
Oracle® Fusion Middleware
Understanding OIG Configuration Utility

12c (12.2.1.4.0)
E98775-02
October 2019

Oracle Fusion Middleware Understanding OIG Configuration Utility, 12c (12.2.1.4.0)

E98775-02

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction and Roadmap

About OIG Configuration Utility 1-1

Document Scope and Audience 1-2

Guide to this Document 1-2

Related Documentation 1-2

2 About OIG Configuration Utility

Utility Structure and Contents 2-1

Config Files 2-2

oig-utility-config.json 2-3

oig-configuration-attributes.json 2-3

inputs.properties 2-4

3 Using OIG Configuration Utility

Interactive Mode and Silent Mode 3-1

Interactive Mode 3-2

Silent Mode 3-4

Baselines and Restoration 3-5

Creating a Baseline 3-5

Restoring System from a Baseline File 3-6

Gestures and Operations 3-6

Reports 3-7

4 Adding a Gesture

Extending AbstractGesture 4-1

Overriding Gesture Methods 4-1

Extending AbstractGestureOperation 4-2

Overriding GestureOperation Methods 4-2

Implementing Attributes 4-3

Defining Options 4-4

iii

Defining Required Parameters 4-6

Deploying a Gesture 4-7

iv

1
Introduction and Roadmap

Making manual configuration changes to a Oracle WebLogic Server using the UI can
require multiple steps, and it can be difficult to verify that all of the necessary changes
were made correctly. It's easy for input errors to occur, leading to incorrect system
configurations, and the difficult task of determining which settings need to be adjusted
to get the system to work properly. OIG Configuration Utility provides the ability to
automate and verify configuration changes, and to restore a system to a known
configuration.

• About OIG Configuration Utility
The OIG Configuration Utility is designed to simplify configuration tasks. Rather
than the manual process of changing dozens of values in the WebLogic Server UI,
the configuration utility enables you to perform a complete configuration update in
one step by applying a set of configuration values to the system. The utility makes
a backup of the current system settings before applying any changes. If a problem
arises due to a configuration change, you can use the utility to restore to a
previous configuration.

• Document Scope and Audience
This document describes the Oracle Identity Governance (OIG) tool. It explains
how to use the OIG utility command line interface to configure system settings,
either in interactive mode with user input, or silent mode. It also explains how you
can extend the framework behind the OIG utility to create custom configuration
gestures that can be used by the OIG utility to perform configuration operations.

• Guide to this Document

• Related Documentation

About OIG Configuration Utility
The OIG Configuration Utility is designed to simplify configuration tasks. Rather than
the manual process of changing dozens of values in the WebLogic Server UI, the
configuration utility enables you to perform a complete configuration update in one
step by applying a set of configuration values to the system. The utility makes a
backup of the current system settings before applying any changes. If a problem
arises due to a configuration change, you can use the utility to restore to a previous
configuration.

Which attributes are modified in WebLogic Server are determined by the gestures and
operations that are executed by the OIG Configuration Utility. A gesture consists of
one or more operations, where an operation performs a set of configurations within the
gesture’s domain. For example, the “tune” gesture provides three operations to tune
the performance of three aspects of WebLogic Server: database, JVM, and OIM. To
tune the JVM performance of a WebLogic Server, you set the values related to JVM
performance in the attributes file and call the utility, executing the JVM tuning
operation from the tune gesture. You can implement your own gestures and use them
with the utility; see Adding a Gesture for more information.

1-1

Document Scope and Audience
This document describes the Oracle Identity Governance (OIG) tool. It explains how to
use the OIG utility command line interface to configure system settings, either in
interactive mode with user input, or silent mode. It also explains how you can extend
the framework behind the OIG utility to create custom configuration gestures that can
be used by the OIG utility to perform configuration operations.

This document is written for WebLogic Server administrators and operators who
configure and maintain WebLogic Server systems and provide support to users. It is
assumed that readers are familiar with configuring and administrating WebLogic, Java,
MBeans, JavaScript Object Notation (JSON), and the operating systems and platforms
where WebLogic Server is installed.

Guide to this Document
This document is organized as follows:

• This chapter introduces the organization of this guide and lists related
documentation.

• About OIG Configuration Utility describes the contents and structure of OIG
Configuration Utility, including configuration and input files.

• Using OIG Configuration Utility describes how to use OIG Configuration Utility,
the differences between silent and interactive modes, creating baselines and
restoring a configuration from a baseline, gestures, and reports.

• Adding a Gesture describes how to extend OIG Configuration Utility’s framework
to provide additional gestures and operations to the utility.

Related Documentation
For information about tuning Oracle WebLogic Server, see:

• Top Tuning Recommendations for WebLogic Server in Fusion Middleware Tuning
Performance of Oracle WebLogic Server for recommendations on tuning
WebLogic Server and its application.

