
Oracle® Fusion Middleware
Reference for Oracle GoldenGate

19c (19.1.0)
E98072-12
October 2022

Oracle Fusion Middleware Reference for Oracle GoldenGate, 19c (19.1.0)

E98072-12

Copyright © 1995, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Related Information xiii

Conventions xiv

Part I Oracle GoldenGate Common Components

1 Oracle GoldenGate Parameters

1.1 Summary of Extract Parameters 1-6

1.2 Summary of Replicat Parameters 1-9

1.3 ABORTDISCARDRECS 1-12

1.4 ALLOCFILES 1-13

1.5 ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP 1-13

1.6 ALLOWINVISIBLEINDEXKEYS 1-14

1.7 ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS 1-15

1.8 ALLOWNONVALIDATEDKEYS 1-16

1.9 ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES 1-17

1.10 ALLOWOUTPUTDIR 1-18

1.11 APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES 1-19

1.12 APPLY_PARALLELISM | MAX_APPLY_PARALLELISM |
MIN_APPLY_PARALLELISM 1-19

1.13 ASCIITOEBCDIC 1-20

1.14 ASSUMETARGETDEFS 1-21

1.15 AUTORESTART 1-21

1.16 AUTOSTART 1-23

1.17 BATCHSQL 1-24

1.18 BEGIN 1-28

1.19 BLOBMEMORY 1-29

1.20 BR 1-29

1.21 BULKLOAD 1-35

iii

1.22 CACHEMGR 1-36

1.23 CATALOGEXCLUDE 1-38

1.24 CHARMAP 1-39

1.25 CHECKPARAMS 1-40

1.26 CHECKPOINTSECS 1-41

1.27 CHECKPOINTTABLE 1-42

1.28 CHUNK_SIZE 1-42

1.29 CMDTRACE 1-43

1.30 COLCHARSET 1-43

1.31 COLMATCH 1-45

1.32 COMPRESSDELETES | NOCOMPRESSDELETES 1-46

1.33 COMPRESSUPDATES | NOCOMPRESSUPDATES 1-47

1.34 COMMIT_SERIALIZATION 1-48

1.35 COORDSTATINTERVAL 1-48

1.36 COORDTIMER 1-49

1.37 CREDENTIALSTORELOCATION 1-49

1.38 CRYPTOENGINE 1-50

1.39 CUSEREXIT 1-51

1.40 DBOPTIONS 1-52

1.41 DDL 1-63

1.42 DDLERROR 1-71

1.43 DDLOPTIONS 1-73

1.44 DDLSUBST 1-80

1.45 DDLRULEHINT 1-82

1.46 DDLTABLE 1-82

1.47 DECRYPTTRAIL 1-83

1.48 DEFERAPPLYINTERVAL 1-84

1.49 DEFSFILE 1-85

1.50 DICTIONARY_CACHE_SIZE 1-87

1.51 DISCARDFILE | NODISCARDFILE 1-88

1.52 DISCARDROLLOVER 1-90

1.53 DYNAMICRESOLUTION | NODYNAMICRESOLUTION 1-91

1.54 EBCDICTOASCII 1-92

1.55 ENABLEMONITORING 1-92

1.56 ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE 1-93

1.57 ENCRYPTTRAIL | NOENCRYPTTRAIL 1-94

1.58 END 1-96

1.59 EOFDELAY | EOFDELAYCSECS 1-97

1.60 EXCLUDEHIDDENCOLUMNS 1-98

1.61 EXCLUDETAG 1-98

1.62 EXCLUDEWILDCARDOBJECTSONLY 1-99

iv

1.63 EXTFILE 1-100

1.64 EXTRACT 1-102

1.65 EXTTRAIL 1-102

1.66 FETCHOPTIONS 1-105

1.67 FETCHUSERID 1-108

1.68 FETCHUSERIDALIAS 1-110

1.69 FILTERDUPS | NOFILTERDUPS 1-112

1.70 FILEGROUP 1-113

1.71 FLUSHSECS | FLUSHCSECS 1-113

1.72 FUNCTIONSTACKSIZE 1-114

1.73 GETAPPLOPS | IGNOREAPPLOPS 1-115

1.74 GETDELETES | IGNOREDELETES 1-116

1.75 GETINSERTS | IGNOREINSERTS 1-117

1.76 GETREPLICATES | IGNOREREPLICATES 1-117

1.77 GETTRUNCATES | IGNORETRUNCATES 1-118

1.78 GETUPDATEAFTERS | IGNOREUPDATEAFTERS 1-120

1.79 GETUPDATEBEFORES | IGNOREUPDATEBEFORES 1-120

1.80 GETUPDATES | IGNOREUPDATES 1-122

1.81 GGSCHEMA 1-122

1.82 GROUPTRANSOPS 1-123

1.83 HANDLECOLLISIONS | NOHANDLECOLLISIONS 1-124

1.84 HAVEUDTWITHNCHAR 1-129

1.85 HEARTBEATTABLE 1-129

1.86 INCLUDE 1-130

1.87 INSERTALLRECORDS 1-131

1.88 INSERTAPPEND | NOINSERTAPPEND 1-132

1.89 INSERTDELETES | NOINSERTDELETES 1-133

1.90 INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES 1-134

1.91 INSERTUPDATES | NOINSERTUPDATES 1-134

1.92 INSERTUPSERTS | NOINSERTUPSERTS 1-135

1.93 LIST | NOLIST 1-136

1.94 LOBMEMORY 1-137

1.95 LOGALLSUPCOLS 1-139

1.96 LOOK_AHEAD_TRANSACTIONS 1-140

1.97 MACRO 1-140

1.98 MACROCHAR 1-142

1.99 MAP for Extract 1-143

1.100 MAP 1-144

1.101 MAPALLCOLUMNS| NOMAPALLCOLUMNS 1-144

1.102 MAP_PARALLELISM 1-145

1.103 MAPEXCLUDE 1-146

v

1.104 MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS 1-147

1.105 MARKERTABLE 1-148

1.106 MASTERKEYNAME 1-149

1.107 MAXDISCARDRECS 1-150

1.108 MAXGROUPS 1-150

1.109 MAXSQLSTATEMENTS 1-151

1.110 MAXTRANSOPS 1-152

1.111 MGRSERVNAME 1-153

1.112 NAMECCSID 1-153

1.113 NAMEMATCH parameters 1-154

1.114 NOCATALOG 1-155

1.115 NODUPMSGSUPPRESSION 1-155

1.116 NUMFILES 1-155

1.117 OBEY 1-156

1.118 OUTPUTFILEUMASK 1-157

1.119 OUTPUTFORMAT 1-157

1.120 OVERRIDEDUPS | NOOVERRIDEDUPS 1-162

1.121 PARTIALBLOCKRETRYSECS 1-163

1.122 PTKCAPTUREPROCSTATS 1-163

1.123 PTKMONITORFREQUENCY 1-164

1.124 PRESERVETARGETTIMEZONE 1-164

1.125 PROCEDURE 1-165

1.126 PURGEOLDEXTRACTS for Extract and Replicat 1-165

1.127 REPERROR 1-166

1.128 REPFETCHEDCOLOPTIONS 1-172

1.129 REPLACEBADCHAR 1-175

1.130 REPLACEBADNUM 1-176

1.131 REPLICAT 1-177

1.132 REPORT 1-177

1.133 REPORTCOUNT 1-179

1.134 REPORTROLLOVER 1-180

1.135 REPOUDPPORT 1-181

1.136 RESTARTCOLLISIONS | NORESTARTCOLLISIONS 1-182

1.137 RMTFILE 1-183

1.138 RMTHOST 1-185

1.139 RMTHOSTOPTIONS 1-190

1.140 RMTTASK 1-193

1.141 RMTTRAIL 1-194

1.142 ROLLOVER 1-197

1.143 SCHEMAEXCLUDE 1-198

1.144 SEQUENCE 1-199

vi

1.145 SESSIONCHARSET 1-202

1.146 SETENV 1-202

1.147 SHOWSYNTAX 1-204

1.148 SOURCEDB 1-206

1.149 SOURCECATALOG 1-207

1.150 SOURCECHARSET 1-208

1.151 SOURCEDEFS 1-210

1.152 SOURCEISTABLE 1-211

1.153 SOURCETIMEZONE 1-212

1.154 SPACESTONULL | NOSPACESTONULL 1-213

1.155 SPECIALRUN 1-214

1.156 SPLIT_TRANS_RECS 1-214

1.157 SQLDUPERR 1-215

1.158 SQLEXEC 1-215

1.159 STATOPTIONS 1-226

1.160 TABLE | MAP 1-228

1.161 TABLE for DEFGEN 1-272

1.162 TABLE for Replicat 1-273

1.163 TABLEEXCLUDE 1-274

1.164 TARGETDB 1-275

1.165 TARGETDEFS 1-276

1.166 TCPSOURCETIMER | NOTCPSOURCETIMER 1-277

1.167 TRACE | TRACE2 1-278

1.168 TRACETABLE | NOTRACETABLE 1-280

1.169 TRAILBYTEORDER 1-281

1.170 TRAILCHARSET 1-282

1.171 TRAILCHARSETASCII 1-283

1.172 TRAILCHARSETEBCDIC 1-284

1.173 TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D 1-284

1.174 TRANLOGOPTIONS 1-285

1.175 TRANSACTIONTIMEOUT 1-311

1.176 TRANSMEMORY 1-313

1.177 TRIMSPACES | NOTRIMSPACES 1-313

1.178 TRIMVARSPACES | NOTRIMVARSPACES 1-314

1.179 UPDATEDELETES | NOUPDATEDELETES 1-315

1.180 UPDATEINSERTS | NOUPDATEINSERTS 1-315

1.181 UPDATERECORDFORMAT 1-316

1.182 UPREPORTMINUTES | UPREPORTHOURS 1-318

1.183 USE_TRAILDEFS | NO_USE_TRAILDEFS 1-318

1.184 USEDEDICATEDCOORDINATIONTHREAD 1-319

1.185 USEIPV4 | USEIPV6 1-320

vii

1.186 USERID | NOUSERID 1-320

1.187 USERIDALIAS 1-327

1.188 VARWIDTHNCHAR | NOVARWIDTHNCHAR 1-331

1.189 WALLETLOCATION 1-331

1.190 WARNLONGTRANS 1-332

1.191 WARNRATE 1-333

1.192 WILDCARDRESOLVE 1-334

1.193 XAGENABLE 1-335

1.194 Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT 1-335

2 Column Conversion Functions

2.1 Summary of Column-Conversion Functions 2-2

2.2 @RANGE 2-4

2.3 @AFTER 2-6

2.4 @BEFORE 2-6

2.5 @BEFOREAFTER 2-6

2.6 @BINARY 2-7

2.7 @BINTOBASE64 2-7

2.8 @BINTOHEX 2-8

2.9 @CASE 2-8

2.10 @COLSTAT 2-9

2.11 @COLTEST 2-9

2.12 @COMPUTE 2-10

2.13 @DATE 2-12

2.14 @DATEDIFF 2-15

2.15 @DATENOW 2-16

2.16 @DDL 2-16

2.17 @EVAL 2-16

2.18 @GETENV 2-17

2.19 @GETVAL 2-34

2.20 @HEXTOBIN 2-36

2.21 @HIGHVAL | LOWVAL 2-36

2.22 @IF 2-37

2.23 @NUMBIN 2-38

2.24 @NUMSTR 2-39

2.25 @OGG_SHA1 2-39

2.26 @STRCAT 2-39

2.27 @STRCMP 2-40

2.28 @STRCMPNULL 2-40

2.29 @STREQ 2-41

viii

2.30 @STREQNULL 2-41

2.31 @STREXT 2-42

2.32 @STRFIND 2-42

2.33 @STRLEN 2-43

2.34 @STRLTRIM 2-43

2.35 @STRNCAT 2-44

2.36 @STRNCMP 2-44

2.37 @STRNUM 2-45

2.38 @STRRTRIM 2-46

2.39 @STRSUB 2-47

2.40 @STRTRIM 2-48

2.41 @STRUP 2-48

2.42 @TOKEN 2-48

2.43 @VALONEOF 2-49

3 User Exit Functions

3.1 Summary of User Exit Functions 3-2

3.2 Calling a User Exit 3-3

3.3 Using EXIT_CALL_TYPE 3-3

3.4 Using EXIT_CALL_RESULT 3-4

3.5 Using EXIT_PARAMS 3-5

3.6 Using ERCALLBACK 3-5

3.7 Function Codes 3-7

3.8 COMPRESS_RECORD 3-9

3.9 DECOMPRESS_RECORD 3-11

3.10 GET_BASE_OBJECT_NAME 3-12

3.11 GET_BASE_OBJECT_NAME_ONLY 3-14

3.12 GET_BASE_SCHEMA_NAME_ONLY 3-15

3.13 GET_BEFORE_AFTER_IND 3-17

3.14 GET_CATALOG_NAME_ONLY 3-18

3.15 GET_COL_METADATA_FROM_INDEX 3-19

3.16 GET_COL_METADATA_FROM_NAME 3-22

3.17 GET_COLUMN_INDEX_FROM_NAME 3-24

3.18 GET_COLUMN_NAME_FROM_INDEX 3-25

3.19 GET_COLUMN_VALUE_FROM_INDEX 3-27

3.20 GET_COLUMN_VALUE_FROM_NAME 3-30

3.21 GET_DATABASE_METADATA 3-34

3.22 GET_DDL_RECORD_PROPERTIES 3-35

3.23 @GETENV 3-38

3.24 GET_ENV_VALUE 3-55

ix

3.25 GET_ERROR_INFO 3-56

3.26 GET_GMT_TIMESTAMP 3-57

3.27 GET_MARKER_INFO 3-58

3.28 GET_OBJECT_NAME 3-60

3.29 GET_OBJECT_NAME_ONLY 3-61

3.30 GET_OPERATION_TYPE 3-63

3.31 GET_POSITION 3-64

3.32 GET_RECORD_BUFFER 3-65

3.33 GET_RECORD_LENGTH 3-67

3.34 GET_RECORD_TYPE 3-68

3.35 GET_SCHEMA_NAME_ONLY 3-69

3.36 GET_SESSION_CHARSET 3-71

3.37 GET_STATISTICS 3-72

3.38 GET_TABLE_COLUMN_COUNT 3-74

3.39 GET_TABLE_METADATA 3-75

3.40 GET_TABLE_NAME 3-77

3.41 GET_TABLE_NAME_ONLY 3-78

3.42 GET_TIMESTAMP 3-80

3.43 GET_TRANSACTION_IND 3-81

3.44 GET_USER_TOKEN_VALUE 3-82

3.45 OUTPUT_MESSAGE_TO_REPORT 3-83

3.46 RESET_USEREXIT_STATS 3-84

3.47 SET_COLUMN_VALUE_BY_INDEX 3-84

3.48 SET_COLUMN_VALUE_BY_NAME 3-87

3.49 SET_OPERATION_TYPE 3-89

3.50 SET_RECORD_BUFFER 3-91

3.51 SET_SESSION_CHARSET 3-92

3.52 SET_TABLE_NAME 3-93

Part II Oracle GoldenGate Classic Architecture

4 Collector Parameters

4.1 Overview of the Collector Process 4-1

4.2 -B 4-2

4.3 -cp 4-2

4.4 -d 4-2

4.5 -E 4-2

4.6 -e 4-3

4.7 -ENCRYPT 4-4

4.8 -f 4-4

x

4.9 -g 4-4

4.10 -h 4-5

4.11 -k 4-5

4.12 -KEYNAME 4-5

4.13 -l 4-5

4.14 -m 4-6

4.15 -P 4-6

4.16 -p 4-6

4.17 -R 4-7

4.18 -x 4-7

5 Manager Parameters

5.1 ACCESSRULE 5-1

5.2 BOOTDELAYMINUTES 5-3

5.3 CHARSET 5-4

5.4 CHECKMINUTES 5-5

5.5 COMMENT | -- 5-6

5.6 DOWNREPORTMINUTES | DOWNREPORTHOURS 5-6

5.7 DYNAMICPORTLIST 5-7

5.8 MONITORING_HEARTBEAT_TIMEOUT 5-8

5.9 LAGCRITICAL 5-8

5.10 LAGINFO 5-9

5.11 LAGREPORT 5-10

5.12 PORT 5-10

5.13 PURGEDDLHISTORY | PURGEDDLHISTORYALT 5-11

5.14 PURGEOLDEXTRACTS for Manager 5-13

5.15 PURGEOLDTASKS 5-16

5.16 SOURCEDB 5-17

5.17 STARTUPVALIDATIONDELAY[CSECS] 5-18

5.18 THREADOPTIONS 5-19

5.19 USERIDALIAS 5-20

6 Oracle GoldenGate Programs

6.5 ggsci 6-1

6.1 checkprm 6-2

6.2 convchk 6-4

6.3 defgen 6-5

6.4 extract 6-7

6.6 install 6-8

xi

6.7 keygen 6-9

6.8 logdump 6-10

6.9 mgr 6-10

6.10 replicat 6-11

xii

Preface

This guide contains reference information, with usage and syntax guidelines, for:

• Oracle GoldenGate GGSCI commands.

• Oracle GoldenGate configuration parameters.

• Oracle GoldenGate column-conversion functions.

• Oracle GoldenGate user exit functions.

• Oracle GoldenGate Admin Client commands

• Oracle GoldenGate commands, parameters, and functions for heterogeneous databases

• Audience

• Documentation Accessibility

• Related Information

• Conventions

Audience
This guide is intended for the person or persons who are responsible for operating Oracle
GoldenGate and maintaining its performance. This audience typically includes, but is not
limited to, systems administrators and database administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at

https://docs.oracle.com/en/middleware/goldengate/index.html

For additional information on Oracle GoldenGate, refer to, https://www.oracle.com/
middleware/technologies/goldengate.html

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/middleware/technologies/goldengate.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic

italic
Italic type indicates placeholder variables for which you supply
particular values, such as in the parameter statement: TABLE
table_name. Italic type also is used for book titles and emphasis.

monospace
MONOSPACE

Monospace type indicates code components such as user exits and
scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace type
is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{ } Braces within syntax enclose a set of options that are separated by pipe
symbols, one of which must be selected, for example: {option1 |
option2 | option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name
[, SAVE count]. Multiple options within an optional element are
separated by a pipe symbol, for example: [option1 | option2].

Preface

xiv

Part I
Oracle GoldenGate Common Components

There are a number of data replication processes that are common to both Oracle
GoldenGate architectures.

This part describes the commands, parameters, and options that are common to both Oracle
GoldenGate Microservices and Classic architectures.

Note:

To know about the commands and parameters for Oracle GoldenGate for HP
Nonstop, see the Reference Guide for Oracle GoldenGate for HP NonStop
(Guardian). The commands and parameters mentioned in this guide are only for
open systems including Linux, UNIX, Windows, DB2 z/OS, and iSeries.

Topics:

• Oracle GoldenGate Parameters

• Column Conversion Functions

• User Exit Functions

1
Oracle GoldenGate Parameters

This chapter contains summaries of the Oracle GoldenGate parameters that control
processing, followed by detailed descriptions of each parameter in alphabetical order.
Topics:

• Summary of Extract Parameters

• Summary of Replicat Parameters

• ABORTDISCARDRECS

• ALLOCFILES

• ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP

• ALLOWINVISIBLEINDEXKEYS

• ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS

• ALLOWNONVALIDATEDKEYS

• ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES

• ALLOWOUTPUTDIR

• APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES

• APPLY_PARALLELISM | MAX_APPLY_PARALLELISM | MIN_APPLY_PARALLELISM

• ASCIITOEBCDIC

• ASSUMETARGETDEFS

• AUTORESTART

• AUTOSTART

• BATCHSQL

• BEGIN

• BLOBMEMORY

• BR

• BULKLOAD

• CACHEMGR

• CATALOGEXCLUDE

• CHARMAP

• CHECKPARAMS

• CHECKPOINTSECS

• CHECKPOINTTABLE

• CHUNK_SIZE

• CMDTRACE

1-1

• COLCHARSET

• COLMATCH

• COMPRESSDELETES | NOCOMPRESSDELETES

• COMPRESSUPDATES | NOCOMPRESSUPDATES

• COMMIT_SERIALIZATION

• COORDSTATINTERVAL

• COORDTIMER

• CREDENTIALSTORELOCATION

• CRYPTOENGINE

• CUSEREXIT

• DBOPTIONS

• DDL

• DDLERROR

• DDLOPTIONS

• DDLSUBST

• DDLRULEHINT

• DDLTABLE

• DECRYPTTRAIL

• DEFERAPPLYINTERVAL

• DEFSFILE

• DICTIONARY_CACHE_SIZE

• DISCARDFILE | NODISCARDFILE

• DISCARDROLLOVER

• DYNAMICRESOLUTION | NODYNAMICRESOLUTION

• EBCDICTOASCII

• ENABLEMONITORING

• ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE

• ENCRYPTTRAIL | NOENCRYPTTRAIL

• END

• EOFDELAY | EOFDELAYCSECS

• EXCLUDEHIDDENCOLUMNS

• EXCLUDETAG

• EXCLUDEWILDCARDOBJECTSONLY

• EXTFILE

• EXTRACT

• EXTTRAIL

• FETCHOPTIONS

Chapter 1

1-2

• FETCHUSERID

• FETCHUSERIDALIAS

• FILTERDUPS | NOFILTERDUPS

• FILEGROUP

• FLUSHSECS | FLUSHCSECS

• FUNCTIONSTACKSIZE

• GETAPPLOPS | IGNOREAPPLOPS

• GETDELETES | IGNOREDELETES

• GETINSERTS | IGNOREINSERTS

• GETREPLICATES | IGNOREREPLICATES

• GETTRUNCATES | IGNORETRUNCATES

• GETUPDATEAFTERS | IGNOREUPDATEAFTERS

• GETUPDATEBEFORES | IGNOREUPDATEBEFORES

• GETUPDATES | IGNOREUPDATES

• GGSCHEMA

• GROUPTRANSOPS

• HANDLECOLLISIONS | NOHANDLECOLLISIONS

• HAVEUDTWITHNCHAR

• HEARTBEATTABLE

• INCLUDE

• INSERTALLRECORDS

• INSERTAPPEND | NOINSERTAPPEND

• INSERTDELETES | NOINSERTDELETES

• INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES

• INSERTUPDATES | NOINSERTUPDATES

• INSERTUPSERTS | NOINSERTUPSERTS

• LIST | NOLIST

• LOBMEMORY

• LOGALLSUPCOLS

• LOOK_AHEAD_TRANSACTIONS

• MACRO

• MACROCHAR

• MAP for Extract

• MAP

• MAPALLCOLUMNS| NOMAPALLCOLUMNS

• MAP_PARALLELISM

• MAPEXCLUDE

Chapter 1

1-3

• MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS

• MARKERTABLE

• MASTERKEYNAME

• MAXDISCARDRECS

• MAXGROUPS

• MAXSQLSTATEMENTS

• MAXTRANSOPS

• MGRSERVNAME

• NAMECCSID

• NAMEMATCH parameters

• NOCATALOG

• NODUPMSGSUPPRESSION

• NUMFILES

• OBEY

• OUTPUTFILEUMASK

• OUTPUTFORMAT

• OVERRIDEDUPS | NOOVERRIDEDUPS

• PARTIALBLOCKRETRYSECS

• PTKCAPTUREPROCSTATS

• PTKMONITORFREQUENCY

• PRESERVETARGETTIMEZONE

• PROCEDURE

• PURGEOLDEXTRACTS for Extract and Replicat

• REPERROR

• REPFETCHEDCOLOPTIONS

• REPLACEBADCHAR

• REPLACEBADNUM

• REPLICAT

• REPORT

• REPORTCOUNT

• REPORTROLLOVER

• REPOUDPPORT

• RESTARTCOLLISIONS | NORESTARTCOLLISIONS

• RMTFILE

• RMTHOST

• RMTHOSTOPTIONS

• RMTTASK

Chapter 1

1-4

• RMTTRAIL

• ROLLOVER

• SCHEMAEXCLUDE

• SEQUENCE

• SESSIONCHARSET

• SETENV

• SHOWSYNTAX

• SOURCEDB

• SOURCECATALOG

• SOURCECHARSET

• SOURCEDEFS

• SOURCEISTABLE

• SOURCETIMEZONE

• SPACESTONULL | NOSPACESTONULL

• SPECIALRUN

• SPLIT_TRANS_RECS

• SQLDUPERR

• SQLEXEC

• STATOPTIONS

• TABLE | MAP

• TABLE for DEFGEN

• TABLE for Replicat

• TABLEEXCLUDE

• TARGETDB

• TARGETDEFS

• TCPSOURCETIMER | NOTCPSOURCETIMER

• TRACE | TRACE2

• TRACETABLE | NOTRACETABLE

• TRAILBYTEORDER

• TRAILCHARSET

• TRAILCHARSETASCII

• TRAILCHARSETEBCDIC

• TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D

• TRANLOGOPTIONS

• TRANSACTIONTIMEOUT

• TRANSMEMORY

• TRIMSPACES | NOTRIMSPACES

Chapter 1

1-5

• TRIMVARSPACES | NOTRIMVARSPACES

• UPDATEDELETES | NOUPDATEDELETES

• UPDATEINSERTS | NOUPDATEINSERTS

• UPDATERECORDFORMAT

• UPREPORTMINUTES | UPREPORTHOURS

• USE_TRAILDEFS | NO_USE_TRAILDEFS

• USEDEDICATEDCOORDINATIONTHREAD

• USEIPV4 | USEIPV6

• USERID | NOUSERID

• USERIDALIAS

• VARWIDTHNCHAR | NOVARWIDTHNCHAR

• WALLETLOCATION

• WARNLONGTRANS

• WARNRATE

• WILDCARDRESOLVE

• XAGENABLE

• Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

1.1 Summary of Extract Parameters
The Extract process captures either full data records or transactional data changes,
depending on configuration parameters, and then sends the data to a target system to
be applied to target tables or processed further by another process, such as a load
utility.

Table 1-1 Extract Parameters: General

Parameter Description

ABORTDISCARDRECS Controls the number of discarded records after
which Extract aborts.

#unique_215
Controls the recovery mode of the Extract
process.

SOURCEDB
Specifies the data source as part of the login
information.

TCPSOURCETIMER |
NOTCPSOURCETIMER

Adjusts timestamps of records transferred to
other systems when those systems reflect
different times.

UPDATERECORDFORMAT Controls whether before and after images are
stored in one trail record or two.

Chapter 1
Summary of Extract Parameters

1-6

Table 1-2 Extract Parameters: Processing Method

Parameter Description

EXTRACT
Defines an Extract group as an online process.

GETAPPLOPS | IGNOREAPPLOPS
Controls whether or not operations from all processes
except Replicat are written to a trail or file.

GETREPLICATES | IGNOREREPLICATES
Controls whether or not replicated operations are
captured by an Extract on the same system.

SOURCEISTABLE
Extracts entire records from source tables.

#unique_217
Indicates that a Teradata Access Module (TAM) is
being used to provide transactional data to the Extract
process.

Table 1-3 Extract Parameters: Selecting, Converting, and Mapping Data

Parameter Description

COMPRESSDELETES | NOCOMPRESSDELETES
Controls whether Oracle GoldenGate writes only
the key or all columns to the trail for delete
operations.

COMPRESSUPDATES | NOCOMPRESSUPDATES
Causes only primary key columns and changed
columns to be logged for updates.

EXCLUDEHIDDENCOLUMNS The parameter disables all the Oracle Database
hidden columns including the timestamp columns
created using automatic CDR.

EXCLUDETAG Specifies Replicat or data pump changes to be
excluded from trail files.

FETCHOPTIONS
Controls certain aspects of the way that Oracle
GoldenGate fetches data.

LOGALLSUPCOLS Logs the columns that are required to support
Conflict Detection and Resolution and Integrated
Replicat.

SEQUENCE
Specifies sequences for synchronization.

TABLE | MAP
Specifies tables for extraction and controls column
mapping and conversion.

TABLEEXCLUDE
Excludes source tables from the extraction
process.

TARGETDEFS
Specifies a file containing target table definitions
for target databases that reside on the NonStop
platform.

TRAILCHARSETASCII
Specifies the ASCII character set for data
captured from DB2 on z/OS, when both ASCII and
EBCDIC tables are present.

Chapter 1
Summary of Extract Parameters

1-7

Table 1-3 (Cont.) Extract Parameters: Selecting, Converting, and Mapping Data

Parameter Description

TRAILCHARSETEBCDIC
Specifies the EBCDIC character set for data
captured from DB2 on z/OS, when both ASCII and
EBCDIC tables are present.

Table 1-4 Extract Parameters: Routing Data

Parameter Description

EXTFILE
Specifies an extract file to which extracted data is
written on the local system.

EXTTRAIL
Specifies a trail to which extracted data is written
on the local system.

RMTFILE
Specifies an extract file to which extracted data is
written on a remote system.

RMTHOST
Specifies the target system and Manager port
number.

RMTTRAIL
Specifies a trail to which extracted data is written
on a remote system.

Table 1-5 Extract Parameters: Tuning

Parameter Description

BR
Controls the Bounded Recovery feature of Extract.

CACHEMGR
Controls the virtual memory cache manager.

FLUSHSECS |
FLUSHCSECS

Determines the amount of time that record data remains buffered
before being written to the trail.

LOBMEMORY
Controls the amount of memory and temporary disk space
available for caching transactions that contain LOBs.

RMTHOSTOPTIONS
Specifies connection attributes other than host information for a
TCP/IP connection used by a passive Extract group.

TRANLOGOPTIONS
Supplies capture processing options.

WARNLONGTRANS
Defines a long-running transaction and controls the frequency of
checking for and reporting them.

Table 1-6 Extract Parameters: Maintenance

Parameter Description

ROLLOVER
Specifies the way that trail files are aged.

Chapter 1
Summary of Extract Parameters

1-8

Table 1-7 Extract Parameters: Security

Parameter Description

DECRYPTTRAIL Required to decrypt data when Extract is used as a data
pump and must do work on the data.

ENCRYPTTRAIL | NOENCRYPTTRAIL
Controls encryption of data in a trail or extract file.

1.2 Summary of Replicat Parameters
The Replicat process reads data extracted by the Extract process and applies it to target
tables or prepares it for use by another application, such as a load utility.

Parameter Description

TARGETDB Specifies the data source as part of the login information.

HAVEUDTWITHNCHAR Causes Replicat to connect in UTF-8 to prevent data loss when the record
being processed is a user-defined type that has an NCHAR/NVARCHAR2
attribute.

Replicat parameters: Processing method.

Parameter Description

BEGIN Specifies a starting point for Replicat processing. Required when SPECIALRUN is
specified.

BULKLOAD Loads data directly into the interface of the Oracle SQL*Loader utility.

END Specifies a stopping point for Replicat processing. Required when using
SPECIALRUN.

#unique_218 Generates run and control files that are compatible with a database load utility.

REPLICAT Specifies a Replicat group for online change synchronization.

SPECIALRUN Used for one-time processing that does not require checkpointing from run to run.

Replicat parameters: Selecting, converting, and mapping data.

Parameter Description

#unique_219 Specifies database options. This is a global parameter,
applying to all TABLE or MAP statements in the parameter
file. Some DBOPTIONS options apply only to Extract or
Replicat.

ALLOWNOOPUPDATES |
NOALLOWNOOPUPDATES

Controls how Replicat responds to a no-op operation. A
no-op operation is one in which there is no effect on the
target table.

APPLYNOOPUPDATES |
NOAPPLYNOOPUPDATES

Force a no-op update to be applied using all columns in
both the SET and WHERE clauses.

APPLY_PARALLELISM Configures number of appliers. This controls the number
of connections in the target database used to apply the
changes. The default value is four.

Chapter 1
Summary of Replicat Parameters

1-9

Parameter Description

ASSUMETARGETDEFS Assumes that source and target tables have the same
column structure.

INSERTALLRECORDS
Inserts a new record into the target table for every
change operation made to a record.

INSERTDELETES | NOINSERTDELETES Converts deletes to inserts.

INSERTMISSINGUPDATES |
NOINSERTMISSINGUPDATES

Converts an update to an insert when the target row
does not exist.

INSERTUPDATES | NOINSERTUPDATES Converts updates to inserts.

TABLE | MAP Specifies a relationship between one or more source and
target tables and controls column mapping and
conversion.

MAPEXCLUDE Excludes source tables from being processed by a
wildcard specification supplied in MAP statements.

MAP_PARALLELISM Configures the number of mappers. This controls the
number of threads used to read the trail file. The
minimum value is 1, maximum value is 100 and the
default value is 2.

MAX_PARALLELISM , MIN_PARALLELISM APPLY_PARALLELISM is auto-tuned. You can set a
minimum and maximum value to define the ranges in
which the Replicat automatically adjusts its parallelism.
There are no defaults. Do not use with
APPLY_PARALLELISM at the same time.

PRESERVETARGETTIMEZONE Overrides the default Replicat session time zone.

REPLACEBADNUM Specifies a global substitution value for invalid numeric
data encountered when mapping number columns.

SOURCECHARSET Controls whether the source character set it converted to
the target character set.

SOURCETIMEZONE Specifies the time zone of the source database for
Replicat to use as the session time zone.

SPACESTONULL | NOSPACESTONULL Controls whether or not a target column containing only
spaces is converted to NULL.

TABLE for Replicat
Specifies a table or tables for which event actions are to
take place when a row satisfies the given filter criteria.

TRAILCHARSET Specifies the character set of the source data when the
trail is of an older version that does not store the source
character set, or to override the character set that is
stored in the trail.

UPDATEINSERTS | NOUPDATEINSERTS Converts insert operations to update operations for all
MAP statements that are specified after it in the
parameter file.

UPDATEDELETES | NOUPDATEDELETES Converts deletes to updates.

USEDEDICATEDCOORDINATIONTHREAD Specifies a dedicated thread for barrier transactions
when Replicat is in coordinated mode.

Replicat parameters: Routing data.

Chapter 1
Summary of Replicat Parameters

1-10

Parameter Description

EXTFILE Defines the name of an extract file on the local system that contains data to
be replicated. Used for one-time processing.

EXTTRAIL Defines a trail containing data to be replicated. Used for one-time
processing.

Replicat parameters: Error handling and reporting.

Parameter Description

HANDLECOLLISIONS | NOHANDLECOLLISIONS Handles errors for duplicate and missing
records.

#unique_220 Prevents constraint errors associated with
replicating transient primary key updates.

OVERRIDEDUPS | NOOVERRIDEDUPS Overlays a replicated insert record onto an
existing target record whenever a duplicate-
record error occurs.

RESTARTCOLLISIONS | NORESTARTCOLLISIONS Controls whether or not Replicat applies
HANDLECOLLISIONS logic after Oracle
GoldenGate has abended because of a conflict.

REPERROR Determines how Replicat responds to database
errors.

REPFETCHEDCOLOPTIONS Determines how Replicat responds to
operations for which a fetch from the source
database was required.

SHOWSYNTAX Causes Replicat to print its SQL statements to
the report file.

SQLDUPERR Specifies the database error number that
indicates a duplicate record. Use with
OVERRIDEDUPS.

WARNRATE Determines how often database errors are
reported.

Replicat parameters: Tuning.

Parameter Description

BATCHSQL Increases the throughput of Replicat processing by arranging
similar SQL statements into arrays and applying them at an
accelerated rate.

COORDSTATINTERVAL The interval at which the coordinator thread sends a request
to the apply threads for statistics.

COORDTIMER The amount of time that the coordinator thread waits for the
apply threads to start.

CHUNK_SIZE Controls how large a transaction must be for parallel Replicat
to consider it as large. When parallel Replicat encounters a
transaction larger than this size, it will serialize it, resulting in
decreased performance. However, increasing this value will
also increase the amount of memory consumed by parallel
Replicat.

Chapter 1
Summary of Replicat Parameters

1-11

Parameter Description

COMMIT_SERIALIZATION Enables commit FULL serialization mode, which forces
transactions to be committed in trail order.

DEFERAPPLYINTERVAL Specifies a length of time for Replicat to wait before applying
replicated operations to the target database.

GROUPTRANSOPS Controls the number of records that are grouped into a
Replicat transaction.

INSERTAPPEND | NOINSERTAPPEND Controls whether or not Replicat uses an APPEND hint when
applying INSERT operations to Oracle target tables.

LOOK_AHEAD_TRANSACTIONS Controls how far ahead the Scheduler looks when batching
transactions. The default value is 10000.

MAXDISCARDRECS Limits the number of discarded records reported to the
discard file.

MAXSQLSTATEMENTS Controls the number of prepared SQL statements that can be
used by Replicat.

MAXTRANSOPS Divides large source transactions into smaller ones on the
target system.

NUMFILES Controls the initial allocation of memory that is dedicated to
storing information about tables to be processed by Oracle
GoldenGate.

SPLIT_TRANS_REC Specifies that large transactions should be broken into
pieces of specified size and applied in parallel.
Dependencies between pieces are still honored. Disabled by
default.

TRANSACTIONTIMEOUT Specifies a time interval after which Replicat will commit its
open target transaction and roll back any incomplete source
transactions that it contains, saving them for when the entire
source transaction is ready to be applied.

1.3 ABORTDISCARDRECS
Valid For

Initial Load Extract

Description

Use ABORTDISCARDRECS to abort Extracts configured with a DISCARDFILE after it has
discarded N number of records.

Default

Zero (0) (Do not abort Extract and any number of discards.)

Syntax

ABORTDISCARDRECS

Chapter 1
ABORTDISCARDRECS

1-12

1.4 ALLOCFILES
Valid For

Extract and Replicat

Description

Use the ALLOCFILES parameter to control the incremental number of memory structures that
are allocated after the initial memory allocation specified by the NUMFILES parameter is
reached. Together, these parameters control how process memory is allocated for storing
information about the source and target tables being processed.

The default values should be sufficient for both NUMFILES and ALLOCFILES, because memory
is allocated by the process as needed, system resources permitting.

ALLOCFILES must occur before any TABLE or MAP entries to have any effect. The valid range
of minimum value is 1

See NUMFILESfor more information.

Default

500

Syntax

ALLOCFILES number

number
The additional number of memory structures to be allocated. Do not set ALLOCFILES to an
arbitrarily high number, or memory will be consumed unnecessarily. The memory structures
of Oracle GoldenGate support up to two million tables.

Example

ALLOCFILES 1000

1.5 ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP
Valid For

Extract and Replicat

Not valid for Oracle Database when running with integrated Replicat or Parallel Replicat.

Description

Use the ALLOWDUPTARGETMAP and NOALLOWDUPTARGETMAP parameters to control whether or not
the following are accepted in a parameter file:

• In an Extract parameter file: duplicate TABLE parameters for the same source object if the
COLMAP option is used in any of them. By default, Extract abends on duplicate TABLE
statements when COLMAP is used.

Chapter 1
ALLOCFILES

1-13

• In a Replicat parameter file: duplicate MAP statements for the same source and
target objects. By default, duplicate MAP statements cause Replicat to abend.

If ALLOWDUPTARGETMAP is not specified and the same source and target tables are
mapped more than once, only the first MAP statement is used and the others are
ignored.

Default

NOALLOWDUPTARGETMAP

Syntax

ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP

Examples

Example 1
The following Extract parameter file is permissible with ALLOWDUPTARGETMAP enabled.

EXTRACT extcust
USERIDALIAS tiger1
ALLOWDUPTARGETMAP EXTTRAIL dirdat/aa
TABLE ogg.tcustmer;
EXTTRAIL dirdat/bb
TABLE ogg.tcustmer, TARGET ogg.tcustmer, COLMAP (USEDEFAULTS, col1=id,
col2=name);

Example 2
The following Replicat parameter file is permissible with ALLOWDUPTARGETMAP enabled.

REPLICAT repcust
USERIDALIAS tiger1
SOURCEDEFS /ggs/dirdef/source.def
ALLOWDUPTARGETMAP
GETINSERTS
GETUPDATES
IGNOREDELETES
MAP ggs.tcustmer, TARGET ggs.tcustmer, COLMAP (USEDEFAULTS, deleted_row = 'N');
IGNOREINSERTS
IGNOREUPDATES
GETDELETES
UPDATEDELETES
MAP ggs.tcustmer, TARGET ggs.tcustmer, COLMAP (USEDEFAULTS, deleted_row = 'Y');

Also see About Parallel Replicat.

1.6 ALLOWINVISIBLEINDEXKEYS
Valid For

GLOBALS

Description

Use the ALLOWINVISIBLEINDEXKEYS parameter in the GLOBALS file to allow Extract and
Replicat to use columns that are part of an Oracle invisible index as a unique row
identifier.

Chapter 1
ALLOWINVISIBLEINDEXKEYS

1-14

Note:

To enable trigger-based DDL replication to use Oracle invisible indexes, set the
following parameter to TRUE in the params.sql script:

define allow_invisible_index_keys = 'TRUE'
This functionality is automatically enabled for integrated capture and Replicat.

Default

None

Syntax

ALLOWINVISIBLEINDEXKEYS

1.7 ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS
Valid For

GLOBALS

ALLOWNULLABLEKEYS is not valid for integrated Replicat.

Description

Use NOALLOWNULLABLEKEYS to change the key selection logic so that it does not consider a
nullable unique key as a viable candidate for uniquely identifying a row. When disabled, the
nullable unique keys are viable candidates. The default value for NOALLOWNULLABLEKEYS is set
to true.

Allowing Oracle GoldenGate to use a nullable key can cause data corruption, as Oracle
treats each row with a NULL value as a key column and as a separate unique value. It is
recommended to use NOALLOWNULLABLEKEYS unless you are absolutely sure that the key
column does not contain any NULL values.

Be careful when using this parameter because it impacts the contents of the trail file and all
installations must be in sync when using this parameter.

Upon upgrade to Oracle GoldenGate 19c, it is recommended that you query
DBA_LOGSTDBY_NOT_UNIQUE view. If SCHEMATRANDATA is not being used, then for each table in
DBA_LOGSTDBY_NOT_UNIQUE view, add KEYCOLS that mirror key columns returned by INFO
TRANDATA, DELETE TRANDATA, or ADD TRANDATA for table to select or use a key with non-NULL
columns.

Default

NOALLOWNULLABLEKEYS

Syntax

ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS

Chapter 1
ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS

1-15

1.8 ALLOWNONVALIDATEDKEYS
Valid For

GLOBALS

Description

Use ALLOWNONVALIDATEDKEYS to allow Extract, Replicat, and GGSCI commands to use
a non-validated primary key or an invalid key as a unique identifier. This parameter
overrides the key selection criteria that is used by Oracle GoldenGate. When it is
enabled, Oracle GoldenGate will use NON VALIDATED and NOT VALID primary keys as a
unique identifier.

A key can become invalid as the result of an object reorganization or a number of
other actions, but if you know the keys are valid, ALLOWNONVALIDATEDKEYS saves the
downtime of re-validating them, especially in a testing environment. However, when
using ALLOWNONVALIDATEDKEYS, whether in testing or in production, you accept the risk
that the target data may not be maintained accurately through replication. If a key
proves to be non-valid and the table on which it is defined contains more than one
record with the same key value, Oracle GoldenGate might choose the wrong target
row to update.

To enable ALLOWNONVALIDATEDKEYS in a configuration where DDL replication is not
active, stop all processes, add ALLOWNONVALIDATEDKEYS to the GLOBALS parameter file,
and then restart the processes. To disable ALLOWNONVALIDATEDKEYS again, remove it
from the GLOBALS file and then restart the processes.

To enable ALLOWNONVALIDATEDKEYS functionality in a configuration where DDL support
is active, take the following steps.

1. Add the ALLOWNONVALIDATEDKEYS parameter to the GLOBALS parameter file.

2. Update the GGS_SETUP table in the DDL schema by using the following SQL.

UPDATE owner.GGS_SETUP SET value='1' WHERE property='ALLOWNONVALIDATEDKEYS';
COMMIT;

3. Restart all Oracle GoldenGate processes including Manager. From this point on,
Oracle GoldenGate selects non-validated or non-valid primary keys as a unique
identifier.

To disable ALLOWNONVALIDATEDKEYS functionality when DDL support is active, take the
following steps.

1. Remove ALLOWNONVALIDATEDKEYS from the GLOBALS parameter file.

2. Update the record that you added to the GGS_SETUP table to 0.

UPDATE owner.GGS_SETUP SET value='0' WHERE
property='ALLOWNONVALIDATEDKEYS';
COMMIT;

Restart all of the Oracle GoldenGate processes.

Chapter 1
ALLOWNONVALIDATEDKEYS

1-16

Default

None (Disabled)

Syntax

ALLOWNONVALIDATEDKEYS

1.9 ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES
Valid For

Replicat

Description

Use ALLOWNOOPUPDATES and NOALLOWNOOPUPDATES to control how Replicat responds to a no-
op operation. A no-op operation is one in which there is no effect on the target table. The
following are some examples of how this can occur.

• The source table has a column that does not exist in the target table, or it has a column
that was excluded from replication (with a COLSEXCEPT clause). In either case, if that
source column is updated, there will be no target column name to use in the SET clause
within the Replicat SQL statement.

• An update is made that sets a column to the same value as the current one. The
database does not log the new value, because it did not change. However, Oracle
GoldenGate captures the operation as a change record because the primary key was
logged, but there is no column value for the SET clause in the Replicat SQL statement.

By default (NOALLOWNOOPUPDATES), Replicat abends with an error because these types of
operations do not update the database. With ALLOWNOOPUPDATES, Replicat ignores the
operation instead of abending. The statistics reported by Replicat will show that an UPDATE
was made, but the database does not get updated.

You can use the internal parameter APPLYNOOPUPDATES to force the UPDATE to be applied.
APPLYNOOPUPDATES overrides ALLOWNOOPUPDATES. If both are specified, Replicat applies
updates for which there are key columns for the source and target tables. By default, Oracle
GoldenGate abends with the following message when there is a key on the source table but
no key on the target table.

2011-01-25 02:28:42 GGS ERROR 160 Encountered an update for target table TELLER,
which has no unique key defined. KEYCOLS can be used to define a key. Use
ALLOWNOOPUPDATES to process the update without applying it to the target database. Use
APPLYNOOPUPDATES to force the update to be applied using all columns in both the SET
and WHERE clause.

If ALLOWNOOPUPDATES is specified when the HANDLECOLLISIONS or INSERTMISSINGUPDATES
parameter is being used, and if Oracle GoldenGate has all of the target key values, Oracle
GoldenGate applies an UPDATE by using all of the columns of the table in the SET clause and
the WHERE clause (invoking APPLYNOOPUPDATES behavior). This is necessary so that Oracle
GoldenGate can determine whether the row is present or missing. If it is missing, Oracle
GoldenGate converts the UPDATE to an INSERT.

To enable ALLOWNOOPUPDATES in a configuration where DDL replication is not active, stop all
processes, add ALLOWNOOPUPDATES to the GLOBALS parameter file, and then restart the

Chapter 1
ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES

1-17

processes. To disable ALLOWNOOPUPDATES again, remove it from the GLOBALS file and
then restart the processes.

To enable ALLOWNOOPUPDATES functionality in a configuration where DDL support is
active, take the following steps.

1. Add the ALLOWNOOPUPDATES parameter to the GLOBALS parameter file.

2. Update the GGS_SETUP table in the DDL schema by using the following SQL.

UPDATE owner.GGS_SETUP SET value='0' WHERE
property='ALLOWNOOPUPDATES';
COMMIT;

3. Restart all Oracle GoldenGate processes including Manager. From this point on,
Oracle GoldenGate selects non-validated or non-valid primary keys as a unique
identifier.

To disable ALLOWNOOPUPDATES functionality when DDL support is active, take the
following steps.

1. Remove ALLOWNOOPUPDATES from the GLOBALS parameter file.

2. Update the record that you added to the GGS_SETUP table to 0.

3. Update the GGS_SETUP table in the DDL schema by using the following:

UPDATE owner.GGS_SETUP SET value='1' WHERE
property='NOALLOWNULLABLEKEYS';
COMMIT;

4. Restart all of the Oracle GoldenGate processes.

Default

NOALLOWNOOPUPDATES (only applies if the table does not have a key)

Syntax

ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES

1.10 ALLOWOUTPUTDIR
Valid For

GLOBALS

Description

Use ALLOWOUTPUTDIR to specify the allowed output trail directory (including its
subdirectories). The specified path must exist. Symbolic links are resolved before
parsing and comparison.

Default

None (A directory must be specified.)

Syntax

ALLOWOUTPUTDIR [relative_dir_name | absolute_dir_name]

Chapter 1
ALLOWOUTPUTDIR

1-18

relative_dir_name | absolute_dir_name
Specify the output trail directory name with either the relative or absolute path.

Example

ALLOWOUTPUTDIR /opt/ogg_19c/trail_files

1.11 APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES
Valid For

Replicat

Description

Use APPLYNOOPUPDATES to force a no-op UPDATE operation to be applied by using all of the
columns in the SET and WHERE clauses. See ALLOWNOOPUPDATES |
NOALLOWNOOPUPDATES for a description of no-op.

APPLYNOOPUPDATES causes Replicat to use whatever data is in the trail. If there is a primary-
key UPDATE record, Replicat uses the before columns from the source. If there is a regular
(non-key) UPDATE, Replicat assumes that the after value is the same as the before value
(otherwise it would be a primary-key update). The preceding assumes source and target keys
are identical. If they are not, you must use a KEYCOLS clause in the TABLE statement on the
source.

Default

NOAPPLYNOOPUPDATES

Syntax

APPLYNOOPUPDATES | NOAPPLYNOPUPDATES

1.12 APPLY_PARALLELISM | MAX_APPLY_PARALLELISM |
MIN_APPLY_PARALLELISM

Valid For

Oracle, Parallel Replicat

Description

Parallel Replicat has two forms of operation. It can run with a constant number of applier
threads or it can dynamically adjust the number of appliers based on the transaction mix.
These parameters control this behavior. You can adjust this behavior to increase or decrease
the number of apply threads and the initial number of connections using the parameters
APPLY_PARALLELISM, MAX_APPLY_PARALLELISM, and MIN_APPLY_PARALLELISM.

If these parameters are not set, then the default behavior of Parallel Replicat is to use exactly
four appliers to apply the changes to the target database. APPLY_PARALLELISM controls the
number of applier processes. If APPLY_PARALLELISM is set, the number of appliers will not

Chapter 1
APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES

1-19

dynamically increase or decrease based on transaction mix. If APPLY_PARALLELISM is
set, there can be times where the number of concurrent transactions that can be
applied by the Parallel Replicat is below the number of applier threads, which can
result in idle applier threads.

MAX_APPLY_PARALLELISM and MIN_APPLY_PARALLELISM are used when you want to
allow the Parallel Replicat process to dynamically adjust the number of applier threads
based on the transaction mix. You can set a minimum (MIN_APPLY_PARALLELISM) and
maximum (MAX_APPLY_PARALLELISM) number of applier threads to define the ranges in
which the Replicat automatically adjusts its parallelism. The initial number of
connections will be in the middle of the two parameters.

APPLY_PARALLELISM is mutually exclusive with MAX_APPLY_PARALLELISM and
MIN_APPLY_PARALLELISM. If MAX_APPLY_PARALLELISM and MIN_APPLY_PARALLELISM are
used, then do not set APPY_PARALLELSIM. If APPLY_PARALLELISM is set, then do not use
MAX_APPLY_PARALLELISM and MIN_APPLY_PARALLELISM.

See Basic Parameters for Parallel Replicat in Using Oracle GoldenGate for Oracle
Database.

Syntax

MIN_APPLY_PARALLELISM value
MAX_APPLY_PARALLELISM value

Example

MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10

1.13 ASCIITOEBCDIC
Valid For

Extract data pump and Replicat

Description

Use the ASCIITOEBCDIC parameter to control the conversion of data in the input trail file
from ASCII to EBCDIC format. This parameter should only be used to support
backward compatibility in cases where the input trail file was created by an Extract
version prior to v10.0. It is ignored for all other cases, because ASCII to EBCDIC
conversion is currently the default.

This parameter must be used in the TRANLOG Extract. It is not valid for Extract data
pumps

Default

None

Syntax

ASCIITOEBCDIC

Chapter 1
ASCIITOEBCDIC

1-20

1.14 ASSUMETARGETDEFS
Valid For

Replicat for trail file formats prior to 12c (12.2.0.1)

Description

Use the ASSUMETARGETDEFS parameter when the source and target objects specified in a MAP
statement have identical column structure, such as when synchronizing a hot site. It directs
Oracle GoldenGate to assume that the data definitions of the source and target objects are
identical, and to refer to the target definitions when metadata is needed for the source data.

When source and target tables have dissimilar structures, do not use ASSUMETARGETDEFS.
Create a data-definitions file for the source object, and specify the definitions file with the
SOURCEDEFS parameter. See SOURCEDEFS for more information. Do not use
ASSUMETARGETDEFS and SOURCEDEFS in the same parameter file.

Default

None

Syntax

ASSUMETARGETDEFS [OVERRIDE]

OVERRIDE
By default, the table definitions from the metadata records override the definitions from any
ASSUMETARGETDEFS file.
Specify OVERRIDE to request Replicat to use the definitions from the target database as the
definitions for the trail records.

1.15 AUTORESTART
Valid For

Classic and Microservices

Description

Use the AUTORESTART parameter to restart one or more Extract or Replicat processes
automatically, if they encounter a failure resulting in an ABENDED status.

You can use multiple AUTORESTART statements in the same parameter file.

To apply this parameter to an Extract group that is created in PASSIVE mode, use it for the
Manager that is on the target system where the associated alias Extract group resides.
Oracle GoldenGate will send the start command to the source system. If AUTORESTART is used
locally for a passive Extract group, it is ignored.

If Manager encounters an out-of-order transaction upon restart, it will not restart Extract.
Instead, it will log a warning that notifies you to use the ETROLLOVER option of SEND EXTRACT to
advance the trail to skip the transaction that caused the error.

AUTORESTART does not restart processes whose last updated status was STOPPED.

Chapter 1
ASSUMETARGETDEFS

1-21

Default

Do not auto-restart processes.

Syntax

AUTORESTART {EXTRACT | REPLICAT | ER} group_name
[, RETRIES number]
[, WAITMINUTES minutes]
[, WAITSECONDS seconds]
[, RESETMINUTES minutes]
[, RESETSECONDS seconds]

EXTRACT
Restarts Extract automatically.

REPLICAT
Restarts Replicat automatically.

ER
Restarts Extract and Replicat automatically.

group_name
A group name or wildcard specification for multiple groups. When wildcarding is used,
Oracle GoldenGate starts all groups of the specified process type on the local system
that satisfy the wildcard, except those in PASSIVE mode.

RETRIES number
The maximum number of times that Manager should try to restart a process before
aborting retry efforts. The default number of retries is 2. The first time that Manager
tries to restart a process is not counted as a retry. So, the number of retries performed
by the Manager are one more than the value specified for the number of retries. For
example, if the number of retries is 2, then Manager tries to restart the process 3
times.

WAITMINUTES | WAITSECONDS {minutes | seconds}
The amount of time, in minutes or seconds, to pause between discovering that a
process has terminated abnormally and restarting the process. Use this option to
delay restarting until a necessary resource becomes available or some other event
occurs. The default delay is 2 minutes or 120 seconds.

RESETMINUTES | RESETSECONDS {minutes | seconds}
The window of time, in minutes or seconds, during which retries are counted. The
default is 120 minutes (2 hours) or 7200 seconds. After the time expires, the number
of retries reverts to zero.

Example

In the following example, Manager tries to start all Extract processes three times after
failure within a one hour time period, and it waits five minutes before each attempt.

AUTORESTART EXTRACT *, RETRIES 3, WAITMINUTES 5, RESETMINUTES 60

If you want to set up AUTORESTART using Microservices, see Administration Server:
Profile Page in Using the Oracle GoldenGate Microservices Architecture.

Chapter 1
AUTORESTART

1-22

1.16 AUTOSTART
Valid For

Manager (Classic), Microservices Administration Server Profiles

Description

Use the AUTOSTART parameter to start one or more Extract or Replicat processes
automatically when Manager starts. AUTOSTART ensures that no process groups are
overlooked and that synchronization activities start immediately.

You can use multiple AUTOSTART statements in the same parameter file.

To apply this parameter to an Extract group that is created in PASSIVE mode, use it for the
Manager that is on the target system where the associated alias Extract group resides.
Oracle GoldenGate will send the start command to the source system. If AUTOSTART is used
locally for a passive Extract group, it is ignored.

If Manager encounters an out-of-order transaction upon restart, it will not restart Extract.
Instead, it will log a warning that notifies you to use the ETROLLOVER option of SEND EXTRACT to
advance the trail to skip the transaction that caused the error.

Default

Do not auto-start processes.

Syntax

AUTOSTART {{EXTRACT | REPLICAT | ER} group_name | JAGENT}

EXTRACT
Starts Extract automatically.

REPLICAT
Starts Replicat automatically.

ER
Starts Extract and Replicat automatically.

group_name
Valid for EXTRACT, REPLICAT, ER only. JAGENT does not take a group name as input. Specifies
a group name or wildcard specification for multiple groups. When wildcarding is used, Oracle
GoldenGate starts all groups of the specified process type that satisfy the wildcard on the
local system, except those in PASSIVE mode.

JAGENT
Starts the Oracle GoldenGate Monitor JAgent automatically. For more information, see
Administering Oracle GoldenGate Monitor.

Example

AUTOSTART ER *

To know how to use this parameter from Microservices, see Administration Server: Profile
Page in Using the Oracle GoldenGate Microservices Architecture.

Chapter 1
AUTOSTART

1-23

1.17 BATCHSQL
Valid For

Replicat

Description

Use the BATCHSQL parameter to increase the performance of Replicat. BATCHSQL
causes Replicat to organize similar SQL statements into arrays and apply them at an
accelerated rate. In its normal mode, Replicat applies one SQL statement at a time.

BATCHSQL is valid for:

• DB2 for i (except V5R4 or i6.1)

• DB2 LUW

• DB2 on z/OS

• Oracle

• PostgreSQL

• SQL Server

• Teradata

• Times Ten

How BATCHSQL Works

In BATCHSQL mode, Replicat organizes similar SQL statements into batches within a
memory queue, and then it applies each batch in one database operation. A batch
contains SQL statements that affect the same table, operation type (insert, update, or
delete), and column list. For example, each of the following is a batch:

• Inserts to table A

• Inserts to table B

• Updates to table A

• Updates to table B

• Deletes from table A

• Deletes from table B

Note:

Oracle GoldenGate analyzes foreign-key referential dependencies in the
batches before executing them. If dependencies exist among statements that
are in different batches, more than one SQL statement per batch might be
required to maintain the referential integrity.

Chapter 1
BATCHSQL

1-24

Controlling the Number of Cached Statements

The MAXSQLSTATEMENTS parameter controls the number of statements that are cached. See
"MAXSQLSTATEMENTS" for more information. Old statements are recycled using a least-
recently-used algorithm. The batches are executed based on a specified threshold (see
"Managing Memory").

Usage Restrictions

SQL statements that are treated as exceptions include:

• Statements that contain LOB or LONG data.

• Statements that contain rows longer than 25k in length.

• Statements where the target table has one or more unique keys besides the primary key.
Such statements cannot be processed in batches because BATCHSQL does not guarantee
the correct ordering for non-primary keys if their values could change.

• (SQL Server) Statements where the target table has a trigger.

• Statements that cause errors.

When Replicat encounters exceptions in batch mode, it rolls back the batch operation and
then tries to apply the exceptions in the following ways, always maintaining transaction
integrity:

• First Replicat tries to use normal mode: one SQL statement at a time within the
transaction boundaries that are set with the GROUPTRANSOPS parameter. See
"GROUPTRANSOPS" for more information.

• If normal mode fails, Replicat tries to use source mode: apply the SQL within the same
transaction boundaries that were used on the source.

When finished processing exceptions, Replicat resumes BATCHSQL mode.

Table 1-8 Replicat Modes Comparison

Source Transactions
(Assumes same table
and column list)

Replicat Transaction in
Normal Mode

Replicat Transaction in
BATCHSQL Mode

Replicat Transactions in
Source Mode

Transaction 1:
INSERT
DELETE
Transaction2:
INSERT
DELETE
Transaction 3:
INSERT
DELETE

INSERT
DELETE
INSERT
DELETE
INSERT
DELETE

INSERT (x3)

DELETE (x3)

Transaction 1:
INSERT
DELETE
Transaction 2:
INSERT
DELETE
Transaction 3:
INSERT
DELETE

When to Use BATCHSQL

When Replicat is in BATCHSQL mode, smaller row changes will show a higher gain in
performance than larger row changes. At 100 bytes of data per row change, BATCHSQL has
been known to improve the performance of Replicat by up to 300 percent, but actual

Chapter 1
BATCHSQL

1-25

performance benefits will vary, depending on the mix of operations. At around 5,000
bytes of data per row change, the benefits of using BATCHSQL diminish.

Managing Memory

The gathering of SQL statements into batches improves efficiency but also consumes
memory. To maintain optimum performance, use the following BATCHSQL options:

BATCHESPERQUEUE
BYTESPERQUEUE
OPSPERBATCH
OPSPERQUEUE

As a benchmark for setting values, assume that a batch of 1,000 SQL statements at
500 bytes each would require less than 10 megabytes of memory.

Default

Disabled (Process in normal Replicat mode)

Syntax

BATCHSQL
[BATCHERRORMODE | NOBATCHERRORMODE]
[BATCHESPERQUEUE n]
[BATCHTRANSOPS n]
[BYTESPERQUEUE n]
[OPSPERBATCH n]
[OPSPERQUEUE n]
[THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]
[TRACE]

BATCHERRORMODE | NOBATCHERRORMODE
Sets the response of Replicat to errors that occur during BATCHSQL processing mode.

BATCHERRORMODE
Causes Replicat to try to resolve errors without leaving BATCHSQL mode. It
converts inserts that fail on duplicate-record errors to updates, and it ignores
missing-record errors for deletes. When using BATCHERRORMODE, use the
HANDLECOLLISIONS parameter to prevent Replicat from abending.

NOBATCHERRORMODE
The default, causes Replicat to disable BATCHSQL processing temporarily when
there is an error, and then retry the transaction first in normal mode and then, if
normal mode fails, in source mode (same transaction boundaries as on the
source).

BATCHESPERQUEUE n
Controls the maximum number of batches that one memory queue can contain. After
BATCHESPERQUEUE is reached, a target transaction is executed.

• Minimum value is 1.

• Maximum value is 1000.

• Default is 50.

Chapter 1
BATCHSQL

1-26

BATCHTRANSOPS n
Controls the maximum number of batch operations that can be grouped into a transaction
before requiring a commit. When BATCHTRANSOPS is reached, the operations are applied to
the target.

• Minimum value is 1.

• Maximum value is 100000.

• Default is 1000 for nonintegrated Replicat (all database types) and 50 for an integrated
Oracle Replicat.

BYTESPERQUEUE n
Sets the maximum number of bytes that one queue can contain. After BYTESPERQUEUE is
reached, a target transaction is executed.

• Minimum value is 1000000 bytes (1 megabyte).

• Maximum value is 1000000000 bytes (1 gigabyte).

• Default is 2000000 bytes (20 megabytes).

OPSPERBATCH n
Sets the maximum number of row operations that one batch can contain. After OPSPERBATCH
is reached, a target transaction is executed.

• Minimum value is 1.

• Maximum value is 100000.

• Default is 1200.

OPSPERQUEUE n
Sets the maximum number of row operations in all batches that one queue can contain. After
OPSPERQUEUE is reached, a target transaction is executed.

• Minimum value is 1.

• Maximum value is 100000.

• Default is 1200.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])
Valid for BATCHESPERQUEUE, BATCHTRANSOPS, and BYTESPERQUEUE. Applies these options to the
specified thread or threads of a coordinated Replicat.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadID,
threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

TRACE
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do not set
tracing without the guidance of an Oracle Support analyst.

Chapter 1
BATCHSQL

1-27

NUMTHREADS
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

• Minimum value is 0.

• Maximum value is 50.

MAXTHREADQUEUEDEPTH
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

• Minimum value is 0.

• Maximum value is 50.

• Default is 10.

CHECKUNIQUEKEYS
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

ERRORHANDLING
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

BYPASSCHECK
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

Example

BATCHSQL BATCHESPERQUEUE 100, OPSPERBATCH 2000

1.18 BEGIN
Valid For

Replicat

Description

Use the BEGIN parameter to direct Replicat to start processing at the first record in the
Oracle GoldenGate trail that has a timestamp greater than, or equal to, the time
specified with BEGIN. All subsequent records, including records where the timestamp is
less than the specified time, are processed. Use BEGIN when SPECIALRUN is specified
for the same Replicat group.

Default

None

Syntax

BEGIN date[time]

Chapter 1
BEGIN

1-28

date[time]
Specifies a time at which to begin processing. Valid values are a date and optional time in
the format of yyyy-mm-dd[hh:mi[:ss[.cccccc]]] based on a 24-hour clock. Seconds and
centiseconds are optional.

Example

BEGIN 2011-01-01 04:30:00

1.19 BLOBMEMORY
This parameter is an alias for LOBMEMORY. See "LOBMEMORY" for more information.

1.20 BR
Valid For

Extract (Oracle only)

Description

Use the BR parameter to control the Bounded Recovery (BR) feature. This feature currently
supports Oracle databases.

Bounded Recovery is a component of the general Extract checkpointing facility. It guarantees
an efficient recovery after Extract stops for any reason, planned or unplanned, no matter how
many open (uncommitted) transactions there were at the time that Extract stopped, nor how
old they were. Bounded Recovery sets an upper boundary for the maximum amount of time
that it would take for Extract to recover to the point where it stopped and then resume normal
processing.

Caution:

Before changing this parameter from its default settings, contact Oracle Support for
guidance. Most production environments will not require changes to this parameter.
You can, however, specify the directory for the Bounded Recovery checkpoint files
without assistance.

How Extract Recovers Open Transactions

When Extract encounters the start of a transaction in the redo log (in Oracle, this is the first
executable SQL statement) it starts caching to memory all of the data that is specified to be
captured for that transaction. Extract must cache a transaction even if it contains no captured
data, because future operations of that transaction might contain data that is to be captured.

When Extract encounters a commit record for a transaction, it writes the entire cached
transaction to the trail and clears it from memory. When Extract encounters a rollback record
for a transaction, it discards the entire transaction from memory. Until Extract processes a
commit or rollback, the transaction is considered open and its information continues to be
collected.

Chapter 1
BLOBMEMORY

1-29

If Extract stops before it encounters a commit or rollback record for a transaction, all of
the cached information must be recovered when Extract starts again. This applies to
all transactions that were open at the time that Extract stopped.

Extract performs this recovery as follows:

• If there were no open transactions when Extract stopped, the recovery begins at
the current Extract read checkpoint. This is a normal recovery.

• If there were open transactions whose start points in the log were very close in
time to the time when Extract stopped, Extract begins recovery by re-reading the
logs from the beginning of the oldest open transaction. This requires Extract to do
redundant work for transactions that were already written to the trail or discarded
before Extract stopped, but that work is an acceptable cost given the relatively
small amount of data to process. This also is considered a normal recovery.

• If there were one or more transactions that Extract qualified as long-running open
transactions, Extract begins its recovery with a Bounded Recovery.

How Bounded Recovery Works

A transaction qualifies as long-running if it has been open longer than one Bounded
Recovery interval, which is specified with the BRINTERVAL option of the BR parameter.
For example, if the Bounded Recovery interval is four hours, a long-running open
transaction is any transaction that started more than four hours ago.

At each Bounded Recovery interval, Extract makes a Bounded Recovery checkpoint,
which persists the current state and data of Extract to disk, including the state and
data (if any) of long-running transactions. If Extract stops after a Bounded Recovery
checkpoint, it will recover from a position within the previous Bounded Recovery
interval or at the last Bounded Recovery checkpoint, instead of processing from the
log position where the oldest open long-running transaction first appeared.

The maximum Bounded Recovery time (maximum time for Extract to recover to where
it stopped) is never more than twice the current Bounded Recovery checkpoint
interval. The actual recovery time will be a factor of the following:

• the time from the last valid Bounded Recovery interval to when Extract stopped.

• the utilization of Extract in that period.

• the percent of utilization for transactions that were previously written to the trail.
Bounded Recovery processes these transactions much faster (by discarding them)
than Extract did when it first had to perform the disk writes. This constitutes most
of the reprocessing that occurs for transactional data.

When Extract recovers, it restores the persisted data and state that were saved at the
last Bounded Recovery checkpoint (including that of any long running transactions).

For example, suppose a transaction has been open for 24 hours, and suppose the
Bounded Recovery interval is four hours. In this case, the maximum recovery time will
be no longer than eight hours worth of Extract processing time, and is likely to be less.
It depends on when Extract stopped relative to the last valid Bounded Recovery
checkpoint, as well as Extract activity during that time.

Advantages of Bounded Recovery

The use of disk persistence to store and then recover long-running transactions
enables Extract to manage a situation that rarely arises but would otherwise
significantly (adversely) affect performance if it occurred. The beginning of a long-

Chapter 1
BR

1-30

running transaction is often very far back in time from the place in the log where Extract was
processing when it stopped. A long-running transaction can span numerous old logs, some of
which might no longer reside on accessible storage or might even have been deleted. Not
only would it take an unacceptable amount of time to read the logs again from the start of a
long-running transaction but, since long-running transactions are rare, most of that work
would be the redundant capture of other transactions that were already written to the trail or
discarded. Being able to restore the state and data of persisted long-running transactions
eliminates that work.

Bounded Recovery Example

The following diagram illustrates a timeline over which a series of transactions were started. It
shows how long-running open transactions are persisted to disk after a specific interval and
then recovered after a failure. It will help to understand the terminology used in the example:

• A persisted object is any object in the cache that was persisted at a Bounded Recovery
checkpoint. Typically this is the transactional state or data, but the cache is also used for
objects that are internal to Extract. These are all collectively referred to as objects.

• The oldest non-persisted object is the oldest open object in the cache in the interval that
immediately precedes the current Bounded Recovery checkpoint. Typically this is the
oldest open transaction in that interval. Upon the restart of Bounded Recovery, runtime
processing resumes from the position of the oldest non-persisted object, which, in the
typical case of transactions, will be the position in the redo log of that transaction.

Figure 1-1 Sample Bounded Recovery Checkpoints

In this example, the Bounded Recovery interval is four hours. An open transaction is
persisted at the current Bounded Recovery checkpoint if it has been open for more than one
Bounded Recovery interval from the current Bounded Recovery checkpoint.

At BR Checkpoint n:

• There are five open transactions: T(27), T(45), T(801), T(950), T(1024). All other
transactions were either committed and sent to the trail or rolled back. Transactions are
shown at their start points along the timeline.

• The transactions that have been open for more than one Bounded Recovery interval are
T(27) and T(45). At BR Checkpoint n, they are persisted to disk.

• The oldest non-persisted object is T(801). It is not eligible to be persisted to disk,
because it has not been open across at least one Bounded Recovery interval. As the
oldest non-persisted object, its start position in the log is stored in the BR Checkpoint n
checkpoint file. If Extract stops unexpectedly after BR Checkpoint n, it will recover to
that log position and start to re-read the log there. If there is no oldest non-persisted
object in the preceding Bounded Recovery interval, Extract will start re-reading the log at
the log position of the current Bounded Recovery checkpoint.

Chapter 1
BR

1-31

At BR Checkpoint n+1:

• T(45) was dirtied (updated) in the previous Bounded Recovery interval, so it gets
written to a new persisted object file. The old file will be deleted after completion of
BR Checkpoint n+1.

• If Extract fails while writing BR Checkpoint n+1 or at any time within that Bounded
Recovery checkpoint interval between BR Checkpoint n and BR Checkpoint
n+1, it will recover from BR Checkpoint n, the last valid checkpoint. The restart
position for BR Checkpoint n is the start of the oldest non-persisted transaction,
which is T(801). Thus, the worst-case recovery time is always no more than two
Bounded Recovery intervals from the point where Extract stopped, in this case no
more than eight hours.

At BR Checkpoint n+3000

• The system has been running for a long time. T(27) and T(45) remain the only
persisted transactions. T(801) and T(950) were committed and written to the trail
sometime before BR Checkpoint n+2999. Now, the only open transactions are
T(208412) and T(208863).

• BR Checkpoint n+3000 is written.

• There is a power failure in the interval after BR Checkpoint n+3000.

• The new Extract recovers to BR Checkpoint n+3000. T(27) and T(45) are
restored from their persistence files, which contain the state from BR Checkpoint
n. Log reading resumes from the beginning of T(208412).

Managing Long-running Transactions

Oracle GoldenGate provides the following parameters and commands to manage
long-running transactions:

• Use the WARNLONGTRANS parameter to specify a length of time that a transaction
can be open before Extract generates a warning message that the transaction is
long-running. Also use WARNLONGTRANS to control the frequency with which Oracle
GoldenGate checks for long-running transactions. Note that this setting is
independent of, and does not affect, the Bounded Recovery interval.

• Use the SEND EXTRACT command with the SKIPTRANS option to force Extract to skip
a specified transaction.

• Use the SEND EXTRACT command with the FORCETRANS option to force Extract to
write a specified transaction to the trail as a committed transaction.

• Use the TRANLOGOPTIONS parameter with the PURGEORPHANEDTRANSACTIONS option
to enable the purging of orphaned transactions that occur when a node fails and
Extract cannot capture the rollback.

About the Files that are Written to Disk

At the expiration of a Bounded Recovery interval, Extract always creates a Bounded
Recovery checkpoint file. Should there be long-running transactions that require
persistence, they each are written to their own persisted-object files. A persisted-object
file contains the state and data of a single transaction that is persisted to disk.

Field experience has shown that the need to persist long running transactions is rare,
and that the transaction is empty in most of those cases.

Chapter 1
BR

1-32

If a previously persisted object is still open and its state and/or data have been modified
during the just-completed Bounded Recovery interval, it is re-persisted to a new persisted
object file. Otherwise, previously persisted object files for open transactions are not changed.

It is theoretically possible that more than one persisted file might be required to persist a
long-running transaction.

Note:

The Bounded Recovery files cannot be used to recover the state of Extract if moved
to another system, even with the same database, if the new system is not identical
to the original system in all relevant aspects. For example, checkpoint files written
on an Oracle 11g Solaris platform cannot be used to recover Extract on an Oracle
11g Linux platform.

Circumstances that Change Bounded Recovery to Normal Recovery

Most of the time, Extract uses normal recovery and not Bounded Recovery, the exception
being the rare circumstance when there is a persisted object or objects. Certain abnormal
circumstances may prevent Extract from switching from Bounded Recovery back to normal
recovery mode. These include, but are not limited to, such occurrences as physical corruption
of the disk (where persisted data is stored for long-running transactions), inadvertent deletion
of the Bounded Recovery checkpoint files, and other actions or events that corrupt the
continuity of the environment. There may also be more correctable reasons for failure.

In all but a very few cases, if Bounded Recovery fails during a recovery, Extract switches to
normal recovery. After completing the normal recovery, Bounded Recovery is turned on again
for runtime.

Bounded Recovery is not invoked under the following circumstances:

• The Extract start point is altered by CSN or by time.

• The Extract I/O checkpoint altered.

• The Extract parameter file is altered during recovery, such as making changes to the
TABLE specification.

After completion of the recovery, Bounded Recovery will be in effect again for the next run.

What to Do if Extract Abends During Bounded Recovery

If Extract abends in Bounded Recovery, examine the error log to determine the reason. It
might be something that is quickly resolved, such as an invalid parameter file or incorrect
privileges on the directory that contains the Bounded Recovery files. In such cases, after the
problem is fixed, Extract can be restarted with Bounded Recovery in effect.

If the problem is not correctable, attempt to restart Extract with the BRRESET option. Extract
may recover in normal recovery mode and then turn on Bounded Recovery again.

Modifying the BR Parameter

Bounded Recovery is enabled by default with a default Bounded Recovery interval of four
hours (as controlled with the BRINTERVAL option). This interval should be appropriate for most
environments. Do not alter the BR parameter without first obtaining guidance from an Oracle
support analyst. Bounded Recovery runtime statistics are available to help Oracle

Chapter 1
BR

1-33

GoldenGate analysts evaluate the Bounded Recovery usage profile to determine the
proper setting for BRINTERVAL in the unlikely event that the default is not sufficient.

Should you be requested to alter BR, be aware that the Bounded Recovery interval is a
multiple of the regular Extract checkpoint interval. The Extract checkpoint is controlled
by the CHECKPOINTSECS parameter. Thus, the BR parameter controls the ratio of the
Bounded Recovery checkpoint to the regular Extract checkpoint. You might need to
change both parameters, if so advised by your Oracle representative.

Supported Databases

This parameter applies to Oracle databases. For other databases, Extract recovers by
reading the old logs from the start point of the oldest open transaction at the point of
failure and does not persist long-running transactions.

Default

BR BRINTERVAL 4, BRDIR BR

Syntax

BR
[, BRDIR directory]
[, BRINTERVAL number {M | H}]
[, BRKEEPSTALEFILES]
[, BROFF]
[, BROFFONFAILURE]
[, BRFSOPTION { MS_SYNC | MS_ASYNC }]

BRDIR directory
Specifies the relative or full path name of the parent directory that will contain the BR
directory. The BR directory contains the Bounded Recovery checkpoint files, and the
name of this directory cannot be changed. The default parent directory for the BR
directory is a directory named BR in the root directory that contains the Oracle
GoldenGate installation files.
Each Extract group within a given Oracle GoldenGate installation will have its own
sub-directory under the directory that is specified with BRDIR. Each of those directories
is named for the associated Extract group.
For directory, do not use any name that contains the string temp or tmp (case-
independent). Temporary directories are subject to removal during internal or external
cleanup procedures.

BRINTERVAL number {M | H}
Specifies the time between Bounded Recovery checkpoints. This is known as the
Bounded Recovery interval. This interval is an integral multiple of the standard Extract
checkpoint interval, as controlled by the CHECKPOINTSECS parameter. However, it need
not be set exactly. Bounded Recovery will adjust any legal BRINTERVAL parameter
internally as it requires.
The minimum interval is 20 minutes. The maximum is 96 hours. The default interval is
4 hours.

BRKEEPSTALEFILES
Causes old Bounded Recovery checkpoint files to be retained. By default, only current
checkpoint files are retained. Extract cannot recover from old Bounded Recovery
checkpoint files. Retain old files only at the request of an Oracle support analyst.

Chapter 1
BR

1-34

BROFF
Turns off Bounded Recovery for the run and for recovery. Consult Oracle before using this
option. In most circumstances, when there is a problem with Bounded Recovery, it turns
itself off.

BROFFONFAILURE
Disables Bounded Recovery after an error. By default, if Extract encounters an error during
Bounded Recovery processing, it reverts to normal recovery, but then enables Bounded
Recovery again after recovery completes. BROFFONFAILURE turns Bounded Recovery off for
the runtime processing.

BRRESET
BRRESET is a start up option that forces Extract to use normal recovery for the current run,
and then turn Bounded Recovery back on after the recovery is complete. Its purpose is for
the rare cases when Bounded Recovery does not revert to normal recovery if it encounters
an error. Bounded Recovery is enabled during runtime. Consult Oracle Support before using
this option.
To use this option, you must start Extract from the command line. To run Extract from the
command line, use the following syntax:

extract paramfile name.prm reportfile name.rpt

Where:

• paramfile name.prm is the relative or fully qualified name of the Extract parameter file.
The command name can be abbreviated to pf.

• reportfile name.rpt is the relative or fully qualified name of the Extract report file, if
you want it in a place other than the default. The command name can be abbreviated to
rf.

BR BRFSOPTION {MS_SYNC | MS_ASYNC}
Performs synchronous/asynchronous writes of the mapped data in Bounded Recovery.

MS_SYNC
Bounded Recovery writes of mapped data are synchronized for I/O data integrity
completion.

MS_ASYNC
Bounded Recovery writes of mapped data are initiated or queued for servicing.

Example

BR BRDIR /user/checkpt/br specifies that the Bounded Recovery checkpoint files will be
created in the /user/checkpt/br directory.

1.21 BULKLOAD
Valid For

Replicat

Description

Use the BULKLOAD parameter for an initial load Replicat when using the direct bulk load to
Oracle SQL*Loader method. This method passes initial-load data directly to the interface of
Oracle's SQL*Loader utility to perform a direct load. A Collector process and trails are not

Chapter 1
BULKLOAD

1-35

used. Many bulk loading utilities do not support LOB data or have other data type
restrictions. Oracle recommends that you consult the appropriate database
documentation for a complete list of restrictions. For tables that are not supported by
BULKLOAD, use the trail file method of initial loads.

For a complete guide to the methods of loading data with Oracle GoldenGate, see
Administering Oracle GoldenGate.

Default

None

Syntax

BULKLOAD
[LOGGING | NOLOGGING]
[PARALLEL | NOPARALLEL]
[SKIPALLINDEXES | SKIPUNUSEDINDEX | NOSKIPALLINDEXES]

LOGGING | NOLOGGING
Valid for Replicat for Oracle. LOGGING is the default and enables redo logging for the
loaded objects. NOLOGGING increases BULKLOAD performance by disabling redo logging
of the loaded objects. Do not specify NOLOGGING for cascading synchronization and
multiple master configurations.
However, BULKLOAD must be set to LOGGING if the target is part of a cascading or bi-
directional configuration, where a local Extract will capture the loaded objects.

PARALLEL | NOPARALLEL
Valid for Replicat for Oracle. PARALLEL enables BULKLOAD to use multiple load sessions
to load the same segment concurrently. NOPARALLEL is the default and disables
parallel loading.

SKIPALLINDEXES | SKIPUNUSEDINDEX | NOSKIPALLINDEXES
Valid for Replicat for Oracle. Controls the handling of indexes. NOSKIPALLINDEXES is
the default, which allows index maintenance during a direct load. SKIPALLINDEXES
skips all index maintenance. SKIPUNUSEDINDEX skips unusable indexes.

1.22 CACHEMGR
Valid For

Extract and Replicat, all databases except DB2 on z/OS. .

Description

Use the CACHEMGR parameter to specify a non-default file system location for the
temporary files needed to hold uncommitted transaction data. The CACHEMGR parameter
can also be used to control the amount of virtual memory and temporary disk space
that is available for caching uncommitted transaction data. Both of these latter uses
are discouraged.

Chapter 1
CACHEMGR

1-36

Caution:

Do not change this parameter without consulting Oracle Support. CACHEMGR is
internally self-configuring and self-adjusting. It is rare that this parameter requires
modification. Doing so unnecessarily may result in performance degradation. It is
best to acquire empirical evidence before opening an Oracle Service Request and
consulting with Oracle Support.
However, you can specify the directory for the temporary files without assistance

Oracle GoldenGate only replicates committed transactions. Until a COMMIT is received, any
transactional data is stored in an area of virtual memory known as a cache. This cache is
managed by the CACHEMGR. If the amount of transaction data becomes too great for the virtual
memory, then the CACHEMGR writes some of the cached data to temporary files on disk.

Your systems should have sufficient operating system swap and page file space. Oracle
recommends a minimum of 512GB.

Identifying the Paging Directory

By default, Oracle GoldenGate maintains the transaction data that it swaps to disk a sub-
directory of the Oracle GoldenGate installation directory. CACHEMGR assumes that all of the
free space on the file system is available. This directory may fill up quickly if there is a large
transaction volume with large transaction sizes. To prevent I/O contention and possible disk-
related failures, dedicate a disk to this directory. You can assign directory location with the
CACHEDIRECTORY option of the CACHEMGR parameter. A size can also be assigned. However,
this is discouraged and should only be done after consulting Oracle Support.

Guidelines for Using CACHEMGR

• This parameter is valid for all databases supported by Oracle GoldenGate except DB2
z/OS.

• At least one argument must be supplied. CACHEMGR by itself is invalid.

• Parameter options can be listed in any order.

• Only one CACHEMGR parameter is permitted in a parameter file.

Default

None

Syntax

CACHEMGR {
[CACHEDIRECTORY path [size] [, CACHEDIRECTORY path [size] [, ...],]
CACHESIZE size
}

CACHEDIRECTORY path [size]
Specifies the name of the directory to which Oracle GoldenGate writes transaction data to
disk temporarily when necessary. The default without this parameter is the dirtmp sub-
directory of the Oracle GoldenGate installation directory. Any directory for temporary files
can be on an Oracle Database file system, but cannot be on a direct I/O or concurrent I/O

Chapter 1
CACHEMGR

1-37

mounted file system that does not support the mmap() or MapViewOfFile() system
calls, like AIX.

• path is a fully qualified directory name.

• size sets a maximum amount of disk space that can be allocated to the specified
directory. The upper limit is imposed by the file system, such as the maximum file
size or number of files. The minimum size is 2 GB, which is enforced. There is no
default. Oracle discourages the use of the size option and you should only it
when in consultation with Oracle Support.

You can specify more than one directory by using a CACHEDIRECTORY clause for each
one. The maximum number of directories is 100.
The value can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes
in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

CACHESIZE size
Sets a soft limit for the amount of virtual memory (CACHESIZW) that is available for
caching transaction data. You can internally adjust the CACHESIZE using CACHEMGR as
necessary.
If you feel that the default CACHEMGR configuration and internal self-adjustment is
adversely affecting your system performance, then you should open a Service
Request with Oracle Support. It is best to have acquired empirical data showing the
problem symptoms in question to aid in configuring a new default.

Example

CACHEMGR CACHEDIRECTORY /net/d4atd/ggs/temp

1.23 CATALOGEXCLUDE
Valid For

Extract, Replicat, DEFGEN

Description

Use the CATALOGEXCLUDE parameter to explicitly exclude source objects in the specified
container or catalog from the Oracle GoldenGate configuration when the container or
catalog name is being specified with a wildcard in TABLE or MAP statements. This
parameter is valid when the database is an Oracle container databasef, where fully
qualified three-part names are being used.

The positioning of CATALOGEXCLUDE in relation to parameters that specify files or trails
determines its effect. Parameters that specify trails or files are: EXTFILE, RMTFILE,
EXTTRAIL, RMTTRAIL. The parameter works as follows:

• When a CATALOGEXCLUDE specification is placed before any TABLE or SEQUENCE
parameters, and also before the parameters that specify trails or files, it applies
globally to all trails or files, and to all TABLE and SEQUENCE parameters.

• When a CATALOGEXCLUDE specification is placed after a parameter that specifies a
trail or file, it is effective only for that trail or file and only for the TABLE or SEQUENCE
parameters that are associated with it. Multiple trail or file specifications can be
made in a parameter file, each followed by a set of TABLE, SEQUENCE, and
CATALOGEXCLUDE specifications.

Chapter 1
CATALOGEXCLUDE

1-38

CATALOGEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE parameter.
Thus, the order in which they appear does not make a difference.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

Default

None

Syntax

CATALOGEXCLUDE {container}

container
The source Oracle container that is to be excluded. A wildcard can be used. Follow the rules
for using wildcards described in Administering Oracle GoldenGate.

Examples

Example 1
This example omits the pdb1 pluggable database. If integrated Extract is registered with
containers pdb1, pdb2 and pdb3, you can use the following CATALOGEXCLUDE syntax to allow
Oracle GoldenGate to skip DML that occurs in the catalog pdb1, even though it matches the
wildcard syntax.

EXTRACT capt
USERIDALIAS alias1
RMTHOST sysb, MGRPORT 7809
RMTTRAIL /ggs/dirdat/aa
CATALOGEXCLUDE pdb1
TABLE *.*.*;

1.24 CHARMAP
Valid For

Replicat

Description

Use the CHARMAP parameter to specify that the character mapping file overrides the character
code point mapping. By enabling character set conversion for same character sets, you may
encounter performance degradation.

Default

The encoding of the parameter file is operating system default character set.

Syntax

CHARMAP charmap filename

The character mapping file format is as follows:

 -- Sample character mapping file.
 -- Can use -- or COMMENT as comment line.
 -- Can use CHARSET parameter to specify file encoding.
 --

Chapter 1
CHARMAP

1-39

 -- Source character set
 SOURCECHARSET shiftjis
 --
 -- Target character set
 TARGETCHARSET ja16euc
 --
 -- Character map definition by one code point.
 -- left hand is source and right hand target code point.
 \xa2c1 \x89\xa2\xb7 -- override \xa2c1 to \x89\xa2\xb7
 --
 -- Character map definition by range. Number of source and target
characters must be the same.
 \x61 - \x7a \x41 - \x5a

Example

In the following example, the character map definition is given using a character
mapping text file:

CHARMAP charmapdesc.txt

REPLACEBADCHAR FORCECHECK
This enables strict character set conversion and check code point even if the source
and target are the same.

Add the following to your character mapping file:

 SOURCECHARSET windows-932
 TARGETCHARSET windows-932
 \x61 - \x7a \x41 - \x5a

1.25 CHECKPARAMS
Valid For

Extract and Replicat

Description

Use the CHECKPARAMS parameter to test the syntax of a parameter file. To start the test:

1. Edit the parameter file to add CHECKPARAMS.

2. (Optional) To verify the tables, add the NODYNAMICRESOLUTION parameter.

3. Start the process. Without processing data, Oracle GoldenGate audits the syntax.
If NODYNAMICRESOLUTION exists, Oracle GoldenGate connects to the database to
verify that the tables specified with TABLE or MAP exist. If there is a syntax failure,
the process abends with error 190. If the syntax succeeds, the process stops and
writes a message to the report file that the parameters processed successfully.

4. Do one of the following:

• If the test succeeds, edit the file to remove the CHECKPARAMS parameter and
the NODYNAMICRESOLUTION parameter, if used, and then start the process again
to begin processing.

• If the test fails, edit the parameter file to fix the syntax based on the report's
findings, and then remove NODYNAMICRESOLUTION and start the process again.

Chapter 1
CHECKPARAMS

1-40

CHECKPARAMS can be positioned anywhere within the parameter file.

Default

None

Syntax

CHECKPARAMS

1.26 CHECKPOINTSECS
Valid For

Extract and Replicat

Description

Use the CHECKPOINTSECS parameter to control how often Extract and Replicat make their
routine checkpoints.

• Decreasing the value causes more frequent checkpoints. This reduces the amount of
data that must be reprocessed if the process fails, but it could cause performance
degradation because data is written to disk more frequently.

• Increasing the value causes less frequent checkpoints. This might improve performance,
but it increases the amount of data that must be reprocessed if the process fails. When
using less frequent Extract checkpoints, make certain that the transaction logs remain
available in case the data has to be reprocessed.

Note:

In addition to its routine checkpoints, Replicat also makes a checkpoint when it
commits a transaction.

Avoid changing CHECKPOINTSECS unless you first open an Oracle service request.

Default

10 seconds

Syntax

CHECKPOINTSECS seconds

seconds
The number of seconds to wait before issuing a checkpoint.

Example

CHECKPOINTSECS 20

Chapter 1
CHECKPOINTSECS

1-41

1.27 CHECKPOINTTABLE
Valid For

GLOBALS

Description

Use the CHECKPOINTTABLE parameter in a GLOBALS parameter file to specify the name
of a default checkpoint table that can be used by all Replicat groups in one or more
Oracle GoldenGate instances. All Replicat groups created with the ADD REPLICAT
command will default to this table unless it is overridden by using the CHECKPOINTTABLE
option of that command.

To create the checkpoint table, use the ADD CHECKPOINTTABLE command in GGSCI.
Oracle supports and recommends that a checkpoint table is created for Integrated
Replicat.

See Administering Oracle GoldenGate for more information about creating a
checkpoint table.

Default

None

Syntax

CHECKPOINTTABLE [container.] owner.table

[container.]owner.table
The owner and name of the checkpoint table. Additionally, for an Oracle container
database, specify the correct pluggable database (container).

Example

CHECKPOINTTABLE finance.ggs.chkpt

1.28 CHUNK_SIZE
Valid For

Parallel Replicat

Description

Controls how large a transaction must be for parallel Replicat to consider it as large.
When parallel Replicat encounters a transaction larger than this size, it will serialize it,
resulting in decreased performance. However, increasing this value will also increase
the amount of memory consumed by parallel Replicat.

See Creating a Parallel Replication in Using Oracle GoldenGate for Oracle Database.

Default

None

Chapter 1
CHECKPOINTTABLE

1-42

1.29 CMDTRACE
Valid For

Extract and Replicat

Description

Use the CMDTRACE parameter to display macro expansion steps in the report file. You can use
this parameter more than once in the parameter file to set different options for different
macros.

Default

OFF

Syntax

CMDTRACE [ON | OFF | DETAIL]

ON
Enables the display of macro expansion.

OFF
Disables the display of macro expansion.

DETAIL
Produces a verbose display of macro expansion.

Example

In the following example, tracing is enabled before #testmac is invoked, and then disabled
after the macro's execution.

MACRO #testmac
BEGIN
col1 = col2,
col3 = col4
END;
...
CMDTRACE ON
MAP test.table2 , TARGET test.table2,
COLMAP (#testmac);
CMDTRACE OFF

1.30 COLCHARSET

Valid For

Extract, Replicat, and DEFGEN

Description

Use COLCHARSET clause to specify particular column character set or disable character set
conversion. This parameter overrides the column character set for the specified column.

Chapter 1
CMDTRACE

1-43

The character set specified by the COLCHARSET parameter overrides the character set
in the trail file, the character set specified by the SOURCECHARSET OVERRIDE parameter
and the character set specified by the CHARSET parameter.

The character set specified by the COLCHARSET Replicat parameter overrides the
column level character set specified in the source table definition file.

If the COLCHARSET is specified for DEFGEN file format less than level four, the
parameter is ignored and warning message is issued. The column level character set
attribute for the older table definition file format is not output.

The COLCHARSET parameter overrides the source column level character set and
change the Replicat character set conversion behavior by assuming the source
column character set as specified character set.

Default

None

Syntax

COLCHARSET character_set (column [, ...])

character_set
Any supported character set.

column
The name of a column. To specify multiple columns, create a comma-delimited list.

Examples

Example 1
The following example specifies multiple columns.

TABLE SchemaName.TableName, COLCHARSET(WE8MSWIN1252, col0, col2);

Example 2
The following example specifies a different character set.

MAP SchemaName.*, TargetName *.*,
 COLCHARSET(WE8MSWIN1252, col1),
 COLCHARSET(WE8ISO8859P1, col2)

Example 3
The following example specifies different character set.

MAP SchemaName.*, TargetName *.*,
 COLCHARSET(WE8MSWIN1252, col1),
 COLCHARSET(WE8ISO8859P1, col2)

Example 4
The following example specifies a wildcard.

MAP SchemaName.*, TargetName *.*, COLCHARSET(WE8MSWIN1252, col*)

Example 5
The following example disables character set conversion on particular column.

MAP SchemaName.*, TargetName *.*, COLCHARSET(PASSTHRU, col)

Chapter 1
COLCHARSET

1-44

1.31 COLMATCH
Valid For

Extract and Replicat

Description

Use the COLMATCH parameter to create global rules for column mapping. COLMATCH rules apply
to all TABLE or MAP statements that follow the COLMATCH statement. Global rules can be turned
off for subsequent TABLE or MAP entries with the RESET option.

With COLMATCH, you can map between tables that are similar in structure but have different
column names for the same sets of data. COLMATCH provides a more convenient way to map
columns of this type than does using a COLMAP clause in individual TABLE or MAP statements.

With COLMATCH, you can:

• Map explicitly based on column names.

• Ignore name prefixes or suffixes.

Either COLMATCH or a COLMAP clause of a TABLE or MAP statement is required when mapping
differently named source and target columns.

See Administering Oracle GoldenGate for more information about mapping columns.

Default

None

Syntax

COLMATCH
{NAMES target_column = source_column |
PREFIX prefix |
SUFFIX suffix |
RESET}

NAMES target_column = source_column
Specifies the name of a target and source column, for example CUSTOMER_CODE and
CUST_CODE. If the database requires double quotes to enforce case-sensitivity, specify the
column name that way. For example: NAMES "ABC" = "ABC2". For other case-sensitive
databases, specify the column name as it is stored in the database, for example: NAMES ABC
= abc.

PREFIX prefix | SUFFIX suffix
Specifies a column name prefix or suffix to ignore. If the database requires double quotes to
enforce case-sensitivity, specify the prefix or suffix that way if it is case-sensitive. For other
case-sensitive databases, specify the prefix or suffix as it is stored in the database
For example, to map a target column named "ORDER_ID" to a source column named
"P_ORDER_ID", specify:

COLMATCH PREFIX "P_"

Chapter 1
COLMATCH

1-45

To map a target column named "CUST_CODE_K" to a source column named CUST_CODE,
specify:

COLMATCH SUFFIX "_K"

RESET
Turns off previously defined COLMATCH rules for subsequent TABLE or MAP statements.

Examples

Example 1
COLMATCH NAMES "CUSTOMER_CODE" = "CUST_CODE"

Example 2
COLMATCH NAMES Customer_Code = "Cust_Code"

Example 3
COLMATCH PREFIX P_

Example 4
COLMATCH SUFFIX _K

Example 5
COLMATCH RESET

1.32 COMPRESSDELETES | NOCOMPRESSDELETES
Valid For

Extract

Description

Use the COMPRESSDELETES and NOCOMPRESSDELETES parameters to control the way that
columns are written to the trail record for DELETE operations.

COMPRESSDELETES and NOCOMPRESSDELETES can be used globally for all TABLE
statements in the parameter file, or they can be used as on-off switches for individual
TABLE statements.

These parameters support the following databases:

DB2 LUW
DB2 z/OS
DB2 for i
MySQL
SQL Server
PostgreSQL

For Oracle, refer to LOGALLSUPCOLS parameter.

Default

COMPRESSDELETES

Chapter 1
COMPRESSDELETES | NOCOMPRESSDELETES

1-46

Syntax

{COMPRESSDELETES | NOCOMPRESSDELETES [FETCHMISSINGCOLUMNS]}

COMPRESSDELETES
Causes Extract to write only the primary key to the trail for DELETE operations. This is the
default. The key provides enough information to delete the correct target record, while
restricting the amount of data that must be processed.

NOCOMPRESSDELETES [FETCHMISSINGCOLUMNS]
NOCOMPRESSDELETES sends all of the columns to the trail. This becomes the default when a
table definition does not include a primary key or unique index, or when a substitute key is
defined with the KEYCOLS option of TABLE. The KEYCOLS option writes the specified columns to
the trail whether or not a real key exists. See KEYCOLS (columns) for more information about
the KEYCOLS option.
NOCOMPRESSDELETES is also required when using the Conflict Detection and Resolution (CDR)
feature for a DB2 database on any of the platforms that are supported by Oracle
GoldenGate. See Administering Oracle GoldenGate for more information about CDR.
FETCHMISSINGCOLUMNS is valid for Oracle Database only. It causes the values of data types
that are only supported by fetching to be fetched from the database on DELETE operations.
These data types are LOB, UDT, LONG, and some XMLType columns. For detailed
information about columns that are supported by fetching (rather than directly captured from
the redo stream), see Configuring a Downstream Mining Database in Using Oracle
GoldenGate for Oracle Database. The columns that are fetched will appear in the trail file as
part of the DELETE record. If NOCOMPRESSDELETES is used for Oracle Database data without
the FETCHMISSINGCOLUMNS option, only the LOB data that can be read from the logs (without
fetching) will be included in the DELETE operation in the trail.

1.33 COMPRESSUPDATES | NOCOMPRESSUPDATES
Valid For

Extract

Description

Use the COMPRESSUPDATES and NOCOMPRESSUPDATES parameters for Extract to control the way
columns are written to the trail record for UPDATE operations.

COMPRESSUPDATES, the default, causes Extract to write only the primary key and the changed
columns of a row to the trail for update operations. This provides enough information to
update the correct target record (unless conflict resolution is required), while restricting the
amount of data that must be processed.

Additionally, if a substitute key is defined with the KEYCOLS option of the TABLE parameter,
those columns are written to the trail, whether or not a primary or unique key is defined. See
"KEYCOLS (columns)" for more information.

NOCOMPRESSUPDATES sends all of the columns to the trail. This becomes the default when a
table definition does not include a primary key or unique index. NOCOMPRESSUPDATES also is
required when using the Conflict Detection and Resolution (CDR) feature for a DB2 database
on any of the platforms that are supported by Oracle GoldenGate. See Administering Oracle
GoldenGate for more information about CDR.

Chapter 1
COMPRESSUPDATES | NOCOMPRESSUPDATES

1-47

COMPRESSUPDATES and NOCOMPRESSUPDATES apply globally for all TABLE statements in a
parameter file.

These parameters support the following databases:

DB2 LUW
DB2 z/OS
DB2 for i
MySQL
SQL Server
PostgreSQL

For Oracle, refer to the LOGALLSUPCOLS parameter.

Default

COMPRESSUPDATES

Syntax

COMPRESSUPDATES | NOCOMPRESSUPDATES

For PostgreSQL, if you enable NOCOMPRESSUPDATES then the before image of the LOB
column will not be written into the trail.

1.34 COMMIT_SERIALIZATION
Valid For

Parallel Replicat

Description

This parameter forces each transaction to be applied in the exact same order as it was
committed on the source database. This is recommended for environments that do
any kind of transformation on scheduling columns, or for Active-Active deployments
where conflict detection and resolution is being used.

See Basic Parameters for Parallel Replicat in Using Oracle GoldenGate for Oracle
Database.

Default

None

1.35 COORDSTATINTERVAL
Valid For

Replicat in coordinated mode

Description

Use the COORDSTATINTERVAL parameter to set the amount of time, in seconds, between
requests for statistics sent by the Replicat coordinator thread to the apply threads. If a
thread does not return statistics within an internal heartbeat interval, Replicat logs a

Chapter 1
COMMIT_SERIALIZATION

1-48

warning message. The heartbeat interval is not configurable and is always six times the
COORDSTATINTERVAL interval. At the default COORDSTATINTERVAL interval of 10 seconds, for
example, the heartbeat default is one minute (60 seconds).

Default

The minimum value is 0; the maximum value is 2147483647. The default value is 10 seconds

Syntax

COORDSTATINTERVAL interval

interval
The interval, in seconds, between requests for thread statistics. Valid values are 0 or any
positive number.

1.36 COORDTIMER
Valid For

Replicat in coordinated mode

Description

Use the COORDTIMER parameter to set a base amount of time, in seconds, that the threads
and coordinator wait for each other to start. A thread will wait for this base time interval before
retrying a connection to the coordinator and it will do this a certain number of times. The
coordinator waits for the length of this base time interval and it is reset after every thread is
successfully registered. The overall time the coordinator waits before abending is dependent
on this timer and it is variable depending on the register time of the threads.

A value of 0 disables this timing procedure. If timing is disabled, the coordinator thread may
wait indefinitely for the threads to start, and Replicat will enter a suspended state. In this
case, the internal Replicat heartbeat timer is disabled regardless of the COORDSTATINTERVAL
setting.

Default

The minimum value is 0; the maximum value is 2147483647. The default value is 180
seconds (three minutes)

Syntax

COORDTIMER wait_time

wait_time
The amount of time, in seconds, that the coordinator thread waits for the apply threads to
start. Valid values are 0 or any positive number.

1.37 CREDENTIALSTORELOCATION
Valid For

GLOBALS

Chapter 1
COORDTIMER

1-49

Description

Use the CREDENTIALSTORE parameter to change the location of the Oracle GoldenGate
credential store from the default location. The default location is the dircrd directory in
the Oracle GoldenGate installation directory. The default location is the preferred
location.

The credential store stores database user names and passwords in encrypted format
as a security measure. When CREDENTIALSTORE is used, the specified location is
assumed for all GGSCI commands that manage the credential store.

Syntax

CREDENTIALSTORELOCATION directory

directory
The full path name of the directory where the credential store is to be stored.

Example

CREDENTIALSTORELOCATION /home/ogg/credentials

1.38 CRYPTOENGINE
Valid For

GLOBALS

Description

Use the CRYPTOENGINE to select which cryptographic library the Oracle GoldenGate
processes use to provide implementation of security primitives.

Syntax

CRYPTOENGINE (CLASSIC | FIPS140 | NATIVE)

CRYPTOENGINE
Selects which cryptographic library will the OGG processes use to provide
implementation of security primitives.

CLASSIC
Uses the Oracle NNZ security framework without FIPS-140 enhancements.

FIPS140
Uses the Oracle NNA security framework, but enhanced with the FIPS-140-2
compliant version of the RSA MES shared libraries.

NATIVE
For the platforms where this is available, it will use a native library that makes more
efficient use of the CPU cryptographic primitives, resulting in higher product
throughput when using trail and TCP encryption. Currently, Intel's IPP library version
9.0 is used for Linux.x64 and Windows.x64. All other platforms fall back to CLASSIC
behavior.

Chapter 1
CRYPTOENGINE

1-50

Example

To enable Oracle GoldenGate to use FIPS140-2 compliant encryption, use the following:

CRYPTOENGINE FIPS140

If this parameter is modifed, added or removed, (like any GLOBALS parameter) all Oracle
GoldenGate processes must be restarted, including Manager.

1.39 CUSEREXIT
Valid For

Extract when fetching from a multitenant container database (CDB) and Replicat

Description

Use the CUSEREXIT parameter to call a custom exit routine written in C programming code
from a Windows DLL or UNIX shared object at a defined exit point within Oracle GoldenGate
processing. Your user exit routine must be able to accept different events and information
from the Extract and Replicat processes, process the information as desired, and then return
a response and information to the caller (the Oracle GoldenGate process that called it).

User exits can be used as an alternative to, or in conjunction with, the data transformation
functions that are available within the Oracle GoldenGate solution.

Note:

When using a coordinated Replicat to call a user exit routine, you are responsible
for writing the user exits in a thread-safe manner.

For help with creating and implementing user exits, see Administering Oracle GoldenGate.

Default

None

Syntax

CUSEREXIT {DLL | shared_object} routine
[, INCLUDEUPDATEBEFORES]
[, PARAMS 'string']

{DLL | shared_object}
The name of the Windows DLL or UNIX shared object that contains the user exit function.

routine
The name of the exit routine to be executed.

Chapter 1
CUSEREXIT

1-51

INCLUDEUPDATEBEFORES
Passes the before images of column values to a user exit. When using this parameter,
you must explicitly request the before image by setting the
requesting_before_after_ind flag to BEFORE_IMAGE_VAL within a callback function
that supports this flag. Otherwise, only the after image is passed to the user exit. By
default, Oracle GoldenGate only works with after images.
When using INCLUDEUPDATEBEFORES for a user exit that is called from a data pump or
from Replicat, always use the GETUPDATEBEFORES parameter for the primary Extract
process, so that the before image is captured, written to the trail, and causes a
process_record event in the user exit. In a case where the primary Extract also has a
user exit, GETUPDATEBEFORES causes both the before image and the after image to be
sent to the user exit as separate EXIT_CALL_PROCESS_RECORD events.
If the user exit is called from a primary Extract (one that reads the transaction log),
only INCLUDEUPDATEBEFORES is needed for that Extract. GETUPDATEBEFORES is not
needed in this case, unless other Oracle GoldenGate processes downstream will
need the before image to be written to the trail. INCLUDEUPDATEBEFORES does not
cause before images to be written to the trail.

PARAMS 'string'
Passes the specified string at startup. Can be used to pass a properties file, startup
parameters, or other string. Enclose the string within single quote marks.
Data in the string is passed to the user exit in the EXIT_CALL_START
exit_params_def.function_param. If no quoted string is specified with PARAMS, the
exit_params_def.function_param is NULL.

Examples

Example 1
CUSEREXIT userexit.dll MyUserExit

Example 2
CUSEREXIT userexit.dll MyUserExit, PARAMS 'init.properties'

Example 3
CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, PARAMS
'init.properties'

Example 4
CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, &
 PARAMS 'init.properties'

Example 5
CUSEREXIT cuserexit.dll MyUserExit, &
 INCLUDEUPDATEBEFORES, PARAMS 'Some text to start with during startup'

1.40 DBOPTIONS
Valid For

Extract and Replicat

Chapter 1
DBOPTIONS

1-52

Description

Use the DBOPTIONS parameter to specify database options. This is a global parameter,
applying to all TABLE or MAP statements in the parameter file. Some options for the DBOPTIONS
parameters apply only to Extract or Replicat.

The DBOPTIONS parameter can be placed anywhere in the parameter file irrespective of other
parameters.

Default

None

Syntax

DBOPTIONS
[ALLOWLOBDATATRUNCATE | NOALLOWLOBDATATRUNCATE]
[ALLOWUNUSEDCOLUMN | NOALLOWUNUSEDCOLUMN]
[ALLOWNONSTANDARDINTERVALDATA]
[BINDCHARFORBITASCHAR]
[CATALOGCONNECT | NOCATALOGCONNECT]
[CONNECTIONPORT port]
[DECRYPTPASSWORD shared_secret ENCRYPTKEY {DEFAULT | key_name}]
[DEFERREFCONST]
[DISABLECOMMITNOWAIT]
[DISABLELOBCACHING]
[ENABLE_INSTANTIATION_FILTERING]
[EMPTYLOBSTRING 'string']
[FETCHBATCHSIZE records]
[FETCHCHECKFREQ seconds]
[FETCHLOBS | NOFETCHLOBS]
[FETCHRETRYCOUNT number]
[FETCHTIMEOUT seconds | NOFECHTIMEOUT]
[FORCE_XML_ESCAPE_CONVERSION]
[HOST {DNS_name | IP_address}]
[INTEGRATEDPARAMS(parameter[, ...])]
[LIMITROWS | NOLIMITROWS]
[LOBBUFSIZE bytes]
[LOBWRITESIZE bytes]
[SESSIONPOOLMAX max_value |
[SESSIONPOOLMIN min_value][SESSIONPOOLINCR increment_value]
[SETTAG [tag_value | NULL]]
[SHOWINFOMESSAGES]
[SHOWWARNINGS]
[SKIPTEMPLOB | NOSKIPTEMPLOB]
[SOURCE_DB_NAME src_dbase_global_name]
[SPTHREAD | NOSPTHREAD]
[SQLMODE]
[SUPPRESSTEMPORALUPDATES]
[SUPPRESSTRIGGERS | NOSUPPRESSTRIGGERS]
[TDSPACKETSIZE bytes]
[TRANSNAME trans_name]
[USEODBC | USEREPLICATIONUSER]

Chapter 1
DBOPTIONS

1-53

[USEDATABASEENCODING]
[XMLBUFSIZE bytes]

ALLOWUNUSEDCOLUMN | NOALLOWUNUSEDCOLUMN
Valid for Extract for Oracle. Controls whether Extract abends when it encounters a
table with an unused column.
The default is ALLOWUNUSEDCOLUMN. When Extract encounters a table with an unused
column, it continues processing and generates a warning.When using this parameter,
either the same unused column must exist on the target or a source definitions file for
the table must be specified to Replicat, so that the correct metadata mapping can be
performed.
NOALLOWUNUSEDCOLUMN causes Extract to abend on unused columns.

ALLOWLOBDATATRUNCATE | NOALLOWLOBDATATRUNCATE
Valid for Replicat for DB2 LUW and MySQL. ALLOWLOBDATATRUNCATE prevents Replicat
from abending when replicated LOB data is too large for a target CHAR, VARCHAR,
BINARY or VARBINARY column and is applicable to target LOB columns only. or replicat
of DB2 LUW, ALLOWLOBDATATRUNCATE prevents Replicat from abending when
replicated LOB data is too large for a target LOB column. The LOB data is truncated to
the maximum size of the target column without any further error messages or
warnings.
NOALLOWLOBDATATRUNCATE is the default and causes Replicat to abend with an error
message if the replicated LOB is too large.

ALLOWNONSTANDARDINTERVALDATA
Valid for PostgreSQL.
Use DBOPTIONS ALLOWNONSTANDARDINTERVALDATA in the Extract parameter file to
capture the mixed sign interval data (or any other format of interval data, which is not
supported by Oracle GoldenGate) as a string (not as standard interval data). When
this option is used, the format of the interval data that gets written to the trail and gets
applied into the target CHAR column is as follows:
year-component-sign years-months days-component-sign days hour-component-
sign hours:minutes:seconds.fractional_seconds
For example, +1026-9 +0 +0:0:22.000000 should be interpreted as 1026 years 9
months 0 days 0 hours 0 minutes 22 seconds. -0-0 -0 -8 should be interpreted as 0
years 0 months 0 days -8 hours. +1-3 +0 +3:20 should be interpreted as 1 years 3
months 0 days 3 hours 20 minutes.
In case of Replicat, if the source interval data was captured using DBOPTIONS
ALLOWNONSTANDARDINTERVALDATA and written as a string to the trail, the corresponding
source column is allowed to be mapped to either a char or a binary type column on
the target.

BINDCHARFORBITASCHAR
Valid for DEFGEN, Extract, and Replicat for DB2 for i. Allows columns that are
defined as CHAR or VARCHAR with CCSID 65535, or CHAR and VARCHAR FOR BIT DATA to
be treated as if the field had a normal translatable encoding. The encoding is picked
up from the job CCSID. When this option is in effect, DEFGEN does not indicate that
the field is binary in the defs file.

CATALOGCONNECT | NOCATALOGCONNECT
Valid for Extract and Replicat for ODBC databases.
By default, Oracle GoldenGate creates a new connection for catalog queries, but you
can use NOCATALOGCONNECT to prevent that.

Chapter 1
DBOPTIONS

1-54

CONNECTIONPORT port
Valid for Replicat for multi-daemon MySQL. Specifies the TCP/IP port of the instance to
which Replicat must connect. The minimum value is 1 and the default value is 3306.

DECRYPTPASSWORD shared_secret algorithm ENCRYPTKEY {key_name | DEFAULT}
Valid for Extract in classic capture mode (Oracle).
Integrated Extract does not require this option, and automatically handles encrypted data.
Specifies the shared secret (password) that decrypts the TDE key, which decrypts redo log
data that was encrypted with Oracle Transparent Data Encryption (TDE). The TDE key is
first encrypted in the Oracle server by using the shared secret as a key, and then it is
delivered to Extract, which decrypts it by using the same shared secret. The shared secret
must be created in the Oracle Wallet or Hardware Security Module by the Oracle Server
Security Officer. The only other person who should know the shared secret is the Oracle
GoldenGate Administrator.
To use the decryption options, you must first generate the encrypted shared secret with the
ENCRYPT PASSWORD command in GGSCI and create an ENCKEYS file.
Parameter options:

shared_secret
Is the encrypted shared secret (password) that is copied from the ENCRYPT PASSWORD
command results.

algorithm
Specifies the encryption algorithm that was used to encrypt the password: AES128,
AES192, or AES256.

ENCRYPTKEY key_name
Specifies the logical name of a user-created encryption key in the ENCKEYS lookup file.
Use if ENCRYPT PASSWORD was used with the KEYNAME key_name option. Requires an
ENCKEYS file to be created on the local system.

ENCRYPTKEY DEFAULT
Directs Oracle GoldenGate to use a random key. Use if ENCRYPT PASSWORD was used
with the KEYNAME DEFAULT option.

For more information about Oracle GoldenGate encryption options, including ENCKEYS, see
Encrypting Data with the ENCKEYS Method in the Administering Oracle GoldenGate.

