
Oracle Linux 8
Setting Up Load Balancing

F23661-15
January 2024

Oracle Linux 8 Setting Up Load Balancing,

F23661-15

Copyright © 2020, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion vi

1 About Load Balancing in Oracle Linux

About Load Balancing 1-1

About HAProxy 1-1

About Keepalived 1-1

Using Keepalived With VRRP 1-2

About Combining Keepalived With HAProxy for High-Availability Load Balancing 1-2

About NGINX 1-3

2 Setting Up Load Balancing by Using HAProxy

Installing and Configuring HAProxy 2-1

HAProxy Configuration Directives 2-1

Configuring Round Robin Load Balancing by Using HAProxy 2-2

Using Weighted Round Robin Load Balancing with HAProxy 2-5

Adding Session Persistence for HAProxy 2-5

3 Setting Up Load Balancing by Using Keepalived

Installing and Configuring Keepalived 3-1

Keepalived Configuration Directives 3-1

Setting Up Load Balancing in NAT Mode 3-2

Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing 3-7

Configuring Backend Server Routing for Keepalived NAT-Mode Load Balancing 3-8

Enhancing Load Balancing by Using Keepalived With HAProxy 3-8

iii

4 Setting Up Load Balancing by Using NGINX

Installing NGINX 4-1

NGINX Configuration Directives 4-1

Configuring Round Robin Load Balancing by Using NGINX 4-3

Using Weighted Round Robin Load Balancing With NGINX 4-4

Using Least-Connected Load Balancing With NGINX 4-4

Adding Session Persistence for NGINX 4-5

iv

Preface

Oracle Linux 8: Setting Up Load Balancing describes how to configure the Keepalived and
HAProxy load balancer technologies for balanced access to network services.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share
Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or
an adaptation of it, you must provide attribution to Oracle and retain the original copyright
notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

v

https://docs.oracle.com/en/operating-systems/oracle-linux/8/balancing/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

1
About Load Balancing in Oracle Linux

This chapter provides an overview of the load balancer technologies that are used in Oracle
Linux. Installation and configuration information is also provided in this chapter.

About Load Balancing
The term load balancing refers to the efficient distribution of incoming network traffic across a
group of back-end servers. The use of load balancing ensures that your infrastructure is
highly available, reliable, and that performance is not degraded. Load balancers can typically
handle traffic for the HTTP, HTTPS, TCP, and UDP protocols.

Load balancers manage network traffic by routing client requests across all of the servers that
can fulfill those requests. This routing maximizes speed and capacity use so that no one
particular server becomes overloaded, thereby improving overall performance. In situations
where a server might become unavailable or goes down, the load balancer redirects any
incoming traffic to other servers that are online. In this way, server downtime is minimized.
When a new server is added to the server group, the load balancer automatically
redistributes the workload and starts to send requests to that new server.

In Oracle Linux, load balancing of network traffic is primarily handled by two integrated
software components: HAProxy and Keepalived. The HAProxy feature provides load
balancing and high-availability services to TCP and HTTP, while Keepalived performs load
balancing and failover tasks on both active and passive routers. The NGINX feature can also
be used in Oracle Linux for load balancing.

About HAProxy
HAProxy, or High Availability Proxy, is an application layer (Layer 7) load balancer and high-
availability solution that you can use to implement a reverse proxy for HTTP and TCP-based
Internet services. An application layer load balancer often includes many features. It can
inspect the content of the traffic that it's routing and can either modify content within each
packet, as required, or can decide how to handle each packet based on its content.
Therefore, HAProxy can implement session persistence, TLS, ACLs, and HTTP rewrites and
redirection become .

The configuration file for the haproxy daemon is /etc/haproxy/haproxy.cfg. This file must
be present on each server on which you configure HAProxy for load balancing or high
availability.

For more information, see http://www.haproxy.org/#docs, the /usr/share/doc/haproxy-
version documentation, and the haproxy(1) manual page.

About Keepalived
Keepalived uses the IP Virtual Server (IPVS) kernel module to provide transport layer (Layer
4) load balancing by redirecting requests for network-based services to individual members of
a server cluster. IPVS monitors the status of each server and uses the Virtual Router

1-1

http://www.haproxy.org/#docs

Redundancy Protocol (VRRP) to implement high availability. A load balancer that
functions at the transport layer is less aware of the content of the packets that it re-
routes, which has the advantage of being able to perform this task significantly faster
than a reverse proxy system functioning at the application layer.

The configuration file for the keepalived daemon is /etc/keepalived/
keepalived.conf. This file must be present on each server on which you configure
Keepalived for load balancing or high availability.

For more information, see https://www.keepalived.org/documentation.html, the /usr/
share/doc/keepalive-version documentation, and the keepalived(8) and
keepalived.conf(5) manual pages.

