSUME (O_status_code IN OUT VARCHAR2,
         O_error_message IN OUT VARCHAR2,
         I_message IN RIB_OBJECT,
         I_message_type IN VARCHAR2);

This package is used to subscribe to stock count schedule message, parse the details, 
and pass them into the stock schedule package. 

■ If the message type is StkCountSchDel, validates before deleting the cycle count.

■ For other message types, business validations are performed before creating or 
updating the cycle count. 

TSFDETAIL Yes No Yes No

TSFHEAD Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

ORDCUST Yes No No No

SYSTEM_OPTIONS Yes No No No

V_PACKSKU_QTY Yes No No No

WF_ORDER_HEAD Yes Yes No No

WF_ORDER_DETAIL No Yes No No

WF_ORDER_EXP No Yes No No

TABLE SELECT INSERT UPDATE DELETE



Stock Count Schedule Subscription API

3-128 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Once the message has been successfully processed, there is nothing more for the 
consume procedure to do. A success status, "S", should be returned to the external 
system indicating that the message has been successfully received and persisted to 
the Merchandising database.

Filename: stake_schedules/b.pls 

This package is used to validate stock schedule data and insert/update to the stock 
count tables.

VALIDATE_VALUES

■ Cannot delete a cycle count if it has been processed.

■ Cannot update a cycle count that has started or has been set to be deleted.

■ Cannot process anything if stock count is currently locked. 

VALIDATE_HIERARCHY

■ Unit and Value stock counts at a warehouse must be at the department level only.

■ Validates department, class and subclass.

VALIDATE_LOCATION

■ Only stockholding (virtual) warehouses can be on a stock count.

PROCESS_PROD

■ Validates and creates a STAKE_PRODUCT record. No validation is done if the 
record is passed in for initial processing.

PROCESS_LOC

■ Validates and creates a STAKE_LOCATION record. No validation is done if the 
record is passed in for initial processing.

PROCESS_DEL

CREATE_SH_REC

■ Creates a record for STAKE_HEAD.

CREATE_SP_REC

■ Creates a STAKE_PRODUCT record.

DELETE_RECS

■ Deletes from STAKE_PRODUCT and STAKE_LOCATION tables.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

StkCountSchCre Stock Count SCH Create 
Message

StkCountSchDesc.xsd

StkCountSchMod Stock Count SCH Modify 
Message

StkCountSchDesc.xsd

StkCountSchDel Stock Count SCH Delete 
Message

StkCountSchRef.xsd



Store Subscription API

RIB Subscription Designs 3-129

Table Impact

Store Subscription API
This section describes the store subscription API.

Functional Area
Foundation Data

Business Overview
The Store Subscription API provides the ability to keep store data in Merchandising in 
sync with an external system, if Merchandising is not being used as the system of 
record for organizational hierarchy information. The store data handled by the API 
includes basic store data in addition to relationship data between stores and their 
location traits and walk-through stores. 

When creating a new store in Merchandising, the API uses Merchandising store 
creation batch logic. When a store creation message is received, it is validated and 
placed onto a staging table STORE_ADD. The store creation in Merchandising reads 
from this table and creates the store in Merchandising in an asynchronous mode.

When updating an existing store in Merchandising, the API performs the update 
immediately upon message receipt.

The API also handles store delete messages. But, like the store creation message 
subscription process, stores will not actually be deleted from the system upon receipt 
of the message. After the data has been validated, the store is added to the DAILY_
PURGE table for processing via a batch process. 

By default, stores inherit the location traits of the district to which they belong. 
However, specific location traits can also be assigned at the store level. Using the 
incoming external data, the API will create or delete relationships between stores and 
existing location traits. 

Walkthrough stores are used in Merchandising as part of the transfer reconciliation 
process and are used to indicate two or more stores that have a 'walk through' 
connection between them - on the sales floor and/or the backroom. Using the 
incoming external data, the API will create or delete these relationships with stores as 
well. 

Location trait and walkthrough store data cannot be sent in on a store create message. 
The store create program must first process the store before it can have details attached 
to it.

TABLE SELECT INSERT UPDATE DELETE

DEPS Yes No No No

STORE Yes No No No

WH Yes No No No

STAKE_HEAD Yes Yes Yes No

STAKE_PRODUCT No Yes No Yes

STAKE_LOCATION No Yes No Yes

SYSTEM_OPTIONS Yes No No No



Store Subscription API

3-130 Operations Guide Volume 2 - Message Publication and Subscription Designs

Location trait and walkthrough store data must be processed separately as they each 
have their own distinct message types. These detail create messages will contain a 
snapshot of the store record. 

The deletion of location trait and walkthrough store relationships will also be handled 
within this API. The detail delete messages must be processed separately because they 
each have their own distinct message types.

The RIB_XStoreDesc_REC message is modified to include RIB_CustFlexAttriVo_TBL 
message to enable the subscription of the custom flex attributes.

Package Impact
This section describes the package impact.

Consume Module
Filename: rmssub_xstores/b.pls

RMSSUB_XSTORE.CONSUME(O_status_code IN OUT VARCHAR2,
                      O_error_message IN OUT VARCHAR2,
                      I_message IN RIB_OBJECT,
                      I_message_type IN VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for 
store messages. If the message type is invalid, a status of 'E' will be returned to the 
external system along with an appropriate error message informing the external 
system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT will be downcast to the actual 
object using the Oracle's treat function. If the downcast fails, a status of 'E' will be 
returned to the external system along with an appropriate error message informing the 
external system that the object passed in is invalid.

If the downcast is successful, then consume will verify that the message passes all of 
Merchandising's business validation. It does not actually perform any validation itself, 
instead, it will call the RMSSUB_XSTORE_VALIDATE.CHECK_MESSAGE function to 
determine whether the message is valid. If the message has failed Merchandising 
business validation, a status of 'E' will be returned to the external system along with 
the error message returned from the CHECK_MESSAGE function.

The package RMSSUB_XSTORE_CFA enables the subscription of the custom flex 
attributes. RMSSUB_XSTORE_CFA.CONSUME is called to process the custom flex 
attributes.

Once the message has passed Merchandising business validation, it can be persisted to 
the Merchandising database by calling RMSSUB_XSTORE_SQL.PERSIST_MESSAGE() 
function. If the database persistence fails, the function will return false. A status of 'E' 
should be returned to the external system along with the error message returned from 
the PERSIST_MESSAGE() function.

Once the message has been successfully persisted, a success status, 'S', should be 
returned to the external system indicating that the message has been successfully 
received and persisted to the Merchandising database.

Note: Location traits must already exist prior to being added to the 
store.



Store Subscription API

RIB Subscription Designs 3-131

RMSSUB_XSTORE.HANDLE_ERROR() - This is the standard error handling function 
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
Filename: rmssub_xstorevals/b.pls

RMSSUB_XSTORE_VALIDATE.CHECK_MESSAGE
                       (O_error_message IN OUT VARCHAR2,
                        O_store_rec OUT NOCOPY  STORE_SQL.STORE_ROW_TYPE,
                        I_message IN RIB_XStoreDesc,
                        I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the 
store record for persistence. Some of the key validations performed are:

■ Check if a like store was passed in. If it is, then the price store and cost location 
must match the like store. If a like store was not passed in, the copy replenishment, 
activity, and delivery indicators must be No or null.

■ For new stores, check that the store number passed in is not currently being used 
for a store or warehouse. 

■ Verify the start order days are greater than or equal to zero.

■ For updates or deletes, verify the store exists on the base table

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family package. This 
package is STORE_SQL. The private functions in RMSSUB_STORE_SQL will call this 
package.

Filename: rmssub_xstoresqls/b.pls

RMSSUB_XSTORE_SQL.PERSIST_MESSAGE
                   (O_error_message IN OUT VARCHAR2,
                    I_store_rec IN STORE_SQL. STORE_ROW_TYPE,
                    I_message_type IN VARCHAR2,)
This function determines what type of database transaction it will call based on the 
message type.

STORE CREATE

■ Create messages get added to the staging table to be processed in a batch cycle. 
The address on the message is inserted as the primary address for the primary 
address type in the ADDR table. If store hours for a particular day or days are 
mentioned on the message, then the store hour's values will be added to the 
staging table and will be processed in a batch cycle.

STORE MODIFY

■ Modify messages directly update the store table with changes. The address on the 
message is updated in the ADDR table. LOCATION TRAIT CREATE.

■ Adds location trait(s) to the store

WALKTHROUGH CREATE

Note: Stores and warehouses in Merchandising cannot have the 
same unique identifier.



Store Subscription API

3-132 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Adds walkthrough store(s) to the store.

LOCATION TRAIT DELETE

■ Removes location trait(s) to the store

WALKTHROUGH DELETE

■ Removes walkthrough store(s) to the store.

STORE DELETE

■ Store gets added to a purging table to be processed in a batch cycle.

DEPARTMENT UP-CHARGE CREATE

■ Adds up-charge information of a department to a certain location.

DEPARTMENT UP-CHARGE MODIFY

■ Updates up-charge information of a department to a certain location.

DEPARTMENT UP-CHARGE DELETE

■ Removes up-charge information of a department to a certain location

STORE HOURS CREATE

■ Store hours for the particular day or days will be added for the existing store, to 
the staging table and processed in a batch cycle.

STORE HOURS MODIFY

■ Modify store hours for the particular day or days for the existing store.

STORE HOURS DELETE

■ Delete store hours for the particular day or days for the existing store.

Message XSD
Below are the filenames that correspond with each message type. Please consult the 
mapping documents for each message type in order to get a detailed picture of the 
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

XStoreCre External Store Create XStoreDesc.xsd

XStoreDel External Store Delete XStoreRef.xsd

XStoreLocTrtCre External Store Location Trait 
Create

XStoreDesc.xsd

XStoreLocTrtDel External Store Location Trait 
Delete

XStoreRef.xsd

XStoreMod External Store Modification XStoreDesc.xsd

XStoreWTCre External Walk Through 
Store Create

XStoreDesc.xsd

XStoreWTDel External Walk Through 
Store Delete

XStoreRef.xsd

XStoreDeptChrgCre External Department 
Up-Charge Create

XStoreDesc.xsd

XStoreDeptChrgMod External Department 
Up-Charge Modify

XStoreDesc.xsd



Store Subscription API

RIB Subscription Designs 3-133

Design Assumptions
■ Location traits already exist in Merchandising.

■ Location trait and walkthrough store data cannot be sent in on a store create 
message.

■ Some of the business validation is referential or involves uniqueness. This 
validation is handled automatically by the referential integrity constraints and the 
unique indexes implemented on the database.

Tables

XStoreDeptChrgDel External Department 
Up-Charge Delete

XStoreRef.xsd

XStoreHrCre External Store Hours Create XStoreDesc.xsd

XStoreHrMod External Store Hours 
Modify

XStoreDesc.xsd

XStoreHrDel External Store Hours Delete XStoreRef.xsd

TABLE SELECT INSERT UPDATE DELETE

STORE_ADD No Yes No No

STORE Yes No Yes No

ADDR Yes Yes Yes No

DAILY_PURGE No Yes No No

LOC_TRAITS_MATRIX Yes Yes No Yes

SYSTEM_OPTIONS Yes No No No

TSF_ENTITY Yes No No No

WH Yes No No No

WALK_THROUGH_STORE No Yes No Yes

UP_CHARGE_TEMP Yes Yes No Yes

COST_COMP_UPD_STG Yes Yes Yes Yes

DEPT_CHRG_HEAD Yes Yes No Yes

DEPT_CHRG_DETAIL Yes Yes Yes Yes

FROM_LOC_TEMP Yes Yes No Yes

TO_LOC_TEMP Yes Yes No Yes

ELC_COMP Yes No No No

UOM_CLASS Yes No No No

CURRENCIES Yes No No No

CODE_DETAIL Yes No No No

V_DEPS Yes No No No

V_DIVISIONS Yes No No No

V_GROUPS Yes No No No

Message Type Message Type Description XML Schema Definition (XSD)



Transfer Subscription API

3-134 Operations Guide Volume 2 - Message Publication and Subscription Designs

Transfer Subscription API 
This section describes the transfer subscription API.

Functional Area
Transfers

Integration Type
Oracle Retail Integration Bus (RIB)

Business Overview
This API subscribes to transfers from external systems to create, update or delete 
transfers in Merchandising. Within Oracle Retail solutions, this API is also leveraged 
by Advanced Inventory Planning (AIP) to create standalone transfers generated out of 
its replenishment processing. AIP does not use this API to update or delete previously 
created transfers.

Creating Transfers
When a new transfer is created, this API will first validate that all required fields are 
present in the message. Certain of the fields are required regardless of transfer type 
and system configuration, while others are dependent on other Merchandising 
configurations. Additionally, when creating a new transfer at least one detail line must 
also be included in the message. After that, business level validation on the input 
information will be performed. The tables below summarize these two types of 
validation.

STORE_HOURS_ADD Yes Yes Yes Yes

STORE_HOURS Yes Yes Yes Yes

Table 3–1  Header Level Validation

Message Element Required? Notes

Transfer Number Always Must be a unique transfer number not used by any 
existing transfers in Merchandising.

From Location Type Always Must be either a store (S) or a warehouse (W).

From Location Always See below.

To Location Type Always Must be either a store (S), warehouse (W), or external 
finisher (E). For more on transfers with finishing, see 
below.

To Location Always See below.

Delivery Date Conditional When AIP is part of your implementation, this is 
required for all transfer types, except RAC, EG, and 
SIM transfers. If included in the message, this must be 
today or a future date.

TABLE SELECT INSERT UPDATE DELETE



Transfer Subscription API

RIB Subscription Designs 3-135

Department Conditional A system option determines whether or not the 
department is required for transfers. If the system 
option is set to require a department, then this must be 
included in the message. If the system option is set to 
not require the department, then the department must 
be null in this message unless the transfer type is SIM, 
AIP, or EG.

Routing Code Conditional If the freight code is Expedite (E), then this must have a 
value. Otherwise, it must be null. Valid values are 1, 2, 
or 3. The descriptions for these three options are held in 
the Codes table under code TRRC and can be 
configured as needed for your business.

Freight Code Optional If this is included in the message, it must have a value 
of normal (N), hold (H), or expedite (E). If no value is 
provided, it will default to normal.

Transfer Type Optional The following types of transfers can be created in this 
API:

■ Administrative (AD)

■ AIP Generated (AIP)

■ Book (BT)

■ Confirmation (CF)

■ Externally Generated (EG)

■ Intercompany (IC)

■ Manual Requisition (MR)

■ Reallocation (RAC)

■ Return to Vendor (RV)

■ SIM Generated (SIM)

If the transfer type is not specified for the new transfer, 
then it will be defaulted to either Manual Requisition or 
Intercompany, depending on the legal entities of the 
locations on the transfer. See below for more details on 
transfer types.

Status Optional Transfers can be created in Input (I) or Approved (A) 
status in this API. See below for more on transfer status 
validation.

Create ID Optional If not passed into the message, then a value will be 
defaulted for auditing purposes.

Comments Optional Can support up to 2000 characters of text.

Context Type Optional Valid values for this field are found in the Codes table 
under code type CNTX.

Context Value Optional This may be used to provide additional information 
about the context of the transfer. For example, if the 
context type is promotion, this may indicate the 
promotion number or a description.

Table 3–1 (Cont.) Header Level Validation

Message Element Required? Notes



Transfer Subscription API

3-136 Operations Guide Volume 2 - Message Publication and Subscription Designs

Location Validation
The from and to locations passed into the message must be valid stores or warehouses 
in Merchandising; but they cannot be the same. If both locations are stores, then they 
must both exist in the same transfer zone. Additionally, if the to location is a store, 
then it must be open. This is determined based on whether there is a close date defined 
for the store and the stop order days.

If either location is a warehouse, then it can be either a physical warehouse or a virtual 
warehouse, depending on transfer type. A physical warehouse is only allowed as the 

Table 3–2  Detail Level Validation

Message Element Required? Notes

Item Always An item must be a transaction-level, inventoried, and 
approved in order to be included on a transfer. If the 
transfer is from a store, then it cannot be a pack item, 
unless the transfer is of type AIP, SIM, or EG. Also, 
packs can also only be transferred from a warehouse if 
they have a receive as type of Pack, so that inventory 
exists at that level.

If a department has been included in the transfer 
message at the header level, then all items must belong 
to that department. 

Transfer Quantity Always If the item has a standard unit of measure in the 
quantity class, then the quantity for the transfer must 
be an integer.

Supplier Pack Size Optional If included, this must be greater than zero. If not 
included, this will default to the primary supplier's 
pack size for the item at the from location, if an 
orderable item. If not orderable, this will default to 1.

Inventory Status Optional All items on a transfer must either be from available 
status or from unavailable status. A single transfer 
cannot mix available and unavailable statuses. 
Available inventory transfers should use a -1 or a null 
value in this field in the message. Unavailable 
inventory transfers should include a valid status from 
the Inventory Status Types configured in your 
environment.

Unit Cost Not used This is not used by Merchandising.

Adjustment Type Conditional This field, along with the adjustment value, is used to 
calculate the transfer price for intercompany transfers. 
It will be ignored for all other transfers. If the 
adjustment value is provided, then the type must also 
be specified. The valid values for this field are:

■ IA - Increase by Amount

■ IP - Increase by Percent

■ DA - Decrease by Amount

■ DP - Decrease by Percent

■ S - Set Price

IA and IP can only be used if you have your system 
options set to allow the transfer price to exceed 
weighted average cost. 

Adjustment Value Conditional If the adjustment type is provided, then the value must 
also be specified. This must always be a positive 
amount.



Transfer Subscription API

RIB Subscription Designs 3-137

from location type for an EG type of transfer. Additionally, only Book type transfers 
are allowed between two warehouses in the same physical warehouse.

If either the from or to location is a franchise store, then the other location cannot be a 
finisher. If the franchise store is a non-stockholding location, then the other location on 
the transfer must be a warehouse.

Validation is also done at the item level based on the locations on the transfer. Each 
item on the transfer must be in active, inactive, or discontinued status at the from 
location. It also must have been ranged to the from location in Merchandising, when 
that location is a warehouse. However, if the from location is a store, there is an 
exception where the transfer can still be created even though it is not yet ranged, 
which also bypasses inventory validation. This is to support a specific function in 
Oracle Retail Store Inventory Management (SIM). See the section on SIM Generated 
transfers below for more details.

If the item is not already ranged to the to location, then ranging will occur when the 
transfer is created, regardless of status. The ranging that occurs will flag the 
item/location as unintentionally ranged for all transfer types except AIP.

If the to location is an external finisher, see the section below on transfers with 
finishing.

Inventory Validation
Another part of the validation that is applicable for all transfers created is that 
inventory is available for transfer if the status passed through the integration is 
approve (A), with a few exceptions. First, EG type transfers do not have inventory 
validated as it is assumed that this type of transfer is generated in the store or 
warehouse and the inventory availability check has been done in that solution as part 
of the shipping of the inventory. Additionally, if the system option titled Validate 
External Warehouse Availability is set to No (unchecked), then warehouse inventory 
will not be validated for any transfers initiated in this API regardless of type. Store 
inventory availability is never validated by this API because of support for the process 
where the item does not need to be ranged to the shipping store.

Status Validation
Transfers can be created in a status of Input (I) or Approved (A) using this API. 
Transfers in input status are not subject to inventory validation, but all other 
validations are applicable. Book type transfers can only be created in Input status 
using this API, as there isn't really a concept of an "approved" book transfer - as soon 
as it is approved it is executed. Additionally, transfers of type Reallocation (RAC) and 
Return to Vendor (RV) can also only be created in Input status. Conversely, transfers of 
type AIP, SIM, and EG must always be created in Approved status. If any validation 
fails when processing the new transfer that results in it not being able to be approved, 
the transfer will be created but will remain in input status. The exception to this is for 
transfers of type AIP, SIM, and EG, as they must always be created in approved status. 
If they are not able to be approved, the transfer is not created or updated.

Transfer Type Specific Validation
Most of the validation defined above is relevant regardless of transfer type, except 
where noted. However, there are also some other validations done as part of this API's 
processing that are specific to a type of transfer.

Administration (AD)  

■ See Manual Requisition



Transfer Subscription API

3-138 Operations Guide Volume 2 - Message Publication and Subscription Designs

AIP Generated (AIP)  This type of transfer is expected only to be sent from AIP as an 
output of the replenishment process. As such, Merchandising assumes certain 
validations have been done by AIP in advance of receiving the transfer and slightly 
different validation is enforced. The following special validations apply for this 
transfer type using this API:

■ Must be created in Approved status

■ Can only be to stockholding locations

■ Supports transferring packs from stores

■ Allows the department number to be passed even when the system option is N

■ Item/location ranging to the to location will result in the Ranged flag being set to 
Yes as it is assumed this an intentional ranging.

■ Can be an intercompany transfer

Book (BT)  Book transfers processed through this API can be created for two virtual 
warehouses in the same physical warehouse only. This is usually used for inventory 
rebalancing between virtual locations. The following special validations apply for this 
transfer type using this API:

■ Can only be created in Input status

■ Can only be created for virtual warehouses in the same physical warehouse

■ Warehouses must be in the same legal entity

Confirmation (CF)  

■ See Manual Requisition

Externally Generated (EG)  Externally Generated transfers are assumed to be created in 
the store or warehouse. Further, it is assumed that once they get to Merchandising, the 
transfer is already in process at that location. As such, there are certain validations that 
are managed differently for this transfer type in this API:

■ Must be created in Approved status

■ Supports transferring packs from stores

■ Allows the department number to be passed even when the system option is N

■ Can be an intercompany transfer

■ Uses the physical warehouse number, not a virtual warehouse number, if 
warehouses are involved

Intercompany (IC)  An intercompany transfer is a type of business to business transaction 
that sells product from one legal entity and purchases it into another. Legal entities in 
Merchandising are determined based on the setting of the Intercompany Basis system 
option, which indicates whether the transfer entity or the set of books of a location 
should be used. This transfer type is used when either it is explicitly passed into the 
API or if the transfer type is NULL in the inbound message and the locations are in 
different legal entities. Other transfer types may also be intercompany, as well, but the 
below rules apply for those flagged as intercompany type explicitly:

■ The legal entity of the from and to locations must be different.

■ If an adjustment type or value is passed into the message, that will be used to 
calculate the "selling" price between entities. Otherwise, the from location's 
weighted average cost is used.



Transfer Subscription API

RIB Subscription Designs 3-139

Manual Requisition (MR)  This is the most basic type of transfer in Merchandising, so it is 
used as a default transfer type when either it is explicitly passed into the API or if the 
transfer type is NULL in the inbound message and the locations are in the same legal 
entity. The behavior for this transfer type is the same as that for AD and CF types of 
transfers - those could be used as different reasons for a transfer. For this transfer type 
the following validation rules are enforced:

■ Locations must be in the same legal entity

Reallocation (RAC)  A reallocation transfer is assumed to be used to pull back inventory 
from stores or warehouses to a single warehouse for re-allocation to other stores or 
other warehouses. This is the type of transfer that is created when a mass-return 
transfer is created, for example. Because it has unique rules tied to it related to MRTs, 
some additional validations are followed:

■ Can only be created in Input status in this API

■ Locations must be in the same legal entity

Return to Vendor (RV)  A return to vendor type of transfer is similar to a reallocation type, 
in that it is assumed to be pulling inventory back to a warehouse from stores or other 
warehouses, but in this case, for the purpose of returning the merchandise to the 
supplier. This is the type of transfer that is created when a mass-return transfer is 
created, for example. Because it has some unique rules tied to it related to MRTs, some 
additional validations are followed:

■ Can only be created in Input status in this API

■ Locations must be in the same legal entity

SIM Generated (SIM)  SIM generated transfers are created only by the store orders process 
in SIM. This functionality is not available in SIOCS. Because of this, they have special 
rules applied, including the ability to create the transfer even though no item/store 
relationship exists for the originating location in Merchandising. The rules that apply 
for this type of transfer include:

■ Must be created in Approved status

■ Supports transferring packs from stores

■ Allows the department number to be passed even when the Merchandising 
system option is No

■ Can be an intercompany transfer

All Transfer Types  For all of the above transfer types, if all validation described above 
passes, then the transfer will be created. If the transfer is created in Approved status, 
then in addition to the transfer itself, other details may also be created based on the 
items and locations involved.

■ Inventory will be updated to reflect the reserved quantity at the from location and 
expected quantity at the to location.

■ Upcharges will be applied, if configured, for transfers that do not include a 
physical warehouse location. For transfers with a physical warehouse, the records 
for upcharges are added when the transfer is shipped.

■ An associated franchise order or return will be created if the transfer involves a 
franchise location.



Transfer Subscription API

3-140 Operations Guide Volume 2 - Message Publication and Subscription Designs

Transfers with Finishing
Transfers with finishing are sometimes referred to as a two-legged transfer, as they 
generate two transfers in Merchandising. One from the originating store or warehouse 
to the finisher and one from the finisher back to a store or warehouse. This API 
supports the creation of a transfer with finishing only through an external finisher, a 
type of partner, and back to the originating location. Transfers to an internal finisher 
are not supported via this integration. To do this, when sending the transfer details in 
the message, you will indicate the external finisher as the "to" location. Then when the 
transfer is created, it will automatically generate the second leg.

When creating transfers in this way, it does not generate any work order activities to 
send to the finisher with the transfer - these will either need to be added manually in 
the Merchandising screens, or sent separately to the finisher.

Updating Transfers
For updates, the transfer number included in the message must already exist in 
Merchandising. Changes can be sent for header level updates or detail level updates. If 
the changes are at the header level, then the all the required header level information 
need to be included in the update, similar to that described above for creating a new 
transfer. However, the transfer details should not be included in a header level update. 
Fields that can be updated at the header level using this API include:

■ Delivery Date - must always be a date today or later.

■ Routing Code - if the freight code is updated to expedite (E), then this must also 
have a value. If freight code is updated to something other than expedite, then this 
should be null.

■ Freight Code

■ Status - to move from Input or Submitted to Approved only. Transfers cannot be 
moved back to Input status using this API.

■ Comments

■ Context Type

■ Context Value

If the update is at the detail level - to add or update a line item - only the transfer 
number is required in the header record, the other details are ignored. If not included, 
then the message will be rejected. Adding a new item to the transfer will use similar 
validation to that described above when creating the transfer. 

If modifying an existing transfer line item, the full transfer quantity should be sent 
with the update, not the difference from the original quantity. This will be compared to 
the previous transfer quantity to determine how to update the transfer. For example, if 
the transfer is in approved or submitted status, a reduction in quantity would update 
the cancelled quantity on the transfer. It will also be validated to ensure that the 
quantity change doesn't result in the total transfer quantity being lower than what has 
already been shipped or what is expected to be picked based on updates to the 
selected or distro quantities on the transfer. For increases in transfer quantity, if the 
transfer is in submitted or approved status, then inventory will be validated based on 
the changed quantity (depending on system option settings) to validate that the 
additional units are available. The inventory status for the item cannot be modified.



Transfer Subscription API

RIB Subscription Designs 3-141

Deleting Transfers
If you are deleting a line item on the transfer or deleting the whole transfer, then the 
API will validate that the transfer number is valid and that the transfer or transfer line 
was not already shipped or received, at least partially, or is not in process at the 
shipping warehouse or store. If you are deleting the whole transfer, then no details 
should be included in the message. If you are deleting a line on the transfer, then 
validation will be done to ensure that the item exists on the transfer. 

Transfers are not actually deleted via this API, rather they are updated to a deleted 
status and a secondary process does the actual removal. Transfers can be deleted in 
any status, other than those already in a closed or deleted status, using this API. If the 
transfer involved an external finisher, then both legs on the transfer will be marked for 
delete. Deleting the last line on the transfer will also result in the transfer being flagged 
for delete. 

If the transfer is in a status other than input, moving it to a deleted status or deleting a 
line will also update inventory to release the reserved inventory at the from location 
and decrease expected quantity at the to location. As well, if the transfer involves any 
franchise stores, then any franchise order or return created with the transfer will also 
be cancelled.

Publishing Updates
Because these transfers that can be created, updated, or deleted using this API are 
managed in an external system, there are some cases where it is not published back 
out by Merchandising after it is processed to avoid the source system from receiving 
unneeded updates. This applies for transfers of type EG only. All other transfers will 
be published back to the RIB if approved or previously approved, such that the store 
and warehouse solutions responsible for executing the transfers are notified.

Flex Attributes
If you have defined any custom flex attributes (CFAS) for transfers, then they can be 
integrated as part of this API. The node of the integration that supports this will accept 
the name of the attribute as it is defined in the group set level view and the value for 
the attribute. Flex attributes can only be added or updated to a transfer, they cannot be 
deleted. Additionally, for transfers with finishing, flex attributes can only be added to 
the first leg of the transfer.

Error Handling
If any errors are encountered in the validations described above or any of the message 
structure validations, a status of E is returned to the external system along with the 
appropriate error message. If the message has been successfully persisted, a success 
status (S), is returned to the external system indicating that the message has been 
successfully received and persisted to the Merchandising database.

Message XSD
Below are the filenames that correspond with each message type. Please consult the 
Oracle Retail Integration Guide for each message type for the details on the 
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

Xtsfcre Transfer Create XTsfDesc.xsd



Vendor Subscription API

3-142 Operations Guide Volume 2 - Message Publication and Subscription Designs

Vendor Subscription API
This section describes the vendor subscription API.

Functional Area
Foundation Data

Business Overview
Merchandising subscribes to supplier information that is published from an external 
financial application. 'Vendor' refers to either a partner or a supplier, but only supplier 
information is subscribed to by Merchandising. Supplier information also includes 
supplier addresses, CFAS data and the org unit.

Processing includes a check for the appropriate financial application in Merchandising 
on the SYSTEM_OPTIONS table's FINANCIAL_AP column, which will result in 
different processing. The financial application (such as Oracle EBS) sends the 
information to Merchandising through RIB.

The financial application publishes a supplier type vendor, placing the supplier 
information onto the RIB (Oracle Retail Information Bus). Merchandising subscribes to 
the supplier information as published from the RIB and places the information onto 
Merchandising tables depending upon the validity of the records enclosed within the 
message. 

Package Impact
Filename: rmssub_vendorcres/b.pls

Public API Procedures
RMSSUB_VENDORCRE.CONSUME (O_status_code    IN OUT  VARCHAR2,
                          O_error_message  IN OUT  VARCHAR2,
                          I_message        IN      RIB_OBJECT,
                          I_message_type   IN      VARCHAR2);

This procedure accepts an RIB object as input (I_message). This contains a supplier 
message consisting of the aforementioned header and detail records. This procedure 
will initially ensure that the passed-in message type is a valid type for vendor 
subscription. If the message type is invalid, a status of 'E' will be returned to the 
external system along with an appropriate error message informing the external 
system that the status is invalid.

Xtsfdtlcre Transfer Detail Create XTsfDesc.xsd

CustFlexAttriVO Transfer Flex Attribute Create XTsfDesc.xsd

Xtsfmod Transfer Modify XTsfDesc.xsd

Xtsfdtlmod Transfer Detail Modify XTsfDesc.xsd

Xtsfdtlmod Transfer Flex Attribute 
Modify

XTsfDesc.xsd

Xtsfdel Transfer Delete XTsfDesc.xsd

Xtsfdtldel Transfer Detail Delete XTsfRef.xsd

Message Types Message Type Description XML Schema Definition (XSD)



Vendor Subscription API

RIB Subscription Designs 3-143

If the message type is valid, the generic RIB_OBJECT will be downcast to the actual 
object using the Oracle's treat function. If the downcast fails, a status of 'E' will be 
returned to the external system along with an appropriate error message informing the 
external system that the object passed in is invalid.

The procedure then places a call to the main RMSSUB_SUPPLIER.CONSUME function 
to validate the RIB Object. The values extracted from the RIB Object are then passed on 
to private internal functions, which validate the values and place them on the supplier 
and address tables depending upon the success of the validation.

Private Internal Functions and Procedures (rmssub_vendorcre.pls):
Error Handling

If an error occurs in this procedure, a call is placed to HANDLE_ERRORS in order to 
parse a complete error message and pass back a status to the RIB. 

HANDLE_ERRORS
             (O_status          IN OUT  VARCHAR2,
              IO_error_message  IN OUT  VARCHAR2,
              I_cause           IN      VARCHAR2,
              I_program         IN      VARCHAR2);

This function is used to put error handling in one place in order to make future error 
handling enhancements easier to implement. All error handling in the internal 
RMSSUB_SUPPLIER package and all errors that occur during subscription in the 
RMSSUB_VENDORCRE package (and whatever packages it calls) flow through this 
function. 

The function consists of a call to API_LIBRARY.HANDLE_ERRORS. API_
LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and 
potentially an unparsed error message if one has been created through a call to SQL_
LIB.CREATE_MESSAGE. The function uses these input variables to parse a complete 
error message and pass back a status, depending upon the message and error type, 
back up through the consume function and up to the RIB. 

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_SUPPLIER. 

Main Consume Function

RMSSUB_SUPPLIER.CONSUME(O_status            OUT  VARCHAR2,
                        O_error_message     OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                        I_message        IN      "RIB_VendorDesc_REC")

This function accepts the RIB Object (I_message) from the aforementioned public 
vendor procedure whenever a message is made available by the RIB. This message 
consists of the aforementioned header and detail records.

The values extracted from the RIB Object are then passed on to private internal 
functions, which validate the values and place them on the appropriate supplier and 
address database tables depending upon the success of the validation. The procedure 
then calls the PROCESS_ADDRESS function to check that the proper addresses have 
been associated with the supplier and store the address details in ADDR table. After 
processing the address records, the procedure calls PROCESS_ORGUNIT function to 
process the org units.

The custom flex attributes in the message are subscribed by calling the function 
RMSSUB_SUPPLIER_CFA.CONSUME().



Vendor Subscription API

3-144 Operations Guide Volume 2 - Message Publication and Subscription Designs

PARSE_SUPPLIER 

This function is used to extract the header level information from the supplier XML 
file and place that information onto an internal supplier header record. 

The record is based upon the supplier table.

PARSE_ADDRESS 

This function extracts the address level information from the input RIB Object and 
places that information onto an internal address record. 

The record is based upon the address table.

PROCESS_SUPPLIER 

After the values are parsed for a particular supplier record, RMSSUB_
SUPPLIER.CONSUME calls this function, which in turn calls various functions inside 
RMSSUB_SUPPLIER in order to validate the values and place them on the appropriate 
supplier table depending upon the success of the validation. Either INSERT_
SUPPLIER or UPDATE_SUPPLIER is called to actually insert or update the supplier 
table.

PROCESS_ADDRESS 

After the values are parsed for a particular address record, RMSSUB_
SUPPLIER.CONSUME calls this function. If the FINANCIAL_AP system option is set 
to 'O', this function calls various functions inside RMSSUB_SUPPLIER in order to 
validate the values and place them on the appropriate address table depending upon 
the success of the validation. Either INSERT_ADDRESS or UPDATE_ADDRESS is 
called to actually insert or update the address table.

INSERT_SUPPLIER 

This function first checks the PROCUREMENT_UNIT_OPTIONS table to determine 
what the value of dept_level_orders is. If the dept_level_orders value is 'Y', the inv_
mgmt_lvl is defaulted to 'D'. If the dept_level_orders value is anything other than 'Y', 
the inv_mgmt_lvl is set to 'S.'

The function then takes the information from the passed-in supplier record and inserts 
it into the SUPS table.

FUNCTION UPDATE_SUPPLIER 

This function updates the SUPS table using the values contained in the I_supplier_
record.

If the primary address of the supplier is localized then supplier status will be 'I' - 
Inactive.

FUNCTION UPDATE_ADDRESS

This function updates the supplier information to the address table. 

CHECK_CODES

The RMSSUB_SUPPLIER package, specifically the functions check_codes() and check_
fkeys(), sends back descriptive error messages when codes are not valid or if a foreign 
key constraint is violated.

INSERT_ADDRESS

Insert supplier information to address table. If the address in the passed-in address 
record is the primary address for a particular supplier/address type, this function 
updates the current primary address so that it is no longer the primary.



Vendor Subscription API

RIB Subscription Designs 3-145

VALIDATE_SUPPLIER_RECORD

Validate that all the necessary records are populated. In the supplier site enabled 
environment (system_options.supplier_site_ind = 'Y') supplier_parent must be 
present.

VALIDATE_ADDRESS_RECORD 

Validate that all the necessary records are populated.

CHECK_NULLS

This function checks that the passed-in record variable is not null. If it is, it will return 
an error message.

VALIDATE_ORG_UNIT_RECORD

This function checks that the passed-in record variable is not null. If it is, it will return 
an error message. When not null, it checks for a valid org unit in ORG_UNIT table. 

PROCESS_ORGUNIT

After validating the org unit, this function either inserts or updates the record in 
PARTNER_ORG_UNIT table. If the vendor/orgunit in the passed-in Org Unit record 
is the primary pay site for a particular vendor/orgunit type, this function updates the 
current primary paysite so that it is no longer the primary. When supplier_site_ind = 
'Y', partner_org_unit only exists for supplier sites, not for parent supplier hence this 
function will be called for supplier sites and not for supplier.

Filename: rmssub_supplier_cfas/b.pls

RMSSUB_SUPPLIER_CFA.CONSUME
                (O_error_message           IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                 I_rib_vendorhdrdesc_REC   IN      "RIB_VendorHdrDesc_REC",
                 I_rib_vendoraddrdesc_TBL  IN      "RIB_VendorAddrDesc_TBL");

The main CONSUME function processes the CFAS attributes of supplier and address 
by calling the functions RMSSUB_SUPPLIER_CFA.CONSUME_SUPS_CFAS () and 
RMSSUB_SUPPLIER_CFA. CONSUME_ADDR_CFAS().

Message XSD
Here are the filenames that correspond with each message type. Please consult Oracle 
Retail Integration Bus information for each message type in order to get a detailed 
picture of the composition of each message.

Design Assumptions

Message Types Message Type Description XML Schema Definition (XSD)

VendorCre Vendor Create Message VendorDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

SUPS Yes Yes Yes No

ADDR Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

UNIT_OPTIONS Yes No No No

CODE_DETAIL Yes No No No



Work Order Status Subscription API

3-146 Operations Guide Volume 2 - Message Publication and Subscription Designs

Work Order Status Subscription API
This section describes the work order status subscription API.

Functional Area
Work Order Status

Business Overview
Merchandising subscribes to a work order status message sent from internal finishers. 
Work order status messages contain the items for which the activities have been 
completed along with the quantity that was completed. All items on transfers that pass 
through an internal finisher must have at least one work order activity performed 
upon them. When work order status messages are received for a particular 
item/quantity, it is assumed that all work order activities associated with the 
item/quantity have been completed. If work order activities involve item 
transformation or repacking, the work order status messages are always created in 
terms of the resultant item.

The work order status message is only necessary when the internal finisher and the 
final receiving location are in the same physical warehouse. If the internal finisher 
belongs to the receiving location, a book transfer is made between the internal finisher 
(which is held as a virtual warehouse) and the final receiving location (also a virtual 
warehouse). If the internal finisher belongs to the sending location's transfer entity, 
intercompany out and intercompany in transactions are recorded. Quantities on hand, 
reserved quantities, and weighted average costs are adjusted to accurately reflect the 
status of the stock.

Assume that a quantity of 20 of item 100 (White XL T-shirt) are sent to an internal 
finisher at the receiving physical warehouse where they will be dyed black, thereby 
transforming them into item 101 (Black XL T-shirt). If all finishing activities were 
successfully completed in this example, Merchandising could expect to receive a Work 
Order Status message containing item 101 with a quantity of 20. 

It is possible to receive multiple Work Order Status messages for a particular 
item/transfer. Work order completion of partial quantities addresses the following 
scenarios:

1. 1.Work order activities could not be performed for the entire quantity of a 
particular item at one time.

2. 2.A given quantity of the particular item was damaged while work order activities 
were performed.

In terms of the previous example, Merchandising could receive a message containing 
item 101(Black XL T-shirt) with a quantity of 10. A message stating that work order 

PARTNER_ORG_UNIT Yes Yes Yes No

ORG_UNIT Yes No No No

CFA_EXT_ENTITY Yes No No No

CFA_ATTRIB_GROUP_SET Yes No No No

SUPS_CFA_EXT No Yes No No

ADDR_CFA_EXT No Yes No No

TABLE SELECT INSERT UPDATE DELETE



Work Order Status Subscription API

RIB Subscription Designs 3-147

activities were completed for the remaining 10 items could then be received at a later 
time. The only scenario in which a Work Order Status message is necessary is when 
work order activities are taking place at an internal finisher that resides in the same 
physical warehouse as the transfer's final receiving location. In this scenario, the final 
'leg' of the transfer will 'move' merchandise between two virtual warehouses in the 
same physical warehouse. As this movement cannot be done until all work order 
activities are completed for a specific item/quantity, the finisher must inform 
Merchandising of this completion.