DEFERREFCONST | NODEFERREFCONST
Valid for nonintegrated Replicat for Oracle. Default option for parallel integrated Replicat.
Sets constraints to DEFERRABLE to delay the checking and enforcement of cascade delete
and cascade update referential integrity constraints by the Oracle target database until the
Replicat transaction is committed. At that point, if there are constraint violations, an error is
generated. Integrated Replicat does not require disabling of referential constraints on the
target system.
You can use DEFERREFCONST instead of disabling the constraints on the target tables or
setting them to DEFERRED. When used, DEFERREFCONST defers both DEFERABLE and NOT
DEFERABLE constraints. DEFERREFCONST applies to every transaction that is processed by
Replicat. DEFERREFCONST parameter works on Oracle 11.2.0.2 and up.
If used with an Oracle Database release that does not support this functionality,
DEFERREFCONST is ignored without returning a notification to the Oracle GoldenGate log. To
handle errors on the commit operation, you can use REPERROR at the root level of the
parameter file and specify the TRANSDISCARD or TRANSEXCEPTION option.

Chapter 1
DBOPTIONS

1-55

Note:

Do not to use with DEFERREFCONST coordinated Replicat because there is no
way to guarantee that related rows in parent and child tables are processed
by same thread

Use the NODEFERREFCONST option to disable the DEFERREFCONST option.

DISABLECOMMITNOWAIT
Valid for Replicat for Oracle. Disables the use of asynchronous COMMIT by Replicat. An
asynchronous COMMIT statement includes the NOWAIT option.
When DISABLECOMMITNOWAIT is used, Replicat issues a standard synchronous COMMIT
(COMMIT with WAIT option).

DISABLELOBCACHING
Valid for nonintegrated Replicat for Oracle. Disables Oracle's LOB caching
mechanism. By default, Replicat enables Oracle's LOB caching mechanism.

ENABLE_INSTANTIATION_FILTERING
Valid for Oracle. Enables automatic per table instantiation CSN filtering on tables
imported using Oracle data pump or manually instantiated using the
SET_INSTANTIATION_CSN command.

FETCHBATCHSIZE records
Valid for Extract for Oracle, DB2 for i, DB2 z/OS, PostgreSQL, and SQL Server.
Enables array fetches for initial loads to improve performance, rather than one row at
a time. It is used for Initial Load Extract.
Valid values for Oracle, DB2 for i, DB2 z/OS, and SQL Server are 0 through 1000000
records per fetch. Valid values for DB2 LUW are 1 through 1000000 records per fetch;
zero (0) is not a valid value.
The default is 1000. Performance slows when batch size gets very small or very large.
If the table contains LOB data, Extract reverts to single-row fetch mode, and then
resumes batch fetch mode afterward.

FETCHCHECKFREQ seconds
Valid for Integrated Extract for Oracle. Specifies the number of seconds that Extract
waits between each fetch check for the ADG to catch up. A low number improves
latency though increases the number of queries of current_scn from v$database.
The default is 3 seconds; the maximum is 120 seconds.

FETCHLOBS | NOFETCHLOBS
Valid for Extract for DB2 for z/OS and DB2 for LUW. Suppresses the fetching of LOBs
directly from the database table when the LOB options for the table are set to NOT
LOGGED. With NOT LOGGED, the value for the column is not available in the transaction
logs and can only be obtained from the table itself. By default, Oracle GoldenGate
captures changes to LOBs from the transaction logs. The default is FETCHLOBS.

FETCHRETRYCOUNT number
Valid for Extract for Oracle. Specifies the number of times that Extract tries before it
reports ADG progress or the reason for no progress when waiting for the ADG to
catch up. This value is multiplied with FETCHCHECKFREQ to determine approximately

Chapter 1
DBOPTIONS

1-56

how often the ADG progress is reported. The default value for FETCHRETRYCOUNT is 5 and the
valid range of values is 0 - 1000.

FETCHTIMEOUT seconds | NOFETCHTIMEOUT
Valid for Extract for Oracle. Specifies the number of seconds that Extract will wait after which
it will abend when ADG makes no progress. No progress can be because the MRP is not
running or because it is not applying redo changes. When this occurs, the ADG database
should be examined. The default is 30 seconds; valid values are 0 - 4294967295 (ub4 max
value) seconds. NOFETCHTIMEOUT means never timeout (the same as FETCHTIMEOUT 0) and
seconds cannot be specified with it.

FORCE_XML_ESCAPE_CONVERSION
For trail fie formats of Oracle GoldenGate19c, if FORCE_XML_ESCAPE_CONVERSION is enabled,
Replicat will escape the linefeed characters for the character types in the ANYDATA columns.
If this parameter is enabled for a trail file with a format of 19.1 or higher, it is ignored
because Extract already performs the linefeed escape.
This parameter only affects ANYDATA columns when NOUSENATIVEOBJSUPPORT is turned on for
Extract.

Note:

This parameter option doesn't affect ANYDATA columns retrieved from the database
by Logminer in native mode.

HOST {DNS_name | IP_address}
Valid for Replicat for multi-daemon MySQL. Specifies the DNS name or IP address of the
system that hosts the instance to which Replicat must connect.

INTEGRATEDPARAMS(parameter[, ...])
Valid for Integrated Replicat for Oracle. Passes settings for parameters that control the
database inbound server within the target Oracle database.
You can use the commit_serialization option with INTEGRATEDPARAMS for integrated
Replicat but not for parallel Replicat in integrated mode. Setting internal database
parameters for Extract is done using TRANLOGOPTIONS INTEGRATEDPARAMS.
For more information about integrated Replicat and a list of supported inbound server
parameters, see Choosing from Different Replicat Modes in Using Oracle GoldenGate for
Oracle Database.

LIMITROWS | NOLIMITROWS
Valid for Replicat for MySQL, Oracle, and SQL Server. LIMITROWS prevents multiple rows
from being updated or deleted by the same Replicat SQL statement when the target table
does not have a primary or unique key.
LIMITROWS is the default. LIMITROWS and NOLIMITROWS apply globally to all MAP statements in
a parameter file.
For MySQL, LIMITROWS uses a LIMIT 1 clause in the UPDATE or DELETE statement.
For Oracle targets, LIMITROWS (the default) must be used. It uses either WHERE ROWNUM = 1 or
AND ROWNUM = 1 in the WHERE clause.
For SQL Server, LIMITROWS uses a SET ROWCOUNT 1 clause before the UPDATE or DELETE
statement.
NOLIMITROWS permits multiple rows to be updated or deleted by the same Replicat SQL
statement.

Chapter 1
DBOPTIONS

1-57

LOBBUFSIZE bytes
Valid for Extract for Oracle. Determines the memory buffer size in bytes to allocate for
each embedded LOB attribute that is in an Oracle object type. Valid values are from
1024 and 104857600 bytes. The default is 1048576 bytes.
If the length of embedded LOB exceeds the specified LOBBUFSIZE size, an error
message similar to the following is generated:

GGS ERROR ZZ-0L3 Buffer overflow, needed: 2048, allocated: 1024.

LOBWRITESIZE bytes
Valid for nonintegrated Replicat for Oracle. Specifies a fragment size in bytes for each
LOB that Replicat writes to the target database. The LOB data is stored in a buffer
until this size is reached. Because LOBs must be written to the database in
fragments, writing in larger blocks prevents excessive I/O. The higher the value, the
fewer I/O calls that are made by Replicat to the database server to write the whole
LOB to the database.
Specify a multiple of the Oracle LOB fragment size. A given value will be rounded up
to a multiple of the Oracle LOB fragment size, if necessary. The default LOB write size
is 32k if DBOPTIONS NOSKIPTEMPLOB is specified, or 1MB if DBOPTIONS SKIPTEMPLOB is
specified. Valid values are from 2,048 bytes to 2,097,152 bytes (2MB).
By default, Replicat enables Oracle's LOB caching mechanism. To disable Oracle's
LOB caching, use the DISABLELOBCACHING option of DBOPTIONS.

SESSIONPOOLMAX max_value
Valid for Extract in integrated mode for Oracle. Sets a maximum value for the number
of sessions in the OCI Session Pool, which is used by Extract for fetching from a
container database. The default value is 10 sessions. Must be specified before the
USERID or USERIDALIAS parameter; otherwise will be ignored and the default will be
used.

SESSIONPOOLMIN min_value
Valid for Extract in integrated mode for Oracle. Sets a minimum value for the number
of sessions in the OCI Session Pool, which is used by Extract for fetching from a
container database. The default value is 2 sessions. Must be specified before the
USERID or USERIDALIAS parameter; otherwise will be ignored and the default will be
used.

SESSIONPOOLINCR increment_value
Valid for Extract in integrated mode for Oracle. Sets a value for the number of
incremental sessions that can be added to the OCI Session Pool, which is used by
Extract for fetching from a container database. The default value is 2 sessions. Must
be specified before the USERID or USERIDALIAS parameter; otherwise will be ignored
and the default will be used.

SETTAG [tag_value | NULL
Valid for Replicat for Oracle. Sets the value for an Oracle redo tag that will be used to
identify the transactions of the associated Replicat in the redo log. A redo tag can also
be used to identify transactions other than those of Replicat. This parameter is
recommended over EXCLUDEUSER and TRACETABLE.
Use this option to prevent cycling (loop-back) of Replicat the individual records in a bi-
directional configuration or to filter other transactions from capture. The default SETTAG
value is 00 and is limited to 2K bytes. A valid value is any single Oracle Streams tag.
A tag value can be up to 2000 hexadecimal digits (0-9 A-F) long.
Transactions in the redo that are marked with the specified tag can be filtered by an
Extract that has the TRANLOGOPTIONS parameter with the EXCLUDETAG option set to the

Chapter 1
DBOPTIONS

1-58

tag_value. Use tag-based filtering to prevent cycling (loop-back) of Replicat transactions in
a bi-directional configuration or to filter other transactions from capture. For more
information, see TRANLOGOPTIONS.
You can disable the tagging of DDL by using the DDLOPTIONS parameter with the NOTAG
option.

hex_value
A hexadecimal value from 0 through F. The default value is 00. The following are valid
examples:

DBOPTIONS SETTAG 00112233445566778899AABBCCDDEEFF
DBOPTIONS SETTAG 00112233445566778899aabbccddeeff
DBOPTIONS SETTAG 123

NULL
Disables tag-based filtering for the associated Replicat.

SKIPTEMPLOB | NOSKIPTEMPLOB
Valid for Replicat for Oracle Database versions 11g and 12c. Controls how LOBs are applied
to a target Oracle database. The default of SKIPTEMPLOB .
SKIPTEMPLOB improves performance by directly writing LOB data to the target LOB column.
Replicat creates a SQL statement with an empty LOB value and returns the LOB locator to
the bind variable. After the SQL statement is executed successfully, the LOB data is written
directly to the LOB column using the returned LOB locator.
NOSKIPTEMPLOB uses a temporary LOB in the SQL statement. Replicat declares a bind
variable within SQL statement and associates a temporary LOB, then writes to the temporary
LOB. The Oracle Database applies the LOB column data from the temporary LOB.
SKIPTEMPLOB applies to INSERT and UPDATE operations that contain LOB data. It does not
apply if the table has a functional index with a LOB column, if the LOB data is NULL, empty,
or stored inline. It does not apply to partial LOB operations.
SKIPTEMPLOB causes Replicat to generate/perform 1 DML+ n LOB_WRITE (piece-wise)
operations when updating/inserting a row with LOB columns. However, SKIPTEMPLOB should
not be used with FETCHPARTIALLOB (an Extract Parameter) because it results in excessive
fetching.
NOSKIPTEMPLOB is provided for backward compatibility; otherwise the default of SKIPTEMPLOB
should be retained.

SOURCE_DB_NAME src_dbase_global_name
Valid for Oracle. Indicates the Global Name of the Trail Source Database. It is used to query
the relevant instantiation information when DBOPTIONS ENABLE_INSTANTIATION_FILTERING is
enabled. This option is optional for instantiation filtering in a 12.2. trail file with metadata
enabled.
When the source has no DOMAIN, do not specify a DOMAIN for the downstream database.

SPTHREAD | NOSPTHREAD
Valid for Extract and Replicat. Not valid for Oracle and MySQL.
Creates a separate database connection thread for using SQLEXEC to execute stored
procedures. The default is NOSPTHREAD.

SQLMODE
With this option enabled, the sql_mode variable is set to to 'ANSI_QUOTES' (set sql_mode =
'ANSI_QUOTES'). Treat the double quotes (") as an identifier quote character (like the ` quote
character) and not as a string quote character. You can still use ` to quote identifiers with this

Chapter 1
DBOPTIONS

1-59

mode enabled. With ANSI_QUOTES enabled, you cannot use double quotes (") to quote
literal strings, because it is interpreted as an identifier.
For more information, see Server SQL Modes.

SUPPRESSTEMPORALUPDATES
Valid for DB2 LUW 10.1 FixPack 2 and greater replication of temporal table.
Use SUPPRESSTEMPORALUPDATES to replicate system-period and bitemporal tables
along with associated history tables. Oracle GoldenGate replicates the row begin, row
end, and transaction start id columns along with the other columns of the table. You
must ensure that the database instance has the execute permission to run the
SYSPROC.SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY¿ stored procedure at the
apply side.
By default, Oracle GoldenGate does not replicate row begin, row end, and transaction
start id columns. To preserve the original values of these columns, implement one of
the followings options.

• Add extra timestamp columns in the target temporal table and map the columns
accordingly.

• Use a non-temporal table at the apply side and map the columns accordingly.

Replication in Heterogeneous Environment:
In heterogeneous environments where there is no temporal tables at the apply side,
you need to set the row begin, row end and transaction start id columns value. These
source columns will have timestamp values that the target database may not support.
You should first use the map conversion functions to convert these values into the
format that target database supports, and then map the columns accordingly. For
example, MySQL has a DATETIME range from `1000-01-01 00:00:00.000000' to
'9999-12-31 23:59:59.999999¿'. You cannot replicate a DB2 LUW timestamp value of
`0001-01-01-00.00.00.000000000000¿ to MySQL. To replicate such values you must
convert this value into the MySQL DATETIME format. For example, if a system-period
or bitemporal table has the following timestamp column:

SYS_START

0001-01-01-00.00.00.000000000000

Then to replicate this column into MySQL, you would use the function colmap() as
follows:

map <source_schema>.<source_table>, target <target_schema>.<target_table>
colmap(sys_start= @IF((@NUMSTR(@STREXT(sys_start,1,4))) > 1000, sys_start,
'1000-01-01 00.00.00.000000'));

Initial Load of Temporal Table:
Oracle GoldenGate supports initial load of temporal table as usual.
Take into account the following considerations with temporal table:

• Replication between system-period and application-period temporal table is not
supported.

• Replication from a non-temporal table to a temporal table is not supported.

• Replication of system-period, bi-temporal tables, and SUPPRESSTEMPORALUPDATES
with the INSERTALLRECORDS parameter is not supported.

Chapter 1
DBOPTIONS

1-60

https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_ansi_quotes

• If any unique index is created for application-period temporal table using BUSINESS_TIME
WITHOUT OVERLAPS for the target table, then the same unique index must be created for
the source table.

• Bidirectional replication between temporal tables is advised only with the default.

• CDR is supported only with SUPPRESSTEMPORALUPDATES. There is no CDR support in
bidirectional replication.

• By default, there are inconsistencies in row begin, row end, and transaction start id
columns of the temporal tables when the source and target databases operate with
different time zones. These timestamp columns of system-period and bitemporal tables
are automatically populated by the respective database managers and will have values
as per the respective time zones of the databases.

• Using the default with GETUPDATEBEFORES is in the replicate parameter file, you cannot
use the row begin, row end, and transaction start id columns in any delta calculations.
For example, taking before and after image of such columns in any kind of calculations is
not possible. These columns can be used in delta calculations using
SUPPRESSTEMPORALUPDATES.

SUPPRESSTRIGGERS | NOSUPPRESSTRIGGERS
Valid for Integrated Replicat and Classic Replicat for Oracle. Controls whether or not triggers
are fired during the Replicat session. Provides an alternative to manually disabling triggers.
(Integrated Replicat does not require disabling of triggers on the target system.)
SUPPRESSTRIGGERS is the default and prevents triggers from firing on target objects that are
configured for replication with Oracle GoldenGate. SUPPRESSTRIGGERS is valid for Oracle
Database 12c, 11g (11.2.0.2), and later 11g R2 releases. SUPPRESSTRIGGERS is not valid for
11g R1.
To allow a specific trigger to fire, you can use the following SQLEXEC statement in the Replicat
parameter file, where trigger_owner is the owner of the trigger and trigger_name is the
name of the trigger.

SQLEXEC 'DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY('"S1"','"MY_TRIGGER"',FALSE);'

Note:

Once this SQLEXEC is executed with FALSE, the trigger will continue to fire until the
command is run again with a setting of TRUE.

NOSUPPRESSTRIGGERS allows target triggers to fire. To use [NO]SUPPRESSTRIGGERS, the
Replicat user must have the privileges granted through the
dbms_goldengate_auth.grant_admin_privilege package. This procedure is part of the
Oracle database installation. See the database documentation for more information.
The USERID or USERIDALIAS parameter must precede a DBOPTIONS statement that contains
SUPPRESSTRIGGERS or NOSUPPRESSTRIGGERS.

TRANSNAME trans_name
Valid for Replicat for SQL Server. Allows an individual Replicat to use a specific transaction
name that is specified in the parameter file. The trans_name is the name of the transaction
that the Replicat uses for target DML transactions and overrides the default ggs_repl
transaction name when used.

Chapter 1
DBOPTIONS

1-61

USEODBC
Valid for Replicat for SQL Server.
Forces Replicat to use an ODBC connection over OLEDB. OLEDB is selected by
default, in cases where the DSN was created with an OLEDB driver, or was created
with an ODBC driver but the Microsoft OLE DB driver software is installed on the
Oracle GoldenGate server.
USEODBC cannot be used in conjunction with USEREPLICATIONUSER.
This parameter option is not allowed for SQL Server for Linux because Oracle
GoldenGate for Linux only uses ODBC.

USEREPLICATIONUSER
Valid for Replicat for SQL Server.
Configures the Replicat connection to support the NOT FOR REPLICATION option if
enabled for identity columns, triggers, and foreign key and check constraints.
Enabling USEREPLICATIONUSER has the following effect:

• IDENTITY inserts into tables with an Identity column that have the NOT FOR
REPLICATION option enabled, do not set the SET IDENTITY_INSERT clause nor
execute SELECT IDENT_CURRENT statements for multimaster implementations,
resulting in improved performance.

• Foreign key and check constraints are not enforced when enabled with the NOT
FOR REPLICATION option.

• Suppresses trigger execution on the target table if enabled with the NOT FOR
REPLICATION option. Use this configuration if Replicat is configured to replicate
transactions from the source table with the trigger, and the recipient table of the
trigger operation..

• For Replicat connections using a Microsoft ODBC driver, install the Microsoft OLE
DB Driver 18 for SQL Server to support the USEREPLICATIONUSER option:

https://www.microsoft.com/en-us/download/details.aspx?id=56730

For the USEREPLICATIONUSER option to be effective, Identity columns, Triggers, and
Foreign Key and Check constraints must be enabled within the table using the SQL
Server NOT FOR REPLICATION option. For more information about these
considerations, see Understanding What’s Supported for SQL Server in Using Oracle
GoldenGate for Heterogeneous Databases.
USEREPLICATIONUSER is disabled by default and cannot be used in conjunction with the
USEODBC option.
This parameter option is not allowed for SQL Server for Linux.

USEDATABASEENCODING
By default, the DB2 for i Extract converts all text data to UTF-8 for non-DBCS data
and UTF-16 for DBCS data. Using this option causes the Extract to store all text data
in the trail in its native character encoding for non-DBCS data. Currently, DBCS
(GRAPHIC/VARGRAPHIC/DBCLOB) data continues to be converted to UTF-16 whether this
parameter is provided or not. For CCSID values that are not supported by Oracle
GoldenGate, the Extract converts the data to UTF-8 for non-DBCS data and UTF-16
for DBCS data to ensure compatibility for all Replicats.

XMLBUFSIZE bytes
Valid for Extract for Oracle. Sets the size of the memory buffer that stores XML data
that was extracted from the sys.xmltype attribute of a SDO_GEORASTER object type.
The default is 1048576 bytes (1MB). If the data exceeds the default buffer size,

Chapter 1
DBOPTIONS

1-62

https://www.microsoft.com/en-us/download/details.aspx?id=56730

Extract will abend. If this occurs, increase the buffer size and start Extract again. The valid
range of values is 1024 to 104857600 bytes.

Examples

Example 1
DBOPTIONS HOST 127.0.0.1, CONNECTIONPORT 3307

Example 2
DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH ENCRYPTKEY DEFAULT

Example 3
DBOPTIONS TDSPACKETSIZE 2048

Example 4
DBOPTIONS FETCHBATCHSIZE 2000

Example 5
DBOOPTION XMLBUFSIZE 2097152

1.41 DDL
Valid For

Extract and Replicat

Note:

DDL replication is only supported between Oracle to Oracle databases and
between MySQL to MySQL databases.

Description

Use the DDL parameter to:

• enable DDL support

• filter DDL operations

• configure a processing action based on a DDL record

When used without options, the DDL parameter performs no filtering, and it causes all DDL
operations to be propagated as follows:

• As an Extract parameter, it captures all supported DDL operations that are generated on
all supported database objects and sends them to the trail.

• As a Replicat parameter, it replicates all DDL operations from the Oracle GoldenGate trail
and applies them to the target. This is the same as the default behavior without this
parameter.

When used with options, the DDL parameter acts as a filtering agent to include or exclude
DDL operations based on:

• scope

Chapter 1
DDL

1-63

• object type

• operation type

• object name

• strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine
multiple inclusion and exclusion options to filter the DDL to the required level.

• The filtering options of the DDL parameter are valid for a primary Extract that
captures from the transaction source, but not for a data-pump Extract.

• When combined, multiple filter option specifications are linked logically as AND
statements.

• All filter criteria specified with multiple options must be satisfied for a DDL
statement to be replicated.

• When using complex filtering criteria in a DDL parameter statement, it is
recommended that you test your configuration in a test environment before using it
in production.

• See Example 1, Example for more information.

Note:

Do not use the DDL parameter for an Extract data pump. These process
types do not permit the mapping or conversion of DDL and will propagate
DDL records automatically in pass-through mode. DDL that is performed on
a source table (for example ALTER TABLE TableA...) will be applied by
Replicat with the same table name (ALTER TABLE TableA). It cannot be
mapped as ALTER TABLE TableB.

For additional information about how to use Oracle GoldenGate DDL support, see
Configuring DDL Support in Using Oracle GoldenGate for Oracle Database or Using
Oracle GoldenGate for Heterogeneous Databases, as applicable.

Syntax

DDL [
{INCLUDE | EXCLUDE}
 [, MAPPED | UNMAPPED | OTHER | ALL]
 [, OPTYPE type]
 [, OBJTYPE 'type']
 [, SOURCECATALOG catalog | ALLCATALOGS]
 [, ALLOWEMPTYOBJECT]
 [, ALLOWEMPTYOWNER]
 [, OBJNAME name]
 [, INSTR 'string']
 [, INSTRWORDS 'word_list']
 [, INSTRCOMMENTS 'comment_string']
 [, INSTRCOMMENTSWORDS 'word_list']
 [, STAYMETADATA]
 [, EVENTACTIONS (action)
]
[...]

Chapter 1
DDL

1-64

DDL Filtering Options

The following are the syntax options for filtering and operating upon the DDL that is replicated
by Oracle GoldenGate. These options apply to the INCLUDE and EXCLUDE clauses of the DDL
parameter and other parameters that support DDL replication.

INCLUDE | EXCLUDE
Use INCLUDE or EXCLUDE to identify the beginning of an inclusion or exclusion clause.

• An inclusion clause contains filtering criteria that identifies the DDL that this parameter
will affect.

• An exclusion clause contains filtering criteria that excludes specific DDL from this
parameter.

The inclusion or exclusion clause must consist of the INCLUDE or EXCLUDE keyword followed
by any valid combination of the other filtering options of the DDL parameter.
If you use EXCLUDE, you must create a corresponding INCLUDE clause. For example, the
following is invalid:

DDL EXCLUDE OBJNAME "hr".*

However, you can use either of the following:

DDL INCLUDE ALL, EXCLUDE OBJNAME "hr"."*"
DDL INCLUDE OBJNAME fin.* EXCLUDE OBJNAME "fin.ss"

An EXCLUDE takes priority over any INCLUDEs that contain the same criteria. You can use
multiple inclusion and exclusion clauses.
Do not include any Oracle GoldenGate installed DDL objects in a DDL parameter, in a TABLE
parameter, or in a MAP parameter, nor in a TABLEEXCLUDE or MAPEXCLUDE parameter. Make
certain that wildcard specifications in those parameters do not include Oracle GoldenGate-
installed DDL objects. These objects must not be part of the Oracle GoldenGate
configuration, but the Extract process must be aware of operations on them, and that is why
you must not explicitly exclude them from the configuration with an EXCLUDE, TABLEEXCLUDE,
or MAPEXCLUDE parameter statement.

MAPPED | UNMAPPED | OTHER | ALL
Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE based on the DDL
operation scope.

• MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of MAPPED scope.
MAPPED filtering is performed before filtering that is specified with other DDL parameter
options.

• UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of UNMAPPED scope.

• OTHER applies INCLUDE or EXCLUDE to DDL operations that are of OTHER scope.

• ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

DDL EXCLUDE ALL is a special processing option that maintains up-to-date object
metadata for Oracle GoldenGate, while blocking the replication of the DDL operations
themselves. You can use DDL EXCLUDE ALL when using a method other than Oracle
GoldenGate to apply DDL to the target, but you want Oracle GoldenGate to replicate
data changes to the target objects. It provides the current metadata to Oracle

Chapter 1
DDL

1-65

GoldenGate as objects change, thus preventing the need to stop and start the
Oracle GoldenGate processes. The following special conditions apply to DDL
EXCLUDE ALL:

• DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

• When using DDL EXCLUDE ALL, you can set the WILDCARDRESOLVE parameter
to IMMEDIATE to allow immediate DML resolution if required.

OPTYPE type
Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL operation, such
as CREATE, ALTER, and RENAME. For type, use any DDL command that is valid for
the database. For example, to include ALTER operations, the correct syntax is:

DDL INCLUDE OPTYPE ALTER

OBJTYPE 'type'
Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database object.
For type, use any object type that is valid for the database, such as TABLE, INDEX,
and TRIGGER. For an Oracle materialized view and materialized views log, the
correct types are snapshot and snapshot log, respectively. Enclose the name of
the object type within single quotes. For example:

DDL INCLUDE OBJTYPE 'INDEX'
DDL INCLUDE OBJTYPE 'SNAPSHOT'

For Oracle object type USER, do not use the OBJNAME option, because OBJNAME
expects owner.object or container.owner.object whereas USER only has a
schema.

SOURCECATALOG catalog | ALLCATALOGS
Use these options to specify how unqualified object names in an OBJNAME clause
are resolved to the correct container. Use these options when the source
database is an Oracle container database.
SOURCECATALOG specifies a default container for all of the object names that are
specified in the same INCLUDE or EXCLUDE clause. To take effect, SOURCECATALOG
must be specified before the OBJNAME specification. See "SOURCECATALOG" for
more information including using statements that contain two-part names, where
three-part object names are required to fully identify an object.
ALLCATALOGS specifies that all of the containers of the database should be
considered when resolving object names that are specified in the same INCLUDE
or EXCLUDE clause. ALLCATALOGS can be placed before or after the OBJNAME
specification.
The following is the order of precedence that is given when there are different
catalog specifications in a parameter file:

1. ALLCATALOGS in an INCLUDE or EXCLUDE clause overrides all SOURCECATALOG
specifications in the INCLUDE or EXCLUDE clause and at the root of the
parameter file, and it overrides the container specification of a fully qualified
object name in the OBJNAME clause.

2. An explicit catalog specification in the OBJNAME clause overrides all instances
of SOURCECATALOG (but not ALLCATALOGS).

Chapter 1
DDL

1-66

3. SOURCECATALOG in an INCLUDE or EXCLUDE clause overrides the global SOURCECATALOG
parameter that is specified at the root of the TABLE or MAP statement.

4. The global SOURCECATALOG parameter takes effect for any unqualified object names
in OBJNAME clauses if the INCLUDE or EXCLUDE clause does not specify SOURCECATALOG
or ALLCATALOGS.

5. In the absence of any of the preceding parameters, all catalogs are considered.

ALLOWEMPTYOBJECT
Use ALLOWEMPTYOBJECT to allow an OBJNAME specification to process DDL that contains
no object name. For example:

DDL INCLUDE OBJNAME sch.* ALLOWEMPTYOBJECT

ALLOWEMPTYOWNER
Use ALLOWEMPTYOWNER to allow an OBJNAME specification to process DDL that contains no
owner name. For example:

DDL INCLUDE OBJNAME pdb.sch.* ALLOWEMPTYOWNER

OBJNAME name
Use OBJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of an object. To
specify two-part and three-part object names and wildcards correctly, see Administering
Oracle GoldenGate.
Enclose case-sensitive object names within double quote marks.
Case-insensitive example:

DDL INCLUDE OBJNAME accounts.*

Case-sensitive example:

DDL INCLUDE OBJNAME accounts."cust"

Do not use OBJNAME for the Oracle USER object, because OBJNAME expects owner.object
or container.owner.object, whereas USER only has a schema.
When using OBJNAME with MAPPED in a Replicat parameter file, the value for OBJNAME
must refer to the name specified with the TARGET clause of the MAP statement. For
example, given the following MAP statement, the correct value is OBJNAME fin2.*.

MAP fin.exp_*, TARGET fin2.*;

In the following example, a CREATE TABLE statement executes as follows on the source:

CREATE TABLE fin.exp_phone;

That same statement executes as follows on the target:

CREATE TABLE fin2.exp_phone;

If a target owner is not specified in the MAP statement, Replicat maps it to the database
user that is specified with the USERID or USERIDALIAS parameter.
For DDL that creates derived objects, such as a trigger, the value for OBJNAME must be
the name of the base object, not the name of the derived object.
For example, to include the following DDL statement, the correct value is hr.accounts,
not hr.insert_trig.

Chapter 1
DDL

1-67

CREATE TRIGGER hr.insert_trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table name. For
example, to include the following DDL statement, the correct value is hr.acct.

ALTER TABLE hr.accounts RENAME TO acct;

INSTR 'string'
Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain a specific
character string within the command syntax itself, but not within comments. For
example, the following excludes DDL that creates an index.

DDL INCLUDE ALL EXCLUDE INSTR 'CREATE INDEX'

Enclose the string within single quotes. The string search is not case sensitive.
INSTR does not support single quotation marks (' ') that are within the string, nor
does it support NULL values.

INSTRCOMMENTS 'comment_string'
(Valid for Oracle) Use INSTRCOMMENTS to apply INCLUDE or EXCLUDE to DDL
statements that contain a specific character string within a comment, but not
within the DDL command itself. By using INSTRCOMMENTS, you can use comments
as a filtering agent.
For example, the following excludes DDL statements that include the string
'source only' in the comments.

DDL INCLUDE ALL EXCLUDE INSTRCOMMENTS 'SOURCE ONLY'

In this example, DDL statements such as the following are not replicated.

CREATE USER john IDENTIFIED BY john /*source only*/;

Enclose the string within single quotes. The string search is not case sensitive.
You can combine INSTR and INSTRCOMMENTS to filter on a string in the command
syntax and in the comments of the same DDL statement.
INSTRCOMMENTS does not support single quotation marks (' ') that are within the
string, nor does it support NULL values.

INSTRWORDS 'word_list'
Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that contain the
specified words.
For word_list, supply the words in any order, within single quotes. To include
spaces, put the space (and the word, if applicable) in double quotes. Double
quotes also can be used to enclose sentences.
All specified words must be present in the DDL for INSTRWORDS to take effect.
Example:

DDL INCLUDE OPTYPE ALTER OBJTEYP 'TABLE' INSTRWORDS 'ALTER CONSTRAINT
" xyz"'

This example matches the following DDL statements:

ALTER TABLE ADD CONSTRAINT xyz CHECK

ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (' ') that are within the string,
nor does it support NULL values.

Chapter 1
DDL

1-68

INSTRCOMMENTSWORDS 'word_list'
(Valid for Oracle) Works the same way as INSTRWORDS, but only applies to comments
within a DDL statement, not the DDL syntax itself. By using INSTRCOMMENTS, you can use
comments as a filtering agent.
INSTRCOMMENTSWORDS does not support single quotation marks (' ') that are within the
string, nor does it support NULL values.
You can combine INSTRWORDS and INSTRCOMMENTSWORDS to filter on a string in the
command syntax and in the comments of the same DDL statement.

STAYMETADATA
(Valid for Oracle). Prevents metadata from being captured by Extract or applied by
Replicat.
When Extract first encounters DML on a table, it retrieves the metadata for that table.
When DDL is encountered on that table, the old metadata is invalidated. The next DML
on that table is matched to the new metadata so that the target table structure always is
up-to-date with that of the source.
However, if you know that a particular DDL operation will not affect the table's metadata,
you can use STAYMETADATA so that the current metadata is not retrieved or replicated.
This is a performance improvement that has benefit for such operations as imports and
exports, where such DDL as truncates and the disabling of constraints are often
performed. These operations do not affect table structure, as it relates to the integrity of
subsequent data replication, so they can be ignored in such cases. For example ALTER
TABLE ADD FOREIGN KEY does not affect table metadata.
An example of how this can be applied selectively is as follows:

DDL INCLUDE ALL INCLUDE STAYMETADATA OBJNAME xyz

This example states that all DDL is to be included for replication, but only DDL that
operates on object xyz will be subject to STAYMETADATA.
STAYMETADATA also can be used the same way in an EXCLUDE clause.
STAYMETADATA must be used the same way on the source and target to ensure metadata
integrity.
When STAYMETADATA is in use, a message is added to the report file. DDL reporting is
controlled by the DDLOPTIONS parameter with the REPORT option.
This same functionality can be applied globally to all DDL that occurs on the source by
using the @ddl_staymetadata scripts:

• @ddl_staymetadata_on globally turns off metadata versioning.

• @ddl_staymetadata_off globally enables metadata versioning again.

This option should be used with the assistance of Oracle GoldenGate technical support
staff, because it might not always be apparent which DDL affects object metadata. If
improperly used, it can compromise the integrity of the replication environment.

EVENTACTIONS (action)
Causes the Extract or Replicat process take a defined action based on a DDL record in
the transaction log or trail, which is known as the event record. The DDL event is
triggered if the DDL record is eligible to be written to the trail by Extract or a data pump,
or to be executed by Replicat, as determined by the other filtering options of the DDL
parameter. You can use this system to customize processing based on database events.
For action, see EVENTACTIONS under the MAP and TABLE parameters.
Guidelines for using EVENTACTIONS on DDL records:

Chapter 1
DDL

1-69

• CHECKPOINTBEFORE: Since each DDL record is autonomous, the DDL record is
guaranteed to be the start of a transaction; therefore, the CHECKPOINT BEFORE
event action is implied for a DDL record.

• IGNORE: This option is not valid for DDL records. Because DDL operations are
autonomous, ignoring a record is equivalent to ignoring the entire transaction.

EVENTACTIONS does not support the following DDL objects because they are
derived objects:

• indexes

• triggers

• synonyms

• RENAME on a table and ALTER TABLE RENAME

Examples

Example 1 Combining DDL Parameter Options
The following is an example of how to combine the options of the DDL parameter.

DDL &
INCLUDE UNMAPPED &
 OPTYPE alter &
 OBJTYPE 'table' &
 OBJNAME users.tab* &
INCLUDE MAPPED OBJNAME * &
EXCLUDE MAPPED OBJNAME temporary.tab

The combined filter criteria in this statement specify the following:

• INCLUDE all ALTER TABLE statements for tables that are not mapped with a TABLE
or MAP statement (UNMAPPED scope), but only if those tables are owned by users
and their names start with tab,

• INCLUDE all DDL operation types for all tables that are mapped with a TABLE or MAP
statement (MAPPED scope),

• EXCLUDE all DDL operation types for all tables that are MAPPED in scope, but only if
those tables are owned by temporary and only if their names begin with tab.

Example 2 Including an Event Action
The following example specifies an event action of REPORT for all DDL records.

DDL INCLUDE ALL EVENTACTIONS (REPORT)

Example 3 Using an Event Action on a Subset of DDL
The following example shows how EVENTACTIONS can be used on a subset of the
DDL. All DDL is to be replicated, but only the DDL that is executed on explicitly
named objects qualifies to trigger the event actions of REPORT and LOG.

DDL INCLUDE ALL &
 INCLUDE OBJNAME sales.t* EVENTACTIONS (REPORT) &
 INCLUDE OBJNAME fin.my_tab EVENTACTIONS (LOG) &

Example 4
The following example demonstrates the different ways to specify catalog names for
DDL that is issued on objects in a source Oracle container database.

Chapter 1
DDL

1-70

• This includes pdb1.sch1.obj1 and pdb2.sch2.obj2 for DDL processing.

SOURCECATALOG pdb1
DDL INCLUDE OBJNAME sch1.obj1 INCLUDE SOURCECATALOG pdb2 OBJNAME sch2.obj2

• This includes all objects with the name sch.obj in any catalog for DDL processing.

DDL INCLUDE ALLCATALOGS OBJNAME sch.obj
• This also includes all objects with the name sch.obj in any catalog for DDL processing,

because ALLCATALOGS overrides any other catalog specification.

DDL INCLUDE ALLCATALOGS OBJNAME pdb.sch.obj

Example 5
The following shows the combined use of ALLOWEMPTYOBJECT and ALLOWEMPTYOWNER.

DDL INCLUDE pdb.*.* ALLOWEMPTYOWNER ALLOWEMPTYOBJECT

1.42 DDLERROR
Valid For

Extract and Replicat

Description

Use the DDLERROR parameter to handle DDL errors on the source and target systems. Options
are available for Extract and Replicat.

DDLERROR for Extract

Use the Extract option of the DDLERROR parameter to handle errors on objects found by
Extract for which metadata cannot be found.

Default

Abend

Syntax

DDLERROR [RESTARTSKIP number_of_skips] [RETRYDELAY seconds] [SKIPTRIGGERERROR
number_of_errors]

RESTARTSKIP number_of_skips
Causes Extract to skip and ignore a specific number of DDL operations on startup, to
prevent Extract from abending on an error. By default, a DDL error causes Extract to abend
so that no operations are skipped. Valid values are 1 to 100000.
To write information about skipped operations to the Extract report file, use the DDLOPTIONS
parameter with the REPORT option.

SKIPTRIGGERERROR number_of_errors
(Oracle) Causes Extract to skip and ignore a specific number of DDL errors that are caused
by the DDL trigger on startup. Valid values are 1 through 100000.
SKIPTRIGGERERROR is checked before the RESTARTSKIP option. If Extract skips a DDL
operation because of a trigger error, that operation is not counted toward the RESTARTSKIP
specification.

Chapter 1
DDLERROR

1-71

DDLERROR for Replicat

Use the Replicat options of the DDLERROR parameter to handle errors that occur when
DDL is applied to the target database. With DDLERROR options, you can handle most
errors in a default manner, for example to stop processing, and also handle other
errors in a specific manner. You can use multiple instances of DDLERROR in the same
parameter file to handle all errors that are anticipated.

Default

Abend

Syntax

DDLERROR
{error | DEFAULT} {response}
{INCLUDE inclusion_clause | EXCLUDE exclusion_clause}
[IGNOREMISSINGOBJECTS | ABENDONMISSINGOBJECTS]
[RETRYDELAY seconds]

{error | DEFAULT} {response}

error
Specifies an explicit DDL error for this DDLERROR statement to handle.

DEFAULT
Specifies a default response to any DDL errors for which there is not an explicit
DDLERROR statement.

response
The action taken by Replicat when a DDL error occurs. Can be one of the
following:

ABEND
Roll back the operation and terminate processing abnormally. ABEND is the
default.

DISCARD
Log the offending operation to the discard file but continue processing
subsequent DDL.

IGNORE
Ignore the error.

{INCLUDE inclusion_clause | EXCLUDE exclusion_clause}
Identifies the beginning of an inclusion or exclusion clause that controls whether
specific DDL is handled or not handled by the DDLERROR statement. See "DDL Filtering
Options" for syntax and usage.

[IGNOREMISSINGOBJECTS | ABENDONMISSINGOBJECTS]
Controls whether or not Extract abends when DML is issued on objects that could not
be found on the target. This condition typically occurs when DDL that is not in the
replication configuration is issued directly on the target, or it can occur when there is a
discrepancy between the source and target definitions.

Chapter 1
DDLERROR

1-72

IGNOREMISSINGOBJECTS
Causes Replicat to skip DML operations on missing tables.

ABENDONMISSINGOBJECTS
Causes Replicat to abend on DML operations on missing tables.

[RETRYDELAY seconds]
Specifies the delay in seconds between attempts to retry a failed operation. The default is 10
seconds.

Examples

Example 1 DDLERROR Basic Example
In the following example, the DDLERROR statement causes Replicat to ignore the specified
error, but not before trying the operation again three times at ten-second intervals. Replicat
applies the error handling to DDL operations executed on objects whose names satisfy the
wildcard of tab* (any user, any operation) except those that satisfy tab1*.

DDLERROR 1234 IGNORE RETRYOP MAXRETRIES 3 RETRYDELAY 10 &
INCLUDE ALL OBJTYPE TABLE OBJNAME tab* EXCLUDE OBJNAME tab1*

To handle all errors except that error, the following DDLERROR statement can be added.

DDLERROR DEFAULT ABEND

In this case, Replicat abends on DDL errors.

Example 2 Using Multiple DDLERROR Statements
The order in which you list DDLERROR statements in the parameter file does not affect their
validity unless multiple DDLERROR statements specify the same error, without any additional
qualifiers. In that case, Replicat only uses the first one listed. For example, given the
following statements, Replicat will abend on the error.

DDLERROR 1234 ABEND
DDLERROR 5678 IGNORE

With the proper qualifiers, however, the previous configuration becomes a more useful one.
For example:

DDLERROR 1234 ABEND INCLUDE OBJNAME tab*
DDLERROR 5678 IGNORE

In this case, because there is an INCLUDE statement, Replicat will abend only if an object
name in an errant DDL statement matches wildcard tab*. Replicat will ignore errant
operations that include any other object name.

1.43 DDLOPTIONS
Valid For

Extract and Replicat

Description

Use the DDLOPTIONS parameter to configure aspects of DDL processing other than filtering
and string substitution. You can use multiple DDLOPTIONS statements, but using one is
recommended. If using multiple DDLOPTIONS statements, make each of them unique so that

Chapter 1
DDLOPTIONS

1-73

one does not override the other. Multiple DDLOPTIONS statements are executed in the
order listed in the parameter file.

Default

See the argument descriptions

Syntax

DDLOPTIONS
[, DEFAULTUSERPASSWORD password [algorithm [ENCRYPTKEY DEFAULT | ENCRYPTKEY
key_name]
[, CAPTUREGLOBALTEMPTABLE]
[, DEFAULTUSERPASSWORDALIAS alias [DOMAIN domain]]
[, GETAPPLOPS | IGNOREAPPLOPS]
[, GETREPLICATES | IGNOREREPLICATES]
[, IGNOREMAPPING]
[, MAPDERIVED | NOMAPDERIVED]
[, MAPSCHEMAS]
[, MAPSESSIONSCHEMA source_schema TARGET target_schema]
[, NOTAG]
[, PASSWORD algorithm ENCRYPTKEY {key_name | DEFAULT}]
[, REMOVECOMMENTS {BEFORE | AFTER}]
[, REPLICATEPASSWORD | NOREPLICATEPASSWORD]
[, REPORT | NOREPORT]
[, UPDATEMETADATA]
[, USEPASSWORDVERIFIERLEVEL {10|11}]
[, _USEOWNERFORSESSION]

DEFAULTUSERPASSWORD password [algorithm ENCRYPTKEY {key_name | DEFAULT}]
Valid for Replicat. (Oracle only)
Can be used instead of the DEFAULTUSERPASSWORDALIAS option if an Oracle
GoldenGate credential store is not being used. Specifies a different password for a
replicated {CREATE | ALTER} USER name IDENTIFIED BY password statement from
the one used in the source statement. Replicat will replace the placeholder that
Extract writes to the trail with the specified password. When using
DEFAULTUSERPASSWORD, use the NOREPLICATEPASSWORD option of DDLOPTIONS for
Extract.
DEFAULTUSERPASSWORD password without options specifies a clear-text password. If
the password is case-sensitive, type it that way.

Note:

Replication of CREATE | ALTER PROFILE will fail as the profile/password
verification function must exist in the SYS schema. To replicate these DDLs
successfully, password verification function must be created manually on
both source/target(s) since DDL to SYS schema is excluded.

Use the following options if the password was encrypted with the ENCRYPT PASSWORD
command in GGSCI:

algorithm
Specifies the encryption algorithm that was used to encrypt the password with the
ENCRYPT PASSWORD command: AES128, AES192, AES256, or BLOWFISH. Use AES

Chapter 1
DDLOPTIONS

1-74

unless Blowfish is required for backward compatibility. AES is more secure than
Blowfish.

ENCRYPTKEY key_name
Specifies the logical name of a user-created encryption key in the ENCKEYS lookup file.
Use if ENCRYPT PASSWORD was used with the KEYNAME key_name option, and specify the
same key name.

ENCRYPTKEY DEFAULT
Directs Oracle GoldenGate to use a random key. Use if ENCRYPT PASSWORD was used
with the KEYNAME DEFAULT option.

CAPTUREGLOBALTEMPTABLE
Valid for Oracle
Allows Global Temporary Tables (GTT) DDLs to be visible to Extract so that they can be
replicated. By default, GTT DDLs are not visible to Extract so using
CAPTUREGLOBALTEMPTABLE you can set Extract to include GTT DDLs that then can be filtered
by the DDL statement and if passed, written to the trail. The GTT DDLs are included in
Replicat, if present in trail, and are filtered by the DDL statement then if they are passed they
are executed.
For trigger-version of Extract, this option is set to false regardless of whether the table is
GTT or not.

DEFAULTUSERPASSWORDALIAS alias [DOMAIN domain]
Valid for Replicat. (Oracle only)
Can be used instead of the DEFAULTUSERPASSWORD option if an Oracle GoldenGate credential
store is being used. Specifies the alias of a credential whose password replaces the one in
the IDENTIFIED BY clause of a replicated CREATE USER or ALTER USER statement. The alias is
resolved to the encrypted password in the Oracle GoldenGate credential store. Replicat
replaces the placeholder that Extract writes to the trail with the resolved password before
applying the DDL to the target.
When using DEFAULTUSERPASSWORDALIAS, use the NOREPLICATEPASSWORD option of
DDLOPTIONS for Extract.

alias
Specifies the alias of the credential whose password will be used for the replacement
password. This credential must exist in the Oracle GoldenGate credential store. If you
are not sure what alias to use, you can inspect the content of the credential store by
issuing the INFO CREDENTIALSTORE command.

DOMAIN domain
Specifies the domain that is assigned to the specified user in the credential store.

GETAPPLOPS | IGNOREAPPLOPS
Valid for Extract. (Oracle only)
Controls whether or not DDL operations produced by business applications except Replicat
are included in the content that Extract writes to a trail or file. GETAPPLOPS and
IGNOREAPPLOPS can be used together with the GETREPLICATES and IGNOREREPLICATES
options to control which DDL is propagated in a bidirectional or cascading configuration.

• For a bidirectional configuration, use GETAPPLOPS with IGNOREREPLICATES . You also
must use the UPDATEMETADATA option.

Chapter 1
DDLOPTIONS

1-75

• For a cascading configuration, use IGNOREAPPLOPS with GETREPLICATES on the
systems that will be cascading the DDL operations to the target.

The default is GETAPPLOPS.

GETREPLICATES | IGNOREREPLICATES
Valid for Extract (Oracle only). Controls whether or not DDL operations produced by
Replicat are included in the content that Extract writes to a trail or file. The default is
IGNOREREPLICATES. For more information, see the GETAPPLOPS | IGNOREAPPLOPS
options of DDLOPTIONS.

IGNOREMAPPING
Valid for Replicat. Disables the evaluation of name mapping that determines whether
DDL is of MAPPED or UNMAPPED scope. This option improves performance in like-to-like
DDL replication configurations, where source and target schema names and object
names match, and where mapping functions are therefore unnecessary. With
IGNOREMAPPING enabled, MAPPED or UNMAPPED scope cannot be determined, so all DDL
statements are treated as OTHER scope. Do not use this parameter when source
schemas and object names are mapped to different schema and object names on the
target.

MAPDERIVED | NOMAPDERIVED
Valid for Replicat (Oracle). Controls how derived object names are mapped.

MAPDERIVED
If a MAP statement exists for the derived object, the name is mapped to the name
specified in that TARGET clause. Otherwise, the name is mapped to the name
specified in the TARGET clause of the MAP statement that contains the base object.
MAPDERIVED is the default.

NOMAPDERIVED
Prevents name mapping. NOMAPDERIVED overrides any explicit MAP statements that
contain the name of the derived object.

For more information about how derived objects are handled during DDL replication,
see the Managing the DDL Replication Environment in Using Oracle GoldenGate for
Oracle Database.

MAPSCHEMAS
Valid for Replicat (Oracle and Teradata). Use only when MAPSESSIONSCHEMA is used.

• MAPSESSIONSCHEMA establishes a source-target mapping for session schemas and
is used for objects whose schemas are not qualified in the DDL.

• MAPSCHEMAS maps objects that do have qualified schemas in the source DDL, but
which do not qualify for mapping with MAP, to the same session-schema mapping
as in MAPSESSIONSCHEMA. Examples of such objects are the Oracle CREATE TABLE
AS SELECT statement, which contains a derived object in the AS SELECT clause, or
the Teradata CREATE REPLICATION RULESET statement.

This mapping takes place after the mapping that is specified in the MAP statement.
As an example, suppose the following DDL statement is issued on a source Oracle
database:

create table a.t as select from b.t;

Chapter 1
DDLOPTIONS

1-76

Suppose the MAP statement on the target is as follows:

MAP a.*, TARGET c.*;
DDLOPTIONS MAPSESSIONSCHEMA b, TARGET b1, MAPSCHEMAS

As a result of this mapping, Replicat issues the following DDL statement on the target:

create table c.t as select from b1.t;

• The base table gets mapped according to the TARGET clause (to schema c).

• The qualified derived object (table t in SELECT FROM) gets mapped according to
MAPSESSIONSCHEMA (to schema b1) because MAPSCHEMAS is present.

Without MAPSCHEMAS, the derived object would get mapped to schema c (as specified in the
TARGET clause), because MAPSESSIONSCHEMA alone only maps unqualified objects.

MAPSESSIONSCHEMA source_schema TARGET target_schema
Valid for Replicat (Oracle only). Enables a source session schema to be mapped to
(transformed to) a different session schema on the target.

• source_schema is the session schema that is set with ALTER SESSION set
CURRENT_SCHEMA on the source.

• target_schema is the session schema that is set with ALTER SESSION set
CURRENT_SCHEMA on the target.

Wildcards are not supported. You can use multiple MAPSESSIONSCHEMA parameters to map
different schemas.
MAPSESSIONSCHEMA overrides any mapping of schema names that is based on master or
derived object names
See the example at the end of this topic for usage.
See also MAPSCHEMAS.

NOTAG
Valid for Replicat
Prevents the tagging of DDL that is applied by Replicat with a redo tag (either the default tag
'00' or one set with the DBOPTIONS parameter with the SETTAG option). Use this option for
bidirectional configurations where GETREPLICATES is used and DDL applied by Replicat must
be captured back by Extract for a metadata refresh.

PASSWORD algorithm ENCRYPTKEY {key_name | DEFAULT}
Valid for Extract (Oracle only)
Directs Extract to encrypt all passwords in source DDL before writing the DDL to the trail.

algorithm
Specifies the encryption algorithm to be used to encrypt the password. Valid values are
AES128, AES192, AES256, or BLOWFISH. Use AES unless Blowfish is required for backward
compatibility. AES is more secure than Blowfish.

ENCRYPTKEY key_name
Specifies the logical name of a user-created encryption key in an ENCKEYS lookup file.

ENCRYPTKEY DEFAULT
Directs Oracle GoldenGate to use a random key.

Chapter 1
DDLOPTIONS

1-77

REMOVECOMMENTS {BEFORE | AFTER}
(Optional) Valid for Extract and Replicat (Oracle only). Controls whether or not
comments are removed from the DDL operation. By default, comments are not
removed, so that they can be used for string substitution with the DDLSUBST parameter.
See "DDLSUBST" for more information.

REMOVECOMMENTS BEFORE
Removes comments before the DDL operation is processed by Extract or
Replicat. They will not be available for string substitution.

REMOVECOMMENTS AFTER
Removes comments after they are used for string substitution. This is the default
behavior if REMOVECOMMENTS is not specified.

REPLICATEPASSWORD | NOREPLICATEPASSWORD
Valid for Extract (Oracle only). Applies to the password in a {CREATE | ALTER} USER
user IDENTIFIED BY password command.

• By default (REPLICATEPASSWORD), Oracle GoldenGate uses the source password in
the target CREATE or ALTER statement.

• To prevent the source password from being sent to the target, use
NOREPLICATEPASSWORD.

When using NOREPLICATEPASSWORD, specify a password for the target DDL statement
by using a DDLOPTIONS statement with the DEFAULTUSERPASSWORD or
DEFAULTUSERPASSWORDALIAS option in the Replicat parameter file.

REPORT | NOREPORT
Valid for Extract and Replicat (Oracle and Teradata). Controls whether or not
expanded DDL processing information is written to the report file. The default of
NOREPORT reports basic DDL statistics. REPORT adds the parameters being used and a
step-by-step history of the operations that were processed.

UPDATEMETADATA
Valid for Replicat (Oracle only). Use in an active-active bi-directional configuration.
This parameter notifies Replicat on the system where DDL originated that this DDL
was propagated to the other system, and that Replicat should now update its object
metadata cache to match the new metadata. This keeps Replicat's metadata cache
synchronized with the current metadata of the local database.

USEPASSWORDVERIFIERLEVEL {10|11}
Only valid in an Oracle to Oracle configuration. Checks if the password verifier being
sent in a DDL CREATE USER statement requires modifying. The reason for this check is
because Oracle has different password verifiers, depending on the database version:

• 10g: A weak verifier kept in user$.password.

• 11g: The SHA-1 verifier.

• 12c: The SHA-2 and HTTP digest verifiers.

The SHA-1, SHA-2 and HTTP verifiers are captured in user$.spare4 in the format of:
'S:<SHA-1-verifier>;H:<http-verifier>;T:<SHA-2-verifier>'. Integrated Extract
returns the following DDL in 12c for create user DDL statements:

Chapter 1
DDLOPTIONS

1-78

• In 12.0.1.0 it returns: CREATE USER username IDENTIFIED BY VALUES
'S:SHA-1;H:http;weak'.

• In 12.0.2.0 and later it returns: CREATE USER username IDENTIFIED BY VALUES
'S:SHA-1;H:http;T:SHA-2;weak'.

If Replicat runs against Oracle 12c, these forms of CREATE USER are handled at the RDBMS
level, but if Replicat runs against Oracle 10g or 11, these forms are not handled by the
RDBMS. Oracle 10g only accepts the weak verifier, whereas Oracle 11g only accepts the
S:SHA-1 and weak verifiers.
To allow the CREATE USER DDL generated for an Extract connected to Oracle 12c to work
with a Replicat connected to Oracle 10g or 11g, this parameter can be used to filter out the
unwanted verifiers, as follows:

• If USEPASSWORDVERIFIERLEVEL is set to 10, everything except the weak verifier is filtered
out of the CREATE USER DDL verification string.

• If USEPASSWORDVERIFIERLEVEL is set to 11, everything except the S:SHA-1 and weak
verifiers is filtered out of the CREATE USER DDL verification string.

Examples

Example 1
The following shows how MAPSESSIONSCHEMA works to allow mapping of a source session
schema to another schema on the target.
Assume the following DDL capture and mapping configurations in Extract and Replicat:
Extract:

DDL INCLUDE OBJNAME SRC.* INCLUDE OBJNAME SRC1.*
TABLE SRC.*;
TABLE SRC1.*;
DDL INCLUDE OBJNAME SRC.* INCLUDE OBJNAME SRC1.*
TABLE SRC.*;
TABLE SRC1.*;

Replicat:

DDLOPTIONS MAPSESSIONSCHEMA SRC TARGET DST
DDLOPTIONS MAPSESSIONSCHEMA SRC1 TARGET DST1
MAP SRC.*, TARGET DST.*;
MAP SRC1.*, TARGET DST1.*;
DDL INCLUDE OBJNAME DST.* INCLUDE OBJNAME DST1.*

Assume that the following DDL statements are issued by the logged-in user on the source:

ALTER SESION SET CURRENT_SCHEMA=SRC;
CREATE TABLE tab (X NUMBER);
CREATE TABLE SRC1.tab (X NUMBER) AS SELECT * FROM tab;

Replicat will perform the DDL as follows (explanations precede each code segment):

-- Set session to DST, because SRC.* is mapped to DST.* in MAP statement.
ALTER SESION SET CURRENT_SCHEMA=DST;
-- Create the first TAB table in the DST schema, using the DST session schema.
CREATE TABLE DST.tab (X NUMBER);
-- Restore Replicat schema.
ALTER SESSION SET CURRENT_SCHEMA=REPUSER
-- Set session schema to DST, per MAPSESSIONSCHEMA, so that AS SELECT succeeds.
ALTER SESION SET CURRENT_SCHEMA=DST;

Chapter 1
DDLOPTIONS

1-79

-- Create the DST1.TAB table AS SELECT * FROM the first table (DST.TAB).
CREATE TABLE DST1.tab (X NUMBER) AS SELECT * FROM tab;
-- Restore Replicat schema.
ALTER SESSION SET CURRENT_SCHEMA=REPUSER

Without MAPSESSIONSCHEMA, the SELECT * FROM TAB would attempt to select from a
non-existent SRC.TAB table and fail. The default is to apply the source schema to
unqualified objects in a target DDL statement. The DDL statement in that case would
look as follows and would fail:

-- Set session to DST, because SRC.* is mapped to DST.* in MAP statement.
ALTER SESION SET CURRENT_SCHEMA=DST;
-- Create the first TAB table in the DST schema, using the DST session schema.
CREATE TABLE DST.tab (X NUMBER);
-- Restore Replicat schema.
ALTER SESSION SET CURRENT_SCHEMA=REPUSER
-- Set session schema to SRC, because TAB in the AS SELECT is unqualified-- and
SRC is the source session schema.
ALTER SESION SET CURRENT_SCHEMA=SRC;
-- Create DST1.TAB AS SELECT * from SRC.TAB (SRC=current session schema).
CREATE TABLE DST1.tab (X NUMBER) AS SELECT * FROM tab;
-- SRC.TAB does not exist.
-- Abend with an error unless the error is handled by a DDLERROR statement.

Example 2
The following shows how to use DEFAULTUSERPASSWORDALIAS to specify a different
password for a replicated {CREATE | ALTER} USER name IDENTIFIED BY password
statement from the one used in the source statement. In this example, the alias
ddlalias is in the target domain in the credential store.

DDLOPTIONS DEFAULTUSERPASSWORDALIAS ddlalias DOMAIN target

1.44 DDLSUBST
Valid For

Extract and Replicat

Description

Use the DDLSUBST parameter to substitute strings in a DDL operation. For example,
you could substitute one table name for another or substitute a string within
comments. The search is not case-sensitive. To represent a quotation mark in a string,
use a double quote mark.

Guidelines for Using DDLSUBST

• Do not use DDLSUBST to convert column names and data types to something
different on the target. Changing the structure of a target object in this manner will
cause errors when data is replicated to it. Likewise, do not use DDLSUBST to
change owner and table names in a target DDL statement. Always use a MAP
statement to map a replicated DDL operation to a different target object.

• DDLSUBST always executes after the DDL parameter, regardless of their relative
order in the parameter file. Because the filtering executes first, use filtering criteria
that is compatible with the criteria that you are using for string substitution. For
example, consider the following parameter statements:

Chapter 1
DDLSUBST

1-80

DDL INCLUDE OBJNAME fin.*
DDLSUBST 'cust' WITH 'customers' INCLUDE OBJNAME sales.*

In this example, no substitution occurs because the objects in the INCLUDE and DDLSUBST
statements are different. The fin-owned objects are included in the Oracle GoldenGate
DDL configuration, but the sales-owned objects are not.

• You can use multiple DDLSUBST parameters. They execute in the order listed in the
parameter file.

• For Oracle DDL that includes comments, do not use the DDLOPTIONS parameter with the
REMOVECOMMENTS BEFORE option if you will be doing string substitution on those
comments. REMOVECOMMENTS BEFORE removes comments before string substitution
occurs. To remove comments, but allow string substitution, use the REMOVECOMMENTS
AFTER option.

• There is no maximum string size for substitutions, other than the limit that is imposed by
the database. If the string size exceeds the database limit, the Extract or Replicat
process that is executing the operation abends.

Default

No substitution

Syntax

DDLSUBST 'search_string' WITH 'replace_string'
[INCLUDE inclusion_clause | EXCLUDE exclusion_clause]

'search_string'
The string in the source DDL statement that you want to replace. Enclose the string within
single quote marks. To represent a quotation mark in a string, use a double quotation mark.

WITH
Required keyword.

'replace_string'
The string that you want to use as the replacement in the target DDL. Enclose the string
within single quote marks. To represent a quotation mark in a string, use a double quotation
mark.

INCLUDE inclusion_clause | EXCLUDE exclusion_clause
Specifies one or more INCLUDE and EXCLUDE statements to filter the DDL operations for which
the string substitution rules are applied. See "DDL Filtering Options" for syntax and usage.

Examples

Example 1
The following replaces the string cust with the string customers for tables in the fin schema.

DDLSUBST 'cust' WITH 'customers'
INCLUDE ALL OBJTYPE 'table' OBJNAME fin.*

Example 2
The following substitutes a new directory only if the DDL command includes the word
logfile. If the search string is found multiple times, the replacement string is inserted
multiple times.

Chapter 1
DDLSUBST

1-81

DDLSUBST '/file1/location1' WITH '/file2/location2' INCLUDE INSTR 'logfile'

Example 3
The following uses multiple DDLSUBST statements, which execute in the order shown.

DDLSUBST 'a' WITH 'b' INCLUDE ALL
DDLSUBST 'b' WITH 'c' INCLUDE ALL

The net effect of the preceding substitutes all a and b strings with c.

1.45 DDLRULEHINT
Valid For

GLOBALS

Description

Use the DDLRULEHINT parameter to add a RULE hint to the DDL trigger. For example
you can add the RULE (/*+NO_UNNEST*/) hint to improve the performance of the trigger
when performing SQL queries.

You can also use the define _ddl_rule_hint parameter in the params.sql file to add
a hint. For example: define _ddl_rule_hint = '/*+NO_UNNEST*/'

Default

None

Syntax

DDLRULEHINT hint_syntax

hint_syntax
The syntax of the hint. Spaces are not permitted within the hint syntax.

Example

DDLRULEHINT /*+NO_UNNEST*/

1.46 DDLTABLE
Valid For

Oracle, DB2 z/OS

Description

This is a GLOBALS parameter. Use the DDLTABLE parameter to specify the name of
the DDL history table, if other than the default of GGS_DDL_HIST. The DDL history table
stores a history of DDL operations processed by Oracle GoldenGate.
In DB2 z/OS an acceptable value is a valid DB2 z/OS table name.

For Oracle database only:

Chapter 1
DDLRULEHINT

1-82

The name of the history table must also be specified with the ddl_hist_table parameter in
the params.sql script. This script resides in the root Oracle GoldenGate installation directory.

The capture configuration uses the Oracle GoldenGate DDL trigger to support DDL
replication. For more information about the Oracle GoldenGate DDL objects, see Installing
Trigger-Based DDL Capture in Using Oracle GoldenGate for Oracle Database.

Default

GGS_DDL_HIST

Syntax

DDLTABLE table_name

table_name
The fully qualified name of the DDL history table. This can be a two-part name
(schema.table) or a three-part name, if stored in a container database
(container.schema.table).

Example

DDLTABLE GG_DDL_HISTORY

1.47 DECRYPTTRAIL
Valid For

Extract data pump and Replicat

Description

Use the DECRYPTTRAIL parameter to decrypt data in a trail or extract file. This parameter is
required in the following cases:

• If the trail was encrypted with the master key and wallet method, use DECRYPTTRAIL for a
data pump only if you want the data to be decrypted when written to the output trail of the
data pump. Otherwise, this parameter is not needed. If the data-pump requires further
processing of records, it decrypts automatically and then re-encrypts the data before
writing it to the output trail. Replicat always decrypts data automatically when the master
key and wallet method is used.

• When DECRYPTTRAIL is used for a data pump, use the ENCRYPTTRAIL parameter before
specifying any output trails that must be encrypted.

• If the trail was encrypted with the ENCKEYS method, use DECRYPTTRAIL for Replicat to
decrypt the data before applying it to the target.

Data encryption is controlled by the ENCRYPTTRAIL | NOENCRYPTTRAIL parameters.

For Oracle, if you are using wallet based encryption DECRYPTTRAIL does not require a cipher
because it is recorded in the trail file header.

Default

None

Chapter 1
DECRYPTTRAIL

1-83

Syntax

DECRYPTTRAIL [{AES128 | AES192 | AES256}]

DECRYPTTRAIL
Valid without any other options only if the trail or file was encrypted with ENCRYPTTRAIL
without options to use 256-key byte substitution.

{AES128 | AES192 | AES256}
Valid for master key and wallet method and ENCKEYS method. Specify the same AES
cipher that was used in ENCRYPTTRAIL to encrypt the trail or file.

Example

Example 1
The following is an example of the ENCKEYS method.

DECRYPTTRAIL AES192

Example 2
The following is all that is needed to decrypt using the master key and wallet method.

DECRYPTTRAIL

1.48 DEFERAPPLYINTERVAL
Valid For

Replicat

Description

Use the DEFERAPPLYINTERVAL parameter to set an amount of time that Replicat waits
before applying captured transactions to the target database. To determine when to
apply the transaction, Replicat adds the delay value to the commit timestamp of the
source transaction, as recorded in the local GMT time of the source system.

You can use DEFERAPPLYINTERVAL for such purposes as to prevent the propagation of
erroneous changes made to the source data, to control data arrival across different
time zones, and to allow time for other planned events to occur before the data is
applied to the target. Note that by using DEFERAPPLYINTERVAL, you are purposely
building latency into the target data, and it should be used with caution if the target
applications are time-sensitive.

To find out if Replicat is deferring operations, use the SEND REPLICAT command with
the STATUS option and look for a status of Waiting on deferred apply.

If you want to stop a process (like the Replicat) at a specific time, use the END
parameter.

Chapter 1
DEFERAPPLYINTERVAL

1-84

Note:

If the TCPSOURCETIMER parameter is in use, it is possible that the timestamps of the
source and target transactions could vary by a few seconds, causing Replicat to
hold its transaction (and hence row locks) open for a few seconds. This small
variance should not have a noticeable affect on performance.

Default

0 (no delay)

Syntax

DEFERAPPLYINTERVAL n unit

n
A numeric value for the amount of time to delay. The minimum delay time is the value that is
set for the EOFDELAY parameter. The maximum delay time is seven days.

unit
The unit of time for the delay. Can be:

S | SEC | SECS | SECOND | SECONDS | MIN | MINS | MINUTE | MINUTES | HOUR | HOURS |
DAY | DAYS

Example

This example directs Replicat to wait ten hours before posting its transactions.

DEFERAPPLYINTERVAL 10 HOURS

If a transaction completes at 08:00:00 source GMT time, and the delay time is 10 hours, the
transaction will be applied to the target at 18:00:00 target GMT time the same day.

1.49 DEFSFILE
Valid For

DEFGEN

Description

Use the DEFSFILE parameter to identify the name of the file to which DEFGEN will write data
definitions. By default, the data definitions file is written in the character set of the local
operating system. You can change the character set with the CHARSET option.

Default

None

Syntax

DEFSFILE file_name [APPEND | PURGE] [CHARSET character_set] [FORMAT RELEASE
major.minor]

Chapter 1
DEFSFILE

1-85

file_name
The relative or fully qualified file name. The file is created when you run DEFGEN.

APPEND
Directs DEFGEN to write new content (from the current run) at the end of any existing
content, if the specified file already exists. If the definitions file already exists, but is of
an older Oracle GoldenGate release version, you can set the FORMAT RELEASE option
to the same version as the existing file to prevent errors. Otherwise, DEFGEN will try to
add newer metadata features and abend. The following are the restrictions when
using APPEND:

• If the existing data definitions file is in a format older than Oracle GoldenGate
11.2.1, DEFGEN appends the table definitions in the old format, where table and
column names with multi-byte and special characters are not supported.

• If the existing data definitions file is in the newer format introduced in version
11.2.1, DEFGEN appends the table definitions in the existing character set of the
file.

• If the existing file is from version 11.2 or earlier, it was written when DEFGEN did not
support three-part object names and will cause an error if the new metadata
contains three-part names. You can specify objects from an Oracle container
database if you remove the container or catalog portion by using the NOCATALOG
parameter in the DEFGEN parameter file.

PURGE
Directs DEFGEN to purge the specified file before writing new content from the current
run. When using PURGE, you can overwrite an existing definitions file that was created
by an older version of DEFGEN with newer metadata that supports newer features, such
as three-part object names.

CHARSET character_set
Generates the definitions file in the specified character set. Without CHARSET, the
default character set of the operating system is used. If APPEND mode is specified for a
definitions file that is version 11.2.1 or later, CHARSET is ignored, and the character set
of the existing definitions file is used.

FORMAT RELEASE major.minor
Specifies the metadata format of the definitions that are sent by DEFGEN to the
definitions file. The metadata tells the reader process whether the file records are of a
version that it supports. The metadata format depends on the version of the Oracle
GoldenGate process. Older Oracle GoldenGate versions contain different metadata
than newer ones. Use FORMAT when the definitions file will be used by a process that
is of an older Oracle GoldenGate version than the current one.

• FORMAT is a required keyword.

• RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid
values are 9.0 through the current Oracle GoldenGate X.x version number, for
example 11.2 or 12.1. (If you use an Oracle GoldenGate version that is earlier
than 9.0, specify either 9.0 or 9.5.)

Chapter 1
DEFSFILE

1-86

The release version is programmatically mapped back to an appropriate internal
compatibility level. The default is the current version of the process that writes to this
trail. Note that RELEASE versions earlier than 12.1 do not support three-part object
names.

FORMAT RELEASE major.minor
Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a
remote task) to another process. The metadata tells the reader process whether the data
records are of a version that it supports. The metadata format depends on the version of the
Oracle GoldenGate process. Older Oracle GoldenGate versions contain different metadata
than newer ones.
FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 11.1 through the
current Oracle GoldenGate X.x version number, for example 11.2 or 12.1. The release
version is programmatically mapped back to the appropriate trail format compatibility level.
The default is the current version of the process that writes to this trail.

Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the same
can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1, FORMAT
RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.2, FORMAT
RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2, only FORMAT
RELEASE values 12.3 or higher are supported. This is due to the use of local undo for
PDBs, which requires augmenting the transaction ID with the PDB number to ensure
uniqueness of trx IDs.

Example

DEFSFILE ./dirdef/orcldef CHARSET ISO-8859-11 FORMAT RELEASE 11.2

1.50 DICTIONARY_CACHE_SIZE
Valid For

Valid for Extract.

Chapter 1
DICTIONARY_CACHE_SIZE

1-87

Description

The dictionary_cache_size (default 5000) parameter sets the LogMiner dictionary
cache size.

The cache size can become a limiting factor during heavy DDL workloads causing
LogMiner builder to become CPU-bound and messages in trace file indicating
dictionary objects being reloaded.

This example explains such a situation:

krvrdgcidi_GetChunkIdInt: loaded obj 137584, scn 0x000000001f65a041,
beg scn 0x000000001c16a034, end scn 0xffffffffffffffff, tsn 6,
SOESMALLTS, chunk 0

1.51 DISCARDFILE | NODISCARDFILE
Valid For

Extract and Replicat

Description

Use the DISCARDFILE parameter to do the following:

• Customize the name, location, size, and write mode of the discard file. By default,
a discard file is generated whenever a process is started with the START command
through GGSCI. To retain the default properties, a DISCARDFILE parameter is not
required.

• Specify the use of a discard file for processing methods where the process starts
from the command line of the operating system and a discard file is not created by
default.

Use the NODISCARDFILE parameter to disable the use of a discard file. If
NODISCARDFILE is used with DISCARDFILE, the process abends.

When using DISCARDFILE, use either the PURGE or APPEND option. Otherwise, you must
specify a different discard file name before starting each process run, because Oracle
GoldenGate will not write to an existing discard file without one of these instructions
and will terminate.

See "DISCARDROLLOVER" for how to control how often the discard file is rolled over
to a new file.

For more information about the discard file, see Administering Oracle GoldenGate.

Default

If a process is started with the START command in GGSCI, it generates a discard file as
follows:

• The file is named after the process that creates it, with a .dsc extension. If the
process is a coordinated Replicat, it generates one file per thread. Each file name
is appended with the thread ID of the corresponding thread.

Chapter 1
DISCARDFILE | NODISCARDFILE

1-88

• The file is created in the dirrpt sub-directory of the Oracle GoldenGate installation
directory.

• The maximum file size is 50 MB.

• At startup, if a discard file exists, it is purged before new data is written.

• The maximum filename is 250 characters including the directory.

When you start a process from the command line of the operating system, you should not
generate a discard file by default.

Syntax

DISCARDFILE { [file_name]
[, APPEND | PURGE]
[, MAXBYTES n | MEGABYTES n] } |
NODISCARDFILE

DISCARDFILE
Indicates that the name or other attribute of the discard file is being changed.

file_name
The relative or fully qualified name of the discard file, including the actual file name. For a
coordinated Replicat, specify a file name of up to five characters, because each file name is
appended with the thread ID of the thread that writes it. To store the file in the Oracle
GoldenGate directory, a relative path name is sufficient, because Oracle GoldenGate
qualifies the name with the Oracle GoldenGate installation directory.

APPEND
Adds new content to existing content if the file already exists. If neither APPEND nor PURGE is
used, you must specify a different discard file name before starting each process run.

PURGE
Purges the file before writing new content. If neither PURGE nor APPEND is used, you must
specify a different discard file name before starting each process run.

MAXBYTES n
Sets the maximum size of the file in bytes. The valid range is from 1 to 4096967295. The
default is 3000000. If the specified size is exceeded, the process abends.

MEGABYTES n
Sets the maximum size of the file in megabytes. The valid range is from 1 to 4096. The
default is 3. If the specified size is exceeded, the process abends.

NODISCARDFILE
Prevents the process from creating a discard file.

Example

Example 1
This example specifies a non-default file name and extension, non-default write mode, and
non-default maximum file size. This example shows how you could change the default
properties of a discard file for an online (started through GGSCI) process or specify the use
of a discard file for a process that starts from the command line of the operating system and
has no discard file by default.

DISCARDFILE .dirrpt/discard.txt, APPEND, MEGABYTES 20

Chapter 1
DISCARDFILE | NODISCARDFILE

1-89

Example 2
This example changes only the write mode of the default discard file for an online
process (started through GGSCI).

DISCARDFILE .dirrpt/finance.dsc, APPEND

Example 3
This example disables the use of a discard file for an online process (started through
GGSCI).

NODISCARDFILE

1.52 DISCARDROLLOVER
Valid For

Extract and Replicat

Description

Use the DISCARDROLLOVER parameter to set a schedule for aging discard files. For long
or continuous runs, setting an aging schedule prevents the discard file from filling up
and causing the process to abend, and it provides a predictable set of archives that
can be included in your archiving routine.

When the DISCARDROLLOVER age point is reached, a new discard file is created, and old
files are renamed in the format of GROUPn.extension, where:

• GROUP is the name of the Extract or Replicat group.

• n is a number that gets incremented by one each time a new file is created, for
example: myext0.dsc, myext1.dsc, myext2.dsc, and so forth.

• extension is the file extension, such as .dsc.

You can specify a time of day, a day of the week, or both. Specifying just a time of day
(AT option) without a day of the week (ON option) generates a discard file at the
specified time every day.

Discard files always roll over at the start of a process run, regardless of whether
DISCARDROLLOVER is used or not.

If the NODISCARDFILE parameter is used with the DISCARDROLLOVER parameter, the
process abends.

For more information about the discard file, see Administering Oracle GoldenGate.

Default

Disabled. By default, discard files are rolled over when a process starts.

Syntax

DISCARDROLLOVER
{AT hh:mi |
ON day |
AT hh:mm ON day}

Chapter 1
DISCARDROLLOVER

1-90

AT hh:mi
The time of day to age the file.
Valid values:

• hh is an hour of the day from 00 through 23.

• mm is minutes from 00 through 59.

ON day
The day of the week to age the file.
Valid values:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

They are not case-sensitive.

Examples

Example 1
DISCARDROLLOVER AT 05:30

Example 2
DISCARDROLLOVER ON friday

Example 3
DISCARDROLLOVER AT 05:30 ON friday

1.53 DYNAMICRESOLUTION | NODYNAMICRESOLUTION
Valid For

Extract and Replicat

Description

Use the DYNAMICRESOLUTION and NODYNAMICRESOLUTION parameters to control how table
names are resolved.

DYNAMICRESOLUTION, the default, enables fast process startup when there are numerous
tables specified in TABLE or MAP statements. To get metadata for transaction records that it
needs to process, Oracle GoldenGate queries the database and then builds a record of the
tables that are involved. DYNAMICRESOLUTION causes the record to be built one table at a time,
instead of all at once. The metadata of any given table is added when Extract first encounters
the object ID in the transaction log, while record-building for other tables is deferred until their
object IDs are encountered. DYNAMICRESOLUTION is the same as WILDCARDRESOLVE DYNAMIC.

NODYNAMICRESOLUTION causes the entire object record (for all tables) to be built at startup,
which can be time-consuming if the database is large. This option is not supported for
Teradata. NODYNAMICRESOLUTION is the same as WILDCARDRESOLVE IMMEDIATE.

See "WILDCARDRESOLVE" for more information.

Chapter 1
DYNAMICRESOLUTION | NODYNAMICRESOLUTION

1-91

Default

DYNAMICRESOLUTION

Syntax

DYNAMICRESOLUTION | NODYNAMICRESOLUTION

1.54 EBCDICTOASCII
Valid For

Extract data pump and Replicat

Description

Use the EBCDICTOASCII parameter to convert character data in the input trail from
EBCDIC to ASCII format when sending it to a DB2 target database on a z/OS system.
This parameter can be specified to request conversion of all EBCDIC columns and
user token data to ASCII. This parameter must precede the SOURCEDB parameter. This
parameter is only needed if the input trail file was created by an Extract version prior to
v10.0. It is ignored for all other cases, because the conversion is done automatically.

This parameter should be used in the TRANLOG Extract. It is not valid for Extract data
pumps.

Default

None

Syntax

EBCDICTOASCII

1.55 ENABLEMONITORING
Valid For

GLOBALS

Description

Use the ENABLEMONITORING parameter to enable the monitoring of Oracle GoldenGate
instances from Oracle GoldenGate Monitor and to collect trend data for Performance
Metrics Server. It directs Manager to publish the monitoring points that provide status
and other information to the Oracle GoldenGate Monitor clients.

Performance Metrics Server is used to monitor processes or services and collect
statistics. To bring up the PMSRVR GLOBALS parameter, the ENABLEMONITORING UDP
parameter must be set before starting the server in legacy. For Oracle GoldenGate
Microservices it is done by default.
Before you enable monitoring on any given platform, see Introduction to Oracle
GoldenGate Monitoring in the Administering Oracle GoldenGate Monitor for your
database to make certain that the operating system is supported.

Chapter 1
EBCDICTOASCII

1-92

Note:

When monitoring is enabled on a UNIX system for a high number of Oracle
GoldenGate processes (approximately 400), the system-imposed limit on the
maximum amount of allowed shared memory may be exceeded. The message
returned by Manager is similar to this:

WARNING OGG-01934 Datastore repair failed" reported during "start...

If this occurs, increase the kernel parameter kernel.shmall by eight times the
default for the operating system.

Default

Disabled

Syntax

ENABLEMONITORING
 [UDP]
 [UDPPORT portnumber]
 [HTTPPORT portnumber]

UDPPORT portnumber
Valid with UDP for monitoring with a Performance Metrics Server (PMSRVR).
The UDP listening port. It is optional. If provided, it overrides the existing GLOBALS
parameter,REPOUDPPORT. If not provided, it uses the value of REPOUDPPORT as the port number.
You can change the UDP port of a PMSRVR in a secure deployment by adding the
REPOUDPPORT parameter to the GLOBALS file. For more information on configuring the UDP
and TCP ports for PMSRVR, see How to Create Secure or Non-Secure Deployments.

HTTPPORT portnumber
Valid with UDP for monitoring with a Performance Metrics Server. Not valid for the BDB or
LMDB monitoring modes.
The HTTP listening port for the service. It is optional. If not provided, 9004 is the default port
number.

1.56 ENABLE_HEARTBEAT_TABLE |
DISABLE_HEARTBEAT_TABLE

Valid For

Extract, Replicat, and GLOBALS

Description

The ENABLE_HEARTBEAT_TABLE and DISABLE_HEARTBEAT_TABLE commands specify whether
the Oracle GoldenGate process will be handling records from GG_HEARTBEAT table or not.
When specified as a GLOBALS, it is true for the entire installation unless overridden by a
specific process.

Chapter 1
ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE

1-93

Default

ENABLE_HEARTBEAT_TABLE

Syntax

ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE

ENABLE_HEARTBEAT_TABLE
Enables Oracle GoldenGate processes to handle records from a GG_HEARTBEAT table.
This is the default.

DISABLE_HEARTBEAT_TABLE
Disables Oracle GoldenGate processes from handing records from a GG_HEARTBEAT
table

1.57 ENCRYPTTRAIL | NOENCRYPTTRAIL
Valid For

Extract

Description

Use the ENCRYPTTRAIL and NOENCRYPTTRAIL parameters to control whether Oracle
GoldenGate encrypts or does not encrypt data that is written to a trail or extract file.

ENCRYPTTRAIL supports the following encryption methods:

• Master key and wallet method: Generate a one-time AES key for each trail file
and uses it to encrypt the contents. Then, the one-time key is encrypted by the
master-key and stored in the trail file header.

• ENCKEYS method: Generate a AES encryption key, store it under a given name
in an ENCKEYS file, and configure Oracle GoldenGate to use that key to directly
encrypt or decrypt the contents of the trail file.

You can use encryption for local and remote trails by specifying the EXTTRAIL and
RMTTRAIL parameters in your Extract parameter file:

ENCRYPTTRAIL and NOENCRYPTTRAIL are trail or file-specific. One affects all subsequent
trail or extract file specifications in the parameter file until the other parameter is
encountered. The parameter must be placed before the parameter entry for the trail
that it will affect.

ENCRYPTTRAIL and NOENCRYPTTRAIL cannot be used when FORMATASCII is used to write
data to a file in ASCII format. The trail or file must be written in the default Oracle
GoldenGate canonical format.

ENCRYPTTRAIL encrypts the trail data across all data links and within the files
themselves. Only the data blocks are encrypted. User tokens are not encrypted.

Default

NOENCRYPTTRAIL

Chapter 1
ENCRYPTTRAIL | NOENCRYPTTRAIL

1-94

Syntax

ENCRYPTTRAIL [{AES128 | AES192 | AES256}] | NOENCRYPTTRAIL]

ENCRYPTTRAIL
ENCRYPTTRAIL without options specifies 256-key byte substitution AES256 as the default for all
database types except the iSeries, z/OS, and NonStop platforms because Advanced
Encryption Standard (AES) encryption is not supported on those platforms.

{AES128 | AES192 | AES256}
Specifies the AES encryption key length to use. This is a symmetric-key encryption standard
that is used by governments and other organizations that require a high degree of data
security. This option is not supported by the z/OS, and NonStop platforms.
For both the master key and wallet method and the ENCKEYS method, you must specify one
of the AES ciphers to encrypt the file(s):

• AES128 has a 128-bit block size with a key size of 128 bits.

• AES192 has a 128-bit block size with a key size of 192 bits.

• AES256 has a 128-bit block size with a key size of 256 bits.

To use AES encryption for any database other than Oracle on a 32-bit platform, the path of
the lib sub-directory of the Oracle GoldenGate installation directory must be specified as an
environment variable before starting any processes. This is not required on 64-bit platforms.
Set the path as follows:

• Linux: Specify the path as an entry to the LD_LIBRARY_PATHvariable. For example:

setenv LD_LIBRARY_PATH ./lib:$LD_LIBRARY_PATH
• For Solaris: Specify the path as an entry to the SHLIB_PATH variable.

• For IBMi and AIX: Specify the path as an entry to the LIBPATH variable.

• For Windows: Add the path to the PATH variable.

You can use the SETENV parameter to set it as a session variable for the process.

NOENCRYPTTRAIL
Prevents the trail from being encrypted. This is the default.

Examples

Example 1
In the following example, the master key and wallet method is used. The Extract process
writes to two trails. The data for the emp table is written to trail /home/ggsora/dirdat/em,
which is encrypted with the AES-192 cipher. The data for the stores table is written to trail /
home/ggsora/dirdat/st, which is not encrypted.

ENCRYPTTRAIL AES192
RMTTRAIL /home/ggsora/dirdat/em
TABLE hr.emp;
NOENCRYPTTRAIL
RMTTRAIL /home/ggsora/dirdat/st
TABLE ops.stores;

Chapter 1
ENCRYPTTRAIL | NOENCRYPTTRAIL

1-95

Example 2
As an alternative to the preceding example, you can omit NOENCRYPTTRAIL if you list
all non-encrypted trails before the ENCRYPTTRAIL parameter.

RMTTRAIL /home/ggsora/dirdat/st
TABLE ops.stores;
ENCRYPTTRAIL AES192
RMTTRAIL /home/ggsora/dirdat/em
TABLE hr.emp;

Example 3
In the following example, the ENCKEYS method is used.

ENCRYPTTRAIL AES192, KEYNAME mykey1
RMTTRAIL /home/ggsora/dirdat/em
TABLE hr.emp;
TABLE ops.stores;

1.58 END
Valid For

Replicat

Description

Use the END parameter to terminate Replicat when it encounters the first record in the
data source whose timestamp is the specified point in time.

Without END, the process runs continuously until:

• the end of the transaction log or trail is reached, at which point it will stop
gracefully.

• manually terminated from the command shell.

Use END with the SPECIALRUN parameter to post data as a point-in-time snapshot,
rather than continuously updating the target tables.

Default

Continuous processing

Syntax

END {date [time] | RUNTIME}

date [time]
Causes Replicat to terminate when it reaches a record in the data source whose
timestamp exceeds the one that is specified with this parameter.
Valid values:

• date is a date in the format of yyyy-mm-dd.

• time is the time in the format of hh:mi[:ss[.cccccc]] based on a 24-hour clock.

RUNTIME
Causes Replicat to terminate when it reaches a record in the data source whose
timestamp exceeds the current date and clock time. All unprocessed records with

Chapter 1
END

1-96

timestamps up to this point in time are processed. One advantage of using RUNTIME is that
you do not have to alter the parameter file to change dates and times from run to run.
Instead, you can control the process start time within your batch programming.

Examples

Example 1
SPECIALRUN
END 2010-12-31 17:00:00

Example 2
SPECIALRUN
END RUNTIME

1.59 EOFDELAY | EOFDELAYCSECS
Valid For

Extract and Replicat

Description

Use the EOFDELAY or EOFDELAYCSECS parameter to control how often Extract, a data pump, or
Replicat checks for new data after it has reached the end of the current data in its data
source. You can reduce the system I/O overhead of these reads by increasing the value of
this parameter.

Note:

Large increases can increase the latency of the target data, especially when the
activity on the source database is low

This parameter is not valid when SOURCEISTABLE is used. This parameter cannot be set to
zero (0).

Default

The minimum is 1 second (1 second or 100 centiseconds ; the maximum is 60 seconds (60
seconds or 6000 centiseconds). It can be set to 1 (which is 1 centisecond) but should never
be set to below 3.

Syntax

EOFDELAY seconds | EOFDELAYCSECS centiseconds

seconds
The delay, in seconds, before searching for data to process.

centiseconds
The delay, in centiseconds, before searching for data to process.

Chapter 1
EOFDELAY | EOFDELAYCSECS

1-97

Example

EOFDELAY 3

1.60 EXCLUDEHIDDENCOLUMNS

Valid For

Oracle Integrated Extract Capture; It’s not valid for data pump.

Description

The parameter disables all the Oracle hidden columns including the timestamp
columns created using automatic CDR. The parameter requires Oracle GoldenGate
12c (12.2.01) format trail or higher and must not specify the NO_OBJECTDEFES
parameter. The userexit callback structure has the hidden column attributes and
callback structure version is 5. You can specify the parameter at any location of the
parameter file, as long as it is after the EXTRACT group parameter.

Syntax

EXTRACT ext1...
EXCLUDEHIDDENCOLUMNS
EXTTRAIL ./dirdat/a1
TABLE src.tab1;

1.61 EXCLUDETAG

Valid For

(Oracle) Extract and Replicat or data pump

(All databases) Extract Pump or Replicat

Description

Use EXCLUDETAG tag in your data pump or Replicat parameter file to specify changes
to be excluded from trail files. The limitation for this parameter is that the tag value can
be up to 2000 hexadecimal digits (0-9A-F) or the plus sign (+). You can have multiple
EXCLUDETAG lines, but each EXCLUDETAG should have a single value. By default,
Replicat the individual records every change it applies to the database by 00 in both
classic mode or integrated mode. Compared with older versions, new trail file contains
tag tokens, which would not introduce problems for older trail readers.

Use EXCLUDETAG + to ignore the individual records that are tagged with any redo tag.

Do not use NULL with tag or + because it operates in conflict resulting in errors.

To tag the individual records, use the DBOPTIONS parameter with the SETTAG option in
the Replicat parameter file. Use these parameters to prevent cycling (loop-back) of
Replicat the individual records in a bi-directional configuration or to filter other

Chapter 1
EXCLUDEHIDDENCOLUMNS

1-98

transactions from capture. The default SETTAG value is 00. Valid value is any single Oracle
Streams tag. A tag value can be up to 2000 hexadecimal digits (0-9 A-F) long.

Note:

These parameters should be used instead of EXCLUDEUSER or TRACETABLE when
possible.

Default

None

Syntax

[EXCLUDETAG [tag | NULL] | [+]

Example 1

For Replicat:

excludetag tag

Example 2

For data pumps:

excludetag 00

1.62 EXCLUDEWILDCARDOBJECTSONLY
Valid For

GLOBALS

Description

Use the EXCLUDEWILDCARDOBJECTSONLY parameter to force the inclusion of non-wildcarded
source objects specified in TABLE or MAP parameters when an exclusion parameter contains a
wildcard that otherwise would exclude that object. Exclusion parameters are CATALOGEXCLUDE,
SCHEMAEXCLUDE, MAPEXCLUDE, and TABLEEXCLUDE.

The exclusion parameters get evaluated and satisfied before the TABLE or MAP statements.
Without EXCLUDEWILDCARDOBJECTSONLY, it would be possible for an object in a TABLE or MAP
statement to be wrongly excluded because it satisfies the wildcard in the exclude
specification. For EXCLUDEWILDCARDOBJECTSONLY to work on an object, that object must be
explicitly named without using wildcards in any of the name components.

Default

None

Syntax

EXCLUDEWILDCARDOBJECTSONLY

Chapter 1
EXCLUDEWILDCARDOBJECTSONLY

1-99

Example

In this example, schema1.src_table1 is included in processing because the
TABLEEXCLUDE parameter is wildcarded and the TABLE specification is not wildcarded.
Without EXCLUDEWILDCARDOBJECTSONLY, schema1.src_table1 would be excluded
because of the wildcard specification in TABLEEXCLUDE.

TABLEEXCLUDE schema1.src_table*;
 TABLE schema1.src_table1;

1.63 EXTFILE
Valid For

Extract and Replicat

Description

Use the EXTFILE parameter to specify an extract file on the local system that will be
created by an initial load Extract and read by an initial load Replicat when SPECIALRUN
is used.

Use this parameter for initial load configurations. For online change synchronization,
use the EXTTRAIL parameter.

EXTFILE must precede all associated TABLE or MAP statements. Multiple EXTFILE
statements can be used to define different files.

Replicat only supports the file_name value and no options

You can encrypt the data in this file by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Default

None

Syntax

EXTFILE file_name
[APPEND]
[, PURGE]
[, FORMAT RELEASE major.minor]
[, MEGABYTES megabytes]
[, OBJECTDEFS | NO_OBJECTDEFS]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

file_name
The relative or fully qualified name of the trail. Use a maximum of two characters for
the trail name. As trail files are aged, a six-character sequence number will be added
to this name, for example /ogg/dirdat/ef000001. If using FORMAT RELEASE 11.2 or
earlier, the trail file created is a static file that does not increment, and the naming
convention is not limited to two characters.

APPEND
Adds the current data to existing data in the file. If you use APPEND, do not use PURGE.

Chapter 1
EXTFILE

1-100

PURGE
Deletes an existing file before creating a new one. If you use PURGE, do not use APPEND.

FORMAT RELEASE major.minor
Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a
remote task) to another process. The metadata tells the reader process whether the data
records are of a version that it supports. The metadata format depends on the version of the
Oracle GoldenGate process. Older Oracle GoldenGate versions contain different metadata
than newer ones.
FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 11.1 through the
current Oracle GoldenGate X.x version number, for example 11.2 or 12.1. The release
version is programmatically mapped back to the appropriate trail format compatibility level.
The default is the current version of the process that writes to this trail.

Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the same
can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1, FORMAT
RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.2, FORMAT
RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2, only FORMAT
RELEASE values 12.3 or higher are supported. This is due to the use of local undo for
PDBs, which requires augmenting the transaction ID with the PDB number to ensure
uniqueness of trx IDs.

MEGABYTES megabytes
The maximum size, in megabytes, of a file in the trail. The default is 2000.

OBJECTDEFS | NO_OBJECTDEFS
Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include the
object definitions in the trail. These two options are applicable only when the output trail is
formatted in Oracle GoldenGate canonical format and the trail format release is greater than
12.1. Otherwise, both options are ignored because no metadata record will be added to the
trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}
Sets the byte format of the metadata in the file records. This parameter does not affect the
column data. Valid only for trail files that have a FORMAT RELEASE version of at least 12.1.
Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian), and NATIVEENDIAN

Chapter 1
EXTFILE

1-101

(default of the local system). The default is BIGENDIAN. See the GLOBALS version of
TRAILBYTEORDER for additional usage instructions.

Examples

Example 1
EXTFILE dirdat/ef

Example 2
EXTFILE dirdat/ef, MEGABYTES 200

Example 3
EXTFILE /ggs/dirdat/extdat, FORMAT RELEASE 12.3

1.64 EXTRACT
Valid For

Extract

Description

Use the EXTRACT parameter to specify an Extract group for online (continuous) change
synchronization. This parameter links the current run with previous runs, so that data
continuity is maintained between source and target tables. Unless stopped by a user,
Extract runs continuously and maintains checkpoints in the data source and trail to
ensure data integrity and fault tolerance throughout planned or unplanned process
termination, system outages, or network failure. EXTRACT must be the first entry in the
parameter file.

For more information about implementing change synchronization, see the
Administering Oracle GoldenGate.

Default

None

Syntax

EXTRACT group_name

group_name
The group name as defined with the ADD EXTRACT command.

Example

The following specifies an Extract group named finance.

EXTRACT finance

1.65 EXTTRAIL
Valid For

Extract

Chapter 1
EXTRACT

1-102

Description

Use the EXTTRAIL parameter to specify a trail on the local system that was created with the
ADD EXTTRAIL command. The trail is read by an Extract Pump group, or by a Replicat group
on the local system.

EXTTRAIL must precede all associated TABLE statements. Multiple EXTTRAIL statements can
be used to define different trails.

Do not use EXTTRAIL for an Extract that is configured in PASSIVE mode. See the
Administering Oracle GoldenGate guide for more information about PASSIVE mode, an Oracle
GoldenGate security feature.

From Oracle GoldenGate 19c (19.1.0) onward, the primary Extract writes trail file in the same
format as existing trail file format when you upgrade, unless you explicitly specify the trail file
format version using the FORMAT RELEASE option. This prevents subsequent Replicats from
abending if they are not upgraded.

You can encrypt the data in this trail by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Default

None

Syntax

EXTTRAIL file_name
[, FORMAT RELEASE major.minor]
[, OBJECTDEFS | NO_OBJECTDEFS]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

file_name
The relative or fully qualified name of the trail. Use a maximum of two characters for the
name. As trail files are aged, a nine-character sequence number will be added to this name,
for example /ogg/dirdat/rt000000001.

FORMAT RELEASE major.minor
Not valid for an Extract Pump. Specifies the metadata format of the data that is sent by
Extract to a trail, a file, or (if a remote task) to another process. The metadata tells the reader
process whether the data records are of a version that it supports. The metadata format
depends on the version of the Oracle GoldenGate process. Older Oracle GoldenGate
versions contain different metadata than newer ones.
FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 11.1 through the
current Oracle GoldenGate X.x version number, for example 11.2 or 12.1.
The release version is programmatically mapped back to the appropriate trail format
compatibility level. The default is the current version of the process that writes to this trail.

Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Chapter 1
EXTTRAIL

1-103

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the
same can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1,
FORMAT RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.2,
FORMAT RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2, only
FORMAT RELEASE values 12.3 or higher are supported. This is due to the use of
local undo for PDBs, which requires augmenting the transaction ID with the PDB
number to ensure uniqueness of trx IDs.

OBJECTDEFS | NO_OBJECTDEFS
Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include
the object definitions in the trail. These two options are applicable only when the
output trail is formatted in Oracle GoldenGate canonical format and the trail format
release is greater than 12.1. Otherwise, both options are ignored because no
metadata record will be added to the trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}
Not valid for an Extract Pump. Sets the byte format of the metadata in the trail
records. This parameter does not affect the column data. Valid only for trails that have
a FORMAT RELEASE version of at least 12.1. Valid values are BIGENDIAN (big endian),
LITTLEENDIAN (little endian), and NATIVEENDIAN (default of the local system). The
default is BIGENDIAN. See the GLOBALS version of TRAILBYTEORDER for additional
usage instructions.

Examples

Example 1
EXTTRAIL dirdat/ny

Example 2
EXTTRAIL /ggs/dirdat/ex, FORMAT RELEASE 18.1

Example 3
Two trail formats within the same sets of tables being captured:

EXTTRAIL ./dirdat/ea
TABLE hr.tab1
TABLE hr.tab2
EXTTRAIL ./dirdat/eb
TABLE scott.tab3
TABLE scott.tab4

Chapter 1
EXTTRAIL

1-104

1.66 FETCHOPTIONS
Valid For

Extract

Description

Use the FETCHOPTIONS parameter to control certain aspects of the way that Oracle
GoldenGate fetches data in the following circumstances:

• When the transaction record does not contain enough information for Extract to
reconstruct an update operation.

• When Oracle GoldenGate must fetch a column value as the result of a MISSINGCOLS
clause of a TABLE statement.

FETCHOPTIONS is table-specific. One FETCHOPTIONS statement applies for all subsequent TABLE
statements until a different FETCHOPTIONS statement is encountered.

Default fetch properties are adequate for most installations.

Default

Ignore missing rows and continue processing

Syntax

FETCHOPTIONS
[, FETCHPKUPDATECOLS]
[, MISSINGCOLS]
[, INCONSISTENTROW action]
[, MAXFETCHSTATEMENTS number]
[, MISSINGROW action]
[, NOFETCH]
[, SUPPRESSDUPLICATES]
[, USEKEY | NOUSEKEY]
[, USELATESTVERSION | NOUSELATESTVERSION]
[, USESNAPSHOT | NOUSESNAPSHOT]
[, USEROWID | NOUSEROWID]

FETCHPKUPDATECOLS
Fetches all unavailable columns when a primary key is updated. This option is off by default.
When off, column fetching is performed according to other FETCHOPTIONS options that are
enabled.
When on, it only takes effect during an update to a primary key column. The results are the
same as using (*) in the TABLE statement. LOB columns are included in the fetch.
Use this parameter when using HANDLECOLLISIONS. When Replicat detects a missing
update, all of the columns will be available to turn the update into an insert.

MISSINGCOLS
Fetches any missing columns from update and delete operations, including LOB columns.
This option is only valid for Oracle Database. It can negatively impact the database and the
Extract performance due to additional queries to fetch the data. Especially if there are large
LOB values that need to be fetched and written to the trail.

Chapter 1
FETCHOPTIONS

1-105

Setting this parameter is the same as setting the following parameters:

MISSINGCOLS(*) in the TABLE statement
NOCOMPRESSDELETES FETCHMISSINGCOLS
GETUPDATEBEFORES
NOCOMPRESSUPDATES
LOGALLSUPCOLS

However, setting FETCHOPTIONS MISSINGCOLS conflicts with the following parameters:

FETCHOPTIONS NOFETCH
FETCHOPTIONS FETCHPKUPDATECOLS
COMPRESSDELETES
COMPRESSUPDATES
GETUPDATEBEFORES
LOGALLSUPCOLS

INCONSISTENTROW action
Indicates that column data was successfully fetched by row ID, but the key did not
match. Either the row ID was recycled or a primary key update occurred after this
operation (and prior to the fetch).
action can be one of the following:

ALLOW
Allow the condition and continue processing.

IGNORE
Ignore the condition and continue processing. This is the default.

REPORT
Report the condition and contents of the row to the discard file, but continue
processing the partial row.

DISCARD
Discard the data and do not process the partial row.

ABEND
Discard the data and quit processing.

MAXFETCHSTATEMENTS number
Controls the maximum allowable number of prepared queries that can be used by
Extract to fetch row data from a source database. The fetched data is used when not
enough information is available to construct a logical SQL statement from a
transaction log record. Queries are prepared and cached as needed. When the value
set with MAXFETCHSTATEMENTS is reached, the oldest query is replaced by the newest
one. The value of this parameter controls the number of open cursors maintained by
Extract for fetch queries only. Additional cursors may be used by Extract for other
purposes, such as those required for stored procedures. This parameter is only valid
for Oracle databases.The default is 100 statements. Make certain that the database
can support the number of cursors specified, plus cursors used by other applications
and processes.

Chapter 1
FETCHOPTIONS

1-106

MISSINGROW action
Provides a response when Oracle GoldenGate cannot locate a row to be fetched, causing
only part of the row (the changed values) to be available for processing. Typically a row
cannot be located because it was deleted between the time the change record was created
and when the fetch was triggered, or because the row image required was older than the
undo retention specification.
action can be one of the following:

ALLOW
Allow the condition and continue processing. This is the default.

IGNORE
Ignore the condition and continue processing.

REPORT
Report the condition and contents of the row to the discard file, but continue processing
the partial row.

DISCARD
Discard the data and do not process the partial row.

ABEND
Discard the data and quit processing.

NOFETCH
Prevents Extract from fetching the column from the database, this option is off by default.
Extract writes the record to the trail, but inserts a token indicating that the column is missing.

SUPPRESSDUPLICATES
Valid for Oracle. Avoids target tablespaces becoming overly large when updates are made
on LOB columns. By default, SUPPRESSDUPLICATES is set to off. For example, after replication
a source tablespace of 232MB becomes a target tablespace of 7.52GB.

USEKEY | NOUSEKEY
Determines whether or not Oracle GoldenGate uses the primary key to locate the row to be
fetched.
If both USEKEY and USEROWID are specified, ROWID takes priority for faster access to the
record. USEROWID is the default.

USELATESTVERSION | NOUSELATESTVERSION
Valid for Oracle. Use with USESNAPSHOT. The default, USELATESTVERSION, directs Extract to
fetch data from the source table if it cannot fetch from the undo tablespace.
NOUSELATESTVERSION directs Extract to ignore the condition if the snapshot fetch fails, and
continue processing.
To provide an alternate action if a snapshot fetch does not succeed, use the MISSINGROW
option.

USESNAPSHOT | NOUSESNAPSHOT
Valid for Oracle. The default, USESNAPSHOT, causes Extract to use the Oracle Flashback
mechanism to fetch the correct snapshot of data that is needed to reconstruct certain
operations that cannot be fully captured from the redo record. NOUSESNAPSHOT causes Extract
to fetch the needed data from the source table instead of the flashback logs.

Chapter 1
FETCHOPTIONS

1-107

USEROWID | NOUSEROWID
Valid for Oracle. Determines whether or not Oracle GoldenGate uses the row ID to
locate the row to be fetched.
If both USEKEY and USEROWID are specified, ROWID takes priority for faster access to the
record. USEROWID is the default.

Examples

Example 1
The following directs Extract to fetch data by using Flashback Query and to ignore the
condition and continue processing the record if the fetch fails.

FETCHOPTIONS USESNAPSHOT, NOUSELATESTVERSION

Example 2
MAXFETCHSTATEMENTS 150

Example 3
The following directs Extract to fetch data by using Flashback Query and causes
Extract to abend if the data is not available.

FETCHOPTIONS USESNAPSHOT, NOUSELATESTVERSION, MISSINGROW ABEND

1.67 FETCHUSERID
Valid For

Integrated primary Extract on Oracle; data pump Extract is not valid

Description

Use the FETCHUSERID parameter to specify the type of authentication for an Oracle
GoldenGate process to use when logging into a database, and to specify password
encryption information. This parameter can be used instead of FETCHUSERIDALIAS
when an Oracle GoldenGate credential store is not being used.

FETCHUSERID Compared to FETCHUSERIDALIAS

FETCHUSERID requires either specifying the clear-text password in the parameter file or
encrypting it with the ENCRYPT PASSWORD command and, optionally, storing an
encryption key in an ENCKEYS file. FETCHUSERID supports a broad range of the
databases that Oracle GoldenGate supports.

FETCHUSERIDALIAS enables you to specify an alias, rather than a user ID and
password, in the parameter file. The user IDs and encrypted passwords are stored in a
credential store. FETCHUSERIDALIAS supports databases running on Linux, UNIX, and
Windows platforms.

FETCHUSERID Requirements

FETCHUSERID is not always required, nor is PASSWORD always required when
FETCHUSERID is required. In some cases, it is sufficient just to use FETCHUSERID or even
just to use the SOURCEDB or TARGETDB parameter, depending on how authentication for
the database is configured.

See "SOURCEDB" and "TARGETDB" for more information.

Chapter 1
FETCHUSERID

1-108

Use FETCHUSERID for Oracle GoldenGate processes that connect to an Oracle database. The
purpose of this connection is to offload fetch operations to an Active Data Guard standby
database, which eliminates overhead that would otherwise be placed on the source
database.

• To use an operating system login, use FETCHUSERID with the / argument.

• To use a database user name and password, use FETCHUSERID with PASSWORD.

• Optionally, you can specify the user to log in as sysdba.

• Special database privileges are required for the FETCHUSERID user when Extract is
configured to use LOGRETENTION. These privileges might have been granted when Oracle
GoldenGate was installed. See the Ensuring Data Availability for Classic Capture in
Using Oracle GoldenGate for Oracle Databasefor more information about LOGRETENTION.

• To use FETCHUSERID for an Extract group that is configured for integrated capture, the
user must have the privileges granted in the
dbms_goldengate_auth.grant_admin_privilege.

• To support capture from an Oracle container database, the user that is specified with
FETCHUSERID must log into the root container and must be a common user. A connect
string must be supplied for this user and must include the required C## prefix of the
common user, such as C##GGADMIN@FINANCE. For more information, see Assigning
Credentials to Oracle GoldenGate in Using Oracle GoldenGate for Oracle Database.

• The connection specified by FETCHUSERI or FETCHUSERIDALIAS must be to an Active Data
Guard standby database of the source database.

• FETCHUSERID can be specified anywhere in the parameter file. It needs to come before a
TABLE or MAP statement.

Default

None

Syntax

FETCHUSERID {/ | user}[, PASSWORD password]
[algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]

/
Directs Oracle GoldenGate to use an operating-system login for Oracle, not a database user
login. Use this argument only if the database allows authentication at the operating-system
level. Bypassing database-level authentication eliminates the need to update Oracle
GoldenGate parameter files if application passwords frequently change. To use this option,
the correct user name must exist in the database, in relation to the value of the Oracle
OS_AUTHENT_PREFIX initialization parameter, as follows:

• The value set with OS_AUTHENT_PREFIX is concatenated to the beginning of a user's
operating system account name and then compared to the database name. Those two
names must match.

• If OS_AUTHENT_PREFIX is set to ' ' (a null string), the user name must be created with
IDENTIFIED EXTERNALLY. For example, if the OS user name is ogg, you would use the
following to create the database user:

CREATE USER ogg IDENTIFIED EXTERNALLY;

Chapter 1
FETCHUSERID

1-109

• If OS_AUTHENT_PREFIX is set to OPS$ or another string, the user name must be
created in the following format:

OS_AUTHENT_PREFIX_value OS_user_name

For example, if the OS user name is ogg, you would use the following to create
the database user:

CREATE USER ops$ogg IDENTIFIED BY oggpassword;

user
Specifies the name of a database user or a schema, depending on the database
configuration. A SQL*Net connect string can be used.

password
Use when database authentication is required to specify the password for the
database user. If the password was encrypted by means of the ENCRYPT PASSWORD
command, supply the encrypted password; otherwise, use the clear-text password. If
the password is case-sensitive, type it that way.
If either the user ID or password changes, the change must be made in the Oracle
GoldenGate parameter files, including the re-encryption of the password if necessary.

algorithm
Specifies the encryption algorithm that was used to encrypt the password with
ENCRYPT PASSWORD.
The algorithm can be one of:
AES128
AES192
AES256
BLOWFISH

ENCRYPTKEY {key_name | DEFAULT}
Specifies the encryption key that was specified with ENCRYPT PASSWORD.

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption key
in the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME
key_name option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if
ENCRYPT PASSWORD was used with the KEYNAME DEFAULT option.

SYSDBA
Specifies that the user logs in as sysdba.

Example

fetchuserid gg_user@adg_inst password pwd

1.68 FETCHUSERIDALIAS
Valid For

Integrated primary Extract on Oracle; data pump Extract is not valid

Chapter 1
FETCHUSERIDALIAS

1-110

Description

Use the FETCHUSERIDALIAS parameter to specify authentication for an Oracle GoldenGate
process to use when logging into a database. The use of FETCHUSERIDALIAS requires the use
of an Oracle GoldenGate credential store. Specify FETCHUSERIDALIAS before any TABLE or
MAP entries in the parameter file.

FETCHUSERIDALIAS Compared to FETCHUSERID

FETCHUSERIDALIAS enables you to specify an alias, rather than a user ID and password, in the
parameter file. The user IDs and encrypted passwords are stored in a credential store.
FETCHUSERIDALIAS supports databases running on Linux, UNIX, and Windows platforms.

FETCHUSERID requires either specifying the clear-text password in the parameter file or
encrypting it with the ENCRYPT PASSWORD command and, optionally, storing an encryption key
in an ENCKEYS file. FETCHUSERID supports a broad range of the databases that Oracle
GoldenGate supports. In addition, it supports the use of an operating system login for Oracle
databases.

FETCHUSERID Requirements

Note:

Logins that require a database user and password must be stored in the Oracle
GoldenGate credential store.

Use FETCHUSERIDALIAS for Oracle GoldenGate processes that connect to an Oracle
database. The purpose of this connection is to offload fetch operations to an Active Data
Guard standby database, which eliminates overhead that would otherwise be placed on the
source database.

• The SOURCEDB or TARGETDB parameter is not required.

• Specify the alias of a database credential that is stored in the Oracle GoldenGate
credential store.

• (Oracle Enterprise Edition earlier than 11.2.0.2) Special database privileges are required
for the FETCHUSERIDALIAS user when Extract is configured to use LOGRETENTION. These
privileges might have been granted when Oracle GoldenGate was installed. See the
Ensuring Data Availability for Classic Capture inUsing Oracle GoldenGate for Oracle
Database for more information about LOGRETENTION.

• (Oracle Standard or Enterprise Edition 11.2.0.2 or later) To use FETCHUSERIDALIAS for an
Extract group that is configured for integrated capture, the user must have the privileges
granted in the dbms_goldengate_auth.grant_admin_privilege.

• To support capture from an Oracle container database, the user that is specified with
FETCHUSERID must log on to the root container and must be a common database user. A
connect string must be supplied for this user, for example: C##GGADM@FINANCE. For more
information, see Establishing Oracle GoldenGate Credentials in Using Oracle
GoldenGate for Oracle Database.

• The connection specified by FETCHUSERI or FETCHUSERIDALIAS must be to an Active Data
Guard standby database of the source database.

Chapter 1
FETCHUSERIDALIAS

1-111

• FETCHUSERID can be specified anywhere in the parameter file. Ordering does not
matter. It can come before or after a TABLE or MAP statement.

Default

None

Syntax

FETCHUSERIDALIAS alias [DOMAIN domain] [SYSDBA]

alias
Specifies the alias of a database user credential that is stored in the Oracle
GoldenGate credential store.

DOMAIN domain
Specifies the credential store domain for the specified alias. A valid domain entry
must exist in the credential store for the specified alias.

SYSDBA
Specifies that the user logs in as sysdba.

Example

fetchuseridalias gg_user@adg_inst password pwd

1.69 FILTERDUPS | NOFILTERDUPS
Valid For

Replicat

Description

Use the FILTERDUPS and NOFILTERDUPS parameters to handle anomalies that can
occur on a NonStop system when an application performs multiple operations on the
same record within the same transaction. This type of transaction can cause out-of-
order records in the TMF audit trail and will cause Replicat to abend. For example:

• An insert can occur in the audit trail before a delete on the same primary key, even
though the source application performed the delete first, followed by the insert
(resulting in a duplicate-record error when the insert is performed by Replicat).

• An update can occur in the audit trail before an insert on the same primary key
(resulting in a missing-record error when the update is performed by Replicat).

FILTERDUPS prevents Replicat from abending by resolving the conditions as follows:

• In the event of a duplicate insert, Replicat saves the duplicated insert until the end
of the transaction. If a delete with the same primary key is subsequently
encountered, Replicat performs the delete, then the insert.

• In the event of a missing update, Replicat saves the missing update until the end
of the transaction. If an insert with the same primary key is subsequently
encountered, Replicat performs the insert, then the update.

IDX hospital applications and some BASE24 bank applications are the typical, but not
the only, sources of this anomaly. Use FILTERDUPS only if Replicat is abending on
duplicate or missing records and you know they were caused by out-of-order

Chapter 1
FILTERDUPS | NOFILTERDUPS

1-112

transactions originating on a NonStop system. The Logdump utility can be used to diagnose
this condition.

FILTERDUPS and NOFILTERDUPS can be used as on-off switches for different groups of MAP
statements to enable or disable the exception processing as needed.

Default

NOFILTERDUPS

Syntax

FILTERDUPS | NOFILTERDUPS

Example

This example turns on FILTERDUPS for ORDERS but disables it for any MAP statements that are
defined later in the same parameter file.

