
Oracle Linux 8
Profiling For Performance Analysis With
Gprofng

F77421-04
January 2024

Oracle Linux 8 Profiling For Performance Analysis With Gprofng,

F77421-04

Copyright © 2023, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License iv

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility iv

Diversity and Inclusion v

1 About gprofng and Profiling

2 How to Install gprofng

3 Getting Started

4 gprofng Command Reference

5 How to Store gprofng Options for Reuse

6 How to Work With gprofng and Threaded Applications

7 Known Issues

Incorrect Source and Disassembly Percentages 7-1

Internal gprofng Function Displayed in Function View 7-1

iii

Preface

Oracle Linux 8: Profiling For Performance Analysis With Gprofng describes how to
install and use the gprofng tool to find performance bottlenecks in executable
programs.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–
Share Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute
this content or an adaptation of it, you must provide attribution to Oracle and retain the
original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://www.oracle.com/corporate/
accessibility/learning-support.html#support-tab.

Preface

iv

https://docs.oracle.com/en/operating-systems/oracle-linux/8/gprofng/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

v

1
About gprofng and Profiling

Gprofng is a next generation application profiling tool that can be used to diagnose
performance bottlenecks in software applications.

The tool can be used to profile programs compiled with toolchains released by Oracle Linux.
These programs can be written using the C, C++, Java and Scala programming languages
for the x86_64 and aarch64 processor architectures. The full extent of the data that can be
collected differs between CPU models and types.

Oracle developed this tool and contributed it back upstream to the binutils project so that
it's now part of the GNU binutils tools suite.

For more information, see https://sourceware.org/binutils/wiki/gprofng and the gprofng(1)
manual page.

1-1

https://sourceware.org/binutils/wiki/gprofng

2
How to Install gprofng

Installing the binutils-gprofng package on Oracle Linux 8.

Before installing the binutils-gprofng package, enable the ol8_addons repository:

sudo dnf config-manager --enable ol8_addons

sudo dnf update -y

For more information, see Oracle Linux: Managing Software on Oracle Linux.

The binutils-gprofng package provides the gprofng profiling tool and its prerequisites on
Oracle Linux systems.

1. Install the binutils-gprofng package.

Use the dnf command to install the package:

sudo dnf install -y binutils-gprofng
2. Verify that the binutils-gprofng package has installed successfully.

Use the gprofng command to verify its presence:

gprofng --version
The binutils-gprofng package is installed.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

3
Getting Started

Creating an experiment directory, capturing performance data, and inspecting the results.

Install the binutils-gprofng package. For more information, see How to Install gprofng.

The gprofng profiling tool can be used to assist development teams seeking to optimize their
code and improve application performance.

1. Set up the experiment directory.

You can run the gprofng command inside any directory because it generates the
necessary directory structure automatically.

Consider creating a separate directory for the performance experiments. That directory
can be stored anywhere, for example in the user home directory or as an unversioned
subdirectory within a code project folder.

2. Collect performance data for a program.

Use the gprofng collect app command to start the application and collect performance
data while it runs:

gprofng collect app /path/to/application -options
3. Review the performance data that has been captured.

Use the gprofng display text command to analyze the performance data. By default,
experiment results are stored in an experiment directory that follows the test.n.er
naming pattern, where n is a numerical identifier for the test and .er is a required suffix.

For example, to review the performance data stored in the test.1.er directory, run the
following command:

gprofng display text -functions test.1.er
An experiment directory has been created, performance data was captured, and the test
directory in which that performance data is stored can be analyzed by using the gprofng
display command.

3-1

4
gprofng Command Reference

This table provides information about the gprofng command.

Action Command Description

Collect performance data. gprofng collect app Collects performance data
about a running application
and stores it in the experiment
directory.

Review performance results in
a terminal.

gprofng display text Displays performance data
from the specified experiment
directories in ASCII plain-text
format.

Review performance data in a
web browser.

gprofng display html Generates a HTML structure
from the specified experiment
directories.

Review the source and
disassembly code.

gprofng display src Displays the source code
interleaved with instructions.

Archive an experiment
directory.

gprofng archive Copies shared libraries, object
files and source code to the
experiment directory for later
analysis.

