
Oracle Linux 8
Creating Custom Images With Image Builder

F77249-05
November 2024

Oracle Linux 8 Creating Custom Images With Image Builder,

F77249-05

Copyright © 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About Image Builder

Blueprints 1-1

Customizations 1-2

Composer Images 1-2

2 Preparing to Use Image Builder

System Requirements 2-1

Installing Image Builder 2-1

About Default Image Builder Repositories 2-2

Creating Custom Repositories 2-3

3 Deploying Custom Image Builder Images

Creating a Blueprint 3-1

Editing a Blueprint 3-2

Creating the Image in Image Builder 3-3

4 Use Cases in Deploying Image Builder Images

Creating ISO Images for Deployment 4-1

A Image Types and Output Formats

iii

B Blueprint Format

iv

Preface

Oracle Linux 8: Creating Custom Images With Image Builder provides information about
creating customized images of Oracle Linux that you can deploy on different platforms such as
the cloud or bare metal systems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

v

https://docs.oracle.com/en/operating-systems/oracle-linux/8/ibldr/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About Image Builder

Image Builder is a tool for creating custom images of Oracle Linux for deployment on different
platforms, such as in the cloud or on bare metal systems. Images can be created based on the
host Oracle Linux version, or on different versions of Oracle Linux provided in the Image
Builder repository. Image Builder can generate these images in several different formats, such
as tar or iso.

Image Builder isn't automatically included in an Oracle Linux installation and requires a
separate package download. After installing Image Builder and completing the required system
configurations, you can use either the command line or the Cockpit web console to create
custom Oracle Linux images.

Note:

For more information about installing Image Builder, see Installing Image Builder.

To use Image Builder, you need to understand the following concepts:

• Blueprints

• Customizations

• Composer Images

Blueprints
Image Builder uses blueprints to create custom images.

A blueprint provides the specification for a custom image that Image Builder uses to create the
image. A typical blueprint specification contains general metadata, a list of packages to install,
and other customizations to apply.

Blueprints are defined in Tom's Obvious Minimal Language (TOML) format and can be created
or edited in any text editor.

Blueprint definitions follow the convention parameter = "value", with package and
customization definitions being grouped under [[packages]] or [[customizations]], as
appropriate.

For more information about the contents of a blueprint, see Blueprint Format.

When you have created a blueprint file, you must register the blueprint with Image Builder
before you can use that blueprint to create an image. See Creating a Blueprint.

When you create images based on a blueprint, those images become associated with that
blueprint in the Image Builder interface of the Cockpit web console.

1-1

Customizations
Customizations are blueprint entries that aren't package related.

Customizations are other image specifications that aren't part of package specifications. These
include predefined users and groups, SSH keys that implement system security, and other
requirements.

Customizations in blueprints are denoted depending on their scope. A customization that has a
general application, such as specifying a host name for the image, is defined in a
[customizations] block entry. More specific customizations append tags to the heading to
better identify the customization. For example, user definitions are in a
[[customizations.user]] block, while serviced customizations are under the
[[customizations.services]] heading, and so on.

Similar to package listings, customization parameters also follow the parameter = value
format.

For more information about specifying customizations in a blueprint, see Blueprint Format.

Composer Images
Composer images are images that are generated by the composer-cli compose command.

The actual creation of a custom image occurs when you run the composer-cli compose
command against a blueprint. Therefore, the image is called a composer image. A composer
image is the final result of the image building process.

Aside from the definitions that are specified in the blueprint, a composer image also includes
logs, metadata, and the processes that run to create the image.

Composer images can be produced in different output formats. For example: oci, qcow, and
tar. For each type, the system automatically installs default packages. Also, the type has
associated services that are enabled automatically when the image is deployed. For example,
for a tar image, the system automatically includes the policycoreutils and selinux-policy-
targetd packages. However, no extra services are enabled.

Customizations in the blueprint can specify other services that need to be enabled. However,
these customizations can't override the required services for an image type that are
automatically enabled when the image is deployed.

For more information about the different image types, see: Image Types and Output Formats.

Chapter 1
Customizations

1-2

2
Preparing to Use Image Builder

Before using Image Builder, complete the following:

• Fulfill the system requirements.

• Install the Image Builder component packages.

• Configure specific repositories needed by the OS image.

System Requirements
Image Builder requires a dedicated system with the following minimum configuration:

• 2-core processor

• 4 GiB of memory

• 20 GiB available disk space in the /var directory

• Access to the Internet

• Appropriate privileges for performing administrator tasks

Note:

A dedicated virtual machine can also serve as the environment for running Image
Builder.

Installing Image Builder
Describes how to install Image Builder.

Image Builder isn't automatically included in an Oracle Linux installation. This task describes
how to install and configure Image Builder.