FILTERDUPS
MAP $DATA1.SQLDAT.ORDERS, TARGET MASTER.ORDERS;
NOFILTERDUPS

1.70 FILEGROUP
Valid For

GLOBALS

Description

This parameter applies to SQL Server only and sets a global filegroup to be used when
adding TRANDATA to tables, without specifying the FILEGROUP option with each ADD TRANDATA
command.

Also see Enabling Supplemental Logging (CDC Extract) in Using Oracle GoldenGate for
Heterogeneous Databases.

1.71 FLUSHSECS | FLUSHCSECS
Valid For

Extract

Description

Use the FLUSHSECS or FLUSHCSECS parameters to control when Oracle GoldenGate flushes the
Extract memory buffer. When sending data to remote systems, Extract buffers data to
optimize network performance. The buffer is flushed to the target system when it is full or
after the amount of time specified with FLUSHSECS or FLUSHCSECS. Data changes are not
available to the target users until the buffer is flushed and the data is posted. To control the
size of the buffer, use the TCPBUFSIZE option of RMTHOST. See "RMTHOST" for more
information.

Increasing the value of FLUSHSECS or FLUSHCSECS could result in slightly more efficient use of
the network, but it could increase the latency of the target data if activity on the source

Chapter 1
FILEGROUP

1-113

system is low and the buffer does not fill up. When source tables remain busy,
FLUSHSECS and FLUSHCSECS have little effect.

This parameter cannot be set to zero (0).

Default

The default is 1. The minimum is 0; the maximum is 5000.

Syntax

FLUSHSECS seconds | FLUSHCSECS centiseconds

seconds
The delay, in seconds, before flushing the buffer.

centiseconds
The delay, in centiseconds, before flushing the buffer.

Example

FLUSHSECS 80

1.72 FUNCTIONSTACKSIZE
Valid For

Extract and Replicat

Description

Use the FUNCTIONSTACKSIZE parameter to control the size of the memory stack that is
used for processing Oracle GoldenGate column-conversion functions. The memory
stack holds arguments supplied to and from an Oracle GoldenGate function. You
should not need to use this parameter unless Oracle GoldenGate returns a message
indicating that the size of the stack should be increased. The message is similar to:

Not enough stack space. Specify FUNCTIONSTACKSIZE greater than {0,number,0}

This could happen when you are using a very large number of functions or arguments.

The default without FUNCTIONSTACKSIZE is 200 arguments, which optimizes the
performance of Oracle GoldenGate and its usage of system memory. Increasing this
parameter can adversely affect performance and the use of system memory.

When setting FUNCTIONSTACKSIZE for a coordinated Replicat, take into account that the
specified value is applied to each thread in the configuration, not as an aggregate
threshold for Replicat as a whole. For example, if FUNCTIONSTACKSIZE 400 is specified,
it is possible for each thread to have 399 arguments without any warning or error from
Replicat.

FUNCTIONSTACKSIZE must appear in the parameter file before any parameters that
include functions are listed. FUNCTIONSTACKSIZE is a global parameter. It affects all
clauses in a parameter file.

Default

200 arguments

Chapter 1
FUNCTIONSTACKSIZE

1-114

Syntax

FUNCTIONSTACKSIZE number

number
A value between 0 and 5000 that denotes the number of function arguments to allow in a
parameter clause.

Example

FUNCTIONSTACKSIZE 300

1.73 GETAPPLOPS | IGNOREAPPLOPS
Valid For

Extract

Description

Use the GETAPPLOPS or IGNOREAPPLOPS parameter to capture or ignore DML operations
produced by any application except the local Replicat. By default, application data is
captured.

These parameters are useful in conjunction with the GETREPLICATES and IGNOREREPLICATES
parameters for the following:

• To separate data operations performed by a local Replicat from those performed by the
business applications configured for Oracle GoldenGate extraction. Use IGNOREAPPLOPS
and GETREPLICATES for one trail or file to contain just the Replicat operations, and use
GETAPPLOPS and IGNOREREPLICATES for another trail or file to contain just the operations of
the business applications.

• As part of a cascading configuration, where changes applied by Replicat locally must be
captured by a local Extract to be propagated to another system. In this case,
IGNOREAPPLOPS and GETREPLICATES would be used.

• As part of a loop detection scheme when using bidirectional replication. The default
combination of GETAPPLOPS and IGNOREREPLICATES causes Extract to capture application
data while ignoring Replicat operations posted to the same database objects. In addition
to using these parameters, Extract must be configured to identify Replicat transactions.

See "GETREPLICATES | IGNOREREPLICATES" for more information.

Using GETAPPLOPS for Oracle Sequences

GETAPPLOPS must be enabled to capture sequences that are replicated by Replicat. Replicat
issues sequence updates in an autonomous transaction, so they are not reflected in the trace
table. The sequence update appears as if it is an application operation.

Using GETAPPLEOPS for DDL Operations

See "DDLOPTIONS" for information on to use GETAPPLOPS or IGNOREAPPLOPS functionality for
DDL operations.

For more information about configuring bidirectional replication, see the Administering Oracle
GoldenGate.

Chapter 1
GETAPPLOPS | IGNOREAPPLOPS

1-115

Default

GETAPPLOPS

Syntax

GETAPPLOPS | IGNOREAPPLOPS

1.74 GETDELETES | IGNOREDELETES
Valid For

Extract and Replicat

Description

Use the GETDELETES and IGNOREDELETES parameters to control whether or not Oracle
GoldenGate processes DELETE operations. These parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the GETDELETES threads in one set of MAP statements, and specify the
IGNOREDELETES threads in a different set of MAP statements.

If this parameter is used, and a primary key or unique key is reused then that Replicat
may get a duplicate primary key or unique key error when it attempts to apply the
insert. You need to disable this constraint (and leave the index) on the target. If this is
done, the source table gets supplemental logging on all columns. Use KEYCOLS (*) in
the TABLE statement on the source, so that the Replicat has all the necessary columns
to perform any update operations.

Default

GETDELETES

Syntax

GETDELETES | IGNOREDELETES

Example

This example shows how you can apply GETDELETES and IGNOREDELETES selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

GETDELETES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREDELETES
MAP sales.loc, TARGET sales.loc, THREAD (3);

In this example, delete operation on sales.loc is skipped. As a best practice, you
should re-enable GETDELETES.

Chapter 1
GETDELETES | IGNOREDELETES

1-116

1.75 GETINSERTS | IGNOREINSERTS
Valid For

Extract and Replicat

Description

Use the GETINSERTS and IGNOREINSERTS parameters to control whether or not INSERT
operations are processed by Oracle GoldenGate. These parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements,
you can enable or disable them for different threads of a coordinated Replicat. Specify the
GETINSERTS threads in one set of MAP statements, and specify the IGNOREINSERTS threads in a
different set of MAP statements.

Default

GETINSERTS

Syntax

GETINSERTS | IGNOREINSERTS

Example

This example shows how you can apply GETINSERTS and IGNOREINSERTS selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

IGNOREINSERTS
MAP sales.loc, TARGET sales.loc, THREAD (3);
GETINSERTS
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);

1.76 GETREPLICATES | IGNOREREPLICATES
Valid For

Extract

Description

Use the GETREPLICATES and IGNOREREPLICATES parameters to control whether or not DML
transactions issued by Replicat are captured or ignored by an Extract process that is
processing the same tables on the same system.

Ignoring Replicat Transactions

By default, Extract uses a combination of IGNOREREPLICATES and GETAPPLOPS . In this
configuration, Extract captures all application data that is configured for synchronization by
Oracle GoldenGate, and it ignores all Replicat operations. In a bi-directional configuration,

Chapter 1
GETINSERTS | IGNOREINSERTS

1-117

this prevents the data that Replicat applies from looping back to the original system,
which would cause duplicate-record errors.

Capturing Replicat Transactions

Use GETREPLICATES with IGNOREAPPLOPS in a cascading configuration to enable
replicated data to be captured again by Extract on an intermediary system so that it
can be replicated to the final target. For example, if database A replicates to database
B, and database B replicates to database C, you would use GETREPLICATES for the
Extract on database B.

Note:

Even with GETREPLICATES in effect, however, you still can exclude specific
replicated data from being captured by using a WHERE or FILTER clause in a
TABLE or MAP statement.

Using GETREPLICATES and IGNOREREPLICATES with Oracle

The GETREPLICATES and IGNOREREPLICATES parameters should not be used if you are
not using a trace table (the TRACETABLE parameter). By default, Extract captures all
transactions including transactions committed by Replicat. If you want to ignore the
Replicat transactions, you should use the TRANLOGOPTIONS EXCLUDEUSER parameter.
You can also use this to ignore transactions by any specific user in addition to
Replicat's user. TRANLOGOPTIONS EXCLUDETAG + is a better method than using
TRANLOGOPTIONS EXCLUDEUSER.
If you are using the TRACETABLE parameter or have the default trace table, GGS_TRACE,
created without explicitly using TRACETABLE, then Extract automatically ignores any
transaction that has a TRACETABLE update in it by default. If you want to capture the
Replicat committed transactions, you have to specify GETREPLICATES. In this case,
Oracle does not recommend that you use it with TRANLOGOPTIONS EXCLUDUSER
because Replicat will have unpredictable behavior in transaction filtering.

Default

IGNOREREPLICATES

Syntax

GETREPLICATES | IGNOREREPLICATES

1.77 GETTRUNCATES | IGNORETRUNCATES
Valid For

Extract and Replicat

Description

Use the GETTRUNCATES and IGNORETRUNCATES parameters to control whether or not
Oracle GoldenGate processes table truncate operations. By default, truncate
operations are not captured from the source or replicated to the target.

Chapter 1
GETTRUNCATES | IGNORETRUNCATES

1-118

GETTRUNCATES and IGNORETRUNCATES are table-specific. One parameter remains in effect for
all subsequent TABLE or MAP statements, until the other parameter is encountered.

In a coordinated Replicat configuration, truncates are always processed by the thread that is
responsible for barrier transactions.

Supported Databases

• GETTRUNCATES and IGNORETRUNCATES are supported by Extract for Oracle Database,
MySQL, DB2 LUW, PostgreSQL, and DB2 for i.

• GETTRUNCATES and IGNORETRUNCATES are supported by Replicat for Oracle Database,
SQL Server, DB2 for i, DB2 LUW, DB2 z/OS, MySQL, Teradata, PostgreSQL, and
TimesTen.

Note:

GETTRUNCATES and IGNORETRUNCATES for DB2 z/OS is only valid for TRUNCATE
IMMEDIATE operations. TRUNCATES without the IMMEDIATE qualifier will be processed
without regard to GETTRUNCATES and IGNORETRUNCATES as it appears as a DROP FROM
command in the DB2 logs.

DB2 LUW Limitations

• DB2 LUW does not support a TRUNCATE command, so Replicat replicates a truncate
operation by performing an IMPORT REPLACE from a NULL (blank) file.

Oracle Limitations

• Oracle GoldenGate supports the Oracle TRUNCATE TABLE command, but not TRUNCATE
PARTITION. You can replicate TRUNCATE PARTITION as part of the full Oracle GoldenGate
DDL replication support.

• The database does not log truncates against an empty table, so those operations are not
captured by Oracle GoldenGate. The DDL support of Oracle GoldenGate can be used for
this purpose.

• The database does not log truncates for empty partitions, so Oracle GoldenGate cannot
reliably process TRUNCATE TABLE when the table contains any empty partitions. Do not
use GETTRUNCATES on any partitioned table. Oracle GoldenGate DDL support can be used
to capture truncates on tables that might include empty partitions.

PostgreSQL Limitations

Oracle GoldenGate capture supports GETTRUNCATES from PostgreSQL version 11 and higher.

Default

IGNORETRUNCATES

Syntax

GETTRUNCATES | IGNORETRUNCATES

Chapter 1
GETTRUNCATES | IGNORETRUNCATES

1-119

1.78 GETUPDATEAFTERS | IGNOREUPDATEAFTERS
Valid For

Extract and Replicat

Description

Use the GETUPDATEAFTERS and IGNOREUPDATEAFTERS parameters to control whether or
not the after images of columns in UPDATE operations are included in the records
processed by Oracle GoldenGate. After images contain the results of the UPDATE.

These parameters are table-specific. One parameter remains in effect for all
subsequent TABLE or MAP statements, until the other parameter is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the GETUPDATEAFTERS threads in one set of MAP statements, and
specify the IGNOREUPDATEAFTERS threads in a different set of MAP statements.

Default

GETUPDATEAFTERS

Syntax

GETUPDATEAFTERS | IGNOREUPDATEAFTERS

Example

This example shows how you can apply GETUPDATEAFTERS and IGNOREUPDATEAFTERS
selectively to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

GETUPDATEAFTERS
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREUPDATEAFTERS
MAP sales.loc, TARGET sales.loc, THREAD (3);

1.79 GETUPDATEBEFORES | IGNOREUPDATEBEFORES
Valid For

Extract and Replicat

Description

Use the GETUPDATEBEFORES and IGNOREUPDATEBEFORES parameters to control whether
or not the before images of columns in UPDATE operations are included in the records
that are processed by Oracle GoldenGate. Before images contain column details that
existed before a row was updated.

Oracle GoldenGate 12c captures both the pre-change and post-change values for
update operations in a single unified update record by default. For PostgreSQL,
IGNOREGETUPDATESBEFORES is TRUE by default. In previous releases the default was to

Chapter 1
GETUPDATEAFTERS | IGNOREUPDATEAFTERS

1-120

only capture the post-change value. Beginning in this release, custom SQL statements
(SQLEXEC) now only execute once per update operation with the new default update format.
Prior to this release, custom SQL statements would execute twice, once when encountering
the pre-change value and once when encountering the post-change value. If you are using
the Oracle GoldenGate 12c (12.1.x or 12.2.x) with the new unified update format, you can
explicitly pass the pre or post-value to the custom SQL statement using the @BEFORE, @AFTER,
and @BEFOREAFTER functions. Though Oracle GoldenGate 12.2.x attempts to use this new
update format by default, the old format cam be preserved if there are conflicting parameters
that would have previously generated two separate pre and post change records. In these
cases, an informational message is logged in the report file.

Use the GETUPDATEBEFORES parameter as follows:

• in the Extract parameter file to extract before images from the data source.

• in the Replicat parameter file to include before images in a Replicat operation.

You can compare before images with after images to identify the net results of a transaction
or perform other delta calculations. For example, if a BALANCE field is $100 before an update
and $120 afterward, a comparison would show the difference of $20. You can use the
column-conversion functions of Oracle GoldenGate to perform the comparisons and
calculations.

To reference before images in the parameter file, use the @BEFORE conversion function. For
example:

COLMAP (previous = @BEFORE (balance))

GETUPDATEBEFORES is required when using the Conflict Detection and Resolution (CDR)
feature for a Oracle database on any of the platforms that are supported by Oracle
GoldenGate. See Administering Oracle GoldenGate for more information about CDR.

The GETUPDATEBEFORES and IGNOREUPDATEBEFORES parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements,
you can enable or disable them for different threads of a coordinated Replicat. Specify the
GETUPDATEBEFORES threads in one set of MAP statements, and specify the
IGNOREUPDATEBEFORES threads in a different set of MAP statements.

Default

IGNOREUPDATEBEFORES

Syntax

GETUPDATEBEFORES | IGNOREUPDATEBEFORES

Example

This example shows how you can apply GETUPDATEBEFORES and IGNOREUPDATEBEFORES
selectively to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

GETUPDATEBEFORES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);

Chapter 1
GETUPDATEBEFORES | IGNOREUPDATEBEFORES

1-121

IGNOREUPDATEBEFORES
MAP sales.loc, TARGET sales.loc, THREAD (3);

1.80 GETUPDATES | IGNOREUPDATES
Valid For

Extract and Replicat

Description

Use the GETUPDATES and IGNOREUPDATES parameters to control whether or not Oracle
GoldenGate processes UPDATE operations. These parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the
other parameter is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the GETUPDATES threads in one set of MAP statements, and specify the
IGNOREUPDATES threads in a different set of MAP statements.

Default

GETUPDATES

Syntax

GETUPDATES | IGNOREUPDATES

Example

This example shows how you can apply GETUPDATES and IGNOREUPDATES selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

IGNOREUPDATES
MAP sales.loc, TARGET sales.loc, THREAD (3);
GETUPDATES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);

1.81 GGSCHEMA
Valid For

GLOBALS

Description

Use this parameter to specify the name of the schema that contains Oracle
GoldenGate database objects, such as those that support Oracle DDL replication for
trigger-based replication, those that are a part of a heartbeat table implementation,
and those that are part of the SQL Server CDC Capture and Cleanup implementation.

The schema name mentioned under GGSCHEMA should be treated as a reserved
schema and should not be used as part of a TABLE or MAP statement within an Extract,
Pump, or Replicat. If you need to capture and replicate objects in GGSCHEMA, don't

Chapter 1
GETUPDATES | IGNOREUPDATES

1-122

use wildcards and ensure that you explicitly map the respective table names. It's
recommended that you take assistance from Oracle Support to make any changes including
any CREATE, ALTER, or DROP of objects in this schema.

This parameter is valid for all databases.

See Other Requirements for Multitenant Container Databases Using Oracle GoldenGate for
Oracle Database to know more about using the GGSCHEMA parameter.

Default

None

Syntax

GGSCHEMA [container.]schema_name

[container.]schema_name
The fully qualified name of the Oracle GoldenGate objects' schema. Use the full two-part
name if the schema is within an Oracle container database.

Example

GGSCHEMA ogg

1.82 GROUPTRANSOPS
Valid For

Replicat

Description

Use the GROUPTRANSOPS parameter to control the number of SQL operations that are
contained in a Replicat transaction when operating in its normal mode (non-BATCHSQL).
Increasing the number of operations in a Replicat transaction improves the performance of
Oracle GoldenGate by:

• Reducing the number of transactions executed by Replicat.

• Reducing I/O activity to the checkpoint file and the checkpoint table, if used. Replicat
issues a checkpoint whenever it applies a transaction to the target, in addition to its
scheduled checkpoints.

Replicat accumulates operations from source transactions, in transaction order, and applies
them as a group within one transaction on the target. GROUPTRANSOPS sets a minimum value
rather than an absolute value, to avoid splitting apart source transactions. Replicat waits until
it receives all operations from the last source transaction in the group before applying the
target transaction.

For example, if transaction 1 contains 200 operations, and transaction 2 contains 400
operations, and transaction 3 contains 500 operations, the Replicat transaction contains all
1,100 operations even though GROUPTRANSOPS is set to the default of 1,000. Conversely,
Replicat might apply a transaction before reaching the value set by GROUPTRANSOPS if there is
no more data in the trail to process.

Chapter 1
GROUPTRANSOPS

1-123

Table 1-9 Replicat GROUPTRANSOPS

Source Transactions (assumes same table
and column list)

Replicat transaction in normal
(GROUPTRANSOPS) mode

Transaction 1:
INSERT
DELETE
Transaction 2:
INSERT
DELETE
Transaction 3:
INSERT
DELETE

Transaction:
INSERT
DELETE
INSERT
DELETE
INSERT
DELETE

Avoid setting GROUPTRANSOPS to an arbitrarily high number because the difference
between source and target transaction boundaries can increase the latency of the
target data.

(Oracle only) For an integrated Replicat, GROUPTRANSOPS is effective only when the
integrated Replicat parameter PARALLELISM is set to 1.

Default

Nonintegrated Replicat: 1000 operations, Integrated Replicat: 50 operations

Syntax

GROUPTRANSOPS number

number
The minimum number of operations to be applied in a Replicat transaction. A value of
1 executes the operations within the same transaction boundaries as the source
transaction. The value must be at least 1.

Example

GROUPTRANSOPS 2000

1.83 HANDLECOLLISIONS | NOHANDLECOLLISIONS
Valid For

Replicat

Description

Use the HANDLECOLLISIONS and NOHANDLECOLLISIONS parameters to control whether or
not Replicat tries to resolve duplicate-record and missing-record errors when applying
SQL on the target. These errors, called collisions, occur during an initial load, when
data from source tables is being loaded to target tables while Oracle GoldenGate is
replicating transactional changes that are being made to those tables. When Oracle
GoldenGate applies the replicated changes after the load is finished,
HANDLECOLLISIONS provides Replicat with error-handling logic for these collisions.

Chapter 1
HANDLECOLLISIONS | NOHANDLECOLLISIONS

1-124

You can use HANDLECOLLISIONS and NOHANDLECOLLISIONS in the following ways:

• You can enable HANDLECOLLISIONS and NOHANDLECOLLISIONS in a global manner by
specifying them at the root level of the parameter file. One parameter remains enabled
for all subsequent MAP statements in the parameter file, until the opposing parameter is
encountered.

• You can enable HANDLECOLLISIONS or NOHANDLECOLLISIONS within a specific MAP
parameter to enable or disable error handling only for that source-target mapping.

The preceding methods can be combined. You can specify a global collisions-handling rule
and then override that rule with different collisions-handling rules in the MAP statements. A MAP
specification always overrides the global specification.

Note:

Error Handling of Integrated Replicat is not appropriate with HANDLECOLLISIONS.
Oracle recommends that you use precise instantiation methods instead of using
HANDLECOLLISIONS.

How HANDLECOLLISIONS Works

The following example explains how HANDLECOLLISIONS works:

• When Replicat encounters an update to a column that Oracle GoldenGate is using as a
key, the handling is as follows:

– If the row with the old key is not found in the target, the change record in the trail is
converted to an insert.

– If a row with the new key exists in the target, Replicat deletes the row that has the old
key (it would not exist if the update had executed successfully), and then the row with
the new key is updated as an overlay where the trail values replace the current
values.

This logic requires all of the columns in the table (not just the ones that changed) to be
logged to the transaction log, either by default or by force, such as by using the COLS
option of ADD TRANDATA for an Oracle database. See Possible Solutions to Avoid Missing
Column Values.

• When Replicat encounters a duplicate-record error, the static record that was applied by
the initial load is overwritten by the change record in the trail. Overlaying the change is
safer from an operational standpoint than ignoring the duplicate-record error.

• Replicat with HANDLECOLLISIONS doesn't discard the change record in the trail even if
update or delete operation doesn’t affect a key column in the source and Replicat
encounters a missing-record error in the target. These errors happen when a record is
changed on the source system and then the record is deleted before the table data is
extracted by the initial-load process. For example:

1. The application updates record A in source table1.

2. Extract extracts the update.

3. The application deletes record A in source table1.

4. Extract extracts the delete.

5. Oracle GoldenGate extracts initial-load data from source table1, without record A.

Chapter 1
HANDLECOLLISIONS | NOHANDLECOLLISIONS

1-125

6. Oracle GoldenGate applies the initial load, without record A.

7. Replicat attempts to apply the update of record A.

8. The database returns a "record missing" error.

9. Replicat attempts to apply the delete of record A.

10. The database returns a "record missing" error.

Disable HANDLECOLLISIONS after the transactional changes captured during the initial
load are applied to the target tables, so that Replicat does not automatically handle
subsequent errors. Errors generated after initial synchronization indicate an abnormal
condition and should be evaluated by someone who can determine how to resolve
them. For example, a missing-record error could indicate that a record which exists on
the source system was inadvertently deleted from the target system.

You can turn off HANDLECOLLISIONS in the following ways:

• Stop Replicat and remove HANDLECOLLISIONS from the Replicat parameter file (can
cause target latency). Alternatively, you can edit the parameter file to add
NOHANDLECOLLISIONS before the MAP statements for which you want to disable the
error handling.

• While Replicat is running, run GGSCI and then use the SEND REPLICAT command
with the NOHANDLECOLLISIONS option for the tables that you want to affect.

Note:

If using SEND REPLICAT, make certain to remove HANDLECOLLISIONS from
the parameter file or add a NOHANDLECOLLISIONS parameter before
starting another Replicat run, so that HANDLECOLLISIONS does not
activate again.

Possible Solutions to Avoid Missing Column Values

When a database does not log all of the column values of a source table by default,
there can be errors if the target table has NOT NULL constraints when Replicat attempts
to convert a primary-key update to an insert. You can work around this scenario in the
following ways:

• HANDLECOLLISIONS requires that the table have a NOT NULL primary key or NOT
NULL unique constraint on the target table.

• Use the NOCOMPRESSUPDATES parameter in the Extract parameter file to send all of
the columns of the table to the trail, and configure the database to log all column
values. By default, Extract only writes the primary key and the columns that
changed to the trail. This is the safest method, because it writes the current values
at the time when the operation is performed and eliminates the need for fetching.

• Use the FETCHOPTIONS parameter with the FETCHPKUPDATECOLS option in the
Extract parameter file. This configuration causes Extract to fetch unavailable
columns when a key column is updated on the source. A fetch is the current value,
not necessarily the value at the time of a particular update, so there can be data
integrity issues. See "FETCHOPTIONS" for more information and additional fetch
options to handle unsuccessful fetches.

Chapter 1
HANDLECOLLISIONS | NOHANDLECOLLISIONS

1-126

If the database includes all columns by default, then you must use NOCOMPRESSUPDATES and
NOCOMPRESSDELETES for HANDLECOLLISIONS to work properly. If the database does not
support NOCOMPRESSDELETES, you must use FETCHOPTIONS MISSINGCOLS.

Getting More Information about Initial Loads

See Administering Oracle GoldenGate for more information about Oracle GoldenGate initial
load methods.

Default

NOHANDLECOLLISIONS

Syntax

HANDLECOLLISIONS | NOHANDLECOLLISIONS [_ALLOWPKMISSINGROWCOLLISIONS]
[THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

HANDLECOLLISIONS
Enables collision handling.

_ALLOWPKMISSINGROWCOLLISIONS
Use HANDLECOLLISIONS with _ALLOWPKMISSINGROWCOLLISIONS to skip primary-key UPDATE
operations if the corresponding target row does not exist.

Note:

Skipping operations can cause data corruption. See the Description in this topic.

NOHANDLECOLLISIONS
Turns off collision handling.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])
Enables HANDLECOLLISIONS for the specified threads. When used in a global
HANDLECOLLISIONS statement at the root level of the parameter file, HANDLECOLLISIONS is
enabled for the specified threads wherever they are in all MAP statements where . When used
in a HANDLECOLLISIONS clause of a MAP statement, HANDLECOLLISIONS is enabled only for that
MAP statement.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadID,
threadID, threadID.

thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Chapter 1
HANDLECOLLISIONS | NOHANDLECOLLISIONS

1-127

Examples

Example 1
This example enables HANDLECOLLISIONS for all MAP statements in the parameter file.

HANDLECOLLISIONS
MAP hr.emp, TARGET hr.emp;
MAP hr.job_hist, TARGET hr.job_hist;
MAP hr.dep, TARGET hr.dep;
MAP hr.country, TARGET hr.country;

Example 2
This example enables HANDLECOLLISIONS for some MAP statements while disabling it
for others.

HANDLECOLLISIONS
MAP hr.emp, TARGET hr.emp;
MAP hr.job_hist, TARGET hr.job_hist;
NOHANDLECOLLISIONS
MAP hr.dep, TARGET hr.dep;
MAP hr.country, TARGET hr.country;

Example 3
This example shows the basic use of HANDLECOLLISIONS within a MAP statement.

MAP dbo.tcust, TARGET dbo.tcust, HANDLECOLLISIONS;

Example 4
This example shows a combination of global and MAP-level use. The MAP specification
overrides the global specification for the specified tables.

HANDLECOLLISIONS
MAP hr.emp, TARGET hr.emp;
MAP hr.job_hist, TARGET hr.job_hist;
MAP hr.dep, TARGET hr.dep, NOHANDLECOLLISIONS;
MAP hr.country, TARGET hr.country, NOHANDLECOLLISIONS;

Example 5
In the following example, HANDLECOLLISIONS is enabled globally for all MAP statements,
except for default thread 0 in the first MAP statement and for thread 3 in the second
MAP statement.

HANDLECOLLISIONS
MAP fin.*, TARGET fin.*;
MAP sales.*, TARGET sales.*;
MAP orders.*, TARGET orders.*;
MAP scott.cust, TARGET scott.cust, NOHANDLECOLLISIONS;
MAP amy.cust, TARGET amy.cust, THREAD(3), NOHANDLECOLLISIONS;

Example 6
In this example, HANDLECOLLISIONS is enabled globally, but turned off for thread 3. The
remaining threads 1, 2, and 4 will handle collisions.

HANDLECOLLISIONS
NOHANDLECOLLISIONS THREAD(3)
MAP scott.emplyees, TARGET scott.employees, THREADRANGE(1,4, OID);
MAP scott.inventory, TARGET scott.inventory, THREADRANGE(1,4, OID);
MAP scott.cust, TARGET scott.cust, THREADRANGE(1,4, OID);

Chapter 1
HANDLECOLLISIONS | NOHANDLECOLLISIONS

1-128

Example 7
In this example, HANDLECOLLISIONS is enabled globally, then disabled globally for threads 5
through 7. In the first map statement, all threads will handle collisions, since the
HANDLECOLLISIONS parameter does not specify a thread or a range. In the second map
statement, only threads 4, 8, and 9 will handle collisions, because the global
NOHANDLECOLLISIONS applies to threads 5-7.

HANDLECOLLISIONS
NOHANDLECOLLISIONS THREADRANGE(5-7)
MAP scott.cust, TARGET scott.cust, THREADRANGE(4,9,OID), HANDLECOLLISIONS;
MAP scott.offices, TARGET scott.offices, THREADRANGE(4,9,OID);
MAP scott.emp, TARGET scott.emp, THREADRANGE(4,9,OID);
MAP scott.ord, TARGET scott.ord, THREADRANGE(4,9,OID);
MAP acct.*, TARGET acct.*;
MAP admin.*, TARGET admin.*;

1.84 HAVEUDTWITHNCHAR
Valid For

Replicat (Oracle only)

Description

Use the HAVEUDTWITHNCHAR parameter when the source data contains user-defined types that
have an NCHAR, NVARCHAR2, or NCLOB attribute. When this data is encountered in the trail,
HAVEUDTWITHNCHAR causes Replicat to connect to the Oracle target in AL32UTF8, which is
required when a user-defined data type contains one of those attributes.

HAVEUDTWITHNCHAR is not required if the character set of the target is AL32UTF8. However, it is
required if only NLS_LANG is set to AL32UTF8 on the target. By default Replicat ignores
NLS_LANG and connects to an Oracle database in the native character set of the database.
Replicat uses the OCIString object of the Oracle Call Interface, which does not support
NCHAR, NVARCHAR2, or NCLOB attributes, so Replicat must bind them as CHAR. Connecting to the
target in AL32UTF8 prevents data loss in this situation.

HAVEUDTWITHNCHAR must be specified before the USERID or USERIDALIAS parameter in the
parameter file.

Default

None

Syntax

HAVEUDTWITHNCHAR

1.85 HEARTBEATTABLE
Valid For

GLOBALS

Chapter 1
HAVEUDTWITHNCHAR

1-129

Description

Use HEARTBEATTABLE to specify a non-default name of the heartbeat table. The table
name GG_HEARTBEAT is the default. This name used to denote the heartbeat table is
used to create a seed and history table, GG_HEARTBEAT_SEED and
GG_HEARTBEAT_HISTORY respectively. Specifying one name reserves all names used by
the heartbeat infrastructure. If the schema name is not specified, the value in GGSCHEMA
is used for schema name.

Default

None

Syntax

HEARTBEATTABLE schema_name.heartbeat_table_name

schema_name
The name of the schema you want to use with the heartbeat table. This is not needed
if you have specified the schema using the GGSCHEMA parameter in your GLOBALS file.

heartbeat_table_name
The heartbeat table name you want to use. The default table name is GG_HEARTBEAT.

1.86 INCLUDE
Valid For

Extract and Replicat

Description

Use the INCLUDE parameter to include a macro library in a parameter file. See
Administering Oracle GoldenGate for more information about using macros.

Default

None

Syntax

INCLUDE library

library
The relative or full path to library file.

Example

The following example includes macro library mdatelib.mac.

INCLUDE /ggs/dirprm/mdatelib.mac

Chapter 1
INCLUDE

1-130

1.87 INSERTALLRECORDS
Valid For

Replicat

This parameter does not work with UPDATERECORDFORMAT COMPACT.

Description

Use the INSERTALLRECORDS parameter to keep a record of all operations made to a target
record, instead of maintaining just the current version. INSERTALLRECORDS causes Replicat to
insert every change that is made to a record as a new record in the database. The initial
insert and subsequent updates and deletes are maintained as point-in-time snapshots.

Some cases for using INSERTALLRECORDS are the following:

• To work within an exceptions MAP statement. In an exceptions MAP statement,
INSERTALLRECORDS causes the values of operations that generated errors to be inserted
as new records in an exceptions table as part of an error-handling strategy.

• To maintain a transaction history. By inserting every change to a specific row as a new
record in the database, you can maintain a history of all changes made to that row,
instead of maintaining just the current version. Each insert is a point-in-time snapshot that
can be queried as needed for auditing purposes. Combining historical data with special
transaction information provides a way to create a more useful target reporting database.

INSERTALLRECORDS can be used at the root level of the parameter file to affect all subsequent
MAP statements, and it can be used within a MAP statement to affect a specific table or multiple
tables specified with a wildcard.

Getting More Information about INSERTALLRECORDS

See Administering Oracle GoldenGate for information about creating a transaction history
table.

See Administering Oracle GoldenGate for information about using an exceptions MAP
statement.

See "TABLE | MAP" for MAP syntax.

Default

None

Syntax

INSERTALLRECORDS

Examples

Example 1
This example shows INSERTALLRECORDS at the root level of the parameter file as part of an
exceptions handling configuration.

Chapter 1
INSERTALLRECORDS

1-131

REPLICAT deliv
USERIDALIAS tiger1
ASSUMETARGETDEFS
REPERROR (DEFAULT, EXCEPTION)
MAP ggs.equip_account, TARGET ggs.equip_account2,
COLMAP (USEDEFAULTS);
MAP ggs.equip_account, TARGET ggs.equip_account_exception,
EXCEPTIONSONLY,
INSERTALLRECORDS
COLMAP (USEDEFAULTS,
DML_DATE = @DATENOW(),
OPTYPE = @GETENV('LASTERR', 'OPTYPE'),
DBERRNUM = @GETENV('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV('LASTERR', 'DBERRMSG'));

Example 2
This example shows INSERTALLRECORDS in a MAP statement.

REPLICAT deliv
USERIDALIAS tiger1
SOURCEDEFS /ggs/dirdef/defs
REPERROR DEFAULT, ABEND
MAP fin.accTAB, TARGET fin.custTAB, INSERTALLRECORDS;

1.88 INSERTAPPEND | NOINSERTAPPEND
Valid For

Replicat (Oracle Nonintegrated mode)

Description

Use the INSERTAPPEND and NOINSERTAPPEND parameters to control whether or not a
Replicat operating in nonintegrated mode uses an APPEND hint when it applies INSERT
operations (used for array binding) to Oracle target tables. These parameters are valid
only for Oracle databases and are only compatible with BATCHSQL mode.

INSERTAPPEND causes Replicat to use the APPEND_VALUES hint when it applies INSERT
operations to Oracle target tables. It is appropriate for use as a performance
improvement when the replicated transactions are large and contain multiple inserts
into the same table. If the transactions are small, using INSERTAPPEND can cause a
performance decrease. For more information about when APPEND hints should be used,
consult the Oracle documentation.

The BATCHSQL parameter must be used when using INSERTAPPEND. Replicat will abend
if BATCHSQL is not used.

These parameters can be used in two ways: When used as standalone parameters at
the root of the parameter file, one remains in effect for all subsequent TABLE or MAP
statements, until the other is encountered. When used within a MAP statement, they
override any standalone INSERTAPPEND or NOINSERTAPPEND entry that precedes the MAP
statement.

If the table is compressed with row compression or hybrid columnar compression,
DML applied by the Replicat is not compressed even when using this parameter.

See "TABLE | MAP" for more information about the MAP parameter.

Chapter 1
INSERTAPPEND | NOINSERTAPPEND

1-132

Default

NOINSERTAPPEND

Syntax

INSERTAPPEND | NOINSERTAPPEND

Examples

Example 1
The following is part of a Replicat parameter file that shows how INSERTAPPEND is used for all
of the tables in the fin schema, except for the inventory table.

BATCHSQL
INSERTAPPEND
MAP fin.*, TARGET fin2.*;
MAPEXCLUDE fin.inventory;
NOINSERTAPPEND
MAP fin.inventory, TARGET fin2.inventory;

Example 2
The following is part of a Replicat parameter file that shows how INSERTAPPEND is used for all
of the tables in the MAP statements, except for the inventory table.

BATCHSQL
MAP fin.orders, TARGET fin.orders;
MAP fin.customers, TARGET fin.customers;
MAP fin.inventory, TARGET fin.inventory, NOINSERTAPPEND;

1.89 INSERTDELETES | NOINSERTDELETES
Valid For

Replicat

Description

Use the INSERTDELETES and NOINSERTDELETES parameters to control whether or not Oracle
GoldenGate converts source delete operations to insert operations on the target database.
The parameters are table-specific. One parameter remains in effect for all subsequent MAP
statements, until the other parameter is encountered.

When using INSERTDELETES, use the NOCOMPRESSDELETES parameter so that Extract does not
compress deletes.

Because you can selectively enable or disable these parameters between MAP statements,
you can enable or disable them for different threads of a coordinated Replicat. Specify the
INSERTDELETES threads in one set of MAP statements, and specify the NOINSERTDELETES
threads in a different set of MAP statements.

Default

NOINSERTDELETES

Syntax

INSERTDELETES | NOINSERTDELETES

Chapter 1
INSERTDELETES | NOINSERTDELETES

1-133

Example

This example shows how you can apply INSERTDELETES and NOINSERTDELETES
selectively to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

NOINSERTDELETES
MAP sales.loc, TARGET sales.loc, THREAD (3);
INSERTDELETES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);

1.90 INSERTMISSINGUPDATES |
NOINSERTMISSINGUPDATES

Valid For

Replicat

Description

Use the INSERTMISSINGUPDATES and NOINSERTMISSINGUPDATES parameters to control
whether or not Oracle GoldenGate inserts a record based on the source record when
the target record does not exist.

INSERTMISSINGUPDATES inserts the missing update but should only be used when the
source database logs all column values, whether or not they changed). It can work
with a database that uses a compressed form of updates (where only the changed
values are logged) if the target database allows NULL to be used for the missing
column values.

If the database includes all columns by default, then you must use NOCOMPRESSUPDATES
and NOCOMPRESSDELETES for INSERTMISSINGUPDATES to work properly. If the database
does not support NOCOMPRESSDELETES, then you must use FETCHOPTIONS MISSINGCOLS.

When the default of NOINSERTMISSINGUPDATES is in effect, a missing record causes an
error, and the transaction may abend depending on REPERROR settings.

The INSERTMISSINGUPDATES and NOINSERTMISSINGUPDATES parameters are table-
specific. One parameter remains in effect for all subsequent MAP statements, until the
other parameter is encountered.

Default

NOINSERTMISSINGUPDATES

Syntax

INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES

1.91 INSERTUPDATES | NOINSERTUPDATES
Valid For

Replicat

Chapter 1
INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES

1-134

Description

Use the INSERTUPDATES and NOINSERTUPDATES parameters to control whether or not Oracle
GoldenGate converts update operations to insert operations. For updates to be converted to
inserts, the database must log all column values either by default or by means of
supplemental logging.

The parameters are table-specific. One parameter remains in effect for all subsequent MAP
statements, until the other parameter is encountered.

To ensure that updates are not compressed by Extract when using INSERTUPDATES, use the
NOCOMPRESSUPDATES parameter. If the database includes all columns by default, then you
must use NOCOMPRESSUPDATES and NOCOMPRESSDELETES for INSERTUPDATES to work properly. If
the database does not support NOCOMPRESSDELETES, you must use FETCHOPTIONS
MISSINGCOLS.

Because you can selectively enable or disable these parameters between MAP statements,
you can enable or disable them for different threads of a coordinated Replicat. Specify the
INSERTUPDATES threads in one set of MAP statements, and specify the NOINSERTUPDATES
threads in a different set of MAP statements.

Default

NOINSERTUPDATES

Syntax

INSERTUPDATES | NOINSERTUPDATES

Example

This example shows how you can apply INSERTUPDATES and NOINSERTUPDATES selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

INSERTUPDATES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOINSERTUPDATES
MAP sales.loc, TARGET sales.loc, THREAD (3);

1.92 INSERTUPSERTS | NOINSERTUPSERTS
Valid For

Replicat.

Default is INSERTUPSERTS.

Trail file format 19.1 supports UPSERT operation type. Older trail file format must be used with
INSERTUPSERTS to convert UPSERT record to INSERT record.

By default, specifying INSERTUPSERTS, enables Replicat to apply UPSERT record as INSERT.
If the row exists, Replicat overwrites the row by the new record.

If the output trail format is 18.1 or older, the INSERTUPSERTS option is required, otherwise the
primary Extract fails. Primary Extract always writes UPSERT record as INSERT record for

Chapter 1
INSERTUPSERTS | NOINSERTUPSERTS

1-135

18.1 or older trail, and you need to specify OVERRIDEDUPS option to apply the INSERT
record that was originally UPSERT.

If the user exit module version is 5 or older, INSERTUPSERTS is required. UPSERT
record is converted to INSERT record for the user exit version 5 or older, as well as
user exit stats record count.

If the output trail format 18.1 or older is specified with NOINSERTUPSERTS, primary
Extract fails. User exit module version 6 (enable from 19.1 release) supports UPSERT
record type and stats count if NOINSERTUPSERTS is specified. If user exit module is
version 5 or older and NOINSERTUPSERTS is specified, primary Extract, pump or Replicat
fail.

If UPSERT operation is applied as INSERT by specifying INSERTUPSERTS, stats still
count as UPSERT operation.

UPSERT operation type is only output if NOINSERTUPSERTS is specified, otherwise
output as INSERT.

Parallel Replicat and Oracle Integrated Replicat does not support both UPSERT and
INSERT converted from UPSERT, and fallback to non-integrated classic Replicat
mode.

1.93 LIST | NOLIST
Valid For

Extract and Replicat

Description

Use the LIST and NOLIST parameters to control whether or not the macros of a macro
library are listed in the report file. Listing can be turned on and off by placing the LIST
and NOLIST parameters within the parameter file or within the macro library file. Using
NOLIST reduces the size of the report file. For more information about using macros,
see the Administering Oracle GoldenGate.

Default

LIST

Syntax

LIST | NOLIST

Example

In the following example, NOLIST excludes the macros in the hugelib macro library
from being listed in the report. Using LIST after the INCLUDE statement restores normal
listing for subsequent macros.

NOLIST
INCLUDE /ggs/hugelib.mac
LIST

Chapter 1
LIST | NOLIST

1-136

1.94 LOBMEMORY
Valid For

Extract and Replicat for DB2 z/OS

Description

Use the LOBMEMORY parameter to control the amount of memory and temporary disk space
available for caching transactions that contain LOBs. Because Oracle GoldenGate applies
only committed transactions to the target database, it requires sufficient system memory to
store LOB data until either a commit or rollback indicator is received.

This parameter is for use with a DB2 z/OS database. For all other databases, use the
CACHEMGR parameter.

About Memory Management with LOBMEMORY

LOBMEMORY enables you to tune the cache size of Oracle GoldenGate for LOB transactions and
define a temporary location on disk for storing data that exceeds the size of the cache.
Options are available for defining the total cache size, the per-transaction memory size, the
initial and incremental memory allocation, and disk storage space.

LOB transactions are added to the memory pool specified by RAM, and each is flushed to disk
when TRANSRAM is reached. An initial amount of memory is allocated to each transaction
based on INITTRANSRAM and is increased by the amount specified by RAMINCREMENT as
needed, up to the maximum set with TRANSRAM. Consequently, the value for TRANSRAM should
be evenly divisible by the sum of (INITTRANSRAM + RAMINCREMENT).

Default

See option defaults

Syntax

LOBMEMORY
[RAM size]
[TRANSRAM size]
[TRANSALLSOURCES size]
[INITTRANSRAM size]
[RAMINCREMENT size]
[DIRECTORY (directory, max_directory_size, max_file_size)]

RAM size
Specifies the total amount of memory to use for all cached LOB transactions. The default is
200 megabytes. The value can be specified in bytes or in terms of gigabytes, megabytes, or
kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

TRANSRAM size
Specifies the total amount of memory to use for a single LOB transaction. The default is 50
megabytes. The value can be specified in bytes or in terms of gigabytes, megabytes, or
kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

Chapter 1
LOBMEMORY

1-137

TRANSRAM should be evenly divisible by both INITTRANSRAM and RAMINCREMENT for
optimal results.

TRANSALLSOURCES size
Specifies the total amount of memory and disk space to use for a single LOB
transaction. The default is 50% of total available memory (memory and disk). The
value can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes in
any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

INITTRANSRAM size
Specifies the initial amount of memory to allocate for a LOB transaction. The default is
500 kilobytes. The value can be specified in bytes or in terms of gigabytes,
megabytes, or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

RAMINCREMENT size
Specifies the amount of memory to increment when a LOB transaction requires more
memory. The default is 500 kilobytes. The value can be specified in bytes or in terms
of gigabytes, megabytes, or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m |

DIRECTORY (directory, max_directory_size, max_file_size)
Specifies temporary disk storage for LOB transaction data when its size exceeds the
maximum specified with TRANSRAM. You can specify DIRECTORY more than once.

• directory is the fully qualified name of a directory. The default is the dirtmp sub-
directory of the Oracle GoldenGate directory.

• max_directory_size is the maximum size of all files in the directory. The default
is 2 gigabytes. If the space specified is not available, then 75% of available disk
space is used.

• max_file_size is the maximum size of each file in the directory. The default is
200 megabytes.

Values can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes in
any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k
The directory size and file size must be greater than the size of the memory specified
with RAM.
The file names use the following format.
group_blob_00001.mem
or...
PID_blob_00001.mem
A group name is used for online processes. A system process ID number (PID) is
used for one-time runs specified with the SPECIALRUN parameter.
The format for a threaded Extract is similar to the following, depending on the
database.
group_thread #_00001.mem

Chapter 1
LOBMEMORY

1-138

Examples

Example 1
The following example allows per-transaction memory to be incremented ten times before
data is flushed to disk, once for the initial allocation specified with INITTRANSRAM and then
nine more times as permitted by RAMINCREMENT.

LOBMEMORY DIRECTORY (c:\test\dirtmp, 3000000000, 300000000), &
RAM 8000K, TRANSRAM 1000K, INITTRANSRAM 100K, RAMINCREMENT 100K

Example 2
The following is the same as the preceding example, but with the addition of a second
directory.

LOBMEMORY DIRECTORY (c:\test\dirtmp, 3000000000, 300000000), &
DIRECTORY (c:\test\dirtmp2, 1000000000, 5000000), &
RAM 8000K, TRANSRAM 1000K, INITTRANSRAM 100K, RAMINCREMENT 100K

1.95 LOGALLSUPCOLS
Valid For

Extract

Description

Use the LOGALLSUPCOLS parameter to control the writing of supplementally logged columns
specified with ADD TRANDATA or ADD SCHEMATRANDATA to the trail.

LOGALLSUPCOLS supports integrated Replicat (for Oracle database) and the Oracle
GoldenGateConflict Detection and Resolution feature (CDR). The supplementally logged
columns are a union of the scheduling columns that are required to ensure data integrity
across parallel Replicat threads and the conflict detection and resolution (CDR) columns.
Scheduling columns are primary key, unique index, and foreign key columns. Including all of
these supplementally logged columns satisfies the requirements of both CDR and
dependency computation in parallel Replicat processing.

LOGALLSUPCOLS causes Extract to do the following with these supplementally logged columns:

• Automatically includes in the trail record the before image for UPDATE operations.

• Automatically includes in the trail record the before image of all supplementally logged
columns for both UPDATE and DELETE operations.

• As a reminder, certain columns cannot be part of supplemental logging in Oracle. If you
want those columns to be present in the trail file, even if they did not change, you must
use FETCHOPTIONS MISSINGCOLS in the Extract parameter file.

For Extract versions older than 12c, you can use GETUPDATEBEFORES and NOCOMPRESSDELETES
parameters to satisfy the same requirement. See GETUPDATEBEFORES |
IGNOREUPDATEBEFORES and COMPRESSUPDATES | NOCOMPRESSUPDATES for
more information.

LOGALLSUPCOLS | NOLOGALLSUPCOLS takes precedence over the following parameters, if used:

• GETUPDATEBEFORES | IGNOREUPDATEBEFORES
• COMPRESSDELETES | NOCOMPRESSDELETES

Chapter 1
LOGALLSUPCOLS

1-139

• COMPRESSUPDATES | NOCOMPRESSUPDATES for before images, but COMPRESSUPDATES
| NOCOMPRESSUPDATES takes precedence over LOGALLSUPCOLS on after images.

Default

LOGALLSUPCOLS

Syntax

LOGALLSUPCOLS

1.96 LOOK_AHEAD_TRANSACTIONS
Valid For

Parallel Replicat

Description

It controls how far ahead the Scheduler looks when batching transactions. The benefit
and value to set this parameter at is highly dependent on the amount of data typically
that has is in the trail files that Replicat is reading, and depends on the transaction mix.
So, different values may work better or worse in a specific environment. Generally
increment or decrement the parameter in 10,000 interval until the best throughput is
achieved.

Default

The default value is 10000.

Syntax

LOOK_AHEAD_TRANSACTIONS

1.97 MACRO
Valid For

Extract and Replicat

Description

Use the MACRO parameter to create an Oracle GoldenGate macro. See Administering
Oracle GoldenGate for more information about using macros, including how to invoke
them properly.

Default

None

Syntax

The following must be used in the order shown:

MACRO #macro_name
PARAMS (#param_name [, ...])
BEGIN

Chapter 1
LOOK_AHEAD_TRANSACTIONS

1-140

macro_body
END;

MACRO
Starts the macro specification.

#
The macro character. Macro and parameter names must begin with a macro character.
Anything in the parameter file that begins with the macro character is assumed to be either a
macro or a macro parameter.
The default macro character is the pound (#) character, as in the following examples:

MACRO #macro1
PARAMS (#param1, #param2)

You can change the macro character with the MACROCHAR parameter.

macro_name
The name of the macro. Macro names must be one word with alphanumeric characters
(underscores are allowed) and are not case-sensitive. Each macro name in a parameter file
must be unique. Do not use quotes, or else the macro name will be treated as text and
ignored.

PARAMS
Starts a parameter clause. A parameters clause is optional. The maximum size and number
of parameters is unlimited, assuming sufficient memory is available.

param_name
Describes a parameter to the macro. Parameter names are not case-sensitive. Do not use
quotes, or else the parameter name will be treated as text and ignored.
Every parameter used in a macro must be declared in the PARAMS statement, and when the
macro is invoked, the invocation must include a value for each parameter.

BEGIN
Begins the macro body. Must be specified before the macro body.

macro_body
The body of the macro. The size of the macro body is unlimited, assuming sufficient
available memory. A macro body can include any of the following types of statements:

• Simple parameter statements, as in:

COL1 = COL2
• Complex statements, as in:

COL1 = #val2
• Invocations of other macros, as in:

#colmap(COL1, #sourcecol)

END;
Concludes the macro definition. The semicolon is required to complete the definition.

Examples

Example 1
The following example defines a macro that takes parameters.

Chapter 1
MACRO

1-141

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE('YYYY-MM-DD', 'CC', @IF(#year < 50, 20, 19),
'YY', #year, 'MM', #month, 'DD', #day)
END;

Example 2
The following example defines a macro that does not require parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

Example 3
The following example defines a macro named #assign_date that calls another macro
named #make_date.

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

1.98 MACROCHAR
Valid For

Extract and Replicat

Description

Use the MACROCHAR parameter to change the macro character of a macro definition to
something other than the # character. You might need to change the macro character
when, for example, table names include the # character.

The MACROCHAR parameter can only be used once in the parameter file. Place the
MACROCHAR parameter before the first MACRO parameter in the parameter file. Anything
in the parameter file that begins with the specified macro character is assumed to be
either a macro or a macro parameter. All macro definitions in the parameter file must
use the specified character.

MACROCHAR cannot be used with query parameters.

See also "MACRO".

See the Administering Oracle GoldenGate for more information about using macros.

Default

(pound symbol)

Syntax

MACROCHAR character

Chapter 1
MACROCHAR

1-142

character
The character to be used as the macro character. Valid user-defined macro characters are
letters, numbers, and special characters such as the ampersand (&) or the underscore (_).

Example

In the following example, $ is defined as the macro character.

MACROCHAR $
MACRO $mymac
PARAMS ($p1)
BEGIN
col = $p1
END;

1.99 MAP for Extract
Valid For

Extract

Description

You can also use MAP in an Extract parameter file to change the name of the transactions that
Oracle GoldenGate stores for the table.

For example, consider that you capture the table scott.emp. For the first use case, you
capture it to apply all the changes to anther table called scott.emp with the same structure,
but you also want to capture scott.emp with a different set of columns and replicate that to a
table called scott.emp_old. To make this work, you'll need an Extract parameter file similar to
this:

TABLE scott.emp;
MAP scott.emp,
cols(emp_no, employee_name),
target scott.emp_old;

In the Replicat, you can do the following:

MAP *.*, target *.*;

And the changes from scott.emp would go into scott.emp, the trail data for scott.emp_old
would go into scott.emp_old.

Use the MAP parameter for Extract when Extract is operating in classic capture mode and you
need to use the ALTID component of this parameter to map an object ID to an object name.
ALTID specifies the correct object ID if Extract is capturing from Oracle transaction logs that
were generated by a database other than the one to which Extract is connected. This
configuration is required when Extract is not permitted to connect directly to the production
(source) database to capture production transactions.

When Extract cannot connect directly to a source database, it connects to a live standby or
other facsimile database, but it reads transaction logs that are sent from the source database.
By querying the catalog of the alternate database, Extract can get the metadata that it needs
to expand the transaction data into valid SQL statements, but it cannot use the object ID from

Chapter 1
MAP for Extract

1-143

this query. The local object ID for a table is different from the object ID of that table in
the source database (and, thus, in the transaction log). You must manually map each
table name to the source object ID by using a MAP statement with ALTID.

To Use MAP with ALTID

• Create one MAP statement with ALTID for each table that you want to capture.
Wildcarded table names are not allowed for a MAP parameter that contains ALTID.

• To specify other processing for the same table (or tables), such as data filtering or
manipulation, you must also create a TABLE statement for each of those tables.
Wildcarding can be used to specify multiple tables with one TABLE statement, if
appropriate.

• Use a regular Replicat MAP statement in the Replicat parameter file, as usual. MAP
for Extract does not substitute for MAP for Replicat, which is required to map source
tables to target tables.

• DDL capture and replication is not supported when using ALTID.

Default

None

Syntax

MAP [container.]schema.table, ALTID object_ID [, object_ID]

[container.]schema.table
The fully qualified name of the source table.

object_ID
The object ID of the table as it exists in the production (source) database.
If a table is partitioned, you can list the object IDs of the partitions that you want to
replicate, separating each with a comma.

Examples

Example 1
This example maps a non-partitioned table or just one partition of a partitioned table.

MAP QASOURCE.T2, ALTID 75740;

Example 2
This example maps partitions of a partitioned table.

MAP QASOURCE.T_P1, ALTID 75257,75258;

1.100 MAP
See "TABLE | MAP".

1.101 MAPALLCOLUMNS| NOMAPALLCOLUMNS
Valid For

Valid as a standalone Replicat parameter or as an option to MAP.

Chapter 1
MAP

1-144

Description

An Extract or Replicat checks if all source columns are mapped directly to the target, without
using the column mapping function when MAPALLCOLUMNS parameter is specified. If any
source column is not mapped, then the Extract or Replicat abends.

Note:

This parameter is mainly used when performing heavy transformation using the
Replicat, and you must ensure that all the data is available for transformation.

MAPALLCOLUMNS and NOMAPALLCOLUMNS can be used in two different ways. When specified at a
global level, one parameter remains in effect for all subsequent MAP statements, until the
other parameter is specified. When used within a MAP statement, they override the global
specifications.

Default

NOMAPALLCOLUMNS

Syntax

MAPALLCOLUMNS | NOMAPALLCOLUMNS

Examples

Example 1
This example enables MAPALLCOLUMNS for some MAP statements while disabling it for others.

MAPALLCOLUMNS
MAP hr.emp, TARGET hr.emp2;
NOMAPALLCOLUMNS
MAP hr.dep, TARGET hr.dep2;

Example 2
This example shows a combination of global and MAP-level use of MAPALLCOLUMNS. The MAP
specification overrides the global specification for the specified table.

NOMAPALLCOLUMNS
MAP hr.dep, TARGET hr.dep2;
MAP hr.emp, TARGET hr.emp2, MAPALLCOLUMNS ;

1.102 MAP_PARALLELISM
Valid for

Parallel Replicat

Description

Configures number of mappers. It controls the number of threads used to read the trail file.
The minimum value is 1, maximum value is 100 and the default value is 2. Increasing this
parameter directly impacts the trail files. On a physical disk drive, you will start seeing IO
contention if you use more than 4 or 5 mappers. If it’s in solid state, you can increase the

Chapter 1
MAP_PARALLELISM

1-145

value a bit higher before seeing IO contention. However, this depends on how much
IO contention you need.

Syntax

MAP_PARALLELISM value

Examples

MAP_PARALLELISM 3

1.103 MAPEXCLUDE
Valid For

Replicat

Description

Use the MAPEXCLUDE parameter with the MAP parameter to explicitly exclude source
tables and sequences from a wildcard specification. You can use multiple MAPEXCLUDE
statements for specific MAP statements.

MAPEXCLUDE is evaluated before evaluating the associated MAP parameters. Thus, the
order in which they appear does not make a difference.

When using wildcards, be careful not to place them such that all objects are excluded,
leaving nothing to process. For example, the following example captures nothing from
cat1:

MAP cat1.schema*.tab*, TARGET schema*.tab*;
MAPEXCLUDE cat1.*.*

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

The default for resolving wildcards is WILDCARDRESOLVE DYNAMIC. Therefore, if a table
that is excluded with MAPEXCLUDE is renamed to a name that satisfies a wildcard, the
data will be captured. The DYNAMIC setting enables new table names that satisfy a
wildcard to be resolved as soon as they are encountered and included in the Oracle
GoldenGate configuration immediately. For more information, see
WILDCARDRESOLVE.

Default

None

Syntax

MAPEXCLUDE [container.]owner.{table | sequence}

container.
If the source database requires three-part names, specifies the name or wildcard
specification of the Oracle container that contains the object to exclude.

owner
Specifies the name or wildcard specification of the owner, such as the schema, of the
object to exclude.

Chapter 1
MAPEXCLUDE

1-146

table | sequence
The name or wildcard specification of the source object to exclude. To specify object names
and wildcards correctly, see Administering Oracle GoldenGate.

Example 1

In this example, the source tables from catalog pdb1 with schema test beginning with tab
and the source table pdb2.fin.acct are excluded from the trail files:

MAPEXCLUDE pdb1.test.tab*
MAP pdb1.*.*, TARGET *.*;
MAPEXCLUDE pdb2.fin.acct
MAP pdb2.*.*, TARGET *.*;

Example 2

The following example excludes all source tables from catalog beginning with pdb, that is, it
excludes all tables from pdb1, pdb2, pdb3 and so on:

MAP pdb1.*.*, TARGET *.*;
MAP pdb2.*.*, TARGET *.*;
MAPEXCLUDE pdb1.test.tab*
MAPEXCLUDE pdb*.*.*
MAPEXCLUDE pdb2.fin.acct

1.104 MAPINVISIBLECOLUMNS |
NOMAPINVISIBLECOLUMNS

Valid For

Replicat on Oracle. Valid as a standalone parameter or as an option to MAP.

Description

Use MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS to control whether or not Replicat
includes invisible columns in Oracle target tables for default column mapping. For invisible
columns in Oracle target tables that use explicit column mapping, they are always mapped so
do not require this option. MAPINVISIBLECOLUMNS is required to Automatic Conflict Detection
and Resolution.

MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS can be used in two different ways. When
specified at a global level, one parameter remains in effect for all subsequent MAP
statements, until the other parameter is specified. When used within a MAP statement, they
override the global specifications.

Default

NOMAPINVISIBLECOLUMNS

Syntax

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS
[, THREAD (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

Chapter 1
MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS

1-147

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range]
[, ...])
Specifies MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS only for the specified
thread or threads of a coordinated Replicat.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a
comma-delimited list of ranges in the format of threadIDlow-threadIDhigh,
threadIDlow-threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID,
threadIDlow-threadIDhigh.

Examples

Example 1
This example enables MAPINVISIBLECOLUMNS for some MAP statements while disabling
it for others.

MAPINVISIBLECOLUMNS
MAP hr.emp, TARGET hr.emp2;
NOMAPINVISIBLECOLUMNS
MAP hr.dep, TARGET hr.dep2;

Example 2
This example shows a combination of global and MAP-level use of
MAPINVISIBLECOLUMNS. The MAP specification overrides the global specification for the
specified table.

NOMAPINVISIBLECOLUMNS
MAP hr.dep, TARGET hr.dep2;
MAP hr.emp, TARGET hr.emp2, MAPINVISIBLECOLUMNS;

Example 3
In this example, MAPINVISIBLECOLUMNS is enabled globally, but turned off for thread 3.
The remaining threads 1, 2, and 4 will include invisible target columns in default
column mapping.

MAPINVISIBLECOLUMNS
NOMAPINVISIBLECOLUMNS THREAD(3)
MAP hr.dep, TARGET hr.dep2, THREADRANGE(1, 4);
MAP hr.emp, TARGET hr.emp2, THREADRANGE(1, 4);

1.105 MARKERTABLE
Valid For

GLOBALS

Chapter 1
MARKERTABLE

1-148

Description

Use the MARKERTABLE parameter to specify the name of the DDL marker table, if other than
the default of GGS_MARKER. The marker table stores information about DDL operations.

The name of the marker table must also be specified with the marker_table_name parameter
in the params.sql script. This script resides in the root Oracle GoldenGate installation
directory.

This parameter is only valid for an Oracle database in which the capture configuration uses
the Oracle GoldenGate DDL trigger to support DDL replication. For more information about
the Oracle GoldenGate DDL objects, see Installing Trigger-Based DDL Capture in Using
Oracle GoldenGate for Oracle Database.

Default

GGS_MARKER

Syntax

MARKERTABLE [container.]table_name

[container.]table_name
The fully qualified three-part or two-part name of the marker table. To specify object names
and wildcards correctly, see Administering Oracle GoldenGate.

1.106 MASTERKEYNAME
Valid For

GLOBALS

Description

MASTERKEYNAME controls the name of the masterkey that Oracle GoldenGate processes in a
deployment will use to retrieve the key from the wallet. If no masterkey is provided, the
default value is OGG_DEFAULT_MASTERKEY. The non-mandatory option VERSION takes one
number between 1 and 65535 (0xffff). When present, it forces the Oracle GoldenGate
processes in the deployment to use that particular version of the masterkey to encrypt or
decrypt trails. This is not needed during normal operation, but might be useful when
debugging old trail files if the key has been rolled over since the date the old trail was
created.

Default

OGG_DEFAULT_MASTERKEY

Syntax

MASTERKEYNAME [VERSION]

Chapter 1
MASTERKEYNAME

1-149

1.107 MAXDISCARDRECS
Valid For

Extract and Replicat

Description

Use the MAXDISCARDRECS parameter to limit the number of errors that are reported to
the discard file per MAP statement.

Use this parameter for the following reasons:

• When you expect a large number of errors but do not want them reported.

• To manage the size of the discard file.

More than one instance of MAXDISCARDRECS can be used in a parameter file to specify
different maximums for different sets of MAP statements. An instance of
MAXDISCARDRECS applies to all subsequent MAP statements until the next instance of
MAXDISCARDRECS is encountered. The minimum is 0.

Default

None

Syntax

MAXDISCARDRECS number

number
The maximum number of errors to report.

Example

MAXDISCARDRECS 1000

1.108 MAXGROUPS
Valid For

GLOBALS

Description

Use the MAXGROUPS parameter to specify the maximum number of process groups that
can run in an instance of Oracle GoldenGate. The Manager process checks this
parameter to determine its resource allocations. The GGSCI process checks this
parameter to control the maximum number of groups that it allows to be created.

Each Replicat thread in a coordinated Replicat group is considered to be a group in
the context of MAXGROUPS. Therefore, the value of the MAXTHREADS option of
COORDINATED in the ADD REPLICAT command (default is 25), plus the number of other
Replicat and Extract groups in the Oracle GoldenGate instance, cannot exceed the
MAXGROUPS value, or ADD REPLICAT returns an error.

Chapter 1
MAXDISCARDRECS

1-150

The actual number of processes that can run on a given system depends on the system
resources that are available. If those resources are exceeded, Oracle GoldenGate returns
errors regardless of the setting of MAXGROUPS.

Default

1000 groups

Syntax

MAXGROUPS number

number
The number of groups allowed in one instance of Oracle GoldenGate. Valid values are from
1000 to 5000.

Example

MAXGROUPS 1500

1.109 MAXSQLSTATEMENTS
Valid For

Replicat

Description

Use the MAXSQLSTATEMENTS parameter to control the number of prepared SQL statements that
can be used by Replicat both in regular processing mode and in BATCHSQL mode. The value
for MAXSQLSTATEMENTS determines the number of open cursors that Replicat maintains. Make
certain that the database can support the specified number of cursors, plus the cursors that
other applications and processes use. Before changing MAXSQLSTATEMENTS, contact Oracle
Support.

When setting MAXSQLSTATEMENTS for a coordinated Replicat, take into account that the
specified maximum number of cursors is applied to each thread in the configuration, not as
an aggregate threshold for Replicat as a whole. For example, if MAXSQLSTATEMENTS 100 is
specified, it is possible for each thread to have 99 open cursors without any warning or error
from Replicat.

See "BATCHSQL" for more information about BATCHSQL mode.

Default

250 cursors

Syntax

MAXSQLSTATEMENTS number

number
The maximum number of cursors that Replicat (or each thread in a coordinated Replicat) can
use. Valid values are from 1 to 250.

Example

MAXSQLSTATEMENTS 200

Chapter 1
MAXSQLSTATEMENTS

1-151

1.110 MAXTRANSOPS
Valid For

Replicat (Not supported in integrated and parallel Replicat mode)

Description

Use the MAXTRANSOPS parameter to split large source transactions into smaller ones on
the target system. This parameter can be used when the target database is not
configured to accommodate large transactions. For example, if the Oracle rollback
segments are not large enough on the target to reproduce a source transaction that
performs one million deletes, you could specify MAXTRANSOPS 10000, which forces
Replicat to issue a commit after each group of 10,000 deletes.

To use MAXTRANSOPS is to alter the transactional boundaries that are imposed by the
source application, even though Replicat applies the operations in the correct order.
This can cause errors if Extract fails during that transaction. Extract rewrites the
transaction to the end of the trail, instead of overwriting the old one. Because the trail
is sequential, Replicat starts processing the old transaction and must roll it back when
it receives the recovery marker and the new transaction, and then start applying the
new transaction. If MAXTRANSOPS caused Replicat to split the original transaction into
multiple smaller transactions, Replicat may only be able to roll back the portion that
was not committed to the target. When Replicat processes the committed operations
again, they will result in duplicate-row errors or missing-row errors, depending on the
SQL operation type. The minimum is 1.

Note:

When troubleshooting Replicat abend errors, Oracle Support may request
GROUPTRANSOPS to be set to 1 and MAXTRANSOPS to be set to 1. This is only a
temporary configuration for troubleshooting purposes and should not be used
permanently in production, or it will cause data integrity errors.

Default

10,000,000

Syntax

MAXTRANSOPS number

number
The number of operations to portion into a single transaction group.

Example

MAXTRANSOPS 10000

Chapter 1
MAXTRANSOPS

1-152

1.111 MGRSERVNAME
Valid For

GLOBALS

Description

Use the MGRSERVNAME parameter in a GLOBALS parameter file to specify the name of the
Manager process when it is installed as a Windows service. This parameter is only required
when installing multiple instances of Manager as a service on the same system, for example
when installing multiple Oracle GoldenGate instances or when also installing the Oracle
GoldenGate Veridata Agent, which uses a Manager process.

There must be a GLOBALS file containing MGRSERVNAME for each Manager service that is
installed with the INSTALL utility. The files must be created before the services are installed,
because the installation program refers to MGRSERVNAME when registering the service name
on the system.

Default

None

Syntax

MGRSERVNAME name

name
A one-word name for the Manager service.

Example

MGRSERVNAME Goldengate

1.112 NAMECCSID
Valid for

GLOBALS, Extract, Replicat, DEFGEN for DB2 on IBM i

Description

Use the NAMECCSID parameter to specify the CCSID (coded character set identifier) of the
database object names stored in the SQL catalog tables. The SQL catalog tables are created
with the CCSID of the system, but the actual database object names could be represented in
the catalog with characters from a different CCSID. The catalog does not indicate this
difference when queried, and therefore Oracle GoldenGate could retrieve the name
incorrectly unless NAMECCSID is present to supply the correct CCSID value.

To set the CCSID for a GGSCI session, use the SET NAMECCSID command.

To view the current CCSID, use the SHOW command. If the CCSID is not set through the
GGSCI session or through the parameter NAMECCSID, the SHOW value will be DEFAULT.

Chapter 1
MGRSERVNAME

1-153

Default

DEFAULT

Syntax

NAMECCSID {CCSID | DEFAULT}

CCSID
A valid DB2 for i coded character set identifier that is to be used for object names in
catalog queries.

DEFAULT
Indicates that the system CCSID is to be used for object names in catalog queries.

Example

NAMECCSID 1141

1.113 NAMEMATCH parameters
Valid For

GLOBALS

Description

Use the NAMEMATCH parameters to control the behavior of fallback name mapping.
Fallback name mapping is enabled by default when the source database is case-
sensitive and the target database support both case-sensitive and case-insensitive
object names, such as Oracle and DB2 LUW.

By default, NAMEMATCHIGNORECASE fallback name matching works as follows: When a
source table name is case-sensitive, Oracle GoldenGate applies case-sensitive
wildcard mapping on the target database to find an exact match. If the target database
does not contain the exact target table name, including case, fallback name mapping
performs a case-insensitive target table mapping to find a name match.

Default

NAMEMATCHIGNORECASE

Syntax

NAMEMATCHIGNORECASE | NAMEMATCHNOWARNING | NAMEMATCHEXACT

NAMEMATCHIGNORECASE
Performs a case-insensitive target table mapping to find a name match when the
target database does not contain the exact target table name, including case.

NAMEMATCHNOWARNING
Outputs a warning message to the report file when fallback name matching is used.

NAMEMATCHEXACT
Disables fallback name mapping. If an exact, case-sensitive match is not found,
Oracle GoldenGate returns an error and abends.

Chapter 1
NAMEMATCH parameters

1-154

1.114 NOCATALOG
Valid For

DEFGEN

Description

Use NOCATALOG in the DEFGEN parameter file to remove the Oracle Database container
name from table names before their definitions are written to the definitions file. This
parameter is valid if the database supports container names or catalog names and the
DEFSFILE parameter includes the FORMAT RELEASE option set to 12.1. Use this parameter if
the definitions file is to be used for mapping to a database that only supports two-part names
(owner.object).

DEFGEN abends with an error if duplicate schema.table names are encountered once the
container or catalog names are removed. This prevents the possibility of processing errors
caused by different sets of metadata having the same schema.table name when there is no
catalog name to differentiate them.

Default

None

Syntax

NOCATALOG

1.115 NODUPMSGSUPPRESSION
Valid For

GLOBALS

Description

Use NODUPMSGSUPPRESSION to prevent the automatic suppression of duplicate informational
and warning messages in the report file, the error log, and the system log files. A message is
issued to indicate how many times a message was repeated.

Default

Automatically suppress duplicate messages.

Syntax

NODUPMSGSUPPRESSION

1.116 NUMFILES
Valid For

Extract and Replicat

Chapter 1
NOCATALOG

1-155

Description

Use the NUMFILES parameter to control the initial number of memory structures that are
allocated to contain information about tables specified in TABLE or MAP statements.
NUMFILES must occur before any TABLE or MAP entries, and before the SOURCEDEFS or
TARGETDEFS parameter, to have any effect.

When setting NUMFILES for a coordinated Replicat, take into account that the specified
value is applied to each thread in the configuration, not as an aggregate threshold for
Replicat as a whole. For example, if NUMFILES 500 is specified, it is possible for each
thread to have 499 initial memory structures without any warning or error from
Replicat.

To control the number of additional memory structures that are allocated dynamically
once the NUMFILES value is reached, use the ALLOCFILES parameter. See
"ALLOCFILES" for more information. The default values should be sufficient for both
NUMFILES and ALLOCFILES, because memory is allocated by the process as needed,
system resources permitting. The minimum is 1 and the maximum is 20000. While the
maximum values is 20000, Oracle GoldenGate can support up to 2 million tables in a
single Replicat or Extract.

Default

1000

Syntax

NUMFILES number

number
The initial number of memory structures to be allocated. Do not set NUMFILES to an
arbitrarily high number, or memory will be consumed unnecessarily.

Example

NUMFILES 50

1.117 OBEY
Valid For

Extract and Replicat

Description

Use the OBEY parameter to retrieve parameter settings from a file other than the
current parameter file.

To use OBEY, create and save a parameter file that contains the parameters that you
want to retrieve. This is known as an OBEY file. You can create a library of OBEY files
that contain different, frequently used parameter settings. Then, use the OBEY
parameter in the active parameter file to invoke the parameters in the OBEY file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the OBEY file and then returns to the active parameter
file to process any remaining parameters.

Chapter 1
OBEY

1-156

OBEY statements cannot be nested within other OBEY statements.

Instead of using OBEY, or in addition to it, you can use Oracle GoldenGate macros to retrieve
frequently used parameters. For more information about using macros, see the Administering
Oracle GoldenGate.

Default

None

Syntax

OBEY file

file
The relative or fully qualified name of the file from which to retrieve parameters or
commands.

Example

OBEY /home/ogg/myparams

1.118 OUTPUTFILEUMASK
Valid For

GLOBALS

Description

Use the OUTPUTFILEUMASK parameter to specify an octal umask for Oracle GoldenGate
processes to use when creating all files. OUTPUTFILEUMASK is not valid for Windows systems.

Default

Umask of 027 (all privileges)

Syntax

OUTPUTFILEUMASK umask

umask
The umask value. Must be between 0 and 077; otherwise there will be an error: Missing or
invalid option for OUTPUTFILEUMASK.

Example

OUTPUTFILEUMASK 066

1.119 OUTPUTFORMAT
Valid For

Extract

Chapter 1
OUTPUTFILEUMASK

1-157

Description

Use the OUTPUTFORMAT parameter to output data in text, SQL, and XML formats.

Default

None

Syntax

OUTPUTFORMAT format_type [, option] [, ...]

OUTPUTFORMAT TEXT

Use the TEXT format_type to output data in external text format instead of the default
Oracle GoldenGate canonical format. You can format output that is compatible with
most database load utilities and other programs that require ASCII input. This
parameter is required by the file-to-database-utility initial load method.

This type of statement affects all extract files or trails that are listed after it in the
parameter file. The relative order of the statements in the parameter file is important. If
listed after a file or trail specification, OUTPUTFORMAT TEXT will not take effect.

option can be one of the following:

INCLUDE (HEARTBEAT)
Includes the heartbeat table records. By default, the heartbeat table records are
ignored.

BCP
Formats the output for compatibility with SQL Server's Bulk Copy Program and other
bulk load utilities.
The following options are ignored when the BCP option is specified:

• NAMES | NONAMES — Specifies whether or not to include column names. NAMES is
the default.

• NULLISSPACE — Output NULL columns as empty columns. Without NULLISSPACE,
NULL columns are output as NULL.

• PLACEHOLDERS — Outputs placeholder for missing columns.

• NOHDRFIELDS — Does not include any metadata, such as the before and after
indicator, and transaction information. Outputs column data only.

• DELIMITER 'delimiter' — Specifies the field delimiter character. To specify
tabulation, use TAB. The default is a comma ‘,’.

• OP | _NOOP — Specifies whether or not to include operation type indicator (I, D,
U, V). OP is the default.

• IND | _NOIND — Specifies whether or not to include the before and after image
indicator (B or A). IND is the default.

• _TRANSTMTS | _NOTRANSTMTS — Specifies whether or not to include transaction
information. _TRANSTMTS is the default.

Chapter 1
OUTPUTFORMAT

1-158

• _WHOLEFILE — Includes the fully-qualified object name including the schema name.

• _FILE — Includes the object name only.

SQLLOADER
Produces a fixed-length text formatted file that is compatible with the Oracle SQL*Loader
utility or the IBM load utility.

DATE | TIME | TS
Specifies the record timestamp precision to output. By default, this parameter does not
output record timestamp. You can use one of the following:

• DATE outputs the date (year to day).

• TIME outputs the time (year to second).

• TS outputs the transaction timestamp (year to microseconds).

SQLLOADER
Produces a fixed-length, ASCII-formatted file that is compatible with the Oracle SQL*Loader
utility or the IBM Load Utility program.

OUTPUTFORMAT SQL

Use the OUTPUTFORMAT SQL parameter to output data in external SQL format, instead of the
default Oracle GoldenGate canonical format. OUTPUTFORMAT SQL generates SQL statements
(INSERT, UPDATE, DELETE) that can be applied to SQL tables by utilities other than Oracle
GoldenGate Replicat.

INCLUDE (HEARTBEAT)
Includes the heartbeat table records. By default, heartbeat table records are ignored.

ENCODING encoding
Outputs the SQL format file in the specified encoding. Oracle GoldenGate character set
names are supported. By default, is current operating system character set. No character set
conversion on column data is performed with the default character set.
The following options specify the specific output format. The options are exclusive so cannot
be specified together.

ORACLE
Formats records for compatibility with Oracle Databases by converting date and time
columns to a format accepted by SQL*Plus.

SQLPLUS
Formats records for compatibility with Oracle Databases by converting date and time
columns to a format accepted by SQL*Plus.

SQLLOADER
 Produces a fixed-length text formatted file that is compatible with the Oracle
SQL*Loader utility or the IBM load utility program.
This is exactly the same as OUTPUTFORMAT TEXT SQLLOADER, which Oracle recommends
that you use..

_TRANSTMTS | _NOTRANSTMTS
Includes SQL transaction information as comment. _NOTRANSTMTS is the default.
For example:

Chapter 1
OUTPUTFORMAT

1-159

—B, 2016-07-09:09:9:21.000000,1357991461,627

WHOLEFILE
Includes the fully-qualified object name including the schema name.

FILE
Includes the object name only.

NOPKUPDATES
Formats PKUPDATE and UNIFIED UPDATE operations as a pair of DELETE and INSERT
operations. PKUPDATE and UNIFIED UPDATE operations are formatted as an UPDATE
operation if the option is not specified. This option is ignored if the SQLLOADER option is
used.

OUTPUTFORMAT XML

Use the OUTPUTFORMAT XML parameter to output data in XML format, instead of the
default Oracle GoldenGate canonical format. An OUTPUTFORMAT XML statement affects
all Extract files or trails that are defined after it. By default, the XML is output in the
character set of the local operating system.

XML stored as CLOB or BLOB is output up to 4000 bytes. To include larger XML
stored as BLOB or CLOB, use the ENCODING option.

XML stored as CLOB is always output in a CDATA section regardless of its size. This is
to avoid the overhead of converting reserved characters such as <, > and & to the
appropriate XML representation.

Binary data including BLOB are encoded as Base64, which represents binary data in
an ASCII string format and allows output to XML.

The XML, the database object names, such as table and column names, and CHAR and
VARCHAR data are written in the default character set of the operating system unless the
ENCODING option is used to output in UTF-8.

INCLUDE (HEARTBEAT | LOB | USERTOKEN)
Includes the heartbeat table records. LOB more than 4000 bytes and Oracle
GoldenGate user tokens.
By default, heartbeat table records are ignored and doesn’t include LOB more than
4000 bytes and user tokens.
BLOB more than 4000 bytes is encoded in Base64, and CLOB more than 4000 bytes
is formatted in a CDATA section.

INLINEPROPERTIES | NOINLINEPROPERTIES
Controls whether or not properties are included within the XML tag or written
separately. INLINEPROPERTIES is the default.

TRANS | NOTRANS
Controls whether or not transaction boundaries and commit timestamps should be
included in the XML output. TRANS is the default.

CLOSETRANS | NOCLOSETRANS
 Forces the closure of opened transaction boundaries and commits the timestamp
upon rollover. It adds same transaction boundaries and commit timestamp tags to the
next XML file after rollover.
The option is ignored if the TRANS option is not specified.

Chapter 1
OUTPUTFORMAT

1-160

ENCODING xml_encoding
Outputs an XML file in the specified encoding. The default is UTF-8. The following MIME
encoding names are supported.
 UTF-8 ISO-10646 UTF-8, surrogate pairs are 4 bytes per character
UTF-16 ISO-10646 UTF-16
windows-1250 Windows Central Europe
windows-1251 Windows Cyrillic
windows-1252 Windows Latin-1
windows-1253 Windows Greek
windows-1254 Windows Turkish
windows-1255 Windows Hebrew
windows-1256 Windows Arabic
windows-1257 Windows Baltic
windows-1258 Windows Vietnam
windows-874 Windows Thai
IBM437 DOS Latin-1
IBM775 DOS 775, Baltic
IBM850 DOS multilingual
cp851 DOS Greek-1
IBM852 DOS Latin-2
IBM855 DOS Cyrillic
IBM857 DOS Turkish
IBM00858 DOS Multilingual with Euro
IBM860 DOS Portuguese
IBM861 DOS Icelandic
IBM862 DOS Hebrew
IBM863 DOS French
IBM864 DOS Arabic
IBM865 DOS Nordic
IBM866 DOS Cyrillic / GOST 19768-87
IBM868 DOS Urdu
IBM869 DOS Greek-2
ISO-8859-1 ISO-8859-1 Latin-1/Western Europe
SO-8859-2 ISO-8859-2 Latin-2/Eastern Europe
ISO-8859-3 ISO-8859-3 Latin-3/South Europe
ISO-8859-4 ISO-8859-4 Latin-4/North Europe
ISO-8859-5 ISO-8859-5 Latin/Cyrillic
ISO-8859-6 ISO-8859-6 Latin/Arabic
ISO-8859-7 ISO-8859-7 Latin/Greek
ISO-8859-8 ISO-8859-8 Latin/Hebrew
ISO-8859-9 ISO-8859-9 Latin-5/Turkish
ISO-8859-10 ISO-8859-10 Latin-6/Nordic
ISO-8859-13 ISO-8859-13 Latin-7/Baltic Rim
ISO-8859-14 ISO-8859-14 Latin-8/Celtic
ISO-8859-15 ISO-8859-15 Latin-9/Western Europe
ISO-8859-16 ISO-8859-16, Latin-10, South Eastern Europe
KOI8-R KOI8-R, Russian
KOI8U KOI8-U, Ukranian
TIS-620 Thai Industrial Standard 620-2533
DEC-MCS DEC Multilingual
hp-roman8 HP Latin-1 Roman8
Shift_JIS Shift_JIS, Windows-932
GBK GBK, Windows-936
KSC_5601 KSC-5601, Windows-949

Chapter 1
OUTPUTFORMAT

1-161

Big5 Big-5 Traditional Chinese, Windows-950
EUC-JP EUC Japanese
GB2312 GB-2312-1980
EUC-KR EUC Korean
GB18030 GB-18030
HZ-GB-2312 HZ GB-2312
Big5-HKSCS Big-5, HongKong extension

Example

OUTPUTFORMATXML NOINLINEPROPERTIES, NOTRANS

1.120 OVERRIDEDUPS | NOOVERRIDEDUPS
Valid For

Replicat

Description

Use the OVERRIDEDUPS and NOOVERRIDEDUPS parameters to control whether or not
Replicat overwrites an existing record in the target database with a replicated one if
both records have the same key.

• OVERRIDEDUPS overwrites the existing record. It can be used for initial loads where
you do not want to truncate target tables prior to the load, or for the
resynchronization of a target table with a trusted source. Use the SQLDUPERR
parameter with OVERRIDEUPS to specify the numeric error code that is returned by
the database for duplicate INSERT operations. See "SQLDUPERR" for more
information.

• NOOVERRIDEDUPS, the default, generates a duplicate-record error instead of
overwriting the existing record. You can use an exceptions MAP statement with a
SQLEXEC clause to initiate a response to the error. Otherwise, the transaction may
abend. For more information about exceptions maps, see Administering Oracle
GoldenGate.

To bypass duplicate records without causing Replicat to abend when an
exceptions map is not available, specify a REPERROR parameter statement similar to
the following, where error is the database error number for primary key constraint
errors.

REPERROR (error, IGNORE)

For example, the statement for an Oracle database would be:

REPERROR (1, IGNORE)

Replicat writes ignored duplicate records to the discard file.

Place OVERRIDEDUPS or NOOVERRIDEDUPS before the TABLE or MAP statements that you
want it to affect. You can create different rules for different groups of TABLE or MAP
statements. The parameters act as toggles: one remains in effect for subsequent
TABLE or MAP statements until the other is encountered.

OVERRIDEDUPS is enabled automatically when HANDLECOLLISIONS is used. See
"HANDLECOLLISIONS | NOHANDLECOLLISIONS" for more information.

Chapter 1
OVERRIDEDUPS | NOOVERRIDEDUPS

1-162

WARNING:

When OVERRIDEDUPS is in effect, records might not be processed in chronological
order across multiple Replicat processes.

Default

NOOVERRIDEDUPS

Syntax

OVERRIDEDUPS | NOOVERRIDEDUPS

1.121 PARTIALBLOCKRETRYSECS
Valid For

Extract and Replicat

Description

This parameter allows Oracle GoldenGate to go back and re-read a block in the event that
the first time it reads the block it is bad or partial data. These types of issues are typically
encountered when the incorrect NFS settings are used for trail files or redo logs.

Refer to MOS note 1232303.1 for recommended NFS settings with Oracle GoldenGate.

The default is 20 seconds, the minimum is 1 second, and this works for Extract and Replicat.

Default

PARTIALBLOCKRETRYSECS 20

Syntax

PARTIALBLOCKRETRYSECS seconds

In case of TRANLOG Extract, the seconds value applies when reading the redo logs. This
applies for classic Extract only. In case of an Extract pump or Replicat, its used when reading
trail files written by a TRANLOG Extract.

1.122 PTKCAPTUREPROCSTATS
Valid For

Extract, Replicat, and Manager

Description

Use PTKCAPTUREPROCSTATS enables the capture of process and thread statistics for the PTK
Monitoring.

Chapter 1
PARTIALBLOCKRETRYSECS

1-163

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=272807100561953&id=1232303.1&_afrWindowMode=0&_adf.ctrl-state=19snm7b95e_4

Default

true

Syntax

PTKCAPTUREPROCSTATS seconds

capture
Controls whether or not PTK Monitoring statistics are captured with either true or
false.

Examples

PTKCAPTUREPROCSTATS false

1.123 PTKMONITORFREQUENCY
Valid For

Extract, Replicat, and Manager

Description

Use PTKMONITORFREQUENCY to set the monitoring collection frequency interval.

Default

One second.

Syntax

PTKMONITORFREQUENCY seconds

seconds
Specifies the time interval, in seconds, for monitoring collection to occur. The
minimum is 1 seconds and the maximum is 60 seconds.

Examples

PTKMONITORFREQUENCY 10

1.124 PRESERVETARGETTIMEZONE
Valid For

Replicat

Description

Use the PRESERVETARGETTIMEZONE parameter to override the default Replicat session
time zone. By default, Replicat sets its session to the time zone of the source
database, as written to the trail by Extract. PRESERVETARGETTIMEZONE causes Replicat
to set its session to the time zone of the target database.

Chapter 1
PTKMONITORFREQUENCY

1-164

Default

None

Syntax

PRESERVETARGETTIMEZONE

1.125 PROCEDURE
This is an option that can be specified as a stand-alone statement in extract and replicat
parameter file. It indicates which feature group of procedural calls will be replicated.

Valid For

Extract and Replicat in Oracle only. It also requires the database to Oracle 12.2 or higher, and
requires Oracle GoldenGate and the database to be configured appropriately. See Enabling
Procedural Replication in Using Oracle GoldenGate for Oracle Database.

Syntax

PROCEDURE [INCLUDE | EXCLUDE] FEATURE [ALL_SUPPORTED | feature_list]

Examples

Example 1
Include all system supplied packages:

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED

Example 2
Include specific packages

PROCEDURE INCLUDE FEATURE AQ, FGA, DBFS

Example 3
Exclude a specific packages

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
PROCEDURE EXCLUDE FEATURE REDFINITION

1.126 PURGEOLDEXTRACTS for Extract and Replicat
Valid For

Extract and Replicat

Description

Use the PURGEOLDEXTRACTS parameter in an Extract or Replicat parameter file to delete old
trail files whenever Oracle GoldenGate starts processing from a new one. Preventing the
accumulation of trail files conserves disk space. Purges are conducted after the process is
done with the file as indicated by checkpoints.

Purging by Extract is appropriate if the process is a data pump. After the data is sent to the
target system, the files can be purged. Otherwise, purging would ordinarily be done by
Replicat.

Chapter 1
PROCEDURE

1-165

PURGEOLDEXTRACTS should only be used in an Extract or Replicat parameter file if there
is only one instance of the process. If multiple groups are reading the same set of trail
files, one process could purge a file before another is finished with it. Instead, use the
Manager version of PURGEOLDEXTRACTS, which is the preferred use of the parameter in
all Oracle GoldenGate configurations because it allows you to manage trail files in a
centralized fashion.

Default

Purge the trail file when moving to the next file in the sequence.

Syntax

PURGEOLDEXTRACTS

1.127 REPERROR
Valid For

Replicat

Description

Use the REPERROR parameter to control how Replicat responds to errors. The default
response of Replicat to any error is to abend.

You can use one REPERROR statement to handle most errors in a default manner, while
using one or more other REPERROR statements to handle specific errors differently. For
example, you can ignore duplicate-record errors but abend processing in all other
cases.

You can use REPERROR globally (at the root of the parameter file) to affect all MAP
statements that follow it, or you can use it within a MAP statement to affect the tables
specified in that statement. Using REPERROR within a MAP statement gives you the ability
to handle errors in a particular way for each thread of a coordinated Replicat.

Using Record-level Error Handling

All REPERROR options except TRANSDISCARD and TRANSEXCEPTION apply an error-
handling action in response to an individual SQL operation on an individual record.
Other, error-free records in the same transaction are processed as configured in the
MAP statements and other parameters in the parameter file, as applicable.

Using Transaction-level Error Handling

The TRANSDISCARD, TRANSEXCEPTION, and ABEND options apply an error-handling action
to an entire transaction. The triggering error can occur on an individual record in the
transaction or on the commit operation. (Commit errors do not have a particular record
associated with them.) These options can be used to:

• prevent an entire source transaction from being replicated to the target when any
error is associated with it.

• respond to a commit error when deferred constraint checking is enabled on the
target.

TRANSDISCARD and TRANSEXCEPTION are mutually exclusive.

Chapter 1
REPERROR

1-166

Effect of Other Parameters on Transaction-level Options

TRANSDISCARD and TRANSEXCEPTION honor the boundaries of the source transaction; however,
the presence of BATCHSQL, GROUPTRANSOPS, or MAXTRANSOPS in the parameter file may affect
the error-handling logic or outcome, because they alter transaction boundaries.

Effect of BATCHSQL and GROUPTRANSOPS

BATCHSQL or GROUPTRANSOPS (the default) both group SQL operations from different
transactions into larger transactions to improve performance, while maintaining transactional
order. When these parameters are in effect and any error occurs, Replicat first tries to resolve
it by entering an alternate processing mode (see the documentation for those parameters). If
the error persists, TRANSDISCARD or TRANSEXCEPTION comes into effect, and Replicat reverts to
source-processing mode as follows:

1. It rolls back the grouped or arrayed transaction.

2. It replays the offending transaction one SQL operation at a time, using the same
transaction boundaries as the source transaction.

3. It performs the discard logic (TRANSDISCARD) or exceptions-mapping (TRANSEXCEPTION).
(See those option descriptions for more detail.)

4. It resumes BATCHSQL or GROUPTRANSOPS mode after the TRANSDISCARD error handling is
completed.

Effect of MAXTRANSOPS

The integrity of TRANSDISCARD and TRANSEXCEPTION transaction-level error handling can be
adversely affected by the setting of the MAXTRANSOPS parameter. MAXTRANSOPS causes
Replicat to split very large replicated source transactions into smaller transactions when it
applies them on the target.

The TRANSDISCARD and TRANSEXCEPTION logic cause Replicat to roll back to the first record
after the last successful commit. This may or may not be the actual beginning of the offending
transaction. It depends on whether that transaction was split up and parts of it are in the
previously committed transactions. If that is the case, Replicat cannot apply the
TRANSDISCARD or TRANSEXCEPTION action to the whole transaction as it was issued on the
source, but only to the part that was rolled back from the target.

If you use MAXTRANSOPS, make certain that it is set to a value that is larger than the largest
transaction that you expect to be handled by TRANSDISCARD and TRANSEXCEPTION. This will
ensure that transactions are not be split apart into smaller ones on the target.

Effect of Transaction-level Options on Statistics

The output of informational commands in GGSCI, such as STATS REPLICAT, will show the
total number of records in the transaction that was processed by TRANSDISCARD or
TRANSEXCEPTION logic. This number may reflect the following:

• Replicat writes all records of the transaction to the discard file, including any records that
were excluded from Oracle GoldenGate processing by means of a FILTER or WHERE
clause in a MAP statement.

• If a source table in the transaction has multiple targets, the discarded transaction will
contain multiple copies of each record, one for each target.

Chapter 1
REPERROR

1-167

• Replicat ignores any exceptions mapping statements (as specified with
EXCEPTIONSONLY or MAPEXCEPTION in a MAP statement) when discarding the
transaction.

Replicat abends on errors that are caused by the discard processing (TRANSDISCARD)
or exceptions mapping (TRANSEXCEPTION).

Getting More Information about Error Handling

See Administering Oracle GoldenGate for more information about configuring error
handling.

See "TABLE | MAP" for more information about the MAP parameter.

Default

TRANSABORT for deadlocks; ABEND for all others

Syntax

REPERROR {
(
{DEFAULT | DEFAULT2 | SQL_error | user_defined_error},
{ABEND |
DISCARD |
EXCEPTION |
IGNORE |
RETRYOP [MAXRETRIES n] |
TRANSABORT [, MAXRETRIES] [, DELAYSECS n | DELAYCSECS n] |
TRANSDISCARD |
TRANSEXCEPTION
}
{PROCEDURE,[ABEND|IGNORE|DISCARD]}) |
RESET }

Error Specification Options

DEFAULT
Sets a global response to all errors except those for which explicit REPERROR
statements are specified.

DEFAULT2
Provides a backup default action when the response for DEFAULT is set to EXCEPTION.
Use DEFAULT2 when an exceptions MAP statement is not specified for a MAP statement
for which errors are anticipated.

SQL_error
A SQL error number. This can be a record-level error or a commit-level error if using
TRANSDISCARD and TRANSEXCEPTION.

user_defined_error
A user-defined error that is specified with the RAISEERROR option of a FILTER clause
within a MAP statement.

Error Response Options

ABEND
Rolls back the transaction and terminates processing abnormally. ABEND is the default.

Chapter 1
REPERROR

1-168

DISCARD
Logs the offending operation to the discard file but continue processing the transaction and
subsequent transactions.

EXCEPTION
Handles the operation that causes an error as an exception, but processes error-free
operations in the transaction normally. Use this option in conjunction with an exceptions MAP
statement or to work with the MAPEXCEPTION option of MAP. For example, you can map
columns from failed update statements into a "missing updates" table. In the parameter file,
specify the exceptions MAP statement after the MAP statement for which the error is
anticipated.
EXCEPTION applies exception handling only to an individual SQL operation on an individual
record. To apply exception handling to the entire transaction, use the TRANSEXCEPTION option.

Note:

When the Conflict Detection and Resolution (CDR) feature is active, CDR
automatically treats all operations that cause errors as exceptions if an exceptions
MAP statement exists for the affected table. In this case, REPERROR with EXCEPTION is
not necessary, but you should use REPERROR with other options to handle conflicts
that CDR cannot resolve, or for conflicts that you do not want CDR to handle.

IGNORE
Ignores the error.

RETRYOP [MAXRETRIES n]
Retries the offending operation. Use the MAXRETRIES option to control the number of retries.
For example, if a table is out of extents, RETRYOP with MAXRETRIES gives you time to add
extents so the transaction does not fail. Replicat abends after the specified number of
MAXRETRIES.

TRANSABORT [, MAXRETRIES n] [, DELAYSECS n | DELAYCSECS n]
Aborts the transaction and repositions to the beginning of the transaction. This sequence
continues either until the record(s) are processed successfully or MAXRETRIES expires. If
MAXRETRIES is not set, the TRANSABORT action will loop continuously.
Use one of the DELAY options to delay the retry. DELAYSECS n sets the delay in seconds and
the default is 60 seconds. DELAYCSECS n sets the delay in centiseconds.
The TRANSABORT option is useful for handling timeouts and deadlocks on databases that
support those conditions.

TRANSDISCARD
Discards the entire source transaction if any operation within that transaction, including the
commit operation, causes a Replicat error that is listed in the REPERROR error specification.
Replicat aborts the transaction and, if the error occurred on a record, writes that record to the
discard file. Replicat then replays the transaction and writes all of the records to the discard
file, including the commit record. Replicat abends on errors that are caused by the discard
processing.
If the discarded record has already been data-mapped to a target record, Replicat writes it to
the discard file in the target format; otherwise, it will be written in source format. The
replayed transaction itself is always written in source format.
TRANSDISCARD supports record-level errors as well as commit errors.
Additional information is at the beginning of this topic.

Chapter 1
REPERROR

1-169

TRANSEXCEPTION
If an error specified with REPERROR occurs on any record in a transaction, performs
exceptions mapping for every record in the transaction according to its corresponding
exceptions-mapping specification, as defined by a MAPEXCEPTION or EXCEPTIONSONLY
clause in an exceptions MAP statement. If any record does not have a corresponding
exceptions mapping specification, or if there is an error writing to the exceptions table,
Replicat abends with an error message.
When an error is encountered and TRANSEXCEPTION is being used, Replicat aborts the
transaction and, if the error occurred on a record, writes that record to the discard file.
Replicat replays the transaction and examines the source records to find the
exceptions-mapping specifications, and then executes them.
TRANSEXCEPTION supports record-level errors as well as commit errors. To handle
errors at the record level (for individual SQL operations), without affecting error-free
operations in the same transaction, use the EXCEPTION option in a MAP statement.

PROCEDURE,[ABEND|IGNORE|DISCARD]
Use PROCEDURE to configure behavior of Replicat when a procedural replication error
occurs. By default, Replicat will ABEND when a procedural replication error occurs.
The IGNORE option ignores the call that failed. The DISCARD option stages the
discarded errors in the apply error queue in the target database. These errors can be
re-executed or deleted at a later time.

RESET
Use a REPERROR RESET statement to remove error-handling rules specified in previous
REPERROR parameters and apply default error handling to all MAP statements that
follow.

Examples of Using REPERROR Globally

These examples show REPERROR as used at the root of the parameter file to set global
error-handling rules. You can override any or all of these rules for any given table or
tables by using REPERROR in a MAP statement. See "Examples of Using REPERROR
Globally and in a MAP Statement".

Example 1
The following example demonstrates how to stop processing for most errors, but
ignore duplicate-record errors.

REPERROR (DEFAULT, ABEND)
REPERROR (-1, IGNORE)

Example 2
The following example invokes an exceptions MAP statement created to handle errors
on the account table. Errors on the product table cause Replicat to end abnormally
because an exceptions MAP statement was not defined.

REPERROR (DEFAULT, EXCEPTION)
REPERROR (DEFAULT2, ABEND)
MAP sales.product, TARGET sales.product;
MAP sales.account, TARGET sales.account;
INSERTALLRECORDS
MAP sales.account, TARGET sales.account_exception,
EXCEPTIONSONLY,
COLMAP (account_no = account_no,
optype = @GETENV ('lasterr', 'optype'),

Chapter 1
REPERROR

1-170

dberr = @GETENV ('lasterr', 'dberrnum'),
dberrmsg = @GETENV ('lasterr', 'dberrmsg'));

Example 3
The following applies error rules for the first MAP statement and then restores the default of
ABEND to the second one.

REPERROR (-1, IGNORE)
MAP sales.product, TARGET sales.product;
REPERROR RESET
MAP sales.account, TARGET sales.account;

Example 4
The following discards the offending record and then replays the entire transaction if any
operation on a record within it generates an error 1403. Other error types cause Replicat to
abend.

REPERROR DEFAULT ABEND
REPERROR 1403 TRANSDISCARD

Example 5
The following discards the offending record and then replays the entire transaction to search
for an exceptions-mapping specification that writes to the exceptions table that is named
tgtexception. Other errors cause Replicat to discard the offending record (if applicable) and
then abend.

REPERROR DEFAULT ABEND
REPERROR 1403 TRANSEXCEPTION
MAP src, TARGET tgt, &
MAPEXCEPTION (TARGET tgtexception, INSERTALLRECORDS, COLMAP (…));

Examples of Using REPERROR Globally and in a MAP Statement

The following examples show different ways that REPERROR can be used in a MAP statement in
conjunction with a global REPERROR statement.

Example 1
REPLICAT group_name
REPERROR (error1 , response1)
MAP src1, TARGET tgt1, REPERROR (error1, response2);
MAP src2, TARGET tgt2, REPERROR (error2, response3);

In the preceding example, when error1 occurs for the first MAP statement, the action should
be response2, not response1, because an override was specified. However, if an error1
occurs for the second MAP statement, the response should be response1, the global
response. The response for error2 would be response3, which is MAP-specific.

Example 2
REPLICAT group_name
REPERROR (error1 , response1)
MAP src1, TARGET tgt1, REPERROR (error2, response2),
REPERROR (error3, response3);

In the preceding example, when replicating from src1 to src2, all errors and actions (1-3)
should apply, because all REPERROR statements address different errors (there are no MAP-
specific overrides).

Chapter 1
REPERROR

1-171

Example 3
REPLICAT group_name
REPERROR (error1 , response1)
MAP src1, TARGET tgt1, REPERROR (error1, response2);
MAP src2, TARGET tgt2, REPERROR (error2, response3);
REPERROR (error1 , response4)
MAP src2, TARGET tgt2, REPERROR (error3, response3);

In the preceding example, if error1 occurs for the first MAP statement, the action
should be response2. For the second one it would be response1 (the global
response), and for the third one it would be response4 (because of the second
REPERROR statement). A global REPERROR statement applies to all MAP statements that
follow it in the parameter file until another REPERROR statement starts new rules.

Example 4
REPERROR DEFAULT ABEND
REPERROR 1403 TRANSDISCARD.
MAP src, TARGET tgt, REPERROR(600 TRANSDISCARD);

In the preceding example, if error 600 is encountered while applying source table src
to target table tgt, the whole transaction is written to discard file. Encountering error
1403 also results in the same action based on the global REPERROR specification. On
the other errors, the process simply discards only the offending record and then
abends.

1.128 REPFETCHEDCOLOPTIONS
Valid For

Replicat

Description

Use the REPFETCHEDCOLOPTIONS parameter to determine how Replicat responds to
operations for which a fetch from the source database was required. The Extract
process fetches column data when the transaction record does not contain enough
information to construct a SQL statement, when a FETCHCOLS clause is used, or when
FETCHOPTIONS MISSINGCOLS is used.

See "{FETCHCOLS | FETCHCOLSEXCEPT} (column_list)" and MISSINGCOLS for more
information. This parameter is used when testing Oracle GoldenGate transformation in
the Replicat to help instruct the Replicat what to do when a value is missing from the
trail, or to report information about how that value was obtained (if it was not directly
obtained from the transaction log).

Default

None

Syntax

REPFETCHEDCOLOPTIONS
[, INCONSISTENTROW ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, LATESTROWVERSION ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, MISSINGROW ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, NOFETCH ALLOW|IGNORE|REPORT|DISCARD|ABEND]

Chapter 1
REPFETCHEDCOLOPTIONS

1-172

[, REDUNDANTROW ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, SNAPSHOTROW ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, SETIFMISSING string]

INCONSISTENTROW
Determines the action to perform when column data was successfully fetched by row ID, but
the key did not match. Either the row ID was recycled or a primary key update occurred after
this operation (and prior to the fetch). Valid values are

ALLOW
Process the operation unless the record length is zero (0).

IGNORE
Ignore the condition and continue processing.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Discard the data and do not process the row.

ABEND
Discard the data and quit processing.

LATESTROWVERSION action
Provides a response when column data was fetched from the current row in the table. Valid
values are:

ALLOW
Process the operation unless the record length is zero (0).

IGNORE
Ignore the condition and continue processing.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Discard the data and do not process the row.

ABEND
Discard the data and quit processing.

NOFETCH action
Prevents fetching. One use for this option is when the database is a standby and Oracle
GoldenGate does not have a database connection. In this case, an attempt to fetch from the
database would result an error. Other scenarios may warrant the use of this parameter as
well.
When Oracle GoldenGate cannot fetch data it normally would fetch, it probably will cause
data integrity issues on the target.
The following are valid actions that can be taken when a NOFETCH is encountered:

ABEND
Write the operation to the discard file and abend the Replicat process. This is the default.

ALLOW
Process the operation unless the record length is zero (0).

Chapter 1
REPFETCHEDCOLOPTIONS

1-173

IGNORE
Ignore the operation. If fetch statistics are being reported in the process report
(based on STATOPTIONS settings) they will be updated with this result.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Write the record to the discard file, but do not process the operation. If fetch
statistics are being reported in the process report (based on STATOPTIONS
settings) they will be updated with this result.

MISSINGROW action
Provides a response when only part of a row (the changed values) is available to
Replicat for processing. The column data that is missing from the trail typically could
not be fetched because the row was deleted between the time the change record was
created and when the fetch was triggered, or because the row image required was
older than the undo retention specification.
Valid values are:

ALLOW
Process the operation unless the record length is zero (0).

IGNORE
Ignore the condition and continue processing.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Discard the data and do not process the partial row.

ABEND
Discard the data and quit processing.

REDUNDANTROW
Indicates that column data was not fetched because column data was previously
fetched for this record.

SETIFMISSING [string]
Provides a value when a fetch was unsuccessful (and the value is missing from the
trail record) but the target column has a not-null constraint. It takes an optional ASCII
string as a value for CHAR and BINARY data types or defaults to the following.
CHAR, VARCHAR: Single space
BINARY, VARBINARY: A NULL byte
TIMESTAMP: Current date/time
FLOAT, INTEGER: Zero
Besides SETIFMISSING, you can use the COLMAP clause of the MAP statement to map a
value for the target column. See "COLMAP (column_mapping)" for more information.

SNAPSHOTROW
Indicates that column data was fetched from a snapshot. Generally, this option would
only be used for reporting or discarding operations. Valid values are:

ALLOW
Process the operation unless the record length is zero (0).

Chapter 1
REPFETCHEDCOLOPTIONS

1-174

IGNORE
Ignore the condition and continue processing.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Discard the data and do not process the row.

ABEND
Discard the data and quit processing.

1.129 REPLACEBADCHAR
Valid For

Extract and Replicat

Description

Use the REPLACEBADCHAR parameter to control the response of the process when a valid code
point does not exist for either the source or target character set when mapping character-type
columns. By default, the check for invalid code points is only performed when the source and
target databases have different character sets, and the default response is to abend. You can
use the FORCECHECK option to force the process to check for invalid code points when the
source and target databases have the same character set. REPLACEBADCHAR applies globally.

Default

ABORT

Syntax

REPLACEBADCHAR {ABORT | SKIP | ESCAPE | SUBSTITUTE string | NULL | SPACE} [FORCECHECK]
[NOWARNING]

ABORT
The process abends on an invalid code point. This is the default.

SKIP
The process skips the record that has the invalid code point. Use this option with caution,
because skipping a record can cause data discrepancies on the target.

ESCAPE
The process replaces the data value with an escaped version of the data value. Depending
on the character set of the source database, the value is output as one of the following:

• If the source data is not UTF-16 (NCHAR/NVARCHAR), the output is hexadecimal (\xXX).

• If the source data is UTF-16, the output is Unicode (\uXXXX).

SUBSTITUTE string
The process replaces the data with a specified string, either Unicode notation or up to four
characters. By default the default substitution character of the target character set is used for
replacement.

Chapter 1
REPLACEBADCHAR

1-175

NULL
The process replaces an invalid character with the value of NULL if the target column
is nullable or, otherwise, assigns a white space (U+0020).

SPACE
The process replaces an invalid character with a white space (U+0020).

FORCECHECK
The process checks for invalid code points when the source and target databases
have identical character sets. This overrides the default, where the validation is
skipped when the source and target character sets are identical.

NOWARNING
The process suppresses warning messages related to conversion and validation
errors.

Examples

Example 1
The following example replaces invalid code points with the value of NULL.

REPLACEBADCHAR NULL

Example 2
Because ESCAPE is specified, Oracle GoldenGate will replace the Euro symbol in a
source NCHAR column with the escaped version of u20AC, because the target is
ISO-8859-1, which does not support the Euro code point.

REPLACEBADCHAR ESCAPE

Example 3
The following substitutes a control character for invalid characters.

REPLACEBADCHAR SUBSTITUTE \u001A

1.130 REPLACEBADNUM
Valid For

Replicat

Description

Use the REPLACEBADNUM parameter to specify a substitution value for invalid numeric
data encountered when mapping number columns. REPLACEBADNUM applies globally.

Default

Replace invalid numbers with NULL.

Syntax

REPLACEBADNUM {number | NULL | UNPRINTABLE}

number
Replace with the specified number.

Chapter 1
REPLACEBADNUM

1-176

NULL
Replace with NULL if the target column accepts NULL values; otherwise replace with zero.

UNPRINTABLE
Reject any column with unprintable data. The process stops and reports the bad value.

Examples

Example 1
REPLACEBADNUM 1

Example 2
REPLACEBADNUM NULL

1.131 REPLICAT
Valid For

Replicat

Description

Use the REPLICAT parameter to specify a Replicat group for online change synchronization.
This parameter links the current run with previous runs, so that data changes are continually
processed to maintain synchronization between source and target tables. Replicat will run
continuously and maintain checkpoints in the data source and trail to ensure data integrity
and fault tolerance throughout planned or unplanned process termination, system outages, or
network failure.

Either REPLICAT or SPECIALRUN is required in the Replicat parameter file and must be the first
entry. See "SPECIALRUN" for more information.

Default

None

Syntax

REPLICAT group_name

group_name
The group name as defined with the ADD REPLICAT command. To view the names of existing
Replicat groups, use the INFO REPLICAT * command.

Example

REPLICAT finance

1.132 REPORT
Valid For

Extract and Replicat

Chapter 1
REPLICAT

1-177

Description

Use the REPORT parameter to specify the interval at which Extract or Replicat
generates interim runtime statistics in a process report. The statistics are added to the
existing report. By default, runtime statistics are displayed at the end of a run unless
the process is intentionally killed.

The statistics for REPORT are carried over from the previous report. For example, if the
process performed 10 million inserts one day and 20 million the next, and a report is
generated at 3:00 each day, then the first report would show the first 10 million inserts,
and the second report would show those plus the current day's 20 million inserts,
totalling 30 million. To reset the statistics when a new report is generated, use the
STATOPTIONS parameter with the RESETREPORTSTATS option. See "STATOPTIONS" for
more information.

For more information about the process reports, see Administering Oracle
GoldenGate.

Default

Generate runtime statistics at the end of each run.

Syntax

REPORT
{AT hh:mi |
ON day |
AT hh:mi ON day}

AT hh:mi
Generates the report at a specific time of the day. Using AT without ON generates a
report at the specified time every day.

ON day
Generates the report on a specific day of the week. Valid values are:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

Examples

Example 1
REPORT AT 17:00

Example 2
REPORT ON SUNDAY AT 1:00

Chapter 1
REPORT

1-178

1.133 REPORTCOUNT
Valid For

Extract and Replicat

Description

Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical database
operation that was performed within a transaction that was captured by Oracle GoldenGate.
The record count is printed to the report file and to the screen.

Note:

This count might differ from the number of records that are contained in the Oracle
GoldenGate trail. If an operation affects data that is larger than 4K, it must be stored
in more than one trail record. Hence, a report count might show 1,000 records (the
database operations) but a trail count might show many more records than that. To
obtain a count of the records in a trail, use the Logdump utility.

You can schedule record counts at regular intervals or after a specific number of records.
Record counts are carried over from one report to the other.

REPORTCOUNT can be used only once in a parameter file. If there are multiple instances of
REPORTCOUNT, Oracle GoldenGate uses the last one.

Default

None

Syntax

REPORTCOUNT [EVERY] count
{RECORD | RECORDS | SECOND | SECONDS | MINUTE | MINUTES | HOUR |HOURS} [, RATE]

count
The interval after which to output a count.

RECORD | RECORDS | SECOND | SECONDS | MINUTE | MINUTES | HOUR |HOURS
The unit of measure for count, in terms of records, seconds, minutes, or hours.

RATE
Reports the number of operations per second and the change in rate, as a measurement of
performance. The Rate statistic is the total number of records divided by the total time
elapsed since the process started. The Delta statistic is the number of records since the last
report divided by the time since the last report.

Chapter 1
REPORTCOUNT

1-179

Note:

The calculations are done using microsecond time granularity. The time
intervals are shown without fractional seconds, and the rate values are
shown as whole numbers.

Examples

Example 1
This example generates a record count every 5,000 records.

REPORTCOUNT EVERY 5000 RECORDS

Example 2
This example generates a record count every ten minutes and also reports processing
statistics.

REPORTCOUNT EVERY 10 MINUTES, RATE

The processing statistics are similar to this:

12000 records processed as of 2011-01-01 12:27:40 (rate 203,delta 308)

1.134 REPORTROLLOVER
Valid For

Extract and Replicat

Description

Use the REPORTROLLOVER parameter to force report files to age on a regular schedule,
in addition of when a process starts. For long or continuous runs, setting an aging
schedule aids in controlling the size of the active report file and provides a more
predictable set of archives that can be included in your archiving routine.

Note:

Report statistics are carried over from one report to the other. To reset the
statistics in the new report, use the STATOPTIONS parameter with the
RESETREPORTSTATS option.

You can specify a time of day, a day of the week, or both. Specifying just a time of day
(AT option) without a day of the week (ON option) generates a report at the specified
time every day.

Rollovers caused by this parameter do not generate runtime statistics in the process
report:

• To control when runtime statistics are generated to report files, use the REPORT
parameter.

Chapter 1
REPORTROLLOVER

1-180

• To generate new runtime statistics on demand, use the SEND EXTRACT or SEND REPLICAT
command with the REPORT option.

Default

Roll reports at startup

Syntax

REPORTROLLOVER
{AT hh:mi |
ON day |
AT hh:mi ON day}

AT hh:mi
The time of day to age the file.
Valid values:

• hh is based on a 24-hour clock and accepts values of 1 through 23.

• mi accepts values from 00 through 59.