When collecting performance data, it's possible to specify the experiment directory by using
the -O option:

gprofng collect app -O experiment-directory-name.er /path/to/application -options

Note that .er is a required suffix for any experiment directory name.

To analyze performance data collected for each function, use the -functions option with the
gprofng display text command:

gprofng display text -functions experiment-directory-name.er

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name
CPU CPU
 sec. % sec. %
5.554 100.00 5.554 100.00 <Total>
5.274 94.95 5.274 94.95 mxv_core
0.140 2.52 0.270 4.86 init_data
0.090 1.62 0.110 1.98 erand48_r
0.020 0.36 0.020 0.36 __drand48_iterate
0.020 0.36 0.130 2.34 drand48
0.010 0.18 0.010 0.18 _int_malloc
0. 0. 0.280 5.05 __libc_start_main
0. 0. 0.010 0.18 allocate_data
0. 0. 5.274 94.95 collector_root
0. 0. 5.274 94.95 driver_mxv

4-1

0. 0. 0.280 5.05 main
0. 0. 0.010 0.18 malloc
0. 0. 5.274 94.95 start_thread

To limit the number of functions displayed, use the -limit option as follows:

gprofng display text -limit 5 -functions experiment-directory-name.er

Print limit set to 5
Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name
CPU CPU
 sec. % sec. %
5.775 100.00 5.775 100.00 <Total>
5.494 95.15 5.494 95.15 mxv_core
0.126 2.18 0.267 4.63 init_data
0.068 1.17 0.104 1.80 erand48_r
0.038 0.66 0.142 2.45 drand48

To list all the metrics that have been collected in an experiment directory, use the -
metric_list option without any other options:

gprofng display text -metric_list experiment-directory-name.er

Current metrics: e.%totalcpu:i.%totalcpu:name
Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)
Available metrics:
Exclusive Total CPU Time: e.%totalcpu
Inclusive Total CPU Time: i.%totalcpu
 Size: size
 PC Address: address
 Name: name

After you have established which metrics have been collected in an experiment
directory, select the displayed metrics by using the -metrics options, separating each
with a : character:

gprofng display text -metrics name:i.%totalcpu:e.%totalcpu -limit 10 -functions
experiment-directory-name.er

Current metrics: name:i.%totalcpu:e.%totalcpu
Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)
Print limit set to 10
Functions sorted by metric: Exclusive Total CPU Time

Name Incl. Total Excl. Total
 CPU CPU
 sec. % sec. %
 <Total> 5.775 100.00 5.775 100.00
 mxv_core 5.494 95.15 5.494 95.15
 init_data 0.267 4.63 0.126 2.18
 erand48_r 0.104 1.80 0.068 1.17
 drand48 0.142 2.45 0.038 0.66
 __drand48_iterate 0.036 0.62 0.036 0.62
 _int_malloc 0.013 0.22 0.008 0.14
 sysmalloc 0.005 0.09 0.003 0.05
 brk 0.002 0.03 0.002 0.03
 __default_morecore 0.002 0.03 0. 0.

Chapter 4

4-2

To sort the performance data according to a specific metric, for example name, add the -sort
option:

gprofng display text -metrics name:i.%totalcpu:e.%totalcpu -sort name -limit 10 -
functions experiment-directory-name.er

Current metrics: name:i.%totalcpu:e.%totalcpu
Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)
Current Sort Metric: Name (name)
Print limit set to 10
Functions sorted by metric: Name

Name Incl. Total Excl. Total
 CPU CPU
 sec. % sec. %
 <Total> 5.775 100.00 5.775 100.00
 __default_morecore 0.002 0.03 0. 0.
 __drand48_iterate 0.036 0.62 0.036 0.62
 __libc_start_main 0.280 4.85 0. 0.
 _int_malloc 0.013 0.22 0.008 0.14
 allocate_data 0.013 0.22 0. 0.
 brk 0.002 0.03 0.002 0.03
 collector_root 5.494 95.15 0. 0.
 drand48 0.142 2.45 0.038 0.66
 driver_mxv 5.494 95.15 0. 0.