Using Keepalived With VRRP
VRRP is a networking protocol that automatically assigns routers that are available to
handle inbound traffic. A detailed standard document for this protocol can be found at
https://tools.ietf.org/html/rfc5798.

Keepalived uses VRRP to ascertain the current state of all the routers on the network.
The protocol enables routing to switch between primary and backup routers
automatically. The backup routers detect when the primary router becomes
unavailable and then sends multicast packets to each other until one of the routers is
"elected" as the new primary router A floating virtual IP address can be used to always
direct traffic to the primary router. When the original primary router is back online, it
detects the new routing state and returns to the network as a backup router.

The benefit of using VRRP is that you can rely on multiple routers to provide high
availability and redundancy without requiring a separate software service or hardware
device to manage this process. On each router, Keepalived configures the VRRP
settings and ensures that the network routing continues to function correctly.

For more information, see https://www.keepalived.org/documentation.html, the /usr/
share/doc/keepalive-version documentation, and the keepalived(8) and
keepalived.conf(5) manual pages.

About Combining Keepalived With HAProxy for High-
Availability Load Balancing

You can combine the Keepalived and HAProxy load balancer features to achieve a
high-availability, load-balancing environment. HAProxy provides scalability, application-
aware functionality, and ease of configuration when configuring load balancing
services. Keepalived provides failover services for backup routers, as well as the
ability to distribute loads across servers for increased availability.

This complex configuration scenario illustrates how you can use different load
balancing applications with each other to achieve better redundancy and take
advantage of features at different layers of the stack. While this example shows how
Keepalived can be used to provide redundancy for HAProxy, you can also achieve
similar results by using Keepalived with alternative application layer proxy systems,
like NGINX.

For more details, see Enhancing Load Balancing by Using Keepalived With HAProxy.

Chapter 1
Using Keepalived With VRRP

1-2

https://www.keepalived.org/documentation.html
https://tools.ietf.org/html/rfc5798
https://www.keepalived.org/documentation.html

About NGINX
NGINX is an HTTP server that provides modular functionality for reverse proxying, traffic
routing, and application-layer load balancing for HTTP, HTTPS, or TCP/UDP connections.
You can use NGINX load balancing and proxy services to distribute traffic for improved
performance, scalability, and reliability of applications.

NGINX provides capability for the following load balancing methods:

• Round Robin: Distributes requests to application servers by going down the list of the
servers that are within the group, then forwarding client requests to each server, in turn.
After reaching the end of the list, the load balancer repeats this same sequence. Round
Robin is the default method used by NGINX.

• Least Connected. Assigns the next request to the server that has the least number of
active connections. With the least-connected method, the load balancer compares the
number of currently active connections to each server, then sends the request to the
server with the fewest connections. You set the configuration by using the least_conn
directive.

• IP Hash. Uses a hash-function to determine which server to select for the next request,
which is based on the client’s IP address. You set the configuration by using the ip_hash
directive.

For more information, see Setting Up Load Balancing by Using NGINX.

See also https://docs.nginx.com/nginx/.

Chapter 1
About NGINX

1-3

https://docs.nginx.com/nginx/

2
Setting Up Load Balancing by Using HAProxy

This chapter describes how to configure load balancing by using HAProxy. The chapter also
includes configuration scenarios and examples.

Installing and Configuring HAProxy
Before you can set up load balancing by using HAProxy, you must first install and configure
the feature.

1. Install the haproxy package on each front-end server:

sudo dnf install haproxy
2. Edit the /etc/haproxy/haproxy.cfg file to configure HAProxy on each server.

See HAProxy Configuration Directives.

3. Enable access to the services or ports that you want HAProxy to handle.

To accept incoming TCP requests on port 80, use the following command:

sudo firewall-cmd --zone=zone --add-port=80/tcp

sudo firewall-cmd --permanent --zone=zone --add-port=80/tcp
4. Enable and start the haproxy service on each server:

sudo systemctl enable --now haproxy

If you change the HAProxy configuration, reload the haproxy service:

sudo systemctl reload haproxy

HAProxy Configuration Directives
The /etc/haproxy/haproxy.cfg configuration file is divided into the following sections:

global
Defines global settings, such as the syslog facility and level to use for logging, the maximum
number of concurrent connections that are allowed, and how many processes to start in
daemon mode.

defaults
Defines the default settings for the other sections.

listen
Defines a complete proxy, which implicitly includes the frontend and backend components.

frontend
Defines the ports that accept client connections.

2-1

backend
Defines the servers to which the proxy forwards client connections.

Configuring Round Robin Load Balancing by Using HAProxy
The following example uses HAProxy to implement a front-end server that balances
incoming requests between two backend web servers, and which also handles service
outages on the backend servers.