• Understanding WebLogic Server MBeans in Fusion Middleware Developing
Custom Management Utilities Using JMX for Oracle WebLogic Server for
information on using MBeans to configure WebLogic Server.

• Monitor and Tune documentation for Oracle WebLogic Server, which provides
additional resources for monitoring, tuning, administering, and troubleshooting
WebLogic Server.

Chapter 1
Document Scope and Audience

1-2

https://docs.oracle.com/middleware/12213/wls/PERFM/intro.htm#PERFM107
https://docs.oracle.com/middleware/12213/wls/JMXCU/understandwls.htm#JMXCU112
https://docs.oracle.com/middleware/12213/wls/wls-monitortune.htm

2
About OIG Configuration Utility

The OIG Configuration Utility is designed to simplify configuration tasks. Rather than
the manual process of changing dozens of values in the WebLogic Server UI, the
configuration utility enables you to perform a complete configuration update in one
step by applying a set of configuration values to the system. The utility makes a
backup of the current system settings before applying any changes. If a problem
arises due to a configuration change, you can use the utility to restore to a previous
configuration.

Which attributes are modified in WebLogic Server are determined by the gestures and
operations that are executed by the OIG Configuration Utility. A gesture consists of
one or more operations, where an operation performs a set of configurations within the
gesture’s domain. For example, the “tune” gesture provides three operations to tune
the performance of three aspects of WebLogic Server: database, JVM, and OIM. To
tune the JVM performance of a WebLogic Server, you set the values related to JVM
performance in the attributes file and call the utility, executing the JVM tuning
operation from the tune gesture. You can implement your own gestures and use them
with the utility; see Adding a Gesture for more information.

• Utility Structure and Contents
The installation directory of the OIG Configuration Utility contains the utility itself,
oig-config-utility.sh. This directory also contains the following directories
used by the utility:

• Config Files
The config/ directory contains the files oig-utility-config.json, oig-
configuration-attributes.json, and inputs.properties. These files are used
to configure the utility, set the values to which the utility will configure WebLogic
Server attributes, and pass inputs to the utility, respectively.

Utility Structure and Contents
The installation directory of the OIG Configuration Utility contains the utility itself, oig-
config-utility.sh. This directory also contains the following directories used by the
utility:

Directory Description

backup/ Contains copies of the latest state, which are
implicitly created after each operation.

baseline/ Contains baseline images created by the
utility. These files contain the current values of
the system attributes; that is, the current state
of the system.

config/ Contains input files used by the utility
(inputs.properties, oig-
configuration-attributes.json, and
oig-utility-config.json).

2-1

Directory Description

current_state/ Contains files that store the current state of the
system after a gesture operation is performed.

lib/ Contains the libraries used by the utility,
including gesture implementation libraries, the
utility library, and the service provider (SPI)
library that is the backbone of the utility's
framework.

logs/ Contains logs created by the utility.

reports/ Contains reports showing the pre- and post-
operation values of attributes affected by
operations executed by the utility.

resource/ Contains resource files used by the utility.

The utility is installed with the config/, lib/, and resource/ directories already in
place; the other directories are created at runtime by the utility as needed.

Every time one or more operations are executed, the utility creates a file with the
current state of the attributes being modified and stores it in backup/. After the
operation is executed, the final state is stored in the current_state/ directory. Every
time any operation is performed, files are created in both the backup/ and
current_state/ directories.

A baseline contains the attributes for all the enabled gestures and their operations at
the time the baseline is created. You can use any backup, baseline, or current state
file to restore the state of the system. By default, these files are stored in the backup/,
baseline/, and current_state/ directories, respectively.

Config Files
The config/ directory contains the files oig-utility-config.json, oig-
configuration-attributes.json, and inputs.properties. These files are used to
configure the utility, set the values to which the utility will configure WebLogic Server
attributes, and pass inputs to the utility, respectively.

• oig-utility-config.json
The file oig-utility-config.json is used to configure the OIG Configuration
Utility. Its contents define a set of directories used by the utility, the inputs and
attributes files to use, which gestures are available, and which gestures are
enabled.

• oig-configuration-attributes.json
The oig-configuration-attributes.json file contains the schema used by the
utility to configure a WebLogic Server.

• inputs.properties
The inputs.properties file contains an entry for each possible required input for
all supported gestures and their operations. These are the inputs that you can
specify on the command line when calling the utility, for example, WebLogic
Server user name and password.

Chapter 2
Config Files

2-2

oig-utility-config.json
The file oig-utility-config.json is used to configure the OIG Configuration Utility.
Its contents define a set of directories used by the utility, the inputs and attributes files
to use, which gestures are available, and which gestures are enabled.