Other finishing scenarios exist in which the finisher is not a virtual warehouse that 
shares a physical warehouse with the transfer's final receiving location. In these 
instances, Work Order Status messages are not necessary. This is because these 
scenarios dictate that merchandise must be physically shipped from the finisher to the 
transfer's final receiving location. Merchandising assumes that a finisher will not ship 
merchandise until all finishing activities have been completed for said merchandise. 
Merchandising will disregard Work Order Status messages sent in these scenarios.

Package Impact
Filename: rmssub_wostatuss/b.pls

PROCEDURE CONSUME
                (O_status_code    IN OUT  VARCHAR2,
                 O_error_message  IN OUT  VARCHAR2,
                 I_message        IN      RIB_OBJECT,
                 I_message_type   IN      VARCHAR2)

This procedure is passed an Oracle Object, which it will validate to ensure all required 
data is present. It will ensure that the finisher and the transfer's final receiving location 
are in the same physical warehouse. If not, processing is deemed successful and 
halted. If the message contains an item, Merchandising work order complete 
processing will be called for that item. Otherwise, said processing will be called for all 
items on the transfer. If the entire transfer is processed, the child transfer (that is, the 
'second leg') will be set to 'S'hipped status. 

PROCEDURE HANDLE_ERRORS
                      (O_status_code     IN OUT  VARCHAR2,
                       IO_error_message  IN OUT  VARCHAR2,
                       I_cause           IN      VARCHAR2,
                       I_program         IN      VARCHAR2)

This is the standard error handling procedure that wraps the API_
LIBRARY.HANDLE_ERROR function.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB 
documentation for each message type in order to get a detailed picture of the 
composition of each message.

Note: Work orders are always associated with the second leg of 
multi-leg transfers. Whether processing is performed at the item or 
transfer level, transfer closing queue logic will be called to determine 
if the entire multi-leg transfer can be closed.



Work Order Status Subscription API

3-148 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Message Types Message Type Description
XML Schema Definition 
(XSD)

wostatuscre Work Order Status Create Message WOStatusDesc.xsd

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes No Yes No

TSFDETAIL Yes No Yes No

TSF_ITEM_COST Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

ITEM_LOC_SOH Yes Yes Yes No

TRAN_DATA(VIEW) No Yes No No

INV_ADJ No Yes No No

INV_STATUS_QTY No Yes Yes Yes

INV_ADJ_REASON Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

INV_STATUS_CODES Yes No No No

SHIPSKU Yes No No No



4

SOAP Web Services 4-1

4SOAP Web Services

This chapter gives an overview about the SOAP Web service implementation used in 
Merchandising.

The Simple Object Access Protocol (SOAP) is a general-purpose messaging protocol 
that is the de facto standard for web services messaging and interaction through the 
Oracle Retail Integration Cloud Service (RICS) Retail Service Backbone (RSB), which 
provides monitoring for the SOAP services used by Merchandising. The basic unit of 
interaction between a SOAP client and a SOAP-enabled service is a message. A SOAP 
message is basically an XML document that consists of two parts:

1. An optional header providing information on authentication, encoding of data, or 
how a recipient of a SOAP message should process the message.

2. The body that contains the message. These messages are defined using the WSDL 
specification.

An envelope can enclose any number of optional headers. The following diagram 
shows the high-level architecture of SOAP web service implementation with respect to 
Merchandising:



Using SOAP Services During Batch Window

4-2 Operations Guide Volume 2 - Message Publication and Subscription Designs

Using SOAP Services During Batch Window
The services should not be used during the restricted batch window.

Common Characteristics of Merchandising SOAP Services
A Retail Application will package its SOAP services as part of the application's 
Enterprise Archive (EAR) file. Installation of the SOAP web services is therefore done 
by default as part of the application install. Refer to Oracle Retail Service Backbone 
Implementation Guide for more details.

Security
Services are secured using a standard policy-based security model supported by 
WebLogic and OSB.

For more details, refer to the Oracle Retail Service Backbone Security Guide.

Standard Success Response
Example response payload in case of service success is depicted below:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
   <S:Body>
      <ns1:createDetailXAllocDescResponse 
xmlns:ns1="http://www.oracle.com/retail/rms/integration/services/AllocationService
/v1" 
xmlns:ns3="http://www.oracle.com/retail/integration/base/bo/InvocationSuccess/v1" 
xmlns:ns2="http://www.oracle.com/retail/integration/base/bo/XAllocDesc/v1" 
xmlns:ns4="http://www.oracle.com/retail/integration/base/bo/XAllocColRef/v1" 
xmlns:ns5="http://www.oracle.com/retail/integration/base/bo/XAllocRef/v1">
         <ns3:InvocationSuccess>
            <ns3:success_message>createDetailXAllocDesc service call was 
successful.</ns3:success_message>
         </ns3:InvocationSuccess>
      </ns1:createDetailXAllocDescResponse>
   </S:Body>
</S:Envelope>



Common Characteristics of Merchandising SOAP Services

SOAP Web Services 4-3

Standard Error Response
Example response payload in case of service error is depicted below: 

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
   <S:Body>
      <ns0:Fault xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ns1="http://www.w3.org/2003/05/soap-envelope">
         <faultcode>ns0:Server</faultcode>
         <faultstring>Invalid Item. 1003500087</faultstring>
         <detail>
            <ns0:IllegalStateWSFaultException 
xmlns:ns0="http://www.oracle.com/retail/integration/services/exception/v1">
               <ns0:shortErrorMessage>Invalid Item. 
1003500087</ns0:shortErrorMessage>
               <ns0:errorDescription>
                 com.oracle.retail.integration.services.exception…
                </ns0:errorDescription>
               <ns0:BusinessProblemDetail>
                  <ns0:problemDescription>Invalid Item. 
1003500087</ns0:problemDescription>
               </ns0:BusinessProblemDetail>
            </ns0:IllegalStateWSFaultException>
         </detail>
      </ns0:Fault>
   </S:Body>
</S:Envelope>

URL Path
To access the Merchandising SOAP web services WSDL file: 

https://<hostname>/<end-point> 

The end point information is in the descriptions of each of the provider services later 
in this chapter.

Web Service APIs Process Flow
The following diagram shows the Web Service API process flow for Merchandising as 
a Service Provider:



Provider Services

4-4 Operations Guide Volume 2 - Message Publication and Subscription Designs

Provider Services
This section lists the details on all of the SOAP services where Merchandising is the 
provider of the service.

Consumer Services
This section lists the details on the SOAP services where Merchandising is the 
consumer of the service. 

Provider Services
This section gives an overview about the SOAP Web service provider implementation 
API designs used in the Merchandising environment and various functional attributes 
used in the APIs.

Allocation Service

Functional Area
Allocation

RSB Proxy WSDL
/rms-Allocation-AppServiceDecorator/ProxyService/AllocationAppServiceProxy?wsdl

Merchandising Service WSDL
/AllocationBean/AllocationService?WSDL

Overview
This service allows an external application to create, update, and delete allocations 
within Merchandising based on warehouse inventory or to cross-dock a purchase 
order. 

This service uses the same logic as is supported in the Allocation Subscription RIB 
API. For information about this functionality, see Allocation Subscription API in the 
"RIB Subscription Designs" chapter of this document.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Note: The following service provider implementation API designs 
are intended only to give a high level overview of the APIs available.

The implementation of these services, along with the associated Web 
Service Definition Language (WSDL), may be used to get a full 
understanding of the data requirements, validation rules, persistence 
rules, and return values associated with the service.

Operation Name Input Object Type Output Object Type XML Definition

create XAllocDesc InvocationSuccess XAllocDesc.xsd



Provider Services

SOAP Web Services 4-5

Average Cost Service

Functional Area
Finance

RSB Proxy WSDL
/rms-AverageCost-AppServiceDecorator/ProxyService/AverageCostAppServiceProxy?wsdl 

Merchandising Service WSDL
/AverageCostBean/AverageCostService?WSDL

Overview
This service supports updating weighted average cost from an external system for one 
or more item/locations combinations. It also creates a tran data record posting with 
tran code 70 for the difference in cost, based on owned inventory at the location at the 
time the cost change is applied. 

The web service will be called with the following details:

■ Item

■ Location

■ Location Type

■ New average cost (must be greater than 0)

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

createDetail XAllocDesc InvocationSuccess XAllocDesc.xsd

modifyHeader XAllocDesc InvocationSuccess XAllocDesc.xsd

modifyDetail XAllocDesc InvocationSuccess XAllocDesc.xsd

delete XAllocColRef InvocationSuccess XAllocRef.xsd

XAllocColRef.xsd

deleteDetail XAllocColRef InvocationSuccess XAllocRef.xsd

XAllocColRef.xsd

Operation Name Input Object Type Output Object Type XML Definition

modifyAvgCost ItLocAgCstColDesc InvocationSuccess ItLocAgCstDesc.xsd 
ItLocAgCstColDesc.xsd

Operation Name Input Object Type Output Object Type XML Definition



Provider Services

4-6 Operations Guide Volume 2 - Message Publication and Subscription Designs

Cost Change Service

Functional Area
Cost Change

RSB Proxy WSDL
/rms-CostChange-AppServiceDecorator/ProxyService/CostChangeAppServiceProxy?wsdl

Merchandising Service WSDL
/CostChangeBean/CostChangeService?WSDL

Overview
This service is exposed to allow an external application to create cost changes in 
Merchandising. It takes a collection of cost changes and will return success and failure 
through the service response object. 

This service uses the same logic as is supported in the Cost Change Subscription RIB 
API. For information about this functionality, see Cost Change Subscription API in the 
"RIB Subscription Designs" section of this document.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Customer Credit Check Service 

Functional Area
Franchise

RSB Proxy WSDL
/rms-CustomerCreditCheck-AppServiceDecorator/ProxyService/CustomerCreditCheckAppSe
rviceProxy?wsdl

Merchandising Service WSDL
/CustomerCreditCheckBean/CustomerCreditCheckService?WSDL

Overview
This API provides a way for an external source, usually a financials system, to update 
the credit status for a franchise customer in Merchandising.  This status is used when 
determining whether a franchisee order can be approved.  Valid values are Y (credit is 

Operation Name Input Object Type Output Object Type XML Definition

create XCostChgColDesc InvocationSuccess XCostChgDesc.xsd

XCostChgColDesc.xsd



Provider Services

SOAP Web Services 4-7

good) and N (credit issues). For each collection of customer and customer group 
passed into the API, the credit flag will be updated with the value indicated in the 
service call. 

Merchandising returns failure status as part of the response object in the web service 
call if credit flag is not updated due to validation errors. 

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Customer Order Fulfillment Service

Functional Area
Customer Order Fulfillment 

RSB Proxy WSDL
/rms-FulfillOrder-AppServiceDecorator/ProxyService/FulfillOrderAppServiceProxy?wsd
l

Merchandising Service WSDL
/FulfillOrderBean/FulfillOrderService?WSDL

Overview
This service is used to process Customer Order Fulfillment requests from an order 
management system (OMS). Merchandising supports two integration methods for 
processing Customer Order Fulfillment messages from OMS - either through RIB or 
web service. At implementation time, you should decide on either one or the other 
integration method, but not both. The same core logic is used to validate and persist 
customer orders.

In a web service implementation, the web service is used to create or cancel a customer 
order in Merchandising. This service

■ Accepts a collection of fulfillment orders as input.  If one order fails, the entire 
service call fails and no orders will be created.

■ Returns Failure status as part of the response object in the web service call if 
customer orders are not created due to validation errors.

■ Returns Success status and a confirmation message as part of the response object 
of type 

– X if customer orders are not created due to lack of inventory 

– P if customer orders are partially created due to insufficient inventory 

Operation Name Input Object Type Output Object Type XML Definition

updateCustCredit CustCreditChkCol InvocationSuccess CustCreditChkDesc.xsd

CustCreditChkCol.xsd



Provider Services

4-8 Operations Guide Volume 2 - Message Publication and Subscription Designs

– C if customer orders are completely created, when sufficient inventory is 
available

In a web service implementation, confirmation messages will be sent in a collection as 
part of the response object.

This is the web service version of the same logic as is supported in the RIB version of 
the API. See Customer Order Fulfillment Subscription API in the "RIB Subscription 
Designs" chapter for more information.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Customer Order Item Substitution Service

Functional Area
Customer Orders

RSB Proxy WSDL
/rms-CustOrdSubstitute-AppServiceDecorator/ProxyService/CustOrdSubstituteAppServic
eProxy?wsdl

Merchandising Service WSDL
/CustOrdSubstituteBean/CustOrdSubstituteService?WSDL

Business Overview
When a store is picking inventory to fulfill a customer order, if the inventory of the 
item ordered does not meet quality standards or is unavailable, and the order indicates 
that substitutions are allowed for that item, the store may choose to fulfill the order 
with a substitute item.  If that occurs, SIM has the ability to substitute items on the 
customer order with another predefined substitute item.  In such cases, SIM notifies 
OMS via the Stock Order Status message that an alternative item has been pushed into 
the order. 

Based on the notification from SIM, OMS updates the customer order and notifies 
Merchandising with the same details received from SIM using this API. 
Merchandising will then update the inventory and customer order details - removing 
the reservation for the original item and adding a reservation for the new item. 
Merchandising will also update the cancelled quantity for the original item on the 
order and add the details for the substituted item, with a cross reference to the original 
item.

Operation Name Input Object Type Output Object Type XML Definition

create FulfilOrdColDesc FulfilOrdCfmCol FulfilOrdDesc.xsd

FulfilOrdColDesc.xsd

cancel FulfilOrdColRef InvocationSuccess FulfilOrdRef.xsd

FulfilOrdColRef.xsd



Provider Services

SOAP Web Services 4-9

Assumptions
■ Substitution logic holds good only for the customer orders fulfilled from stores.

■ Catchweight, Transformable, Consignment, Concession and Deposit container 
items are not supported for customer order item substitution.

■ The quantities are always in Standard UOM.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Diff Management Service 

Functional Area
Foundation

RSB Proxy WSDL
/rms-DiffManagement-AppServiceDecorator/ProxyService/DiffManagementAppServiceProxy
?wsdl

Merchandising Service WSDL
/DiffManagementBean/DiffManagementService?WSDL

Overview
This service supports the following functions

■ Creating new differentiator (diff) IDs

■ Updating existing diff IDs

■ Deleting existing diff IDs

■ Creating diff group header and details

■ Updating existing diff group headers and details

■ Deleting existing diff group headers and details

This API uses the same logic that is used for managing diffs through the Diff 
Subscription RIB API. See Diff Group Subscription API and Diff ID Subscription API 
in the "RIB Subscription Designs" chapter of this document for more details.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Operation Name Input Object Type Output Object Type XML Definition

create CustOrdSubColDesc InvocationSuccess CustOrdSubDesc.xsd

CustOrdSubColDesc.xsd



Provider Services

4-10 Operations Guide Volume 2 - Message Publication and Subscription Designs

Inventory Back Order Service

Functional Area
Inventory

RSB Proxy WSDL
/rms-InventoryBackOrder-AppServiceDecorator/ProxyService/InventoryBackOrderAppServ
iceProxy?wsdl

Merchandising Service WSDL
/InventoryBackOrderBean/InventoryBackOrderService?WSDL

Overview
Retailers selling through ecommerce channels often take customer orders even if 
inventory is not available with the expectation of future inventory being available to 
fill the order. If an order is captured against future inventory by the Order 
Management System (OMS), then a backorder message is sent to Merchandising 
through this service.

This web service will update the backorder quantity in Merchandising - increasing 
when the backorder is taken and decreasing when the backorder is released for 
fulfillment or cancellation. 

Assumptions
■ Backorders can be taken against both stores and warehouses. OMS will determine 

which location will be back ordered.

■ An item does not need to have an open purchase order in order to increase 
backorder quantity. 

Operation Name Input Object Type Output Object Type XML Definition

createDiffId XDiffIDColDesc InvocationSuccess XDiffIDDesc.xsd

 XDiffIDColDesc.xsd

modifyDiffId XDiffIDColDesc InvocationSuccess XDiffIDDesc.xsd

XDiffIDColDesc.xsd

deleteDiffId XDiffIDColRef InvocationSuccess XDiffIDRef.xsd

 XDiffIDColRef.xsd

createDiffGrp

createDiffGrpDtl

XDiffGrpColDesc InvocationSuccess XDiffGrpDesc.xsd

XDiffGrpColDesc.xsd

modifyDiffGrp

modifyDiffGrpDtl

XDiffGrpColDesc InvocationSuccess XDiffGrpDesc.xsd 

XDiffGrpColDesc.xsd

deleteDiffGrp

deleteDiffGrpDtl

XDiffGrpColRef InvocationSuccess XDiffGrpRef.xsd

XDiffGrpColRef.xsd



Provider Services

SOAP Web Services 4-11

■ Catchweight, Transformable, Consignment, Concession and Deposit container 
items are not supported for backorder requests.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Inventory Lookup Service

Functional Area
Inventory

RSB Proxy WSDL
/rms-InventoryDetail-AppServiceDecorator/ProxyService/InventoryDetailAppServicePro
xy?wsdl

Merchandising Service WSDL
/InventoryDetailBean/InventoryDetailService?WSDL

Overview
This real-time inventory availability lookup facility can be used by external systems, 
such as an on-line order capture system (OOC) or order management system (OMS), 
to retrieve item/location available inventory based on Merchandising's current view of 
inventory. Merchandising will provide this information for any warehouse or store 
which is valid for customer order sourcing/fulfillment. 

Available inventory is calculated as

Stock on Hand - (transfer reserved + customer reserved + RTV + non-sellable) 

Any failures (validation errors) encountered during the processing are passed back 
into the response object. If there are no failures, success status is returned.

Assumptions
■ Catchweight, transformable, consignment, concession and deposit container items 

are not supported in this API.

■ This inventory detail lookup is only for customer orderable inventory - sellable 
items at customer order locations. If a physical warehouse and channel are passed 
into the API, then only the inventory for the customer orderable virtual 
warehouses for that physical warehouse/channel are returned.

■ If the inventory lookup is for a pack item at store, the pack inventory is estimated 
based on the maximum number of complete packs which can be created by using 
the available inventory of its components. 

Operation Name Input Object Type Output Object Type XML Definition

create InvBackOrdColDesc InvocationSuccess InvBackOrdDesc.xsd

InvBackOrdColDesc.xsd



Provider Services

4-12 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Merchandising does not use the Search Area information in this service. It will 
only lookup inventory for the specific locations included in the input object.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Item Management Service

Functional Area
Item

RSB Proxy WSDL
/rms-ItemManagement-AppServiceDecorator/ProxyService/ItemManagementAppServiceProxy
?wsdl

Merchandising Service WSDL
/ItemManagementBean/ItemManagementService?WSDL

Overview
The Item Management service allows an external systems to request pre-issued item 
numbers, as well as create, modify and delete various aspects of an item. 

Request Item Numbers  The Item Number Reservation web service allows external 
systems such as Oracle Retail Assortment Planning (AP) to reserve item numbers in 
Merchandising. This web service contains the following details:

Operation Name Input Object Type Output Object Type XML Definition

lookup InvAvailCriVo InvAvailColDesc InvAvailCriVo.xsd

InvAvailDesc.xsd

InvAvailColDesc.xsd

Column Name Notes

Item Number Type Required. Indicates the type of items numbers being requested. 
Valid options are:

■ ITEM - which is type Oracle Retail Item Number

■ UPC-A - which is type UCC12

■ UPC-AS - which is type UCC12 with Supplement

■ EAN13 - which is type EAN/UCC-13

Quantity Indicates the number of item numbers being requested. 
Required. 

Days Until Expiry Indicates how long the calling solution wants Merchandising to 
retain the reservation. After this many days, the reservation will 
be released allowing these numbers to be used for other 
purposes. This is required and must be a value greater than 0.



Provider Services

SOAP Web Services 4-13

The requested item numbers are sent back to the calling solution as a response. This 
operation is only available as part of the web service.

Create/Manage Items  The operations supported in this service for creating and managing 
items are as follows:

■ Creating and modifying items

■ Creating, modifying, and removing item suppliers

■ Creating, modifying, and removing item supplier sourcing country

■ Creating, modifying, and removing item supplier country dimensions

■ Creating, modifying, and removing item UDA combinations

■ Creating and removing item reclassifications

This service uses the same logic to manage these operations as is used in the Item 
Subscription RIB API. For information on this functionality, see Item Subscription API 
in the "RIB Subscription Designs" chapter of this document.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Operation Name Input Object Type Output Object Type XML Definition

reserveItemNumber ItemNumCriVo ItemNumColDesc ItemNumCriVo.xsd

ItemNumDesc.xsd

ItemNumColDesc.xsd

createItem XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

createSupplier XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

createSupplierCountr
y

XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

createSupplierCountr
yDim

XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

createUDA XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

modifyItem XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

modifySupplier XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

modifySupplierCoun
try

XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

modifySupplierCoun
tryDim

XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd

modifyUDA XItemColDesc InvocationSuccess XItemDesc.xsd

XItemColDesc.xsd



Provider Services

4-14 Operations Guide Volume 2 - Message Publication and Subscription Designs

Pay Term Service

Functional Area
Financial Integration

RSB Proxy WSDL
/rms-PayTerm-AppServiceDecorator/ProxyService/PayTermAppServiceProxy?wsdl

Merchandising Service WSDL
/PayTermBean/PayTermService?WSDL

Overview
The Pay Term Service is used by Oracle Retail Financial Integration (RFI) for 
integration of payment terms with PeopleSoft Financials, and can also be used by an 
external financial systems to send new and updated payment terms information to 
Merchandising. The operations supported in this service are:

■ Create: Create payment terms and details

■ Create Detail: Add details to an existing payment term

■ Update Header: Modify existing payment term header information

■ "Update or Update Details: Modify existing details for a payment term

The operations supported by this service involve an external system sending 
Merchandising details to create or update payment terms. In the response back, the 
terms keys are returned on success. The create and update options for this service use 
the same logic as is supported in the Payment Terms Subscription RIB API. 

deleteSupplier XItemColRef InvocationSuccess XItemRef.xsd

XItemColRef.xsd

deleteSupplierCountr
y

XItemColRef InvocationSuccess XItemRef.xsd

XItemColRef.xsd

deleteSupplierCountr
yDim

XItemColRef InvocationSuccess XItemRef.xsd

XItemColRef.xsd

deleteUDA XItemColRef InvocationSuccess XItemRef.xsd

XItemColRef.xsd

createItemReclass XItemRclsDesc InvocationSuccess XItemRclsDesc.xsd

createItemReclassDet
ail

XItemRclsDesc InvocationSuccess XItemRclsDesc.xsd

deleteItemReclass XItemRclsRef InvocationSuccess XItemRclsRef.xsd

deleteItemReclassDet
ail

XItemRclsRef InvocationSuccess XItemRclsRef.xsd

Operation Name Input Object Type Output Object Type XML Definition



Provider Services

SOAP Web Services 4-15

For information about this functionality, see Payment Terms Subscription API in the 
"RIB Subscription Designs" chapter of this document.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Pricing Cost Service

Functional Area
Foundation Data

RSB Proxy WSDL
/rms-PricingCost-AppServiceDecorator/ProxyService/PricingCostAppServiceProxy?wsdl

Merchandising Service WSDL
/PricingCostBean/PricingCostService?WSDL

Overview
This web service is used to expose pricing cost information to external systems. The 
primary user of this information is assumed to be an Order Management System 
(OMS), which manages franchise customer orders and needs visibility to cost 
information as part of the negotiation process for margin visibility.  

Pricing cost for an item at an owned location is the unit cost for the primary 
supplier/country, less off invoice deals, plus estimated landed costs. Pricing cost for 
an item at a customer (franchise) location is the unit cost for the costing location, less 
any deals passed through, plus estimated landed costs (based on system option), plus 
the franchise cost template details. This API supports providing cost information for 
an item/location or item/supplier/location. 

Any failures (validation errors) encountered during the processing are passed back 
into the response object. If there are no failures, success status is returned.

Assumptions
■ Only Approved and transaction level items are valid.

Operation Name Input Object Type Output Object Type XML Definition

create PayTermDesc PayTermRef PayTermDesc.xsd

PayTermRef.xsd

createDetail PayTermDesc PayTermRef PayTermDesc.xsd

PayTermRef.xsd

update PayTermDesc PayTermDesc PayTermDesc.xsd

updateHeader PayTermDesc PayTermDesc PayTermDesc.xsd

updateDetail PayTermDesc PayTermDesc PayTermDesc.xsd



Provider Services

4-16 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Location must be company store or physical warehouse that is customer orderable. 
For a physical warehouse, it must also include the channel ID that should be used.

■ For physical warehouses, the cost returned will be for the virtual warehouse that 
matches channel ID included in the inputs. If there is not a virtual warehouse that 
matches that channel in the physical warehouse, then next best match will be 
determined based on channel type and the primary warehouse and protected flags 
on the virtual warehouses in the physical warehouse.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Purchase Order Management Service

Functional Area
Purchase Order

RSB Proxy WSDL
/rms-PurchaseOrderManagement-AppServiceDecorator/ProxyService/PurchaseOrderManagem
entAppServiceProxy?wsdl

Merchandising Service WSDL
/PurchaseOrderManagementBean/PurchaseOrderManagementService?WSDL

Overview
The Purchase Order Management service allows an external systems to request 
pre-issued order numbers, create a purchase order, modify a purchase order, or delete 
purchase order details. 

Request Order Numbers  The order reservation operation allows external systems such as 
Oracle Retail Assortment Planning (AP) to reserve order numbers in Merchandising to 
be used in orders that will later be created and integrated to Merchandising. This web 
service contains the following inputs:

Operation Name Input Object Type Output Object Type XML Definition

lookup PrcCostColCriVo PrcCostColDesc PrcCostCriVo.xsd

PrcCostColCriVo.xsd

PrcCostDesc.xsd

PrcCostColDesc.xsd

Column Name Notes

Supplier Site ID Optional - used it the requesting entity is a supplier

Quantity Indicates the number of order numbers being requested. 
Required. 



Provider Services

SOAP Web Services 4-17

The requested order numbers are sent back to the calling solution in the response. This 
operation is only available as part of the web service.

Create/Manage Purchase Orders  The operations supported in this service for creating and 
managing purchase orders are as follows:

■ Create a purchase order header and details

■ Modify purchase order header and details

■ Delete purchase order details

For the operations, this service uses the same logic as is used in the PO Subscription 
RIB API. For more information on the functionality, see PO Subscription API in the 
"RIB Subscription Designs" section of this document.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Report Locator Service

Functional Area
Financial Integration

Days Until Expiry Indicates how long the calling solution wants Merchandising to 
retain the reservation. After this many days, the reservation will 
be released allowing these numbers to be used for other 
purposes. This is required and must be a value greater than 0.

Operation Name Input Object Type Output Object Type XML Definition

preIssueOrderNumb
er

OrdNumCriVo OrdNumColDesc OrdNumCriVo.xsd

OrdNumDesc.xsd

OrdNumColDesc.xsd

create XOrderColDesc InvocationSuccess XOrderDesc.xsd

XOrderColDesc.xsd

modifyHeader XOrderColDesc InvocationSuccess XOrderDesc.xsd

XOrderColDesc.xsd

createDetail XOrderColDesc InvocationSuccess XOrderDesc.xsd

XOrderColDesc.xsd

modifyDetail XOrderColDesc InvocationSuccess XOrderDesc.xsd

XOrderColDesc.xsd

deleteDetail XOrderColRef InvocationSuccess XOrderRef.xsd

XOrderColRef.xsd

Column Name Notes



Provider Services

4-18 Operations Guide Volume 2 - Message Publication and Subscription Designs

RSB Proxy WSDL
/rms-ReportLocator-AppServiceDecorator/ProxyService/ReportLocatorAppServiceProxy?w
sdl

Merchandising Service WSDL
/ReportLocatorBean/ReportLocatorService?WSDL

Overview
This service is used by Oracle Retail Financial Integration (RFI) to retrieve the URL of a 
BI Publisher report from Merchandising or Sales Audit that can be invoked from the 
PeopleSoft Financials General Ledger based on a particular journal entry. The report 
URL that will be returned will be differ based on the ID sent in the service call. Based 
on that ID, Merchandising will determine if it was a Merchandising, Sales Audit, or 
Invoice Matching ID and return a URL for the appropriate report. Possible reports for 
Merchandising and Sales Audit are:

■ GL Fixed Deal Data Report

■ GL Item level Data Report

■ GL Item Rollup Daily Data Report

■ GL Item Rollup Monthly Data Report

■ GL Sales Audit Data Report 

Also, for Invoice Matching, one of the following reports might be returned:

■ Merchandise Invoice Document Report

■ Non-Merchandise Invoice Document Report

■ Credit Note Document Report

■ Credit Memo Cost Document Report

■ Credit Memo Quantity Document Report

■ Debit Memo Cost Document Report

■ Debit Memo Quantity Document Report

■ Debit Memo VAT Document Report

■ Receipt Write Off Document Report

For cloud service implementations, this configuration should be done for you if you 
are configured to run with PeopleSoft Financials. For on premise implementations, 
you may need to configure this yourself in the RETAIL_SERVICE_REPORT_URL 
table. For cloud service implementations, coordinate this configuration with the Oracle 
Cloud Operations team.

The report is similar functionality to the Drill Forward and Drill Back functionality 
available in the Merchandising Transaction Data and Fixed Deal pages and the Sales 
Audit General Ledger Transaction page. See also Get Drill Back Forward URL Service 
for more on the APIs that support this functionality.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.



Provider Services

SOAP Web Services 4-19

Store Order Service

Functional Area
Procurement

RSB Proxy WSDL
/rms-StoreOrder-AppServiceDecorator/ProxyService/StoreOrderAppServiceProxy?wsdl

Merchandising Service WSDL
/StoreOrderBean/StoreOrderService?WSDL

Overview
This service is used by Oracle Retail Store Inventory Management (SIM) to create and 
manage store orders, as well as to query details to support these two operations.

Create Store Order  The majority of the operations in this service are related to creating, 
updating, or deleting a store order. A store order is a request from the store for 
inventory that can result in either a purchase order or transfer being created in 
Merchandising. 

The Create operation allows SIM to request the creation of an order for inventory from 
either a supplier or warehouse for one or more items.  If the source of the inventory 
will be the supplier, then the order can be for more than one store. For warehouse 
sourced orders, it will be for a single store.

The Create Detail operation allows SIM to request the addition of an item to a 
previously created transfer or an item/location to a previously created purchase order. 

Orders will be created in either Approved or Worksheet/Input status in 
Merchandising, depending on what is sent from SIM.

Modify Store Order  The Modify and Modify Detail operations allow SIM to update a 
previously created transfer or purchase order. For this type of update, SIM must send 
the status.

Delete Store Order  The Delete and Delete Detail operations allow SIM to request a delete 
of a previously created order or an order line item. If the order is in approved status 
and it is being sourced from a supplier, then the result will be a modification of the 
order to cancel the quantity or full order, rather than delete it. If it is not yet approved, 
then order details or order can be deleted.

Query Deals  This operation allows SIM to query Merchandising for the deals that an 
item/store, based on a specific date and source (supplier, partner). Merchandising will 
reply with details on the off-invoice deals that the item/location are part of based on 
the date provided. The details provided include the deal dates and discount details.

Operation Name Input Object Type Output Object Type XML Definition

publish ReportLocDesc ReportLocRef ReportLocRef.xsd

ReportLocDesc.xsd



Provider Services

4-20 Operations Guide Volume 2 - Message Publication and Subscription Designs

Query Sales  This operation allows SIM to query Merchandising for a specific 
item/location combination's sales data. Merchandising will respond by sending the 
available weeks of sales data, including the quantity sold, retail value, and sales type 
(for example, regular, promotion, clearance).

Query Store Orders  There are two operations that allow SIM to query store orders from 
Merchandising. Query Store Order accepts location and location type (store or 
warehouse), as well as optional filtering details like item, source (supplier site or 
physical warehouse), dates, and status. The operation returns a collection of header 
level details for the purchase orders or transfers that match the criteria, including the 
quantity on the order for the location. 

The other operation, Query Store Order Details, accepts a specific order (purchase 
order or transfer), source type, and source and returns the details of that order, 
including the destination locations, status, dates, items, cost, and quantity.

Assumptions
■ Service operations will return back with the first error encountered.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Operation Name Input Object Type Output Object Type XML Definition

create LocPOTsfDesc LocPOTsfRef LocPOTsfDesc.xsd

LocPOTsfRef.xsd

createDetail LocPOTsfDesc InvocationSuccess LocPOTsfDesc.xsd

modify LocPOTsfDesc InvocationSuccess LocPOTsfDesc.xsd

modifyDetail LocPOTsfDesc InvocationSuccess LocPOTsfDesc.xsd

delete LocPOTsfDesc InvocationSuccess LocPOTsfDesc.xsd

deleteDetail LocPOTsfDesc InvocationSuccess LocPOTsfDesc.xsd

queryDeal LocPOTsfDealsCriVo LocPOTsfDealsColDe
sc

LocPOTsfDealsCriVo.xsd 

LocPOTsfDealsDesc.xsd 

LocPOTsfDealsColDesc.x
sd

queryItemSales LocPOTsfItmSlsCriVo LocPOTsfItmSlsColD
esc

LocPOTsfItmSlsCriVo.xs
d

LocPOTsfItmSlsDesc.xsd 

LocPOTsfItmSlsColDesc.
xsd

queryStoreOrder LocPOTsfHdrCriVo LocPOTsfHdrColDes
c

LocPOTsfHdrCriVo.xsd

LocPOTsfHdrDesc.xsd 

LocPOTsfHdrColDesc.xs
d

queryStoreOrderDeta
il

LocPOTsfDtlsCriVo LocPOTsfDesc LocPOTsfDtlsCriVo.xsd

LocPOTsfDesc.xsd



Provider Services

SOAP Web Services 4-21

Supplier Service

Functional Area
Foundation Data

RSB Proxy WSDL
/rms-Supplier-AppServiceDecorator/ProxyService/SupplierAppServiceProxy?wsdl

Merchandising Service WSDL
/SupplierBean/SupplierService?WSDL

Overview
This service allows Merchandising to subscribe to supplier information from external 
financial applications. It is also used by Oracle Retail Financials Integration (RFI) for 
integrating supplier information into Merchandising from EBS, PeopleSoft, or Cloud 
Financials. The operations supported by this service are as follows:

■ Create a new parent supplier, including the associated sites, org unit, and address; 
it also supports adding flex attributes (CFAS) for supplier, supplier site, and 
address levels

■ Update an existing supplier, including adding or updating sites, org unit, address 
for the supplier, and flex attributes for the supplier, sites, and address levels

The operations supported by this service involve an external system sending 
Merchandising details to create or update suppliers or supplier sites. In the response 
back, the supplier or site IDs are returned on success. The create and update options 
for this service use the same logic as is supported in the Vendor Subscription RIB API. 

For information about this functionality, see Vendor Subscription API in the "RIB 
Subscription Designs" chapter of this document.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Operation Name Input Object Type Output Object Type XML Definition

create SupplierDesc SupplierRef SupplierRef.xsd

SupplierDesc.xsd

create SupplierColDesc SupplierColRef SupplierColDesc.xsd

SupplierColRef.xsd

update SupplierDesc SupplierDesc SupplierDesc.xsd

update SupplierColDesc SupplierColDesc SupplierColDesc.xsd



Provider Services

4-22 Operations Guide Volume 2 - Message Publication and Subscription Designs

Transfer Service

Functional Area
Transfer

RSB Proxy WSDL
/rms-TransferManagement-AppServiceDecorator/ProxyService/TransferManagementAppServ
iceProxy?wsdl

Merchandising Service WSDL
/TransferManagementBean/TransferManagementService?WSDL

Overview
Merchandising exposes a Transfer Management service to allow an external 
application to create, update, and delete transfers. The web service takes in a collection 
of transfers and will return success and failure through the service response object. The 
operations supported in this service for creating and managing transfers are as 
follows:

■ Create a transfer header and details

■ Modify transfer header and details

■ Delete transfer header and details

For the operations, this service uses the same logic as is used in the Transfer 
Subscription RIB API. For more information on the functionality, see Transfer 
Subscription API in the "RIB Subscription Designs" chapter of this document.

Operation XSD
Here are the filenames that correspond with each operation. Please consult the RSB 
documentation for each in order to get a detailed picture of the composition.

Operation Name Input Object Type Output Object Type XML Definition

create XTsfColDesc InvocationSuccess XTsfDesc.xsd

XTsfColDesc.xsd

createDetail XTsfColDesc InvocationSuccess XTsfDesc.xsd

XTsfColDesc.xsd

modifyHeader XTsfColDesc InvocationSuccess XTsfDesc.xsd

XTsfColDesc.xsd

modifyDetail XTsfColDesc InvocationSuccess XTsfDesc.xsd

XTsfColDesc.xsd

deleteHeader XTsfColRef InvocationSuccess XTsfRef.xsd

XTsfColRef.xsd

deleteDetail XTsfColRef InvocationSuccess XTsfRef.xsd

XTsfColRef.xsd



Consumer Services

SOAP Web Services 4-23

Consumer Services
This section gives an overview about the SOAP Web service Consumer 
Implementation API designs used in the Merchandising environment and various 
functional attributes used in the APIs.

Customer Address Service

Functional Area
Financials

Overview
The primary role of this service is to query customer address details related to a Sales 
Audit transaction. This may be required if you have configured Merchandising to not 
retain customer information (Retain Customer Information system options unchecked) 
for customer orders, but you wish to have visibility to it in Sales Audit when 
viewing/auditing transactions.

When Sales Audit calls this service, it will pass the customer ID and expect to receive 
back the following information in response:

■ First Name

■ Last Name

■ Company Name (if applicable)

■ Address Line 1

■ Address Line 2

■ Address Line 3

■ County

■ City

■ State

■ Country

■ Postal Code

■ Jurisdiction

■ Phone

■ Email

■ Birthdate

As part of your implementation, if you have this system option configured off, you 
will need to provide a URL for Sales Audit to call. For on premise implementations, 
this will require updating the RETAIL_SERVICE_REPORT_URL table for code CAS. 
For cloud service implementations, configuration of this service call should be done in 
coordination with the Oracle Cloud Operations team by logging an SR. 



Consumer Services

4-24 Operations Guide Volume 2 - Message Publication and Subscription Designs

Customer Order Address Service

Functional Area
Procurement

Overview
The primary role of this service is for Merchandising to query customer/shipping 
details related to a customer order from an order management system (OMS). This is 
required if you have configured Merchandising to not retain customer information 
(Retain Customer Information system options unchecked) for customer orders and are 
sourcing customer orders from a warehouse or supplier where Merchandising needs 
to provide the address details for shipping to the customer.

When Merchandising calls this service, it will pass

■ Customer order number

■ Fulfillment order number

■ "Fulfillment location type and ID

■ Source location type and ID

And expect to receive back the following information in response:

■ Customer ID

■ Delivery Details

– First Name

– Phonetic First Name

– Last Name

– Phonetic Last Name

– Preferred Name

– Company Name

– Address Line 1

– Address Line 2

– Address Line 3

– County

– City

– State

– Country

– Postal Code

– Jurisdiction

– Phone

– Email

■ Billing Details

– First Name



Consumer Services

SOAP Web Services 4-25

– Phonetic First Name

– Last Name

– Phonetic Last Name

– Preferred Name

– Company Name

– Address Line 1

– Address Line 2

– Address Line 3

– County

– City

– State

– Country

– Postal Code

– Jurisdiction

– Phone

– Email

As part of your implementation, if you have this system option configured off, you 
will need to provide a URL for Merchandising to call. For on premise 
implementations, this will require updating the RETAIL_SERVICE_REPORT_URL 
table for code COA. For cloud service implementations, configuration of this service 
call should be done in coordination with the Oracle Cloud Operations team by logging 
an SR. 

Get Drill Back Forward URL Service

Functional Area
Financial Integration

Overview
If you are implementing the Merchandising solutions with PeopleSoft Financials, then 
this service can be used allow users in Merchandising or Sales Audit to "drill forward" 
into Peoplesoft to view the General Ledger journal entries associated with a 
transaction or to "drill back" into Merchandising and Sales Audit from PeopleSoft 
General Ledger screens to view the source transactions associated with a journal entry. 
Both of these actions leverage this service call.