The following figure shows an HAProxy server (10.0.0.10), which is connected to an
externally facing network (10.0.0.0/24) and to an internal network (192.168.1.0/24).
Two web servers, websrv1 (192.168.1.71) and websrv2 (192.168.1.72), are
accessible on the internal network. The IP address 10.0.0.10 is in the private address
range 10.0.0.0/24, which can't be routed on the Internet. An upstream Network
Address Translation (NAT) gateway or a proxy server provides access to and from the
Internet.

Chapter 2
Configuring Round Robin Load Balancing by Using HAProxy

2-2

Figure 2-1 Example HAProxy Configuration for Load Balancing

Chapter 2
Configuring Round Robin Load Balancing by Using HAProxy

2-3

The following is an example configuration in /etc/haproxy/haproxy.cfg on the
server:

global
 daemon
 log 127.0.0.1 local0 debug
 maxconn 50000
 nbproc 1

defaults
 mode http
 timeout connect 5s
 timeout client 25s
 timeout server 25s
 timeout queue 10s

Handle Incoming HTTP Connection Requests
listen http-incoming
 mode http
 bind 10.0.0.10:80
Use each server in turn, according to its weight value
 balance roundrobin
Verify that service is available
 option httpchk HEAD / HTTP/1.1\r\nHost:\ www
Insert X-Forwarded-For header
 option forwardfor
Define the back-end servers, which can handle up to 512 concurrent connections
each
 server websrv1 192.168.1.71:80 maxconn 512 check
 server websrv2 192.168.1.72:80 maxconn 512 check

This configuration balances HTTP traffic between the two backend web servers
websrv1 and websrv2, whose firewalls are configured to accept incoming TCP
requests on port 80. The traffic is distributed equally between the servers and each
server can handle a maximum of 512 concurrent connections. A health-check is also
configured and this performs a request for the HTTP headers on a request for the web
root on each backend server.

After implementing basic /var/www/html/index.html files on the web servers and
using curl to test connectivity, the following output shows how HAProxy balances the
traffic between the servers and how it handles the httpd service stopping on websrv1:

while true; do curl http://10.0.0.10; sleep 1; done

This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv2 (192.168.1.72).
...
This is HTTP server websrv2 (192.168.1.72).
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv2 (192.168.1.72).
...
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv2 (192.168.1.72).

Chapter 2
Configuring Round Robin Load Balancing by Using HAProxy

2-4

This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv1 (192.168.1.71).
...

In this example, HAProxy detected that the httpd service had restarted on websrv1 and
resumed using that server in addition to websrv2.

By combining the load balancing capability of HAProxy with the high-availability capability of
Keepalived, you can configure a backup load balancer that ensures continuity of service if the
primary load balancer fails. See Enhancing Load Balancing by Using Keepalived With
HAProxy for more information on how this configuration can be extended.

Using Weighted Round Robin Load Balancing with HAProxy
HAProxy can also be configured to use the weighted round-robin algorithm to distribute
traffic. This algorithm selects servers in turns, according to their weights, and distributes the
server load without implementing certain other factors such as server response time. With
weighted round-robin, you can balance traffic proportionally between servers based on
processing power and resources available to a server.

To implement weighted round-robin, append weight values to each server in the
configuration. For example, to distribute twice the amount of traffic to websrv1, change the
configuration to include different weight ratios, as follows:

server websrv1 192.168.1.71:80 weight 2 maxconn 512 check
server websrv2 192.168.1.72:80 weight 1 maxconn 512 check

Adding Session Persistence for HAProxy
HAProxy provides a multitude of load balancing algorithms, some of which provide features
that automatically ensure that web sessions have persistent connections to the same
backend server. You can configure a balance algorithm such as hdr, rdp-cookie, source,
uri, or url_param to ensure that traffic is always routed to the same web server for a
particular incoming connection during the session. For example, the source algorithm creates
a hash of the source IP address and maps it to a particular backend server. If you use the
rdp-cookie, or url_param algorithms, you might need to configure the backend web servers
or the web applications for these mechanisms to run efficiently.

If the implementation requires the use of the leastconn, roundrobin, or static-rr algorithm,
you can achieve session persistence by using server-dependent cookies.

To enable session persistence for all pages on a web server, use the cookie directive to
define the name of the cookie to be inserted and add the cookie option and server name to
the server lines, for example:

cookie WEBSVR insert
server websrv1 192.168.1.71:80 weight 1 maxconn 512 cookie 1 check
server websrv2 192.168.1.72:80 weight 1 maxconn 512 cookie 2 check

HAProxy includes the Set-Cookie: header that identifies the web server in its response to
the client, for example: Set-Cookie: WEBSVR=N; path=page_path . If a client specifies the
WEBSVR cookie in a request, HAProxy forwards the request to the web server whose server
cookievalue matches the value of WEBSVR.

