
Oracle® Fusion Middleware
Developing Knowledge Modules with Oracle
Data Integrator

12c (12.2.1.4.0)
E95629-03
October 2021

Oracle Fusion Middleware Developing Knowledge Modules with Oracle Data Integrator, 12c (12.2.1.4.0)

E95629-03

Copyright © 2010, 2021, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions x

1 Introduction to Knowledge Modules

1.1 What is a Knowledge Module? 1-1

1.2 Reverse-Engineering Knowledge Modules (RKM) 1-2

1.3 Check Knowledge Modules (CKM) 1-3

1.4 Loading Knowledge Modules (LKM) 1-4

1.5 Integration Knowledge Modules (IKM) 1-6

1.6 Extract Knowledge Modules (XKM) 1-7

1.7 Journalizing Knowledge Modules (JKM) 1-8

1.8 Service Knowledge Modules (SKM) 1-9

1.9 Guidelines for Knowledge Module Developers 1-9

2 Introduction to Component KMs

2.1 What is a Component KM? 2-1

2.2 Syntax Elements of Component KMs 2-2

2.3 Component KM — Flow Control Commands 2-3

2.4 Global Templates 2-6

2.5 KM Inheritance 2-7

2.6 Groovy Variable Definition Scripts 2-7

2.7 Structured Substitution API 2-8

2.8 Task Control Objects 2-10

2.9 Seeded Component KMs 2-10

3 Introduction to OdiRef Substitution API

3.1 Introduction to the Substitution API 3-1

iii

3.2 Using Substitution Methods 3-4

3.2.1 Generic Syntax 3-4

3.2.2 Specific Syntax for CKM 3-4

3.2.3 Using Flexfields 3-5

3.2.4 Using Code Generation Tags 3-6

3.3 Using Substitution Methods in Actions 3-7

3.3.1 Action Lines Code 3-7

3.3.2 Action Calls Method 3-7

3.4 Working with Object Names 3-8

3.5 Working with Lists of Tables, Columns and Expressions 3-9

3.5.1 Using INSERT.getTargetColList to create a table 3-11

3.5.2 Using getTargetColList to create a table 3-12

3.5.3 Using getColList in an Insert values statement 3-13

3.5.4 Using getSrcTableList 3-13

3.6 Generating the Source Select Statement 3-14

3.7 Obtaining Other Information with the API 3-16

3.8 Advanced Techniques for Code Generation 3-16

4 Reverse-Engineering Strategies

4.1 Customized Reverse-Engineering Process 4-1

4.1.1 SNP_REV tables 4-1

4.1.2 Customized Reverse-Engineering Strategy 4-1

4.2 Case Studies 4-2

4.2.1 RKM Oracle 4-2

4.2.1.1 Reset SNP_REV Tables 4-2

4.2.1.2 Get Tables 4-2

4.2.1.3 Get views, partitions, columns, FK, Keys and other Oracle Metadata 4-3

4.2.1.4 Set Metadata 4-3

5 Data Integrity Strategies

5.1 Data Integrity Check Process 5-1

5.1.1 Check Knowledge Module Overview 5-1

5.1.2 Error Tables Structures 5-2

5.1.2.1 Error Table Structure 5-2

5.1.2.2 Summary Table Structure 5-3

5.2 Case Studies 5-4

5.2.1 Oracle CKM 5-4

5.2.1.1 Drop Check Table 5-4

5.2.1.2 Create Check Table 5-4

iv

5.2.1.3 Create Error Table 5-5

5.2.1.4 Insert PK Errors 5-5

5.2.1.5 Delete Errors from Controlled Table 5-6

5.2.2 Dynamically Create Non-Existing References 5-6

5.2.2.1 Use Case 5-7

5.2.2.2 Discussion 5-7

5.2.2.3 Implementation Details 5-8

6 Loading Strategies

6.1 Loading Process 6-1

6.1.1 Loading Process Overview 6-1

6.1.2 Loading Table Structure 6-1

6.1.3 Loading Method 6-2

6.1.3.1 Loading Using the Agent 6-2

6.1.3.2 Loading File Using Loaders 6-2

6.1.3.3 Loading Using Unload/Load 6-3

6.1.3.4 Loading Using RDBMS-Specific Strategies 6-3

6.2 Case Studies 6-3

6.2.1 LKM SQL to SQL 6-3

6.2.1.1 Drop Work Table 6-4

6.2.1.2 Create Work Table 6-4

6.2.1.3 Load Data 6-4

6.2.1.4 Drop Work Table 6-5

7 Integration Strategies

7.1 Integration Process 7-1

7.1.1 Integration Process Overview 7-1

7.1.2 Integration Strategies 7-2

7.1.2.1 Strategies with Staging Area on the Target 7-2

7.1.2.2 Strategies with the Staging Area Different from the Target 7-7

7.2 Case Studies 7-8

7.2.1 Simple Replace or Append 7-8

7.2.1.1 Delete Target Table 7-9

7.2.1.2 Insert New Rows 7-9

7.2.2 Backup the Target Table Before Loading 7-9

7.2.2.1 Drop Backup Table 7-10

7.2.2.2 Create Backup Table 7-10

7.2.3 Tracking Records for Regulatory Compliance 7-10

v

7.2.3.1 Load Tracking Records 7-11

A SQL Structured Substitution API Reference

A.1 SqlInsertStatement.getColumnList() A-3

A.2 SqlInsertStatement.getQuery() A-5

A.3 SqlQuery.getSubqueries () A-6

A.4 SqlInsertStatement.getTargetTable () A-7

A.5 SqlQuery.getFromList () A-8

A.6 SqlQuery.getSelectList () A-9

A.7 FromClause.getJoinTable () A-9

A.8 FromClause.getSourceTables () A-10

A.9 FromClause.getTableQuery () A-11

A.10 ArrayExpression.getTemplate() A-12

A.11 ArrayExpression.getChildMap() A-13

B Substitution API Reference

B.1 Substitution Methods List B-1

B.1.1 Global Methods B-1

B.1.2 Journalizing Knowledge Modules B-2

B.1.3 Loading Knowledge Modules B-2

B.1.4 Check Knowledge Modules B-3

B.1.5 Integration Knowledge Modules B-4

B.1.6 Reverse-Engineering Knowledge Modules B-4

B.1.7 Service Knowledge Modules B-4

B.1.8 Actions B-5

B.2 Substitution Methods Reference B-5

B.2.1 getAK() Method B-5

B.2.2 getAKColList() Method B-6

B.2.3 getAllTargetColList() Method B-9

B.2.4 getCatalogName() Method B-9

B.2.5 getCatalogNameDefaultPSchema() Method B-10

B.2.6 getCK() Method B-11

B.2.7 getColDefaultValue() Method B-12

B.2.8 getColList() Method B-13

B.2.9 getColumn() Method B-19

B.2.10 getContext() Method B-21

B.2.11 getDataSet() Method B-21

B.2.12 getDataSetCount() Method B-22

B.2.13 getDataType() Method B-23

vi

B.2.14 getFilter() Method B-24

B.2.15 getFilterList() Method B-25

B.2.16 getFK() Method B-27

B.2.17 getFKColList() Method B-28

B.2.18 getFlexFieldValue() Method B-31

B.2.19 getFormattedName() Method B-32

B.2.20 getFrom() Method B-33

B.2.21 getGrpBy() Method B-34

B.2.22 getGrpByList() Method B-35

B.2.23 getHaving() Method B-36

B.2.24 getHavingList() Method B-37

B.2.25 getIndex() Method B-39

B.2.26 getIndexColList() Method B-40

B.2.27 getInfo() Method B-41

B.2.28 getJDBCConnection() Method B-46

B.2.28.1 getJDBCConnection("WORKREP") B-47

B.2.29 getJDBCConnectionFromLSchema() Method B-48

B.2.30 getJoin() Method B-49

B.2.31 getJoinList() Method B-49

B.2.32 getJrnFilter() Method B-51

B.2.33 getJrnInfo() Method B-52

B.2.34 getLoadPlanInstance() Method B-53

B.2.35 getModel() Method B-54

B.2.36 getNbInsert(), getNbUpdate(), getNbDelete(), getNbErrors() and
getNbRows() Methods B-55

B.2.37 getNewColComment() Method B-56

B.2.38 getNewTableComment() Method B-56

B.2.39 getNotNullCol() Method B-57

B.2.40 getObjectName() Method B-57

B.2.41 getObjectNameDefaultPSchema() Method B-60

B.2.42 getObjectShortName() Method B-61

B.2.43 getOdiGeneratedAccessName() Method B-63

B.2.44 getOdiInstance() Method B-64

B.2.45 getOggModelInfo() Method B-64

B.2.46 getOggProcessInfo() Method B-66

B.2.47 getOption() Method B-67

B.2.48 getPackage() Method B-67

B.2.49 getParentLoadPlanStepInstance() Method B-68

B.2.50 getPK() Method B-69

B.2.51 getPKColList() Method B-69

B.2.51.1 getPop() Method B-72

vii

B.2.52 getPrevStepLog() Method B-73

B.2.53 getQuotedString() Method B-75

B.2.54 getSchemaName() Method B-76

B.2.55 getSchemaNameDefaultPSchema() Method B-77

B.2.56 getSession() Method B-78

B.2.57 getSessionVarList() Method B-79

B.2.58 getSrcColList() Method B-80

B.2.59 getSrcTablesList() Method B-83

B.2.60 getStep() Method B-86

B.2.61 getSubscriberList() Method B-87

B.2.62 getSysDate() Method B-88

B.2.63 getTable() Method B-89

B.2.64 getTargetColList() Method B-91

B.2.65 getTableName() Method B-95

B.2.66 getTargetTable() Method B-95

B.2.67 getTemporaryIndex() Method B-97

B.2.68 getTemporaryIndexColList() Method B-98

B.2.69 getUser() Method B-99

B.2.70 getVersion() Method B-100

B.2.71 hasPK() Method B-100

B.2.72 isColAttrChanged() Method B-101

B.2.73 isVersionCompatible() Method B-102

B.2.74 nextAK() Method B-102

B.2.75 nextCond() Method B-103

B.2.76 nextFK() Method B-103

B.2.77 setNbInsert(), setNbUpdate(), setNbDelete(), setNbErrors() and setNbRows()
Methods B-104

B.2.78 setTableName() Method B-105

B.2.79 setTaskName() Method B-106

C SNP_REV Tables Reference

C.1 SNP_REV_SUB_MODEL C-1

C.2 SNP_REV_TABLE C-2

C.3 SNP_REV_COL C-3

C.4 SNP_REV_KEY C-4

C.5 SNP_REV_KEY_COL C-4

C.6 SNP_REV_JOIN C-5

C.7 SNP_REV_JOIN_COL C-6

C.8 SNP_REV_COND C-6

viii

Preface

This manual describes how to develop your own Knowledge Modules for Oracle Data
Integrator.

This preface contains the following topics:.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for developers who want to make advanced use of Oracle Data
Integrator and customize Knowledge Modules for their integration processes.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in Oracle Data Integrator Library.

• Release Notes for Oracle Data Integrator

• Understanding Oracle Data Integrator

• Administering Oracle Data Integrator

• Developing Integration Projects with Oracle Data Integrator

• Installing and Configuring Oracle Data Integrator

• Upgrading Oracle Data Integrator

• Connectivity and Knowledge Modules Guide for Oracle Data Integrator

• Migrating From Oracle Warehouse Builder to Oracle Data Integrator

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/middleware/12213/odi/index.html

• Oracle Data Integrator Tool Reference

• Data Services Java API Reference for Oracle Data Integrator

• Open Tools Java API Reference for Oracle Data Integrator

• Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator

• Java API Reference for Oracle Data Integrator

• Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

• Oracle Data Integrator 12c Online Help, which is available in ODI Studio through
the JDeveloper Help Center when you press F1 or from the main menu by
selecting Help, and then Search or Table of Contents.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

1
Introduction to Knowledge Modules

It is important to understand the concept of a knowledge module (KM) and the different types
of KMs available in ODI.
This chapter includes the following sections:

• What is a Knowledge Module?

• Reverse-Engineering Knowledge Modules (RKM)

• Check Knowledge Modules (CKM)

• Loading Knowledge Modules (LKM)

• Integration Knowledge Modules (IKM)

• Extract Knowledge Modules (XKM)

• Journalizing Knowledge Modules (JKM)

• Service Knowledge Modules (SKM)

• Guidelines for Knowledge Module Developers

1.1 What is a Knowledge Module?
Knowledge Modules (KMs) are procedures that use templates to generate code. Each KM is
dedicated to a specialized job in the overall data integration process. The code in the KMs
appears in nearly the form that it will be executed except that it includes Oracle Data
Integrator (ODI) substitution methods enabling it to be used generically by many different
integration jobs. The code that is generated and executed is derived from the declarative
rules and metadata defined in the ODI Designer module.

• A KM will be reused across several mappings or models. To modify the behavior of
hundreds of jobs using hand-coded scripts and procedures, developers would need to
modify each script or procedure. In contrast, the benefit of Knowledge Modules is that
you make a change once and it is instantly propagated to hundreds of transformations.
KMs are based on logical tasks that will be performed. They don't contain references to
physical objects (datastores, attributes, physical paths, etc.)

• KMs can be analyzed for impact analysis.

• KMs can't be executed standalone. They require metadata from mappings, datastores
and models.

KMs fall into 7 different categories as summarized in the table below:

Knowledge Module Description Usage

Reverse-engineering
KM

Retrieves metadata to the
Oracle Data Integrator work
repository

Used in models to perform a customized
reverse-engineering

1-1

Knowledge Module Description Usage

Check KM Checks consistency of data
against constraints

• Used in models, sub models and
datastores for data integrity audit

• Used in mappings for flow control or
static control

Loading KM Loads heterogeneous data to a
staging area, or facilitates
movement of data from one
server to a different server

Used in mappings with heterogeneous
sources

Integration KM Integrates data from a source
or staging execution unit to a
target

Used in mappings

Extract KM Builds code generation
metadata about sources and
intermediate mapping
components

Used in mappings

Journalizing KM Creates the Change Data
Capture framework objects in
the source staging area

Used in models, sub models and datastores
to create, start and stop journals and to
register subscribers.

Service KM Generates data manipulation
web services

Used in models and datastores

The following sections describe each type of Knowledge Module.

1.2 Reverse-Engineering Knowledge Modules (RKM)
The RKM role is to perform customized reverse engineering for a model. The RKM is
in charge of connecting to the application or metadata provider then transforming and
writing the resulting metadata into Oracle Data Integrator's repository. The metadata is
written temporarily into the SNP_REV_xx tables. The RKM then calls the Oracle Data
Integrator API to read from these tables and write to Oracle Data Integrator's metadata
tables of the work repository in incremental update mode. This is illustrated below:

Figure 1-1 Reverse-engineering Knowledge Modules

A typical RKM follows these steps:

Chapter 1
Reverse-Engineering Knowledge Modules (RKM)

1-2

1. Cleans up the SNP_REV_xx tables from previous executions using the
OdiReverseResetTable tool.

2. Retrieves sub models, datastores, attributes, unique keys, foreign keys, conditions from
the metadata provider to SNP_REV_SUB_MODEL, SNP_REV_TABLE, SNP_REV_COL,
SNP_REV_KEY, SNP_REV_KEY_COL, SNP_REV_JOIN, SNP_REV_JOIN_COL,
SNP_REV_COND tables.

3. Updates the model in the work repository by calling the OdiReverseSetMetaData tool.

1.3 Check Knowledge Modules (CKM)
The CKM is in charge of checking that records of a data set are consistent with defined
constraints. The CKM is used to maintain data integrity and participates in the overall data
quality initiative. The CKM can be used in 2 ways:

• To check the consistency of existing data. This can be done on any datastore or within
mappings, by setting the STATIC_CONTROL option to "Yes". In the first case, the data
checked is the data currently in the datastore. In the second case, data in the target
datastore is checked after it is loaded.

• To check consistency of the incoming data before loading the records to a target
datastore. This is done by using the FLOW_CONTROL option. In this case, the CKM
simulates the constraints of the target datastore on the resulting flow prior to writing to the
target.

In summary: the CKM can check either an existing table or the temporary "I$" table created
by an IKM.

The CKM accepts a set of constraints and the name of the table to check. It creates an "E$"
error table which it writes all the rejected records to. The CKM can also remove the
erroneous records from the checked result set.

The following figures show how a CKM operates in both STATIC_CONTROL and
FLOW_CONTROL modes.

Figure 1-2 Check Knowledge Module (STATIC_CONTROL)

Chapter 1
Check Knowledge Modules (CKM)

1-3

In STATIC_CONTROL mode, the CKM reads the constraints of the table and checks
them against the data of the table. Records that don't match the constraints are written
to the "E$" error table in the staging area.

Figure 1-3 Check Knowledge Module (FLOW_CONTROL)

In FLOW_CONTROL mode, the CKM reads the constraints of the target table of the
Mapping. It checks these constraints against the data contained in the "I$" flow table of
the staging area. Records that violate these constraints are written to the "E$" table of
the staging area.

In both cases, a CKM usually performs the following tasks:

1. Create the "E$" error table on the staging area. The error table should contain the
same columns as the attributes in the datastore as well as additional columns to
trace error messages, check origin, check date etc.

2. Isolate the erroneous records in the "E$" table for each primary key, alternate key,
foreign key, condition, mandatory column that needs to be checked.

3. If required, remove erroneous records from the table that has been checked.

1.4 Loading Knowledge Modules (LKM)
An LKM is in charge of loading source data from a source server to a target server,
which can be a staging area or the final target. It is used by mappings when some of
the source datastores are not on the same data server as the staging or target server
for those sources. The LKM implements the mapping component logic that need to be
executed on the source server. It will either retrieve a single result set and load it into a
“C$” staging table (LKM type = PERSISTENT), or it can set up some transparent
access mechanism that allows the target server to access the source server data
(LKM Type = TRANSPARENT_SOURCE), or set up a transparent access mechanism
to allow the source server to directly access the target server and directly load the
target datastores (LKM type = TRANSPARENT_TARGET).

Chapter 1
Loading Knowledge Modules (LKM)

1-4

Figure 1-4 Loading Knowledge Module

1. The LKM creates the "C$" temporary table in the staging area. This table will hold
records loaded from the source server.

2. The LKM obtains a set of pre-transformed records from the source server by executing
the appropriate transformations on the source. For SQL-type LKMs, this is done by a
single SQL SELECT query when the source server is an RDBMS. When the source
doesn't have SQL capacities (such as flat files or applications), the LKM simply reads the
source data with the appropriate method (read file or execute API).

3. The LKM loads the records into the "C$" table of the staging area.

Note:

When staging area is same as source, “C$” table is created in the target area.

For an LKM of type TRANSPARENT_SOURCE:

a. The LKM creates a transparent access mechanism to allow the target server to
access the source data

b. The LKM creates a code generation metadata object that stores the information
about the sources and the source mapping logic, and passes this object to the target
IKM.

For an LKM of type TRANSPARENT_TARGET:

a. The LKM creates a transparent access mechanism to allow the source server to
access the target datastores.

b. The LKM obtains a set of pre-transformed records from the source server by
executing the appropriate transformations on the source.

c. The LKM loads the data directly into the target datastore, using the transparent
access mechanism created in step 1.

A mapping may require several LKMs when it uses datastores from different sources. When
all source datastores are on the same data server as the staging area, no LKM is required.

Chapter 1
Loading Knowledge Modules (LKM)

1-5

1.5 Integration Knowledge Modules (IKM)
The IKM is in charge of writing the final, transformed data to the target tables. Every
mapping uses a single IKM, for each target that is to be loaded. When the IKM is
started, it assumes that all loading phases for the remote servers have already carried
out their tasks. This means that all remote source data sets have been loaded by
LKMs into "C$" temporary tables in the staging area, or the source datastores are on
the same data server as the staging area, or source transparent access mechanisms
have been set up. Therefore, the IKM simply needs to execute the "Staging and/or
Target" transformations, joins and filters on the "C$" tables, or tables located on the
same data server as the staging area, or tables on other servers that can be
transparently accessed. The resulting set is usually processed by the IKM and written
into an"I$" temporary table, or directly loaded into the target. These final transformed
records can be written in several ways depending on the IKM selected in your
mapping. They may be simply appended to the target, or compared for incremental
updates or for slowly changing dimensions. There are 2 types of IKMs: those that
assume that the staging area is on the same server as the target datastore, and those
that can be used when it is not. These are illustrated below:

Figure 1-5 Integration Knowledge Module (Staging Area on Target)

When the staging area is on the target server, the IKM usually follows these steps:

1. The IKM executes a single set-oriented SELECT statement to carry out staging
area and target declarative rules on all "C$" tables and local tables (such as D in
the figure). This generates a result set.

2. Simple "append" IKMs directly write this result set into the target table. More
complex IKMs create an "I$" table to store this result set.

3. If the data flow needs to be checked against target constraints, the IKM calls a
CKM to isolate erroneous records and cleanse the "I$" table.

Chapter 1
Integration Knowledge Modules (IKM)

1-6

4. The IKM writes records from the "I$" table or the result set to the target following the
defined strategy (incremental update, slowly changing dimension, etc.).

5. The IKM drops the "I$" temporary table.

6. Optionally, the IKM can call the CKM again to check the consistency of the target
datastore.

These types of KMs do not manipulate data outside of the target server. Data processing is
set-oriented for maximum efficiency when performing jobs on large volumes.

Figure 1-6 Integration Knowledge Module (Staging Area Different from Target)

When the staging area is different from the target server, as shown in Figure 1-6, the IKM
usually follows these steps:

1. The IKM executes a single set-oriented SELECT statement to carry out declarative rules
on all "C$" tables and tables located on the source or staging area (such as D in the
figure). This generates a result set.

2. The IKM loads this result set into the target datastore, following the defined strategy
(append or incremental update).

This architecture has certain limitations, such as:

• A CKM cannot be used to perform a data integrity audit on the data being processed.

• Data needs to be extracted from the staging area before being loaded to the target, which
may lead to performance issues.

1.6 Extract Knowledge Modules (XKM)
The XKM is responsible for gathering and assembling the mapping logic for source and
intermediate mapping components, and storing it in a set of code generation object known as
an “Abstract Syntax Tree” or AST objects. The AST objects are tailored to generating
executable code in some form.

Prior to the 12c release of ODI, each interface or mapping was assigned one LKM and one
IKM, and possibly one CKM. Starting from ODI 12c, each component in a mapping physical
design will have an assigned Component KM. A component KM can be an XKM, LKM, IKM,
or CKM. An XKM is assigned to each source or intermediate node, an LKM is assigned to
each AP node, and an IKM is assigned to each target datastore node. During code
generation, the mapping code generator iterates through all the mapping component nodes,

Chapter 1
Extract Knowledge Modules (XKM)

1-7

and each Component KM contributes some information to the final generated result
code. Each Component KM has an associated delegate script, that is implemented as
an ODI internal java class or by a groovy script. The delegate script for each KM is
used to generate a java AST object. The generated AST object is then passed as an
input parameter to the next node’s KM delegate class. When an LKM for an AP node
or an IKM for a target node is reached, a combined AST tree is produced, which
includes all the AST objects produced by all the upstream nodes. The AST tree can
then be used as a substitution API object to substitute values into the LKM or IKM task
line commands.

The following diagram shows the code generation process including the contribution
by XKMs:

Figure 1-7 Extract Knowledge Modules (XKM)

The XKM typically does not generate any session steps of its own. Its main function is
to provide java AST object instances to the downstream Component KMs.

1.7 Journalizing Knowledge Modules (JKM)
JKMs create the infrastructure for Change Data Capture on a model, a sub model or a
datastore. JKMs are not used in mappings, but rather within a model to define how the
CDC infrastructure is initialized. This infrastructure is composed of a subscribers table,
a table of changes, views on this table and one or more triggers or log capture
programs as illustrated below.

Chapter 1
Journalizing Knowledge Modules (JKM)

1-8

Figure 1-8 Journalizing Knowledge Module

1.8 Service Knowledge Modules (SKM)
SKMs are in charge of creating and deploying data manipulation Web Services to your
Service Oriented Architecture (SOA) infrastructure. SKMs are set on a Model. They define
the different operations to generate for each datastore's web service. Unlike other KMs,
SKMs do no generate an executable code but rather the Web Services deployment archive
files. SKMs are designed to generate Java code using Oracle Data Integrator's framework for
Web Services. The code is then compiled and eventually deployed on the Application
Server's containers.

1.9 Guidelines for Knowledge Module Developers
The first guideline when developing your own KM is to never start from a blank page.

Oracle Data Integrator provides a large number of knowledge modules out-of-the-box.
Starting from ODI version 12.2.1.2.1 many global KMs are seeded into the repository and are
visible in the global KM tree in the studio UI. It is recommended that you start by reviewing
the existing KMs and start from an existing KM that is close to your use case. Once an
existing KM has been found, then create a new KM of the same type (XKM/LKM/IKM/CKM)
and set the existing KM as the base KM in the KM editor, and then customize the new KM as
desired. Alternatively, duplicate the existing KM and customize it by editing the code. It is
recommended to customize the KM by extending a seeded KM, so that any updates to the
seeded KM will automatically get reflected in your customized KM.