If you are configured use Merchandising with PeopleSoft Financials, then when you 
are in the following pages, you'll see Drill to Finance options that leverage this call:

■ Merchandising Transaction Data

■ Merchandising Fixed Deals

■ Sales Audit General Ledger Transactions



Consumer Services

4-26 Operations Guide Volume 2 - Message Publication and Subscription Designs

As part of your implementation, you will need to configure the URL for the service call 
in the RETAIL_SERVICE_REPORT_URL table for code RDF. For cloud service 
implementations, configuration of this service call should be done in coordination 
with the Oracle Cloud Operations team by logging an SR. For more information, see 
the RFI Implementation Guide.

GL Chart of Accounts Validation Service

Functional Area
Financial Integration

Overview
When using Oracle Retail Financials Integration (RFI) to manage General Ledger 
integration an Oracle financial solution, a validation service is used to ensure that the 
segment combinations mapped to by Merchandising and Sales Audit users are valid 
combinations in the General Ledger. This validation is called from Merchandising and 
Sales Audit when creating General Ledger cross-reference mappings.

As part of your implementation, you will need to configure the URL for the service call 
in the RETAIL_SERVICE_REPORT_URL table for code RAV. For cloud service 
implementations, configuration of this service call should be done in coordination 
with the Oracle Cloud Operations team by logging an SR. For more information, see 
the RFI Implementation Guide.

Note: Oracle Retail Invoice Matching also leverages this service for 
viewing transactions in PeopleSoft Payables. And Peoplesoft Payables 
can drill back to Invoice Matching as well.

Note: This validation is also used by Oracle Retail Invoice Matching



5

ReSTful Web Services 5-1

5ReSTful Web Services 

This chapter gives an overview about the Merchandising and Sales Audit ReSTful Web 
service implementation and the APIs used in Merchandising and Sales Audit. For 
more information on ReST architectural style applied for building Web services, access 
the following URL:

http://www.oracle.com/technetwork/articles/javase/index-137171.h
tml

Introduction
Merchandising and Sales Audit ReST support several web services, including the 
ability to query data and the ability to create and update data within the solutions. A 
few were built specifically to support mobile applications. These may not be useful for 
general use, however if you wanted to build your own mobile applications leveraging 
these services, this can be done. The ReSTful Web services Java code cannot be 
customized. The diagram below shows how the services are intended to interact with 
a mobile client.

Figure 5–1 Mobile Client and Web Services Integration through Javascript

http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html


Common Characteristics of Retail Application ReSTful Web Services

5-2 Operations Guide Volume 2 - Message Publication and Subscription Designs

Common Characteristics of Retail Application ReSTful Web Services

On-Premise Deployments
Merchandising ReST Web services are packaged in their own Enterprise Application 
Archive (EAR) file. For Merchandising, this is the Merchandising ReST .ear file 
(RmsRestServices.ear). For more information, see the latest Merchandising Installation 
Guide. 

Sales Audit ReST Web services are packaged as part of Sales Audit's Enterprise 
Archive (EAR) file. Specifically, those services are packaged as a Web Archive (WAR) 
within the EAR. Installation of the ReST web services is therefore done by default 
when installing Sales Audit.

Security
Services are secured using J2EE-based security model.

■ Realm-based User Authentication: This verifies users through an underlying 
Realm. The username and password are passed using HTTP basic authentication.

■ Role-based Authorization: This assigns users to roles; authenticated users can 
access the services with Merchandising or Sales Audit application roles or custom 
roles that are assigned to:

– For Merchandising RMS_SERVICE_ACCESS_PRIV

– For Sales Audit MERCH_SERVICE_ACCESS_PRIV

■ The communication between the server and client is encrypted using one-way 
SSL. In non-SSL environments the encoding defaults to BASE-64 so it is highly 
recommended that these ReST services are configured to be used in production 
environments secured with SSL connections.

■ If you are using Merchandising data filtering, that will apply to the services as 
well. The user ID used for the calling the service should be added to the 
Merchandising SEC_USER table (APP_USER_ID), and then associated to the 
appropriate group in SEC_USER _GROUP table. For more information on this see 
the Merchandising Security Guide - Volume 2.

Standard Request and Response Headers
Merchandising and Sales Audit ReSTful web services have the following standard 
HTTP headers:

   Accept: application/xml or application/JSON
   Accept-Version: 16.0 (service version number)
   Accept-Language: en-US,en;q=0.8

Please use version 16.0 for Merchandising and 15.0 for Sales Audit.

Depending on the type of the operation or HTTP method, the corresponding response 
header is updated in the HTTP response with the following codes:

Note: The services should not be used during the restricted batch 
window.



Common Characteristics of Retail Application ReSTful Web Services

ReSTful Web Services 5-3

■ GET/READ : 200 

■ PUT/CREATE : 201 created

■ POST/UPDATE : 204 

■ DELETE : 204

Standard Error Response
Example response payload in case of service error is depicted below:

   <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
   <messagesRDOes>
     <messagesRDO>
        <message>REST Service Version Mismatch</message>
        <messageType>ERROR</messageType>
        <status>BAD_REQUEST</status> 
    </messagesRDO>
   </messagesRDOes>

■ Message: The error message - translated.

■ Message Type: Value of 'ERROR' is returned.

■ Status: For a bad request or error, the status is BAD_REQUEST.

■ The http error code for an error response is 400.

Merchandising URL Paths
Based on the Implementation you may need to prefix the end point with just the 
deployment hostname or hostname plus access port.

The following links provide access to the Merchandising services:

■ The ReSTful Web services Javadoc are available at:

https://<hostname>/RmsReSTServices

■ The ReSTful Web services's WADL file is available at:

https://<hostname>/RmsReSTServices/services/private/applicati
on.wadl

■ The ReSTful Web services are available at:

https://<hostname>/RmsReSTServices/services/private</service>

Sales Audit URL Paths 
Based on the Implementation you may need to prefix the end point with just the 
deployment hostname or hostname plus access port.

The following links provide access to the Sales Audit services:

■ To access the ReSTful web services Javadoc:

https://<hostname>/ResaReSTServices 

■ The ReSTful Web services's WADL file is available at: 

https://<hostname>/ResaReSTServices/services/private/applicat
ion.wadl

■ To access the ReSTful web services:



Common Characteristics of Retail Application ReSTful Web Services

5-4 Operations Guide Volume 2 - Message Publication and Subscription Designs

https://<hostname>/ResaReSTServices/services/private/Resa</se
rvice>

Date Format
Few input date and output date fields are in long format. The others are In SQL Date 
format.

Paging
Some of the Merchandising and Sales Audit ReSTful web services have the potential to 
bring back a significant number of records, and therefore these services are equipped 
to segment the result into pages. The page number to retrieve and the size of the page 
are added as input parameters to all the paged services.

Each paged result includes the following information:

■ Total Record Count: Displays the number of all records matching the service input 
criteria.

■ Next Page URL: Shows the service URL with same input parameters, but with the 
pageNumber plus 1, when more records exist.

■ Previous Page URL: Shows the service URL with same input parameters and the 
pageNumber input value minus 1, when page number is not 1.

Next or previous page URL is not provided when:

■ No records are returned

■ Previous page is not returned, when the page number is 1.

■ Next page is not returned, when the record reaches the last page.

Figure 5–2 Javascript for Paging Information in RMS Web Services

Web Service APIs Process Flow
The diagram shows the Web Service API process flow.



Merchandising ReSTful Web Services

ReSTful Web Services 5-5

Figure 5–3 Web Service APIs Process Flow

Merchandising ReSTful Web Services

Merchandising Common Services
This section describes the GA account validation service.

Functional Area

Foundation

Business Overview

The primary role of this service is to provide access to cross-functional Merchandising 
data. 

Vdate
Business Overview

Retrieve Merchandising Vdate.

Service Type

Get

ReST URL

/Common/vDate

Input Parameters

NA

Output

OrderNoRDO

JSON Structure:
"{
    ""links"": [],
    ""vdate"": 1379653200000,

Parameter Name Data Type

Vdate Long



Merchandising ReSTful Web Services

5-6 Operations Guide Volume 2 - Message Publication and Subscription Designs

    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"
Table Impact

Procurement Unit Options
Business Overview

Retrieve Merchandising's Procurement Unit Options. 

Service Type

Get

ReST URL

/Common/POSysOps

Input Parameters

NA

Output

ProcurementUnitOptionsRDO

TABLE SELECT INSERT UPDATE DELETE

PERIOD Yes No No No

Parameter Name Data Type

backpostRcaRuaInd String

calcNegativeIncome String

copyPoCurrRate String

costLevel String

creditMemoLevel String

dealAgePriority String

dealLeadDays BigDecimal

dealTypePriority String

deptLevelOrders String

ediCostOverrideInd String

expiryDelayPreIssue BigDecimal

genConsignmentInvcFreq String

genConInvcItmSupLocInd String

latestShipDays BigDecimal

ordApprCloseDelay BigDecimal

ordApprAmtCode String

ordAutoClosePartRcvdInd String

ordPartRcvdCloseDelay BigDecimal

orderBeforeDays BigDecimal



Merchandising ReSTful Web Services

ReSTful Web Services 5-7

JSON Structure:
"{
    ""links"": [],
    ""backpostRcaRuaInd"": ""N"",
    ""billToLoc"": ""1000"",
    ""calcNegativeIncome"": ""N"",
    ""copyPoCurrRate"": null,
    ""costLevel"": ""DNN"",
    ""creditMemoLevel"": ""D"",
    ""dealAgePriority"": ""O"",
    ""dealLeadDays"": 1,
    ""dealTypePriority"": ""P"",
    ""deptLevelOrders"": ""N"",
    ""ediCostOverrideInd"": ""Y"",
    ""expiryDelayPreIssue"": 30,
    ""genConsignmentInvcFreq"": ""M"",
    ""genConInvcItmSupLocInd"": ""I"",
    ""latestShipDays"": 30,
    ""ordApprCloseDelay"": 1,
    ""ordApprAmtCode"": ""C"",
    ""ordAutoClosePartRcvdInd"": ""N"",
    ""ordPartRcvdCloseDelay"": 1,
    ""orderBeforeDays"": 5,
    ""orderExchInd"": ""N"",
    ""otbSystemInd"": ""N"",
    ""rcvCostAdjType"": ""F"",
    ""reclassApprOrderInd"": ""Y"",
    ""redistFactor"": 2,
    ""softContractInd"": ""Y"",
    ""wacRecalcAdjInd"": ""N"",
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"

Table Impact  

Functional Config Options
Business Overview

Retrieve Merchandising's Functional Config Options. 

Service Type

orderExchInd String

otbSystemInd String

rcvCostAdjType String

reclassApprOrderInd String

redistFactor BigDecimal

softContractInd String

wacRecalcAdjInd String

TABLE SELECT INSERT UPDATE DELETE

PROCUREMENT_UNIT_OPTIONS Yes No No No

Parameter Name Data Type



Merchandising ReSTful Web Services

5-8 Operations Guide Volume 2 - Message Publication and Subscription Designs

Get

ReST URL

/Common/FuncSysOps

Input Parameters

NA

Output

FunctionalConfigRDO

JSON Structure:

"{

    ""links"": [],

    ""importInd"": ""Y"",

    ""orgUnitInd"": ""Y"",

    ""supplierSitesInd"": ""Y"",

    ""contractInd"": ""Y"",

    ""elcInd"": ""Y"",

    ""hyperMediaContent"": {

        ""linkRDO"": []

    }

Table Impact

Inventory Movement Unit Options
Business Overview

Retrieve Merchandising's Inventory Movement Unit Options.

Service Type

Get

ReST URL

/Common/InvMovSysOps

Input Parameters

Parameter Name Data Type

importInd String

orgUnitInd String

supplierSitesInd String

contractInd String

elcInd String

TABLE SELECT INSERT UPDATE DELETE

FUNCTIONAL_CONFIG_OPTIONS Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-9

NA

Output

InvMoveUnitOptRDO

Parameter Name Data Type

allocMethod String

applyProfPresStock String

autoRcvStore String

closeOpenShipDays BigDecimal

costMoney BigDecimal

costOutStorage BigDecimal

costOutStorageMeas String

costOutStorageUom String

costWhStorage BigDecimal

costWhStorageMeas String

costWhStorageUom String

defaultAllocChrgInd String

defaultOrderType String

defaultSizeProfile String

deptLevelTransfers String

distributionRule String

duplicateReceivingInd String

increaseTsfQtyInd String

intercompanyTransferBasis String

invHistLevel String

locActivityInd String

locDlvryInd String

lookAheadDays BigDecimal

maxWeeksSupply BigDecimal

ordWorksheetCleanUpDelay BigDecimal

racRtvTsfInd BigDecimal

rejectStoreOrdInd String

replOrderDays String

rtvNadLeadTime BigDecimal

rtvUnitCostInd BigDecimal

shipRcvStore String

shipRcvWh String

storageType String

storePackCompRcvInd String



Merchandising ReSTful Web Services

5-10 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
"{
    ""links"": [],
    ""allocMethod"": ""P"",
    ""applyProfPresStock"": ""N"",
    ""autoRcvStore"": ""Y"",
    ""closeOpenShipDays"": 3,
    ""costMoney"": 7.5,
    ""costOutStorage"": 1.5,
    ""costOutStorageMeas"": ""P"",
    ""costOutStorageUom"": null,
    ""costWhStorage"": 1.5,
    ""costWhStorageMeas"": ""P"",
    ""costWhStorageUom"": null,
    ""defaultAllocChrgInd"": ""Y"",
    ""defaultOrderType"": ""WAVE"",
    ""defaultSizeProfile"": ""N"",
    ""deptLevelTransfers"": ""Y"",
    ""distributionRule"": ""PRORAT"",
    ""duplicateReceivingInd"": ""N"",
    ""increaseTsfQtyInd"": ""N"",
    ""intercompanyTransferBasis"": ""T"",
    ""invHistLevel"": ""A"",
    ""locActivityInd"": ""Y"",
    ""locDlvryInd"": ""Y"",
    ""lookAheadDays"": 7,

wfDefaultWh String

targetRoi BigDecimal

tsfAutoCloseStore BigDecimal

tsfAutoCloseWh String

tsfCloseOverdue String

simForceCloseInd String

tsfForceCloseInd String

tsfOverReceiptInd String

tsfMdStoreToStoreSndRcv String

tsfMdStoreToWhSndRcv String

tsfMdWhToStoreSndRcv String

tsfMdWhToWhSndRcv String

tsfPriceExceedWacInd String

ssAutoCloseDays String

wsAutoCloseDays BigDecimal

swAutoCloseDays BigDecimal

wwAutoCloseDays BigDecimal

wfOrderLeadDays BigDecimal

whCrossLinkInd BigDecimal

wrongStReceiptInd String

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-11

    ""maxScalingIterations"": null,
    ""maxWeeksSupply"": 5,
    ""ordWorksheetCleanUpDelay"": 1,
    ""racRtvTsfInd"": ""A"",
    ""rejectStoreOrdInd"": ""N"",
    ""replOrderDays"": 3,
    ""rtvNadLeadTime"": 1,
    ""rtvUnitCostInd"": ""A"",
    ""shipRcvStore"": ""Y"",
    ""shipRcvWh"": ""Y"",
    ""storageType"": ""W"",
    ""storePackCompRcvInd"": ""Y"",
    ""wfDefaultWh"": 1212,
    ""targetRoi"": 7,
    ""tsfAutoCloseStore"": ""Y"",
    ""tsfAutoCloseWh"": ""Y"",
    ""tsfCloseOverdue"": ""Y"",
    ""simForceCloseInd"": ""NL"",
    ""tsfForceCloseInd"": ""SL"",
    ""tsfOverReceiptInd"": ""NL"",
    ""tsfMdStoreToStoreSndRcv"": ""S"",
    ""tsfMdStoreToWhSndRcv"": ""S"",
    ""tsfMdWhToStoreSndRcv"": ""S"",
    ""tsfMdWhToWhSndRcv"": ""S"",
    ""tsfPriceExceedWacInd"": ""Y"",
    ""ssAutoCloseDays"": 1,
    ""wsAutoCloseDays"": 1,
    ""swAutoCloseDays"": 1,
    ""wwAutoCloseDays"": 1,
    ""wfOrderLeadDays"": null,
    ""whCrossLinkInd"": ""Y"",
    ""wrongStReceiptInd"": ""Y"",
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"
Table Impact

Currencies
Business Overview

Retrieve Merchandising's Currencies table records. 

Service Type

Get

ReST URL

/Common/Currencies

Input Parameters

NA

Output

MblCurrenciesRDO

TABLE SELECT INSERT UPDATE DELETE

INV_MOVE_UNIT_OPTIONS Yes No No No



Merchandising ReSTful Web Services

5-12 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
"[
    {
        ""links"": [],
        ""currencyCode"": ""AED"",
        ""currencyDescription"": ""U.A.E. Dirham"",
        ""currencyCostFormat"": ""FM9G999G999G999G990D9099PR"",
        ""currencyRetailFormat"": ""FM9G999G999G999G990D90PR"",
        ""currencyCostDecimal"": 4,
        ""currencyRetailDecimal"": 2,
        ""hyperMediaContent"": {
            ""linkRDO"": []
        }
    },
    {
        ""links"": [],
        ""currencyCode"": ""ALL"",
        ""currencyDescription"": ""UNKNOWN"",
        ""currencyCostFormat"": ""FMD0"",
        ""currencyRetailFormat"": ""FMD90"",
        ""currencyCostDecimal"": 2,
        ""currencyRetailDecimal"": 2,
        ""hyperMediaContent"": {
            ""linkRDO"": []
        }
    },
........"
Table Impact

Department Search
Business Overview

This service retrieves departments with ID or name matching search string.

Service Type

Get

ReST URL

/Common/departmentSearch?searchString={searchString}&pageSize={pageSize}&pa
geNumber={pageNumber}

Input Parameters

Parameter Name Data Type

currencyCode String

currencyDescription String

currencyCostFormat String

currencyRetailFormat String

currencyCostDecimal BigDecimal

currencyRetailDecimal BigDecimal

TABLE SELECT INSERT UPDATE DELETE

CURRENCIES Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-13

Output

MerchHierDeptRDO

PagedResultsRDO

JSON Structure:
"{
  “type”: “paginationRDO”,
  “totalRecordCount”: 3512,
  “hyperMediaContent”: {},
  “links” : [],
  “results”: [{
     “departmentId”: 3252,
     “departmentDescription”: “some description”
  }]
}"
Table Impact

Department Load
Business Overview

This service retrieves departments' name of input IDs.  

Service Type

Get

ReST URL

/Common/departmentLoad?departments={departments}

Input Parameters

Parameter Name Required Description Valid values

searchString Yes search string for department Id or Name

PageSize No Maximum number of records to retrieve 
per page

PageNumber No Result page to retrieve 

Parameter Name Data Type

department BigDecimal

departmentName String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String

TABLE SELECT INSERT UPDATE DELETE

V_DEPS Yes No No No



Merchandising ReSTful Web Services

5-14 Operations Guide Volume 2 - Message Publication and Subscription Designs

Output

MerchHierDeptRDO

JSON Structure:
"{
  "departmentId": 3252,
  "departmentDescription": "some description"
}"
Table Impact

Book Transfer ReSTful Web Service
This section describes the Book Transfer ReSTful Web Service

Functional Area
Transfer and Customer Order

Business Overview
This web service will be built to virtually move inventory from one location to the 
other for the purposes of attributing the sale to a location different from the location 
that is fulfilling the order physically.  For example, if the order is being fulfilled via 
shipment from a physical store, some retailers will want to actually have the sale 
processed against the e-commerce store. This service also accept a customer order 
number and fulfillment order number to be associated with the transfer when it is 
created as a cross reference.

Service Type
Post

ReST URL
/Transfer/customerOrderBookTransfer

Input Parameters
The Book Transfer web service has the following parameters:

Parameter Name Required Description Valid values

departments Yes Comma separated 
values for Departments

NA

Parameter Name Data Type

department BigDecimal

departmentName String

TABLE SELECT INSERT UPDATE DELETE

V_DEPS Yes No No No

Parameter Name Required Data Type Description

FromLocation Yes BigDecimal Transfer source location



Merchandising ReSTful Web Services

ReSTful Web Services 5-15

ItemDetail RDO
The Book Transfer web service has the following parameters:

Example JSON Input
[
     {
     "toLocation":null,
     "fromLocation":null,
     "customerOrderNumber":null,
     "fulfillOrderNumber":null,
     "updateCustomerReservedQty":null,
     "itemsDetail":[
         {
             "item":null,
             "quantity":null
         },
         {
             "item":null,
             "quantity":null
         },
         {
             "item":null,
             "quantity":null
         }
         ]
     },
     {
     "fromLocation":null,
     "toLocation":null,
     "customerOrderNumber":null,
     "fulfillOrderNumber":null,
     "updateCustomerReservedQty":null,

ToLocation Yes BigDecimal Transfer destination

CustomerOrderNumber No String Customer order identification

FulfillOrderNumber No String Fulfillment order identification

UpdateCustomerReserve
dQty

No String Indicates if any of the customer reserved 
quantity should be update either the 
source or destination location or both. 
Valid values:

■ B update both the source and 
destination location

■ S update only the source location

■ R update only the destination 
location

■ N or NULL no update

ItemsDetail Yes Collection of  itemsDetail RDO

Parameter Name Required Data Type Description

Item Yes String Item identification

Quantity Yes BigDecimal Item quantity to be transferred

Parameter Name Required Data Type Description



Merchandising ReSTful Web Services

5-16 Operations Guide Volume 2 - Message Publication and Subscription Designs

     "itemsDetail":[
         {
             "item":null,
             "quantity":null
         }
         ]
     }
 ]

Output
RestCobtsfStatuRDO

SuccessCobtsfRDO

FailCobtsfRDO

JSON Structure
{
    "successCobtsfCount": 2,
    "successCobtsfTable": [
        {
            "fromLocation ": 123,
            "toLocation ": 987,
            "transferNumber ": 123456789
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        },
        {
            "fromLocation ": 456,
            "toLocation ": 654,
            "transferNumber ": 987654321
            "links": [],

Parameter Name Data Type

successCobtsfCount Big Decimal

successCobtsfTbl List< successCobtsfRDO>

failCobtsfCount BigDecimal

failCobtsfTable List<failCobtsfRDO>

Parameter Name Data Type

FromLocation Big Decimal

ToLocation Big Decimal

TransferNumber BigDecimal

Parameter Name Data Type

FromLocation Big Decimal

ToLocation Big Decimal

errorMessage BigDecimal



Merchandising ReSTful Web Services

ReSTful Web Services 5-17

            "hyperMediaContent": {
                "linkRDO": []
            }
        }
],
    "failCobtsfCount": 1,
    "failCobtsfTable": [
        {
            "orderNumber": 123,
            "errorMessage": "Invalid Item.",
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact
The following tables are affected:

Code Detail Service
Business Overview

TABLE SELECT INSERT UPDATE DELETE

CURRENCIES Yes No No No

DEPS Yes No No No

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes Yes No

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

MONTH_DATA Yes No No No

MV_CURRENCY_CONVERSION_RATES Yes No No No

ORDCUST Yes Yes No No

STORE Yes No No No

TRAN_DATA No Yes No No

TSFDETAIL No Yes No No

TSFHEAD No No No No

UOM_CLASS Yes No No No

V_PACKSKU_QTY Yes No No No

WEEK_DATA Yes No No No

WH Yes No No No



Merchandising ReSTful Web Services

5-18 Operations Guide Volume 2 - Message Publication and Subscription Designs

Code Detail service allows user to retrieve code details for a selected code and code 
type.

Service Type

Get

ReST URL

CodeDetail/codeDetails?code={ }&codeType={ }

Input Parameters

Output

RestCodeDetailRecRDO

JSON Structure
    {
        "codeDesc": null,
        "requiredInd": null,
        "codeSeq": null,
        "codeType": null,
        "codeTypeDesc": null,
        "code": null,
        "links": [],
        "hyperMediaContent": {
            "linkRDO": []
        }
    }
Table Impact

Create Inventory Transfer Services
This section describes the inventory transfer services.

Parameter Name Required Description Valid values

Code Yes Code NA

Code Type Yes Code Type NA

Parameter Name Data Type

codeDesc String

requiredInd String

codeSeq BigDecimal

codeType String

codeTypeDesc String

code String

TABLE SELECT INSERT UPDATE DELETE

CODE_
HEAD

Yes No No No

CODE_
DETAIL

Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-19

Functional Area
Inventory Movement

Business Overview
The primary role of these services is to create transfers and send them to 
Merchandising.

Transfer Number

Business Overview
Retrieves the next transfer number from Merchandising.

Service Type
Get

ReST URL
/Transfer/transferId

Input Parameters
No input

Output
…RDO

JSON Structure:
"{
    ""links"": [],
    ""transfer_no"": 100000029403,
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"
Table Impact

NA

Search Items

Business Overview
This service retrieves items applicable for inventory transfer. Item can be searched 
either by Item or VPN. To search the item, enter an item number, a partial item 
description, or a VPN in the search string.

■ When search type is ITEM, the search string can be an item number, a partial item 
number, an item description, or partial item description. In this case, the query 
returns all items which match the item description or partial description, or which 
match the item number entered. 

■ When search type is VPN, the search string can be a VPN or partial VPN, the API 
should return all items with that VPN.

Parameter Name Data Type

transfer_no Long



Merchandising ReSTful Web Services

5-20 Operations Guide Volume 2 - Message Publication and Subscription Designs

 The items returned are constrained by the following criteria:

– Approved status.

– Transaction-level items.

– Inventory items.

■ When From Location is sent as an input, then only the following items are 
returned:

– With available inventory at the From Location.

– Packs with Receive as Type as Each are filtered out when, from location is a 
virtual warehouse.

■ If the System Option for DEPT_LEVEL_TRANSFERS is set as"Y" and a 
Department ID is sent as input, then only the input department items are returned.

Service Type
Get

ReST URL
/Transfer/item?itemSearchType={itemSearchType}&searchString={searchString}&dep
t={dept}&fromLocation={fromLocation}&pageSize={pageSize}&pageNumber={pageN
umber}

Input Parameters

Output
TsfItemSearchRDO

Parameter Name Required Description Valid values

itemSearchType Yes Search type item or VPN. ITEM, VPN

searchString Yes Search string for items ID or 
Name.

NA

dept No Selected items' department ID. NA

fromLocation No Selected from location ID. NA

PageSize No Maximum number of items to 
retrieve per page.

NA

PageNumber No Result page to retrieve. NA

Parameter Name Data Type

item String

itemDesc String

dept BigDecimal

availQty BigDecimal

averageCost BigDecimal

unitRetail BigDecimal

currencyCode String

standardlUnitOfMeasure String



Merchandising ReSTful Web Services

ReSTful Web Services 5-21

PagedResultsRDO

JSON Structure:
"{
    ""links"": [
        {
            ""href"": 
""/Transfer/item?itemSearchType=ITEM&searchString=Black&fromLocation=363640301&pag
eSize=1&pageNumber=3"",
            ""rel"": ""next"",
            ""type"": ""GET"",
            ""methodType"": null
        },
        {
            ""href"": 
""/Transfer/item?itemSearchType=ITEM&searchString=Black&fromLocation=363640301&pag
eSize=1&pageNumber=1"",
            ""rel"": ""prev"",
            ""type"": ""GET"",
            ""methodType"": null
        }
    ],
    ""totalRecordCount"": 51,
    ""results"": [
        {
            ""links"": [],
            ""item"": ""100001406"",
            ""itemDesc"": ""DIT Test 11:Black:Extra Small"",
            ""dept"": 1102,
            ""availQty"": 100,
            ""averageCost"": 5,
            ""unitRetail"": 7.26,
            ""currencyCode"": ""USD"",
            ""standardlUnitOfMeasure"": ""CKG"",
            ""suppPackSize"": 1,
            ""innerPackSize"": 1,
            ""itemImageUrl"": null,
            ""hyperMediaContent"": {
                ""linkRDO"": []
            }
        }
    ],
    ""hyperMediaContent"": {
        ""linkRDO"": [
            {

suppPackSize BigDecimal

innerPackSize BigDecimal

itemImageUrl String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String

Parameter Name Data Type



Merchandising ReSTful Web Services

5-22 Operations Guide Volume 2 - Message Publication and Subscription Designs

                ""href"": 
""/Transfer/item?itemSearchType=ITEM&searchString=Black&fromLocation=363640301&pag
eSize=1&pageNumber=3"",
                ""rel"": ""next"",
                ""type"": ""GET"",
                ""methodType"": null
            },
            {
                ""href"": 
""/Transfer/item?itemSearchType=ITEM&searchString=Black&fromLocation=363640301&pag
eSize=1&pageNumber=1"",
                ""rel"": ""prev"",
                ""type"": ""GET"",
                ""methodType"": null
            }
        ]
    }
}"

Table Impact

Load Items
This section describes the load items.

Business Overview  Load items service allows the user to refresh item records 
information for already selected items. 

Service Type
Get

ReST URL
/Transfer/item/load?items={items}&fromLocation={fromLocation}

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

DAILY_PURGE Yes No No No

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No No No

ITEM_IMAGE Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ORDHEAD Yes No No No

STORE Yes No No No

V_ITEM_MASTER Yes No No No

WH Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-23

Input Paramters

Output
TsfItemSearchRDO

JSON Structure:
"[
    {
        ""links"": [],
        ""item"": ""100001887"",
        ""itemDesc"": ""DIT Test 12:Black:Medium"",
        ""dept"": 1102,
        ""availQty"": 100,
        ""averageCost"": 5,
        ""unitRetail"": 7.26,
        ""currencyCode"": ""USD"",
        ""standardlUnitOfMeasure"": ""CKG"",
        ""suppPackSize"": 1,
        ""innerPackSize"": 1,
        ""itemImageUrl"": null,
        ""hyperMediaContent"": {
            ""linkRDO"": []
        }
    }
]"

Table Impact

Parameter Name Required Description

items Yes Comma Separated values for selected items' ID.

fromLocation No Selected from location ID.

Parameter Name Data Type

item String

itemDesc String

dept BigDecimal

availQty BigDecimal

averageCost BigDecimal

unitRetail BigDecimal

currencyCode String

standardlUnitOfMeasure String

suppPackSize BigDecimal

innerPackSize BigDecimal

itemImageUrl String

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No



Merchandising ReSTful Web Services

5-24 Operations Guide Volume 2 - Message Publication and Subscription Designs

Search From Location
This section describes the Search From Location service.

Business Overview  This service retrieves locations applicable for inventory transfer. 
Location can be searched by either 'S'tore or 'W'arehouse. Then enter a location 
number, a partial location number, a location description, or a partial location 
description in the search string.

The locations returned are constrained by the following criteria:

■ When search type is warehouse only virtual warehouses are returned.

■ Only stockholding location.

■ When search type is store then only open stores are returned.

■ When items are sent as input then only locations with available inventory are 
returned.

■ When To Location is sent as input then:

– It cannot be the same as the To Location. 

– When transfer type is Manual Requisition, then only locations with the same 
Transfer Entity/Set of Books as the To Location are returned in the search 
results.

– When the transfer type is Intercompany, then only locations with a different 
Transfer Entity/Set of Books to the To Location are returned in the search 
results.

– Only locations in the same transfer zone are returned in the search results. 

Service Type  Get

ReST URL  
/Transfer/fromLocation?locationType={locationType}&searchString={searchString}&t
sfType={tsfType}&toLocation={toLocation}&items={items}&pageSize={pageSize}&pag
eNumber={pageNumber}

DAILY_PURGE Yes No No No

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No No No

ITEM_IMAGE Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ORDHEAD Yes No No No

STORE Yes No No No

V_ITEM_MASTER Yes No No No

WH Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

ReSTful Web Services 5-25

Input Parameters  

Output  TsfLocSearchResultRDO

TsfLocitemSearchResRDO

PagedResultsRDO

Parameter Name Required Description Valid values

LocationType Yes Location type Store 
or warehouse

S, W

SearchString Yes search string for 
locations Id or Name

NA

tsfType Yes Transfer type IC, MR

toLocation No Selected to location 
ID

NA

items No Comma Separated 
values for selected 
items

NA

PageSize No Maximum number of 
locations to retrieve 
per page

NA

PageNumber No Result page to 
retrieve 

NA

Parameter Name Data Type

location BigDecimal

locType String

locName String

locCurrencyCode String

entity BigDecimal

entityDesc String

tsfLocitemSearchRes List<TsfLocitemSearchResRDO
>

Parameter Name Data Type

item String

availQty BigDecimal

averageCost BigDecimal

unitRetail BigDecimal

currencyCode String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String



Merchandising ReSTful Web Services

5-26 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
"{
    ""links"": [],
    ""totalRecordCount"": 1,
    ""results"": [
        {
            ""links"": [],
            ""location"": 5991,
            ""locType"": ""S"",
            ""locName"": ""DIT Company Stockholding Store"",
            ""locCurrencyCode"": ""USD"",
            ""entity"": 1000,
            ""entityDesc"": ""Regular Stores"",
            ""tsfLocitemSearchRes"": [
                {
                    ""links"": [],
                    ""item"": ""100054006"",
                    ""availQty"": 100,
                    ""averageCost"": 0,
                    ""unitRetail"": 181.82,
                    ""currencyCode"": ""USD"",
                    ""hyperMediaContent"": {
                        ""linkRDO"": []
                    }
                },
                {
                    ""links"": [],
                    ""item"": ""100040051"",
                    ""availQty"": 998,
                    ""averageCost"": 1,
                    ""unitRetail"": 1.54,
                    ""currencyCode"": ""USD"",
                    ""hyperMediaContent"": {
                        ""linkRDO"": []
                    }
                }
            ],
            ""hyperMediaContent"": {
                ""linkRDO"": []
            }
        }
    ],
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"

Table Impact  
TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No No No

ITEM_MASTER Yes No No No

MV_LOC_SOB Yes No No No

ORDHEAD Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-27

Search To Location
This section describes the Search To Location service.

Business Overview  This service retrieves locations applicable for inventory transfer. 
Location can be searched by either 'S'tore or 'W'arehouse. Then enter a location 
number, a partial location number, a location description, or a partial location 
description in the search string.

The locations returned are constrained by the following criteria: 

■ When search type is warehouse only virtual warehouses are returned.

■ Internal finishers are filtered out.

■ Only stockholding location.

■ When search type is Store then only open stores are returned.

■ When items are sent as input then only locations with available inventory are 
returned.

■ When From Location is sent as input then:

– To Location cannot be the same as the From Location. 

– When Transfer Type is set as a manual request, then only locations with the 
same Transfer Entity/Set of Books as the From Location are returned in the 
search results.

– When the Transfer Type is Intercompany, then only locations with a different 
Transfer Entity/Set of Books to the From Location are returned in the search 
results.

– Only locations in the same transfer zone are returned in the search results. 

Service Type  Get

ReST URL  
/Transfer/toLocation?locationType={locationType}&searchString={searchString}&tsfT
ype={tsfType}&fromLocation={fromLocation}&pageSize={pageSize}&pageNumber={p
ageNumber}")

Input Parameters  

ORG_UNIT Yes No No No

STORE Yes No No No

TRANSFER_LOC Yes No No No

TSF_ENTITY Yes No No No

V_STORE Yes No No No

V_TRANSFER_FROM_LOC Yes No No No

V_TRANSFER_TO_LOC Yes No No No

V_WH Yes No No No

Parameter Name Required Description Valid values

LocationType Yes Location type Store or 
warehouse

S, W

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

5-28 Operations Guide Volume 2 - Message Publication and Subscription Designs

Output  TsfLocSearchResultRDO

TsfLocitemSearchResRDO

PagedResultsRDO

JSON Structure:
"{
    ""links"": [],
    ""totalRecordCount"": 1,
    ""results"": [
        {
            ""links"": [],
            ""location"": 5991,

SearchString Yes search string for locations Id or 
Name

NA

tsfType Yes Transfer type IC, MR

fromLocation No Selected from location ID NA

PageSize No Maximum number of locations 
to retrieve per page

NA

PageNumber No Result page to retrieve NA

Parameter Name Data Type

location BigDecimal

locType String

locName String

locCurrencyCode String

entity BigDecimal

entityDesc String

tsfLocitemSearchRes List<TsfLocitemSearchResRDO
>

Parameter Name Data Type

item String

availQty BigDecimal

averageCost BigDecimal

unitRetail BigDecimal

currencyCode String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String

Parameter Name Required Description Valid values



Merchandising ReSTful Web Services

ReSTful Web Services 5-29

            ""locType"": ""S"",
            ""locName"": ""DIT Company Stockholding Store"",
            ""locCurrencyCode"": ""USD"",
            ""entity"": 1000,
            ""entityDesc"": ""Regular Stores"",
            ""tsfLocitemSearchRes"": [],
            ""hyperMediaContent"": {
                ""linkRDO"": []
            }
        }
    ],
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"

Table Impact  

Load Locations
This section describes the Load Locations service.

Business Overview  Load locations Web service allows user to refresh selected locations 
records.

Service Type  Get

ReST URL  
/Transfer/loadLocations?fromLocation={fromLocation}&toLocation={toLocation}

Input Parameters  

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No No No

ITEM_MASTER Yes No No No

MV_LOC_SOB Yes No No No

ORDHEAD Yes No No No

ORG_UNIT Yes No No No

STORE Yes No No No

TRANSFER_LOC Yes No No No

TSF_ENTITY Yes No No No

V_STORE Yes No No No

V_TRANSFER_FROM_LOC Yes No No No

V_TRANSFER_TO_LOC Yes No No No

V_WH Yes No No No

Parameter Name Required Description

FromLocation No Selected from location ID.



Merchandising ReSTful Web Services

5-30 Operations Guide Volume 2 - Message Publication and Subscription Designs

Output  

TsfLocSearchResultRDO

TsfLocitemSearchResRDO

JSON Structure:
"[
    {
        ""links"": [],
        ""location"": 5991,
        ""locType"": ""S"",
        ""locName"": ""DIT Company Stockholding Store"",
        ""locCurrencyCode"": ""USD"",
        ""entity"": 1000,
        ""entityDesc"": ""Regular Stores"",
        ""tsfLocitemSearchRes"": [],
        ""hyperMediaContent"": {
            ""linkRDO"": []
        }
    },
    {
        ""links"": [],
        ""location"": 12310101,
        ""locType"": ""W"",
        ""locName"": ""test"",
        ""locCurrencyCode"": ""USD"",
        ""entity"": 1000,
        ""entityDesc"": ""Regular Stores"",

ToLocation No Selected to location ID.

Parameter Name Data Type

location BigDecimal

locType String

locName String

locCurrencyCode String

entity BigDecimal

entityDesc String

tsfLocitemSearchRes List<TsfLocitemSearchResRDO
>

Parameter Name Data Type

item String

availQty BigDecimal

averageCost BigDecimal

unitRetail BigDecimal

currencyCode String

Parameter Name Required Description



Merchandising ReSTful Web Services

ReSTful Web Services 5-31

        ""tsfLocitemSearchRes"": [],
        ""hyperMediaContent"": {
            ""linkRDO"": []
        }
    }
]"

Table Impact  

Create Transfer
This section describes the Create Transfer service.

Business Overview  The Web service calls the existing Merchandising XTSF API directly 
with input parameters. For more information on Merchandising XTSF API, see Store 
Order Subscription API and Transfer Subscription API sections.

Service Type  Post

ReST URL  /Transfer

Input Parameters  Example json RDO input:

{
    "links" : [ ],
     "tsfdtlRDOs" : [ {
       "links" : [ ],
       "item" : null,
       "tsfQty" : null,
       "suppPackSize" : null,
       "invStatus" : null, 
       "unitCost" : null,
       "hyperMediaContent" : {
         "linkRDO" : [ ]
       }

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No No No

ITEM_MASTER Yes No No No

MV_LOC_SOB Yes No No No

ORDHEAD Yes No No No

ORG_UNIT Yes No No No

STORE Yes No No No

TRANSFER_LOC Yes No No No

TSF_ENTITY Yes No No No

V_STORE Yes No No No

V_TRANSFER_FROM_LOC Yes No No No

V_TRANSFER_TO_LOC Yes No No No

V_WH Yes No No No



Merchandising ReSTful Web Services

5-32 Operations Guide Volume 2 - Message Publication and Subscription Designs

     } ],
     "tsfNo" : null,
     "fromLocType" : null,
     "fromLoc" : null,
     "toLocType" : null,
     "toLoc" : null,
     "deliveryDate" : null,
     "dept" : null,
     "routingCode" : null,
     "freightCode" : null,
     "tsfType" : null,
     "status" : null,
     "userId" : null,
     "commentDesc" : null,
     "contextType" : null,
     "contextValue" : null,
     "hyperMediaContent" : {
       "linkRDO" : [ ]
     }
   }

Output  NA

Table Impact  For more information on the Merchandising XTSF API, see the Store Order 
Subscription API and Transfer Subscription API sections.