Chapter 2
Using Weighted Round Robin Load Balancing with HAProxy

2-5

To enable persistence selectively on a web server, use the cookie directive to
configure the HAProxy to expect the specified cookie, typically a session ID cookie or
other existing cookie, to be prefixed with the server cookie value and a ~ delimiter,
for example:

cookie SESSIONID prefix
server websrv1 192.168.1.71:80 weight 1 maxconn 512 cookie 1 check
server websrv2 192.168.1.72:80 weight 1 maxconn 512 cookie 2 check

If the value of SESSIONID is prefixed with a server cookie value, for example: Set-
Cookie: SESSIONID=N~Session_ID;, HAProxy strips the prefix and delimiter from the
SESSIONID cookie before forwarding the request to the web server whose server
cookie value matches the prefix.

The following example shows how to configure session persistence by using a
prefixed cookie:

while true; do curl http://10.0.0.10 cookie "SESSIONID=1~1234;"; sleep 1; done

This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv1 (192.168.1.71).
...

A real web application would typically set the session ID on the server side, in which
case the first HAProxy response would include the prefixed cookie in the Set-Cookie:
header.

Chapter 2
Adding Session Persistence for HAProxy

2-6

3
Setting Up Load Balancing by Using
Keepalived

This chapter includes tasks and examples that describe how to configure load balancing NAT
mode by using Keepalived. The chapter also includes a configuration scenario that shows
how to combine the use of Keepalived and HAProxy for high-availability load balancing.

Installing and Configuring Keepalived
Before you can set up load balancing by using Keepalived, you must install and configure the
feature.

1. Install the keepalived package on each server:

sudo dnf install keepalived
2. Edit /etc/keepalived/keepalived.conf to configure Keepalived on each server. See

Keepalived Configuration Directives.

3. Enable IP forwarding in /etc/sysctl.conf:

net.ipv4.ip_forward = 1
4. Verify that the IP forwarding has been applied:

sudo sysctl -p

net.ipv4.ip_forward = 1
5. Add firewall rules to accept VRRP communication by using the multicast IP address

224.0.0.18 and the VRRP protocol (112) on each network interface that Keepalived
controls, for example:

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter INPUT 0 \
 --in-interface enp0s8 --destination 224.0.0.18 --protocol vrrp -j ACCEPT

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter OUTPUT 0 \
 --out-interface enp0s8 --destination 224.0.0.18 --protocol vrrp -j ACCEPT

sudo firewall-cmd --reload
6. Enable and start the keepalived service on each server:

sudo systemctl enable --now keepalived

If you change the Keepalived configuration, reload the keepalived service:

sudo systemctl reload keepalived

Keepalived Configuration Directives
The /etc/keepalived/keepalived.conf configuration file is divided into the following
sections:

3-1

global_defs
Defines global settings such as the email addresses for sending notification
messages, the IP address of an SMTP server, the timeout value for SMTP
connections in seconds, a string that identifies the host machine, the VRRP IPv4 and
IPv6 multicast addresses, and whether SNMP traps are enabled.

static_ipaddress
static_routes
Define static IP addresses and routes, which VRRP can't change. These sections
aren't required if the addresses and routes are already defined on the servers and
these servers already have network connectivity.

vrrp_sync_group
Defines a VRRP synchronization group of VRRP instances that fail over together.

vrrp_instance
Defines a moveable virtual IP address for a member of a VRRP synchronization
group's internal or external network interface, which follows other group members
during a state transition. Each VRRP instance must have a unique value of
virtual_router_id, which identifies which interfaces on the primary and backup
servers can be assigned a specified virtual IP address. You can also specify scripts
that are run on state transitions to BACKUP, MASTER, and FAULT, and whether to trigger
SMTP alerts for state transitions.

vrrp_script
Defines a tracking script that Keepalived can run at regular intervals to perform
monitoring actions from a vrrp_instance or vrrp_sync_group section.

virtual_server_group
Defines a virtual server group, through a real server can be configured to be a
member of several virtual server groups.

virtual_server
Defines a virtual server for load balancing, which is composed of several real servers.

For more information about setting up load balancing with Keepalived, see Setting Up
Load Balancing by Using Keepalived

Setting Up Load Balancing in NAT Mode
The following example shows how you would use Keepalived in NAT mode to
implement a basic failover and load balancing configuration on two servers. One
server acts as the primary, the other acts as a backup, with the primary server having
a higher priority than the backup server. Both servers use VRRP to monitor the current
routing state. For more information about VRRP, see Using Keepalived With VRRP.

Each of the servers has two network interfaces, where one interface is connected to
the an external network (192.168.1.0/24). The other interface is connected to an
internal network (10.0.0.0/24), on which two web servers are accessible.

The following figure shows that the Keepalived primary server has the following
network addresses: 192.168.1.10, 192.168.1.1 (virtual), 10.0.0.10, and 10.0.0.100
(virtual).

The Keepalived backup server has he following network addresses: 192.168.1.11 and
10.0.0.11.

Chapter 3
Setting Up Load Balancing in NAT Mode

3-2

For IP addresses, websrv1 has 10.0.0.71 and websrv2 has 10.0.0.72.