There are five directories whose locations you can configure for the OIG Configuration
Utility. You can configure their values in the configuration file, or you can configure
them using system/environment variables. In the case where a directory is defined
both in the configuration file and in an environment variable, the value of the
environment variable is used. The following table lists the directory variables in the
configuration file, their corresponding environment variable names, and their default
values:

Configuration File Variable
Name

System/Environment
Variable Name

Default Value

backupDir BACKUP_DIR backup

baseLineDir BASELINE_DIR baseline

currentStateDir CURRENT_STATE_DIR current_state

logsDir LOGS_DIR logs

reportDir REPORTS_DIR reports

The values of the attributes file is set by the attributesFile entry. Its default value is
config/oig-configuration-attributes.json.

The gesturesConfig structure array contains information about each gesture that OIG
Configuration Utility can use. Each entry contains a name for the gesture, the gesture
class name, and whether the gesture is enabled. For example, the following is the
entry for the tune gesture included with the utility:

{
 "name": "Tuning Gesture",
 "gestureClass": "com.oracle.oig.gestures.TuningGesture",
 "isEnabled": "true"
}

To disable a gesture from being used, set that gesture's isEnabled value to false.

The utility help provides a list of available gestures to the user. This list includes each
gesture from the oig-utility-config.json file whose isEnabled value is true.

oig-configuration-attributes.json
The oig-configuration-attributes.json file contains the schema used by the utility
to configure a WebLogic Server.

To set the values the utility will use, open oig-configuration-attributes.json, and
edit the values of the attributes used by the gesture operations you plan to execute.
The attributes used by a gesture operation are in the section of the schema labeled
with that operation's name (for example, "Tune OIM Operation").

Chapter 2
Config Files

2-3

For example, suppose you want to set the JVM minimum and maximum heap space
values to 3072 and 4096 megabytes, respectively. Edit the values in the "Tune JVM
Operation" section of the oig-configuration-attributes.json file to the following:

"Tune JVM Operation":
{
 "com.oracle.oig.config.attributes.JVMTuneAttributes":
 {
 "minHeapSpace": "3072m",
 "maxHeapSpace": "4096m"
 }
}

To configure the system with these values, save the attributes file, then run the utility
and execute the tune JVM operation.

inputs.properties
The inputs.properties file contains an entry for each possible required input for all
supported gestures and their operations. These are the inputs that you can specify on
the command line when calling the utility, for example, WebLogic Server user name
and password.

If you wish to supply a value without specifying it each time you call the utility, you can
enter it into inputs.properties. For example, if your WebLogic Server host and port
never change, enter those values in the file for their respective properties
weblogicHost and weblogicPort. When you call the utility, the values from
inputs.properties are used, and you do not need to enter them on the command
line.

You can choose which values to supply via inputs.properties, if any. For example,
you might choose to supply values for all of the required inputs except for passwords
via inputs.properties. You'd then have to supply the passwords when calling the
utility.

When you run the utility in interactive mode, you'll be prompted to enter a value for
each required input whose value is not defined in inputs.properties.

When you run the utility in silent mode, you must provide a value on the command line
for each required input that doesn't have a value defined in inputs.properties. If you
specify a value for an input on the command line that's also defined in
inputs.properties, the utility uses the value from the command line.

Chapter 2
Config Files

2-4

3
Using OIG Configuration Utility

Oracle WebLogic Server (WLS) has hundreds of configurable values. A specific group
of values can affect how a component of the system operates. For example, you can
tune database performance by configuring the database settings in WLS.

Oracle provides tuning guides for various components of WLS. Properly tuning a
component can consist of performing dozens of steps, with many values to input. It’s
possible that entering these values manually can result in input errors, or one or more
steps may be missed.

oig-configuration-attributes.json helps avoid manual configuration errors by using the
values from an attributes file to configure the WLS system. The utility captures the
state of the system before any changes are made, and creates a report that shows the
system values before and after a gesture was executed. In the case where a set of
changes made the system less stable, the utility allows you to restore the system to a
previously captured state.

By default, the values to set are stored in the oig-configuration-attributes.json
file in the config/ directory. To make configuration changes: edit oig-configuration-
attributes.json, entering the values you want to use for the attributes, and run the
OIG Configuration Utility, specifying the gestures and operations to perform.

• Interactive Mode and Silent Mode
OIG Configuration Utility can be run in two modes: interactive and silent.

• Baselines and Restoration
OIG Configuration Utility provides the ability to create baseline images of the
system configuration. A baseline contains the system state of all attributes that can
be modified by all defined operations at the time the baseline is created. You can
use a baseline to restore the system to a previous configuration, setting the
system attributes to those stored in the specified baseline.

• Gestures and Operations
The configuration operations that OIG Configuration Utility can perform are defined
and implemented by gestures.

• Reports
When you perform one or more operations using OIG Configuration Utility in
interactive mode, before any changes are made to the system, the utility produces
a report showing the initial and final attribute values.

Interactive Mode and Silent Mode
OIG Configuration Utility can be run in two modes: interactive and silent.

Interactive mode prompts the user to enter details required by the operation being
performed, such as user names and passwords.