When developing your own KM, keep in mind that it is targeted to a particular stage of the
integration process. As a reminder:

• LKMs are designed to load remote source data sets to the staging or target server, by
loading the data into C$ staging tables, or by configuring some kind of transparent
access from the target to the source or vice versa.

Chapter 1
Service Knowledge Modules (SKM)

1-9

• IKMs apply the source flow from the staging area to the target. They start from the
C$ staging tables or sources, may transform and join them into a single integration
table ("I$") table, may call a CKM to perform data quality checks on this integration
table, and finally write the flow data to the target

• CKMs check data quality in a datastore or a integration table ("I$") against data
quality rules expressed as constraints. The rejected records are stored in the error
table ("E$")

• RKMs are in charge of extracting metadata from a metadata provider to the Oracle
Data Integrator repository by using the SNP_REV_xx temporary tables.

• JKMs are in charge of creating and managing the Change Data Capture
infrastructure.

Be also aware of these common pitfalls:

• Avoid creating too many KMs: A typical project requires less than 5 KMs! Do not
confuse KMs and procedures, and do not create one KM for each specific use
case. Similar KMs can be merged into a single one and parameterized using
options.

• Avoid hard-coded values, including catalog or schema names in KMs: You should
instead use the substitution methods getTable(), getTargetTable(),
getObjectName(), knowledge module options or others as appropriate.

• Avoid using variables in KMs: You should instead use options or flex fields to
gather information from the designer.

• Writing the KM entirely in Jython, Groovy or Java: You should do that if it is the
appropriate solution (for example, when sourcing from a technology that only has
a Java API). SQL is easier to read, maintain and debug than Java, Groovy or
Jython code.

• Using <%if%> or {# IF #} statements rather than a check box option to make code
generation conditional. A check box option can be used to enable or disable
generation of a KM step, and thus provides a way to conditionally generate some
discrete set of code.

Other common code writing recommendations that apply to KMs:

• The code should be correctly indented.

• The generated code should also be indented in order to be readable.

• SQL keywords such as "select", "insert", etc. should be in lowercase for better
readability.

Chapter 1
Guidelines for Knowledge Module Developers

1-10

2
Introduction to Component KMs

It is important to understand the concept of a component KM and the different types of
component KMs available in ODI.

This chapter provides an introduction to Component KMs. It explains briefly about
Component KMs and their different types.

This chapter includes the following sections:

• What is a Component KM?

• Syntax Elements of Component KMs

• Component KM — Flow Control Commands

• Global Templates

• KM Inheritance

• Groovy Variable Definition Scripts

• Structured Substitution API

• Task Control Objects

• Seeded Component KMs

2.1 What is a Component KM?
Component KM is a new, improved style of KM development, which is applicable for IKMs,
LKMs, XKMs. KMs for mappings, have two different types of implementation styles: The
legacy 11g-style and component-style. 11g-style KMs are designed to use the monolithic
odiRef substitution API object and syntax in their template commands. Component-style KMs
are designed to use the newer object-oriented substitution API objects and newer template
flow control syntax in their template commands. Both styles of KM can be seen in the project
and global KM tree, as IKMs, LKMs, and CKMs with a predefined set of component-style
KMs called XKMs. All new LKMs, IKMs, and XKMs should be designed and coded using the
new component KM style. Component KMs are new since ODI 12c and are first exposed in
the ODI studio from 12.2.1.2.1 release. A component KM has the same functionality as any
other KM, which includes tasks and options. But it also includes some added new functions
that includes:

• An associated delegate script whose purpose is to produce an Abstract Syntax Tree
(AST). The produced AST object is a tree of java class instances that describes the
metadata for the mapping component, in a way that is tailored to be used to generate
code for a specific language and technology.

• Source and target language fields at the KM and KM task level, similar to the existing
source and target technology fields.

• Support for KM inheritance, which allows a KM to inherit tasks, options, and field values
from a base KM.

• A set of flow control syntax elements to control the code generation flow for the KM task
source and target commands.

2-1

• The ability to include a globally sharable code template snippet, known as a
“global template”, as part of a KM task source or target command.

• A groovy-language script that is associated with each KM task, which allows new
substitution variables to be defined. The newly defined substitution variables can
be used in the task source and target commands.

The Component KM can be one of 4 types: IKM, LKM, XKM, and CKM. Refer to What
is a Knowledge Module?, for more details on the types of component KMs.

2.2 Syntax Elements of Component KMs
There are 2 new basic syntax elements that are specific to Component KMs:

• The first main Component KM syntax element that can be used in Component KM
tasks is a command syntax that looks like this: {# command #}. The
{#...#}escape characters are somewhat similar to the JSP-type <%...%> escape
commands that exist for all KMs, except that the escaped text is not java. The
component KM specific command syntax is similar to the command syntax for
Apache Velocity Template Language (VTL) syntax, except that there is an extra
character due to the rigorous demands of heterogeneous code generation. Any
syntax used with ODI code generation templates must be very strong so that the
possibility of confusion with some actual generated text in some language/
technology combination is minimized.

• The other syntax element specific to Component KMs is the escape syntax used
to de-reference substitution variables and API calls. The syntax looks like $
[variableName] or $[variable.methodName()].

For Example —

If a variable called "tableName" has been created in the groovy variable definition
script, then the command could contain text like this: CREATE TABLE $
[tableName]. When the code is generated, this would be rendered as: CREATE
TABLE MY_TABLE. If the tableName variable evaluates to MY_TABLE for this
mapping.

An example of a method call on an object type variable would be to define
command text as: CREATE TABLE $[physicalNode.getName()]. There is a built-in
variable physicalNode that is set to the MapPhysicalNode instance of the node
that this KM is assigned to. So during code generation, if the name of the target
physical node is "TGT_TABLE", then this code would be rendered as: CREATE
TABLE TGT_TABLE.

This syntax is also similar to Apache Velocity Template Language (VTL) syntax,
which uses ${variableName}. The square bracket “[“ is used instead of “{“,
because the “{“ is already heavily used by java and shell script syntax, as well as
other languages. The new substitution API variable de-reference syntax must not
be confused with the JSP-type expression syntax like <%=variableName%>. The
main difference is that the escaped text is not java. It only supports a variable
name or one method call, not an arbitrarily complex java expression. If some
complex java expression is desired, the best practice for component KMs is to
define a new substitution variable in the groovy variable definition script associated
with the KM task or the KM, and set it equal to the complex java expression. The
groovy script does support complex java or groovy expressions. In this way, the
specialized java or groovy code is kept separate from the actual template
commands.

Chapter 2
Syntax Elements of Component KMs

2-2

• One other important point to note about the Component KM syntax is that it only applies
to the code generation execution phase. In the older JSP-type template substitution
syntax which uses angle brackets, for example(<%...%>) there are altogether four
execution phases defined. They are:

– code generation phase <%...%>

– agent phase <?...?>

– post-agent phase <$...$>

– pre-execute phase <@...@>

These define the time phase in which the code generation and execution process occur,
when the substitution is done. However, for the Component KM syntax elements, the
substitution is always done in the initial code generation phase. The Component KM
functionality is thus altogether a code generation functionality as there is no new agent or
execution functionality. If some agent-phase or post-agent substitution is desired, for
example for late password substitution, then the JSP-type escapes must still be used.

2.3 Component KM — Flow Control Commands
Listed below are the flow control commands used in component KMs:

1. #IF

Syntax

{# IF condition #} text [{# ELSIF condition #} text [{# ELSIF condition #}
text ...]] [{# ELSE #} text] {# ENDIF #}
Description

Conditionally include text in the generated code. The condition can be a simple
substitution variable ref or method call or combinations of simple relational condition
predicates. Supported relational operators: [==, !=, <, >, !, OR, AND].

Example

{# INCLUDE = 'ConstantFromClauseText' #}
{# IF $[QUERY.isConstantQuery()] #}
{# ELSE #}FROM {#NL#}
{# LIST #} $[QUERY.getFromList().foreach(getText())]{# SEP #} ,{#NL#} {#
ENDLIST #}
{# ENDIF #}

2. #INCLUDE

Syntax

{# INCLUDE 'templateName' #}
Description

Includes the text of a named global shared template as part of this template text.

Example

{# INCLUDE = 'PreInsertList' #}

3. #TEMPLATE

Syntax

{# TEMPLATE name='templateName' technology='technoName' #}

Chapter 2
Component KM — Flow Control Commands

2-3

Description

Create a local overridden template, or specify a dependent template, with the
specified name and technology. The technology can be GENERIC.

Example

{# TEMPLATE name='ANSIJoinText' technology='GENERIC' #}
templateText...
{# ENDTEMPLATE #}

4. Substitution Variable Reference

Syntax

$
[variableName[.methodName([primitiveArg[,primitiveArg...]]).methodNam
e(primitiveArgs)]][.foreach(methodName())]]
Description

Substitutes the string value of an in-scope variable or method call result into the
generated template text. The square brackets in bold are literal square brackets
and the other square brackets are optional syntax indicators. The primitive
arguments are method parameters that must have simple literal java data types
such as string or int. The foreach method is a special syntax that is only allowed
inside a #LIST command block, and causes the specified method to be called for
each list item, to return the generated text.

Example

Generate the set operation between two queries that are part of a UNION ALL set
operation:

SELECT A, B FROM TAB1
$[QUERY.getSetOperation()]
SELECT C, D FROM TAB2

If the currently processing QUERY object has a set operation type of UNION ALL,
then the generated code from this command will look like this:

SELECT A, B FROM TAB1
UNION ALL
SELECT C, D FROM TAB2

For more details on the default built-in variables, see SQL Structured Substitution
API Reference appendix chapter.

5. #INDENT

Syntax

{# INDENT #}
Description

Substitutes a set of tab or space characters into the generated code, depending
on the current indent level.

Example

{# INDENT #}

Chapter 2
Component KM — Flow Control Commands

2-4

6. #LIST

Syntax

{# LIST #} listVariablesAndListText {#SEP#}separatorChars{# ENDLIST #}
Description

Substitutes a set of list variables and text into the generated code. The list text must
include at least one list variable, and can include multiple list variables, plus random text
and non-list substitution variables. The list text can include other template commands. If
there are multiple list variables, the lists must be of the same size. If separator characters
are specified, they will be reproduced in the generated code after each list item.

Example

{# LIST #} $[INSERT.getColumnList().foreach(getText())] {#SEP#},{#NL#}{#
ENDLIST #}

7. #FOR

Syntax

{# FOR (listVar[, listVar ...]) IN ($[listItemAlias][,$[listItemAlias]]) SEP
= 'separatorChars' #} text $[listItemAlias] [text $[listItemAlias]] {#
ENDFOR #}
Description

Substitutes a set of list variables and text into the generated code. If there are multiple list
variables, the lists must be of the same size. If separator characters are specified, they
will be reproduced in the generated code after each list item.

Example

{# FOR ($[QUERY.getSelectList()],$[QUERY.getAliasList()]) IN ($[SL],$[AL])
SEP = ',0x000A' #} $[SL] $[QUERY.getColumnAliasSeparator()] $[AL] {# ENDFOR
#}

8. #INC_INDENT

Syntax

{# INC_INDENT #}
Description

Increments the current indent count.

Example

{# INC_INDENT #}

9. #DEC_INDENT

Syntax

{# DEC_INDENT #}
Description

Decrements the current indent count.

Example

{# DEC_INDENT #}

10. #NL

Syntax

{#NL#}

Chapter 2
Component KM — Flow Control Commands

2-5

Description

Substitutes a new line character into the generated code.

Note:

Actually the new lines in the template may not reproduced to the
generated code, if template option REPLICATE_NEWLINE is set to false
(default is true).

Example

Hello world{#NL#}

11. #TEMPLATE_OPTIONS

Syntax

{# TEMPLATE OPTIONS optName='optValue'[optName='optValue' ...]
Description

Sets some named template options to a value. The options will take effect
immediately following the TEMPLATE_OPTIONS command in the template.

Example

{# TEMPLATE_OPTIONS REPLICATE_NEWLINE='false' #}

12. Line Comment

Syntax

commentText
Description

Template comment text that will not be reproduced in the generated code.

Example

This is a comment.

13. Multi-line Comment

Syntax

#* commentText *#
Description

Multi-line comment text that will not be reproduced in the generated code.

Example

#* This is a comment. *#

2.4 Global Templates
Global templates are a type of ODI object closely related to Component KMs. They are
found in the global object tree, under the Global Templates folder. A global template is
basically a snippet of template text that can be reused by any Component KM. It has a
name, and an associated language and technology. Some pre-seeded global
templates are supplied with ODI when it is installed, for common uses such as SQL
queries and inserts, and Spark Python scripts.

Chapter 2
Global Templates

2-6

• A global template is used in a KM task command by using the {# INCLUDE #} command,
which specifies the template name. During code generation, the template text is
substituted into the generated text, at the text position where the {#INCLUDE#} command
was inserted.

• In the KM task command editor, the #INCLUDE statement can be expanded by clicking
the “+” code folding button on the left-hand side of the text. When that is done, the global
template text will be substituted for the #INCLUDE statement in the command text. It is
permitted to have nested #INCLUDE statements, which results in nested template text
substitution.

• When the code generator expands the KM task text as part of generating a session or
scenario task, it will find the appropriate matching global template for each #INCLUDE
statement, based on the template name specified in the #INCLUDE statement, and the
technology and language of the template. It is permitted to define multiple global
templates with the same name, but with different technology and language. The right one
is picked by matching the execution technology and the KM task language setting with
the global template technology and language setting. A specific global template instance
can be picked which will disregard the execution technology and language, by specifying
the language and technology in the #INCLUDE statement.

2.5 KM Inheritance
KM inheritance allows a KM to inherit tasks, options, and field values from a base KM. To use
KM inheritance, the Base Component KM field must be set for a Component KM. When a
base KM is set, the derived KM will inherit the following properties from the base KM:

• All KM options

• The base KM language, technology, generation type, generation style settings, as well as
the base KM delegate script

• Some base KM tasks may be inherited, according to the following set of rules:

1. For each task type (MAP_BEGIN, EX_UNIT_BEGIN, etc.), if no tasks of that type are
directly owned by the derived KM, and if base tasks have not explicitly been
removed, then all base tasks of that type are inherited. This rule typically applies to a
newly created KM that has a base KM set.

2. If some directly owned tasks of a specified line type have been added, then by
default no base tasks of that type will be inherited, unless they have been explicitly
added using the “Include tasks” button in the KM editor.

3. Any arbitrary set of base tasks can be included in the derived KM by individually
adding them using the "Include tasks" icon present in the KM editor.

4. Any included base task can be removed by using the remove icon present in the KM
editor tasks tab.

5. Some seeded KMs may use a different type of task inclusion, that is only available
internally. This involves matching tasks based on a keyword. However any KM that
inherits from these KMs can include and exclude tasks as specified above, and from
that point onwards the normal task inclusion rules are followed.

2.6 Groovy Variable Definition Scripts
Each Component KM task has a source and target command template, just like all KMs.
However they also have an associated groovy variable definition script which can be used to

Chapter 2
KM Inheritance

2-7

define new substitution variables, starting with the existing built-in substitution API
variables. For example, a column list string can be created by looping through the
SelectItem objects contained by a SqlQuery object, which in turn is contained by a
SqlInsertStatement object.

In addition, there is a groovy variable definition script that is owned by the KM itself.
The variables defined in the KM-level variable definition script can be reused by all the
tasks in the KM. This is useful for cases where some value may be used by multiple
tasks in the KM.

Both the task-level and KM-level groovy variable definition script can be edited and
viewed in the KM task command editor.

2.7 Structured Substitution API
The Component KMs are the only type of KMs that have access to the structured
substitution API. The structured substitution API objects are accessed by a set of built-
in substitution API variables, similar to the “odiRef” variable that is available inside the
<%...%> escape characters, for all KMs. There are two types of built-in variables. They
are:

• Built-in Public SDK Variables — These variables are always the same
regardless of the KM, and they expose the mapping public SDK objects for the
component node and KM.

• Built-in Structured Substitution API Variables — The substitution API built-in
variables are always in all-caps and represent the API objects produced by the
particular IKM or LKM that is being edited. The full list of built-in substitution API
variables can be obtained from the in-scope tree in the bottom right-hand corner of
the KM source/target command editor.

The list of typical substitution API objects produced by a SQL IKM or LKM are:

• INSERT- The SqlInsertStatement object that represents the top-level INSERT DML
statement that will load the target. It is available only for insert-type KMs.

• UPDATE- The SqlUpdateStatement object that represents the top-level update DML
statement that will load the target. It is available only for update-type KMs.

• MERGE- The top-level MergeStatement object that is used to produce the merge
statement that loads the target.

• QUERY- The SqlQuery object that represents the top-level extract query that will
fetch the data to be loaded.

• TABLE- The top-level target Table object for KMs that are loading a target table.

• FROMLIST- The list of FromClause objects for the top-level SqlQuery object.

• JOIN- The JoinTable object that represents the current join when generating join
code. It is available only inside global templates that are used by to produce join
text, such as the JoinTable template.

• ATTR- The current source attribute when generating text for source attributes. It is
available only inside global templates that are used to produce source attribute
text, for example SourceMapAttribute

• COLLIST- The list of columns in the C$ staging table, formatted for an insert
statement.

Chapter 2
Structured Substitution API

2-8

• SUBQUERY - The FilterSubQuery object that represents the filtering for a Filter subquery
component.

The list of built-in structured substitution API variables that are available for Component KM
source and target commands are:

• physicalNode— This is the mapping physical node object of type MapPhysicalNode, to
which the Component KM is assigned. For example, for an IKM, the physicalNode built-in
variable would be a reference to the node associated with a target datastore component.
The physical node would have this IKM, assigned as its IKM.

• component— The mapping logical component that is associated with the physical node to
which the Component KM is assigned.

• connector— The mapping connector point associated with the physical node. For LKMs
assigned to an AP node, this connector point is the input connector point of the target
component to which the AP node is connected. For IKMs assigned to a target, this is the
datastore output connector point. For XKMs, it will be the associted output connector
point for the physical node. This is helpful in some cases, for example for a splitter
component there is a different physical node for each output connector, so it is helpful to
know which one is associated with the node and the XKM.

• generatorContext— The GeneratorContext object associated with the code generator
that will use the Component KM. A generator context is a container that holds named
properties that are global to the code generator execution.

• taskControl— This is a reference to a TaskControl object, which can be used to control
the number of session or scenario tasks that are generated for a single Component KM
task line. This object should be used in the groovy script, since its methods do not return
any string value that can be used as a template substitution string.

• upstreamASTList— A java.util.List is the object that contains a list of the AST substitution
API objects produced by all upstream nodes from the one that this Component KM is
assigned to. May contain multiple items, if the current component is a multi-input
component such as a join, otherwise the list will contain only one upstream substitution
API object. For example, in a SQL generation, the upstream AST object may typically be
a SqlQuery object.

• baseNode— Only applicable to multi-connect IKMs. A reference to the AP node that is
connected to the datastore target node to which the multi-connect IKM is assigned.

• componentKM— A reference to the owning Component KM object, usable within the
template command or groovy variable definition context.

• componentGenerator— A ComponentGenerator instance that is used to generate code
for the component to which this Component KM is assigned.

• subtype— The subtype value for this Component KM, or null, if the subtype is not set.
The subtype is a string value that is used to determine the name of the Component KM
generator delegate method that is called to produce the AST substitutino API object for
this Component KM. targetNameForLoadingTask is applicable only for IKMs and the
name of the target is loaded by this IKM.

• collTableName— Applicable for LKMs only, with LKM type of PERSISTENT. Set to the
name of the temporary staging table that will be created to stage the source data.

For more details on the substitution methods used in each built-in object, see SQL Structured
Substitution API Reference appendix chapter,

Chapter 2
Structured Substitution API

2-9

2.8 Task Control Objects
The TaskControl objects can be used in the groovy variable definition scripts, and is
accessed using the built-in variable “taskControl”. It has certain methods which can be
called to control the number of task instances that are generated from this task. These
methods are:

• skipTaskGeneration()— Calling this method will cause the code generator to skip
generating the main instance of this task. Other instances of the task can still be
added by calling instantiateTask().

• instantiateTask()— Calling this will cause the code generator to instantiate an
extra instance of the task in the generated session or scenario. An arbitrary
number of task instances can be generated by calling the method multiple times. A
hash table containing an alternate set of bound variables for task generation can
be passed as a parameter. If one of the variables in the alternate variable set has
the same name as a standard built-in variable, then the alternate value will be
used instead of the standard default value. Each extra instance of the task will be
given a unique name, which will be the base task name plus a uniqueness suffix.

2.9 Seeded Component KMs
A set of built-in global Component XKMs, LKMs, and IKMs are provided (starting in
ODI version 12.2.1.2.1). They can be viewed in the global KM tree. They are known as
seeded KMs. A seeded KM cannot be deleted or edited in the UI studio. However a
seeded KM can be duplicated, and the duplicate copy of the KM can be edited, if
required. Also a new Component KM can be created, and a seeded KM can be set as
its base KM, and thus the new KM will inherit the seeded base KM functionality, and
specific functionality can be overridden as desired. This is the best practice that should
be used to customize a built-in seeded KM.

Chapter 2
Task Control Objects

2-10

3
Introduction to OdiRef Substitution API

You can obtain a general understanding of the Oracle Data Integrator OdiRef Substitution API
using examples.
This chapter includes the following sections:

• Introduction to the Substitution API

• Using Substitution Methods

• Using Substitution Methods in Actions

• Working with Object Names

• Working with Lists of Tables, Columns and Expressions

• Generating the Source Select Statement

• Obtaining Other Information with the API

• Advanced Techniques for Code Generation

Note:

The substitution API methods are listed in Substitution API Reference.

3.1 Introduction to the Substitution API
KMs are written as templates by using the Oracle Data Integrator substitution API. The API
methods are java methods that return a string value, or an object value that can be converted
to a string or be passed as a parameter into a different method. Since ODI version 12.2.1.2.1,
there are 2 types of substitution API objects.

• The first type is called the Structured Substitution API. It is a structured set of objects that
represent the structure of the code that will be generated. The Structured Substitution
API objects are a collection of objects generally related by a tree-like structure.
Navigation methods are provided to navigate from parent objects to child objects. The
Structured Substitution API is available only when writing commands or global templates
for Component KMs, which consist of IKM, LKM, XKM, and CKM.

• The second type of AST object is the monolithic substitution API, or odiRef, which is the
only substitution API object that was available prior to ODI version 12.2.1.2.1.

Structured Substitution API

The Structured Substitution API tree has a different structure depending on the base
language of the code that will be generated by the KM. The currently supported base
languages are SQL, SPARK_PYTHON.

The tree structure for SQL is shown in the following diagram:

3-1

Figure 3-1 Structured Substitution API

The same method may return different values depending on the structure of the
mapping logic that was used to generate the tree. The tree is generated by iterating
through all the source components for a particular target in a mapping, and executing
the KM delegate for each component KM.

The following example illustrates how you would write a create table statement in a
KM using the Structured Substitution API.

The following code is entered in a KM or global template:

CREATE TABLE $[tableName] ({#LIST} $[tgtColNameList] $[tgtColDataTypeList]
{#SEP#},{#NL#} {#ENDLIST#})

The generated code for the PRODUCT table is:

CREATE TABLE db_staging.PRODUCT(PRODUCT_ID numeric(10), PRODUCT_NAME
varchar(250), FAMILY_ID numeric(4), SKU varchar(13), LAST_DATE timestamp)

The generated code for the CUSTOMER table is:

CREATE TABLE db_staging.CUSTOMER(CUST_ID numeric(10), CUST_NAME
varchar(250), ADDRESS varchar(250), CITY varchar(50), ZIP_CODE
varchar(12), COUNTRY_ID varchar(3))

Each element of the template is explained below:

Chapter 3
Introduction to the Substitution API

3-2

• CREATE TABLE is just simple text that is replicated into the generated code.

• $[tableName] is a substitution API call using the groovy-based templating syntax (since
12.2.1.2.1). The name inside the $[…] escape characters can be a simple variable name
of a built-in or groovy variable, or it can include a method call, for example
“table.getName()”, if the “table” variable was an object with a getName() method. The
tableName variable may be defined in the variable definition groovy script associated with
the KM task.

• {#LIST#} is an example of the template flow control command syntax (since ODI
12.2.1.2.1). These commands are always escaped by {#...#} and can be used to control
the flow of the text generation. In this case it allows a list variable to be displayed by
calling “toString()” for each object in the list. For the {#LIST#} command, if a different
method should be called for each list item, the “foreach()” syntax can be used, for
example “columnList.foreach(getText())”. The list substitution API objects following
{#LIST#} will be expanded one at a time, using the fixed text for each one.

• {#SEP#} This is another template flow control commands that is always paired with
{#LIST#}. The text following this command is used as a separator between each list item.

• {#ENDLIST#} This command closes the list flow control definition.

The Monolithic Substitution API Object - odiRef

The monolithic substitution API methods belong to a single object instance named "odiRef".
The same method may return different values depending on the type of KM that invokes it.
That's why they are classified by type of KM.