Figure 3-1 Keepalived Configuration for Load Balancing in NAT Mode

Chapter 3
Setting Up Load Balancing in NAT Mode

3-3

The following is an example of the configuration in the /etc/keepalived/
keepalived.conf file on the primary server:

global_defs {
 notification_email {
 root@example.com
 }
 notification_email_from srv1@example.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group VRRP1 {
Group the external and internal VRRP instances so they fail over together
 group {
 external
 internal
 }
}

vrrp_instance external {
 state MASTER
 interface enp0s8
 virtual_router_id 91
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the external network interface
 virtual_ipaddress {
 192.168.1.1/24
 }
}

vrrp_instance internal {
 state MASTER
 interface enp0s9
 virtual_router_id 92
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the internal network interface
 virtual_ipaddress {
 10.0.0.100/24
 }
}

Define a virtual HTTP server on the virtual IP address 192.168.1.1
virtual_server 192.168.1.1 80 {
 delay_loop 10
 protocol TCP
Use round-robin scheduling in this example
 lb_algo rr
Use NAT to hide the back-end servers
 lb_kind NAT
Persistence of client sessions times out after 2 hours

Chapter 3
Setting Up Load Balancing in NAT Mode

3-4

 persistence_timeout 7200
 real_server 10.0.0.71 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }

 real_server 10.0.0.72 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }
}

The previous configuration includes both a vrrp_sync_group section so that the network
interfaces are assigned together on failover, and a virtual_server section to define the real
backend servers that Keepalived uses for load balancing. The value of lb_kind is set to use
NAT, which means the Keepalived server handles both inbound and outbound network traffic
from and to the client on behalf of the backend servers.

The configuration of the backup server is the same, except for the values of
notification_email_from, state, priority, and possibly interface, if the system hardware
configuration is different:

global_defs {
 notification_email {
 root@example.com
 }
 notification_email_from srv2@example.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group VRRP1 {
Group the external and internal VRRP instances so they fail over together
 group {
 external
 internal
 }
}

vrrp_instance external {
 state BACKUP
 interface enp0s8
 virtual_router_id 91
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the external network interface
 virtual_ipaddress {
 192.168.1.1/24
 }
}

Chapter 3
Setting Up Load Balancing in NAT Mode

3-5

vrrp_instance internal {
 state BACKUP
 interface enp0s9
 virtual_router_id 92
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the internal network interface
 virtual_ipaddress {
 10.0.0.100/24
 }
}

Define a virtual HTTP server on the virtual IP address 192.168.1.1
virtual_server 192.168.1.1 80 {
 delay_loop 10
 protocol TCP
Use round-robin scheduling in this example
 lb_algo rr
Use NAT to hide the back-end servers
 lb_kind NAT
Persistence of client sessions times out after 2 hours
 persistence_timeout 7200

 real_server 10.0.0.71 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }

 real_server 10.0.0.72 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }
}

The following configuration changes are required:

• Configure the firewall rules on each Keepalived server (primary and backup) that
you are configuring as a load balancer. See Configuring Firewall Rules for
Keepalived NAT-Mode Load Balancing.

• Configure a default route for the virtual IP address of the load balancer's internal
network interface on each backend server that you intend to use with the
Keepalived load balancer. See Configuring Backend Server Routing for
Keepalived NAT-Mode Load Balancing.

See Installing and Configuring Keepalived for more information.

Chapter 3
Setting Up Load Balancing in NAT Mode

3-6

Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing
If you configure Keepalived to use NAT mode for load balancing with the servers on the
internal network, the Keepalived server handles all inbound and outbound network traffic and
hides the existing backend servers by rewriting the source IP address of the real backend
server in outgoing packets with the virtual IP address of the external network interface.

The following example shows how to move interface enp0s9 to the internal zone, while
interface enp0s8 remains in the public zone.

To configure a Keepalived server to use NAT mode for load balancing:

1. Check the state of any active firewall zones on the system:

sudo firewall-cmd --get-active-zones

public
 interfaces: enp0s8 enp0s9

2. Configure the firewall so that the interfaces on the external network side are in a zone
that's different from the interfaces on the internal network side.

sudo firewall-cmd --zone=public --remove-interface=enp0s9

sudo firewall-cmd --zone=internal --add-interface=enp0s9

sudo firewall-cmd --permanent --zone=public --remove-interface=enp0s9

sudo firewall-cmd --permanent --zone=internal --add-interface=enp0s9

Confirm that the changes have been applied:

sudo firewall-cmd --get-active-zones

internal
 interfaces: enp0s9
public
 interfaces: enp0s8

3. Configure NAT mode (masquerading) on the external network interface, for example:

sudo firewall-cmd --zone=public --add-masquerade

sudo firewall-cmd --permanent --zone=public --add-masquerade

Optionally, you can query each NAT mode to ensure that both of them have been set
correctly. The query for public zone would return a yes response, and the query for
internal zone would return a no response.