Silent mode requires that all necessary input be provided to the utility before being
executed—no user interaction is required. This mode is ideal to be paired with a script,

3-1

which can enable a WebLogic Server admin to offer a configuration service to an end
user via a button or link that they press, which in turn performs the configuration.

In both silent and interactive modes, you can specify values for inputs used by one or
more operations in the inputs.properties file. In interactive mode, as the operations
are executed, the user is prompted to enter any required input values that are not
defined in the inputs file. In silent mode, if any required inputs are missing when the
utility is called, the call fails.

• Interactive Mode
Interactive mode prompts you to enter values for require inputs as the utility
executes one or more operations. This mode can be convenient for an
administrator working on configuring a system from a command prompt.

• Silent Mode
Silent mode requires that you provide values for all the required inputs of the
gesture operations that you want to execute when you launch the utility. If any
inputs are missing, the call fails—the utility will not prompt you to enter any
missing values. This mode is useful for providing the ability for an end-user to
perform a system configuration task. For example, you might create a webpage
that includes a button that, when clicked, launches the OIG Configuration Utility in
silent mode and performs the desired configuration without the need for user input.

Interactive Mode
Interactive mode prompts you to enter values for require inputs as the utility executes
one or more operations. This mode can be convenient for an administrator working on
configuring a system from a command prompt.

Invoking OIG Configuration Utility in Interactive Mode

To invoke OIG Configuration Utility in interactive mode, execute the utility without any
arguments, using the appropriate script for your environment.

On UNIX, Linux, and Mac OSX systems, run the utility in interactive mode by running
the script:

cd $ORACLE_HOME/idm/server/bin/OIGConfigUtility
./oig-config-utility.sh

On Windows systems, run the utility in interactive mode by running the batch file:

cd $ORACLE_HOME\idm\server\bin\OIGConfigUtility
oig-config-utility.bat

For simplicity, other examples in this document demonstrate using the shell script to
invoke the utility. On a Windows system, call the batch file, instead.

The basic utility usage information is displayed, and the interactive utility prompt is
displayed as:

$oig>

Chapter 3
Interactive Mode and Silent Mode

3-2

From this prompt, you can enter commands. For example, to display gesture-specific
help for the tune gesture, enter the following:

$oig> tune –h

The utility displays the help specific to the tune gesture. You can display the gesture-
specific help for any gesture by entering the command gestureName -h. The names of
the available gestures are listed in the Configured Gestures section of the utility help.

To run a gesture operation, enter the gesture name and operation, based on the
gesture-specific help. For example, you can start the database tuning operation by
entering:

$oig> tune –database

As the utility runs the operation, it retrieves any values used by the operation from
inputs.properties. For each input where a value is not defined, the utility prompts
you to enter a value.

Interactive Mode Options

You can use the following options in Interactive mode.

Option Description

-a | -all Use this option to execute all operations
defined for all enabled gestures.

-b | -baseline Use this option to create a baseline of the
current system state for all enabled gestures.

-rpt | -report Use this option to generate a pre-report for all
enabled gestures. This report shows the pre-
and post-operation values for all enabled
gestures, but does not make any changes to
the system.

-r | -restore Use this option to restore the system from a
baseline file. This restores the system
configuration to that stored in the baseline file.
This operation requires a valid file path as
input.

-h | -help Use this option to display help for the OIG
Configuration Utility. This includes general
instructions for using the utility, as well as
which gestures are enabled.

gestureName –h Use this option to display gesture-specific help
for the specified gesture.

Exiting OIG Configuration Utility in Interactive Mode

To exit OIG Configuration Utility, enter quit or q! at the prompt. For example:

$oig> quit

Chapter 3
Interactive Mode and Silent Mode

3-3

or

$oig> q!

Silent Mode
Silent mode requires that you provide values for all the required inputs of the gesture
operations that you want to execute when you launch the utility. If any inputs are
missing, the call fails—the utility will not prompt you to enter any missing values. This
mode is useful for providing the ability for an end-user to perform a system
configuration task. For example, you might create a webpage that includes a button
that, when clicked, launches the OIG Configuration Utility in silent mode and performs
the desired configuration without the need for user input.

Invoking OIG Configuration Utility in Silent Mode

To invoke OIG Configuration Utility in silent mode, execute the utility with the -S
switch, using the appropriate script for your environment.

On UNIX, Linux, and Mac OSX systems, run the utility in silent mode by running the
script:

cd $ORACLE_HOME/idm/server/bin/OIGConfigUtility
./oig-config-utility.sh -S

On Windows systems, run the utility in silent mode by running the batch file:

cd $ORACLE_HOME\idm\server\bin\OIGConfigUtility
oig-config-utility.bat -S

For simplicity, other examples in this document demonstrate using the shell script to
invoke the utility. On a Windows system, call the batch file, instead.

Running the utility in silent mode with no arguments displays the utility help text. This
provides general instructions for using the utility, as well as which gestures are
enabled.