To understand how this API works, the following example illustrates how you would write a
create table statement in a KM and what it would generate depending on the datastores it
would deal with:

The following code is entered in a KM:

CREATE TABLE <%=odiRef.getTable("L", "INT_NAME", "A")%>(<%=odiRef.getColList("",
"\t[COL_NAME] [DEST_CRE_DT]", ",\n", "", "")%>)

The generated code for the PRODUCT table is:

CREATE TABLE db_staging.I$_PRODUCT(
 P RODUCT_ID numeric(10), PRODUCT_NAME varchar(250), FAMILY_ID
numeric(4), SKU varchar(13), LAST_DATE timestamp)

The generated code for the CUSTOMER table is:

CREATE TABLE db_staging.I$_CUSTOMER(CUST_ID numeric(10), CUST_NAME
varchar(250), ADDRESS varchar(250), CITY varchar(50), ZIP_CODE
varchar(12), COUNTRY_ID varchar(3))

As you can see, once executed with appropriate metadata, the KM has generated a different
code for the product and customer tables.

The following topics cover some of the main substitution APIs and their use within KMs. Note
that for better readability the tags "<%" and "%>" as well as the "odiRef" object reference are
omitted in the examples.

Calls to odiRef substitution API methods can also be made in the groovy variable definition
script for a KM task. Thus a new variable can be defined whose value is equal to the result of
a odiRef call, or some combination of calls.

Chapter 3
Introduction to the Substitution API

3-3

3.2 Using Substitution Methods
The methods that are accessible from the Knowledge Modules and from the
procedures are direct calls to Oracle Data Integrator methods implemented in Java.
These methods are usually used to generate some text that corresponds to the
metadata stored into the Oracle Data Integrator repository.

3.2.1 Generic Syntax
The substitution methods are used in any text of a task of a Knowledge Module or of a
procedure.

The odiRef methods can be called inside a groovy variable definition script. Also, they
can be used within any KM task command text using the following syntax:

<%=java_expression%>

In this syntax:

• The <%= %> tags are used to output the text returned by java_expression. This
syntax is very close to the syntax used in Java Server Pages (JSP).

• Java expression is any Java expression that returns a string.

The following syntax performs a call to the getTable method of the odiRef java object
using three parameters. This method call returns a string. That is written after the
CREATE TABLE text.

CREATE TABLE <%=odiRef.getTable("L", "INT_NAME", "A")%>

The Oracle Data Integrator Monolithic Substitution API is implemented in the Java
class OdiReference, whose instance OdiRef is available at any time. For example, to
call a method called getFrom(), you have to write odiRef.getFrom().

Note:

For backward compatibility, the "odiRef" API can also be referred to as
"snpRef" API. "snpRef" and "odiRef" object instances are synonyms, and the
legacy syntax snpRef.<method_name> is still supported but deprecated.

3.2.2 Specific Syntax for CKM
The following syntax is used in an IKM to call the execution of a check procedure
(CKM).

This syntax automatically includes all the CKM procedure commands at this point of in
the processing.

<% @ INCLUDE (CKM_FLOW | CKM_STATIC) [DELETE_ERROR] %>

The options for this syntax are:

Chapter 3
Using Substitution Methods

3-4

• CKM_FLOW: triggers a flow control, according to the CKM choices made in the Check
Knowledge Module tab in the properties of the target datastore in the physical diagram of
the Mapping.

• CKM_STATIC: Triggers a static control of the target datastore. Constraints defined for the
datastore and selected as Static constraints will be checked.

• DELETE_ERROR: This option instructs the CKM to remove any detected errors from the
validated table (flow table in case of CKM_FLOW or target table in case of
CKM_STATIC). More precisely, all CKM commands will be generated, which are tagged
as Remove Errors.

For example: the following call triggers a flow control with error deletion.

<% @ INCLUDE CKM_FLOW DELETE_ERROR %>

3.2.3 Using Flexfields
Flexfields are user-defined fields enabling users to customize the properties of Oracle Data
Integrator' objects. Flexfields are defined on the Flexfield tab of the object window and can
be set for each object instance through the Flexfield tab of the object window.

Flexfield Access Using Groovy-based Variables and Mapping API

Using the new structured substitution API, the flex field values for a datastore can be
obtained by starting with the built-in component KM variable “physicalNode”, and using the
ODI public API to navigate to the value. This could be done in the groovy variable definition
script, using groovy language (which can be written to look exactly like java) similar to this:

flexFieldValue = “”;
String ffName = “MY_FLEX_FIELD”;
IMapComponent comp = node.getLogicalComponent();
if (comp.isOfType(DatastoreComponent.COMPONENT_TYPE_NAME)) {
 DatastoreComponent datastoreComp = (DatastoreComponent) comp.getDelegate();
 OdiDataStore datastore = (OdiDataStore) datastoreComp.getBoundDataStore();
 Collection<IFlexFieldValue> ffValues = datastore.getFlexFieldsValues();
for (IFlexFieldValue value : ffValues) {
if (value.getName().equals(ffName)) {
 // found it
 flexFieldValue = value.getValue().toString();
 }

If this code is written in the groovy variable definition script, then variable “flexFieldValue” can
be used in a variable reference in the template or KM command.

This code is more complex than the simple odiRef getTable or getSrcTableList call (as
illustrated below). However it is also more flexible to accommodate special cases, such as
retreiving all of the flex fields from a given object into an array, or retrieving flex fields from
other objects besides the contextual target or source tables.

Also, the odiRef call can be used in the KM task groovy variable definition script to store the
value in a temporary variable, which can then be used in the template command.

Flexfield Access Using Monolithic odiRef Substitution API

Chapter 3
Using Substitution Methods

3-5

When accessing an object properties through Oracle Data Integrator' substitution
methods, if you specify the flexfield Code, Oracle Data Integrator will substitute the
Code by the flexfield value for the object instance.

For instance:

<%=odiRef.getTable("L", "MY_DATASTORE_FIELD", "W")%> will return the value of
the flexfield MY_DATASTORE_FIELD for the current table.

<%=odiRef.getSrcTableList("", "[MY_DATASTORE_FIELD] ", ", ", "")%> will
return the flexfield value for each of the source tables of the mapping.

It is also possible to get the value of a flexfield through the getFlexFieldValue()
method.

Note:

Flexfields exist only for certain object types. Objects that do not have a
Flexfield tab do not support flexfields.

3.2.4 Using Code Generation Tags
The following code generation tags may be used as a way to write executable java
inside the template:

• <%... %>: This tag is evaluated during scenario generation or session creation
time. It is used to substitute the metadata information in the text. For example, for
the PRODUCT table:

CREATE TABLE <%=odiRef.getTable("L", "INT_NAME", "A")%>

is converted into:

CREATE TABLE db_staging.I$_PRODUCT

Usage of the <%...%> tag is discouraged for new Component KMs
(IKM/LKM/XKM/CKM), the newer Structured Substitution API and the groovy
variable definition script should be used instead.

• <?...?>: This tag is evaluated during session execution time where the physical
topology information is substituted depending upon the execution context. The
session task logs are created after evaluating this tag. For example, for the target
data server user 'TargetName':

"<?=snpRef.getInfo("DEST_USER_NAME")?>"

is converted into:

'TargetName'

• <@...@>: This tag is evaluated after session logs are created and should be used
for substitutions that you do not want to appear in the Session Task logs. It can be
used for substituting clear text passwords which must not be logged in the session
task logs for security reasons. For example:

<@=snpRef.getInfo("SRC_PASS") @>

Chapter 3
Using Substitution Methods

3-6

3.3 Using Substitution Methods in Actions
An action corresponds to a DDL operation (create table, drop reference, etc) used to
generate a session or scenario task to implement in a database the changes performed in a
data integrator model (Generate DDL operation). Each action contains several Action Lines,
corresponding to the commands required to perform the DDL operation (for example,
dropping a table requires dropping all its constraints first).

3.3.1 Action Lines Code
Action lines contain statements valid for the technology of the action group. Unlike
procedures or knowledge module commands, these statements use a single connection
(SELECT ... INSERT statements are not possible). In the style of the knowledge modules,
action make use of the substitution methods to make their DDL code generic.

For example, an action line may contain the following code to drop a check constraint on a
table:

ALTER TABLE $[tableName]
DROP CONSTRAINT $[constraintName]

3.3.2 Action Calls Method
The Action Calls methods are odiRef calls that are usable in the action lines only. Unlike other
substitution methods, they are not used to generate text, but to generate actions appropriate
for the context.

For example, to perform the Drop Table DDL operation, we must first drop all foreign keys
referring to the table.

In the Drop Table action, the first action line will use the dropReferringFKs() action call
method to automatically generate a Drop Foreign Key action for each foreign key of the
current table. This call is performed by creating an action line with the following code:

<% odiRef.dropReferringFKs(); %>

The syntax for calling the action call methods is:

<% odiRef.method_name(); %>

Note:

The action call methods must be alone in an action line, should be called without a
preceding "=" sign, and require a trailing semicolon.

The following Action Call Methods are available for Actions:

• addAKs(): Call the Add Alternate Key action for all alternate keys of the current table.

• dropAKs(): Call the Drop Alternate Key action for all alternate keys of the current table.

• addPK(): Call the Add Primary Key for the primary key of the current table.

• dropPK(): Call the Drop Primary Key for the primary key of the current table.

Chapter 3
Using Substitution Methods in Actions

3-7

• createTable(): Call the Create Table action for the current table.

• dropTable(): Call the Drop Table action for the current table.

• addFKs(): Call the Add Foreign Key action for all the foreign keys of the current
table.

• dropFKs(): Call the Drop Foreign Key action for all the foreign keys of the current
table.

• enableFKs(): Call the Enable Foreign Key action for all the foreign keys of the
current table.

• disableFKs(): Call the Disable Foreign Key action for all the foreign keys of the
current table.

• addReferringFKs(): Call the Add Foreign Key action for all the foreign keys
pointing to the current table.

• dropReferringFKs(): Call the Drop Foreign Key action for all the foreign keys
pointing to the current table.

• enableReferringFKs(): Call the Enable Foreign Key action for all the foreign keys
pointing to the current table.

• disableReferringFKs(): Call the Disable Foreign Key action for all the foreign
keys pointing to the current table.

• addChecks(): Call the Add Check Constraint action for all check constraints of the
current table.

• dropChecks(): Call the Drop Check Constraint action for all check constraints of
the current table.

• addIndexes(): Call the Add Index action for all the indexes of the current table.

• dropIndexes(): Call the Drop Index action for all the indexes of the current table.

• modifyTableComment(): Call the Modify Table Comment for the current table.

• AddColumnsComment(): Call the Modify Column Comment for all the columns of
the current table.

3.4 Working with Object Names
When working in Designer, you should avoid specifying physical information such as
the database name or schema name as they may change depending on the execution
context. The correct physical information will be provided by Oracle Data Integrator at
execution time.

The substitution API has methods that calculate the fully qualified name of an object or
datastore taking into account the context at runtime. These methods are listed in the
table below:

The odiRef name calculation methods can be called from the groovy variable definition
script, or inside a java tags like <%...%>, inside the command text.

Qualified Name Required Method Usable In

Any object named OBJ_NAME getObjectName("L", "OBJ_NAME", "D") Anywhere

The target datastore of the
current mapping.

getTable("L", "TARG_NAME", "A") LKM, CKM, IKM,
JKM

Chapter 3
Working with Object Names

3-8

Qualified Name Required Method Usable In

The integration (I$) table of the
current mapping.

getTable("L", "INT_NAME", "A") LKM, IKM

The loading table (C$) for the
current loading phase.

getTable("L", "COLL_NAME", "A") LKM

The error table (E$) for the
datastore being checked.

getTable("L", "ERR_NAME", "A") LKM, CKM, IKM

The datastore being checked getTable("L", "CT_NAME", "A") CKM

The datastore referenced by a
foreign key

getTable("L", "FK_PK_TABLE_NAME",
"A")

CKM

Additionally, a special static object name retrieval method is provided for the case where
mapping public API is used in the groovy script, and a map physical node is available. This
may be useful if a generated object name is needed for an object other than the current
target.

Table 3-1 Static Object Name Retrieval Method

Qualified Name Required Method Usable In

Any object named
OBJ_NAME

OdiRef.getOdiGeneratedAccessNa
me("OBJ_NAME",
mapPhysicalNode, "D")

Anywhere

3.5 Working with Lists of Tables, Columns and Expressions
Generating code from a list of items often requires a "while" or "for" loop. Oracle Data
Integrator addresses this issue by providing a set of template flow control commands that act
as iterators to which you provide a set of list variables in a template pattern, plus a separator
pattern.

The main template flow control command for looping is {# LIST #}. The template patterns
found between the {#LIST#} and {#ENDLIST#} commands are expanded multiple times, one
for each item in the list variables that are expanded in the template pattern. There must be at
least one list variable that is expanded in the template pattern inside the list construct.

So for example if a list variable was defined in groovy like this:

List myList = [‘a’. ‘b’, ‘c’]
Then add a #LIST command like this:

{#LIST#} The element value is $[myList] {#SEP#} {#NL#} {#ENDLIST#}
The resultant generated code would look like this:

The element value is a
The element value is b
The element value is c

The template pattern between {#SEP#} and {#ENDLIST#} is used as a separator between
each list item expansion.

Chapter 3
Working with Lists of Tables, Columns and Expressions

3-9

Multiple list variables can be used in the pattern, but each one must have the same
number of elements.

To access mapping objects and their generated strings, the structured substitution API
or mapping API may be used in the groovy variable definition script. For example the
following query could be used to get the generated source column list for the built-in
QUERY structured substitution API variable:

{# LIST #} $[QUERY.getSelectList().foreach(getText())] $
[QUERY.getColumnAliasSeparator()] $[QUERY.getAliasList()] {# SEP #},{#NL#}
{# ENDLIST #}
The older odiRef iterator methods are also still supported, and can be used inside the
Java based <%...%> tags, or in the KM task groovy variable definition script. These
methods act as "iterators" to which you provide a substitution mask or pattern and a
separator and they return a single string with all patterns resolved separated by the
separator.

All of them return a string and accept at least these 4 parameters:

• Start: a string used to start the resulting string.

• Pattern: a substitution mask with attributes that will be bound to the values of each
item of the list.

• Separator: a string used to separate each substituted pattern from the following
one.

• End: a string appended to the end of the resulting string

Some of them accept an additional parameter (the Selector) that acts as a filter to
retrieve only part of the items of the list. For example, list only the mapped attribute of
the target datastore of a mapping.

Some of these methods are summarized in the table below:

Method Description Usable In

getColList() The most frequently-used method in Oracle
Data Integrator. It returns a list of columns and
expressions that need to be executed in the
context where used. You can use it, for example,
to generate lists like these:

• Columns in a CREATE TABLE statement
• Columns of the update key
• Expressions for a SELECT statement in a

LKM, CKM or IKM
• Field definitions for a loading script
This method accepts a "selector" as a 5th
parameter to let you filter items as desired.

LKM, CKM, IKM,
JKM, SKM

getTargetColList() Returns the list of attributes in the target
datastore.

This method accepts a selector as a 5th
parameter to let you filter items as desired.

LKM, CKM, IKM,
JKM,SKM

getAKColList() Returns the list of columns defined for an
alternate key.

CKM, SKM

getPKColList() Returns the list of columns in a primary key. You
can alternatively use getColList with the selector
parameter set to "PK" .

CKM,SKM

Chapter 3
Working with Lists of Tables, Columns and Expressions

3-10

Method Description Usable In

getFKColList() Returns the list of referencing columns and
referenced columns of the current foreign key.

CKM,SKM

getSrcTablesList() Returns the list of source tables of a mapping.
Whenever possible, use the getFrom method
instead. The getFrom method is discussed
below.

LKM, IKM

getFilterList() Returns the list of filter expressions in a
mapping. The getFilter method is usually more
appropriate.

LKM, IKM

getJoinList() Returns the list of join expressions in a mapping.
The getJoin method is usually more appropriate.

LKM, IKM

getGrpByList() Returns the list of expressions that should
appear in the group by clause when aggregate
functions are detected in the mappings of a
mapping. The getGrpBy method is usually more
appropriate.

LKM, IKM

getHavingList() Returns the list of expressions that should
appear in the having clause when aggregate
functions are detected in the filters of a
mapping. The getHaving method is usually more
appropriate.

LKM, IKM

getSubscriberList() Returns a list of subscribers. JKM

The following section provide examples illustrating how these methods work for generating
code:

3.5.1 Using INSERT.getTargetColList to create a table
The following example shows how to use the built-in variable INSERT, of type
SqlInsertStatement, to create a table.

The following KM code:

create table $[odiRuntimeAccessName]
(
 $[tgtColList.call()]
)
Combined with the following groovy variable definitions in the KM task
variable definition script:
tableName = physicalNode.getBoundObjectName();
tableCmp = physicalNode.getLogicalComponent();
tableQualifier = physicalNode.getLocation() == null ? null :
physicalNode.getLocation().getName();
odiRuntimeAccessName = OdiRef.getOdiGeneratedAccessName("TARG_NAME",
physicalNode, "A");
tableAlias = component.getAlias();
tgtColList = {
 def cols = component.getAttributes();
 String result = ""
 def first = true
 for (col in cols) {

Chapter 3
Working with Lists of Tables, Columns and Expressions

3-11

 if (!first) result += ",\n"
 result += col.getSQLAccessName(false, "") + " " +
MappingUtils.getDdlDataType(col.getBoundObject());
 first = false
 }
 return result
}

Generates the following statement:

Create table MYTABLE
(
 CUST_ID numeric(10),
 CUST_NAME varchar(250),
 ADDRESS varchar(250),
 CITY varchar(50),
 ZIP_CODE varchar(12),
 COUNTRY_ID varchar(3)
)

3.5.2 Using getTargetColList to create a table
The following example shows how to use a column list to create a table.

The following KM code:

Create table MYTABLE
<%=odiRef.getTargetColList("(\n", "\t[COL_NAME] [DEST_WRI_DT]", ",\n", "\n)")%>

Generates the following statement:

Create table MYTABLE
(
 CUST_ID numeric(10),
 CUST_NAME varchar(250),
 ADDRESS varchar(250),
 CITY varchar(50),
 ZIP_CODE varchar(12),
 COUNTRY_ID varchar(3)
)

In this example:

• Start is set to "(\n": The generated code will start with a parenthesis followed by a
carriage return (\n).

• Pattern is set to "\t[COL_NAME] [DEST_WRI_DT]": The generated code will loop
over every target column and generate a tab character (\t) followed by the column
name ([COL_NAME]), a white space and the destination writable data type
([DEST_WRI_DT]).

• The Separator is set to ",\n": Each generated pattern will be separated from the
next one with a comma (,) and a carriage return (\n)

• End is set to "\n)": The generated code will end with a carriage return (\n) followed
by a parenthesis.

Chapter 3
Working with Lists of Tables, Columns and Expressions

3-12

3.5.3 Using getColList in an Insert values statement
The following example shows how to use column listing to insert values into a table.

For following KM code:

insert into MYTABLE
(
<%=odiRef.getColList("", "[COL_NAME]", ", ", "\n", "INS AND NOT TARG")%>
<%=odiRef.getColList(",", "[COL_NAME]", ", ", "", "INS AND TARG")%>
)
Values
(
<%=odiRef.getColList("", ":[COL_NAME]", ", ", "\n", "INS AND NOT TARG")%>
<%=odiRef.getColList(", ", "[EXPRESSION]", ", ", "", "INS AND TARG")%>
)

Generates the following statement:

insert into MYTABLE
(
CUST_ID, CUST_NAME, ADDRESS, CITY, COUNTRY_ID
, ZIP_CODE, LAST_UPDATE
)
Values
(
:CUST_ID, :CUST_NAME, :ADDRESS, :CITY, :COUNTRY_ID
, 'ZZ2345', current_timestamp
)

In this example, the values that need to be inserted into MYTABLE are either bind variables
with the same name as the target columns or constant expressions if they are executed on
the target. To obtain these 2 distinct set of items, the list is split using the Selector parameter:

• "INS AND NOT TARG": first, generate a comma-separated list of columns ([COL_NAME])
mapped to bind variables in the "value" part of the statement (:[COL_NAME]). Filter them
to get only the ones that are flagged to be part of the INSERT statement and that are not
executed on the target.

• "INS AND TARG": then generate a comma separated list of columns ([COL_NAME])
corresponding to expression ([EXPRESSION]) that are flagged to be part of the INSERT
statement and that are executed on the target. The list should start with a comma if any
items are found.

3.5.4 Using getSrcTableList
The following example concatenates the list of the source tables of a mapping for logging
purposes.

For following KM code:

insert into MYLOGTABLE
(
MAPPING_NAME,
DATE_LOADED,
SOURCE_TABLES
)
values
(

Chapter 3
Working with Lists of Tables, Columns and Expressions

3-13

'<%=odiRef.getPop("POP_NAME")%>',
current_date,
'' <%=odiRef.getSrcTablesList("|| ", "'[RES_NAME]'", " || ',' || ", "")%>
)

Generates the following statement:

insert into MYLOGTABLE
(
MAPPING_NAME,
DATE_LOADED,
SOURCE_TABLES
)
values
(
'Int. CUSTOMER',
current_date,
'' || 'SRC_CUST' || ',' || 'AGE_RANGE_FILE' || ',' || 'C$0_CUSTOMER'
)

In this example, getSrcTableList generates a message containing the list of resource
names used as sources in the mapping to append to MYLOGTABLE. The separator
used is composed of a concatenation operator (||) followed by a comma enclosed by
quotes (',') followed by the same operator again. When the table list is empty, the
SOURCE_TABLES column of MYLOGTABLE will be mapped to an empty string ('').

3.6 Generating the Source Select Statement
LKMs and IKMs both manipulate a source result set. For the LKM, this result set
represents the pre-transformed records according to the mappings, filters and joins
that need to be executed on the source. For the IKM, however, the result set
represents the transformed records matching the mappings, filters and joins executed
on the staging area.

To build these result sets, you will usually use a SELECT statement in your KMs.
Oracle Data Integrator has some advanced substitution methods, including getColList,
that help you generate this code:

Method Description Usable In

getFrom() Returns the FROM clause of a SELECT
statement with the appropriate source tables,
left, right and full outer joins. This method uses
information from the topology to determine the
SQL capabilities of the source or target
technology. The FROM clause is built
accordingly with the appropriate keywords
(INNER, LEFT etc.) and parentheses when
supported by the technology.

• When used in an LKM, it returns the FROM
clause as it should be executed by the
source server.

• When used in an IKM, it returns the FROM
clause as it should be executed by the
staging area server.

LKM, IKM

Chapter 3
Generating the Source Select Statement

3-14

Method Description Usable In

getFilter() Returns filter expressions separated by an
"AND" operator.

• When used in an LKM, it returns the filter
clause as it should be executed by the
source server.

• When used in an IKM, it returns the filter
clause as it should be executed by the
staging area server.

LKM, IKM

getJrnFilter() Returns the special journal filter expressions for
the journalized source datastore. This method
should be used with the CDC framework.

LKM, IKM

getGrpBy() Returns the GROUP BY clause when
aggregation functions are detected in the
mappings.

The GROUP BY clause includes all mapping
expressions referencing columns that do not
contain aggregation functions. The list of
aggregation functions are defined by the
language of the technology in the topology.

LKM, IKM

getHaving() Returns the HAVING clause when aggregation
functions are detected in filters.

The having clause includes all filters
expressions containing aggregation functions.
The list of aggregation functions are defined by
the language of the technology in the topology.

LKM, IKM

To obtain the result set from any SQL RDBMS source server, you would use the following
SELECT statement in your LKM:

select <%=odiRef.getPop("DISTINCT_ROWS")%>
<%=odiRef.getColList("", "[EXPRESSION]\t[ALIAS_SEP] [CX_COL_NAME]", ",\n\t", "", "")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getFilter()%>
<%=odiRef.getJrnFilter()%>
<%=odiRef.getJoin()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

To obtain the result set from any SQL RDBMS staging area server to build your final flow
data, you would use the following SELECT statement in your IKM. Note that the getColList is
filtered to retrieve only expressions that are not executed on the target and that are mapped
to writable columns.

select <%=odiRef.getPop("DISTINCT_ROWS")%>
<%=odiRef.getColList("", "[EXPRESSION]", ",\n\t", "", "(not TRG) and REW")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getJrnFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

Chapter 3
Generating the Source Select Statement

3-15

As all filters and joins start with an AND, the WHERE clause of the SELECT statement
starts with a condition that is always true (1=1).

3.7 Obtaining Other Information with the API
The following methods provide additional information which may be useful:

Method Description Usable In

getInfo() Returns information about the source or target
server.

Any procedure or KM

getSession() Returns information about the current running
session

Any procedure or KM

getOption() Returns the value of a particular option Any procedure or KM

getFlexFieldValue() Returns information about a flex field value. Not
that with the "List" methods, flex field values can
be specified as part of the pattern parameter.

Any procedure or KM

getJrnInfo() Returns information about the CDC framework JKM, LKM, IKM

getTargetTable() Returns information about the target table of a
mapping.

LKM, IKM, CKM

getModel() Returns information about the current model
during a reverse-engineering process.

RKM

getPop() Returns information about the current mapping. LKM, IKM

3.8 Advanced Techniques for Code Generation
The code generation in Oracle Data Integrator can interpret any Java code enclosed
between "<%" and "%>" tags.