ON day
The day of the week to age the file. Valid values are:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

Examples

Example 1
REPORTROLLOVER AT 05:30

Example 2
REPORTROLLOVER ON friday

Example 3
REPORTROLLOVER AT 05:30 ON friday

1.135 REPOUDPPORT
Valid For

GLOBALS

Description

Use the REPOUDPPORT parameter followed by a port number, to send metrics data to the
Performance Metrics Server to monitor Oracle GoldenGate processes of a Classic
Architecture implementation.

Chapter 1
REPOUDPPORT

1-181

Default

9930

Syntax

REPOUDPPORT port_number

port_number
Specifies the UDP multicast port that Oracle GoldenGate will use for monitoring . This
parameter is optional. If more than one Oracle GoldenGate instances exist on a
server, you must specify different port values among the different GLOBALS files of
each instance.

Example

REPOUDPPORT 8080

1.136 RESTARTCOLLISIONS | NORESTARTCOLLISIONS
Valid For

Replicat

Description

Use the RESTARTCOLLISIONS and NORESTARTCOLLISIONS parameters to control whether
or not Replicat applies HANDLECOLLISIONS logic after Oracle GoldenGate has stopped
because of a conflict. By default, NORESTARTCOLLISIONS applies. However, there might
be circumstances when you would want Oracle GoldenGate to apply
HANDLECOLLISIONS logic for the first transaction after startup. For example, if the server
is forcibly shut down, the database might have committed the last Replicat transaction,
but Oracle GoldenGate might not have received the acknowledgement. Consequently,
Replicat will retry the transaction upon startup. HANDLECOLLISIONS automatically
handles the resultant errors that occur.

RESTARTCOLLISIONS enables HANDLECOLLISIONS functionality until the first Replicat
checkpoint (transaction) is complete. You need not specify the HANDLECOLLISIONS
parameter in the parameter file. After the first checkpoint, HANDLECOLLISIONS is
automatically turned off.

See "HANDLECOLLISIONS | NOHANDLECOLLISIONS" for more information about
handling collisions.

Default

NORESTARTCOLLISIONS

Syntax

RESTARTCOLLISIONS | NORESTARTCOLLISIONS

Chapter 1
RESTARTCOLLISIONS | NORESTARTCOLLISIONS

1-182

1.137 RMTFILE
Valid For

Extract

Description

Use the RMTFILE parameter to define the name of an extract file on a remote system that will
be created by an initial-load Extract and read by an initial-load Replicat when SPECIALRUN is
used. Use this parameter for initial load configurations. For online change synchronization,
use the RMTTRAIL parameter.

RMTFILE must be preceded by an RMTHOST statement, and it must precede any TABLE
statements.

RMTFILE is deprecated and ignored for Extract Pump.

You can encrypt the data in this file by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Default

None

Syntax

RMTFILE file_name
[, APPEND]
[, PURGE]
[, MEGABYTES megabytes]
[, FORMAT RELEASE major.minor]
[, OBJECTDEFS | NO_OBJECTDEFS]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

file_name
The relative or fully qualified name of the remote trail. Use a maximum of two characters for
the trail name. As trail files are aged, a six-character sequence number is added to this
name, for example /ogg/dirdat/rf000001. If using FORMAT RELEASE 11.2 or earlier, the trail file
created is a static file that does not increment, and the naming convention is not limited to
two characters..

APPEND
Adds the current data to existing data in the file. If you use APPEND, do not use PURGE.

PURGE
Deletes an existing file before creating a new one. If you use PURGE, do not use APPEND.

MEGABYTES megabytes
Specifies the maximum size, in megabytes, of a file in the trail. The default size is 2000 MB.

FORMAT RELEASE major.minor
Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a
remote task) to another process. The metadata tells the reader process whether the data
records are of a version that it supports. The metadata format depends on the version of the

Chapter 1
RMTFILE

1-183

Oracle GoldenGate process. Older Oracle GoldenGate versions contain different
metadata than newer ones.
FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid values
are 11.1 through the current Oracle GoldenGate X.x version number, for example 11.2
or 12.1. The release version is programmatically mapped back to the appropriate trail
format compatibility level. The default is the current version of the process that writes
to this trail.

Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the
same can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1,
FORMAT RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.2,
FORMAT RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2, only
FORMAT RELEASE values 12.3 or higher are supported. This is due to the use of
local undo for PDBs, which requires augmenting the transaction ID with the PDB
number to ensure uniqueness of trx IDs.

OBJECTDEFS | NO_OBJECTDEFS
Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include
the object definitions in the trail. These two options are applicable only when the
output trail is formatted in Oracle GoldenGate canonical format and the trail format
release is greater than 12.1. Otherwise, both options are ignored because no
metadata record will be added to the trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}
Sets the byte format of the metadata in the file records. This parameter does not
affect the column data. Valid only for files that have a FORMAT RELEASE version of at
least 12.1. Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian), and
NATIVEENDIAN (default of the local system). The default is BIGENDIAN. See the GLOBALS
version of TRAILBYTEORDER for additional usage instructions.

Examples

Example 1
RMTFILE /ggs/dirdat/rf, MEGABYTES 200

Chapter 1
RMTFILE

1-184

Example 2
RMTFILE /ggs/dirdat/salesny, MEGABYTES 500, FORMAT RELEASE 12.3

1.138 RMTHOST
Valid For

Extract

Description

Use the RMTHOST parameter to:

• Identify a remote system to which the local Extract process connects

• Specify the TCP/IP port number on that system where the Manager process is running

• Control various attributes of the TCP/IP connections

This parameter controls compression, data encryption, buffer attributes, TCP/IP streaming,
connection timeout threshold, and the wait period for a connection request. It also can be
used to set Collector parameters.

Do not use RMTHOST for an Extract created in PASSIVE mode. .

Oracle GoldenGate supports IPv4 and IPv6 protocols. See USEIPV4 | USEIPV6 for more
information about the selection of internet protocol.

The RMTHOST and RMTHOSTOPTIONS parameters can be specified together; the RMTHOST
parameter is not required for RMTHOSTOPTIONS if the dynamic IP assignment is properly
configured. When RMTHOSTOPTIONS is used, the MGRPORT option is ignored.

Default

None

Syntax

RMTHOST
{ host name | IP address}
[, COMPRESS]
[, COMPRESSTHRESHOLD]
[, ENCRYPT {BLOWFISH KEYNAME key_name | algorithm [KEYNAME key_name]}]
{, MGRPORT port | PORT port}
[, PARAMS collector_parameters]
[, SOCKSPROXY {host_name | IP address} [:port] [PROXYCSALIAS credential_
store_alias [PROXYCSDOMAIN credential_store_domain]]
[, STREAMING | NOSTREAMING]
[, TCPBUFSIZE bytes]
[, TCPFLUSHBYTES bytes]
[, TIMEOUT seconds]
[, DGST SHA1|SHA2]

{host_name | IP_address}
The DNS host name or IP address of the target system. You can use either one to define the
host. If using an IP address, use either an IPv6 or IPv4-mapped address, depending on the
stack of the destination system.

Chapter 1
RMTHOST

1-185

COMPRESS
This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Compresses outgoing blocks of records to reduce
bandwidth requirements. Oracle GoldenGate decompresses the data before writing it
to the trail. COMPRESS typically results in compression ratios of at least 4:1 and
sometimes better. However, compressing data can consume CPU resources.

COMPRESSTHRESHOLD
This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Sets the minimum block size for which
compression is to occur. Valid values are from 0 and through 28000. The default is
1,000 bytes.

ENCRYPT algorithm [KEYNAME key_name]
This option is valid for online or batch Extract processes and all Oracle GoldenGate
initial-load methods. Encrypts the data stream sent over TCP/IP to the target system.
This option supports the following encryption options:

• Master key and wallet method: Generate a session key based on the active
master key and algorithm specified. Not valid for BLOWFISH algorithm. Not valid for
DB2 on z/OS.

• ENCKEYS method: Generate an AES encryption key, store it under a given
name in an ENCKEYS file, and configure Oracle GoldenGate to use that key to
encrypt the data.

algorithm
Specifies the encryption algorithm to use:

• AES128 uses the AES-128 cipher, which has a key size of 128 bits. AES128 is
the default if no algorithm is specified.

• AES192 uses the AES-192 cipher, which has a key size of 192 bits.

• AES256 uses the AES-256 cipher, which has a key size of 256 bits.

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use BLOWFISH for backward
compatibility with earlier Oracle GoldenGate versions and for Oracle
GoldenGate installations for DB2 z/OS On those platforms, BLOWFISH is the
only supported encryption method. Use AES where supported, because it is
more secure than BLOWFISH for those platforms.

Set the path as follows:

– For Linux: Specify the path as an entry to the LD_LIBRARY_PATH. For
example:

setenv LD_LIBRARY_PATH ./lib:$LD_LIBRARY_PATH
– For Solaris: Specify the path as an entry to the SHLIB_PATH variable.

– For IBMi and AIX: Specify the path as an entry to the LIBPATH variable.

– For Windows: Add the path to the PATH variable.

Chapter 1
RMTHOST

1-186

You can use the SETENV parameter to set the library as a session variable for the
process.

For more information about using encryption, see Overview of Security Options in
Oracle GoldenGate Security Guide.

KEYNAME key_name
Specifies that the ENCKEYS method of encryption will be used. Not valid for the master
key and wallet method. For key_name, specify the logical name of the user-defined
encryption key. Oracle GoldenGate uses the key name to look up the actual key in the
ENCKEYS lookup file. To use the ENCKEYS method, you must:

• Generate the encryption key.

• Store it in an ENCKEYS lookup file.

• Copy ENCKEYS to every system where encryption or decryption (or both) are
performed.

MGRPORT port | PORT port
Either MGRPORT or PORT is required. MGRPORT is the port on the remote system where Manager
runs. PORT is the port number of a static Collector process. Either a Manager port (if using a
dynamic Collector) or a static Collector port must be specified. See "Collector Parameters"
for more information about a static Collector. The minimum is 1025 and the maximum is
65535.

SOCKSPROXY {host_name | IP address} [:port] [PROXYCSALIAS credential_store_alias
[PROXYCSDOMAIN credential_store_domain]]
Use the SOCKSPROXY parameter to replicate information using a SOCKS5 proxy server
creating a tunnel for TCP communication between a source Extract and a target process.
The connection is initiated in the source side. You must specify the proxy address. Optionally
you can specify the port or the default for SOCKS protocol will be used. If a credential store
alias is specified, Oracle GoldenGate will use that information to authenticate with the proxy
server. This is an option for RMTHOST parameter.
If there is no credential store information, no authentication with the proxy is performed.

host_name | IP_address
Use for an alias Extract. Specifies the DNS host name or IP address of the proxy server.
You can use either one to define the host though you must use the IP address if your
DNS server is unreachable. If you are using an IP address, use either an IPv6 or IPv4
mapped address, depending on the stack of the destination system.

port
(Optional) Specifies the port on the remote system where the proxy server accepts
connections. The default value for port is 1080.

PROXYCSALIAS credential_store_alias
Specifies the credential store alias that resolves to the username and password used to
authenticate with the proxy server.

PROXYCSDOMAIN credential_store_domain
(Optional) Specifies the credential store domain used together with the alias.

STREAMING | NOSTREAMING
This option is valid for online or batch Extract processes and any Oracle GoldenGate initial-
load method that uses trails. Controls TCP/IP streaming.

Chapter 1
RMTHOST

1-187

STREAMING
Enables the asynchronous internet streaming protocol and is the default. In
STREAMING mode, the receiver (Collector) does not send an acknowledgement to
the sender (primary Extract or data pump) for any data packet unless the packet
contains a flag requesting a response, typically when the sender must checkpoint
or determine a write position. Because this method omits acknowledgements, the
sender or receiver process terminates if there is a network disruption; therefore,
when using STREAMING, use the AUTORESTART parameter in the Manager
parameter file to restart Extract and Collector if they terminate.

NOSTREAMING
Enables the synchronous internet protocol. In NOSTREAMING mode, the sender
sends a packet and then waits for the receiver to acknowledge it, before sending
the next packet. This method is more reliable, because it enables the sender or
receiver process to recover if there is a network disruption.

Extract falls back to the synchronous protocol automatically if the host system of the
receiver process is not configured to use streaming.
Keep the STREAMING default unless you are requested to disable it, because streaming
reduces transmission latency, especially in networks where latency is a problem
already. Streaming is not supported for initial-load tasks where Extract communicates
directly with Replicat.

TCPBUFSIZE bytes
This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Controls the size of the TCP socket buffer, in
bytes, that Extract will try to maintain.
By increasing the size of the buffer, you can send larger packets to the target
system.The actual size of the buffer depends on the TCP stack implementation and
the network. The default is 30,000 bytes, but modern network configurations usually
support higher values. Valid values are from 1000 to 200000000 (two hundred million)
bytes. Work with your network administrator to determine an optimal value. See also
Administering Oracle GoldenGate for more information about tuning the buffer size
and other suggestions for improving the transfer of data across the network.
Testing has shown that using TCPBUFSIZE for initial loads produces three times faster
throughput than loads performed without it. Do not use this parameter if the target
system is NonStop.

TCPFLUSHBYTES bytes
This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Controls the size of the buffer, in bytes, that
collects data that is ready to be sent across the network.
When either this value or the value of the FLUSHSECS parameter is reached, the data is
flushed to the target. The default is 30,000 bytes. Valid values are from 1000 to
200000000 (two hundred million) bytes, but should be at least the value of
TCPBUFSIZE.
Do not use this parameter for an initial load Extract. It is valid only for an online
Extract group. Do not use this parameter if the target system is NonStop.

TIMEOUT seconds
This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Specifies how long Collector waits to get a
connection from Extract, and how long Collector waits for a heartbeat signal from
Extract before terminating a connection. Valid values are 1 second to 1800 seconds

Chapter 1
RMTHOST

1-188

(30 minutes). The default value is 300 seconds (5 minutes). Setting the timeout to a very low
value is not recommended in a production setting. You might need to increase the TIMEOUT
value if you see a warning in the error log that there was a TCP/IP error 10054 (existing
connection forcibly closed by remote host). This error typically occurs when the Collector
terminates itself after the TIMEOUT value is exceeded. This parameter does not affect a static
Collector.

DGST SHA1|SHA2
This is a new Extract option to specify the AES encryption method. This option is only valid
when the RMTHOST parameter is used with PORT and ENCRYPT AES options using Oracle
wallet. Valid value is either SHA1 or SHA2. SHA1 is default and works with the previous release
of server collector. SHA2 only works with Server Collector 12.3. Both Extract and Server
Collector must specify the same encryption method, otherwise the connection fails. Here’s
an example of using this option:
$ server -p 9050 -encrypt AES128 -dgst SHA2

Examples

Example 1
To identify multiple remote systems in a parameter file, use one RMTHOST statement for each
one, followed by the associated trails and table maps, for example:

EXTRACT sales
USERIDALIAS tiger1
RMTHOST ny, MGRPORT 7888, ENCRYPT AES192 KEYNAME mykey
RMTTRAIL /ggs/dirdat/aa
TABLE ora.orders;
RMTHOST la, MGRPORT 7888, ENCRYPT AES192 KEYNAME mykey2
RMTTRAIL /ggs/dirdat/bb
TABLE ora.orders;

Example 1
RMTHOST 20.20.20.17, MGRPORT 7809, ENCRYPT BLOWFISH, KEYNAME newyork

Example 2
RMTHOST 20.20.20.17, MGRPORT 7809, ENCRYPT AES192

Example 3
RMTHOST newyork, MGRPORT 7809, COMPRESS, COMPRESSTHRESHOLD 750, NOSTREAMING

Example 4
RMTHOST newyork, MGRPORT 7809, TCPBUFSIZE 100000, TCPFLUSHBYTES 300000

Example 5
RMTHOST newyork, MGRPORT 18819, CPU 1, PRI 140, HOMETERM $ZTN0.#PTJ52A1,
PROCESSNAME $xyz1

Example 6
RMTHOST lc01abc, MGRPORT 7809, SOCKSPROXY 192.111.82.180:3128 PROXYCSALIAS
proxyAlias PROXYCSDOMAIN support

Chapter 1
RMTHOST

1-189

1.139 RMTHOSTOPTIONS
Valid For

Passive Extract

Description

Use the RMTHOSTOPTIONS parameter to control attributes of a TCP/IP connection made
between an Extract group running in PASSIVE mode on a less trusted source to a
target system in a more secure network zone. This parameter controls compression,
data encryption, buffer attributes, streaming, and the wait period for a connection
request. It also can be used to set Collector parameters.

This parameter differs from the RMTHOST parameter because it does not provide the
host information needed to establish a remote connection. When Extract is running in
PASSIVE mode, all connections between source and target are established by an alias
Extract group on the target.

All parameter options must be specified in one RMTHOSTOPTIONS statement. If multiple
RMTHOSTOPTIONS statements are used, the last one in the parameter file is used, and
the others are ignored. RMTHOSTOPTIONS overrides any RMTHOST statements in the file.

See RMTHOST for additional information about supported IP protocols.

The RMTHOST and RMTHOSTOPTIONS parameters can be specified together; the RMTHOST
parameter is not required for RMTHOSTOPTIONS if the dynamic IP assignment is properly
configured. When RMTHOSTOPTIONS is used, the MGRPORT option is ignored.

Default

None

Syntax

RMTHOSTOPTIONS
[, COMPRESS]
[, COMPRESSTHRESHOLD]
[, ENCRYPT algorithm [KEYNAME key_name]]
[, PARAMS collector_parameters]
[, STREAMING | NOSTREAMING]
[, TCPBUFSIZE bytes]
[, TCPFLUSHBYTES bytes]
[, TIMEOUT seconds]

COMPRESS
Compresses outgoing blocks of records to reduce bandwidth requirements. Oracle
GoldenGate decompresses the data before writing it to the trail. COMPRESS typically
results in compression ratios of at least 4:1 and sometimes better. However,
compressing data can consume CPU resources.

COMPRESSTHRESHOLD
Sets the minimum block size for which compression is to occur. Valid values are from
0 and through 28000. The default is 1,000 bytes.

Chapter 1
RMTHOSTOPTIONS

1-190

ENCRYPT algorithm [KEYNAME key_name]
Encrypts the data stream sent over TCP/IP to the target system. This option supports the
following encryption options:

• Master key and wallet method: Generate a one-time AES key to encrypt the data
across the TCP/IP network. Then, the one-time key is encrypted by the master-key and
stored in the trail file header.

• ENCKEYS method: Generate an AES encryption key, store it under a given name in an
ENCKEYS file, and configure Oracle GoldenGate to use that key to directly encrypt the
data across the TCP/IP network.

algorithm
Specifies the encryption algorithm to use:

• AES128 uses the AES-128 cipher, which has a key size of 128 bits. AES128 is the
default if no algorithm is specified.

• AES192 uses the AES-192 cipher, which has a key size of 192 bits.

• AES256 uses the AES-256 cipher, which has a key size of 256 bits.

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-length key
size from 64 bits to 128 bits. Use BLOWFISH for backward compatibility with earlier
Oracle GoldenGate versions and for Oracle GoldenGate installations for DB2 on
z/OS. BLOWFISH is the only supported encryption method. Use AES where supported
because it is more secure than BLOWFISH for those platforms.

Set the path as follows:

– Linux: Specify the path as an entry to the LD_LIBRARY_PATH. For example:

setenv LD_LIBRARY_PATH ./lib:$LD_LIBRARY_PATH
– For Solaris: Specify the path as an entry to the SHLIB_PATH variable.

– For IBMi and AIX: Specify the path as an entry to the LIBPATH variable.

– Windows: Add the path to the PATH variable.

You can use the SETENV parameter to set the library as a session variable for the
process.

KEYNAME key_name
Specifies that the ENCKEYS method of encryption will be used. Not valid for the master
key and wallet method. For key_name, specify the logical name of the user-defined
encryption key. Oracle GoldenGate uses the key name to look up the actual key in the
ENCKEYS lookup file. To use the ENCKEYS method, you must:

• Generate the encryption key.

• Store it in an ENCKEYS lookup file.

• Copy ENCKEYS to every system where encryption or decryption (or both) are
performed.

PARAMS collector_parameters
Specifies Collector parameters on a NonStop target system.

Chapter 1
RMTHOSTOPTIONS

1-191

Note:

Do not specify a Collector port (-p argument) if Manager will be starting
Collector dynamically.

For more information about Collector parameters on the NonStop platform, see
Reference Guide for Oracle GoldenGate for HP NonStop (Guardian).

STREAMING | NOSTREAMING
Controls TCP/IP streaming.

STREAMING
Enables the asynchronous internet streaming protocol and is the default. In
STREAMING mode, the receiver (Collector) does not send an acknowledgment to
the sender (primary Extract or data pump) for any data packet unless the packet
contains a flag requesting a response, typically when the sender must checkpoint
or determine a write position. Because this method omits acknowledgments, the
sender or receiver process terminates if there is a network disruption; therefore,
when using STREAMING, use the AUTORESTART parameter in the Manager
parameter file to restart Extract and Collector if they terminate.

NOSTREAMING
Enables the synchronous internet protocol. In NOSTREAMING mode, the sender
sends a packet and then waits for the receiver to acknowledge it, before sending
the next packet. This method is more reliable, because it enables the sender or
receiver process to recover if there is a network disruption.

Extract falls back to the synchronous protocol automatically if the host system of the
receiver process is not configured to use streaming.
Keep the STREAMING default unless you are requested to disable it, because streaming
reduces transmission latency, especially in networks where latency is a problem
already. Streaming is not supported for initial-load tasks where Extract communicates
directly with Replicat.

TCPFLUSHBYTES bytes
Controls the size of the buffer, in bytes, that collects data that is ready to be sent
across the network. When either this value or the value of the FLUSHSECS parameter is
reached, the data is flushed to the target.
The default is 30,000 bytes. Valid values are from 1000 to 200000000 (two hundred
million) bytes, but should be at least the value of TCPBUFSIZE.
Do not use this parameter for an initial load Extract. It is valid only for an online
Extract group. Do not use this parameter if the target system is NonStop.

TIMEOUT seconds
Specifies how long an Extract running in PASSIVE mode waits to get a connection from
Collector, and how long Extract waits for a heartbeat signal from Collector before
terminating a connection. Valid values are 1 second to 1800 seconds (30 minutes).
The default value is 300 seconds (5 minutes). Setting the timeout to a very low value
is not recommended in a production setting. You might need to increase the TIMEOUT
value if you see a warning in the error log that there was a TCP/IP error 10054
(existing connection forcibly closed by remote host). This error typically occurs when
the Extract terminates itself after the TIMEOUT value is exceeded.

Chapter 1
RMTHOSTOPTIONS

1-192

Example

RMTHOSTOPTIONS ENCRYPT AES192, COMPRESS, COMPRESSTHRESHOLD 750, TCPBUFSIZE 100000,
TCPFLUSHBYTES 300000, NOSTREAMING

1.140 RMTTASK
Valid For

Extract in Classic Architecture

Description

Use the RMTTASK parameter for an initial-load Extract to initiate a Replicat processing task
during an Oracle GoldenGate direct load or a direct bulk load to SQL*Loader. RMTTASK directs
Extract to communicate directly with Replicat over TCP/IP and bypasses the use of a
Collector process or trail storage. RMTTASK also directs Extract to request that Manager start
Replicat automatically, and then stop Replicat when the run is finished. Tasks do not use
checkpoints.

Dependent parameters are as follows:

• A RMTHOST statement must follow each RMTTASK statement in the initial-load Extract
parameter file.

• EXTRACT must be used in the initial-load Extract parameter file.
• REPLICAT must be used in the initial-load Replicat parameter file.

• SOURCEISTABLE must be used in the ADD EXTRACT command.

• SPECIALRUN must be used in the ADD REPLICAT command.

RMTTASK does not support encryption of any kind. To use encryption, you can use the initial-
load method that writes data to a file, which is read by Replicat to load the data.

RMTTASK supports all Oracle data types, including BLOB, CLOB, NCLOB, LONG, UDT, and
XML.

When using RMTTASK, do not start Replicat with the START REPLICAT command. Replicat is
started automatically during the task.

See the Administering Oracle GoldenGate for more information about performing initial data
loads.

Default

None

Syntax

RMTTASK REPLICAT, GROUP group_name
[FORMAT RELEASE major.minor]

GROUP group_name
The group name of the Initial Load Replicat on the target system.

Chapter 1
RMTTASK

1-193

FORMAT RELEASE major.minor
Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a
remote task) to another process. The metadata tells the reader process whether the
data records are of a version that it supports. The metadata format depends on the
version of the Oracle GoldenGate process. Older Oracle GoldenGate versions contain
different metadata than newer ones.
FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid values
are 11.1 through the current Oracle GoldenGate X.x version number, for example 11.2
or 12.1. The release version is programmatically mapped back to the appropriate trail
format compatibility level. The default is the current version of the process that writes
to this trail.

Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the
same can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1,
FORMAT RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.2,
FORMAT RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2, only
FORMAT RELEASE values 12.3 or higher are supported. This is due to the use of
local undo for PDBs, which requires augmenting the transaction ID with the PDB
number to ensure uniqueness of trx IDs.

Example

RMTTASK REPLICAT, GROUP initrep, FORMAT RELEASE 12.3

1.141 RMTTRAIL
Valid For

Extract

Description

Use the RMTTRAIL parameter to specify a remote trail that was created with the ADD
RMTTRAIL command in GGSCI. RMTTRAIL must be preceded by an RMTHOST parameter.

Chapter 1
RMTTRAIL

1-194

A trail specified with RMTTRAIL must precede its associated TABLE statements. Multiple
RMTTRAIL statements can be used to specify different remote trails.

Note:

Extract with RMTTRAIL option, which implies writing directly to the target system, isn't
supported between secure Oracle GoldenGate deployments. It's supported
between multiple Oracle GoldenGate classic architecture installations and between
unsecure Oracle GoldenGate MA deployment and Oracle GoldenGate classic
Extract.

From Oracle GoldenGate 19c (19.1.0) onward, the primary Extract writes trail file in the same
format as existing trail file format when you upgrade, unless you explicitly specify the trail file
format version using the FORMAT RELEASE option. This prevents subsequent Replicats from
abending if they are not upgraded.

You can encrypt the data in this trail by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Default

None

Syntax

RMTTRAIL trail_name
[, FORMAT RELEASE major.minor]
[, OBJECTDEFS | NO_OBJECTDEFS]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

trail_name
The relative or fully qualified path name of the trail. Use two characters for the name. As trail
files are aged, a six-character sequence number will be added to this name, for
example /ggs/dirdat/rt000000001.

FORMAT RELEASE major.minor
Not valid for Extract Pump. Specifies the metadata format of the data that is sent by Extract
to a trail, a file, or (if a remote task) to another process. The metadata tells the reader
process whether the data records are of a version that it supports. The metadata format
depends on the version of the Oracle GoldenGate process. Older Oracle GoldenGate
versions contain different metadata than newer ones.
FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 11.1 through the
current Oracle GoldenGate X.x version number, for example 11.2 or 12.1.
The release version is programmatically mapped back to the appropriate trail format
compatibility level. The default is the current version of the process that writes to this trail.

Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Chapter 1
RMTTRAIL

1-195

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the
same can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1,
FORMAT RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.2,
FORMAT RELEASE 12.2 or above is supported.

• For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2, only
FORMAT RELEASE values 12.3 or higher are supported. This is due to the use of
local undo for PDBs, which requires augmenting the transaction ID with the PDB
number to ensure uniqueness of trx IDs.

OBJECTDEFS | NO_OBJECTDEFS
Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include
the object definitions in the trail. These two options are applicable only when the
output trail is formatted in Oracle GoldenGate canonical format and the trail format
release is greater than 12.1. Otherwise, both options are ignored because no
metadata record will be added to the trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}
Not valid for Extract Pump. Sets the byte format of the metadata in the trail records.
This parameter does not affect the column data. Valid only for trails that have a
FORMAT RELEASE version of at least 12.1. Valid values are BIGENDIAN (big endian),
LITTLEENDIAN (little endian), and NATIVEENDIAN (default of the local system). The
default is BIGENDIAN. See the GLOBALS version of TRAILBYTEORDER for additional
usage instructions.

Examples

Example 1
RMTTRAIL dirdat/ny

Example 2
RMTTRAIL /ggs/dirdat/ny, FORMAT RELEASE 12.3

Example 3
Two trail formats within the same sets of tables being captured:

RMTTRAIL ./dirdat/ra
TABLE hr.tab1
TABLE hr.tab2
RMTTRAIL ./dirdat/rb
TABLE scott.tab3
TABLE scott.tab4

Example 4
Example of an Extract Pump parameter file that sends an HR schema with object
definitions and an ORD schema without object definitions:

Chapter 1
RMTTRAIL

1-196

RMTTRAIL /ggs19.1/dirdat/r1, OBJECTDEFS
TABLE hr.*;
RMTTRAIL /ggs19.1/dirdat/r2, NO_OBJECTDEFS
TABLE ord.*;

1.142 ROLLOVER
Valid For

Extract

Description

Use the ROLLOVER parameter to specify the interval at which trail files are aged and new ones
are created. ROLLOVER is global and applies to all trails defined with RMTTRAIL or RMTFILE
statements in a parameter file.

Use ROLLOVER to create trail files that represent distinct periods of time (for example, each
day). It facilitates continuous processing while providing a means for organizing the output. It
also provides a means for organizing batch runs by deactivating one file and starting another
for the next run.

Files roll over between transactions, not in the middle of one, ensuring data integrity.
Checkpoints are recorded when files roll over to ensure that previous files are no longer
required for processing.

Rollover occurs only if the rollover conditions are satisfied during the run. For example, if
ROLLOVER ON TUESDAY is specified, and data extraction starts on Tuesday, the rollover does
not occur until the next Tuesday (unless more precise ROLLOVER rules are specified). You can
specify up to 30 rollover rules.

Either the AT or ON option is required. Both options can be used together, and in any order.
Using AT without ON creates a new trail file at the specified time every day.

A trail sequence number can be incremented from 000001 through 999999, and then the
sequence numbering starts over at 000000.

Default

Roll over when the default file size is reached or the size specified with the MEGABYTES option
of the ADD RMTTRAIL or ADD EXTTRAIL command is reached.

Syntax

ROLLOVER {AT hh:mi | ON day | AT hh:mi ON day} [REPORT]

AT hh:mi
The time of day to age the file.
Valid values:

• hh is based on a 24-hour clock, with valid values of 1 through 23.

• mi accepts values from 00 through 59.

ON day
The day of the week to age the file.
Valid values:

Chapter 1
ROLLOVER

1-197

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

REPORT
Generates a report for the number of records extracted from each table since the last
report was generated. The report represents the number of records output to the
corresponding trail unless other reports are generated by means of the REPORT
parameter.

Examples

Example 1
The following ages trails every day at 3:00 p.m.

ROLLOVER AT 15:00

Example 2
The following ages trails every Sunday at 8:00 a.m.

ROLLOVER AT 08:00 ON SUNDAY

1.143 SCHEMAEXCLUDE
Valid For

Extract, Replicat, DEFGEN

Description

Use the SCHEMAEXCLUDE parameter to exclude source objects that are owned by the
specified source owner (such as a schema) from the Oracle GoldenGate configuration
when wildcards are being used to specify the owners in TABLE or MAP statements. This
parameter is valid for two- and three-part names.

Wildcards can be used for the optional catalog or container specification, as well as
the schema specification. Make certain not to use wildcards such that all objects are
excluded. Follow the rules for using wildcards in Administering Oracle GoldenGate.

The positioning of SCHEMAEXCLUDE in relation to parameters that specify files or trails
determines its effect. Parameters that specify trails or files are: EXTFILE, RMTFILE,
EXTTRAIL, RMTTRAIL. The parameter works as follows:

• When a SCHEMAEXCLUDE specification is placed before any TABLE or SEQUENCE
parameters, and also before the parameters that specify trails or files, it applies
globally to all trails or files, and to all TABLE and SEQUENCE parameters.

• When a SCHEMAEXCLUDE specification is placed after a parameter that specifies a
trail or file, it is effective only for that trail or file and only for the TABLE or SEQUENCE
parameters that are associated with it. Multiple trail or file specifications can be
made in a parameter file, each followed by a set of TABLE, SEQUENCE, and
TABLEEXCLUDE specifications.

Chapter 1
SCHEMAEXCLUDE

1-198

SCHEMAEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE parameters.
Thus, the order in which they appear does not make a difference.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

Default

None

Syntax

SCHEMAEXCLUDE [container.]schema

container.
If the database requires three-part names, specifies the source Oracle container that
contains the source owner that is to be excluded. Use if a qualifier is required to identify the
correct owner to exclude.

schema
Specifies the name of the source owner that is to be excluded. For databases that require
three-part names, you can use schema without container if the SCHEMAEXCLUDE specification
precedes a set of TABLE or MAP parameters for which the default container is specified with
the SOURCECATALOG parameter.

Examples

Example 1
This Oracle example requires both container and schema specifications and demonstrates
how wildcards can be used as part of the specification.

EXTRACT capt
USERIDALIAS alias1
RMTHOST sysb, MGRPORT 7809
RMTTRAIL /ggs/dirdat/aa
SCHEMAEXCLUDE pdbtest.test*
TABLE pdb*.*.*;

Example 2
This example shows how to use SCHEMAEXCLUDE when the database requires only a two-part
name.

TABLE abc*.*;
SCHEMAEXCLUDE abctest*

1.144 SEQUENCE
Valid For

Extract

Description

Use the SEQUENCE parameter to capture sequence values from the transaction log. Currently,
Oracle GoldenGate supports sequences for the Oracle database.

Chapter 1
SEQUENCE

1-199

Note:

DDL support for sequences (CREATE, ALTER, DROP, RENAME) is compatible with,
but not required for, replicating sequence values. To replicate just sequence
values, you do not need to install the Oracle GoldenGate DDL support
environment. You can just use the SEQUENCE parameter.

Oracle GoldenGate ensures that the values of a target sequence are:

• higher than the source values if the increment interval is positive

• lower than the source values if the increment interval is negative

Depending on the increment direction, Replicat applies one of the following formulas
as a test when it performs an insert:

source_highwater_value + (source_cache_size * source_increment_size) =
target_highwater_value

Or...

source_highwater_value + (source_cache_size * source_increment_size) >=
target_highwater_value

If the formula evaluates to FALSE, the target sequence is updated to be higher than the
source value (if sequences are incremented) or lower than the source value (if
sequences are decremented). The target must always be ahead of, or equal to, the
expression in the parentheses in the formula. For example, if the source high water
value is 40, and CACHE is 20, the target high water value should be at least 60:

40 + (20*1) <60

If the target high water value is less than 80, Oracle GoldenGate updates the
sequence to increase the high water value, so that the target remains ahead of the
source. To get the current high water value, perform this query:

SELECT last_number FROM all_sequences WHERE
sequence_owner=upper('SEQUENCEOWNER') AND sequence_name=upper('SEQUENCENAME');

Supported Processing Modes

The processing modes that support the capture of sequences are as follows:

• Oracle GoldenGate supports sequences in an active-passive high-availability
configuration. Oracle GoldenGate does not support the replication of sequence
values in an active-active configuration. An active-passive configuration includes a
primary Extract, a data pump, and a Replicat on both servers, but the processes
are active in only one direction. The Extract process on the failover server must be
inactive, which includes not capturing sequences. See the Administering Oracle
GoldenGate for more information about how to configure Oracle GoldenGate for
high-availability.

• If using SEQUENCE for a primary Extract that writes to a data pump, you must also
use an identical SEQUENCE parameter in the data pump.

Chapter 1
SEQUENCE

1-200

• Oracle GoldenGate initial load methods that contain the SOURCEISTABLE parameter, either
as an Extract parameter or within ADD EXTRACT, do not support the replication of
sequence values.

Guidelines for Using SEQUENCE

• The cache size and the increment interval of the source and target sequences must be
identical.

• The cache can be any size, including 0 (NOCACHE).

• The sequence can be set to cycle or not cycle, but the source and target databases must
be set the same way.

• To add SEQUENCE to a configuration in which DDL support is enabled, you must re-install
the Oracle GoldenGate DDL objects in INITIALSETUP mode.

Error Handling

• If Extract cannot resolve a sequence name, it ignores the operation.

• To enable Replicat error handling for sequences, use the REPERROR parameter. This
parameter is available as an option in the MAP parameter and also as a standalone
parameter. REPERROR can detect if a sequence has been dropped on the target and can
be used to retry a sequence operation until the sequence is recreated.

• REPERROR does not handle missing objects on startup. Use DDLERROR with
IGNOREMISSINGTABLES.

Other Important Information

• Gaps are possible in the values of the sequences that Oracle GoldenGate replicates
because gaps are inherent, and expected, in the way that sequences are maintained by
the database. However, the target values will always be greater than those of the source.

• If Extract is running in single-threaded mode on a RAC system, and if sequences are
updated on a node that has lag, it might take more time to capture a sequence. This is
normal behavior.

• In a failover, any problem that causes the loss or corruption of data in a transaction log or
Oracle GoldenGate trail file will cause the loss of the replicated sequence updates.

• The statistics shown by SEND EXTRACT and SEND REPLICAT when used with the REPORT
option will show the sequence operation as an UPDATE.

Default

None

Syntax

SEQUENCE [container.]schema.sequence;

[container.]schema.sequence
Specifies the fully qualified name of the source sequence. Include the name of the pluggable
database if the source is an Oracle container database. To specify object names and
wildcards correctly, see Administering Oracle GoldenGate.

Chapter 1
SEQUENCE

1-201

;
Terminates the SEQUENCE parameter statement.

Example

SEQUENCE hr.employees_seq;

1.145 SESSIONCHARSET
Valid For

GLOBALS, valid for MySQL

Description

Use the SESSIONCHARSET parameter to set the database session character set for all
database connections that are initiated by Oracle GoldenGate processes in the local
Oracle GoldenGate instance. Processes that log into the database include GGSCI,
DEFGEN, Extract, and Replicat.

This parameter supports MySQL. The database character set for other databases is
obtained programmatically.

The SESSIONCHARSET option of the DBLOGIN command can be used to override this
setting for any commands issued in the same GGSCI session. The SESSIONCHARSET
option of the SOURCEDB and TARGETDB parameters can be used to override this setting
for individual process logins.

Default

Character set of the operating system

Syntax

SESSIONCHARSET character_set

character_set
The database session character set.

Example

SESSIONCHARSET ISO-8859-11

1.146 SETENV
Valid For

Extract and Replicat

Any SETENV values should be set before any USERID, USERIDALIAS, FETCHUSERID,
FETCHUSERIDALIAS, TRANLOGOPTIONS MININGUSER, MININGUSERALIAS, SOURCEDB or,
TARGETDB entries in the parameter files.

Description

Use the SETENV parameter to set a value for an environment variable. When Extract or
Replicat starts, it uses the specified value instead of the one that is set in the operating

Chapter 1
SESSIONCHARSET

1-202

system environment. A variable set in the SETENV statement overrides any existing variables
set at the operating system level. Use one SETENV statement per variable to be set.

For integrated extracts, you can set new environment variables if they are available from the
lcr server. The new environment variables are:

• USERNAME: Database login user name

• OSUSERNAME: Operating System user name

• MACHINENAME: Name of the host, machine, or server where the database is running

• PROGRAMNAME: Name of program or application that started the transaction or session

• CLIENTIDENTIFIER: Value set using DBMS_SESSION.set_identifier()
SETENV cannot be used with query parameters.

Default

None

Syntax

SETENV (
{environment_variable |
 GGS_CacheRetryCount |
 GGS_CacheRetryDelay}
= 'value'
)

environment_variable
The name of the environment variable to be set.

'value'
A value for the specified variable. Enclose the value within single quotes.

GGS_CacheRetryCount
(SQL Server) Oracle GoldenGate environment parameter that controls the number of times
that Extract tries to read the source transaction log files when they are blocked because of
excessive system activity. The default is 10 retries. After trying the specified number of
times, Extract abends with an error that begins as follows:

GGS ERROR 600 [CFileInfo::Read] Timeout expired after 10 retries with 1000 ms delay
waiting to read transaction log or backup files.

If you continue to see timeout messages in the report file or error log, increase this
parameter to allow more retries.

GGS_CacheRetryDelay
(SQL Server) Oracle GoldenGate environment parameter that controls the number of
milliseconds that Extract waits before trying again to read the transaction logs when the
previous attempt has failed. The default is 1000 milliseconds delay.

Chapter 1
SETENV

1-203

Examples

Example 1
Using separate SETENV statements allows a single instance of Oracle GoldenGate to
connect to multiple Oracle database instances without having to change environment
settings. The following parameter statements set a value for ORACLE_HOME and
ORACLE_SID.

SETENV (ORACLE_HOME = '/home/oracle/ora9/product')
SETENV (ORACLE_SID = 'ora9')

Example 2
The following parameter statements set values for Oracle GoldenGate in a SQL
Server environment where Extract tries to read the transaction log for a maximum of
20 times before abending, with a delay of 3000 milliseconds between tries.

SETENV (GGS_CacheRetryCount = 20)
SETENV (GGS_CacheRetryDelay = 3000)

1.147 SHOWSYNTAX
Valid For

Replicat

Description

Use the SHOWSYNTAX parameter to start an interactive session where you can view
each Replicat SQL statement before it is applied. Viewing SQL statements that failed
may help you diagnose the cause of the problem. For example, you could find out that
the WHERE clause is using a non-indexed column.

As long as a data type can be applied with dynamic SQL and the column data is
bound with a SQL statement, Replicat shows some or all of the data in string form,
hexadecimal form, or as a data identifier, depending on the data type. By default,
Replicat does not show LOB data or other data types that are treated as a LOB by the
database or by Oracle GoldenGate, whether or not the data is bound in SQL.
Examples are LOB, XML, and UDT data types. Instead, Replicat shows a data
identifier, for example "LOB data." To display this type of data, specify the INCLUDELOB
option of SHOWSYNTAX. If the column data is not bound in a SQL statement, Replicat
does not show the data even when INCLUDELOB is used.

If CHAR/VARCHAR/CLOB or NCHAR/NVARCHAR/NCLOB character data has an unprintable
character (U+0000 to U+001F), the character is escaped and displayed in \xx form,
where xx is a decimal value that ranges from 00 to 31.

The first time that you use SHOWSYNTAX, request guidance from Oracle Support. It is a
debugging parameter and can cause unwanted results if used improperly. It requires
manual intervention, which suspends automated processing and can cause backlogs
and latency. Use SHOWSYNTAX in a test environment. Create duplicates of your Replicat
groups and target tables so that the production environment is not affected.

SHOWSYNTAX is not supported for a coordinated Replicat group and parallel Replicat.

If used for an integrated Replicat group, sqltrace is enabled for the associated
database apply process.

Chapter 1
SHOWSYNTAX

1-204

If you capture XML column data using Integrated Extract, the column is captured as updated
column even if you do not update the column. As a result of this behavior, SHOWSYNTAX shows
the XML column as updated column. However, if you capture the table using Classic Extract,
the XML column does not appear in the SHOWSYNTAX SQL statement if the column is not part
of the update.

To use SHOWSYNTAX, Replicat must be started from the command shell of the operating
system. Do not use SHOWSYNTAX if Replicat is started through GGSCI.

BATCHSQL processing is suspended when SHOWSYNTAX is running. BATCHSQL mode is resumed
when Replicat is re-started without SHOWSYNTAX.

To use SHOWSYNTAX, do the following:

1. From the Oracle GoldenGate home directory, start Replicat from the command shell of
the operating system using the following syntax. This syntax eliminates the reportfile
option and directs the output to the screen.

replicat paramfile dirprm/Replicat_name.prm
2. The first SQL statement is displayed with some prompts.

• Choose Keep Displaying (the default) to execute the current statement and display
the next one.

• Choose Stop Display to resume normal processing and stop printing SQL
statements to screen.

3. When finished viewing syntax, remove SHOWSYNTAX from the parameter file.

Default

None

Syntax

SHOWSYNTAX [APPLY | NOAPPLY] [INCLUDELOB [max_bytes | ALL]]

APPLY | NOAPPLY
Controls whether or not Replicat applies the data that is displayed with SHOWSYNTAX to the
target database. The default is APPLY (apply the data to the target database). NOAPPLY
prevents the application of the data to the target and does not write the records to the
discard file.

INCLUDELOB [max_bytes] | ALL
Includes LOB, XML, and UDT data in the SHOWSYNTAX output. Without this option, only a data
identifier is displayed, such as "<LOB data>." The default is 2.

max_bytes
Specifies the maximum length of LOB, XML, or UDT data that is displayed. Valid units are K,
M, or G. The default is to display the first 2K bytes.

ALL
Displays LOB data in its entirety.

Example

SHOWSYNTAX INCLUDELOB 1M

Chapter 1
SHOWSYNTAX

1-205

1.148 SOURCEDB
Valid For

Non-Oracle (heterogeneous) databases, Extract, DEFGEN

Description

Use the SOURCEDB parameter for databases or data sets that require a data source
name or identifier to be specified explicitly as part of the connection information. This
option is required to identify one of the following:

• The source database for heterogeneous databases.

• The data source name (DSN) for supported databases that use ODBC

• The default DB2 for i database.

Tables specified in TABLE statements that follow SOURCEDB are assumed to be from the
specified data source.

You might need to use the USERID or USERIDALIAS parameter in the SOURCEDB
parameter statement, depending on the authentication that is required for the data
source.

To connect Oracle GoldenGate processes to Azure Database for MySQL, ensure that
the USERID value of SOURCEDB is enclosed within double quotes. This support is
available from the Oracle GoldenGate 19c (19.1.0.0.200414) release onward.

For databases that allow authentication at the operating-system level, you can specify
SOURCEDB without USERID or USERIDALIAS.

For DB2 LUW, the SOURCEDB statement must refer to the database by its real name,
rather than by any alias.

See USERID | NOUSERID or USERIDALIAS for more information.

Default

None

Syntax

SOURCEDB data_source[, SESSIONCHARSET character_set]

data_source
The name of the database, catalog, or data source name as applicable for the
database.
For MySQL databases, you can use the format of SOURCEDB
database_name@host_name to avoid connection issues caused by the incorrect
configuration of localhost in the local hosts file. If running MySQL on a port other
than the default of 3306, you must specify the port number in the connect string:
SOURCEDB database_name@host_name:port.

Chapter 1
SOURCEDB

1-206

SESSIONCHARSET character_set
Supports MySQL. Sets the database session character set for the process login session.
This parameter overrides any SESSIONCHARSET that is specified in the GLOBALS file.

Examples

Example 1
This example shows SOURCEDB using OS-level authentication.

SOURCEDB mydb

Example 2
This example shows SOURCEDB with the USERIDALIAS parameter.

SOURCEDB mydb, USERIDALIAS tiger1

Example 3
This example shows Oracle GoldenGate processes connecting to Azure Database for
MySQL:

SOURCEDB mysqlsrcdb@mysqlservername.mysql.database.azure.com USERID
“ogguser@mysqlservername” PASSWORD password

1.149 SOURCECATALOG
Valid For

Extract and Replicat

Description

Use the SOURCECATALOG parameter to specify one of the following for subsequent TABLE or
MAP statements that contain two-part names, where three-part object names are required to
fully identify a default source Oracle pluggable database (PDB)

This parameter provides an efficient alternative to specifying the full three-part object name
(container.schema.object or catalog.schema.object) when specifying source objects from
an Oracle consolidated database. Only the two-part name (schema.object) need be specified
in subsequent TABLE or MAP statements when SOURCECATALOG is used. You can use multiple
instances of SOURCECATALOG to specify different default containers or catalogs for different
sets of TABLE statements (or SEQUENCE statements, if Oracle).

Three-part name specifications encountered after SOURCECATALOG override the SOURCECATALOG
specification in a TABLE statement, MAP statement, or other parameter that takes object names
as input.

Default

None

Syntax

SOURCECATALOG {container}

Chapter 1
SOURCECATALOG

1-207

container
The name of an Oracle pluggable database that contains the specified objects in the
TABLE of MAP statement.

Example

In the following example, SOURCECATALOG is used to specify three different source
Oracle PDBs in an Extract parameter file.

SOURCECATALOG FINANCE
TABLE SAP.*;
TABLE REPORTS.*;
SOURCECATALOG HR
TABLE SIEBEL.*;
TABLE REPORTS.*;
SOURCECATALOG MFG
TABLE CUSTOMER.ORDERS;
TABLE REPORTS.*;
TABLE HQ.LOCATIONS.*;

In this example, Extract captures the following:

• All tables in the SAP and REPORTS schemas in the FINANCE PDB.

• All tables in the SIEBEL and REPORTS schemas in the HR PDB.

• All tables in the CUSTOMER and REPORTS schemas in the MFG PDB.

• For the last TABLE statement, Extract captures all tables in the LOCATIONS schema
in the HQ PDB. This statement is a fully qualified three-part name and overrides the
previous SOURCECATALOG specification.

1.150 SOURCECHARSET
Valid For

Replicat

Description

Use the SOURCECHARSET parameter to control the conversion of data from the source
character set to the target character set by Replicat. Replicat converts character sets
by default for versions 11.2.1 and later, but you may need to intervene in the following
cases:

• To enable accurate conversion of data written by an Extract version earlier than
11.2.1. Extract versions prior to version 11.2.1 do not write information about the
source character set to the trail, so the information must be supplied to Replicat
directly. Extract versions 11.2.1 and later write information about the source
character set to the trail for use by Replicat, and any SOURCECHARSET specification
is ignored.

• To override the source database character set in the trail file. Use SOURCECHARSET
with the OVERRIDE option to specify the character set you want to use. An example
use case is migrating a database to UNICODE or particular character set
database from garbage in, garbage out type of non-character set aware database
by ignoring the source database character set.

Replicat issues a warning message when it uses the SOURCECHARSET character set.

Chapter 1
SOURCECHARSET

1-208

Use the REPLACEBADCHAR parameter to handle validation errors where there are invalid
characters in the source data or the target character set does not support a source character.
It provides options to abend on these errors, skip the record that caused the error, or specify
a substitute value for the character.

Default

None

Syntax

SOURCECHARSET {source_charset | PASSTHRU | OVERRIDE} [DB2ZOS]

source_charset
Specifies the source character set for data that is written by an Extract version that is earlier
than 11.2.1. Replicat uses the specified character set when converting character-type
columns to the target character set.
For source_charset, specify the appropriate character-set identifier that represents the
source database. For a list of supported character sets, see Administering Oracle
GoldenGate.
For Oracle, if SOURCECHARSET is not specified but there is an NLS_LANG environment variable
on the target, Replicat uses the NLS_LANG value as the source database character set. If
neither SOURCECHARSET nor NLS_LANG is present, Replicat abends to prevent possible data
corruption.

PASSTHRU
PASSTHRU
Forces Replicat to apply the data without converting the character set. Character set
differences are ignored as follows:

• If the database is Oracle, the data is applied the way it is stored in the trail.

• If the database is other than Oracle, the data is applied as binary data if the database
supports a bind as binary data. Otherwise, the data is applied as-is.

PASSTHRU is not compatible with the BULKLOAD parameter (direct-bulk load).
If PASSTHRU is specified and a mapping between CHAR/VARCHAR/CLOB and NCHAR/NVARCHAR/
NCLOB exists in the MAP statement, Replicat abends.
If any Oracle GoldenGate column-mapping functions are used for character-based columns
when PASSTHRU mode is specified, Replicat issues a warning message and converts the
results of those functions to the target database character set before mapping them to the
target column.
PASSTHRU should only be used if you are certain the source and target character sets are
compatible. If you are not sure whether PASSTHRU is appropriate in your environment, contact
Oracle Support before using it.

OVERRIDE
Forces Replicat to use the specified character set thus overriding the source database
character set in the trail file. This option overrides character type column character set
except in the following cases:

• The character set is overridden by the CHARSET and COLCHARSET parameters.

• Use of NCHAR, NVARCHAR and NCLOB data types.

• The database overrides the column character set explicitly to a set other than the
database character set.

Chapter 1
SOURCECHARSET

1-209

DB2 for z/OS
Valid for DB2 for z/OS.
Required if the version of a trail that contains DB2 data from the z/OS platform is
Oracle GoldenGate 12.1 or lower. This parameter ensures that Replicat recognizes
that the data is from DB2 for z/OS, which permits a mix of ASCII and EBCDIC
character formats.

Examples

Example 1
SOURCECHARSET ISO-8859-9

Example 2
SOURCECHARSET PASSTHRU

Example 3
SOURCECAHRSET JA16EUC

Example 4
SOURCECHARSET OVERRIDE WE8ISO8859P15

1.151 SOURCEDEFS
Valid For

Extract data pump and Replicat

Description

Use the SOURCEDEFS parameter to specify the name of a file that contains definitions of
source tables or files. Source definitions are not required, by default, when trail files
with format Oracle GoldenGate release 12.2.x are used because the trail files contains
metadata records with the object definitions. However, source definitions are required
when replicating data between heterogenous source and targets using trail files with
format Oracle GoldenGate release 12.1.x and lower or when trail files with created
with the no_objectdefs option.

Use SOURCEDEFS for one or more of the following processes, depending on your Oracle
GoldenGate configuration:

• A Replicat process on the target system

• A data pump on a source or intermediary system.

To generate the source-definitions file, use the DEFGEN utility. Transfer the file to the
intermediary or target system before starting a data pump or Replicat.

You can have multiple SOURCEDEFS statements in the parameter file if more than one
source-definitions file will be used, for example if each SOURCEDEFS file holds the
definitions for a distinct application.

Do not use SOURCEDEFS and ASSUMETARGETDEFS in the same parameter file.

Default

None

Chapter 1
SOURCEDEFS

1-210

Syntax

SOURCEDEFS file_name [OVERRIDE]

file_name
The relative or fully qualified name of the file containing the source data definitions.

OVERRIDE
By default, the table definitions from the metadata records override the definitions from any
SOURCEDEFS file.
Specify OVERRIDE to request Replicat to use the definitions from the definitions file instead of
the metadata.

Examples

Example 1
SOURCEDEFS dirdef\tcust.def

Example 2
SOURCEDEFS /ggs/dirdef/source_defs

1.152 SOURCEISTABLE
Valid For

Extract

Description

Use the SOURCEISTABLE parameter to extract complete records directly from source tables in
preparation for loading them into another table or file. SOURCEISTABLE extracts all column data
specified within a TABLE statement.

This parameter applies to the following initial load methods:

• Loading data from file to Replicat.

• Loading data from file to database utility.

Do not use this parameter for the following initial load methods:

• An Oracle GoldenGate direct load, where Extract sends load data directly to the Replicat
process without use of a file.

• An Oracle GoldenGate direct bulk load to SQL*Loader.

For those processes, SOURCEISTABLE is specified as an ADD EXTRACT argument instead of
being used in the parameter file.

When used, SOURCEISTABLE must be the first parameter statement in the Extract parameter
file.

To use SOURCEISTABLE, disable DDL extraction and replication by omitting the DDL parameter
from the Extract and Replicat parameter files. See "DDL" for more information.

See Administering Oracle GoldenGate for more information about configuring initial data
loads.

Chapter 1
SOURCEISTABLE

1-211

Default

None

Syntax

SOURCEISTABLE

1.153 SOURCETIMEZONE
Valid For

Replicat

Description

Use the SOURCETIMEZONE parameter to specify the time zone of the source database.
Use this parameter for one of the following purposes:

• To override the source time zone that is stored in the trail. By default, Replicat sets
its session to the specified time zone, in both region ID and offset value. This
option applies to Oracle GoldenGate versions 12.1.2 or later, where the source
time zone is written to the trail by Extract. Replicat will set its session to the
specified time zone.

• To supply the time zone of the source database when the trail is written by an
Extract version that is older than 12.1.2. In these versions, Extract does not write
the source time zone to the trail, so it must be supplied by this parameter. Replicat
will set its session to the specified time zone.

To disable the default use of the source time zone by Replicat, use the
PRESERVETARGETTIMEZONE parameter in the Replicat parameter file. See
PRESERVETARGETTIMEZONE for more information.

Default

None

Syntax

SOURCETIMEZONE time_zone

time_zone
The time zone of the source database as output by the database for DATE, TIME and
TIMESTAMP data types. It can be specified in the following ways.

• As a region ID that is valid in the IANA Time Zone Database (tz database). (A
region ID is also known as an Olson time zone ID). An adjustment for Daylight
Saving Time can be performed by the target database, if supported.

• As an offset from UTC.

Examples

The following examples show different ways to specify SOURCETIMEZONE.

• These examples specify a region ID.

Chapter 1
SOURCETIMEZONE

1-212

SOURCETIMEZONE America/New_York

SOURCETIMEZONE US/Pacific

SOURCETIMEZONE Japan

SOURCETIMEZONE UTC

SOURCETIMEZONE Pacific/Guam
• These examples specify an offset from UTC.

SOURCETIMEZONE +09:00

SOURCETIMEZONE -04:30

1.154 SPACESTONULL | NOSPACESTONULL
Valid For

Replicat on Oracle Database only

Description

Use the SPACESTONULL and NOSPACESTONULL parameters to control whether or not a source
column that contains only spaces is converted to NULL in the target column. SPACESTONULL
converts spaces to NULL if the target column accepts NULL values. NOSPACESTONULL converts
spaces to a single space character in the target column.

This parameter is applicable to the follow two scenarios:

• a source column that contains only spaces

• a source column is empty, such as empty CHAR/VARCHAR column data from DB2

Oracle does not distinguish empty and NULL column though other databases do so you
should consult your database documentation to determine how these types of columns.

The parameters are table specific. One parameter applies to all subsequent MAP statements,
until the other parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements,
you can enable or disable them for different threads of a coordinated Replicat. Specify the
SPACESTONULL threads in one set of MAP statements, and specify the NOSPACESTONULL threads
in a different set of MAP statements.

Default

NOSPACESTONULL

Syntax

SPACESTONULL | NOSPACESTONULL

Example

This example shows how you can apply SPACESTONULL and NOSPACESTONULL selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

Chapter 1
SPACESTONULL | NOSPACESTONULL

1-213

SPACESTONULL
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOSPACESTONULL
MAP sales.loc, TARGET sales.loc, THREAD (3);

1.155 SPECIALRUN
Valid For

Replicat

Description

Use the SPECIALRUN parameter in a Replicat parameter file for a one-time processing
run to direct Replicat not to create checkpoints. A one-time run has a beginning and an
end, so checkpoints are not needed. Use SPECIALRUN for certain initial data load
methods.

When Replicat is in SPECIALRUN mode, do not start it with the START REPLICAT
command in GGSCI. It is started automatically during the initial load.

SPECIALRUN requires the use of the END parameter. Either REPLICAT or SPECIALRUN is
required in the Replicat parameter file. See "REPLICAT" for more information.

Default

None

Syntax

SPECIALRUN

1.156 SPLIT_TRANS_RECS
Valid For

Parallel Replicat

Description

Specifies that large transactions should be broken into pieces of specified size and
applied in parallel. Dependencies between pieces are still honored. Disabled by
default.

Syntax

SPLIT_TRANS_RECS value

Example

SPLIT_TRANS_RECS 100000

Chapter 1
SPECIALRUN

1-214

1.157 SQLDUPERR
Valid For

Replicat

Description

Use the SQLDUPERR parameter to specify the numeric error code returned by the target
database when a duplicate row is encountered. A duplicate-record error indicates that an
INSERT operation was attempted with a primary key that matches the key of an existing
record in the database.

You must use SQLDUPERR when you specify the special handling of duplicate records with the
OVERRIDEDUPS parameter. See "OVERRIDEDUPS | NOOVERRIDEDUPS" for more
information.

Default

None

Syntax

SQLDUPERR error_number

error_number
The numeric error code to return for duplicate records.

Example

SQLDUPERR -2601

1.158 SQLEXEC
Valid For

Extract and Replicat

Description

Use the SQLEXEC parameter to execute a stored procedure, query, or database command
within the context of Oracle GoldenGate processing. SQLEXEC enables Oracle GoldenGate to
communicate directly with the database to perform any work that is supported by the
database. This work can be part of the synchronization process, such as retrieving values for
column conversion, or it can be independent of extracting or replicating data, such as
executing a stored procedure that executes an action within the database.

Note:

SQLEXEC provides minimal globalization support. To use SQLEXEC in the capture
parameter file of the source capture, make sure that the client character set in the
source .prm file is either the same or a superset of the source database character
set.

Chapter 1
SQLDUPERR

1-215

SQLEXEC works as follows:

• As a standalone statement at the root level of a parameter file to execute a SQL
stored procedure or query or to execute a database command. As a standalone
statement, SQLEXEC executes independently of a TABLE or MAP statement during
Oracle GoldenGate processing. When used in a standalone SQLEXEC parameter, a
query or procedure cannot include parameters. See "Standalone SQLEXEC".

• As part of a TABLE or MAP parameter to execute a stored procedure or query with or
without parameters. When used with parameters, the procedure or query that is
executed can accept input parameters from source or target rows and pass output
parameters. See "SQLEXEC in a TABLE or MAP Parameter".

Caution:

Use caution when executing SQLEXEC procedures against the database,
especially against the production database. Any changes that are committed
by the procedure can result in overwriting existing data.

Note:

The SQLEXECONBEFOREIMAGE parameter supports SQLEXEC execution on
Before Image records.

Standalone SQLEXEC

A standalone SQLEXEC parameter is one that is used at the root level of a parameter file
and acts independently of a TABLE or MAP parameter. The following are guidelines for
using a standalone SQLEXEC parameter.

• A standalone SQLEXEC statement executes in the order in which it appears in the
parameter file relative to other parameters.

• A SQLEXEC procedure or query must contain all exception handling.

• A query or procedure must be structured correctly when executing a SQLEXEC
statement, with legal SQL syntax for the database; otherwise Replicat will abend,
regardless of any error-handling rules that are in place. Refer to the SQL reference
guide provided by the database vendor for permissible SQL syntax.

• A database credential for the Oracle GoldenGate user must precede the SQLEXEC
clause. For Extract, use the SOURCEDB and USERID or USERIDALIAS parameters as
appropriate for the database. For Replicat, use the TARGETDB and USERID or
USERIDALIAS parameters, as appropriate.

• The database credential that the Oracle GoldenGate process uses is the one that
executes the SQL. This credential must have the privilege to execute commands
and stored procedures and call database-supplied procedures.

• A standalone SQLEXEC statement cannot be used to get input parameters from
records or pass output parameters. You can use stored procedures and queries
with parameters by using a SQLEXEC statement within a TABLE or MAP statement.
See "SQLEXEC in a TABLE or MAP Parameter".

Chapter 1
SQLEXEC

1-216

• All objects affected by a standalone SQLEXEC statement must exist before the Oracle
GoldenGate processes start. Because of this, DDL support must be disabled for those
objects; otherwise, DDL operations could change the structure of, or delete an object,
before the SQLEXEC procedure or query executes on it.

• Object names must be fully qualified in their two-part or three-part name format.

• For DB2 on z/OS, Oracle GoldenGate uses the ODBC SQLExecDirect function to
execute a SQL statement dynamically. ODBC prepares the SQL statement every time
that it is executed, at a specified interval. To support this function, the connected
database server must be configured to prepare SQL dynamically. See the DB2 for z/OS
documentation for more information.

Getting More Information about Using Standalone SQLEXEC

See Administering Oracle GoldenGate for more information about how to use SQLEXEC.

Syntax for Standalone SQLEXEC

SQLEXEC
{'call procedure_name()' | 'SQL_query' | 'database_command'}
[EVERY n {SECONDS | MINUTES | HOURS | DAYS}]
[ONEXIT]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

'call procedure_name ()'
Specifies the name of a stored procedure to execute. Enclose the statement within single
quotes. The call keyword is required. The following is an example of how to execute a
procedure with standalone SQLEXEC:

SQLEXEC 'call prc_job_count ()'

'SQL_query'
Specifies the name of a query to execute. Enclose the query within single quotes. Specify
case-sensitive object names in the same format required by the database. The following is
an example of how to execute a query with standalone SQLEXEC:

SQLEXEC ' select x from dual '

For a multi-line query, use the single quotes on each line. For best results, type a space after
each begin quote and before each end quote (or at least before each end quote).

'database_command'
Executes a database command. The following is an example of how to execute a database
command with standalone SQLEXEC:

SQLEXEC 'SET TRIGGERS OFF'

EVERY n {SECONDS | MINUTES | HOURS | DAYS}
Causes a standalone stored procedure or query to execute at a defined interval, for
example:

SQLEXEC 'call prc_job_count ()' EVERY 30 SECONDS

The interval must be a whole, positive integer.

ONEXIT
Executes the SQL when the Extract or Replicat process stops gracefully, for example:

Chapter 1
SQLEXEC

1-217

SQLEXEC 'call prc_job_count ()' ONEXIT

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range]
[, ...])
Executes SQLEXEC only for the specified thread or threads of a coordinated Replicat.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a
comma-delimted list of ranges in the format of threadIDlow-threadIDhigh,
threadIDlow-threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID,
threadIDlow-threadIDhigh.

If no THREADS clause is used, the SQL is executed by all of the threads that were
configured for this Replicat group by the ADD REPLICAT command. However, if the SQL
satisfies the criteria for a barrier transaction, the entire SQLEXEC statement is processed
by thread 0 regardless of the actual thread mapping.

SQLEXEC in a TABLE or MAP Parameter

A SQLEXEC parameter in a TABLE or MAP parameter can be used to execute a stored
procedure or query that does or does not accept parameters. The following are
SQLEXEC dependencies and restrictions when used in a MAP or TABLE statement:

• The SQL is executed by the database user under which the Oracle GoldenGate
process is running. This user must have the privilege to execute stored procedures
and call database-supplied procedures.

• A query or procedure must be structured correctly when executing a SQLEXEC
statement. If Replicat encounters a problem with the query or procedure, the
process abends immediately, despite any error-handling rules that are in place.
Refer to the SQL reference guide provided by the database vendor for permissible
SQL syntax.

• The COMMIT operation of a Replicat transaction to the target database also
commits any DML changes that are made in a SQLEXEC statement within the
boundary of the original source transaction. This is not true for Extract, because
Extract does not perform SQL transactions. When using SQLEXEC for Extract, you
can either enable implicit commits or execute an explicit commit within the SQLEXEC
procedure.

• Specify literals in single quotes. Specify case-sensitive object names the same
way they are specified in the database.

• Do not use SQLEXEC to change the value of a primary key column. The primary key
value is passed from Extract to Replicat. Without it, Replicat operations cannot be
completed. If primary key values must be changed with SQLEXEC, you may be able
to avoid errors by mapping the original key value to another column and then
defining that column as a substitute key with the KEYCOLS option of the TABLE and
MAP parameters.

• For DB2 on z/OS, Oracle GoldenGate uses the ODBC SQLExecDirect function to
execute a SQL statement dynamically. ODBC prepares the SQL statement every

Chapter 1
SQLEXEC

1-218

time that it is executed, at a specified interval. To support this function, the connected
database server must be configured to prepare SQL dynamically. See the DB2 for z/OS
documentation for more information.

• When using Oracle GoldenGate to replicate DDL, all objects that are affected by a stored
procedure or query must exist with the correct structures prior to the execution of the
SQL. Consequently, DDL on these objects that affects structure (such as CREATE or
ALTER) must execute before the SQLEXEC executes.

• All object names in a SQLEXEC statement must be fully qualified with their two-part or
three-part names, as appropriate for the database.

• Do not use SQLEXEC for tables being processed in pass-through mode by a data-pump
Extract group.

• The following data types are supported by SQLEXEC for input and output parameters.

– Numeric data types

– Date data types

– Character data types

• When executed by a coordinated Replicat, SQLEXEC is executed by the thread or threads
that are specified with the THREAD or THREADRANGE option of the MAP statement. However,
if the SQLEXEC is specified in a MAP parameter that contains the COORDINATED keyword, it is
executed as a barrier transaction automatically by the thread with the lowest ID number,
regardless of the actual thread mapping.

Getting More Information About Using SQLEXEC in TABLE and MAP

For more information about how to use SQLEXEC, see Administering Oracle GoldenGate.

For more information about TABLE and MAP, see "TABLE | MAP".

Syntax for SQLEXEC in TABLE or MAP

SQLEXEC (
{SPNAME procedure_name[, ID logical_name] |
 ID logical_name, QUERY ' SQL_query '}
{, PARAMS [OPTIONAL | REQUIRED] parameter_name = {source_column | OGG_function} |
 NOPARAMS}
[, AFTERFILTER | BEFOREFILTER]
[, ALLPARAMS {OPTIONAL | REQUIRED}]
[, ERROR {IGNORE | REPORT | RAISE | FINAL | FATAL}]
[, EXEC {MAP | ONCE | TRANSACTION | SOURCEROW}][, MAXVARCHARLEN bytes]
[, PARAMBUFSIZE bytes]
[, TRACE]
[, ...]
[, BEFORE_col1 = @BEFORE(col1),
)

SPNAME procedure_name[, ID logical_name]
Executes a stored procedure.

SPNAME procedure_name
Specifies the name of the procedure to execute.
The following example shows a single execution of a stored procedure named lookup. In
this case, the actual name of the procedure is used. A logical name is not needed.

Chapter 1
SQLEXEC

1-219

SQLEXEC (SPNAME lookup), PARAMS (param1 = srccol)), &
COLMAP (targcol = lookup.param1);

ID logical_name
Defines an optional logical name for the procedure. For example, logical names
for a procedure named lookup might be lookup1, lookup2, and so forth. Use this
option to execute the procedure multiple times within a MAP statement. A
procedure can execute up to 20 times per MAP statement. ID is not required when
executing a procedure once.
The following example shows the use of the ID option to enable multiple
executions of a stored procedure that gets values from a lookup table. The values
are mapped to target columns.

SQLEXEC (SPNAME lookup, ID lookup1, &
 PARAMS (long_name = current_residence_state)), &
SQLEXEC (SPNAME lookup, ID lookup2, &
 PARAMS (long_name = birth_state)), &
COLMAP (custid = custid, current_residence_state_long = lookup1.long_name,
& birth_state_long = lookup2.long_name);

ID logical_name, QUERY ' SQL_query '
Executes a query.

ID logical_name
Defines a logical name for the query. A logical name is required in order to extract
values from the query results. ID logical_name references the column values
returned by the query.

QUERY ' SQL_query '
Specifies the SQL query syntax to execute against the database. The query can
either return results with a SELECT statement or execute an INSERT, UPDATE, or
DELETE statement. A SELECT statement should only return one row. If multiple rows
are returned, only the first row is processed. Do not specify an INTO ... clause
for any SELECT statements.The query must be valid, standard query language for
the database against which it is being executed. Most queries require
placeholders for input parameters. How parameters are specified within the query
depends on the database type, as follows:

• For Oracle, input parameters are specified by using a colon (:) followed by the
parameter name, as in the following example.

'SELECT NAME FROM ACCOUNT WHERE SSN = :SSN AND ACCOUNT = :ACCT'
• For other databases, input parameters are specified by using a question

mark, as in the following example.

'SELECT NAME FROM ACCOUNT WHERE SSN = ? AND ACCOUNT = ?'
The query must be contained on one line, within single quotes. Quotation marks
are not required around a parameter name for any database.
The following examples illustrate the use of a SQLEXEC query for Oracle and SQL
Server queries, respectively.
Oracle example:

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (ID lookup, &
 QUERY 'select desc_col into desc_param from lookup_table &

Chapter 1
SQLEXEC

1-220

 where code_col = :code_param', &
 PARAMS (code_param = account_code)), &
 COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

SQL Server example:

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (ID lookup, &
 QUERY 'select desc_col into desc_param from lookup_table &
 where code_col = ?', &
 PARAMS (p1 = account_code)), &
 COLMAP (newacct_id = account_id, &
 newacct_val = lookup.desc_param);

PARAMS [OPTIONAL | REQUIRED] parameter_name = {source_column | OGG_function} |
NOPARAMS
Defines whether or not the procedure or query accepts parameters and, if yes, maps the
parameters to the input source. Either a PARAMS clause or NOPARAMS must be used.

OPTIONAL | REQUIRED
Determines whether or not the procedure or query executes when parameter values are
missing.
OPTIONAL indicates that a parameter value is not required for the SQL to execute. If a
required source column is missing from the database operation, or if a column-
conversion function cannot complete successfully because a source column is missing,
the SQL executes anyway. OPTIONAL is the default for all databases except Oracle. For
Oracle, whether or not a parameter is optional is automatically determined when
retrieving the stored procedure definition.
REQUIRED indicates that a parameter value must be present. If the parameter value is not
present, the SQL will not be executed.

parameter_name = {source_column | OGG_function}
Maps the name of a parameter to a column or function that provides the input. The
following data types are supported by SQLEXEC for input and output parameters.

• Numeric data types

• Date data types

• Character data types

parameter_name is one of the following:

• For a stored procedure, it is the name of any parameter in the procedure that can
accept input.

• For an Oracle query, it is the name of any input parameter in the query excluding the
leading colon. For example, :vemplid would be specified as vemplid in the PARAMS
clause. Oracle permits naming an input parameter any logical name.

SQLEXEC (ID appphone, QUERY ' select per_type from ps_personal_data '
 ' where emplid = :vemplid '
 ' and per_status = 'N' and per_type = 'A' ',
 PARAMS (vemplid = emplid)),
TOKENS (applid = @GETVAL(appphone.per_type));

Chapter 1
SQLEXEC

1-221

• For a non-Oracle query, it is Pn, where n is the number of the parameter within
the statement, starting from 1. For example, in a query with two parameters,
the parameter_name entries are p1 and p2. Consider whether the database
requires the p to be upper or lower case.

SQLEXEC (ID appphone, QUERY ' select per_type from ps_personal_data '
 ' where emplid = ? '
 ' and per_status = 'N' and per_type = 'A' ',
 PARAMS (p1 = emplid)),
TOKENS (applid = @GETVAL(appphone.per_type));

source_column is the name of a source column that provides the input. By default,
if the specified column is not present in the log (because the record only contains
the values of columns that were updated) the parameter assumes any default
value specified by the procedure or query for the parameter.
OGG_function is the name of an Oracle GoldenGate column-conversion function
that executes to provide the input. See "Column Conversion Functions".

To pass output values from the stored procedure or query as input to a FILTER or
COLMAP clause, use the following syntax:

{procedure_name | logical_name}.parameter

Where:

• procedure_name is the actual name of a stored procedure, which must match the
value given for SPNAME in the SQLEXEC statement. Use this argument only if
executing a procedure one time during the course of the Oracle GoldenGate run.

• logical_name is the logical name specified with the ID option of SQLEXEC. Use this
argument to pass input values from either a query or an instance of a stored
procedure when the procedure executes multiple times within a MAP statement.

• parameter is the name of a parameter or RETURN_VALUE if extracting returned
values. By default, output values are truncated at 255 bytes per parameter. If
output parameters must be longer, use the MAXVARCHARLEN option.

Note:

As an alternative to the preceding syntax, you can use the @GETVAL function.
See "@GETVAL" for more information.

The following examples apply to a set of Oracle source and target tables and a lookup
table. These examples show how parameters for the tables are passed for a single
instance of a stored procedure and multiple instances of a stored procedure.
Source table cust:

custid Number
current_residence_state Char(2)
birth_state Char(2)

Target table cust_extended:

custid Number
current_residence_state_long Varchar(30)
birth_state_long Varchar(30)

Chapter 1
SQLEXEC

1-222

Lookup table state_lookup

abbreviation Char(2)
long_name Varchar(30)

The following example shows the use of a stored procedure that executes once to get a
value from the lookup table. When processing records from the cust table, Oracle
GoldenGate executes the lookup stored procedure before executing the column map. The
long_name parameter in the procedure accepts input from the birth_state source
column.The value is mapped to the target column birth_state_long in the COLMAP
statement.

MAP sales.cust, TARGET sales.cust_extended, &
SQLEXEC (SPNAME lookup, &
PARAMS (long_name = birth_state)), &
COLMAP (custid = custid, &
birth_state_long = lookup.long_name);

The following example shows the use of the ID option to enable multiple executions of a
stored procedure that gets values from a lookup table. The values are mapped to target
columns.

MAP sales.cust, TARGET sales.cust_extended, &
SQLEXEC (SPNAME lookup, ID lookup1, &
PARAMS (long_name = current_residence_state)), &
SQLEXEC (SPNAME lookup, ID lookup2, &
PARAMS (long_name = birth_state)), &
COLMAP (custid = custid, current_residence_state_long = lookup1.long_name, &
birth_state_long = lookup2.long_name);

AFTERFILTER | BEFOREFILTER
Use AFTERFILTER and BEFOREFILTER to specify when to execute the stored procedure or
query in relation to the FILTER clause of a MAP statement.

AFTERFILTER
Causes the SQL to execute after the FILTER statement. This enables you to skip the
overhead of executing the SQL unless the filter is successful. This is the default.

BEFOREFILTER
Causes the SQL to execute before the FILTER statement, so the results can be used in
the filter.

The following is an example using BEFOREFILTER.

SQLEXEC (SPNAME check, NOPARAMS, BEFOREFILTER)

ALLPARAMS [OPTIONAL | REQUIRED]
Use ALLPARAMS as a global rule that determines whether or not all of the specified
parameters must be present for the stored procedure or query to execute. Rules for
individual parameters established within the PARAMS clause override the global rule set with
ALLPARAMS.

OPTIONAL
Permits the SQL to execute whether or not all of the parameters are present. This is the
default.

REQUIRED
Requires all of the parameters to be present for the SQL to execute.

Chapter 1
SQLEXEC

1-223

The following is an example using OPTIONAL.

SQLEXEC (SPNAME lookup,
PARAMS (long_name = birth_state, short_name = state),
ALLPARAMS OPTIONAL)

ERROR {IGNORE | REPORT | RAISE | FINAL | FATAL}
Use ERROR to define a response to errors associated with the stored procedure or
query. Without explicit error handling, the Oracle GoldenGate process abends on
errors. Make certain your procedures return errors to the process and specify the
responses with ERROR.

IGNORE
Causes Oracle GoldenGate to ignore all errors associated with the stored
procedure or query and continue processing. Any resulting parameter extraction
results in "column missing" conditions. This is the default.

REPORT
Ensures that all errors associated with the stored procedure or query are reported
to the discard file. The report is useful for tracing the cause of the error. It includes
both an error description and the value of the parameters passed to and from the
procedure or query. Oracle GoldenGate continues processing after reporting the
error.

RAISE
Handles errors according to rules set by a REPERROR parameter. Oracle
GoldenGate continues processing other stored procedures or queries associated
with the current MAP statement before processing the error.

FINAL
Is similar to RAISE except that when an error associated with a procedure or query
is encountered, remaining stored procedures and queries are bypassed. Error
processing is invoked immediately after the error.

FATAL
Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

EXEC {MAP | ONCE | TRANSACTION | SOURCEROW}
Use EXEC to control the frequency with which a stored procedure or query in a MAP
statement executes and how long the results are considered valid, if extracting output
parameters.

MAP
Executes the procedure or query once for each source-target table map for which
it is specified. Using MAP renders the results invalid for any subsequent maps that
have the same source table. MAP is the default.
The following example shows the incorrect use of the default of MAP. Because MAP
is the default, it need not be explicitly listed in the SQLEXEC statement. In this
example, a source table is mapped in separate MAP parameters to two different
target tables. In this case, the results are valid only for the first mapping. The
results of the procedure lookup are expired by the time the second MAP parameter
executes, and the second MAP results in a "column missing" condition. To

Chapter 1
SQLEXEC

1-224

implement this correctly so that each MAP returns valid results, SOURCEROW should be
used.

MAP sales.srctab, TARGET sales.targtab, &
SQLEXEC (SPNAME lookup, PARAMS (param1 = srccol)), &
COLMAP (targcol = lookup.param2);

MAP sales.srctab, TARGET sales.targtab2, &
COLMAP (targcol2 = lookup.param2);

ONCE
Executes the procedure or query once during the course of the Oracle GoldenGate run,
upon the first invocation of the associated MAP statement. The results remain valid for as
long as the process remains running.
The following is an example of using ONCE.

MAP sales.cust, TARGET sales.cust_extended, &
SQLEXEC (SPNAME lookup, PARAMS (long_name = birth_state), EXEC ONCE), &
COLMAP (custid = custid, &
birth_state_long = lookup.long_name);

TRANSACTION
Executes the procedure or query once per source transaction. The results remain valid
for all operations of the transaction.
The following is an example of using TRANSACTION.

MAP sales.cust, TARGET sales.cust_extended, &
SQLEXEC (SPNAME lookup, PARAMS (long_name = birth_state), EXEC TRANSACTION), &
COLMAP (custid = custid, &
birth_state_long = lookup.long_name);

SOURCEROW
Executes the procedure or query once per source row operation. Use this option when
you are synchronizing a source table with more than one target table, so that the results
of the procedure or query are invoked for each source-target mapping.
The following is an example of using SOURCEROW. In this case, the second map returns a
valid value because the procedure executes on every source row operation.

MAP sales.srctab, TARGET sales.targtab, &
SQLEXEC (SPNAME lookup, PARAMS (param1 = srccol), EXEC SOURCEROW), &
COLMAP (targcol = lookup.param2);

MAP sales.srctab, TARGET sales.targtab2, &
COLMAP (targcol2 = lookup.param2);

MAXVARCHARLEN bytes
Use MAXVARCHARLEN to specify the maximum byte length allocated for the output value of any
parameter in a stored procedure or query. Beyond this maximum, the output values are
truncated. The default is 255 bytes without an explicit MAXVARCHARLEN clause. The valid
range of values is from 50 to 32767 bytes.
The following example limits the byte length of output values to 100.

MAXVARCHARLEN 100

PARAMBUFSIZE bytes
Use PARAMBUFSIZE to specify the maximum number of bytes allowed for the memory buffer
that stores SQLEXEC parameter information, including both input and output parameters. The
default is 10,000 bytes without an explicit PARAMBUFSIZE clause. The valid range of values is

Chapter 1
SQLEXEC

1-225

from 1000 to 2000000 bytes. Oracle GoldenGate issues a warning whenever the
memory allocated for parameters is within 500 bytes of the maximum.
The following example increases the buffer to 15,000 bytes.

PARAMBUFSIZE 15000

TRACE {ALL | ERROR}
Use TRACE to log SQLEXEC input and output parameters to the report file.
The following is a sample report file with SQLEXEC tracing enabled:

Input parameter values...
LMS_TABLE: INTERACTION_ATTR_VALUES
 KEY1: 2818249
 KEY2: 1
Report File:
From Table MASTER.INTERACTION_ATTR_VALUES to MASTER.INTERACTION_ATTR_VALUES:
 # inserts: 0
 # updates: 0
 # deletes: 0
 # discards: 1

 Stored procedure GGS_INTERACTION_ATTR_VALUES:
 attempts: 2
 successful: 0

ALL
Writes the input and output parameters for each invocation of the procedure or
query to the report file. This is the default.

ERROR
Writes the input and output parameters for each invocation of the procedure or
query to the report file only after a SQL error occurs.

1.159 STATOPTIONS
Valid For

Extract and Replicat

Description

Use the STATOPTIONS parameter to specify the information that is to be included in
statistical displays generated by the STATS EXTRACT or STATS REPLICAT command.
These options also can be enabled as needed as arguments to those commands.

Default

See individual options.

Syntax

STATOPTIONS
[, REPORTDETAIL | NOREPORTDETAIL]
[, REPORTFETCH | NOREPORTFETCH]
[, RESETREPORTSTATS | NORESETREPORTSTATS]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range]
[, ...])]

Chapter 1
STATOPTIONS

1-226

REPORTDETAIL | NOREPORTDETAIL
Valid for Replicat. Controls the reporting of statistics for operations that were not applied to
the target because they were discarded as the result of collision handling.

REPORTDETAIL
Returns statistics for the discarded operations. These operations are reported in the
regular STATS REPLICAT statistics (inserts, updates, and deletes performed) and as
discard statistics if STATS REPLICAT is issued with the DETAIL option. For example, if 10
records were INSERT operations and they were all ignored due to duplicate keys, the
report would indicate that there were 10 inserts and also 10 discards due to collisions.
REPORTDETAIL is the default.

NOREPORTDETAIL
Turns off the reporting of statistics for discarded operations.

REPORTFETCH | NOREPORTFETCH
Valid for Extract. Controls the reporting of statistics for the amount of row fetching performed
by Extract, such as the fetches that are triggered by a FETCHCOLS clause or fetches that must
be performed when not enough information is in the transaction record.

REPORTFETCH
Reports statistics for row fetching. The output is as follows:

• row fetch attempts: The number of times Extract attempted to fetch a column
value from the database when it could not obtain the value from the transaction log.

• fetch failed: The number of row fetch attempts that failed.

• row fetch by key: (Valid for Oracle) The number of row fetch attempts that were
made by using the primary key.

NOREPORTFETCH
Turns off the reporting of fetch statistics. NOREPORTFETCH is the default.

RESETREPORTSTATS | NORESETREPORTSTATS
Valid for Extract and Replicat. Controls whether or not statistics generated by the REPORT
parameter are reset when a new report is created. RESETREPORTSTATS resets the statistics
from one report to the other. NORESETREPORTSTATS continues the statistics from one report to
another and is the default, see REPORT. Report rollover is controlled by the
REPORTROLLOVER parameter, see REPORTROLLOVER.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])
Enables the selected STATOPTIONS options for the specified threads of a coordinated
Replicat.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadID,
threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Chapter 1
STATOPTIONS

1-227

Examples

This example includes fetch details of a coordinated Replicat.

STATOPTIONS REPORTFETCH

This example resets the statistics from one report to another for thread 0 of a
coordinated Replicat .

STATOPTIONS RESETREPORTSTATS THREADS 0

1.160 TABLE | MAP
Valid For

TABLE is valid for Extract. You can use TABLE with Replicat only with the EVENTACTIONS
parameter. MAP is valid for Extract in certain situations and Replicat. See MAP for
Extract for details.

Description

The TABLE and MAP parameters control the selection, mapping, and manipulation of the
objects that are to be affected by an Oracle GoldenGate process. These parameters
work as follows:

• Use the TABLE parameter in an Extract parameter file to specify one or more
objects that are to be captured from the data source by the Extract process. TABLE
options specify processing work such as filtering and token definitions that must be
performed before Extract writes the captured data to the Oracle GoldenGate trail.

• List the TABLE parameter after listing the EXTFILE, EXTTRAIL, RMTFILE, or RMTTRAIL
parameter of the Extract. To write multiple trails within the same Extract, create a
separate TABLE parameter after each trail specification.

• Use the MAP parameter in the Replicat parameter file to map the data from the
source objects to the appropriate target objects. MAP options specify processing
work such as filtering, conversion, and error handling that must be performed
before the data is applied to the target objects. Each target object that you want to
synchronize with a source object must be associated with that source object by
means of a MAP parameter. Multiple source-target relationships can be specified by
means of a wildcard.

TABLE and MAP are valid for initial load configurations and for online processes
configured to support the replication of transactional changes.

You can process the following objects with TABLE and MAP:

• Index Organized Tables

• Materialized views

• Tables

To specify a sequence for capture by Extract, use the SEQUENCE parameter.

Chapter 1
TABLE | MAP

1-228

Note:

Oracle GoldenGate supports replication of actual data values of Oracle materialized
views.

You can use one or more TABLE or MAP statements in a parameter file, with or without
wildcards, to specify all of the objects that you want to process.

You can exclude objects from a wildcarded TABLE or MAP statement with the TABLEEXCLUDE
and MAPEXCLUDE parameters. Additional exclusion parameters are CATALOGEXCLUDE,
SCHEMAEXCLUDE, and EXCLUDEWILDCARDOBJECTSONLY.

For more information about using TABLE and MAP, see Administering Oracle GoldenGate.

Default

None

Syntax for TABLE

For tables, you can use all of the TABLE options. For non-table objects, use TABLE only to
specify an object for capture.

TABLE source_table[, TARGET target_table]
[, ATTRCHARSET (charset)]
[, CHARSET character_set]
[, COLCHARSET character_set]
[, COLMAP (column_mapping)]
[, {COLS | COLSEXCEPT} (column_list)]
[, {DEF | TARGETDEF} template]
[, EVENTACTIONS action]
[, EXITPARAM 'parameter']
[, {FETCHCOLS | FETCHCOLSEXCEPT} (column_list)]
[, {FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column_list)]
[, FETCHBEFOREFILTER]
[, FILTER (filter_clause)]
[, GETBEFORECOLS (column_specification)]
[, KEYCOLS (columns)]
[, SQLEXEC (SQL_specification)]
[, SQLPREDICATE 'WHERE where_clause']
[, TOKENS (token_definition)]
[, TRIMSPACES | NOTRIMSPACES]
[, TRIMVARSPACES | NOTRIMVARSPACES]
[, WHERE (clause)]
[, container.]schema.table PARTITIONOBJID ptn_object_ID [, ptn_object_ID]
;

Syntax for MAP

MAP source_table, TARGET target_table
[, MOD_COMPARE_COLS(tgt_col = source)]
[, COLMAP (column_mapping)]
[, COMPARECOLS (column_specification)]
[, COORDINATED]
[, {DEF | TARGETDEF} template]
[, EXCEPTIONSONLY]
[, EXITPARAM 'parameter']

Chapter 1
TABLE | MAP

1-229

[, EVENTACTIONS (action)]
[, FILTER (filter_clause)]
[, HANDLECOLLISIONS | NOHANDLECOLLISIONS]
[, INSERTALLRECORDS]
[, INSERTAPPEND | NOINSERTAPPEND]
[, KEYCOLS (columns)]
[, MAPALLCOLUMNS | NOMAPALLCOLUMNS]
[, MAPEXCEPTION (exceptions_mapping)]
[, MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS]
[, REPERROR (error, response)]
[, RESOLVECONFLICT (conflict_resolution_specification)]
[, SQLEXEC (SQL_specification)]
[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, column_list])]
[, TRIMSPACES | NOTRIMSPACES]
[, TRIMVARSPACES | NOTRIMVARSPACES]
[, WHERE (clause)]
[, container.]schema.table PARTITIONOBJID ptn_object_ID [, ptn_object_ID]
;

TABLE and MAP Options

The following table summarizes the options that are available for the TABLE and MAP
parameters. Note that not all options are valid for both parameters.

Table 1-10 Summary of TABLE and MAP Syntax Components

Component Description Vali
d
For

MAP MOD_COMPARE_COL(tgt_col = source [,...]) This is a Replicat
only parameter.
Assigns specified
source value to
target column's
before image as
key value, and the
value is used for
WHERE clause.

MA
P

TABLE source_table[, TARGET taget_table] Specifies the
source object in a
TABLE statement
for Extract and an
optional mapping
to a target object.
Use in the Extract
parameter file.

TAB
LE

MAP source_table, TARGET target_table Specifies the
source-target
object mapping for
the Replicat
process. Use in the
Replicat parameter
file.

MAP

Chapter 1
TABLE | MAP

1-230

Table 1-10 (Cont.) Summary of TABLE and MAP Syntax Components

Component Description Vali
d
For

ATTRCHARSET (charset) specifies the
source character
set information at
UDT attribute level.

TAB
LE

CHARSET character_set Specifies any
supported
character set.

TAB
LE

COLCHARSET character_set Specifies any
supported
character set.

TAB
LE

COLMAP (column_mapping) Maps records
between different
source and target
columns.

TAB
LE
and
MAP

{COLS | COLSEXCEPT} (column_list) Selects or
excludes columns
for processing.

TAB
LE

COMPARECOLS (column_specification) Specifies columns
to use for conflict
detection and
resolution.

TAB
LE
and
MAP

COORDINATED Forces a
transaction to be
processed as a
barrier transaction.

MAP

{DEF| TARGETDEF} template Specifies a source-
definitions or
target-definitions
template.

TAB
LE
and
MAP

EXCEPTIONSONLY Specifies that the
MAP statement is
an exceptions MAP
statement.

MAP

EVENTACTIONS (action) Triggers an action
based on a record
that satisfies a
specified filter rule.

TAB
LE
and
MAP

EXITPARAM 'parameter' Passes a
parameter in the
form of a literal
string to a user
exit.

TAB
LE
and
MAP

Chapter 1
TABLE | MAP

1-231

Table 1-10 (Cont.) Summary of TABLE and MAP Syntax Components

Component Description Vali
d
For

FETCHBEFOREFILTER Directs the
FETCHCOLS or
FETCHCOLSEXCEP
T action to be
performed before a
filter is executed.

TAB
LE

{FETCHCOLS | FETCHCOLSEXCEPT} (column_list) Enables the
fetching of column
values from the
source database
when the values
are not in the
transaction record.

TAB
LE

{FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column_list) Forces column
values to be
fetched from the
database when the
columns are
present in the
transaction log.

TAB
LE

FILTER (filter_clause) Selects records
based on a
numeric value.
FILTER provides
more flexibility than
WHERE.

TAB
LE
and
MAP

GETBEFORECOLS (column_specification) Forces before
images of columns
to be captured and
written to the trail.

TAB
LE

HANDLECOLLISIONS | NOHANDLECOLLISIONS Reconciles the
results of changes
made to the target
table by an initial
load process with
those applied by a
change-
synchronization
group.

MAP

INSERTALLRECORDS Applies all row
changes as
inserts.

MAP

INSERTAPPEND | NOINSERTAPPEND Controls whether
or not Replicat
uses an Oracle
APPEND hint for
INSERT
statements.

MAP

Chapter 1
TABLE | MAP

1-232

Table 1-10 (Cont.) Summary of TABLE and MAP Syntax Components

Component Description Vali
d
For

KEYCOLS (columns) Designates
columns that
uniquely identify
rows.

TAB
LE
and
MAP

MAPALLCOLUMNS| NOMAPALLCOLUMNS Controls whether
or not Replicat
obtains non-key
columns.

NA

MAPEXCEPTION (exceptions_mapping) Specifies that the
MAP statement
contains
exceptions
handling for
wildcarded tables.

MAP

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS Controls whether
or not Replicat
includes invisible
columns in Oracle
target tables for
default column
mapping. For
invisible columns
in Oracle target
tables that use
explicit column
mapping, they are
always mapped so
do not require this
option.

MAP

REPERROR (error, response) Controls how
Replicat responds
to errors when
executing the MAP
statement.

MAP

RESOLVECONFLICT (conflict_resolution_specification) Specifies rules for
conflict resolution.

MAP

SQLEXEC (SQL_specification) Executes stored
procedures and
queries.

TAB
LE
and
MAP

SQLPREDICATE 'WHERE where_clause' Enables a WHERE
clause to select
rows for an initial
load.

TAB
LE

Chapter 1
TABLE | MAP

1-233

Table 1-10 (Cont.) Summary of TABLE and MAP Syntax Components

Component Description Vali
d
For

THREAD (thread_ID) Valid for Replicat in
coordinated mode.
Specifies that the
MAP statement will
be processed by
the specified
Replicat thread.

MAP

THREADRANGE (thread_range, column_list) Valid for Replicat in
coordinated mode.
Specifies that the
MAP statement will
be processed by
the specified range
of Replicat
threads.

MAP

TOKENS (token_definition) Defines user
tokens.

TAB
LE

TRIMSPACES | NOTRIMSPACES Controls whether
trailing spaces are
trimmed or not
when mapping
CHAR to VARCHAR
columns.

TAB
LE
and
MAP

TRIMVARSPACES | NOTRIMVARSPACES Controls whether
trailing spaces are
trimmed or not
when mapping
VARCHAR to CHAR
or VARCHAR
columns.

TAB
LE
and
MAP

WHERE (clause) Selects records
based on
conditional
operators.

TAB
LE
and
MAP

; (Semicolon)
Terminates the
TABLE or MAP
statement and is
required.

TAB
LE
and
MAP

PARTITIONOBJID Available for
Integrated Extract.
This option is used
to specify the
object IDs of the
partitions to be
captured for
partitioned tables.

TAB
LE
and
MAP

Chapter 1
TABLE | MAP

1-234

MAP MOD_COMPARE_COL(tgt_col = source [,...])
tgt_col must be target table column name, and should be the key column to take effect
properly. source can be source table column, constant value (number or string), column
mapping function or SQLEXEC results. For example, source col1 is mapped to target
col1. source col1 before image value is 1, which is a dummy value because it is masked
by DBA for security. Replicat can query actual before image value of target col1 by
SQLEXEC. Using MOD_COMPARE_COLS(), Replicat replaces dummy source col1 value by
SQLEXEC result, so that UPDATE or DELETE operation works properly.

TABLE source_table[, TARGET taget_table]
TABLE is valid in an Extract parameter file.

Use TABLE to specify a source object for which you want Extract to capture data. Specify the
fully qualified two-part or three-part name of the object, such as schema.table or
catalog.schema.table. You can use a wildcard to specify multiple objects with one TABLE
statement. To specify object names and wildcards correctly, see Administering Oracle
GoldenGate.

Use the TARGET option only when Extract must refer to a target definitions file (specified with
the TARGETDEFS parameter) to perform conversions or when the COLMAP option is used to map
columns. Otherwise, it can be omitted from a TABLE parameter. Column mapping with COLMAP
and conversion work usually are performed on the target system to minimize the impact of
replication activities on the source system, but can be performed on the source system if
required. For example, column mapping and conversion can be performed on the source
system in a configuration where there are multiple sources and one target. In this scenario, it
may be easier to manage one target definitions file rather than managing a definitions file for
each source database, especially if there are frequent application changes that require new
definitions files to be generated.

Using TARGET in a TABLE parameter identifies the metadata of the extracted data based on the
target structure, rather than that of the source, to reflect the structure of the record that is
reflected in the definitions file or the column map. Do not use three-part names if TARGET
specifies tables in a target Oracle container database. Replicat can only connect to one
container or catalog, so it is assumed that the container or catalog portion of the name is the
same as the one that Replicat logs into (as specified with USERID, USERIDALIAS, or TARGETDB,
depending on the database).

If no other TABLE syntax options are required to process the specified source data, you can
use a simple TABLE statement, making sure to terminate it with a semicolon.

TABLE sales.customers;

The following shows the use of a wildcard to specify multiple tables:

TABLE sales.*;

The preceding TABLE statements direct Extract to capture all supported column data for the
specified objects and write it to the trail without performing any filtering, conversion, or other
manipulation.

MAP source_table, TARGET target_table
MAP is valid in a Replicat parameter file. You can also use MAP in a Extract parameter file to
change the name of the transactions that Oracle GoldenGate stores for the table. See

Chapter 1
TABLE | MAP

1-235

Use MAP to specify a source object, and use TARGET to specify the target object to
which Replicat applies the replicated source data. Together, the MAP and TARGET clause
comprise a mapping.

• For MAP source_table, specify the source object. Specify the fully qualified two-
part or three-part name of the object, such as schema.table or
catalog.schema.table. You can use a wildcard to specify multiple source objects.

• For TARGET target_table, specify a two-part name, even if the target is a
container database. Replicat can only connect to one container or catalog, so it is
assumed that the container or catalog portion of the name is the same as the one
that Replicat logs into (as specified with USERID, USERIDALIAS, or TARGETDB,
depending on the database). You can use a wildcard to specify multiple target
objects.

The following shows the use of a wildcard to specify multiple tables. Note that the
TARGET clause does not include the tab prefix before the wildcard. That specification
would be invalid, because the wildcard would be resolved as sales.tabtab1,
sales.tabtab2, and so forth.

MAP sales.tab*, TARGET sales.*;

To specify object names and wildcards correctly in the MAP and TARGET clauses, see
Administering Oracle GoldenGate.

If no filtering, mapping, or other work is required for the objects, you can use simple
MAP statements like the following, making sure to terminate each one with a semicolon.

MAP sales.customers, TARGET sales.customers;
MAP fin.*, TARGET fin.*;

ATTRCHARSET (charset)

ATTRCHARSET is valid for TABLE.

Use the ATTRCHARSET clause to specify the source character set information at UDT
attribute level. It overrides the character set defined in the trail file or specified by
SOURCECHARSET, CHARSET, or COLCHARSET parameters.

Valid values are character set names and valid UDT attribute names. Wildcard
attribute names are supported. For example:

TABLE SCHEMA.T*,
 ATTRCHARSET(WE8DEC, col*.attr1, col1.attr*.attr3);

CHARSET character_set

CHARSET is valid for TABLE.

Use the CHARSET clause to specify any supported character set. See CHARSET for
more information.

COLCHARSET character_set

COLCHARSET is valid for TABLE.

Use the COLCHARSET clause to specify any supported character set. See
COLCHARSET for more information.

Chapter 1
TABLE | MAP

1-236

COLMAP (column_mapping)
COLMAP is valid for TABLE and MAP.

Use COLMAP to:

• Map individual source columns to target columns when the source and target columns
have different names.

• Specify default column mapping when the source and target names are identical.

COLMAP provides instructions for selecting, translating, and moving column data from a source
column to a target column.

Note:

To create global rules for column mapping across all tables in subsequent MAP
statements, use the COLMATCH parameter.

Getting More Information About Configuring Column Mapping

See Administering Oracle GoldenGate for more information about using COLMAP. To use
COLMAP, related configuration considerations must be taken into account, such as whether
source and target column structures are identical or different and whether global column
mapping parameters may be sufficient.

Syntax

COLMAP (
[USEDEFAULTS,]
target_column = source_expression [BINARYINPUT]
[, ...]
)

USEDEFAULTS
Automatically maps source and target columns that have the same name if they were not
specified in an explicit column mapping. The data types are translated automatically, as
needed, based on the local data-definitions file. USEDEFAULTS eliminates the need for an
explicit column mapping if those columns have the same name and the data does not
require any filtering or conversion.
Specify USEDEFAULTS before explicit column mappings in the COLMAP clause. For additional
information about default column mapping in COLMAP, see Administering Oracle GoldenGate.

target_column = source_expression
Defines an explicit source-target column mapping.

target_column
Specifies the name of the target column. For supported characters in column names,
see Administering Oracle GoldenGate.

source_expression
Can be any of the following:

Chapter 1
TABLE | MAP

1-237

• The name of a source column, such as ORD_DATE
• A numeric constant, such as 123
• A string constant within single quotes, such as 'ABCD'
• An expression using an Oracle GoldenGate column-conversion function, such

as @STREXT (COL1, 1, 3). See "Column Conversion Functions" for more
information.

BINARYINPUT
Use BINARYINPUT when the target column is defined as a binary data type, such as
RAW or BLOB, but the source input contains binary zeros in the middle of the data. he
source input is handled as binary input, and replacement of data values is
suppressed.

Example 1
MAP ggs.tran, TARGET ggs.tran2, COLMAP (loc2 = loc, type2 = type);

Example 2
TABLE ggs.tran, COLMAP (SECTION = @STRCAT('\u00a7', SECTION));

{COLS | COLSEXCEPT} (column_list)
COLS and COLSEXCEPT are valid for TABLE.

Use COLS and COLSEXCEPT to control the columns for which data is captured.

• COLS specifies columns that contain the data that you want to capture. When COLS
is used, all columns that are not in the COLS list are ignored by Oracle GoldenGate.

• COLSEXCEPT specifies columns to exclude from being captured. When COLSEXCEPT
is used, all columns that are not in the COLSEXCEPT list are captured by Oracle
GoldenGate. For tables with numerous columns, COLSEXCEPT may be more
efficient than listing each column with COLS.

Caution:

Do not exclude key columns, and do not use COLSEXCEPT to exclude
columns that contain data types that are not supported by Oracle
GoldenGate. COLSEXCEPT does not exclude unsupported data types.

To use COLS, the following is required:

• The table must have one or more key columns, or a substitute key must be
defined with the KEYCOLS option. See "KEYCOLS (columns)".

• The key columns or the columns specified with KEYCOLS must be included in the
column list that is specified with COLS. Otherwise, they will not be captured, and an
error will be generated during processing.

Without a primary key, a unique key, or a KEYCOLS clause in the TABLE statement,
Oracle GoldenGate uses all of the columns in the table, rendering COLS unnecessary.

Chapter 1
TABLE | MAP

1-238

Note:

Do not use this option for tables that are processed in pass-through mode by a
data-pump Extract group.

Syntax

{COLS | COLSEXCEPT} (column [, ...])

column
The name of a column. To specify multiple columns, create a comma-delimited list, for
example:

COLS (name, city, state, phone)

Note:

If the database only logs values for columns that were changed in an update
operation, a column specified for capture with COLS might not be available. To make
those columns available, use the FETCHCOLS option in the TABLE statement or enable
supplemental logging for the column.

Example

The COLS clause in this example captures only columns 1 and 3, whereas the COLSEXCEPT
clause captures all columns except columns 1 and 3.

TABLE hq.acct, COLS (col1, col3);
TABLE hq.sales, COLSEXCEPT (col1, col3);

COMPARECOLS (column_specification)
COMPARECOLS is valid for MAP.

Use COMPARECOLS to specify the columns that Replicat uses to detect and resolve update or
delete conflicts when configured with the RESOLVECONFLICT option of MAP in a multi-master
configuration. A conflict is a mismatch between the before image of a record in the trail and
the correct data in the target table.

To use COMPARECOLS, the before image must be available in the trail record by means of the
GETBEFORECOLS parameter in the Extract TABLE statement. The specified columns must exist
in the target database and also be part of the Replicat configuration (satisfy the TARGET
specification with or without a COLMAP clause).

Only scalar data types are supported by COMPARECOLS as comparison columns. A scalar data
type can be used in a WHERE clause, has a single, atomic value and no internal components.
Scalar data types supported by Oracle GoldenGate include the following, but not LOBs.

• Numeric data types

• Date data types

• Character data types

Chapter 1
TABLE | MAP

1-239

Some examples of non-scalar data types are spatial data, user-defined data types,
large objects (LOB), XML, reference data types, and RAW. A row being considered for
CDR can include non-scalar data so long as the conflict is not in the non-scalar data
itself.

To specify conflict resolution routines, use the RESOLVECONFLICT option of MAP.
COMPARECOLS and RESOLVECONFLICT can be in any order in the MAP statement.

Getting More Information About Configuring the CDR Feature

See Administering Oracle GoldenGate for more information about configuring conflict
detection and resolution.

Syntax

COMPARECOLS(
{ON UPDATE | ON DELETE}
{ALL | KEY | KEYINCLUDING (col[,...]) | ALLEXCLUDING (col[,...]) }
[,...]
)

{ON UPDATE | ON DELETE}
Specifies whether the before image of the specified columns should be compared for
updates or deletes. You can use ON UPDATE only, ON DELETE only, or both. If using
both, specify them within the same COMPARECOLS clause. See the example for how to
use both.

{ALL | KEY | KEYINCLUDING (col[,...]) | ALLEXCLUDING (col[,...])}
Specifies the columns for which a before image is captured.

ALL
Compares using all columns in the target table. An error is generated if any
corresponding before images are not available in the trail. Using ALL imposes the
highest processing load for Replicat, but allows conflict-detection comparisons to
be performed using all columns for maximum accuracy.

KEY
Compares only the primary key columns. This is the fastest option, but does not
permit the most accurate conflict detection, because keys can match but non-key
columns could be different.

KEYINCLUDING
Compares the primary key columns and the specified column or columns. This is
a reasonable compromise between speed and detection accuracy.

ALLEXCLUDING
Compares all columns except the specified columns. For tables with numerous
columns, ALLEXCLUDING may be more efficient than KEYINCLUDING. Do not exclude
key columns.

Example 1
In the following example, the key columns plus the name, address, and salary
columns are compared for conflicts.

MAP src, TARGET tgt
COMPARECOLS (

Chapter 1
TABLE | MAP

1-240

ON UPDATE KEYINCLUDING (name, address, salary),
ON DELETE KEYINCLUDING (name, address, salary));

Example 2
In the following example, the comment column is ignored and all other columns are compared
for conflicts.

MAP src, TARGET tgt
COMPARECOLS (ON UPDATE ALLEXCLUDING (comment))

COORDINATED
COORDINATED is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use the COORDINATED option to force transactions made on objects in the same MAP statement
to be processed as barrier transactions. It causes all of the threads across all MAP statements
to synchronize to the same trail location. The synchronized position is the beginning of the
transaction that contains a record that satisfies a MAP that contains the COORDINATED keyword.
The transaction is then applied atomically by a single thread, which is either the thread with
the lowest thread ID among the currently running threads or a dedicated thread with the ID of
0 if USEDEDICATEDCOORDINATIONTHREAD is specified in the parameter file.

THREAD and THREADRANGE clauses specified in conjunction with COORDINATED are ignored
because the record will not be applied by the designated thread(s). The COORDINATED
keyword results in temporarily suspending parallelism so that the target tables are in a
consistent state before the force-coordinated transaction is applied. After this point, parallel
execution commences again.

Replicat by default coordinates transactions in which the primary key is updated, transactions
that perform DDL, and certain EVENTACTIONS actions. COORDINATED provides for explicit
coordination.

See Administering Oracle GoldenGate for more information about Coordinated Replicat.

Syntax

COORDINATED

Example

The following is an example of the use of the COORDINATED option. In this example, business
rules require that the target tables be in a consistent state before Replicat executes
transactions that include SQLEXEC operations on the objects specified in the MAP statement.
Parallelism must be temporarily converted to serial SQL processing in this case.

Given the following MAP statement, if another thread inserts into t2 a record with a value of
100 for col_val before the insert to t1 is performed by thread 1, then the SQLEXEC will delete
the row. If other threads are still processing the record that has the value of 100, the SQLEXEC
fails. The results of this MAP statement are, therefore, not predictable.

MAP u1.t1, TARGET u2.t1 SQLEXEC (ID test2, QUERY ' delete from u2.t2 where col_val
=100 ', NOPARAMS)), THREAD(1);

Conversely, when COORDINATED is used, all of the threads synchronize at a common point,
including the one processing the col_val=100 record, thereby removing the ambiguity of the
results.

MAP u1.t1, TARGET u2.t1 SQLEXEC (ID test2, QUERY ' delete from u2.t2 where col_val
=100 ', NOPARAMS)), THREAD(1), COORDINATED;

Chapter 1
TABLE | MAP

1-241

{DEF| TARGETDEF} template
DEF and TARGETDEF are valid for TABLE and MAP.

Use DEF and TARGETDEF to specify the name of a definitions template that was created
by the DEFGEN utility.

• DEF specifies a source-definitions template.

• TARGETDEF specifies a target-definitions template.

A template is based on the definitions of a specific table. It enables new tables that
have the same definitions as the original table to be added to the Oracle GoldenGate
configuration without running DEFGEN for them, and without having to stop and start
the Oracle GoldenGate process. The definitions in the template are used for definitions
lookups.

Syntax

{DEF | TARGETDEF} template

template
The name of one of the following definitions templates generated by the DEFGEN utility:

• Use DEF to specify a source-definitions template generated by the DEF option of
the TABLE parameter in the DEFGEN parameter file.

• Use TARGETDEF to specify a target-definitions template generated by the
TARGETDEF option of the TABLE parameter in the DEFGEN parameter file.

The definitions contained in the template must be identical to the definitions of the
table or tables that are specified in the same TABLE or MAP statement.
Case-sensitivity of the template name is observed when the name is specified the
same way that it is stored in the database. Make certain that the template name is
specified the same way in both the DEF or TARGETDEF clause in this TABLE or MAP
statement, and in the DEFGEN parameter file that created the template.

Example 1
This example shows a case-insensitive template name.

MAP acct.cust*, TARGET acct.cust*, DEF custdef;

Example 2
This example shows a case-sensitive template name when the database requires
quotes to enforce case-sensitivity.

TABLE acct.cust*, DEF "CustDef";

Example 3
This example shows a case where both DEF and TARGETDEF are used.

MAP acct.cust*, TARGET acc.cust*, DEF custdef, TARGETDEF tcustdef;

EXCEPTIONSONLY
EXCEPTIONSONLY is valid for MAP.

Use EXCEPTIONSONLY in an exceptions MAP statement intended for error handling. The
exceptions MAP statement must follow the MAP statement for which errors are

Chapter 1
TABLE | MAP

1-242

anticipated. The exceptions MAP statement executes only if an error occurs for the last record
processed in the preceding regular MAP statement.

To use EXCEPTIONSONLY, use a REPERROR statement with the EXCEPTION option either within
the regular MAP statement or at the root of the parameter file. See "REPERROR" for more
information.

Note:

If using the Oracle GoldenGate Conflict Detection and Resolution (CDR) feature, a
REPERROR with EXCEPTION is not needed. CDR automatically sends all operations
that cause errors to the exceptions MAP statement.

The exceptions MAP statement must specify the same source table as in the regular MAP
statement, but the target table in the exceptions MAP statement must be an exceptions table.

Note:

See "MAPEXCEPTION (exceptions_mapping)" to support wildcarded object names.

Syntax

EXCEPTIONSONLY

EVENTACTIONS (action)
EVENTACTIONS is valid for TABLE and MAP. Some options apply only to one or the other
parameter and are noted as such in the descriptions.

Use EVENTACTIONS to cause the process to take a defined action based on a record in the
trail, known as the event record, that qualifies for a specific filter rule. You can use this
system, known as the event marker system (or event marker infrastructure) to customize
processing based on database events. For example, you can suspend a process to perform a
transformation or report statistics. The event marker feature is supported for the replication of
data changes, but not for initial loads.

To trigger actions that do not require data to be applied to target tables, you can use the
Replicat TABLE parameter with filtering options that support EVENTACTIONS. See "TABLE for
Replicat" for more information.

You may need to combine two or more actions to achieve your goals. When multiple actions
are combined, the entire EVENTACTIONS statement is parsed first, and then the specified
options execute in order of precedence. The following list shows the order of precedence.
The actions listed before Process the record occur before the record is written to the trail or
applied to the target (depending on the process). Actions listed after Process the record are
executed after the record is processed.

TRACE
LOG
CHECKPOINT BEFORE
DISCARD

Chapter 1
TABLE | MAP

1-243

SHELL
ROLLOVER
(Process the record)
IGNORE
REPORT
SUSPEND
ABORT
CHECKPOINT AFTER
FORCESTOP
STOP

To prevent the event record itself from being processed in the normal manner, use the
IGNORE or DISCARD option. Because IGNORE and DISCARD are evaluated before the
record itself, they prevent the record from being processed. Without those options,
EVENTACTIONS for Extract writes the record to the trail, and EVENTACTIONS for Replicat
applies that operation to the target database.

You should take into account the possibility that a transaction could contain two or
more records that trigger an event action. In such a case, there could be multiple
executions of certain EVENTACTIONS specifications. For example, encountering two
qualifying records that trigger two successive ROLLOVER actions will cause Extract to
roll over the trail twice, leaving one of the two files empty of transaction data.

You should also take into account that when the GETUPDATEBEFORES parameter is in
effect, two records are generated for UPDATE operations: a record that contains the
before image and a record that contains the after image. An event action is triggered
for each of those records when the operation qualifies as an event record. You can use
the BEFOREAFTERINDICATOR token of the GGHEADER column-conversion function as a
filter in a FILTER clause to qualify the records so that the event action triggers only
once, either on the before record or the after record, but not both.

The following example filters on the BEFORE indicator. The EVENTACTION issues the
ECHO shell command to output the string 'Triggered on BEFORE' to the event log when a
BEFORE record is encountered.

TABLE qasource.test, &
FILTER(@STRFIND('BEFORE', @GETENV('GGHEADER' , 'BEFOREAFTERINDICATOR')) > 0), &
EVENTACTIONS (shell ('echo --== Triggered on BEFORE ==-- '), LOG);

The following shows the result of the event action:

013-03-06 17:59:31 INFO OGG-05301 Shell command output: '--== Triggered
on AFTER ==--'

The following example does the same thing, but for the AFTER indicator.