When invoking the utility, you must specify which gestures and operations to perform,
and provide values for all of the required inputs. These values can be provided as
arguments on the command line, as part of inputs.properties, or a combination of
both. If any input value is missing or invalid, the utility will exit without making any
changes.

You can view the gesture-specific help for any available gesture listed in the utility's
help text by entering the command:

./oig-config-utility.sh –S gestureName -h

For example, use the following command to display the gesture-specific help for the
tune gesture:

./oig-config-utility.sh –S tune -h

Chapter 3
Interactive Mode and Silent Mode

3-4

Baselines and Restoration
OIG Configuration Utility provides the ability to create baseline images of the system
configuration. A baseline contains the system state of all attributes that can be
modified by all defined operations at the time the baseline is created. You can use a
baseline to restore the system to a previous configuration, setting the system attributes
to those stored in the specified baseline.

You must create a baseline the first time you use OIG Configuration Utility. This
creates a backup of your current system, ensuring that you can use the utility to
restore your system to this known state, should you make a change that you want to
revert.

OIG Configuration Utility includes a restore function that lets you revert the system
configuration to that stored in a baseline file.

• Creating a Baseline
You can use OIG Configuration Utility to create a baseline of your system in both
the interactive and silent modes.

• Restoring System from a Baseline File
You can use the restore feature of OIG Configuration Utility to configure the
WebLogic Server with the attribute values from a baseline, backup, or current
state file. By default, the files in the backup/, baseline/, and current_state/
directories can all be used to restore a system. The restore option is performed by
passing -restore or -r to the utility, followed by the baseline file to use.

Creating a Baseline
You can use OIG Configuration Utility to create a baseline of your system in both the
interactive and silent modes.

In interactive mode, start the utility and enter the command -b or -baseline. The utility
will prompt you to enter each value that the operation requires that isn't defined in
inputs.properties.

In silent mode, start the utility in silent mode with the -b or -baseline switch. For
example:

./oig-config-utility.sh –S -baseline

Values that the baseline operation requires must be provided via inputs.properties
or as flags passed to the utility (for example, -weblogicPort 1234). The baseline
operation fails if any inputs are missing. The baseline files that you create are stored in
the baseline/ directory, by default.

In addition to baseline files that you create explicitly, the utility creates a backup of
system attributes associated with an operation before attempting the operation (for
example, a copy of the database attributes before attempting a database tune
operation), and similarly a backup of the current state of the system after an operation
has been performed. By default, these files are stored in the backup/ and
current_state/ directories, respectively.

Chapter 3
Baselines and Restoration

3-5

Restoring System from a Baseline File
You can use the restore feature of OIG Configuration Utility to configure the WebLogic
Server with the attribute values from a baseline, backup, or current state file. By
default, the files in the backup/, baseline/, and current_state/ directories can all be
used to restore a system. The restore option is performed by passing -restore or -r
to the utility, followed by the baseline file to use.

For example, suppose you perform a baseline of your system on July 1, 2018, creating
the file oig-baseline_2018-07-01_17_14_19.json in the baseline/ directory. You
later make some configuration changes to your database and JVM tuning that have
negatively affected your system's performance. You can revert to the old settings by
running this command:

./oig-config-utility.sh –S –restore baseline/oig-
baseline_2018-07-01_17_14_19.json

Values that the restore operation requires must be provided via inputs.properties or
as flags passed to the utility (for example, -weblogicPort 1234). The restore
operation fails if any inputs are missing.

Gestures and Operations
The configuration operations that OIG Configuration Utility can perform are defined
and implemented by gestures.

OIG Configuration Utility displays which gestures are available in the utility help. This
information consists of a short name for the gesture and a description of the gesture.
For example, help displays the following information for the tune gesture:

 tune : Tune different components.
 Use 'tune -h' to display gesture-specific help

Here, tune' is the referred to as the short name of the gesture.

To display additional information about a gesture, including which operations the
gesture can perform, invoke the utility and pass the gesture short name followed by -h.

To perform a gesture operation using the utility, call the utility specifying the gesture
short name and either the operation's short or long CLI flag. The format of this call is:

./oig-config-utility.sh gestureName –<opr_long_flag | opr_short_flag>

For example, the CLI short and long flags (-database and –d) for the database tuning
operation are defined in TuneDBOperation.java. To perform a JVM tuning operation in
interactive mode, you invoke OIG Configuration Utility by entering one of the following
commands:

./oig-config-utility.sh tune –database

Chapter 3
Gestures and Operations

3-6

using the CLI long flag, or:

./oig-config-utility.sh tune –d

using the CLI short flag.

You can create a gesture by extending the AbstractGesture class from the OIG
Gesture framework, and operations for that gesture by extending
AbstractGestureOperation. The tune sample gesture implementation is included with
OIG Configuration Utility in the TuningGesture.java source file. See Adding a Gesture
for more information about creating gestures.