Create Purchase Order Services
This section describes the Create Purchase Order Services section.

Functional Area
Procurement

Business Overview
The primary role of this service is to create purchase orders and send them to 
Merchandising. 

Order Number
This section describes the Order Number.

Business Overview  Retrieves the next order number from Merchandising.

Service Type  Get

ReST URL  /PurchaseOrders/order/id

Input Parameters  NA

Output  OrderNoRDO

JSON Structure:
"{

Parameter Name Data Type

order_no Long



Merchandising ReSTful Web Services

ReSTful Web Services 5-33

    ""links"": [],
    ""order_no"": 100000047120,
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"

Table Impact  NA

Terms
This section describes the valid terms.

Business Overview  Retrieves all valid terms; valid terms are enabled with flag set to Yes 
and within the start and end active date.

Service Type  Get

ReST URL  /PurchaseOrders/supplier/terms

Input Parameters  NA

Output  PoSupTermsRDO

JSON Structure:
"{
        ""links"": [],
        ""terms"": ""108"",
        ""terms_code"": ""108"",
        ""terms_desc"": ""02 001.00% 010 000"",
        ""rank"": null,
        ""hyperMediaContent"": {
            ""linkRDO"": []
        }
    },"

Table Impact  

Search Supplier
This section describes the Search Supplier service.

Business Overview  Supplier search can be, by entering either full or partial supplier site 
ID (numeric) or by a full or partial supplier site description in the search string. 

Returned suppliers are constrained by the following criteria:

Parameter Name Data Type

terms String

terms_code String

terms_desc String

TABLE SELECT INSERT UPDATE DELETE

TERMS_HEAD Yes No No No

TERMS_DETAIL Yes No No No



Merchandising ReSTful Web Services

5-34 Operations Guide Volume 2 - Message Publication and Subscription Designs

■ Only active supplier sites are returned.

■ When items are sent as input, then only supplier sites that are common amongst 
the items are returned.

■ When locations are sent as input, then only suppliers that are valid for the Org 
Units associated with the input locations are returned.

Service Type  Get

ReST URL  
/PurchaseOrders/supplier?supplierSearchString={supplierSearchString}&locations={l
ocations}&items={items}&pageSize={pageSize}&pageNumber={pageNumber}

Input Parameters  

Output  PoSupSearchResultRDO

PoSupItemResultRDO

PoSupItemLocResultRDO

Parameter Name Required Description

SupplierSearchString Yes Search string for Supplier's ID or 
Name.

Item No Comma Separated values for items.

Locations No Comma Separated values for 
locations.

PageSize No Maximum number of suppliers to 
retrieve per page.

PageNumber No Result page to retrieve.

Parameter Name Data Type

supplier BigDecimal

supplierName String

supplierCurrency String

terms String

defaultItemLeadTime BigDecimal

supplierSearchItemRDO List<PoSupItemResultRDO>

supplierSearchItemLocRDO List<PoSupItemLocResultRDO
>

Parameter Name Data Type

item String

originCountryId String

leadTime BigDecimal

Parameter Name Data Type

item String



Merchandising ReSTful Web Services

ReSTful Web Services 5-35

PagedResultsRDO

JSON Structure:
"{
    ""links"": [],
    ""totalRecordCount"": 1,
    ""results"": [
        {
            ""links"": [],
            ""supplier"": 2200,
            ""supplierName"": ""Our Supplier"",
            ""supplierCurrency"": ""USD"",
            ""terms"": ""04"",
            ""defaultItemLeadTime"": 2,
            ""supplierSearchItemRDO"": [
                {
                    ""links"": [],
                    ""item"": ""100001887"",
                    ""originCountryId"": ""US"",
                    ""leadTime"": 2,
                    ""hyperMediaContent"": {
                        ""linkRDO"": []
                    }
                }
            ],
            ""supplierSearchItemLocRDO"": [
                {
                    ""links"": [],
                    ""item"": ""100001887"",
                    ""location"": 363640301,
                    ""pickupLeadTime"": null,
                    ""hyperMediaContent"": {
                        ""linkRDO"": []
                    }
                }
            ],
            ""hyperMediaContent"": {
                ""linkRDO"": []
            }
        }
    ],
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"

location BigDecimal

pickupLeadTime BigDecimal

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String

Parameter Name Data Type



Merchandising ReSTful Web Services

5-36 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact  

Load Supplier
This section describes the load supplier service.

Business Overview  Loading supplier Web service allows a user to refresh the selected 
supplier records.

Service Type  Get

ReST URL  
/PurchaseOrders/supplier/load?suppliers={suppliers}&locations={locations}&items=
{items}

Input Parameters   

Output  PoSupSearchResultRDO

PoSupItemResultRDO

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_
LOC

Yes No No No

STORE Yes No No No

SUPS Yes No No No

V_SUPS Yes No No No

WH Yes No No No

Parameter Name Required Description

Supplier Yes Supplier's ID.

Item No Comma Separated values for items.

Locations No Comma Separated values for locations.

Parameter Name Data Type

supplier BigDecimal

supplierName String

supplierCurrency String

terms String

defaultItemLeadTime BigDecimal

supplierSearchItemRDO List<PoSupItemResultRDO>

supplierSearchItemLocRDO List<PoSupItemLocResultRDO>

Parameter Name Data Type

item String

originCountryId String



Merchandising ReSTful Web Services

ReSTful Web Services 5-37

PoSupItemLocResultRDO

JSON Structure:
"{
    ""links"": [],
    ""totalRecordCount"": 1,
    ""results"": [
        {
            ""links"": [],
            ""supplier"": 2200,
            ""supplierName"": ""Our Supplier"",
            ""supplierCurrency"": ""USD"",
            ""terms"": ""04"",
            ""defaultItemLeadTime"": 2,
            ""supplierSearchItemRDO"": [
                {
                    ""links"": [],
                    ""item"": ""100001887"",
                    ""originCountryId"": ""US"",
                    ""leadTime"": 2,
                    ""hyperMediaContent"": {
                        ""linkRDO"": []
                    }
                }
            ],
            ""supplierSearchItemLocRDO"": [
                {
                    ""links"": [],
                    ""item"": ""100001887"",
                    ""location"": 363640301,
                    ""pickupLeadTime"": null,
                    ""hyperMediaContent"": {
                        ""linkRDO"": []
                    }
                }
            ],
            ""hyperMediaContent"": {
                ""linkRDO"": []
            }
        }
    ],
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"

leadTime BigDecimal

Parameter Name Data Type

item String

location BigDecimal

pickupLeadTime BigDecimal

Parameter Name Data Type



Merchandising ReSTful Web Services

5-38 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact  

Search Items
This section describes the Search Items service.

Business Overview  This service retrieves items applicable for Purchase Order. Item can 
be searched by either Item or VPN. Enter an item number, a partial item description, or 
a VPN in the search string.

1. When search type is ITEM, the search string can be an item number, a partial item 
number, an item description, or partial item description

2. When search type is VPN, the search string can be a VPN or partial VPN. 

 The items returned are constrained by the following criteria:

■ Approved status.

■ Transaction-level items.

■ Orderable items.

■ Pack items with Order Type as Each are filtered out.

■ Only items belonging to Normal Merchandise Purchase Type as Department are 
retuned.

■ When a supplier is sent as input then:

– Only items supplied by the input supplier are returned.

– The item information is based on the Item/Supplier/Primary Origin Country.

■ When supplier is not sent as input, then item information is based on the primary 
supplier and primary origin country.

■ If the system_options.dept_level_orders is set to"Y" and the Department ID is sent 
as input, then only the input department items are returned.

■ Items set for deletion are filtered out.

Service Type  Get

ReST URL  
/PurchaseOrders/item?itemSearchType={itemSearchType}&searchString={searchStrin
g}&dept={dept}&supplier={supplier}&locations={locations}&pageSize={pageSize}&pa
geNumber={pageNumber}

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes No No No

STORE Yes No No No

SUPS Yes No No No

V_SUPS Yes No No No

WH Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-39

Input Parameters  

Output  PoItemSearchResultRDO

PoItemSearchRstLocRDO

PagedResultsRDO

Parameter Name Required Description Valid values

itemSearchType Yes Search Type item or VPN. ITEM, VPN

searchString Yes Search string for items Id or 
Name.

NA

dept No Selected items' department 
ID.

NA

supplier No Selected Supplier ID. NA

Locations No Comma Separated values for 
selected locations' ID.

NA

PageSize No Maximum number of items to 
retrieve per page.

NA

PageNumber No Result page to retrieve. NA

Parameter Name Data Type

item String

itemDesc String

supplier BigDecimal

originCountry String

suppPackSize BigDecimal

unitCost BigDecimal

supplierCurrency String

baseUnitRetail BigDecimal

retailCurrency String

baseRetailUnitOfMeasure String

itemImageUrl String

dept BigDecimal

itemSearchLocRDO List<PoItemSearchRstLocRDO> 

Parameter Name Data Type

location BigDecimal

locationType String

unitRetail BigDecimal

retailCurrency String

unitRetailUnitOfMeasure String

itemLocStatus String



Merchandising ReSTful Web Services

5-40 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
"{
    ""links"": [],
    ""totalRecordCount"": 1,
    ""results"": [
        {
            ""links"": [],
            ""item"": ""100001887"",
            ""itemDesc"": ""DIT Test 12:Black:Medium"",
            ""supplier"": 2200,
            ""originCountry"": ""US"",
            ""suppPackSize"": 1,
            ""unitCost"": 5,
            ""supplierCurrency"": ""USD"",
            ""baseUnitRetail"": 7.26,
            ""retailCurrency"": ""USD"",
            ""baseRetailUnitOfMeasure"": ""EA"",
            ""itemImageUrl"": null,
            ""dept"": 1102,
            ""itemSearchLocRDO"": [
                {
                    ""links"": [],
                    ""location"": 363640301,
                    ""locationType"": ""W"",
                    ""unitRetail"": 7.26,
                    ""retailCurrency"": ""USD"",
                    ""unitRetailUnitOfMeasure"": ""CKG"",
                    ""itemLocStatus"": ""A"",
                    ""hyperMediaContent"": {
                        ""linkRDO"": []
                    }
                }
            ],
            ""hyperMediaContent"": {
                ""linkRDO"": []
            }
        }
    ],
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"

Table Impact  

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String

TABLE SELECT INSERT UPDATE DELETE

DAILY_PURGE Yes No No No

DEPS Yes No No No

ITEM_LOC Yes No No No

ITEM_IMAGE Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-41

Load Items
This section describes the load items.

Business Overview  The primary use of loading items Web service is to refresh already 
selected PO items records. 

Service Type  Get

ReST URL  
/PurchaseOrders/item/load?item=item&supplier={supplier}&locations={locations}

Input Parameters  

Output  PoItemSearchResultRDO

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

MV_CURRENCY_CONVERSION_
RATES

Yes No No No

RPM_MERCH_RETAIL_DEF_EXPL Yes No No No

RPM_ZONE Yes No No No

V_ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

V_SUPS Yes No No No

WH Yes No No No

Parameter Name Required Description

Items Yes Comma Separated values for selected items' ID.

Supplier No Selected Supplier ID.

Locations No Comma Separated values for selected locations' ID.

Parameter Name Data Type

item String

itemDesc String

supplier BigDecimal

originCountry String

suppPackSize BigDecimal

unitCost BigDecimal

supplierCurrency String

baseUnitRetail BigDecimal

retailCurrency String

baseRetailUnitOfMeasure String

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

5-42 Operations Guide Volume 2 - Message Publication and Subscription Designs

PoItemSearchRstLocRDO

PagedResultsRDO

JSON Structure:
"{
    ""links"": [],
    ""totalRecordCount"": 1,
    ""results"": [
        {
            ""links"": [],
            ""item"": ""100001887"",
            ""itemDesc"": ""DIT Test 12:Black:Medium"",
            ""supplier"": 2200,
            ""originCountry"": ""US"",
            ""suppPackSize"": 1,
            ""unitCost"": 5,
            ""supplierCurrency"": ""USD"",
            ""baseUnitRetail"": 7.26,
            ""retailCurrency"": ""USD"",
            ""baseRetailUnitOfMeasure"": ""EA"",
            ""itemImageUrl"": null,
            ""dept"": 1102,
            ""itemSearchLocRDO"": [
                {
                    ""links"": [],
                    ""location"": 363640301,
                    ""locationType"": ""W"",
                    ""unitRetail"": 7.26,
                    ""retailCurrency"": ""USD"",
                    ""unitRetailUnitOfMeasure"": ""CKG"",
                    ""itemLocStatus"": ""A"",

itemImageUrl String

dept BigDecimal

itemSearchLocRDO List<PoItemSearchRstLocRDO>

Parameter Name Data Type

location BigDecimal

locationType String

unitRetail BigDecimal

retailCurrency String

unitRetailUnitOfMeasure String

itemLocStatus String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-43

                    ""hyperMediaContent"": {
                        ""linkRDO"": []
                    }
                }
            ],
            ""hyperMediaContent"": {
                ""linkRDO"": []
            }
        }
    ],
    ""hyperMediaContent"": {
        ""linkRDO"": []
    }
}"

Table Impact  

Search Location
This section describes the Search Location service.

Business Overview  The Web service enables location search applicable for PO. Location 
can be searched by either 'S'tore or 'W'arehouse. Enter a location number, a partial 
location number, a location description, or a partial location description in the search 
string.

The locations returned are constrained by the following criteria: 

■ Only stockholding locations are returned.

■ When search type is Warehouse then:

– Only virtual warehouses are returned.

– Internal finishers are filtered out.

■ When search type is store then only the following stores are returned:

– Company stores.

TABLE SELECT INSERT UPDATE DELETE

DAILY_PURGE Yes No No No

DEPS Yes No No No

ITEM_LOC Yes No No No

ITEM_IMAGE Yes No No No

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

MV_CURRENCY_CONVERSION_RATES Yes No No No

RPM_MERCH_RETAIL_DEF_EXPL Yes No No No

RPM_ZONE Yes No No No

V_ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

V_SUPS Yes No No No

WH Yes No No No



Merchandising ReSTful Web Services

5-44 Operations Guide Volume 2 - Message Publication and Subscription Designs

– Open stores.

■ When system_options.org_unit_ind is set as 'Y' then:

– When supplier is sent as input then only locations with same org_unit_id are 
returned.

– When Org Unit ID is sent as input then only locations with same org_unit_id 
are returned.

Service Type  Get

ReST URL  
/PurchaseOrders/location?locationType={locationType}&searchString={searchString}
&supplier={supplier}&orgUnitId={orgUnitId}&pageSize={pageSize}&pageNumber={p
ageNumber}

Input Parameters  

Output  PoLocSearchResultRDO

PagedResultsRDO

JSON Structure:
"{

Parameter Name Required Description Valid values

LocationType Yes Location type Store 
or warehouse.

S, W

SearchString Yes Search string for 
locations Id or Name.

NA

Supplier No Selected Supplier ID. NA

OrgUnitId No Selected locations' 
Org unit ID.

NA

PageSize No Maximum number of 
locations to retrieve 
per page.

NA

PageNumber No Result page to 
retrieve.

NA

Parameter Name Data Type

location BigDecimal

locType String

locName String

locationCurrency String

orgUnitId BigDecimal

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String



Merchandising ReSTful Web Services

ReSTful Web Services 5-45

    ""links"": [
        {
            ""href"": 
""/PurchaseOrders/location?searchString=e&pageSize=1&pageNumber=2"",
            ""rel"": ""next"",
            ""type"": ""GET"",
            ""methodType"": null
        }
    ],
    ""totalRecordCount"": 100,
    ""results"": [
        {
            ""links"": [],
            ""location"": 292919862,
            ""locType"": ""S"",
            ""locName"": ""ALLOC_FD_Store_1_292919862"",
            ""locationCurrency"": ""USD"",
            ""orgUnitId"": 1111111111,
            ""hyperMediaContent"": {
                ""linkRDO"": []
            }
        }
    ],
    ""hyperMediaContent"": {
        ""linkRDO"": [
            {
                ""href"": 
""/PurchaseOrders/location?searchString=e&pageSize=1&pageNumber=2"",
                ""rel"": ""next"",
                ""type"": ""GET"",
                ""methodType"": null
            }
        ]
    }
}"

Table Impact  

Load Locations
This section describes the Load Locations service.

Business Overview  This Web service allows the user to refresh already selected PO 
locations records. 

Service Type  Get

ReST URL  /PurchaseOrders/location/load?locations={locations}&supplier={supplier}

TABLE SELECT INSERT UPDATE DELETE

PARTNER_ORG_UNIT Yes No No No

V_STORE Yes No No No

V_WH Yes No No No

WH Yes No No No



Merchandising ReSTful Web Services

5-46 Operations Guide Volume 2 - Message Publication and Subscription Designs

Input Parameters  

Output  PoLocSearchResultRDO

JSON Structure:
"
{
    ""links"": [],
    ""location"": 292919862,
    ""locType"": ""S"",
    ""locName"": ""ALLOC_FD_Store_1_292919862"",
    ""locationCurrency"": ""USD"",
    ""orgUnitId"": 1111111111,
    ""hyperMediaContent"": {
    ""linkRDO"": []
    }
}"

Table Impact  

Create Purchase Order
This section describes the Create Purchase Order service.

Business Overview  This Web service calls the existing Merchandising XOrder API 
directly with input parameters. For more information on Merchandising XOrder API, 
see the sections addressing both the Store Order Subscription API and the PO 
Subscription API.

Service Type  Post

ReST URL  /PurchaseOrders

Input Parameters  Example json RDO input:

{

Parameter Name Required Description

Locations Yes Comma Separated values for selected locations' ID.

Supplier No Selected Supplier ID.

Parameter Name Data Type

location BigDecimal

locType String

locName String

locationCurrency String

orgUnitId BigDecimal

TABLE SELECT INSERT UPDATE DELETE

PARTNER_ORG_UNIT Yes No No No

V_STORE Yes No No No

V_WH Yes No No No

WH Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-47

         "links" : [ ],
          "itemRDOs" : [ {
            "links" : [ ],
           "item" : null,
           "location" :null,
            "unitCost" : null,
            "referenceItem" : null,
            "originCountryId" : null,
            "suppPackSize" : null,
            "qtyOrdered" : null,
            "locationType" : null,
            "cancelInd" : null,
            "reInstateInd" : null,
            "hyperMediaContent" : {
              "linkRDO" : [ ]
            }
          } ],
          "orderNo" : null,
          "supplier" : null,
          "currencyCode" : null,
          "terms" : null,
          "notBeforeDate" : null,
          "notAfterDate" : null,
          "status" : "A",
          "writtenDate" : null,
          "origInd" : null,
          "user_id" : null,
          "dept" : null,
          "exchangeRate" : null,
          "includeOnOrdInd" : null,
          "ediPoInd" : null,
          "preMarkInd" : null,
          "comment" : null,
          "otbEowDate" : null,
          "hyperMediaContent" : {
            "linkRDO" : [ ]
          }
        }

Output  NA

Table Impact  For more information on Merchandising XOrder API, see the Store Order 
Subscription API and the PO Subscription API sections. 

Recent Inventory Transfer Services
This section describes the Recent Inventory Transfer services.

Functional Area
Inventory Movement

Business Overview
The primary role of these services is to approve or reject Merchandising's transfers.

Transfer Location Search
This section describes the transfer location search service.



Merchandising ReSTful Web Services

5-48 Operations Guide Volume 2 - Message Publication and Subscription Designs

Business Overview  The web service enables location search applicable for Transfers. 
Locations can be searched by either 'S'tore or 'W'arehouse, with the subsequent entry 
of a location number, a partial location number, a location description, or a partial 
location description in the search string.

The locations returned are constrained by the following criteria:

■ When search type is warehouse then:

– Internal finishers are filtered out

■ When search type is store then:

– Only company stores are returned

– Only stockholding stores are returned

Service Type  Get

ReST URL  
/Transfer/recent/transferLocSearch?searchString={searchString}&locType={locType}
&pageSize={pageSize}&pageNumber={pageNumber}

Input Parameters  

Output  PagedResultsRDO

RtsfLocSearchResultRDO

JSON Structure:
{
    "totalRecordCount": 1,
    "results": [

Parameter Name Required Description Valid values

SearchString No search string for 
locations Id or Name

NA

LocType No Location type Store 
or warehouse

S, W

PageSize No Maximum number of 
locations to retrieve 
per page

NA

PageNumber No Result page to 
retrieve 

NA

Parameter Name Data Type

totalRecordCount BigDecimal

results List<RtsfLocSearchResultRDO>

Parameter Name Data Type

location BigDecimal

locationType String

locationName String

currency String



Merchandising ReSTful Web Services

ReSTful Web Services 5-49

        {
            "location": null,
            "locationType": null,
            "locationName": null,
            "currency": null,
            "links": [ ],
            "hyperMediaContent": {
                "linkRDO": [ ]
            }
        }
    ],
    "links": [ ],
    "hyperMediaContent": {
        "linkRDO": [ ]
    }
}

Table Impact  

Transfer Location Load
This section describes the Transfer Location Load service.

Business Overview  This web service allows the user to refresh already selected Transfer 
locations records.

Service Type  Get

ReST URL  /Transfer/recent/transferLocationLoad?locations={locations}

Input Parameters  

Output  RtsfLocSearchResultRDO

JSON Structure:
[
    {
        "location": null,
        "locationType": null,
        "locationName": null,
        "currency": null,
        "links": [ ],

TABLE SELECT INSERT UPDATE DELETE

V_STORE Yes No No No

V_WH Yes No No No

Parameter Name Required Description

Locations No Comma Separated values for selected locations' ID

Parameter Name Data Type

location BigDecimal

locationType String

locationName String

currency String



Merchandising ReSTful Web Services

5-50 Operations Guide Volume 2 - Message Publication and Subscription Designs

        "hyperMediaContent": {
            "linkRDO": [ ]
        }
    }
]

Table Impact  

Transfer Status List
This section describes the Transfer Status List service.

Business Overview  Retrieves all valid transfer statuses.

Service Type  Get

ReST URL  / Transfer/recent/ transferStatusList

Input Parameters  No input.

Output  CodeDetailRDO

JSON Structure:
[
    {
        "code": null,
        "codeDescription": null,
        "codeSequence": null,
        "links": [ ],
        "hyperMediaContent": {
            "linkRDO": [ ]
        }
    }
]

Table Impact  

Transfer Type List
This section describes the Transfer Type List service.

Business Overview  Retrieves all valid transfer types.

TABLE SELECT INSERT UPDATE DELETE

V_STORE Yes No No No

V_WH Yes No No No

Parameter Name Data Type

code String

codeDescription String

codeSequence BigDecimal

TABLE SELECT INSERT UPDATE DELETE

CODE_HEAD Yes No No No

CODE_DETAIL Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-51

Service Type  Get

ReST URL  / Transfer/recent/transferTypeList

Input Parameters  No input.

Output  CodeDetailRDO

JSON Structure:
[
    {
        "code": null,
        "codeDescription": null,
        "codeSequence": null,
        "links": [ ],
        "hyperMediaContent": {
            "linkRDO": [ ]
        }
    }
]

Table Impact  

Search Transfer User IDs
This section describes the Search Transfer User IDs.

Business Overview  The Search Transfer User IDs service retrieves for all User IDs that 
created transfers.

Service Type  Get

ReST URL  
/Transfer/recent/searchUserIds?searchString={searchString}&pageSize={pageSize}&p
ageNumber={pageNumber}

Input Parameters  

Output  PagedResultsRDO

Parameter Name Data Type

code String

codeDescription String

codeSequence BigDecimal

TABLE SELECT INSERT UPDATE DELETE

CODE_HEAD Yes No No No

CODE_DETAIL Yes No No No

Parameter Name Required Description

SearchString Yes search string for User Id

PageSize No Maximum number of transfer user IDs to 
retrieve per page

PageNumber No Result page to retrieve 



Merchandising ReSTful Web Services

5-52 Operations Guide Volume 2 - Message Publication and Subscription Designs

VarcharIdRDO

JSON Structure:
{
    "totalRecordCount": null,
    "results": [
        {
            "id": null,
            "links": [ ],
            "hyperMediaContent": {
                "linkRDO": [ ]
            }
        }
    ],
    "links": [ ],
    "hyperMediaContent": {
        "linkRDO": [ ]
    }
}

Table Impact  

Transfer Search
This section describes the Transfer Search service.

Business Overview  The web services in this area enables search for applicable transfers. 
Transfers can be searched by their status, transfer types, transfer number, create date, 
delivery date, create ID, item department and/or locations.The transfers returned are 
constrained by the following criteria: 

■ Customer Orders and Book Transfers are filtered out.

■ Only Transfers with transfer details are returned.

Service Type  Get

ReST URL   
/Transfer/recent/transferSearch?statuses={statuses}&transferTypes={transferTypes}&
createIds={createIds}&startCreateDate={startCreateDate}&endCreateDate={endCreate
Date}&startDeliveryDate={startDeliveryDate}&endDeliveryDate={endDeliveryDate}&
transferNumber={transferNumber}&locations={locations}&departments={department
s}&pageSize={pageSize}&pageNumber={pageNumber}

Parameter Name Data Type

totalRecordCount BigDecimal

results List<VarcharIdRDO>

Parameter Name Data Type

id String

TABLE SELECT INSERT UPDATE DELETE

V_TSFHEAD Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-53

Input Parameters  

Output  PagedResultsRDO

RtsfSearchResRDO

Parameter Name Required Description Valid values

Statuses No Comma Separated values for 
selected transfer statuses

TransferTypes No Comma Separated values for 
selected transfer types

CreateIds No Comma Separated values for 
selected transfer create ID

StartCreateDate No Start of the range of transfer create 
dates

EndCreateDate No End of the range of transfer create 
dates

StartDeliveryDate No Start of the range of transfer create 
dates

EndDeliveryDate No End of the range of transfer create 
dates

TransferNumber No Transfer Number

Locations No Comma Separated values for 
selected Location IDs

Departments No Comma Separated values for 
selected Department IDs

PageSize No Maximum number of locations to 
retrieve per page

PageNumber No Result page to retrieve 

Parameter Name Data Type

totalRecordCount BigDecimal

results List<RtsfSearchResRDO>

Parameter Name Data Type

transferNumber BigDecimal

tsfType String

fromLocation BigDecimal

fromLocationType String

fromLocationName String

toLocation BigDecimal

toLocationType String

toLocationName String

status String

totalCost BigDecimal

currency String



Merchandising ReSTful Web Services

5-54 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
 
{
    "totalRecordCount": null,
    "results": [
        {
            "transferNumber": null,
            "tsfType": null,
            "fromLocation": null,
            "fromLocationType": null,
            "fromLocationName": null,
            "toLocation": null,
            "toLocationType": null,
            "toLocationName": null,
            "status": null,
            "totalCost": null,
            "currency": null,
            "deliveryDate": null,
            "links": [ ],
            "hyperMediaContent": {
                "linkRDO": [ ]
            }
        }
    ],
    "links": [ ],
    "hyperMediaContent": {
        "linkRDO": [ ]
    }
}

Table Impact  

Get Transfer Detail
This section describes the Get Transfer Detail service.

Business Overview  Get Transfer Detail service allow user to retrieve Transfer 
information for a selected transfer number. 

Service Type  Get

deliveryDate Long

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH Yes No No No

ITEM_MASTER Yes No No No

TSFDETAIL Yes No No No

TSFITEM_INV_
FLOW

Yes No No No

V_STORE Yes No No No

V_TSFDETAIL Yes No No No

V_TSFHEAD Yes No No No

V_WH Yes No No No

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-55

ReST URL  
/Transfer/recent/transferDetail?transferNumber={transferNumber}&pageSize={page
Size}&pageNumber={pageNumber}

Input Parameters  

Output  PagedResultsRDO

RtsfTsfDtlRDO

RtsfTsfDtlItemRDO

Parameter Name Required Description

TransferNumber Yes Transfer Number ID

PageSize No Maximum number of 
items to retrieve per 
page

PageNumber No Result page to 
retrieve 

Parameter Name Data Type

totalRecordCount BigDecimal

results List<RtsfTsfDtlRDO>

Parameter Name Data Type

transferNumber BigDecimal

status String

fromLocation BigDecimal

fromLocationName String

finisher BigDecimal

finisherName String

toLocation BigDecimal

toLocationName String

transferType String

totalCost BigDecimal

totalRetail BigDecimal

currency String

deliveryDate Long

createId String

createDate Long

transferItemsTable List<RtsfTsfDtlItemRDO>

Parameter Name Data Type

item String



Merchandising ReSTful Web Services

5-56 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
{
    "totalRecordCount": null,
    "results": [
        {
            "transferNumber": null,
            "status": null,
            "fromLocation": null,
            "fromLocationName": null,
            "finisher": null,
            "finisherName": null,
            "toLocation": null,
            "toLocationName": null,
            "transferType": null,
            "totalCost": null,
            "totalRetail": null,
            "currency": null,
            "deliveryDate": null,
            "createId": null,
            "createDate": null,
            "transferItemsTable": [
                {
                    "item": null,
                    "itemDescription": null,
                    "transferQuantity": null,
                    "links": [ ],
                    "hyperMediaContent": {
                        "linkRDO": [ ]
                    }
                }
            ],
            "links": [ ],
            "hyperMediaContent": {
                "linkRDO": [ ]
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": [ ]
    }
}

Table Impact  

itemDescription String

transferQuantity BigDecimal

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No No No

TSF_ITEM_INV_FLOW Yes No No No

V_EXTERNAL_FINISHER Yes No No No

V_INTERNAL_FINISHER Yes No No No

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-57

Update Transfer Status
This section describes the Update Transfer Status service.

Business Overview  The web service approves or unapproves a transfer or a list of 
transfers. 

Service Type  Post

ReST URL  
/Transfer/recent/updateTransferStatus?newStatus={newStatus}&transferNumbers={t
ransferNumbers}

Input Parameters  

Output  NA

Table Impact  

Recent Purchase Order Services
This section describes the Recent Purchase Order services.

V_ITEM_MASTER Yes No No No

V_LOCATION Yes No No No

V_STORE Yes No No No

V_TSFDETAIL Yes No No No

V_TSFHEAD Yes No No No

V_WH Yes No No No

Parameter Name Required Description Valid values

NewStatus Yes New status of the transfer. May only be 
'A'pproved or 'I'nput.

A, I

TransferNumbers Yes Comma Separated values for selected 
locations' ID

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes No Yes No

TSFDETAIL Yes Yes Yes Yes

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No Yes No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

STORE Yes No No No

SYSTEM_OPTIONS Yes No No No

V_TSFHEAD Yes No No No

WH Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

5-58 Operations Guide Volume 2 - Message Publication and Subscription Designs

Functional Area 
Procurement

Business Overview 
The primary role of this service is to approve, reject, or cancel Merchandising's 
purchase orders. 

Cancel Reason Code List
This section describes the Cancel Reason Code List service.

Business Overview  Retrieves all purchase order cancel reason codes.

Service Type  Get

ReST URL  /PurchaseOrders/recent/cancelReasonCodeList

Input Parameters  No input.

Output  CodeDetailRDO

JSON Structure:
[
    {
        "code": null,
        "codeDescription": null,
        "codeSequence": null,
        "links": [ ],
        "hyperMediaContent": {
            "linkRDO": [ ]
        }
    }
]

Table Impact  

Origin Code List
This section describes the Origin Code List service.

Business Overview  Retrieves all purchase order origin codes.

Service Type  Get

ReST URL  /PurchaseOrders/recent/originCodeList

Parameter Name Data Type

code String

codeDescription String

codeSequence BigDecimal

TABLE SELECT INSERT UPDATE DELETE

CODE_HEAD Yes No No No

CODE_DETAIL Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-59

Input Parameters  No input.

Output  CodeDetailRDO

JSON Structure:
[
    {
        "code": null,
        "codeDescription": null,
        "codeSequence": null,
        "links": [ ],
        "hyperMediaContent": {
            "linkRDO": [ ]
        }
    }
]

Table Impact  

Purchase Order Status List
This section describes the Purchase Order Status list.

Business Overview  Retrieves all valid purchase order statuses.

Service Type  Get

ReST URL  /PurchaseOrders/recent/purchaseOrderStatusList

Input Parameters  No input.

Output  CodeDetailRDO

JSON Structure:
[
    {
        "code": null,
        "codeDescription": null,
        "codeSequence": null,

Parameter Name Data Type

code String

codeDescription String

codeSequence BigDecimal

TABLE SELECT INSERT UPDATE DELETE

CODE_HEAD Yes No No No

CODE_DETAIL Yes No No No

Parameter Name Data Type

code String

codeDescription String

codeSequence BigDecimal



Merchandising ReSTful Web Services

5-60 Operations Guide Volume 2 - Message Publication and Subscription Designs

        "links": [ ],
        "hyperMediaContent": {
            "linkRDO": [ ]
        }
    }
]

Table Impact  

Search Purchase Order User ID
This section describes the Search Purchase Order User ID.

Business Overview  This service retrieves a list of user IDs associated with creating a 
purchase order.

Service Type  Get

ReST URL  
/PurchaseOrders/recent/searchUserIds?searchString={searchString}&pageSize={page
Size}&pageNumber={pageNumber}

Input Parameters  ■Search String - Required

■ Page Size - Optional

■ Page Number - Optional

Output  VarcharIdRDO

PagedResultsRDO

JSON Structure:
{
    "totalRecordCount": null,
    "results": [
        {
            "id": null,
            "links": [ ],
            "hyperMediaContent": {
                "linkRDO": [ ]
            }
        }

TABLE SELECT INSERT UPDATE DELETE

CODE_HEAD Yes No No No

CODE_DETAIL Yes No No No

Parameter Name Data Type

id String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String



Merchandising ReSTful Web Services

ReSTful Web Services 5-61

    ],
    "links": [ ],
    "hyperMediaContent": {
        "linkRDO": [ ]
    }
}

Table Impact  

Purchase Order Search
This section describes the Purchase Order Search service.

Business Overview  This service retrieves summary information on all none closed 
purchase orders that match input criteria.

Service Type  Get

ReST URL  
/PurchaseOrders/recent/purchaseOrderSearch?statuses={statuses}&createIds={create
Ids}&startCreateDate={startCreateDate}&endCreateDate={endCreateDate}&orderNum
ber={orderNumber}&suppliers={suppliers}&originCodes={originCodes}&departments
={departments}&pageSize={pageSize}&pageNumber={pageNumber}

Input Parameters  

Output  RpoSearchResRDO

TABLE SELECT INSERT UPDATE DELETE

V_ORDHEAD Yes No No No

Parameter Name Required Description Valid values

statuses No List of order status A, S, W

createIds No List of user IDs who created the 
PO

startCreateDate No Long format date for starting 
period

endCreateDate No Long format date for end period

orderNumber No Order number to retrieve

suppliers No List of order suppliers

originCodes No List of valid Origin codes

departments No List of valid order/item 
departments

pageSize Maximum number of orders to 
retrieve per page

pageNumber Result page to retrieve 

Parameter Name Data Type

orderNumber BigDecimal

status String

supplier BigDecimal



Merchandising ReSTful Web Services

5-62 Operations Guide Volume 2 - Message Publication and Subscription Designs

PagedResultsRDO

JSON Structure:
"{
  "type": "paginationRDO",
  "totalRecordCount": 252,
  "hyperMediaContent": {},
  "links": [], 
  "results": [{
    "orderNumber": 12453253, 
    "statusId" : "W", 
    "supplierId": 124121,
    "supplierName": "Some Supplier Site",
    "notBeforeDate": 35235252, 
    "notAfterDate": 325235252351, 
    "totalCost": 243.231, 
    "currencyCode": "USD"
  }]
}"

Table Impact  

Get Purchase Order Summary
This section describes the Get Purchase Order Summary service.

Business Overview  This service retrieves purchase order header detail with open to buy 
information.

supplierName String

notBeforeDate Long

notAfterDate Long

totalCost BigDecimal

currency String

previouslyApprovedIndicator String

editableIndicator String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes No No No

PRODUCT_CONFIG_OPTIONS Yes No No No

V_ORDHEAD Yes No No No

V_ORDSKU Yes No No No

V_SUPS Yes No No No

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-63

Service Type  Get

ReST URL  
/PurchaseOrders/recent/PurchaseOrderSummary?orderNumber={orderNumber}

Input Parameters  Order Number-Required

Output  RpoOrderSumRDO

RpoOrderSumOtbRDO

Parameter Name Data Type

orderNumber BigDecimal

status String

supplier BigDecimal

supplierName String

notBeforeDate Long

notAfterDate Long

otbEowDate Long

terms String

termsCode String

termsDescription String

totalCost BigDecimal

totalRetail BigDecimal

Currency String

createId String

writtenDate Long

defaultDisplayLevel String

previouslyApprovedIndicator String

editableIndicator String

otbTable List<RpoOrderSumOtbRDO>

Parameter Name Data Type

department BigDecimal

classId BigDecimal

subclassId BigDecimal

subclassName String

orderAmount BigDecimal

budgetAmount BigDecimal

receivedAmount BigDecimal

approvedAmount BigDecimal

outstandingAmount BigDecimal



Merchandising ReSTful Web Services

5-64 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
"{
  “orderNumber”:12345,
  “statusId”:”W”,
  “supplierId”:12345,
  “supplierName”: “Supplier 12345”,
  “notBeforeDate”: 1234567,
  “notAfterDate”: 236573,
  "terms":"01",
  "termsCode":"01234",
  "termsDescription":"Letter Of Credit",
  “totalCost”: 123.45,
  “totalRetail”: 456.78,
  “currencyCode”: “CAD”,
  “createdBy”: “BUYER”,
  “writtenDate”: 1234567,
  "otbResults":
   [{
      "department" : 12345,
      "classId": 12345,
      "subClassId" : 12345,
      "subClassName": "subClassName"
      "budgetAmount": 12345.545,
      "orderAmount": 12345.545,
      "receivedAmount": 12345.545,
      "approvedAmount": 12345.545
  }]
}"

Table Impact  
TABLE SELECT INSERT UPDATE DELETE

COST_ZONE_GROUP_LOC Yes No No No

COUNTRY_ATTRIB Yes No No No

DEPS Yes No No No

ELC_COMP Yes No No No

ITEM_COST_HEAD Yes No No No

ITEM_EXP_DETAIL Yes No No No

ITEM_EXP_HEAD Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

MV_CURRENCY_CONVERSION_
RATES

Yes No No No

ORDHEAD Yes No No No

ORDLOC Yes No No No

ORDLOC_EXP Yes No No No

ORDSKU Yes No No No

ORDSKU_HTS Yes No No No

ORDSKU_HTS_ASSESS Yes No No No

OTB Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-65

Get Purchase Order Items
This section describes the Get Purchase Order Items service.

Business Overview  This service retrieves items details for an order number. Based on 
the display level, the items record aggregates to the level specified when applicable.

Service Type  Get

ReST URL  
/PurchaseOrders/recent/PurchaseOrderItems?orderNumber={orderNumber}&itemD
isplayLevel={itemDisplayLevel}&pageSize={pageSize}&pageNumber={pageNumber}

Input Parameters  Order Number - Required

Item Display Level - Optional - valid values PARENT_LEVEL, PARENT_DIFF_
LEVEL, or TRAN_LEVEL 

Page Size - Optional

Page Number - Optional

Output  RpoOrderSumItemRDO

PERIOD Yes No No No

PRODUCT_CONFIG_OPTIONS Yes No No No

STORE Yes No No No

SUPS Yes No No No

V_ORDHEAD Yes No No No

V_PACKSKU_QTY Yes No No No

V_SUBCLASS_TL Yes No No No

V_SUPS Yes No No No

V_TERMS_HEAD_TL Yes No No No

WH Yes No No No

Parameter Name Data Type

item String

ItemDescription String

diff1 String

diff1Description String

diff2 String

diff2Description String

diff3 String

diff3Description String

diff4 String

diff4Description String

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

5-66 Operations Guide Volume 2 - Message Publication and Subscription Designs

PagedResultsRDO

JSON Structure:
"{
  "type": "paginationRDO",
  "totalRecordCount": 252,
  "hyperMediaContent": {},
  "links": [], 
  "orderNumber": 1212131,
  "results": [{
    "itemId": 1234
    "itemDescription": "some item",
    "firstDiffId": 123424,
    "firstDiffDescription": "desc",
    "secondDiffId": 12345
    "secondDiffDescription" : "desc",
    "thirdDiffId": 1234324
    "thirdDiffDescription" : "desc",
    "fourthDiffId" : 1324,
    "fourthDiffDescription" : "desc",
    "quanityOrdered": 100,
    "totalCost" : 12345.353,
    "currencyCode": "USD",
    "itemImageUrl": "http://..."
  }]
}"

Table Impact  

Get Purchase Order Item Locations
This section describes the Get Purchase Order Item Locations service.

quantityOrdered BigDecimal

totalCost BigDecimal

currency String

itemImageUrl String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String

TABLE SELECT INSERT UPDATE DELETE

ITEM_IMAGE Yes No No No

ITEM_MASTER Yes No No No

ORDLOC Yes No No No

ORDSKU Yes No No No

ORDLOC_WKSHT Yes No No No

V_ITEM_MASTER Yes No No No

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-67

Business Overview  This service retrieves item location details for an order number. The 
location record aggregates based on the display level when applicable.