TABLE qasource.test, &
FILTER(@STRFIND('AFTER', @GETENV('GGHEADER' , 'BEFOREAFTERINDICATOR')) > 0), &
EVENTACTIONS (shell ('echo --== Triggered on AFTER ==-- '), LOG);

Syntax

EVENTACTIONS (
[STOP | SUSPEND | ABORT | FORCESTOP]
[IGNORE [RECORD | TRANSACTION [INCLUDEVENT]]
[DISCARD]

Chapter 1
TABLE | MAP

1-244

[LOG [INFO | WARNING]]
[REPORT]
[ROLLOVER]
[SHELL 'command' |
 SHELL ('command', VAR variable = {column_name | expression}
 [, ...])]
[TRACE[2] file [TRANSACTION] [DDL[INCLUDE] | DDLONLY] [PURGE | APPEND]]
[CHECKPOINT [BEFORE | AFTER | BOTH]]
[, ...]
)

STOP
Valid in TABLE for Extract and in MAP for Replicat.
Brings the process to a graceful stop when the specified event record is encountered. The
process waits for other operations within event transaction to be completed before stopping.
If the transaction is a Replicat grouped or batched transaction, the current group of
transactions are applied before the process stops gracefully. The process restarts at the next
record after the event record, so long as that record also signified the end of a transaction.
The process logs a message if it cannot stop immediately because a transaction is still open.
However, if the event record is encountered within a long-running open transaction, there is
no warning message that alerts you to the uncommitted state of the transaction. Therefore,
the process may remain running for a long time despite the STOP event.
STOP can be combined with other EVENTACTIONS options except for ABORT and FORCESTOP.

SUSPEND
Valid in TABLE for Extract and in MAP for Replicat.
Pauses the process so that it retains the active context of the current run and can still
respond to SEND commands that are issued in GGSCI. When a process is suspended, the
INFO command shows it as RUNNING, and the RBA field shows the last checkpoint position.
To resume processing, issue the SEND command with the RESUME option.
To use the CHECKPOINT BEFORE option in conjunction with SUSPEND, the event record must be
the start of a transaction for the SUSPEND to take place. That way, if the process is killed while
in the suspended state, the event record with the SUSPEND action is the first record to be
reprocessed upon restart. If both CHECKPOINT BERORE and SUSPEND are specified, but the
event record is not the start of a transaction, the process abends before SUSPEND can take
place.
To use the CHECKPOINT AFTER option in conjunction with SUSPEND, the RESUME command must
be issued before the checkpoint can take place, and the event record must be a COMMIT
record. If the process is killed while in a SUSPEND state, the process reprocesses the
transaction from the last checkpointed position upon restart.
SUSPEND cannot be combined with ABORT but can be combined with all other options.

ABORT
Valid in TABLE for Extract and in MAP for Replicat.
Forces the process to exit immediately when the specified event record is encountered,
whether or not there are open transactions. The event record is not processed. A fatal error
is written to the log, and the event record is written to the discard file if DISCARD is also
specified. The process will undergo recovery on startup.
ABORT can be combined only with CHECKPOINT BEFORE, DISCARD, SHELL, and REPORT.

FORCESTOP
Valid in TABLE for Extract and in MAP for Replicat.

Chapter 1
TABLE | MAP

1-245

Forces the process to stop gracefully when the specified event record is encountered,
but only if the event record is the last operation in the transaction or the only record in
the transaction. The record is written normally.
If the event record is encountered within a long-running open transaction, the process
writes a warning message to the log and exits immediately, as in ABORT. In this case,
recovery may be required on startup. If the FORCESTOP action is triggered in the middle
of a long-running transaction, the process exits without a warning message.
FORCESTOP can be combined with other EVENTACTIONS options except for ABORT, STOP,
CHECKPOINT AFTER, and CHECKPOINT BOTH. If used with ROLLOVER, the rollover only
occurs if the process stops gracefully.

IGNORE [RECORD | TRANSACTION [INCLUDEVENT]]
Valid in TABLE for Extract and in MAP for Replicat.
Ignores some or all of the transaction, depending on the selected action.

• RECORD is the default. It forces the process to ignore only the specified event
record, but not the rest of the transaction. No warning or message is written to the
log, but the Oracle GoldenGate statistics are updated to show that the record was
ignored.

• Use TRANSACTION to ignore the entire transaction that contains the record that
triggered the event. If TRANSACTION is used, the event record must be the first one
in the transaction. When ignoring a transaction, the event record is also ignored
by default. TRANSACTION can be shortened to TRANS.

• Use INCLUDEEVENT with TRANSACTION to propagate the event record to the trail or
to the target, but ignore the rest of the associated transaction.

IGNORE can be combined with all other EVENTACTIONS options except ABORT and
DISCARD.
An IGNORE action is processed after all the qualification, filtering, mapping, and user-
exit operations are processed. The record or transaction is ignored in the final output
phase and prevents the record or transaction from being written to the output target
(the trail in the case of Extract or the database in the case of Replicat). Therefore, in
certain expressions, for example those that include SQLEXEC operations, the SQLEXEC
will be executed before the IGNORE is processed. This means that, while the record is
not written to the trail or target database, all of the effects of processing the record
through qualification, filtering, mapping and user-exit will occur.
This action is not valid for DDL records. Because DDL operations are autonomous,
ignoring a record is equivalent to ignoring the entire transaction.

DISCARD
Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to:

• write the specified event record to the discard file.

• update the Oracle GoldenGate statistics to show that the record was discarded.

The process resumes processing with the next record in the trail.
DISCARD can be combined with all other EVENTACTIONS options except IGNORE.

LOG [INFO | WARNING]
Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to log the event when the specified event record is encountered.
The message is written to the report file, to the Oracle GoldenGate error log, and to
the system event log.

Chapter 1
TABLE | MAP

1-246

Use the following options to specify the severity of the message:

• INFO specifies a low-severity informational message. This is the default.

• WARNING specifies a high-severity warning message.

LOG can be combined with all other EVENTACTIONS options except ABORT. If using ABORT, LOG
is not needed because ABORT logs a fatal error before the process exits.

REPORT
Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to generate a report file when the specified event record is encountered.
This is the same as using the SEND command with the REPORT option in GGSCI.
The REPORT message occurs after the event record is processed (unless DISCARD, IGNORE, or
ABORT are used), so the report data will include the event record.
REPORT can be combined with all other EVENTACTIONS options.

ROLLOVER
Valid in TABLE for Extract.
Causes Extract to roll over the trail to a new file when the specified event record is
encountered. The ROLLOVER action occurs before Extract writes the event record to the trail
file, which causes the record to be the first one in the new file unless DISCARD, IGNORE or
ABORT are also used.
ROLLOVER can be combined with all other EVENTACTIONS options except ABORT. ROLLOVER
cannot be combined with ABORT because ROLLOVER does not cause the process to write a
checkpoint, and ROLLOVER happens before ABORT.
Without a ROLLOVER checkpoint, ABORT causes Extract to go to its previous checkpoint upon
restart, which would be in the previous trail file. In effect, this cancels the rollover.

SHELL 'command'
Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to execute the specified shell command when the event record is
encountered. SHELL 'command' executes a basic shell command. The command string is
taken at its literal value and sent to the system that way. The command is case-sensitive.
Enclose the command string within single quote marks, for example:

EVENTACTIONS (SHELL 'echo hello world! > output.txt')

If the shell command is successful, the process writes an informational message to the
report file and to the event log. Success is based upon the exit status of the command in
accordance with the UNIX shell language. In that language, zero indicates success.
If the system call is not successful, the process abends with a fatal error. In the UNIX shell
language, non-zero equals failure. Note that the error message relates only to the execution
of the SHELL command itself, and not the exit status of any subordinate commands. For
example, SHELL can execute a script successfully, but commands in that script could fail.
SHELL can be combined with all other EVENTACTIONS options.

SHELL ('command', VAR variable = {column_name | expression} [, ...])
Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to execute the specified shell command when the event record is
encountered and supports parameter passing. The command and the parameters are case-
sensitive.
When SHELL is used with arguments, the entire command and argument strings must be
enclosed within parentheses, for example:

Chapter 1
TABLE | MAP

1-247

EVENTACTIONS (SHELL
('Current timestamp: $1 SQLEXEC result is $2 ',VAR $1 =
@GETENV('JULIANTIMESTAMP'),
VAR $2 = mytest.description));

The input is as follows:

command
Is the command, which is passed literally to the system.

VAR
Is a required keyword that starts the parameter input.

variable
Is the user-defined name of the placeholder variable where the run-time variable
value will be substituted. Extra variables that are not used in the command are
ignored. Note that any literal in the SHELL command that matches a VAR variable
name is replaced by the substituted VAR value. This may have unintended
consequences, so test your code before putting it into production.

column_name
Can be the before or after (current) image of a column value.

expression
can be the following, depending on whether column data or DDL is being
handled.

• Valid expressions for column data:

– The value from a TOKENS clause in a TABLE statement.

– A return value from any Oracle GoldenGate column-conversion function.

– A return value from a SQLEXEC query or procedure.

• Valid expressions for DDL:

– Return value from @TOKEN function (Replicat only).

– Return value from @GETENV function.

– Return value from other functions that do not reference column data (for
example, @DATENOW).

– Return value from @DDL function.

TRACE[2] file [TRANSACTION] [DDL[INCLUDE] | DDLONLY] [PURGE | APPEND]
Valid in TABLE for Extract and in MAP for Replicat.
Causes process trace information to be written to a trace file when the specified event
record is encountered. TRACE provides step-by-step processing information. TRACE2
identifies the code segments on which the process is spending the most time.
By default (without options), standard DML tracing without consideration of
transaction boundaries is enabled until the process terminates.

• file specifies the name of the trace file and must appear immediately after the
TRACE keyword. You can specify a unique trace file, or use the default trace file
that is specified with the standalone TRACE or TRACE2 parameter.

Chapter 1
TABLE | MAP

1-248

The same trace file can be used across different TABLE or MAP statements in which
EVENTACTIONS TRACE is used. If multiple TABLE or MAP statements specify the same trace
file name, but the TRACE options are not used consistently, preference is given to the
options in the last resolved TABLE or MAP that contains this trace file.

• Use TRANSACTION to enable tracing only until the end of the current transaction, instead
of when the process terminates. For Replicat, transaction boundaries are based on the
source transaction, not the typical Replicat grouped or batched target transaction.
TRANSACTION can be shortened to TRANS. This option is valid only for DML operations.

• DDL[INCLUDE] traces DDL and also DML transactional data processing. Either DDL or
DDLINCLUDE is valid.

• DDLONLY traces DDL but does not trace DML transactional data.

These options are valid only for Replicat. By default DDL tracing is disabled.

• Use PURGE to truncate the trace file before writing additional trace records, or use APPEND
to write new trace records at the end of the existing records. APPEND is the default.

TRACE can be combined with all other EVENTACTIONS options except ABORT.
To disable tracing to the specified trace file, issue the GGSCI SEND process command with
the TRACE OFF file_name option.

CHECKPOINT [BEFORE | AFTER | BOTH]
Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to write a checkpoint when the specified event record is encountered.
Checkpoint actions provide a context around the processing that is defined in TABLE or MAP
statements. This context has a begin point and an end point, thus providing synchronization
points for mapping the functions that are performed with SQLEXEC and user exits.

BEFORE
BEFORE for an Extract process writes a checkpoint before Extract writes the event record
to the trail. BEFORE for a Replicat process writes a checkpoint before Replicat applies the
SQL operation that is contained in the record to the target.
BEFORE requires the event record to be the first record in a transaction. If it is not the first
record, the process will abend. Use BEFORE to ensure that all transactions prior to the
one that begins with the event record are committed.
When using EVENTACTIONS for a DDL record, note that since each DDL record is
autonomous, the DDL record is guaranteed to be the start of a transaction; therefore the
CHECKPOINT BEFORE event action is implied for a DDL record.
CHECKPOINT BEFORE can be combined with all EVENTACTIONS options.

AFTER
AFTER for Extract writes a checkpoint after Extract writes the event record to the trail.
AFTER for Replicat writes a checkpoint after Replicat applies the SQL operation that is
contained in the record to the target.
AFTER flags the checkpoint request as an advisory, meaning that the process will only
issue a checkpoint at the next practical opportunity. For example, in the case where the
event record is one of a multi-record transaction, the checkpoint will take place at the
next transaction boundary, in keeping with the Oracle GoldenGate data-integrity model.
When using EVENTACTIONS for a DDL record, note that since each DDL record is
autonomous, the DDL record is guaranteed to be the end (boundary) of a transaction;
therefore the CHECKPOINT AFTER event action is implied for a DDL record.
CHECKPOINT AFTER can be combined with all EVENTACTIONS options except ABORT.

Chapter 1
TABLE | MAP

1-249

BOTH
BOTH combines BEFORE and AFTER. The Extract or Replicat process writes a
checkpoint before and after it processes the event record.
CHECKPOINT BOTH can be combined with all EVENTACTIONS options except ABORT.

CHECKPOINT can be shortened to CP.

Example 1
The following example shows how you can configure a process to ignore certain
records. When Extract processes any trail record that has name = abc, it ignores the
record.

TABLE fin.cust, &
WHERE (name = 'abc'), &
EVENTACTIONS (ignore);

Example 2
Based on the compatibility and precedence rules of EVENTACTIONS options, DISCARD
takes higher precedence than ABORT, so in this example the event record gets written
to the discard file before the process abends.

MAP fin.cust, TARGET fin.cust2, &
WHERE (name = 'abc'), &
EVENTACTIONS (DISCARD, ABORT);

Example 3
The following example executes a SHELL action. It gets the result of a SQLEXEC query
and pairs it with the current timestamp.

TABLE src.tab &
SQLEXEC (id mytest, query 'select description from lookup &
where pop = :mycol2', params (mycol2 = col2)), &
EVENTACTIONS (SHELL ('Current timestamp: $1 SQLEXEC result is $2 ', &
VAR $1 = @GETENV('JULIANTIMESTAMP'), VAR $2 = mytest.description));

The shell command that results from this example could be similar to the following:

'Current timestamp: 212156002704718000 SQLEXEC result is test passed'

Example 4
The following example shows how invalid results can occur if a placeholder name
conflicts with literal text in the command string. In this example, a placeholder
named $1 is associated with a column value, and the SHELL command echoes a literal
string that includes $1.

MAP src.tab1, TARGET targ.tab1 &
EVENTACTIONS (SHELL ('echo Extra charge for $1 is $1', VAR $1 = COL1));

This is the unintended result, assuming the column value is gift wrap:

'Extra charge for gift wrap is gift wrap'

Changing the placeholder variable to $col results in the correct output:

MAP src.tab1, TARGET targ.tab1 &
EVENTACTIONS (SHELL ('echo Extra charge for $col is $1', VAR $col = COL1));
'Extra charge for gift wrap is $1'

The following shows similar potential for unintended results:

Chapter 1
TABLE | MAP

1-250

MAP src.tab1, TARGET targ.tab1 &
EVENTACTIONS (SHELL ('Timestamp: $1 Price is $13 > out.txt ', &
VAR $1 = @GETENV('JULIANTIMESTAMP')));

The redirected output file might contain a string like this (notice the second timestamp
contains an appended value of 3):

'Timestamp: 212156002704718000 Price is 2121560027047180003'

The intended result is this:

'Timestamp: 212156002704718000 Price is $13'

Example 5
These examples show different ways to configure tracing.

MAP tab1, TARGET tab1 EVENTACTIONS (TRACE ./dirrpt/trace1.txt);
MAP tab2, TARGET tab2 EVENTACTIONS (TRACE ./dirrpt/trace2.txt TRANSACTION);

• In the first MAP statement, the trace1.txt trace file is generated just before the first tab1
event record is applied to the target. It contains all of the tracing information from that
point forward until Replicat terminates or unless tracing is turned off with the GGSCI
SEND REPLICAT command.

• Because the second MAP statement contains the TRANSACTION option, the trace2.txt file
is generated just before the first tab2 event record is applied to the target, but the tracing
stops automatically at the conclusion of the transaction that contains the tab2 event
record.

Example 6
The following shows how EVENTACTIONS with SUSPEND can be used.

• Case 1: You are replicating DDL, and you want to ensure that there is enough space in
the target database to create a new table. Use EVENTACTIONS with SUSPEND in the MAP
statement that maps the CREATE TABLE DDL operation, and then execute a SQL
statement in that MAP statement to query the amount of space remaining in a tablespace.
If there is enough space, use SEND REPLICAT with RESUME to resume processing
immediately; if not, leave Replicat suspended until a DBA can add the space, and then
use SEND REPLICAT with RESUME to resume processing.

• Case 2: You want to fix unique key violations when they occur on any table. Because
Replicat is processing thousands of tables, you do not want to stop the process each
time there is a violation, because this would cause Replicat to spend time rebuilding the
object cache again upon restart. By using EVENTACTIONS with SUSPEND, you can simply
suspend processing until the problem is fixed.

• Case 3: At the end of the day, you suspend Replicat to run daily reports, and then
resume processing immediately without stopping and restarting the process.

EXITPARAM 'parameter'
EXITPARAM is valid for TABLE and MAP.

Use EXITPARAM to pass a parameter to the EXIT_PARAMS function of a user exit routine
whenever a record from the TABLE or MAP statement is encountered.

Syntax

EXITPARAM 'parameter string'

Chapter 1
TABLE | MAP

1-251

'parameter string'
A parameter that is a literal string. Enclose the parameter within single quotes. You
can specify up to 100 characters for the parameter string.

FETCHBEFOREFILTER
FETCHBEFOREFILTER is valid for TABLE.

Use FETCHBEFOREFILTER to fetch columns that are specified with FETCHCOLS or
FETCHCOLSEXCEPT before a FILTER operation is executed. Fetching before the filter
ensures that values required for the filter are available. Without FETCHBEFOREFILTER,
fetches specified with FETCHCOLS or FETCHCOLSEXCEPT are not performed until after
filters are executed. Specify FETCHBEFOREFILTER before FILTER in the parameter file.

Do not use this option for tables being processed in pass-through mode by a data-
pump Extract group.

Syntax

FETCHBEFOREFILTER

Example

TABLE hr.salary, FETCHCOLS (sal_level),
FETCHBEFOREFILTER,
FILTER (sal_level >= 8)
;

{FETCHCOLS | FETCHCOLSEXCEPT} (column_list)
FETCHCOLS and FETCHCOLSEXCEPT are valid for TABLE. These options are only valid for
the primary Extract.

Use FETCHCOLS and FETCHCOLSEXCEPT to fetch column values from the database when
the values are not present in the transaction log record. Use this option if the database
only logs the values of columns that were changed in an update operation, but you
need to ensure that other column values required for FILTER operations are available.

• FETCHCOLS fetches the specified columns.

• FETCHCOLSEXCEPT fetches all columns except the specified columns. For tables
with numerous columns, FETCHCOLSEXCEPT may be more efficient than listing each
column with FETCHCOLS.

FETCHCOLS and FETCHCOLSEXCEPT are valid for all databases that are supported by
Oracle GoldenGate.

For an Oracle Database, Oracle GoldenGate fetches the values from the undo
tablespace through Oracle's Flashback Query mechanism. The query provides a read-
consistent image of the columns as of a specific time or SCN. For more information
about how Oracle GoldenGate uses Flashback Query.

Instead of using FETCHCOLS or FETCHCOLSEXCEPT, it may be more efficient to enable
supplemental logging for the desired columns.

To control fetching and enable a response when a column specified for fetching cannot
be located, use the FETCHOPTIONS parameter. To include fetch results in statistical
displays generated by the STATS EXTRACT command, use the STATOPTIONS parameter.

Chapter 1
TABLE | MAP

1-252

If values for columns specified with FETCHCOLS or FETCHCOLSEXCEPT are present in the
transaction log, no database fetch is performed. This reduces database overhead.

Syntax

{FETCHCOLS | FETCHCOLSEXCEPT} (column [, ...])

column
Can be one of the following:

• A column name or a comma-delimited list of column names, as in (col1, col2).

• An asterisk wildcard, as in (*).

Example

The FETCHCOLS clause in this example fetches only columns 1 and 3, whereas the
FETCHCOLSEXCEPT clause fetches all columns except columns 1 and 3.

TABLE hq.acct, FETCHCOLS (col1, col3);
TABLE hq.sales, FETCHCOLSEXCEPT (col1, col3);

{FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column_list)
FETCHMODCOLS and FETCHMODCOLSEXCEPT are valid for TABLE. These options are only valid for
the primary Extract.

Use FETCHMODCOLS and FETCHMODCOLSEXCEPT to force column values to be fetched from the
database even if the columns are present in the transaction log. These Depending on the
database type, a log record can contain all of the columns of a table or only the columns that
changed in the given transaction operation.

• FETCHMODCOLS fetches the specified columns.

• FETCHMODCOLSEXCEPT fetches all columns that are present in the transaction log, except
the specified columns. For tables with numerous columns, FETCHMODCOLSEXCEPT might be
more efficient than listing each column with FETCHMODCOLS.

FETCHMODCOLS and FETCHMODCOLSEXCEPT are valid for all databases that are supported by
Oracle GoldenGate.

Observe the following usage guidelines:

• Do not use FETCHMODCOLS and FETCHMODCOLSEXCEPT for key columns.

Syntax

{FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column [, ...])

(column [, ...])
Can be one of the following:

• A column name or a comma-delimited list of column names, as in (col1, col2).

• An asterisk wildcard, as in (*).

Example

The FETCHMODCOLS clause in this example fetches only columns 1 and 3, whereas the
FETCHMODCOLSEXCEPT clause fetches all columns except columns 1 and 3.

Chapter 1
TABLE | MAP

1-253

TABLE hq.acct, FETCHMODCOLS (col1, col3);
TABLE hq.sales, FETCHMODCOLSEXCEPT (col1, col3);

FILTER (filter_clause)
FILTER is valid for TABLE and MAP.

Use FILTER to select or exclude records based on a numeric value. A filter expression
can use conditional operators, Oracle GoldenGate column-conversion functions, or
both.

Note:

To filter based on a string, use one of the Oracle GoldenGate string
functions. See "Column Conversion Functions" for more information about
these functions. You can also use the WHERE option. See "WHERE (clause)".

Separate all FILTER components with commas. A FILTER clause can include the
following:

• Numbers

• Columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

+ (plus)

- (minus)

* (multiply)

/ (divide)

\ (remainder)

• Comparison operators:

> (greater than)

>= (greater than or equal)

< (less than)

<= (less than or equal)

= (equal)

<> (not equal)

Results derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• Conjunction operators: AND, OR
Enclose literals in single quotes. Specify case-sensitive column names as they are
stored in the database, and enclose them in double quotes if the database requires
quotes to enforce case-sensitivity (such as Oracle).

Chapter 1
TABLE | MAP

1-254

Oracle GoldenGate supports FILTER for columns that have a multi-byte character set.

Syntax

FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
, filter_clause
[, RAISEERROR error_number]
)

filter_clause
Selects records based on an expression, such as:

FILTER ((PRODUCT_PRICE*PRODUCT_AMOUNT) > 10000))

You can use the column-conversion functions of Oracle GoldenGate in a filter clause, as in:

FILTER (@COMPUTE (PRODUCT_PRICE*PRODUCT_AMOUNT)>10000)

Enclose literals in single quotes. Specify case-sensitive column names as they are stored in
the database, and enclose them in double quotes if the database requires quotes to enforce
case-sensitivity (such as Oracle).
Oracle GoldenGate does not support FILTER for columns that have a multi-byte character set
or a character set that is incompatible with the character set of the local operating system.
The maximum size of the filter clause is 5,000 bytes.

ON INSERT | ON UPDATE | ON DELETE
Restricts record filtering to the specified operation(s). Separate operations with commas, for
example:

FILTER (ON UPDATE, ON DELETE,
@COMPUTE (PRODUCT_PRICE*PRODUCT_AMOUNT)>10000)

The preceding example executes the filter for UPDATE and DELETE operations, but not INSERT
operations.

IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE
Does not apply the filter for the specified operation(s). Separate operations with commas, for
example:

FILTER (IGNORE INSERT, @COMPUTE (PRODUCT_PRICE*PRODUCT_AMOUNT)>10000)

The preceding example executes the filter on UPDATE and DELETE operations, but ignores
INSERT operations.

RAISEERROR error
Raises a user-defined error number if the filter fails. Can be used as input to the REPERROR
parameter to invoke error handling. Make certain that the value for error is outside the
range of error numbers that is used by the database or by Oracle GoldenGate. For example:
RAISEERROR 21000.

GETBEFORECOLS (column_specification)
GETBEFORECOLS is valid for TABLE.

Use GETBEFORECOLS to specify columns for which you want before image to be captured and
written to the trail upon an update or delete operation. Use GETBEFORECOLS when using the
Oracle GoldenGate Conflict Detection and Resolution (CDR) feature in a bi-directional or

Chapter 1
TABLE | MAP

1-255

multi-master configuration. Also use it when using conversion functions or other
processing features that require the before image of a record.

For updates, the before image of the specified columns is included in the trail whether
or not any given column is modified. In addition to the columns specified in the
GETBEFORECOLS clause, an Oracle database will also log the before image of other
columns that are modified. For other supported databases, you can use the
GETUPDATEBEFORES parameter to force the inclusion of the before values of other
columns that are modified.

Note:

GETUPDATEBEFORES overrides GETBEFORECOLS if both are used in the same
parameter file.

To use this parameter, supplemental logging must be enabled for any database that
does not log before values by default.

GETBEFORECOLS overrides COMPRESSUPDATES and COMPRESSDELETES if used in the same
parameter file.

This parameter is valid for all databases except DB2. For DB2 on all platforms that are
supported by Oracle GoldenGate, use the GETUPDATEBEFORES parameter instead of
GETBEFORECOLS.

Syntax

GETBEFORECOLS(
{ON UPDATE | ON DELETE}
{ALL | KEY | KEYINCLUDING (col[,...]) | KEYANDMOD | | ALLEXCLUDING (col[,...]) }
[,...]
)

{ON UPDATE | ON DELETE}
Specifies whether the before image of the specified columns should be captured for
updates or deletes. You can use ON UPDATE only, ON DELETE only, or both. If using
both, specify them within the same GETBEFORECOLS clause. See the example for how
to use both.

{ALL | KEY | KEYINCLUDING (col[,...]) | KEYANDMOD | ALLEXCLUDING
(col[,...])}
Specifies the columns for which a before image is captured.

ALL
Captures a before image of all supported data type columns in the target table,
including the primary key; all unsupported columns are skipped and logged in the
Extract or Replicat parameter file as an information message. This imposes the
highest processing load for Extract, but allows conflict-detection comparisons to
be performed using all columns for maximum accuracy.

KEY
Capture before image only for the primary key. This is the fastest option, but does
not permit the most accurate conflict detection, because keys can match but non-
key columns could be different. KEY is the default.

Chapter 1
TABLE | MAP

1-256

KEYINCLUDING
Capture before image of the primary key and also the specified column or columns. This
is a reasonable compromise between speed and detection accuracy.

KEYANDMOD
Use this option as an extension of the key option for both Extract and Replicat. For
update DMLs on the source, Extract logs the key and modified columns. Replicat on the
target will use the KEY and MODIFIED columns during conflict detection in a WHERE clause.
With Oracle databases, the modified column is always used for conflict detection by
default and this parameter makes it explicit.

ALLEXCLUDING
Capture before image of all columns except the specified columns. For tables with
numerous columns, ALLEXCLUDING may be more efficient than KEYINCLUDING. Do not
exclude key columns.

Example

In the following example, the before images for the key column(s) plus the name, address,
and salary are always written to the trail file on update and delete operations.

TABLE src,
GETBEFORECOLS (
ON UPDATE KEYINCLUDING (name, address, salary),
ON DELETE KEYINCLUDING (name, address, salary));

HANDLECOLLISIONS | NOHANDLECOLLISIONS
HANDLECOLLISIONS and NOHANDLECOLLISIONS are valid for MAP.

Use HANDLECOLLISIONS and NOHANDLECOLLISIONS to control whether or not Oracle
GoldenGate reconciles the results of an initial load with replicated transactional changes that
are made to the same tables. When Oracle GoldenGate applies replicated changes after the
load is finished, HANDLECOLLISIONS causes Replicat to overwrite duplicate records in the
target tables and provides alternate handling of errors for missing records.

HANDLECOLLISIONS and NOHANDLECOLLISIONS can be used globally for all MAP statements in
the parameter file or as an ON/OFF switch for groups of tables specified with MAP statements,
and they can be used within a MAP statement. When used in a MAP statement, they override
the global specifications.

See "HANDLECOLLISIONS | NOHANDLECOLLISIONS" for syntax and usage.

INSERTALLRECORDS
INSERTALLRECORDS is valid for MAP.

Use the INSERTALLRECORDS parameter to convert all mapped operations to INSERT operations
on the target. INSERTALLRECORDS can be used at the root level of the parameter file, within a
MAP statement, and within a MAPEXCEPTION clause of a MAP statement.

See "INSERTALLRECORDS" for syntax and usage.

INSERTAPPEND | NOINSERTAPPEND
INSERTAPPEND is valid for MAP.

Chapter 1
TABLE | MAP

1-257

Use the INSERTAPPEND and NOINSERTAPPEND parameters to control whether or not
Replicat uses an APPEND hint when it applies INSERT operations to Oracle target tables.
These parameters are valid only for Oracle databases.

See "INSERTAPPEND | NOINSERTAPPEND" for syntax and usage.

KEYCOLS (columns)
KEYCOLS is valid for TABLE and MAP.

Use KEYCOLS to define one or more columns of the target table as unique. The primary
use for KEYCOLS is to define a substitute primary key when a primary key or an
appropriate unique index is not available for the table. You can also use KEYCOLS to
specify additional columns to use in the row identifier that Replicat uses. Without the
availability of a key or KEYCOLS clause, Replicat uses all columns of the table to build
its WHERE clause, essentially performing a full table scan.

The columns of a key rendered by KEYCOLS must uniquely identify a row, and they
must match the columns that are used as a key on the source table. The source table
must contain at least as many key or index columns as the KEYCOLS key specified for
the target table. Otherwise, in the event of an update to the source key or index
columns, Replicat will not have the before images for the extra target KEYCOL columns.

When defining a substitute key with KEYCOLS, observe the following guidelines:

• If the source and target tables both lack keys or unique indexes, use a KEYCOLS
clause in the TABLE parameter and in the MAP parameter, and specify matching
sets of columns in each KEYCOLS clause.

• If either of the tables lacks a key or unique index, use KEYCOLS for that table.
Specify columns that match the actual key or index columns of the other table. If a
matching set cannot be defined with KEYCOLS, you must use KEYCOLS for the
source table (TABLE parameter) and for the target table (MAP parameter). Specify
matching sets of columns that contain unique values. KEYCOLS overrides a key or
unique index.

• If the target table has a larger key than the source table does (or if it has more
unique-index columns), use KEYCOLS in the TABLE statement to specify the source
columns that match the extra target columns. You must also include the actual
source key or index columns in this KEYCOLS clause. Using KEYCOLS in this way
ensures that before images are available to Replicat in case the non-key columns
are updated on the source.

When using KEYCOLS, make certain that the specified columns are configured for
logging so that they are available to Replicat in the trail records. For an Oracle
database, you can enable the logging by using the COLS option of the ADD TRANDATA
command.

On the target tables, create a unique index on the KEYCOLS-defined key columns. An
index improves the speed with which Oracle GoldenGate locates the target rows that it
needs to process.

Do not use KEYCOLS for tables being processed in pass-through mode by a data-pump
Extract group.

Additional Considerations for KEYCOLS when using Parallel Replicat or Integrated
Replicat:

Chapter 1
TABLE | MAP

1-258

• When using KEYCOLS with ALLOWDUPTARGETMAP, the key columns must be the same for
each mapped table. For example, if you map HR.EMP to HR.EMP_TARGET and
HR.EMP_BACKUP and if you specify KEYCOLS, they must be the same for both
HR.EMP_TARGET and HR.EMP_BACKUP.

• When using KEYCOLS to map from multiple source tables to the same target table, the MAP
statements must use the same set of KEYCOLS.

Syntax

KEYCOLS (column [, ...])

column
Defines a column to be used as a substitute primary key. If a primary or unique key exists,
those columns must be included in the KEYCOLS specification. To specify multiple columns,
create a comma-delimited list as in:

KEYCOLS (id, name)

The following column-types are not supported in KEYCOLS:

• Oracle column types not supported by KEYCOLS:

Virtual columns, UDTs, function-based columns, and any columns that are explicitly
excluded from the Oracle GoldenGate configuration.

• SQL Server, DB2 LUW, DB2 z/OS, MySQL, and Teradata:

Columns that contain a timestamp or non-materialized computed column, and any
columns excluded from the Oracle GoldenGate configuration. For SQL Server Oracle
GoldenGate enforces the total length of data in rows for target tables without a primary
key to be below 8000 bytes.

Example

TABLE hr.emp, KEYCOLS (id, first, last, birthdate);

MAPEXCEPTION (exceptions_mapping)
MAPEXCEPTIONS is valid for MAP.

Use MAPEXCEPTION as part of an exceptions MAP statement intended for error handling.
MAPEXCEPTION maps failed operations that are flagged as exceptions by the REPERROR
parameter to an exceptions table. Replicat writes the values of these operations along with
other information to the exceptions table.

You can use MAPEXCEPTION within the same MAP statement that includes the source-target
table mapping and other standard MAP options. The source and target table names can
include wildcards.

When using MAPEXCEPTION, use a REPERROR statement with the EXCEPTION option either within
the same MAP statement or at the root of the Replicat parameter file. See "EXCEPTIONSONLY"
and "REPERROR".

Syntax

MAPEXCEPTION (TARGET exceptions_table, INSERTALLRECORDS [, exception_MAP_options])

Chapter 1
TABLE | MAP

1-259

TARGET exceptions_table
The fully qualified name of the exceptions table. Standard Oracle GoldenGate rules
for object names apply to the name of the exceptions table. See Administering Oracle
GoldenGate.

exception_MAP_options
Any valid options of the MAP parameter that you want to apply to the exceptions
handling.

INSERTALLRECORDS
Applies all exceptions to the exceptions table as INSERT operations. This parameter is
required when using MAPEXCEPTION.

Example

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and
TARGET clauses contain wildcard source and target table names. Exceptions that occur
when processing any table with a name beginning with TRX will be captured to the
fin.trxexceptions table using the specified mapping.

MAP src.trx*, TARGET trg.*,
MAPEXCEPTION (TARGET fin.trxexceptions,
INSERTALLRECORDS,
COLMAP (USEDEFAULTS,
ACCT_NO = ACCT_NO,
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERR = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG')
)
);

MAPALLCOLUMNS | NOMAPALLCOLUMNS

MAPALLCOLUMNS and NOMAPALLCOLUMNS are valid for MAP.

Use MAPALLCOLUMNS to obtain unmapped columns (non-key). When this option is
specified, Extract or Replicat checks if all source columns are directly mapped to the
target without the column mapping function. If any source columns isn’t mapped, then
the Extract and/or Replicat abends.

See “MAPALLCOLUMNS| NOMAPALLCOLUMNS

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS
MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS are valid for MAP.

Use MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS to control whether or not
Replicat includes invisible columns in Oracle target tables for default column mapping.
For invisible columns in Oracle target tables that use explicit column mapping, they are
always mapped so do not require this option.

MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS can be used in two different ways.
When specified at a global level, one parameter remains in effect for all subsequent
MAP statements, until the other parameter is specified. When used within
a MAP statement, they override the global specifications

See “MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS” for syntax and
usage.

Chapter 1
TABLE | MAP

1-260

REPERROR (error, response)
REPERROR is valid for MAP.

Use REPERROR to specify an error and a response that together control how Replicat responds
to the error when executing the MAP statement. You can use REPERROR at the MAP level to
override and supplement global error handling rules set with the REPERROR parameter at the
root level of the parameter file. Multiple REPERROR statements can be applied to the same MAP
statement to enable automatic, comprehensive management of errors and interruption-free
replication processing.

For syntax and descriptions, see "REPERROR".

RESOLVECONFLICT (conflict_resolution_specification)
RESOLVECONFLICT is valid for MAP.

Use RESOLVECONFLICT in a bi-directional or multi-master configuration to specify how Replicat
handles conflicts on operations made to the tables in the MAP statement.

Multiple resolutions can be specified for the same conflict type and are executed in the order
listed in RESOLVECONFLICT. Multiple resolutions are limited to INSERTROWEXISTS and
UPDATEROWEXISTS conflicts only.

RESOLVECONFLICT can be used multiple times in a MAP statement to specify different
resolutions for different conflict types.

The following are the data types and platforms that are supported by RESOLVECONFLICT.

• RESOLVECONFLICT supports all databases that are supported by Oracle GoldenGate for
Windows and UNIX.

• To use RESOLVECONFLICT, the database must reside on a Windows, Linux, or UNIX
system (including those running on NonStop OSS).

• CDR supports data types that can be compared with simple SQL and without explicit
conversion. See the individual parameter options for details.

• Do not use RESOLVECONFLICT for columns that contain LOBs, abstract data types (ADT),
or user-defined types (UDT).

Syntax

RESOLVECONFLICT (
{INSERTROWEXISTS | UPDATEROWEXISTS | UPDATEROWMISSING |
 DELETEROWEXISTS | DELETEROWMISSING}
({DEFAULT | resolution_name},
 {USEMAX (resolution_column) | USEMAXEQ (resolution_column) | USEMIN
(resolution_column) | USEMINEQ (resolution_column) | USEDELTA |
 DISCARD | OVERWRITE | IGNORE}
)
[, COLS (column[,...])]
)

INSERTROWEXISTS | UPDATEROWEXISTS | UPDATEROWMISSING |
DELETEROWEXISTS | DELETEROWMISSING
The type of conflict that this resolution handles.

Chapter 1
TABLE | MAP

1-261

INSERTROWEXISTS
An inserted row violates a uniqueness constraint on the target.

UPDATEROWEXISTS
An updated row exists on the target, but one or more columns have a before
image in the trail that is different from the current value in the database.

UPDATEROWMISSING
An updated row does not exist in the target.

DELETEROWEXISTS
A deleted row exists in the target, but one or more columns have a before image
in the trail that is different from the current value in the database.

DELETEROWMISSING
A deleted row does not exist in the target.

DEFAULT | resolution_name

DEFAULT
The default column group. The resolution that is associated with the DEFAULT
column group is used for all columns that are not in an explicitly named column
group. You must define a DEFAULT column group.

resolution_name
A name for a specific column group that is linked to a specific resolution type.
Supply a name that identifies the resolution type. Valid values are alphanumeric
characters. Avoid spaces and special characters, but underscores are permitted,
for example:

delta_res_method

Use either a named resolution or DEFAULT, but not both.

USEMAX (resolution_column) | USEMAXEQ (resolution_column) | USEMIN
(resolution_column) | USEMINEQ (resolution_column) | USEDELTA |
DISCARD | OVERWRITE | IGNORE
The conflict-handler logic that is used to resolve the conflict. Valid resolutions are:

USEMAX
If the value of resolution_column in the trail record is greater than the value of
the column in the database, the appropriate action is performed.

• (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an
update to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the trail record as an update.

USEMAXEQ
If the value of resolution_column in the trail record is greater than or equal to the
value of the column in the database, the appropriate action is performed.

• (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an
update to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the trail record as an update.

Chapter 1
TABLE | MAP

1-262

USEMIN
If the value of resolution_column in the trail record is less than the value of the column
in the database, the appropriate action is performed:

• (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an update
to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the update from the trail record.

USEMINEQ
If the value of resolution_column in the trail record is less than or equal to the value of
the column in the database, the appropriate action is performed:

• (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an update
to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the update from the trail record.

resolution_column
The name of a NOT NULL column that serves as the resolution column. This column must
be part of the column group that is associated with this resolution. The value of the
resolution column compared to the current value in the target database determines how
a resolution should be applied. The after image of the resolution column is used for the
comparison, if available; otherwise the before image value is used. Use a column that
can be compared through simple SQL:

• NUMERIC
• DATE
• TIMESTAMP
• CHAR/NCHAR
• VARCHAR/ NVARCHAR
To use a latest-timestamp resolution, use a timestamp column as the
resolution_column and set the timestamp column to the current time when a row is
inserted or updated. If possible, define the resolution column with the SYSTIMESTAMP data
type, which supports fractional seconds. When comparisons are performed with sub-
second granularity, there is little need for tie-breaking conflict handlers that resolve cases
where the value of the resolution column is identical in both trail and target. If you ensure
that the value of the timestamp column can only increase or only decrease (depending
on the resolution), then USEMAX and USEMIN does not lead to data divergence.

Note:

Do not use a primary key column as the resolution column in a USEMAX statement
for the UPDATEROWEXISTS conflict. Otherwise, Replicat abends with an error similar
to the following:

2013-04-04 10:18:38 ERROR OGG-01922 Missing RESOLUTION COLUMN NAME
while mapping to target table "FIN"."ACCT".

Chapter 1
TABLE | MAP

1-263

USEDELTA
(UPDATEROWEXISTS conflict only) Add the difference between the before and after
values in the trail record to the current value of the column in the target database.
If any of the values is NULL, an error is raised. Base USEDELTA on columns that
contain NUMERIC data types. USEDELTA is useful in a multi-node configuration when
a row is getting simultaneously updated on multiple nodes. It propagates only the
difference in the column values to the other nodes, so that all nodes become
synchronized.

DISCARD
(Valid for all conflict types) Retain the current value in the target database, and
write the data in the trail record to the discard file.
Use DISCARD with caution, because it can lead to data divergence.

OVERWRITE
(Valid for all conflict types except DELETEROWMISSING) Apply the trail record as
follows:

• (INSERTROWEXISTS conflict) Apply the trail record but change the insert to an
update to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the update from the trail record.

• (UPDATEROWMISSING conflict) Apply the trail record but convert the missing
UPDATE to an INSERT by using the modified columns from the after image and
the unmodified columns from the before image. To convert an update to an
insert, the before image of all columns of the row must be available in the
trail. Use supplemental logging if the database does not log before images by
default, and specify ALL for the Extract GETBEFORECOLS parameter.

• (DELETEROWEXISTS conflict) Apply the delete from the trail record, but use only
the primary key columns in the WHERE clause.

Use OVERWRITE with caution, because it can lead to data divergence.

IGNORE
(Valid for all conflict types) Retain the current value in the target database, and
ignore the trail record: Do not apply to the target table or a discard file.

COLS (column[, ...])
A non-default column group. This is a list of columns in the target database (after
mapping) that are linked to, and operated upon by, a specific resolution type. If no
column group is specified for a conflict, then all columns are affected by the resolution
that is specified for the given conflict.
Alternatively, you can specify a DEFAULT column group, which includes all columns
that are not listed in another column group. See the DEFAULT option.
You can specify multiple column groups, each with a different resolution. For example,
you could use OVERWRITE for col2 and col3, and you could use USEDELTA for col4. No
column in any group can be in any other group. Conflicts for columns in different
column groups are resolved separately according to the specified resolution, and in
the order listed.
Column groups work as follows:

• For INSERTROWEXISTS and UPDATEROWEXISTS conflicts, you can use different
column groups to specify more than one of these conflict types and resolutions

Chapter 1
TABLE | MAP

1-264

per table. Conflicts for columns in different column groups are resolved separately,
according to the conflict resolution method specified for the column group.

• For UPDATEROWMISSING, DELETEROWEXISTS, and DELETEROWMISSING, you can use only one
column group, and all columns of the table must be in this column group (considered the
default column group).

Examples

The following examples are explained in detail in Administering Oracle GoldenGate.

Example 1
This example demonstrates all conflict types with USEMAX, OVERWRITE, DISCARD.

MAP fin.src, TARGET fin.tgt,
 COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),
 RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
);

Example 2
This example demonstrates UPDATEROWEXISTS with USEDELTA and USEMAX.

MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE KEYINCLUDING (address, phone, salary, last_mod_time),
 ON DELETE KEYINCLUDING (address, phone, salary, last_mod_time)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary)),
 (DEFAULT, USEMAX (last_mod_time)));

Example 3
This example demonstrates UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE.

MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE ALLEXCLUDING (comment)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary, balance)),
 (max_res_method, USEMAX (last_mod_time), COLS (address, last_mod_time)),
 (DEFAULT, IGNORE));

SQLEXEC (SQL_specification)
SQLEXEC is valid for TABLE and MAP.

Use SQLEXEC to execute a SQL stored procedure or query from within a MAP statement during
Oracle GoldenGate processing. SQLEXEC enables Oracle GoldenGate to communicate directly
with the database to perform any work that is supported by the database. This work can be
part of the synchronization process, such as retrieving values for column conversion, or it can
be independent of extracting or replicating data, such as executing a stored procedure that
executes an action within the database.

See "SQLEXEC" for syntax and usage.

Chapter 1
TABLE | MAP

1-265

SQLPREDICATE 'WHERE where_clause'
SQLPREDICATE is valid for TABLE.

Use SQLPREDICATE to include a conventional SQL WHERE clause in the SELECT
statement that Extract uses when selecting data from a table in preparation for an
initial load. SQLPREDICATE forces the records returned by the selection to be ordered by
the key values.

SQLPREDICATE is a faster selection method for initial loads than the WHERE or FILTER
options. It affects the SQL statement directly and does not require Extract to fetch all
records before filtering them.

For Oracle tables, SQLPREDICATE reduces the amount of data that is stored in the undo
segment, which can reduce the incidence of snapshot-too-old errors. This is useful
when loading very large tables.

By using a SQLPREDICATE clause, you can partition the rows of a large table among two
or more parallel Extract processes. This configuration enables you to take advantage
of parallel delivery load processing as well.

SQLPREDICATE also enables you to select data based on a timestamp or other criteria
to filter the rows that are extracted and loaded to the target table. SQLPREDICATE can
be used for ORDER BY clauses or any other type of selection clause.

Make certain that the WHERE clause contains columns that are part of a key or index.
Otherwise, Extract performs a full table scan, which reduces the efficiency of the
SELECT statement.

SQLPREDICATE is valid for Oracle, DB2 LUW, DB2 on z/OS, and SQL Server
databases. Do not use SQLPREDICATE for an Extract group that is configured to
synchronize transactional changes. It is only appropriate for an initial load Extract,
because it re quires a SELECT statement that selects records directly from tables.

Syntax

TABLE source_table, SQLPREDICATE 'WHERE where_clause';

WHERE
This is a required keyword.

where_clause
A valid SQL WHERE clause that selects records from the source tables.

Example

TABLE hr.emp, SQLPREDICATE 'WHERE state = 'CO' and city = 'DENVER''

THREAD (thread_ID)
THREAD is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use THREAD to specify that all of the object or objects in the same MAP statement are to
be processed by the specified Replicat thread. The specified thread handles filtering,
manipulation, delivery to the target, error handling, and other work that is configured
for those objects. Wildcards can be used in the TARGET clause when THREAD is used.

Chapter 1
TABLE | MAP

1-266

All tables that have referential dependencies among one another must be mapped in the
same thread. For example, if tables scott.cust and scott.ord have a foreign-key
relationship, the following is a possible mapping:

MAP scott.cust, TARGET scott.cust, THREAD (5);
MAP scott.ord, TARGET scott.ord, THREAD (5);

The thread with the lowest thread ID always processes barrier transactions if the THREAD or
THREADRANGE option is omitted. Additionally, and work that is not explicitly assigned to a
thread is processed through this thread. For example, if there are threads with IDs ranging
from 1 to 10, barrier and non-assigned transactions are performed by thread 1.

To process a MAP statement among multiple threads, see THREADRANGE (thread_range,
column_list). THREAD and THREADRANGE are mutually exclusive options. Do not use them
together in the same MAP statement.

For more information about Replicat modes, see Deciding Which Apply Method to Use in
Using Oracle GoldenGate for Oracle Database and "BATCHSQL".

Syntax

THREAD (thread_ID)

thread_ID
A numerical identifier for the thread that will process this MAP statement. Valid values are 1
through the value that was specified with the MAXTHREADS option of the ADD REPLICAT
command that created this group. You can use the INFO REPLICAT command to verify the
maximum number of threads allowed for a Replicat group. When specifying thread IDs, the
following must be true:

• The total number of threads specified across all MAP statements of a Replicat group
cannot exceed the value of MAXTHREADS.

• No single thread_ID value in the Replicat group can be higher than the value of
MAXTHREADS. For example, if MAXTHREADS is 25, there cannot be a thread_ID of 26 or
higher.

If MAXTHREADS was not used, the default maximum number of threads is 25.

Examples

The following examples show some ways to use the THREAD option.

Example 1
In this example, thread 1 processes table cust.

MAP scott.cust, TARGET scott.cust, THREAD (1);

Example 2
In this example, thread 1 processes all of the tables in the scott schema.

MAP scott.*, TARGET scott.*, THREAD (1);

Example 3
In this example, the orders table is partitioned among two MAP statements through the use of
FILTER (filter_clause) and the @RANGE function. For more information about @RANGE, see
"@RANGE".

Chapter 1
TABLE | MAP

1-267

MAP scott.orders, TARGET scott.orders, FILTER (@RANGE (1, 2, OID)), THREAD (1);
MAP scott.orders, TARGET scott.orders, FILTER (@RANGE (2, 2, OID)), THREAD (2);

THREADRANGE (thread_range, column_list)
THREADRANGE is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use THREADRANGE to specify that the workload of the target table is to be partitioned
evenly among a range of Replicat threads, based on the value of a specified column or
columns. For example, if the partitioning is based on the value of a column named ID,
and the THREADRANGE value is 1-3, then thread 1 processes rows with ID values from 1
through 10, thread 2 processes rows with ID values from 11 through 20, and thread 3
processes rows with ID values from 21 through 30. The partitioning may not be as
absolutely even as shown in the preceding example, depending on the initial
calculation of the workload, but it is coordinated so that same row is always processed
by the same thread. Each specified thread handles filtering, manipulation, error
handling, delivery to the target, and other work for its range of rows.

Partitioning a table across a range of threads may improve apply performance for very
large tables or tables that frequently incur long-running transactions or heavy volume,
but can be used in other cases, as well. You can process more than one table through
the same range of threads.

A wildcarded TARGET clause can be used when THREADRANGE is used if the optional
column list is omitted. When using a column list, use separate explicit MAP statements
for each table that is using the same thread range.

To process a MAP statement with one specific thread, see THREAD (thread_ID). THREAD
and THREADRANGE are mutually exclusive options. Do not use them together in the
same MAP statement.

Do not specify tables that have referential dependencies among one another in a
thread range. Use the THREAD option and process all of those tables with the same
thread.

Do not use THREADRANGE to partition sequences. If coordination is required, for
example when a sequence is part of a SQLEXEC operation, partition the sequence work
to one thread with the THREAD option.

The thread with the lowest thread ID always processes barrier transactions if the
THREAD or THREADRANGE option is omitted. Additionally, and work that is not explicitly
assigned to a thread is processed through this thread. For example, if there are
threads with IDs ranging from 1 to 10, barrier and non-assigned transactions are
performed by thread 1.

Note:

The columns specified in a list of columns must exist in the trail file. You can
control this using KEYCOLS in the Extract to include this column, or by using
FETCHCOLS in the Extract for the column, or by ensuring that the column is
part of the supplemental log group and then using LOGALLSUPCOLS.

For more information about Replicat modes, see "Deciding Which Apply Method to
Use" in Using Oracle GoldenGate for Oracle Database and "BATCHSQL".

Chapter 1
TABLE | MAP

1-268

Syntax

THREADRANGE (lowID-highID, [column[, column][, ...]])

lowID
The lowest thread identifier of this range. Valid values are 1 through 500.

highID
The highest thread identifier of this range, which must be a higher number than lowID. Valid
values are lowID+1 through 500. The number of threads in the range cannot exceed the
value that was specified with the MAXTHREADS option of the ADD REPLICAT command. If
MAXTHREADS was not used, the default maximum number of threads is 25.

[column[, column][, ...]]
Optional. Specifies one or more unique columns on which to base the row partitioning. To
specify multiple columns, use a comma-delimited list, such as col1, col2, col3. When this
option is omitted, the partitioning among the threads is based by default on the following
columns, in the order of preference shown:

• Primary key

• KEYCOLS clause in the same MAP statement

• All of the columns of the table that are supported by Oracle GoldenGate for use as a key.

Example

The following example divides the orders and order_lines tables between the same two
threads, based on the value of the OID column.

MAP scott.orders, TARGET scott.orders, THREADRANGE (1-2, OID);
MAP scott.order_lines, TARGET scott.order_lines, THREADRANGE (1-2, OID);

TOKENS (token_definition)
TOKENS is valid for TABLE.

Use TOKENS to define a user token and associate it with data. Tokens enable you to extract
and store data within the user token area of a trail record header. Token data can be retrieved
and used in many ways to customize the way that Oracle GoldenGate delivers data. For
example, you can use token data in column maps, stored procedures called by SQLEXEC, or
macros.

To use the defined token data in target tables, use the @TOKEN column-conversion function in
the COLMAP clause of a Replicat MAP statement. The @TOKEN function maps the name of a
token to a target column.

Do not use this option for tables being processed in pass-through mode by a data-pump
Extract group.

The character set of token data is not converted. The token must be in the character set of
the source database for Extract and in the character set of the target database for Replicat.

Do not use this option for source tables that are encoded as EBCDIC on a z/OS system if the
target tables are not EBCDIC.

For more information about using tokens, see Administering Oracle GoldenGate.

Chapter 1
TABLE | MAP

1-269

Syntax

TOKENS (token_name = token_data [, ...])

token_name
A name of your choice for the token. It can be any number of valid characters and is
not case-sensitive. Multi-byte names are not supported.

token_data
Any valid character string of up to 2000 bytes. The data can be either a literal that is
enclosed within single quotes (or double quotes if NOUSEANSISQLQUOTES is in use) or
the result of an Oracle GoldenGate column-conversion function.

Example

The following creates tokens named TK-OSUSER, TK-GROUP, and TK-HOST and maps
them to token data obtained with the @GETENV function.

TABLE ora.oratest, TOKENS (
TK-OSUSER = @GETENV ('GGENVIRONMENT' , 'OSUSERNAME'),
TK-GROUP = @GETENV ('GGENVIRONMENT' , 'GROUPNAME')
TK-HOST = @GETENV ('GGENVIRONMENT' , 'HOSTNAME'));

TRIMSPACES | NOTRIMSPACES
TRIMSPACES and NOTRIMSPACES are valid for TABLE and MAP.

Use TRIMSPACES and NOTRIMSPACES at the root level of a parameter file or within a
TABLE or MAP statement to control whether or not trailing spaces in a source CHAR
column are truncated when applied to a target CHAR or VARCHAR column. The default is
TRIMSPACES.

See "TRIMSPACES | NOTRIMSPACES" for syntax and usage.

TRIMVARSPACES | NOTRIMVARSPACES
TRIMVARSPACES and NOTRIMVARSPACES are valid for TABLE and MAP.

Use TRIMVARSPACES and NOTRIMVARSPACES at the root level of a parameter file or within
a TABLE or MAP statement to control whether or not trailing spaces in a source VARCHAR
column are truncated when applied to a target CHAR or VARCHAR column. The default is
NOTRIMVARSPACES.

See "TRIMVARSPACES | NOTRIMVARSPACES" for syntax and usage.

WHERE (clause)
WHERE is valid for TABLE and MAP.

Use WHERE to select records based on a conditional statement. WHERE does not support
the following:

• Columns that have a multi-byte character set or a character set that is
incompatible with the character set of the local operating system.

• The evaluation of the before image of a primary key column in the conditional
statement as part of a primary key update operation.

Chapter 1
TABLE | MAP

1-270

Enclose literals in single quotes. Specify case-sensitive column names as they are stored in
the database, and enclose them in double quotes if the database requires quotes to enforce
case-sensitivity (such as Oracle).

Getting More Information about Record Filtering

See Administering Oracle GoldenGate for more information about WHERE and other filtering
options.

Syntax

WHERE (clause)

clause
Selects records based on a condition, such as:

WHERE (branch = 'NY')

Table 1-11 shows permissible WHERE operators.

Table 1-11 Permissible WHERE Operators

Operator Example

Column names PRODUCT_AMT
"Product_Amt"

Numeric values -123, 5500.123

Literal strings enclosed in single
quotes

 'AUTO', 'Ca'

Column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent in
the record). These tests are built into Oracle GoldenGate.

Comparison operators =, <>, >, <, >=, <=

Conjunctive operators AND, OR

Grouping parentheses Use open and close parentheses for logical grouping of multiple
elements.

Example

The following WHERE example returns all records when the AMOUNT column is over 10,000 and
does not cause a record to be discarded when AMOUNT is absent.

WHERE (amount = @PRESENT AND amount > 10000)

PARTITIONOBJID
Valid for Integrated Extract.

PARTITIONOBJID is used to specify the object IDs of the partitions to be captured for
partitioned tables. PARTITIONOBJID is different from ALTID because PARTITIONOBJID applied
to Integrated Extract while ALTID applies to Classic Extract.. For an IO table (with or without
overflow area), index segment object ID should be used for partition level filtering. In this

Chapter 1
TABLE | MAP

1-271

case, PARTITIONOBJID in the MAP or TABLE statement specifies the index segment
object IDs of the partitions to be extracted.

Syntax

MAP/TABLE [container.]schema.table PARTITIONOBJID ptn_object_ID [,
ptn_object_ID]
The following restrictions apply:

• Wildcarded table names are not allowed for a MAP/TABLE parameter that
contains PARTITIONOBJID.

• DDL Capture and replication is not supported when using PARTITIONOBJID.

Syntax for IO table TABLE statement:

TABLE [container.]schema.table PARTITIONOBJID index_segment_object_ID [,
index_segment_object_ID]
Syntax for IO table MAP statement:

MAP [container.]schema.table PARTITIONOBJID index_segment_object_ID [,
index_segment_object_ID]

1.161 TABLE for DEFGEN
Valid For

DEFGEN

Description

Use the TABLE parameter in a DEFGEN parameter file to identify a source table or
tables for which you want to run the utility.

You can output definitions for objects that are in different containers in an Oracle
container database to the same definitions file. All table attributes must be identical,
such as case sensitivity, character set, and the use of the full three-part name. For
example, you cannot use two-part names (stripped of their container or catalog by the
NOCATALOG parameter) and three-part names in the same definitions file.

Default

None

Syntax

TABLE [catalog.]owner.table[, DEF template];

[catalog.]owner.table
The Oracle container database if applicable, and the owner and name of the table.
This parameter accepts wildcards. Oracle GoldenGate automatically increases the
internal storage to track up to 100,000 wildcard entries.
Oracle GoldenGate preserves the case of the table name. Some databases require a
name to be within double quotes to enforce case-sensitivity. Other case-sensitive
databases do not require double quotes to enforce case-sensitivity, but the names

Chapter 1
TABLE for DEFGEN

1-272

must be specified the way they are stored in the database. See Administering Oracle
GoldenGate for how to specify object names.

DEF template
Creates a definitions template based on the definitions of the specified table. A template
enables new tables that have the same definitions as the specified table to be added during
an Oracle GoldenGate process run, without the need to run DEFGEN for them first, and
without the need to stop and start the Oracle GoldenGate process to update its definitions
cache. To use a template that is generated by DEFGEN, specify it with the DEF or TARGETDEF
option of the TABLE or MAP statement. To retain case-sensitivity, specify the template name
the way you would specify any case-sensitive object in the database. This option is not
supported for initial loads.

;
Terminates the TABLE statement.

Examples

Example 1
TABLE fin.account;

Example 2
TABLE fin.acc*;

Example 3
TABLE fin."acct1", DEF "acctdefs";

1.162 TABLE for Replicat
Valid For

Replicat

Description

Use the TABLE parameter in a Replicat parameter file to specify filtering rules that qualify a
data record from the trail to be eligible for an event action that is specified with EVENTACTIONS.

This form of TABLE statement is similar to that of the Replicat MAP statement, except that there
is no mapping of the source table in the data record to a target table by means of a TARGET
clause. TABLE for Replicat is solely a means of triggering a non-data action to be taken by
Replicat when it encounters an event record. If Replicat is in coordinated mode, all actions
are processed through the thread with the lowest thread ID.

Because a target table is not supplied, the following apply:

• No options are available to enable Replicat to map table names or columns to a target
table, nor are there options to enable Replicat to manipulate data.

• The ASSUMETARGETDEFS parameter cannot be used in the same parameter file as a
Replicat TABLE statement, because ASSUMETARGETDEFS requires the names of target
tables so that Replicat can query for table definitions. You must create a source-
definitions file to provide the definitions of the source tables to Replicat. Transfer this file
to the target system and use the SOURCEDEFS parameter in the Replicat parameter file to
specify the path name of the file.

Chapter 1
TABLE for Replicat

1-273

• The event record itself is not applied to the target database by Replicat. You must
specify either IGNORE or DISCARD as one of the EVENTACTIONS options.

Syntax

See "TABLE | MAP" for descriptions of the following syntax options.

TABLE table_spec,
[, SQLEXEC (SQL_specification), BEFOREFILTER]
[, FILTER (filter_clause)]
[, WHERE (where_clause)]
{, EVENTACTIONS ({IGNORE | DISCARD} [action])}
;

Example

The following example enables Replicat tracing for an order transaction that contains
an insert operation for a specific order number (order_no = 1). The trace information
is written to the order_1.trc trace file. The MAP parameter specifies the mapping of
the source table to the target table.

MAP sales.order, TARGET rpt.order;
TABLE sales.order,
FILTER (@GETENV ('GGHEADER', 'OPTYPE') = 'INSERT' AND @STREQ (order_no, 1), &
EVENTACTIONS (TRACE order_1.trc TRANSACTION);

1.163 TABLEEXCLUDE
Valid For

Extract

Description

Use the TABLEEXCLUDE parameter with the TABLE and SEQUENCE parameters to explicitly
exclude tables and sequences from a wildcard specification. The positioning of
TABLEEXCLUDE in relation to parameters that specify files or trails determines its effect.
Parameters that specify trails or files are: EXTFILE, RMTFILE, EXTTRAIL, RMTTRAIL. The
parameter works as follows:

• When a TABLEEXCLUDE specification is placed before any TABLE or SEQUENCE
parameters, and also before the parameters that specify trails or files, it applies
globally to all trails or files, and to all TABLE and SEQUENCE parameters.

• When a TABLEEXCLUDE specification is placed after a parameter that specifies a
trail or file, it is effective only for that trail or file and only for the TABLE or SEQUENCE
parameters that are associated with it. Multiple trail or file specifications can be
made in a parameter file, each followed by a set of TABLE, SEQUENCE, and
TABLEEXCLUDE specifications.

TABLEEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE
parameter. Thus, the order in which they appear does not make a difference.

When using wildcards, be careful not to place them such that all objects are excluded,
leaving nothing to capture. For example, the following captures nothing:

TABLE cat1.schema*.tab*;
TABLEEXCLUDE cat1.*.*

Chapter 1
TABLEEXCLUDE

1-274

The default for resolving wildcards is WILDCARDRESOLVE DYNAMIC. Therefore, if a table that is
excluded with TABLEEXCLUDE is renamed to a name that satisfies a wildcard, the data will be
captured. The DYNAMIC setting enables new table names that satisfy a wildcard to be resolved
as soon as they are encountered and included in the Oracle GoldenGate configuration
immediately. For more information, see WILDCARDRESOLVE.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

Default

None

Syntax

TABLEEXCLUDE [container. | catalog.]owner.{table | sequence}

container.
If the database requires three-part names, specifies the name or wildcard specification of the
Oracle container that contains the object to exclude.

owner
Specifies the name or wildcard specification of the owner, such as the schema, of the object
to exclude.

table | sequence
The name or wildcard specification of the object to exclude. To specify object names and
wildcards correctly, see Administering Oracle GoldenGate.

Example

In this example, test.tab* specifies that all tables beginning with tab in schema test are to
be excluded from all trail files. Table fin.acct is excluded from trail ee. Table fin.sales is
excluded from trail ff.

TABLEEXCLUDE test.tab*
 EXTTRAIL ./dirdat/ee
TABLE pdb1.*.*;
TABLEEXCLUDE pdb1.fin.acct
 EXTTRAIL ./dirdat/ff
TABLE pdb2.*.*;
TABLEEXCLUDE pdb2.fin.sales

1.164 TARGETDB
Valid For

Replicat

Description

Use the TARGETDB parameter for databases or data sets that require a data source name or
identifier to be specified explicitly as part of the connection information. This option is
required to identify one of the following:

• The target login database for heterogeneous databases.

• The target data source name (DSN) if Replicat uses ODBC to connect to the database.

Chapter 1
TARGETDB

1-275

Tables specified in MAP statements that follow TARGETDB are assumed to be from the
specified data source.

You might need to use the USERID or USERIDALIAS parameter in the TARGETDB
parameter statement, depending on the authentication that is required for the data
source.

For databases that allow authentication at the operating-system level, you can specify
TARGETDB without USERID or USERIDALIAS.

For DB2 LUW, the TARGETDB statement must refer to the database by its real name,
rather than by any alias.

See USERID | NOUSERID or USERIDALIAS for more information.

See also SOURCEDB to specify a source data source.

Default

None

Syntax

TARGETDB data_source[, SESSIONCHARSET character_set]

data_source
The name of the database, catalog, or data source name.
For MySQL databases, you can use the format of TARGETDB
database_name@host_name to avoid connection issues caused by the incorrect
configuration of localhost in the local hosts file. If running MySQL on a port other
than the default of 3306, you must specify the port number in the connect string:
TARGETDB database_name@host_name:port.

SESSIONCHARSET character_set
Supports MySQL. Sets the database session character set for the process login
session. This parameter overrides any SESSIONCHARSET that is specified in the
GLOBALS file.

Examples

Example 1
This example shows TARGETDB without the USERIDALIAS parameter.

TARGETDB mydb

Example 2
This example shows TARGETDB with the USERIDALIAS parameter.

TARGETDB mydb, USERIDALIAS tiger2

1.165 TARGETDEFS
Valid For

Extract (primary and data pump)

Chapter 1
TARGETDEFS

1-276

Description

Use the TARGETDEFS parameter to specify a target-definitions file. TARGETDEFS names a file on
the source system or on an intermediary system that contains data definitions of tables and
files that exist on the target system.

You can have multiple TARGETDEFS statements in the parameter file if more than one target-
definitions file is needed for different definitions, for example if each TARGETDEFS file holds the
definitions for a specific application.

To generate the target-definitions file, use the DEFGEN utility. Transfer the file to the source or
intermediary system before starting Extract.

Default

None

Syntax

TARGETDEFS file

file
The relative or fully qualified path name of the target-definitions file.

Examples

Example 1
TARGETDEFS C:\repodbc\sales.def

Example 2
TARGETDEFS /ggs/dirdef/ODBC/tandem_defs

1.166 TCPSOURCETIMER | NOTCPSOURCETIMER
Valid For

Extract

Description

Use the TCPSOURCETIMER and NOTCPSOURCETIMER parameters to manage the timestamps of
replicated operations for reporting purposes within the Oracle GoldenGate environment.

TCPSOURCETIMER and NOTCPSOURCETIMER are global parameters and apply to all TABLE
statements in the Extract parameter file.

Default

TCPSOURCETIMER

Syntax

TCPSOURCETIMER | NOTCPSOURCETIMER

Chapter 1
TCPSOURCETIMER | NOTCPSOURCETIMER

1-277

TCPSOURCETIMER
Adjusts the timestamp of data records when they are sent to other systems, making it
easier to interpret synchronization lag. This is the default.

NOTCPSOURCETIMER
Retains the original timestamp value. Use NOTCPSOURCETIMER when using timestamp-
based conflict resolution in a bidirectional configuration and when using a user token
that refers to 'GGHEADER', 'COMMITTIMESTAMP' of the @GETENV column-conversion
function.

1.167 TRACE | TRACE2
Valid For

Extract and Replicat

Description

Use the TRACE and TRACE2 parameters to capture Extract or Replicat processing
information to help reveal processing bottlenecks. Both support the tracing of DML and
DDL.

Tracing also can be turned on and off by using the SEND EXTRACT or SEND REPLICAT
command in GGSCI. .

Contact Oracle Support for assistance if the trace reveals significant processing
bottlenecks.

Default

No tracing

Syntax

TRACE | TRACE2
[, DDL[INCLUDE] | DDLONLY]
[, [FILE] file_name]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range]
[, ...])]

TRACE
Provides step-by-step processing information.

TRACE2
Identifies the code segments on which Extract or Replicat is spending the most time.

DDL[INCLUDE] | DDLONLY
(Replicat only) Enables DDL tracing and specifies how DDL tracing is included in the
trace report.

DDL[INCLUDE]
Traces DDL and also traces transactional data processing. This is the default.
Either DDL or DDLINCLUDE is valid.

DDLONLY
Traces DDL but does not trace transactional data.

Chapter 1
TRACE | TRACE2

1-278

[FILE] file_name
The relative or fully qualified name of a file to which Oracle GoldenGate logs the trace
information. The FILE keyword is optional, but must be used if other parameter options will
follow the file name, for example:

TRACE FILE file_name DDLINCLUDE

If no other options will follow the file name, the FILE keyword can be omitted, for example:

TRACE DDLINCLUDE file_name

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])
Enables tracing only for the specified thread or threads of a coordinated Replicat. Tracing is
only performed for threads that are active at runtime.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadID,
threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.
If the Replicat is in coordinated mode and TRACE is used with a THREADS list or range, a trace
file is created for each currently active thread. Each file name is appended with its
associated thread ID. This method of identifying trace files by thread ID does not apply when
SEND REPLICAT is issued by groupname with threadID (as in SEND REPLICAT fin003 TRACE...)
or when only one thread is specified with THREADS.
Contact Oracle Support for assistance if the trace reveals significant processing bottlenecks.

Examples

Example 1
The following traces to a file named trace.trc. If this is a coordinated Replicat group, the
tracing applies to all active threads.

TRACE /home/ggs/dirrpt/trace.trc

Example 2
The following enables tracing for only thread 1. In this case, because only one thread is
being traced, the trace file will not have a threadID extension. The file name is trace.trc.

TRACE THREADS(1) FILE ./dirrpt/trace.trc

Example 3
The following enables tracing for threads 1,2, and 3. Assuming all threads are active, the
tracing produces files trace001, trace002, and trace003.

TRACE THREADS(1-3) FILE ./dirrpt/trace.trc

Chapter 1
TRACE | TRACE2

1-279

1.168 TRACETABLE | NOTRACETABLE
Valid For

Extract and Replicat

Description

Use the TRACETABLE and NOTRACETABLE parameters with Oracle databases to identify a
trace table that was created with the ADD TRACETABLE command. TRACETABLE is
required only if the trace table was created with a name other than the default of
GGS_TRACE. If a trace table named GGS_TRACE exists in the database, trace table
functionality is enabled automatically, and TRACETABLE is not required.

To prevent looping transactions in Oracle the recommended option is to use
EXCLUDETAG.

A trace table is not used when Replicat is in integrated mode. TRACETABLE and
NOTRACETABLE are ignored in that mode.

The trace table is used for bidirectional synchronization to identify Replicat
transactions to Extract.

If used, TRACETABLE must appear in both the Extract and Replicat parameter files.

• In the Replicat parameter file, TRACETABLE causes Replicat to write an operation to
the trace table at the beginning of each transaction.

• In the Extract parameter file, TRACETABLE causes Extract to identify as a Replicat
transaction any transaction that begins with an operation on the trace table.

NOTRACETABLE prevents Replicat from writing an operation to the trace table, thus
preventing Extract from recognizing Replicat transactions.

To control whether Replicat transactions are extracted by Extract or ignored, use the
GETREPLICATES and IGNOREREPLICATES parameters. See "GETREPLICATES |
IGNOREREPLICATES" for more information.

For instructions on configuring bidirectional synchronization, see the Administering
Oracle GoldenGate.

Default

GGS_TRACE

Syntax

TRACETABLE [catalog.]owner.table | NOTRACETABLE

[catalog.]owner.table
The catalog (if stored in a consolidation database), owner, and name of the trace
table.

Chapter 1
TRACETABLE | NOTRACETABLE

1-280

Examples

Example 1
This example shows a two-part name.

TRACETABLE ggs.excl_trans

Example 2
This example shows a three-part name.

TRACETABLE user.ggs.excl_trans

1.169 TRAILBYTEORDER
Valid For

GLOBALS

Description

Note:

TRAILBYTEORDER is automatically handled by Oracle GoldenGate, and should only
be used if the default settings are not working.

Use the TRAILBYTEORDER parameter in the GLOBALS file to set the byte format of the metadata
in the trails or files created with the EXTFILE, EXTTRAIL, RMTFILE, and RMTTRAIL parameters.
By default, Extract always writes the trail metadata in big endian byte order, regardless of the
byte order of the source or target machine.

This parameter affects only the metadata of the trail records. It does not affect the column
data.

When used in the GLOBALS file, TRAILBYTEORDER affects all of the files or trails in the same
Oracle GoldenGate instance. To specify the byte order of a specific trail or file, use the
TRAILBYTEORDER option of the associated EXTFILE, RMTFILE, EXTTRAIL, or RMTTRAIL
parameter in the Extract parameter file. In cases where Extract writes to multiple trails or files
on different platforms, TRAILBYTEORDER in the Extract parameter file enables the correct byte
ordering of each one. When TRAILBYTEORDER is used as an Extract parameter, it overrides
any TRAILBYTEORDER specification in the GLOBALS file.

TRAILBYTEORDER reduces the overhead of conversion work when the source and target
machines both use little endian. In this case, because the default without TRAILBYTEORDER is
BIGENDIAN, the conversion work must be performed from little endian to big endian (to write to
trail) and then from big endian to little endian to read the trail on the target. TRAILBYTEORDER
prevents unnecessary conversions by allowing you to specify the byte order that is used by
both the source and target machines (LITTLEENDIAN) as the byte order of the trail.

In the case where the source byte order is big endian and the target is little endian, where
some conversion is required, you can decide whether the conversion takes place at the
source or at the target. To perform the conversion on the source, set TRAILBYTEORDER to
LITTLEENDIAN. The trail is converted to little endian, and no conversion is needed on the
target. To perform the conversion on the target, leave the default set to BIGENDIAN. If the

Chapter 1
TRAILBYTEORDER

1-281

target system of the trail is big endian, TRAILBYTEORDER is not needed, because the
default is big endian.

Use the NATIVEENDIAN option for a primary Extract or a data pump if the byte order of
the source machine is not known, but you want to keep that format and do not want
conversion performed on the source. If nothing is specified with TRAILBYTEORDER, a
data pump writes the trail using the same byte order as the input trail, which may not
be the desired format.

TRAILBYTEORDER is valid for files that have a FORMAT RELEASE version of at least 12.1.
For older versions, this parameter is ignored.

Do not use TRAILBYTEORDER when replicating data to a NonStop system. On the
NonStop platform, Oracle GoldenGate only supports BIGENDIAN, the default.

To identify the byte order of the metadata in a trail, use the ENV command of the
Logdump utility.

Default

BIGENDIAN

Syntax

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}

BIGENDIAN
Formats the trail metadata in big endian.

LITTLEENDIAN
Formats the trail metadata in little endian.

NATIVEENDIAN
Formats the trail metadata in the default byte order of the local system. Enables you
to make certain the output trail is converted to the native format of the source
machine.

Example

TRAILBYTEORDER LITTLEENDIAN

1.170 TRAILCHARSET
Valid For

Replicat

Description

Note:

This parameter has been replaced by the SOURCECHARSET parameter but may
still be retained in existing parameter files for backward compatibility.

Chapter 1
TRAILCHARSET

1-282

Use the TRAILCHARSET parameter to supply a character set for the source data if the trail is
written by an Extract version that is earlier than 11.2.1.0.0. In the earlier versions, the source
character set is not stored in the trail.

When TRAILCHARSET is used, Replicat uses the specified character set as the source
character set when converting character-type columns to the target character set. Replicat
issues a warning message when it uses the TRAILCHARSET character set.

By default, Replicat performs character set conversion. This feature is controlled by the
CHARSETCONVERSION (default) and NOCHARSETCONVERSION parameters. To use TRAILCHARSET,
NOCHARSETCONVERSION cannot be used.

Default

Character set of the operating system

Syntax

TRAILCHARSET source_charset [, REPLACEBADCHAR];

source_charset
The ICU character-set identifier or an Oracle character-set identifier of the source database.
For Oracle databases, Oracle GoldenGate converts an Oracle identifier to the corresponding
ICU identifier for conversion to the character set that is specified with the NLS_LANG
specification in the SETENV parameter in the Replicat parameter file.

REPLACEBADCHAR
Prevents Replicat from abending when a conversion attempt fails. The failed character is
replaced with a replacement character for each target character set. The replacement
character is pre-defined in each character set.

Examples

Example 1
TRAILCHARSET ISO-8859-9;

Example 2
TRAILCHARSET windows-932, REPLACEBADCHAR;

Example 3
TRAILCAHRSET EUC-CN;

1.171 TRAILCHARSETASCII
Valid For

Extract for DB2 on z/OS; not valid for Extract data pump or Replicat.

Description

Use TRAILCHARSETASCII to cause character data to be written to the trail file in the local
ASCII code page of the DB2 subsystem from which data is to be captured.

• Specification of this parameter on a single-byte DB2 z/OS subsystem causes character
data from non-Unicode tables to be written to the trail file in the installed ASCII single-
byte CCSID. Data from EBCDIC tables is converted to this ASCII CCSID.

Chapter 1
TRAILCHARSETASCII

1-283

• Specification of this parameter on a multi-byte DB2 z/OS subsystem causes
Extract to process only ASCII and Unicode tables. Extract abends with an error if it
encounters EBCDIC tables. Data from ASCII tables is written to the trail file in the
installed ASCII mixed CCSID.

Either TRAILCHARSETASCII or TRAILCHARSETEBCDIC is required if the target is a multi-
byte system. To replicate both ASCII and EBCDIC tables to a multi-byte DB2 z/OS
target, process each character set with an Extract process for the EBCDIC tables.

Default

Character data is written in the character set of the host table.

Syntax

TRAILCHARSETASCII

1.172 TRAILCHARSETEBCDIC
Valid For

Extract for DB2 on z/OS; not valid for Extract data pump or Replicat.

Description

Use TRAILCHARSETEBCDIC to cause character data to be written to the trail file in the
local EBCDIC code page of the DB2 subsystem from which data is to be captured.

• Specification of this parameter causes all character data to be written to the trail
file in the EBCDIC code page of the job in which Extract is running.

• Specification of this parameter on a single-byte DB2 z/OS subsystem causes
character data from non-Unicode tables to be written to the trail file in the installed
EBCDIC single-byte CCSID. Data from ASCII tables is converted to this EBCDIC
CCSID.

• Specification of this parameter on a multi-byte DB2 z/OS subsystem causes
Extract to process only EBCDIC and Unicode tables. Extract abends with an error
if it encounters ASCII tables. Data from EBCDIC tables is written to the trail file in
the installed EBCDIC mixed CCSID.

Either TRAILCHARSETASCII or TRAILCHARSETEBCDIC is required if the target is a multi-
byte system. To replicate both ASCII and EBCDIC tables to a multi-byte DB2 z/OS
target, process each character set with an Extract process for the EBCDIC tables.

Default

Character data is written in the character set of the host table.

Syntax

TRAILCHARSETEBCDIC

1.173 TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D
Valid For

GLOBALS

Chapter 1
TRAILCHARSETEBCDIC

1-284

Description

Use the TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D parameters to control the number of digits of
trail file sequence numbers that are written by an Extract or a data pump Extract.
TRAIL_SEQLEN_6D produces a six digit sequence number for trails and TRAIL_SEQLEN_9D
produces nine digits.

Default

TRAIL_SEQLEN_9D

Syntax

[TRAIL_SEQLEN_9D | TRAIL_SEQLEN_6D]

Example

TRAIL_SEQLEN_9D
TRAIL_SEQLEN_6D

1.174 TRANLOGOPTIONS
Valid For

Extract

Description

Use the TRANLOGOPTIONS parameter to control the way that Extract interacts with the
transaction log or with the API that passes transaction data, depending on the database or
capture mode. You can use multiple TRANLOGOPTIONS statements in the same parameter file,
or you can specify multiple options within the same TRANLOGOPTIONS statement, if permissible
for those options.

Use a given TRANLOGOPTIONS option only for the database or databases for which it is
intended.

Default

None

Syntax

TRANLOGOPTIONS {
[{ACTIVATIONIDPADLEN | DATABASEIDPADLEN | THREADPADLEN | SEQPADLEN |
RESETLOGSIDPADLEN} width]
[ADGAPPLYCHECKFREQ seconds | cseconds | mseconds]
[ADGCRETRYCOUNT number]
[ADGTIMEOUT seconds]
[ALLOWTABLECOMPRESSION]
[ALTARCHIVEDLOGFORMAT string] [INSTANCE instance] [THREADID id]
[ALTARCHIVELOGDEST [PRIMARY] [INSTANCE instance] path]
[ALTLOGDEST path | REMOTE]
[ALWAYSONREADONLYROUTING]
[{DBLOGREADERBUFSIZE size}]
[ASMUSER SYS@ASM_instance, ASMPASSWORD password

Chapter 1
TRANLOGOPTIONS

1-285

 [algorithm ENCRYPTKEY {key_name | DEFAULT}]
[ASMUSERALIAS alias [DOMAIN domain]]
[ASYNCTRANSPROCESSING buffer_size]
[BUFSIZE size]
[CHECKPOINTRETENTIONTIME days]
[CHECKTABLELEVELSUPPLOG]
[COMPLETEARCHIVEDLOGONLY | NOCOMPLETEARCHIVEDLOGONLY]
[COMPLETEARCHIVEDLOGTIMEOUT seconds]
[DB2APIRETRY retry_count]
[DB2ZV11COMPATIBILITYMODE]
[DBLOGREADER]
[DBLOGREADERBUFSIZE size]
[DLFAILOVER_TIMEOUT seconds]
[DISABLESOFTEOFDELAY]
[EXCLUDETAG [tag | NULL] | [EXCLUDETAG +]
[EXCLUDETRANS transaction]
[EXCLUDEUSER user]
[EXCLUDEUSERID Oracle_uid]
[FAILOVERTARGETDESTID n]
[FETCHLOBIFERROR]
[FETCHPARTIALLOB]
[FETCHINLINESFLOB]
[FETCHPARTIALXML]
[FILTERTABLE table]
[FORCEFETCHLOB]
[GETCTASDML | NOGETCTASDML]
[HANDLEDLFAILOVER]
[IGNOREDATACAPTURECHANGES | NOIGNOREDATACAPTURECHANGES]
[IGNOREDIRECTLOADINSERTS]
[INCLUDEAUX (AUX_specification)]
[INCLUDEREGIONID | INCLUDEREGIONIDWITHOFFSET]
[INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y] [, ...])
(ENABLE_AUTO_CAPTURE N]
[LOB_CHUNK_SIZE size]
[LOGRETENTION [ENABLED | SR | DISABLED]
[LOGSOURCE platform, [PATHMAP path]][MAXWARNEOF seconds]
[MAXAUTOCMTTRANSSIZE (range, default)]
[MINEFROMACTIVEDG | NOMINEFROMACTIVEDG]
[MINEFROMSNAPSHOTSTBY | NOMINEFROMSNAPSHOTSTBY]
[MININGUSER {/ | user}[, MININGPASSWORD password]
 [algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]
[MININGUSERALIAS alias [DOMAIN domain]]
[MIXEDENDIAN [ON|OFF]]
[MANAGECDCCLEANUP | NOMANAGECDCCLEANUP]
[MANAGESECONDARYTRUNCATIONPOINT | NOMANAGESECONDARYTRUNCATIONPOINT]
[NOFLUSH]
[PATHMAP NFS_mount_point log_path]
[PREPAREFORUPGRADETOIE | NOPREPAREFORUPGRADETOIE]
[PERFORMANCEPROFILE HIGH|MEDIUM]
[PURGEORPHANEDTRANSACTIONS | NOPURGEORPHANEDTRANSACTIONS]
[QUERYTIMEOUT number]
[QUERYRETRYCOUNT number]
[READQUEUESIZE size]
[READTIMEOUT milliseconds]
[REDO_TRANSPORT_LAG_THRESHOLD seconds]
[REDO_TRANSPORT_LAG_TIMEOUT value]
[REQUIRELONGDATACAPTURECHANGES | NOREQUIRELONGDATACAPTURECHANGES]
[SOURCE_OS_TIMEZONE timezone]
[SUPPRESSNOOOPUPDATES]
[TRANSCLEANUPFREQUENCY minutes]

Chapter 1
TRANLOGOPTIONS

1-286

[TRACKSCHEMACHANGES]
[TRANCOUNT integer]
[TSLOOKUPBEGINLRI | TSLOOKUPENDLRI]
[VALIDATEINLINESFLOB]
[USE_ROOT_CONTAINER_TIMEZONE]
[USENATIVEOBJSUPPORT | NOUSENATIVEOBJSUPPORT]
[USEPREVRESETLOGSID | NOUSEPREVRESETLOGSID]
[VALIDATEINLINESFLOB]
}

{ACTIVATIONIDPADLEN | DATABASEIDPADLEN | THREADPADLEN | SEQPADLEN |
RESETLOGSIDPADLEN} width
Valid for Extract in classic capture mode for Oracle.
Specifies the minimum default padding length when Extract forms the archive log name
using the format specifiers %A, %D, %T, %S, and %R for use only when using the
ALTARCHIVELOGFORMAT parameter to specify a different format than the database. When the
corresponding number is smaller than the field width, it is zero-padded on the left. The
following table shows the specifier that relates to each option and the default length.

Option Specifier Default padding length

ACTIVATIONIDPADLEN %A 8

DATABASEIDPADLEN %D 8

THREADPADLEN %T 3 on Windows, 4 on other platforms

SEQPADLEN %S 5 on Windows, 10 on other platforms

RESETLOGSIDPADLEN %R 10

Example
The following is an example of how to specify the padding width when Extract forms the
archive log name using the format specifiers %T, %S, and %R in the ALTARCHIVELOGFORMAT
parameter.

TRANLOGOPTIONS ALTARCHIVELOGFORMAT ARC_%S_%R.%T
TRANLOGOPTIONS SEQPADLEN 12, RESETLOGSIDPADLEN 12, THREADPADLEN 5

ADGAPPLYCHECKFREQ seconds | cseconds | mseconds
Valid for Integrated Extract for Oracle.
Specifies the number of seconds, cseconds, or mseconds that Extract waits between each
fetch check for the ADG to catch up. A low number improves latency though increases the
number of queries of current_scn from v$database. The default is 3 seconds; the minimum
is 1 and the maximum is 120 seconds.

ADGCRETRYCOUNT number
Valid for Integrated Extract for Oracle.
This parameter can be used when fetching from an ADG Standby database that is open for
read only. The ADG standby can have lag greater than the Extract process. So in some
cases, when Oracle GoldenGate goes to fetch a value from the ADG Standby database, it
does not yet exist there. This parameter (along with FETCHCHECKFREQ and ADGTIMEOUT) can
be used to control how often and how frequently Oracle GoldenGate attempts to fetch that
data from the ADG Standby, or if it should just timeout and skip the fetching step altogether.
This specific parameter controls how many times to query the database for the record before
giving up and skipping the fetch.

Chapter 1
TRANLOGOPTIONS

1-287

ADGTIMEOUT seconds
Valid for Extract in classic capture mode for Oracle.
Sets the interval, in seconds, after which Extract times out if v$database.current_scn
has not moved past the commit SCN associated with the record for which it needs to
process. The default is 30 seconds. The minimum is 5 and the maximum is
2147483646. Supports Extract in classic capture mode when capturing in an Oracle
Data Guard environment.

ALTARCHIVEDLOGFORMAT string [INSTANCE instance] [THREADID id]
Valid for Extract in classic capture mode for Oracle.
Specifies a string that overrides the archive log format of the source database.
In an Oracle RAC environment, use the ALTARCHIVEDLOGFORMAT parameter on each
node. To ensure that Extract can differentiate between the log streams, use the
INSTANCE or THREADID option. The default log format that is queried from the database
for one RAC thread is assumed for all of the other threads if Extract cannot find a log
format and nothing is specified with INSTANCE or THREADID.
The TRANLOGOPTIONS statement that includes ALTARCHIVEDLOGFORMAT cannot contain
any other TRANLOGOPTIONS options. Use a separate TRANLOGOPTIONS statement to
specify other options.

string
Accepts the same specifier as Oracle Database LOG_ARCHIVE_FORMAT parameter.
Extract uses the supplied format specifier to derive the log file name. Example:

arch_%T.arc

INSTANCE instance
For use with Oracle RAC. Applies ALTARCHIVEDLOGFORMAT to a specific Oracle
instance. Extract verifies the supplied input against the database catalog.
Example:

TRANLOGOPTIONS ALTARCHIVEDLOGFORMAT &
INSTANCE rac1 log_%t_%s_%r.arc

THREADID id
For use with Oracle RAC. Specifies the thread number of the instance that has
the specified log format.
Example:

TRANLOGOPTIONS ALTARCHIVEDLOGFORMAT &
THREADID 2 log_%t_%s_%r.arc

ALWAYSONREADONLYROUTING
Valid for SQL Server
The ALWAYSONREADONLYROUTING parameter allows Extract for SQL Server to route its
read-only processing to an available read-intent Secondary when connected to an
Always On availability group listener.

ALTARCHIVELOGDEST [PRIMARY] [INSTANCE instance]
[THREADID id] path
Valid for Extract in classic capture mode for Oracle.
Points Extract to the archived or backup Oracle transaction logs when they reside
somewhere other than the default location. Extract first checks the specified location
and then checks the default location.

Chapter 1
TRANLOGOPTIONS

1-288

path
Specifies the fully qualified path to the archived logs in the alternate directory. This
directory must be NFS mounted to the node where Oracle GoldenGate is running. Use
that mount point for ALTARCHIVELOGDEST.

PRIMARY
Prevents Extract from checking the default log location if it does not find the log in the
alternate location. Only the ALTARCHIVELOGDEST path is checked. PRIMARY is the default
for an Extract that is running in Archived Log Only (ALO) mode; otherwise, it is optional.

INSTANCE instance
Applies the specified ALTARCHIVELOGDEST behavior to a specific Oracle instance. On
RAC, if this option is used, you must specify the ALTARCHIVELOGDEST parameter on each
node.

THREADID id
Applies the specified ALTARCHIVELOGDEST behavior to a specific thread number.

Example
The following specifies the location of the Oracle archived logs.

TRANLOGOPTIONS ALTARCHIVELOGDEST /fs1/oradata/archive/log2

ALTLOGDEST path | REMOTE
Valid for MySQL.
Specifies the location of the MySQL log index file. Extract looks for the log files in this
location instead of the database default location. ALTLOGDEST can be used when the
database configuration does not include the full path name to the logs or when there are
multiple MySQL installations on the machine. Extract reads the log index file to find the
binary log file that it needs to read. When ALTLOGDEST is used, Extract assumes that the logs
and the index are in the same location.
Supply the full path name to the directory. On Windows, enclose the path within double
quotes if the path contains any spaces, such as in the following example.

TRANLOGOPTIONS ALTLOGDEST "C:\Program Files\MySQL\MySQL Server
5.7\log\binlog.index"

On Linux, use this format:

TRANLOGOPTIONS ALTLOGDEST "/mnt/rdbms/mysql/data/logs/binlog.index"

To capture from a remote server or in case of remote capture, you only need to specify the
REMOTE option instead of the index file path on the remote server. For remote capture on both
Windows and Linux, specify the following in the Extract parameter file:
TRANLOGOPTIONS ALTLOGDEST REMOTE
For more information on using the REMOTE option, see Setting Logging Parameters.

ASMUSER SYS@ASM_instance, ASMPASSWORD password [algorithm
ENCRYPTKEY {key_name | DEFAULT}]
Valid for Extract in classic capture mode for Oracle.
Specifies credentials for logging in to an ASM instance to read the transaction logs. Can be
used instead of ASMUSERALIAS if an Oracle GoldenGate credential store is not being used.

Chapter 1
TRANLOGOPTIONS

1-289

https://docs.oracle.com/en/middleware/goldengate/core/19.1/gghdb/preparing-and-configuring-system-oracle-goldengate.html#GUID-883B54B6-6FD1-49CB-B11B-C041CF075363

SYS@ASM_instance
Specifies the ASM instance for the connection string. The user must be SYS.

password
Is the encrypted password that is copied from the ENCRYPT PASSWORD command
results.

algorithm
Specifies the encryption algorithm that was used to encrypt the password: AES128,
AES192, AES256, or BLOWFISH.

ENCRYPTKEY key_name
Specifies the logical name of a user-created encryption key in the ENCKEYS lookup
file. Use if ENCRYPT PASSWORD was used with the KEYNAME key_name option.

ENCRYPTKEY DEFAULT
Directs Oracle GoldenGate to use a random key. Use if ENCRYPT PASSWORD was
used with the KEYNAME DEFAULT option.

Note:

This parameter does not replace the standard USERID parameter. Both are
required in an ASM environment. ASMUSER is not needed if using the
DBLOGREADER option to read the logs.

ASMUSERALIAS alias [DOMAIN domain]
Valid for Extract in classic capture mode for Oracle.
Specifies credentials for logging in to an ASM instance to read the transaction logs.
Can be used instead of ASMUSER if an Oracle GoldenGate credential store is being
used.

alias
Specifies the alias of the login credential that will be used to log into the ASM
instance. This credential must exist in the Oracle GoldenGate credential store. If
you are not sure what alias to use, you can inspect the content of the credential
store by issuing the INFO CREDENTIALSTORE command..

DOMAIN domain
Specifies the domain that is assigned to the specified alias in the credential store.

Note:

This parameter does not replace the standard USERIDALIAS parameter. Both
are required in an ASM environment. ASMUSERALIAS is not needed if using
the DBLOGREADER option to read the logs.

Chapter 1
TRANLOGOPTIONS

1-290

Example
The following example supplies ASM credentials by specifying the alias asm1 in the
asmdomain domain in the Oracle GoldenGate credential store.

TRANLOGOPTIONS ASMUSERALIAS asm1 DOMAIN asmdomain

ASYNCTRANSPROCESSING buffer_size
Valid for Extract in integrated capture mode for Oracle.
Controls whether integrated capture runs in asynchronous or synchronous processing mode,
and controls the buffer size when Extract is in asynchronous mode. The minimum is 1 and
the maximum is 1024; the default is 300.

ASYNCTRANSPROCESSING buffer_size
In asynchronous transaction processing mode, there are two threads of control:

• One thread groups logical change records (LCR) into transactions, does object-level
filtering, and does partial rollback processing,

• The other thread formats committed transactions, performs any user-specified
transformations, and writes to the trail file.

The transaction buffer is the buffer between these two threads and is used to transfer
work from one thread to the other. The default transaction buffer size is 300 committed
transactions, but is adjusted downward by the Oracle GoldenGate memory manager if its
cache memory is close to being exhausted.

NOASYNCTRANSPROCESSING
Disables asynchronous processing and causes Extract to operate in synchronous mode.
In this mode, one thread performs all capture work.

BUFSIZE size
Valid for DB2 LUW, DB2 z/OS, and Oracle. Valid for DB2 for i from Oracle GoldenGate 19c
(19.1.0).
Controls the maximum size, in bytes, of the buffers that are allocated to contain the data that
is read from the transaction log.

• For an Oracle source where Extract is processing file-based redo, this parameter also
controls the maximum size, in bytes, of a read operation into the buffer.

• For an Oracle source where Extract is processing ASM redo, TRANLOGOPTIONS with
DBLOGREADERBUFSIZE controls the read size, and in both cases BUFSIZE controls the
buffer size. This parameter must be equal to, or greater than, the value that is set for
DBLOGREADERBUFSIZE (depending on which is in use.)

High values increase capture speed but cause Extract to consume more memory. Low
values reduce memory usage but increase I/O because Extract must store data that exceeds
the cache size to disk.
The following are the valid ranges and default sizes, in bytes:
Oracle:

• Minimum: 8,192

• Maximum: 10,000,000

The default buffer size is determined by the source of the redo data:

• For file-based redo, the default is 1000KB (1024000).

Chapter 1
TRANLOGOPTIONS

1-291

• For ASM redo, the default is 1000KB (1024000).

• For DBLOGREADER redo, the default is 2MB (2097152).

• For Extract in integrated capture mode, the default is 1000KB (1024000).

DB2 LUW:

• Minimum: 8,192

• Maximum: 10,000,000

• Default: 204,800

• The preceding values must be in multiples of the 4096 page size. Extract will
truncate to a multiple if a given value does not meet this requirement.

DB2 z/OS and DB2 for i:

• Minimum: 36KB (36864)

• Maximum: 32MB (33554432)

• Default: 2MB (2097152)

• The preceding values must be in multiples of the 4096 page size. Extract will
truncate to a multiple if a given value does not meet this requirement.

• Each Extract uses a fixed 68KB of ECSA on the DB2 z/OS system that the
Extract connects to. This doesn't apply to DB2 for i.

CHECKPOINTRETENTIONTIME days
Valid for Extract in integrated mode only for Oracle.
Controls the number of days that Extract retains checkpoints before they are purged.
Partial days can be specified using decimal values. For example, 8.25 specifies 8
days and 6 hours. When the checkpoint of an Extract in integrated capture mode is
purged, LogMiner data dictionary information for the archived redo log file that
corresponds to the checkpoint is purged, and the first_scn value of the capture
process is reset to the SCN value corresponding to the first change in the next
archived redo log file. The default is seven days and the minimum is 0.00001.

CHECKTABLELEVELSUPPLOG
Valid for Extract in classic capture mode for Oracle.
Causes Extract to send a warning to the report file if it encounters a table for which
the ADD TRANDATA command was not issued to create an Oracle GoldenGate
supplemental log group. CHECKTABLELEVELSUPPLOG also verifies whether the key
columns in any user-defined log groups for the table are the same as, or a superset
of, the key columns of the log group that was created with the ADD TRANDATA
command. Without key columns, Extract may abend or try to fetch the missing column
or columns. By default, CHECKTABLELEVELSUPPLOG verification is disabled.

COMPLETEARCHIVEDLOGONLY | NOCOMPLETEARCHIVEDLOGONLY
Valid for Extract in classic capture mode for Oracle.
Overrides the default Extract processing of archived logs. This parameter applies
when copying production (source) archive logs to a secondary database where they
will serve as the data source. Some Oracle programs do not build the archive log from
the first byte to the last byte in sequential order, but instead may copy the first 500MB,
then the last 500MB, and finally the middle 1000MB, for example. If Extract begins
reading at the first byte, it will abend when it reaches the break in the byte
sequencing. Waiting for the whole file to be written prevents this problem.

Chapter 1
TRANLOGOPTIONS

1-292

An Extract starts to read an archive file before it is completely written to disk, but whether or
not it starts to capture data before the file depends on whether COMPLETEARCHIVEDLOGONLY or
NOCOMPLETEARCHIVEDLOGONLY is used.
COMPLETEARCHIVEDLOGONLY is the default in ALO (archived log only) mode. It forces Extract to
wait for the archived log to be written to disk completely before starting to process redo data.
In regular mode, use it to override the default of NOCOMPLETEARCHIVEDLOGONLY.
NOCOMPLETEARCHIVEDLOGONLY is the default in regular mode. Extract starts processing redo
data from an archived log immediately when it becomes available, without waiting for it to be
written completely to disk. In ALO mode, use it to override the default of
COMPLETEARCHIVEDLOGONLY.

COMPLETEARCHIVEDLOGTIMEOUT seconds
Valid for Extract in classic capture mode for Oracle.
Controls the number of seconds that Extract waits, when in COMPLETEARCHIVEDLOGONLY
mode, to try again if it cannot validate that a redo log is being completely written to disk. Use
this option in conjunction with the COMPLETEARCHIVEDLOGONLY option of TRANLOGOPTIONS. This
option is disabled by default, and Extract will abend after ten seconds if it cannot validate
that the file is being written to disk. This check is performed by reading the block header from
the last block and verifying against the expected sequence number to determine if the last
block has been written out. For seconds use any value greater than 0. The default is 20.

DB2APIRETRY number of retries
If Extract receives an error from the DB2 log reading API db2ReadLog(), then for certain
errors the API call is retried. Use the DB2APIRETRY to change the number of retries. The
default number of retries is set to 3. SQL code for which the API is retried is SQLCODE
-30108.

DB2ZV11COMPATIBILITYMODE
Valid for Extract for DB2 z/OS.
When using Oracle GoldenGate to extract from DB2 z/OS version 11 in some compatibility
modes, the Extract process may not programmatically determine the actual database version
and an OGG-00551 or OGG-00804 error occurs. Use this option in your Extract parameter
file to manually set the correct database version.

DBLOGREADER
Valid for Extract in classic capture mode for Oracle.
Causes Extract to use a newer API that is available as of Oracle 11.2.0.2 and later 11g R2
versions. This API uses the database server to access the redo and archive logs.
DBLOGREADER can be used to mine logs on regular disks and raw disks, and can be used
instead of connecting directly to an Oracle ASM instance. The database system must
contain the libraries that contain the API modules and must be running. To use this feature,
the Extract database user must have SELECT ANY TRANSACTION privilege.
When used, DBLOGREADER enables Extract to use a read size of up to 4 MB in size. This is
controlled with the DBLOGREADERBUFSIZE option. The maximum read size when using the
default OCI buffer is 28672 bytes. A larger buffer may improve the performance of Extract
when redo rate is high.
When using DBLOGREADER with ASM, do not use the ASMUSER or ASMUSERALIAS and
ASMPASSWORD options of TRANLOGOPTIONS. The API uses the user and password specified with
the USERID or USERIDALIAS parameter. For more information about using Oracle GoldenGate
with ASM, see Mining ASM-stored Logs in Classic Capture Mode in Using Oracle
GoldenGate for Oracle Database.

DBLOGREADERBUFSIZE size
Valid for Extract in classic capture mode for Oracle.

Chapter 1
TRANLOGOPTIONS

1-293

Controls the maximum size, in bytes, of a read operation into the internal buffer that
holds the results of each read of the transaction log in ASM. High values increase
capture speed but cause Extract to consume more memory. Low values reduce
memory usage but increase I/O because Extract must store data that exceeds the
cache size to disk.
Use DBLOGREADERBUFSIZE together with the DBLOGREADER option if the source ASM
instance is Oracle 11.2.0.2 and later 11g R2 versions. The newer ASM API in those
versions provides better performance than the older one.
The following are the valid ranges and default sizes, in bytes:

• Minimum: size of one block in the redo log

• Maximum: 4 MB

On AIX, the maximum buffer size is 1048576; any attempt to read more than this
maximum will result in error.

• Default: 2 MB (2097152)

The default should be sufficient in most cases.
The value of the BUFSIZE option must always be at least equal to, or greater than, the
value of DBLOGREADERBUFSIZE.

DLFAILOVER_TIMEOUT seconds
Valid for Extract in integrated mode for Oracle.
Provides a configurable timeout in seconds to allow for standby database
reinstatement post-role transition. It is used in conjunction with HANDLEDLFAILOVER to
allow Integrated Extract to start up immediately after a role transition. At the end of the
timeout period, if the standby database is still not available, then Extract will
terminate.
The default is 300 seconds. You can also use centiseconds or milliseconds.

DISABLESOFTEOFDELAY
Valid for Extract only in integrated or classic mode for Oracle and DB2 LUW. .
Use DISABLESOFTEOFDELAY in the Extract parameter file to set that the wait time takes
effect when the an EOF status is reported with no records to return.

[EXCLUDETAG [tag | NULL] | [EXCLUDETAG +]
Valid for Extract in integrated or classic mode for Oracle.
Use EXCLUDETAG tag to direct the Extract process to ignore the individual records that
are tagged with the specified redo tag. There is no database release limitation for this
parameter though not all releases of Oracle Database support tagging. Compare with
older versions, new trail file contains tag tokens, which would not introduce problems
for older trail readers.
Use EXCLUDETAG + to direct the Extract process to ignore the individual records that
are tagged with any redo tag.
To tag the individual records, use the DBOPTIONS parameter with the SETTAG option in
the Replicat parameter file. Use these parameters to prevent cycling (loop-back) of
Replicat the individual records in a bidirectional configuration or to filter other
transactions from capture. The default SETTAG value is 00.

Chapter 1
TRANLOGOPTIONS

1-294

Example
The following are examples of how to use tag specifiers with EXCLUDETAG.

TRANLOGOPTIONS EXCLUDETAG 00
TRANLOGOPTIONS EXCLUDETAG +
TRANLOGOPTIONS EXCLUDETAG 0952

EXCLUDETRANS transaction
Valid for Integrated Extract for Oracle.
Specifies the transaction name of the Replicat database user or any other user so that those
transactions are not captured by Extract. Use for bi-directional processing to prevent data
looping between the databases.
For more information about bidirectional synchronization, see Overview of an Active-Active
Configuration in Administering Oracle GoldenGate.

EXCLUDEUSER user
Valid for DB2 LUW, DB2 for z/OS, DB2 for i, and Oracle.
Specifies the name of the Replicat database user, or of any other user, to be used as a filter
that identifies transactions that will be subject to the rules of the GETREPLICATES or
IGNOREREPLICATES parameter. Typically, this option is used to identify Replicat transactions in
a bi-directional or cascading processing configuration, for the purpose of excluding or
capturing them. However, it can be used to identify transactions by any other user, such as
those of a specific business application.
You can use EXCLUDEUSER and EXCLUDEUSERID in the same parameter file. Do not use
wildcards in either parameter.
The user name must be valid. Oracle GoldenGate queries the database to get the
associated user ID and maps the numeric identifier back to the user name. For this reason, if
the specified user is dropped and recreated while name resolution is set to the default of
DYNAMICRESOLUTION, EXCLUDEUSER remains valid. If the same transaction is performed when
name resolution is set to NODYNAMICRESOLUTION, EXCLUDEUSER becomes invalid, and Extract
must be stopped and then started to make EXCLUDEUSER take effect, see
DYNAMICRESOLUTION | NODYNAMICRESOLUTION.

• DB2 z/OS considerations: In DB2 for z/OS, the user is always the primary authorization
ID of the transaction, which is typically that of the original RACF user who logged on, but
also could be a different authorization ID if changed by a transaction processor or by
DB2 exits.

• Oracle considerations: For an Oracle and DB2 LUW database, multiple EXCLUDEUSER
statements can be used. All specified users are considered the same as the Replicat
user, in the sense that they are subject to the rules of GETREPLICATES or
IGNOREREPLICATES. You must include the IGNOREAPPLOPS parameter for EXCLUDEUSER to
operate correctly unlike all other supported databases. EXLCUDEUSER is not supported for
multitenant source databases.

Example
The following Oracle example filters for two users (one by name and one by user ID). The
transactions generated by these users will be handled according to the GETREPLICATES or
IGNOREREPLICATES rules, and a new transaction buffer size is specified.

TRANLOGOPTIONS EXCLUDEUSER ggsrep, EXCLUDEUSERID 90, BUFSIZE 100000

Chapter 1
TRANLOGOPTIONS

1-295

EXCLUDEUSERID Database_uid
Valid for Extract for Oracle.
Specifies the database user ID (uid) of the Replicat database user, or of any other
user, to be used as a filter that identifies transactions that will be subject to the rules of
the GETREPLICATES or IGNOREREPLICATES parameter. This parameter is not valid for
multitenant Extracts. Use tagging and EXCLUDETAG instead.
Usage is the same as that of EXCLUDEUSER.
Oracle_uid is a non-negative integer with a maximum value of 2147483638. There
are several system views that can be queried to get the user ID. The simplest one is
the ALL_USERS view. Oracle GoldenGate does not validate the user ID. If the user that
is associated with the specified user ID is dropped and recreated, a new user ID is
assigned; therefore, EXCLUDEUSERID becomes invalid for that user.

FAILOVERTARGETDESTID n
Valid for Extract for Oracle.
Identifies which standby database the Oracle GoldenGate Extract process must
remain behind, with regard to not extracting redo data that has not yet been applied to
the Oracle Data Guard standby database. To determine the correct value
for_FAILOVERTARGETDESTID, the archive_log_destdatabase initialization parameter
is used with n being the correct archive log destination identifier. The minimum value
is 0, the maximum is 32 and the default 0.

Example
The following is an example of how to use the TRANLOGOPTIONS
FAILOVERTARGETDESTID Extract parameter.

TRANLOGOPTIONS FAILOVERTARGETDESTID 2
SQL> show parameters log_archive_dest
NAME TYPE VA
LUE
------------------------------------ ----------- --

log_archive_dest_1 string location=USE_DB_RECOVERY_FILE_DEST,
valid_for=(ALL_LOGFILES, ALL_ROLES)
.
log_archive_dest_2 string service="ggs2d", ASYNC NOAFFIRM delay=0
optional
compression =disable max_failure=0 max_connections=1 reopen=300
db_unique_name="GGS2D" net_timeout=30,
valid_for=(online_logfile,all_roles)

It would be set to 2 because that is the Standby database Oracle GoldenGate should
stay behind. The first entry (log_archive_dest_1) is for the local archive logs for that
database, and the second is for the standby database.0

FETCHLOBIFERROR
Valid for Extract in classic capture mode Oracle.
Overrides the Extract default of abending if LOB capture from the redo log results in
an error, such as incomplete data. It forces Extract to fetch the LOB from the
database if there is an error when reading it from the redo log.

Chapter 1
TRANLOGOPTIONS

1-296

Caution:

If a value gets deleted before the fetch occurs, Extract writes a null to the trail. If a
value gets updated before a fetch, Extract writes the updated value. To prevent
these inaccuracies, try to keep Extract latency low, see Tuning the Performance of
Oracle GoldenGate guidelines in Administering Oracle GoldenGatefor tuning
process performance and FETCHOPTIONS.

See also the FORCEFETCHLOB option.

FETCHPARTIALLOB
Valid for Extract in integrated capture mode for Oracle.
Use this option when replicating to a heterogeneous target or in other conditions where the
full LOB image is required. It causes Extract to fetch the full LOB object, instead of using the
partial change object from the redo record. By default, the database logmining server sends
Extract a whole or partial LOB, depending on whether all or part of the source LOB was
updated. To ensure the correct snapshot of the LOB, the Oracle Flashback feature must be
enabled for the table and Extract must be configured to use it. The Extract FETCHOPTIONS
parameter controls fetching and must be set to USESNAPSHOT (the default in the absence of
NOUSESNAPSHOT). Without a Flashback snapshot, Extract fetches the LOB from the table,
which may be a different image from the point in time when the redo record was generated.

FETCHINLINESFLOB
Use this option with Classic Extract to force fetching on inline SECUREFILE LOBs even when
the LOB is not encrypted, not compressed, and not deduplicated. No value is expected after
FETCHINLINESFLOB.

FETCHPARTIALXML
Valid for Extract in integrated capture mode Oracle.
Use this option when replicating to a heterogeneous target or in other conditions where the
full LOB image is required. It causes Extract to fetch the full XML document, instead of using
the partial change image from the redo record. By default, the database logmining server
sends Extract a whole or partial XML document, depending on whether all or part of the
source XML was updated. To ensure the correct snapshot of the XML, the Oracle Flashback
feature must be enabled for the table and Extract must be configured to use it. The Extract
FETCHOPTIONS parameter controls fetching and must be set to USESNAPSHOT (the default in the
absence of NOUSESNAPSHOT). Without a Flashback snapshot, Extract fetches the XML
document from the table, which may be a different image from the point in time when the
redo record was generated.

FILTERTABLE table
Valid for Extract for MySQL, PostgreSQL, and SQL Server.
Use this option to identify a source transaction for filtering. If a source transaction includes
any operation for the specified FILTERTABLE, then that transaction is identified as a replicated
transaction. Transaction filtering is based on the GETREPLICATES/IGNOREREPLICATES and
GETAPPLOPS/IGNOREAPPLOPS parameters. Since the default is IGNOREREPLICATES, all
replicated transactions will be ignored by default for the filter table.This option may be used
to avoid data looping in a bi-directional configuration of Oracle GoldenGate by specifying
FILTERTABLE as the fully qualified name of the checkpoint table used by the target Replicat.
When a Replicat uses a checkpoint table, it writes a recovery record in the checkpoint table
at the end of each transaction that it applies. Given that all transactions applied by the

Chapter 1
TRANLOGOPTIONS

1-297

Replicat will contain an update to the checkpoint table, the Extract will ignore the
entire transaction applied by the Replicat, thus preventing data looping.
For information about creating a checkpoint table, see Creating a Checkpoint Table in
Administering Oracle GoldenGate.
For PostgreSQL and SQL Server, ensure that TRANDATA has been added for the
checkpoint table. This option is not supported for parallel Replicat because there is no
single checkpoint table that can be used to identify replicated transactions.

FORCEFETCHLOB
Valid for Extract in classic and integrated capture modes for Oracle.
Overrides the default behavior of capturing LOB data from the redo log. Causes LOBs
to be fetched from the database by default.

Caution:

If a value gets deleted before the fetch occurs, Extract writes a null to the
trail. If a value gets updated before a fetch, Extract writes the updated value.
To prevent these inaccuracies, try to keep Extract latency low. The Oracle
GoldenGate documentation provides guidelines for tuning process
performance. Also, see Interactions Between Fetches from a Table and DDL
in Using Oracle GoldenGate for Oracle Databasefor instructions on setting
fetch options.

GETCTASDML | NOGETCTASDML
Enables Create Table As Select (CTAS) functionality. When GETCTASDML is enabled,
CTAS DMLs are sent from LogMiner and replicated on the target. This option is
enabled by default. Execution of the CTAS DDL is suppressed on the target. This
parameter cannot be enabled while using the DDL metadata trigger. Trail files
produced with the CTAS functionality enabled cannot be consumed by a Replicat
version lower than 12.1.2.1.0.
Use GETCTASDML to allow CTAS to replay the inserts of the CTAS thus preserving OIDs
during replication. This parameter is only supported with Integrated Dictionary and
any downstream Replicat must be 12.1.2.1 or greater to consume the trail otherwise,
there may be divergence.

HANDLEDLFAILOVER
Valid for integrated Extract only for Oracle.
Controls whether Extract will throttle its writing of trail data based on the apply
progress of the Fast Start Failover standby database. It is intended to keep Extract at
a safe point behind any data loss failover. When using this for data loss in a Data
Guard configuration with Fast Start Failover (FSFO), after a role transition you must
set the FAILOVERTARGETDESTID Extract parameter to identify the archive log
destination ID to where the standby can be connected.

IGNOREDATACAPTURECHANGES | NOIGNOREDATACAPTURECHANGES
Valid for DB2 LUW
Controls whether or not Extract captures tables for which DATA CAPTURE CHANGES is
not set. IGNOREDATACAPTURECHANGES ignores tables for which DATA CAPTURE CHANGES
is not set. Use if tables were specified with a wildcard to ensure that processing
continues for tables that do have change capture set. A warning is issued to the error
log for tables that were skipped. The default is NOIGNOREDATACAPTURECHANGES.

Chapter 1
TRANLOGOPTIONS

1-298

IGNOREDIRECTLOADINSERTS
Valid for Extract in classic capture mode for Oracle.
Causes Extract to ignore all Oracle direct-load INSERTs. The default behavior (without this
parameter) is to capture Oracle direct-load INSERTs. This option applies to Oracle logs with
log compatibility of Oracle 10g or later.