To use a gesture that you create, copy your gesture jar file to the lib directory, and add
your gesture to the gesturesConfig section of oig-utility-config.json. Provided
the gesture is valid, it's shown as an available gesture the next time you launch the
utility.

The operations defined by these gestures can update the WebLogic Server
configuration by applying the values from oig-configuration-attributes.json to the
system.

Reports
When you perform one or more operations using OIG Configuration Utility in
interactive mode, before any changes are made to the system, the utility produces a
report showing the initial and final attribute values.

In both interactive and silent modes, you can direct the utility to produce a pre-
execution report for the gesture operations you pass to the utility. This will produce a
report with the initial and final attribute values, based on the operations that you
selected. No changes will be made to the system.

To create a pre-report, use the –r or –report options. For example, in silent mode,
you might want a pre-report for the tune database operation, in which case you'd call
the utility similar to:

./oig-config-utility.sh –S –rpt tune –d [inputs]

Whether generated automatically in interactive mode, or explicitly using the –r or -
report options, reports are stored in the reports/ directory by default. The reports are
in HTML and can be viewed in any web browser.

Chapter 3
Reports

3-7

4
Adding a Gesture

You can add your own gestures and operations to OIG Configuration Utility. The utility
includes GesturesSPI, which is a Service Provider Interface that you can use to
implement new gestures. To do so, create your own gesture by extending the
AbstractGesture class. Each gesture can define one or more operations. Add support
for operations by extending AbstractGestureOperation for each operation. You can
use MBeans operations to make changes to WebLogic Server. After your code is
complete, copy your gesture class to the lib/ directory, add the gesture to the
gesturesConfig section of oig-utility-config.json and set its isEnabled value to
true. Provided the gesture is valid, when you launch the utility, your gesture appears
in the "Configured Gestures" section of the utility help.

• Extending AbstractGesture
To create a gesture, you must extend the AbstractGesture class, implementing
abstract methods to add gesture-specific information. The TuningGesture.java
source code provides an example of how to extend AbstractGesture to implement
a gesture. The following sections provide some additional details on creating a
gesture class.

• Extending AbstractGestureOperation
To create an operation, you must extend the AbstractGestureOperation class,
implementing abstract methods to provide operation-specific information. For
example, the tune gesture provides a "tune DB" operation, which is implemented
by TuneDBOperation.java. The code for the operations that come with OIG
Configuration Utility demonstrate how to extend AbstractGestureOperation to
implement an operation. Each gesture can define one or more operations. The
following sections offer additional information about implementing operations to
work in the OIG Configuration Utility framework:

• Deploying a Gesture

Extending AbstractGesture
To create a gesture, you must extend the AbstractGesture class, implementing
abstract methods to add gesture-specific information. The TuningGesture.java source
code provides an example of how to extend AbstractGesture to implement a gesture.
The following sections provide some additional details on creating a gesture class.

• Overriding Gesture Methods
You must override the following methods in your gesture class for your gesture to
be usable in OIG Configuration Utility:

Overriding Gesture Methods
You must override the following methods in your gesture class for your gesture to be
usable in OIG Configuration Utility:

4-1

Method Description Sample Return Value

public String
getDescription()

Returns a string that contains
a description for the gesture.

Tune different
components.

public
List<GestureOperation>
getOperations()

Returns a list of operations
supported by this gesture.
Operations are created by
extending the
AbstractGestureOperatio
n class.

public String
getShortName()

Returns the short name of the
gesture.

tune

The utility automatically generates help for enabled gestures by using the values
returned by these methods. You can enable gestures in oig-utility-config.json.

Extending AbstractGestureOperation
To create an operation, you must extend the AbstractGestureOperation class,
implementing abstract methods to provide operation-specific information. For example,
the tune gesture provides a "tune DB" operation, which is implemented by
TuneDBOperation.java. The code for the operations that come with OIG Configuration
Utility demonstrate how to extend AbstractGestureOperation to implement an
operation. Each gesture can define one or more operations. The following sections
offer additional information about implementing operations to work in the OIG
Configuration Utility framework:

• Overriding GestureOperation Methods

• Implementing Attributes

• Defining Options

• Defining Required Parameters

Overriding GestureOperation Methods
You must override the following methods in your gesture operation class for your
gesture to be usable in OIG Configuration Utility:

Method Description Sample Return Value

public int execute() This method defines the
execution logic of the
operation. The framework
calls this method when it
receives a request to execute
this operation.

public
GestureOperationReport
generateReport()

Generates a report for the
attributes affected by this
operation.

public String
getDescription()

This method returns a
description of the operation.

Tune Database Operation

Chapter 4
Extending AbstractGestureOperation

4-2

Method Description Sample Return Value

public String
getLongCliFlag()

This method returns the long
CLI flag that can be used to
execute this operation.

-database

public String
getShortCliFlag()

This method returns the short
CLI flag that can be used to
execute this operation.