sudo firewall-cmd --zone=public --query-masquerade

sudo firewall-cmd --zone=internal --query-masquerade
4. If not already enabled for the firewall, configure forwarding rules between the external

and internal network interfaces, for example:

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
 -i enp0s8 -o enp0s9 -m state --state RELATED,ESTABLISHED -j ACCEPT

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
 -i enp0s9 -o enp0s8 -j ACCEPT

Chapter 3
Setting Up Load Balancing in NAT Mode

3-7

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
 -j REJECT --reject-with icmp-host-prohibited

sudo firewall-cmd --reload
5. Enable access to the services or ports that you want Keepalived to handle.

Configuring Backend Server Routing for Keepalived NAT-Mode Load
Balancing

On each backend real servers that you intend to use with the Keepalived load
balancer, ensure that the routing table contains a default route for the virtual IP
address of the load balancer's internal network interface.

For example, if the virtual IP address is 10.0.0.100, use the ip command to examine
the routing table:

sudo ip route show

10.0.0.0/24 dev enp0s8 proto kernel scope link src 10.0.0.71

You can also use the ip command to add the default route, and then confirm the
changes:

sudo ip route add default via 10.0.0.100 dev enp0s8
sudo ip route show

default via 10.0.0.100 dev enp0s8
10.0.0.0/24 dev enp0s8 proto kernel scope link src 10.0.0.71

To make the default route for enp0s8 persist across sysem reboots, create the /etc/
sysconfig/network-scripts/route-enp0s8 file:

sudo echo "default via 10.0.0.100 dev enp0s8" |sudo tee /etc/sysconfig/network-
scripts/route-enp0s8

Enhancing Load Balancing by Using Keepalived With
HAProxy

You can use Keepalived to provide failover services for backup routers, while at the
same time also using HAProxy for load balancing and to achieve high availability
across distributed servers. The advantage of this approach is that the packet and
application layers are separated, which means that the health checks that are
performed by Keepalived for the load-balancing servers aren't impacted by the
inbound HTTP or TCP traffic that HAproxy is managing. Also, failover routing, which is
achieved by using VRRP, can be activated automatically without waiting for a client
response to time out. To learn more about the usefulness of VRRP, see Using
Keepalived With VRRP.

The practicality of using this method is that if the public-facing HAProxy load balancer
goes offline, Keepalived automatically detects this event and dynamically switches to
another HAProxy server. If the Keepalived primary router goes offline, the VRRP
settings that you configured ensure that traffic is automatically handled by the
Keepalived backup router.

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-8

The role of HAProxy in the setup is to provide inbound load balancing and session
persistence to the backend servers: Keepalived is solely responsible for monitoring the status
of HAProxy and providing an alternative routing mechanism. Using both tools in combination
provides a highly available and resilient load-balancing solution.

The instructions in the following example are similar to those in Setting Up Load Balancing in
NAT Mode. However, here HAProxy is installed on both the Keepalived primary server and
the Keepalived backup server.

The external virtual IP address is 192.168.1.1 on the 192.168.1.0/24 external network. This
IP address is dynamically assigned through NAT between the Keepalived primary server
whose IP address is 192.168.1.10, and the Keepalived backup server, whose external IP
address is 192.168.1.11.

The internal network is hosted on the 10.0.0.0/24 subnet. For IP addresses, websvr1 has
10.0.0.71 while websvr2 has 10.0.0.72.

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-9

Figure 3-2 Keepalived and HAProxy Configuration for High Availability Load
Balancing

The following example shows the configuration in the /etc/keepalived/
keepalived.conf file on the primary server

global_defs {

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-10

 notification_email {
 root@example.com
 }

 notification_email_from srv1@example.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group vg1 {
 group {
 external
 internal
 }
}

vrrp_script chk_haproxy {
 script "killall -0 haproxy" # check the haproxy process
 interval 2 # every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance external {
 state MASTER
 interface enp0s8
 virtual_router_id 91
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
 virtual_ipaddress {
 192.168.1.1/24
 }
 track_script {
 chk_haproxy
 }
}

vrrp_instance internal {
 state MASTER
 interface enp0s9
 virtual_router_id 92
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
 virtual_ipaddress {
 10.0.0.100/24
 }
}

In the previous example, the configuration for the backup Keepalived server is identical, but
the state value must be set to BACKUP. You don't need to set up a virtual_server because
in this scenario, Keepalived is only used to route traffic, not to perform load balancing.

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-11

For more information about configuring Keepalived and setting the appropriate firewall
rules, see Setting Up Load Balancing by Using Keepalived.