INCLUDEREGIONID | INCLUDEREGIONIDWITHOFFSET
Valid for Extract in either capture mode for Oracle.
These options support the Oracle data type TIMESTAMP WITH TIME ZONE specified as TZR
(which represents the time zone region, such as US/Pacific). By default, Extract abends on
TIMESTAMP WITH TIME ZONE if it includes a time zone region. These options enable you to
handle this timestamp based on the target database type.
When Extract detects that the source data type is TIMESTAMP and there is a region ID
mapping token, Replicat applies the timestamp as follows:

• A TIMESTAMP WITH TIME ZONE with TZR is applied if the target Oracle version supports it.

• A timestamp with a UTC offset is applied to a heterogeneous database, or to an earlier
version of Oracle that does not support TIMESTAMP WITH TIME ZONE with TZR.

INCLUDEREGIONID
Valid for Oracle Integrated Extract only.
The INCLUDEREGIONID is deprecated for Oracle GoldenGate 19c (19.1.0). From Oracle
GoldenGate 19c (19.1.0) onward, TIMESTAMP WITH TIME ZONE with region ID data is
included by default including initial load.
Use when replicating from an Oracle source to an Oracle target of the same version or
later. When INCLUDEREGIONID is specified, Extract adds a column index and the two-byte
TMZ value as a time-zone mapping token and outputs it to the trail in the UTC format of
YYYY-MM-DD HH:MI.SS.FFFFFF +00:00.

INCLUDEREGIONIDWITHOFFSET
Valid for Oracle Integrated Extract only.
Use this option to convert region ID to hour and minutes offset value (+06:00 as
example). If the option is not specified, then the timestamp is always written to the trail
file in UTC and the time zone is always +00:00.
If you need to preserve the time zone value in hour and minutes instead of UTC, then
this option can be used.
In the following cases, the option is forced to turn on to preserve the TIMEZONE value in
hour and minutes offset:

• Old trail file format because Replicat does not support region ID.

• XML, TEXT, and SQL format because they don't support region ID.

LOB_CHUNK_SIZE
Valid for SQL Server, PostgreSQL.
If you have huge LOB data sizes, then you can adjust the LOB_CHUNK_SIZE from the default
of 4000 bytes, to a higher value up to 65535 bytes, so that the fetch size is increased,
reducing the trips needed to fetch the entire LOB
Example: TRANLOGOPTIONS LOB_CHUNK_SIZE 8000
(PostgreSQL) Specifies the size of chunk for the LOB (CLOB/BLOB) data that will be used to
push in COM. It's unit is in bytes. The minimum and maximum lob_chunk_size values lies
between 4000 to 65535 bytes.

Chapter 1
TRANLOGOPTIONS

1-299

INTEGRATEDPARAMS (parameter value [, ...])
Valid for Extract in integrated capture mode for Oracle Standard or Enterprise Edition
12c or later.
Passes parameters and values to the Oracle Database logmining server when Extract
is in integrated capture mode. The input must be in the form of parameter value, as
in:

TRANLOGOPTIONS INTEGRATEDPARAMS (downsream_real_time_mine Y)

Valid parameter specifications and their values are the following:

max_sga_size
Specifies the amount of SGA memory that is used by the database logmining
server. Can be a positive integer in megabytes. The default is 1 GB if
streams_pool_size is greater than 1 GB; otherwise, it is 75% of
streams_pool_size.

parallelism
Specifies the number of processes supporting the database logmining server. Can
be a positive integer. The default is 2.

downstream_real_time_mine
Specifies whether or not integrated capture mines a downstream mining database
in real-time mode. A value of Y specifies real-time capture and requires standby
redo logs to be configured at the downstream mining database. A value of N
specifies capture from archived logs shipped to the downstream mining database.
The default is N.

enable_procedural_replication
Enables procedural replication at capture. Procedural replication is disabled by
default. A value of Y enables procedural replication. Once this option is turned on
for an Extract, it remains on. The parameter value can not be toggled back.

LOGRETENTION [ENABLED [DAYS n] | SR | DISABLED]
Valid for Extract in classic capture mode for Oracle Enterprise Edition.
Specifies whether or not Oracle Recovery Manager (RMAN) retains the log files that
Extract needs for recovery. When you use the REGISTER EXTRACT command, the logs
are retained from the time that the command is issued, based on the current database
SCN. The logs are retained until manually deleted. This parameter does not enable or
disable RMAN within the database itself.
Other information about LOGRETENTION:
• If the Oracle flash recovery storage area is full, RMAN purges the archive logs

even when needed by Extract. This limitation exists so that the requirements of
Extract (and other Oracle replication components) do not interfere with the
availability of redo to the database.

• The database user that is assigned to Extract and specified with the USERID or
USERIDALIAS parameter must have certain privileges, which are the same as
those required for the DBLOGIN parameter.

Chapter 1
TRANLOGOPTIONS

1-300

Note:

To support RMAN log retention on Oracle RAC, you must download and install the
database patch that is provided in BUGFIX 11879974, before you add the Extract
groups.

ENABLED [DAYS n]
Enables the log-retention feature. This is the default, except when Extract for an Oracle
database is in Archived Log Only (ALO) mode. Extract must be registered with the
database by using the REGISTER EXTRACT command with the LOGRETENTION option.
By default, ENABLED honors the SCN of the Bounded Recovery checkpoint and retains
the logs up to and including that point. This checkpoint represents the log file of the
oldest open non-persisted transaction. In the unlikely event that a problem with Bounded
Recovery affects the persisted data, the logs that are required to reprocess the oldest
open transaction must be available.
You can use the DAYS option to retain the logs for a specific number of days, from 1 to
365 days as a whole number. The default for DAYS is 7 days.
To be more conservative, you can use the SR option instead. See "BR" for more
information about the Bounded Recovery feature.

SR
Enables the log-retention feature, but retains logs up to and including the SCN of the log
that is required for Extract to revert to standard (normal) recovery mode. In normal
mode, Extract needs access to the log that contains the oldest open transaction that it
had in memory. Using SR is a conservative measure that retains more logs than would be
retained in Bounded Recovery mode (the default), but it ensures data availability in case
Bounded Recovery fails. Extract must be registered with the database by using the
REGISTER EXTRACT command with the LOGRETENTION option.

DISABLED
Disables the log-retention feature. This is the default setting when Extract for an Oracle
source is operating in Archived Log Only (ALO) mode, but you can override this if
needed. If you used the REGISTER EXTRACT command to register Extract, use the
UNREGISTER EXTRACT command to unregister the associated Extract group from the
database after disabling log retention.

LOGSOURCE platform, [PATHMAP path]
Valid for Extract in classic capture mode for Oracle.
Specifies the operating system and (optionally) the path name when the redo and/or
archived logs are stored on a platform other than the one which is hosting the database.
When LOGSOURCE is used, put the entire TRANLOGOPTIONS statement on one line. Do not use
ampersand (&) line terminators to split it into multiple lines.

platform
Specifies the platform that hosts the redo or archived logs. Valid values are:

• AIX
• HPUX
• LINUX

Chapter 1
TRANLOGOPTIONS

1-301

• MVS
• SOLARIS
• VMS
• WINDOWS
• S390

To maintain correct data alignment, the specified platform and the platform that
Extract is running on must have the same endian order and bit width (as in 32-bit
or 64-bit). The following are compatible endian platforms:

• Big endian: AIX, HPUX, MVS, SOLARIS, S290

• Little endian: LINUX, VMS, WINDOWS

For example when running Extract on HP-UX, a LOGSOURCE platform setting of
AIX is valid but LINUX is not.

PATHMAP path
Specifies the path to the logs.

Example
The following shows how to deal with transaction logs that are on a platform other
than the one which hosts the database. The following statement spans multiple
lines only because of space constraints in this documentation.

TRANLOGOPTIONS, LOGSOURCE
VMS, PATHMAP DKA200:[RDBMS.ORACLE.ORA9201I.64.ADMIN.GGS.ARCH]
/net/deltan/uservol1/RDBMS.DIR/ORACLE.DIR/ORA9201I.DIR/
64.DIR/admin.DIR/ggs.DIR/ARCH.dir PATHMAP DKA200:
[RDBMS.ORACLE.ORA9201I.64.ORADATA.GGS]
/net/deltan/uservol1/rdbms.dir/oracle.dir/ora9201I.DIR/
64.dir/oradata.dir/ggs.dir

[MANAGESECONDARYTRUNCATIONPOINT | NOMANAGESECONDARYTRUNCATIONPOINT]
Valid for PostgreSQL.
It is used to control whether you want to enable or disable the truncation of the write
ahead log. You need to be cautious when using TRANLOGOPTIONS
NOMANAGESECONDARYTRUNCATIONPOINT, as the truncation of the PostgreSQL log will not
happen and the disk space will grow as the write ahead log will grow in size.

MAXWARNEOF seconds
Valid for Extract in classic capture mode for Oracle.
Specifies the number of seconds that Extract waits for a new log file to become
available before generating a warning message. Extract generates only one warning
message for a given sequence number. If MAXWARNEOF is not specified, Extract waits
for one hour by default. A value of 0 omits the warning no matter how long Extract
waits. The minimum value is 0 and the default is 3600.

MAXAUTOCMTTRANSSIZE (range, default)
Valid for DB2 for i only
Provides the range of the maximum autocommited transaction size.
DB2 for i autocommited records (journal entry has CCID equal to 0) do not have a
commit record in the journal and therefore Oracle GoldenGate must create an implicit
transaction to include these records in the trail. The default allows for a single record

Chapter 1
TRANLOGOPTIONS

1-302

to be included in a single transaction, which maintains the accuracy of the indicated IO Time
for each record because the IO time is based on the commit for the transaction.
This parameter sets the maximum number of records that will be included in an implicitly
created transaction, but the number could be less if any other type of entry is seen in the
journal before the maximum is reached. This behavior avoids issues with overlap for
checkpoints on records that belong to explicitly committed records.
Setting the value for this parameter to 1 (the defulat) will provide an accurate IO time for
each record in the trail for records that are autocommitted (have a CCID of 0 in the journal
entry), at the potential expense of throughput for the Extract. The value of this parameter
also affects the maximum potential size of a cached transaction for these records in memory.
Setting it to a lower value causes the transaction memory to be lower if the Extract is able to
store the maximum number of entries per implicit transaction. By definition there can only be
one such implicit transaction in memory at any given time since any other transaction
records will cause an immediate commit to the trail of any records in an implicit transaction
already in memory.
The default range is between 1-10000 and the default value is 1.

MINEFROMACTIVEDG
Valid for Extract in classic capture mode for Oracle.
Specifies that Extract is allowed to mine redo from an Active Data Guard instance. Without
this parameter set, Extract will abend with an error. Supports Extract in classic capture mode
when capturing in an Oracle Data Guard environment. MINEFROMACTIVEDG does not support
DBLOGREADER,it only supports ASMUSER for reading the redo logs in the ASM storage.

MININGUSER {/ | user} [, MININGPASSWORD password]
[algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]]
Valid for Extract in integrated capture mode for Oracle.
Specifies login credentials for Extract to log in to a downstream Oracle mining database to
interact with the logmining server. Can be used instead of the MININGUSERALIAS option if an
Oracle GoldenGate credential store is not being used.
This user must:

• Have the privileges granted in dbms_goldengate_auth.grant_admin_privilege.

• Be the user that issues the MININGDBLOGIN or MININGDBLOGINALIAS and REGISTER
EXTRACT or UNREGISTER EXTRACT commands for the Extract group that is associated with
this MININGUSERALIAS.

• Not be changed while Extract is in integrated capture mode.

/
Directs Oracle GoldenGate to use an operating-system login for Oracle, not a database
user login. Use this argument only if the database allows authentication at the operating-
system level. Bypassing database-level authentication eliminates the need to update
Oracle GoldenGate parameter files if application passwords frequently change.
To use this option, the correct user name must exist in the database, in relation to the
value of the Oracle OS_AUTHENT_PREFIX initialization parameter. The value set with
OS_AUTHENT_PREFIX is concatenated to the beginning of a user's operating system
account name and then compared to the database name. Those two names must
match.
When OS_AUTHENT_PREFIX is set to ' ' (a null string), the user name must be created
with IDENTIFIED EXTERNALLY. For example, if the OS user name is ogg, you would use
the following to create the database user:

Chapter 1
TRANLOGOPTIONS

1-303

CREATE USER ogg IDENTIFIED EXTERNALLY;

When OS_AUTHENT_PREFIX is set to OPS$ or another string, the user name must be
created in the format of:

OS_AUTHENT_PREFIX_value OS_user_name

For example, if the OS user name is ogg, you would use the following to create
the database user:

CREATE USER ops$ogg IDENTIFIED BY oggpassword;

user
Specifies the name of the mining database user or a SQL*Net connect string.

password
The user's password. Use when database authentication is required to specify the
password for the database user. If the password was encrypted by means of the
ENCRYPT PASSWORD command, supply the encrypted password; otherwise, use the
clear-text password. If the password is case-sensitive, type it that way. If either
the user ID or password changes, the change must be made in the Oracle
GoldenGate parameter files, including the re-encryption of the password if
necessary.

algorithm
Specifies the encryption algorithm that was used to encrypt the password with
ENCRYPT PASSWORD. Can be one of:

AES128
AES192
AES256
BLOWFISH

ENCRYPTKEY {key_name | DEFAULT}
Specifies the encryption key that was specified with ENCRYPT PASSWORD.

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption
key in the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the
KEYNAME key_name option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if
ENCRYPT PASSWORD was used with the KEYNAME DEFAULT option.

SYSDBA
Specifies that the user logs in as sysdba.

MINEFROMSNAPSHOTSTBY | NOMINEFROMSNAPSHOTSTBY
Valid for classic Extract in Oracle.
Controls whether or not Oracle GoldenGate can capture from redo that is archived by
a snapshot standby database. MINEFROMSNAPSHOTSTBY enables Extract to run on a
snapshot standby in classic capture mode or in integrated capture mode in an
upstream configuration; running in a downstream configuration is not supported
because the snapshot standby database does not ship its redo logs to another
database.
The default is NOMINEFROMSNAPSHOTSTBY, which prevents Extract from capturing from a
database that is a snapshot. Extract cannot run on a physical standby database and
will abend if its source snapshot database is converted to a physical database.

Chapter 1
TRANLOGOPTIONS

1-304

MININGUSERALIAS alias
Valid for Extract in integrated capture mode for Oracle.
Specifies the alias for the login credentials that Extract uses to log in to a downstream Oracle
mining database to interact with the logmining server. Can be used instead of MININGUSER if
an Oracle GoldenGate credential store is being used.
This alias must be:

• Associated with a database user login credential that is stored in the local Oracle
GoldenGate credential store. This user must have the privileges granted in
dbms_goldengate_auth.grant_admin_privilege.

• The user that issues the MININGDBLOGIN or MININGDBLOGINALIAS and REGISTER EXTRACT
or UNREGISTER EXTRACT commands for the Extract group that is associated with this
MININGUSERALIAS.

This alias and user must not be changed while Extract is in integrated capture mode.

MIXEDENDIAN [ON|OFF]
Valid for DB2 LUW with Oracle GoldenGate primary Extract
Oracle GoldenGate Extract for DB2 LUW supports cross-endian capture where the database
and Oracle GoldenGate are running on different byte order servers. Detection of byte order
is automatic for DB2 LUW database version 10.5 and higher. If you need to disable auto-
detection on DB2 LUW 10.5, then you can override it by specifying this parameter. For
version 10.1, the parameter must be used in the Extract parameter file for the cross-endian
capture. By default, the value is set to OFF for version 10.1.
Syntax:
TRANLOGOPTIONS MIXEDENDIAN [ON|OFF]
ON: If this is set, then the Extract assumes that the database and Oracle GoldenGate are
running on servers with a different byte order and necessary byte reversal conversion is
performed.
OFF: If this is set, then the Extract assumes that the database and Oracle GoldenGate are
running on servers with the same byte order and no byte order reversal conversion is
performed.

MANAGECDCCLEANUP | NOMANAGECDCCLENUP
Valid for SQL Server.
When enabling Supplemental Logging for SQL Server tables, data in the CDC staging tables
and other CDC system tables need to be routinely purged to clear the database storage.
By default, when Extract starts, MANAGECDCCLEANUP is enabled and instructs Extract to check
for the existence of the Oracle GoldenGate CDC Cleanup job. This is the recommended
approach. Use the ogg_cdc_cleanup_setup.bat program to install the Oracle GoldenGate
CDC Cleanup job.
The NOMANAGECDCCLEANUP option instructs Extract not to check for the existence of the Oracle
GoldenGate CDC Cleanup job. This is not a recommended option for production
environments but can be used for testing an Extract without having to create the Oracle
GoldenGate CDC Cleanup job.

NOFLUSH
Valid for DB2 z/OS.
Inhibits the flushing of log buffers.

PATHMAP NFS_mount_point log_path
Valid for Extract in classic capture mode for Oracle.
Specifies the location of the redo and archived logs when they are stored on a system other
than the one which is hosting the database. More than one PATHMAP statement can be used.

Chapter 1
TRANLOGOPTIONS

1-305

When PATHMAP is used, put the entire TRANLOGOPTIONS statement on one line. Do not
use ampersand (&) line terminators to split it into multiple lines.
PATHMAP can be used with the LOGSOURCE option if the system is a different platform
from the one that hosts the database.

NFS_mount_point
Specifies the NFS mount point of the remote system where the logs are stored.

log_path
The path to the logs on the remote system. The path must follow the mount point
specification.

PREPAREFORUPGRADETOIE | NOPREPAREFORUPGRADETOIE
Valid when upgrading from Classic to Integrated Extract on Oracle RAC for Oracle.
When upgrading on Oracle RAC from Classic to Integrated Extract, you must set the
PREPAREFORUPGRADETOIE option before stopping Classic Extract for the upgrade then
wait for the information message in the report file that indicates that the parameter
has taken effect before proceeding with the upgrade.

PREPAREFORUPGRADETOIE
Set PREPAREFORUPGRADETOIE in the Extract parameter file, which requires a restart
of Extract, or you can set it dynamically for a running extract from GGSCI using
this command:
SEND EXTRACT extract_name TRANLOGOPTIONS PREPAREFORUPGRADETOIE

NOPREPAREFORUPGRADETOIE
Dynamically turns off the PREPAREFORUPGRADETOIE option if necessary. The default
is NOPREPAREFORUPGRADETOIE.

PERFORMANCEPROFILE HIGH|MEDIUM|LOW-RES
Valid for Extract in Integrated Capture mode.

Tunes Integrated Capture. It can be set to HIGH, MEDIUM (default), or LOW RES. It
helps achieve better performance by grouping the parameters that affect
performance. Once the performance profile is set up, this option automatically
configures the relevant parameters, to achieve the desired throughput and latency.
The LOW RES option has been added for memory or resource constrained
deployment.

PURGEORPHANEDTRANSACTIONS | NOPURGEORPHANEDTRANSACTIONS
Valid for Extract in classic capture mode for Oracle.
Controls the purging of orphaned transactions that occur when an Oracle RAC node
fails and Extract cannot capture the rollback.

PURGEORPHANEDTRANSACTIONS
Purges orphaned transactions. A transaction is verified as orphaned before
purging by comparing its startup time with the node's startup time; if the
transaction started earlier, it is purged.

NOPURGEORPHANEDTRANSACTIONS
The default. Orphaned transactions are not purged.

QUERYTIMEOUT number
Valid for SQL Server.

Chapter 1
TRANLOGOPTIONS

1-306

Specifies how long queries to SQL Server will wait for results before reporting a timeout error
message. This option takes an integer value to represent the number of seconds. The
default query timeout value is 300 seconds (5 minutes). The minimum value is 0 seconds
(infinite timeout). The maximum is 2147483645 seconds.
The following example instructs SQL Server to wait 60 seconds for results before timing out.

TRANLOGOPTIONS QUERYTIMEOUT 60

QUERYRETRYCOUNT number
Valid for Extract for MySQL and SQL Server.
Specifies how many times to retry calls to the CDC stored procedure used by Extract, in
case of a result set timeout. QUERYRETRYCOUNT can be specified to retry multiple times. If all of
the retry attempts fail, Extract abends with the normal connection timeout error message.
The default is one retry attempt, after which the process abends. The minimum setting (0) is
infinite, maximum is 1000, and default is 1.
For MySQL, the minimum and default setting is 50 and maximum is 1000. There is no infinite
value. Any attempt to set the QUERYRETRYCOUNT to less than minimum, will be ignored with no
error or warning.
The following example causes Extract to attempt its CDC stored procedure call four times:

TRANLOGOPTIONS QUERYRETRYCOUNT 4

The following example causes Extract to attempt its CDC stored procedure call 100 times:

TRANLOGOPTIONS QUERYRETRYCOUNT 100

READQUEUESIZE size
Valid for MySQL.
Specifies the internal queue size, in bytes, for transaction data. It can be increased to
improve performance. Valid values are integers from 1 through 214748364750000. The
default is 256 bytes; start with the default and evaluate performance before adjusting
upward.

REDO_TRANSPORT_LAG_THRESHOLD seconds
Valid for Integrated Extract in Downstream Mining Mode.
Monitors the network latency between a source database and target database when redo
logs are shipped. If the latency exceeds the specified threshold then a warning appears in
the report file and a subsequent information message appears when the lag drops to the
normal level.
The default threshold value is 30 seconds. The minimum threshold value that can be
specified is 15 seconds.
For more information, see Configuring Redo Transport from Source to Downstream Mining
Database.

REDO_TRANSPORT_LAG_TIMEOUT value
The value provided as input in this parameter option is the time period for which Extract will
wait for redo from each thread. If all the threads have waited for the timeout (in seconds) and
have not received any redo then Extract will abend.

REQUIRELONGDATACAPTURECHANGES | NOREQUIRELONGDATACAPTURECHANGES
Valid for DB2 LUW.
Controls the response of Extract when DATA CAPTURE is set to NONE or to CHANGES without
INCLUDE LONGVAR COLUMNS and the parameter file includes any of the following Oracle
GoldenGate parameters that require the presence of before images for some or all column

Chapter 1
TRANLOGOPTIONS

1-307

values: GETBEFOREUPATES, NOCOMPRESSUPDATES, and NOCOMPRESSDELETES. Both of
those DATA CAPTURE settings prevent the logging of before values for LONGVAR
columns. If those columns are not available to Extract, it can affect the integrity of the
target data.

REQUIRELONGDATACAPTURECHANGES
Extract abends with an error.

NOREQUIRELONGDATACAPTURECHANGES
Extract issues a warning but continues processing the data record.

SOURCE_OS_TIMEZONE timezone
Valid for Extract in integrated capture mode for Oracle.
Specifies the system time zone of the source database. The system time zone of a
database is usually given by the default time zone of its operating system, and can
also be overridden by setting the TZ environment variable when the database is
started. You should specify this option only if the source database and the Extract
process use different system time zones. For example, in a downstream capture
deployment where the source database and the Extract process run on different
servers in different time zones.
You can specify the value of this option in a time zone region name or a UTC offset
form and you must use the same form used by the source database. For example, if
the source database uses a region name form like America/New_York, then you must
specify America/New_York, US/Eastern, or EST5EDT. Alternately, if the source
database uses a UTC offset form like -05:00, then you must use the syntax (GMT)
[+|-]hh[:mm]. For example, GMT-05:00 or -5.

SUPPRESSNOOOPUPDATES
Valid for Extract on Oracle Database 12c (12.2) and later.
You can control whether no-op updates are filtered or not in Integrated Extract. The
default is no suppression.

TRACKSCHEMACHANGES
Valid for DB2 z/OS

This parameter enables Extract to capture table level DDL statements and retain a
history of the changes to be used to process DML when the log records refers to a
table version that is earlier than the current version of the table. This would usually be
before images of updates, but could be after images, inserts or deletes if the Extract is
running in a lag situation from the log backlog. When Extract encounters appropriate
DDL operations, it will note the version number of the DDL and update the DDL
history table with the new information. The Extract will create a new TDR record that
relates to the change in the trail as well. When Extract encounters prior versions of
the table in the log, it will reference the DDL history to be able to correctly interpret the
DDL for the older version of the table. The DDL change is not actually being
replicated, and synchronization of any changes to the source table are still required to
be manually executed by the user in the target database.
Syntax:
TRANLOGOPTIONS TRACKSCHEMACHANGES
This will enable table level DDL changes to be tracked by the Extract and the trail
metadata updated as appropriate. To use TRACKSCHEMACHANGES properly, the table
metadata must be at a known consistent state, which means that all the tables that
need version tracking must be created and never altered or reorganized before using
TRACKSCHEMACHANGES so that no prior table versions will appear in the transaction log

Chapter 1
TRANLOGOPTIONS

1-308

for update or delete operations. The script ddl_update.sh has been provided to assist in the
creation of an initial set of DDL history records for the database.
To use DDL processing, the database needs to be set up with a history table that will capture
DDL changes of the various versions of all tables on the database system. Also system
tables need to be enabled for data capture changes. To create and maintain the history table
the following UNIX shell scripts are provided:

• ddl_create.sh : This script is used to create the DDL history table. It also enables data
capture changes for the following system tables:

– SYSIBM.SYSTABLES
– SYSIBM.SYSCOLUMNS
– SYSIBM.SYSINDEXES
– SYSIBM.SYSKEYCOLUSE
Example:

./ddl_create.sh -f crt_ddl_hist.sql -s OGGSCHEMA
In this example, the resulting file, crt_ddl_hist.sql must be processed by another
program.

./ddl_create.sh -d DB2DSXY -u gguser -p ggpw -s OGGSCHEMA
This will call a local DB2 to make a remote connection to a mainframe database to
immediately create the DDL history table.

• ddl_remove.sh: This script is used to remove the DDL history table. However, the
system tables are not altered.

• ddl_update.sh: This script should be run to establish an initial start point for the DDL
version tracking using TRACKSCHEMACHANGES. It must be run after the creation of the DDL
history table and should not be necessary to be run again unless the extract must be
repositioned in such a way that table versions may be missed in the transaction log.
Rerunning ddl_update.sh will only add information for tables that are not already present
in the DDL history.

• execsql.sh: This script should not be run directly but must be available to the other
scripts to be sourced. It provides common facilities for parsing command line and
executing SQL or writing it to a file.

These scripts may be used to create the tables directly using a db2 connection or they may
be used to create SQL files which may be run in a SQL processing program of choice. The
files have been checked to be compatible with DB2 remote and SPUFI.
Following is a description of options accepted by these scripts:

• -h shows this usage help.

• -d dsn specifies the DB2 DSN to connect to.

• -u userid specifies the User ID to connect to the database with.

• -p password specifies the password to connect to the database with.

• -s ggschema specifies the name of the schema the DDL history table should be stored
in. This schema should be the same as GGSCHEMA in GLOBALS.

• -t ddltable specifies the name of the table the DDL history table. GGS_DDL_HIST is the
default.

Chapter 1
TRANLOGOPTIONS

1-309

• -f outfile specifies the name of a file to write the SQL statements to instead of
executing them. If -d, -u, -p must all be specified if used or -f. Currently -t
should not be used. -f must be used if only the db2cli command is available on
the remote host since db2cli cannot run the SQL statements that are generated.

TRANSCLEANUPFREQUENCY minutes
Valid for Extract in classic capture mode for Oracle.
Specifies an interval, in minutes, after which Oracle GoldenGate scans for orphaned
transactions, and then scans again to delete them. The initial scan marks transactions
considered to be orphaned. The second scan confirms they are orphaned, and they
are deleted. Valid values are from 1 to 43200 minutes. Default is 10 minutes.

TRANCOUNT
Valid for SQL Server.
Allows adjustment of the number of transactions processed per call by Extract to pull
data from the SQL Server change data capture staging tables. Based on your
transaction workload, adjusting this value may improve capture rate throughput. The
minimum value is 1, maximum is 100, and the default is 10.
Example:

TRANLOGOPTIONS TRANCOUNT 20

This example instructs Extract to fetch 20 transactions at a time from change data
capture enabled tables.

[TSLOOKUPBEGINLRI | TSLOOKUPENDLRI]
Valid for DB2 LUW v 10.1 and later.
When you specify an LRI range using these parameters, Extract looks for the
timestamp specified in the ADD or ALTER EXTRACT command within this range. This
helps Extract to optimize the look up process for a particular timestamp in the
database transaction log. The TSLOOKUPBEGINLRI parameter is mandatory while
TSLOOKUPENDLRI is optional. Specifying only TSLOOKUPENDLRI without
TSLOOKUPBEGINLRI is invalid. For example:

TRANLOGOPTIONS TSLOOKUPBEGINLRI 75200.666197, TSLOOKUPENDLRI 75207.666216
TRANLOGOPTIONS TSLOOKUPBEGINLRI 75200.666197

If the provided timestamp falls between the given LRI ranges or the provided
timestamp falls after the TSLOOKUPBEGINLRI LRI timestamp then Extract starts from a
record with timestamp equal to or nearest less than the provided timestamp.
If the provided timestamp falls before TSLOOKUPBEGINLRI LRI timestamp, Extract is
started from the specified TSLOOKUPBEGINLRI LRI. If the provided timestamp falls after
TSLOOKUPENDLRI timestamp, then Extract abends. If you only specify TSLOOKUPENDLRI,
then an informational message is displayed and Extract starts from a record with
timestamp equal or nearest less than the provided timestamp.

USENATIVEOBJSUPPORT | NOUSENATIVEOBJSUPPORT
Valid for Extract in integrated capture mode for Oracle.
Integrated Capture adds redo-based capture for User Defined Type (UDT) and
ANYDATA data types. It is enabled by default and can only be enabled if the source
database version is 12.1.0.1 or greater and the source database compatibility is
12.0.0.0.0 or greater. Replicat from Oracle GoldenGate release 12.1.2.1.0 must be
used. To use Native Support, all of your Oracle databases and Oracle GoldenGate
instances must be release 12.1.0.1 or greater to be compatible.

Chapter 1
TRANLOGOPTIONS

1-310

If redo-based capture is enabled but a UDT contains an unsupported attribute, Integrated
Capture retries to capture the UDT using fetch. For limitations of support for capture, see
XML Data Types in Using Oracle GoldenGate for Oracle Database. If you create object
tables by using a CREATE TABLE AS SELECT (CTAS) statement, Integrated Capture must be
configured to capture DML from CTAS operation in order to fully support object tables. For
CTAS use information, see How Oracle GoldenGate Handles Derived Object Names in
Using Oracle GoldenGate for Oracle Database
The default is USENATIVEOBJSUPPORT if supported.

USE_ROOT_CONTAINER_TIMEZONE
Valid for Oracle integrated Extract only.
This parameter is for a CDB environment. Each PDB in a CDB can use a different database
time zone. If the database time zone is available, Extract tries to get the time zone of a PDB
from Integrated Dictionary. The time zone extraction requires a patch on the mining
database. If the patch is not available, Extract sends a query to the PDB to get the time
zone. If the database patch or a connection to the PDB is not available, and this parameter is
specified, Extract assumes that the PDB database time zone is the same as the root
container database time zone.

USEPREVRESETLOGSID | NOUSEPREVRESETLOGSID
Valid for Extract in classic capture mode for Oracle.
Specifies that Extract will take the previous RESETLOG id as the current branch. The default is
NOUSEPREVRESETLOGSID. Supports Extract in classic capture mode when capturing in an
Oracle Data Guard environment.

VALIDATEINLINESFLOB
This is valid for classic Extract in Oracle only.
Use this option with Classic Extract to validate inline SECUREFILE LOBs when it extracts out
the LOB data from the redo column value. No value is expected after VALIDATEINLINESFLOB.

1.175 TRANSACTIONTIMEOUT
Valid For

Replicat

Description

Use the TRANSACTIONTIMEOUT parameter to prevent an uncommitted Replicat target
transaction from holding locks on target tables and consuming database resources
unnecessarily. You can change the value of this parameter so that Replicat can work within
existing application timeouts and other database requirements on the target.

TRANSACTIONTIMEOUT limits the amount of time that Replicat will hold a target transaction
open if it has not received the end-of-transaction record for the last source transaction in that
transaction. By default, Replicat groups multiple source transactions into one target
transaction to improve performance, but it will not commit a partial source transaction and will
wait indefinitely for that last record. The Replicat parameter GROUPTRANSOPS controls the
minimum size of a grouped target transaction. The range is 1–604800.

The following events could last long enough to trigger TRANSACTIONTIMEOUT:

• Network problems prevent trail data from being delivered to the target system.

• Running out of disk space on any system, preventing trail data from being written.

Chapter 1
TRANSACTIONTIMEOUT

1-311

• Collector abends (a rare event).

• Extract abends or is terminated in the middle of writing records for a transaction.

• An Extract data pump abends or is terminated.

• There is a source system failure, such as a power outage or system crash.

How TRANSACTIONTIMEOUT Works

During normal operations, Replicat remembers the position in the trail of the beginning
of the first source transaction in the current target transaction, in case the transaction
must be abended and retried. When TRANSACTIONTIMEOUT is enabled, Replicat also
saves the position of the first record of the current source transaction and will use that
position as the logical end-of-file (EOF) if TRANSACTIONTIMEOUT is triggered.

When triggered, TRANSACTIONTIMEOUT does the following:

1. Aborts the current target transaction

2. Repositions to the beginning of the first source transaction in the aborted target
transaction.

3. Processes all of the trail records up to the logical end-of-file position (the beginning
of the last, incomplete source transaction).

4. Commits the transaction at logical EOF point.

5. Waits for new trail data before processing any more trail records.

TRANSACTIONTIMEOUT can be triggered multiple times for the same source transaction,
depending on the nature of the problem that is causing the trail data to arrive slowly
enough to trigger TRANSACTIONTIMEOUT.

Detecting a TRANSACTIONTIMEOUT Condition

To determine whether or not Replicat is waiting for the rest of a source transaction
when TRANSACTIONTIMEOUT is enabled, issue the SEND REPLICAT command with the
STATUS option. The following statuses indicate this condition:

Performing transaction timeout recovery
Waiting for data at logical EOF after transaction timeout recovery

Default

Disabled

Syntax

TRANSACTIONTIMEOUT n units

n
An integer that specifies the wait interval. Valid values are from one second to one
week (seven days). This value should be greater than that set with the EOFDELAY
parameter in both the primary Extract and any associated data pumps.

units
One of the following: S, SEC, SECS, SECOND, SECONDS, MIN, MINS, MINUTE,
MINUTES, HOUR, HOURS, DAY, DAYS.

Chapter 1
TRANSACTIONTIMEOUT

1-312

Example

TRANSACTIONTIMEOUT 5 S

1.176 TRANSMEMORY
This parameter is no longer valid and CACHEMGR should be used instead.

1.177 TRIMSPACES | NOTRIMSPACES
Valid For

Extract and Replicat

Description

Use the TRIMSPACES and NOTRIMSPACES parameters to control whether or not trailing spaces
in a source CHAR column are truncated when applied to a target CHAR or VARCHAR column.
TRIMSPACES and NOTRIMSPACES can be used at the root level of the parameter file as global
ON/OFF switches for different sets of TABLE or MAP statements, and they can be used within an
individual TABLE or MAP statement to override any global settings for that particular MAP or
TABLE statement.

TRIMSPACES is applied only to single-byte white spaces (U+0020). Ideographic spaces
(U+3000) are not supported.

For Extract, TRIMSPACES only has an effect if Extract is performing mapping within the TABLE
statement (by means of a TARGET statement).

Default

TRIMSPACES

Syntax

TRIMSPACES | NOTRIMSPACES

Examples

Example 1
The following example uses TRIMSPACES and NOTRIMSPACES at the root level of the parameter
file. The default of TRIMSPACES is in effect until the last MAP statement, to which NOTRIMSPACES
applies.

MAP fin.src1, TARGET fin.tgt1;
MAP fin.src2, TARGET fin.tgt2;
MAP fin.src3, TARGET fin.tgt3;
NOTRIMSPACES
MAP fin.src4, TARGET fin.tgt4;

Example 2
The following example uses NOTRIMSPACES within a MAP statement to override the global
default of TRIMSPACES. The default applies to the first two MAP statements, and then
NOTRIMSPACES applies to the last two targets.

Chapter 1
TRANSMEMORY

1-313

MAP fin.src1, TARGET fin.tgt1;
MAP fin.src1, TARGET fin.tgt2;
MAP fin.src1, TARGET fin.tgt3, NOTRIMSPACES;
MAP fin.src1, TARGET fin.tgt4, NOTRIMSPACES;

1.178 TRIMVARSPACES | NOTRIMVARSPACES
Valid For

Extract and Replicat

Description

Use the TRIMVARSPACES and NOTRIMVARSPACES parameters to control whether or not
trailing spaces in a source VARCHAR column are truncated when applied to a target
CHAR or VARCHAR column. TRIMVARSPACES and NOTRIMVARSPACES can be used at the root
level of the parameter file as global ON/OFF switches for different sets of TABLE or MAP
statements, and they can be used within an individual TABLE or MAP statement to
override any global settings for that particular MAP or TABLE statement.

The default is NOTRIMVARSPACES because the spaces in a VARCHAR column can be part
of the data. Before using TRIMVARSPACES, make certain that trailing spaces are not
required as part of the target data.

For Extract, TRIMVARSPACES only has an effect if Extract is performing mapping within
the TABLE statement (by means of a TARGET statement).

Default

NOTRIMVARSPACES

Syntax

TRIMVARSPACES | NOTRIMVARSPACES

Examples

Example 1
The following example uses TRIMVARSPACES and NOTRIMVARSPACES at the root level of
the parameter file. The default of NOTRIMVARSPACES is in effect until the last MAP
statement, to which TRIMVARSPACES applies.

MAP fin.src1, TARGET fin.tgt1;
MAP fin.src2, TARGET fin.tgt2;
MAP fin.src3, TARGET fin.tgt3;
TRIMVARSPACES
MAP fin.src4, TARGET fin.tgt4;

Example 2
The following example uses TRIMVARSPACES within a MAP statement to override the
global default of NOTRIMVARSPACES. The default applies to the first two MAP statements,
and then TRIMVARSPACES applies to the last two targets.

MAP fin.src1, TARGET fin.tgt1;
MAP fin.src1, TARGET fin.tgt2;
MAP fin.src1, TARGET fin.tgt3, TRIMVARSPACES;
MAP fin.src1, TARGET fin.tgt4, TRIMVARSPACES;

Chapter 1
TRIMVARSPACES | NOTRIMVARSPACES

1-314

1.179 UPDATEDELETES | NOUPDATEDELETES
Valid For

Replicat

Description

Use the UPDATEDELETES parameter to convert delete operations to update operations for all
MAP statements that are specified after it in the parameter file. Use NOUPDATEDELETES to turn
off UPDATEDELETES. These parameters are table-specific. One remains in effect for
subsequent MAP statements until the other is encountered. The UPDATE WHERE clause uses the
same key columns that the DELETE statement was going to use. So this works best on tables
that have a primary key or unique key.

Because you can selectively enable or disable these parameters between MAP statements,
you can enable or disable them for different threads of a coordinated Replicat. Specify the
UPDATEDELETES threads in one set of MAP statements, and specify the NOUPDATEDELETES
threads in a different set of MAP statements.

When using UPDATEDELETES, use the NOCOMPRESSDELETES parameter. This parameter causes
Extract to write all of the columns to the trail, so that they are available for updates.

Default

NOUPDATEDELETES

Syntax

UPDATEDELETES | NOUPDATEDELETES

Example

This example shows how you can apply UPDATEDELETES and NOUPDATEDELETES selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

UPDATEDELETES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOUPDATEDELETES
MAP sales.loc, TARGET sales.loc, THREAD (3);

1.180 UPDATEINSERTS | NOUPDATEINSERTS
Valid For

Replicat

Description

Use the UPDATEINSERTS parameter to convert insert operations to update operations for all
MAP statements that are specified after it in the parameter file. Use NOUPDATEINSERTS to turn
off UPDATEINSERTS. The UPDATE WHERE clause will use the same key columns as a regular
UPDATE statement. So, it works best on tables that have a primary key or unique key.

Chapter 1
UPDATEDELETES | NOUPDATEDELETES

1-315

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the UPDATEINSERTS threads in one set of MAP statements, and specify
the NOUPDATEINSERTS threads in a different set of MAP statements.

Default

NOUPDATEINSERTS

Syntax

UPDATEINSERTS | NOUPDATEINSERTS

Example

This example shows how you can apply UPDATEINSERTS and NOUPDATEINSERTS
selectively to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

UPDATEINSERTS
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOUPDATEINSERTS
MAP sales.loc, TARGET sales.loc, THREAD (3);

1.181 UPDATERECORDFORMAT
Valid For

Extract for all databases. This parameter can only be used in a TRANLOG Extract. It
cannot be used in an Extract pump or distribution service.

Description

Use the UPDATERECORDFORMAT parameter to cause Extract to combine the before and
after images of an UPDATE operation into a single record in the trail. It is valid for
Extract in classic and integrated capture modes; it is valid for a master Extract though
is not valid for pump Extract.

Before images are generated when the GETUPDATEBEFORES, GETBEFORECOLS, and
LOGALLSUPCOLS parameters are used. (In the case of an update to a primary key,
unique index, or user-specified KEYCOLS key, the before and after images are stored in
the same record by default. UPDATERECORDFORMAT does not apply in these cases.) The
NOCOMPRESSUPDATES parameter is required for non-Oracle databases.

When two records are generated for an update to a single row, it incurs additional disk
I/O and processing for both Extract and Replicat. If supplemental logging is enabled on
all columns, the unmodified columns may be repeated in both the before and after
records. The overall size of the trail is larger, as well. This overhead is reduced by
using UPDATERECORDFORMAT.

When UPDATERECORDFORMAT is used, Extract writes the before and after images to a
single record that contains all of the information needed to process an UPDATE
operation. In addition to improving the read performance of downstream processes,
this enables column mapping functions to access the before and after column values
at the same point in time, rather than having to cache the before image column values
while reading the after values.

Chapter 1
UPDATERECORDFORMAT

1-316

UPDATERECORDFORMAT takes effect for all TABLE statements in the parameter file.

If you specify both UPDATERECORDFORMAT and FORMAT RELEASE 11.x or earlier, then Extract will
abend.

Note:

Many-columned tables can cause the trail record to reach its maximum size when
UPDATERECORDFORMAT is used. The rest of the record is continued in one or more
additional, chained record fragments. This has a minor effect on processing
performance.

Note:

INSERTALLRECORDS only works with UPDATERECORDFORMAT FULL. So if you are using
INSERTALLRECORDS in Replicat, you must set UPDATERECORDFORMAT FULL in the
Extract.

Default

UPDATERECORDFORMAT COMPACT

Syntax

UPDATERECORDFORMAT [FULL | COMPACT]

FULL
Generates one trail record that contains the before and after images of an UPDATE, where the
before image includes all of the columns that are available in the transaction record for both
the before and after images. When viewed in the Logdump utility, this record appears as
GGSUnifiedUpdate.

COMPACT
Generates one trail record that contains the before and after images of an UPDATE, where the
before image includes all of the columns that are available in the transaction record, but the
after image is limited to the primary key columns and the columns that were modified in the
UPDATE. UPDATERECORDFORMAT COMPACT is recommended for configurations that include an
integrated Replicat. This is the default.
When either FULL or COMPACT are viewed in the Logdump utility, the record appears as
GGSUnifiedUpdate. The record contains the following:

• a header

• the length of the before image

• the before values of each column

• the after values of the primary key, unique index, or KEYCOLS columns

• the after values of the modified columns

• internal token data

Chapter 1
UPDATERECORDFORMAT

1-317

Example

UPDATERECORDFORMAT COMPACT

1.182 UPREPORTMINUTES | UPREPORTHOURS
Valid For

Manager

Description

Use the UPREPORTMINUTES or UPREPORTHOURS parameter to specify the frequency with
which Manager reports Extract and Replicat processes that are running. Every time
one of those processes starts or stops, events are generated. Those messages are
easily overlooked in the error log because the log can be large. UPREPORTMINUTES and
UPREPORTHOURS report on a periodic basis to ensure that you are aware of the process
status.

If UPREPORTMINUTES or UPREPORTHOURS is explicitly indicated and the value of the
CHECKMINUTES parameter is greater than that of UPREPORTMINUTES or UPREPORTHOURS
then CHECKMINUTES acquires the value of UPREPORTMINUTES or UPREPORTHOURS.

To report on stopped processes, use the DOWNREPORT parameter. See
"DOWNREPORTMINUTES | DOWNREPORTHOURS" for more information.

Default

Do not report running processes

Syntax

UPREPORTMINUTES minutes | UPREPORTHOURS hours

UPREPORTMINUTES minutes
Sets the report frequency in minutes. The minimum is 0.

UPREPORTHOURS hours
Sets the report frequency in hours. The minimum is 0.

Example

The following generates a report every 30 minutes.

UPREPORTMINUTES 30

1.183 USE_TRAILDEFS | NO_USE_TRAILDEFS
Valid For

Extract data pump and Replicat when used in a GLOBALS file

Chapter 1
UPREPORTMINUTES | UPREPORTHOURS

1-318

Description

Use the USE_TRAILDEFS and NO_USE_TRAILDEFS parameters to control where the data pump
and Replicat processes obtain the table definitions when the trail files contain full table
definitions.

USE_TRAILDEFS forces these processes to use the table definitions from the trail unless the
OVERRIDE keyword is specified with SOURCEDEFS or ASSUMETARGETDEFS.

NO_USE_TRAILDEFS forces these processes to follow the old behavior when resolving the table
definitions. Extract and pump will not generate trail files with full table definition.

Default

USE_TRAILDEFS

Syntax

[USE_TRAILDEFS | NO_USE_TRAILDEFS]

1.184 USEDEDICATEDCOORDINATIONTHREAD
Valid For

Replicat (coordinated mode)

Description

Use USEDEDICATEDCOORDINATIONTHREAD to force Replicat to maintain a dedicated coordination
thread to apply barrier transactions. The thread ID of this thread is always 0.

By default, Replicat uses the thread with the lowest thread ID to apply barrier transactions,
but that thread also includes work that is mapped to it explicitly. By using a dedicated thread
for barrier transactions, you can get an accurate view in Oracle GoldenGate statistics of the
number of barrier events and exposes the amount of work that is performed serially.
Coordinated Replicat statistics are written to the report file and also can be viewed with the
STATS REPLICAT command.

USEDEDICATEDCOORDINATIONTHREAD applies to the Replicat group as a whole, across all MAP
statements.

Syntax

USEDEDICATEDCOORDINATIONTHREAD

Example

USEDEDICATEDCOORDINATIONTHREAD
MAP u1.t1, TARGET u2.t1 SQLEXEC &
(ID test2, QUERY 'delete from u2.t2 where col_val =100 ', &
NOPARAMS)), THREAD(1), COORDINATED;

Chapter 1
USEDEDICATEDCOORDINATIONTHREAD

1-319

1.185 USEIPV4 | USEIPV6
Valid For

GLOBALS

Description

Use the USEIPV4 parameter to force the use of Internet Protocol version 4 (IPv4) by
Oracle GoldenGate for TCP/IP connections. By default, Oracle GoldenGate uses IPv6
in dual-stack mode and this parameter forces the use of IPv4 only.

When USEIPV4 is used, the entire network in which Oracle GoldenGate operates must
be IPv4 compatible.

Use the USEIPV6 parameter to force the use of Internet Protocol version 6 (IPv6) by
Oracle GoldenGate for TCP/IP connections. By default, Oracle GoldenGate uses IPv6
in dual-stack mode but falls back to IPv4, and only then to IPv6. USEIPV6 eliminates
the IPv4 fallback step. The order of socket selection becomes:

• IPv6 dual-stack

• IPv6

When USEIPV6 is used, the entire network in which Oracle GoldenGate operates must
be IPv6 compatible.

Default

Disabled

Syntax

USEIPV4

USEIPV6

1.186 USERID | NOUSERID
Valid For

Manager, Extract, Replicat, DEFGEN.

Supported for

DB2 for i

DB2 LUW

DB2 on z/OS

Oracle

MySQL

SQL Server

Chapter 1
USEIPV4 | USEIPV6

1-320

Teradata

TimesTen

Description

Use the USERID parameter to specify the database user for an Oracle GoldenGate process
used to log in to a database when using database level authentication, and to specify the
password and password encryption information. This parameter can be used instead of
USERIDALIAS when an Oracle GoldenGate credential store is not being used.

Always use USERID or USERIDALIAS for a primary Extract and for Replicat when using
database-level authentication for connectivity. Use USERID or USERIDALIAS for Manager only if
using parameters that require Manager to log into the source or target database.

USERID Compared to USERIDALIAS

USERID requires either specifying the clear-text password in the parameter file or encrypting it
with the ENCRYPT PASSWORD command and, optionally, storing an encryption key in an ENCKEYS
file. USERID supports a broad range of the databases that Oracle GoldenGate supports.

USERIDALIAS enables you to specify an alias, rather than a user ID and password, in the
parameter file. The user IDs and encrypted passwords are stored in a credential store.
USERIDALIAS supports databases running on Linux, UNIX, and Windows platforms.

General Requirements for USERID

Specify USERID before any TABLE or MAP entries in an Extract or Replicat parameter file.
Specify USERID in a Manager parameter file if Manager must access the database and a login
is required.

USERID is not always required, nor is PASSWORD always required when USERID is required. In
some cases, it is sufficient just to use USERID or even just to use the SOURCEDB or TARGETDB
parameter, depending on how authentication for the database is configured.

See "SOURCEDB" and "TARGETDB" for more information.

Note:

The privileges that are required for the USERID user vary by database. See the
appropriate Oracle GoldenGate installation guide for your database to determine
the privileges that are required for the Oracle GoldenGate database users.

USERID Requirements Per Database Type

The usage of USERID varies depending on the database type.

DB2 for i

Use USERID with PASSWORD to specify the name and password of the user profile assigned to
the Oracle GoldenGate process. Use SOURCEDB or TARGETDB with USERID to specify the default
DB2 for i database that is identified by the system name (in upper case). See Using Oracle
GoldenGate for Heterogeneous Databases for more information.

Chapter 1
USERID | NOUSERID

1-321

DB2 for LUW

Use USERID with PASSWORD and preceded by SOURCEDB or TARGETDB for all Oracle
GoldenGate processes that connect to a DB2 LUW database using database
authentication. You can omit USERID and PASSWORD (and only use SOURCEDB or
TARGETDB) if the database is configured allow authentication at the operating-system
level.

DB2 for z/OS database

Use USERID with PASSWORD if the user that is assigned to the Oracle GoldenGate
process does not have the DB2 privileges that are required for the process to function
properly.

MySQL

Use USERID with PASSWORD for all Oracle GoldenGate processes that connect to a
MySQL database.

Oracle

Use USERID for Oracle GoldenGate processes that connect to an Oracle database as
follows:

• To use an operating system login, use USERID with the / argument.

• To use a database user name and password, use USERID with PASSWORD.

• To use USERID for an Extract group that is configured for integrated capture, the
user must have the privileges granted in the
dbms_goldengate_auth.grant_admin_privilege procedure, and the user must be
the same one that issues DBLOGIN and REGISTER EXTRACT or UNREGISTER EXTRACT
for the Extract group that is associated with this USERID.

• To support capture from an Oracle container database, the user that is specified
with USERID must log into the root container and must be a common user. A
connect string must be supplied for this user and must include the required C##
prefix of the common user, such as C##GGADMIN@FINANCE. See, Other
Requirements for Multitenant Container Databases in Using Oracle GoldenGate
for Oracle Database.

• If you are connecting a Replicat into a multitenant database that each Replicat
connects into a single PDB and if your are applying data into multiple PDBs in the
same multitenant database, then Oracle recommends that you use multiple
Replicats.

• If using a remote Extract or remote Replicat, the USERID should contain the
username@connect_string. See Example 3, Example 3 for syntax.

Use NOUSERID to allow Integrated Extract to run without a connection for fetching or
metadata lookups, or any data dictionary calls. Essentially eliminating the need to
connect to the source database at all. The NOUSERID option requires an Integrated
Dictionary. We should also include that when NOUSERID is used, if the customer has an
Active Data Guard Standby, they can set up fetching from that Standby database using
the FETCHUSERID parameter. The two can be used in conjunction with NOUSERID. In the
event where you are using downstream integrated extract (same caveats below) you
can use FETCHUSERID to fetch from the ADG Standby database and NOUSERID to

Chapter 1
USERID | NOUSERID

1-322

prevent the Extract from making a connection to the source database. This way, if Extract
does need to fetch, it can do so.

SQL Server

Use USERID with PASSWORD if the ODBC data source connection that will be used by the
Oracle GoldenGate process, is configured to connect using SQL Server authentication.

• On a source SQL Server system, also use the SOURCEDB parameter to specify the source
ODBC data source.

• On a target SQL Server system, also use the TARGETDB parameter to specify the target
ODBC data source.

Teradata

Use USERID with PASSWORD for Oracle GoldenGate processes that connect to a Teradata
database.

On a target Teradata system, use the TARGETDB parameter to specify the target ODBC data
source.

Default

None

Syntax

USERID | NOUSERID {/ | user}[, PASSWORD password]
[algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

NOUSERID
NOUSERID is only valid for Oracle TRANLOG Extract (not pump Extract) when downstream
integrated Extract is configured.

/
Directs Oracle GoldenGate to use an operating-system login for Oracle, not a database user
login. Use this argument only if the database allows authentication at the operating-system
level. Bypassing database-level authentication eliminates the need to update Oracle
GoldenGate parameter files if application passwords frequently change. To use this option,
the correct user name must exist in the database, in relation to the value of the Oracle
OS_AUTHENT_PREFIX initialization parameter, as follows:

• The value set with OS_AUTHENT_PREFIX is concatenated to the beginning of a user's
operating system account name and then compared to the database name. Those two
names must match.

• If OS_AUTHENT_PREFIX is set to ' ' (a null string), the user name must be created with
IDENTIFIED EXTERNALLY. For example, if the OS user name is ogg, you would use the
following to create the database user:

CREATE USER ogg IDENTIFIED EXTERNALLY;
• If OS_AUTHENT_PREFIX is set to OPS$ or another string, the user name must be created in

the following format:

Chapter 1
USERID | NOUSERID

1-323

OS_AUTHENT_PREFIX_value OS_user_name

For example, if the OS user name is ogg, you would use the following to create
the database user:

CREATE USER ops$ogg IDENTIFIED BY oggpassword;

user
Specifies the name of a database user or a schema, depending on the database
configuration. For Oracle, a SQL*Net connect string can be used. Refer to USERID
Requirements Per Database Type for additional guidelines.

password
Use when database authentication is required to specify the password for the
database user. If the password was encrypted by means of the ENCRYPT PASSWORD
command, supply the encrypted password; otherwise, use the clear-text password. If
the password is case-sensitive, type it that way.
If either the user ID or password changes, the change must be made in the Oracle
GoldenGate parameter files, including the re-encryption of the password if necessary.

algorithm
Specifies the encryption algorithm that was used to encrypt the password with
ENCRYPT PASSWORD.
The algorithm can be one of:
AES128
AES192
AES256
BLOWFISH

ENCRYPTKEY {key_name | DEFAULT}
Specifies the encryption key that was specified with ENCRYPT PASSWORD.

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption key
in the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME
key_name option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if
ENCRYPT PASSWORD was used with the KEYNAME DEFAULT option.

SYSDBA
(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range]
[, ...])
Valid for Replicat. Links the specified credential to one or more threads of a
coordinated Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a
comma-delimited list of ranges in the format of threadIDlow-threadIDhigh,
threadIDlow-threadIDhigh.

Chapter 1
USERID | NOUSERID

1-324

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

TimesTen

Use USERID with PASSWORD for Oracle GoldenGate processes that connect to a TimesTen
database.

On a target TimesTen system, use the TARGETDB parameter to specify the target ODBC data
source.

Default

None

Syntax

USERID {/ | user}[, PASSWORD password]
[algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

/
Directs Oracle GoldenGate to use an operating-system login for Oracle, not a database user
login. Use this argument only if the database allows authentication at the operating-system
level. Bypassing database-level authentication eliminates the need to update Oracle
GoldenGate parameter files if application passwords frequently change. To use this option,
the correct user name must exist in the database, in relation to the value of the Oracle
OS_AUTHENT_PREFIX initialization parameter, as follows:

• The value set with OS_AUTHENT_PREFIX is concatenated to the beginning of a user's
operating system account name and then compared to the database name. Those two
names must match.

• If OS_AUTHENT_PREFIX is set to ' ' (a null string), the user name must be created with
IDENTIFIED EXTERNALLY. For example, if the OS user name is ogg, you would use the
following to create the database user:

CREATE USER ogg IDENTIFIED EXTERNALLY;
• If OS_AUTHENT_PREFIX is set to OPS$ or another string, the user name must be created in

the following format:

OS_AUTHENT_PREFIX_value OS_user_name

For example, if the OS user name is ogg, you would use the following to create the
database user:

CREATE USER ops$ogg IDENTIFIED BY oggpassword;

user
Specifies the name of a database user or a schema, depending on the database
configuration. For Oracle, a SQL*Net connect string can be used. Refer to USERID
Requirements Per Database Type for additional guidelines.

password
Use when database authentication is required to specify the password for the database user.
If the password was encrypted by means of the ENCRYPT PASSWORD command, supply the
encrypted password; otherwise, use the clear-text password. If the password is case-
sensitive, type it that way.

Chapter 1
USERID | NOUSERID

1-325

If either the user ID or password changes, the change must be made in the Oracle
GoldenGate parameter files, including the re-encryption of the password if necessary.

algorithm
Specifies the encryption algorithm that was used to encrypt the password with
ENCRYPT PASSWORD.
The algorithm can be one of:
AES128
AES192
AES256
BLOWFISH

ENCRYPTKEY {key_name | DEFAULT}
Specifies the encryption key that was specified with ENCRYPT PASSWORD.

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption key
in the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME
key_name option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if
ENCRYPT PASSWORD was used with the KEYNAME DEFAULT option.

SYSDBA
(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range]
[, ...])
Valid for Replicat. Links the specified credential to one or more threads of a
coordinated Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a
comma-delimited list of ranges in the format of threadIDlow-threadIDhigh,
threadIDlow-threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID,
threadIDlow-threadIDhigh.

Examples

Example 1
USERID /

Example 2
USERID ogg

Example 3
USERID ogg@ora1.ora, &
PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC AES128, &
ENCRYPTKEY securekey1

Chapter 1
USERID | NOUSERID

1-326

Example 4
USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC &
AES128, ENCRYPTKEY securekey1

Example 5
USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC &
BLOWFISH, ENCRYPTKEY DEFAULT

Example 6
USERID ogg, &
PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC AES128, &
ENCRYPTKEY securekey1 SYSDBA

1.187 USERIDALIAS
Valid For

Manager, Extract, Replicat, DEFGEN

Supported for

DB2 for i

DB2 LUW

DB2 z/OS

MySQL

Oracle Database

PostgreSQL

SQL Server

Teradata

TimesTen

Description

Use the USERIDALIAS parameter to specify authentication for an Oracle GoldenGate process
to use when logging into a database. The use of USERIDALIAS requires the use of an Oracle
GoldenGate credential store. Specify USERIDALIAS before any TABLE or MAP entries in the
parameter file. The privileges that are required for the USERIDALIAS user vary by database.

USERIDALIAS Compared to USERID

USERIDALIAS enables you to specify an alias, rather than a user ID and password, in the
parameter file. The user IDs and encrypted passwords are stored in a credential store.
USERIDALIAS supports databases running on Linux, UNIX, and Windows platforms.

USERID requires either specifying the clear-text password in the parameter file or encrypting it
with the ENCRYPT PASSWORD command and, optionally, storing an encryption key in an ENCKEYS
file. USERID supports a broad range of the databases that Oracle GoldenGate supports. In
addition, it supports the use of an operating system login for Oracle databases.

Chapter 1
USERIDALIAS

1-327

USERIDALIAS Requirements Per Database Type

The usage of USERIDALIAS varies depending on the database type.

Note:

Login that requires a database user and password must be stored in the
Oracle GoldenGate credential store.

DB2 for LUW

Use USERIDALIAS with the SOURCEDB or TARGETDB parameter for all Oracle GoldenGate
processes that connect to a DB2 LUW database using database authentication. You
can omit USERIDALIAS and only use SOURCEDB or TARGETDB if the database is
configured allow authentication at the operating-system level. See SOURCEDB and
TARGETDB for more information.

MySQL

Use USERIDALIAS for all Oracle GoldenGate processes that connect to a MySQL
database.

Oracle

Use USERIDALIAS for Oracle GoldenGate processes that connect to an Oracle
Database.

• The SOURCEDB or TARGETDB parameter is not required.

• Specify the alias of a database credential that is stored in the Oracle GoldenGate
credential store.

• Special database privileges are required for the USERIDALIAS user when Extract is
configured to use LOGRETENTION. These privileges might have been granted when
Oracle GoldenGate was installed., see Log Retention Options in Using Oracle
GoldenGate for Oracle Database for more information about LOGRETENTION.

• To use USERIDALIAS for an Extract group that is configured for integrated capture,
the user must have the privileges granted in the
dbms_goldengate_auth.grant_admin_privilege procedure, and the user must be
the same one that issues DBLOGIN and REGISTER EXTRACT or UNREGISTER EXTRACT
for the Extract group that is associated with this USERIDALIAS.

• To support capture from an Oracle container database, the user that is specified
with USERID must log on to the root container and must be a common database
user. A connect string must be supplied for this user, for example:
C##GGADM@FINANCE. For more information, see Configuring the Primary Extract in
Using Oracle GoldenGate for Heterogeneous Databases.

SQL Server

Use USERIDALIAS if the ODBC data source connection that will be used by the Oracle
GoldenGate process is configured to connect using SQL Server authentication.

Chapter 1
USERIDALIAS

1-328

• On a source SQL Server system, also use the SOURCEDB parameter to specify the source
ODBC data source.

• On a target SQL Server system, also use the TARGETDB parameter to specify the target
ODBC data source.

Teradata

Use USERIDALIAS for Oracle GoldenGate processes that connect to a Teradata database.

On a target Teradata system, use the TARGETDB parameter to specify the target ODBC data
source.

Default

None

Syntax

USERIDALIAS alias [DOMAIN domain] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

alias
Specifies the alias of a database user credential that is stored in the Oracle GoldenGate
credential store, see USERID Requirements Per Database Type for additional guidelines.

DOMAIN domain
Specifies the credential store domain for the specified alias. A valid domain entry must exist
in the credential store for the specified alias.

SYSDBA
(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])
Valid for Replicat. Links the specified credential to one or more threads of a coordinated
Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadID,
threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

TimesTen

Use USERIDALIAS for Oracle GoldenGate processes that connect to a TimesTen database.

On a target TimesTen system, use the TARGETDB parameter to specify the target ODBC data
source.

Chapter 1
USERIDALIAS

1-329

Default

None

Syntax

USERIDALIAS alias [DOMAIN domain] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

alias
Specifies the alias of a database user credential that is stored in the Oracle
GoldenGate credential store, see USERID Requirements Per Database Type for
additional guidelines.

DOMAIN domain
Specifies the credential store domain for the specified alias. A valid domain entry
must exist in the credential store for the specified alias.

SYSDBA
(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range]
[, ...])
Valid for Replicat. Links the specified credential to one or more threads of a
coordinated Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a
comma-delimited list of ranges in the format of threadIDlow-threadIDhigh,
threadIDlow-threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID,
threadIDlow-threadIDhigh.

Examples

Example 1
The following supplies a credential for the user in the credential store that has the
alias of tiger1 in the domain of east.
USERIDALIAS tiger1 DOMAIN east

Example 2
The following supplies a credential for thread 3 of a coordinated Replicat.

USERIDALIAS tiger1 DOMAIN east THREADS (3)

Example 3
The following example shows the use of the parameter in PostgreSQL:

USERIDALIAS pgdsn

Chapter 1
USERIDALIAS

1-330

1.188 VARWIDTHNCHAR | NOVARWIDTHNCHAR
Valid For

Extract, Replicat, DEFGEN for Oracle

Description

Use the VARWIDTHNCHAR and NOVARWIDTHNCHAR parameters to control how NCHAR data is
written to the trail and interpreted by Replicat.

• VARWIDTHNCHAR causes an NCHAR, NVARCHAR2, or NCLOB character set to be treated as a
variable-length character set (UTF-8).

• NOVARWIDTHNCHAR causes an NCHAR, NVARCHAR2, or NCLOB character set to be treated as
UTF-16.

• If neither option is specified, the NLS_NCHAR_CHARACTERSET property value from the
database is used to determine how an NCHAR, NVARCHAR2, or NCLOB character set is
treated.

Default

Use NLS_NCHAR_CHARACTERSET property from database

Syntax

VARWIDTHNCHAR | NOVARWIDTHNCHAR

1.189 WALLETLOCATION
Valid For

GLOBALS

Description

Use the WALLETLOCATION parameter to specify the location of the Oracle GoldenGate master-
key wallet.

Default

The dirwlt subdirectory of the Oracle GoldenGate installation directory.

Syntax

WALLETLOCATION directory_path

directory_path
Specifies the full path name of the wallet location.

Example

WALLETLOCATION /home/ggadmin/walletdir

Chapter 1
VARWIDTHNCHAR | NOVARWIDTHNCHAR

1-331

1.190 WARNLONGTRANS
Valid For

Extract

Description

Use the WARNLONGTRANS parameter to specify a length of time that a transaction can be
open before Extract generates a warning message that the transaction is long-running.
Also use WARNLONGTRANS to control the frequency with which Oracle GoldenGate
checks for long-running transactions.

This parameter is valid for Oracle and SQL Server.

When WARNLONGTRANS is specified, Oracle GoldenGate checks for transactions that
satisfy the specified threshold, and it reports the first one that it finds to the Oracle
GoldenGate error log, the Extract report file, and the system log. By default, Oracle
GoldenGate repeats this check every five minutes.

To view a list of open transactions on demand, to output transaction details to a file, or
to either cancel those transactions or force them to the trail, use the options of the
SEND EXTRACT command.

Default

One hour (and check every five minutes using a separate processing thread)

Syntax

WARNLONGTRANS duration
[, CHECKINTERVAL interval]
[, NOUSETHREADS]
[, USELASTREADTIME]

duration
Sets a length of time after which an open transaction is considered to be long-running.
The duration is specified as a whole number, followed by the unit of time in any of the
following formats to indicate seconds, minutes, or hours. Do not put a space between
the numeric value and the unit of time. The unit is not case-sensitive. The default is
one hour.

S|SEC|SECS|SECOND|SECONDS
M|MIN|MINS|MINUTE|MINUTES
H|HOUR|HOURS
D|DAY|DAYS

The following are examples of valid durations:

WARNLONGTRANS 1DAY
WARNLONGTRANS 600sec
WARNLONGTRANS 40s

CHECKINTERVAL interval
Sets the frequency at which Oracle GoldenGate checks for transactions that satisfy
WARNLONGTRANS and reports the longest running one. The interval is specified as a

Chapter 1
WARNLONGTRANS

1-332

whole number, followed by the unit of time in any of the following formats to indicate
seconds, minutes, or hours. Do not put a space between the numeric value and the unit of
time. The unit is not case-sensitive. The default is five minutes, which is also the minimum
valid value. The minimum value is 300 and the maximum is 20000000.

S|SEC|SECS|SECOND|SECONDS
M|MIN|MINS|MINUTE|MINUTES
H|HOUR|HOURS
D|DAY|DAYS

CHECKINTERVAL 1day
CHECKINTERVAL 600SEC
CHECKINTERVAL 2m

NOUSETHREADS
Valid for Oracle.
Specifies that the monitoring will be done by the main process thread. By default, it is done
with a separate thread for performance reasons. NOUSETHREADS should only be used if the
system does not support multi-threading.

USELASTREADTIME
Valid for Oracle.
Forces Extract to always use the time that it last read the Oracle redo log to determine
whether a transaction is long-running or not. By default, Extract uses the timestamp of the
last record that it read from the redo log. This applies to an Extract that is running in archive
log only mode, as configured with TRANLOGOPTIONS using the ARCHIVEDLOGONLY option.

Example

NOUSETHREADS

1.191 WARNRATE
Valid For

Replicat

Description

Use the WARNRATE parameter to set a threshold for the number of SQL errors that can be
tolerated on any target table before being reported to the process report and to the error log.
The errors are reported as a warning. If your environment can tolerate a large number of
these errors, increasing WARNRATE helps to minimize the size of those files.

When setting WARNRATE for a coordinated Replicat, take into account that the specified
WARNRATE threshold is applied to each thread in the configuration, not as an aggregate
threshold for Replicat as a whole. For example, if WARNRATE 100 is specified, it is possible for
each thread to return 99 errors without a warning from Replicat.

For Replicat running in an Oracle environment, this parameter is valid for nonintegrated mode
only.

Default

100 errors

Chapter 1
WARNRATE

1-333

Syntax

WARNRATE number_of_errors

number_of_errors
The number of SQL errors after which a warning is issued.

Example

WARNRATE 1000

1.192 WILDCARDRESOLVE
Valid For

Extract and Replicat

Description

Use the WILDCARDRESOLVE parameter to alter the rules for processing wildcarded table
specifications in a TABLE, SEQUENCE, or MAP statement. WILDCARDRESOLVE must precede
the associated TABLE, SEQUENCE, or MAP statements in the parameter file.

The target objects must already exist in the target database when wildcard resolution
is attempted. If a target object does not exist, Replicat abends.

Default

DYNAMIC

Syntax

WILDCARDRESOLVE {DYNAMIC | IMMEDIATE}

DYNAMIC
Source objects that satisfy the wildcard definition are resolved each time the wildcard
rule is satisfied. The newly resolved object is included in the Oracle GoldenGate
configuration upon resolution. This is the default. This is the required setting for
Teradata.
Do not use this option when SOURCEISTABLE or GENLOADFILES is specified.
WILDCARDRESOLVE will always be implicitly set to IMMEDIATE for these parameters.
DYNAMIC must be used when using wildcards to replicate Oracle sequences with the
SEQUENCE parameter.
To keep the default of DYNAMIC, an explicit WILDCARDRESOLVE parameter is optional,
but its presence helps make it clear to someone who is reviewing the parameter file
which method is being used.

IMMEDIATE
Source objects that satisfy the wildcard definition are processed at startup. This option
is not supported for Teradata. This is the forced default for SOURCEISTABLE.
This option does not support the Oracle interval partitioning feature. Dynamic
resolution is required so that new partitions are found by Oracle GoldenGate.

Example

The following example resolves wildcards at startup.

Chapter 1
WILDCARDRESOLVE

1-334

WILDCARDRESOLVE IMMEDIATE
TABLE hq.acct_*;

1.193 XAGENABLE
Valid For

GLOBALS

Description

Use XAGENABLE to enable the Oracle GoldenGate Transparent Integration with Clusterware
feature that allows you to continue using GGSCI to start and stop manager when GoldenGate
instance is under the management of Oracle Grid Infrastructure Bundled Agents (XAG). You
must set one of the following environment variables when using XAGENABLE:

CRS_HOME
ORA_CRS_HOME
GRID_HOME

You can use INFO ALL to view XAG related information.

Default

Disabled.

Syntax

XAGENABLE

1.194 Y2KCENTURYADJUSTMENT |
NOY2KCENTURYADJUSTMENT

Valid For

Extract and Replicat

Description

Use the Y2KCENTURYADJUSTMENT and NOY2KCENTURYADJUSTMENT parameters to control the
conversion of year values when the century portion consists of zeroes (such as 0055) or is
not specified (such as in a two-digit, year-only specification).

With Y2KCENTURYADJUSTMENT enabled (the default), a two-digit year value that is greater than
or equal to 50 is converted to a four-digit year in the 20th century (19xx). If a two-digit year
value is less than 50, it is converted to a four-digit year in the 21st century (20xx).If the
century portion of the year is non-zero, or if NOY2KCENTURYADJUSTMENT is specified, no
conversion is performed.

Default

Y2KCENTURYADJUSTMENT

Chapter 1
XAGENABLE

1-335

Syntax

Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

Chapter 1
Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

1-336

2
Column Conversion Functions

The column conversion functions of Oracle GoldenGate enable you to manipulate source
values into the appropriate format for target columns.You can manipulate numbers and
characters, perform tests, extract parameter values, return environment information, and
more. For more information about using these functions, see Administering Oracle
GoldenGate.

Topics:

• Summary of Column-Conversion Functions
This summary is organized according to the types of processing that can be performed
with the Oracle GoldenGate functions.

• @RANGE

• @AFTER

• @BEFORE

• @BEFOREAFTER

• @BINARY

• @BINTOBASE64

• @BINTOHEX

• @CASE

• @COLSTAT

• @COLTEST

• @COMPUTE

• @DATE

• @DATEDIFF

• @DATENOW

• @DDL

• @EVAL

• @GETENV

• @GETVAL

• @HEXTOBIN

• @HIGHVAL | LOWVAL

• @IF

• @NUMBIN

• @NUMSTR

• @OGG_SHA1

• @STRCAT

2-1

• @STRCMP

• @STRCMPNULL

• @STREQ

• @STREQNULL

• @STREXT

• @STRFIND

• @STRLEN

• @STRLTRIM

• @STRNCAT

• @STRNCMP

• @STRNUM

• @STRRTRIM

• @STRSUB

• @STRTRIM

• @STRUP

• @TOKEN

• @VALONEOF

2.1 Summary of Column-Conversion Functions
This summary is organized according to the types of processing that can be performed
with the Oracle GoldenGate functions.

These functions are used to perform tests.

Function Description

@CASE Selects a value depending on a series of value tests.

@EVAL Selects a value based on a series of independent tests.

@IF Selects one of two values depending on whether a conditional statement
returns TRUE or FALSE.

These functions handle missing columns.

Function Description

@COLSTAT Returns an indicator that a column is MISSING, NULL, or INVALID.

@COLTEST Performs conditional calculations to test whether a column is PRESENT,
MISSING, NULL, or INVALID.

These functions work with dates.

Chapter 2
Summary of Column-Conversion Functions

2-2

Function Description

@DATE Returns a date and time based on the format passed into the source column.

@DATEDIFF Returns the difference between two dates or datetimes.

@DATENOW Returns the current date and time.

These functions are used to perform arithmetic calculations.

Function Description

@COMPUTE Returns the result of an arithmetic expression.

These functions work with strings.

Function Description

@NUMBIN Converts a binary string into a number.

@NUMSTR Converts a string into a number.

@STRCAT Concatenates one or more strings.

@STRCMP Compares two strings.

@STREXT Extracts a portion of a string.

@STREQ Determines whether or not two strings are equal.

@STRFIND Finds the occurrence of a string within a string.

@STRLEN Returns the length of a string.

@STRLTRIM Trims leading spaces.

@STRNCAT Concatenates one or more strings to a maximum length.

@STRNCMP Compares two strings based on a specified number of characters.

@STRNUM Converts a number into a string.

@STRRTRIM Trims trailing spaces.

@STRSUB Substitutes one string for another.

@STRTRIM Trims leading and trailing spaces.

@STRUP Changes a string to uppercase.

@VALONEOF Compares a string or string column to a list of values.

These are miscellaneous functions.

Function Description

@AFTER Returns the after image of the specified column.

@BEFORE Returns the before image of the specified column.

@BEFOREAFTER Returns the before image of the specified column, if available, otherwise returns
the after image.

@BINARY Maintains source binary data as binary data in the target column when the source
column is defined as a character column.

Chapter 2
Summary of Column-Conversion Functions

2-3

Function Description

@BINTOHEX Converts a binary string to a hexadecimal string.

@GETENV Returns environmental information.

@GETVAL Extracts parameters from a stored procedure as input to a FILTER or COLMAP
clause.

@HEXTOBIN Converts a hexadecimal string to a binary string.

@HIGHVAL |
LOWVAL

Constrains a value to a high or low value.

@RANGE Divides rows into multiple groups of data for parallel processing.

@TOKEN Retrieves token data from a trail record header.

@OGG_SHA1 Hashes some fields while replicating them to Operational Data Store.

2.2 @RANGE
Use the @RANGE function to divide the rows of any table across two or more Oracle
GoldenGate processes. It can be used to increase the throughput of large and heavily
accessed tables and also can be used to divide data into sets for distribution to
different destinations. Specify each range in a FILTER clause in a TABLE or MAP
statement.

@RANGE is safe and scalable. It preserves data integrity by guaranteeing that the same
row will always be processed by the same process group. To ensure that rows do not
shift partitions to another process group and that the DML is performed in the correct
order, the column on which you base the @RANGE partitioning must not ever change
during a process run. Updates to the partition column may result in "row not found"
errors or unique-constraint errors.

@RANGE computes a hash value of the columns specified in the input. If no columns are
specified, the KEYCOLS clause of the TABLE or MAP statement is used to determine the
columns to hash, if a KEYCOLS clause exists. Otherwise, the primary key columns are
used.

Oracle GoldenGate adjusts the total number of ranges to optimize the even distribution
across the number of ranges specified.

Because any columns can be specified for this function, rows in tables with relational
constraints to one another must be grouped together into the same process or trail to
preserve referential integrity.

Note:

Using Extract to calculate the ranges is more efficient than using Replicat.
Calculating ranges on the target side requires Replicat to read through the
entire trail to find the data that meets each range specification.

Syntax

@RANGE (range, total_ranges [, column] [, column] [, ...])

Chapter 2
@RANGE

2-4

range
The range assigned to the specified process or trail. Valid values are 1, 2, 3, and so forth,
with the maximum value being the value defined by total_ranges.

total_ranges
The total number of ranges allocated. For example, to divide data into three groups, use the
value 3.

column
The name of a column on which to base the range allocation. This argument is optional. If
not used, Oracle GoldenGate allocates ranges based on the table's primary key.
Your data cannot contain missing or NULL columns; this will cause the @RANGE function to
abend.
The columns specified in a list of columns must exist in the trail file. You can control this
using KEYCOLS in the Extract to include this column, or by using FETCHCOLS in the Extract for
the column, or by ensuring that the column is part of the supplemental log group and then
using LOGALLSUPCOLS.

Examples

Example 1
In the following example, the replication workload is split into three ranges (between three
Replicat processes) based on the ID column of the source acct table.
(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (1, 3, ID));

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (2, 3, ID));

(Replicat group 3 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (3, 3, ID));

Example 2
In the following example, one Extract process splits the processing load into two trails. Since
no columns were defined on which to base the range calculation, Oracle GoldenGate will
use the primary key columns.

RMTTRAIL /ggs/dirdat/aa
TABLE fin.account, FILTER (@RANGE (1, 2));
RMTTRAIL /ggs/dirdat/bb
TABLE fin.account, FILTER (@RANGE (2, 2));

Example 3
In the following example, two tables have relative operations based on an order_ID column.
The order_master table has a key of order_ID, and the order_detail table has a key of
order_ID and item_number. Because the key order_ID establishes relativity, it is used in
@RANGE filters for both tables to preserve referential integrity. The load is split into two ranges.
(Parameter file #1)

MAP sales.order_master, TARGET sales.order_master,
FILTER (@RANGE (1, 2, order_ID));
MAP sales.order_detail, TARGET sales.order_detail,
FILTER (@RANGE (1, 2, order_ID));

(Parameter file #2)

Chapter 2
@RANGE

2-5

MAP sales.order_master, TARGET sales.order_master,
FILTER (@RANGE (2, 2, order_ID));
MAP sales.order_detail, TARGET sales.order_detail,
FILTER (@RANGE (2, 2, order_ID));

2.3 @AFTER
Use the @AFTER function to return the after image of the specified source column. This
is the default behavior.

Syntax

@AFTER (column)

column
The name of the source column for which to return the after image.

Example

@AFTER (quantity)

2.4 @BEFORE
Use the @BEFORE function to return the before image of the specified source column.

When using this parameter, use the GETUPDATEBEFORES parameter in the Extract
parameter file to capture before images from the transaction record, or use it in the
Replicat parameter file to use the before image in a column mapping or filter. If using
the Conflict Resolution and Detection (CDR) feature, you can use the GETBEFORECOLS
option of TABLE. To use these parameters, the specified column must be present in the
transaction log.

If the database only logs values for changed columns, make certain the required
column values are available by enabling supplemental logging for those columns.
Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE
parameter. The fetch option involves additional processing overhead.

Syntax

@BEFORE (column)

column
The name of the source column for which to return the before image.

Example

@BEFORE (quantity)

2.5 @BEFOREAFTER
Use the @BEFOREAFTER function to return the before image if available, or otherwise the
after image.

When using this parameter, use the GETUPDATEBEFORES parameter in the Extract
parameter file to capture before images from the transaction record, or use it in the
Replicat parameter file to use the before image in a column mapping or filter. If using

Chapter 2
@AFTER

2-6

the Conflict Resolution and Detection (CDR) feature, you can use the GETBEFORECOLS option
of TABLE. To use these parameters, all columns must be present in the transaction log.

If the database only logs values for changed columns, make certain the required column
values are available by enabling supplemental logging for those columns. Alternatively, you
can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE parameter. The fetch option
involves additional processing overhead.

Syntax

@BEFOREAFTER (column)

column
The name of the source column for which to return the before image, if available, or
otherwise the after image.

Example

@BEFOREAFTER (quantity)

2.6 @BINARY
Use the @BINARY function when a source column referenced by a column-conversion function
is defined as a character column but contains binary data that must remain binary on the
target. By default, binary data in a character column is converted (if necessary) to ASCII and
assumed to be a null-terminated string. The @BINARY function copies arbitrary binary data to
the target column.

Syntax

@BINARY (column)

column
The name of the target column to which the data will be copied.

Example

The following shows how @BINARY can be used to copy the data from the source column
ACCT_CREATE_DATE to the target column ACCT_COMPLAINT.

ACCT_COMPLAINT =
@IF (@NUMBIN (ACCT_CREATE_DATE) < 48633, 'xxxxxx',
@BINARY (ACCT_COMPLAINT))

2.7 @BINTOBASE64
Use the @BINTOBASE64 function to convert supplied binary data into BASE64 text.

Syntax

@BINTOBASE64 (data)

data
Can be one of the following:

Chapter 2
@BINARY

2-7

• The name of the source column that contains the data

• An expression

• A literal string that is enclosed within single quote marks

Example

@BINTOBASE64('12345') converts to 'MTIzNDU='

2.8 @BINTOHEX
Use the @BINTOHEX function to convert supplied binary data into its hexadecimal
equivalent.

Syntax

@BINTOHEX (data)

data
Can be one of the following:

• The name of the source column that contains the data

• An expression

• A literal string that is enclosed within single quote marks

Example

@BINTOHEX ('12345') converts to 3132333435.

2.9 @CASE
Use the @CASE function to select a value depending on a series of value tests. There is
no limit to the number of cases you can test with @CASE. If the number of cases is
large, list the most frequently encountered conditions first for the best performance.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@CASE (value, test_value1, test_result1
[, test_value2, test_result2] [, ...]
[, default_result]

value
A value to test, for example, a column name. Enclose literals within single quote
marks.

test_value
A valid result for value. Enclose literals within single quote marks.

Chapter 2
@BINTOHEX

2-8

test_result
A value to return based on the value of test_value. Enclose literals within single quote
marks.

default_result
A default value to return if value results in none of the test_value values. Enclose literals
within single quote marks.

Examples

Example 1
The following returns A car if PRODUCT_CODE is CAR and A truck if PRODUCT_CODE is TRUCK. If
PRODUCT_CODE fits neither of the first two cases, a FIELD_MISSING indication is returned
because a default value was not specified.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck')

Example 2
The following is similar to the previous example, except that it provides for a default value. If
PRODUCT_CODE is neither CAR nor TRUCK, the function returns A vehicle.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck', 'A vehicle')

2.10 @COLSTAT
Use the @COLSTAT function to return an indicator to Extract or Replicat that a column is
missing, null, or invalid. The indicator can be used as part of a larger manipulation formula
that uses additional conversion functions.

Syntax

@COLSTAT ({MISSING | NULL | INVALID})

Examples

Example 1
The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

Example 2
The following @IF calculation uses @COLSTAT to return NULL to the target column if PRICE and
QUANTITY are less than zero.

ORDER_TOTAL = PRICE * QUANTITY, @IF (PRICE < 0 AND QUANTITY < 0, @COLSTAT(NULL))

2.11 @COLTEST
Use the @COLTEST function to enable conditional calculations by testing for one or more
column conditions. If a condition is satisfied, @COLTEST returns TRUE. To perform the
conditional calculation, use the @IF function.

Syntax

@COLTEST (source_column, test_condition [, test_condition] [, ...])

Chapter 2
@COLSTAT

2-9

source_column
The name of a source column.

test_condition
Valid values:

PRESENT
Indicates a column is present in the source record and not NULL. Column values
can be missing if the database does not log values for columns that do not
change, but that is not the same as NULL.

NULL
Indicates a column is present in the source record and NULL.

MISSING
Indicates a column is not present in the source record.

INVALID
Indicates a column is present in the source record but contains invalid data.

Examples

Example 1
The following example uses @IF to map a value to the HIGH_SALARY column only if the
BASE_SALARY column in the source record was both present (and not NULL) and
greater than 250000. Otherwise, NULL is returned.

HIGH_SALARY =
@IF (@COLTEST (BASE_SALARY, PRESENT) AND
BASE_SALARY > 250000,
BASE_SALARY, @COLSTAT (NULL))

Example 2
In the following example, 0 is returned when the AMT column is missing or invalid;
otherwise a value for AMT is returned.

AMOUNT = @IF (@COLTEST (AMT, MISSING, INVALID), 0, AMT)

2.12 @COMPUTE
Use the @COMPUTE function to return the value of an arithmetic expression to a target
column. The value returned from the function is in the form of a string.

You can omit the @COMPUTE phrase when returning the value of an arithmetic
expression to another Oracle GoldenGate function, as in:

@STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

The preceding returns the same result as:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

Arithmetic expressions can be combinations of the following elements.

• Numbers

• The names of columns that contain numbers

• Functions that return numbers

Chapter 2
@COMPUTE

2-10

• Arithmetic operators:

+ (plus)

- (minus)

* (multiply)

/ (divide)

\ (remainder)

• Comparison operators:

> (greater than)

>= (greater than or equal)

< (less than)

<= (less than or equal)

= (equal)

<> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• The conjunction operators AND, OR. Oracle GoldenGate only evaluates the necessary part
of a conjunction expression. Once a statement is FALSE, the rest of the expression is
ignored. This can be valuable when evaluating fields that may be missing or null. For
example, if the value of COL1 is 25 and the value of COL2 is 10, then the following are
possible:

@COMPUTE (COL1 > 0 AND COL2 < 3) returns 0.

@COMPUTE (COL1 < 0 AND COL2 < 3) returns 0. COL2 < 3 is never evaluated.

@COMPUTE ((COL1 + COL2)/5) returns 7.

Syntax

@COMPUTE (expression)

expression
A valid arithmetic expression. The numeric value plus the precision cannot be greater than
17 digits. If this limit is exceeded, @COMPUTE returns an error similar to the following.

2013-08-01 01:54:22 ERROR OGG-01334 Error mapping data from column to column in
function COMPUTE.

Examples

Example 1
AMOUNT_TOTAL = @COMPUTE (AMT + AMT2)

Example 2
AMOUNT_TOTAL = @IF (AMT >= 0, AMT * 100, 0)

Chapter 2
@COMPUTE

2-11

Example 3
ANNUAL_SALARY = @COMPUTE (MONTHLY_SALARY * 12)

mod(id,10) = 1 MAP otest.tab,TARGET mtest.tab1,FILTER (@compute (id \ 10)
= 1)
This example illustrates how to achieve the remainder SQL. Ensure that there is a
space between id \ 10 in the three characters, otherwise it will be reported as a filter
syntax error.

2.13 @DATE
Use the @DATE function to return dates and times in a variety of formats to the target
column based on the format passed into the source column. @DATE converts virtually
any type of input into a valid SQL date. @DATE also can be used to extract portions of a
date column or to compute a numeric timestamp column based on a date.

Syntax

@DATE ('output_descriptor', 'input_descriptor', source_column
[, 'input_descriptor', source_column] [, ...])

'output_descriptor'
The output of the function. The valid value is a string that is composed of date
descriptors and optional literal values, such as spaces or colons, that are required by
the target column. Date descriptors can be strung together as needed. See Table 2-1
for descriptions of date descriptors. The format descriptor must match the date/time/
timestamp format for the target. Oracle GoldenGate overrides the specified format to
make it correct, if necessary.

'input_descriptor'
The source input. The valid value is a string that is composed of date descriptors and
optional literal values, such as spaces or colons. Date descriptors can be strung
together as needed. The following are examples:

• Descriptor string 'YYYYMMDD' indicates that the source column specified with
source_column contains (in order) a four-digit year (YYYY), month (MM), and day
(DD).

• Descriptor string 'DD/MM/YY' indicates that the source column specified with
source_column contains the day, a slash, the month, a slash, and the two digit
year.

See Table 2-1 for date descriptions.

source_column
The name of the numeric or character source column that supplies the input specified
with input_descriptor.

Table 2-1 Date Descriptors

Descripto
r

Description Valid for...

CC Century Input/Output

Chapter 2
@DATE

2-12

Table 2-1 (Cont.) Date Descriptors

Descripto
r

Description Valid for...

YY Two-digit year Input/Output

YYYY Four-digit year Input/Output

MM Numeric month Input/Output

MMM Alphanumeric month, such as APR, OCT Input/Output

DD Numeric day of month Input/Output

DDD Numeric day of the year, such as 001 or 365 Input/Output

DOW0 Numeric day of the week (Sunday = 0) Input/Output

DOW1 Numeric day of the week (Sunday = 1) Input/Output

DOWA Alphanumeric day of the week, such as SUN, MON, TUE Input/Output

HH Hour Input/Output

MI Minute Input/Output

SS Seconds Input/Output

JTSLCT Use for a Julian timestamp that is already local time, or to keep
local time when converting to a Julian timestamp.

Input/Output

JTSGMT Julian timestamp, the same as JTS. Input/Output

JTS Julian timestamp. JUL and JTS produce numbers you can use in
numeric expressions. The unit is microseconds. On a Windows
machine, the value will be padded with zeros (0) because the
granularity of the Windows timestamp is milliseconds.

Input/Output

JUL Julian day. JUL and JTS produce numbers you can use in
numeric expressions.

Input/Output

TTS NonStop 48-bit timestamp Input

PHAMIS PHAMIS application date format Input

FFFFFF Fraction (up to microseconds) Input/Output

Chapter 2
@DATE

2-13

Table 2-1 (Cont.) Date Descriptors

Descripto
r

Description Valid for...

STRATUS STRATUS application timestamp Input/Output

CDATE C timestamp in seconds since the Epoch Input/Output

Examples

Example 1
In an instance where a two-digit year is supplied, but a four-digit year is required in
the output, several options exist to obtain the correct century.

• The century can be hard coded, as in:

'CC', 19 or 'CC', 20
• The @IF function can be used to set a condition, as in:

'CC', @IF (YY > 70, 19, 20)

This causes the century to be set to 19 when the year is greater than 70;
otherwise the century is set to 20.

• The system can calculate the century automatically. If the year is less than 50, the
system calculates a century of 20; otherwise, a century of 19 is calculated.

Example 2
The following converts year, month and day columns into a date.

date_col = @DATE ('YYYY-MM-DD', 'YY', date1_yy, 'MM', date1_mm, 'DD', date1_dd)

Example 3
The following converts a date and time, defaulting seconds to zero.

date_col = @DATE ('YYYY-MM-DD HH:MI:00', 'YYMMDD', date1, 'HHMI', time1)

Example 4
The following converts a numeric column stored as YYYYMMDDHHMISS to a SQL date.

datetime_col = @DATE ('YYYY-MM-DD HH:MI:SS', 'YYYYMMDDHHMISS', numeric_date)

Example 5
The following converts a numeric column stored as YYYYMMDDHHMISS to a Julian
timestamp.

julian_ts_col = @DATE ('JTS', 'YYYYMMDDHHMISS', numeric_date)

Example 6
The following converts a Julian timestamp column to two separate columns: a
datetime column in the format YYYY-MM-DD HH:MI:SS and a fraction column that holds
the microseconds portion of the timestamp.

datetime_col = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS', jts_field), fraction_col =
@DATE ('FFFFFF', 'JTS', jts_field)

Chapter 2
@DATE

2-14

Example 7
The following produces the time at which an order is filled. The inner @DATE expression
changes the order_taken column into a Julian timestamp, then adds the order_minutes
column converted into microseconds to this timestamp. The expression is passed back as a
new Julian timestamp to the outer @DATE expression, which converts it back to a more
readable date and time.

order_filled = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS', @DATE ('JTS',
'YYMMDDHHMISS', order_taken) + order_minutes * 60 * 1000000)

Example 8
The following does a full calculation of times. It goes from a source date column named dt to
a target column named dt5 that is to be converted to the date + 5 hours. The calculation also
goes from a source timestamp column named ts to a target column named ts5 that is to be
converted to the timestamp + 5 hours.

MAP scratch.t4, TARGET scratch.t4_copy,
COLMAP (USEDEFAULTS,
dt5 = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS',
@COMPUTE (@DATE ('JTS', 'YYYY-MM-DD HH:MI:SS', dt) + 18000000000)),
ts5 = @DATE ('YYYY-MM-DD HH:MI:SS.FFFFFF', 'JTS',
@COMPUTE (@DATE ('JTS', 'YYYY-MM-DD HH:MI:SS.FFFFFF', ts) + 18000000000))
) ;

2.14 @DATEDIFF
Use the @DATEDIFF function to calculate the difference between two dates or datetimes, in
days or seconds.

Syntax

@DATEDIFF ('difference', 'date', 'date')

difference
The difference between the specified dates. Valid values can be:

• DD, which computes the difference in days.

• SS, which computes the difference in seconds.

date
A string within single quote marks, in the format of 'YYYY-MM-DD[*HH:MI[:SS]]', where * can
be a colon (:) or a blank space, or the @DATENOW function without quotes to return the current
date.

Examples

Example 1
The following calculates the number of days since the beginning of the year 2011.

YTD = @DATEDIFF ('DD', '2011-01-01', @DATENOW ())

Example 2
The following calculates the numerical day of the year. (@DATEDIFF returns 0 for 2011-01-01):

todays_day = @COMPUTE (@DATEDIFF ('DD', '2011-01-01', @DATENOW ()) +1)

Chapter 2
@DATEDIFF

2-15

2.15 @DATENOW
Use the @DATENOW function to return the current date and time in the format YYYY-MM-DD
HH:MI:SS. The date and time are returned in local time, including adjustments for
Daylight Saving Time. @DATENOW takes no arguments.

Syntax

@DATENOW ()

2.16 @DDL
Use the @DDL function to return information about a DDL operation.

Syntax

@DDL ({TEXT | OPTYPE | OBJNAME | OBJTYPE | OBJOWNER})

OBJNAME
Returns the name of the object that is affected by the DDL.

OBJOWNER
Returns the name of the owner of the object that is affected by the DDL.

OBJTYPE
Returns the type of object that is affected by the DDL, such as TABLE or INDEX)

OPTYPE
Returns the operation type of the DDL, such as CREATE or ALTER.

TEXT
Returns the first 200 characters of the text of the DDL statement.

Example

The following example uses the output from @DDL in an EVENTACTIONS shell command.

DDL INCLUDE OBJNAME src.t* &
EVENTACTIONS (SHELL ('echo The DDL text is var1> out.txt ', &
VAR var1 = @DDL (TEXT)));

The redirected output file might contain a string like this:

The DDL text is CREATE TABLE src.test_tab (col1 int);

2.17 @EVAL
Use the @EVAL function to select a value based on a series of independent tests. There
is no limit to the number of conditions you can test. If the number of cases is large, list
the most frequently encountered conditions first for best performance.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Chapter 2
@DATENOW

2-16

Syntax

@EVAL (condition, result
[condition, result] [,]
[, default_result])

condition
A conditional test using standard conditional operators. More than one condition can be
specified.

result
A value or string to return based on the results of the conditional test. Enclose literals within
single quote marks. Specify a result for each condition that is used.

default_result
A default result to return if none of the conditions is satisfied. A default result is optional.

NOT_SUPPORTED
In the following example, if the AMOUNT column is greater than 10000, a result of high amount
is returned. If AMOUNT is greater than 5000 (and less than or equal to 10000), a result of
somewhat high is returned (unless the prior condition was satisfied). If neither condition is
satisfied, a COLUMN_MISSING indication is returned because a default result is not specified.

AMOUNT_DESC = @EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high')

NOT_SUPPORTED
The following is a modification of the preceding example. It returns the same results, except
that a default value is specified, and a result of lower is returned if AMOUNT is less than or
equal to 5000.

@EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high', 'lower')

2.18 @GETENV
Use the @GETENV function to return information about the Oracle GoldenGate environment.
You can use the information as input into the following:

• Stored procedures or queries (with SQLEXEC)

• Column maps (with the COLMAP option of TABLE or MAP)

• User tokens (defined with the TOKENS option of TABLE and mapped to target columns by
means of the @TOKEN function)

• The GET_ENV_VALUE user exit function (see "GET_ENV_VALUE")

Note:

All syntax options must be enclosed within quotes as shown in the syntax
descriptions.

Chapter 2
@GETENV

2-17

Syntax

@GETENV (
'LAG' , 'unit' |
'LASTERR' , 'error_info' |
'JULIANTIMESTAMP' |
'JULIANTIMESTAMP_PRECISE' |
'RECSOUTPUT' |
{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic' |
'GGENVIRONMENT', 'environment_info' |
'GGFILEHEADER', 'header_info' |
'GGHEADER', 'header_info' |
'RECORD', 'location_info' |
'DBENVIRONMENT', 'database_info'
'TRANSACTION', 'transaction_info' |
'OSVARIABLE', 'variable' |
'TLFKEY', SYSKEY, unique_key
'USERNAME',
'OSUSERNAME',
'MACHINENAME',
'PROGRAMNAME',
'CLIENTIDENTIFIER',
)

'LAG' , 'unit'
Valid for Extract and Replicat.

Use the LAG option of @GETENV to return lag information. Lag is the difference between
the time that a record was processed by Extract or Replicat and the timestamp of that
record in the data source.

Syntax

@GETENV ('LAG', {'SEC'|'MSEC'|'MIN'})

'SEC'
Returns the lag in seconds. This is the default when a unit is not explicitly provided for
LAG.

'MSEC'
Returns the lag in milliseconds.

'MIN'
Returns the lag in minutes.

'LASTERR' , 'error_info'
Valid for Replicat.

Use the LASTERR option of @GETENV to return information about the last failed operation
processed by Replicat.

Syntax

@GETENV ('LASTERR', {'DBERRNUM'|'DBERRMSG'|'OPTYPE'|'ERRTYPE'})

Chapter 2
@GETENV

2-18

'DBERRNUM'
Returns the database error number associated with the failed operation.

'DBERRMSG'
Returns the database error message associated with the failed operation.

'OPTYPE'
Returns the operation type that was attempted. For a list of Oracle GoldenGate operation
types, see Administering Oracle GoldenGate.

'ERRTYPE'
Returns the type of error. Possible results are:

• DB (for database errors)

• MAP (for errors in mapping)

'JULIANTIMESTAMP' | 'JULIANTIMESTAMP_PRECISE'
Valid for Extract and Replicat.

Use the JULIANTIMESTAMP option of @GETENV to return the current time in Julian format. The
unit is microseconds (one millionth of a second). On a Windows machine, the value is
padded with zeros (0) because the granularity of the Windows timestamp is milliseconds (one
thousandth of a second). For example, the following is a typical column mapping:

MAP dbo.tab8451, Target targ.tabjts, COLMAP (USEDEFAULTS, &
JTSS = @GETENV ('JULIANTIMESTAMP')
JTSFFFFFF = @date ('yyyy-mm-dd hh:mi:ss.ffffff', 'JTS', &
@getenv ('JULIANTIMESTAMP')))
;

Possible values that the JTSS and JTSFFFFFF columns can have are:

212096320960773000 2010-12-17:16:42:40.773000
212096321536540000 2010-12-17:16:52:16.540000
212096322856385000 2010-12-17:17:14:16.385000
212096323062919000 2010-12-17:17:17:42.919000
212096380852787000 2010-12-18:09:20:52.787000

The last three digits (the microseconds) of the number all contain the padding of 0s .

Optionally, you can use the 'JULIANTIMESTAMP_PRECISE' option to obtain a timestamp with
high precision though this may effect performance.

Note:

Do not use these values for ordering operations. Instead use this value:
@COMPUTE(@COMPUTE(@NUMSTR(@GETENV ("RECORD",
"FILESEQNO")*100000000000)+@NUMSTR(@GETENV ("RECORD", "FILERBA")))"

Syntax

@GETENV ('JULIANTIMESTAMP')
@GETENV ('JULIANTIMESTAMP_PRECISE')

Chapter 2
@GETENV

2-19

'RECSOUTPUT'
Valid for Extract.

Use the RECSOUTPUT option of @GETENV to retrieve a current count of the number of
records that Extract has written to the trail file since the process started. The returned
value is not unique to a table or transaction, but instead for the Extract session itself.
The count resets to 1 whenever Extract stops and then is started again.

Syntax

@GETENV ('RECSOUTPUT')

{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic'
Valid for Extract and Replicat.

Use the STATS and DELTASTATS options of @GETENV to return the number of operations
that were processed per table for any or all of the following:

• INSERT operations

• UPDATE operations

• DELETE operations

• TRUNCATE operations

• Total DML operations

• Total DDL operations

• Number of conflicts that occurred, if the Conflict Detection and Resolution (CDR)
feature is used.

• Number of CDR resolutions that succeeded

• Number of CDR resolutions that failed

Any errors in the processing of this function, such as an unresolved table entry or
incorrect syntax, returns a zero (0) for the requested statistics value.

Understanding How Recurring Table Specifications Affect Operation Counts

An Extract that is processing the same source table to multiple output trails returns
statistics based on each localized output trail to which the table linked to @GETENV is
written. For example, if Extract captures 100 inserts for table ABC and writes table ABC
to three trails, the result for the @GETENV is 300

EXTRACT ABC
...
EXTTRAIL c:\ogg\dirdat\aa;
TABLE TEST.ABC;
EXTTRAIL c:\ogg\dirdat\bb;
TABLE TEST.ABC;
TABLE EMI, TOKENS (TOKEN-CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));
EXTTRAIL c:\ogg\dirdat\cc;
TABLE TEST.ABC;

In the case of an Extract that writes a source table multiple times to a single output
trail, or in the case of a Replicat that has multiple MAP statements for the same TARGET
table, the statistics results are based on all matching TARGET entries. For example, if

Chapter 2
@GETENV

2-20

Replicat filters 20 rows for REGION 'WEST,' 10 rows for REGION 'EAST,' 5 rows for REGION
'NORTH,' and 2 rows for REGION 'SOUTH' (all for table ABC) the result of the @GETENV is 37.

REPLICAT ABC
...
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'WEST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'EAST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'NORTH'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'SOUTH'));
MAP TEST.EMI, TARGET TEST.EMI, &
 COLMAP (CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));

Capturing Multiple Statistics

You can execute multiple instances of @GETENV to get counts for different operation types.

This example returns statistics only for INSERT and UPDATE operations:

REPLICAT TEST
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, IU = @COMPUTE (@GETENV &
 ('STATS', 'TABLE', 'ABC', 'DML') - (@GETENV ('STATS', 'TABLE', &
 'ABC', 'DELETE'));

This example returns statistics for DDL and TRUNCATE operations:

REPLICAT TEST2
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, DDL = @COMPUTE &
(@GETENV ('STATS', 'DDL') + (@GETENV ('STATS', 'TRUNCATE'));

Example Use Case

In the following use case, if all DML from the source is applied successfully to the target,
Replicat suspends by means of EVENTACTIONS with SUSPEND, until resumed from GGSCI with
SEND REPLICAT with RESUME.

GETENV used in Extract parameter file:

TABLE HR1.HR*;
TABLE HR1.STAT, TOKENS ('env_stats' = @GETENV ('STATS', 'TABLE', &
 'HR1.HR*', 'DML'));

GETENV used in Replicat parameter file:

MAP HR1.HR*, TARGET HR2.*;
MAP HR1.STAT, TARGET HR2.STAT, filter (
 @if (
 @token ('stats') =
 @getenv ('STATS', 'TABLE', 'TSSCAT.TCUSTORD', 'DML'), 1, 0)
),
 eventactions (suspend);

Using Statistics in FILTER Clauses

Statistics returned by STATS and DELTASTATS are dynamic values and are incremented after
mapping is performed. Therefore, when using CDR statistics in a FILTER clause in each of
multiple MAP statements, you need to order the MAP statements in descending order of the
statistics values. If the order is not correct, Oracle GoldenGate returns error OGG-01921. For

Chapter 2
@GETENV

2-21

detailed information about this requirement, see Document 1556241.1 in the
Knowledge base of My Oracle Support at http://support.oracle.com.

Example 2-1 MAP statements containing statistics in FILTER clauses

In the following example, the MAP statements containing the filter for the
CDR_CONFLICTS statistic are ordered in descending order of the statistic: >3, then =3,
then <3.

MAP TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON
UPDATE ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER
(@GETENV ("STATS", "CDR_CONFLICTS") > 3),EVENTACTIONS (LOG INFO);MAP
TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE
ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER (@GETENV
("STATS", "CDR_CONFLICTS") = 3),EVENTACTIONS (LOG WARNING);MAP
TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE
ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER (@GETENV
("STATS", "CDR_CONFLICTS") < 3),EVENTACTIONS (LOG WARNING);

Syntax

@GETENV ({'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic')

{'STATS' | 'DELTASTATS'}
STATS returns counts since process startup, whereas DELTASTATS returns counts since
the last execution of a DELTASTATS.
The execution logic is as follows:

• When Extract processes a transaction record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved source tables in the
TABLE statement.

• When Replicat processes a trail record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved target tables in the
TARGET clause of the MAP statement.

'TABLE', 'table'
Executes the STATS or DELTASTATS only for the specified table or tables. Without this
option, counts are returned for all tables that are specified in TABLE (Extract) or MAP
(Replicat) parameters in the parameter file.
Valid table_name values are:

• 'schema.table' specifies a table.

• 'table' specifies a table of the default schema.

• 'schema.*' specifies all tables of a schema.

• '*' specifies all tables of the default schema.

For example, the following counts DML operations only for tables in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS',
'TABLE', 'hr.*', 'DML'));

Likewise, the following counts DML operations only for the emp table in the hr schema:

Chapter 2
@GETENV

2-22

http://support.oracle.com

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.emp', 'DML'));

By contrast, because there are no specific tables specified for STATS in the following
example, the function counts all INSERT, UPDATE, and DELETE operations for all tables in all
schemas that are represented in the TARGET clauses of MAP statements:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = &
@GETENV ('STATS', 'DML'));

'statistic'
The type of statistic to return. See Using Statistics in FILTER Clauses for important
information when using statistics in FILTER clauses in multiple TABLE or MAP statements.

'INSERT'
Returns the number of INSERT operations that were processed.

'UPDATE'
Returns the number of UPDATE operations that were processed.

'DELETE'
Returns the number of DELETE operations that were processed.

'DML'
Returns the total of INSERT, UPDATE, and DELETE operations that were processed.

'TRUNCATE'
Returns the number of TRUNCATE operations that were processed. This variable returns a
count only if Oracle GoldenGate DDL replication is not being used. If DDL replication is
being used, this variable returns a zero.

'DDL'
Returns the number of DDL operations that were processed, including TRUNCATEs and
DDL specified in INCLUDE and EXCLUDE clauses of the DDL parameter, all scopes (MAPPED,
UNMAPPED, OTHER). This variable returns a count only if Oracle GoldenGate DDL
replication is being used. This variable is not valid for 'DELTASTATS'.

'CDR_CONFLICTS'
Returns the number of conflicts that Replicat detected when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP','CDR_CONFLICTS')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_CONFLICTS')

'CDR_RESOLUTIONS_SUCCEEDED'
Returns the number of conflicts that Replicat resolved when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

Chapter 2
@GETENV

2-23

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_SUCCEEDED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')

'CDR_RESOLUTIONS_FAILED'
Returns the number of conflicts that Replicat could not resolve when executing
the Conflict Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_FAILED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

'GGENVIRONMENT' , 'environment_info'
Valid for Extract and Replicat.

Use the GGENVIRONMENT option of @GETENV to return information about the Oracle
GoldenGate environment.

Syntax

@GETENV ('GGENVIRONMENT', {'DOMAINNAME'|'GROUPDESCRIPTION'|'GROUPNAME'|
 'GROUPTYPE'|'HOSTNAME'|'OSUSERNAME'|'PROCESSID')

'DOMAINNAME'
(Windows only) Returns the domain name associated with the user that started the
process.

'GROUPDESCRIPTION'
Returns the description of the group, taken from the checkpoint file. Requires that a
description was provided with the DESCRIPTION parameter when the group was
created with the ADD command in GGSCI.

'GROUPNAME'
Returns the name of the process group.

'GROUPTYPE'
Returns the type of process, either EXTRACT or REPLICAT.

'HOSTNAME'
Returns the name of the system running the Extract or Replicat process.

'OSUSERNAME'
Returns the operating system user name that started the process.

'PROCESSID'
Returns the process ID that is assigned to the process by the operating system.

'GGHEADER' , 'header_info'
Valid for Extract and Replicat.

Use the GGHEADER option of @GETENV to return information from the header portion of an
Oracle GoldenGate trail record. The header describes the transaction environment of

Chapter 2
@GETENV

2-24

the record. For more information on record headers and record types, see Administering
Oracle GoldenGate.

Syntax

@GETENV ('GGHEADER', {'BEFOREAFTERINDICATOR'|'COMMITTIMESTAMP'|'LOGPOSITION'|
 'LOGRBA'|'OBJECTNAME'|'TABLENAME'|'OPTYPE'|'RECORDLENGTH'|
 'TRANSACTIONINDICATOR'})

Note:

Do not use TIMESTAMP_PRECISE for ordering operations. Instead use this value:
@COMPUTE(@COMPUTE(@NUMSTR(@GETENV ("RECORD",
"FILESEQNO"))*100000000000)+@NUMSTR(@GETENV ("RECORD", "FILERBA")))

'BEFOREAFTERINDICATOR'
Returns the before or after indicator showing whether the record is a before image or an
after image. Possible results are:

• BEFORE (before image)

• AFTER (after image)

'COMMITTIMESTAMP'
Returns the transaction timestamp (the time when the transaction committed) expressed in
the format of YYYY-MM-DD HH:MI:SS.FFFFFF, for example:

2011-01-24 17:08:59.000000

'LOGPOSITION'
Returns the position of the Extract process in the data source. (See the LOGRBA option.)

'LOGRBA'
LOGRBA and LOGPOSITION store details of the position in the data source of the record. For
transactional log-based products, LOGRBA is the sequence number and LOGPOSITION is the
relative byte address. However, these values will vary depending on the capture method and
database type.

'OBJECTNAME' | 'TABLENAME'
Returns the table name or object name (if a non-table object).

'OPTYPE'
Returns the type of operation. Possible results are:

INSERT
UPDATE
DELETE
SQL COMPUPDATE
PK UPDATE
TRUNCATE

If the operation is not one of the above types, then the function returns the word TYPE with
the number assigned to the type.

Chapter 2
@GETENV

2-25

'RECORDLENGTH'
Returns the record length in bytes.

'TRANSACTIONINDICATOR'
Returns the transaction indicator. The value corresponds to the TransInd field of the
record header, which can be viewed with the Logdump utility.
Possible results are:

• BEGIN (represents TransInD of 0, the first record of a transaction.)

• MIDDLE (represents TransInD of 1, a record in the middle of a transaction.)

• END (represents TransInD of 2, the last record of a transaction.)

• WHOLE (represents TransInD of 3, the only record in a transaction.)

'GGFILEHEADER' , 'header_info'
Valid for Replicat only.

Use the GGFILEHEADER option of @GETENV to return attributes of an Oracle GoldenGate
Extract file or trail file. These attributes are stored as tokens in the file header.

Note:

If a given database, operating system, or Oracle GoldenGate version does
not provide information that relates to a given token, a NULL value will be
returned.

Syntax

@GETENV ('GGFILEHEADER', {'COMPATIBILITY'|'CHARSET'|'CREATETIMESTAMP'|
 'FILENAME'|'FILETYPE'|'FILESEQNO'|'FILESIZE'|'FIRSTRECCSN'|
 'LASTRECCSN'|'FIRSTRECIOTIME'|'LASTRECIOTIME'|'URI'|'URIHISTORY'|
 'GROUPNAME'|'DATASOURCE'|'GGMAJORVERSION'|'GGMINORVERSION'|
 'GGVERSIONSTRING'|'GGMAINTENANCELEVEL'|'GGBUGFIXLEVEL'|'GGBUILDNUMBER'|
 'HOSTNAME'|'OSVERSION'|'OSRELEASE'|'OSTYPE'|'HARDWARETYPE'|
 'DBNAME'|'DBINSTANCE'|'DBTYPE'|'DBCHARSET'|'DBMAJORVERSION'|
 'DBMINORVERSION'|'DBVERSIONSTRING'|'DBCLIENTCHARSET'|'DBCLIENTVERSIONSTRING'|
 'LASTCOMPLETECSN'|'LASTCOMPLETEXIDS'|'LASTCSN'|'LASTXID'|
 'LASTCSNTS'|'RECOVERYMODE'})

'COMPATIBILITY'
Returns the compatibility level of the trail file. The compatibility level of the current
Oracle GoldenGate version must be greater than, or equal to, the compatibility level of
the trail file to be able to read the data records in that file. Current valid values are
from 0 or 6.

• 1 means that the trail file is of Oracle GoldenGate version 10.0 or later, which
supports file headers that contain file versioning information.

• 0 means that the trail file is of an Oracle GoldenGate version that is older than
10.0. File headers are not supported in those releases. The 0 value is used for
backward compatibility to those Oracle GoldenGate versions.

• 5 means that the trail file is of Oracle GoldenGate version 12.2 or later.

Chapter 2
@GETENV

2-26

• 6 means that the trail file is of Oracle GoldenGate version 12.3.0.1.

This value keeps increasing as per the Oracle GoldenGate version depending on the
trail file version.

'CHARSET'
Returns the global character set of the trail file. For example:
WCP1252-1

'CREATETIMESTAMP'
Returns the time that the trail was created, in local GMT Julian time in INT64.

'FILENAME'
Returns the name of the trail file. Can be an absolute or relative path, with a forward or
backward slash depending on the file system.

'FILETYPE'
Returns a numerical value indicating whether the trail file is a single file (such as one created
for a batch run) or a sequentially numbered file that is part of a trail for online, continuous
processing. The valid values are:

• 0 - EXTFILE

• 1 - EXTTRAIL

• 2 - UNIFIED and EXTFILE

• 3 - UNIFIED and EXTTRAIL

'FILESEQNO'
Returns the sequence number of the trail file, without any leading zeros. For example, if a file
sequence number is aa000026, FILESEQNO returns 26.

'FILESIZE'
Returns the size of the trail file. It returns NULL on an active file and returns a size value when
the file is full and the trail rolls over.