-d

public Class
getOperationAttributeCl
ass()

This method returns the
attributes class used by this
operation to define attributes.

DBTuneAttributes.class

public List<Option>
getOptions()

This method returns a list of
supported options that can be
specified on the command line
for this operation.

public
List<RequiredParam>
getRequiredParams()

This method returns the list of
parameters that are require to
execute this operation. They
can be defined in
inputs.properties or
provided via the CLI.

public List<String>
getWarnings()

This method returns a list of
warnings that you want to
display in an HTML report and
in the logs. These are generic
warnings, such as any manual
steps required after operation
execution.

public void validate() This method contains any
validation that you want to
perform for your gesture
operation.

Implementing Attributes

For each operation, you must create a class that implements the
com.oracle.oig.gesture.spi.Attributes marker interface. This interface is defined
in Attributes.java as part of the GesturesSPI framework. Each class that
implements Attributes contains the attributes that the operation modifies.

An example implementation of Attributes is DBTuneAttributes.java, which models
all the attributes used by the database tuning operation. The framework uses your
implementation to create objects to use when executing the operation associated with
that set of attributes.

Update oig-utility-config.json

After creating an attributes model for an operation, you must update oig-utility-
config.json by adding a section with your operation’s attributes and their values. For
example, the attributes for the DB Tuning operation, which correspond to the

Chapter 4
Extending AbstractGestureOperation

4-3

DBTuneAttributes.java implementation of the Attributes marker interface, are
included in oig-utility-config.json as follows:

 "Tune Database Operation":
 {
 "com.oracle.oig.attributes.DBTuneAttributes":
 {
 "queries":
 [
 "java.util.ArrayList",
 [
 {
 "com.oracle.oig.attributes.QueryAttributes":
 {
 "parameter": "DB_KEEP_CACHE_SIZE=200M"
 }
 },

 ...

 {
 "com.oracle.oig.attributes.StoredProcedures":
 {
 "parameter": "OPEN_CURSORS=600"
 }
 }
]
]
 }
 },

Users of the OIG Configuration Utility can modify the values of the attributes of the
structure that you add for your operation to set new values in the configuration.

Defining Options
An operation has a set of associated options, each of which is defined by an Option
object.

Each operation defines an array to hold its options. TuneDBOperation defines its array
as follows:

private static final List<Option> options = new ArrayList<Option>();

An Option consists of six values:

• description - a description of the operation, used in the utility help.

• hasValue - a flag that indicates whether the option has an associated value. If set
to true, the framework expects a value for this option, and validates whether a
value was provided when the operation is executed.

• isOptional - a flag that indicates whether the option is optional. Set to true if
optional; false, if the option is required.

Chapter 4
Extending AbstractGestureOperation

4-4

• longCliFlag - the option's CLI long flag.

• shortCliFlag - the option's CLI short flag.

• validValues - the set of valid values for this option.

The Class Variables demonstrates how to define the longCliFlag and shortCliFlag
members of an Option. The values for hasValue and isOptional are defined when the
Option is created.

Adding Options to an Operation

You add options to an operation by implementing the getOptions() method. In it, you
create the options for the operation, and add them to the options list.

When creating an Option, there are two available constructors—one where the option
defaults to being optional (no value is passed for isOptional), and a second where
you must specify whether the option is optional. For example, TuneDBOperation uses
the first method, as demonstrated in the following:

 @Override
 public List<Option> getOptions() throws OIGException {
 if (options == null || options.isEmpty()) {
 final Option dbOption = new Option(LONG_CLI_FLAG, SHORT_CLI_FLAG,
"Tune DB params", false);
 options.add(dbOption);
 }
 return options;
 }

The getOptions() method is also where you specify the valid values for an option. For
example, the following getOptions() method adds the option to enable some function
"XYZ":

 @Override
 public List<Option> getOptions() throws OIGException {
 if (options == null || options.isEmpty()) {
 final Option enableOption =
 new Option(LONG_CLI_FLAG, SHORT_CLI_FLAG, "Enable XYZ for OIM
servers", false);

 for (final PostInstallConstants.SupportedComponents s :
PostInstallConstants.SupportedComponents
 .values()) {

 enableOption.addValidValue(s.getSupportedComponent());
 }

 options.add(enableOption);
 }
 return options;
 }

The above example demonstrates adding the valid values to an Option (here,
enableOption), before adding the Option to the operation’s options list. The

Chapter 4
Extending AbstractGestureOperation

4-5

framework checks input against these values, and returns an error if an invalid value is
provided.

Defining Required Parameters
Your operation may require certain inputs. For example, an operation might require a
WebLogic Server username and password. These types of inputs are referred to as
required parameters.