The HAProxy settings are configured in the /etc/haproxy/haproxy.cfg file. The
settings are identical for both HAProxy installations because Keepalived dynamically
routes from one configuration to the other automatically, as needed:

global
 daemon
 log 127.0.0.1 local0 debug
 maxconn 4000
 nbproc 1

defaults
 mode http
 retries 3
 timeout connect 5s
 timeout client 25s
 timeout server 25s
 timeout queue 10s

listen http-incoming
 mode http
 bind internal-server-ip:80
 option http-server-close
 option forwardfor
 default_backend app

backend app
 balance roundrobin
 option httpchk HEAD / HTTP/1.1\r\nHost:\ localhost
 option httpclose
 option forwardfor
 server websrv1 192.168.1.71:80 weight 1 maxconn 512 check
 server websrv2 192.168.1.72:80 weight 1 maxconn 512 check

In the previous example the option http-server-close and option httpclose
options are used to stop idle connections. This configuration shows the round-robin,
load-balancing strategy. If no option is specified, then HAProxy defaults to using the
option http-keep-alive option, which keeps any new connections open until every
request and response journey that is associated with them is processed.

For more information about configuring HAProxy and setting the appropriate firewall
rules, see Setting Up Load Balancing by Using HAProxy.

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-12

4
Setting Up Load Balancing by Using NGINX

This chapter describes how to configure NGINX as a load balancer and includes installation
instructions and configuration directives. For an overview of NGINX, see About NGINX.

Installing NGINX
Before you can use NGINX for load balancing, you must first install the software and
configure the environment.

1. Install the nginx package on each server:

sudo dnf install nginx

Depending on the intended configuration, you might need to install more modules. The
nginx-all-modules metapackage installs all of the packages. To display the complete
listing of the available modules in the package manager, use the following command:

sudo dnf search nginx-mod*

Note that if you intend to do TCP/UDP load balancing, you must install the nginx-mod-
stream module package.

2. Enable access to the services or ports that you want NGINX to handle.

For example, you would accept incoming TCP requests on port 80 as follows:

sudo firewall-cmd --zone=zone --add-port=80/tcp

sudo firewall-cmd --permanent --zone=zone --add-port=80/tcp
3. If SELinux is set to enforcing mode on the system, add a rule to allow NGINX to relay

HTTP traffic to any configured backend servers:

sudo setsebool httpd_can_network_relay on
4. Enable and start the nginx service on the server:

sudo systemctl enable --now nginx

If you change the NGINX configuration, reload the nginx service:

sudo systemctl reload nginx

NGINX Configuration Directives
NGINX configuration can be spread across several files to specify different configuration
directives and set the values for configuration variables. Configuration is stored in /etc/
nginx. The base configuration is stored in /etc/nginx/nginx.conf, while site specific
configuration tends to be created within distinct files in /etc/nginx/conf.d/. By convention,
site configurations tend to use the full domain name for the file name and would have a .conf
suffix.

4-1

In these examples, a configuration has the following general format:

http {
 server {
 listen 80;
 listen [::]:80;
 server_name example.com www.example.com;
 location / {
 root /usr/share/nginx/html/example.com;
 index index.html;
 }
 }
}

The previous example shows an HTTP server configuration for a web server that
serves content from the web root directory at /usr/share/nginx/html/example.com.

The following configuration directives are useful for configuring load balancing:

http, https, stream
Defines the protocol for which the settings apply. Use https for TLS connections to
the load balancer and stream for generic TCP/UDP traffic.

server
Defines how to handle incoming traffic from the specified ports for the chosen
protocol.
To configure at least one listening port for IPv4, use the listen keyword:

listen 80;

To listen on IPv6 interfaces, prepend the [::]: directive to the port number, for
example:

listen [::]:80

Note that the listen lines can be duplicated to specify more than one port for a
server{} block.
Use the server_name keyword to define the hostname or domain name that the server
responds to. If you don't specify this value, the configuration applies to any incoming
connection, however you might need to comment out the default server configuration
within /etc/nginx/nginx.conf to avoid conflicting configuration definitions.

location
The location directive defines path mappings and behavior, depending on incoming
requests on the server. At minimum, you must have a value for the web root that's
indicated with the value /. The behavior is defined by setting values within a location
block.
For example, to configure a simple web server that serves content from a directory on
the server, use the root keyword and specify the content's directory location.
The proxy_pass directive can be used to implement a reverse proxy service. Traffic is
proxied onto the specified server or group of servers, as defined in an upstream
directive.
For example, you would proxy inbound HTTP traffic to a website that's hosted on
websrv1.example.com on port 9090 as follows:

Chapter 4
NGINX Configuration Directives

4-2

server {
 location / {
 proxy_pass http://websvr1.example.com:9090
 }
}

You can also specify a server group by referencing its defined upstream name.

upstream
An upstream directive is used to define a group of one or more servers where the content is
stored and which can be used by the proxy_pass directive. For example, you can create an
upstream group of servers called backend as follows:

upstream backend {
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
 }

To use this group, the proxy_pass directive is specified:

proxy_pass http://backend

The upstream directive is the key configuration component that's used to control load-
balancing methods and algorithms. For more information, see http://nginx.org/en/docs/http/
ngx_http_upstream_module.html.