However, the best practice for new KMs developed in ODI version 12.2.1.2.1 or
beyond is to keep Java or groovy code separate from the template, by adding it to the
KM task groovy variable definition script and defining a set of simple variables that can
be used in the template command. For example, if some section of the template
command is to be conditionally generated depending on some complex condition, the
best practice would be to define a boolean variable in the groovy variable script, and
then use that variable in the {#IF#} statement in the template command. In this way,
the template and the code are kept separate and both are clearer.

The following examples illustrate how you can use these advanced techniques.

Using Java Variables and String Functions

The following KM Code creates a string variable and uses it in a substitution method
call :

<%
String myTableName;
myTableName = "ABCDEF";
%>
drop table <%=odiRef.getObjectName(myTableName.toLowerCase())%>

Generates the following:

drop table SCOTT.abcdef

Chapter 3
Obtaining Other Information with the API

3-16

Using a KM Option to Generate Code Conditionally

The following KM code generates code depending on the OPT001 option value.

<%
String myOptionValue=odiRef.getOption("OPT001");
if (myOption.equals("TRUE"))
{
out.print("/* Option OPT001 is set to TRUE */");
}
else
{
%>
/* The OPT001 option is not properly set */
<%
}
%>

If OPT001 is set to TRUE, then the following is generated:

/* Option OPT001 is set to TRUE */

Otherwise the following is generated

/* The OPT001 option is not set to TRUE */

Chapter 3
Advanced Techniques for Code Generation

3-17

4
Reverse-Engineering Strategies

It is important to understand the customized reverse-engineering process and the strategies
used in the Reverse-engineering Knowledge Modules for retrieving advanced metadata.
This chapter includes the following sections:

• Customized Reverse-Engineering Process

• Case Studies

4.1 Customized Reverse-Engineering Process
Oracle Data Integrator Standard Reverse-Engineering relies on the capabilities of the driver
used to connect a given data server to return rich metadata describing the data strucuture.

When this metadata is not accurate, or needs to be enriched with some metadata retrieved
from the data server, customized reverse-engineering can be used.

4.1.1 SNP_REV tables
The Oracle Data Integrator repository contains a set of metadata staging tables, called the
SNP_REV tables.

These SNP_REV tables content is managed using the following tools:

• OdiReverseResetTable resets the content of these tables for a given model.

• OdiReverseGetMetadata populates these tables using a process similar to the standard
JDBC reverse-engineering.

• OdiReverseSetMetadata applies the content of these staging tables to the repository
tables describing the datastores, columns, constraints, etc. This action modifies the
Oracle Data Integrator model.

See SNP_REV Tables Reference for a reference of the SNP_REV table, and the Developer's
Guide for Oracle Data Integrator for more information for a reference of the reverse-
engineering tools.

4.1.2 Customized Reverse-Engineering Strategy
Customized Reverse-Engineering strategy follows a pattern common to all RKMs.

This patterns includes the following steps:

1. Call the OdiReverseResetTable tool to reset the SNP_REV tables from previous
executions.

2. Load the SNP_REV tables. This is performed using three main patterns:

• Retrieve metadata from the metadata provider and load them into to SNP_REV
tables. This is the pattern used for example in the RKM Oracle.

4-1

• Retreive metadata from a third party provider. This is the pattern used for
example in the RKM File (FROM EXCEL). Metadata is not extracted from the
files described in the model but from a Micrisift Excel Excel spreadsheet that
contains the description of these files.

• Pre-populate the SNP_REV tables using OdiReverseGetMetadata and then
fix/enrich this metadata using queries targeting these tables.

3. Call the OdiReverseSetMetaData tool to apply the changes to the current Oracle
Data Integrator model.

In an RKM, the source and target commands work are follow:

• The Command on Target specified with an Undefined technology on the
Autocommit transaction targets the SNP_REV tables in the repository.

• The Command on Source specified with an Undefined Schema on the
Autocommit transaction retreives data from the data-server containing the data
structure to reverse-engineer. If you want to use a metadata provider (for example
an Excel spreadsheet), you must specify a specific technology and logical
schema.

• Calls to Tools (such as OdiReverseSetMetadata) are specified in the Command
on Target, with the ODI Tools technology.

4.2 Case Studies
This section provides examples of reverse-egineering strategies.

4.2.1 RKM Oracle
The RKM Oracle is a typical example of a reverse-engineering process using a
database dictionnary as the metadata provider.

The commands below are extracted from the RKM for Oracle and provided as
examples. You can review the code of this knowledge module by editing it in Oracle
Data Intagrator Studio.

4.2.1.1 Reset SNP_REV Tables
This task resets the content of the SNP_REV tables for the current model.

Command on Target (ODI Tools)

OdiReverseResetTable -MODEL=<%=odiRef.getModel("ID")%>

4.2.1.2 Get Tables
This task retreives the list of tables from the Oracle system tables and loads this
content into the SNP_REV tables.

Command on Source

Select t.TABLE_NAME TABLE_NAME, t.TABLE_NAME
RES_NAME, replace(t.TABLE_NAME,'<%=odiRef.getModel("REV_ALIAS_LTRIM")
%>','') TABLE_ALIAS, substr(tc.COMMENTS,1,250) TABLE_DESC,
'T' TABLE_TYPE, t.NUM_ROWS R_COUNT,
SUBSTR(PARTITIONING_TYPE ,1,1) PARTITIONING_TYPE,

Chapter 4
Case Studies

4-2

SUBSTR(SUBPARTITIONING_TYPE,1,1) SUBPARTITIONING_TYPEFrom ALL_TABLES t,
ALL_TAB_COMMENTS tc, ALL_PART_TABLES tp
Where ...
...

Command on Target

insert into SNP_REV_TABLE(I_MOD, TABLE_NAME, RES_NAME, TABLE_ALIAS,
TABLE_TYPE, TABLE_DESC, IND_SHOW, R_COUNT, PARTITION_METH,
SUB_PARTITION_METH)values(<%=odiRef.getModel("ID")
%>, :TABLE_NAME, :RES_NAME, :TABLE_ALIAS, 'T', :TABLE_DESC,
'1', :R_COUNT, :PARTITIONING_TYPE, :SUBPARTITIONING_TYPE)

4.2.1.3 Get views, partitions, columns, FK, Keys and other Oracle Metadata
Subsequent commands use the same pattern to load the SNP_REV tables from the content
of the Oracle system tables.

4.2.1.4 Set Metadata
This task resets the content of the SNP_REV tables for the current model.

Command on Target (ODI Tools)

OdiReverseSetMetaData -MODEL=<%=odiRef.getModel("ID")%>

Chapter 4
Case Studies

4-3

5
Data Integrity Strategies

Data integrity strategies are used for performing flow and static checks. These strategies are
implemented in the Check Knowledge Modules.
This chapter includes the following sections:

• Data Integrity Check Process

• Case Studies

5.1 Data Integrity Check Process
Data Integrity Check Process checks is activated in the following cases:

• When a Static Control is started (from Studio, or using a package) on a model, sub-
model or datastore. The data in the datastores are checked against the constraints
defined in the Oracle Data Integrator model.

• If a mapping is executed and a Flow Control is activated in the IKM. The flow data
staged in the integration table (I$) is checked against the constraints of the target
datastore, as defined in the model. Only those of the constraints selected in the mapping
are checked.

In both those cases, a CKM is in charge of checking the data quality of data according to a
predefined set of constraints. The CKM can be used either to check existing data when used
in a "static control" or to check flow data when used in a "flow control". It is also in charge of
removing the erroneous records from the checked table if specified.

In the case of a static control, the CKM used is defined in the model. In the case of a flow
control, it is specified for the mapping.

5.1.1 Check Knowledge Module Overview
Standard CKMs maintain 2 different types of tables:

• A single summary table named SNP_CHECK_TAB for each data server, created in the
work schema of the default physical schema of the data server. This table contains a
summary of the errors for every table and constraint. It can be used, for example, to
analyze the overall data quality of a model.

• An error table named E$_<datastore name> for every datastore that was checked. The
error table contains the actual records rejected by data quality processes (static and flow
controls) launched for this table.

A standard CKM is composed of the following steps:

• Drop and create the summary table. The DROP statement is executed only if the
designer requires it for resetting the summary table. The CREATE statement is always
executed but the error is tolerated if the table already exists.

• Remove the summary records from the previous run from the summary table

5-1

• Drop and create the error table. The DROP statement is executed only if the
designer requires it for recreating the error table. The CREATE statement is
always executed but error is tolerated if the table already exists.

• Remove rejected records from the previous run from the error table

• Reject records that violate the primary key constraint.

• Reject records that violate any alternate key constraint

• Reject records that violate any foreign key constraint

• Reject records that violate any check condition constraint

• Reject records that violate any mandatory attribute constraint

• Remove rejected records from the checked table if required

• Insert the summary of detected errors in the summary table.

CKM commands should be tagged to indicate how the code should be generated. The
tags can be:

• "Primary Key": The command defines the code needed to check the primary key
constraint

• "Alternate Key": The command defines the code needed to check an alternate key
constraint. During code generation, Oracle Data Integrator will use this command
for every alternate key

• "Join": The command defines the code needed to check a foreign key constraint.
During code generation, Oracle Data Integrator will use this command for every
foreign key

• "Condition": The command defines the code needed to check a condition
constraint. During code generation, Oracle Data Integrator will use this command
for every check condition

• "Mandatory": The command defines the code needed to check a mandatory
attribute constraint. During code generation, Oracle Data Integrator will use this
command for mandatory attribute

• "Remove Errors": The command defines the code needed to remove the rejected
records from the checked table.

5.1.2 Error Tables Structures
This section describes the typical structure of the Error and Summary Tables.

5.1.2.1 Error Table Structure
The E$ error table has the list of columns described in the following table:

Columns Description

[Columns of the checked
table]

The error table contains all the attributes of the checked datastore.

ERR_TYPE Type of error:

• 'F' when the datastore is checked during flow control
• 'S' when the datastore is checked using static control

ERR_MESS Error message related to the violated constraint

Chapter 5
Data Integrity Check Process

5-2

Columns Description

CHECK_DATE Date and time when the datastore was checked

ORIGIN Origin of the check operation. This column is set either to the
datastore name or to a mapping name and ID depending on how
the check was performed.

CONS_NAME Name of the violated constraint.

CONS_TYPE Type of the constraint:

• 'PK': Primary Key
• 'AK': Alternate Key
• 'FK': Foreign Key
• 'CK': Check condition
• 'NN': Mandatory attribute

5.1.2.2 Summary Table Structure
The SNP_CHECK table has the list of columns described in the following table:

Column Description

ODI_CATALOG_NAM
E

Catalog name of the checked table, where applicable

ODI_SCHEMA_NAM
E

Schema name of the checked table, where applicable

ODI_RESOURCE_N
AME

Resource name of the checked table

ODI_FULL_RES_NA
ME

Fully qualified name of the checked table. For example
<catalog>.<schema>.<table>

ODI_ERR_TYPE Type of error:

• 'F' when the datastore is checked during flow control
• 'S' when the datastore is checked using static control

ODI_ERR_MESS Error message

ODI_CHECK_DATE Date and time when the datastore was checked

ODI_ORIGIN Origin of the check operation. This column is set either to the datastore name
or to a mapping name and ID depending on how the check was performed.

ODI_CONS_NAME Name of the violated constraint.

ODI_CONS_TYPE Type of constraint:

• 'PK': Primary Key
• 'AK': Alternate Key
• 'FK': Foreign Key
• 'CK': Check condition
• 'NN': Mandatory attribute (Not Null)

ODI_ERR_COUNT Total number of records rejected by this constraint during the check process

ODI_SESS_NO ODI session number

ODI_PK Unique identifier for this table, where appicable

Chapter 5
Data Integrity Check Process

5-3

5.2 Case Studies
This section provides examples of data integrity check strategies.

5.2.1 Oracle CKM
The CKM Oracle is a typical example of a data integrity check.

The commands below are extracted from the CKM for Oracle and provided as
examples. You can review the code of this knowledge module by editing it in Oracle
Data Integrator Studio.

5.2.1.1 Drop Check Table
This task drops the error summary table. This command runs only if the
DROP_CHECK_TABLE is set to Yes, and has the Ignore Errors flag activated. It will
not stop the CKM if the summary table is not found.

Command on Target (Oracle)

drop table <%=odiRef.getTable("L","CHECK_NAME","W")%> <% if (new
Integer(odiRef.getOption("COMPATIBLE")).intValue() >= 10)
{ out.print("purge"); }; %>

5.2.1.2 Create Check Table
This task creates the error summary table. This command always runs and has the
Ignore Errors flag activated. It will not stop the CKM if the summary table already exist.

Command on Target (Oracle)

...
create table <%=odiRef.getTable("L","CHECK_NAME","W")%>
(
 CATALOG_NAME <%=odiRef.getDataType("DEST_VARCHAR", "100", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%> ,
 SCHEMA_NAME <%=odiRef.getDataType("DEST_VARCHAR", "100", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%> ,
 RESOURCE_NAME <%=odiRef.getDataType("DEST_VARCHAR", "100", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 FULL_RES_NAME <%=odiRef.getDataType("DEST_VARCHAR", "100", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ERR_TYPE <%=odiRef.getDataType("DEST_VARCHAR", "1", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ERR_MESS <%=odiRef.getDataType("DEST_VARCHAR", "250", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%> ,
 CHECK_DATE <%=odiRef.getDataType("DEST_DATE", "", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ORIGIN <%=odiRef.getDataType("DEST_VARCHAR", "100", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 CONS_NAME <%=odiRef.getDataType("DEST_VARCHAR", "35", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 CONS_TYPE <%=odiRef.getDataType("DEST_VARCHAR", "2", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ERR_COUNT <%=odiRef.getDataType("DEST_NUMERIC", "10", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>

Chapter 5
Case Studies

5-4

)
...

5.2.1.3 Create Error Table
This task creates the error (E$) table. This command always runs and has the Ignore Errors
flag activated. It will not stop the CKM if the error table already exist.

Note the use of the getCollist method to add the list of attributes from the checked datastore
to this table structure.

Command on Target (Oracle)

...
create table <%=odiRef.getTable("L","ERR_NAME", "W")%>
(
 ODI_ROW_ID UROWID,
 ODI_ERR_TYPE <%=odiRef.getDataType("DEST_VARCHAR", "1", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_ERR_MESS <%=odiRef.getDataType("DEST_VARCHAR", "250", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_CHECK_DATE <%=odiRef.getDataType("DEST_DATE", "", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 <%=odiRef.getColList("", "[COL_NAME]\t[DEST_WRI_DT] " +
odiRef.getInfo("DEST_DDL_NULL"), ",\n\t", "", "")%>,
 ODI_ORIGIN <%=odiRef.getDataType("DEST_VARCHAR", "100", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_CONS_NAME <%=odiRef.getDataType("DEST_VARCHAR", "35", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_CONS_TYPE <%=odiRef.getDataType("DEST_VARCHAR", "2", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_PK <%=odiRef.getDataType("DEST_VARCHAR", "32", "")%> PRIMARY
KEY, ODI_SESS_NO <%=odiRef.getDataType("DEST_VARCHAR", "19", "")%>
)
...

5.2.1.4 Insert PK Errors
This task inserts into the error (E$) table the errors detected while checking a primary key.
This command always runs, has the Primary Key check box active and has Log Counter
set to Error to count these records as errors.

Note:

When using a CKM to perform flow control from a mapping, you can define the
maximum number of errors allowed. This number is compared to the total number
of records returned by every command in the CKM of which the Log Counter is set
to Error.

Note the use of the getCollist method to insert into the error table the whole record being
checked and the use of the getPK and getInfo method to retrieve contextual information.

Command on Target (Oracle)

insert into <%=odiRef.getTable("L","ERR_NAME", "W")%>
(

Chapter 5
Case Studies

5-5

 ODI_PK,
 ODI_SESS_NO,
 ODI_ROW_ID,
 ODI_ERR_TYPE,
 ODI_ERR_MESS,
 ODI_ORIGIN,
 ODI_CHECK_DATE,
 ODI_CONS_NAME,
 ODI_CONS_TYPE,
 <%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "", "MAP")%>
)
select SYS_GUID(),
 <%=odiRef.getSession("SESS_NO")%>,
 rowid,
 '<%=odiRef.getInfo("CT_ERR_TYPE")%>',
 '<%=odiRef.getPK("MESS")%>',
 '<%=odiRef.getInfo("CT_ORIGIN")%>',
 <%=odiRef.getInfo("DEST_DATE_FCT")%>,
 '<%=odiRef.getPK("KEY_NAME")%>',
 'PK',
 <%=odiRef.getColList("", odiRef.getTargetTable("TABLE_ALIAS")+".[COL_NAME]",
",\n\t", "", "MAP")%>
from <%=odiRef.getTable("L", "CT_NAME", "A")%>
<%=odiRef.getTargetTable("TABLE_ALIAS")%>
where exists (
 select <%=odiRef.getColList("", "SUB.[COL_NAME]", ",\n\t\t\t", "",
"PK")%>
 from <%=odiRef.getTable("L","CT_NAME","A")%> SUB
 where <%=odiRef.getColList("", "SUB.
[COL_NAME]="+odiRef.getTargetTable("TABLE_ALIAS")+".[COL_NAME]", "\n\t\t\tand ",
"", "PK")%>
 group by <%=odiRef.getColList("", "SUB.[COL_NAME]", ",\n\t\t\t", "",
"PK")%> having count(1) > 1
)
<%=odiRef.getFilter()%>

5.2.1.5 Delete Errors from Controlled Table
This task removed from the controlled table (static control) or integration table (flow
control) the rows detected as erroneous.

This task is always executed and has the Remove Errors option selected.

Command on Target (Oracle)

delete from <%=odiRef.getTable("L", "CT_NAME", "A")%> T
where exists (
 select 1
 from <%=odiRef.getTable("L","ERR_NAME", "W")%> E
 where ODI_SESS_NO = <%=odiRef.getSession("SESS_NO")%>
 and T.rowid = E.ODI_ROW_ID
)

5.2.2 Dynamically Create Non-Existing References
The following use case describes an example of customization that can be performed
on top of an existing CKM.

Chapter 5
Case Studies

5-6

5.2.2.1 Use Case
When loading a data warehouse, you may have records referencing data from other tables,
but the referenced records do not yet exist.

Suppose, for example, that you receive daily sales transactions records that reference
product SKUs. When a product does not exist in the products table, the default behavior of
the standard CKM is to reject the sales transaction record into the error table instead of
loading it into the data warehouse. However, to meet the requirements of your project you
want to load this sales record into the data warehouse and create an empty product on the fly
to ensure data consistency. The data analysts would then simply analyze the error tables and
complete the missing information for products that were automatically added to the products
table.

The following sequence illustrates this example:

1. The source flow data is staged by the IKM in the "I$_SALES" table to load the SALES
table. The IKM calls the CKM to have it check the data quality.

2. The CKM checks every constraint including the FK_SALES_PRODUCTS foreign key
defined between the target SALES table and the PRODUCTS Table. It rejects record with
SALES_ID='4' in the error table as referenced product with PRODUCT_ID="P25" doesn't
exist in the products table.

3. The CKM automatically inserts the missing "P25" product reference in the products table
and assigns an '<unknown>' value to the PRODUCT_NAME. All other attributes are set
to null or default values.

4. The CKM does not remove the rejected record from the source flow I$ table, as it
became consistent

5. The IKM writes the flow data to the target

In the sequence above, steps 3 and 4 differ from the standard CKM and need to be
customized.

5.2.2.2 Discussion
To implement such a CKM, you will notice that some information is missing in the Oracle Data
Integrator default metadata. We would need the following:

• A new flexfield called REF_TAB_DEF_COL on the Reference object containing the
attribute of the referenced table that must be populated with the '<unknown>' value
(PRODUCT_NAME, in our case)

• A new column (ODI_AUTO_CREATE_REFS) in the error table to indicate whether an FK
error needs to automatically create the missing reference or not. This flag will be
populated while detecting the FK errors.

• A new flexfields ca lled AUTO_CREATE_REFS on the "Reference" object, that will state
whether a constraint should automatically cause missing references creation. See the
Developer's Guide for Oracle Data Integrator for more information about Flex Fields.

Now that we have all the required metadata, we can start enhancing the default CKM to meet
our requirements. The steps of the CKM will therefore be (changes are highlighted in bold
font):

• Drop and create the summary table.

• Remove the summary records of the previous run from the summary table

Chapter 5
Case Studies

5-7

• Drop and create the error table. Add the extra ODI_AUTO_CREATE_REFS
column to the error table.

• Remove rejected records from the previous run from the error table

• Reject records that violate the primary key constraint.

• Reject records that violate each alternate key constraint

• Reject records that violate each foreign key constraint, and store the value of the
AUTO_CREATE_REFS flexfield in the ODI_AUTO_CREATE_REFS column.

• For every foreign key error detected, if the ODI_AUTO_CREATE_REFS is set
to "yes", insert missing references in the referenced table.

• Reject records that violate each check condition constraint

• Reject records that violate each mandatory attribute constraint

• Remove rejected records from the checked table if required. Do not remove
records for which the constraint behavior is set to Yes

• Insert the summary of detected errors in the summary table.

5.2.2.3 Implementation Details
The following command modifications are performed to implement the required
changes to the CKM. The changes are highlighted in bold in the code.

5.2.2.3.1 Create Errors Table

The task is modified to create the new ODI_AUTO_CREATE_REFS column into the
error table.

Command on Target (Oracle)

...
create table <%=odiRef.getTable("L","ERR_NAME", "W")%>
(
ODI_AUTO_CREATE_REFS <%=odiRef.getDataType("DEST_VARCHAR", "3", "")%>
ODI_ROW_ID UROWID,
 ODI_ERR_TYPE <%=odiRef.getDataType("DEST_VARCHAR", "1", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_ERR_MESS <%=odiRef.getDataType("DEST_VARCHAR", "250", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_CHECK_DATE <%=odiRef.getDataType("DEST_DATE", "", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 <%=odiRef.getColList("", "[COL_NAME]\t[DEST_WRI_DT] " +
odiRef.getInfo("DEST_DDL_NULL"), ",\n\t", "", "")%>,
 ODI_ORIGIN <%=odiRef.getDataType("DEST_VARCHAR", "100", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_CONS_NAME <%=odiRef.getDataType("DEST_VARCHAR", "35", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_CONS_TYPE <%=odiRef.getDataType("DEST_VARCHAR", "2", "")%>
<%=odiRef.getInfo("DEST_DDL_NULL")%>,
 ODI_PK <%=odiRef.getDataType("DEST_VARCHAR", "32", "")%> PRIMARY
KEY,
 ODI_SESS_NO <%=odiRef.getDataType("DEST_VARCHAR", "19", "")%>
)
...

Chapter 5
Case Studies

5-8

5.2.2.3.2 Insert FK Errors

The task is modified to take into account the new ODI_AUTO_CREATE_REFS column and
load it with the content of the flexfield defined on the FK to indicate whether this constraint
should automatically create missing references. Note the use of the getFK method to retrieve
the value of the AUTO_CREATE_REFS flexfield.

Command on Target (Oracle)

...
insert into <%=odiRef.getTable("L","ERR_NAME", "W")%>
(
ODI_AUTO_CREATE_REFS,
ODI_PK,
 ODI_SESS_NO,
 ODI_ROW_ID,
 ODI_ERR_TYPE,
 ODI_ERR_MESS,
 ODI_CHECK_DATE,
 ODI_ORIGIN,
 ODI_CONS_NAME,
 ODI_CONS_TYPE,
 <%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "", "MAP")%>
)
select
'<%=odiRef.getFK("AUTO_CREATE_REFS")%>',
SYS_GUID(),
 <%=odiRef.getSession("SESS_NO")%>,
 rowid,
...

5.2.2.3.3 Insert Missing References

The new task is added after the insert FK errors task. It has the Join option checked.

Note the following:

• The getFK("AUTO_CREATE_FS") method is used to retrieve the AUTO_CREATE_FS
flexfield value that conditions the generation of the SQL statement.

• The getFK("REF_TAB_DEF_COL") method is used to retrieve from the flexfield the name
of the attribute to set to '<undefined>'.

• The getFKColList method is used to retrieve the list of attribute participating to the foreign
key and create the missing reference primary key attributes content.

• The filter made to retrieve only the records corresponding to the current checked foreign
key constraint with the AUTO_CREATE_REFS flag set to Yes.

Command on Target (Oracle)

<% if (odiRef.getFK("AUTO_CREATE_REFS").equals("Yes")) { %>

insert into <%=odiRef.getTable("L", "FK_PK_TABLE_NAME", "A")%>
(
<%=odiRef.getFKColList("", "[PK_COL_NAME]", ",", "")%>,
<%=odiRef.getFK("REF_TAB_DEF_COL")%>

Chapter 5
Case Studies

5-9

)

select distinct
<%=odiRef.getFKColList("", "[COL_NAME]", ",", "")%>,
'<UNKNOWN>'
from <%=odiRef.getTable("L","ERR_NAME", "A")%>
where
CONS_NAME = '<%=odiRef.getFK("FK_NAME")%>'
And CONS_TYPE = 'FK'
And ORIGIN = '<%=odiRef.getInfo("CT_ORIGIN")%>'
And AUTO_CREATE_REFS = 'Yes'
<%}%>

5.2.2.3.4 Delete Errors from Controlled Table

This task is modified to avoid deleting the foreign key records for which a reference
have been created. These can remain in the controlled table.