Service Type  Get

ReST URL  
/PurchaseOrders/recent/PurchaseOrderItemLocations?orderNumber={orderNumber
}&item={item}&itemDisplayLevel={itemDisplayLevel}&diff1={diff1}&diff2={diff2}&dif
f3={diff3}&diff4={diff4}&pageSize={pageSize}&pageNumber={pageNumber}

Input Parameters  

Output  RpoOrderItemLocRDO

PagedResultsRDO

JSON Structure:
"{
    "locations" : [
        {
            "locationId" : 12345,
            "locationName" : "some location",

Parameter Name Required Description Valid values

orderNumber Yes Order number

item Yes Item Id

itemDisplayLevel No Item display level PARENT_LEVEL PARENT_
DIFF_LEVEL TRAN_LEVEL

diff1 No Diff1 Id

diff2 No Diff2 Id

diff3 No Diff3 Id

diff4 No Diff4 Id

pageSize No Maximum number of 
items to retrieve per 
page

pageNumber No Result page to retrieve 

Parameter Name Data Type

location BigDecimal

locationName String

quantityOrdered BigDecimal

totalCost BigDecimal

currency String

Parameter Name Data Type

totalRecordCount BigDecimal

Next Page URL String

Previous Page URL String



Merchandising ReSTful Web Services

5-68 Operations Guide Volume 2 - Message Publication and Subscription Designs

            "orderedQuantity" : 1000,
            "totalCost" : 12345.234,
            "currencyCode" : "USD"
        },
        {
            "locationId" : 12345,
            "locationName" : "some location",
            "orderedQuantity" : 1000,
            "totalCost" : 12345.234,
            "currencyCode" : "USD"
        }
    ]
}"

Table Impact  

Update Purchase Orders Date
This section describes the Update Purchase Orders Date service.

Business Overview  This service update list of purchase order dates. If no date is sent or 
sent as null then the assumption is there is no change on the current record date.

Service Type  Post

ReST URL  
/PurchaseOrders/recent/updatePurchaseOrderDate?notBeforeDate={notBeforeDate}
&notAfterDate={notAfterDate}&otbEowDate={otbEowDate}&orderNumbers={orderN
umbers}

Input Parameters  Order Numbers - Required - comma separated list

Not Before Date - Optional - in a long format 

Not After Date - Optional - in a long format

OTB EWO Date - Optional - in a long format

Output  RpoStatusRDO

RpoFailRDO

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes No No No

ORDLOC Yes No No No

V_STORE_TL Yes No No No

V_WH_TL Yes No No No

Parameter Name Data Type

successOrdersCount BigDecimal

successOrdersTable List<BigDecimal>

failOrdersCount BigDecimal

failOrdersTable List<RpoFailRDO>



Merchandising ReSTful Web Services

ReSTful Web Services 5-69

JSON Structure:
{
    "successOrdersCount": 0,
    "successOrdersTable": [],
    "failOrdersCount": 2,
    "failOrdersTable": [
        {
            "orderNumber": 123,
            "errorMessage": "Invalid Reason Code.",
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        },
        {
            "orderNumber": 987,
            "errorMessage": "Invalid Reason Code.",
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact  

Cancel Purchase Orders
This section describes the Cancel Purchase Orders service.

Business Overview  This service cancels a list of purchase order.

Service Type  Post

ReST URL  
/PurchaseOrders/recent/cancelPurchaseOrders?orderNumbers={orderNumbers}

Parameter Name Data Type

orderNumber BigDecimal

errorMessage String

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER No No Yes No

CONTRACT_HEADER Yes No No No

DEAL_HEAD Yes No Yes No

ORDHEAD Yes No Yes No

OTB No No Yes No

SHIPMENT Yes No No No

SYSTEM_OPTIONS Yes No No No



Merchandising ReSTful Web Services

5-70 Operations Guide Volume 2 - Message Publication and Subscription Designs

Input Parameters  Order Number -Required-comma separated list

Output  RpoStatusRDO

RpoFailRDO

JSON Structure:
{
    "successOrdersCount": 0,
    "successOrdersTable": [],
    "failOrdersCount": 2,
    "failOrdersTable": [
        {
            "orderNumber": 123,
            "errorMessage": "Invalid Reason Code.",
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        },
        {
            "orderNumber": 987,
            "errorMessage": "Invalid Order Number.",
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact  

Parameter Name Data Type

successOrdersCount BigDecimal

successOrdersTable List<BigDecimal>

failOrdersCount BigDecimal

failOrdersTable List<RpoFailRDO>

Parameter Name Data Type

orderNumber BigDecimal

errorMessage String

TABLE SELECT INSERT UPDATE DELETE

ALLOC_DETAIL Yes No Yes No

ALLOC_HEADER Yes No Yes No

APPT_DETAIL Yes No No No

APPT_HEAD Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-71

Approve Purchase Orders
This section describes the Approve Purchase Orders service.

Business Overview  This service approves a list of purchase orders.

Service Type  Post

ReST URL  
/PurchaseOrders/recent/cancelPurchaseOrders?orderNumbers={orderNumbers}

Input Parameters  Order Number -Required-comma separated list

Output  RpoStatusRDO

RpoFailRDO

JSON Structure:
{
    "successOrdersCount": 0,
    "successOrdersTable": [],
    "failOrdersCount": 2,
    "failOrdersTable": [
        {
            "orderNumber": 123,
            "errorMessage": " Invalid Order Number.",
            "links": [],

CODE_DETAIL Yes No No No

DEAL_CALC_QUEUE No No No Yes

ORDHEAD Yes No Yes No

ORDLOC Yes No Yes No

OTB No No Yes No

SHIPMENT Yes No Yes No

SHIPSKU Yes No Yes No

SYSTEM_OPTIONS Yes No No No

WH Yes No No No

Parameter Name Data Type

successOrdersCount BigDecimal

successOrdersTable List<BigDecimal>

failOrdersCount BigDecimal

failOrdersTable List<RpoFailRDO>

Parameter Name Data Type

orderNumber BigDecimal

errorMessage String

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

5-72 Operations Guide Volume 2 - Message Publication and Subscription Designs

            "hyperMediaContent": {
                "linkRDO": []
            }
        },
        {
            "orderNumber": 987,
            "errorMessage": "Invalid Order Number.",
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact  
TABLE SELECT INSERT UPDATE DELETE

ALC_HEAD_TEMP No No No Yes

ALLOC_CHRG_TEMP No No No Yes

ALLOC_DETAIL Yes No Yes No

ALLOC_DETAIL_TEMP No No No Yes

ALLOC_HEADER Yes No Yes No

ALLOC_HEADER_TEMP No No No Yes

CONTRACT_COST_HIST Yes Yes No No

CONTRACT_DETAIL Yes No Yes No

CONTRACT_HEADER Yes No Yes No

DEAL_ACTUALS_FORECAST No No No Yes

DEAL_ACTUALS_ITEM_LOC No No No Yes

DEAL_COMP_PROM No No No Yes

DEAL_DETAIL No No No Yes

DEAL_HEAD No No No Yes

DEAL_HEAD_CFA_EXT No No No Yes

DEAL_ITEMLOC_DCS No No No Yes

DEAL_ITEMLOC_DIV_GRP No No No Yes

DEAL_ITEMLOC_ITEM No No No Yes

DEAL_ITEMLOC_PARENT_
DIFF

No No No Yes

DEAL_QUEUE No No No Yes

DEAL_THRESHOLD No No No Yes

DEAL_THRESHOLD_REV No No No Yes

DOC Yes No No No

DOC_LINK Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-73

ITEM_LOC Yes No Yes No

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_TICKET Yes No No No

LC_ACTIVITY Yes No No No

LC_AMENDMENTS Yes Yes No No

LC_DETAIL Yes Yes No No

LC_HEAD Yes No Yes No

LC_ORDAPPLY No Yes No Yes

ORD_INV_MGMT Yes No No Yes

ORD_LC_AMENDMENTS Yes No No No

ORDCUST Yes No No No

ORDCUST_DETAIL Yes Yes No Yes

ORDDIST_ITEM_TEMP No No No Yes

ORDHEAD Yes No No No

ORDHEAD_REV No Yes No No

ORDLC Yes No Yes No

ORDLOC Yes No Yes No

ORDLOC_DISCOUNT No No No Yes

ORDLOC_DISCOUNT_TEMP No No No Yes

ORDLOC_EXP_TEMP No No No Yes

ORDLOC_REV No Yes No No

ORDLOC_TEMP No No No Yes

ORDLOC_WKSHT Yes No No Yes

ORDSKU Yes No No No

ORDSKU_HTS Yes No No No

ORDSKU_HTS_ASSESS_TEMP No No No Yes

ORDSKU_HTS_TEMP No No No Yes

ORDSKU_REV No Yes No No

ORDSKU_TEMP No No No Yes

OTB Yes Yes Yes No

OTB_CASCADE_STG No Yes No No

PARTNER_ORG_UNIT Yes No No No

POP_TERMS_DEF No No No Yes

POP_TERMS_FULFILLMENT No No No Yes

PROCUREMENT_UNIT_
OPTIONS

Yes No No No

REPL_RESULTS_TEMP No No No Yes

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

5-74 Operations Guide Volume 2 - Message Publication and Subscription Designs

Reject Purchase Orders
This section describes the Reject Purchase Orders service.

Business Overview  This service rejects a list of purchase order.

Service Type  Post

ReST URL  
/PurchaseOrders/recent/rejectPurchaseOrders?orderNumbers={orderNumbers}

Input Parameters  Order Numbers - Required - comma separated list

Output  RpoStatusRDO

RpoFailRDO

REQ_DOC Yes Yes No No

REQ_DOC_TEMP No No No Yes

REV_ORDERS No No No Yes

RTM_UNIT_OPTIONS Yes No No No

STORE Yes No No No

SUP_AVAIL Yes No Yes No

SUPS Yes No No No

SYSTEM_CONFIG_OPTIONS Yes No No No

TAX_CALC_EVENT Yes Yes No No

TAX_EVENT_RUN_TYPE Yes No No No

TICKET_REQUEST No Yes No No

TIMELINE_TEMP No No No Yes

TRANSIT_TIMES Yes No No No

V_PACKSKU_QTY Yes No No No

WH Yes No No No

WO_DETAIL_TEMP No No No Yes

WO_HEAD_TEMP No No No Yes

Parameter Name Data Type

successOrdersCount BigDecimal

successOrdersTable List<BigDecimal>

failOrdersCount BigDecimal

failOrdersTable List<RpoFailRDO>

Parameter Name Data Type

orderNumber BigDecimal

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

ReSTful Web Services 5-75

JSON Structure:
{
    "successOrdersCount": 0,
    "successOrdersTable": [],
    "failOrdersCount": 2,
    "failOrdersTable": [
        {
            "orderNumber": 123,
            "errorMessage": " Invalid Order Number.",
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        },
        {
            "orderNumber": 987,
            "errorMessage": "Invalid Order Number.",
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact  

Replenishment Schedule Services
This section describes the Replenishment Schedule service.

errorMessage String

TABLE SELECT INSERT UPDATE DELETE

ALLOC_DETAIL No No Yes No

ALLOC_HEADER Yes No Yes No

CONTRACT_DETAIL Yes No Yes No

CONTRACT_HEADER Yes No Yes No

ITEM_MASTER Yes No No No

LC_ORDAPPLY No No No Yes

ORDHEAD Yes No Yes No

ORDLOC Yes No No No

OTB No No Yes No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

SYSTEM_OPTIONS Yes No No No

Parameter Name Data Type



Merchandising ReSTful Web Services

5-76 Operations Guide Volume 2 - Message Publication and Subscription Designs

Functional Area 
Inventory Movement

Business Overview 
The primary role of these services is to create, modify, and delete scheduled 
replenishments and send them to Merchandising. 

Create Replenishment Schedule
This section describes the Create Replenishment Schedule service.

Business Overview  This service creates scheduled replenishments by calling the 
SVCPROV_REPL package to load input data to the staging tables and then calling the 
core replenishment package to validate and insert data to the Merchandising tables.

Service Type  Post

ReST URL  inventory/replenishment/createReplSched

Input Parameters  ReplSchedCreModRDO

Parameter Name Data Type

replAttrId BigDecimal

schRplDesc String

scheduledActiveDate Long

replAction String

item String

diff1 String

diff2 String

diff3 String

diff4 String

dept BigDecimal

class1 BigDecimal

subclass BigDecimal

loc BigDecimal

locType String

autoRangeInd String

activateDate Long

deactivateDate Long

presStock BigDecimal

demoStock BigDecimal

stockCat String

replOrderCtrl String

sourcingWh BigDecimal

supplier BigDecimal



Merchandising ReSTful Web Services

ReSTful Web Services 5-77

originCountryId String

pickupLeadTime BigDecimal

whLeadTime BigDecimal

replMethodInd String

replMethod String

minStock BigDecimal

maxStock BigDecimal

incrPct BigDecimal

minSupplyDays BigDecimal

maxSupplyDays BigDecimal

timeSupplyHorizon BigDecimal

addLeadTimeInd String

invSellingDays BigDecimal

serviceLevelType String

serviceLevel BigDecimal

serviceLevelFloatingStd String

lostSalesFactor BigDecimal

terminalStockQty BigDecimal

seasonId BigDecimal

phaseId BigDecimal

rejectStoreOrdInd String

multRunsPerDayInd String

tsfZeroSohInd String

nonScalingInd String

maxScaleValue BigDecimal

sizeProfileInd String

reviewCycle String

updateDaysInd String

mondayInd String

tuesdayInd String

wednesdayInd String

thursdayInd String

fridayInd String

saturdayInd String

sundayInd String

primaryPackNo String

defaultPackInd String

removePackInd String

Parameter Name Data Type



Merchandising ReSTful Web Services

5-78 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
[
 {"replAttrId": null,
  "schRplDesc": null,
  "scheduledActiveDate": null,
  "replAction": null,
  "item": null,
  "diff1": null,
  "diff2": null,
  "diff3": null,
  "diff4": null,
  "dept": null,
  "class1": null,
  "subclass": null,
  "loc": null,
  "locType": null,
  "autoRangeInd": null,
  "activateDate": null,
  "deactivateDate": null,
  "presStock": null,
  "demoStock": null,
  "stockCat": null,
  "replOrderCtrl": null,
  "sourcingWh": null,
  "supplier": null,
  "originCountryId": null,
  "pickupLeadTime": null,
  "whLeadTime": null,
  "replMethodInd": null,
  "replMethod": null,
  "minStock": null,
  "maxStock": null,
  "incrPct": null,
  "minSupplyDays": null,
  "maxSupplyDays": null,
  "timeSupplyHorizon": null,
  "addLeadTimeInd": null,
  "invSellingDays": null,
  "serviceLevelType": null,
  "serviceLevel": null,
  "serviceLevelFloatingStd": null,
  "lostSalesFactor": null,
  "terminalStockQty": null,
  "seasonId": null,
  "phaseId": null,
  "rejectStoreOrdInd": null,
  "multRunsPerDayInd": null,
  "tsfZeroSohInd": null,
  "nonScalingInd": null,
  "maxScaleValue": null,
  "sizeProfileInd": null,
  "reviewCycle": null,
  "updateDaysInd": null,
  "mondayInd": null,

mraUpdate String

mraRestore String

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-79

  "tuesdayInd": null,
  "wednesdayInd": null,
  "thursdayInd": null,
  "fridayInd": null,
  "saturdayInd": null,
  "sundayInd": null,
  "primaryPackNo": null,
  "defaultPackInd": null,
  "removePackInd": null,
  "mraUpdate": null,
  "mraRestore": null}
]

Output  ReplStatusRDO

ReplFailRDO

The output will contain the status of the request including validation errors, if any.

JSON Structure:
{
       "statusMsg": null,
       "failReplTable": [
         {
            "replAttrId": null,
            "item": null,
            "dept": null,
            "class1": null,
            "subclass": null,
            "loc": null,
            "locType": null,
            "effectiveDate": null,
            "errorMsg": null,
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }

Parameter Name Data Type

statusMsg String

failReplTable List<ReplFailRDO>

Parameter Name Data Type

replAttrId BigDecimal

item String

dept BigDecimal

class1 BigDecimal

subclass BigDecimal

loc BigDecimal

locType String

effectiveDate Long

errorMsg String



Merchandising ReSTful Web Services

5-80 Operations Guide Volume 2 - Message Publication and Subscription Designs

         }
       ],
       "links": [],
       "hyperMediaContent": {
            "linkRDO": []
       }
}

Table Impact  

Modify Replenishment Schedule
This section describes the Modify Replenishment service.

Business Overview  This service modifies scheduled replenishments by calling the 
SVCPROV_REPL package to load input to the staging tables and then calling the core 
replenishment package to validate and process data to the Merchandising tables.

Service Type  Post

ReST URL  inventory/replenishment/modifyReplSched

Input Parameters  ReplSchedCreModRDO

TABLE SELECT INSERT UPDATE DELETE

REPL_ATTR_UPDATE_HEAD Yes Yes No No

REPL_ATTR_UPDATE_ITEM Yes Yes No No

REPL_ATTR_UPDATE_LOC Yes Yes No No

SVC_PROCESS_TRACKER Yes Yes Yes No

CORESVC_REPL_ERR No Yes No No

SVC_REPL_ATTR_UPDATE Yes Yes No Yes

REPL_ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_LOC Yes No No No

SYSTEM_OPTIONS Yes No No No

V_STORE Yes No No No

V_WH Yes No No No

Parameter Name Data Type

replAttrId BigDecimal

schRplDesc String

scheduledActiveDate Long

replAction String

item String

diff1 String

diff2 String

diff3 String



Merchandising ReSTful Web Services

ReSTful Web Services 5-81

diff4 String

dept BigDecimal

class1 BigDecimal

subclass BigDecimal

loc BigDecimal

locType String

autoRangeInd String

activateDate Long

deactivateDate Long

presStock BigDecimal

demoStock BigDecimal

stockCat String

replOrderCtrl String

sourcingWh BigDecimal

supplier BigDecimal

originCountryId String

pickupLeadTime BigDecimal

whLeadTime BigDecimal

replMethodInd String

replMethod String

minStock BigDecimal

maxStock BigDecimal

incrPct BigDecimal

minSupplyDays BigDecimal

maxSupplyDays BigDecimal

timeSupplyHorizon BigDecimal

addLeadTimeInd String

invSellingDays BigDecimal

serviceLevelType String

serviceLevel BigDecimal

serviceLevelFloatingStd String

lostSalesFactor BigDecimal

terminalStockQty BigDecimal

seasonId BigDecimal

phaseId BigDecimal

rejectStoreOrdInd String

multRunsPerDayInd String

tsfZeroSohInd String

Parameter Name Data Type



Merchandising ReSTful Web Services

5-82 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
[
  {
     "replAttrId": null,
     "schRplDesc": null,
     "scheduledActiveDate": null,
     "replAction": null,
     "item": null,
     "diff1": null,
     "diff2": null,
     "diff3": null,
     "diff4": null,
     "dept": null,
     "class1": null,
     "subclass": null,
     "loc": null,
     "locType": null,
     "autoRangeInd": null,
     "activateDate": null,
     "deactivateDate": null,
     "presStock": null,
     "demoStock": null,
     "stockCat": null,
     "replOrderCtrl": null,
     "sourcingWh": null,
     "supplier": null,
     "originCountryId": null,
     "pickupLeadTime": null,
     "whLeadTime": null,
     "replMethodInd": null,
     "replMethod": null,

nonScalingInd String

maxScaleValue BigDecimal

sizeProfileInd String

reviewCycle String

updateDaysInd String

mondayInd String

tuesdayInd String

wednesdayInd String

thursdayInd String

fridayInd String

saturdayInd String

sundayInd String

primaryPackNo String

defaultPackInd String

removePackInd String

mraUpdate String

mraRestore String

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-83

     "minStock": null,
     "maxStock": null,
     "incrPct": null,
     "minSupplyDays": null,
     "maxSupplyDays": null,
     "timeSupplyHorizon": null,
     "addLeadTimeInd": null,
     "invSellingDays": null,
     "serviceLevelType": null,
     "serviceLevel": null,
     "serviceLevelFloatingStd": null,
     "lostSalesFactor": null,
     "terminalStockQty": null,
     "seasonId": null,
     "phaseId": null,
     "rejectStoreOrdInd": null,
     "multRunsPerDayInd": null,
     "tsfZeroSohInd": null,
     "nonScalingInd": null,
     "maxScaleValue": null,
     "sizeProfileInd": null,
     "reviewCycle": null,
     "updateDaysInd": null,
     "mondayInd": null,
     "tuesdayInd": null,
     "wednesdayInd": null,
     "thursdayInd": null,
     "fridayInd": null,
     "saturdayInd": null,
     "sundayInd": null,
     "primaryPackNo": null,
     "defaultPackInd": null,
     "removePackInd": null,
     "mraUpdate": null,
     "mraRestore": null
   }
]

Output  ReplStatusRDO

ReplFailRDO

Parameter Name Data Type

statusMsg String

failReplTable List<ReplFailRDO>

Parameter Name Data Type

replAttrId BigDecimal

item String

dept BigDecimal

class1 BigDecimal

subclass BigDecimal

loc BigDecimal



Merchandising ReSTful Web Services

5-84 Operations Guide Volume 2 - Message Publication and Subscription Designs

The output will contain the status of the request including validation errors, if any.

JSON Structure:
{
     "statusMsg": null,
     "failReplTable": [
        {
           "replAttrId": null,
           "item": null,
           "dept": null,
           "class1": null,
           "subclass": null,
           "loc": null,
           "locType": null,
           "effectiveDate": null,
           "errorMsg": null,
           "links": [],
           "hyperMediaContent": {
              "linkRDO": []
           }
        }
     ],
     "links": [],
     "hyperMediaContent": {
        "linkRDO": []
     }
}

Table Impact  

locType String

effectiveDate Long

errorMsg String

TABLE SELECT INSERT UPDATE DELETE

REPL_ATTR_UPDATE_HEAD Yes Yes No No

REPL_ATTR_UPDATE_ITEM Yes Yes No No

REPL_ATTR_UPDATE_LOC Yes Yes No No

SVC_PROCESS_TRACKER Yes Yes Yes No

CORESVC_REPL_ERR No Yes No No

SVC_REPL_ATTR_UPDATE Yes Yes No Yes

REPL_ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_LOC Yes No No No

SYSTEM_OPTIONS Yes No No No

V_STORE Yes No No No

V_WH Yes No No No

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-85

Delete Replenishment Schedule
This section describes the Delete Replenishment Schedule service.

Business Overview  This service deletes scheduled replenishments by calling the 
SVCPROV_REPL package to load input to the staging tables and then calling the core 
replenishment package to validate and delete data from the Merchandising tables.

Service Type  Post

ReST URL  inventory/replenishment/deleteReplSched

Input Parameters  ReplSchedDelRDO

JSON Structure:
[
   {
      "replAttrId": null,
      "item": null,
      "dept": null,
      "class1": null,
      "subclass": null,
      "loc": null,
      "locType": null
   }
]

Output  ReplStatusRDO

ReplFailRDO

The output will contain the status of the request including validation errors, if any.

Parameter Name Data Type

replAttrId BigDecimal

item String

dept BigDecimal

class1 BigDecimal

subclass BigDecimal

loc BigDecimal

locType String

Parameter Name Data Type

statusMsg String

failReplTable List<ReplFailRDO>

Parameter Name Data Type

replAttrId BigDecimal

item String

dept BigDecimal



Merchandising ReSTful Web Services

5-86 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
{
   "statusMsg": null,
   "failReplTable": [
      {
         "replAttrId": null,
         "item": null,
         "dept": null,
         "class1": null,
         "subclass": null,
         "loc": null,
         "locType": null,
         "effectiveDate": null,
         "errorMsg": null,
         "links": [],
         "hyperMediaContent": {
            "linkRDO": []
         }
      }
   ],
   "links": [],
   "hyperMediaContent": {
      "linkRDO": []
   }
}

Table Impact  

VDATE Service
Business Overview

This service is used to retrieve the Merchandising virtual business date (vdate).

Service Type

Get

class1 BigDecimal

subclass BigDecimal

loc BigDecimal

locType String

effectiveDate Long

errorMsg String

TABLE SELECT INSERT UPDATE DELETE

REPL_ATTR_UPDATE_HEAD Yes Yes No Yes

REPL_ATTR_UPDATE_ITEM Yes Yes No Yes

REPL_ATTR_UPDATE_LOC Yes Yes No Yes

SVC_PROCESS_TRACKER Yes Yes Yes No

CORESVC_REPL_ERR No Yes No No

SVC_REPL_ATTR_UPDATE Yes Yes No Yes

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-87

ReST URL

Vdate/vdateDetail

Input Parameters

na

Output

RestVdateRecRDO

JSON Structure:
 [
    {
        "vdate": null,
        "links": [],
        "hyperMediaContent": {
            "linkRDO": []
        }
    }
]
Table Impact

Allocation Detail Service
This section describes the Allocation Detail service.

Business Overview
Allocation Detail service allows user to retrieve Allocation information for a selected 
allocation number.

Service Type
Get

ReST URL
Alloc/allocDetail?allocNumber={allocationNumber}

Input Parameters

Output
RestAllocRecRDO

Parameter Name Data Type

vdate Date

TABLE SELECT INSERT UPDATE DELETE

PERIOD Yes No No No

Parameter Name Required Description

allocNumber Yes Allocation Number



Merchandising ReSTful Web Services

5-88 Operations Guide Volume 2 - Message Publication and Subscription Designs

RestAllocDetailRecRDO

JSON Structure:
 [
    {
        "docType": null,
        "allocDetail": [

Parameter Name Data Type

alloc_no BigDecimal

order_no BigDecimal

wh BigDecimal

item String

status String

alloc_desc String

po_type String

alloc_method String

release_date Date

order_type String

doc String

doc_type String

origin_ind String

close_date Date

alloc_detail List<RestAllocDetailRecRDO>

Parameter Name Data Type

to_loc BigDecimal

to_loc_type String

qty_transferred BigDecimal

qty_allocated BigDecimal

qty_prescaled BigDecimal

qty_distro BigDecimal

qty_selected BigDecimal

qty_cancelled BigDecimal

qty_received BigDecimal

qty_reconciled BigDecimal

po_rcvd_qty BigDecimal

non_scale_ind String

in_store_date Date

wf_order_no BigDecimal

rush_flag String



Merchandising ReSTful Web Services

ReSTful Web Services 5-89

            {
                "qtyTransferred": null,
                "rushFlag": null,
                "wfOrderNo": null,
                "inStoreDate": null,
                "qtyAllocated": null,
                "nonScaleInd": null,
                "toLoc": null,
                "qtyPrescaled": null,
                "toLocType": null,
                "qtyDistro": null,
                "qtySelected": null,
                "qtyReceived": null,
                "qtyCancelled": null,
                "qtyReconciled": null,
                "poRcvdQty": null,
                "links": [],
                "hyperMediaContent": {
                    "linkRDO": []
                }
            }
        ],
        "doc": null,
        "originInd": null,
        "allocNo": null,
        "wh": null,
        "allocMethod": null,
        "allocDesc": null,
        "poType": null,
        "item": null,
        "status": null,
        "orderNo": null,
        "orderType": null,
        "releaseDate": null,
        "closeDate": null,
        "links": [],
        "hyperMediaContent": {
            "linkRDO": []
        }
    }
]

Table Impact

Background Process Configuration
This section describes the Background Process Configuration.

Business Overview
This service is used to update the configuration for each background jobs in 
Merchandising.

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No



Merchandising ReSTful Web Services

5-90 Operations Guide Volume 2 - Message Publication and Subscription Designs

Service Type
Post

ReST URL
processes/update/process_config/execution

Input Parameters

Output
NA

Table Impact

Currency Rates Service
This section describes the Currency Rate service.

Business Overview
This service is used to retrieve all currencies and currency conversion rates. The 
conversion rate is the value used to convert to the primary currency.

Service Type
Get

ReST URL
CurrencyRates/currencyRates

Input Parameters
NA

Parameter Name Required Description

JobName Yes Job Name

numThreads No Maximum number of 
threads the job will execute

numDataToProcess No Number of records a jobs 
will process each run.

commitMaxCtr No Max number of records 
processed before a commit 
is issued.

archiveInd No This field will be used to 
determine if associated 
tables for this job needs to 
be archived to history or 
not.

TABLE SELECT INSERT UPDATE DELETE

B8D_PROCESS_
CONFIG

No No Yes No



Merchandising ReSTful Web Services

ReSTful Web Services 5-91

Output
RestCurrencyRatesRecRDO

JSON Structure:
 
 [
    {
        "exchangeRate": null,
        "effectiveDate": null,
        "currencyCode": null,
        "exchangeType": null,
        "links": [],
        "hyperMediaContent": {
            "linkRDO": []
        }
    }
 ]

Table Impact

Data Privacy Access Service
This section describes the Data Privacy Access service for Merchandising.

Business Overview
This query service provides access to data stored in Merchandising that contain 
personally identifiable information.

Service Type
GET

ReSTURL
https://<host:port>/RetailAppsDataPrivServicesRESTApp/rest/privatedata/getPers
onalInfo?customer_id={entityName}::{entityType}::{entityId}::{fullName}::
{phone}::{email}

Accept
■ application/json

■ application/xml

Parameter Name Data Type

exchangeRate BigDecimal

effectiveDate Timestamp

currencyCode String

exchangeType String

TABLE SELECT INSERT UPDATE DELETE

CURRENCY_RATES Yes No No No



Merchandising ReSTful Web Services

5-92 Operations Guide Volume 2 - Message Publication and Subscription Designs

Query Parameters
■ customer_id (required): The customer ID string containing the parameters to be 

used in looking up data.  The format of this string is as follows:

– entity name}::{entity type}::{entity id}::{full name}::{phone}::{email}

Path Parameters

Default Response
The response will return all instances of the data being searched that occur in the 
requested entity. For example, if the entity requested was BUYER, all instances where 
the buyer, name, and phone match the data sent will be returned. If any of these 
parameters are not sent (e.g. buyer), then it will not be used as part of the search. The 
following data is included in the response:

Parameter Description

Entity Name The query group type for which data is to be retrieved. The available 
group types for Merchandising are: 

■ BUYER (Buyer)

■ MERCHANT (Merchant)

■ STORE (Store)

■ WAREHOUSE (Warehouse)

■ SUPPLIER (Supplier)

■ PARTNER (Partner)

■ OUTLOC (Outside Location)

■ ORDER CUSTOMER (Merchandising Customer)

Entity Type Used if the entity name is PARTNER or OUTLOC. The value here 
should indicate the type of partner or outside location being queried. 
Valid values for this input can be found on the Codes table for each 
type:

■ Partner Types = PTNR

■ Outside Location Types = LOCT

Entity ID The ID of the entity being queried. For example, the supplier ID.

Full Name The full name to be searched for the selected entity. 

Phone The phone number to be searched for the selected entity.

Email The email to be searched for the selected entity.



Merchandising ReSTful Web Services

ReSTful Web Services 5-93

Sample Response
{
    "Personal Information": {
        "list": [],
            "Get Personal Information": {
                "list": [            
                   [
                        {
                            "ENTITY_NAME": "BUYER",
                            "ENTITY_TYPE": "null",
                            "ENTITY_ID": "1002",
                            "FULL_NAME": "Matt Wilsman",
                            "PHONE": "6125251034",
                            "FAX": "6125259800",
                            "TELEX": "null",
                            "PAGER": "null",
                            "EMAIL": "null"
                        }
                    ]
                ]
            }
        }
    }
}

Parameter Description

Entity Name Valid values are:

■ BUYER (Buyer)

■ MERCHANT (Merchant)

■ STORE (Store)

■ WAREHOUSE (Warehouse)

■ SUPPLIER (Supplier)

■ PARTNER (Partner)

■ OUTLOC (Outside Location)

■ ORDER CUSTOMER (Merchandising Customer)

Entity Type If the entity name is PARTNER or OUTLOC, the value here indicates 
the type of partner or outside location being queried. Valid values for 
this input can be found on the Codes table for each type:

■ Partner Types = PTNR

■ Outside Location Types = LOCT

For other entity types, this will be null.

Entity ID The ID of the entity where the data was found.

Full Name The name associated with the entity.

Phone The phone number associated with the entity.

Fax The fax number associated with the entity.

Telex The telex number associated with the entity.

Pager The pager number associated with the entity.

Email The email address associated with the entity.



Merchandising ReSTful Web Services

5-94 Operations Guide Volume 2 - Message Publication and Subscription Designs

Response Codes and Error Messages
■ 200 - Success

■ 400 - Bad Request - for the following situations:

– Customer ID does not match the required format

– Invalid input type

– Missing customer ID

– Invalid jsonFormat

■ 500 - Internal Server Errors - for all other types of errors (for example, 
configuration errors, SQL errors, and so on)

Success Payloads
■ When Accept=application/json, this API will return data in JSON format

■ When Accept=application/xml,  this API will return data formatted as an HTML 
page

Data Privacy Forget Service
This section describes the Data Privacy Forget service for Merchandising.

Business Overview
This service supports updating personal information stored in Merchandising. When 
the service is invoked with mask strings as inputs, it overwrites the fields with mask 
strings, which effectively removes the personal information from the system.

Service Type
DELETE

ReSTURL
https://<host:port>/RetailAppsDataPrivServicesRESTApp/rest/privatedata/update
PersonalInfo?customer_id={entityName}::{entityType}::{entityId}::{fullName}::
{phone}::{fax}::{telex}::{pager}::{email}::{addr1}::{addr2}::{addr3}::{county}::{city}::{state}:
:{countryId}::{postalCode}

Accept
■ application/json

■ application/xml

Query Parameters
■ customer_id (required): The customer ID string containing the parameters to be 

used in updating data.  The format of this string is as follows:

– {entityName}::{entityType}::{entityId}::{fullName}::{phone}::{fax}::{telex}::{pager}::{
email}::{addr1}::{addr2}::{addr3}::{county}::{city}::{state}::{countryId}::{postalCo
de}

Path Parameters



Merchandising ReSTful Web Services

ReSTful Web Services 5-95

Default Response
This service only returns a response code to signify if the request is successful or not. If 
no record is updated, the service returns an error.

Response Codes and Error Messages
■ 200 - Success

■ 400 - Bad Request - for the following situations:

– Customer ID does not match the required format

Parameter Description

Entity Name 

(required)

The group type for which data is to be updated. The available group 
types for Merchandising are:

■ BUYER (Buyer)

■ MERCHANT (Merchant)

■ STORE (Store)

■ WAREHOUSE (Warehouse)

■ SUPPLIER (Supplier)

■ PARTNER (Partner)

■ OUTLOC (Outside Location)

■ ORDER CUSTOMER (Merchandising Customer)

Entity Type Required if the entity name is PARTNER or OUTLOC. The value here 
should indicate the type of partner or outside location. Valid values for 
this input can be found on the Codes table for each type:

■ Partner Types = PTNR

■ Outside Location Types = LOCT

Entity ID

(required)

The ID of the entity to be updated. For example, the supplier ID.

Full Name The value to update the full name with. If the value is null and this is a 
required field in the entity, 'XXXXX' will be used.

Phone The value to update the phone number with. If the value is null and 
this is a required field in the entity, 'XXXXX' will be used.

Fax The value to update the fax number with.

Telex The value to update the telex number with.

Pager The value to update the pager number with.

Email The value to update the email address with.

Addr1 The value to update the address 1 with.

Addr2 The value to update the address 2 with.

Addr3 The value to update the address 3 with.

County The value to update the county with.

City The value to update the city with.

State The value to update the state with.

Country The value to update the country with.

Postal Code The value to update the postal code with.



Merchandising ReSTful Web Services

5-96 Operations Guide Volume 2 - Message Publication and Subscription Designs

– Invalid input type

– Missing customer ID

– Invalid jsonFormat

■ 500 - Internal Server Errors - for all other types of errors (e.g. config errors, sql 
errors, etc).

Success Payloads
N/A

Diff Detail Service
This section describes the Diff Detail service.

Business Overview
Diff Detail service allows user to retrieve Diff description for a selected Diff Id.

Service Type
Get

ReST URL
DiffIds/diffIdDetail?diffId={diffId}

Input Parameters

Output
RestDiffIdsRecRDO

JSON Structure
    { 
       "industrySubgroup": null,
        "diffGroupDesc": null,
        "diffType": null,
        "diffDesc": "null,
        "industryCode": null,
        "diffGroupId": null,

Parameter Name Required Description

Diff_Id Yes Diff ID

Parameter Name Data Type

industrySubgroup String 

diffGroupDesc String 

diffType String 

diffDesc String 

industryCode String 

diffGroupId String 

diffTypeDesc String 



Merchandising ReSTful Web Services

ReSTful Web Services 5-97

        "diffTypeDesc": null,
        "links": [],
        "hyperMediaContent": {
            "linkRDO": []
        }
  }

Table Impact

Half Data Budget Service

Business Overview
The primary role of this service is to modify half data budgets and send them to 
Merchandising.

Functional Area
Financials

Modify Half Data Budget

Business Overview  This service modifies half data budget by calling the SVCPROV_
HDB package to load input data to the staging tables and then calling the core half 
data budget package to validate and insert data to the Merchandising tables.

Service Type  Post

Rest URL:  financials/HalfDataBudgetREST/modifyHdb

Input Parameters  SvcprovHdbdescRecRDO

JSON Structure:
[
    {

TABLE SELECT INSERT UPDATE DELETE

DIFF_IDS Yes No No No

Parameter Name Data Type

dept BigDecimal

halfNo BigDecimal

locType String

location BigDecimal

setOfBooksId BigDecimal

cumMarkonPct BigDecimal

shrinkagePct BigDecimal

markdownPct BigDecimal



Merchandising ReSTful Web Services

5-98 Operations Guide Volume 2 - Message Publication and Subscription Designs

        "dept": null,
        "halfNo": null,
        "locType": null,
        "location": null,
        "setOfBooksId": null,
        "cumMarkonPct": null,
        "shrinkagePct": null,
        "markdownPct": null
    }
]

Output  SvcprovHdbStatusRecRDO

SvcprovFailHdbRecRDO

The output will contain the status of the request including validation errors, if any.

JSON Structure:
    {
         "statusMsg": null,
         " hdbErrTbl ": 
         [
            {
                "dept": null,
                "halfNo": null,
                "locType": null,
                "location": null,
                "setOfBooksId": null,
                "errorMsg": null,
                "links": [],
                "hyperMediaContent": {
                    "linkRDO": []
                }
            }
         ],
         "links": [],
         "hyperMediaContent": {
            "linkRDO": []
         }
    }

Parameter Name Data Type

statusMsg String

hdbErrTbl List< SvcprovFailHdbRecRDO>

Parameter Name Data Type

dept BigDecimal

halfNo BigDecimal

locType String

location BigDecimal

setOfBooksId BigDecimal

errorMsg String



Merchandising ReSTful Web Services

ReSTful Web Services 5-99

Table Impact  

Inventory Adjustment Service
This section describes the Inventory Adjustment service.

Functional Area
Inventory

Business Overview
The primary role of this service is to create inventory adjustment and send them to 
Merchandising.

Inventory Adjustment

Business Overview  This service creates inventory adjustment by calling the package 
SVCPROV_INVADJ to load input data to the staging tables and then calling the core 
inventory adjustment package to validate and insert data to the Merchandising tables.