1. Install the Image Builder packages.

sudo dnf install -y osbuild-composer composer-cli cockpit-composer bash-
completion

2. Enable the Image Builder service to automatically start after every system reboot.

sudo systemctl enable --now osbuild-composer.socket

sudo systemctl enable --now cockpit.socket

2-1

3. (Optional) Enable autocompletion for the composer-cli command by loading the
configuration script.

source /etc/bash_completion.d/composer-cli

About Default Image Builder Repositories
Composed images use Image Builder repositories to download their required packages.

The Image Builder repository contains definitions for building images based on different major
versions of Oracle Linux. You can therefore use Image Builder to build an image for a version
of Oracle Linux that's different to the version running on the Image Builder host.

Note:

The image that Image Builder creates for a release of Oracle Linux includes all the
latest packages for that release. You can't build an image for a specific update level.

Image Builder doesn't use the system repositories that are defined in /etc/yum.repos.d/ in
a typical Oracle Linux installation. Instead, the repository definitions for Image Builder are
automatically installed in /usr/share/osbuild-composer/repositories. In this
directory, repository definitions are contained in files in JSON format, which is different from the
*.repo files in /etc/yum.repos.d/.

Each file corresponds to the latest update of a major version of Oracle Linux. For example, the
following extract is from the ol-8.json repository file for the latest Oracle Linux 8 release on
the x86_64 platform.

{
 "x86_64": [
 {
 "name": "baseos",
 "baseurl": "https://yum$ociregion.$ocidomain/repo/OracleLinux/OL8/
baseos/latest/x86_64",
 "check_gpg": false,
 "rhsm": false
 },
 {
 ...other repositories...
 }
]
}

The repository definitions in the JSON file correspond to information in the parallel *.repo file
in the /etc/yum.repos.d directory. In the previous example, the JSON file is based on
the /etc/yum.repos.d/oracle-linux-ol8.repo file.

You can override the default repositories in /usr/share/osbuild-composer/
repositories by defining custom repositories in a different location.

Chapter 2
About Default Image Builder Repositories

2-2

Creating Custom Repositories
Learn how to create a custom repository.

This task describes how to create a separate custom repository file to override the default
repositories that are created when you install Image Builder.

1. Create a directory to store the customized repositories.

sudo mkdir -p /etc/osbuild-composer/repositories

2. Using a text editor, create a file for the version of Oracle Linux image you want to create.

Or, you can copy a default repository file to use as a template. For example, for an Oracle
Linux 8 image, you would copy the Oracle Linux 8 JSON file from the default location.

sudo cp /usr/share/osbuild-composer/repositories/ol-8.json /etc/osbuild-
composer/repositories/

3. Following the repository JSON specification, include the following information for each
repository in the file that you created:

• System architecture of the OS.

• name: name of the repository.

• baseurl: the URL of the yum repository.

• check_gpg: must always be set to false.

• rhsm: must always be set to false.

The following is an example of a JSON file for an Oracle Linux 8 image:

{
 "x86_64": [
 {
 "name": "baseos",
 "baseurl": "https://yum$ociregion.$ocidomain/repo/
OracleLinux/OL8/baseos/latest/x86_64",
 "check_gpg": false,
 "rhsm": false
 },
]
}

4. (Optional) Verify that the URLs in the file are correct by comparing them to the
corresponding repository file in /etc/yum.repos.d.

For the current example, you would use an Oracle Linux 8 repository file for verification.

cat /etc/yum.repos.d/oracle-linux-ol8.repo

5. Restart osbuild-composer.service.

sudo systemctl restart osbuild-composer.service

Chapter 2
Creating Custom Repositories

2-3

3
Deploying Custom Image Builder Images

Deploying a custom image requires the following steps:

1. Create a blueprint, or edit an existing blueprint.

2. Import the blueprint.

3. Create the image based on the blueprint.

4. Download the resulting image.

5. Install the software according to the image specifications.

Creating a Blueprint
Learn how to create a blueprint.

The following procedure describes how to create a blueprint configuration using the CLI. Or,
you can create a blueprint using the Cockpit web console interface, see Oracle Linux: Using
the Cockpit Web Console for more details.

1. Create a blueprint configuration as follows:

a. Using any text editor, create a text file.

b. In the text file, provide the blueprint specifications for the base distro, the packages
you want installed, and any other image customizations as required.

Ensure that you provide the basic metadata information about the blueprint. For
reference, see Blueprint Format

c. Save the file as a toml file. For example, myblueprintfile.toml.

d. Push or import the blueprint into Image Builder, for example:

sudo composer-cli blueprints push myblueprintfile.toml

2. (Optional) View the blueprint configuration, using the name you specified in the blueprint
metadata name entry:

sudo composer-cli blueprints show myblueprint

3. Verify that the blueprint's components and versions and corresponding dependencies are
valid.

sudo composer-cli blueprints depsolve myblueprint

3-1

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

If Image Builder is unable to validate the dependencies, delete the osbuild-composer
cache.

sudo rm -rf /var/cache/osbuild-composer/*

sudo systemctl restart osbuild-composer

Editing a Blueprint
Learn how to edit an existing blueprint.