Command on Target (Oracle)

delete from <%=odiRef.getTable("L", "CT_NAME", "A")%> T
where exists (
 select 1
 from <%=odiRef.getTable("L","ERR_NAME", "W")%> E
 where ODI_SESS_NO = <%=odiRef.getSession("SESS_NO")%>
 and T.rowid = E.ODI_ROW_ID
and E.AUTO_CREATE_REFS <> 'Yes'
)

Chapter 5
Case Studies

5-10

6
Loading Strategies

Loading strategies are used for loading data into the staging area. These strategies are
implemented in the Loading Knowledge Modules.
This chapter includes the following sections:

• Loading Process

• Case Studies

6.1 Loading Process
A loading process is required when source data needs to be loaded into the staging area.
This loading is needed when some transformation take place in the staging area and the
source schema is not located in the same server as the staging area. The staging area is the
target of the loading phase.

6.1.1 Loading Process Overview
A typical loading process works in the following way:

1. A temporary loading table is dropped (if it exists) and then created in the staging area.

2. Data is loaded from the source into this loading table using a loading method.

Action 1 and 2 are repeated for all the source data that needs to be moved to the staging
area.

The data is used in the integration phase to load the integration table.

3. After the integration phase, before the mapping completes, the temporary loading table is
dropped.

6.1.2 Loading Table Structure
The loading process creates in the staging area a loading table. This loading table is typically
prefixed with a C$.

A loading table represents a execution unit and not a source datastore. There is no direct
mapping between the source datastore and the loading table. Execution units appear in the
physical diagram of the mapping editor.

The following cases illustrate the notion of execution unit:

• If a source CUSTOMER table has only 2 attributes CUST_NAME, CUST_ID used in
mapping and joins on the staging area, then the loading table will only contain an image
of these two attributes. Attributes not needed for the rest of the integration flow do not
appear in the loading table.

• If a CUSTOMER table is filtered on CUST_AGE on the source, and CUST_AGE is not
used afterward, then the loading table will not include CUST_AGE. The loading process

6-1

will process the filter in the source data server, and the loading table will contain
the filtered records.

• If two tables CUSTOMER and SALES_REPS are combined using a join on the
source and the resulting execution unit is used in transformations taking place in
the staging area, the loading table will contain the combined attributes from
CUSTOMER and SALES_REPS.

• If all the attributes of a source datastore are mapped and this datastore is not
joined on the source, then the execution unit is the whole source datastore. In that
case, the loading table is the exact image of the source datastore. This is the case
for source technologies with no transformation capabilities such as File.

6.1.3 Loading Method
The loading method is the key to optimal performance when loading data from a
source to the staging area. There are several loading methods, which can be grouped
in the following categories:

• Loading Using the Agent

• Loading File Using Loaders

• Loading Using Unload/Load

• Loading Using RDBMS-Specific Strategies

6.1.3.1 Loading Using the Agent
The run-time agent can read a result set using JDBC on a source server and write this
result set using JDBC to the loading table in the staging area. To use this method, the
knowledge module needs to include a command with a SELECT on the source with a
corresponding INSERT on the target.

This method may not be suited for large volumes as data is read row-by-row in arrays,
using the array fetch feature, and written row-by-row, using the batch update feature.

6.1.3.2 Loading File Using Loaders
When the mapping contains a flat file as a source, you may want to use a strategy that
leverages the most efficient loading utility available for the staging area technology,
rather than the standard LKM File to SQL that uses the ODI built-in driver for files.
Most RDBMSs have fast loading utilities to load flat files into tables, such as Oracle's
SQL*Loader, Microsoft SQL Server bcp, Teradata FastLoad or MultiLoad.

Such LKM will load the source file into the staging area, and all transformations will
take place in the staging area afterward.

A typical LKM using a loading utility will include the following sequence of steps:

1. Drop and create the loading table in the staging area

2. Generate the script required by the loading utility to load the file to the loading
table.

3. Execute the appropriate operating system command to start the load and check its
return code.

4. Possibly analyze any log files produced by the utility for error handling.

Chapter 6
Loading Process

6-2

5. Drop the loading table once the integration phase has completed.

6.1.3.3 Loading Using Unload/Load
When the source result set is on a remote database server, an alternate solution to using the
agent to transfer the data is to unload it to a file and then load that file into the staging area.

This is usually the most efficient method when dealing with large volumes across
heterogeneous technologies. For example, you can unload data from a Microsoft SQL Server
source using bcp and load this data into an Oracle staging area using SQL*Loader.

The steps of LKMs that follow this strategy are often as follows:

1. Drop and create the loading table in the staging area

2. Unload the data from the source to a temporary flat file using either a source database
unload utility (such as Microsoft SQL Server bcp or DB2 unload) or the built-in
OdiSqlUnload tool.

3. Generate the script required by the loading utility to load the temporary file to the loading
table.

4. Execute the appropriate operating system command to start the load and check its return
code.

5. Possibly analyze any log files produced by the utility for error handling.

6. Drop the loading table once the integration KM has terminated, and drop the temporary
file.

When using an unload/load strategy, data needs to be staged twice: once in the temporary
file and a second time in the loading table, resulting in extra disk space usage and potential
efficiency issues. A more efficient alternative would be to use pipelines between the "unload"
and the "load" utility. Unfortunately, not all the operating systems support file-based pipelines
(FIFOs).

6.1.3.4 Loading Using RDBMS-Specific Strategies
Certain RDBMSs have a mechanism for transferring data across servers. For example:

• Oracle: database links

• Microsoft SQL Server: linked servers

• IBM DB2 400: DRDA file transfer

Other databases implement specific mechanisms for loading files into a table, such as
Oracle's External Table feature.

These loading strategies are implemented into specific KM that create the appropriate objects
(views, dblinks, etc.) and implement the appropriate commands for using these features.

6.2 Case Studies
This section provides example of loading strategies.

6.2.1 LKM SQL to SQL
The LKM SQL to SQL is a typical example of the loading phase using the agent.

Chapter 6
Case Studies

6-3

The commands below are extracted from this KM and are provided as examples. You
can review the code of this knowledge module by editing it in Oracle Data Integrator
Studio.

6.2.1.1 Drop Work Table
This task drops the loading table. This command is always executed and has the
Ignore Errors flag activated. It will not stop the LKM if the loading table is not found.

Command on Target

drop table <%=snpRef.getTable("L", "COLL_NAME", "A")%>

6.2.1.2 Create Work Table
This task drops the loading table. This command is always executed.

Note the use of the property COLL_NAME of the getTable method that returns the
name of the loading table.

Command on Target

create table <%=snpRef.getTable("L", "COLL_NAME", "A")
%>(<%=snpRef.getColList("", "[CX_COL_NAME]\t[DEST_WRI_DT] " +
snpRef.getInfo("DEST_DDL_NULL"), ",\n\t", "","")%>)

6.2.1.3 Load Data
This task reads data on the source connection and loads it into the loading table. This
command is always executed.

Note:

The loading phase is always using auto commit, as ODI temporary tables do
not contain unrecoverable data.

Command on Source

Note the use of the getFilter, getJoin, getFrom, etc. methods. These methods are
shortcuts that return contextual expressions. For example, getFilter returns all the filter
expressions executed on the source. Note also the use of the EXPRESSION property
of getColList, that will return the source attributes and the expressions executed on the
source. These expressions and source attributes are aliases after CX_COL_NAME,
which is the name of their corresponding attribute in the loading table.

This select statement will cause the correct transformation (mappings, joins, filters,
etc.) to be executed by the source engine.

select <%=snpRef.getPop("DISTINCT_ROWS")%> <%=snpRef.getColList("",
"[EXPRESSION]\t[ALIAS_SEP] [CX_COL_NAME]", ",\n\t", "", "")%>from
<%=snpRef.getFrom()%>where (1=1)<%=snpRef.getFilter()
%><%=snpRef.getJrnFilter()%><%=snpRef.getJoin()%><%=snpRef.getGrpBy()
%><%=snpRef.getHaving()%>

Chapter 6
Case Studies

6-4

Command on Target

Note here the use of the binding using :[CX_COL_NAME]. The CX_COL_NAME binded value
will match the alias on the source attribute.

insert into <%=snpRef.getTable("L", "COLL_NAME", "A")%>(<%=snpRef.getColList("",
"[CX_COL_NAME]", ",\n\t", "","")%>)values(<%=snpRef.getColList("", ":
[CX_COL_NAME]", ",\n\t", "","")%>)

6.2.1.4 Drop Work Table
This task drops the loading table. This command is executed if the
DELETE_TEMPORARY_OBJECTS knowledge module option is selected. This option will
allow to preserve the loading table for debugging.

Command on Target

drop table <%=snpRef.getTable("L", "COLL_NAME", "A")%>

Chapter 6
Case Studies

6-5

7
Integration Strategies

Integration strategies define the steps required in the integration process. These strategies
are implemented in the Integration Knowledge Modules.
This chapter includes the following sections:

• Integration Process

• Case Studies

7.1 Integration Process
An integration process is always needed in a mapping. This process integrates data from the
source or loading tables into the target datastore, using a temporary integration table.

An integration process uses an integration strategy which defines the steps required in the
integration process. Example of integration strategies are:

• Append: Optionally delete all records in the target datastore and insert all the flow into the
target.

• Control Append: Optionally delete all records in the target datastore and insert all the flow
into the target. This strategy includes an optional flow control.

• Incremental Update: Optionally delete all records in the target datastore. Identify new and
existing records by comparing the flow with the target, then insert new records and
update existing records in the target. This strategy includes an optional flow control.

• Slowly Changing Dimension: Implement a Type 2 Slowly Changing Dimension, identifying
fields that require a simple update in the target record when change, fields that require to
historize the previous record state.

This phase may involve one single server, when the staging area and the target are located
in the same data server, on two servers when the staging area and target are on different
servers.

7.1.1 Integration Process Overview
The integration process depends strongly on the strategy being used.

The following elements are used in the integration process:

• An integration table (also known as the flow table) is sometimes needed to stage data
after all staging area transformations are made. This loading table is named after the
target table, prefixed with I$. This integration table is the image of the target table with
extra fields required for the strategy to be implemented. The data in this table is flagged,
transformed or checked before being integrated into the target table.

• The source and/or loading tables (created by the LKM). The integration process loads
data from these tables into the integration table or directly into the target tables.

7-1

• Check Knowledge Module. The IKM may initiate a flow check phase to check the
data in the integration table against some of the constraints of the target table.
Invalid data is removed from the integration table (removed from the flow).

• Mapping metadata, such as Insert, Update, UD1, etc., or model metadata such as
the Slowly Changing Dimension behavior are used at integration phase to
parameterize attribute-level behavior in the integration strategies.

A typical integration process works in the following way:

1. Create a temporary integration table if needed. For example, an update flag taking
value I or U to identify which of the rows are to be inserted or updated.

2. Load data from the source and loading tables into this integration table, executing
those of the transformations (joins, filters, mapping) specified on the staging area.

3. Perform some transformation on the integration table to implement the integration
strategy. For example, compare the content of the integration table with the target
table to set the update flag.

4. Modify the content Load data from the integration table into the target table.

7.1.2 Integration Strategies
The following sections explain some of the integration strategies used in Oracle Data
Integrator. They are grouped into two families:

• Strategies with Staging Area on the Target

• Strategies with the Staging Area Different from the Target.

7.1.2.1 Strategies with Staging Area on the Target
These strategies are used when the staging area schema is located in the same data
server as the target table schema. In this configuration, complex integration strategies
can take place

7.1.2.1.1 Append

This strategy simply inserts the incoming data flow into the target datastore, possibly
deleting the content of the target beforehand.

This integration strategy includes the following steps:

1. Delete (or truncate) all records from the target table. This step usually depends on
a KM option.

2. Transform and insert data from sources located on the same server and from
loading tables in the staging area. When dealing with remote source data, LKMs
will have already prepared loading tables. Sources on the same server can be
read directly. The integration operation will be a direct INSERT/SELECT statement
leveraging containing all the transformations performed on the staging area in the
SELECT clause and on all the transformation on the target in the INSERT clause.

3. Commit the Transaction. The operations performed on the target should be done
within a transaction and committed after they are all complete. Note that
committing is typically triggered by a KM option called COMMIT.

Chapter 7
Integration Process

7-2

The same integration strategy can be obtained by using the Control Append strategy and not
choosing to activate flow control.

7.1.2.1.2 Control Append

In the Append strategy, flow data is simply inserted in the target table without any flow
control. This approach can be improved by adding extra steps that will store the flow data in
an integration table ("I$"), then call the CKM to isolate erroneous records in the error table
("E$").

This integration strategy includes the following steps:

1. Drop (if it exists) and create the integration table in the staging area. This is created with
the same attributes as the target table so that it can be passed to the CKM for flow
control.

2. Insert data in the loading table from the sources and loading tables using a single
INSERT/SELECT statement similar to the one loading the target in the append strategy.

3. Call the CKM for flow control. The CKM will evaluate every constraint defined for the
target table on the integration table data. It will create an error table and insert the
erroneous records into this table. It will also remove erroneous records from the
integration table.

After the CKM completes, the integration table will only contain valid records. Inserting
them in the target table can then be done safely.

4. Remove all records from the target table. This step can be made dependent on an option
value set by the designer of the mapping.

5. Append the records from the integration table to the target table in a single INSERT/
SELECT statement.

6. Commit the transaction.

7. Drop the temporary integration table.

Error Recycling

In some cases, it is useful to recycle errors from previous runs so that they are added to the
flow and applied again to the target. This method can be useful for example when receiving
daily sales transactions that reference product IDs that may not exist. Suppose that a sales
record is rejected in the error table because the referenced product ID does not exist in the
product table. This happens during the first run of the mapping. In the meantime the missing
product ID is created by the data administrator. Therefore the rejected record becomes valid
and should be re-applied to the target during the next execution of the mapping.

This mechanism implements IKMs by an extra task that inserts all the rejected records of the
previous executions of this mapping from the error table into integration table. This operation
is made prior to calling the CKM to check the data quality, and is conditioned by a KM option
usually called RECYCLE_ERRORS.

7.1.2.1.3 Incremental Update

The Incremental Update strategy is used to integrate data in the target table by comparing
the records of the flow with existing records in the target according to a set of attributes called
the "update key". Records that have the same update key are updated when their associated
data is not the same. Those that don't yet exist in the target are inserted. This strategy is

Chapter 7
Integration Process

7-3

often used for dimension tables when there is no need to keep track of the records that
have changed.

The challenge with such IKMs is to use set-oriented SQL based programming to
perform all operations rather than using a row-by-row approach that often leads to
performance issues. The most common method to build such strategies often relies on
the integration table ("I$") which stores the transformed execution units. This method is
described below:

1. Drop (if it exists) and create the integration table in the staging area. This is
created with the same attributes as the target table so that it can be passed to the
CKM for flow control. It also contains an IND_UPDATE attribute that is used to flag
the records that should be inserted ("I") and those that should be updated ("U").

2. Transform and insert data in the loading table from the sources and loading tables
using a single INSERT/SELECT statement. The IND_UPDATE attribute is set by
default to "I".

3. Recycle the rejected records from the previous run to the integration table if the
RECYCLE_ERROR KM option is selected.

4. Call the CKM for flow control. The CKM will evaluate every constraint defined for
the target table on the integration table data. It will create an error table and insert
the erroneous records into this table. It will also remove erroneous records from
the integration table.

5. Update the integration table to set the IND_UPDATE flag to "U" for all the records
that have the same update key values as the target ones. Therefore, records that
already exist in the target will have a "U" flag. This step is usually an UPDATE/
SELECT statement.

6. Update the integration table again to set the IND_UPDATE attribute to "N" for all
records that are already flagged as "U" and for which the attribute values are
exactly the same as the target ones. As these flow records match exactly the
target records, they don't need to be used to update the target data.

After this step, the integration table is ready for applying the changes to the target
as it contains records that are flagged:

• "I": these records should be inserted into the target.

• "U": these records should be used to update the target.

• "N": these records already exist in the target and should be ignored.

7. Update the target with records from the integration table that are flagged "U". Note
that the update statement is typically executed prior to the INSERT statement to
minimize the volume of data manipulated.

8. Insert records in the integration table that are flagged "I" into the target.

9. Commit the transaction.

10. Drop the temporary integration table.

Optimization

This approach can be optimized depending on the underlying database. The following
examples illustrate such optimizations:

• With Teradata, it may be more efficient to use a left outer join between the flow
data and the target table to populate the integration table with the IND_UPDATE
attribute already set properly.

Chapter 7
Integration Process

7-4

• With Oracle, it may be more efficient in some cases to use a MERGE INTO statement on
the target table instead of an UPDATE then INSERT.

Update Key

The update key should always be unique. In most cases, the primary key will be used as an
update key. The primary key cannot be used, however, when it is automatically calculated
using an increment such as an identity attribute, a rank function, or a sequence. In this case
an update key based on attributes present in the source must be used.

Comparing Nulls

When comparing data values to determine what should not be updated, the join between the
integration table and the target table is expressed on each attribute as follows:

<target_table>.AttributeN = <loading_table>.AttributeN or (<target_table> is null and
<loading_table>.AttributeN is null)

This is done to allow comparison between null values, so that a null value matches another
null value. A more elegant way of writing it would be to use the coalesce function. Therefore
the WHERE predicate could be written this way:

<%=odiRef.getColList("","coalesce(" + odiRef.getTable("L", "INT_NAME", "A") + ".
[COL_NAME], 0) = coalesce(T.[COL_NAME], 0)", " \nand\t", "", "((UPD and !TRG) and !UK) ")
%>

Attribute-Level Insert/Update Behavior

Attributes updated by the UPDATE statement are not the same as the ones used in the
INSERT statement. The UPDATE statement uses selector "UPD and not UK" to filter only
those attributes mappings that are marked as "Update" in the mapping and that do not belong
to the update key. The INSERT statement uses selector "INS" to retrieve the attribute
mappings that are marked as "insert" in the mapping.

Transaction

It is important that the UPDATE and the INSERT statements on the target belong to the same
transaction. Should any of them fail, no data will be inserted or updated in the target.

7.1.2.1.4 Slowly Changing Dimensions

Type 2 Slowly Changing Dimension (SCD) is a strategy used for loading data warehouses. It
is often used for loading dimension tables, in order to keep track of changes on specific
attributes. A typical slowly changing dimension table would contain the flowing attributes:

• A surrogate key. This is usually a numeric attribute containing an automatically-generated
number (using an identity attribute, a rank function or a sequence).

• A natural key. This is the list of attributes that represent the primary key of the operational
system.

• Attributes that one must overwrite on change.

• Attributes that require to add row on change.

• A starting timestamp attribute indicating when the record was created in the data
warehouse

• An ending timestamp attribute indicating when the record became obsolete (closing date)

Chapter 7
Integration Process

7-5

• A current record flag indicating whether the record is the actual one (1) or an old
one (0)

The following example illustrate the Slowly Changing Dimension behavior.

In the operational system, a product is defined by its ID that acts as a primary key.
Every product has a name, a size, a supplier and a family. In the Data Warehouse a
new version of this product is stored whenever the supplier or the family is updated in
the operational system.

Figure 7-1 Type 2 Slow Changing Dimensions Example

In this example, the product dimension is first initialized in the Data Warehouse on
March 12, 2006. All the records are inserted and are assigned a calculated surrogate
key as well as a fake ending date set to January 1, 2400. As these records represent
the current state of the operational system, their current record flag is set to 1. After
the first load, the following changes happen in the operational system:

1. The supplier is updated for product P1

2. The family is updated for product P2

3. The name is updated for product P3

4. Product P5 is added

These updates have the following impact on the data warehouse dimension:

• The update of the supplier of P1 is translated into the creation of a new current
record (Surrogate Key 5) and the closing of the previous record (Surrogate Key 1)

• The update of the family of P2 is translated into the creation of a new current
record (Surrogate Key 6) and the closing of the previous record (Surrogate Key 2)

• The update of the name of P3 simply updates the target record with Surrogate Key
3

Chapter 7
Integration Process

7-6

• The new product P5 is translated into the creation of a new current record (Surrogate Key
7).

To create a Knowledge Module that implements this behavior, it is necessary to know which
attributes act as a surrogate key, a natural key, a start date etc. Oracle Data Integrator stores
this information in Slowly Changing Dimension Behavior field in the Description tab for
every attribute in the model.

When populating such a datastore in a mapping, the IKM has access to this metadata using
the SCD_xx selectors on the getColList() substitution method.

The way Oracle Data Integrator implements Type 2 Slowly Changing Dimensions is
described below:

1. Drop (if it exists) and create the integration table in the staging area.

2. Insert the flow data in the integration table using only mappings that apply to the natural
key, overwrite on change and add row on change attributes. Set the starting timestamp to
the current date and the ending timestamp to a constant.

3. Recycle previous rejected records

4. Call the CKM to perform a data quality check on the flow

5. Flag the records in the integration table to 'U' when the natural key and the add row on
change columns have not changed compared to the current records of the target.

6. Update the target with the columns flagged overwrite on change by using the integration
table content filtered on the 'U' flag.

7. Close old records - those for which the natural key exists in the integration table, and set
their current record flag to 0 and their ending timestamp to the current date

8. Insert the new changing records with their current record flag set to 1

9. Drop the integration table.

Again, this approach can be adapted. There may be some cases where the SQL produced
requires further tuning and optimization.

7.1.2.2 Strategies with the Staging Area Different from the Target
These strategies are used when the staging area cannot be located on the same data server
as the target datastore. This configuration is mainly used for data servers with no
transformation capabilities (Files, for example). In this configuration, only simple integration
strategies are possible

7.1.2.2.1 File to Server Append

There are some cases when the source is a single file that can be loaded directly into the
target table using the most efficient method. By default, Oracle Data Integrator suggests to
locate the staging area on the target server, use a LKM to stage the source file in a loading
table and then use an IKM to integrate the loaded data to the target table.

If the source data is not transformed, the loading phase is not necessary.

In this situation you would use an IKM that directly loads the file data to the target: This
requires setting the staging area on the source file logical schema. By doing this, Oracle Data
Integrator will automatically suggest to use a "Multi-Connection" IKM that moves data
between a remote staging area and the target.

Chapter 7
Integration Process

7-7

Such an IKM would use a loader, and include the following steps:

1. Generate the appropriate load utility script

2. Run the loader utility

An example of such KM is the IKM File to Teradata (TTU).

7.1.2.2.2 Server to Server Append

When using a staging area different from the target and when setting this staging area
to an RDBMS, it is possible to use an IKM that moves the transformed data from the
staging area to the remote target. This type of IKM is similar to a LKM and follows the
same rules.

The steps when using the agent are usually:

1. Delete (or truncate) all records from the target table. This step usually depends on
a KM option.

2. Insert the data from the staging area to the target. This step has a SELECT
statement in the "Command on Source" tab that will be executed on the staging
area. The INSERT statement is written using bind variables in the "Command on
Target" tab and will be executed for every batch on the target table.

The IKM SQL to SQL Append is a typical example of such KM.

Variation of this strategy use loaders or database specific methods for loading data
from the staging area to the target instead of the agent.

7.1.2.2.3 Server to File or JMS Append

When the target datastore is a file or JMS queue or topic the staging area is set on a
different location than the target. Therefore, if you want to target a file or queue
datastore you will have to use a "Multi-Connection" IKM that will integrate the
transformed data from your staging area to this target. The method to perform this
data movement depends on the target technology. For example, it is possible to use
the agent or specific features of the target (such as a Java API)

Typical steps of such an IKM will include:

• Reset the target file or queue made dependent on an option

• Unload the data from the staging area to the file or queue

7.2 Case Studies
This section provides example of integration strategies and customizations.

7.2.1 Simple Replace or Append
The simplest strategy for integrating data in an existing target table, provided that all
source data is already in the staging area is to replace and insert the records in the
target. Therefore, the simplest IKM would be composed of 2 steps:

• Remove all records from the target table. This step can be made dependent on an
option set by the designer of the mapping.

Chapter 7
Case Studies

7-8

• Transform and insert source records from all data sets. When dealing with remote source
data, LKMs will have already prepared loading tables with pre-transformed result sets. If
the mapping uses source data sets on the same server as the target (and the staging
area as well), they will be joined to the other loading tables. Therefore the integration
operation will be a straight INSERT/SELECT statement leveraging all the transformation
power of the target Teradata box.

The following example gives you the details of these steps:

7.2.1.1 Delete Target Table
This task deletes the data from the target table. This command runs in a transaction and is
not committed. It is executed if the DELETE_ALL Knowledge Module option is selected.

Command on Target

delete from <%=odiRef.getTable("L","INT_NAME","A")%>

7.2.1.2 Insert New Rows
This task insert rows from the staging table into the target table. This command runs in the
same transaction as all operations made on the target and is not committed. A final Commit
transaction command triggers the commit on the target.

Note that this commands selects the data from the different data sets defined for the
mapping. Using a for loop, it goes through all the data sets, generates for each data set a
SELECT query. These queries are merged using set-based operations (UNION, INTERSECT,
etc.) and the resulting data flow is inserted into the target table.