Service Type  Post

ReST URL  Invadj/createInvadj

Input Parameters  SvcprovInvadjdescRecRDO

SvcprovInvadjdescdtlRecRDO

TABLE SELECT INSERT UPDATE DELETE

HALF_DATA_BUGET Yes Yes Yes No

SVC_PROCESS_TRACKER Yes Yes Yes No

SVC_ADMIN_UPLD_ER Yes Yes No No

SVC_HALF_DATA_BUDGET Yes Yes No Yes

CODE_DETAIL Yes No No No

Parameter Name Data Type

location BigDecimal

Invadjdtl List<SvcprovInvadjdescdtlRecRDO>

Parameter Name Data Type

unitQty BigDecimal

toDisposition String

adjReasonCode BigDecimal

docType String

toWipCode String

item String

poNbr String



Merchandising ReSTful Web Services

5-100 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:

[
  {"location":null,
   "invadjdtl":[
                 { "unitQty":null,
                   "toDisposition":null,
                   "adjReasonCode":null,
                   "docType":null,
                   "toWipCode":null,
                   "item":null,
                   "poNbr":null,
                   "auxReasonCode":null,
                   "weight":null,
                   "toTroubleCode":null,
                   "fromWipCode":null,
                   "weightUom":null,
                   "unitCost":null,
                   "fromTroubleCode":null,
                   "transshipmentNumber":null,
                   "fromDisposition":null,
                   "transactionCode":null
                 }
               ]
  }
]

Output  SvcprovInvadjStatusRecRDO

SvcprovFailInvadjRecRDO

auxReasonCode String

weight BigDecimal

toTroubleCode String

fromWipCode String

weightUom String

unitCost BigDecimal

fromTroubleCode String

transshipmentNumber String

fromDisposition String

transactionCode BigDecimal

Parameter Name Data Type

statusMsg String

invadjErrTbl List< SvcprovFailInvadjRecRDO >

Parameter Name Data Type

location BigDecimal

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-101

The output will contain the status of the request including validation errors, if any.

JSON Structure:

{
  "statusMsg": null,
  " invadjErrTbl ": [
    {
      " location": null,
      "unitQty": null,
      " adjReasonCode": null,
      " item": null,
      "errorMsg": null,
      "links": [],
      "hyperMediaContent": {
        "linkRDO": []
      }
    }
  ],
  "links": [],
  "hyperMediaContent": {
    "linkRDO": []
  }
}

Table Impact  

Item Detail Service
This section describes the Item Detail service.

Business Overview
Item Detail service allows user to retrieve Item information for a selected item.

Service Type
Get

ReST URL
Item/itemDetail?item={itemNumber}

unitQty BigDecimal

adjReasonCode BigDecimal

item String

errorMsg String

TABLE SELECT INSERT UPDATE DELETE

INV_ADJ Yes Yes No No

ITEM_LOC_SOH Yes Yes Yes No

SVC_PROCESS_TRACKER Yes Yes Yes No

SVC_INV_ADJ Yes Yes Yes Yes

Parameter Name Data Type



Merchandising ReSTful Web Services

5-102 Operations Guide Volume 2 - Message Publication and Subscription Designs

Input Parameters

Output
RestItemRecRDO

RestPackitemBreakoutRecRDO

Parameter Name Required Description

Item Yes Item number

Parameter Name Data Type

itemGrandparent String

itemParent String

item String

itemDesc String

shortDesc String

packInd String

status String

itemLevel BigDecimal

tranLevel BigDecimal

dept BigDecimal

classAttribute BigDecimal

subclass BigDecimal

diff1 String

diff2 String

diff3 String

diff4 String

primaryRefItemInd String

originalRetail BigDecimal

sellableInd String

orderableInd String

inventoryInd String

packitemBreakout List<RestPackitemBreakoutRecRDO>

itemSupplier List<RestItemSupplierRecRDO>

itemSupplierCountry List<RestItemSupplierCountryRecRDO>

vatItem List<RestVatItemRecRDO>

Parameter Name Data Type

item String

seqNo BigDecimal

packItemQty BigDecimal



Merchandising ReSTful Web Services

ReSTful Web Services 5-103

RestItemSupplierRecRDO

RestItemSupplierCountryRecRDO

RestVatItemRecRDO

JSON Structure:
{
    "itemGrandparent": null,
    "itemParent": null,
    "item": null,
    "itemDesc": null,
    "shortDesc": null,
    "packInd": null,
    "status": null,
    "itemLevel": null,
    "tranLevel": null,
    "dept": null,
    "classAttribute": null,
    "subclass": null,
    "diff1": null,
    "diff2": null,
    "diff3": null,
    "diff4": null,
    "primaryRefItemInd": null,
    "originalRetail": null,

Parameter Name Data Type

supplier BigDecimal

vpn String

primarySuppInd String

directShipInd String

Parameter Name Data Type

originCountryId String

primaryCountryInd String

unitCost BigDecimal

suppPackSize BigDecimal

innerPackSize BigDecimal

leadTime BigDecimal

pickupLeadTime BigDecimal

Parameter Name Data Type

vatRegion BigDecimal

vatType String

vatCode String

vatRate BigDecimal

activeDate Timestamp



Merchandising ReSTful Web Services

5-104 Operations Guide Volume 2 - Message Publication and Subscription Designs

    "sellableInd": null,
    "orderableInd": null,
    "inventoryInd": null,
    "packitemBreakout": [],
    "itemSupplier": [
        {
            "primarySuppInd": null,
            "itemSupplierCountry": [
                {
                    "unitCost": null,
                    "leadTime": null,
                    "suppPackSize": null,
                    "originCountryId": null,
                    "primaryCountryInd": null,
                    "pickupLeadTime": null,
                    "innerPackSize": null,
                    "links": [],
                    "hyperMediaContent": {
                        "linkRDO": []
                    }
                }
            ],
            "supplier": null,
            "vpn": null,
            "directShipInd": null,
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "vatItem": [
        {
            "vatRegion": null,
            "activeDate": null,
            "vatType": null,
            "vatCode": null,
            "vatRate": null,
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact

TABLE SELECT INSERT UPDATE DELETE

V_ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-105

Item Loc Inventory Detail Service
This section describes the Item Loc Inventory Detail service.

Business Overview
Item Loc Inventory Detail service allows user to retrieve Item Location and Item 
Location Stock on Hand information for a selected item and location. If location and 
location type are not specified, all locations for the item will be retrieved. If location 
type is specified but not the location, all locations for the item and location type will be 
retrieved.

Service Type
Get

ReST URL
ItemlocInvDtl/itemlocInvDetail?item={itemNumber}&location={locationNumber}&lo
cationType={locationType}

Input Parameters

Output
RestItemlocInvDtlRecRDO

VAT_ITEM Yes No No No

Parameter Name Required Description

Item Yes Item ID

Location No Location ID.

Location Type No Location Type.

Parameter Name Data Type

item String

itemParent String

loc BigDecimal

locType String

unitRetail BigDecimal

sellingUom String

clearInd String

taxableInd String

localItemDesc String

status String

primarySupp BigDecimal

primaryCntry String

TABLE SELECT INSERT UPDATE DELETE



Merchandising ReSTful Web Services

5-106 Operations Guide Volume 2 - Message Publication and Subscription Designs

 JSON Structure:
{
    "item": null,
    "itemParent": null,
    "loc": null,
    "locType": null,
    "unitRetail": null,
    "sellingUom": null,
    "clearInd": null,
    "taxableInd": null,
    "localItemDesc": null,
    "status": null,
    "primarySupp": null,
    "primaryCntry": null,
    "avCost": null,
    "unitCost": null,
    "stockOnHand": null,
    "sohUpdateDatetime": null,
    "inTransitQty": null,
    "packCompSoh": null,
    "packCompResv": null,
    "packCompExp": null,
    "rtvQty": null,

avCost BigDecimal

unitCost BigDecimal

stockOnHand BigDecimal

sohUpdateDatetime Timestamp

inTransitQty BigDecimal

packCompSoh BigDecimal

packCompResv BigDecimal

packCompExp BigDecimal

rtvQty BigDecimal

customerResv BigDecimal

sellingUnitRetail BigDecimal

localShortDesc String

packCompIntran BigDecimal

tsfReservedQty BigDecimal

tsfExpectedQty BigDecimal

nonSellableQty BigDecimal

customerBackorder BigDecimal

packCompCustResv BigDecimal

packCompCustBack BigDecimal

packCompNonSellable BigDecimal

firstReceived Timestamp

lastReceived Timestamp

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-107

    "customerResv": null,
    "sellingUnitRetail": null,
    "localShortDesc": null,
    "packCompIntran": null,
    "tsfReservedQty": null,
    "tsfExpectedQty": null,
    "nonSellableQty": null,
    "customerBackorder": null,
    "packCompCustResv": null,
    "packCompCustBack": null,
    "packCompNonSellable": null,
    "firstReceived": null,
    "lastReceived": null,
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact

MerchHierarchy Detail Service
This section describes the MerchHierarchy Detail service.

Business Overview
MerchHierarchyDetail service allows user to retrieve full merchandising hierarchy 
information.

Service Type
Get

ReST URL
/MerchHierarchy/merchHierarchy

Input Parameters
NA

Output
RestMerchHierarchyRecRDO

TABLE SELECT INSERT UPDATE DELETE

V_ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No No No

Parameter Name Data Type

profitCalcType BigDecimal

deptVatInclInd String

classAttribute BigDecimal

division BigDecimal



Merchandising ReSTful Web Services

5-108 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure
  {
        "profitCalcType": null,
        "deptVatInclInd": null,
        "classAttribute": null,
        "division": null,
        "classVatInd": null,
        "subclass": null,
        "buyer": null,
        "dept": null,
        "className": null,
        "subName": null,
        "groupNo": null,
        "otbCalcType": null,
        "groupName": null,
        "divName": null,
        "purchaseType": null,
        "merch": null,
        "deptName": null,
        "links": [],
        "hyperMediaContent": {
            "linkRDO": []
        }
    }

Table Impact

Purchase Order Detail Service
This section describes the Purchase Order Detail Service.

classVatInd String

subclass BigDecimal

buyer BigDecimal

dept BigDecimal

className String

subName String

groupNo BigDecimal

otbCalcType String

groupName String

divName String

purchaseType BigDecimal

merch BigDecimal

deptName String

TABLE SELECT INSERT UPDATE DELETE

V_MERCH_HIERARCHY Yes No No No

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-109

Business Overview
Purchase Order Detail service allows user to retrieve purchase order information for a 
selected order.

Service Type
Get

ReST URL
Po/poDetail?orderNumber={orderNumber}

Input Parameters

Output
RestPoRecRDO

Parameter Name Required Description

Order Number Yes Order Number

Parameter Name Data Type

orderNumber BigDecimal

orderType String

group BigDecimal

division BigDecimal

dept BigDecimal

buyer BigDecimal

supplier BigDecimal

supplierStatus String

locationType String

location BigDecimal

writtenDate Date

notBeforeDate Date

notAfterDate Date

otbEndofWeekDate Date

earliestShipDate Date

latestShipDate Date

closeDate Date

terms String

freightTerms String

originIndicator BigDecimal

shipmentMethod String

purchaseType String

status String



Merchandising ReSTful Web Services

5-110 Operations Guide Volume 2 - Message Publication and Subscription Designs

RestPoItemRecRDO

RestPoItemExpRecRDO

currencyCode String

masterPurchaseOrderNumber BigDecimal

poItemTbl List<RestPoItemRecRDO>

Parameter Name Data Type

item String

refernceItem String

packItem String

originCountryId String

earliestShipDate Date

latestShipDate Date

supplierPackSize BigDecimal

location BigDecimal

locationType String

physicalWarehouse BigDecimal

unitRetail BigDecimal

quantityOrdered BigDecimal

quantityPrescaled BigDecimal

quantityReceived BigDecimal

lastReceivedQuantity BigDecimal

lastRoundQuantity BigDecimal

lastGroupRoundedQunatity BigDecimal

quantityCancelled BigDecimal

cancelCode String

cancelDate Date

unitCost BigDecimal

costSource String

nonScaleIndicator String

estimatedStockDate Date

restPoItemExpTbl List<RestPoItemExpRecRDO>

Parameter Name Data Type

item String

packItem String

location BigDecimal

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-111

JSON Structure:
{
    "orderNumber": null,
    "orderType": null,
    "group": null,
    "division": null,
    "dept": null,
    "buyer": null,
    "supplier": null,
    "supplierStatus": null,
    "locationType": null,
    "location": null,
    "writtenDate": null,
    "notBeforeDate": null,
    "notAfterDate": null,
    "otbEndOfWeekDate": null,
    "earliestShipDate": null,
    "latestShipDate": null,
    "closeDate": null,
    "terms": null,
    "freightTerms": null,
    "originIndicator": null,
    "shipmentmethod": null,
    "purchaseType": null,
    "status": null,
    "currencyCode": null,
    "masterPurchaseOrderNumber": null,
    "poItemTbl": [
        {
            "item": null,
            "referenceItem": null,
            "originCountryId": null,
            "earliestShipDate": null,
            "latestShipDate": null,
            "supplierPackSize": null,
            "location": null,
            "locationType": null,
            "physicalWarehouse": null,
            "unitRetail": null,
            "quantityOrdered": null,
            "quantityPrescaled": null,
            "quantityReceived": null,
            "lastReceivedQuantity": null,
            "lastRoundQuantity": null,
            "lastGroupRoundedQuantity": null,

locationType String

componentId String

componentDecsiption String

alwaysDefaultIndicator String

componentRate BigDecimal

componentCurrency String

exchangeRate BigDecimal

estimatedExpenceValue BigDecimal

Parameter Name Data Type



Merchandising ReSTful Web Services

5-112 Operations Guide Volume 2 - Message Publication and Subscription Designs

            "quantityCancelled": null,
            "cancelCode": null,
            "unitCost": null,
            "costSource": null,
            "nonScaleIndicator": null,
            "estimatedStockDate": null,
            "poItemExpTbl": [
               {
                   "item": null,
                   "packItem": null,
                   "location": null,
                   "locationType": null,
                   "componentId": null,
                   "componentDescription": null,
                   "alwaysDefaultIndicator": null,
                   "componentRate": null,
                   "componentCurrency": null,
                   "exchangeRate": null,
                   "estimatedExpenceValue": null,
                   "links": [],
                   "hyperMediaContent": {
                   "linkRDO": []
                }
            }
        ],
        "links": [],
        "hyperMediaContent": {
           "linkRDO": []
        }
    }
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact

Reclass Detail Service
This section describes the Reclass Detail service.

Business Overview
This service is used to retrieve reclassification details for a given item.

TABLE SELECT INSERT UPDATE DELETE

ORDHEAD Yes No No No

ORDLOC Yes No No No

ORDSKU Yes No No No

ORDLOC_EXPENSES Yes No No No

V_DEPS Yes No No No

SUPS Yes No No No

WH Yes No No No

ELC_COMP Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-113

Service Type
Get

ReST URL
Reclass/reclass?item={itemNumber}

Input Parameters

Output
RestReclassRecRDO

JSON Structure:
[
    {
        "toClass": null,
        "reclassDate": null,
        "reclassDesc": null,
        "toSubclass": null,
        "reclassNo": null,
        "toDept": null,
        "links": [],
        "hyperMediaContent": {
            "linkRDO": []
        }
    }
]

Table Impact

Shipment Detail Service
This section describes the Shipment Detail Service.

Parameter Name Required Description

Item Yes Item number

Parameter Name Data Type

toClass BigDecimal

reclassDate Timestamp

reclassDesc String

toSubclass BigDecimal

reclassNo BigDecimal

toDept toDept

TABLE SELECT INSERT UPDATE DELETE

RECLASS_HEAD Yes No No No

RECLASS_ITEM Yes No No No



Merchandising ReSTful Web Services

5-114 Operations Guide Volume 2 - Message Publication and Subscription Designs

Business Overview
Shipment Detail service allows user to retrieve shipment and shipment item details for 
a given distro (transfer or allocation) or purchase order (PO). 

Service Type
Get

ReST URL
Shipment/shipmentDetail?orderNumber={orderNumber}&distroNumber={distroNu
mber}&distroType={distroType}

Input Parameters

Output
RestShipmentRecRDO

Parameter Name Required Description

orderNumber No Order Number. If none is specified, then Distro 
Number and Distro Type are required.

distroNumber No Distro Number. If none is specified, then Order 
Number is required.

distroType No Distro Type. If none is specified, then Order 
Number is required.

Parameter Name Data Type

shipment BigDecimal

bolNo String

asn String

shipDate Timestamp

receiveDate Timestamp

estArrDate Timestamp

shipOrigin String

statusCode String

toLoc BigDecimal

toLocType String

fromLoc BigDecimal

fromLocType String

parentShipment BigDecimal

seqNo BigDecimal

item String

refItem String

carton String

invStatus BigDecimal



Merchandising ReSTful Web Services

ReSTful Web Services 5-115

JSON Structure:
{
   "shipment":null,
   "bolNo":null,
   "asn":null,
   "shipDate":null,
   "receiveDate":null,
   "estArrDate":null,
   "shipOrigin":null,
   "statusCode":null,
   "toLoc":null,
   "toLocType":null,
   "fromLoc":null,
   "fromLocType":null,
   "parentShipment":null,
   "seqNo":null,
   "item":null,
   "refItem":null,
   "carton":null,
   "invStatus":null,
   "shipskuStatusCode":null,
   "qtyReceived":null,
   "unitCost":null,
   "unitRetail":null,
   "qtyExpected":null,
   "adjustType":null,
   "actualReceivingStore":null,
   "reconcileUserId":null,
   "reconcileDate":null,
   "tamperedInd":null,
   "dispositionedInd":null,
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

shipskuStatusCode String

qtyReceived BigDecimal

unitCost BigDecimal

unitRetail BigDecimal

qtyExpected BigDecimal

adjustType String

actualReceivingStore BigDecimal

reconcileUserId String

reconcileDate Timestamp

tamperedInd String

dispositionedInd String

Parameter Name Data Type



Merchandising ReSTful Web Services

5-116 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Stock Count Detail Service
This section describes the Stock Count Detail service.

Business Overview
Stock Count Detail service allows user to retrieve open stock count details for a given 
item and/or store. 

Service Type
Get

ReST URL
StockCount/stockCountDetail?cycleCount={cycleCount}&locationType={locationType
}&location={location}&item={item}&stocktakeDate={stocktakeDate}&pageSize={pageS
ize}&pageNumber={pageNumber}

Input Parameters

Output
RestStockCountRecRDO

RestStakeSkuLocRecRDO

TABLE SELECT INSERT UPDATE DELETE

V_SHIPMENT Yes No No No

V_SHIPSKU Yes No No No

Parameter Name Required Description

Item No Item 

Location No Location

Location Type No Location Type

Cycle Count No Cycle Count

Stocktake Date No Stocktake Date (always 
optional)

Parameter Name Data Type

cycleCount BigDecimal

cycleCountDesc String

stocktakeDate Timestamp

stocktakeType String

stakeSkuLoc List<RestStakeSkuLocRecRDO>



Merchandising ReSTful Web Services

ReSTful Web Services 5-117

JSON Structure:
{
    "cycleCount":null,
    "cycleCountDesc":null,
    "stocktakeDate":null,
    "stocktakeType":null,
    "stakeSkuLoc": [
        {
            "item":null,
            "location":null,
            "locType":null,
            "snapshotOnHandQty":null,
            "snapshotInTransitQty":null,
            "snapshotUnitCost":null,
            "snapshotUnitRetail":null,
            "processed":null,
            "physicalCountQty":null,
            "packCompQty":null,
            "inTransitAmt":null,
            "depositItemType":null,
            "xformItemType":null,
            "distributeQty":null,
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Parameter Name Data Type

item String

location BigDecimal

locType String

snapshotOnHandQty BigDecimal

snapshotInTransitQty BigDecimal

snapshotUnitCost BigDecimal

snapshotUnitRetail BigDecimal

processed String

physicalCountQty BigDecimal

packCompQty BigDecimal

inTransitAmt BigDecimal

depositItemType String

xformItemType String

distributeQty BigDecimal



Merchandising ReSTful Web Services

5-118 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Store Day User Service
This section describes the Store Day User service.

Functional Area
Financials

Business Overview
The primary role of this service is to create or delete store day user and send them to 
Merchandising.

Create Store Day User

Business Overview  This service creates store day user by calling the SVCPROV_
STOREDAYUSER package to load input data to the staging tables and then calling the 
core store day user package to validate and insert data to the Merchandising tables.

Service Type  Post

ReSTURL  financials/StoreDayUserREST/create StoreDayUser

Input Parameters  SvcprovSdudescRecRDO

JSON Structure

[{"store": null,
  " businessDate": null,
  " userId": null}]

BusinessDate will take input in string with the format as 'DD-MON-YYYY' and later 
converted to Timestamp format and insert in table.

Output  SvcprovSduStatusRecRDO

TABLE SELECT INSERT UPDATE DELETE

STAKE_HEAD Yes No No No

STAKE_SKU_LOC Yes No No No

Parameter Name Data Type

store BigDecimal

businessDate String

userId String

Parameter Name Data Type

statusMsg String

sduErrTbl List< SvcprovFailSduRecRDO >



Merchandising ReSTful Web Services

ReSTful Web Services 5-119

SvcprovFailSduRecRDO

The output will contain the status of the request including validation errors, if any.

JSON Structure:

{
  "statusMsg": null,
  " sduErrTbl ": [
    {
      " store": null,
      " businessDate": null,
      " userId": null,
      "errorMsg": null,
      "links": [],
      "hyperMediaContent": {
        "linkRDO": []
      }
    }
  ],
  "links": [],
  "hyperMediaContent": {
    "linkRDO": []
  }
}

Table Impact  

Delete Store Day User

Business Overview  This service deletes store day user by calling the SVCPROV_SDU 
package to load input data to the staging tables and then calling the core store day 
user package to validate and delete data to the Merchandising tables.

Service Type  Post

ReSTURL  financials/StoreDayUserREST/delete StoreDayUser

Input Parameters  SvcprovSdudescRecRDO

Parameter Name Data Type

store BigDecimal

businessDate String

userId String

errorMsg String

TABLE SELECT INSERT UPDATE DELETE

STORE_DAY_USER Yes Yes No No

SVC_STORE_DAY_USER Yes Yes Yes Yes



Merchandising ReSTful Web Services

5-120 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure

[{"store": null,
  " businessDate": null,
  " userId": null}]

BusinessDate will take input in string with the format as 'DD-MON-YYYY' and later 
converted to Timestamp format and delete from table.

Output  SvcprovSduStatusRecRDO

SvcprovFailSduRecRDO

The output will contain the status of the request including validation errors, if any.

JSON Structure

{
  "statusMsg": null,
  " sduErrTbl ": [
    {
      " store": null,
      " businessDate": null,
      " userId": null,
      "errorMsg": null,
      "links": [],
      "hyperMediaContent": {
        "linkRDO": []
      }
    }
  ],
  "links": [],
  "hyperMediaContent": {
    "linkRDO": []
  }
}

Parameter Name Data Type

store BigDecimal

businessDate String

userId String

Parameter Name Data Type

statusMsg String

sduErrTbl List< SvcprovFailSduRecRDO >

Parameter Name Data Type

store BigDecimal

businessDate String

userId String

errorMsg String



Merchandising ReSTful Web Services

ReSTful Web Services 5-121

Table Impact  

Store Detail Service
This section describes the Store Detail service.

Business Overview
Store Detail service allows user to retrieve Store information for a selected store or for 
all stores.

Service Type
Get

ReST URL
Store/storeDetail?store={storeNumber}

Input Parameters

Output
RestStoreRecRDO

TABLE SELECT INSERT UPDATE DELETE

STORE_DAY_USER Yes No No Yes

SVC_STORE_DAY_USER Yes Yes Yes Yes

Parameter Name Required Description

Store No Store ID. If none is specified, 
all stores will be retrieved.

Parameter Name Data Type

store BigDecimal

storeName String

storeName10 String

storeName3 String

storeNameSecondary String

storeClass String

storeOpenDate Timestamp

storeCloseDate Timestamp

acquiredDate Timestamp

remodelDate Timestamp

vatRegion BigDecimal

vatIncludeInd String

stockholdingInd String

channelId BigDecimal



Merchandising ReSTful Web Services

5-122 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
{
    "store": null,
    "storeName": null,
    "storeName10": null,
    "storeName3": null,
    "storeNameSecondary": null,
    "storeClass": null,
    "storeOpenDate": null,
    "storeCloseDate": null,
    "acquiredDate": null,

transferZone BigDecimal

defaultWh BigDecimal

stopOrderDays BigDecimal

startOrderDays BigDecimal

currencyCode String

lang BigDecimal

dunsNumber String

dunsLoc String

sisterStore BigDecimal

tsfEntityId BigDecimal

orgUnitId BigDecimal

storeType String

wfCustomerId BigDecimal

timezoneName String

customerOrderLocInd String

company BigDecimal

chain BigDecimal

area BigDecimal

region BigDecimal

district BigDecimal

add1 String

add2 String

add3 String

city String

state String

countryId String

post String

contactName String

contactPhone String

contactEmail String

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-123

    "remodelDate": null,
    "vatRegion": null,
    "vatIncludeInd": null,
    "stockholdingInd": null,
    "channelId": null,
    "transferZone": null,
    "defaultWh": null,
    "stopOrderDays": null,
    "startOrderDays": null,
    "currencyCode": null,
    "lang": null,
    "dunsNumber": null,
    "dunsLoc": null,
    "sisterStore": null,
    "tsfEntityId": null,
    "orgUnitId": null,
    "storeType": null,
    "wfCustomerId": null,
    "timezoneName": null,
    "customerOrderLocInd": null,
    "company": null,
    "chain": null,
    "area": null,
    "region": null,
    "district": null,
    "add1": null,
    "add2": null,
    "add3": null,
    "city": null,
    "state": null,
    "countryId": null,
    "post": null,
    "contactName": null,
    "contactPhone": null,
    "contactEmail": null,
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []
    }
}

Table Impact

Supplier Detail Service
This section describes the Supplier Detail service.

Business Overview
Supplier Detail service allows user to retrieve Supplier information for a selected 
supplier.

TABLE SELECT INSERT UPDATE DELETE

V_STORE Yes No No No

STORE_
HIERARCHY

Yes No No No

ADDR Yes No No No



Merchandising ReSTful Web Services

5-124 Operations Guide Volume 2 - Message Publication and Subscription Designs

Service Type
Get

ReST URL
Supplier/supplierDetail?supplierNumber={suppliernumber}

Input Parameters

Output
RestSupplierRecRDO

RestSupplierAddressRecRDO

JSON Structure:

Parameter Name Required Description

Supplier Yes Supplier number

Parameter Name Data Type

supplier BigDecimal

sup_name String

sup_name_secondary String

supplier_parent BigDecimal

sup_status String

currency_code String

terms String

freight_terms String

vat_region BigDecimal

external_ref_id String

Supplier_address List<RestSupplierAddressRecRDO>

Parameter Name Data Type

add_1 String

add_2 String

add_3 String

city String

state String

country_id String

post String

contact_name String

contact_phone String

contact_email String



Merchandising ReSTful Web Services

ReSTful Web Services 5-125

[
    {
        "supplierAddress": [
            {
                "countryId": null,
                "add2": null,
                "add3": null,
                "city": null,
                "add1": null,
                "state": null,
                "contactEmail": null,
                "contactName": null,
                "contactPhone": null,
                "post": null,
                "links": [],
                "hyperMediaContent": {
                    "linkRDO": []
                }
            },
            {
                "countryId": null,
                "add2": null,
                "add3": null,
                "city": null,
                "add1": null,
                "state": null,
                "contactEmail": null,
                "contactName": null,
                "contactPhone": null,
                "post": null,
                "links": [],
                "hyperMediaContent": {
                    "linkRDO": []
                }
            },
            {
                "countryId": null,
                "add2": null,
                "add3": null,
                "city": null,
                "add1": null,
                "state": null,
                "contactEmail": null,
                "contactName": null,
                "contactPhone": null,
                "post": null,
                "links": [],
                "hyperMediaContent": {
                    "linkRDO": []
                }
            },
            {
                "countryId": null,
                "add2": null,
                "add3": null,
                "city": null,
                "add1": null,
                "state": null,
                "contactEmail": null,
                "contactName": null,



Merchandising ReSTful Web Services

5-126 Operations Guide Volume 2 - Message Publication and Subscription Designs

                "contactPhone": null,
                "post": null,
                "links": [],
                "hyperMediaContent": {
                    "linkRDO": []
                }
            },
            {
                "countryId": null,
                "add2": null,
                "add3": null,
                "city": null,
                "add1": null,
                "state": null,
                "contactEmail": null,
                "contactName": null,
                "contactPhone": null,
                "post": null,
                "links": [],
                "hyperMediaContent": {
                    "linkRDO": []
                }
            }
        ],
        "supNameSecondary": null,
        "supplierParent":null,
        "terms": null,
        "supStatus": null,
        "currencyCode": null,
        "supplier": null,
        "supName": null,
        "freightTerms": null,
        "vatRegion": null,
        "externalRefId": null,
        "links": [],
        "hyperMediaContent": {
            "linkRDO": []
        }
    }
]

Table Impact

Transfer Detail Service
This section describes the Transfer Detail service.

Business Overview
Transfer Detail service allows user to retrieve details for a given transfer.

Service Type
Get

TABLE SELECT INSERT UPDATE DELETE

SUPS Yes No No No

ADDR Yes No No No



Merchandising ReSTful Web Services

ReSTful Web Services 5-127

ReST URL
Transfer/transferDetail?transferNumber={transferNumber}

Input Parameters

Output
RestTsfheadRecRDO

RestTsfdetailRecRDO

Parameter Name Required Description

Transfer Number Yes Transfer number

Parameter Name Data Type

tsfNo BigDecimal

tsfParentNo BigDecimal

fromLocType String

fromLoc BigDecimal

toLocType String

toLoc BigDecimal

expDcDate Timestamp

dept BigDecimal

inventoryType String

tsfType String

status String

deliveryDate Timestamp

closeDate Timestamp

notAfterDate Timestamp

contextType String

contextValue String

wfOrderNo BigDecimal

tsfdetail List<RestTsfdetailRecRDO>

Parameter Name Data Type

tsfSeqNo BigDecimal

item String

invStatus BigDecimal

tsfPrice BigDecimal

tsfQty BigDecimal

fillQty BigDecimal

shipQty BigDecimal



Merchandising ReSTful Web Services

5-128 Operations Guide Volume 2 - Message Publication and Subscription Designs

JSON Structure:
{
    "tsfNo": null,
    "tsfParentNo": null,
    "fromLocType": null,
    "fromLoc": null,
    "toLocType": null,
    "toLoc": null,
    "expDcDate": null,
    "dept": null,
    "inventoryType": null,
    "tsfType": null,
    "status": null,
    "deliveryDate": null,
    "closeDate": null,
    "notAfterDate": null,
    "contextType": null,
    "contextValue": null,
    "wfOrderNo": null,
    "tsfdetail": [
        {
            "tsfSeqNo": null,
            "item": null,
            "invStatus": null,
            "tsfPrice": null,
            "tsfQty": null,
            "fillQty": null,
            "shipQty": null,
            "receivedQty": null,
            "reconciledQty": null,
            "distroQty": null,
            "selectedQty": null,
            "cancelledQty": null,
            "suppPackSize": null,
            "tsfCost": null,
            "publishInd": null,
            "links": [],
            "hyperMediaContent": {
                "linkRDO": []
            }
        }
    ],
    "links": [],
    "hyperMediaContent": {
        "linkRDO": []

receivedQty BigDecimal

reconciledQty BigDecimal

distroQty BigDecimal

selectedQty BigDecimal

cancelledQty BigDecimal

suppPackSize BigDecimal

tsfCost BigDecimal

publishInd String

Parameter Name Data Type



Merchandising ReSTful Web Services

ReSTful Web Services 5-129

    }
}

Table Impact

VAT Detail Service
This section describes the VAT Detail service.

Business Overview
VAT Detail service allows user to retrieve VAT information for a selected department.

Service Type
Get

ReST URL
Vat/vatDetail?department={departmentNumber}

Input Parameters

Output
RestVatRecRDO

JSON Structure:
{
     "vatRegion": null,
     "vatRegionName": null,
     "vatRegionType": null,
     "vatType": null,
     "vatCode": null,
     "vatCodeDesc": null,

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes No No No

TSFDETAIL Yes No No No

Parameter Name Required Description

Department Yes Department ID

Parameter Name Data Type

vatRegion BigDecimal

vatRegionName String

vatRegionType String

vatType String

vatCode String

vatCodeDesc String

vatRate BigDecimal



Merchandising ReSTful Web Services

5-130 Operations Guide Volume 2 - Message Publication and Subscription Designs

     "vatRate": null,
     "links": [],
     "hyperMediaContent": {
         "linkRDO": []
     }
 }

Table Impact

Warehouse Detail Service
This section describes the Warehouse Detail service.

Business Overview
Warehouse Detail service allows user to retrieve Warehouse information for a selected 
warehouse or for all warehouses.

Service Type
Get

ReST URL
Wh/whDetail?warehouse={whNumber}

Input Parameters

Output
RestWhRecRDO

TABLE SELECT INSERT UPDATE DELETE

V_DEPS Yes No No No

VAT_DEPS Yes No No No

VAT_REGION Yes No No No

V_VAT_REGION_TL Yes No No No

V_VAT_CODES_TL Yes No No No

VAT_CODE_RATES Yes No No No

Parameter Name Required Description

Warehouse No Warehouse Number. If none 
is specified, all warehouses 
will be retrieved. 

Parameter Name Data Type

warehouse BigDecimal

warehouseName String

warehouseSecondaryName String

vatRegion BigDecimal

organizationHierarchyType BigDecimal



Merchandising ReSTful Web Services

ReSTful Web Services 5-131

JSON Structure:
    { 
       "warehouse": null,
       "warehouseName": null,
       "warehouseSecondaryName": null,
       "vatRegion": "null,
       "organizationHierarchyType": null,
       "organizationHierarchyValue": null,
       "currencyCode": null,
       "physicalWarehouse": null,
       "primaryVirtualWarehouse": null,
       "channelId": null,
       "stockholdingIndicator": null,
       "breakPackIndicator": null,
       "redistributeWarehouseIndicator": null,

organizationHierarchyValue BigDecimal

currencyCode String

physicalWarehouse BigDecimal

primaryVirtualWarehouse BigDecimal

channelId BigDecimal

stockholdingIndicator String

breakPackIndicator String

redistributeWarehouseIndicato
r

String

restrictedIndicator String

protectedIndicator String

transferEntityId BigDecimal

finisherInd String

inboundHandlingDays BigDecimal

organizationalUnitId BigDecimal

virtualWarehouseType String

customerOrderLocationIndicat
or

String

address1 String

address2 String

address3 String

city String

state String

countryId String

post String

contactName String

contactPhone String

contactEmail String

Parameter Name Data Type



Sales Audit ReSTful Web Services

5-132 Operations Guide Volume 2 - Message Publication and Subscription Designs

       "restrictedIndicator": null,
       "protectedIndicator": null,
       "transferEntityId": null,
       "finisherIndicator": null,
       "inboundHandlingDays": null,
       "organizationalUnitId" :null,
       "virtualWarehouseType" :null,
       "customerOrderLocationIdicator" :null,
       "address1": null,
       "address2": null,
       "address3": null,
       "city": null,
       "state": null,
       "countryId": null,
       "post": null,
       "contactName": null,
       "contactPhone": null,
       "contactEmail": null,
       "links": [],
       "hyperMediaContent": {
            "linkRDO": []
       }
  }

Table Impact

Sales Audit ReSTful Web Services

Summary of Open Store Days

Business Overview
This service provides, at a glance, the number of open stores for which the sales audit 
manager is responsible. The stores for which the user is responsible are those 
associated with the user in Sales Audit's employee maintenance via location traits.

Service Type
Get

ReSTURL
/summaryOpenStoreDay

Input Parameters
No input.

TABLE SELECT INSERT UPDATE DELETE

V_WH Yes No No No

ADDR Yes No No No



Sales Audit ReSTful Web Services

ReSTful Web Services 5-133

Output
Record Type      --DATE, OLDER, ALL

■ For record type DATE: five records of type date are displayed for today minus 1 
through today minus 5

■ One record type OLDER: is for store days older than today minus 5

■ One record type ALL: for all store days

Record Date      --Date of date type rows

Open Store Count

Table Impact

Summary of Errors

Business Overview
This service provides, at a glance, the number outstanding errors on the specified days 
for stores for which the sales audit manager is responsible. An outstanding error is 
defined as an error that exists against a store day that has not been overridden.

Service Type
Get

ReST URL
/summaryError

Input Parameters
No input.

Output
Record Type      --DATE, OLDER, ALL 

■ For record type DATE: five records of type date are displayed for today minus 1 
through today minus 5

■ One record type OLDER: is for store days older than today minus 5

■ One record type ALL: for all store days

Record Date      --Date of date type rows

Error Count

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS_MATRIX Yes No No No

SA_STORE_DAY Yes No No No

SA_USER_LOC_TRAITS Yes No No No



Sales Audit ReSTful Web Services

5-134 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Summary of Over/Short Amount

Business Overview
This service provides at a glance the sums of all overages and all shortages for all open 
stores on a given day for which the sales audit manager is responsible.  If all locations 
to which the user is responsible have the same local currency, all monetary values will 
be displayed in the local currency.  Otherwise, all monetary values will be displayed in 
the retailer's primary currency.  If the Over/Short value for the store day is a positive 
value it is considered an overage, if the Over/Short value for the store day is a 
negative value it is a shortage.

Service Type
Get

ReST URL
/summaryOverShortAmount

Input Parameters
No input.

Output
Record Type      --DATE, OLDER, ALL 

■ For record type DATE: Five records of type date are displayed for today minus 1 
through today minus 5

■ One record type OLDER: is for store days older than today minus 5

■ One record type ALL: for all store days

Record Date      --Date of date type rows

Over Amount

Short Amount

Currency Code

Table Impact

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS_MATRIX Yes No No No

SA_ERROR Yes No No No

SA_STORE_DAY Yes No No No

SA_USER_LOC_TRAITS Yes No No No

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS_MATRIX Yes No No No



Sales Audit ReSTful Web Services

ReSTful Web Services 5-135

Summary of Over/Short Count

Business Overview
This service provides, at a glance, the count of overages and the count of shortages for 
all open stores on a given day for which the sales audit manager is responsible. If the 
Over/Short value for the store day is a positive value it is considered an overage, if the 
Over/Short value for the store day is a negative value it is a shortage.

Service Type
Get

ReST URL
/summaryOverShortCount

Input Parameters
No input.

Output
Record Type      --DATE, OLDER, ALL 

■ For record type DATE: five records of type date are displayed for today minus 1 
through today minus 5

■ One record type OLDER: is for store days older than today minus 5

■ One record type ALL: for all store days

Record Date      --Date of date type rows

Over Count

Short Count

Table Impact

MV_CURRENCY_CONVERSION_RATES Yes No No No

SA_HQ_VALUE Yes No No No

SA_POS_VALUE Yes No No No

SA_STORE_DAY Yes No No No

SA_SYS_VALUE Yes No No No

SA_TOTAL Yes No No No

SA_USER_LOC_TRAITS Yes No No No

STORE Yes No No No

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS_MATRIX Yes No No No

SA_HQ_VALUE Yes No No No

TABLE SELECT INSERT UPDATE DELETE



Sales Audit ReSTful Web Services

5-136 Operations Guide Volume 2 - Message Publication and Subscription Designs

Get Store Days

Business Overview
The service displays a list of open stores to which the user is assigned, for a single day, 
for 'OLDER' days, or for ’ALL’ days.

Service Type
Get

ReST URL
/getStoreDays?store={store}&recordType={recordType}&recordDate={recordDate}&so
rtAttrib={sortAttrib}&sortDirection={sortDirection}&pageSize={pageSize}&pageNumb
er={pageNumber}

Input Parameters

Output
Store

Store Day Seq No

Auditors

Business Date

SA_POS_VALUE Yes No No No

SA_STORE_DAY Yes No No No

SA_SYS_VALUE Yes No No No

SA_TOTAL Yes No No No

SA_USER_LOC_TRAITS Yes No No No

STORE Yes No No No

Parameter Name Required Description Valid values

RecordType Yes Record Type ALL, OLDER, DATE

RecordDate No Record Date, required when 
recordType is DATE

NA

Store No Store ID NA

SortAttrib No Sort Attribute STORENAME, AUDITOR, 
OSVALUE, ERRORCNT, 
DATASTATUS, OPENDAYS, 
OSDAYS and OSSUMS

SortDirection No Sort Direction ASC, DESC

PageSize No Maximum number of 
locations to retrieve per 
page

NA

PageNumber No Result page to retrieve NA

TABLE SELECT INSERT UPDATE DELETE



Sales Audit ReSTful Web Services

ReSTful Web Services 5-137

Store Name

Chain

Chain Name

Data Status

Data Status Description

Audit Status

Audit Status Description

Audit Changed Datetime

Fuel Status

Fuel Status Description

Over Short Amount

Currency Code

Error Count

Transaction Count

Loaded File Count

Expected File Count

Table Impact

Get Store Errors

Business Overview
Retrieves summary of store day errors. 