The following procedure describes how to edit an existing blueprint configuration using the CLI.
Alternatively, you can edit a blueprint using the Cockpit web console interface, see Oracle
Linux: Using the Cockpit Web Console for more details.

1. Edit an existing blueprint as follows:

a. (Optional) List the existing blueprints.

sudo composer-cli blueprints list

b. Save or export the blueprint you want to edit.

sudo composer-cli blueprints save myblueprint

The blueprint specification file is saved as the name of the blueprint defined in the
metadata, with the .toml extension, in the current directory.

c. Using a text editor, edit the blueprint specification file by revising package and
customization entries as required.

d. Remove the line packages = [] if it exists in the blueprint.

e. Update the version by incrementing the number as appropriate.

Ensure that the version follows the scheme in https://semver.org/.

f. Save the changes.

g. Push or import the blueprint specification file into Image Builder.

sudo composer-cli blueprints push myblueprintfile.toml

2. (Optional) View the revised blueprint configuration.

sudo composer-cli blueprints show myblueprint

3. Verify that the blueprint's components, versions, and corresponding dependencies are
valid.

sudo composer-cli blueprints depsolve myblueprint

Chapter 3
Editing a Blueprint

3-2

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://semver.org/

If Image Builder is unable to validate the dependencies, remove the osbuild-composer
cache.

sudo rm -rf /var/cache/osbuild-composer/*

sudo systemctl restart osbuild-composer

Creating the Image in Image Builder
Learn how to create an image based on a blueprint.

You must have an existing blueprint to use to create an image.

The following task describes how to create a custom image based on a specified blueprint and
how to download the resulting composer image.

1. Create the image with the blueprint specifications.

sudo composer-cli compose start myblueprint image-type

For a list of valid image types, see Image Types and Output Formats. Alternatively, type:

sudo composer-cli compose types

While the process is running in the background, the composer image's UUID is displayed.

2. Use the UUID to track the progress of the image building process with the following
command:

sudo composer-cli compose info image-uuid

The image's status indicates FINISHED when Image Builder has completed the build
process.

Tip:

The output of the sudo composer-cli compose info command is verbose. Pipe
the output of the command to head to see only the current status:

sudo composer-cli compose info image-uuid | head -1

3. Download the image file.

sudo composer-cli compose image image-uuid

To download the image's metadata and logs, enter:

sudo composer-cli compose [metadata|logs] image-uuid

Chapter 3
Creating the Image in Image Builder

3-3

4
Use Cases in Deploying Image Builder Images

Examples of using Image Builder to create and deploy different image types.

This chapter shows cases where Image Builder is used to create and deploy images for
specific setups and configurations.

Creating ISO Images for Deployment
Learn how to use the Image Builder CLI to create an ISO image.

You must have a valid blueprint with the specifications you require for the image. This blueprint
must be pushed or imported to Image Builder. To fulfill these requirements, see Creating a
Blueprint or Editing a Blueprint.

Perform this procedure to create an ISO image which installs the OS on a bare metal system.
At the end of the procedure, an .iso file is created that contains the following:

• Standard Anaconda installer ISO

• Embedded Oracle Linux system tar file

• Kickstart file that installs the commit with the minimum default requirements

The installer ISO contains a preconfigured system image that you can use to install on a bare
metal system.

1. (Optional) Verify that the blueprint for the ISO image is in Image Builder.

sudo composer-cli blueprints show myblueprint

2. Create the ISO image.

sudo composer-cli compose start myblueprint image-installer

While the process is running in the background, the composer image's UUID is displayed.

3. Check the status of the image.

sudo composer-cli compose info image-uuid

Repeat this check until the status indicates FINISHED when Image Builder has completed
the build process.

4. Download the ISO image file.

sudo composer-cli compose image image-uuid

The ISO image file contains a *.tar file which is the OS image to be installed on a system.

5. (Optional) Mount the downloaded image and extract the contents.

4-1

a. Mount the downloaded image.

sudo mount -o ro iso-image /mnt

iso-image includes the full path and the name of the ISO image file.

The /mnt/ mount point contains the liveimag.tar.gz file.

b. Extract the contents of the *.tar file

tar xvf /mnt/liveimg.tar.gz

6. Select the appropriate method for installing the OS.

For example, you can use the ISO image as an installer when booting a system from a
location where you want to automatically load the image to a hard disk. Otherwise, you can
extract the image file, as described, and use this file to manually deploy the image to a
target environment (such as a cloud environment, virtual machine, and so on).

For more information about installing Oracle Linux 8, see Oracle Linux 8: Installing Oracle
Linux.