Command on Target

insert into <%=odiRef.getTable("L","TARG_NAME","A")%>
(<%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "", "((INS and !TRG) and REW)")
%> <%=odiRef.getColList(",", "[COL_NAME]", ",\n\t", "", "((INS and TRG) and REW)")
%>) select <%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "", "((INS and !TRG)
and REW)")%> <%=odiRef.getColList(",", "[EXPRESSION]", ",\n\t", "", "((INS and
TRG) and REW)")%> FROM (<%for (int i=0; i < odiRef.getDataSetCount(); i++)
{%><%=odiRef.getDataSet(i, "Operator")%>select <%=odiRef.getPop("DISTINCT_ROWS")
%> <%=odiRef.getColList(i,"", "[EXPRESSION] [COL_NAME]", ",\n\t", "", "((INS and !
TRG) and REW)")%> from <%=odiRef.getFrom(i)%>where <% if (odiRef.getDataSet(i,
"HAS_JRN").equals("1")) { %> JRN_FLAG <> 'D '<%} else {%> (1=1) <% }
%><%=odiRef.getJoin(i)%><%=odiRef.getFilter(i)%><%=odiRef.getJrnFilter(i)
%><%=odiRef.getGrpBy(i)%><%=odiRef.getHaving(i)%><%}%>)

7.2.2 Backup the Target Table Before Loading
A project requirements is to backup every data warehouse table prior to loading the current
data. This can help restoring the data warehouse to its previous state in case of a major
problem. The backup tables are called like the data table with a "_BCK" suffix.

A first solution to this requirement would be to develop mappings that would duplicate data
from every target datastore to its corresponding backup one. These mappings would be
triggered prior to the ones that would populate the data warehouse. Unfortunately, this
solution would lead to significant development and maintenance effort as it requires the
creation of an additional mapping for every target datastore. The number of mappings to
develop and maintain would be at least doubled!

Chapter 7
Case Studies

7-9

A simple solution would be to implement this behavior in the IKM used to populate the
target datastores. This would be done using a single CREATE AS SELECT statement
that creates and populates to the backup table right before modifying the target.
Therefore, the backup operation becomes automatic and the developers would no
longer need to worry about it.

This example shows how this behavior could be implemented in the IKM Oracle
Incremental Update.

Before the Update Existing Rows and Insert New Rows tasks that modify the target,
the following tasks are added.

7.2.2.1 Drop Backup Table
This task drops the backup table.

Command on Target

Drop table <%=odiRef.getTable("L","TARG_NAME","A")%>_BCK

7.2.2.2 Create Backup Table
This task creates and populates the backup table.

Command on Target

Create table <%=odiRef.getTable("L","TARG_NAME","A")%>_BCK asselect
<%=odiRef.getTargetColList("", "[COL_NAME]", ",", "")%>from
<%=odiRef.getTable("L","TARG_NAME","A")%>

7.2.3 Tracking Records for Regulatory Compliance
Some data warehousing projects could require keeping track of every insert or update
operation done to target tables for regulatory compliance. This could help business
analysts understand what happened to their data during a certain period of time.

Even if you can achieve this behavior by using the slowly changing dimension
Knowledge Modules, it can also be done by simply creating a copy of the flow data
before applying it to the target table.

Suppose that every target table has a corresponding tracking table with a "_RGG"
suffix with all the data columns plus some additional regulatory compliance columns
such as:

• The Job Id

• The Job Name

• Date and time of the operation

• The type of operation ("Insert" or "Update")

You would populate this table directly from the integration table after applying the
inserts and updates to the target, and before the end of the IKM.

For example, in the case of the Oracle Incremental Update IKM, you would add the
following tasks just after the Update Existing Rows and Insert New Rows tasks that
modify the target.

Chapter 7
Case Studies

7-10

7.2.3.1 Load Tracking Records
This task loads data in the tracking table.

Command on Target

insert into <%=odiRef.getTable("L","TARG_NAME","A")
%>_RGC(JOBID,JOBNAME,OPERATIONDATE,OPERATIONTYPE,<%=odiRef.getColList("",
"[COL_NAME]", ",\n\t", "")%>)select <%=odiRef.getSession("SESS_NO")%> /* JOBID
/,<%=odiRef.getSession("SESS_NAME")%> / JOBNAME */,Current_timestamp /*
OPERATIONDATE */,Case when IND_UPDATE = 'I' then 'Insert' else 'Update' end /*
OPERATIONTYPE */,<%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "")%>from
<%=odiRef.getTable("L","INT_NAME","A")%>where IND_UPDATE <> 'N'

This customization could be extended of course by creating automatically the tracking table
using the IKM if it does not exist yet.

Chapter 7
Case Studies

7-11

A
SQL Structured Substitution API Reference

You can review the commonly used structured substitution API calls and their details in this
section.

For a full reference for the structured substitution API, see Java Substitution API Reference
for Oracle Data Integrator.

Figure A-1 SQL Structured Substitution API object UML Diagram

A simplified version of this drawing is as follows:

A-1

Figure A-2 Simplified Version of SQL Structured Substitution API object

Built-in variable names

The following built-in variables are used in the code examples:

• INSERT (SqlInsertStatement) — The top-level insert statement object produced
by a target IKM.

• QUERY (SqlQuery) — The top-level source query used to extract the data to be
loaded to the target or staging table.

• ATTR (MapAttribute)— The current source attribute that is in scope when
processing the template (if any).

• physicalNode (MapPhysicalNode)— The physical mapping node that the KM is
assigned to.

• component (IMapComponent) — The logical mapping component corresponding to
the physical node that the KM is assigned to.

Commonly Used Method List

The commonly used method list includes the following:

• SqlInsertStatement.getColumnList()

• SqlInsertStatement.getQuery()

Appendix A

A-2

• SqlQuery.getSubqueries()

• SqlInsertStatement.getTargetTable()

• SqlQuery.getFromList()

• SqlQuery.getSelectList()

• FromClause.getJoinTable()

• FromClause.getSourceTables()

• FromClause.getTableQuery()

• ArrayExpression.getTemplate()

• ArrayExpression.getChildMap ()

A.1 SqlInsertStatement.getColumnList()
Usage

public List<Column>getColumnList()

Description

This method is used to get a list of the target column objects for the insert statement. Each
column contains information about the name, datatype, and size of the target column. Also
the query select item that is used to load this column can be determined.

Example 1

A test task is set up in an IKM that has IKM Oracle Insert as a base KM.

KM task-local groovy variable definition script:

def colList = INSERT.getColumnList()
colListStr = ''

for (Column col : colList) {
 if (colListStr.length() != 0) colListStr += ",\n"
 colListStr += col.getTable().getQualifier() + '.' +
col.getTable().getName()
 colListStr += " /* Will be loaded from " + (col.getSourceSelectItem() ==
null ? "unknown" : col.getSourceSelectItem()) + " */"
}

KM target command text:
Generated column list string = $[colListStr]

Generated Code:

Generated column list string =
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Stock_Name" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Stock_Symbol" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Stock_Type" */,

Appendix A
SqlInsertStatement.getColumnList()

A-3

COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Industry_Type" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."SP_Rating" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Company_Name" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Registered_Address" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Registered_City" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Registered_State" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Postal_Code" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."Registered_County" */,
COMPKM_TEST_TGT_SCHEMA.Stock_Dim /* Will be loaded from
STOCK_SRC."FaceValue" */

Example 2:

To set up for the example, a new Flex Field object is set up for “Attribute” objects in the
Security navigator under the “Objects” accordion. The new Flex Field is called
“ATTR_SUFFIX”. Also the source datastore model has a non-default value set for 3 of
its attributes. The values are “_KEY1”, “_KEY2”, and “_KEY3”.

Also a new boolean KM option called “ADD_SUFFIXES” is added to test KM, and the
value of the new option is set to true for the KM instance that is assigned to the target
node in the test mapping. A test task is set up in an IKM that has IKM Oracle Insert as
a base KM.

KM task-local groovy variable definition script:

def colList = INSERT.getColumnList()
colListStr = ''
addSuffixes = physicalNode.getKMOptionValueBoolean("ADD_SUFFIXES")
for (Column col : colList) {
 if (colListStr.length() != 0) colListStr += ",\n"
 attrs = col.getSourceSelectItem().getSourceAttributes()
 String suffix = "";
 if (addSuffixes && attrs != null && attrs.size() > 0) {
 suffix = attrs.get(0).getFlexFieldValue("ATTR_SUFFIX")
 }
 colListStr += col.getTable().getQualifier() + '.' +
col.getTable().getName() + "." + '\"' + col.getUnquotedName() + suffix
+ '\"'
}

KM target command text:
Column List string with suffixes from source flex fields: $[colListStr]

Generated code:

Column List string with suffixes from source flex fields:
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Stock_Name",

Appendix A
SqlInsertStatement.getColumnList()

A-4

COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Stock_Symbol_CUSTOM_KEY2",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Stock_Type",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Industry_Type_CUSTOM_KEY3",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."SP_Rating",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Company_Name_CUSTOM_KEY1",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Registered_Address",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Registered_City",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Registered_State",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Postal_Code",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."Registered_County",
COMPKM_TEST_TGT_SCHEMA.Stock_Dim."FaceValue"

A.2 SqlInsertStatement.getQuery()
Usage

public SqlQuery getQuery()

Description

This method is used to get the main source query object from the target IKM or LKM API
object. The SqlQueryobject contains all metadata necessary to construct a SQL query. A
query may be recursively defined, so that the FromClauseobject owned by the query object
may contain other SqlQuery objects that represent subqueries of the top-level query.

Example

The return value of the getQuery() methodon the top level INSERTobject for a SQL Insert KM
should be the same as the value of the built-in QUERYvariable. A simple test for that is to
create a task like this:

KM task-local groovy variable definition script:
sourceQuery = INSERT.getQuery() queryEqualsString = (sourceQuery.equals(QUERY) ?
"equal to" : "not equal to")

KM target command:
The return value from INSERT.getQuery() is $[queryEqualsString] to the built-in QUERY
variable.

Generated Code:

-- The first subquery is:
SELECT
 EMP.EMP_NO AS EMP_NO ,
 EMP.LAST_NAME AS LAST_NAME ,
 EMP.FIRST_NAME AS FIRST_NAME ,
 EMP.DEPT_ID AS DEPT_ID
FROM /* Top-level from clause */
 ODI_SRC.EMP@NEXTGEN_TEST_ORACLE_SRC EMP
GROUP BY
 EMP.EMP_NO,EMP.LAST_NAME,EMP.FIRST_NAME,EMP.DEPT_ID
-- The source mapping physical node for the subquery is JOIN1

Appendix A
SqlInsertStatement.getQuery()

A-5

A.3 SqlQuery.getSubqueries ()
Usage

public List<SqlQuery>getSubqueries ()

Description

This method is used to get the set of subqueries that are defined by a query. This
method returns only the first level subqueries. Each subquery returned may also
contain other subqueries, that can be retrieved using the same method

Example

The example retrieves the subqueries if found, and displays the subquery text of the
first subquery.

KM task-local groovy variable definition script:

subqueries = QUERY.getSubqueries()
subquery = null;
if (subqueries != null && subqueries.size() > 0) {
 subquery = QUERY.getSubqueries().get(0)
} else {
 odiRef.warn("No subquery found")
}
println("In task groovy, subquery is " + subquery)
subquerySourceNodeName = (subquery == null ? "unknown" :
subquery.getMapPhysicalNode().getName())
println("In task groovy, subquerySourceNodeName is" +
subquerySourceNodeName)

KM target command:
The first subquery is: {#IF ($[subquery] != null) #} $[subquery.getText()]
{#ELSE#} not found {# ENDIF #}. The source mapping physical node for the
subquery is $[subquerySourceNodeName]

Generated Code:

-- The first subquery is:
SELECT
 EMP.EMP_NO AS EMP_NO ,
 EMP.LAST_NAME AS LAST_NAME ,
 EMP.FIRST_NAME AS FIRST_NAME ,
 EMP.DEPT_ID AS DEPT_ID
FROM /* Top-level from clause */
 ODI_SRC.EMP@NEXTGEN_TEST_ORACLE_SRC EMP
GROUP BY
 EMP.EMP_NO,EMP.LAST_NAME,EMP.FIRST_NAME,EMP.DEPT_ID
-- The source mapping physical node for the subquery is JOIN1

Appendix A
SqlQuery.getSubqueries ()

A-6

A.4 SqlInsertStatement.getTargetTable ()
Usage

public Table getTargetTable() ()

Description

This method is used to get the substitution API object that represents a target table. The
return type is Table, which provides methods to get the name and characteristics of the target
table.

Example

The example generates a SQL DDL CREATEstatement to create the table.

KM task-local groovy variable definition script:

table = INSERT.getTargetTable()
tableName = table.getCreationName()
tableQualifier = physicalNode.getLocation() == null ? null :
physicalNode.getLocation().getName();
odiRuntimeAccessName = OdiRef.getOdiGeneratedAccessName("TARG_NAME",
physicalNode, "A");
tableAlias = component.getAlias();
tgtColList = {
 def cols = component.getAttributes();
 String result = ""
 def first = true
 for (col in cols) {
 if (!first) result += ",\n"
 result += col.getSQLAccessName(false, "") + " " +
MappingUtils.getDdlDataType(col.getBoundObject());
 first = false
 }
 return result
}

KM target command:

create table $[odiRuntimeAccessName]
(
 $[tgtColList.call()]
)

Generated Code:

create table COMPKM_TEST_TGT_SCHEMA."Stock_Dim"
(
 "Stock_Key_PK" NUMBER(30),
"Split_Key" NUMBER(30),
"Stock_Name" VARCHAR2(50),
"Stock_Symbol" VARCHAR2(50),

Appendix A
SqlInsertStatement.getTargetTable ()

A-7

"Stock_Type" VARCHAR2(50),
"Industry_Type" VARCHAR2(50),
"SP_Rating" VARCHAR2(50),
"Company_Name" VARCHAR2(50),
"Registered_Address" VARCHAR2(50),
"Registered_City" VARCHAR2(50),
"Registered_State" VARCHAR2(50),
"Postal_Code" VARCHAR2(50),
"Registered_County" VARCHAR2(50),
"FaceValue" NUMBER(30)
)

A.5 SqlQuery.getFromList ()
Usage

public List<FromClause> getFromList()

Description

This method is used to get a list of the FROMclause structures that represent the
FROMclauses of the SQL query object. Each individual FROM clause represents some
source table or inline view. There are basically 3 types of FROM clause:

• a simple table reference

• a subquery reference

• an ANSI JoinTable reference

If simple tables or subqueries are used without an ANSI join table, then the WHERE
clause must provide the joining relationship between the tables. If the JoinTable is
used, it will include an ON clause. The ON clause is accessed though a method
JoinTable.getPredicate()or JoinTable.getPredicateText(). Both the subquery
case and the JoinTable case can have nested queries, which represent regular FROM
list of subqueries, or a ANSI joined subquery sources.

Example

The example gets the main FROM clause objects and derives a list of all the source
tables using the FromClause.getSourceTables() call.

KM task-local groovy variable definition script:

sourceTables = QUERY.getFromList().get(0).getSourceTables()
sourceTableNames = ''
for (sourceTable in sourceTables) {
 if (sourceTableNames.length() > 0) sourceTableNames += ", ";
 sourceTableNames += sourceTable.getName();
}

KM target command:
The source tables are: $[sourceTableNames]

Generated Code
The source tables are: EMP, DEPT

Appendix A
SqlQuery.getFromList ()

A-8

A.6 SqlQuery.getSelectList ()
Usage

public List<ISelectItem> getSelectList()

Description

This method is used to get the list of select items present in the SQL query object. Each item
is represented by an interface instance of IselectItem. The implementations of ISelectItem are
ArrayExpression, StringExpression, and CorrelatedSubquery, The type can be determined
using the java or groovy “instanceof” call. The ArrayExpression represents an expression
owned by a mapping attribute, which is possibly a complex expression with referenced sub-
expressions. The StringExpression represents a simple string expression. The
CorrelatedQuery object represents a correlated query, also called as a scalar subquery,
which is a subquery that returns a column and a row, that can be used as a query select item.

Example

The example prints out the type and text for each select item.

KM task-local groovy variable definition script:

selectList = QUERY.getSelectList()
selectListString = ''
index = 0;
for (item in selectList) {
 if (selectListString.length() > 0) selectListString += ",\n"
 selectListString += sprintf('item %1$d: type=%2$s text=%3$s', index++,
item.getClass().getName(), item.toString())
}

KM target command:
Select list string is:{#NL#} $[selectListString]

Generated Code:

Select list string is:
item 0: type=oracle.odi.mapping.generation.ArrayExpression text=EMP_1.EMP_NO,
item 1: type=oracle.odi.mapping.generation.ArrayExpression
text=EMP_1.LAST_NAME,
item 2: type=oracle.odi.mapping.generation.ArrayExpression
text=EMP_1.FIRST_NAME,
item 3: type=oracle.odi.mapping.generation.ArrayExpression
text=DEPT.DEPT_NAME

A.7 FromClause.getJoinTable ()
Usage

public JoinTable getJoinTable ()

Appendix A
SqlQuery.getSelectList ()

A-9

Description

This method is used to get the ANSI Join Table object from a FROM clause object, if
the FROM clause object represents an ANSI join. The JoinTable object is a holder for
the left and right join sources, which can be either simple tables or other join tables. It
also holds the join type (inner, left outer, right outer, etc.), and the join condition
expression.

Example

The example prints out the join type, right and left sources, and ON clause for the join
table, if any.

KM task-local groovy variable definition script:

joinTable = QUERY.getFromList().get(0).getJoinTable()
joinTableStr = ''
if (joinTable != null) {
 joinTableStr = sprintf('type=%1$s\nleft text=%2$s\nright
text=%3$s\njoin condition=%4$s',
 joinTable.getJoinType(), joinTable.getLeftText(),
joinTable.getRightText(), joinTable.getPredicateText())
} else {
 joinTableStr = 'No join table found'
}

KM target command:
Join table information: $[joinTableStr]

Generated Code:

Join table information:
type=INNER
left text=(
SELECT
 EMP.EMP_NO AS EMP_NO ,
 EMP.LAST_NAME AS LAST_NAME ,
 EMP.FIRST_NAME AS FIRST_NAME ,
 EMP.DEPT_ID AS DEPT_ID
FROM
 ODI_SRC.EMP@NEXTGEN_TEST_ORACLE_SRC EMP
GROUP BY
 EMP.EMP_NO,EMP.LAST_NAME,EMP.FIRST_NAME,EMP.DEPT_ID
) EMP_1
right text=ODI_SRC.DEPT@NEXTGEN_TEST_ORACLE_SRC DEPT
join condition=EMP_1.DEPT_ID = DEPT.DEPT_ID

A.8 FromClause.getSourceTables ()
Usage

public List<Table> getSourceTables ()

Appendix A
FromClause.getSourceTables ()

A-10

Description

This method is used to get a list of all the simple source tables that are included in the FROM
clause object. It does not include Join tables or subquery references.

Example

The below example provides the table name and logical schema location for each simple
source table in the mapping.

KM task-local groovy variable definition script:

fromClause = QUERY.getFromList().get(0)
sourceTables = fromClause.getSourceTables()
sourceTableList = '';
context = physicalNode.getContext();
for (sourceTable in sourceTables) {
 sourceTableLocation =
sourceTable.getBoundDatastore().getModel().getObjectLocation(context);
 sourceTableList += sprintf('Table name=%1$s, logical schema=%2$s\n',
sourceTable.getName(), sourceTableLocation.getLogicalSchema().getName())
}

KM target command:
Source table list: $[sourceTableList]

Generated Code:
Source table list:

Table name=EMP, logical schema=NEXTGEN_TEST_ORACLE_SRC
Table name=DEPT, logical schema=NEXTGEN_TEST_ORACLE_SRC

A.9 FromClause.getTableQuery ()
This method FromClause.getTableQuery () includes the following methods:

• JoinTable.getLeftTableQueryRef ()

• FromClause.getRightTableQueryRef ()

Usage

public TableQueryReference getTableQuery ()
public TableQueryReference getLeftTableQueryRef ()
public TableQueryReference getRightTableQueryRef ()

Description

These methods are used to get the table query object for a FROM clause or from a JoinTable
object that contains a table query. A table query is a holder for a subquery object or a simple
table. Depending on the KM that is used, the TableQuery may be contained by the FROM
clause itself, or on the right or left side of a JoinTable object.

Appendix A
FromClause.getTableQuery ()

A-11

Example

The example finds whether the first FROM clause has a JoinTable, and if so, gets the
subquery from the left-hand side of the join table, if there is a subquery on the left side.

KM task-local groovy variable definition script:

fromClause = QUERY.getFromList().get(0)
fromClauseHasJoinTable = (fromClause.getJoinTable() == null ? "does not
have" : "has") + " a join table"
tableQueryRef =
QUERY.getFromList().get(0).getJoinTable().getLeftTableQueryRef()
query = null
subqueryText = null
if (tableQueryRef != null) { // Not every FROM clause has a table
query object, so protect against null.
 query = tableQueryRef.getQuery()
 if (query != null) {
 subqueryText = query.getText()
 }
}

KM target command:

From clause $[fromClauseHasJoinTable]
{#IF $[subqueryText] != null #}
subquery text:
$[subqueryText]
{# ELSE #}
No subquery text found.
{# ENDIF #}

Generated Code:
From clause has a join table subquery text:

SELECT
 EMP.EMP_NO AS EMP_NO ,
 EMP.LAST_NAME AS LAST_NAME ,
 EMP.FIRST_NAME AS FIRST_NAME ,
 EMP.DEPT_ID AS DEPT_ID
FROM
 ODI_SRC.EMP@NEXTGEN_TEST_ORACLE_SRC EMP
GROUP BY
 EMP.EMP_NO,EMP.LAST_NAME,EMP.FIRST_NAME,EMP.DEPT_ID

A.10 ArrayExpression.getTemplate()
Usage

public String getTemplate ()

Appendix A
ArrayExpression.getTemplate()

A-12

Description

This method gets the code generation template for an ArrayExpression object. An
ArrayExpression is a special code generation expression object that can handle nested
expressions. For example, if an ODI mapping has multiple expression components
connected one after the other, and the expressions for each one reference the expression
attributes of the previous expression component, then there are nested expressions in the
final query. For example, suppose the first expression EXPR has an attribute EMPSAL whose
expression is “EMP.SAL + 100”, and then the next expression component has an expression
like “EXPR.EMPSAL – 50”. In that case the final expression used in the extract query would
be “(EMP.SAL + 100) – 50”. The ArrayExpression object handles this by having a top-level
template, which has the template references to child objects in the template text. The
template references in the text looks like this: “@{R0}”. This refers to a child expression
whose key in the child hash table is “R0”. Each child object could be a simple String
expression, or another ArrayExpression for multiple levels of nesting, or a source attribute.
The getTemplate() method returns the textual template used to produce the ArrayExpression
text.

Example

The example loops through all the select list items in the source query, finds the ones that are
implemented as ArrayExpression objects, and displays the full text and the template text.

KM task-local groovy variable definition script:

selectList = QUERY.getSelectList()
arrayExprListString = ''
for (selectItem in selectList) {
 ArrayExpression arrayExpr = selectItem.getArrayExpression()
 if (arrayExpr != null) {
 if (arrayExprListString.length() != 0) arrayExprListString += '\n';
 arrayExprListString += sprintf('text=%1$s, template=%2$s',
arrayExpr.getText(), arrayExpr.getTemplate())
 }
}

KM target command:

Here is the list of ArrayExpression templates:$[arrayExprListString]

Generated Code:
Here is the list of ArrayExpression templates:

text=(EMP.EMP_NO + 100)*2, template=(@{R0} + 100)*2
text=EMP.LAST_NAME, template=@{R0}
text=EMP.FIRST_NAME, template=@{R0}
text=(EMP.FIRST_NAME || EMP.LAST_NAME), template=@{R0}
text=DEPT.DEPT_NAME, template=@{R0}

A.11 ArrayExpression.getChildMap()
Usage

public Map<String,Object> getChildMap ()

Appendix A
ArrayExpression.getChildMap()

A-13

Description

This method gets a hash map that contains the child objects that are owned by this
ArrayExpression object. The hash key is the matching key used in the
ArrayExpression template, as described in the previous method.

Example

The example loops through all the select list items in the source query, finds the ones
that are implemented as ArrayExpression objects, and displays the full text and the
template text.

KM task-local groovy variable definition script:

selectList = QUERY.getSelectList()
arrayExprListString = ''
for (selectItem in selectList) {
 ArrayExpression arrayExpr = selectItem.getArrayExpression()
 if (arrayExpr != null) {
 if (arrayExprListString.length() != 0) arrayExprListString += '\n';
 arrayExprListString += sprintf('ArrayExpression text=%1$s,
template=%2$s', arrayExpr.getText(), arrayExpr.getTemplate())
 childMap = arrayExpr.getChildMap()
 for (childKey in childMap.keySet()) {
 arrayExprListString += sprintf('\n\tChild item: key=%1$s,
object=%2$s', childKey, childMap.get(childKey).toString())
 }
 }
}

KM target command:
Here is the ArrayExpression list with child objects:$[arrayExprListString]

Generated Code:
Here is the ArrayExpression list with child objects:

ArrayExpression text=(EMP.EMP_NO + 100)*2, template=(@{R0} + 100)*2
 Child item: key=R0, object=EMP.EMP_NO
ArrayExpression text=EMP.LAST_NAME, template=@{R0}
 Child item: key=R0, object=EMP.LAST_NAME
ArrayExpression text=EMP.FIRST_NAME, template=@{R0}
 Child item: key=R0, object=EMP.FIRST_NAME
ArrayExpression text=(EMP.FIRST_NAME || EMP.LAST_NAME), template=@{R0}
 Child item: key=R0, object=EMP.FIRST_NAME || EMP.LAST_NAME
ArrayExpression text=DEPT.DEPT_NAME, template=@{R0}
 Child item: key=R0, object=DEPT.DEPT_NAME

Appendix A
ArrayExpression.getChildMap()

A-14

B
Substitution API Reference

It is important to have a good understanding of the available Oracle Data Integrator odiRef
API and its usage.
See Introduction to OdiRef Substitution API for introductory information about using this API.