'FIRSTRECCSN'
Returns the commit sequence number (CSN) of the first record in the trail file.Value is NULL
until the trail file is completed. For more information about the CSN, see Administering
Oracle GoldenGate.

'LASTRECCSN'
Returns the commit sequence number (CSN) of the last record in the trail file.Value is NULL
until the trail file is completed. For more information about the CSN, see Administering
Oracle GoldenGate.

'FIRSTRECIOTIME'
Returns the time that the first record was written to the trail file. Value is NULL until the trail file
is completed.

'LASTRECIOTIME'
Returns the time that the last record was written to the trail file. Value is NULL until the trail file
is completed.

'RECOVERYMODE'
Returns recovery information for internal Oracle GoldenGate use. It is usually set to
APPENDMODE.

Chapter 2
@GETENV

2-27

'URI'
Returns the universal resource identifier of the process that created the trail file, in the
following format:

host_name:dir:[:dir][:dir_n]group_name

Where:

• host_name is the name of the server that hosts the process

• dir is a subdirectory of the Oracle GoldenGate installation path.

• group_name is the name of the process group that is linked with the process.

The following example shows where the trail was processed and by which process.
This includes a history of previous runs.

sys1:home:oracle:v9.5:extora

'URIHISTORY'
Returns a list of the URIs of processes that wrote to the trail file before the current
process.

• For a primary Extract, this field is empty.

• For a data pump, this field is URIHistory + URI of the input trail file.

'GROUPNAME'
Returns the name of the group that is associated with the Extract process that created
the trail. The group name is the one that was supplied when the ADD EXTRACT
command was issued.

'DATASOURCE'
Returns the data source that was read by the process as a number. The return value
can be one of the following:

• DS_EXTRACT_TRAILS: The source was an Oracle GoldenGate extract file,
populated with change data. The return value is 0.

• DS_DATABASE: The source was a direct select from database table written to a
trail, used for SOURCEISTABLE-driven initial load. The return value is 2.

• DS_TRAN_LOGS: The source was the database transaction log. The return value is
3.

• DS_INITIAL_DATA_LOAD: The source was a direct select from database tables for
an initial load. The return value is 4.

• DS_VAM_EXTRACT: The source was a vendor access module (VAM). The return
value is 5.

• DS_VAM_TWO_PHASE_COMMIT: The source was a VAM trail. The return value is 6.

'GGMAJORVERSION'
Returns the major version of the Extract process that created the trail, expressed as
an integer. For example, if a version is 1.2.3, it returns 1.

'GGMINORVERSION'
Returns the minor version of the Extract process that created the trail, expressed as
an integer. For example, if a version is 1.2.3, it returns 2.

Chapter 2
@GETENV

2-28

'GGVERSIONSTRING'
Returns the maintenance (or patch) level of the Extract process that created the trail,
expressed as an integer. For example, if a version is 1.2.3, it returns 3.

'GGMAINTENANCELEVEL'
Returns the maintenance version of the process (xx.xx.xx).

'GGBUGFIXLEVEL'
Returns the patch version of the process (xx.xx.xx.xx).

'GGBUILDNUMBER'
Returns the build number of the process.

'HOSTNAME'
Returns the DNS name of the machine where the Extract that wrote the trail is running. For
example:

• sysa
• sysb
• paris
• hq25

'OSVERSION'
Returns the major version of the operating system of the machine where the Extract that
wrote the trail is running. For example:

• Version s10_69
• #1 SMP Fri Feb 24 16:56:28 EST 2006
• 5.00.2195 Service Pack 4

'OSRELEASE'
Returns the release version of the operating system of the machine where the Extract that
wrote the trail is running. For example, release versions of the examples given for OSVERSION
could be:

• 5.10
• 2.6.9-34.ELsmp

'OSTYPE'
Returns the type of operating system of the machine where the Extract that wrote the trail is
running. For example:

• SunOS
• Linux
• Microsoft Windows

'HARDWARETYPE'
Returns the type of hardware of the machine where the Extract that wrote the trail is running.
For example:

• sun4u

Chapter 2
@GETENV

2-29

• x86_64
• x86

'DBNAME'
Returns the name of the database, for example findb.

'DBINSTANCE'
Returns the name of the database instance, if applicable to the database type, for
example ORA1022A.

'DBTYPE'
Returns the type of database that produced the data in the trail file. Can be one of:

DB2 UDB
DB2 ZOS
MSSQL
MYSQL
ORACLE
TERADATA
ODBC

'DBCHARSET'
Returns the character set that is used by the database that produced the data in the
trail file. (For some databases, this will be empty.)

'DBMAJORVERSION'
Returns the major version of the database that produced the data in the trail file.

'DBMINORVERSION'
Returns the minor version of the database that produced the data in the trail file.

'DBVERSIONSTRING'
Returns the maintenance (patch) level of the database that produced the data in the
trail file.

'DBCLIENTCHARSET'
Returns the character set that is used by the database client.

'DBCLIENTVERSIONSTRING'
Returns the maintenance (patch) level of the database client. (For some databases,
this will be empty.)

'LASTCOMPLETECSN'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCOMPLETEXIDS'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCSN'
Returns recovery information for internal Oracle GoldenGate use.

'LASTXID'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCSNTS'
Returns recovery information for internal Oracle GoldenGate use.

Chapter 2
@GETENV

2-30

'RECORD' , 'location_info'
Valid for a data pump Extract or Replicat.

Use the RECORD option of @GETENV to return the location or Oracle rowid of a record in an
Oracle GoldenGate trail file.

Syntax

@GETENV ('RECORD',
{'TIMESTAMP_PRECISE'|'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

'TIMESTAMP_PRECISE'
Valid for a data pump, Extract, or Replicat.
The TIMESTAMP_PRECISE option returns the timestamp from year to microseconds. However,
depending on the database, the value can be in milliseconds with 0 microseconds.

'FILESEQNO'
Returns the sequence number of the trail file without any leading zeros.

'FILERBA'
Returns the relative byte address of the record within the FILESEQNO file.

'ROWID'
(Valid for Oracle) Returns the row id of the record.

'RSN'
Returns the record sequence number within the transaction. This value does not always
generate uniquely increasing values and should not be used to order operations. For
ordering transactions or DML operations within a transaction, use the information outlined in
MOS DOC ID 1340823.1.

'TIMESTAMP'
Returns the timestamp of the record.

Example:

REC-TIMESTAMP: 2017-10-31 06:21:07 REC-TIMESTAMP-PRECISE: 2017-10-31
06:21:07.478064

'DBENVIRONMENT' , 'database_info'
Valid for Extract and Replicat.

Use the DBENVIRONMENT option of @GETENV to return global environment information for a
database.

Syntax

@GETENV ('DBENVIRONMENT', {'DBNAME'|'DBVERSION'|'DBUSER'|'SERVERNAME'})

'DBNAME'
Returns the database name.

'DBVERSION'
Returns the database version.

Chapter 2
@GETENV

2-31

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=355027630061971&id=1439822.1&_afrWindowMode=0&_adf.ctrl-state=1dv3nz3o4z_4

'DBUSER'
Returns the database login user. Note that SQL Server does not log the user ID.

'SERVERNAME'
Returns the name of the server.

'TRANSACTION' , 'transaction_info
Valid for Extract.

Use the TRANSACTION option of @GETENV to return information about a source
transaction. This option is valid for the Extract process but not for pump Extract and
Replicat.

Syntax

@GETENV ('TRANSACTION',
{'TIMESTAMP_PRECISE'|'TRANSACTIONID'|'XID'|'CSN'|'TIMESTAMP'|'NAME'|
 'USERID'|'USERNAME'|'PLANNAME' | 'LOGBSN' | 'REDOTHREAD' | 'PROGRAMNAME' |
'CLIENTIDENTIFIER' | 'MACHINENAME' | 'USERNAME')

Note:

Do not use TIMETSAMP_PRECISE or TIMESTAMP for ordering operations.
Instead use this value: @COMPUTE(@COMPUTE(@NUMSTR(@GETENV ("RECORD",
"FILESEQNO"))*100000000000)+@NUMSTR(@GETENV ("RECORD",
"FILERBA")))

'TIMESTAMP_PRECISE'
This option is valid for Extract. Use the TIMESTAMP_PRECISE returns the timestamp
from year to microseconds. However, depending on the database, the value can be in
milliseconds with 0 microseconds

'TRANSACTIONID' | 'XID'
Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The
transaction ID and the CSN are associated with the first record of every transaction
and are stored as tokens in the trail record. For each transaction ID, there is an
associated CSN. Transaction ID tokens have no zero-padding on any platform,
because they never get evaluated as relative values. They only get evaluated for
whether they match or do not match. Note that in the trail, the transaction ID token is
shown as TRANID.

'CSN'
Returns the commit sequence number (CSN). The CSN is not zero-padded when
returned for these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other
supported databases, the CSN is zero-padded.
Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID |
XID environment value for additional information about the CSN token.
For more information about the CSN, see Administering Oracle GoldenGate.

'TIMESTAMP'
Returns the commit timestamp of the transaction.

Chapter 2
@GETENV

2-32

'NAME'
Returns the transaction name, if available.

'USERID'
(Oracle) Returns the Oracle user ID of the database user that committed the last transaction.
This is not valid for pump Extract and/or Replicat.

'USERNAME'
(Oracle) Returns the Oracle user name of the database user that committed the last
transaction. This is not valid for pump Extract and/or Replicat.

'PLANNAME'
(DB2 z/OS) Returns the plan name under which the current transaction was originally
executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'
Returns the begin sequence number (BSN) in the transaction log. The BSN is the native
sequence number that identifies the beginning of the oldest uncommitted transaction that is
held in Extract memory. For example, given an Oracle database, the BSN would be
expressed as a system change number (SCN). The BSN corresponds to the current I/O
checkpoint value of Extract. This value can be obtained from the trail by Replicat when
@GETENV ('TRANSACTION', 'LOGBSN') is used. This value also can be obtained by using the
INFO REPLICAT command with the DETAIL option. The purpose of obtaining the BSN from
Replicat is to get a recovery point for Extract in the event that a system failure or file system
corruption makes the Extract checkpoint file unusable. See Administering Oracle
GoldenGate for more information about recovering the Extract position.

'REDOTHREAD'
Returns the thread number of a RAC node extract; on non-RAC node extracts the value is
always 1. For data pump and Replicat, the thread id used by Extract capture of a RAC node
is returned; on non-RAC, @GETENV() returns an error. Logdump shows the token,
ORATHREADID, in the token section if the transaction is captured by Extract on a RAC node.

‘PROGRAMNAME’
Name of the program or application that started the transaction or session.

‘CLIENTIDENTIFIER’
Value set by using DBMS_SESSION_.set_identifier().

‘MACHINENAME’
Name of the host, machine, or server where database is running

‘USERNAME’
Database login user name.

Example:

DB2 zOS:
TRANS-TIMESTAMP: 2017-10-31 06:21:07
TRANS-TIMESTAMP-PRECISE: 2017-10-31 06:21:07.485792

'OSVARIABLE' , 'variable'
Valid for Extract and Replicat.

Chapter 2
@GETENV

2-33

Use the OSVARIABLE option of @GETENV to return the string value of a specified
operating-system environment variable.

Syntax

@GETENV ('OSVARIABLE', 'variable')

'variable'
The name of the variable. The search is an exact match of the supplied variable
name. For example, the UNIX grep command would return all of the following
variables, but @GETENV ('OSVARIABLE', 'HOME') would only return the value for HOME:

ANT_HOME=/usr/local/ant
JAVA_HOME=/usr/java/j2sdk1.4.2_10
HOME=/home/judyd
ORACLE_HOME=/rdbms/oracle/ora1022i/64

The search is case-sensitive if the operating system supports case-sensitivity.

'TLFKEY' , SYSKEY, 'unique_key'
Valid for Extract and Replicat.

Use the TLFKEY option of @GETENV to associate a unique key with TLF/PTLF records in
ACI's Base24 application. The 64-bit key is composed of the following concatenated
items:

• The number of seconds since 2000.

• The block number of the record in the TLF/PTLF block multiplied by ten.

• The node specified by the user (must be between 0 and 255).

Syntax

@GETENV ('TLFKEY', SYSKEY, unique_key)

SYSKEY, unique_key
The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax
element in quotes.
Example:

GETENV ('TLFKEY', SYSKEY, 27)

2.19 @GETVAL
Use the @GETVAL function to extract values from a stored procedure or query so that
they can be used as input to a FILTER or COLMAP clause of a MAP or TABLE statement.

Whether or not a parameter value can be extracted with @GETVAL depends upon the
following:

1. Whether or not the stored procedure or query executed successfully.

2. Whether or not the stored procedure or query results have expired.

When a value cannot be extracted, the @GETVAL function results in a "column missing"
condition. Typically, this occurs for update operations if the database only logs values
for columns that were changed.

Chapter 2
@GETVAL

2-34

Usually this means that the column cannot be mapped. To test for missing column values,
use the @COLTEST function to test the result of @GETVAL, and then map an alternative value for
the column to compensate for missing values, if desired. Or, to ensure that column values are
available, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE or MAP
parameter to fetch the values from the database if they are not present in the log. Enabling
supplemental logging for the necessary columns also would work.

Syntax

@GETVAL (name.parameter)

name
The name of the stored procedure or query. When using SQLEXEC to execute the procedure
or query, valid values are as follows:
For queries, use the logical name specified with the ID option of the SQLEXEC clause. ID is a
required SQLEXEC argument for queries.
For stored procedures, use one of the following, depending on how many times the
procedure is to be executed within a TABLE or MAP statement:

• For multiple executions, use the logical name defined by the ID clause of the SQLEXEC
statement. ID is required for multiple executions of a procedure.

• For a single execution, use the actual stored procedure name.

parameter
Valid values are one of the following.

• The name of the parameter in the stored procedure or query from which the data will be
extracted and passed to the column map.

• RETURN_VALUE, if extracting values returned by a stored procedure or query.

Alternate Syntax

With SQLEXEC, you can capture parameter results without explicitly using the @GETVAL
keyword. Simply refer to the procedure name (or logical name if using a query or multiple
instances of a procedure) and parameter in the following format:

{procedure_name | logical_name}.parameter

Examples, Standard Syntax

Example 1
The following enables each map statement to call the stored procedure lookup by
referencing the logical names lookup1 and lookup2 within the @GETVAL function and refer
appropriately to each set of results.

MAP schema.srctab, TARGET schema.targtab,
SQLEXEC (SPNAME lookup, ID lookup1, PARAMS (param1 = srccol)),
COLMAP (targcol1 = @GETVAL (lookup1.param2));
MAP schema.srctab, TARGET schema.targtab2,
SQLEXEC (SPNAME lookup, ID lookup2, PARAMS (param1 = srccol)),
COLMAP (targcol2= @GETVAL (lookup2.param2));

Example 2
The following shows a single execution of the stored procedure lookup. In this case, the
actual name of the procedure is used. A logical name is not needed.

Chapter 2
@GETVAL

2-35

MAP schema.tab1, TARGET schema.tab2,
SQLEXEC (SPNAME lookup, PARAMS (param1 = srccol)),
COLMAP (targcol = @GETVAL (lookup.param1));

Example 3
The following shows the execution of a query from which values are mapped with
@GETVAL.

MAP sales.account, TARGET sales.newacct,
SQLEXEC (ID lookup,
QUERY ' select desc_col into desc_param from lookup_table '
' where code_col = :code_param ',
PARAMS (code_param = account_code)),
COLMAP (newacct_id = account_id, newacct_val = @GETVAL (lookup.desc_param));

Examples, Alternate Syntax

Example 1
In the following example, @GETVAL is called implicitly for the phrase proc1.p2 without
the @GETVAL keyword.

MAP test.tab1, TARGET test.tab2,
SQLEXEC (SPNAME proc1, ID myproc, PARAMS (p1 = sourcecol1)),
COLMAP (targcol1 = proc1.p2);

Example 2
In the following example, the @GETVAL function is called implicitly for the phrase
lookup.desc_param without the @GETVAL keyword.

MAP sales.account, TARGET sales.newacct,
SQLEXEC (ID lookup,
QUERY ' select desc_col into desc_param from lookup_table '
' where code_col = :code_param ',
PARAMS (code_param = account_code)),
COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

2.20 @HEXTOBIN
Use the @HEXTOBIN function to convert a supplied string of hexadecimal data into raw
format.

Syntax

@HEXTOBIN (data)

data
The name of the source column, an expression, or a literal string that is enclosed
within double quote marks.

Example

@HEXTOBIN ('414243') converts to three bytes: 0x41 0x42 0x43.

2.21 @HIGHVAL | LOWVAL
Use the @HIGHVAL and @LOWVAL functions when you need to generate a value, but you
want to constrain it within an upper or lower limit. These functions emulate the COBOL
functions of the same names.

Chapter 2
@HEXTOBIN

2-36

Use @HIGHVAL and @LOWVAL only with string and binary data types. When using them with
strings, only @STRNCMP is valid. Using them with decimal or date data types or with SQLEXEC
operations can cause errors. DOUBLE data types result in -1 or 0 (Oracle NUMBER, no precision,
no scale).

Syntax

@HIGHVAL ([length]) | @LOWVAL ([length])

length
Optional. Specifies the binary output length in bytes. The maximum value of length is the
length of the target column.

Example

The following example assumes that the size of the group_level column is 5 bytes.

Function statement Result

group_level = @HIGHVAL () {0xFF, 0xFF, 0xFF, 0xFF, 0xFF}

group_level = @LOWVAL () {0x00, 0x00, 0x00, 0x00, 0x00}

group_level = @HIGHVAL (3) {0xFF, 0xFF, 0xFF}

group_level = @LOWVAL (3) {0x00, 0x00, 0x00}

2.22 @IF
Use the @IF function to return one of two values, based on a condition. You can use the @IF
function with other Oracle GoldenGate functions to begin a conditional argument that tests for
one or more exception conditions. You can direct processing based on the results of the test.
You can nest @IF statements, if needed.

Syntax

@IF (condition, value_if_non-zero, value_if-zero)

condition
A valid conditional expression or Oracle GoldenGate function. Use numeric operators (such
as =, > or <) only for numeric comparisons. For character comparisons, use one of the
character-comparison functions.

value_if_non-zero
Non-zero is considered true.

value_if_zero
Zero (0) is considered false.

Chapter 2
@IF

2-37

Examples

Example 1
The following returns an amount only if the AMT column is greater than zero; otherwise
zero is returned.

AMOUNT_COL = @IF (AMT > 0, AMT, 0)

Example 2
The following returns WEST if the STATE column is CA, AZ or NV; otherwise it returns
EAST.

REGION = @IF (@VALONEOF (STATE, 'CA', 'AZ', 'NV'), 'WEST', 'EAST')

Example 3
The following returns the result of the PRICE column multiplied by the QUANTITY
column if both columns are greater than 0. Otherwise, the @COLSTAT (NULL) function
creates a NULL value in the target column.

ORDER_TOTAL = @IF (PRICE > 0 AND QUANTITY > 0, PRICE * QUANTITY,
@COLSTAT (NULL))

Example 4
The following example demonstrates a nested @IF statement. In the example, if the
QUANTITY is more than 10, then the item price is 90% of thePRICE.

 ORDER_TOTAL = @IF (PRICE > 0 AND QUANTITY > 0, @IF (QUANTITY > 10, (PRICE *
0.9) * QUANTITY, PRICE * QUANTITY), @COLSTAT(NULL))

Note:

When enclosed in parenthesis (), Oracle GoldenGate column mapping
function expects numeric results. The column value must be specified using
single quotes.

2.23 @NUMBIN
Use the @NUMBIN function to convert a binary string of eight or fewer bytes into a
number. Use this function when the source column defines a byte stream that actually
is a number represented as a string.

Syntax

@NUMBIN (source_column)

source_column
The name of the source column that contains the string to be converted.

Example

The following combines @NUMBIN and @DATE to transform a 48-bit column to a 64-bit
Julian value for local time.

DATE = @DATE ('JTSLCT', 'TTS' @NUMBIN (DATE))

Chapter 2
@NUMBIN

2-38

2.24 @NUMSTR
Use the @NUMSTR function to convert a string (character) column or value into a number. Use
@NUMSTR to do either of the following:

• Map a string (character) to a number.

• Use a string column that contains only numbers in an arithmetic expression.

Syntax

@NUMSTR (input)

input
Can be either of the following:

• The name of a character column.

• A literal string that is enclosed within single quote marks.

Example

PAGE_NUM = @NUMSTR (ALPHA_PAGE_NO)

2.25 @OGG_SHA1
Use the OGG_SHA1 function to return the SHA-1 160 bit / 20 bytes hash value.

Syntax

OGG_SHA1(expression)

expression
The name of a column, literal string, other column mapping function.

Example

OGG_SHA1(col_name)

2.26 @STRCAT
Use the @STRCAT function to concatenate one or more strings or string (character) columns.
Enclose literal strings within single quote marks.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode
data type if any argument is supplied as Unicode.

Syntax

@STRCAT (string1, string2 [, ...])

string1
The first column or literal string to be concatenated.

Chapter 2
@NUMSTR

2-39

string2
The next column or literal string to be concatenated.

Example

The following creates a phone number from three columns and includes the literal
formatting values.

PHONE_NO = @STRCAT (AREA_CODE, PREFIX, '-', PHONE)

2.27 @STRCMP
Use the @STRCMP function to compare two character columns or literal strings. Enclose
literals within single quote marks.

@STRCMP returns the following:

• –1 if the first string is less than the second.

• 0 if the strings are equal.

• 1 if the first string is greater than the second.

Trailing spaces are truncated before comparing the strings.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRCMP (string1, string2)

string1
The first column or literal string to be compared.

string2
The second column or literal string to be compared.

Example

The following example compares two literal strings and returns 1 because the first
string is greater than the second one.

@STRCMP ('JOHNSON', 'JONES')

2.28 @STRCMPNULL
Use the @STRCMPNULL in the same way as @STRCMP function to compare two character
columns or literal strings, but if the arguments are NULL, the result value is 0 instead of
NULL.

Syntax

@STRCMPNULL (string1, string2)

Chapter 2
@STRCMP

2-40

string1
The first column or literal string to be compared.

string2
The second column or literal string to be compared.

2.29 @STREQ
Use the @STREQ function to determine whether or not two string (character) columns or literal
strings are equal. Enclose literals within single quote marks. @STREQ returns the following:

• 1 (true) if the strings are equal.

• 0 (false) if the strings are not equal.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems.

Trailing spaces are truncated before comparing the strings.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STREQ (string1, string2)

string1
The first column or literal string to be compared.

string2
The second column or literal string to be compared.

Example

The following compares the value of the region column to the literal value EAST. If region =
EAST, the record passes the filter.

FILTER (@STREQ (region, 'EAST'))

You could use @STREQ in a comparison to determine a result, as shown in the following
example. If the state is NY, the expression returns East Coast. Otherwise, it returns Other.

@IF (@STREQ (state, 'NY'), 'East Coast', 'Other')

2.30 @STREQNULL
Use the @STREQNULL function in the same way as @STREQ to determine whether or not two
string (character) columns or literal strings are equal. However, if the two arguments passed
to the function are NULL, then the return value is 1.

Syntax

@STREQNULL (string1, string2)

string1
The first column or literal string to be compared.

Chapter 2
@STREQ

2-41

string2
The second column or literal string to be compared.

2.31 @STREXT
Use the @STREXT function to extract a portion of a string.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STREXT (string, begin_position, end_position)

string
The string from which to extract. The string can be either the name of a character
column or a literal string. Enclose literals within single quote marks.

begin_position
The character position at which to begin extraction.

end_position
The character position at which to end extraction. The end position is included in the
extraction.

Example

The following example uses three @STREXT functions to extract a phone number into
three different columns.

AREA_CODE = @STREXT (PHONE, 1, 3),
PREFIX = @STREXT (PHONE, 4, 6),
PHONE_NO = @STREXT (PHONE, 7, 10)

2.32 @STRFIND
Use the @STRFIND function to determine the position of a string within a string column
or else return zero if the string is not found. Optionally, @STRFIND can accept a starting
position within the string.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRFIND (string, 'search_string' [, begin_position])

Chapter 2
@STREXT

2-42

string
The string in which to search. This can be either the name of a character column or a literal
string that is within single quote marks.

'search_string'
The string for which to search. Enclose the search string within single quote marks.

begin_position
The byte position at which to begin searching.

Example

Assuming the string for the ACCT column is ABC123ABC, the following are possible results.

Function statement Result

@STRFIND (ACCT, '23') 5

@STRFIND (ACCT, 'ZZ') 0

@STRFIND (ACCT, 'ABC', 2) 7 (because the search started at the second byte)

2.33 @STRLEN
Use the @STRLEN function to return the length of a string, expressed as the number of
characters.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode
data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRLEN (string)

string
The name of a string (character) column or a literal string. Enclose literals within single quote
marks.

Examples

@STRLEN (ID_NO)

@STRLEN ('abcd')

2.34 @STRLTRIM
Use the @STRLTRIM function to trim leading spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft

Chapter 2
@STRLEN

2-43

Windows, UNIX, and Linux operating systems. The target column must be a SQL
Unicode data type if any argument is supplied as Unicode.

Syntax

@STRLTRIM (string)

string
The name of a character column or a literal string that is enclosed within single quote
marks.

Example

birth_state = @strltrim (state)

2.35 @STRNCAT
Use the @STRNCAT function to concatenate one or more strings to a maximum length.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRNCAT (string, max_length [, string, max_length] [, ...])

string
The name of a string (character) column or a literal string that is enclosed within
single quote marks.

max_length
The maximum string length, in characters.

Example

The following concatenates two strings and results in ABC123.

PHONE_NO = @STRNCAT ('ABCDEF', 3, '123456', 3)

2.36 @STRNCMP
Use the @STRNCMP function to compare two strings based on a specific number of
bytes. The string can be either the name of a string (character) column or a literal
string that is enclosed within single quote marks. The comparison starts at the first
byte in the string.

@STRNCMP returns the following:

• –1 if the first string is less than the second.

• 0 if the strings are equal.

• 1 if the first string is greater than the second.

Chapter 2
@STRNCAT

2-44

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRNCMP (string1, string2, max_length)

string1
The first string to be compared.

string2
The second string to be compared.

max_length
The maximum number of bytes in the string to compare.

Example

The following example compares the first two bytes of each string, as specified by a
max_length of 2, and it returns 0 because both sets are the same.

@STRNCMP ('JOHNSON', 'JONES', 2)

2.37 @STRNUM
Use the @STRNUM function to convert a number into a string and specify the output format and
padding.

Syntax

@STRNUM (column, {LEFT | LEFTSPACE, | RIGHT | RIGHTZERO} [length])

column
The name of a source numeric column.

LEFT
Left justify, without padding.

LEFTSPACE
Left justify, fill the rest of the target column with spaces.

RIGHT
Right justify, fill the rest of the target column with spaces. If the value of a column is a
negative value, the spaces are added before the minus sign. For example, strnum(Col1,
right) used for a column value of -1.27 becomes ###-1.27, assuming the target column
allows 7 digits. The minus sign is not counted as a digit, but the decimal is.

RIGHTZERO
Right justify, fill the rest of the target column with zeros. If the value of a column is a negative
value, the zeros are added after the minus sign and before the numbers. For example,
strnum(Col1, rightzero) used for a column value of -1.27 becomes -0001.27, assuming
the target column allows 7 digits. The minus sign is not counted as a digit, but the decimal is.

length
Specifies the output length, when any of the options are used that specify padding (all but
LEFT). For example:

Chapter 2
@STRNUM

2-45

• strnum(Col1, right, 6) used for a column value of -1.27 becomes ##-1.27. The
minus sign is not counted as a digit, but the decimal is.

• strnum(Col1, rightzero, 6) used for a column value of -1.27 becomes -001.27.
The minus sign is not counted as a digit, but the decimal is.

Example

Assuming a source column named NUM has a value of 15 and the target column's
maximum length is 5 characters, the following examples show the different types of
results obtained with formatting options.

Function statement Result (# denotes a space)

CHAR1 = @STRNUM (NUM, LEFT) 15

CHAR1 = @STRNUM (NUM, LEFTSPACE) 15###

CHAR1 = @STRNUM (NUM, RIGHTZERO) 00015

CHAR1 = @STRNUM (NUM, RIGHT) ###15

If an output length of 4 is specified in the preceding example, the following shows the
different types of results.

Function statement Result (# denotes a space)

CHAR1 = @STRNUM (NUM, LEFTSPACE, 4) 15##

CHAR1 = @STRNUM (NUM, RIGHTZERO, 4) 0015

CHAR1 = @STRNUM (NUM, RIGHT, 4) ##15

2.38 @STRRTRIM
Use the @STRRTRIM function to trim trailing spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Syntax

@STRRTRIM (string)

string
The name of a character column or a literal string that is enclosed within single quote
marks.

Chapter 2
@STRRTRIM

2-46

Example

street_address = @strrtrim (address)

2.39 @STRSUB
Use the @STRSUB function to substitute strings within a string (character) column or constant.
Enclose literal strings within single quote marks.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode
data type if any argument is supplied as Unicode.

Any single byte code value 1 to 255 can be used in hexadecimal or octal format for the string
arguments. Hex values A to F are case insensitive and the leading 'x' must be lower case.
Value zero (0) (\x00 and \000) is not allowed because it is a string terminator. No multibyte
character set value or UNICODE values are supported.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRSUB
(source_string, search_string, substitute_string
[, search_string, substitute_string] [, ...])

source_string
A source string, within single quotes, or the name of a source column that contains the
characters for which substitution is to occur.

search_string
The string, within single quotes, for which substitution is to occur.

substitute_string
The string, within single quotes, that will be substituted for the search string.

Examples

Example 1
The following returns xxABCxx.

@STRSUB ('123ABC123', '123', 'xx')

Example 2
The following returns 023zBC023.

@STRSUB ('123ABC123', 'A', 'z', '1', '0')

Example 3
The following is an example of replacing ^Z, using a hexadecimal string argument, with a
space.

@strsub (col1,'\x1A',' '));

Chapter 2
@STRSUB

2-47

2.40 @STRTRIM
Use the @STRTRIM function to trim leading and trailing spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Syntax

@STRTRIM (string)

string
The name of a character column or a literal string that is enclosed within single quote
marks.

Example

pin_no = @strtrim (custpin)

2.41 @STRUP
Use the @STRUP function to change an alphanumeric string or string (character) column
to upper case.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRUP (string)

string
The name of a character column or a literal string that is enclosed within single quote
marks.

Example

The following returns SALESPERSON.

@STRUP ('salesperson')

2.42 @TOKEN
Use the @TOKEN function to retrieve token data that is stored in the user token area of
the Oracle GoldenGate record header. You can map token data to a target column by
using @TOKEN in the source expression of a COLMAP clause. As an alternative, you can
use @TOKEN within a SQLEXEC statement, an Oracle GoldenGate macro, or a user exit.

Chapter 2
@STRTRIM

2-48

To define token data, use the TOKENS clause of the TABLE parameter in the Extract parameter
file. For more information about using tokens, see Administering Oracle GoldenGate for
Windows and UNIX.

Syntax

@TOKEN ('token')

'token'
The name, enclosed within single quote marks, of the token for which data is to be retrieved.

Example

In the following example, 10 tokens are mapped to target columns.

MAP ora.oratest, TARGET ora.rpt,
COLMAP (
host = @token ('tk_host'),
gg_group = @token ('tk_group'),
osuser = @token ('tk_osuser'),
domain = @token ('tk_domain'),
ba_ind = @token ('tk_ba_ind'),
commit_ts = @token ('tk_commit_ts'),
pos = @token ('tk_pos'),
rba = @token ('tk_rba'),
tablename = @token ('tk_table'),
optype = @token ('tk_optype')
);

2.43 @VALONEOF
Use the @VALONEOF function to compare a string or string (character) column to a list of
values. If the value or column is in the list, 1 is returned; otherwise 0 is returned. This function
trims trailing spaces before the comparison.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode
data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@VALONEOF (expression, value [, value] [, ...])

expression
The name of a character column or a literal enclosed within single quote marks.

value
A criteria value.

Example

In the following example, if STATE is CA or NY, the expression returns COAST, which is the
response returned by @IF when the value is non-zero (true). Otherwise, the expression
returns MIDDLE.

@IF (@VALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MIDDLE')

Chapter 2
@VALONEOF

2-49

3
User Exit Functions

This chapter describes the Oracle GoldenGate user exit functions and their syntax and
includes the following topics:
For more information about using Oracle GoldenGate user exits, see Administering Oracle
GoldenGate.

Topics:

• Summary of User Exit Functions

• Calling a User Exit

• Using EXIT_CALL_TYPE

• Using EXIT_CALL_RESULT

• Using EXIT_PARAMS

• Using ERCALLBACK

• Function Codes

• COMPRESS_RECORD

• DECOMPRESS_RECORD

• GET_BASE_OBJECT_NAME

• GET_BASE_OBJECT_NAME_ONLY

• GET_BASE_SCHEMA_NAME_ONLY

• GET_BEFORE_AFTER_IND

• GET_CATALOG_NAME_ONLY

• GET_COL_METADATA_FROM_INDEX

• GET_COL_METADATA_FROM_NAME

• GET_COLUMN_INDEX_FROM_NAME

• GET_COLUMN_NAME_FROM_INDEX

• GET_COLUMN_VALUE_FROM_INDEX

• GET_COLUMN_VALUE_FROM_NAME

• GET_DATABASE_METADATA

• GET_DDL_RECORD_PROPERTIES

• @GETENV

• GET_ENV_VALUE

• GET_ERROR_INFO

• GET_GMT_TIMESTAMP

• GET_MARKER_INFO

• GET_OBJECT_NAME

3-1

• GET_OBJECT_NAME_ONLY

• GET_OPERATION_TYPE

• GET_POSITION

• GET_RECORD_BUFFER

• GET_RECORD_LENGTH

• GET_RECORD_TYPE

• GET_SCHEMA_NAME_ONLY

• GET_SESSION_CHARSET

• GET_STATISTICS

• GET_TABLE_COLUMN_COUNT

• GET_TABLE_METADATA

• GET_TABLE_NAME

• GET_TABLE_NAME_ONLY

• GET_TIMESTAMP

• GET_TRANSACTION_IND

• GET_USER_TOKEN_VALUE

• OUTPUT_MESSAGE_TO_REPORT

• RESET_USEREXIT_STATS

• SET_COLUMN_VALUE_BY_INDEX

• SET_COLUMN_VALUE_BY_NAME

• SET_OPERATION_TYPE

• SET_RECORD_BUFFER

• SET_SESSION_CHARSET

• SET_TABLE_NAME

3.1 Summary of User Exit Functions

Parameter Description

EXIT_CALL_TYPE Indicates when, during processing, the routine is called.

EXIT_CALL_RESUL
T

Provides a response to the routine.

EXIT_PARAMS Supplies information to the routine.

ERCALLBACK Implements a callback routine. Callback routines retrieve record and
Oracle GoldenGate context information, and they modify the contents of
data records.

Chapter 3
Summary of User Exit Functions

3-2

3.2 Calling a User Exit
Write the user exit routine in C programming code. Use the CUSEREXIT parameter to call the
user exit from a Windows DLL or UNIX shared object at a defined exit point within Oracle
GoldenGate processing. Your user exit routine must be able to accept different events and
information from the Extract and Replicat processes, process the information as desired, and
return a response and information to the caller (the Oracle GoldenGate process that called it).
For more information and syntax for the CUSEREXIT parameter, see "CUSEREXIT".

3.3 Using EXIT_CALL_TYPE
Use EXIT_CALL_TYPE to indicate when, during processing, the Extract or Replicat process
(the caller) calls a user exit routine. A process can call a routine with the following calls.

Table 3-1 User Exit Calls

Call type Processing point

EXIT_CALL_ABORT_TRANS Valid when the RECOVERYOPTIONS mode is APPEND (the default). Called
when a data pump or Replicat reads a RESTART ABEND record from the
trail, placed there by a writer process that abended. (The writer process
can be the primary Extract writing to a local trail read by a data pump, or a
data pump writing to a remote trail read by Replicat.) This call type enables
the user exit to abort or discard the transaction that was left incomplete
when the writer process stopped, and then to recover and resume
processing at the start of the previous completed transaction.

EXIT_CALL_BEGIN_TRANS Called just before either of the following:

• a BEGIN record of a transaction that is read by a data pump

• the start of a Replicat transaction

EXIT_CALL_CHECKPOINT Called just before an Extract or Replicat checkpoint is written.

EXIT_CALL_DISCARD_ASCII_RECOR
D

Called during Extract processing before an ASCII input record is written to
the discard file. The associated ASCII buffer can be retrieved and
manipulated by the user exit using callback routines.

This call type is not applicable for use with the Replicat process.

EXIT_CALL_DISCARD_RECORD Called during Replicat processing before a record is written to the discard
file. Records can be discarded for several reasons, such as when a value in
the Oracle GoldenGate change record is different from the current version
in the target table.The associated discard buffer can be retrieved and
manipulated by the user exit using callback routines.

This call type is not applicable for use with the Extract process.

EXIT_CALL_END_TRANS Called just after either of the following:

• an END record of a transaction that is read by a data pump

• the last record in a Replicat transaction

EXIT_CALL_FATAL_ERROR Called during Extract or Replicat processing just before Oracle GoldenGate
terminates after a fatal error.

EXIT_CALL_PROCESS_MARKER Called during Replicat processing when a marker from a NonStop server is
read from the trail, and before writing to the marker history file.

Chapter 3
Calling a User Exit

3-3

Table 3-1 (Cont.) User Exit Calls

Call type Processing point

EXIT_CALL_PROCESS_RECORD • For Extract, called before a record buffer is output to the trail.
• For Replicat, called just before a replicated operation is performed.
This call is the basis of most user exit processing. When
EXIT_CALL_PROCESS_RECORD is called, the record buffer and other record
information are available to the user exit through callback routines. If
source-target mapping is specified in the parameter file, the mapping is
performed before the EXIT_CALL_PROCESS_RECORD event takes place.
The user exit can map, transform, clean, or perform virtually any other
operation with the record. The user exit can return a status indicating
whether the caller should process or ignore the record.

EXIT_CALL_START Called at the start of processing. The user exit can perform initialization
work, such as opening files and initializing variables.

EXIT_CALL_STOP Called before the process stops gracefully or ends abnormally. The user
exit can perform completion work, such as closing files or outputting totals.

EXIT_CALL_RESULT Set by the user exit routines to instruct the caller how to respond when
each exit call completes.

3.4 Using EXIT_CALL_RESULT
Use EXIT_CALL_RESULT to provide a response to the routine.

Table 3-2 User Exit Responses

Call result Description

EXIT_ABEND_VAL Instructs the caller to terminate immediately.

EXIT_IGNORE_VAL Rejects records for further processing. EXIT_IGNORE_VAL is
appropriate when the user exit performs all the required
processing for a record and there is no need to output or
replicate the data record.

EXIT_OK_VAL If the routine does nothing to respond to an event,
EXIT_OK_VAL is assumed. If the exit call type is any of the
following...

• EXIT_CALL_PROCESS_RECORD
• EXIT_CALL_DISCARD_RECORD
• EXIT_CALL_DISCARD_ASCII_RECORD
... and EXIT_OK_VAL is returned, then Oracle GoldenGate
processes the record buffer that was returned by the user exit.

EXIT_PROCESSED_REC_VAL Instructs Extract or Replicat to skip the record, but update the
statistics that are printed to the report file for that table and for
that operation type.

EXIT_STOP_VAL Instructs the caller to stop processing gracefully.
EXIT_STOP_VAL or EXIT_ABEND_VAL may be appropriate
when an error condition occurs in the user exit.

Chapter 3
Using EXIT_CALL_RESULT

3-4

3.5 Using EXIT_PARAMS
Use EXIT_PARAMS to supply information to the user exit routine, such as the program name
and user-defined parameters. You can process a single data record multiple times.

Table 3-3 User Exit Input

Exit parameter Description

PROGRAM_NAME Specifies the full path and name of the calling process, for example \ggs\extract or
\ggs\replicat. Use this parameter when loading an Oracle GoldenGate callback
routine using the Windows API or to identify the calling program when user exits are
used with both Extract and Replicat processing.

FUNCTION_PARAM • Allows you to pass a parameter that is a literal string to the user exit. Specify the
parameter with the EXITPARAM option of the TABLE or MAP statement from which
the parameter will be passed. See "EXITPARAM 'parameter'". This is only valid
during the exit call to process a specific record.

• FUNCTION_PARAM can also be used at the exit call startup event to pass the
parameters that are specified in the PARAMS option of the CUSEREXIT parameter.
(See "CUSEREXIT".) This is only valid to supply a global parameter at exit startup.

MORE_RECS_IND Set on return from an exit. For database records, determines whether Extract or
Replicat processes the record again. This allows the user exit to output many records
per record processed by Extract. To request the same record again, set
MORE_RECS_IND to CHAR_NO_VAL or CHAR_YES_VAL.

3.6 Using ERCALLBACK
ERCALLBACK is the basic user exit function for Oracle GoldenGate. It is used to pull the record
context into user exit. It's like a package that contains multiple individual functions inside it.
You can call these functions and get return values. For example, functions such as
GET_BEFORE_AFTER_IND, or GET_COLUMN_VALUE_FROM_NAME can be called. These functions are
called function_code.

Syntax

ERCALLBACK (function_code, buffer, result_code);

function_code
The function to be executed by the callback routine. The user callback routine behaves
differently based on the function code passed to the callback routine. While some functions
can be used for both Extract and Replicat, the validity of the function in one process or the
other is dependent on the input parameters that are set for that function during the callback
routine. See Function Codes for a full description of available function codes.

buffer
A void pointer to a buffer containing a predefined structure associated with the specified
function code.

result_code
The status of the function executed by the callback routine. The result code returned by the
callback routine indicates whether or not the callback function was successful. A result code
can be one of the values in Table 3-4.

Chapter 3
Using EXIT_PARAMS

3-5

Table 3-4 Result Codes

Code Description

EXIT_FN_RET_BAD_COLUMN_DATA Invalid data was encountered when retrieving or setting column data.

EXIT_FN_RET_BAD_DATE_TIME A date, timestamp, or interval type of column contains an invalid
date or time value.

EXIT_FN_RET_BAD_NUMERIC_VALUE A numeric type of column contains an invalid numeric value.

EXIT_FN_RET_COLUMN_NOT_FOUND The column was not found in a compressed update record (update
by a database that only logs the values that were changed).

EXIT_FN_RET_ENV_NOT_FOUND The specified environment value could not be found in the record.

EXIT_FN_RET_EXCEEDED_MAX_LENGTH The metadata could not be retrieved because the name of the table
or column did not fit in the allocated buffer.

EXIT_FN_RET_FETCH_ERROR The record could not be fetched. View the error message to see the
reason.

EXIT_FN_RET_INCOMPLETE_DDL_REC An internal error occurred when processing the DDL record. The
record is probably incomplete.

EXIT_FN_RET_INVALID_CALLBACK_FNC_C
D

An invalid callback function code was passed to the callback routine.

EXIT_FN_RET_INVALID_COLUMN A non-existent column was referred to in the function call.

EXIT_FN_RET_INVALID_COLUMN_TYPE The routine is trying to manipulate a data type that is not supported
by Oracle GoldenGate for that purpose.

EXIT_FN_RET_INVALID_CONTEXT The callback function was called at an improper time.

EXIT_FN_RET_INVALID_PARAM An invalid parameter was passed to the callback function.

EXIT_FN_RET_NO_SRCDB_INSTANCE The source database instance could not be found.

EXIT_FN_RET_NO_TGTDB_INSTANCE The target database instance could not be found.

EXIT_FN_RET_NOT_SUPPORTED This function is not supported for this process.

EXIT_FN_RET_OK The callback function succeeded.

EXIT_FN_RET_SESSION_CS_CNV_ERR A ULIB_ERR_INVALID_CHAR_FOUND error was returned to the
character-set conversion routine. The conversion failed.

EXIT_FN_RET_TABLE_NOT_FOUND An invalid table name was specified.

EXIT_FN_RET_TOKEN_NOT_FOUND The specified user token could not be found in the record.

You can use ERCALLBACK to perform many different function calls. For example, if you
want to get the name of a table, you can use the following command:

ERCALLBACK (GET_TABLE_NAME, &var, &result_code)
These functions are used inside the c code for the user exit to perform any of the
calls for functions provided in the section Function Codes. With the combination of the
different function_code calls, you can perform many tasks using ERCALLBACK, such
as:

• Recreate DML statements

• Perform transformations

• Pull specific columns out of a record

Chapter 3
Using ERCALLBACK

3-6

• Write information to a report file

For example, if you need a message written to the report file each time the lag in the
heartbeat table exceeds a certain threshold, you could use the CUSEREXIT function. The
CUSEREXIT function would then make numerous calls to ERCALLBACK to get the lag column
data, perform calculations and the comparison, and if the lag is over the specified threshold
then write a message to the report file.

3.7 Function Codes
Function codes determine the output of the callback routine. The callback routine expects the
contents of the data buffer to match the structure of the specified function code. The callback
routine function codes and their data buffers are described in the following sections. The
following is a summary of available functions.

Table 3-5 Summary of Oracle GoldenGate Function Codes

Function code Description

COMPRESS_RECORD Use the COMPRESS_RECORD function when some, but not all, of a target
table's columns are present after mapping and the entire record must be
manipulated, rather than individual column values.

DECOMPRESS_RECORD Use the DECOMPRESS_RECORD function when some, but not all, of a target
table's columns are present after mapping and the entire record must be
manipulated, rather than individual column values.

GET_BASE_OBJECT_NAME Use the GET_BASE_OBJECT_NAME function to retrieve the fully qualified
name of the base object of an object in a record.

GET_BASE_OBJECT_NAME_ONLY Use the GET_BASE_OBJECT_NAME_ONLY function to retrieve only the name
of the base object of an object in a record.

GET_BASE_SCHEMA_NAME_ONLY Use the GET_BASE_SCHEMA_NAME_ONLY function to retrieve only the name
of the schema of the base object of an object in a record.

GET_BEFORE_AFTER_IND Use the GET_BEFORE_AFTER_IND function to determine whether a record is
a before image or an after image of the database operation.

GET_CATALOG_NAME_ONLY Use the GET_CATALOG_NAME_ONLY function to return the name of the
database catalog.

GET_COL_METADATA_FROM_INDE
X

Use the GET_COL_METADATA_FROM_INDEX function to determine the
column metadata that is associated with a specified column index.

GET_COL_METADATA_FROM_NAM
E

Use the GET_COL_METADATA_FROM_NAME function to determine the column
metadata that is associated with a specified column name.

GET_COLUMN_INDEX_FROM_NAM
E

Use the GET_COLUMN_INDEX_FROM_NAME function to determine the column
index associated with a specified column name.

GET_COLUMN_NAME_FROM_INDE
X

Use the GET_COLUMN_NAME_FROM_INDEX function to determine the column
name associated with a specified column index.

GET_COLUMN_VALUE_FROM_IND
EX

Use the GET_COLUMN_VALUE_FROM_INDEX function to return the column
value from the data record using the specified column index.

GET_COLUMN_VALUE_FROM_NAM
E

Use the GET_COLUMN_VALUE_FROM_NAME function to return the column
value from the data record by using the specified column name.

GET_DATABASE_METADATA Use the GET_DATABASE_METADATA function to return database metadata.

Chapter 3
Function Codes

3-7

Table 3-5 (Cont.) Summary of Oracle GoldenGate Function Codes

Function code Description

GET_DDL_RECORD_PROPERTIES Use the GET_DDL_RECORD_PROPERTIES function to return information about
a DDL operation.

GET_ENV_VALUE
Use the GET_ENV_VALUE function to return information about the Oracle
GoldenGate environment.

GET_ERROR_INFO Use the GET_ERROR_INFO function to return error information associated
with a discard record.

GET_GMT_TIMESTAMP Use the GET_GMT_TIMESTAMP function to return the operation commit
timestamp in GMT format.

GET_MARKER_INFO Use the GET_MARKER_INFO function to return marker information when
posting data. Use markers to trigger custom processing within a user exit.

GET_OBJECT_NAME Returns the fully qualified two- or three-part name of a table or other object
that is associated with the record that is being processed.

GET_OBJECT_NAME_ONLY Returns the unqualified name of a table or other object that is associated
with the record that is being processed.

GET_OPERATION_TYPE Use the GET_OPERATION_TYPE function to determine the operation type
associated with a record.

GET_POSITION Use the GET_POSITION function is obtain a read position of an Extract data
pump or Replicat in the Oracle GoldenGate trail.

GET_RECORD_BUFFER Use the GET_RECORD_BUFFER function to obtain information for custom
column conversions.

GET_RECORD_LENGTH Use the GET_RECORD_LENGTH function to return the length of the data
record.

GET_RECORD_TYPE Use the GET_RECORD_TYPE function to return the type of record being
processed

GET_SCHEMA_NAME_ONLY Use the GET_SCHEMA_NAME_ONLY function to return only the schema name
of a table.

GET_SESSION_CHARSET Use the GET_SESSION_CHARSET function to return the character set of the
user exit session.

GET_STATISTICS Use the GET_STATISTICS function to return the current processing statistics
for the Extract or Replicat process.

GET_TABLE_COLUMN_COUNT Use the GET_TABLE_COLUMN_COUNT function to return the total number of
columns in a table.

GET_TABLE_METADATA Use the GET_TABLE_METADATA function to return metadata for the table that
associated with the record that is being processed.

GET_TABLE_NAME Use the GET_TABLE_NAME function to return the fully qualified two- or three-
part name of the source or target table that is associated with the record that
is being processed.

GET_TABLE_NAME_ONLY Use the GET_TABLE_NAME_ONLY function to return only the unqualified
name of the table that is associated with the record that is being processed.

GET_TIMESTAMP Use the GET_TIMESTAMP function to return the I/O timestamp associated
with a source data record.

GET_TRANSACTION_IND Use the GET_TRANSACTION_IND function to determine whether a data
record is the first, last or middle operation in a transaction,

Chapter 3
Function Codes

3-8

Table 3-5 (Cont.) Summary of Oracle GoldenGate Function Codes

Function code Description

GET_USER_TOKEN_VALUE Use the GET_USER_TOKEN_VALUE function to obtain the value of a user
token from a trail record.

OUTPUT_MESSAGE_TO_REPORT Use the OUTPUT_MESSAGE_TO_REPORT function to output a message to the
report file.

RESET_USEREXIT_STATS Use the RESET_USEREXIT_STATS function to reset the statistics for the
Oracle GoldenGate process.

SET_COLUMN_VALUE_BY_INDEX Use the SET_COLUMN_VALUE_BY_INDEX function to modify a single column
value without manipulating the entire data record.

@STRNCMP Use the SET_COLUMN_VALUE_BY_NAME function to modify a single column
value without manipulating the entire data record.

SET_OPERATION_TYPE Use the SET_OPERATION_TYPE function to change the operation type
associated with a data record.

SET_RECORD_BUFFER Use the SET_RECORD_BUFFER function for compatibility with HP NonStop
user exits, and for complex data record manipulation.

SET_SESSION_CHARSET Use the SET_SESSION_CHARSET function to set the character set of the user
exit session.

SET_TABLE_NAME Use the SET_TABLE_NAME function to change the table name associated
with a data record.

3.8 COMPRESS_RECORD
Valid For

Extract and Replicat

Description

Use the COMPRESS_RECORD function to re-compress records that have been decompressed
with the DECOMPRESS_RECORD function. Call COMPRESS_RECORD only after using
DECOMPRESS_RECORD.

The content of the record buffer is not converted to or from the character set of the user exit.
It is passed as-is.

Syntax

#include "usrdecs.h"
short result_code;
compressed_rec_def compressed_rec;
ERCALLBACK (COMPRESS_RECORD, &compressed_rec, &result_code);

Buffer

typedef struct
{
char *compressed_rec;
long compressed_len;
char *decompressed_rec;
long decompressed_len;

Chapter 3
COMPRESS_RECORD

3-9

short *columns_present;
short source_or_target;
char requesting_before_after_ind;
} compressed_rec_def;

Input

decompressed_rec
A pointer to the buffer containing the record before compression. The record is
assumed to be in the default Oracle GoldenGate canonical format.

decompressed_len
The length of the decompressed record.

source_or_target
One of the following to indicate whether the source or target record is being
compressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind
Used as internal input. Does not need to be set. If set, it will be ignored.

columns_present
An array of values that indicates the columns present in the compressed record. For
example, if the first, third and sixth columns exist in the compressed record, and the
total number of columns in the table is seven, the array should contain:

1, 0, 1, 0, 0, 1, 0

Use the GET_TABLE_COLUMN_COUNT function to get the number of columns in the table
(see "GET_TABLE_COLUMN_COUNT").

Output

compressed_rec
A pointer to the record returned in compressed format. Typically, compressed_rec is a
pointer to a buffer of type exit_rec_buf_def. The exit_rec_buf_def buffer contains
the actual record about to be processed by Extract or Replicat. The buffer is supplied
when the call type is EXIT_CALL_DISCARD_RECORD. Exit routines may change the
contents of this buffer, for example to perform custom mapping functions. The caller
must ensure that the appropriate amount of memory is allocated to compressed_rec.

compressed_len
The returned length of the compressed record.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK
EXIT_FN_RET_INVALID_PARAM

Chapter 3
COMPRESS_RECORD

3-10

3.9 DECOMPRESS_RECORD
Valid For

Extract and Replicat

Description

Use the DECOMPRESS_RECORD function when you want to retrieve or manipulate an entire
update record with the GET_RECORD_BUFFER (see "GET_RECORD_BUFFER") or
SET_RECORD_BUFFER function (see "SET_RECORD_BUFFER") and the record is compressed.
DECOMPRESS_RECORD makes compressed records easier to process and map by putting the
record into its logical column layout. The columns that are present will be in the expected
positions without the index and length indicators (see "Compressed Record Format"). The
missing columns will be represented as zeroes. When used, DECOMPRESS_RECORD should be
invoked before any manipulation occurs. After the user exit processing is completed, use the
COMPRESS_RECORD function (see "COMPRESS_RECORD") to re-compress the record before
returning it to the Oracle GoldenGate process.

This function is valid for processing UPDATE operations only. Deletes, inserts and updates
appear in the buffer as full record images.

The content of the record buffer is not converted to or from the character set of the user exit.
It is passed as-is.

Compressed Record Format

Compressed SQL updates have the following format:

index length value [index length value][...]

where:

• index is a two-byte index into the list of columns of the table (first column is zero).

• length is the two-byte length of the table.

• value is the actual column value, including one of the following two-byte null indicators
when applicable. 0 is not null. -1 is null.

Syntax

#include "usrdecs.h"
short result_code;
compressed_rec_def compressed_rec;
ERCALLBACK (DECOMPRESS_RECORD, &compressed_rec, &result_code);

Buffer

typedef struct
{
char *compressed_rec;
long compressed_len;
char *decompressed_rec;
long decompressed_len;
short *columns_present;
short source_or_target;

Chapter 3
DECOMPRESS_RECORD

3-11

char requesting_before_after_ind;
} compressed_rec_def;

Input

compressed_rec
A pointer to the record in compressed format. Use the GET_RECORD_BUFFER function to
obtain this value (see "GET_RECORD_BUFFER").

compressed_len
The length of the compressed record. Use the GET_RECORD_BUFFER (see
"GET_RECORD_BUFFER") or GET_RECORD_LENGTH (see "GET_RECORD_LENGTH")
function to get this value.

source_or_target
One of the following to indicate whether the source or target record is being
decompressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind
Used as internal input. Does not need to be set. If set, it will be ignored.

Output

decompressed_rec
A pointer to the record returned in decompressed format. The record is assumed to
be in the Oracle GoldenGate internal canonical format. The caller must ensure that
the appropriate amount of memory is allocated to decompressed_rec.

decompressed_len
The returned length of the decompressed record.

columns_present
An array of values that indicate the columns present in the compressed record. For
example, if the first, third and sixth columns exist in the compressed record, and the
total number of columns in the table is seven, the array should contain:

1, 0, 1, 0, 0, 1, 0

This array helps mapping functions determine when and whether a compressed
column should be mapped.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK
EXIT_FN_RET_INVALID_PARAM

3.10 GET_BASE_OBJECT_NAME
Valid For

Extract and Replicat

Chapter 3
GET_BASE_OBJECT_NAME

3-12

Description

Use the GET_BASE_OBJECT_NAME function to retrieve the fully qualified name of the base object
of a source or target object that is associated with the record being processed. This function
is valid tables and other objects in a DDL operation.

To return only part of the base object name, see the following:

GET_BASE_OBJECT_NAME_ONLY GET_BASE_SCHEMA_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_BASE_OBJECT_NAME, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the object name. This is returned as
a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target object name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the object name is interpreted in the session character set.

Chapter 3
GET_BASE_OBJECT_NAME

3-13

actual length
The string length of the returned object name. The actual length does not include the
null terminator. The actual length is 0 if the object is a table.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the object name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.11 GET_BASE_OBJECT_NAME_ONLY

Valid For

Extract and Replicat

Description

Use the GET_BASE_OBJECT_NAME_ONLY function to retrieve the unqualified name
(without the catalog, container, or schema) of the base object of a source or target
object that is associated with the record that is being processed. This function is valid
for tables and other objects in a DDL operation.

To return the fully qualified name of a base object, see the following:

GET_OBJECT_NAME

To return only the schema of the base object, see the following:

GET_BASE_SCHEMA_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_BASE_OBJECT_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Chapter 3
GET_BASE_OBJECT_NAME_ONLY

3-14

Input

buffer
A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the object name. This is returned as
a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target object name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the object name is interpreted in the session character set.

actual length
The string length of the returned object name. The actual length does not include the null
terminator. The actual length is 0 if the object is a table.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the object name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.12 GET_BASE_SCHEMA_NAME_ONLY
Description

Use the GET_BASE_SCHEMA_NAME_ONLY function to retrieve the name of the owner (such as
schema), but not the name, of the base object of the source or target object associated with
the record being processed. This function is valid for DDL operations.

To return the fully qualified name of a base object, see the following:

GET_BASE_OBJECT_NAME

To return only the unqualified base object name, see the following:

GET_BASE_OBJECT_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Chapter 3
GET_BASE_SCHEMA_NAME_ONLY

3-15

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_BASE_SCHEMA_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to a buffer to accept the returned schema name. The name is null-
terminated.

max_length
The maximum length of your allocated buffer to accept the schema name. This is
returned as a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target schema name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The fully qualified, null-terminated schema name.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the schema name is interpreted in the
session character set.

actual_length
The string length of the returned name. The actual length does not include the null
terminator.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the schema name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT

Chapter 3
GET_BASE_SCHEMA_NAME_ONLY

3-16

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.13 GET_BEFORE_AFTER_IND
Valid For

Extract and Replicat

Description

Use the GET_BEFORE_AFTER_IND function to determine whether a record is a before image or
an after image of the database operation. INSERTs are after images, DELETEs are before
images, and UPDATEs can be either before or after images (see the Extract and Replicat
parameters GETUPDATEBEFORES and GETUPDATEAFTERS). If the before images of UPDATE
operations are being extracted, the before images precede the after images within the same
update.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_BEFORE_AFTER_IND, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

None

Output

before_after_ind
One of the following to indicate whether the record is a before or after image.

BEFORE_IMAGE_VAL
AFTER_IMAGE_VAL

Chapter 3
GET_BEFORE_AFTER_IND

3-17

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

3.14 GET_CATALOG_NAME_ONLY
Valid For

Extract and Replicat

Description

Use the GET_CATALOG_NAME_ONLY function to retrieve the name of theOracle CDB
container, but not the name of the owner (such as schema) or object, of the source or
target object associated with the record being processed. This function is valid for
DML and DDL operations.

To return the fully qualified name of a table, see the following:

GET_TABLE_NAME

To return the fully qualified name of a non-table object, such as a user, view or index,
see the following:

GET_OBJECT_NAME

To return only the unqualified table or object name, see the following:

GET_TABLE_NAME_ONLY

GET_OBJECT_NAME_ONLY

To return other parts of the table or object name, see the following:

GET_SCHEMA_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_CATALOG_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Chapter 3
GET_CATALOG_NAME_ONLY

3-18

Input

buffer
A pointer to a buffer to accept the returned catalog name. The name is null-terminated.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the catalog name is interpreted in the session character set.

max_length
The maximum length of your allocated buffer to accept the name. This is returned as a NULL
terminated string.

source_or_target
One of the following indicating whether to return the source or target table catalog.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The fully qualified, null-terminated catalog name.

actual_length
The string length of the returned name. The actual length does not include the null
terminator.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the catalog name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.15 GET_COL_METADATA_FROM_INDEX
Valid For

Extract and Replicat

Description

Use the GET_COL_METADATA_FROM_INDEX function to retrieve column metadata by specifying
the index of the desired column.

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"
short result_code;

Chapter 3
GET_COL_METADATA_FROM_INDEX

3-19

col_metadata_def column_meta_rec;
ERCALLBACK (GET_COL_METADATA_FROM_INDEX, &column_meta_rec, &result_code);

Buffer

typedef struct
{
 short column_index;
 char *column_name;
 long max_name_length;
 short native_data_type;
 short gg_data_type;
 short gg_sub_data_type;
 short is_nullable;
 short is_part_of_key;
 short key_column_index;
 short length;
 short precision;
 short scale;
 short source_or_target;
} col_metadata_def;

Input

column_index
The column index of the column value to be returned.

max_name_length
The maximum length of the returned column name. Typically, the maximum length is
the length of the name buffer. Since the returned name is null-terminated, the
maximum length should equal the maximum length of the column name.

source_or_target
One of the following to indicate whether the source or target record is being
compressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

column_name
The column name of the column value to be returned.

actual_name_length
The actual length of the returned name.

value_truncated
A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if
the length of the column name plus the null terminator exceeds the maximum buffer
length.

native_data_type
The native (to the database) data type of the column. Either native_data_type or
dd_data_type is returned, depending on the process, as follows:

Chapter 3
GET_COL_METADATA_FROM_INDEX

3-20

• If Extract is making the callback request for a source column, native_data_type is
returned. If Extract is requesting a mapped target column, gg_data_type is returned
(assuming there is a target definitions file on the system).

• If an Extract data pump is making the callback request for a source column and there is
a local database, native_data_type is returned. If there is no database, gg_data_type is
returned (assuming there is a source definitions file on the system). If the pump is
requesting the target column, gg_data_type is returned (assuming a target definitions
file exists on the system).

• If Replicat is making the callback request for the source column, then gg_data_type is
returned (assuming a source definitions file exists on the system). If Replicat is
requesting the source column and ASSUMETARGETDEFS is being used in the parameter file,
then native_data_type is returned. If Replicat is requesting the target column,
native_data_type is returned.

gg_data_type
The Oracle GoldenGate data type of the column.

gg_sub_data_type
The Oracle GoldenGate sub-type of the column.

is_nullable
Flag indicating whether the column permits a null value (TRUE or FALSE).

is_part_of_key
Flag (TRUE or FALSE) indicating whether the column is part of the key that is being used by
Oracle GoldenGate.

key_column_index
Indicates the order of the columns in the index. For example, the following table has two key
columns that exist in a different order from the order in which they are declared in the
primary key.

CREATE TABLE ABC
(
cust_code VARCHAR2(4),
name VARCHAR2(30),
city VARCHAR2(20),
state CHAR(2),
PRIMARY KEY (city, cust_code)
USING INDEX
);

Executing the callback function for each column in the logical column order returns the
following:

• cust_code returns 1
• name returns -1
• city returns 0
• state returns -1
If the column is part of the key, the value returned is the order of the column within the key.
If the column is not part of the key, a value of -1 is returned.

Chapter 3
GET_COL_METADATA_FROM_INDEX

3-21

length
Returns the length of the column.

precision
If a numeric data type, returns the precision of the column.

scale
If a numeric data type, returns the scale.

Return Values

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_EXCEEDED_MAX_LENGTH
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_OK

3.16 GET_COL_METADATA_FROM_NAME
Valid For

Extract and Replicat

Description

Use the GET_COL_METADATA_FROM_NAME function to retrieve column metadata by
specifying the name of the desired column. If the character session of the user exit is
set with SET_SESSION_CHARSET to a value other than the default character set of the
operating system, as defined in ULIB_CS_DEFAULT in the ucharset.h file, the character
data that is exchanged between the user exit and the process is interpreted in the
session character set.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"
short result_code;
col_metadata_def column_meta_rec;
ERCALLBACK (GET_COL_METADATA_FROM_NAME, &column_meta_rec, &result_code);

Buffer

typedef struct
{
 short column_index;
 char *column_name;
 long max_name_length;
 short native_data_type;
 short gg_data_type;
 short gg_sub_data_type;
 short is_nullable;
 short is_part_of_key;
 short key_column_index;
 short length;
 short precision;
 short scale;

Chapter 3
GET_COL_METADATA_FROM_NAME

3-22

 short source_or_target;
} col_metadata_def;

Input

column_name
The column name of the column value to be returned.

max_name_length
The maximum length of the returned column name. Typically, the maximum length is the
length of the name buffer. Since the returned name is null-terminated, the maximum length
should equal the maximum length of the column name.

source_or_target
One of the following to indicate whether the source or target record is being compressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

column_index
The column index of the column value to be returned.

actual_name_length
The actual length of the returned name.

source_or_target
One of the following to indicate whether the source or target record is being compressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

value_truncated
A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if the
length of the column name plus the null terminator exceeds the maximum buffer length.

native_data_type
The native (to the database) data type of the column.

gg_data_type
The Oracle GoldenGate data type of the column.

gg_sub_data_type
The Oracle GoldenGate sub-type of the column.

is_nullable
Flag indicating whether the column permits a null value (TRUE or FALSE).

is_part_of_key
Flag (TRUE or FALSE) indicating whether the column is part of the key that is being used by
Oracle GoldenGate.

key_column_index
Indicates the order of the columns in the index. For example, the following table has two key
columns that are defined in one order in the table and another in the index definition.

Chapter 3
GET_COL_METADATA_FROM_NAME

3-23

CREATE TABLE tcustmer
(
cust_code VARCHAR2(4),
name VARCHAR2(30),
city VARCHAR2(20),
state CHAR(2),
PRIMARY KEY (city, cust_code)
USING INDEX
);

The return is as follows:

• cust_code returns 1
• name returns -1
• city returns 0
• state returns -1
If the column is part of the key, its order in the index is returned as an integer.
If the column is not part of the key, a value of -1 is returned.

length
Returns the length of the column.

precision
If a numeric data type, returns the precision of the column.

scale
If a numeric data type, returns the scale.

Return Values

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_EXCEEDED_MAX_LENGTH
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_OK

3.17 GET_COLUMN_INDEX_FROM_NAME
Valid For

Extract and Replicat

Description

Use the GET_COLUMN_INDEX_FROM_NAME function to determine the column index
associated with a specified column name. If the character session of the user exit is
set with SET_SESSION_CHARSET to a value other than the default character set of the
operating system, as defined in ULIB_CS_DEFAULT in the ucharset.h file, the character
data that is exchanged between the user exit and the process is interpreted in the
session character set.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.

Chapter 3
GET_COLUMN_INDEX_FROM_NAME

3-24

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_COLUMN_INDEX_FROM_NAME, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to the column name

actual_length
The length of the column name within the buffer.

source_or_target
One of the following to indicate whether to use the source or target table to look up column
information.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

index
The returned column index for the specified column name.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.18 GET_COLUMN_NAME_FROM_INDEX
Valid For

Extract and Replicat

Description

Use the GET_COLUMN_NAME_FROM_INDEX function to determine the column name associated
with a specified column index. If the character session of the user exit is set with
SET_SESSION_CHARSET to a value other than the default character set of the operating system,

Chapter 3
GET_COLUMN_NAME_FROM_INDEX

3-25

as defined in ULIB_CS_DEFAULT in the ucharset.h file, the character data that is
exchanged between the user exit and the process is interpreted in the session
character set.

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_COLUMN_NAME_FROM_INDEX, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to a buffer to accept the returned column name. The column name is null-
terminated.

max_length
The maximum length of your allocated buffer to accept the resulting column name.
This is returned as a NULL terminated string.

index
The column index of the column name to be returned.

source_or_target
One of the following to indicate whether to use the source or target table to look up
column information.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The null-terminated column name.

actual length
The string length of the returned column name. The actual length does not include the
null terminator.

Chapter 3
GET_COLUMN_NAME_FROM_INDEX

3-26

value_truncated
A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if the
length of the column name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.19 GET_COLUMN_VALUE_FROM_INDEX
Valid For

Extract and Replicat

Description

Use the GET_COLUMN_VALUE_FROM_INDEX function to retrieve the column value from the data
record using the specified column index. Column values are the basis for most logic within
the user exit. You can base complex logic on the values of individual columns within the data
record. You can specify the character format of the returned value.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process
is interpreted in the session character set.

A column value is set to the session character set only if the following is true:

• The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2/
NCLOB), a SQL date/timestamp/interval/number type)

• The column_value_mode indicator is set to EXIT_FN_CNVTED_SESS_CHAR_FORMAT.

Syntax

#include "usrdecs.h"
short result_code;
column_def column;
ERCALLBACK (GET_COLUMN_VALUE_FROM_INDEX, &column, &result_code);

Buffer

typedef struct
{
char *column_value;
unsigned short max_value_length;
unsigned short actual_value_length;
short null_value;
short remove_column;
short value_truncated;
short column_index;
char *column_name;
/* Version 3 CALLBACK_STRUCT_VERSION */
short column_value_mode;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */

Chapter 3
GET_COLUMN_VALUE_FROM_INDEX

3-27

char requesting_before_after_ind;
char more_lob_data;
/* Version 3 CALLBACK_STRUCT_VERSION */
ULibCharSet column_charset;
} column_def;

Input

column_value
A pointer to a buffer to accept the returned column value.

max_value_length
The maximum length of the returned column value. Typically, the maximum length is
the length of the column value buffer. If ASCII format is specified with
column_value_mode, the column value is null-terminated and the maximum length
should equal the maximum length of the column value.

column_index
The column index of the column value to be returned.

column_value_mode
Indicates the format of the column value.

EXIT_FN_CHAR_FORMAT
ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a
known exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because
the value is interpreted as an ASCII string and is supposed to be null-
terminated. The first value of 0 becomes the string terminator.

• Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional
time is database-dependent.

• Numeric values are in their string format. For example, 123.45 is represented
as "123.45".

• Non-printable characters or binary values are converted to hexadecimal
notation.

• Floating point types are output as null-terminated strings, to the first 14
significant digits.

EXIT_FN_RAW_FORMAT
Internal Oracle GoldenGate canonical format: This format includes a two-byte
NULL indicator and a two-byte variable data length when applicable. No character-
set conversion is performed by Oracle GoldenGate for this format for any
character data type.

EXIT_FN_CNVTED_SESS_CHAR_FORMAT
User exit character set: This only applies if the column data type is:

Chapter 3
GET_COLUMN_VALUE_FROM_INDEX

3-28

• a character-based type, single or multi-byte

• a numeric type with a string representation

This format is not null-terminated.

source_or_target
One of the following to indicate whether to use the source or the target data record to
retrieve the column value.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind
Set when processing an after image record and you want the before-image column value of
either an update or a primary key update.
To get the "before" value of the column while processing an "after image" of a primary key
update or a regular (non-key) update record, set the requesting_before_after_ind flag to
BEFORE_IMAGE_VAL.

• To access the before image of the key columns of a primary key update, nothing else is
necessary.

• To access non-key columns of a primary key update or any column of a regular update,
the before image must be available.

The default setting is AFTER_IMAGE_VAL (get the after image of the column) when an explicit
input for requesting_before_after_ind is not specified.
To make a before image available, you can use the GETUPDATEBEFORES parameter or you can
use the INCLUDEUPDATEBEFORES option within the CUSEREXIT parameter statement.
Note that:

• GETUPDATEBEFORES causes an Extract process to write before-image records to the trail
and also to make an EXIT_CALL_PROCESS_RECORD call to the user exit with the before
images.

• INCLUDEUPDATEBEFORES does not cause an EXIT_CALL_PROCESS_RECORD call to the user
exit nor, in the case of Extract, does it cause the process to write the before image to the
trail.

requesting_before_after_ind
To get the before image of the column, set the char requesting_before_after_ind flag to
BEFORE_IMAGE_VAL. To get the after image, set it to AFTER_IMAGE_VAL. The default is to
always work with the after image unless the before is specified.
To make the before images available, you can use the GETUPDATEBEFORES parameter for the
TABLE statement that contains the table, or you can use the INCLUDEUPDATEBEFORES option
within the CUSEREXIT parameter statement. Both will cause the same callout to the user exit
for process_record.

Output

column_value
A pointer to the returned column value. If column_value_mode is specified as
EXIT_FN_CHAR_FORMAT, the column value is returned as a null-terminated ASCII string;
otherwise, the column value is returned in the Oracle GoldenGate internal canonical format.
In ASCII format, dates are returned in the following format:

YYYY-MM-DD HH:MI:SS.FFFFFF

Chapter 3
GET_COLUMN_VALUE_FROM_INDEX

3-29

The inclusion of fractional time is database-dependent.

actual_value_length
The string length of the returned column name, in bytes. The actual length does not
include a null terminator when column_value_mode is specified as
EXIT_FN_CHAR_FORMAT.

null_value
A flag (0 or 1) indicating whether or not the column value is null. If the null_value flag
is 1, then the column value buffer is filled with null bytes.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the column value exceeds the maximum buffer length. If
column_value_mode was specified as EXIT_FN_CHAR_FORMAT, the null terminator is
included in the length of the column.

char more_lob_data
A flag that indicates if more LOB data is present beyond the initial 4K that can be
stored in the base record. When a LOB is larger than the 4K limit, it is stored in LOB
fragments.
You must allocate the appropriate amount of memory to contain the returned values.
Oracle GoldenGate will access LOB columns up to 8K of data at all times, filling up
the buffer to the amount that the user exit has allocated. If the LOB is larger than that
which was allocated, subsequent callbacks are required to obtain the total column
data, until all data has been sent to the user exit.
To determine the end of the data, evaluate more_lob_data. The user exit sets this flag
to either CHAR_NO_VAL or CHAR_YES_VAL before accessing a new column. If this flag is
still initialized after first callback and is not set to either CHAR_YES_VAL or CAR_NO_VAL,
then one of the following is true:

• Enough memory was allocated to handle the LOB.

• It is not a LOB.

• It was not over the 4K limit of the base trail record size.

It is recommended that you obtain the source table metadata to determine if a column
might be a LOB.

Return Values

EXIT_FN_RET_BAD_COLUMN_DATA
EXIT_FN_RET_COLUMN_NOT_FOUND
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.20 GET_COLUMN_VALUE_FROM_NAME
Valid For

Extract and Replicat

Chapter 3
GET_COLUMN_VALUE_FROM_NAME

3-30

Description

Use the GET_COLUMN_VALUE_FROM_NAME function to retrieve the column value from the data
record by using the specified column name. Column values are the basis for most logic within
the user exit. You can base complex logic on the values of individual columns within the data
record.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process
is interpreted in the session character set.

A column value is set to the session character set only if the following is true:

• The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2/
NCLOB), a SQL date/timestamp/interval/number type)

• The column_value_mode indicator is set to EXIT_FN_CNVTED_SESS_CHAR_FORMAT.

If the database is case-sensitive, object names must be specified in the same letter case as
they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"
short result_code;
column_def column;
ERCALLBACK (GET_COLUMN_VALUE_FROM_NAME, &column, &result_code);

Buffer

typedef struct
{
char *column_value;
unsigned short max_value_length;
unsigned short actual_value_length;
short null_value;
short remove_column;
short value_truncated;
short column_index;
char *column_name;
/* Version 3 CALLBACK_STRUCT_VERSION */
short column_value_mode;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
char more_lob_data;
/* Version 3 CALLBACK_STRUCT_VERSION */
ULibCharSet column_charset;
} column_def;

Input

column_value
A pointer to a buffer to accept the returned column value.

Chapter 3
GET_COLUMN_VALUE_FROM_NAME

3-31

max_value_length
The maximum length of the returned column value. Typically, the maximum length is
the length of the column value buffer. If ASCII format is specified (see
column_value_mode) the column value is null-terminated, and the maximum length
should equal the maximum length of the column value.

column_name
The name of the column for the column value to be returned.

column_value_mode
Indicates the character set of the column value.

EXIT_FN_CHAR_FORMAT
ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a
known exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because
the value is interpreted as an ASCII string and is supposed to be null-
terminated. The first value of 0 becomes the string terminator.

• Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional
time is database-dependent.

• Numeric values are in their string format. For example, 123.45 is represented
as "123.45".

• Non-printable characters or binary values are converted to hexadecimal
notation.

• Floating point types are output as null-terminated strings, to the first 14
significant digits.

EXIT_FN_RAW_FORMAT
Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character
data type.

EXIT_FN_CNVTED_SESS_CHAR_FORMAT
User exit character set: This only applies if the column data type is:

• a character-based type, single or multi-byte

• a numeric type with a string representation

This format is not null-terminated.

source_or_target
One of the following indicating whether to use the source or target data record to
retrieve the column value.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Chapter 3
GET_COLUMN_VALUE_FROM_NAME

3-32

requesting_before_after_ind
Set when processing an after image record and you want the before columns of either an
update or a primary key update.
To get the "before" value of the column while processing an "after image" of a primary key
update or a regular (non-key) update record, set the requesting_before_after_ind flag to
BEFORE_IMAGE_VAL.

• To access the before image of the key columns of a primary key update, nothing else is
necessary.

• To access non-key columns of a primary key update or any column of a regular update,
the before image must be available.

The default setting is AFTER_IMAGE_VAL (get the after image of the column) when an explicit
input for requesting_before_after_ind is not specified.
To make a before image available, you can use the GETUPDATEBEFORES parameter or you can
use the INCLUDEUPDATEBEFORES option within the CUSEREXIT parameter statement.
Note that:

• GETUPDATEBEFORES causes an Extract process to write before-image records to the trail
and also to make an EXIT_CALL_PROCESS_RECORD call to the user exit with the before
images.

• INCLUDEUPDATEBEFORES does not cause an EXIT_CALL_PROCESS_RECORD call to the user
exit nor, in the case of Extract, does it cause the process to write the before image to the
trail.

Output

column_value
A pointer to the returned column value. If column_value_mode is specified as
EXIT_FN_CHAR_FORMAT, the column value is returned as a null-terminated ASCII string;
otherwise, the column value is returned in the Oracle GoldenGate internal canonical format.
In ASCII format, dates are returned in the following format:

CCYY-MM-DD HH:MI:SS.FFFFFF

The inclusion of fractional time is database-dependent.

actual length
The string length of the returned column name. The actual length does not include a null
terminator when column_value_mode is specified as EXIT_FN_CHAR_FORMAT.

null_value
A flag (0 or 1) indicating whether or not the column value is null. If the null_value flag is 1,
then the column value buffer is filled with null bytes.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the column value exceeds the maximum buffer length. If column_value_mode was
specified as EXIT_FN_CHAR_FORMAT, the null terminator is included in the length of the
column.

char more_lob_data
A flag that indicates if more LOB data is present beyond the initial 4K that can be stored in
the base record. When a LOB is larger than the 4K limit, it is stored in LOB fragments.

Chapter 3
GET_COLUMN_VALUE_FROM_NAME

3-33

You must allocate the appropriate amount of memory to contain the returned values.
Oracle GoldenGate will access LOB columns up to 8K of data at all times, filling up
the buffer to the amount that the user exit has allocated. If the LOB is larger than that
which was allocated, subsequent callbacks are required to obtain the total column
data, until all data has been sent to the user exit.
To determine the end of the data, evaluate more_lob_data. The user exit sets this flag
to either CAR_NO_VAL or CHAR_YES_VAL before accessing a new column. If this flag is
still initialized after first callback and is not set to either CHAR_YES_VAL or CAR_NO_VAL,
then one of the following is true:

• Enough memory was allocated to handle the LOB.

• It is not a LOB.

• It was not over the 4K limit of the base trail record size.

It is recommended that you obtain the source table metadata to determine if a column
might be a LOB.

Return Values

EXIT_FN_RET_BAD_COLUMN_DATA
EXIT_FN_RET_COLUMN_NOT_FOUND
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

Example

memset (&col_meta, 0, sizeof(col_meta));
if (record.mapped)
col_meta.source_or_target = EXIT_FN_TARGET_VAL;
else
col_meta.source_or_target = EXIT_FN_SOURCE_VAL;
col_meta.source_or_target = EXIT_FN_SOURCE_VAL;
col_meta.column_name = (char *)malloc(100);
col_meta.max_name_length = 100;
col_meta.column_index = 1;

call_callback (GET_COL_METADATA_FROM_NAME, &col_meta, &result_code);

3.21 GET_DATABASE_METADATA
Valid For

Extract and Replicat

Description

Use the GET_DATABASE_METADATA function to return the metadata of the database that
is associated with a record.

Buffer

typedef struct
{
char* dbName;
long dbName_max_length;
long dbName_actual_length;

Chapter 3
GET_DATABASE_METADATA

3-34

unsigned char dbNameMetadata[MAXDBOBJTYPE];
char* locale;
long locale_max_length;
long locale_actual_length;
} database_def;
typedef struct
{
 database_def source_db_def;
 database_def target_db_def;
} database_defs;

Input

dbname
A pointer to a buffer to accept the database name.

dbname_max_length
The maximum length of the buffer to hold the name.

dbname_actual_length
The actual length of the database name.

dbNameMetadata
The name metadata for case-sensitivity, which is the same value that is written by Extract
and the data pump to a trail. See Administering Oracle GoldenGate for a list of macros that
can be used by the user exit to check database object name metadata, given an object
name type.

locale
A null-terminated character string specifying the locale of the database. This is returned as a
conjunction of:

• ISO-639 two-letter language code

• ISO-3166 two-letter country code

• Variant code using '_' U+005F as separator.

Example: "en_US", "ja_Japen"

locale_max_length
The maximum length of the buffer to accept the locale.

locale_actual_length
The actual length of the locale.

database_def source_db_def
Directs the process to return metadata for the source database.

database_def target_db_def
Directs the process to return metadata for the target database.

3.22 GET_DDL_RECORD_PROPERTIES
Valid For

Extract and Replicat, for databases for which DDL replication is supported

Chapter 3
GET_DDL_RECORD_PROPERTIES

3-35

Description

Use the GET_DDL_RECORD_PROPERTIES function to return a DDL operation, including
information about the object on which the DDL was performed and also the text of the
DDL statement itself. The Extract process can only get the source table layout. The
Replicat process can get source or target layouts.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the character data that is exchanged between
the user exit and the process is interpreted in the session character set. This includes
the DDL type, the object type, the two- or three-part object name, the owner name and
the DDL text itself.

#include "usrdecs.h"
short result_code;
ddl_record_def ddl_rec;
ERCALLBACK (GET_DDL_RECORD_PROPERTIES, &ddl_rec, &result_code);

Buffer

typedef struct
{
char *ddl_type;
long ddl_type_max_length; /* Maximum Description length PASSED IN BY USER */
long ddl_type_length; /* Actual length */

char *object_type;
long object_type_max_length; /* Maximum Description length PASSED IN BY USER */
long object_type_length; /* Actual length */

char *object_name; /* Fully qualified name of the object
 (3-part for CDB, 2-part for non-CDB) */
long object_max_length; /* Maximum Description length PASSED IN BY USER */
long object_length; /* Actual length */

char *owner_name;
long owner_max_length; /* Maximum Description length PASSED IN BY USER */
long owner_length; /* Actual length */

char *ddl_text;
long ddl_text_max_length; /* Maximum Description length PASSED IN BY USER */
long ddl_text_length; /* Actual length */

short ddl_text_truncated; /* Was value truncated? */
short source_or_target; /* Source or target value? */
} ddl_record_def;

Input

ddl_type_length
object_type_length
object_length
owner_length
ddl_text_length
A pointer to one buffer for each of these items to accept the returned column values.
These items are as follows:

Chapter 3
GET_DDL_RECORD_PROPERTIES

3-36

ddl_type_length
Contains the length of the type of DDL operation, for example a CREATE or ALTER.

object_type_length
Contains the length of type of database object that is affected by the DDL operation, for
example TABLE or INDEX.

object_length
Contains the length of the name of the object.

object_length
Contains the length of the owner of the object (schema or database).

ddl_text_length
Contains the length of the actual DDL statement text.

ddl_type_max_length
The maximum length of the DDL operation type that is returned by *ddl_type. The DDL type
is any DDL command that is valid for the database, such as ALTER.

object_type_max_length
The maximum length of the object type that is returned by *object_type. The object type is
any object that is valid for the database, such as TABLE, INDEX, and TRIGGER.

object_max_length
The maximum length of the name of the object that is returned by *object_name.

owner_max_length
The maximum length of the name of the owner that is returned by *owner_name.

ddl_text_max_length
The maximum length of the text of the DDL statement that is returned by *ddl_text.

source_or_target
One of the following indicating whether to return the operation type for the source or the
target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

ddl_type_length
object_type_length
object_length
owner_length
ddl_text_length
All of these fields return the actual length of the value that was requested. (See the input for
descriptions.)

ddl_text_truncated
A flag (0 or 1) to indicate whether or not the DDL text was truncated. Truncation occurs if the
length of the DDL text plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_OK
EXIT_FN_RET_NOT_SUPPORTED

Chapter 3
GET_DDL_RECORD_PROPERTIES

3-37

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INCOMPLETE_DDL_REC

3.23 @GETENV
Use the @GETENV function to return information about the Oracle GoldenGate
environment. You can use the information as input into the following:

• Stored procedures or queries (with SQLEXEC)

• Column maps (with the COLMAP option of TABLE or MAP)

• User tokens (defined with the TOKENS option of TABLE and mapped to target
columns by means of the @TOKEN function)

• The GET_ENV_VALUE user exit function (see "GET_ENV_VALUE")

Note:

All syntax options must be enclosed within quotes as shown in the
syntax descriptions.

Syntax

@GETENV (
'LAG' , 'unit' |
'LASTERR' , 'error_info' |
'JULIANTIMESTAMP' |
'JULIANTIMESTAMP_PRECISE' |
'RECSOUTPUT' |
{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic' |
'GGENVIRONMENT', 'environment_info' |
'GGFILEHEADER', 'header_info' |
'GGHEADER', 'header_info' |
'RECORD', 'location_info' |
'DBENVIRONMENT', 'database_info'
'TRANSACTION', 'transaction_info' |
'OSVARIABLE', 'variable' |
'TLFKEY', SYSKEY, unique_key
'USERNAME',
'OSUSERNAME',
'MACHINENAME',
'PROGRAMNAME',
'CLIENTIDENTIFIER',
)

'LAG' , 'unit'
Valid for Extract and Replicat.

Use the LAG option of @GETENV to return lag information. Lag is the difference between
the time that a record was processed by Extract or Replicat and the timestamp of that
record in the data source.

Chapter 3
@GETENV

3-38

Syntax

@GETENV ('LAG', {'SEC'|'MSEC'|'MIN'})

'SEC'
Returns the lag in seconds. This is the default when a unit is not explicitly provided for LAG.

'MSEC'
Returns the lag in milliseconds.

'MIN'
Returns the lag in minutes.

'LASTERR' , 'error_info'
Valid for Replicat.

Use the LASTERR option of @GETENV to return information about the last failed operation
processed by Replicat.

Syntax

@GETENV ('LASTERR', {'DBERRNUM'|'DBERRMSG'|'OPTYPE'|'ERRTYPE'})

'DBERRNUM'
Returns the database error number associated with the failed operation.

'DBERRMSG'
Returns the database error message associated with the failed operation.

'OPTYPE'
Returns the operation type that was attempted. For a list of Oracle GoldenGate operation
types, see Administering Oracle GoldenGate.

'ERRTYPE'
Returns the type of error. Possible results are:

• DB (for database errors)

• MAP (for errors in mapping)

'JULIANTIMESTAMP' | 'JULIANTIMESTAMP_PRECISE'
Valid for Extract and Replicat.

Use the JULIANTIMESTAMP option of @GETENV to return the current time in Julian format. The
unit is microseconds (one millionth of a second). On a Windows machine, the value is
padded with zeros (0) because the granularity of the Windows timestamp is milliseconds (one
thousandth of a second). For example, the following is a typical column mapping:

MAP dbo.tab8451, Target targ.tabjts, COLMAP (USEDEFAULTS, &
JTSS = @GETENV ('JULIANTIMESTAMP')
JTSFFFFFF = @date ('yyyy-mm-dd hh:mi:ss.ffffff', 'JTS', &
@getenv ('JULIANTIMESTAMP')))
;

Possible values that the JTSS and JTSFFFFFF columns can have are:

Chapter 3
@GETENV

3-39

212096320960773000 2010-12-17:16:42:40.773000
212096321536540000 2010-12-17:16:52:16.540000
212096322856385000 2010-12-17:17:14:16.385000
212096323062919000 2010-12-17:17:17:42.919000
212096380852787000 2010-12-18:09:20:52.787000

The last three digits (the microseconds) of the number all contain the padding of 0s .

Optionally, you can use the 'JULIANTIMESTAMP_PRECISE' option to obtain a timestamp
with high precision though this may effect performance.

Note:

Do not use these values for ordering operations. Instead use this value:
@COMPUTE(@COMPUTE(@NUMSTR(@GETENV ("RECORD",
"FILESEQNO")*100000000000)+@NUMSTR(@GETENV ("RECORD",
"FILERBA")))"

Syntax

@GETENV ('JULIANTIMESTAMP')
@GETENV ('JULIANTIMESTAMP_PRECISE')

'RECSOUTPUT'
Valid for Extract.

Use the RECSOUTPUT option of @GETENV to retrieve a current count of the number of
records that Extract has written to the trail file since the process started. The returned
value is not unique to a table or transaction, but instead for the Extract session itself.
The count resets to 1 whenever Extract stops and then is started again.

Syntax

@GETENV ('RECSOUTPUT')

{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic'
Valid for Extract and Replicat.

Use the STATS and DELTASTATS options of @GETENV to return the number of operations
that were processed per table for any or all of the following:

• INSERT operations

• UPDATE operations

• DELETE operations

• TRUNCATE operations

• Total DML operations

• Total DDL operations

• Number of conflicts that occurred, if the Conflict Detection and Resolution (CDR)
feature is used.

• Number of CDR resolutions that succeeded

Chapter 3
@GETENV

3-40

• Number of CDR resolutions that failed

Any errors in the processing of this function, such as an unresolved table entry or incorrect
syntax, returns a zero (0) for the requested statistics value.

Understanding How Recurring Table Specifications Affect Operation Counts

An Extract that is processing the same source table to multiple output trails returns statistics
based on each localized output trail to which the table linked to @GETENV is written. For
example, if Extract captures 100 inserts for table ABC and writes table ABC to three trails, the
result for the @GETENV is 300

EXTRACT ABC
...
EXTTRAIL c:\ogg\dirdat\aa;
TABLE TEST.ABC;
EXTTRAIL c:\ogg\dirdat\bb;
TABLE TEST.ABC;
TABLE EMI, TOKENS (TOKEN-CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));
EXTTRAIL c:\ogg\dirdat\cc;
TABLE TEST.ABC;

In the case of an Extract that writes a source table multiple times to a single output trail, or in
the case of a Replicat that has multiple MAP statements for the same TARGET table, the
statistics results are based on all matching TARGET entries. For example, if Replicat filters 20
rows for REGION 'WEST,' 10 rows for REGION 'EAST,' 5 rows for REGION 'NORTH,' and 2 rows for
REGION 'SOUTH' (all for table ABC) the result of the @GETENV is 37.

REPLICAT ABC
...
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'WEST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'EAST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'NORTH'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'SOUTH'));
MAP TEST.EMI, TARGET TEST.EMI, &
 COLMAP (CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));

Capturing Multiple Statistics

You can execute multiple instances of @GETENV to get counts for different operation types.

This example returns statistics only for INSERT and UPDATE operations:

REPLICAT TEST
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, IU = @COMPUTE (@GETENV &
 ('STATS', 'TABLE', 'ABC', 'DML') - (@GETENV ('STATS', 'TABLE', &
 'ABC', 'DELETE'));

This example returns statistics for DDL and TRUNCATE operations:

REPLICAT TEST2
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, DDL = @COMPUTE &
(@GETENV ('STATS', 'DDL') + (@GETENV ('STATS', 'TRUNCATE'));

Chapter 3
@GETENV

3-41

Example Use Case

In the following use case, if all DML from the source is applied successfully to the
target, Replicat suspends by means of EVENTACTIONS with SUSPEND, until resumed from
GGSCI with SEND REPLICAT with RESUME.

GETENV used in Extract parameter file:

TABLE HR1.HR*;
TABLE HR1.STAT, TOKENS ('env_stats' = @GETENV ('STATS', 'TABLE', &
 'HR1.HR*', 'DML'));

GETENV used in Replicat parameter file:

MAP HR1.HR*, TARGET HR2.*;
MAP HR1.STAT, TARGET HR2.STAT, filter (
 @if (
 @token ('stats') =
 @getenv ('STATS', 'TABLE', 'TSSCAT.TCUSTORD', 'DML'), 1, 0)
),
 eventactions (suspend);

Using Statistics in FILTER Clauses

Statistics returned by STATS and DELTASTATS are dynamic values and are incremented
after mapping is performed. Therefore, when using CDR statistics in a FILTER clause
in each of multiple MAP statements, you need to order the MAP statements in
descending order of the statistics values. If the order is not correct, Oracle GoldenGate
returns error OGG-01921. For detailed information about this requirement, see
Document 1556241.1 in the Knowledge base of My Oracle Support at http://
support.oracle.com.

Example 3-1 MAP statements containing statistics in FILTER clauses

In the following example, the MAP statements containing the filter for the
CDR_CONFLICTS statistic are ordered in descending order of the statistic: >3, then =3,
then <3.

MAP TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON
UPDATE ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER
(@GETENV ("STATS", "CDR_CONFLICTS") > 3),EVENTACTIONS (LOG INFO);MAP
TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE
ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER (@GETENV
("STATS", "CDR_CONFLICTS") = 3),EVENTACTIONS (LOG WARNING);MAP
TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE
ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER (@GETENV
("STATS", "CDR_CONFLICTS") < 3),EVENTACTIONS (LOG WARNING);

Syntax

@GETENV ({'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic')

{'STATS' | 'DELTASTATS'}
STATS returns counts since process startup, whereas DELTASTATS returns counts since
the last execution of a DELTASTATS.
The execution logic is as follows:

Chapter 3
@GETENV

3-42

http://support.oracle.com
http://support.oracle.com

• When Extract processes a transaction record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved source tables in the TABLE
statement.

• When Replicat processes a trail record that satisfies @GETENV with STATS or DELTASTATS,
the table name is matched against resolved target tables in the TARGET clause of the MAP
statement.

'TABLE', 'table'
Executes the STATS or DELTASTATS only for the specified table or tables. Without this option,
counts are returned for all tables that are specified in TABLE (Extract) or MAP (Replicat)
parameters in the parameter file.
Valid table_name values are:

• 'schema.table' specifies a table.

• 'table' specifies a table of the default schema.

• 'schema.*' specifies all tables of a schema.

• '*' specifies all tables of the default schema.

For example, the following counts DML operations only for tables in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.*', 'DML'));

Likewise, the following counts DML operations only for the emp table in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.emp', 'DML'));

By contrast, because there are no specific tables specified for STATS in the following
example, the function counts all INSERT, UPDATE, and DELETE operations for all tables in all
schemas that are represented in the TARGET clauses of MAP statements:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = &
@GETENV ('STATS', 'DML'));

'statistic'
The type of statistic to return. See Using Statistics in FILTER Clauses for important
information when using statistics in FILTER clauses in multiple TABLE or MAP statements.

'INSERT'
Returns the number of INSERT operations that were processed.

'UPDATE'
Returns the number of UPDATE operations that were processed.

'DELETE'
Returns the number of DELETE operations that were processed.

Chapter 3
@GETENV

3-43

'DML'
Returns the total of INSERT, UPDATE, and DELETE operations that were
processed.

'TRUNCATE'
Returns the number of TRUNCATE operations that were processed. This variable
returns a count only if Oracle GoldenGate DDL replication is not being used. If
DDL replication is being used, this variable returns a zero.

'DDL'
Returns the number of DDL operations that were processed, including TRUNCATEs
and DDL specified in INCLUDE and EXCLUDE clauses of the DDL parameter, all
scopes (MAPPED, UNMAPPED, OTHER). This variable returns a count only if Oracle
GoldenGate DDL replication is being used. This variable is not valid for
'DELTASTATS'.

'CDR_CONFLICTS'
Returns the number of conflicts that Replicat detected when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP','CDR_CONFLICTS')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_CONFLICTS')

'CDR_RESOLUTIONS_SUCCEEDED'
Returns the number of conflicts that Replicat resolved when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_SUCCEEDED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')

'CDR_RESOLUTIONS_FAILED'
Returns the number of conflicts that Replicat could not resolve when executing
the Conflict Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_FAILED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

'GGENVIRONMENT' , 'environment_info'
Valid for Extract and Replicat.

Use the GGENVIRONMENT option of @GETENV to return information about the Oracle
GoldenGate environment.

Syntax

@GETENV ('GGENVIRONMENT', {'DOMAINNAME'|'GROUPDESCRIPTION'|'GROUPNAME'|
 'GROUPTYPE'|'HOSTNAME'|'OSUSERNAME'|'PROCESSID')

Chapter 3
@GETENV

3-44

'DOMAINNAME'
(Windows only) Returns the domain name associated with the user that started the process.

'GROUPDESCRIPTION'
Returns the description of the group, taken from the checkpoint file. Requires that a
description was provided with the DESCRIPTION parameter when the group was created with
the ADD command in GGSCI.

'GROUPNAME'
Returns the name of the process group.

'GROUPTYPE'
Returns the type of process, either EXTRACT or REPLICAT.

'HOSTNAME'
Returns the name of the system running the Extract or Replicat process.

'OSUSERNAME'
Returns the operating system user name that started the process.

'PROCESSID'
Returns the process ID that is assigned to the process by the operating system.

'GGHEADER' , 'header_info'
Valid for Extract and Replicat.

Use the GGHEADER option of @GETENV to return information from the header portion of an
Oracle GoldenGate trail record. The header describes the transaction environment of the
record. For more information on record headers and record types, see Administering Oracle
GoldenGate.

Syntax

@GETENV ('GGHEADER', {'BEFOREAFTERINDICATOR'|'COMMITTIMESTAMP'|'LOGPOSITION'|
 'LOGRBA'|'OBJECTNAME'|'TABLENAME'|'OPTYPE'|'RECORDLENGTH'|
 'TRANSACTIONINDICATOR'})

Note:

Do not use TIMESTAMP_PRECISE for ordering operations. Instead use this value:
@COMPUTE(@COMPUTE(@NUMSTR(@GETENV ("RECORD",
"FILESEQNO"))*100000000000)+@NUMSTR(@GETENV ("RECORD", "FILERBA")))

'BEFOREAFTERINDICATOR'
Returns the before or after indicator showing whether the record is a before image or an
after image. Possible results are:

• BEFORE (before image)

• AFTER (after image)

'COMMITTIMESTAMP'
Returns the transaction timestamp (the time when the transaction committed) expressed in
the format of YYYY-MM-DD HH:MI:SS.FFFFFF, for example:

Chapter 3
@GETENV

3-45

2011-01-24 17:08:59.000000

'LOGPOSITION'
Returns the position of the Extract process in the data source. (See the LOGRBA
option.)

'LOGRBA'
LOGRBA and LOGPOSITION store details of the position in the data source of the record.
For transactional log-based products, LOGRBA is the sequence number and
LOGPOSITION is the relative byte address. However, these values will vary depending
on the capture method and database type.

'OBJECTNAME' | 'TABLENAME'
Returns the table name or object name (if a non-table object).

'OPTYPE'
Returns the type of operation. Possible results are:

INSERT
UPDATE
DELETE
SQL COMPUPDATE
PK UPDATE
TRUNCATE

If the operation is not one of the above types, then the function returns the word TYPE
with the number assigned to the type.

'RECORDLENGTH'
Returns the record length in bytes.

'TRANSACTIONINDICATOR'
Returns the transaction indicator. The value corresponds to the TransInd field of the
record header, which can be viewed with the Logdump utility.
Possible results are:

• BEGIN (represents TransInD of 0, the first record of a transaction.)

• MIDDLE (represents TransInD of 1, a record in the middle of a transaction.)

• END (represents TransInD of 2, the last record of a transaction.)

• WHOLE (represents TransInD of 3, the only record in a transaction.)

'GGFILEHEADER' , 'header_info'
Valid for Replicat only.

Use the GGFILEHEADER option of @GETENV to return attributes of an Oracle GoldenGate
Extract file or trail file. These attributes are stored as tokens in the file header.

Note:

If a given database, operating system, or Oracle GoldenGate version does
not provide information that relates to a given token, a NULL value will be
returned.

Chapter 3
@GETENV

3-46

Syntax

@GETENV ('GGFILEHEADER', {'COMPATIBILITY'|'CHARSET'|'CREATETIMESTAMP'|
 'FILENAME'|'FILETYPE'|'FILESEQNO'|'FILESIZE'|'FIRSTRECCSN'|
 'LASTRECCSN'|'FIRSTRECIOTIME'|'LASTRECIOTIME'|'URI'|'URIHISTORY'|
 'GROUPNAME'|'DATASOURCE'|'GGMAJORVERSION'|'GGMINORVERSION'|
 'GGVERSIONSTRING'|'GGMAINTENANCELEVEL'|'GGBUGFIXLEVEL'|'GGBUILDNUMBER'|
 'HOSTNAME'|'OSVERSION'|'OSRELEASE'|'OSTYPE'|'HARDWARETYPE'|
 'DBNAME'|'DBINSTANCE'|'DBTYPE'|'DBCHARSET'|'DBMAJORVERSION'|
 'DBMINORVERSION'|'DBVERSIONSTRING'|'DBCLIENTCHARSET'|'DBCLIENTVERSIONSTRING'|
 'LASTCOMPLETECSN'|'LASTCOMPLETEXIDS'|'LASTCSN'|'LASTXID'|
 'LASTCSNTS'|'RECOVERYMODE'})

'COMPATIBILITY'
Returns the compatibility level of the trail file. The compatibility level of the current Oracle
GoldenGate version must be greater than, or equal to, the compatibility level of the trail file to
be able to read the data records in that file. Current valid values are from 0 or 6.

• 1 means that the trail file is of Oracle GoldenGate version 10.0 or later, which supports
file headers that contain file versioning information.

• 0 means that the trail file is of an Oracle GoldenGate version that is older than 10.0. File
headers are not supported in those releases. The 0 value is used for backward
compatibility to those Oracle GoldenGate versions.

• 5 means that the trail file is of Oracle GoldenGate version 12.2 or later.

• 6 means that the trail file is of Oracle GoldenGate version 12.3.0.1.

This value keeps increasing as per the Oracle GoldenGate version depending on the
trail file version.

'CHARSET'
Returns the global character set of the trail file. For example:
WCP1252-1

'CREATETIMESTAMP'
Returns the time that the trail was created, in local GMT Julian time in INT64.

'FILENAME'
Returns the name of the trail file. Can be an absolute or relative path, with a forward or
backward slash depending on the file system.

'FILETYPE'
Returns a numerical value indicating whether the trail file is a single file (such as one created
for a batch run) or a sequentially numbered file that is part of a trail for online, continuous
processing. The valid values are:

• 0 - EXTFILE

• 1 - EXTTRAIL

• 2 - UNIFIED and EXTFILE

• 3 - UNIFIED and EXTTRAIL

'FILESEQNO'
Returns the sequence number of the trail file, without any leading zeros. For example, if a file
sequence number is aa000026, FILESEQNO returns 26.

Chapter 3
@GETENV

3-47

'FILESIZE'
Returns the size of the trail file. It returns NULL on an active file and returns a size
value when the file is full and the trail rolls over.

'FIRSTRECCSN'
Returns the commit sequence number (CSN) of the first record in the trail file.Value is
NULL until the trail file is completed. For more information about the CSN, see
Administering Oracle GoldenGate.

'LASTRECCSN'
Returns the commit sequence number (CSN) of the last record in the trail file.Value is
NULL until the trail file is completed. For more information about the CSN, see
Administering Oracle GoldenGate.

'FIRSTRECIOTIME'
Returns the time that the first record was written to the trail file. Value is NULL until the
trail file is completed.

'LASTRECIOTIME'
Returns the time that the last record was written to the trail file. Value is NULL until the
trail file is completed.

'RECOVERYMODE'
Returns recovery information for internal Oracle GoldenGate use. It is usually set to
APPENDMODE.

'URI'
Returns the universal resource identifier of the process that created the trail file, in the
following format:

host_name:dir:[:dir][:dir_n]group_name

Where:

• host_name is the name of the server that hosts the process

• dir is a subdirectory of the Oracle GoldenGate installation path.

• group_name is the name of the process group that is linked with the process.

The following example shows where the trail was processed and by which process.
This includes a history of previous runs.

sys1:home:oracle:v9.5:extora

'URIHISTORY'
Returns a list of the URIs of processes that wrote to the trail file before the current
process.

• For a primary Extract, this field is empty.

• For a data pump, this field is URIHistory + URI of the input trail file.

'GROUPNAME'
Returns the name of the group that is associated with the Extract process that created
the trail. The group name is the one that was supplied when the ADD EXTRACT
command was issued.

Chapter 3
@GETENV

3-48

'DATASOURCE'
Returns the data source that was read by the process as a number. The return value can be
one of the following:

• DS_EXTRACT_TRAILS: The source was an Oracle GoldenGate extract file, populated with
change data. The return value is 0.

• DS_DATABASE: The source was a direct select from database table written to a trail, used
for SOURCEISTABLE-driven initial load. The return value is 2.

• DS_TRAN_LOGS: The source was the database transaction log. The return value is 3.

• DS_INITIAL_DATA_LOAD: The source was a direct select from database tables for an
initial load. The return value is 4.

• DS_VAM_EXTRACT: The source was a vendor access module (VAM). The return value is
5.

• DS_VAM_TWO_PHASE_COMMIT: The source was a VAM trail. The return value is 6.

'GGMAJORVERSION'
Returns the major version of the Extract process that created the trail, expressed as an
integer. For example, if a version is 1.2.3, it returns 1.

'GGMINORVERSION'
Returns the minor version of the Extract process that created the trail, expressed as an
integer. For example, if a version is 1.2.3, it returns 2.

'GGVERSIONSTRING'
Returns the maintenance (or patch) level of the Extract process that created the trail,
expressed as an integer. For example, if a version is 1.2.3, it returns 3.

'GGMAINTENANCELEVEL'
Returns the maintenance version of the process (xx.xx.xx).

'GGBUGFIXLEVEL'
Returns the patch version of the process (xx.xx.xx.xx).

'GGBUILDNUMBER'
Returns the build number of the process.

'HOSTNAME'
Returns the DNS name of the machine where the Extract that wrote the trail is running. For
example:

• sysa
• sysb
• paris
• hq25

'OSVERSION'
Returns the major version of the operating system of the machine where the Extract that
wrote the trail is running. For example:

• Version s10_69

Chapter 3
@GETENV

3-49

• #1 SMP Fri Feb 24 16:56:28 EST 2006
• 5.00.2195 Service Pack 4

'OSRELEASE'
Returns the release version of the operating system of the machine where the Extract
that wrote the trail is running. For example, release versions of the examples given for
OSVERSION could be:

• 5.10
• 2.6.9-34.ELsmp

'OSTYPE'
Returns the type of operating system of the machine where the Extract that wrote the
trail is running. For example:

• SunOS
• Linux
• Microsoft Windows

'HARDWARETYPE'
Returns the type of hardware of the machine where the Extract that wrote the trail is
running. For example:

• sun4u
• x86_64
• x86

'DBNAME'
Returns the name of the database, for example findb.

'DBINSTANCE'
Returns the name of the database instance, if applicable to the database type, for
example ORA1022A.

'DBTYPE'
Returns the type of database that produced the data in the trail file. Can be one of:

DB2 UDB
DB2 ZOS
MSSQL
MYSQL
ORACLE
TERADATA
ODBC

'DBCHARSET'
Returns the character set that is used by the database that produced the data in the
trail file. (For some databases, this will be empty.)

'DBMAJORVERSION'
Returns the major version of the database that produced the data in the trail file.

'DBMINORVERSION'
Returns the minor version of the database that produced the data in the trail file.

Chapter 3
@GETENV

3-50

'DBVERSIONSTRING'
Returns the maintenance (patch) level of the database that produced the data in the trail file.

'DBCLIENTCHARSET'
Returns the character set that is used by the database client.

'DBCLIENTVERSIONSTRING'
Returns the maintenance (patch) level of the database client. (For some databases, this will
be empty.)

'LASTCOMPLETECSN'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCOMPLETEXIDS'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCSN'
Returns recovery information for internal Oracle GoldenGate use.

'LASTXID'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCSNTS'
Returns recovery information for internal Oracle GoldenGate use.

'RECORD' , 'location_info'
Valid for a data pump Extract or Replicat.

Use the RECORD option of @GETENV to return the location or Oracle rowid of a record in an
Oracle GoldenGate trail file.

Syntax

@GETENV ('RECORD',
{'TIMESTAMP_PRECISE'|'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

'TIMESTAMP_PRECISE'
Valid for a data pump, Extract, or Replicat.
The TIMESTAMP_PRECISE option returns the timestamp from year to microseconds. However,
depending on the database, the value can be in milliseconds with 0 microseconds.

'FILESEQNO'
Returns the sequence number of the trail file without any leading zeros.

'FILERBA'
Returns the relative byte address of the record within the FILESEQNO file.

'ROWID'
(Valid for Oracle) Returns the row id of the record.

'RSN'
Returns the record sequence number within the transaction. This value does not always
generate uniquely increasing values and should not be used to order operations. For
ordering transactions or DML operations within a transaction, use the information outlined in
MOS DOC ID 1340823.1.

Chapter 3
@GETENV

3-51

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=355027630061971&id=1439822.1&_afrWindowMode=0&_adf.ctrl-state=1dv3nz3o4z_4

'TIMESTAMP'
Returns the timestamp of the record.

Example:

REC-TIMESTAMP: 2017-10-31 06:21:07 REC-TIMESTAMP-PRECISE: 2017-10-31
06:21:07.478064

'DBENVIRONMENT' , 'database_info'
Valid for Extract and Replicat.

Use the DBENVIRONMENT option of @GETENV to return global environment information for
a database.

Syntax

@GETENV ('DBENVIRONMENT', {'DBNAME'|'DBVERSION'|'DBUSER'|'SERVERNAME'})

'DBNAME'
Returns the database name.

'DBVERSION'
Returns the database version.

'DBUSER'
Returns the database login user. Note that SQL Server does not log the user ID.

'SERVERNAME'
Returns the name of the server.

'TRANSACTION' , 'transaction_info
Valid for Extract.

Use the TRANSACTION option of @GETENV to return information about a source
transaction. This option is valid for the Extract process but not for pump Extract and
Replicat.

Syntax

@GETENV ('TRANSACTION',
{'TIMESTAMP_PRECISE'|'TRANSACTIONID'|'XID'|'CSN'|'TIMESTAMP'|'NAME'|
 'USERID'|'USERNAME'|'PLANNAME' | 'LOGBSN' | 'REDOTHREAD' | 'PROGRAMNAME' |
'CLIENTIDENTIFIER' | 'MACHINENAME' | 'USERNAME')

Note:

Do not use TIMETSAMP_PRECISE or TIMESTAMP for ordering operations.
Instead use this value: @COMPUTE(@COMPUTE(@NUMSTR(@GETENV ("RECORD",
"FILESEQNO"))*100000000000)+@NUMSTR(@GETENV ("RECORD",
"FILERBA")))

Chapter 3
@GETENV

3-52

'TIMESTAMP_PRECISE'
This option is valid for Extract. Use the TIMESTAMP_PRECISE returns the timestamp from year
to microseconds. However, depending on the database, the value can be in milliseconds
with 0 microseconds

'TRANSACTIONID' | 'XID'
Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The
transaction ID and the CSN are associated with the first record of every transaction and are
stored as tokens in the trail record. For each transaction ID, there is an associated CSN.
Transaction ID tokens have no zero-padding on any platform, because they never get
evaluated as relative values. They only get evaluated for whether they match or do not
match. Note that in the trail, the transaction ID token is shown as TRANID.

'CSN'
Returns the commit sequence number (CSN). The CSN is not zero-padded when returned
for these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other supported databases,
the CSN is zero-padded.
Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.
For more information about the CSN, see Administering Oracle GoldenGate.

'TIMESTAMP'
Returns the commit timestamp of the transaction.

'NAME'
Returns the transaction name, if available.

'USERID'
(Oracle) Returns the Oracle user ID of the database user that committed the last transaction.
This is not valid for pump Extract and/or Replicat.

'USERNAME'
(Oracle) Returns the Oracle user name of the database user that committed the last
transaction. This is not valid for pump Extract and/or Replicat.

'PLANNAME'
(DB2 z/OS) Returns the plan name under which the current transaction was originally
executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'
Returns the begin sequence number (BSN) in the transaction log. The BSN is the native
sequence number that identifies the beginning of the oldest uncommitted transaction that is
held in Extract memory. For example, given an Oracle database, the BSN would be
expressed as a system change number (SCN). The BSN corresponds to the current I/O
checkpoint value of Extract. This value can be obtained from the trail by Replicat when
@GETENV ('TRANSACTION', 'LOGBSN') is used. This value also can be obtained by using the
INFO REPLICAT command with the DETAIL option. The purpose of obtaining the BSN from
Replicat is to get a recovery point for Extract in the event that a system failure or file system
corruption makes the Extract checkpoint file unusable. See Administering Oracle
GoldenGate for more information about recovering the Extract position.

'REDOTHREAD'
Returns the thread number of a RAC node extract; on non-RAC node extracts the value is
always 1. For data pump and Replicat, the thread id used by Extract capture of a RAC node

Chapter 3
@GETENV

3-53

is returned; on non-RAC, @GETENV() returns an error. Logdump shows the token,
ORATHREADID, in the token section if the transaction is captured by Extract on a RAC
node.

‘PROGRAMNAME’
Name of the program or application that started the transaction or session.

‘CLIENTIDENTIFIER’
Value set by using DBMS_SESSION_.set_identifier().

‘MACHINENAME’
Name of the host, machine, or server where database is running

‘USERNAME’
Database login user name.

Example:

DB2 zOS:
TRANS-TIMESTAMP: 2017-10-31 06:21:07
TRANS-TIMESTAMP-PRECISE: 2017-10-31 06:21:07.485792

'OSVARIABLE' , 'variable'
Valid for Extract and Replicat.

Use the OSVARIABLE option of @GETENV to return the string value of a specified
operating-system environment variable.

Syntax

@GETENV ('OSVARIABLE', 'variable')

'variable'
The name of the variable. The search is an exact match of the supplied variable
name. For example, the UNIX grep command would return all of the following
variables, but @GETENV ('OSVARIABLE', 'HOME') would only return the value for HOME:

ANT_HOME=/usr/local/ant
JAVA_HOME=/usr/java/j2sdk1.4.2_10
HOME=/home/judyd
ORACLE_HOME=/rdbms/oracle/ora1022i/64

The search is case-sensitive if the operating system supports case-sensitivity.