Configuring Round Robin Load Balancing by Using NGINX
The default load balancing method that's used by NGINX is the round-robin method. This
method proxies traffic sequentially to each server in a defined group.

Create a configuration file for the load-balancer at /etc/nginx/conf.d/example.com.conf,
where example.com is the name of the external domain where inbound traffic is directed. The
file would contain the following content:

http
{
 upstream backend {
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
 }

 server {
 listen 80;
 server_name example.com
 www.example.com;
 location / {
 proxy_pass http://backend;
 }
 }
}

In the upstream backend configuration block, list the backend servers within the environment.
For example, substitute server1.example.com with the fully qualified domain name or the
hostname of a web server instance.

Chapter 4
Configuring Round Robin Load Balancing by Using NGINX

4-3

http://nginx.org/en/docs/http/ngx_http_upstream_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html

Set the server_name directive with the domain name or names that you intend to use
publicly for the load balanced service. For example, substitute example.com and
www.example.com to match the company domain.

You can optionally append more failover options, such as max_fails and
fail_timeout, to the end of each entry to add resilience in case any of the servers
goes offline.

After ensuring that the configuration is valid, enable it by reloading NGINX on the
public-facing and backend servers:

sudo systemctl reload nginx

Using Weighted Round Robin Load Balancing With NGINX
When using servers with varying physical locations or differing hardware resources,
you can configure NGINX to allocate more of the traffic to servers that provide less
latency and can handle more of a load. This method is referred to as the weighted
round-robin method.

You can configure weighted round-robin configuration by appending a weight value to
the end of each entry in the server group section of the NGINX site configuration file.
Set the weight of the slowest server to 1, and then set the weight of other servers
relative to that setting.

The following example shows how servers can handle multiple times the load of the
base server. One server receives twice the amount of traffic, while the other server
receives four times the amount:

upstream backend {
 server server1.example.com weight=1;
 server server2.example.com weight=2;
 server server3.example.com weight=4;
}

Reload NGINX to apply the new configuration:

sudo systemctl reload nginx

Using Least-Connected Load Balancing With NGINX
The least-connected load balancing method is used to automatically control the load
on application instances, mostly in situations where different inbound requests might
take longer to process than other requests.

If you're using the least-connected load balancing method, NGINX always directs new
incoming requests to the server with the least number of active requests. This load
balancing strategy is intended to ensure that no busy servers are overloaded with new
requests, while other servers that can handle the load remain idle.

You can activate the least-connected load balancing method for NGINX by specifying
the least-conn directive as part of the server group configuration, for example:

upstream backend {
 least_conn;
 server server1.example.com;
 server server2.example.com;

Chapter 4
Using Weighted Round Robin Load Balancing With NGINX

4-4

 server server3.example.com;
}

Reload NGINX to apply the new configuration:

sudo systemctl reload nginx

Adding Session Persistence for NGINX
If you're performing load balancing of a web application, ensure that the same backend
server that handled inbound requests continues to do so for the same source. This
configuration is important in cases where a website or web service must preserve log-in
sessions between requests, cancel an existing request, or monitor the progress of large
backend transactions.

To achieve this behavior, activate the IP hash method for NGINX by specifying the ip_hash
directive as part of the server group configuration, for example:

upstream backend {
 ip_hash;
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
}

Reload NGINX to apply the new configuration:

sudo systemctl reload nginx

Chapter 4
Adding Session Persistence for NGINX

4-5

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Load Balancing in Oracle Linux
	About Load Balancing
	About HAProxy
	About Keepalived
	Using Keepalived With VRRP
	About Combining Keepalived With HAProxy for High-Availability Load Balancing
	About NGINX

	2 Setting Up Load Balancing by Using HAProxy
	Installing and Configuring HAProxy
	HAProxy Configuration Directives
	Configuring Round Robin Load Balancing by Using HAProxy
	Using Weighted Round Robin Load Balancing with HAProxy
	Adding Session Persistence for HAProxy

	3 Setting Up Load Balancing by Using Keepalived
	Installing and Configuring Keepalived
	Keepalived Configuration Directives
	Setting Up Load Balancing in NAT Mode
	Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing
	Configuring Backend Server Routing for Keepalived NAT-Mode Load Balancing

	Enhancing Load Balancing by Using Keepalived With HAProxy

	4 Setting Up Load Balancing by Using NGINX
	Installing NGINX
	NGINX Configuration Directives
	Configuring Round Robin Load Balancing by Using NGINX
	Using Weighted Round Robin Load Balancing With NGINX
	Using Least-Connected Load Balancing With NGINX
	Adding Session Persistence for NGINX