This appendix includes the following sections:

• Substitution Methods List

• Substitution Methods Reference

B.1 Substitution Methods List
The substitution are listed below depending on the type of knowledge module into which they
can be used. The Global Methods list lists the methods that can be used in any situation.

Refer to the description of a given method itself for more information about its behavior in a
given knowledge module or action.

This section contains the following topics:

• Global Methods

• Journalizing Knowledge Modules

• Loading Knowledge Modules

• Check Knowledge Modules

• Integration Knowledge Modules

• Reverse-Engineering Knowledge Modules

• Service Knowledge Modules

• Actions

B.1.1 Global Methods
The following methods can be used in all knowledge module and actions:

• getCatalogName() Method

• getCatalogNameDefaultPSchema() Method

• getColDefaultValue() Method

• getContext() Method

• getDataType() Method

• getFlexFieldValue() Method

• getInfo() Method

• getJDBCConnection() Method

B-1

• getJDBCConnectionFromLSchema() Method

• getNbInsert(), getNbUpdate(), getNbDelete(), getNbErrors() and getNbRows()
Methods

• getObjectName() Method

• getObjectNameDefaultPSchema() Method

• getOdiGeneratedAccessName() Method

• getOdiInstance() Method

• getOption() Method

• getPackage() Method

• getPrevStepLog() Method

• getQuotedString() Method

• getSchemaName() Method

• getSchemaNameDefaultPSchema() Method

• getSession() Method

• getSessionVarList() Method

• getStep() Method

• getSysDate() Method

• setNbInsert(), setNbUpdate(), setNbDelete(), setNbErrors() and setNbRows()
Methods

• setTaskName() Method

B.1.2 Journalizing Knowledge Modules
In addition to the methods in the Global Methods list, the following methods can be
used specifically in Journalizing Knowledge Modules (JKM):

• getColList() Method

• getJrnFilter() Method

• getJrnInfo() Method

• getOggModelInfo() Method

• getOggProcessInfo() Method

• getSubscriberList() Method

• getTable() Method

B.1.3 Loading Knowledge Modules
In addition to the methods from in the Global Methods list, the following methods can
be used specifically in Loading Knowledge Modules (LKM):

• getColList() Method

• getDataSet() Method

• getDataSetCount() Method

Appendix B
Substitution Methods List

B-2

• getFilter() Method

• getFilterList() Method

• getFrom() Method

• getGrpBy() Method

• getGrpByList() Method

• getHaving() Method

• getHavingList() Method

• getJoin() Method

• getJoinList() Method

• getJrnFilter() Method

• getJrnInfo() Method

• getPop() Method

• getSrcColList() Method

• getSrcTablesList() Method

• getTable() Method

• getTargetColList() Method

• getTableName() Method

• getTargetTable() Method

• getTemporaryIndex() Method

• getTemporaryIndexColList() Method

• setTableName() Method

B.1.4 Check Knowledge Modules
In addition to the methods from in theGlobal Methods list, the following methods can be used
specifically in Check Knowledge Modules (CKM):

• getAK() Method

• getAKColList() Method

• getCK() Method

• getColList() Method

• getFK() Method

• getFKColList() Method

• getNotNullCol() Method

• getPK() Method

• getPKColList() Method

• getPop() Method

• getTable() Method

• getTargetColList() Method

Appendix B
Substitution Methods List

B-3

• getTargetTable() Method

B.1.5 Integration Knowledge Modules
In addition to the methods from in the Global Methodslist, the following methods can
be used specifically in Integration Knowledge Modules IKM):

• getColList() Method

• getDataSet() Method

• getDataSetCount() Method

• getFilter() Method

• getFilterList() Method

• getFrom() Method

• getGrpBy() Method

• getGrpByList() Method

• getHaving() Method

• getHavingList() Method

• getJoin() Method

• getJoinList() Method

• getJrnFilter() Method

• getJrnInfo() Method

• getPop() Method

• getSrcColList() Method

• getSrcTablesList() Method

• getTable() Method

• getTableName() Method

• getTargetColList() Method

• getTargetTable() Method

• getTemporaryIndex() Method

• getTemporaryIndexColList() Method

• setTableName() Method

B.1.6 Reverse-Engineering Knowledge Modules
In addition to the methods from in the Global Methodslist, the following methods can
be used specifically in Reverse-engineering Knowledge Modules (RKM):

• getModel() Method

B.1.7 Service Knowledge Modules
In addition to the methods from in the Global Methodslist, the following methods can
be used specifically in Service Knowledge Modules (SKM):

Appendix B
Substitution Methods List

B-4

• hasPK() Method

• nextAK() Method

• nextCond() Method

• nextFK() Method

B.1.8 Actions
In addition to the methods from in the Global Methodslist, the following methods can be used
specifically in Actions.

• getAK() Method

• getAKColList() Method

• getCK() Method

• getColList() Method

• getColumn() Method

• getFK() Method

• getFKColList() Method

• getIndex() Method

• getIndexColList() Method

• getNewColComment() Method

• getNewTableComment() Method

• getPK() Method

• getPKColList() Method

• getTable() Method

• getTargetTable() Method

• isColAttrChanged() Method

B.2 Substitution Methods Reference
This section provides an alphabetical list of the substitution methods. Each method is detailed
with usage, description, parameters and example code.

B.2.1 getAK() Method
Use to return information about an alternate key.

Usage

public java.lang.String getAK(java.lang.String pPropertyName)

Description

This method returns information relative to the alternate key of a datastore during a check
procedure. It is only accessible from a Check Knowledge Module if the current task is tagged
"alternate key".

Appendix B
Substitution Methods Reference

B-5

In an action, this method returns information related to the alternate key currently
handled by the DDL command.

Parameters

Parameter Type Description

pPropertyName String String containing the name of
the requested property.

The following table lists the different possible values for pPropertyName.

Parameter Values Description

ID Internal number of the AK constraint. This parameter is
deprecated, and included for 11g compatibility only. The ID
property works if the repository is in 11g compatibility mode,
but an error message will be returned if the repository is in 12c
mode.

GUID GUID of the Alternate Key

KEY_NAME Name of the alternate key

MESS Error message relative to the constraint of the alternate key

FULL_NAME Full name of the AK generated with the local object mask.

<flexfield code> Value of the flexfield for this AK.

Examples

The alternate key of my table is named: <%=odiRef.getAK("KEY_NAME")%>

B.2.2 getAKColList() Method
Use to return information about the attributes of an alternate key.

Usage

public java.lang.String getAKColList(java.lang.String pStart,
java.lang.String pPattern,java.lang.String pEnd)
java.lang.String pSeparator,
java.lang.String pEnd)

Alternative syntax:

public java.lang.String getAKColList(
java.lang.String pPattern,
java.lang.String pSeparator)

Description

Returns a list of attributes and expressions for the alternate key currently checked.

The pPattern parameter is interpreted and then repeated for each element of the list. It
is separated from its predecessor by the pSeparator parameter. The generated string
starts with pStart and ends with pEnd. If no element is selected, pStart and pEnd are
omitted and an empty string is returned.

Appendix B
Substitution Methods Reference

B-6

This list contains an element for each attribute of the current alternate key. It is accessible
from a Check Knowledge Module if the current task is tagged as an "alternate key".

In an action, this method returns the list of the attributes of the alternate key handled by the
DDL command, ordered by their position in the key.

In the alternative syntax, any parameters not set are set to an empty string.

Parameters

Parameters Type Description

pStart String This sequence marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of attributes that can be used in a pattern is detailed in the
Pattern Attributes List below.

Each attribute occurrence in the pattern sequence is replaced with its
value. The attributes must be between brackets. ([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This sequence marks the end of the string to generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as their associated
description.

Parameter Value Description

Parameter value Description

I_COL Attribute internal identifier

COL_NAME Name of the key attribute

COL_HEADING Header of the key attribute

COL_DESC Attribute description

POS Position of the attribute

LONGC Length (Precision) of the attribute

SCALE Scale of the attribute

FILE_POS Beginning position of the attribute (fixed file)

BYTES Number of physical bytes of the attribute

FILE_END_POS End of the attribute (FILE_POS + BYTES)

IND_WRITE Write right flag of the attribute

COL_MANDATORY Mandatory character of the attribute:

• 0: null authorized
• 1: non null

CHECK_FLOW Flow control flag of the attribute:

• 0: do not check
• 1: check

CHECK_STAT Static control flag of the attribute:

• 0: do not check
• 1: check

Appendix B
Substitution Methods Reference

B-7

Parameter Value Description

COL_FORMAT Logical format of the attribute

COL_DEC_SEP Decimal symbol for the attribute

REC_CODE_LIST List of the record codes retained for the attribute

COL_NULL_IF_ERR Processing flag for the attribute:

• 0: Reject
• 1: Set active trace to null
• 2: Set inactive trace to null

DEF_VALUE Default value for the attribute

EXPRESSION Not used

CX_COL_NAME Not used

ALIAS_SEP Grouping symbol used for the alias (from the technology)

SOURCE_DT Code of the attribute's datatype.

SOURCE_CRE_DT Create table syntax for the attribute's datatype.

SOURCE_WRI_DT Create table syntax for the attribute's writable datatype.

DEST_DT Code of the attribute's datatype converted to a datatype on the target
technology.

DEST_CRE_DT Create table syntax for the attribute's datatype converted to a datatype on the
target technology.

DEST_WRI_DT Create table syntax for the attribute's writable datatype converted to a datatype
on the target technology.

SCD_COL_TYPE Behavior defined for the Slowly Changing Dimensions for this attribute in the
data model.

<flexfield code> Flexfield value for the current attribute.

Examples

If the CUSTOMER table has an alternate key AK_CUSTOMER (CUST_ID,
CUST_NAME) and you want to generate the following code:

create table T_AK_CUSTOMER
(CUST_ID numeric(10) not null, CUST_NAME varchar(50) not null)

You can use the following code:

create table T_<%=odiRef.getAK("KEY_NAME")%>
<%=odiRef.getAKColList("(", "[COL_NAME] [DEST_CRE_DT] not null", ", ", ")")%>

Explanation: the getAKColList function will be used to generate the (CUST_ID
numeric(10) not null, CUST_NAME varchar(50) not null) part, which starts and
stops with a parenthesis and repeats the pattern (attribute, a data type, and not null)
separated by commas for each attribute of the alternate key. Thus

• the first parameter "(" of the function indicates that we want to start the string with
the string "("

• the second parameter "[COL_NAME] [DEST_CRE_DT] not null" indicates that
we want to repeat this pattern for each attribute of the alternate key. The keywords
[COL_NAME] and [DEST_CRE_DT] reference valid keywords of the Pattern
Attributes List table

Appendix B
Substitution Methods Reference

B-8

• the third parameter ", " indicates that we want to separate interpreted occurrences of the
pattern with the string ", "

• the fourth parameter ")" of the function indicates that we want to end the string with the
string ")"

B.2.3 getAllTargetColList() Method
Use to return information about all attributes of the target table of a mapping, including active
and non-active attributes. Active attributes are those having an active mapping.

This method has the same usage and parameters as the getTargetTable() Method. See
getTargetColList() Method for more details.

B.2.4 getCatalogName() Method
Use to return a catalog name from the topology.

Usage

public java.lang.String getCatalogName(
 java.lang.String pLogicalSchemaName,
java.lang.String pLocation)

public java.lang.String getCatalogName(
 java.lang.String pLogicalSchemaName,
java.lang.String pContextCode,
pContextCode, java.lang.String pLocation)

public java.lang.String getCatalogName(
java.lang.String pLocation)

public java.lang.String getCatalogName()

Description

Allows you to retrieve the name of a physical data catalog or work catalog, from its logical
schema.

If the first syntax is used, the returned catalog name matches the current context.

If the second syntax is used, the returned catalog name is that of the context specified in the
pContextCode parameter.

The third syntax returns the name of the data catalog (D) or work catalog (W) for the current
logical schema in the current context.

The fourth syntax returns the name of the data catalog (D) for the current logical schema in
the current context.

Parameters

Parameter Type Description

pLogicalSchemaName String Name of the logical schema

pContextCode String Code of the enforced context of the schema

Appendix B
Substitution Methods Reference

B-9

Parameter Type Description

pLocation String The valid values are:

• W: Returns the work catalog of the
physical schema that corresponds to the
tuple (context, logical schema)

• D: Returns the data catalog of the
physical schema that corresponds to the
tuple (context, logical schema)

Examples

If you have defined the physical schema Pluton.db_odi.dbo

Property Value

Data catalog: db_odi

Data schema: dbo

Work catalog: tempdb

Work schema: temp_owner

that you have associated with this physical schema: MSSQL_ODI in the context
CTX_DEV

The Call To Returns

<%=odiRef.getCatalogName("MSSQL_ODI", "CTX_DEV", "W")%> tempdb

<%=odiRef.getCatalogName("MSSQL_ODI", "CTX_DEV", "D")%> db_odi

B.2.5 getCatalogNameDefaultPSchema() Method
Use to return a catalog name for the default physical schema from the topology.

Usage

public java.lang.String getCatalogNameDefaultPSchema(
java.lang.String pLogicalSchemaName,
java.lang.String pLocation)

public java.lang.String getCatalogNameDefaultPSchema(
java.lang.String pLogicalSchemaName,
java.lang.String pContextCode,
java.lang.String pLocation)

public java.lang.String getCatalogNameDefaultPSchema(
java.lang.String pLocation)

public java.lang.String getCatalogNameDefaultPSchema()

Description

Allows you to retrieve the name of the default physical data catalog or work catalog
for the data server to which is associated the physical schema corresponding to the
tuple (logical schema, context). If no context is specified, the current context is used. If

Appendix B
Substitution Methods Reference

B-10

no logical schema name is specified, then the current logical schema is used. If no pLocation
is specified, then the data catalog is returned.

Parameters

Parameter Type Description

pLogicalSchemaName String Name of the logical schema

pContextCode String Code of the enforced context of the schema

pLocation String The valid values are:

• W: Returns the work catalog of the default physical
schema associate to the data server to which the
physical schema corresponding to the tuple (context,
logical schema) is also attached.

• D: Returns the data catalog of the physical schema
corresponding to the tuple (context, logical schema)

Examples

If you have defined the physical schema Pluton.db_odi.dbo

Property Value

Data catalog: db_odi

Data schema: dbo

Work catalog: tempdb

Work schema: temp_odi

Default Schema Yes

that you have associated with this physical schema: MSSQL_ODI in the context CTX_DEV,
and Pluton.db_doc.doc

Property Value

Data catalog: db_doc

Data schema: doc

Work catalog: tempdb

Work schema: temp_doc

Default Schema No

that you have associated with this physical schema: MSSQL_DOC in the context CTX_DEV.

The Call To Returns

<%=odiRef.getCatalogNameDefaultPSchema("MSSQL_DOC", "CTX_DEV", "W")%> tempdb

<%=odiRef.getCatalogNameDefaultPSchema("MSSQL_DOC", "CTX_DEV", "D")%> db_odi

B.2.6 getCK() Method
Use to return information about a condition.

Appendix B
Substitution Methods Reference

B-11

Usage

public java.lang.String getCK(java.lang.String pPropertyName)

Description

This method returns information relative to a condition of a datastore during a check
procedure. It is accessible from a Check Knowledge Module only if the current task is
tagged as "condition".

In an action, this method returns information related to the check constraint currently
handled by the DDL command.

Parameters

Parameter Type Description

pPropertyName String Current string containing the
name of the requested
property.

The following table lists the different values accepted by pPropertyName:

Parameter Value Description

ID Internal number of the check constraintThis parameter is deprecated,
and included for 11g compatibility only. The ID property works if the
repository is in 11g compatibility mode, but an error message will be
returned if the repository is in 12c mode.

GUID GUID of the check.

COND_ALIAS Alias of the table used in the SQL statement

COND_NAME Name of the condition

COND_TYPE Type of the condition

COND_SQL SQL statement of the condition

MESS Error message relative to the check constraint

FULL_NAME Full name of the check constraint generated with the local object
mask.

COND_SQL_DDL SQL statement of the condition with no table alias.

<flexfield code> Flexfield value for this check constraint.

Examples

The current condition is called: <%=snpRep.getCK("COND_NAME")%>

insert into MY_ERROR_TABLE
select *
from MY_CHECKED_TABLE
where (not (<%=odiRef.getCK("COND_SQL")%>))

B.2.7 getColDefaultValue() Method
Use to return the default value of a mapped attribute.

Appendix B
Substitution Methods Reference

B-12

Usage

public java.lang.String getColDefaultValue()

Description

Returns the default value of the target attribute of the mapping.

This method can be used in a mapping expression without the <%%> tags. This method call
will insert in the generate code the default value set in the attribute definition. Depending on
the attribute type, this value should be protected with quotes.

Parameters

None.

Examples

The default value of my target attribute is '+ 'odiRef.getColDefaultValue()'

B.2.8 getColList() Method
Use to return properties for each attribute from a filtered list of attributes. The properties are
organized according to a string pattern.

Usage

public java.lang.String getColList(
java.lang.int pDSIndex,
java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd,
java.lang.String pSelector)

Alternative syntaxes:

public java.lang.String getColList(
java.lang.int pDSIndex,
java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

public java.lang.String getColList(
java.lang.int pDSIndex,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pSelector)

public java.lang.String getColList(
java.lang.int pDSIndex,
java.lang.String pPattern,
java.lang.String pSeparator)

Description

Returns a list of attributes and expressions for a given data set. The attributes list depends on
the phase during which this method is called.

Appendix B
Substitution Methods Reference

B-13

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into
account by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an
LKM. It can be also omitted for IKMs. In this case, the data set taken into
account is the first one.

The pPattern parameter is interpreted and then repeated for each element of the list
(selected according to pSelector parameter) and separated from its predecessor with
the parameter pSeparator. The generated string begins with pStart and ends with
pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is
returned.

In the alternative syntax, any parameters not set are set to an empty string.

Note:

• This method automatically generates lookups with no specific code
required.

• When an attribute name from a source exceeds the maximum allowed
length of an attribute name for the target technology, it is automatically
truncated.

Loading (LKM)

All active mapping expressions that are executed in the current execution unit, as well
as all the attributes from the current execution unit used in the mapping, filters and
joins expressions executed in the staging area appear in this list. The list is sorted by
POS, FILE_POS.

If there is a journalized datastore in the source of the mapping, the three journalizing
pseudo attributes JRN_FLAG, JRN_DATE, and JRN_SUBSCRIBER are added as attributes of
the journalized source datastore.

Integration (IKM)

All current active mapping expressions in the current mapping appear in the list.

The list contains one element for each attribute that is loaded in the target table of the
current mapping. The list is sorted by POS, FILE_POS, except when the target table is
temporary. In this case it is not sorted.

If there is a journalized datastore in the source of the mapping, and it is located in the
staging area, the three journalizing pseudo attributes JRN_FLG, JRN_DATE,and
JRN_SUBSCRIBER are added as attributes of the journalized source datastore.

Check (CKM)

All the attributes of the target table (with static or flow control) appear in this list.

Appendix B
Substitution Methods Reference

B-14

To distinguish attributes mapped in the current mapping, you must use the MAP selector.

Actions

All the attributes of the table handles by the DDL command appear in this list.

In the case of modified, added or deleted attributes, the NEW and OLD selectors are used to
retrieve either the new version or the old version of the modified attribute being processed by
the DDL command. The list is sorted by POS, FILE_POS when the table loaded is not
temporary.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

pStart String This sequence marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of the attributes usable in a pattern is detailed in the Pattern
Attributes List below.

Each occurrence of the attributes in the pattern string is replaced by
its value. Attributes must be between brackets ([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This sequence marks the end of the string to generate.

pSelector String String that designates a Boolean expression that allows to filter the
elements of the initial list with the following format:

<SELECTOR> <Operator> <SELECTOR> etc. Parenthesis are
authorized.

Authorized operators:

1. No: NOT or!

2. Or: OR or ||

3. And: AND or &&

Example: (INS AND UPD) OR TRG

The description of valid selectors is provided below.

Pattern Attributes List

The following table lists different parameters values as well as their associated description.

Parameter Value Description

I_COL Internal identifier of the attribute

COL_NAME Name of the attribute

COL_HEADING Header of the attribute

COL_DESC Description of the attribute

POS Position of the attribute

LONGC Attribute length (Precision)

SCALE Scale of the attribute

Appendix B
Substitution Methods Reference

B-15

Parameter Value Description

FILE_POS Beginning (index) of the attribute

BYTES Number of physical bytes in the attribute

FILE_END_POS End of the attribute (FILE_POS + BYTES)

IND_WRITE Write right flag of the attribute

COL_MANDATORY Mandatory character of the attribute. Valid values are:

• 0: null authorized
• 1: not null

CHECK_FLOW Flow control flag of the attribute. Valid values are:

• 0: do not check
• 1: check

CHECK_STAT Static control flag of the attribute. Valid values are:

• 0: do not check
• 1: check

COL_FORMAT Logical format of the attribute

COL_DEC_SEP Decimal symbol of the attribute

REC_CODE_LIST List of the record codes retained in the attribute

COL_NULL_IF_ERR Processing flag of the attribute. Valid values are:

• 0: Reject
• 1: Set to null active trace
• 2: Set to null inactive trace

DEF_VALUE Default value of the attribute

EXPRESSION Text of the expression executed on the source (expression as typed in
the attribute mapping or attribute name making an expression executed
on the staging area).

CX_COL_NAME Computed name of the attribute used as a container for the current
expression on the staging area

ALIAS_SEP Separator used for the alias (from the technology)

SOURCE_DT Code of the attribute's datatype.

SOURCE_CRE_DT Create table syntax for the attribute's datatype.

SOURCE_WRI_DT Create table syntax for the attribute's writable datatype.

DEST_DT Code of the attribute's datatype converted to a datatype on the target
technology.

DEST_CRE_DT Create table syntax for the attribute's datatype converted to a datatype
on the target technology.

DEST_WRI_DT Create table syntax for the attribute's writable datatype converted to a
datatype on the target technology.

SCD_COL_TYPE Behavior defined for the Slowly Changing Dimensions for this attribute
in the data model.

MANDATORY_CLAUSE Returns NOT NULL is the attribute is mandatory. Otherwise, returns the
null keyword for the technology.

DEFAULT_CLAUSE Returns DEFAULT <default value> if any default value exists.
Otherwise, returns and empty string.

JDBC_TYPE Data Services - JDBC Type of the attribute returned by the driver.

<flexfield code> Flexfield value for the current attribute.

Appendix B
Substitution Methods Reference

B-16

Selectors Description

Parameter Value Description

INS • LKM: Not applicable (*)
• IKM: Only for mapping expressions marked with insertion
• CKM: Not applicable

UPD • LKM: Not applicable (*)
• IKM: Only for mapping expressions marked with update
• CKM: Not applicable

TRG • LKM: Not applicable (*)
• IKM: Only for mapping expressions executed on the target
• CKM: Not applicable

NULL • LKM: Not applicable (*)
• IKM: All mapping expressions loading not nullable attributes
• CKM: All target attributes that do not accept null values

PK • LKM: Not applicable (*)
• IKM: All mapping expressions loading the primary key attributes
• CKM: All the target attributes that are part of the primary key

UK • LKM: Not applicable (*)
• IKM: All the mapping expressions loading the update key attribute chosen for

the current mapping
• CKM: Not applicable

REW • LKM: Not applicable (*)
• IKM: All the mapping expressions loading the attributes with read only flag not

selected
• CKM: All the target attributes with read only flag not selected

UD1 • LKM: Not applicable (*)
• IKM: All mapping expressions loading the attributes marked UD1
• CKM: Not applicable

UD2 • LKM: Not applicable (*)
• IKM: All mapping expressions loading the attributes marked UD2
• CKM: Not applicable

UD3 • LKM: Not applicable (*)
• IKM: All mapping expressions loading the attributes marked UD3
• CKM: Not applicable

UD4 • LKM: Not applicable (*)
• IKM: All mapping expressions loading the attributes marked UD4
• CKM: Not applicable

UD5 • LKM: Not applicable (*)
• IKM: All mapping expressions loading the attributes marked UD5
• CKM: Not applicable

MAP • LKM: Not applicable
• IKM: Not applicable
• CKM:
Flow control: All attributes of the target table loaded with expressions in the current
mapping

Static control: All attributes of the target table

SCD_SK LKM, CKM, IKM: All attributes marked SCD Behavior: Surrogate Key in the data
model definition.