'TLFKEY' , SYSKEY, 'unique_key'
Valid for Extract and Replicat.

Use the TLFKEY option of @GETENV to associate a unique key with TLF/PTLF records in
ACI's Base24 application. The 64-bit key is composed of the following concatenated
items:

• The number of seconds since 2000.

• The block number of the record in the TLF/PTLF block multiplied by ten.

• The node specified by the user (must be between 0 and 255).

Chapter 3
@GETENV

3-54

Syntax

@GETENV ('TLFKEY', SYSKEY, unique_key)

SYSKEY, unique_key
The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax element
in quotes.
Example:

GETENV ('TLFKEY', SYSKEY, 27)

3.24 GET_ENV_VALUE
Valid For

Extract and Replicat

Description

Use the GET_ENV_VALUE function to return information about the Oracle GoldenGate
environment. The information that is supplied is the same as that of the @GETENV column-
conversion function and is specified by using the same input values. For more information
about the valid information types, environment variables, and return values, see
"@GETENV".

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process
is interpreted in the session character set.

Syntax

#include "usrdecs.h"
short result_code;
getenv_value_def env_ptr;
ERCALLBACK (GET_ENV_VALUE, &env_ptr, &result_code);

Buffer

typedef struct
{
char *information_type;
char *env_value_name;
char *return_value;
long max_return_length;
long actual_length;
short value_truncated;
} getenv_value_def;

Input

information_type
The information type that is to be returned, for example 'GGENVIRONMENT' or 'GGHEADER'. The
information type must be supplied within double quotes. For a list of information types and
subsequent detailed descriptions, see "@GETENV".

Chapter 3
GET_ENV_VALUE

3-55

env_value_name
The environment value that is wanted from the information type. The environment
value must be supplied within double quotes. For valid values, see "@GETENV". For
example, if using the 'GGENVIRONMENT' information type, a valid environment value
would be 'GROUPNAME'.

max_return_length
The maximum length of the buffer for this data.

Output

return_value
A valid return value for the supplied environment value.

actual_length
The actual length of the data in this buffer.

value_truncated
A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if
the length of the value plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_OK
EXIT_FN_RET_ENV_NOT_FOUND
EXIT_FN_RET_INVALID_PARAM

3.25 GET_ERROR_INFO
Valid For

Extract and Replicat

Description

Use the GET_ERROR_INFO function to retrieve error information associated with a
discard record. The user exit can use this information in custom error handling logic.
For example, the user exit could send an e-mail message with detailed error
information.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the message data that is exchanged between
the user exit and the process is interpreted in the session character set.

Syntax

#include "usrdecs.h"
short result_code;
error_info_def error_info;
ERCALLBACK (GET_ERROR_INFO, &error_info, &result_code);

Buffer

typedef struct
{
long error_num;

Chapter 3
GET_ERROR_INFO

3-56

char *error_msg;
long max_length;
long actual_length;
short msg_truncated;
} error_info_def;

Input

error_msg
A pointer to a buffer to accept the returned error message.

max_length
The maximum length of your allocated error_msg buffer to accept any resulting error
message. This is returned as a NULL terminated string.

Output

error_num
The SQL or system error number associated with the discarded record.

error_msg
A pointer to the null-terminated error message string associated with the discarded record.

actual_length
The length of the error message, not including the null terminator.

msg_truncated
A flag (0 or 1) indicating whether or not the error message was truncated. Truncation occurs
if the length of the error message plus a null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

3.26 GET_GMT_TIMESTAMP
Valid For

Extract and Replicat

Description

Use the GET_GMT_TIMESTAMP function to retrieve the operation commit timestamp in GMT
format. This function requires compiling with Version 2 usrdecs.h or later.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_GMT_TIMESTAMP, &record, &result_code);

Buffer

typedef struct
{
char *table_name;

Chapter 3
GET_GMT_TIMESTAMP

3-57

char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

None

Output

timestamp
The returned 64-bit I/O timestamp in GMT format.

io_datetime
A null-terminated string containing the local I/O date and time:
YYYY-MM-DD HH:MI:SS.FFFFFF
The format of the datetime string is in the session character set.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

3.27 GET_MARKER_INFO
Valid For

Extract (data pump only) and Replicat

Description

Use the GET_MARKER_INFO function to retrieve marker information sent from a NonStop
source system when Replicat is applying data. Use markers to trigger custom
processing within a user exit.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, all of the returned marker data is interpreted
in the session character set.

Syntax

#include "usrdecs.h"
short result_code;
marker_info_def marker_info;
ERCALLBACK (GET_MARKER_INFO, &marker_info, &result_code);

Chapter 3
GET_MARKER_INFO

3-58

Buffer

typedef struct
{
char *processed;
char *added;
char *text;
char *group;
char *program;
char *node;
} marker_info_def;

Input

processed
A pointer to a buffer to accept the processed return value.

added
A pointer to a buffer to accept the added return value.

text
A pointer to a buffer to accept the text return value.

group
A pointer to a buffer to accept the group return value.

program
A pointer to a buffer to accept the program return value.

node
A pointer to a buffer to accept the node return value.

Output

processed
A null-terminated string in the format of YYYY-MM-DD HH:MI:SS indicating the local date and
time that the marker was processed.

added
A null-terminated string in the format of YYYY-MM-DD HH:MI:SS indicating the local date and
time that the marker was added.

text
A null-terminated string containing the text associated with the marker.

group
A null-terminated string indicating the Replicat group that processed the marker.

program
A null-terminated string indicating the program that processed the marker.

node
A null-terminated string representing the Himalaya node on which the marker was originated.

Chapter 3
GET_MARKER_INFO

3-59

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

3.28 GET_OBJECT_NAME
Valid For

Extract and Replicat

Description

Use the GET_OBJECT_NAME function to retrieve the fully qualified name of a source or
target object that is associated with the record being processed. This function is valid
tables and other objects in a DML or DDL operation.

To return only part of the object name, see the following:

GET_OBJECT_NAME_ONLY GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_OBJECT_NAME, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the object name. This is
returned as a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target object name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Chapter 3
GET_OBJECT_NAME

3-60

Output

buffer
The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the object name is interpreted in the session character set.

actual length
The string length of the returned object name. The actual length does not include the null
terminator. The actual length is 0 if the object is a table.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the object name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.29 GET_OBJECT_NAME_ONLY
Valid For

Extract and Replicat

Description

Use the GET_OBJECT_NAME_ONLY function to retrieve the unqualified name (without the catalog,
container, or schema) of a source or target object that is associated with the record that is
being processed. This function is valid for tables and other objects in a DML or DDL
operation.

To return the fully qualified name of an object, see the following:

GET_OBJECT_NAME

To return other parts of the object name, see the following:

GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_OBJECT_NAME_ONLY, &env_value, &result_code);

Chapter 3
GET_OBJECT_NAME_ONLY

3-61

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the object name. This is
returned as a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target object name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the object name is interpreted in the session
character set.

actual length
The string length of the returned object name. The actual length does not include the
null terminator. The actual length is 0 if the object is a table.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the object name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

Chapter 3
GET_OBJECT_NAME_ONLY

3-62

3.30 GET_OPERATION_TYPE
Valid For

Extract and Replicat

Description

Use the GET_OPERATION_TYPE function to determine the operation type associated with a
record. Knowing the operation type can be useful in a user exit. For example, the user exit
can perform complex validations any time a delete is encountered. It also is important to
know when a compressed record is being processed if the user exit is manipulating the full
data record.

As an alternative, you can use the GET_RECORD_BUFFER function to determine the operation
type (see "GET_RECORD_BUFFER").

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_OPERATION_TYPE, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

source_or_target
One of the following indicating whether to return the operation type for the source or the
target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

io_type
Returned as one of the following:

Chapter 3
GET_OPERATION_TYPE

3-63

• DDL type:

SQL_DDL_VAL
• DML types:

DELETE_VAL
INSERT_VAL
UPDATE_VAL

• Compressed SQL update:

UPDATE_COMP_SQL_VAL
UPDATE_COMP_PK_SQL_VAL

• Other:

TRUNCATE_TABLE_VAL

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.31 GET_POSITION
Valid For

Extract (data pump only) and Replicat

Description

Use the GET_POSITION function is obtain a read position of an Extract data pump or
Replicat in the Oracle GoldenGate trail.

Syntax

#include "usrdecs.h"
short result_code;
ERCALLBACK (GET_POSITION &position_def, &result_code);

Buffer

typedef struct
{
char *position;
long position_len;
short position_type;
short ascii_or_internal;
} position_def;

Input

position_len
Allocation length for the position length.

position_type
Can be one of the following:

Chapter 3
GET_POSITION

3-64

STARTUP_CHECKPOINT
The start position in the trail.

CURRENT_CHECKPOINT
The position of the last read in the trail.

column_value_mode
An indicator for the format in which the column value was passed. Currently, only the default
Oracle GoldenGate canonical format is supported, as represented by:
EXIT_FN_RAW_FORMAT

Output

*position
A pointer to a buffer representing the position values. This buffer is declared in the
position_def as two binary values (unsigned int32t and int32t) as seqnorba for eight
bytes in a char field. The user exit must move the data to the correct data type. Using this
function on a Little Endian platform will cause the process to "reverse bytes" on the two fields
individually.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_NOT_SUPPORTED
EXIT_FN_RET_OK

3.32 GET_RECORD_BUFFER
Valid For

Extract and Replicat

Description

Use the GET_RECORD_BUFFER function to obtain information for custom column conversions.
User exits can be used for data mapping between dissimilar source and target records when
the COLMAP option of the MAP or TABLE parameter is not sufficient. For example, you can use a
user exit to convert a proprietary date field.

You can use the SET_RECORD_BUFFER function (see "SET_RECORD_BUFFER") to modify the
data retrieved with GET_RECORD_BUFFER. However, it requires an understanding of the data
record as written in the internal Oracle GoldenGate canonical format. As an alternative, you
can set column values in the data record with the SET_COLUMN_VALUE_BY_INDEX function (see
"SET_COLUMN_VALUE_BY_INDEX") or the SET_COLUMN_VALUE_BY_NAME function (see
"@STRNCMP").

Deletes, inserts and updates appear in the buffer as full record images.

Compressed SQL updates have the following format:

index length value [index length value][...]

where:

• index is a two-byte index into the list of columns of the table (first column is zero).

• length is the two-byte length of the table.

Chapter 3
GET_RECORD_BUFFER

3-65

• value is the actual column value, including one of the following two-byte null
indicators when applicable. 0 is not null. -1 is null.

For SQL records, you can use the DECOMPRESS_RECORD function
("DECOMPRESS_RECORD") to decompress the record for possible manipulation and
then use the COMPRESS_RECORD function ("COMPRESS_RECORD") to compress it
again, as expected by the process.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_RECORD_BUFFER, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

source_or_target
One of the following indicating whether to return the record buffer for the source or
target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind
Optional. Set when requesting a record buffer on a record io_type of
UPDATE_COMP_PK_SQL_VAL (primary key update). Use one of the following to indicate
which portion of the primary key update is to be accessed. The default is
AFTER_IMAGE_VAL.

BEFORE_IMAGE_VAL
AFTER_IMAGE_VAL

Output

buffer
A pointer to the record buffer. Typically, buffer is a pointer to a buffer of type
exit_rec_buf_def. The exit_rec_buf_def buffer contains the actual record about to
be processed by Extract or Replicat. The buffer is supplied when the call type is

Chapter 3
GET_RECORD_BUFFER

3-66

EXIT_CALL_DISCARD_RECORD. Exit routines can change the contents of this buffer, for
example, to perform custom mapping functions.
The content of the record buffer is not converted to or from the character set of the user exit.
It is passed as-is.

length
The returned length of the record buffer.

io_type
Returned as one of the following:

• DDL type:

SQL_DDL_VAL
• DML types:

DELETE_VAL
INSERT_VAL
UPDATE_VAL

• Compressed SQL update:

UPDATE_COMP_SQL_VAL
UPDATE_COMP_PK_SQL_VAL

• Other:

TRUNCATE_TABLE_VAL

mapped
A flag (0 or 1) indicating whether or not this is a mapped record buffer.

before_after_ind
One of the following to indicate whether the record is a before or after image.

BEFORE_IMAGE_VAL
AFTER_IMAGE_VAL

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.33 GET_RECORD_LENGTH
Valid For

Extract and Replicat

Description

Use the GET_RECORD_LENGTH function to retrieve the length of the data record. As an
alternative, you can use the GET_RECORD_BUFFER function to retrieve the length of the data
record.

Syntax

#include "usrdecs.h"
short result_code;

Chapter 3
GET_RECORD_LENGTH

3-67

record_def record;
ERCALLBACK (GET_RECORD_LENGTH, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

source_or_target
One of the following indicating whether to return the record length for the source or
target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

length
The returned length of the data record.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.34 GET_RECORD_TYPE
Valid For

Extract and Replicat

Description

Use the GET_RECORD_TYPE function to retrieve the type of record being processed. The
record can be a SQL record. The record type is important when manipulating the
record buffer, because each record type has a different format.

Syntax

#include "usrdecs.h"
short result_code;

Chapter 3
GET_RECORD_TYPE

3-68

record_def record;
ERCALLBACK (GET_RECORD_TYPE, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

source_or_target
One of the following indicating whether or not to return the record type for the source or
target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

record_type
The returned record type.

EXIT_REC_TYPE_SQL

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.35 GET_SCHEMA_NAME_ONLY
Valid For

Extract and Replicat

Description

Use the GET_SCHEMA_NAME_ONLY function to retrieve the name of the owner (such as schema),
but not the name of the catalog or container (if applicable) or the object, of the source or
target object associated with the record being processed. This function is valid for DML and
DDL operations.

To return the fully qualified name of a table, see the following:

Chapter 3
GET_SCHEMA_NAME_ONLY

3-69

GET_TABLE_NAME

To return the fully qualified name of a non-table object, such as a user, view or index,
see the following:

GET_OBJECT_NAME

To return only the unqualified table or object name, see the following:

GET_TABLE_NAME_ONLY

GET_OBJECT_NAME_ONLY

To return other parts of the table or object name, see the following:

GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_SCHEMA_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to a buffer to accept the returned schema name. The name is null-
terminated.

max_length
The maximum length of your allocated buffer to accept the schema name. This is
returned as a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target schema name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The fully qualified, null-terminated schema name.

Chapter 3
GET_SCHEMA_NAME_ONLY

3-70

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the schema name is interpreted in the session character set.

actual_length
The string length of the returned name. The actual length does not include the null
terminator.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the schema name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.36 GET_SESSION_CHARSET
Valid For

Extract and Replicat

Description

Use GET_SESSION_CHARSET to get the current user exit session character set. This character
set can be set through callback function SET_SESSION_CHARSET. The character set of the user
exit session indicates the encoding of any character-based callback structure members that
are used between the user exit and the caller process (Extract, data pump, Replicat),
including metadata such as (but not limited to):

• database names and locales

• table and column names

• DDL text

• error messages

• character-type columns such as CHAR and NCHAR
• date-time and numeric columns that are represented in string form

The valid values of the session character set are defined in the header file ucharset.h. This
function can be called at any time that the user exit has control.

For more information about globalization support, see Administering Oracle GoldenGate for
Windows and UNIX.

Syntax

#include usrdecs.h
short result_code;
session_def session_charset_def;
ERCALLBACK (GET_SESSION_CHARSET, &session_charset_def, &result_code);

Chapter 3
GET_SESSION_CHARSET

3-71

Buffer

typedef struct
{
ULibCharSet session_charset;
} session_def;

Input

None

Output

session_charset_def.session_charset

Return Values

EXIT_FN_RET_OK

3.37 GET_STATISTICS
Valid For

Extract and Replicat

Description

Use the GET_STATISTICS function to retrieve the current processing statistics for the
Extract or Replicat process. For example, the user exit can output statistics to a
custom report should a fatal error occur during Extract or Replicat processing.

Statistics are automatically handled based on which process type has requested the
data:

• The Extract process will always treat the request as a source table, counting that
table once regardless of the number of times output.

• The Replicat process will always treat the request as a set of target tables. The set
includes all counts to the target regardless of the number of source tables.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"
short result_code;
statistics_def statistics;
ERCALLBACK (GET_STATISTICS, &statistics, &result_code);

Buffer

typedef struct
{
char *table_name;
short group;
exit_timestamp_string start_datetime;
long num_inserts;
long num_updates;

Chapter 3
GET_STATISTICS

3-72

long num_befores;
long num_deletes;
long num_discards;
long num_ignores;
long total_db_operations;
long total_operations;
/* Version 2 CALLBACK_STRUCT_VERSION */
long num_truncates;
} statistics_def;

Input

table_name
A null-terminated string specifying the fully qualified name of the source table. Statistics are
always recorded against the source records. If the character session of the user exit is set
with SET_SESSION_CHARSET to a value other than the default character set of the operating
system, as defined in ULIB_CS_DEFAULT in the ucharset.h file, the table name and the date
are interpreted in the session character set.

group
Can be one of the following:

EXIT_STAT_GROUP_STARTUP
Retrieves statistics since the Oracle GoldenGate process was last started.

EXIT_STAT_GROUP_DAILY
Retrieves statistics since midnight of the current day.

EXIT_STAT_GROUP_HOURLY
Retrieves statistics since the start of the current hour.

EXIT_STAT_GROUP_RECENT
Retrieves statistics since the statistics were reset using GGSCI.

EXIT_STAT_GROUP_REPORT
Retrieves statistics since the last report was generated.

EXIT_STAT_GROUP_USEREXIT
Retrieves statistics since the last time the user exit reset the statistics with
RESET_USEREXIT_STATS.

Output

start_datetime
A null-terminated string in the format of YYYY-MM-DD HH:MI:SS indicating the local date and
time that statistics started to be recorded for the specified group.

num_inserts
The returned number of inserts processed by Extract or Replicat.

num_updates
The returned number of updates processed by Extract or Replicat.

num_befores
The returned number of update before images processed by Extract or Replicat.

Chapter 3
GET_STATISTICS

3-73

num_deletes
The returned number of deletes processed by Extract or Replicat.

num_discards
The returned number of records discarded by Extract or Replicat.

num_ignores
The returned number of records ignored by Extract or Replicat.

total_db_operations
The returned number of total database operations processed by Extract or Replicat.

total_operations
The returned number of total operations processed by Extract or Replicat, including
discards and ignores.

num_truncates
The returned number of truncates processed by Extract or Replicat.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_TABLE_NOT_FOUND
EXIT_FN_RET_OK

3.38 GET_TABLE_COLUMN_COUNT
Valid For

Extract and Replicat

Description

Use the GET_TABLE_COLUMN_COUNT function to retrieve the total number of columns in a
table, including the number of key columns.

Syntax

#include "usrdecs.h"
short result_code;
table_def table;
ERCALLBACK (GET_TABLE_COLUMN_COUNT, &table, &result_code);

Buffer

typedef struct
{
short num_columns;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
short num_key_columns;
} table_def;

Chapter 3
GET_TABLE_COLUMN_COUNT

3-74

Input

source_or_target
One of the following indicating whether to return the total number of columns for the source
or target table.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

num_columns
The returned total number of columns in the specified table.

num_key_columns
The returned total number of columns that are being used by Oracle GoldenGate as the key
for the specified table.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.39 GET_TABLE_METADATA
Valid For

Extract and Replicat

Description

Use the GET_TABLE_METADATA function to retrieve metadata about the table that associated
with the record that is being processed.

Syntax

#include "usrdecs.h"
short result_code;
table_metadata_def tbl_meta_rec;
ERCALLBACK (GET_TABLE_METADATA, &tbl_meta_rec, &result_code);

Buffer

typedef struct
{
char *table_name;
short value_truncated;
long max_name_length;
long actual_name_length;
short num_columns;
short num_key_columns;
short *key_columns;
short num_keys_returned;
BOOL using_pseudo_key;
short source_or_target;
} table_metadata_def;

Chapter 3
GET_TABLE_METADATA

3-75

Input

table_name
A pointer to a buffer to accept the table_name return value

key_columns
A pointer to an array of key_columns indexes.

max_name_length
The maximum length of the returned table name. Typically, the maximum length is the
length of the table name buffer. Since the returned table name is null-terminated, the
maximum length should equal the maximum length of the table name.

source_or_target
One of the following indicating whether to return the source or target table name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

table_name
The name of the table associated with the record that is being processed. If the
character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT
in the ucharset.h file, the table name is interpreted in the session character set.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the table name plus the null terminator exceeds the maximum buffer
length.

actual_name_length
The string length of the returned table name. The actual length does not include the
null terminator.

num_columns
The number of columns in the table.

num_key_columns
The number of columns in the key that is being used by Oracle GoldenGate.

key_columns
The values for the key columns. You must know the expected number of keys
multiplied by the length of the columns, and then allocate the appropriate amount of
buffer.

num_keys_returned
The number of key columns that are requested.

using_pseudo_key
A flag that indicates whether or not KEYCOLS-specified columns are being used as a
key. Returns TRUE or FALSE.

Chapter 3
GET_TABLE_METADATA

3-76

Return Values

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_EXCEEDED_MAX_LENGTH
EXIT_FN_RET_OK

3.40 GET_TABLE_NAME
Valid For

Extract and Replicat

Description

Use the GET_TABLE_NAME function to retrieve the fully qualified name of the source or target
table associated with the record being processed. This function is valid only for tables in DML
and DDL operations. To retrieve the fully qualified name of a non-table object, see the
following:

GET_OBJECT_NAME

To return only part of the fully qualified name, see also the following:

GET_TABLE_NAME_ONLY GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

This function returns a value only if the object is a table. Otherwise, the actual_length of the
env_value_def variable returns 0.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_TABLE_NAME, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to a buffer to accept the returned table name. The table name is null-terminated.

Chapter 3
GET_TABLE_NAME

3-77

max_length
The maximum length of your allocated buffer to accept the table name. This is
returned as a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target table name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The fully qualified, null-terminated table name, for example schema.table or
catalog.schema.table, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the table name is interpreted in the session
character set.

actual length
The string length of the returned table name. The actual length does not include the
null terminator. The actual length returned is 0 if the object is anything other than a
table.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the table name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.41 GET_TABLE_NAME_ONLY
Valid For

Extract and Replicat

Description

Use the GET_TABLE_NAME_ONLY function to retrieve the unqualified name (without the
catalog, container, or schema) of the source or target table associated with the record
being processed. This function is valid only for tables in DML and DDL operations. To
retrieve the unqualified name of a non-table object, see the following:

GET_OBJECT_NAME_ONLY

To return the fully qualified name of a table, see the following:

GET_TABLE_NAME

To return other parts of the table name, see the following:

Chapter 3
GET_TABLE_NAME_ONLY

3-78

GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

This function returns a value only if the object is a table. Otherwise, the actual_length of the
env_value_def variable returns 0.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_TABLE_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer
A pointer to a buffer to accept the returned table name. The table name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the table name. This is returned as a
NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target table name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer
The fully qualified, null-terminated table name, for example schema.table or
catalog.schema.table, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the table name is interpreted in the session character set.

actual length
The string length of the returned table name. The actual length does not include the null
terminator. The actual length returned is 0 if the object is anything other than a table.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the table name plus the null terminator exceeds the maximum buffer length.

Chapter 3
GET_TABLE_NAME_ONLY

3-79

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.42 GET_TIMESTAMP
Valid For

Extract and Replicat

Description

Use the GET_TIMESTAMP function to retrieve the I/O timestamp associated with a source
data record in ASCII datetime format. The timestamp is then converted to local time
and approximates the time of the original database operation.

Note:

The ASCII commit timestamp can vary with the varying regional use of
Daylight Savings Time. The user exit callback should return the ASCII
datetime as a GMT time to avoid this variance. The Oracle GoldenGate trail
uses GMT format. See "GET_GMT_TIMESTAMP".

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_TIMESTAMP, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

None

Chapter 3
GET_TIMESTAMP

3-80

Output

timestamp
The returned 64-bit I/O timestamp in ASCII format.

io_datetime
A null-terminated string containing the local I/O date and time, in the format of:
YYYY-MM-DD HH:MI:SS.FFFFFF

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

3.43 GET_TRANSACTION_IND
Valid For

Extract and Replicat

Description

Use the GET_TRANSACTION_IND function to determine whether a data record is the first, last or
middle operation in a transaction. This can be useful when, for example, a user exit can
compile the details of each transaction and output a special summary record.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_TRANSACTION_IND, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

None

Chapter 3
GET_TRANSACTION_IND

3-81

Output

transaction_ind
The returned transaction indicator, represented as one of the following:

BEGIN_TRANS_VAL
The record is the beginning of a transaction.

MIDDLE_TRANS_VAL
The record is in the middle of a transaction.

END_TRANS_VAL
The record is the end of a transaction.

WHOLE_TRANS_VAL
The record is the only one in the transaction.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

3.44 GET_USER_TOKEN_VALUE
Valid For

Extract and Replicat

Description

Use the GET_USER_TOKEN_VALUE function to obtain the value of a user token from a trail
record. No character-set conversion is performed on the token value.

Syntax

#include "usrdecs.h"

Buffer

typedef struct
{
char *token_name;
char *token_value;
long max_length;
long actual_length;
short value_truncated;
} token_value_def;

Input

token_name
A pointer to a buffer representing the name of a token. It is assumed that the token
name is encoded in the default character set of the operating system that hosts the
Extract TABLE statement where the token is configured. The user exit prepares the
token name in the character set that is specified with SET_SESSION_CHARSET, but

Chapter 3
GET_USER_TOKEN_VALUE

3-82

converts it back to the operating system character set before retrieving the matching token
value.

max_length
The maximum length of your allocated token_name buffer to accept any resulting token
value. This is returned as a NULL terminated string.

Output

token_value
A pointer to a buffer representing the return value (if any) of a token. The token value is
passed back to the user exit as-is, without any character-set conversion.

actual_length
The actual length of the token value that is returned. A value of 0 is returned if the token is
found and there is no value present.

value_truncated
A flag of either 0 or 1 that indicates whether or not the token value was truncated. Truncation
occurs if the length of the table name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_TOKEN_NOT_FOUND
EXIT_FN_RET_OK

3.45 OUTPUT_MESSAGE_TO_REPORT
Valid For

Extract and Replicat

Description

Use the OUTPUT_MESSAGE_TO_REPORT function to output a message to the report file. If a
character session for the user exit is set with SET_SESSION_CHARSET, the message is
interpreted in the session character set but is converted to the default character set of the
operating system before being written to the report file.

Syntax

#include "usrdecs.h"
short result_code;
char message[500];
ERCALLBACK (OUTPUT_MESSAGE_TO_REPORT, message, &result_code);

Buffer

None

Chapter 3
OUTPUT_MESSAGE_TO_REPORT

3-83

Input

message
A null-terminated string.

Output

None

Return Values

EXIT_FN_RET_OK

3.46 RESET_USEREXIT_STATS
Valid For

Extract and Replicat

Description

Use the RESET_USEREXIT_STATS function to reset the EXIT_STAT_GROUP_USEREXIT
statistics for the Oracle GoldenGate process since the last call to GET_STATISTICS was
processed. This function enables the user exit to control when to reset the group
statistics that are returned by the GET_STATISTICS function, but does not permit any of
the other statistics to be reset.

Syntax

#include "usrdecs.h"
short result_code;
call_callback (RESET_USEREXIT_STATS, NULL, &result_code);

Input

None

Output

None

Return Values

None

3.47 SET_COLUMN_VALUE_BY_INDEX
Valid For

Extract and Replicat

Description

Use the SET_COLUMN_VALUE_BY_INDEX or SET_COLUMN_VALUE_BY_NAME function to
modify a single column value without manipulating the entire data record. If the
character session of the user exit is set with SET_SESSION_CHARSET to a value other

Chapter 3
RESET_USEREXIT_STATS

3-84

than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process
is interpreted in the session character set.

A column value is set to the session character set only if the following is true:

• The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2/
NCLOB), a SQL date/timestamp/interval/number type)

• The column_value_mode indicator is set to EXIT_FN_CNVTED_SESS_CHAR_FORMAT.

Syntax

#include "usrdecs.h"
short result_code;
column_def column;
ERCALLBACK (SET_COLUMN_VALUE_BY_INDEX, &column, &result_code);

Buffer

typedef struct
{
char *column_value;
unsigned short max_value_length;
unsigned short actual_value_length;
short null_value;
short remove_column;
short value_truncated;
short column_index;
char *column_name;
/* Version 3 CALLBACK_STRUCT_VERSION */
short column_value_mode;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
char more_lob_data;
/* Version 3 CALLBACK_STRUCT_VERSION */
ULibCharSet column_charset;
} column_def;

Input

column_value
A pointer to a buffer representing the new column value.

actual_value_length
The length of the new column value, in bytes. The actual length should not include the null
terminator if the new column value is in ASCII format.

null_value
A flag (0 or 1) indicating whether the new column value is null. If the null_value flag is set to
1, the column value in the data record is set to null.

remove_column
A flag (0 or 1) indicating whether to remove the column from a compressed update if it exists.
A compressed update is one in which only the changed column values are logged, not all of
the column values. This flag should only be set if the operation type for the record is
UPDATE_COMP_SQL_VAL or PK_UPDATE_SQL_VAL.

Chapter 3
SET_COLUMN_VALUE_BY_INDEX

3-85

column_index
The column index of the new column value to be copied into the data record buffer.
Column indexes start at zero.

column_value_mode
Indicates the format of the column value.

EXIT_FN_CHAR_FORMAT
ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a
known exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because
the value is interpreted as an ASCII string and is supposed to be null-
terminated. The first value of 0 becomes the string terminator.

• Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional
time is database-dependent.

• Numeric values are in their string format. For example, 123.45 is represented
as '123.45'.

• Non-printable characters or binary values are converted to hexadecimal
notation.

• Floating point types are output as null-terminated strings, to the first 14
significant digits.

EXIT_FN_RAW_FORMAT
Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character
data type.

EXIT_FN_CNVTED_SESS_CHAR_FORMAT
User exit character set: This only applies if the column data type is:

• a character-based type, single or multi-byte

• a numeric type with a string representation

This format is not null-terminated.

source_or_target
One of the following indicating whether the source or target record is being modified.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind
Set when setting a column value on a record io_type of UPDATE_COMP_PK_SQL_VAL
(primary key update). Use one of the following to indicate which portion of the primary
key update is to be accessed. The default is AFTER_IMAGE_VAL.

• BEFORE_IMAGE_VAL

Chapter 3
SET_COLUMN_VALUE_BY_INDEX

3-86

• AFTER_IMAGE_VAL

Output

None

Return Values

EXIT_FN_RET_BAD_COLUMN_DATA
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK
EXIT_FN_RET_NOT_SUPPORTED
EXIT_FN_RET_INVALID_COLUMN_TYPE

3.48 SET_COLUMN_VALUE_BY_NAME
Valid For

Extract and Replicat

Description

Use the SET_COLUMN_VALUE_BY_NAME or SET_COLUMN_VALUE_BY_INDEX function to modify a
single column value without manipulating the entire data record.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process
is interpreted in the session character set.

A column value is set to the session character set only if the following is true:

• The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2/
NCLOB), a SQL date/timestamp/interval/number type)

• The column_value_mode indicator is set to EXIT_FN_CNVTED_SESS_CHAR_FORMAT.

If the database is case-sensitive, object names must be specified in the same letter case as
they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"
short result_code;
column_def column;
ERCALLBACK (SET_COLUMN_VALUE_BY_NAME, &column, &result_code);

Buffer

typedef struct
{
char *column_value;
unsigned short max_value_length;
unsigned short actual_value_length;
short null_value;
short remove_column;
short value_truncated;
short column_index;

Chapter 3
SET_COLUMN_VALUE_BY_NAME

3-87

char *column_name;
/* Version 3 CALLBACK_STRUCT_VERSION */
short column_value_mode;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
char more_lob_data;
/* Version 3 CALLBACK_STRUCT_VERSION */
ULibCharSet column_charset;
} column_def;

Input

column_value
A pointer to a buffer representing the new column value.

actual_value_length
The length of the new column value, in bytes. The actual length should not include the
null terminator if the new column value is in ASCII format.

null_value
A flag (0 or 1) indicating whether the new column value is null. If the null_value flag
is set to 1, the column value in the data record is set to null.

remove_column
A flag (0 or 1) indicating whether to remove the column from a compressed update if it
exists. A compressed update is one where only the changed column values are
logged, not all of the column values. This flag should only be set if the operation type
for the record is UPDATE_COMP_SQL_VAL or PK_UPDATE_SQL_VAL.

column_name
The name of the column that corresponds to the new column value to be copied into
the data record buffer.

column_value_mode
Indicates the format of the column value.

EXIT_FN_CHAR_FORMAT
ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a
known exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because
the value is interpreted as an ASCII string and is supposed to be null-
terminated. The first value of 0 becomes the string terminator.

• Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional
time is database-dependent.

• Numeric values are in their string format. For example, 123.45 is represented
as '123.45'.

Chapter 3
SET_COLUMN_VALUE_BY_NAME

3-88

• Non-printable characters or binary values are converted to hexadecimal notation.

• Floating point types are output as null-terminated strings, to the first 14 significant
digits.

EXIT_FN_RAW_FORMAT
Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character data
type.

EXIT_FN_CNVTED_SESS_CHAR_FORMAT
User exit character set: This only applies if the column data type is:

• a character-based type, single or multi-byte

• a numeric type with a string representation

This format is not null-terminated.

source_or_target
One of the following indicating whether the source or the target data record is being
modified.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind
Set when setting a column value on a record io_type of UPDATE_COMP_PK_SQL_VAL (primary
key update). Use one of the following to indicate which portion of the primary key update is
to be accessed. The default is AFTER_IMAGE_VAL.

• BEFORE_IMAGE_VAL
• AFTER_IMAGE_VAL

Output

None

Return Values

EXIT_FN_RET_BAD_COLUMN_DATA
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK
EXIT_FN_RET_NOT_SUPPORTED
EXIT_FN_RET_INVALID_COLUMN_TYPE

3.49 SET_OPERATION_TYPE
Valid For

Extract and Replicat

Description

Use the SET_OPERATION_TYPE function to change the operation type associated with a data
record. For example, a delete on a specified table can be turned into an insert into another

Chapter 3
SET_OPERATION_TYPE

3-89

table. The record header's before/after indicator is modified as appropriate for insert
and delete operations.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (SET_OPERATION_TYPE, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

io_type
Returned as one of the following for deletes, inserts, and updates, respectively:

DELETE_VAL
INSERT_VAL
UPDATE_VAL

For a compressed SQL update, the following is returned:

UPDATE_COMP_SQL_VAL

If the new operation type is an insert or delete, the before/after indicator for the record
is set to one of the following:
Insert: AFTER_IMAGE_VAL (after image)
Delete: BEFORE_IMAGE_VAL (before image)

source_or_target
One of the following indicating whether to set the operation type for the source or
target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

None

Chapter 3
SET_OPERATION_TYPE

3-90

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

3.50 SET_RECORD_BUFFER
Valid For

Extract and Replicat

Description

Use the SET_RECORD_BUFFER function for compatibility with user exits, and for complex data
record manipulation. This function manipulates the entire record. It is best to modify individual
column values, rather than the entire record, because the Oracle GoldenGate internal record
formats must be known in order to accurately modify the data record buffer directly. To modify
column values, use the SET_COLUMN_VALUE_BY_INDEX and SET_COLUMN_VALUE_BY_NAME
functions. These functions are sufficient to handle most custom mapping within a user exit.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (SET_RECORD_BUFFER, &record_def, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

buffer
A pointer to the new record buffer. Typically, buffer is a pointer to a buffer of type
exit_rec_buf_def. The exit_rec_buf_def buffer contains the actual record about to be
processed by Extract or Replicat. The buffer is supplied when the call type is
EXIT_CALL_DISCARD_RECORD. Exit routines can change the contents of this buffer, for
example to perform custom mapping functions.

Chapter 3
SET_RECORD_BUFFER

3-91

The content of the record buffer is not converted to or from the character set of the
user exit. It is passed as-is.

length
The new length of the record buffer.

Output

None

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK
EXIT_FN_RET_NOT_SUPPORTED

3.51 SET_SESSION_CHARSET
Valid For

Extract and Replicat

Description

Use the SET_SESSION_CHARSET function to set the character set of the user exit. The
character set of the user exit session indicates the encoding of any character-based
callback structure members that are used between the user exit and the caller process
(Extract, data pump, Replicat), including metadata such as (but not limited to):

• database names and locales

• table and column names

• DDL text

• error messages

• character-type columns such as CHAR and NCHAR
• date-time and numeric columns that are represented in string form

This function can be called at any time that the user exit has control. When the user
exit sets the session character set, it takes effect immediately, and all character values
start being converted to the specified set. The recommended place to call this function
is with call type EXIT_CALL_START.

Note:

SET_SESSION_CHARSET is not thread-safe.

If SET_SESSION_CHARSET is not called, the session gets set to the default character set
of the operating system, which is a predefined enumerated type value in
ULIB_CS_DEFAULT in the ucharset.h file. When the session character set is a default
from ULIB_CS_DEFAULT, no conversion is performed by Oracle GoldenGate for
character-type values that are exchanged between the user exit and the caller

Chapter 3
SET_SESSION_CHARSET

3-92

process. In addition, the object-name metadata of the database are considered to be the
default character set of the operating system. Keep in mind that the default may not be
correct.

The character set of the user exit is printed to the report file when the user exit is loaded and
when SET_SESSION_CHARSET is called. If the session character set is ULIB_CS_DEFAULT, there
is a message stating that no column data character-set conversion is being performed.

For more information about globalization support, see Administering Oracle GoldenGate for
Windows and UNIX.

Syntax

#include usrdecs.h
short result_code;
session_def session_charset_def;
ERCALLBACK (SET_SESSION_CHARSET, &session_charset_def, &result_code);

Buffer

typedef struct
{
ULibCharSet session_charset;
} session_def;

Input

session_charset
The valid values of the session character set are defined in the header file ucharset.h.

Output

None

Return Values

EXIT_FN_RET_OK

3.52 SET_TABLE_NAME
Valid For

Extract and data pumps

Description

Use the SET_TABLE_NAME function to change the table name associated with a data record.
For example, a delete on a specified table can be changed to an insert into a history table.
You can change the table name only during Extract processing.

If the database is case-sensitive, object names must be specified in the same letter case as
they are defined in the hosting database; otherwise, the case does not matter. Specify the full
two-part or three-part table name.

Syntax

#include "usrdecs.h"
short result_code;

Chapter 3
SET_TABLE_NAME

3-93

record_def record;
ERCALLBACK (SET_TABLE_NAME, &record_def, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

table_name
A null-terminated string specifying the new table name to be associated with the data
record.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the table name is interpreted in the session
character set.

Output

None

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

Chapter 3
SET_TABLE_NAME

3-94

Part II
Oracle GoldenGate Classic Architecture

You can use the Oracle GoldenGate Classic Architecture to configure and manage your
replications environments from the command line.

This part describes the commands, parameters, and options that you can use with the Oracle
GoldenGate Classic Architecture.

Topics:

• Collector Parameters

• Manager Parameters

• Oracle GoldenGate Programs
This chapter describes the programs issued directly from the native command line of the
Linux, UNIX, or Windows platforms.

4
Collector Parameters

This chapter describes the parameters for the Collector process and includes the following
topics:
The Collector process operates on the target system to receive incoming data and write it to
the trail.

Topics:

• Overview of the Collector Process

• -B

• -cp

• -d

• -E

• -e

• -ENCRYPT

• -f

• -g

• -h

• -k

• -KEYNAME

• -l

• -m

• -P

• -p

• -R

• -x

4.1 Overview of the Collector Process
Typically, Oracle GoldenGate users do not interact with the Collector process. This is known
as a dynamic collector. It is started dynamically by the Manager process, but parameters may
be sent to Collector as options of certain Extract or an Extract pump, or Distribution Server.

As an alternative to allowing Manager to run Collector, you can run a static Collector
manually by running the SERVER program at the command line with the following syntax and
input parameters as shown:

server parameter [parameter] [...]

Collector parameters are case-sensitive and must be preceded by a dash. For example, -e
and -E are two different parameters, with entirely different results.

4-1

4.2 -B
Specifies the default file buffer size in bytes.

Syntax

-Bsize

There is no space between -B and the size value.

If size is not specified, then the default size is 1MB, which is your C library default file
buffer size (BUFSIZ). The minimum value is 16KB and the max is 4MB.

Example

-B16384

4.3 -cp
Specifies the name of the checkpoint file that Collector maintains for an alias Extract
group. The checkpoint file is used to determine whether the passive Extract is running
or not. It is running when the checkpoint file is locked by Collector (shown as the
server program in the Oracle GoldenGate installation directory).

-cp must be used with the -h and -p parameters.

Syntax

-cp checkpoint_file

checkpoint_file
The name of the file to which the passive Extract group writes its checkpoints. The
name of the passive Extract group and the name of the checkpoint file are identical.

4.4 -d
Specifies the name of a local definitions file that was generated by the DEFGEN utility.
The file contains the definitions of tables that reside on a remote system.

Syntax

-d definitions_file

d
Must be lower case.

definitions_file
The name of the definitions file, exactly as specified when DEFGEN was run.

4.5 -E
Converts incoming header and data to EBCDIC format from ASCII. By default, Oracle
GoldenGate does not convert the data.

Chapter 4
-B

4-2

Syntax

-E

E
Must be upper case.

4.6 -e
Directs Collector to respond to specific formatting error conditions in custom ways. Default
values are almost always sufficient. To specify more than one error type, use -e multiple
times. For example:

-e OLD CONTINUE -e NEW DISCARD.

Syntax

-e type action

e
Must be lower case.

type
Specifies the type of error that generates the response and can be one of the following:

NEW
Checks for records that contain more data than anticipated (more columns than the
current definition). The Collector process may need an updated version of the source
table (that is, DEFGEN must be run again). The default action is ABEND.

OLD
Checks for records that contain less data than anticipated. This usually indicates that a
record has fewer columns than the table's current definition, which is considered a
normal condition. The default action is CONTINUE.

OUTOFSYNC
Checks for records that cannot be converted according to the definition provided. The
default action is ABEND.

action
Specifies the response to the error and can be one of the following:

ABEND
Discards the record and directs the Extract process to end immediately.

CONTINUE
Processes the record (if possible) regardless of the conversion error encountered.

DISCARD
Outputs the record to a discard file (if one is specified with –x). Collector sends a
warning to the error file for the first discarded record and continues to process records.

Chapter 4
-e

4-3

4.7 -ENCRYPT
Specifies the type of encryption being passed from the Extract process, as specified
with the RMTHOST parameter in the Extract parameter file.

Syntax

-ENCRYPT { BLOWFISH | AES128 | AES192 | AES256 | NONE }

ENCRYPT
Not case-sensitive.

BLOWFISH
Specifies BLOWFISH encryption. If using BLOWFISH, also specify the -KEYNAME option.

AES128
Specifies the AES-128 encryption algorithm. Not supported for z/OS and NonStop
platforms."

AES192
Specifies the AES-192 encryption algorithm. Not supported for z/OS and NonStop
platforms.

AES256
"Specifies the AES-256 encryption algorithm. Not supported for z/OS and NonStop
platforms..

None
Specifies that the data will not be encrypted.

4.8 -f
Forces all file writes to be flushed to disk before returning a success status to the
Extract process. By default, the file system buffers the I/O because it is more efficient
than flushing to disk with every operation. Generally, the performance benefits
outweigh the small risk that data could be lost if the system fails after an I/O is
confirmed successful, but before the buffer actually is flushed to disk. Use -f if this risk
is unacceptable, with the understanding that it can compromise the performance of
Oracle GoldenGate

Syntax

-f

f
Must be lower case.

4.9 -g
Supports files that are larger than 2GB (Solaris only).

Syntax

-g

Chapter 4
-ENCRYPT

4-4

g
Must be lower case.

4.10 -h
Specifies the name or IP address of the source system. Use this option when using an alias
Extract on the target that is associated with an Extract running in PASSIVE mode on the
source. It causes Collector to operate in connection mode. In this mode, it initiates a TCP/IP
connection to the source Extract, instead of waiting for a connection request from Extract.
Must be used with the -p Collector option.

Syntax

-h {host_name | IP_address}

h
Must be lower case.

host_name
Specifies the source system by its DNS host name.

IP_address
Specifies the source system by its IP address.

4.11 -k
Directs Collector to terminate when the Extract process that it is serving disconnects. This
option is used by the Manager process when starting the Collector process.

Syntax

-k

k
Must be lower case.

4.12 -KEYNAME
Specifies the name of a key that is defined in the local ENCKEYS lookup file. Use if BLOWFISH is
specified for -ENCRYPT.

Syntax

-KEYNAME key_name

KEYNAME
Not case-sensitive.

key_name
The name of the key as it appears in the ENCKEYS file.

4.13 -l
Logs output to the specified file.

Chapter 4
-h

4-5

Syntax

-l file_name

l
Must be lower case.

file_name
The fully qualified name of the output file.

4.14 -m
Specifies the Manager port number.

Syntax

-m number

m
Must be lower case.

number
The Manager port number.

4.15 -P
Specifies a local file that contains Collector parameters. Parameters in this file override
parameters sent from the Extract process.

Syntax

-P file_name

P
Must be upper case.

file_name
The fully qualified name of the parameter file.

4.16 -p
Specifies a TCP/IP port number as follows:

• For a regular Extract or regular data pump: the port on which the Collector process
listens for connection requests from Extract.

• For an Extract or data pump running in PASSIVE mode: the port on which Extract or
the data pump listens for connection requests from Collector. Must be used with
the -h host parameter in this case.

Syntax

-p port

Chapter 4
-m

4-6

p
Must be lower case.

port
The port number. The default is port 7819.

4.17 -R
Replaces invalid numeric ASCII data with an alternate value.

Syntax

-R value

R
Must be upper case.

value
The replacement value. The default is to replace with 0. Specify one of the following
alternate values:

number
Replaces invalid data with the specified number.

NULL
Replaces invalid data with NULL if the target column accepts NULL values. Otherwise,
replaces with 0.

UNPRINTABLE
Rejects any column with unprintable data. The process stops and reports the bad value.

4.18 -x
Specifies a discard file to store records that could not be processed by Oracle GoldenGate.

Syntax

-x discard_file

x
Must be lower case.

discard_file
The fully qualified name of the discard file.

Chapter 4
-R

4-7

5
Manager Parameters

This chapter describes the parameters you can use to control the Manager process.
Manager is the control process of Oracle GoldenGate, To know more, see Configuring
Manager and Network Communications inAdministering Oracle GoldenGate.

Topics:

• ACCESSRULE

• BOOTDELAYMINUTES

• CHARSET

• CHECKMINUTES

• COMMENT | --

• DOWNREPORTMINUTES | DOWNREPORTHOURS

• DYNAMICPORTLIST

• MONITORING_HEARTBEAT_TIMEOUT

• LAGCRITICAL

• LAGINFO

• LAGREPORT

• PORT

• PURGEDDLHISTORY | PURGEDDLHISTORYALT

• PURGEOLDEXTRACTS for Manager

• PURGEOLDTASKS

• SOURCEDB

• STARTUPVALIDATIONDELAY[CSECS]

• THREADOPTIONS

• USERIDALIAS

5.1 ACCESSRULE
Valid for Manager

Use ACCESSRULE to control connection access to the Manager process and the processes
under its control. You can establish multiple rules by specifying multiple ACCESSRULE
statements in the parameter file and control their priority. There is no limit to the number of
rules that you can specify. To establish priority, you can either list the rules in order from most
important to least important, or you can explicitly set the priority of each rule with the PRI
option.

5-1

Default

None

Syntax

ACCESSRULE[, PROG program_name][, IPADDR address][, PRI rule][, login_ID]{,
ALLOW | DENY}

Argument Description

PROG program_name Specifies connection security for a specific Oracle
GoldenGate program or multiple programs specified with a
wildcard. If one of these options is not specified, the access
rule applies to all programs that Manager starts, stops, or kills.

Valid values:

• GGSCI: Secures access to the GGSCI command-line
interface.

• GUI: Secures access to Oracle GoldenGate from the
Activity Console.

• MGR | MANAGER: Secures access to all inter-process
commands controlled by Manager, such as START, STOP,
and KILL

• REPLICAT: Secures connection to the Replicat process.

• COLLECTOR | SERVER: Secures the ability to
dynamically create a Collector process.

• * (asterisk): Wildcard. Use a wildcard to specify all of the
preceding options.

IPADDR address Permits access to Manager from the host with the specified IP
address.

PRI rule Specifies a priority for each ACCESSRULE statement. Valid
values are from 1 through 99, with 1 being the highest priority
and 99 being the lowest. Rules that have priorities assigned
can appear in any order in the parameter file.

login_ID Permits access based on a user password. This option
requires specifying USER and PASSWORD options with the
RMTHOST parameter.

The syntax for login_ID is:

USER user, PASSWORD password, [ENCRYPTKEY keyname]

Valid values:

• user : The user specified with the USER option of the
RMTHOST parameter.

• password: The password specified with the PASSWORD
option of the RMTHOST parameter.

• keyname: Optional. Specifies an encryption key in the
ENCKEYS file.

When ENCRYPTKEY keyname is used as part of the login ID,
Oracle GoldenGate looks up the key in the ENCKEYS file on
the target system and uses it to decrypt the corresponding
password. If the decrypted password matches the password
supplied with the password portion of the login ID option, the
rule passes.

Chapter 5
ACCESSRULE

5-2

Argument Description

ALLOW | DENY Determines whether the rule specified with ACCESSRULE
permits or denies access. Either ALLOW or DENY is required.

Example 1

The following access rules allow any nodes that begin with IP address 205 or the node
194.168.11.102 to access the requested services. All others are denied.

ACCESSRULE, PROG *, IPADDR 194.168.11.102, ALLOW ACCESSRULE, PROG *, IPADDR 205.*,
ALLOW ACCESSRULE, PROG *, IPADDR *, DENY

Example 2

The following access rules have been assigned explicit priority levels through the PRI option.
These rules allow any user to access the Collector process (the SERVER program), and in
addition, allow the IP address 122.11.12.13 to access GGSCI commands. Access to all other
Oracle GoldenGate programs is denied.

ACCESSRULE, PROG *, DENY, PRI 99ACCESSRULE, PROG SERVER, ALLOW, PRI 1ACCESSRULE, PROG
GGSCI, IPADDR 122.11.12.13, PRI 1

Example 3

The following access rules are the same as Example 2, but they assign priority by means of
their order in the parameter file, instead of the PRI option.

ACCESSRULE, PROG SERVER, ALLOWACCESSRULE, PROG GGSCI, IPADDR 122.11.12.13ACCESSRULE,
PROG *, DENY

Example 4

The following access rule grants access to all programs to the user JOHN.

ACCESSRULE, PROG *, USER JOHN, PASSWORD OCEAN1

Example 5

The following access rule grants access to all programs to the user JOHN and designates an
encryption key to decrypt the password. If the password provided with PASSWORD matches the
one in the ENCKEYS lookup file, connection is granted.

ACCESSRULE, PROG *, USER JOHN, PASSWORD OCEAN1, ENCRYPTKEY lookup1

5.2 BOOTDELAYMINUTES
Valid For

Manager

Description

Use the BOOTDELAYMINUTES parameter on a Windows system to delay the activities that
Manager performs when it starts, such as executing parameters. For example,
BOOTDELAYMINUTES can be used to delay AUTOSTART parameters allowing time for database
services to start.

Chapter 5
BOOTDELAYMINUTES

5-3

Specify BOOTDELAYMINUTES before other parameter entries. This parameter only
supports Windows.

Default

None (no delay)

Syntax

BOOTDELAYMINUTES minutes

minutes
The number of minutes to delay after system startup before starting Oracle
GoldenGate processing.

Example

BOOTDELAYMINUTES 5

5.3 CHARSET
Valid For

Extract, Replicat, DEFGEN, Manager, and GLOBALS

Description

Use the CHARSET parameter to specify the character set of the parameter files in the
local Oracle GoldenGate instance. By default, the parameter file is created in the
default character set of the local operating system. CHARSET specifies an alternative
character set to use in the event that the local platform does not support a required
character or characters.

CHARSET cannot be used with query parameters.

CHARSET allows operating-system incompatible characters, including multi byte
characters, to be used in the parameter file without the need for an escape sequence
(\uXXXX) when the local platform does not support multibyte characters as the default
character set of the operating system.

CHARSET can also be used when the parameter file is being created on one system but
will be used on a different system with a different character set. To avoid possible
incompatibilities between different character sets, you should create parameter files on
the same system where they will be used by Oracle GoldenGate.

Note:

Use of CHARSET in the mgr.prm file is not supported in 12.1.2.x or earlier
releases.

Placement in the Parameter File

CHARSET must be placed on the first line of the parameter file.

Chapter 5
CHARSET

5-4

Usage in the GLOBALS File

CHARSET in a GLOBALS file sets a default character set for the parameter files of all local
processes. CHARSET in an individual parameter file overrides the default that is set in GLOBALS.

Usage in Nested Parameter Files

You can use CHARSET in a parameter file that includes an OBEY or INCLUDE parameter, but the
referenced parameter file does not inherit the CHARSET character set. The CHARSET character
set is used to read wildcarded object names in the referenced file, but you must use an
escape sequence (\uXXXX) to specify all other incompatible characters in the referenced file.

Default

None

Syntax

CHARSET character_set

character_set
Any supported character set.

Example

CHARSET UTF-8

5.4 CHECKMINUTES
Valid For

Manager

Description

Use the CHECKMINUTES parameter to control how often Manager performs maintenance
activities. Decreasing this parameter can significantly affect performance if trail files roll over
frequently. Other events, such as processes ending abnormally, also trigger the maintenance
cycle.

Default

Every 10 minutes

Syntax

CHECKMINUTES minutes

minutes
The frequency, in minutes, to perform maintenance activities.

Example

CHECKMINUTES 15

Chapter 5
CHECKMINUTES

5-5

5.5 COMMENT | --
Valid For

Manager, Extract, Replicat

Description

Use the COMMENT parameter or double hyphens (--) to indicate comments anywhere
within a parameter file. Anything on the same line after COMMENT or double hyphens is
ignored during processing. Comments that continue to the next line must be preceded
by another COMMENT keyword or double hyphens.

Note:

If any columns in the tables that are being synchronized contain the word
"comment," there may be conflicts with the COMMENT parameter. Use double
hyphens instead.

COMMENT cannot be used with query parameters.

See Administering Oracle GoldenGate for more information about working with
parameter files.

Default

None

Syntax

{COMMENT comment} | {-- comment}

Examples

Example 1
COMMENT GoldenGate param file for fin Extract group.

Example 2
-- GoldenGate param file for fin Extract group.

5.6 DOWNREPORTMINUTES | DOWNREPORTHOURS
Valid For

Manager

Description

Use the DOWNREPORTMINUTES or DOWNREPORTHOURS parameter to specify the frequency
with which Manager reports Extract and Replicat processes that are not running.
Whenever a process starts or stops, events are generated to the error log, and those

Chapter 5
COMMENT | --

5-6

messages can easily be overlooked if the log is large. DOWNREPORTMINUTES and
DOWNREPORTHOURS report on a periodic basis to ensure that you are aware of stopped
processes.

If DOWNREPORT is explicitly indicated and the value of the CHECKMINUTES parameter is greater
than that of DOWNREPORT, then CHECKMINUTES acquires the value of DOWNREPORT.

To report on running processes, use the UPREPORTMINUTES or UPREPORTHOURS parameters.

Default

Do not report down processes.

Syntax

DOWNREPORTMINUTES minutes | DOWNREPORTHOURS hours

minutes
The frequency, in minutes, to report processes that are not running. The minimum is 0.

hours
The frequency, in hours, to report processes that are not running. The minimum is 0.

Example

The following generates a report every 30 minutes.

DOWNREPORTMINUTES 30

5.7 DYNAMICPORTLIST
Valid For

Manager

Description

Use the DYNAMICPORTLIST parameter to specify a list of available ports to which the following
local Oracle GoldenGate processes can bind for communication with a remote Oracle
GoldenGate process:

• Collector: to communicate with a remote Extract to receive incoming data.

• Replicat: to communicate with a remote Extract to receive data during an initial load task.

• Passive Extract: to communicate with a remote Collector

• GGSCI: to issue remote commands

Specify enough ports to accommodate expansion of the number of processes without having
to stop and restart Manager to add them to the list. You can specify an individual port, a
range of ports, or both.

Default

None

Syntax

DYNAMICPORTLIST {port | port-port} [, ...]

Chapter 5
DYNAMICPORTLIST

5-7

port
A port number that can be allocated. The maximum number of port entries is 5000.

• To specify multiple ports, use a comma-delimited list. Example:

7830, 7833
• To specify a range of ports, use a dash (-) to separate the first and last port in the

range. Do not put any spaces before or after the dash. Example:

7830-7835
• To specify a range of ports plus an individual port, place a comma between the

range and the individual port number. Example:

7830-7835, 7839

Example

DYNAMICPORTLIST 7820-7830, 7833, 7835

5.8 MONITORING_HEARTBEAT_TIMEOUT
Valid For

Manager

Description

Use MONITORING_HEARTBEAT_TIMEOUT to set a process as non-responsive in a
specified number of seconds.

Default

10 seconds.

Syntax

MONITORING_HEARTBEAT_TIMEOUT seconds

seconds
Specifies the time interval, in seconds, for Manager to set processes as non-
responsive. The minimum is 10 seconds and the maximum is 60.

Examples

MONITORING_HEARTBEAT_TIMEOUT 20

5.9 LAGCRITICAL
Valid For

Manager

Description

Use the LAGCRITICALSECONDS, LAGCRITICALMINUTES, or LAGCRITICALHOURS parameter
to specify a lag threshold that is considered critical, and to force a warning message to

Chapter 5
MONITORING_HEARTBEAT_TIMEOUT

5-8

the error log when the threshold is reached. This parameter affects Extract and Replicat
processes on the local system.

Default

Do not report lag information

Syntax

LAGCRITICALSECONDS seconds | LAGCRITICALMINUTES minutes | LAGCRITICALHOURS hours

LAGCRITICALSECONDS seconds
Sets the critical lag threshold in seconds. The minimum is 0.

LAGCRITICALMINUTES minutes
Sets the critical lag threshold in minutes. The minimum is 0.

LAGCRITICALHOURS hours
Sets the critical lag threshold in hours. The minimum is 0.

Example

LAGCRITICALSECONDS 60

5.10 LAGINFO
Valid For

Manager

Description

Use the LAGINFOSECONDS, LAGINFOMINUTES, or LAGINFOHOURS parameter to specify a basic lag
threshold; if lag exceeds the specified value, Oracle GoldenGate reports lag information to
the error log. If the lag exceeds the value specified with the LAGCRITICAL parameter, Manager
reports the lag as critical; otherwise, it reports the lag as an informational message. A value
of zero (0) forces a message at the frequency specified with the LAGREPORTMINUTES or
LAGREPORTHOURS parameter.

Default

Do not report lag information

Syntax

LAGINFOSECONDS seconds | LAGINFOMINUTES minutes | LAGINFOHOURS hours

LAGINFOSECONDS seconds
Sets a basic lag threshold in seconds. The minimum is 0.

LAGINFOMINUTES minutes
Sets a basic lag threshold in minutes. The minimum is 0.

LAGINFOHOURS hours
Sets a basic lag threshold in hours. The minimum is 0.

Chapter 5
LAGINFO

5-9

Example

In this example, Oracle GoldenGate reports lag when it exceeds one hour.

LAGINFOHOURS 1

5.11 LAGREPORT
Valid For

Manager

Description

Use the LAGREPORTMINUTES or LAGREPORTHOURS parameter to specify the interval at
which Manager checks for Extract and Replicat lag. Use of this parameter also
requires the use of the LAGINFO and LAGCRITICAL parameters. If LAGREPORT is not
specified, lag is not reported.

If LAGREPORT is used and the value of the CHECKMINUTES parameter is greater than
LAGREPORT, then CHECKMINUTES will acquire the value of LAGREPORT.

Default

None

Syntax

LAGREPORTMINUTES minutes | LAGREPORTHOURS hours

LAGREPORTMINUTES minutes
The frequency, in minutes, to check for lag. The minimum is 0.

LAGREPORTHOURS hours
The frequency, in hours, to check for lag. The minimum is 0.

Example

LAGREPORTHOURS 1

5.12 PORT
Valid For

Manager

Description

Use the PORT parameter to specify a TCP/IP port number for the Manager process on
which to interact with remote processes that request dynamic services, typically either
an initial-load Replicat or the Collector process. Use the default port number when
possible. The minimum is 1 and the maximum is 65535.

Default

Port 7809

Chapter 5
LAGREPORT

5-10

Syntax

PORT number

number
An available port number.

Example

PORT 7809

5.13 PURGEDDLHISTORY | PURGEDDLHISTORYALT
Valid For

Manager, Oracle Database

Description

Use the PURGEDDLHISTORY and PURGEDDLHISTORYALT parameters to control the size of the
DDL history tables that support DDL capture. These tables are created in an Oracle database
to support trigger-based DDL capture.

These parameters cause Manager to purge rows that are not needed any more. You can
specify the maximum and minimum amount of time to keep a row, based on the last
modification date. Both maximum and minimum rules must be specified; otherwise Manager
does not have a complete criteria for when to delete the row. For example, MINKEEPHOURS 3
used with MAXKEEPHOURS 5 specifies to keep rows that have not been modified in the past
three hours, but to delete them when they have not been modified for at least five hours.

These parameters require a logon to be specified with the USERID or USERIDALIAS parameter.

WARNING:

Use caution when purging the history tables. They are critical to the integrity of the
DDL synchronization processes. Premature purges are non-recoverable through
Oracle GoldenGate. To prevent any possibility of permanent DDL data loss, make
regular backups of the Oracle GoldenGate DDL schema.

Default

Purge every hour

Syntax

PURGEDDLHISTORY | PURGEDDLHISTORYALT
{, max_rule}
[, min_rule]
[, frequency]

PURGEDDLHISTORY
Purges the DDL history table. This table tracks DDL operations. To determine the name of
the history table to purge, Oracle GoldenGate first looks for a name specified with the

Chapter 5
PURGEDDLHISTORY | PURGEDDLHISTORYALT

5-11

DDLTABLE parameter in the GLOBALS file. If that parameter does not exist, Oracle
GoldenGate uses the default name of GGS_DDL_HIST.

PURGEDDLHISTORYALT
Purges the internal DDL history table. This table tracks partitioned object IDs that are
associated with the object ID of a table. To determine the name of the internal history
table to purge, Oracle GoldenGate first looks for a name specified with the DDLTABLE
parameter in the GLOBALS file and appends _ALT to it. If that parameter does not exist,
Oracle GoldenGate uses the default name of GGS_DDL_HIST_ALT.

max_rule
Required. Can be one of the following to set the maximum amount of time to keep
rows.

MAXKEEPHOURS n
Purges if the row has not been modified for n number of hours. The minimum is 1
and the maximum is 1000.

MAXKEEPDAYS n
Purges if the row has not been modified for n number of days. The minimum is 1
and the maximum is 365.

min_rule
Can be one of the following to set the minimum amount of time to keep rows.

MINKEEPHOURS n
Keeps an unmodified row for at least the specified number of hours. The minimum
is 1 and the maximum is 1000.

MINKEEPDAYS n
Keeps an unmodified row for at least the specified number of days. The minimum
is 1 and the maximum is 365.

frequency
Sets the frequency with which to purge DDL history. The default interval at which
Manager evaluates potential maintenance tasks is 10 minutes, as specified with the
CHECKMINUTES parameter. At that interval, Manager evaluates the PURGEDDLHISTORY or
PURGEDDLHISTORYALT frequency and conducts the purge at the specified frequency.
frequency can be one of the following:

FREQUENCYMINUTES n
Sets the frequency, in minutes, with which to purge DDL history. The default
purge frequency is 60 minutes. The minimum is 1 and the maximum is 360.

FREQUENCYHOURS n
Sets the frequency, in hours, at which to purge DDL history.
See "CHECKMINUTES" for more information about controlling the interval
between Manager maintenance checks. The minimum is 1 and the maximum is
24.

Example

The following example keeps all rows that have not been modified in the past three
days and deletes them when they have not been modified for at least five days. The
purge frequency is 30 minutes.

PURGEDDLHISTORY MINKEEPDAYS 3, MAXKEEPDAYS 5, FREQUENCYMINUTES 30

Chapter 5
PURGEDDLHISTORY | PURGEDDLHISTORYALT

5-12

5.14 PURGEOLDEXTRACTS for Manager
Valid For

Manager

Description

Use the PURGEOLDEXTRACTS parameter in a Manager parameter file to purge trail files when
Oracle GoldenGate has finished processing them. Without using PURGEOLDEXTRACTS, no
purging is performed, and trail files can consume significant disk space.

Using PURGEOLDEXTRACTS as a Manager parameter is recommended rather than using the
Extract or Replicat version of PURGEOLDEXTRACTS. As a Manager parameter,
PURGEOLDEXTRACTS allows you to manage trail files in a centralized fashion and take into
account multiple processes.

How to Use PURGEOLDEXTRACTS for Manager

To control the purging, follow these rules:

• USECHECKPOINTS triggers a purge when all processes are finished with a file as indicated
by their checkpoints. Basing the purges on checkpoints ensures that Manager does not
delete any data until all processes are finished with it. This is essential in a production
environment to ensure data integrity. USECHECKPOINTS considers the checkpoints of both
Extract and Replicat before purging. Because USECHECKPOINTS is the default, it need not
be specified in the PURGEOLDEXTRACTS statement. Manager obeys USECHECKPOINTS unless
there is an explicit NOUSECHECKPOINTS entry.

• Use the MINKEEP rules to set a minimum amount of time to keep data:

– Use MINKEEPHOURS or MINKEEPDAYS to keep data for n hours or days.

– Use MINKEEPFILES to keep at least n trail files including the active file. The default
number of files to keep is 1.

Use only one of the MINKEEP options. If more than one is used, Oracle GoldenGate
selects one of them based on the following:

– If both MINKEEPHOURS and MINKEEPDAYS are specified, only the last one is accepted,
and the other is ignored.

– If either MINKEEPHOURS or MINKEEPDAYS is used with MINKEEPFILES, then
MINKEEPHOURS or MINKEEPDAYS is accepted, and MINKEEPFILES is ignored.

Manager evaluates potential maintenance tasks based on the value set for the CHECKMINUTES
parameter. When that value is reached, Manager determines which files to purge based on
the Extract and Replicat processes configured on the local system. If at least one process
reads a trail file, Manager applies the specified rules; otherwise, the rules do not take effect.
The following are possible PURGEOLDEXTRACT rule combinations and the actions that Manager
takes for them:

• USECHECKPOINTS without MINKEEP rules: If checkpoints indicate that a file has been
processed completely, it will be purged unless doing so would violate the default rule to
keep at least one file.

• USECHECKPOINTS with MINKEEP rules: If checkpoints indicate that a file has been
processed completely, it will be purged unless doing so would violate the MINKEEP rules.

Chapter 5
PURGEOLDEXTRACTS for Manager

5-13

• NOUSECHECKPOINTS without MINKEEP rules: The checkpoints are not considered,
and the file will be purged unless doing so would violate the default rule to keep at
least one file.

• NOUSECHECKPOINTS with MINKEEP rules: A file will be purged unless doing so would
violate the MINKEEP rules.

Additional Guidelines for PURGEOLDEXTRACTS for Manager

• Do not use more than 500 PURGEOLDEXTRACTS parameter statements in the same
Manager parameter file.

• When using this parameter, do not permit trail files to be deleted by any user or
program other than Oracle GoldenGate. It will cause PURGEOLDEXTRACTS to function
improperly.

• When trails are stored on NFS, there is a difference in system time between the
NFS drive and the local system where Manager is running. The trail is created with
the NFS time, but the timestamps of the records in the trail are compared with the
local system time to determine whether to purge them or not. Take into account
any time differences when you create your MINKEEP rules.

• For Windows, use backslashes (\) in the path name, and ensure that all
processes use backslashes in their parameter files and when creating trails.

Default

USECHECKPOINTS

Syntax

PURGEOLDEXTRACTS trail
[, USECHECKPOINTS | NOUSECHECKPOINTS]
[, MINKEEP_rule]
[, frequency]

trail
The trail to purge. Use a relative or fully qualified name.

USECHECKPOINTS
Allows purging according to any MINKEEP rules after all Extract and Replicat processes
are done with the data as indicated by checkpoints. When using USECHECKPOINTS, you
can use the USERID or USERIDALIAS parameters in the Manager parameter file, so that
Manager can query the Replicat checkpoint table to get checkpoint information though
it is not required.

NOUSECHECKPOINTS
Allows purging without considering checkpoints, based either on the default rule to
keep a minimum of one file (if no MINKEEP rule is used) or the number of files specified
with a MINKEEP rule.

MINKEEP_rule
Can be one of the following to set rules for the minimum amount of time to keep an
inactive file.

MINKEEPHOURS n
Keeps an inactive file for at least the specified number of hours. The minimum is 1
and the maximum is 1000.

Chapter 5
PURGEOLDEXTRACTS for Manager

5-14

MINKEEPDAYS n
Keeps an inactive file for at least the specified number of days. The minimum is 1 and
the maximum is 365.

MINKEEPFILES n
Keeps at least n trail files, including the active file. The minimum is 1 and the maximum
is 100. The default is 1.

frequency
Sets the frequency with which to purge inactive trail files. The default time for Manager to
evaluate potential maintenance tasks is 10 minutes, as specified with the CHECKMINUTES
parameter. At that interval, Manager evaluates the PURGEOLDEXTRACTS frequency and
conducts the purge after the specified frequency.
frequency can be one of the following:

FREQUENCYMINUTES n
Sets the frequency in minutes. The default purge frequency is 60 minutes. The minimum
is 1 and the maximum is 360.

FREQUENCYHOURS n
Sets the frequency in hours. The minimum is 1 and the maximum is 24.

See "CHECKMINUTES" for more information about controlling the Manager maintenance
check interval.

Examples

Example 1
Status: Trail files AA0000000, AA0000001, and AA0000002 exist. Replicat has been stopped
for four hours and is not finished processing any of the files. The Manager parameters
include:

PURGEOLDEXTRACTS /ggs/dirdat/AA*, USECHECKPOINTS, MINKEEPHOURS 2

Result: The amount of time that files must be retained was exceeded, but no files will be
purged because checkpoints indicate that Replicat is not finished processing them.

Example 2
Status: Trail files AA0000000, AA0000001, and AA0000002 exist. Replicat has been stopped
for four hours and is not finished processing any of the files. The Manager parameters
include:

PURGEOLDEXTRACTS /ggs/dirdat/AA*, NOUSECHECKPOINTS, MINKEEPHOURS 2

Result: All of the trail files will be purged because the minimum time to keep them was
satisfied, and checkpoints are not considered before purging.

Example 3
Status: Replicat and Extract are finished processing data. There has been no access to the
trail files for the last five hours. Trail files AA0000000, AA0000001, and AA0000002 exist. The
Manager parameters include:

PURGEOLDEXTRACTS /ggs/dirdat/AA*, USECHECKPOINTS, MINKEEPHOURS 4, &
MINKEEPFILES 4

Chapter 5
PURGEOLDEXTRACTS for Manager

5-15

Result: This is an example of why only one of the MINKEEP options should be set.
USECHECKPOINTS requirements were satisfied, so the MINKEEP rules are considered
when determining whether to purge AA0000002. Only two files will remain if AA0000002
is purged, and that violates the MINKEEPFILES rule. Because both MINKEEPFILES and
MINKEEPHOURS are specified, however, MINKEEPFILES is ignored. The file will be purged
because it has not been accessed for five hours, and that satisfies the MINKEEPHOURS
requirement of four hours.

Example 4
The following example is for a Windows environment:

PURGEOLDEXTRACTS dirdat\AA*, USECHECKPOINTS

5.15 PURGEOLDTASKS
Valid For

Manager

Description

Use the PURGEOLDTASKS parameter to purge Extract and Replicat tasks after a specific
amount of time or after they have stopped gracefully. You can indicate when to delete
a task according to the following rules:

• The task was last started a specific number of days or hours ago. If the task never
was started, its creation time is used as the basis for applying the rules.

• The task stopped gracefully or never was started. This rule takes precedence over
the time the task was last started. Use this rule to prevent abnormally terminated
tasks from being purged.

No more than 300 PURGEOLDTASKS parameter statements may be used in the same
Manager parameter file.

Default

None

Syntax

PURGEOLDTASKS {EXTRACT | REPLICAT | ER} group
{AFTER number {DAYS | HOURS} | USESTOPSTATUS}

EXTRACT | REPLICAT | ER
The process for which you want to purge tasks. Use the ER option to specify both
Extract and Replicat process types.

group
The group name or a wildcard to specify multiple groups.

AFTER number {DAYS | HOURS}
Purges if the task has not been updated for a specified number of days or hours.

USESTOPSTATUS
Purges if the task was stopped gracefully or never was started.

Chapter 5
PURGEOLDTASKS

5-16

Example

The following example deletes all Extract tasks that have not been updated for at least three
days, and it deletes the test_rep Replicat task if it stopped gracefully and has not been
updated for at least two hours.

PURGEOLDTASKS EXTRACT *, AFTER 3 DAYS
PURGEOLDTASKS REP test_rep, AFTER 2 HOURS, USESTOPSTATUS

5.16 SOURCEDB
Valid For

Non-Oracle (heterogeneous) databases, Extract, DEFGEN

Description

Use the SOURCEDB parameter for databases or data sets that require a data source name or
identifier to be specified explicitly as part of the connection information. This option is
required to identify one of the following:

• The source database for heterogeneous databases.

• The data source name (DSN) for supported databases that use ODBC

• The default DB2 for i database.

Tables specified in TABLE statements that follow SOURCEDB are assumed to be from the
specified data source.

You might need to use the USERID or USERIDALIAS parameter in the SOURCEDB parameter
statement, depending on the authentication that is required for the data source.

To connect Oracle GoldenGate processes to Azure Database for MySQL, ensure that the
USERID value of SOURCEDB is enclosed within double quotes. This support is available from the
Oracle GoldenGate 19c (19.1.0.0.200414) release onward.

For databases that allow authentication at the operating-system level, you can specify
SOURCEDB without USERID or USERIDALIAS.

For DB2 LUW, the SOURCEDB statement must refer to the database by its real name, rather
than by any alias.

See USERID | NOUSERID or USERIDALIAS for more information.

Default

None

Syntax

SOURCEDB data_source[, SESSIONCHARSET character_set]

data_source
The name of the database, catalog, or data source name as applicable for the database.
For MySQL databases, you can use the format of SOURCEDB database_name@host_name to
avoid connection issues caused by the incorrect configuration of localhost in the local hosts

Chapter 5
SOURCEDB

5-17

file. If running MySQL on a port other than the default of 3306, you must specify the
port number in the connect string: SOURCEDB database_name@host_name:port.

SESSIONCHARSET character_set
Supports MySQL. Sets the database session character set for the process login
session. This parameter overrides any SESSIONCHARSET that is specified in the
GLOBALS file.

Examples

Example 1
This example shows SOURCEDB using OS-level authentication.

SOURCEDB mydb

Example 2
This example shows SOURCEDB with the USERIDALIAS parameter.

SOURCEDB mydb, USERIDALIAS tiger1

Example 3
This example shows Oracle GoldenGate processes connecting to Azure Database for
MySQL:

SOURCEDB mysqlsrcdb@mysqlservername.mysql.database.azure.com USERID
“ogguser@mysqlservername” PASSWORD password

5.17 STARTUPVALIDATIONDELAY[CSECS]
Valid For

Manager

Description

Use the STARTUPVALIDATIONDELAY or STARTUPVALIDATIONDELAYCSECS parameter to set
a delay time after which Manager validates the status of a process that was started
with the START EXTRACT or START REPLICAT command. If a process is not running after
the specified delay time, an error message is displayed at the GGSCI prompt.

These parameters account for processes that fail before they can generate an error
message or report, for example when there is not enough memory to launch the
processes. Startup validation makes Oracle GoldenGate users aware of such failures.
The minimum is 0.

Default

0 seconds (do not validate startup status)

Syntax

STARTUPVALIDATIONDELAY seconds | STARTUPVALIDATIONDELAYCSECS centiseconds

STARTUPVALIDATIONDELAY seconds
Specifies the delay in seconds.

Chapter 5
STARTUPVALIDATIONDELAY[CSECS]

5-18

STARTUPVALIDATIONDELAYCSECS centiseconds
Specifies the delay in centiseconds.

Example

In the following example, Manager waits ten centiseconds after a START command is issued
and then checks the status of the process.

STARTUPVALIDATIONDELAYCSECS 10

5.18 THREADOPTIONS
Valid For

Classic Extract, Oracle Database only

Description

Use the THREADOPTIONS parameter to control how a threaded Extract operates.

Stop and restart GGSCI, Manager, and Extract for the change to take effect.

Default

None

Syntax

THREADOPTIONS
[INQUEUESIZE n]
[OUTQUEUESIZE n]
[PROCESSTHREADS SELECT thread_spec | PROCESSTHREADS EXCEPT thread_spec]
[STACKSIZE bytes]

INQUEUESIZE n
Specifies the number of queue entries in the input queue of each producer Extract thread in
an Oracle RAC cluster. Higher values produce better performance for large amounts of data.
Lower values move data more quickly in environments with very little activity. Valid values
are 16 to 65535. The default is 128. The default should be adequate in most cases, but if
you need to increase it, 1000 should be sufficient in most types of environments. See also
OUTQUEUESIZE.
In addition to INQUEUESIZE and OUTQUEUESIZE, AIX users might obtain better performance by
setting the environment variable AIXTHREAD_SCOPE to S (system scope) which specifies the
use of multiple CPUs so that processes can run concurrently. To use system scope, add the
following to the .profile file of the user who starts the Manager process or else export the
variable manually before starting GGSCI.

AIXTHREAD_SCOPE=S
export AIXTHREAD_SCOPE

OUTQUEUESIZE n
Specifies the number of queue entries in the output queue of each producer Extract thread in
an Oracle RAC cluster. Valid values are 8 to 65535. The default is 2048. The default should
be adequate in most cases.

Chapter 5
THREADOPTIONS

5-19

[PROCESSTHREADS SELECT thread_spec | PROCESSTHREADS EXCEPT thread_spec]
Specifies the Extract threads to be processed or to be excluded from processing.
Valid values are:

• A single thread ID, such as 1

• A range, such as 1-5

Extract threads are mapped to redo threads. Caution: Excluding any of the Extract
threads from being processed excludes that data from being synchronized with the
target tables.
Primarily for use when Extract is in Archived Log Only mode (ALO).

[STACKSIZE bytes]
Specifies the stack size of each producer Extract thread in an Oracle RAC cluster.
Valid values are a range of 65536 - 33554432; the default is 1048576.

5.19 USERIDALIAS
Valid For

Manager, Extract, Replicat, DEFGEN

Supported for

DB2 for i

DB2 LUW

DB2 z/OS

MySQL

Oracle Database

PostgreSQL

SQL Server

Teradata

TimesTen

Description

Use the USERIDALIAS parameter to specify authentication for an Oracle GoldenGate
process to use when logging into a database. The use of USERIDALIAS requires the
use of an Oracle GoldenGate credential store. Specify USERIDALIAS before any TABLE
or MAP entries in the parameter file. The privileges that are required for the
USERIDALIAS user vary by database.

USERIDALIAS Compared to USERID

USERIDALIAS enables you to specify an alias, rather than a user ID and password, in
the parameter file. The user IDs and encrypted passwords are stored in a credential
store. USERIDALIAS supports databases running on Linux, UNIX, and Windows
platforms.

Chapter 5
USERIDALIAS

5-20

USERID requires either specifying the clear-text password in the parameter file or encrypting it
with the ENCRYPT PASSWORD command and, optionally, storing an encryption key in an ENCKEYS
file. USERID supports a broad range of the databases that Oracle GoldenGate supports. In
addition, it supports the use of an operating system login for Oracle databases.

USERIDALIAS Requirements Per Database Type

The usage of USERIDALIAS varies depending on the database type.

Note:

Login that requires a database user and password must be stored in the Oracle
GoldenGate credential store.

DB2 for LUW

Use USERIDALIAS with the SOURCEDB or TARGETDB parameter for all Oracle GoldenGate
processes that connect to a DB2 LUW database using database authentication. You can omit
USERIDALIAS and only use SOURCEDB or TARGETDB if the database is configured allow
authentication at the operating-system level. See SOURCEDB and TARGETDB for more
information.

MySQL

Use USERIDALIAS for all Oracle GoldenGate processes that connect to a MySQL database.

Oracle

Use USERIDALIAS for Oracle GoldenGate processes that connect to an Oracle Database.

• The SOURCEDB or TARGETDB parameter is not required.

• Specify the alias of a database credential that is stored in the Oracle GoldenGate
credential store.

• Special database privileges are required for the USERIDALIAS user when Extract is
configured to use LOGRETENTION. These privileges might have been granted when Oracle
GoldenGate was installed., see Log Retention Options in Using Oracle GoldenGate for
Oracle Database for more information about LOGRETENTION.

• To use USERIDALIAS for an Extract group that is configured for integrated capture, the
user must have the privileges granted in the
dbms_goldengate_auth.grant_admin_privilege procedure, and the user must be the
same one that issues DBLOGIN and REGISTER EXTRACT or UNREGISTER EXTRACT for the
Extract group that is associated with this USERIDALIAS.

• To support capture from an Oracle container database, the user that is specified with
USERID must log on to the root container and must be a common database user. A
connect string must be supplied for this user, for example: C##GGADM@FINANCE. For more
information, see Configuring the Primary Extract in Using Oracle GoldenGate for
Heterogeneous Databases.

Chapter 5
USERIDALIAS

5-21

SQL Server

Use USERIDALIAS if the ODBC data source connection that will be used by the Oracle
GoldenGate process is configured to connect using SQL Server authentication.

• On a source SQL Server system, also use the SOURCEDB parameter to specify the
source ODBC data source.

• On a target SQL Server system, also use the TARGETDB parameter to specify the
target ODBC data source.

Teradata

Use USERIDALIAS for Oracle GoldenGate processes that connect to a Teradata
database.

On a target Teradata system, use the TARGETDB parameter to specify the target ODBC
data source.

Default

None

Syntax

USERIDALIAS alias [DOMAIN domain] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

alias
Specifies the alias of a database user credential that is stored in the Oracle
GoldenGate credential store, see USERID Requirements Per Database Type for
additional guidelines.

DOMAIN domain
Specifies the credential store domain for the specified alias. A valid domain entry
must exist in the credential store for the specified alias.

SYSDBA
(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range]
[, ...])
Valid for Replicat. Links the specified credential to one or more threads of a
coordinated Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a
comma-delimited list of ranges in the format of threadIDlow-threadIDhigh,
threadIDlow-threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID,
threadIDlow-threadIDhigh.

Chapter 5
USERIDALIAS

5-22

TimesTen

Use USERIDALIAS for Oracle GoldenGate processes that connect to a TimesTen database.

On a target TimesTen system, use the TARGETDB parameter to specify the target ODBC data
source.

Default

None

Syntax

USERIDALIAS alias [DOMAIN domain] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

alias
Specifies the alias of a database user credential that is stored in the Oracle GoldenGate
credential store, see USERID Requirements Per Database Type for additional guidelines.

DOMAIN domain
Specifies the credential store domain for the specified alias. A valid domain entry must exist
in the credential store for the specified alias.

SYSDBA
(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])
Valid for Replicat. Links the specified credential to one or more threads of a coordinated
Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadID,
threadID, threadID.

[, thread_range[, thread_range][, ...]
Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

Example 1
The following supplies a credential for the user in the credential store that has the alias of
tiger1 in the domain of east.
USERIDALIAS tiger1 DOMAIN east

Example 2
The following supplies a credential for thread 3 of a coordinated Replicat.

USERIDALIAS tiger1 DOMAIN east THREADS (3)

Chapter 5
USERIDALIAS

5-23

Example 3
The following example shows the use of the parameter in PostgreSQL:

USERIDALIAS pgdsn

Chapter 5
USERIDALIAS

5-24

6
Oracle GoldenGate Programs

This chapter describes the programs issued directly from the native command line of the
Linux, UNIX, or Windows platforms.

Note:

Extract and Replicat typically, run from GGSCI. However, in some situations, such
as initial load procedures, require running them from the command line of the
operating system.

Topics:

• checkprm

• convchk

• defgen

• extract

• ggsci

• install

• keygen

• logdump

• mgr

• replicat

6.5 ggsci
Use the ggsci command to run the GGSCI command interface from the command line of the
operating system. Optionally, you can provide input from an OBEY file. For more information
about using an input file into GGSCI, see Storing and Calling Frequently Used Command
Sequences in Administering Oracle GoldenGate.

Syntax for Windows, UNIX, and Linux

ggsci[< input_file]
[cd directory]
[log | nolog]

<
Pipes the input file into the GGSCI program.

ggsci
Used without options, the command runs the program interactively.

6-1

cd directory
Changes the current working directory of the process. The process will use the
specified directory for all of its operations, such as opening and writing files.

input_file
The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

log | nolog
Enables or suppresses the logging of GGSCI commands to the report file. The default
is log. The following commands are logged: ADD, ALTER, CREATE, DELETE, INFO, START,
STOP, CLEANUP, SEND, KILL, EDIT, REFRESH.

Syntax for IBM i CLI

GGSCI [PARAMFILE (input_file)] [OTHERS(other_options)]

PARAMFILE(input_file)
The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

OTHERS(other_options)
Any options that are supported in the UNIX version of the command provided as a
space separated list.

6.1 checkprm
Use the checkprm program to assess the validity of the specified parameter file, with a
configurable application and running environment. It can provide either a simple PASS/
FAIL or with optional details about how the values of each parameter are stored and
interpreted.

When you use checkprm and do not use any of these arguments, then checkprm
attempts to automatically detect Extract or Replicat and the platform and database of
the Oracle GoldenGate installation.

For more information about using checkprm, see Administering Oracle GoldenGate.

Note:

The options are not case-sensitive.

Syntax

checkprm
[None]
[-v]
[? | help]
[parameter_file]
[-COMPONENT | -C) component_name]
[-MODE | -M) mode_name]
[-PLATFORM | -P) platform_name]

Chapter 6
checkprm

6-2

[-DATABASE | -D) database _ame]
[-VERBOSE | -V)]

None
Displays usage information.

-v
Displays banner. Cannot be combined with other options. Does not produce verbose (--
VERBOSE | -V) output.

? | help
Displays detailed usage information, include all possible values of each option. Cannot be
combine with other options.

parameter_file
Specifies the name of the parameter file, has to be the first argument if a validation is
requested. You can specify the relative path. For example, CHECKPRM ./dirprm/myext.prm.

--COMPONENT | -C component_name
Specifies the running component (application) that this parameter file is validated for. This
option can be omitted for Extract or Replicat because automatic detection is attempted. Valid
values include:

CACHEFILEDUMP COBGEN CONVCHK CONVPRM DDLCOB DEFGEN EMSCLNT EXTRACT GGCMD GGSCI KEYGEN
LOGDUMP
MGR OGGERR REPLICAT RETRACE
REVERSE SERVER GLOBALS

There is no default for this option.

--MODE | -M mode_name
Specifies the mode of the running application if applicable. This option is optional, only
applicable to Extract or Replicat.
Valid input of this option includes:

• Classic Extract

• Integrated Extract

• Initial Load Extract

• Remote Task Extract

• Data Pump Extract

• Passive Extract

• Classic Replicat

• Coordinated Replicat

• Integrated Replicat

• Parallel Integrated Replicat

• Parallel Nonintegrated Replicat

• Special Run Replicat

• Remote Task Replicat

• All

Chapter 6
checkprm

6-3

When key in the value for this option, the application name is optional, as long as it
matches the value of component. For example, "A Data Pump ExtractA" is
equivalent to "A Data PumpA" if the component is Extract. However, it is invalid if the
component is Replicat.

--PLATFORM | -P platform_name
Specifies the platform the application is supposed to run on. The default value is the
platform that this checkprm executable is running on.
The possible values are:

AIX HP-OSS HPUX-IT HPUX-PA
Linux OS400 ZOS Solaris SPARC
Solaris x86 Windows x64 All

--DATABASE | -D database_name
Specifies the database the application is built against. The default value is the
database for your Oracle GoldenGate installation.
The database options are:

Generic Oracle 8 Oracle 9i
Oracle 10g Oracle 11g Oracle 12c
Oracle 18c
Oracle 19c
DB2LUW 9.5 DB2LUW 9.7
DB2LUW 10.5 DB2LUW 10.1 DB2 Remote
DB2LUW 11.1
Teradata
MySQL
DB2 for i
DB2 for i Remote
MS SQL
MS SQL CDC
DB2 z/OS

--VERBOSE | -V
Directs checkprm to display detailed parameter information, to demonstrate how the
values are read and interpreted. It must be the last option specified in a validation.

6.2 convchk
Use the convchk program to convert trail files from 9 digit to 6 digit checkpoint record
for the named Extract group.

Syntax for Windows, UNIX, and Linux

convchk checkpoint_group trail_name (SEQLEN_9D | SEQLEN_6D) [-force]

checkpoint_group
The name of the Extract group writing the trail.

trail_name
The relative or fully qualified path name of the trail that was used with the ADD
EXTRAIL command or ADD RMTTRAIL command.

seqlen_9d
Sets the sequence length to 9 digits. This is the default.

Chapter 6
convchk

6-4

seqlen_6d
Sets the sequence length to 6 digits.

-force
Optional, not recommended. It can be used if the Extract was not stopped gracefully.

For migrating to Microservices deployment from legacy deployment or to relocate an
installation to a different location
You can also use convchk to migrate from legacy deployment to a Microservices
deployment, or to move an installation to different a location.
Syntax:
convchk group trail path TRAILPATH | TRAILSOURCEPATH new trail path [-force]

For SCN number overflow
The checkpoint field size needs to be changed from 32bit to 64bit after an Extract is
upgraded to 19c. The field is only used by Oracle Classic Extract however the field exists for
all databases' Extract checkpoints.

The convchk program update is provided in case if you need to downgrade the checkpoint
file to use an older Extract. The following syntax is used:

Syntax:

convchk extract group name RESETLOGSSCNSIZE [(32BIT | 64BIT)]

If user does not specify RESETLOG SCN size either 32bit or 64bit, then the checkpoint is not
updated and the current RESETLOGS SCN size is displayed. If user specifies the RESETLOGS
SCN size, the checkpoint is converted to the specified size.

6.3 defgen
Use defgen to run the DEFGEN utility from the command line of the Linux, UNIX, Windows, or
IBM i operating system. The defgen program is installed in the Oracle GoldenGate installation
directory or library.

Syntax for Windows, UNIX, and Linux

defgen paramfile parameter_file
[CHARSET character_set]
[COLCHARSET character_set]
[noextattr]
[pauseatend | nopauseatend]
[reportfile report_file]

The following syntax can also be used without any other options:

defgen defs_file updatecs charset

defgen
Used without options, the command runs the program interactively.

paramfile parameter_file
Required. Specifies the relative or absolute path name of the parameter file for the DEFGEN
program that is being run.

Chapter 6
defgen

6-5

CHARSET character_set
Any supported character set. See CHARSET for more information.

COLCHARSET character_set
Any supported character set. See COLCHARSET for more information.

noextattr
Can be used to support backward compatibility with Oracle GoldenGate versions that
are older than Release 11.2.1 and do not support character sets other than ASCII, nor
case-sensitivity or object names that are quoted with spaces. NOEXTATTR prevents
DEFGEN from including the database locale and character set that support the
globalization features that were introduced in Oracle GoldenGate Release 11.2.1. If
the table or column name has multi-byte or special characters such as white spaces,
DEFGEN does not include the table definition when NOEXTATTR is specified. If APPEND
mode is used in the parameter file, NOEXTATTR is ignored, and the new table definition
is appended in the existing file format, whether with the extra attributes or not.

pauseatend | nopauseatend
(Windows only) When the process stops, requires an Oracle GoldenGate user to look
at the console output and then strike any key to clear it. Also indicates whether the
process ended normally or abnormally.

reportfile report_file
Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen.

defs_file updatecs charset
Converts the character set of a definitions file to a different character set if the file is
transferred to an operating system with an incompatible character set. This procedure
takes the name of the definitions file and the targeted character set as input. For
example: defgen ./dirdef/source.def UPDATECS UTF-8.
updatecs helps in situations such as when a Japanese table name on Japanese
Windows is written in Windows CP932 to the data-definitions file, and then the
definitions file is transferred to Japanese UNIX. The file cannot be used unless the
UNIX is configured in PCK locale. Thus, you must use updatecs to convert the
encoding of the definitions file to the correct format.

Syntax for IBM i CLI

DEFGEN PARAMFILE(input_file)
[OTHERS(other_options)]

PARAMFILE(input_file)
The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

OTHERS(other_options)
Any options that are supported in the UNIX version of the command provided as a
space separated list.

Chapter 6
defgen

6-6

6.4 extract
Use extract to run the Extract program from the command line of the Linux, UNIX, Windows,
or IBM i operating system. The extract program is installed in the Oracle GoldenGate
installation directory or library.

Syntax for Windows, UNIX, and Linux

extract paramfile parameter_file
[atcsn CSN | aftercsn CSN]
[initialdataload]
[pauseatend | nopauseatend]
[processid PID]
[reportfile report_file]

extract
Used without options, the command runs the program interactively.

paramfile parameter_file
Required. Specifies the relative or absolute path name of the parameter file for the Extract
program that is being run. The default location is the dirprm subdirectory of the Oracle
GoldenGate installation directory.

atcsn CSN | aftercsn CSN
Starts the process at or after the specified commit sequence number (CSN).

initialdataload
Runs Extract to extract all of the data records directly from the source database to support
an initial load to the target.

pauseatend | nopauseatend
(Windows only) When the process stops, requires an Oracle GoldenGate user to look at the
console output and then strike any key to clear it. Also indicates whether the process ended
normally or abnormally.

processid PID
A name for the process. This name must match the name that is specified for the EXTRACT
parameter in the parameter file. Use one alphanumeric word. When used on IBM i, this
name (up to the first 10 characters) will be used as the job name in the IBM i job list.

reportfile report_file
Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen. The default is the dirrpt subdirectory of the
Oracle GoldenGate installation directory.

Syntax for IBM i CLI

EXTRACT PARAMFILE(input_file)
[OTHERS(other_options)]

PARAMFILE(input_file)
The input text file, known as an OBEY file, containing the commands that you want to issue, in
the order they are to be issued, one command per line. The name can be anything
supported by the operating system.

Chapter 6
extract

6-7

OTHERS(other_options)
Any options that are supported in the UNIX version of the command provided as a
space separated list.

6.6 install
Use the install program from the command line of the Linux, UNIX, Windows, or IBM
i operating system to:

• install event messages (into the registry) so they are displayed in the Windows
Event Manager.

• install the Oracle GoldenGate Manager program as a Windows service.

The install program is installed in the Oracle GoldenGate installation directory or
library.

By default, the Manager service is installed to start automatically at system boot time.
This can be changed by specifying the MANUALSTART option.

In addition, install can be used to de-install event messages and the Manager service.

Installation of event messages and the Manager program as a service is
recommended. For example:

install item [item...]

In this command item is one of addevents | deleteevents addservice |
deleteservice autostart | manualstart and the user credentials:

ADDEVENTS
Adds Oracle GoldenGate events. By default, the errors logged are generic. To display
specific content, including the user name and process, the parameter file name, and
the error text, copy the category.dll and ggsmsg.dll files from the installation
directory to the SYSTEM32 directory.

DELETEEVENTS
Deletes Oracle GoldenGate events from the registry.

ADDSERVICE
Adds the Manager program as a Windows service named GGSMGR (default) or a name
specified in a GLOBALS file. Create GLOBALS as a text file (uppercase name, no file
extension) in the installation directory, and specify the service name with the
MGRSERVNAME parameter before running install.

MGRSERVNAME service name>

DELETESERVICE
Removes the Oracle GoldenGate Manager service.

AUTOSTART
If ADDSERVICE is used, specifies that the service starts at system boot time (the
default).

Chapter 6
install

6-8

MANUALSTART
If ADDSERVICE is used, specifies that the service starts only at user request (through GGSCI
or the Services applet of the Control Panel). By default, the Manager service starts at system
boot time. If ADDSERVICE is used, this adds the Manager program as an interactive Windows
service.

USER specification
Specifies a user name for executing Manager. For specification, include the domain
name, a backward slash, and the user name., For example, HEADQT\GGSMGR.

PASSWORD password
Specifies the user name password for the USER executing the Manager service. The
password must be listed within double quotes.

WAITFORSERVICE service name
Specifies a service that the Manager service should wait on before starting. The server name
must not contain spaces and can be obtained from the Windows Service Manager applet.

install.exe addservice addevents user hostname\oggmgr password "123abc"
waitforservice MSSQL$SQL2008R2

6.7 keygen
Use keygen to generate one or more encryption keys to use with Oracle GoldenGate security
features that use an ENCKEYS file. The key values are returned to your screen. You can copy
and paste them into the ENCKEYS file.

Syntax

KEYGEN key_length n

keygen
Used without options, the command runs the program interactively.

key_length
The length of the encryption key, up to 256 bits (32 bytes).

n
The number of keys to generate.

Syntax for IBM i CLI

KEYGEN [KEYLEN(key_length)] [NUMKEYS(n)]

KEYGEN(key_length)
The length of the encryption key, up to 256 bits (32 bytes).

NUMKEYS(n)
The number of keys to generate.

Chapter 6
keygen

6-9

6.8 logdump
Use logdump to run the Logdump utility. This program takes no arguments and runs
interactively. For more information about the Logdump utility, see Logdump Reference
for Oracle GoldenGate.

Syntax for Windows, UNIX, and Linux

logdump

Syntax for IBM i CLI

LOGDUMP

6.9 mgr
Use mgr to run the Manager program from the command line of the Linux, UNIX,
Windows, or IBM i operating system. The mgr program is installed in the Oracle
GoldenGate installation directory or library.

Syntax for Windows, UNIX, and Linux

mgr paramfile parameter_file
[cd directory]
[pauseatend | nopauseatend]
[port portnum]
[reportfile report_file]

mgr
Used without options, the command runs the program interactively.

paramfile parameter_file
Specifies the relative or absolute path name of the parameter file for the Manager
program that is being run.

cd directory
Changes the current working directory of the process. The process will use the
specified directory for all of its operations, such as opening and writing files.

pauseatend | nopauseatend
(Windows only) When the process stops, requires an Oracle GoldenGate user to look
at the console output and then strike any key to clear it. Also indicates whether the
process ended normally or abnormally.

port portnum
The number of the first port that Manager will check to start a connection. If this port
number is not available, Manager increments the number by one and continues
incrementing until it finds a port number that is available. However, if a port number is
specified in the Manager parameter file, that number takes precedence as the start
point for this search.

reportfile report_file
Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen.

Chapter 6
logdump

6-10

Syntax for IBM i CLI

MGR PARAMFILE(input_file)
[OTHERS(other_options)]

PARAMFILE(input_file)
The input text file, known as an OBEY file, containing the commands that you want to issue, in
the order they are to be issued, one command per line. The name can be anything
supported by the operating system.

OTHERS(other_options)
Any options that are supported in the UNIX version of the command provided as a space
separated list.

6.10 replicat
Use replicat to run the Replicat program from the command line of the Linux, UNIX,
Windows, or IBM i operating system. The replicat program is installed in the Oracle
GoldenGate installation directory or library.

Syntax for Window, UNIX, and Linux

replicat paramfile parameter_file
[{atcsn CSN | aftercsn CSN} [threads(thread_list)]]
[filterduptransactions]
[initialdataload]
[pauseatend | nopauseatend]
[processid PID]
[reportfile report_file]
[skiptransaction [threads(thread_list)]]

replicat
Used without options, the command runs the program interactively.

paramfile parameter_file
Specifies the relative or absolute path name of the parameter file for the Replicat program
that is being run. The default location is the dirprm subdirectory of the Oracle GoldenGate
installation directory.

atcsn CSN | aftercsn CSN [threads(thread_list)]
Starts the process at or after the specified commit sequence number (CSN). F.

filterduptransactions
Causes Replicat to ignore transactions that it has already processed.

initialdataload
Runs Replicat to apply all of the data as an initial load to populate the target.

pauseatend | nopauseatend
(Windows only) When the process stops, requires an Oracle GoldenGate user to look at the
console output and then strike any key to clear it. Also indicates whether the process ended
normally or abnormally.

Chapter 6
replicat

6-11

processid PID
A name for the process. This name must match the name that is specified for the
REPLICAT parameter in the parameter file. Use one alphanumeric word. When used on
IBM i, this name (up to the first 10 characters) will be used as the job name in the IBM
i job list.

reportfile report_file
Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen. The default is the dirrpt subdirectory of the
Oracle GoldenGate installation directory.

skiptransaction [threads(thread_list)]
Causes the process to skip the first transaction after its expected startup position in
the trail.

Syntax for IBM i CLI

REPLICAT PARAMFILE(input_file)
[OTHERS(other_options)]

PARAMFILE(input_file)
The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

OTHERS(other_options)
Any options that are supported in the UNIX version of the command provided as a
space separated list.

Chapter 6
replicat

6-12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	Part I Oracle GoldenGate Common Components
	1 Oracle GoldenGate Parameters
	1.1 Summary of Extract Parameters
	1.2 Summary of Replicat Parameters
	1.3 ABORTDISCARDRECS
	1.4 ALLOCFILES
	1.5 ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP
	1.6 ALLOWINVISIBLEINDEXKEYS
	1.7 ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS
	1.8 ALLOWNONVALIDATEDKEYS
	1.9 ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES
	1.10 ALLOWOUTPUTDIR
	1.11 APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES
	1.12 APPLY_PARALLELISM | MAX_APPLY_PARALLELISM | MIN_APPLY_PARALLELISM
	1.13 ASCIITOEBCDIC
	1.14 ASSUMETARGETDEFS
	1.15 AUTORESTART
	1.16 AUTOSTART
	1.17 BATCHSQL
	1.18 BEGIN
	1.19 BLOBMEMORY
	1.20 BR
	1.21 BULKLOAD
	1.22 CACHEMGR
	1.23 CATALOGEXCLUDE
	1.24 CHARMAP
	1.25 CHECKPARAMS
	1.26 CHECKPOINTSECS
	1.27 CHECKPOINTTABLE
	1.28 CHUNK_SIZE
	1.29 CMDTRACE
	1.30 COLCHARSET
	1.31 COLMATCH
	1.32 COMPRESSDELETES | NOCOMPRESSDELETES
	1.33 COMPRESSUPDATES | NOCOMPRESSUPDATES
	1.34 COMMIT_SERIALIZATION
	1.35 COORDSTATINTERVAL
	1.36 COORDTIMER
	1.37 CREDENTIALSTORELOCATION
	1.38 CRYPTOENGINE
	1.39 CUSEREXIT
	1.40 DBOPTIONS
	1.41 DDL
	1.42 DDLERROR
	1.43 DDLOPTIONS
	1.44 DDLSUBST
	1.45 DDLRULEHINT
	1.46 DDLTABLE
	1.47 DECRYPTTRAIL
	1.48 DEFERAPPLYINTERVAL
	1.49 DEFSFILE
	1.50 DICTIONARY_CACHE_SIZE
	1.51 DISCARDFILE | NODISCARDFILE
	1.52 DISCARDROLLOVER
	1.53 DYNAMICRESOLUTION | NODYNAMICRESOLUTION
	1.54 EBCDICTOASCII
	1.55 ENABLEMONITORING
	1.56 ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE
	1.57 ENCRYPTTRAIL | NOENCRYPTTRAIL
	1.58 END
	1.59 EOFDELAY | EOFDELAYCSECS
	1.60 EXCLUDEHIDDENCOLUMNS
	1.61 EXCLUDETAG
	1.62 EXCLUDEWILDCARDOBJECTSONLY
	1.63 EXTFILE
	1.64 EXTRACT
	1.65 EXTTRAIL
	1.66 FETCHOPTIONS
	1.67 FETCHUSERID
	1.68 FETCHUSERIDALIAS
	1.69 FILTERDUPS | NOFILTERDUPS
	1.70 FILEGROUP
	1.71 FLUSHSECS | FLUSHCSECS
	1.72 FUNCTIONSTACKSIZE
	1.73 GETAPPLOPS | IGNOREAPPLOPS
	1.74 GETDELETES | IGNOREDELETES
	1.75 GETINSERTS | IGNOREINSERTS
	1.76 GETREPLICATES | IGNOREREPLICATES
	1.77 GETTRUNCATES | IGNORETRUNCATES
	1.78 GETUPDATEAFTERS | IGNOREUPDATEAFTERS
	1.79 GETUPDATEBEFORES | IGNOREUPDATEBEFORES
	1.80 GETUPDATES | IGNOREUPDATES
	1.81 GGSCHEMA
	1.82 GROUPTRANSOPS
	1.83 HANDLECOLLISIONS | NOHANDLECOLLISIONS
	1.84 HAVEUDTWITHNCHAR
	1.85 HEARTBEATTABLE
	1.86 INCLUDE
	1.87 INSERTALLRECORDS
	1.88 INSERTAPPEND | NOINSERTAPPEND
	1.89 INSERTDELETES | NOINSERTDELETES
	1.90 INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES
	1.91 INSERTUPDATES | NOINSERTUPDATES
	1.92 INSERTUPSERTS | NOINSERTUPSERTS
	1.93 LIST | NOLIST
	1.94 LOBMEMORY
	1.95 LOGALLSUPCOLS
	1.96 LOOK_AHEAD_TRANSACTIONS
	1.97 MACRO
	1.98 MACROCHAR
	1.99 MAP for Extract
	1.100 MAP
	1.101 MAPALLCOLUMNS| NOMAPALLCOLUMNS
	1.102 MAP_PARALLELISM
	1.103 MAPEXCLUDE
	1.104 MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS
	1.105 MARKERTABLE
	1.106 MASTERKEYNAME
	1.107 MAXDISCARDRECS
	1.108 MAXGROUPS
	1.109 MAXSQLSTATEMENTS
	1.110 MAXTRANSOPS
	1.111 MGRSERVNAME
	1.112 NAMECCSID
	1.113 NAMEMATCH parameters
	1.114 NOCATALOG
	1.115 NODUPMSGSUPPRESSION
	1.116 NUMFILES
	1.117 OBEY
	1.118 OUTPUTFILEUMASK
	1.119 OUTPUTFORMAT
	1.120 OVERRIDEDUPS | NOOVERRIDEDUPS
	1.121 PARTIALBLOCKRETRYSECS
	1.122 PTKCAPTUREPROCSTATS
	1.123 PTKMONITORFREQUENCY
	1.124 PRESERVETARGETTIMEZONE
	1.125 PROCEDURE
	1.126 PURGEOLDEXTRACTS for Extract and Replicat
	1.127 REPERROR
	1.128 REPFETCHEDCOLOPTIONS
	1.129 REPLACEBADCHAR
	1.130 REPLACEBADNUM
	1.131 REPLICAT
	1.132 REPORT
	1.133 REPORTCOUNT
	1.134 REPORTROLLOVER
	1.135 REPOUDPPORT
	1.136 RESTARTCOLLISIONS | NORESTARTCOLLISIONS
	1.137 RMTFILE
	1.138 RMTHOST
	1.139 RMTHOSTOPTIONS
	1.140 RMTTASK
	1.141 RMTTRAIL
	1.142 ROLLOVER
	1.143 SCHEMAEXCLUDE
	1.144 SEQUENCE
	1.145 SESSIONCHARSET
	1.146 SETENV
	1.147 SHOWSYNTAX
	1.148 SOURCEDB
	1.149 SOURCECATALOG
	1.150 SOURCECHARSET
	1.151 SOURCEDEFS
	1.152 SOURCEISTABLE
	1.153 SOURCETIMEZONE
	1.154 SPACESTONULL | NOSPACESTONULL
	1.155 SPECIALRUN
	1.156 SPLIT_TRANS_RECS
	1.157 SQLDUPERR
	1.158 SQLEXEC
	1.159 STATOPTIONS
	1.160 TABLE | MAP
	1.161 TABLE for DEFGEN
	1.162 TABLE for Replicat
	1.163 TABLEEXCLUDE
	1.164 TARGETDB
	1.165 TARGETDEFS
	1.166 TCPSOURCETIMER | NOTCPSOURCETIMER
	1.167 TRACE | TRACE2
	1.168 TRACETABLE | NOTRACETABLE
	1.169 TRAILBYTEORDER
	1.170 TRAILCHARSET
	1.171 TRAILCHARSETASCII
	1.172 TRAILCHARSETEBCDIC
	1.173 TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D
	1.174 TRANLOGOPTIONS
	1.175 TRANSACTIONTIMEOUT
	1.176 TRANSMEMORY
	1.177 TRIMSPACES | NOTRIMSPACES
	1.178 TRIMVARSPACES | NOTRIMVARSPACES
	1.179 UPDATEDELETES | NOUPDATEDELETES
	1.180 UPDATEINSERTS | NOUPDATEINSERTS
	1.181 UPDATERECORDFORMAT
	1.182 UPREPORTMINUTES | UPREPORTHOURS
	1.183 USE_TRAILDEFS | NO_USE_TRAILDEFS
	1.184 USEDEDICATEDCOORDINATIONTHREAD
	1.185 USEIPV4 | USEIPV6
	1.186 USERID | NOUSERID
	1.187 USERIDALIAS
	1.188 VARWIDTHNCHAR | NOVARWIDTHNCHAR
	1.189 WALLETLOCATION
	1.190 WARNLONGTRANS
	1.191 WARNRATE
	1.192 WILDCARDRESOLVE
	1.193 XAGENABLE
	1.194 Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

	2 Column Conversion Functions
	2.1 Summary of Column-Conversion Functions
	2.2 @RANGE
	2.3 @AFTER
	2.4 @BEFORE
	2.5 @BEFOREAFTER
	2.6 @BINARY
	2.7 @BINTOBASE64
	2.8 @BINTOHEX
	2.9 @CASE
	2.10 @COLSTAT
	2.11 @COLTEST
	2.12 @COMPUTE
	2.13 @DATE
	2.14 @DATEDIFF
	2.15 @DATENOW
	2.16 @DDL
	2.17 @EVAL
	2.18 @GETENV
	2.19 @GETVAL
	2.20 @HEXTOBIN
	2.21 @HIGHVAL | LOWVAL
	2.22 @IF
	2.23 @NUMBIN
	2.24 @NUMSTR
	2.25 @OGG_SHA1
	2.26 @STRCAT
	2.27 @STRCMP
	2.28 @STRCMPNULL
	2.29 @STREQ
	2.30 @STREQNULL
	2.31 @STREXT
	2.32 @STRFIND
	2.33 @STRLEN
	2.34 @STRLTRIM
	2.35 @STRNCAT
	2.36 @STRNCMP
	2.37 @STRNUM
	2.38 @STRRTRIM
	2.39 @STRSUB
	2.40 @STRTRIM
	2.41 @STRUP
	2.42 @TOKEN
	2.43 @VALONEOF

	3 User Exit Functions
	3.1 Summary of User Exit Functions
	3.2 Calling a User Exit
	3.3 Using EXIT_CALL_TYPE
	3.4 Using EXIT_CALL_RESULT
	3.5 Using EXIT_PARAMS
	3.6 Using ERCALLBACK
	3.7 Function Codes
	3.8 COMPRESS_RECORD
	3.9 DECOMPRESS_RECORD
	3.10 GET_BASE_OBJECT_NAME
	3.11 GET_BASE_OBJECT_NAME_ONLY
	3.12 GET_BASE_SCHEMA_NAME_ONLY
	3.13 GET_BEFORE_AFTER_IND
	3.14 GET_CATALOG_NAME_ONLY
	3.15 GET_COL_METADATA_FROM_INDEX
	3.16 GET_COL_METADATA_FROM_NAME
	3.17 GET_COLUMN_INDEX_FROM_NAME
	3.18 GET_COLUMN_NAME_FROM_INDEX
	3.19 GET_COLUMN_VALUE_FROM_INDEX
	3.20 GET_COLUMN_VALUE_FROM_NAME
	3.21 GET_DATABASE_METADATA
	3.22 GET_DDL_RECORD_PROPERTIES
	3.23 @GETENV
	3.24 GET_ENV_VALUE
	3.25 GET_ERROR_INFO
	3.26 GET_GMT_TIMESTAMP
	3.27 GET_MARKER_INFO
	3.28 GET_OBJECT_NAME
	3.29 GET_OBJECT_NAME_ONLY
	3.30 GET_OPERATION_TYPE
	3.31 GET_POSITION
	3.32 GET_RECORD_BUFFER
	3.33 GET_RECORD_LENGTH
	3.34 GET_RECORD_TYPE
	3.35 GET_SCHEMA_NAME_ONLY
	3.36 GET_SESSION_CHARSET
	3.37 GET_STATISTICS
	3.38 GET_TABLE_COLUMN_COUNT
	3.39 GET_TABLE_METADATA
	3.40 GET_TABLE_NAME
	3.41 GET_TABLE_NAME_ONLY
	3.42 GET_TIMESTAMP
	3.43 GET_TRANSACTION_IND
	3.44 GET_USER_TOKEN_VALUE
	3.45 OUTPUT_MESSAGE_TO_REPORT
	3.46 RESET_USEREXIT_STATS
	3.47 SET_COLUMN_VALUE_BY_INDEX
	3.48 SET_COLUMN_VALUE_BY_NAME
	3.49 SET_OPERATION_TYPE
	3.50 SET_RECORD_BUFFER
	3.51 SET_SESSION_CHARSET
	3.52 SET_TABLE_NAME

	Part II Oracle GoldenGate Classic Architecture
	4 Collector Parameters
	4.1 Overview of the Collector Process
	4.2 -B
	4.3 -cp
	4.4 -d
	4.5 -E
	4.6 -e
	4.7 -ENCRYPT
	4.8 -f
	4.9 -g
	4.10 -h
	4.11 -k
	4.12 -KEYNAME
	4.13 -l
	4.14 -m
	4.15 -P
	4.16 -p
	4.17 -R
	4.18 -x

	5 Manager Parameters
	5.1 ACCESSRULE
	5.2 BOOTDELAYMINUTES
	5.3 CHARSET
	5.4 CHECKMINUTES
	5.5 COMMENT | --
	5.6 DOWNREPORTMINUTES | DOWNREPORTHOURS
	5.7 DYNAMICPORTLIST
	5.8 MONITORING_HEARTBEAT_TIMEOUT
	5.9 LAGCRITICAL
	5.10 LAGINFO
	5.11 LAGREPORT
	5.12 PORT
	5.13 PURGEDDLHISTORY | PURGEDDLHISTORYALT
	5.14 PURGEOLDEXTRACTS for Manager
	5.15 PURGEOLDTASKS
	5.16 SOURCEDB
	5.17 STARTUPVALIDATIONDELAY[CSECS]
	5.18 THREADOPTIONS
	5.19 USERIDALIAS

	6 Oracle GoldenGate Programs
	6.5 ggsci
	6.1 checkprm
	6.2 convchk
	6.3 defgen
	6.4 extract
	6.6 install
	6.7 keygen
	6.8 logdump
	6.9 mgr
	6.10 replicat