Use the -disasm option and specify the function name to review metrics at an instruction or
assembly level:

gprofng display text -metrics e.totalcpu -disasm function-name experiment-directory-
name.er

For more information, see https://sourceware.org/binutils/wiki/gprofng and the gprofng(1)
manual page.

Chapter 4

4-3

https://sourceware.org/binutils/wiki/gprofng

5
How to Store gprofng Options for Reuse

Use Scripts to save gprofng display options.

There can be many ways to customize the output of the gprofng display text command,
and the -script option has been provided so that you can supply a text file containing
options for use with other experiment directories. That can be a more straightforward way to
reproduce performance views.

For example, to get a table with the inclusive and exclusive total CPU times with
percentages, limited to the first 10 lines, create a script with the following content:

Command to define the metrics
metrics name:i.%totalcpu:e.%totalcpu
Limit the views to 10 lines
limit 10
Display the function overview
functions

Note that each option has its own line in the script and no leading dash - character.

That script can then be used with the gprofng display text command as follows:

gprofng display text -script script-name experiment-directory-name.er

Command to define the metrics
Current metrics: name:i.%totalcpu:e.%totalcpu
Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)
Limit the views to 10 lines
Print limit set to 10
Display the function overview
Functions sorted by metric: Exclusive Total CPU Time

Name Incl. Total Excl. Total
 CPU CPU
 sec. % sec. %
 <Total> 5.775 100.00 5.775 100.00
 mxv_core 5.494 95.15 5.494 95.15
 init_data 0.267 4.63 0.126 2.18
 erand48_r 0.104 1.80 0.068 1.17
 drand48 0.142 2.45 0.038 0.66
 __drand48_iterate 0.036 0.62 0.036 0.62
 _int_malloc 0.013 0.22 0.008 0.14
 sysmalloc 0.005 0.09 0.003 0.05
 brk 0.002 0.03 0.002 0.03
 __default_morecore 0.002 0.03 0. 0.

5-1

6
How to Work With gprofng and Threaded
Applications

Collect performance data for multithreaded applications.

By default, the performance data for a multithreaded application is aggregated over all
threads. If the data for individual threads, or a set of threads, is needed, then filters can be
used to analyze that information.

To list all the threads for which performance data has been captured, use the -thread_list
and -threads options:

gprofng display text -thread_list -threads experiment-directory-name.er

Exp Sel Total
=== === =====
 1 all 3
Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name
CPU
 sec. %
5.775 100.00 <Total>
2.773 48.01 Process 1, Thread 3
2.722 47.13 Process 1, Thread 2
0.280 4.85 Process 1, Thread 1

In the example output you can see that the CPU times for three threads were used during
that experiment. The thread number can be used to review information for both a specific
thread or a group of threads.

To review the performance data for a specific thread, use the -thread_select option with a
thread number:

gprofng display text -limit 5 -thread_select 1 -functions experiment-directory-name.er

Print limit set to 5
Exp Sel Total
=== === =====
 1 1 3
Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name
CPU CPU
 sec. % sec. %
0.280 100.00 0.280 100.00 <Total>
0.126 44.84 0.267 95.37 init_data
0.068 24.20 0.104 37.01 erand48_r
0.038 13.52 0.142 50.53 drand48
0.036 12.81 0.036 12.81 __drand48_iterate

6-1

7
Known Issues

The following sections describe known issues in the latest gprofng release. For more
information, see https://sourceware.org/binutils/wiki/gprofng#Known_Limitations.

Incorrect Source and Disassembly Percentages
The source and disassembly listings display all percentages as zero. A future release will
resolve this problem.

Internal gprofng Function Displayed in Function View
The collector_root function might be displayed in function view. That's an internal gprofng
function that doesn't consume additional hardware resources, but to avoid any potential
confusion, a future release will hide that function by default.

7-1

https://sourceware.org/binutils/wiki/gprofng#Known_Limitations

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About gprofng and Profiling
	2 How to Install gprofng
	3 Getting Started
	4 gprofng Command Reference
	5 How to Store gprofng Options for Reuse
	6 How to Work With gprofng and Threaded Applications
	7 Known Issues
	Incorrect Source and Disassembly Percentages
	Internal gprofng Function Displayed in Function View