Chapter 4
Creating ISO Images for Deployment

4-2

https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/

A
Image Types and Output Formats

Image Builder can generate different types of image that can be deployed on specific
platforms.

Image Description Command Image Type Output File Extension

Oracle Linux optical disc
image

image-installer .iso

Oracle Cloud Infrastructure
images

oci .qcow2

TAR Archive tar .tar
QEMU QCOW2 image qcow .qcow2
Azure Disk Image vhd .vhd
Amazon Machine Image Disk ami .raw

To list the types of image that you can build, run the following command:

sudo composer-cli compose types

A-1

B
Blueprint Format

Blueprint content consists of basic metadata information, package information, and
customizations.

A blueprint provides the specification for an Image Builder custom image. Elements in a typical
blueprint file include: 1) basic metadata, 2) package listings, and 3) other customizations. All
configuration entries in a blueprint are defined using the parameter = "value" format.

Metadata and package information are defined at the root of the blueprint.

Basic Metadata Information

The blueprint's metadata provides general information about the blueprint itself. The metadata
is entered at the top of the file and consists of:

• name: The name of the blueprint (required).

• description: A description for the blueprint (optional).

• version: A version number for the blueprint (required). The version follows the semantic
versioning scheme in https://semver.org/.

• distro: The required distro in the Image Builder repository, which the image is based on
(optional). If the distro value is empty, the image is based on the host image distro.

name = "myblueprint"
 description = "My Blueprint"
 version = "0.0.2"
 distro = "ol-8"

Package Information

Package information is a general term that identifies a list of packages, modules, containers,
and groups. Each entry has a corresponding heading in the format [[heading]].

The parameters under each heading depend on what the heading describes. For example
package and module lists require the name and version of the package. The version format
follows dnf version specifications. For example, the version for a major release is specified as
n.n.n, such as 8.7.0. To specify the latest package version, enter an asterisk (*) in place of the
version number. For a minor release, type major-number.*, such as 8.*.

Containers and groups require different information and use different parameters. Each
package, module, container, or group listing must have its own heading, as shown in the
following example:

[[packages]]
name = "tmux"
version = "3.5"

[[packages]]
name = "python3"
version = "3.9.18"

B-1

https://semver.org/

[[groups]]
name = "graphical-admin-tools"

• Packages: Are defined in a [[packages]] block. Each entry requires the package name
and version.

• Package groups: Are defined in a [[groups]] block. Each entry requires only the name of
the package group.

Note:

A package group is a set of related packages defined as such in a repository.
Therefore, a package group has its own blueprint heading [[groups]], to distinguish
it from an individual package.

Customizations

Customizations include any other specifications for the image that aren't associated with
packages. For example: users, groups, and keys.

Customizations are defined under the heading [customizations], with more specific
customizations appending a keyword to the heading for better identification, for example
[[customizations.locale]]. Customizations typically include more parameters than package
information entries.

The following example shows customizations for the image's hostname, locale, time zone, and
groups.

[customizations]
hostname = "system1"

[[customizations.locale]]
languages = ["en_GB.utf8"]
keyboard = "gb"

[[customizations.timezone]]
timezone = "Europe/Dublin"
ntpservers = ["uk.pool.ntp.org"]

[[customizations.group]]
name = "students"

Other custom entries that you can define include the following:

• Users: Contains all the required details that apply to the specific user account, such as the
user's name, home directory, the user's default shell, groups to which the user is assigned,
and so on.

• SSH key: Contains the particular user's name and the public SSH key that you create for
the user. This key is added to the user's authorized_keys file.

• Kernel: Contains arguments to append to the bootloader's command line.

Appendix B

B-2

• Firewall ports: Contain the list of ports that you want to open. The ports are specified by
using the port:protocol format, for example, 22:tcp.

• Firewall services: A separate listing that contains a list of services that you enable and
disable for the image. To identify which services you can enable or disable, run the
firewall-cmd --get-services command.

• Systemd services: Similar to firewall services, this entry contains a list of systemd services
that you enable and disable for an image.

The preceding list is partial. For a complete list of blueprint entries, see https://osbuild.org/
docs/user-guide/blueprint-reference/.

Appendix B

B-3

https://osbuild.org/docs/user-guide/blueprint-reference/
https://osbuild.org/docs/user-guide/blueprint-reference/

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Image Builder
	Blueprints
	Customizations
	Composer Images

	2 Preparing to Use Image Builder
	System Requirements
	Installing Image Builder
	About Default Image Builder Repositories
	Creating Custom Repositories

	3 Deploying Custom Image Builder Images
	Creating a Blueprint
	Editing a Blueprint
	Creating the Image in Image Builder

	4 Use Cases in Deploying Image Builder Images
	Creating ISO Images for Deployment

	A Image Types and Output Formats
	B Blueprint Format