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS_MATRIX Yes No No No

SA_ERROR Yes No No No

SA_HQ_VALUE Yes No No No

SA_POS_VALUE Yes No No No

SA_STORE_DATA Yes No No No

SA_STORE_DAY Yes No No No

SA_SYS_VALUE Yes No No No

SA_SYSTEM_OPTIONS Yes No No No

SA_TOTAL Yes No No No

SA_TRAN_HEAD Yes No No No

SA_USER_LOC_TRAITS Yes No No No

V_CHAIN Yes No No No

V_CODE_DETAIL Yes No No No

V_STORE Yes No No No



Sales Audit ReSTful Web Services

5-138 Operations Guide Volume 2 - Message Publication and Subscription Designs

Service Type
Get

ReST URL
/getStoreErrors?store={store}&recordType={recordType}&recordDate={recordDate}

Input Parameters

Output
Store

Error Code

Error Description

Error Percentage 

Table Impact

Get Store Aggregations

Business Overview
Retrieves aggregated store day information for all dates or store days older than 
vdate -5.

Service Type
Get

ReST URL
/getStoreAggregations?allOlderInd={allOlderInd}&stores={stores}&sortAttrib={sortAt
trib}&sortDirection={sortDirection}&pageSize={pageSize}&pageNumber={pageNumb
er}

Parameter Name Required Description Valid values

RecordType Yes Record Type ALL, OLDER, DATE

RecordDate No Record Date, required when 
recordType is DATE

NA

Store No Store ID NA

TABLE SELECT INSERT UPDATE DELETE

SA_ERROR Yes No No No

SA_STORE_DAY Yes No No No

V_SA_ERROR Yes No No No

V_STORE Yes No No No



Sales Audit ReSTful Web Services

ReSTful Web Services 5-139

Input Parameters

Output
Store

Store Name

Chain

Chain Name

Auditors

Open Days

Over Days

Short Days

Over Amount

Short Amount

Currency Code

Error Count

Table Impact

Parameter Name Required Description Valid values

AllOlderInd Yes Search string for locations 
ID or Name

ALL, OLDER

Stores No Comma-separated values 
for stores

NA

SortAttrib No Sort Attribute STORENAME, AUDITOR, 
OSVALUE, ERRORCNT, 
DATASTATUS, OPENDAYS, 
OSDAYS and OSSUMS

SortDirection No Sort Direction ASC, DESC

PageSize No Maximum number of 
locations to retrieve per 
page

NA

PageNumber No Result page to retrieve NA

TABLE SELECT INSERT UPDATE DELETE

SA_ERROR Yes No No No

SA_HQ_VALUE Yes No No No

SA_POS_VALUE Yes No No No

SA_STORE_DATA Yes No No No

SA_STORE_DAY Yes No No No

SA_SYS_VALUE Yes No No No

V_CHAIN Yes No No No

V_STORE Yes No No No



Sales Audit ReSTful Web Services

5-140 Operations Guide Volume 2 - Message Publication and Subscription Designs

Store Search

Business Overview
This web service enables store search and returns aggregated store information.

Service Type
Get

ReST URL
/storeSearch?searchString={searchString}&searchFilter={searchFilter}&sortAttrib={sor
tAttrib}&sortDirection={sortDirection}&pageSize={pageSize}&pageNumber={pageNu
mber}

Input Parameters

Output
Store

Store Name

Chain

Chain Name

Auditors

Open Days

Over Days

Short Days

Over Amount

Short Amount

Currency Code

Error Count

Parameter Name Required Description Valid values

SearchString Yes Search string for locations 
ID or Name

NA

SearchFilter Yes Search all stores or assigned 
stores

ALL, ASSIGN

SortAttrib No Sort Attribute STORENAME, AUDITOR, 
OSVALUE, ERRORCNT, 
DATASTATUS, OPENDAYS, 
OSDAYS and OSSUMS

SortDirection No Sort Direction ASC, DESC

PageSize No Maximum number of 
locations to retrieve per 
page

NA

PageNumber No Result page to retrieve NA



Sales Audit ReSTful Web Services

ReSTful Web Services 5-141

Table Impact

Get Store Day Date Indicator

Business Overview
This web service allows the user to find which store days have records that needs 
attention.

Service Type
Get

ReST URL
/getStoreDateInd?store={store}

Input Parameters

Output
Record Type      --DATE, OLDER, ALL 

■ For record type DATE: five records of type date are displayed for today minus 1 
through today minus 5

■ One record type OLDER: is for store days older than today minus 5

■ One record type ALL: for all store days

Record Date      --Date of date type rows

Store Has Value indicator

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS_MATRIX Yes No No No

SA_ERROR Yes No No No

SA_HQ_VALUE Yes No No No

SA_POS_VALUE Yes No No No

SA_STORE_DATA Yes No No No

SA_STORE_DAY Yes No No No

SA_SYS_VALUE Yes No No No

SA_TOTAL Yes No No No

SA_TRAN_HEAD Yes No No No

SA_USER_LOC_TRAITS Yes No No No

V_CHAIN Yes No No No

V_STORE Yes No No No

Parameter Name Required Description Valid values

store Yes Store ID NA



Sales Audit ReSTful Web Services

5-142 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Data Privacy Access Service
This section describes the Data Privacy Access service for Sales Audit.

Business Overview
This query service provides access to data stored in Sales Audit that contain personally 
identifiable information.

Service Type
GET

ReSTURL
https://<host:port>/RetailAppsDataPrivServicesRESTApp/rest/privatedata/getPers
onalInfo?customer_id={entityName}::{entityType}::{entityId}::{fullName}::
{phone}::{email}

Accept
■ application/json

■ application/xml

Query Parameters
■ customer_id (required): The customer ID string containing the parameters to be 

used in looking up data.  The format of this string is as follows:

– {entity name}::{entity type}::{entity id}::{full name}::{phone}::{email}

Path Parameters

TABLE SELECT INSERT UPDATE DELETE

SA_STORE_DAY Yes No No No

V_STORE Yes No No No

Parameter Description

Entity Name The query group type for which data is to be retrieved. The available 
group types for Sales Audit are:

■ EMPLOYEE

■ CUSTOMER

Entity Type Used if the entity name is CUSTOMER. The value here should indicate 
the type of customer being queried. Valid values for this input can be 
found on the Codes table where code type is 'CIDT'.

Entity ID The ID of the entity being queried. For example, the employee ID.

Full Name The full name to be searched for the selected entity.

Phone The phone number to be searched for the selected entity.

Email The email to be searched for the selected entity.



Sales Audit ReSTful Web Services

ReSTful Web Services 5-143

Default Response
The response will return all instances of the data being searched that occur in the 
requested entity. For example, if the entity requested was EMPLOYEE, all instances 
where the employee, name, phone, and email match the data sent will be returned. If 
any of these parameters are not sent (e.g. employee), then it will not be used as part of 
the search. The following data is included in the response:

Sample Response
{
    "Personal Information": {
        "list": [],
            "Get Personal Information": {
                "list": [            
                   [
                        {
                            "ENTITY_NAME": "EMPLOYEE",
                            "ENTITY_TYPE": "null",
                            "ENTITY_ID": "1414",
                            "FULL_NAME": "Harry Adams",
                            "PHONE": "2349989",
                            "FAX": "null",
                            "TELEX": "null",
                            "PAGER": "null",
                            "EMAIL": "hadams@email.com"
                        }
                    ]
                ]
            }
        }
    }
}

Response Codes and Error Messages
■ 200 - Success

■ 400 - Bad Request - for the following situations:

Parameter Description

Entity Name Valid values are

■ EMPLOYEE

■ CUSTOMER

Entity Type If the entity name is CUSTOMER, the value here indicates the type of 
customer being queried. Valid values for this input can be found on 
the Codes table where code type is 'CIDT'. For other entity types, this 
will be null.

Entity ID The ID of the entity where the data was found.

Full Name The name associated with the entity. 

Phone The phone number associated with the entity.

Fax The fax number associated with the entity.

Telex The telex number associated with the entity.

Pager The pager number associated with the entity.

Email The email address associated with the entity.



Sales Audit ReSTful Web Services

5-144 Operations Guide Volume 2 - Message Publication and Subscription Designs

– Customer ID does not match the required format

– Invalid input type

– Missing customer ID

– Invalid jsonFormat

■ 500 - Internal Server Errors - for all other types of errors (for example, 
configuration errors, SQL errors, and so on)

Success Payloads
■ When Accept=application/json, this API will return data in JSON format

■ When Accept=application/xml,  this API will return data formatted as an HTML 
page

Data Privacy Forget Service
This section describes the Data Privacy Forget service for Sales Audit.

Business Overview
This service supports updating personal information stored in Sales Audit. When the 
service is invoked with mask strings as inputs, it overwrites the fields with mask 
strings, which effectively removes the personal information from the system.

Service Type
DELETE

ReSTURL
https://<host:port>/RetailAppsDataPrivServicesRESTApp/rest/privatedata/update
PersonalInfo?customer_id={entityName}::{entityType}::{entityId}::{fullName}::
{phone}::{fax}::{telex}::{pager}::{email}::{addr1}::{addr2}::{addr3}::{county}::{city}::{state}:
:{countryId}::{postalCode}

Accept
■ application/json

■ application/xml

Query Parameters
■ customer_id (required): The customer ID string containing the parameters to be 

used in updating data.  The format of this string is as follows:

– {entityName}::{entityType}::{entityId}::{fullName}::{phone}::{fax}::{telex}::{pager}::{
email}::{addr1}::{addr2}::{addr3}::{county}::{city}::{state}::{countryId}::{postalCo
de}

Path Parameters



Sales Audit ReSTful Web Services

ReSTful Web Services 5-145

Default Response
This service only returns a response code to signify if the request is successful or not. If 
no record is updated, the service returns an error.

Response Codes and Error Messages
■ 200 - Success

■ 400 - Bad Request - for the following situations:

– Customer ID does not match the required format

– Invalid input type

– Missing customer ID

– Invalid jsonFormat

■ 500 - Internal Server Errors - for all other types of errors (for example, 
configuration errors, SQL errors, and so on).

Parameter Description

Entity Name

(required)

The group type for which data is to be updated. The available group 
types for Sales Audit are: 

■ EMPLOYEE

■ CUSTOMER

Entity Type Required if the entity name is CUSTOMER. The value here should 
indicate the type of customer. Valid values for this input can be found 
on the Codes table where code type is 'CIDT'.

Entity ID

(required)

The ID of the entity to be updated. For example, the employee ID.

Full Name The value to update the full name with. If a null value is passed to this 
parameter that is a required field in the table, the field will be updated 
to 'XXXXX'.

Phone The value to update the phone number with. If a null value is passed 
to this parameter that is a required field in the table, the field will be 
updated to 'XXXXX'.

Fax The value to update the fax number with.

Telex The value to update the telex number with.

Pager The value to update the pager number with.

Email The value to update the email address with.

Addr1 The value to update the address 1 with.

Addr2 The value to update the address 2 with.

Addr3 The value to update the address 3 with.

County The value to update the county with.

City The value to update the city with.

State The value to update the state with.

Country The value to update the country with.

Postal Code The value to update the postal code with.



Sales Audit ReSTful Web Services

5-146 Operations Guide Volume 2 - Message Publication and Subscription Designs

Success Payloads
N/A



6

Bulk Data Integration 6-1

6Bulk Data Integration

Oracle Bulk Data Integration (BDI) is a product that defines the architecture and 
infrastructure used to move bulk data among Oracle Retail applications.

BDI resides in the middle of Merchandising and other applications, and it is built on 
top of a Java EE and Java Batch platform. In a Bulk Data Integration system, Message 
Families are represented as interface modules. Each interface module (for example, 
DiffGrp_Fnd) contains a Merchandising component that takes care of pulling and 
staging data for publication to the External BDI system. Interface modules are divided 
by functional entity (for example, Item Master, Stores, Diffs, and so on).

Overview
The Publication API Designs chapter provides a high level overview of the APIs, and 
the implementation of these services, along with the associated Merchandising 
database tables used. This gives a better understanding of the data requirements, 
validation rules, persistence rules, and return values associated with the service.

Brand Publication BDI
This section describes the Brand Publication BDI.

Functional Area
Foundation

Design Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Brand information from Merchandising to other Oracle Retail Applications. On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact

Bulk Interface Module
Filename: bdifoundationb.pls.pls



Calendar Publication BDI

6-2 Operations Guide Volume 2 - Message Publication and Subscription Designs

BDI_FOUNDATION_SQL.BRAND_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                            O_control_id    IN OUT NUMBER,
                            I_job_context   IN     VARCHAR2)

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Brand table.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Table Impact

Calendar Publication BDI
This section describes the Calendar Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Calendar information (2 prior years, current year, 2 future years) from Merchandising 
to other Oracle Retail Applications. On this particular integration stream, the data flow 
is from Merchandising to BDI, and then BDI to downstream applications. To 
accomplish this data transfer, BDI will be calling a Merchandising-owned API that will 
pull data from Merchandising and deliver these to the BDI integration layer. This API 
will be in the form of a PLSQL function inside a PLSQL package.

Package Impact
Filename: bdifoundationb.pls.pls

BDI_FOUNDATION_SQL.CALENDAR_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                               O_control_id    IN OUT NUMBER,
                               I_job_context   IN     VARCHAR2)

Data Flow Description XML Schema Definition (XSD)

Brand Brand upload to BDI Brand_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

BRAND_OUT No Yes No No

BRAND Yes No No No



Code Detail Publication BDI

Bulk Data Integration 6-3

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema.  This outbound table is loaded with 
records from the Merchandising V_BDI_DAY_LEVEL_CALENDAR view.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Code Detail Publication BDI
This section describes the Code Detail Publication BDI.

Functional Area
Cross Pillar

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Detail information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications.  To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdicrosspillarb.pls

BDI_CROSS_PILLAR_SQL.CODE_DETAIL_UP(
                        O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                        O_control_id     IN OUT  NUMBER,
                        I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function updates the internal BDI control tables to track the progress 
of the API.

Data Flow Description XML Schema Definition (XSD)

Calendar Calendar upload to BDI Calendar_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

CALENDAR_OUT No Yes No No

V_BDI_DAY_LEVEL_CALENDAR Yes No No No



Code Head Publication BDI

6-4 Operations Guide Volume 2 - Message Publication and Subscription Designs

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising CODE_DETAIL table.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This updates the internal BDI control tables.

A database commit is issued, and the control ID is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Code Head Publication BDI
This section describes the Code Head Publication BDI.

Functional Area
Cross Pillar

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdicrosspillarb.pls

BDI_CROSS_PILLAR_SQL.CODE_HEAD_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                                  O_control_id    IN OUT NUMBER,
                                  I_job_context   IN     VARCHAR2)

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

Data Flow Description XML Schema Definition (XSD)

Code Detail Code Detail upload to BDI CodeDetail_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

CODE_DETAIL_OUT No Yes No No

CODE_DETAIL Yes No No No



Company-wide Closings and Company Closed Exceptions Publication BDI

Bulk Data Integration 6-5

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising CODE_HEAD table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Company-wide Closings and Company Closed Exceptions Publication 
BDI

This section describes the Company-wide Closings and Company Closed Exceptions 
Publication BDI.

Functional Area
Foundation

Design Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Store information from Merchandising to other Oracle Retail Applications. On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
The following packages are impacted:

Filename: bdifoundations.pls

BDI_FOUNDATION_SQL.COMPANY_CLOSED_UP (
                           O_error_message   IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                           O_control_id      IN OUT   NUMBER,
                           I_job_context     IN       VARCHAR2)

Filename: bdifoundationb.pls

Data Flow Description XML Schema Definition (XSD)

Code Head Code Head upload to BDI CodeHead_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

CODE_HEAD_OUT No Yes No No

CODE_HEAD Yes No No No



Currency Conversion Rates Publication BDI

6-6 Operations Guide Volume 2 - Message Publication and Subscription Designs

BDI_FOUNDATION_SQL.COMPANY_CLOSED_UP (
                           O_error_message   IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                           O_control_id      IN OUT   NUMBER,
                           I_job_context     IN       VARCHAR2)

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising company closed and company closed exception table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Tables

Currency Conversion Rates Publication BDI
This section describes the Currency Conversion Rates Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Currency conversion rates information from Merchandising to other Oracle Retail 
Applications.  On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications.  To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Data Flow Description XML Schema Definition (XSD)

Company 
Closed

Company Closed 
upload to BDI

CompanyClosed_Fnd_BdiInterfaceModule.xml

Company 
Closed 
Exceptions

Company Closed 
Exceptions upload to 
BDI

CompanyClosedExcep_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

COMPANY_CLOSED_OUT No Yes No No

COMPANY_CLOSED_EXCEP_OUT No Yes No No

COMPANY_CLOSED_ECXEP Yes No No No

COMPANY_CLOSED Yes No No No



Delivery Slot Publication BDI

Bulk Data Integration 6-7

Package Impact
Filename: bdifoundationb.pls.pls

BDI_FOUNDATION_SQL.CURR_CONV_RATES_UP(
                          O_error_message IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                          O_control_id    IN OUT  NUMBER,
                          I_job_context   IN      VARCHAR2)

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema.  This outbound table is loaded with 
records from the Merchandising MV_CURRENCY_CONVERSION_RATES 
materialized view.  

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Delivery Slot Publication BDI
This section describes the Delivery Slot Publication BDI.

Functional Area
Cross Pillar

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Delivery Slot information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 

Data Flow Description XML Schema Definition (XSD)

Currency 
Conversion Rates

Currency Conversion 
Rates upload to BDI

CurrConvRates_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

CURR_CONV_RATES_
OUT

No Yes No No

MV_CURRENCY_
CONVERSION_RATES

Yes No No No

SYSTEM_OPTIONS Yes No No No

STORE Yes No No No

WH Yes No No No



Diff Group Publication BDI

6-8 Operations Guide Volume 2 - Message Publication and Subscription Designs

then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdicrosspillarb.pls

BDI_CROSS_PILLAR_SQL.DELIVERY_SLOT_UP (
                        O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                        O_control_id     IN OUT  NUMBER,
                        I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising DELIVERY_SLOT table.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Diff Group Publication BDI
This section describes the Diff Group Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Diff Groups from Merchandising to other Oracle Retail Applications. On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 

Data Flow Description XML Schema Definition (XSD)

Delivery Slot Delivery Slot upload to BDI DeliverySlot_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

DELIVERY_SLOT_OUT No Yes No No

DELIVERY_SLOT Yes No No No



Diff ID Publication BDI

Bulk Data Integration 6-9

to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
Filename: bdicrosspillarb.pls

BDI_CROSS_PILLAR_SQL.DIFF_GROUP_UP(O_error_message  IN OUT  VARCHAR2,
                                   O_control_id     IN OUT  NUMBER,
                                   I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound tables that 
reside in the BDI_RMS_INT_SCHEMA schema. These outbound tables are loaded 
with records from the Merchandising Diff Group head and detail tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Diff ID Publication BDI
This section describes the Diff ID Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Diff IDs from Merchandising to other Oracle Retail Applications. On this particular 
integration stream, the data flow is from Merchandising to BDI, and then BDI to 
downstream applications. To accomplish this data transfer, BDI will be calling a 

Data Flow Description XML Schema Definition (XSD)

Diff Group Diff Group upload to BDI DiffGrp_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

DIFF_GRP_OUT No Yes No No

DIFF_GRP_DTL_OUT No Yes No No

DIFF_GROUP_HEAD Yes No No No

DIFF_TYPE Yes No No No

DIFF_GROUP_DETAIL Yes No No No



Finance General Ledger Publication BDI

6-10 Operations Guide Volume 2 - Message Publication and Subscription Designs

Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdicrosspillarb.pls

BDI_CROSS_PILLAR_SQL.DIFF_UP(O_error_message  IN OUT  VARCHAR2,
                             O_control_id     IN OUT  NUMBER,
                             I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Diff tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Finance General Ledger Publication BDI
This section describes the Finance General Ledger Publication BDI.

Functional Area
Finance

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Financial General Ledger information from Merchandising to other Oracle Retail 
Applications. On this particular integration stream, the data flow is from 

Data Flow Type Description XML Schema Definition (XSD)

Diff Id Diff Id upload to BDI Diff_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

DIFF_OUT No Yes No No

DIFF_IDS Yes No No No

DIFF_TYPE Yes No No No



Finisher Address Publication BDI

Bulk Data Integration 6-11

Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Package Impact
Filename: bdifinb.pls

BDI_FINANCIAL_SQL.FIF_GL_DATA_UP(O_error_message  IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                                 O_control_id     IN OUT  NUMBER,
                                 I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema.  This outbound table is loaded with 
records from the Financial General Ledger Staging (STG_FIF_GL_DATA) table.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Finisher Address Publication BDI
This section describes the Finisher Address Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Finisher Address positions from Merchandising to other Oracle Retail Applications. 
On this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package

Data Flow Description XML Schema Definition (XSD)

Finance General Ledger upload to BDI FinGenLdgr_Tx_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

FIF_GL_DATA_OUT No Yes No No

STG_FIF_GL_DATA Yes No No No



Future Available Inventory Publication BDI

6-12 Operations Guide Volume 2 - Message Publication and Subscription Designs

Package Impact
Filename: bdifoundations/b.pls

BDI_FOUNDATION_SQL.FINISHER_ADDR_UP(O_error_message  IN OUT  VARCHAR2,
                                    O_control_id     IN OUT  NUMBER,
                                    I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Finisher Address tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Future Available Inventory Publication BDI
This section describes the Future Available Inventory Publication BDI.

Functional Area
Inventory

Design Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
on-order quantity for all item/location combinations that are flagged as 
back-orderable in Merchandising to other Oracle Retail Applications. On this 

Data Flow Description XML Schema Definition (XSD)

Finisher 
Address

Finisher Address upload 
to BDI

FinisherAddr_Fnd_
BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

FINISHER_ADDR_OUT No Yes No No

ADD_TYPE_MODULE Yes No No No

WH Yes No No No

V_ADD_TYPE_TL Yes No No No

COUNTRY Yes No No No

STATE Yes No No No

ADDR Yes No No No

PARTNER Yes No No No



Inventory Publication BDI

Bulk Data Integration 6-13

particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
The following packages are impacted:

Bulk Interface Module
In the bulk interface module:

Filename: bdiavinvb.pls

BDI_AV_INV_SQL.CO_FUTURE_AVAIL_UP(O_error_message  IN OUT  VARCHAR2,
                                  O_control_id     IN OUT  NUMBER,
                                  I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Item Inventory tables/view.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Tables

Inventory Publication BDI
This section describes the Item Inventory Publication BDI.

Functional Area
Inventory

Data Flow Description XML Schema Definition (XSD)

CO Future Avail CO Future Availability COFutureAvail_Tx_BdiInterfaceModule .xml

TABLE SELECT INSERT UPDATE DELETE

CO_FUTURE_AVAIL_OUT No Yes No No

V_BDI_CO_FUTURE_AVAIL Yes No No No



Item Image Publication BDI

6-14 Operations Guide Volume 2 - Message Publication and Subscription Designs

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
inventory from Merchandising to other Oracle Retail Applications. On this particular 
integration stream, the data flow is from Merchandising to BDI, and then BDI to 
downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
Filename: bdimfpb.pls

BDI_MFP_SQL.INVENTORY_UP(O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                         O_control_id     IN OUT  NUMBER,
                         I_job_context    IN      VARCHAR2)

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Item Inventory tables/view.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Item Image Publication BDI
This section describes the Item Image Publication BDI.

Functional Area
Item

Data Flow Description XML Schema Definition (XSD)

Inventory Inventory upload to BDI Inventory_Tx_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

INVENTORY_OUT No Yes No No

V_BDI_MFP_INVENTORY Yes No No No



Item Location Publication BDI

Bulk Data Integration 6-15

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Item Image information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.ITEM_IMAGE_UP (O_error_message  IN OUT  VARCHAR2,
                            O_control_id     IN OUT  NUMBER,
                            I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising ITEM_IMAGE table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Item Location Publication BDI
This section describes the Item Location Publication BDI.

Functional Area
Foundation

Data Flow Description XML Schema Definition (XSD)

Item Image Item Image upload to 
BDI

ItemImage_Fnd_
BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

ITEM_IMAGE_OUT No Yes No No

ITEM_MASTER Yes No No No

ITEM_IMAGE Yes No No No



Item Location Publication BDI

6-16 Operations Guide Volume 2 - Message Publication and Subscription Designs

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Item Location information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiitemb.pls

BDI_ITEM_SQL.ITEM_LOC_UP(O_error_message  IN OUT  VARCHAR2,
                         O_control_id     IN OUT  NUMBER,
                         I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Item Location table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Table Impact

Data Flow Description XML Schema Definition (XSD)

Item Location Item Location upload to BDI ItemLoc_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_OUT No Yes No No

ITEM_LOC Yes No No No

ITEM_LOC_TRAITS Yes No No No

STORE Yes No No No

WH Yes No No No

PARTNER Yes No No No

ITEM_MASTER Yes No No No



Item Location History Publication BDI

Bulk Data Integration 6-17

Item Location History Publication BDI

Design Overview
Merchandising extracts item-location sales history on a weekly basis. It utilizes BDI 
(Bulk Data Integration) to facilitate the bulk data movement from Merchandising to an 
external solution. 

Scheduling Constraints

Restart/Recovery
N/A

Key Tables Affected

Integration Contract
Refer to ItemLocHist_Tx_BdiInterfaceModule.xml.

Module Name BDI_ItemLocHist_Tx_PF_From_RMS_JOB

Description Extracts Sales History

Functional Area Sales

Module Type Integration

Module 
Technology

BDI job

Catalog ID N/A

Runtime 
Parameters

ItemLocHist_Tx_ProcessFlow_From_RMS ItemLocHist_Tx_
Extractor

Schedule Information Description

Processing Cycle End of Day

Frequency Scheduled daily but files will only be 
generated weekly on End of Week date.

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Table Select Insert Update Delete

ITEM_LOC_HIST Yes No No No

ITEM_LOC_HIST_OUT Yes Yes No Yes

BDI_DWNLDR_IFACE_MOD_DATA_CTL Yes No No No

BDI_DWNLDR_IFACE_DATA_CTL Yes No No No



Item Master Publication BDI

6-18 Operations Guide Volume 2 - Message Publication and Subscription Designs

Item Master Publication BDI
This section describes the Item Master Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Item Master information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI calls a 
Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API is in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiitemb.pls

BDI_ITEM_SQL.ITEM_MASTER_UP(O_error_message  IN OUT  VARCHAR2,
                            O_control_id     IN OUT  NUMBER,
                            I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Item Master table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML

Table Impact

Data Flow Description XML Schema Definition (XSD)

Item Master Item Master upload to BDI ItemHdr_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

ITEM_HDR_OUT No Yes No No

ITEM_MASTER Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No



Item Supplier Country Dim Publication BDI

Bulk Data Integration 6-19

Item Supplier Country Dim Publication BDI
This section describes the Item Supplier Country Dim Publication BDI.

Functional Area
Item

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Item Supplier Country Dim information from Merchandising to other Oracle Retail 
Applications. On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.ITEM_SUP_CTY_DIM_UP (O_error_message  IN OUT  VARCHAR2,
                                  O_control_id     IN OUT  NUMBER,
                                  I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising ITEM_SUPP_COUNTRY_DIM table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

DIFF_GROUP_HEAD Yes No No No

DIFF_IDS Yes No No No

SYSTEM_OPTIONS Yes No No No

Data Flow Description XML Schema Definition (XSD)

Item Supplier 
Country Dim

Item supplier country 
Dim upload to BDI

ItSupCtryDim_Fnd_
BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE



Item Supplier Country Publication BDI

6-20 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Item Supplier Country Publication BDI
This section describes the Item Supplier Country Publication BDI.

Functional Area
Item

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Item supplier country information from Merchandising to other Oracle Retail 
Applications. On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Package Impact
Filename: Filename: bdiitemb.pls

BDI_ITEM_SQL.ITEM_SUPP_COUNTRY_UP (O_error_message  IN OUT  VARCHAR2,
                                   O_control_id     IN OUT  NUMBER,
                                   I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising ITEM_SUPP_COUNTRY table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUP_CTY_DIM_OUT No Yes No No

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

Data Flow Description XML Schema Definition (XSD)

Item Supplier 
Country

Item supplier country 
upload to BDI

ItSupCtry_Fnd_BdiInterfaceModule.xml



Item Supplier Manufacturing Country Publication BDI

Bulk Data Integration 6-21

Table Impact

Item Supplier Manufacturing Country Publication BDI
This section describes the Item Supplier Manufacturing Country Publication BDI.

Functional Area
Item

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Item Supplier Manufacturing Country information from Merchandising to other 
Oracle Retail Applications. On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.ITEM_SUP_MAN_CTY_UP (O_error_message  IN OUT  VARCHAR2,
                                  O_control_id     IN OUT  NUMBER,
                                  I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising ITEM_SUPP_MANU_COUNTRY table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_COUNTRY_
OUT

No Yes No No

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

Data Flow Description XML Schema Definition (XSD)

Item Supplier 
Manufacturing Country

Item supplier Manufacturing 
Country upload to BDI

ItSupManCtry_Fnd_
BdiInterfaceModule.xml



Item Supplier UOM Publication BDI

6-22 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Item Supplier UOM Publication BDI
This section describes the Item Supplier UOM Publication BDI.

Functional Area
Item

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Item supplier UOM information from Merchandising to other Oracle Retail 
Applications. On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.ITEM_SUPP_UOM_UP(O_error_message  IN OUT  VARCHAR2,
                              O_control_id     IN OUT  NUMBER,
                              I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising ITEM_SUPP_UOM table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUP_MAN_CTY_OUT No Yes No No

ITEM_MASTER Yes No No No

ITEM_SUPP_MANU_COUNTRY Yes No No No

Data Flow Description XML Schema Definition (XSD)

Item supplier 
UOM

Item Supplier UOM 
upload to BDI

ItemSuppUom_Fnd_
BdiInterfaceModule.xml



Item Supplier Publication BDI

Bulk Data Integration 6-23

Table Impact

Item Supplier Publication BDI
This section describes the Item Supplier Publication BDI.

Functional Area
Item

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Item supplier information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.ITEM_SUPPLIER_UP(O_error_message  IN OUT  VARCHAR2,
                              O_control_id     IN OUT  NUMBER,
                              I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising ITEM_SUPPLIER table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_UOM_OUT No Yes No No

ITEM_MASTER Yes No No No

ITEM_SUPP_UOM Yes No No No

Data Flow Description XML Schema Definition (XSD)

Item supplier Item Supplier upload to BDI ItemSupplier_Fnd_BdiInterfaceModule.xml



Location Closed Publication BDI

6-24 Operations Guide Volume 2 - Message Publication and Subscription Designs

Table Impact

Location Closed Publication BDI
This section describes the Location Closed Publication BDI.

Functional Area
Foundation

Design Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Store information from Merchandising to other Oracle Retail Applications. On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
The following packages are impacted by this BDI:

Bulk Interface Module
The following build interface module packages are impacted:

Filename: bdifoundations.pls

FUNCTION LOCATION_CLOSED_UP(O_error_message   IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                            O_control_id      IN OUT   NUMBER,
                            I_job_context     IN       VARCHAR2)

Filename: bdifoundationb.pls

FUNCTION LOCATION_CLOSED_UP(O_error_message   IN OUT   RTK_ERRORS.RTK_TEXT%TYPE,
                            O_control_id      IN OUT   NUMBER,
                            I_job_context     IN       VARCHAR2)

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Location closed table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPPLIER_OUT No Yes No No

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No



Merch Hierarchy Publication BDI

Bulk Data Integration 6-25

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Tables

Merch Hierarchy Publication BDI
This section describes the Merch Hierarchy Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Merchandise Hierarchy information from Merchandising to other Oracle Retail 
Applications. 

On this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdimerchb.pls

BDI_MERCH_SQL.MERCH_HIER_UP(O_error_message  IN OUT  VARCHAR2,
                            O_control_id     IN OUT  NUMBER,
                            I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Merchandise Hierarchy tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

Data Flow Description XML Schema Definition (XSD)

Location 
Closed

Location Closed 
upload to BDI

LocationClosed_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

LOCATION_CLOSED_OUT No Yes No No

LOCATION_CLOSED Yes No No No



Merch Hierarchy Publication BDI

6-26 Operations Guide Volume 2 - Message Publication and Subscription Designs

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Related Items from Merchandising to other Oracle Retail Applications. On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiitemb.pls

BDI_ITEM_SQL.REL_ITEM_UP(O_error_message  IN OUT  VARCHAR2,
                         O_control_id     IN OUT  NUMBER,
                         I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

Data Flow Description XML Schema Definition (XSD)

Merchandise 
Hierarchy

Merchandise Hierarchy 
upload to BDI

MerchHier_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

MERCH_HIER_OUT No Yes No No

DIVISION Yes No No No

COMPHEAD Yes No No No

GROUPS Yes No No No

DEPS Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No



On Order Publication BDI

Bulk Data Integration 6-27

A DML insert statement is then executed to populate the BDI outbound tables that 
reside in the BDI_RMS_INT_SCHEMA schema. These outbound tables are loaded 
with records from the Merchandising Related Item head and detail tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

On Order Publication BDI
This section describes the On Order Publication BDI.

Functional Area
Inventory Tracking

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
quantities On Order information from Merchandising to other Oracle Retail 
Applications.  On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Package Impact
Filename: bdimfpb.pls

BDI_MFP_SQL.ON_ORDER_UP(O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                        O_control_id     IN OUT  NUMBER,
                        I_job_context    IN      VARCHAR2)

Data Flow Description XML Schema Definition (XSD)

Related Item Related Item upload to BDI RelatedItem_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

RELATED_ITEM_OUT No Yes No No

RELATED_ITEM_DTL_OUT No Yes No No

RELATED_ITEM_HEAD Yes No No No

RELATED_ITEM_DETAIL Yes No No No

ITEM_MASTER Yes No No No

DIFF_IDS Yes No No No

SYSTEM_OPTIONS Yes No No No



Organization Hierarchy Publication BDI

6-28 Operations Guide Volume 2 - Message Publication and Subscription Designs

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Order tables/view.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Organization Hierarchy Publication BDI
This section describes Organization Hierarchy Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Org Hierarchy information from Merchandising to other Oracle Retail Applications. 
On this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiorgb.pls

BDI_ORG_SQL.ORG_HIER_UP(O_error_message  IN OUT  VARCHAR2,
                        O_control_id     IN OUT  NUMBER,

Data Flow Description XML Schema Definition (XSD)

On Order On Order upload to BDI OnOrder_Tx_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

ON_ORDER_OUT No Yes No No

V_BDI_MFP_ON_ORDER Yes No No No



Pack Item Publication BDI

Bulk Data Integration 6-29

                        I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Organization Hierarchy tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Table Impact

Pack Item Publication BDI
This section describes the Pack Item Publication BDI.

Functional Area
Item

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Pack Item information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Data Flow Description XML Schema Definition (XSD)

Org Hierarchy Org Hierarchy upload to BDI OrgHier_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

ORG_HIER_OUT No Yes No No

WH Yes No No No

AREA Yes No No No

CHAIN Yes No No No

COMPHEAD Yes No No No

DISTRICT Yes No No No

REGION Yes No No No

STORE Yes No No No

WH Yes No No No



Partner Address Publication BDI

6-30 Operations Guide Volume 2 - Message Publication and Subscription Designs

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.PACK_ITEM_UP(O_error_message  IN OUT  VARCHAR2,
                          O_control_id     IN OUT  NUMBER,
                          I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising PACKITEM table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Partner Address Publication BDI
This section describes the Partner Address Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdifoundationb.pls.pls

Data Flow Description XML Schema Definition (XSD)

Pack Item Pack Item upload to BDI PackItem_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

PACK_ITEM_OUT No Yes No No

ITEM_MASTER Yes No No No

PACKITEM Yes No No No



Partner Org Unit Publication BDI

Bulk Data Integration 6-31

BDI_FOUNDATION_SQL.PARTNER_ADDR_UP(
                               O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                               O_control_id    IN OUT NUMBER,
                               I_job_context   IN     VARCHAR2)

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Partner Address table.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Partner Org Unit Publication BDI
This section describes the Partner Org Unit Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 

Data Flow Description XML Schema Definition (XSD)

Partner Address Partner Address upload to BDI PartnerAddr_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

PARTNER_ADDR_OUT No Yes No No

ADDR Yes No No No

V_ADD_TYPE_TL Yes No No No

ADD_TYPE_MODULE Yes No No No

STATE Yes No No No

COUNTRY Yes No No No

PARTNER Yes No No No



Partner Publication BDI

6-32 Operations Guide Volume 2 - Message Publication and Subscription Designs

deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdifoundationb.pls.pls

BDI_FOUNDATION_SQL.PARTNER_ORG_UNIT_UP(
                         O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                         O_control_id    IN OUT NUMBER,
                         I_job_context   IN     VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Partner Org Unit table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Partner Publication BDI
This section describes the Partner Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Data Flow Description XML Schema Definition (XSD)

Partner Org 
Unit

Partner Org Unit upload 
to BDI

PartnerOrgUnit_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

PARTNER_ORG_UNIT_OUT No Yes No No

PARTNER_ORG_UNIT Yes No No No



Price History Publication BDI

Bulk Data Integration 6-33

Package Impact
Filename: bdifoundationb.pls.pls

BDI_FOUNDATION_SQL.PARTNER_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                              O_control_id    IN OUT NUMBER,
                              I_job_context   IN     VARCHAR2)
 This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Partner table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Price History Publication BDI
This section describes the Price History Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Price History positions from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdifoundations/b.pls

BDI_FOUNDATION_SQL.PRICE_HIST_UP(O_error_message  IN OUT  VARCHAR2,

Data Flow Description XML Schema Definition (XSD)

Partner Partner upload to BDI Partner_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

PARTNER_OUT No Yes No No

PARTNER Yes No No No



Related Item Publication BDI

6-34 Operations Guide Volume 2 - Message Publication and Subscription Designs

                                 O_control_id     IN OUT  NUMBER,
                                 I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Price History tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.  

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Related Item Publication BDI
This section describes the Related Item Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Related Items from Merchandising to other Oracle Retail Applications. On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.REL_ITEM_UP(O_error_message  IN OUT  VARCHAR2,
                         O_control_id     IN OUT  NUMBER,
                         I_job_context    IN      VARCHAR2)

Data Flow Description XML Schema Definition (XSD)

Price History Price History upload to 
BDI

PriceHist_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

PRICE_HIST_OUT No Yes No No

PRICE_HIST Yes No No No



Replenishment Item Location Publication BDI

Bulk Data Integration 6-35

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound tables that 
reside in the BDI_RMS_INT_SCHEMA schema. These outbound tables are loaded 
with records from the Merchandising Related Item head and detail tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Replenishment Item Location Publication BDI
This section describes the Replenishment Item Location Publication BDI.