Each operation defines a class variable to store its required parameters as follows:

private static final List<RequiredParam> requiredParams = new
LinkedList<RequiredParam>();

You define a required input by creating a RequiredParam object. Each RequiredParam
has five attributes: the name of the parameter, the text to display when prompting a
user to enter a value for the parameter in interactive mode, a description of the
parameter, whether the input is secure and needs to be masked in interactive mode,
and whether the parameter is optional. If the parameter is secure (set to true), then
input entered for that value is masked on the command line. Creating a RequiredParam
without specifying whether it's optional, results in it being required.

You set the required parameters for an operation by overriding
AbstractGestureOperation’s getRequiredParams() method. The following is the
implementation from TuneDBOperation.java:

@Override
public List<RequiredParam> getRequiredParams() throws OIGException {
 if (requiredParams.isEmpty()) {

 final RequiredParam dbSysUrl = new
RequiredParam(DBParams.DB_SYS_URL.paramName,
 "Enter Database JDBC URL for sys dba:
Ex:jdbc:oracle:thin:@dbhostname:5521(:orclsid or /serviceName)",
 "Jdbc url is used to connect to the db ", false);

 final RequiredParam dbSysDbaUser = new
RequiredParam(DBParams.DB_SYS_DBA_USER.getParamName(),
 "Enter Database Sys User", "Database Sys User", false);

 final RequiredParam dbSysDbaPassword =
 new RequiredParam(DBParams.DB_SYS_DBA_PASSWORD.getParamName(),
 "Enter Database Sys Password", "Database Sys Password", true);

 final RequiredParam dbOimUrl = new
RequiredParam(DBParams.DB_OIM_URL.paramName,
 "Enter Database JDBC URL for oim user:
Ex:jdbc:oracle:thin:@dbhostname:5521(:orclsid or /serviceName)",
 "Jdbc url is used to connect to the oim user. (Example:
jdbc:oracle:thin:@dbhostname:5521(:orclsid or /serviceName)) ",
 false);

 final RequiredParam dbOimUser = new
RequiredParam(DBParams.DB_OIM_USER.getParamName(),

Chapter 4
Extending AbstractGestureOperation

4-6

 "Enter Database Oim User", "Database Oim User", false);

 final RequiredParam dbOimUserPassword =
 new RequiredParam(DBParams.DB_OIM_USER_PASSWORD.getParamName(),
 "Enter Database Oim Password", "Database Oim Password", true);

 requiredParams.add(dbSysUrl);
 requiredParams.add(dbSysDbaUser);
 requiredParams.add(dbSysDbaPassword);
 requiredParams.add(dbOimUrl);
 requiredParams.add(dbOimUser);
 requiredParams.add(dbOimUserPassword);
 }
 return requiredParams;

}

When an operation is executed, the framework checks the inputs provided to the
operation, and returns an error if any of the required parameters were not provided.

Deploying a Gesture
After you created a gesture by writing an AbstractGesture class and
AbstractGestureOperation classes for each operation that the gesture supports, you
need to perform a few steps to add the gesture to the utility.

After your code is complete, create a JAR for your gesture, copy the JAR to the lib/
directory, add the gesture to the gesturesConfig section of oig-utility-config.json,
and set its isEnabled value to true.

Build and Copy a JAR

To prepare your gesture for the utility, build your Java code, generate a JAR for your
gesture, copy the JAR to the utility’s lib/ directory, and set the JAR class path
environment variable, if not already set. You can set the class path in oig-config-
utility.sh by appending the path to the line that begins with "CLASSPATH=".

Add and Enable the Gesture

The framework can access all of the gesture code that exists in the lib/ directory.
However, for OIG Configuration Utility to offer a gesture to its users, the gesture must
be added to the utility configuration.

To add a gesture to the utility configuration, edit oig-utility-config.json and add
an entry for your gesture to the gesturesConfig array. For example, the entry for our
sample MyGestureOperation gesture would be as follows:

 {
 "name": "My Gesture",
 "gestureClass": "com.yourcompany.oig.gestures.MyGesture",
 "isEnabled": "true"
 }

Chapter 4
Deploying a Gesture

4-7

To enable your gesture, set the value of isEnabled to true in its gesturesConfig
entry. To disable a gesture, set its isEnabled value to false.

Chapter 4
Deploying a Gesture

4-8

	Contents
	1 Introduction and Roadmap
	About OIG Configuration Utility
	Document Scope and Audience
	Guide to this Document
	Related Documentation

	2 About OIG Configuration Utility
	Utility Structure and Contents
	Config Files
	oig-utility-config.json
	oig-configuration-attributes.json
	inputs.properties

	3 Using OIG Configuration Utility
	Interactive Mode and Silent Mode
	Interactive Mode
	Silent Mode

	Baselines and Restoration
	Creating a Baseline
	Restoring System from a Baseline File

	Gestures and Operations
	Reports

	4 Adding a Gesture
	Extending AbstractGesture
	Overriding Gesture Methods

	Extending AbstractGestureOperation
	Overriding GestureOperation Methods
	Implementing Attributes
	Defining Options
	Defining Required Parameters

	Deploying a Gesture