Functional Area
Item

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Replenishment Item Location information from Merchandising to other Oracle Retail 
Applications.  On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.REPL_ITEM_LOC_UP(O_error_message  IN OUT  VARCHAR2,
                              O_control_id     IN OUT  NUMBER,

Data Flow Description XML Schema Definition (XSD)

Related Item Related Item upload to BDI RelatedItem_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

RELATED_ITEM_OUT No Yes No No

RELATED_ITEM_DTL_OUT No Yes No No

RELATED_ITEM_HEAD Yes No No No

RELATED_ITEM_DETAIL Yes No No No

ITEM_MASTER Yes No No No



Store Address Publication BDI

6-36 Operations Guide Volume 2 - Message Publication and Subscription Designs

                              I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising REPL_ITEM_LOC table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Store Address Publication BDI
This section describes the Store Address Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Store Address information from Merchandising to other Oracle Retail Applications. 
On this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiorgb.pls

Data Flow Description XML Schema Definition (XSD)

Replenishment 
Item Location

Replenishment Item 
Location upload to BDI

ReplItemLoc_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

REPL_ITEM_LOC_OUT No Yes No No

ITEM_MASTER Yes No No No

REPL_ITEM_LOC Yes No No No



Store Available Inventory Publication BDI

Bulk Data Integration 6-37

BDI_ORG_SQL.STORE_ADDR_UP(O_error_message  IN OUT  VARCHAR2,
                          O_control_id     IN OUT  NUMBER,
                          I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Store Address table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Store Available Inventory Publication BDI
This section describes the Store Available Inventory Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Store Address information from Merchandising to other Oracle Retail Applications. 
On this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Data Flow Description XML Schema Definition (XSD)

Store Addr Store Address upload to BDI StoreAddr_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

STORE_ADDR_OUT No Yes No No

V_ADD_TYPE_TL Yes No No No

ADDR Yes No No No

STORE Yes No No No

STATE Yes No No No

COUNTRY Yes No No No

ADD_TYPE_MODULE Yes No No No



Store Hours Publication BDI

6-38 Operations Guide Volume 2 - Message Publication and Subscription Designs

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiavinvb.pls

BDI_AV_INV_SQL.ST_AVAIL_INV_UP(O_error_message  IN OUT  VARCHAR2,
                               O_control_id     IN OUT  NUMBER,
                               I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Merchandise Hierarchy tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Store Hours Publication BDI
This section describe the Store Hours Publication BDI.

Function Area
Foundation

Design Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Store information from Merchandising to other Oracle Retail Applications. On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 
Merchandising-owned API that will pull data from Merchandising and deliver these 

Data Flow Description XML Schema Definition (XSD)

Store Inventory Store inventory upload to BDI InvAvailStore_Tx_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

INV_AVAIL_STORE_OUT No Yes No No

ITEM_MASTER Yes No No No

ITEM_LOC_SOH Yes No No No

STORE Yes No No No



Store Publication BDI

Bulk Data Integration 6-39

to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
The following packages are impacted by the Store Hours Publication BDI:

Bulk Interface Module
In the Build Interface Module:

Filename: bdiorgb.pls

BDI_ORG_SQL.STORE_HOURS_UP(O_error_message  IN OUT  VARCHAR2,
                           O_control_id     IN OUT  NUMBER,
                           I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Store table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Tables

Store Publication BDI
This section describes the Store Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Store information from Merchandising to other Oracle Retail Applications. On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications. To accomplish this data transfer, BDI will be calling a 

Data Flow Description XML Schema Definition (XSD)

Store Store upload to BDI StoreHours_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

STORE_HOURS_OUT No Yes No No

STORE_HOURS Yes No No No



Supplier Address Publication BDI

6-40 Operations Guide Volume 2 - Message Publication and Subscription Designs

Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiorgb.pls

BDI_ORG_SQL.STORE_UP(O_error_message  IN OUT  VARCHAR2,
                     O_control_id     IN OUT  NUMBER,
                     I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Item Location table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Table Impact

Supplier Address Publication BDI
This section describes the Supplier Address Publication BDI.

Functional Area
Foundation

Data Flow Description XML Schema Definition (XSD)

Store Store upload to BDI Store_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

STORE_OUT No Yes No No

CODE_DETAIL Yes No No No

CHANNELS Yes No No No

STORE_FORMAT Yes No No No

LANG Yes No No No

VAT_REGION Yes No No No

TSFZONE Yes No No No



Sups Publication BDI

Bulk Data Integration 6-41

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Supplier Address positions from Merchandising to other Oracle Retail Applications. 
On this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdifoundations/b.pls

BDI_FOUNDATION_SQL.SUPPLIER_ADDR_UP(O_error_message  IN OUT  VARCHAR2,
                                    O_control_id     IN OUT  NUMBER,
                                    I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Supplier Address tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Sups Publication BDI
This section describes the Sups Publication BDI.

Data Flow Description XML Schema Definition (XSD)

Supplier 
Address

Supplier Address upload 
to BDI

SupplierAddr_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

SUPPLIER_ADDR_OUT No Yes No No

ADDR Yes No No No

V_ADD_TYPE_TL Yes No No No

STATE Yes No No No

COUNTRY Yes No No No

SUPS Yes No No No

ADD_TYPE_MODULE Yes No No No



Tran Data Publication BDI

6-42 Operations Guide Volume 2 - Message Publication and Subscription Designs

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdifoundationb.pls.pls

BDI_FOUNDATION_SQL.SUPS_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                           O_control_id    IN OUT NUMBER,
                           I_job_context   IN     VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Sups table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Tran Data Publication BDI
This section describes the Tran Data Publication BDI.

Functional Area
Transactional Data

Data Flow Description XML Schema Definition (XSD)

Supplier Supplier upload to BDI Supplier_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

SUPS_OUT No Yes No No

SUPS Yes No No No



UDA Item Date Publication BDI

Bulk Data Integration 6-43

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
transactional data from Merchandising to other Oracle Retail Applications.  On this 
particular integration stream, the data flow is from Merchandising to BDI, and then 
BDI to downstream applications.  To accomplish this data transfer, BDI will be calling 
a Merchandising-owned API that will pull data from Merchandising and deliver these 
to the BDI integration layer. This API will be in the form of a PLSQL function inside a 
PLSQL package.

Package Impact
Filename: bdimfpb.pls

BDI_MFP_SQL.TRAN_DATA_UP(O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                         O_control_id     IN OUT  NUMBER,
                         I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising transaction tables/views.

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

UDA Item Date Publication BDI
This section describes the UDA Item Date Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 

Data Flow Description XML Schema Definition (XSD)

Tran Data Tran Data upload to BDI TranData_Tx_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

TRAN_DATA_OUT No Yes No No

V_BDI_MFP_TRAN_DATA Yes No No No



UDA Item FF Publication BDI

6-44 Operations Guide Volume 2 - Message Publication and Subscription Designs

this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.UDA_ITEM_DATE_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                              O_control_id    IN OUT NUMBER,
                              I_job_context   IN     VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising UDA Item Date table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

UDA Item FF Publication BDI
This section describes the UDA Item FF Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 

Data Flow Description XML Schema Definition (XSD)

UDA ITEM 
DATE

UDA Item Date upload 
to BDI

UdaItemDate_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

UDA_ITEM_DATE_OUT No Yes No No

UDA_ITEM_DATE Yes No No No



UDA Item LOV Publication BDI

Bulk Data Integration 6-45

deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.UDA_ITEM_FF_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                            O_control_id    IN OUT NUMBER,
                            I_job_context   IN     VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising UDA Item FF table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

UDA Item LOV Publication BDI
This section describes the UDA Item LOV Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Data Flow Description XML Schema Definition (XSD)

UDA ITEM FF UDA Item FF upload to BDI UdaItemFF_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

UDA_ITEM_FF_OUT No Yes No No

UDA_ITEM_FF Yes No No No



UDA Publication BDI

6-46 Operations Guide Volume 2 - Message Publication and Subscription Designs

Package Impact
Filename: bdiitemb.pls

BDI_ITEM_SQL.UDA_ITEM_LOV_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                             O_control_id    IN OUT NUMBER,
                             I_job_context   IN     VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising UDA Item LOV table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.  

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

UDA Publication BDI
This section describes the UDA Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdifoundationb.pls

BDI_FOUNDATION_SQL.UDA_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,

Data Flow Description XML Schema Definition (XSD)

UDA ITEM LOV UDA Item LOV upload to BDI UdaItemLov_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

UDA_ITEM_LOV_OUT No Yes No No

UDA_ITEM_LOV Yes No No No



UDA Values Publication BDI

Bulk Data Integration 6-47

                          O_control_id    IN OUT NUMBER,
                          I_job_context   IN     VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising UDA table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

UDA Values Publication BDI
This section describes the UDA Values Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Code Head information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdifoundationb.pls.pls

BDI_FOUNDATION_SQL.UDA_VALUES_UP(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
                                 O_control_id    IN OUT NUMBER,
                                 I_job_context   IN     VARCHAR2)

Data Flow Description XML Schema Definition (XSD)

UDA UDA upload to BDI Uda_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

UDA_OUT No Yes No No

UDA Yes No No No



UOM Class Publication BDI

6-48 Operations Guide Volume 2 - Message Publication and Subscription Designs

This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising UDA Values table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

UOM Class Publication BDI
This section describes the UOM Class Publication BDI.

Functional Area
Cross Pillar

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Uom Class information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdicrosspillarb.pls

BDI_CROSS_PILLAR_SQL.UOM_CLASS_UP (
                        O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                        O_control_id     IN OUT  NUMBER,
                        I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

Data Flow Description XML Schema Definition (XSD)

UDA Values UDA Values upload to BDI UdaValues_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

UDA_VALUES_OUT No Yes No No

UDA_VALUES Yes No No No



UOM Conversion Publication BDI

Bulk Data Integration 6-49

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising UOM_CLASS table. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

UOM Conversion Publication BDI
This section describes the UOM Conversion BDI.

Functional Area
Cross Pillar

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Uom Conversion information from Merchandising to other Oracle Retail Applications. 
On this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
Filename: bdicrosspillarb.pls

BDI_CROSS_PILLAR_SQL.UOM_CONVERSION_UP (
                        O_error_message  IN OUT  RTK_ERRORS.RTK_TEXT%TYPE,
                        O_control_id     IN OUT  NUMBER,
                        I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising UOM_CONVERSION table. 

Data Flow Description XML Schema Definition (XSD)

Uom Class Uom Class upload to BDI UomClass_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

UOM_CLASS_OUT No Yes No No

UOM_CLASS Yes No No No



Warehouse Inventory Publication BDI

6-50 Operations Guide Volume 2 - Message Publication and Subscription Designs

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition

Table Impact

Warehouse Inventory Publication BDI
This section describes the Warehouse Inventory Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Warehouse Inventory positions from Merchandising to other Oracle Retail 
Applications. On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API is in the form of 
a PLSQL function inside a PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiavinvb.pls

BDI_AV_INV_SQL.WH_AVAIL_INV_UP(O_error_message  IN OUT  VARCHAR2,
                               O_control_id     IN OUT  NUMBER,
                               I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Item Location table. 

Data Flow Description XML Schema Definition (XSD)

Uom 
Conversion

Uom Conversion upload 
to BDI

UomConversion_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

UOM_CONVERSION_OUT No Yes No No

UOM_CONVERSION Yes No No No



Warehouse Address Publication BDI

Bulk Data Integration 6-51

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Table Impact

Warehouse Address Publication BDI
This section describes Warehouse Address Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Warehouse Address information from Merchandising to other Oracle Retail 
Applications. On this particular integration stream, the data flow is from 
Merchandising to BDI, and then BDI to downstream applications. To accomplish this 
data transfer, BDI will be calling a Merchandising-owned API that will pull data from 
Merchandising and deliver these to the BDI integration layer. This API will be in the 
form of a PLSQL function inside a PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiorgb.pls

BDI_ORG_SQL.WH_ADDR_UP(O_error_message  IN OUT  VARCHAR2,
                       O_control_id     IN OUT  NUMBER,
                       I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API.

Data Flow Description XML Schema Definition (XSD)

Warehouse Inventory 
Avail

Wh Available Inventory InvAvailWh_Tx_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

INV_AVAIL_WH_OUT No Yes No No

ITEM_MASTER Yes No No No

ITEM_LOC_SOH Yes No No No

WH Yes No No No



Warehouse Publication BDI

6-52 Operations Guide Volume 2 - Message Publication and Subscription Designs

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Warehouse Address tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Table Impact

Warehouse Publication BDI
This section describes Warehouse Publication BDI.

Functional Area
Foundation

Business Overview
BDI (Bulk Data Integration) is an integration layer that facilitates the bulk transfer of 
Warehouse information from Merchandising to other Oracle Retail Applications. On 
this particular integration stream, the data flow is from Merchandising to BDI, and 
then BDI to downstream applications. To accomplish this data transfer, BDI will be 
calling a Merchandising-owned API that will pull data from Merchandising and 
deliver these to the BDI integration layer. This API will be in the form of a PLSQL 
function inside a PLSQL package.

Package Impact
This section describes the package impact.

Bulk Interface Module
Filename: bdiorgb.pls

BDI_ORG_SQL.WH_UP(O_error_message  IN OUT  VARCHAR2,
                  O_control_id     IN OUT  NUMBER,
                  I_job_context    IN      VARCHAR2)
This function begins by calling a BDI function that signals the start of the interface 
process. The BDI function will update the internal BDI control tables to track the 
progress of the API. 

Data Flow Description XML Schema Definition (XSD)

Warehouse Address Warehouse Address 
upload to BDI

WhAddr_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

WH_ADDR_OUT No Yes No No

ADDR Yes No No No



Daily Demand Item Forecast Subscription BDI

Bulk Data Integration 6-53

A DML insert statement is then executed to populate the BDI outbound table that 
resides in the BDI_RMS_INT_SCHEMA schema. This outbound table is loaded with 
records from the Merchandising Warehouse tables. 

After the insert, another call to a BDI function is performed to signify the successful 
loading of records. This will update the internal BDI control tables.

A database commit is issued, and the control Id is returned by the API. 

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Table Impact

Daily Demand Item Forecast Subscription BDI
This section describes the Daily Demand Item Forecast Subscription BDI.

Functional Area
Foundation

Design Overview
This API is used to import daily forecast data from Oracle Retail Demand Forecast 
Cloud Service (RDFCS) to Merchandising. It uses BDI (Bulk Data Integration), which is 
an integration layer that facilitates the bulk transfer of information between solutions. 
On this particular integration, the data flow is from RDFCS to BDI, and then BDI to 
Merchandising. To accomplish this data transfer, BDI will invoke a 
Merchandising-owned API that will pull data from the BDI integration layer and load 
into the Merchandising daily forecast table (DAILY_ITEM_FORECAST). 

This API is in the form of a PLSQL function inside a PLSQL package. It begins by 
calling an internal function to truncate the DAILY_ITEM_FORECAST table. After 
truncating the table, it calls a BDI function that signals the start of the import process. 
After the dataset has been imported successfully, another call to a BDI function is 
performed to signify the successful import of records. This will update the internal 
BDI control tables. A database commit is issued and the control is returned to the BDI 
Importer job.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Data Flow Description XML Schema Definition (XSD)

Warehouse Warehouse upload to BDI Wh_Fnd_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

WH_OUT No Yes No No

WH Yes No No No



Weekly Demand Item Forecast Subscription BDI

6-54 Operations Guide Volume 2 - Message Publication and Subscription Designs

Tables

Weekly Demand Item Forecast Subscription BDI
This section describes the Weekly Demand Item Forecast Subscription BDI.

Functional Area
Foundation

Design Overview
This API is used to import weekly forecast data from Oracle Retail Demand Forecast 
Cloud Service (RDFCS) to Merchandising. It uses BDI (Bulk Data Integration), which is 
an integration layer that facilitates the bulk transfer of information between solutions. 
On this particular integration stream, the data flow is from RDFCS to BDI, and then 
BDI to Merchandising. To accomplish this data transfer, BDI will invoke a 
Merchandising-owned API that will pull data from BDI integration layer BDI table 
and load into the Merchandising weekly forecast table (ITEM_FORECAST). 

This API is in the form of a PLSQL function inside a PLSQL package. It begins by 
calling an internal function to preserve 4 weeks of forecasted sales data in ITEM_
FORECAST_HIST and then the ITEM_FORECAST table is truncated. After truncating 
the table, it calls a BDI function that signals the start of the import process. After the 
dataset has been imported successfully, another call to a BDI function is performed to 
signify the successful import of records. This will update the internal BDI control 
tables. A database commit is issued and the control is returned to the BDI Importer 
job.

Data Definition XML
The BDI interface staging tables are generated based on the XML schema definition.

Tables

Data Flow Description XML Schema Definition (XSD)

Daily Demand 
Item Forecast

Import daily demand 
item forecast from BDI

DlyDmdFst_Tx_BdiInterfaceModule.xml

TABLE SELECT INSERT UPDATE DELETE

DLY_DMND_FRCST_IN Yes No No No

DAILY_ITEM_FORECAST No Yes Yes Yes

Data Flow Description XML Schema Definition (XSD)

Weekly Demand 
Item Forecast

Import weekly demand 
item forecast from BDI

WklyDmdFst_Tx_BdiInterfaceModule.xml



Weekly Demand Item Forecast Subscription BDI

Bulk Data Integration 6-55

TABLE SELECT INSERT UPDATE DELETE

WKLY_DMND_FRCST_IN Yes No No No

ITEM_FORECAST No Yes Yes Yes

ITEM_FORECAST_HIST No Yes No Yes



Weekly Demand Item Forecast Subscription BDI

6-56 Operations Guide Volume 2 - Message Publication and Subscription Designs


	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com)
	Conventions

	1 Introduction
	Message Publication and Subscription Designs
	External Subscription RIB Application Programming Interface
	Parallel processing for Performance Purpose
	Subscription APIs
	Publishing APIs


	Web Service Provider Implementations API Designs

	2 RIB Publication Designs
	Allocations Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	Create Header
	Modify Header
	Create Detail
	Modify Detail
	Approve
	Close
	Delete
	Package Name: RMSMFM_ALLOC
	Package Specification - Global Variables
	Functional Level Description - ADDTOQ
	Functional Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - MAKE_CREATE (local)
	Function Level Description - BUILD_HEADER_OBJECT (local)
	Function Level Description - BUILD_DETAIL_OBJECTS (local)
	Function Level Description - BUILD_SINGLE_DETAIL (local)
	Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description - LOCK_THE_BLOCK (local)
	Function Level Description - HANDLE_ERRORS (local)
	Function Level Description - DELETE_QUEUE_REC (local)
	Function Level Description - GET_ROUTING_TO_LOCS (local)
	Function Level Description - GET_NOT_BEFORE_DAYS (local)
	Function Level Description - GET_RETAIL (local)
	Function Level Description - CHECK_STATUS (local)


	Trigger Impact
	Message XSD
	Design Assumptions
	Table Impact

	ASNOUT Publication API
	Functional Area
	Business Overview
	On-line Shipping/Receiving
	Franchise Order Shipment and Return

	Package Impact
	Business Object ID
	Package name: RMSMFM_SHIPMENT
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - BUILD_HEADER_OBJECT (local)
	Function Level Description - BUILD_DETAIL_OBJECTS (local)
	Function Level Description - LOCK_THE_BLOCK (local)
	Function Level Description - HANDLE_ERRORS (local)
	Function Level Description - UPDATE_QUEUE_REC (local)

	Trigger Impact
	Message XSD
	Design Assumptions
	Table Impact

	Available Inventory for Store Publication API
	Functional Area
	Business Overview
	Package Impact
	Function Level Description - ADDTOQ

	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - HANDLE_ERRORS (local)
	Message XSD
	Table Impact
	Design Assumptions

	Available Inventory for WH Publication API
	Functional Area
	Business Overview
	Package Impact
	Function Level Description - ADDTOQ

	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - HANDLE_ERRORS (local)
	Message XSD
	Table Impact
	Design Assumptions

	Banner Publication API
	Functional Area
	Business Overview
	Package Impact
	Create
	Modify
	Delete
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY


	Trigger Impact
	Table Impact
	Design Assumptions

	Company Closed Publication API
	Functional Area
	Package Impact
	File name
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PROCESS_QUEUE_RECORD (local)

	Design Assumptions
	Table Impact

	Customer Order Fulfillment Confirmation Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - BUILD_MSG_OBJECT (local)
	Function Level Description - LOCK_THE_BLOCK (local)
	Function Level Description - HANDLE_ERRORS (local)


	Trigger Impact
	Message XSD
	Design Assumptions
	Table Impact

	Delivery Slot Publication API
	Functional Area
	Business Overview
	Package Impact
	Create Delivery_Slot
	Update Delivery_Slot
	Delete Delivery_slot
	Package Name:
	Spec File Name:
	Body File Name:
	Package Specification - Global Variables
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_DLVY_SLT (local)

	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Differentiator Groups Publication API
	Functional Area
	Business Overview
	Package Impact
	Create Diff Group
	Modify Diff Group
	Create Diff Group Detail
	Modify Diff Group Detail
	Delete Diff Group Detail
	Delete Diff Group
	Function Level Description - GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description - HANDLE_ERRORS (local)

	Trigger Impact
	Table Impact
	Design Assumptions

	Differentiator ID Publication API
	Functional Area
	Business Overview
	Diff message processes

	Package Impact
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_DIFFID_QUEUE (local)

	Trigger Impact
	Table Impact
	Design Assumptions

	Item Publication API
	Functional Area
	Business Overview
	Deposit items
	Catch-Weight Items
	Receiving and inventory movement impact on catch-weight items
	Item Transformation
	Item and Item Component Descriptions
	New Item Message Processes
	Basic Item Message
	New Item Message Publication
	Subordinate Data and XML Tags
	Modify and Delete Messages
	Modify Messages
	Delete messages
	Design Overview
	Business Object Records

	Package Impact
	Business Object ID
	Package Specification - Global Variables
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - MAKE_CREATE (local)
	Function Level Description - HANDLE_ERRORS (local)
	Function Level Description - BUILD_MESSAGE
	Function Level Description - BUILD_DELETE_MESSAGE
	Function Level Description - BUILD_HEADER_OBJECT (local)
	Function Level Description - BUILD DETAIL functions (all local)
	Function Level Description - GET_ITEM_INFO (local)
	Function Level Description - BUILD_DIMENSION_DESCRIPTIONS (local)
	Function Level Description - BUILD_ITEM_MASTER_CFA_EXT (local)
	Function Level Description - BUILD_ITEM_SUPPLIER_CFA_EXT (local)
	Function Level Description - BUILD_ITEM_SUPP_CTRY_CFA_EXT (local)

	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Item Location Publication API
	Functional Area
	Business Overview
	Package Impact
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - BUILD_DETAIL_OBJECTS (local)
	Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description - HANDLE_ERRORS (local)
	Function Level Description - BUILD_ITEM_LOC_CFA_EXT (local)

	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Merchandise Hierarchy Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - HANDLE_ERRORS (local)
	Function Level description - BUILD_DEPS_CFA_EXT
	Function Level description - BUILD_CLASS_CFA_EXT
	Function Level description - BUILD_SUBCLASS_CFA_EXT

	Message XSD
	Design Assumptions
	Table Impact

	Order Publication API
	Functional Area
	Business Overview
	Creating of Purchase Orders
	Purchase Order Messages
	Order Message Processes

	Package Impact
	Modify Pre-Approved
	Approve
	Modify in 'A' status
	Redistribute
	Unapprove
	Modify
	Close
	Reinstate
	Delete

	Message XSD
	Design Assumptions
	Table Impact

	Organization Hierarchy Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID

	Message XSD
	Design Assumptions
	Table Impact

	Partner Publication API
	Functional Area
	Business Overview
	External Finishers

	Package Impact
	Function Level Description - ADDTOQ
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - MAKE_CREATE (local)
	Function Level Description - BUILD_HEADER_OBJECT (local)
	Function Level Description - BUILD_HEADER_OBJECT (local)
	Function Level Description - BUILD_DETAIL_OBJECTS (local)
	Function Level Description - BUILD_SINGLE_DETAIL (local)
	Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description - LOCK_THE_BLOCK (local)
	Function Level Description - HANDLE_ERRORS (local)
	Function Level Description - DELETE_QUEUE_REC (local)
	Function Level Description – BUILD_PARTNER_CFA_EXT (local)
	Function Level Description - BUILD_ ADDR _CFA_EXT (local)

	Message XSD
	Design Assumptions
	Table Impact

	Receiver Unit Adjustment Publication API
	Functional Area
	Business Overview
	Package Impact
	Business object ID
	Package name

	Trigger Impact
	Message XSD
	Design Assumptions
	Table Impact

	RTV Request Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID

	Trigger Impact
	Message XSD
	Design Assumptions
	Table Impact

	Season Phase Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID

	Message XSD
	Design Assumptions
	Table Impact

	Seed Data Publication API
	Functional Area
	Business Overview
	Package Impact
	Design Assumptions
	Table Impact

	Seed Object Publication API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Table Impact

	Store Publication API
	Functional Area
	Business Overview
	Package Impact
	Package Specification - Global Variables
	Public Type
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - MAKE_CREATE (local)
	Function Level Description - BUILD_HEADER_OBJECT (local)
	Function Level Description - BUILD_DETAIL_OBJECTS (local)
	Function Level Description - BUILD_SINGLE_DETAIL (local)
	Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description - LOCK_THE_BLOCK (local)
	Function Level Description - HANDLE_ERRORS (local)
	Function Level Description - BUILD_STORE_CFA_EXT (local)
	Function Level Description - BUILD_ ADDR _CFA_EXT (local)
	Function Level Description - BUILD_STORE_HOURS_OBJECT (local)

	Message XSD
	Table Impact
	Design Assumptions

	Transfers Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	Create Header
	Approve
	Modify Header
	Create Details
	Modify Details
	Delete Details
	Close
	Delete

	Trigger Impact
	Message XSD
	Design Assumptions
	Table Impact

	UDA Publication API
	Functional Area
	Business Overview
	Package Impact
	Design Assumptions
	Table Impact

	Vendor Publication API
	Functional Area
	Business Overview
	Package Impact
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - CREATE_PREVIOUS (local)
	Function Level Description - CLEAN_QUEUE (local)
	Function Level Description - CAN_CREATE (local)
	Function Level Description - MAKE_CREATE (local)
	Function Level Description - DELETE_QUEUE_REC (local)
	Function Level Description - CHECK_STATUS (local)
	Function Level Description - MAKE_CREATE_POU (local)
	Function Level Description - BUILD_SUPPLIER_CFA_EXT (local)
	Function Level Description - MAKE_CREATE_CFA (local)
	Function Level Description – PROCESS_QUEUE_RECORD (local)

	Message XSD
	Design Assumptions
	Table Impact

	Warehouse Publication API
	Functional Area
	Business Overview
	Package Impact
	Function Level Description - ADDTOQ
	Function Level Description - GETNXT
	Function Level Description - PUB_RETRY
	Function Level Description - PROCESS_QUEUE_RECORD (local)
	Function Level Description - DELETE_QUEUE_REC (local)
	Function Level Description - MAKE_CREATE (local)
	Function Level Description - BUILD_HEADER_OBJECT (local)
	Function Level Description - BUILD_HEADER_OBJECT (local)
	Function Level Description - BUILD_DETAIL_OBJECTS (local)
	Function Level Description - BUILD_SINGLE_DETAIL (local)
	Function Level Description - BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description - BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description - LOCK_THE_BLOCK (local)
	Function Level Description - HANDLE_ERRORS (local)
	Function Level Description - BUILD_WH_CFA_EXT (local)
	Function Level Description - BUILD_ ADDR _CFA_EXT (local)

	Message XSD
	Design Assumptions
	Table Impact

	Work Orders In Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	Create
	Modify
	Delete

	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Work Orders Out Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	Approve
	Delete
	Unapproved

	Trigger Impact
	Message XSD
	Design Assumptions
	Table Impact


	3 RIB Subscription Designs
	Allocation Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	Appointments Subscription API
	Functional Area
	Business Overview
	Appointment status
	Appointment processing

	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	ASNIN Subscription API
	Functional Area
	Business Overview
	Package Impact
	Error Handling
	Private Internal Functions and Procedures
	Validation

	Message XSD
	Design Assumptions
	Table Impact

	ASNOUT Subscription API
	Functional Area
	Business Overview
	L10N Localization Decoupling Layer
	BOL Message Structure

	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	COGS Subscription API
	Functional Area
	Business Overview
	Package Impact
	Business Validation Mode
	DML Module

	Message XSD
	Design Assumptions
	Table Impact

	Cost Change Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Cost Change Modify
	POPULATING RECORD

	Bulk or Single DML Module
	Cost Change

	Message XSD
	Design Assumptions
	Table Impact

	Currency Exchange Rates Subscription API
	Functional Area
	Business Overview
	Data Flow
	Message Structure

	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	Customer Order Fulfillment Subscription API
	Functional Area
	Business Overview
	Message XSD
	Design Assumptions

	Diff Group Subscription API
	Functional Area
	Design Overview
	Differentiators

	Package Impact
	Business Validation Module

	Message XSD
	Design Assumptions
	Table Impact

	Diff ID Subscription API
	Functional Area
	Design Overview
	Package Impact
	Business Validation Module

	Message XSD
	Design Assumptions
	Table Impact

	Direct Ship Receipt Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	DSD Deals Subscription API
	Functional Area
	Business Overview
	Package Impact
	Public API Procedures:

	Private Internal Functions and Procedures (rmssub_dsddealss/b.pls)
	RMSSUB_DSDDEALS.COMPLETE_TRANSACTION
	RMSSUB_DSDDEALS.HANDLE_ERRORS

	Message XSD
	Design Assumptions
	Table Impact

	DSD Receipt Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	Freight Terms Subscription API
	Functional Area
	Business Overview
	Message Structure

	Package Impact
	Public API Procedures
	Private Internal Functions and Procedures (rmssub_frttermcre.pls):
	Private Internal Functions and Procedures (rmssub_fterm.pls):
	Main Consume Function
	XML Parsing
	Validation

	Message XSD
	Design Assumptions
	Table Impact

	GL Chart of Accounts Subscription API
	Functional Area
	Business Overview
	Package Impact
	Public API Procedures:
	Private Internal Functions and Procedures (rmssub_glcoacreb.pls):
	Private Internal Functions and Procedures (other):
	XML Parsing:
	Validation

	Message XSD
	Design Assumptions
	Table Impact

	GL Chart of Account Validation Service
	Functional Area
	Overview

	Inventory Adjustment Subscription API
	Functional Area
	Business Overview
	Inventory Quantity and Status Evaluation
	Stock Adjustment Transaction Codes
	L10N Localization Decoupling Layer

	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	Inventory Request Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	Item Subscription API
	Functional Area
	Design Overview
	L10N Localization Decoupling Layer:
	Import Brazil-specific Fiscal Item Attributes to the Flex Attributes Extension Table (ITEM_COUNTRY_L10N_EXT):

	Package Impact
	Consume Module
	Bulk or Single DML Module

	Message XSD
	Design Assumptions
	Tables

	Item Location Subscription API
	Functional Area
	Design Overview
	L10N Localization Decoupling Layer:

	Package Impact
	Consume Module
	Business Validation Module
	Bulk or single DML module

	Message XSD
	Tables

	Item Reclassification Subscription API
	Functional Area
	Design Overview
	Bulk or Single DML Module
	Consume Module
	Business Validation Module

	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	Location Trait Subscription API
	Functional Area
	Design Overview
	Package Impact
	Consume Module
	Business Validation Module
	Bulk or Single DML Module

	Message XSD
	Table Impact

	Merchandise Hierarchy Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_xmrchhrs/b.pls
	Filename: rmssub_xmrchhr[family_name]vals/b.pls
	Filename: rmssub_xmrchhr[family_name]sqls/b.pls
	Filename: rmssub_xmrchhrdept_cfa (rmssub_xmrchhrdept_cfas/b.pls)
	Filename: rmssub_xmrchhrcls_cfa (rmssub_xmrchhrcls_cfas/b.pls)
	Filename: rmssub_xmrchhrscls_cfa (rmssub_xmrchhrscls_cfas/b.pls)
	Message XSD

	Design Assumptions
	Table Impact

	Merchandise Hierarchy Reclassification Subscription API
	Functional Area
	Business Overview
	Package Impact
	Consume Module
	Business Validation Module
	Bulk or single DML module

	Message XSD
	Design Assumptions
	Table Impact

	Organizational Hierarchy Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	Payment Terms Subscription API
	Functional Area
	Business Overview
	Data Flow
	Message Structure

	Package Impact
	Message XSD
	Design Assumptions
	Table Impact

	PO Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	Receiving Subscription API
	Functional Area
	Business Overview
	Carton-Level Receiving
	Actual (A)
	Overage (O)
	Dummy BOL (D)
	Closed (C)
	Misdirected Container
	Blind Receipt Processing
	Doc Types
	L10N Localization Decoupling Layer

	Package Impact
	Message XSD
	Table Impact

	RTV Subscription API
	Functional Area
	Business Overview
	L10N Localization Decoupling Layer:

	Package Impact
	Message XSD
	Table Impact

	Stock Order Status Subscription API
	Functional Area
	Business Overview
	Stock Order Status Explanations
	Pack Considerations

	Package Impact
	Message XSD
	Table Impact

	Stock Count Schedule Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Table Impact

	Store Subscription API
	Functional Area
	Business Overview
	Package Impact
	Consume Module
	Business Validation Module
	Bulk or Single DML Module

	Message XSD
	Design Assumptions
	Tables


	Transfer Subscription API
	Functional Area
	Integration Type
	Business Overview
	Creating Transfers
	Location Validation
	Inventory Validation
	Status Validation
	Transfer Type Specific Validation
	Administration (AD)
	AIP Generated (AIP)
	Book (BT)
	Confirmation (CF)
	Externally Generated (EG)
	Intercompany (IC)
	Manual Requisition (MR)
	Reallocation (RAC)
	Return to Vendor (RV)
	SIM Generated (SIM)
	All Transfer Types


	Transfers with Finishing
	Updating Transfers
	Deleting Transfers
	Publishing Updates
	Flex Attributes
	Error Handling
	Message XSD

	Vendor Subscription API
	Functional Area
	Business Overview
	Package Impact
	Public API Procedures
	Private Internal Functions and Procedures (rmssub_vendorcre.pls):
	Private Internal Functions and Procedures (other):

	Message XSD
	Design Assumptions

	Work Order Status Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Table Impact


	4 SOAP Web Services
	Using SOAP Services During Batch Window
	Common Characteristics of Merchandising SOAP Services
	Security
	Standard Success Response
	Standard Error Response
	URL Path
	Web Service APIs Process Flow
	Provider Services
	Consumer Services

	Provider Services
	Allocation Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Average Cost Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Cost Change Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Customer Credit Check Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Customer Order Fulfillment Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Customer Order Item Substitution Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Business Overview
	Assumptions
	Operation XSD

	Diff Management Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Inventory Back Order Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Assumptions
	Operation XSD

	Inventory Lookup Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Assumptions
	Operation XSD

	Item Management Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Request Item Numbers
	Create/Manage Items

	Operation XSD

	Pay Term Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Pricing Cost Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Assumptions
	Operation XSD

	Purchase Order Management Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Request Order Numbers
	Create/Manage Purchase Orders

	Operation XSD

	Report Locator Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Store Order Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Create Store Order
	Modify Store Order
	Delete Store Order
	Query Deals
	Query Sales
	Query Store Orders

	Assumptions
	Operation XSD

	Supplier Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD

	Transfer Service
	Functional Area
	RSB Proxy WSDL
	Merchandising Service WSDL
	Overview
	Operation XSD


	Consumer Services
	Customer Address Service
	Functional Area
	Overview

	Customer Order Address Service
	Functional Area
	Overview

	Get Drill Back Forward URL Service
	Functional Area
	Overview

	GL Chart of Accounts Validation Service
	Functional Area
	Overview



	5 ReSTful Web Services
	Introduction
	Common Characteristics of Retail Application ReSTful Web Services
	On-Premise Deployments
	Security
	Standard Request and Response Headers
	Standard Error Response
	Merchandising URL Paths
	Sales Audit URL Paths
	Date Format
	Paging
	Web Service APIs Process Flow

	Merchandising ReSTful Web Services
	Merchandising Common Services
	Vdate
	Procurement Unit Options
	Table Impact

	Functional Config Options
	Inventory Movement Unit Options
	Currencies
	Department Search
	Department Load

	Book Transfer ReSTful Web Service
	Functional Area
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	ItemDetail RDO
	Example JSON Input
	Output
	JSON Structure
	Table Impact

	Code Detail Service
	Create Inventory Transfer Services
	Functional Area
	Business Overview
	Transfer Number
	Search Items
	Load Items
	Business Overview

	Search From Location
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Search To Location
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Load Locations
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Create Transfer
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact


	Create Purchase Order Services
	Order Number
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Terms
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Search Supplier
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Load Supplier
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Search Items
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Load Items
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Search Location
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Load Locations
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Create Purchase Order
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact


	Recent Inventory Transfer Services
	Functional Area
	Business Overview
	Transfer Location Search
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Transfer Location Load
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Transfer Status List
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Transfer Type List
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Search Transfer User IDs
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Transfer Search
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Get Transfer Detail
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Update Transfer Status
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact


	Recent Purchase Order Services
	Functional Area
	Business Overview
	Cancel Reason Code List
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Origin Code List
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Purchase Order Status List
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Search Purchase Order User ID
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Purchase Order Search
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Get Purchase Order Summary
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Get Purchase Order Items
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Get Purchase Order Item Locations
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Update Purchase Orders Date
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Cancel Purchase Orders
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Approve Purchase Orders
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Reject Purchase Orders
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact


	Replenishment Schedule Services
	Functional Area
	Business Overview
	Create Replenishment Schedule
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Modify Replenishment Schedule
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Delete Replenishment Schedule
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact


	VDATE Service
	Allocation Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Background Process Configuration
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Currency Rates Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Data Privacy Access Service
	Business Overview
	Service Type
	ReSTURL
	Accept
	Query Parameters
	Path Parameters
	Default Response
	Sample Response
	Response Codes and Error Messages
	Success Payloads

	Data Privacy Forget Service
	Business Overview
	Service Type
	ReSTURL
	Accept
	Query Parameters
	Path Parameters
	Default Response
	Response Codes and Error Messages
	Success Payloads

	Diff Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Half Data Budget Service
	Business Overview
	Functional Area
	Modify Half Data Budget
	Business Overview
	Service Type
	Rest URL:
	Input Parameters
	Output
	Table Impact


	Inventory Adjustment Service
	Functional Area
	Business Overview
	Inventory Adjustment
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact


	Item Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Item Loc Inventory Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	MerchHierarchy Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Purchase Order Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Reclass Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Shipment Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Stock Count Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Store Day User Service
	Functional Area
	Business Overview
	Create Store Day User
	Business Overview
	Service Type
	ReSTURL
	Input Parameters
	Output
	Table Impact

	Delete Store Day User
	Business Overview
	Service Type
	ReSTURL
	Input Parameters
	Output
	Table Impact


	Store Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Supplier Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Transfer Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	VAT Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Warehouse Detail Service
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact


	Sales Audit ReSTful Web Services
	Summary of Open Store Days
	Business Overview
	Service Type
	ReSTURL
	Input Parameters
	Output
	Table Impact

	Summary of Errors
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Summary of Over/Short Amount
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Summary of Over/Short Count
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Get Store Days
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Get Store Errors
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Get Store Aggregations
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Store Search
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Get Store Day Date Indicator
	Business Overview
	Service Type
	ReST URL
	Input Parameters
	Output
	Table Impact

	Data Privacy Access Service
	Business Overview
	Service Type
	ReSTURL
	Accept
	Query Parameters
	Path Parameters
	Default Response
	Sample Response
	Response Codes and Error Messages
	Success Payloads

	Data Privacy Forget Service
	Business Overview
	Service Type
	ReSTURL
	Accept
	Query Parameters
	Path Parameters
	Default Response
	Response Codes and Error Messages
	Success Payloads



	6 Bulk Data Integration
	Overview
	Brand Publication BDI
	Functional Area
	Design Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Calendar Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Code Detail Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Code Head Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Company-wide Closings and Company Closed Exceptions Publication BDI
	Functional Area
	Design Overview
	Package Impact
	Data Definition XML
	Tables

	Currency Conversion Rates Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Delivery Slot Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Diff Group Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Diff ID Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Finance General Ledger Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Finisher Address Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Future Available Inventory Publication BDI
	Functional Area
	Design Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Tables

	Inventory Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Item Image Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Item Location Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Item Location History Publication BDI
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Key Tables Affected
	Integration Contract

	Item Master Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Item Supplier Country Dim Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Item Supplier Country Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Item Supplier Manufacturing Country Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Item Supplier UOM Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Item Supplier Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Location Closed Publication BDI
	Functional Area
	Design Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Tables

	Merch Hierarchy Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	On Order Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Organization Hierarchy Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Pack Item Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Partner Address Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Partner Org Unit Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Partner Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Price History Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Related Item Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Replenishment Item Location Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Store Address Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Store Available Inventory Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Store Hours Publication BDI
	Function Area
	Design Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Tables

	Store Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Supplier Address Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Sups Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Tran Data Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	UDA Item Date Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	UDA Item FF Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	UDA Item LOV Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	UDA Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	UDA Values Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	UOM Class Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	UOM Conversion Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Data Definition XML
	Table Impact

	Warehouse Inventory Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Warehouse Address Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Warehouse Publication BDI
	Functional Area
	Business Overview
	Package Impact
	Bulk Interface Module

	Data Definition XML
	Table Impact

	Daily Demand Item Forecast Subscription BDI
	Functional Area
	Design Overview
	Data Definition XML
	Tables

	Weekly Demand Item Forecast Subscription BDI
	Functional Area
	Design Overview
	Data Definition XML
	Tables