Appendix B
Substitution Methods Reference

B-17

Parameter Value Description

SCD_NK LKM, CKM, IKM: All attributes marked SCD Behavior: Natural Key in the data
model definition.

SCD_UPD LKM, CKM, IKM: All attributes marked SCD Behavior: Overwrite on Change in the
data model definition.

SCD_INS LKM, CKM, IKM: All attributes marked SCD Behavior: Add Row on Change in the
data model definition.

SCD_FLAG LKM, CKM, IKM: All attributes marked SCD Behavior: Current Record Flag in the
data model definition.

SCD_START LKM, CKM, IKM: All attributes marked SCD Behavior: Starting Timestamp in the
data model definition.

SCD_END LKM, CKM, IKM: All attributes marked SCD Behavior: Ending Timestamp in the
data model definition.

NEW Actions: the attribute added to a table, the new version of the modified attribute of a
table.

OLD Actions: The attribute dropped from a table, the old version of the modified attribute
of a table.

WS_INS SKM: The attribute is flagged as allowing INSERT using Data Services.

WS_UPD SKM: The attribute is flagged as allowing UDATE using Data Services.

WS_SEL SKM: The attribute is flagged as allowing SELECT using Data Services.

Note:

Using certain selectors in an LKM - indicated in the previous table with an * -
is possible but not recommended. Only attributes mapped on the source in
the mapping are returned. As a consequence, the result could be incorrect
depending on the mapping. For example, for the UK selector, the attributes
of the key that are not mapped or that are not executed on the source will not
be returned with the selector.

Examples

If the CUSTOMER table contains the attributes (CUST_ID, CUST_NAME, AGE) and
we want to generate the following code:

create table CUSTOMER (CUST_ID numeric(10) null,
CUST_NAME varchar(50) null, AGE numeric(3) null)

The following code is sufficient:

create table CUSTOMER
<%=odiRef.getColList("(", "[COL_NAME] [SOURCE_CRE_DT] null", ", ", ")", "")%>

Explanation: the getColList function will be used to generate (CUST_ID numeric(10)
null, CUST_NAME varchar(50) null, AGE numeric(3) null). It will start and end with a
parenthesis and repeat a pattern (attribute, data type, and null) separated by commas
for each attribute. Thus,

• the first character "(" of the function indicates that we want to start the string with
the string "("

Appendix B
Substitution Methods Reference

B-18

• the second parameter "[COL_NAME] [SOURCE_CRE_DT] null" indicates that we want
to repeat this pattern for each attribute. The keywords [COL_NAME] and
[SOURCE_CRE_DT] are references to valid keywords of the table Pattern Attribute List

• the third parameter ", " indicates that we want to separate the interpreted occurrences of
the pattern with the string ", ".

• the fourth parameter ")" of the function indicates that we want to end the string with the
string ")"

• the last parameter "" indicates that we want to repeat the pattern for each attribute (with
no selection)

B.2.9 getColumn() Method
Use to return information about a specific attribute handled by an action.

Usage

public java.lang.String getColumn(
java.lang.String pPattern,
java.lang.String pSelector)

public java.lang.String getColumn(
java.lang.String pPattern)

Description

In an action, returns information on an attribute being handled by the action.

Parameters

Parameters Type Description

pPattern String Pattern of values rendered for the attribute.

The list of the attributes usable in a pattern is detailed in the Pattern Attributes
List below.

Each occurrence of the attributes in the pattern string is replaced by its value.
Attributes must be between brackets ([and])

Example «My string [COL_NAME] is an attribute»

pSelector String The Selector may take one of the following value:

• NEW: returns the new version of the modified attribute or the new
attribute.

• OLD: returns the old version of the modified attribute or the dropped
attribute.

If the selector is omitted, it is set to OLD for all drop actions. Otherwise, it is
set to NEW.

Pattern Attributes List

The following table lists different parameters values as well as their associated description.

Parameter Value Description

I_COL Internal identifier of the attribute

COL_NAME Name of the attribute

Appendix B
Substitution Methods Reference

B-19

Parameter Value Description

COL_HEADING Header of the attribute

COL_DESC Description of the attribute

POS Position of the attribute

LONGC Attribute length (Precision)

SCALE Scale of the attribute

FILE_POS Beginning (index) of the attribute

BYTES Number of physical bytes in the attribute

FILE_END_POS End of the attribute (FILE_POS + BYTES)

IND_WRITE Write right flag of the attribute

COL_MANDATORY Mandatory character of the attribute. Valid values are:

• 0: null authorized
• 1: not null

CHECK_FLOW Flow control flag of the attribute. Valid values are:

• 0: do not check
• 1: check

CHECK_STAT Static control flag of the attribute. Valid values are:

• 0: do not check
• 1: check

COL_FORMAT Logical format of the attribute

COL_DEC_SEP Decimal symbol of the attribute

REC_CODE_LIST List of the record codes retained in the attribute

COL_NULL_IF_ERR Processing flag of the attribute. Valid values are:

• 0: Reject
• 1: Set to null active trace
• 2: Set to null inactive trace

DEF_VALUE Default value of the attribute

EXPRESSION Text of the expression executed on the source (expression as typed
in the mapping or attribute name making an expression executed
on the staging area).

CX_COL_NAME Computed name of the attribute used as a container for the current
expression on the staging area

ALIAS_SEP Separator used for the alias (from the technology)

SOURCE_DT Code of the attribute's datatype.

SOURCE_CRE_DT Create table syntax for the attribute's datatype.

SOURCE_WRI_DT Create table syntax for the attribute's writable datatype.

DEST_DT Code of the attribute's datatype converted to a datatype on the
target technology.

DEST_CRE_DT Create table syntax for the attribute's datatype converted to a
datatype on the target technology.

DEST_WRI_DT Create table syntax for the attribute's writable datatype converted to
a datatype on the target technology.

SCD_COL_TYPE Behavior defined for the Slowly Changing Dimensions for this
attribute in the data model.

Appendix B
Substitution Methods Reference

B-20

Parameter Value Description

MANDATORY_CLAUSE Returns NOT NULL if the attribute is mandatory. Otherwise, returns
the null keyword for the technology.

DEFAULT_CLAUSE Returns DEFAULT <default value> if any default value exists.
Otherwise, returns and empty string.

<flexfield code> Flexfield value for the current attribute.

B.2.10 getContext() Method
Use to return information about the current context.

Usage

public java.lang.String getContext(java.lang.String pPropertyName)

Description

This method returns information about to the current execution context.

Parameters

Parameter Type Description

pPropertyName String String containing the name of the requested property.

The following table lists the different possible values for pPropertyName.

Parameter Value Description

ID Internal ID of the context. This parameter is deprecated, and included for
11g compatibility only. The ID property works if the repository is in 11g
compatibility mode, but an error message will be returned if the repository
is in 12c mode.

GLOBAL_ID GUID of the context.

CTX_NAME Name of the context.

CTX_CODE Code of the context.

CTX_DEFAULT Returns 1 for the default context, 0 for the other contexts.

<flexfield code> Flexfield value for this reference.

Examples

Current Context = <%=getContext("CTX_NAME")%>

B.2.11 getDataSet() Method
Use to return information about a given data set of a mapping.

Usage

public java.lang.String getDataSet(
java.lang.Int pDSIndex,
java.lang.String pPropertyName)

Appendix B
Substitution Methods Reference

B-21

Description

Retrieves information about a given data set of a mapping.

For ODI 11g, the dataset API implementation is based on the number of datasets used
in an interface.

From ODI 12c the implementation is changed. The dataset references are created
during code generation based on attribute expression in the mappings.

Note:

API related to datasets work based on dynamically created dataset
references and not based on the number of datasets in the logical mapping
design.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by
this command.

The following table lists the different possible values for pPropertyName.

Parameter Value Description

OPERATOR Operator that applies to the selected data set. For the first data set, an
empty value is returned.

NAME Data set Name.

HAS_JRN Returns "1" if the data set one journalized datastore, "0" otherwise.

Examples

<%for (int i=0; i < odiRef.getDataSetCount(); i++){%><%=odiRef.getDataSet(i,
"Operator")%>select <%=odiRef.getPop("DISTINCT_ROWS")%>
<%=odiRef.getColList(i,"", "[EXPRESSION] [COL_NAME]", ",\n\t", "", "((INS and !
TRG) and REW)")%> from <%=odiRef.getFrom(i)%>where <% if
(odiRef.getDataSet(i, "HAS_JRN").equals("1")) { %> JRN_FLAG <> 'D '<%}
else {%> (1=1) <% } %><%=odiRef.getJoin(i)%><%=odiRef.getFilter(i)
%><%=odiRef.getJrnFilter(i)%><%=odiRef.getGrpBy(i)%><%=odiRef.getHaving(i)%>
<%}%>

B.2.12 getDataSetCount() Method
Use to return the number of data sets of a mapping.

Usage

public java.lang.Int getDataSetCount()

Description

Returns the number of data sets of a mapping.

Appendix B
Substitution Methods Reference

B-22

For ODI 11g, the dataset API implementation is based on the number of datasets used in an
interface.

From ODI 12c the implementation is changed. The dataset references are created during
code generation based on attribute expression in the mappings.

Note:

API related to datasets work based on dynamically created dataset references and
not based on the number of datasets in the logical mapping design.

Parameters

None

Examples

<%for (int i=0; i < odiRef.getDataSetCount(); i++){%><%=odiRef.getDataSet(i,
"Operator")%>select <%=odiRef.getPop("DISTINCT_ROWS")%>
<%=odiRef.getColList(i,"", "[EXPRESSION] [COL_NAME]", ",\n\t", "", "((INS and !TRG)
and REW)")%> from <%=odiRef.getFrom(i)%>where <% if (odiRef.getDataSet(i,
"HAS_JRN").equals("1")) { %> JRN_FLAG <> 'D '<%} else {%> (1=1) <% }
%><%=odiRef.getJoin(i)%><%=odiRef.getFilter(i)%><%=odiRef.getJrnFilter(i)
%><%=odiRef.getGrpBy(i)%><%=odiRef.getHaving(i)%>
<%}%>

B.2.13 getDataType() Method
Use to return the syntax creating an attribute of a given datatype.

Usage

public java.lang.String getDataType(
java.lang.String pDataTypeName,
java.lang.String pDataTypeLength,
java.lang.String pDataTypePrecision)

Description

Returns the creation syntax of the following SQL data types: varchar, numeric or date
according to the parameters associated to the source or target technology.

Parameters

Parameters Type Description

Parameter Type Description

pDataTypeName String Name of the data type as listed in the table below

pDataTypeLength String Length of the data type

pDataTypePrecision String Precision of the data type

The following table lists all possible values for pDataTypeName.

Appendix B
Substitution Methods Reference

B-23

Parameter Value Description

SRC_VARCHAR Returns the syntax to the source data type varchar

SRC_NUMERIC Returns the syntax to the source data type numeric

SRC_DATE Returns the syntax to the source data type date

DEST_VARCHAR Returns the syntax to the target data type varchar

DEST_NUMERIC Returns the syntax to the target data type numeric

DEST_DATE Returns the syntax to the target data type date

Examples

Given the following syntax for these technologies:

Technology Varchar Numeric Date

Oracle varchar2(%L) number(%L,%P) date

Microsoft SQL Server varchar(%L) numeric(%L,%P) datetime

Microsoft Access Text(%L) double datetime

Here are some examples of call to getDataType:

Call Oracle SQL
Server

Access

<%=odiRef.getDataType("DEST_VARCHAR", "10",
"")%>

varchar2(1
0)

varchar(10) Text(10)

<%=odiRef.getDataType("DEST_VARCHAR", "10",
"5")%>

varchar2(1
0)

varchar(10) Text(10)

<%=odiRef.getDataType("DEST_NUMERIC", "10",
"")%>

number(10
)

numeric(10) double

<%=odiRef.getDataType("DEST_NUMERIC", "10",
"2")%>

number(10
,2)

numeric(10,
2)

double

<%=odiRef.getDataType("DEST_NUMERIC", "",
"")%>

number numeric double

<%=odiRef.getDataType("DEST_DATE", "", "")%> date datetime datetime

<%=odiRef.getDataType("DEST_DATE", "10",
"2")%>

date datetime datetime

B.2.14 getFilter() Method
Use to return the entire WHERE clause section generated for the filters of a mapping.

Usage

public java.lang.String getFilter(java.lang.Int pDSIndex)

Description

Returns the SQL filters sequence (on the source while loading, on the staging area
while integrating) for a given data set.

Appendix B
Substitution Methods Reference

B-24

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into account
by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an LKM. It
can be also omitted for IKMs. In this case, the data set taken into account is the first
one.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

None

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=odiRef.getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

B.2.15 getFilterList() Method
Use to return properties for each filter of a mapping. The properties are organized according
to a string pattern.

Usage

public java.lang.String getFilterList(
java.lang.Int pDSIndex,
java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Alternative syntax:

public java.lang.String getFilterList(
java.lang.Int pDSIndex,
java.lang.String pPattern,
java.lang.String pSeparator)

Description

Returns a list of occurrences of the SQL filters of a given data set of a mapping.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into account
by this command.

Appendix B
Substitution Methods Reference

B-25

Note:

The pDSIndex parameter can be omitted when this method is used in an
LKM. It can be also omitted for IKMs. In this case, the data set taken into
account is the first one.

The parameter pPattern is interpreted and repeated for each element of the list and
separated from its predecessor with parameter pSeparator. The generated string
begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are
omitted and an empty string is returned.

This list contains an element for each filter expression executed on the source or
target (depending on the Knowledge Module in use).

In the alternative syntax, any parameters not set are set to an empty string.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into
account by this command.

pStart String This sequence marks the beginning of the string to
generate.

pPattern String The pattern will be repeated for each occurrence of
the list.

The list of possible in a list is available in the Pattern
Attributes List below.

Each attribute occurrence in the pattern string is
substituted with its value. Attributes must be between
brackets ([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter is used to separate a pattern from its
predecessor.

pEnd String This sequence marks the end of the string to
generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as the
associated description.

Parameter Value Description

ID Filter internal identifier.

EXPRESSION Text of the filter expression.

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=odiRef.getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)

Appendix B
Substitution Methods Reference

B-26

<%=odiRef.getJoin()%>
<%=odiRef.getFilterList("and ","([EXPRESSION])"," and ","")%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

Explanation: the getFilterList function will be used to generate the filter of the SELECT clause
that must begin with "and" and repeats the pattern (expression of each filter) separated with
"and" for each filter. Thus

• The first parameter "and" of the function indicates that we want to start the string with the
string "and"

• the second parameter "([EXPRESSION])" indicates that we want to repeat this pattern
for each filter. The keywords [EXPRESSION] references a valid keyword of the table
Pattern Attribute List

• the third parameter " and " indicates that we want to separate each interpreted
occurrence of the pattern with the string "and ".

• the fourth parameter "" of the function indicates that we want to end the string with no
specific character.

B.2.16 getFK() Method
Use to return information about a foreign key.

Usage

public java.lang.String getFK(java.lang.String pPropertyName)

Description

This method returns information relative to the foreign key (or join or reference) of a datastore
during a check procedure. It is accessible from a Knowledge Module only if the current task is
tagged as a "reference".

In an action, this method returns information related to the foreign key currently handled by
the DDL command.

Parameters

Parameter Type Description

pPropertyName String String containing the name of the requested
property.

The following table lists the different possible values for pPropertyName.

Parameter Value Description

ID Internal number of the reference constraint. This parameter is deprecated,
and included for 11g compatibility only. The ID property works if the
repository is in 11g compatibility mode, but an error message will be
returned if the repository is in 12c mode.

GUID GUID of the foreign key.

FK_NAME Name of the reference constraint.

FK_TYPE Type of the reference constraint.

Appendix B
Substitution Methods Reference

B-27

Parameter Value Description

FK_ALIAS Alias of the reference table (only used in case of a complex expression)

PK_ALIAS Alias of the referenced table (only used in case of a complex expression)

ID_TABLE_PK Internal number of the referenced table.

PK_I_MOD Number of the referenced model.

PK_CATALOG Catalog of the referenced table in the current context.

PK_SCHEMA Physical schema of the referenced table in the current context.

PK_TABLE_NAME Name of the referenced table.

COMPLEX_SQL Complex SQL statement of the join clause (if appropriate).

MESS Error message of the reference constraint

FULL_NAME Full name of the foreign key generated with the local object mask.

<flexfield code> Flexfield value for this reference.

Examples

The current reference key of my table is called: <%=odiRef.getFK("FK_NAME")%>.
It references the table <%=odiRef.getFK("PK_TABLE_NAME")%> that is in the schema
<%=odiRef.getFK("PK_SCHEMA")%>

B.2.17 getFKColList() Method
Use to return information about the attributes of a foreign key.

Usage

public java.lang.String getFKColList(java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Alternative syntax:

public java.lang.String getFKColList(
java.lang.String pPattern,
java.lang.String pSeparator)

Description

Returns a list of attributes part of a reference constraint (foreign key).

The parameter pPattern in interpreted and repeated for each element of the list, and
separated from its predecessor with the parameter pSeparator. The generated string
begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are
omitted and an empty string is returned.

This list contains one element for each attribute of the current foreign key. It is
accessible from a Check Knowledge Module only if the current task is tagged as a
"reference".

In an action, this method returns the list of the attributes of the foreign key handled by
the DDL command, ordered by their position in the key.

In the alternative syntax, any parameters not set are set to an empty string.

Appendix B
Substitution Methods Reference

B-28

Parameters

Parameter Type Description

Parameter Type Description

pStart String This parameter marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of possible attributes in a pattern is detailed in the Pattern Attributes
List below.

Each attribute occurrence in the pattern string is substituted with its value.
The attributes must be between brackets ([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This parameter marks the end of the string to generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as the associated
description.

Parameter Value Description

I_COL Attribute internal identifier

COL_NAME Name of the attribute of the key

COL_HEADING Header of the attribute of the key

COL_DESC Description of the attribute of the key

POS Position of the attribute of the key

LONGC Length (Precision) of the attribute of the key

SCALE Scale of the attribute of the key

FILE_POS Beginning (index) of the attribute

BYTES Number of physical octets of the attribute

FILE_END_POS End of the attribute (FILE_POS + BYTES)

IND_WRITE Write right flag of the attribute

COL_MANDATORY Mandatory character of the attribute. Valid values are:

• 0: not authorized
• 1: not null

CHECK_FLOW Flow control flag of the attribute. Valid values are:

• 0: do not check
• 1: check

CHECK_STAT Static control flag of the attribute. Valid values are:

• 0: do not check
• 1: check

COL_FORMAT Logical format of the attribute

COL_DEC_SEP Decimal symbol for the attribute

REC_CODE_LIST List of the record codes for the attribute

Appendix B
Substitution Methods Reference

B-29

Parameter Value Description

COL_NULL_IF_ERR Attribute processing flag. Valid values are:

• 0: Reject
• 1: Set active trace to null
• 2: Set inactive trace to null

DEF_VALUE Default value of the attribute

EXPRESSION Not used

CX_COL_NAME Not used

ALIAS_SEP Separator used for the alias (from the technology)

SOURCE_DT Code of the attribute's datatype.

SOURCE_CRE_DT Create table syntax for the attribute's datatype.

SOURCE_WRI_DT Create table syntax for the attribute's writable datatype.

DEST_DT Code of the attribute's datatype converted to a datatype on the target
technology.

DEST_CRE_DT Create table syntax for the attribute's datatype converted to a datatype on
the target technology.

DEST_WRI_DT Create table syntax for the attribute's writable datatype converted to a
datatype on the target technology.

PK_I_COL Internal identifier of the referenced attribute

PK_COL_NAME Name of the referenced key attribute

PK_COL_HEADING Header of the referenced key attribute

PK_COL_DESC Description of the referenced key attribute

PK_POS Position of the referenced attribute

PK_LONGC Length of the referenced attribute

PK_SCALE Precision of the referenced attribute

PK_FILE_POS Beginning (index) of the referenced attribute

PK_BYTES Number of physical octets of the referenced attribute

PK_FILE_END_POS End of the referenced attribute (FILE_POS + BYTES)

PK_IND_WRITE Write right flag of the referenced attribute

PK_COL_MANDATORY Mandatory character of the referenced attribute. Valid values are:

• 0: null authorized
• 1: not null

PK_CHECK_FLOW Flow control flag of the referenced attribute. Valid values are:

• 0: do not check
• 1: check

PK_CHECK_STAT Static control flag of the referenced attribute. Valid values are:

• 0: do not check
• 1: check

PK_COL_FORMAT Logical format of the referenced attribute

PK_COL_DEC_SEP Decimal separator for the referenced attribute

PK_REC_CODE_LIST List of record codes retained for the referenced attribute

Appendix B
Substitution Methods Reference

B-30

Parameter Value Description

PK_COL_NULL_IF_ERR Processing flag of the referenced attribute. Valid values are:

• 0: Reject
• 1: Set active trace to null
• 2: Set inactive trace to null

PK_DEF_VALUE Default value of the referenced attribute

SCD_COL_TYPE Behavior defined for the Slowly Changing Dimensions for this attribute in
the data model.

<flexfield code> Flexfield value for the current attribute of the referencing table.

Examples

If the CUSTOMER table references the CITY table on CUSTOMER.COUNTRY_ID =
CITY.ID_COUNT and CUSTOMER.CITY_ID = CITY.ID_CIT

the clause:

(CUS.COUNTRY_ID = CITY.ID_COUNT and CUS.CITY_ID = CITY.ID_CIT)

can also be written:

<%=odiRef.getFKColList("(", "CUS.[COL_NAME] = CITY.[PK_COL_NAME]", " and
", ")")%>

Explanation: the getFKColList function will be used to loop on each attribute of the foreign
key to generate the clause that begins and ends with a parenthesis and that repeats a pattern
separated by and for each attribute in the foreign key. Thus

• The first parameter "(" of the function indicates that we want to begin the string with "("

• The second parameter "CUS.[COL_NAME] = CITY.[PK_COL_NAME]" indicates that we
want to repeat this pattern for each attribute of the foreign key. The keywords
[COL_NAME] and [PK_COL_NAME] reference valid keywords in the table Pattern
Attributes List

• The third parameter" and " indicates that we want to separate the occurrences of the
pattern with the string " and ".

• The fourth parameter ")" of the function indicates that we want to end the string with ")".

B.2.18 getFlexFieldValue() Method
Use to return the value of a flexfield.

Usage

public java.lang.String getFlexFieldValue(java.lang.String pI_Instance,
java.lang.String pI_Object, java.lang.String pFlexFieldCode)

Description

This method returns the value of an Object Instance's Flexfield.

Appendix B
Substitution Methods Reference

B-31

Parameters

Parameter Type Description

pI_Instance String Internal Identifier of the Object Instance, as it
appears in the version tab of the object instance
window.

pI_Object String Internal Identifier of the Object type, as it
appears in the version tab of the object window
for the object type.

pPropertyName String Flexfield Code which value should be returned.

Examples

<%=odiRef.getFlexFieldValue("32001","2400","MY_DATASTORE_FIELD")%>

Returns the value of the flexfield MY_DATASTORE_FIELD, for the object instance of
type datastore (Internal ID for datastores is 2400), with the internal ID 32001.

B.2.19 getFormattedName() Method
Use to construct a name with text, and ODI prefixes.

Usage

public java.lang.String getFormattedName(java.lang.String pName)

public java.lang.String getFormattedName(java.lang.String pName,java.lang.String
pTechnology)

Description

Use to construct a name that is based on some text, ODI prefixes, and is valid for an
optional technology. The text can contain the prefixes available for getObjectName()
Method, e.g. %INT_PRF, %COL_PRF, %ERR_PRF, %IDX_PRF along with
%UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. The latter tags will be
expanded if unique names are enabled. Calls to this API within the same execution
context are guaranteed to return the same unique name provided that the same
parameters are passed to the call.

Parameters

Parameter Type Description

pName String Name that is used as the initial key, and can contain other ODI
prefixes.

pTechnology String An optional technology that the returned name will be validated.
For, e.g. name length.

Examples

<%=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")%>
might result in
C$_MY_TAB7wDiBe80vBog1auacS1xB _AE

Appendix B
Substitution Methods Reference

B-32

<?=getFormattedName("<%=getTableName("COLL_SHORT_NAME")%>.ctl", "FILE")%>"
might result in:-
C$_0DEFAULT.ctl
or, if unique names are enabled
C_0DEFAULTAhbxZoeJ2zznXYpnDzhkm.ctl

C$_0

B.2.20 getFrom() Method
Use to return the SQL FROM clause in the given context.

Usage

public java.lang.String getFrom(java.lang.Int pDSIndex)

Description

Allows the retrieval of the SQL string of the FROM in the source SELECT clause for a given
data set. The FROM statement is built from tables and joins (and according to the SQL
capabilities of the technologies) that are used in this data set.

For a technology that supports ISO outer joins and parenthesis, getFrom() could return a
string such as:

((CUSTOMER as CUS inner join CITY as CIT on (CUS.CITY_ID = CIT.CITY_ID))
left outer join SALES_PERSON as SP on (CUS.SALES_ID = SP.SALE_ID))

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into account
by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an LKM. It
can be also omitted for IKMs. In this case, the data set taken into account is the first
one.

If there is a journalized datastore in source of the mapping, the source table in the clause is
replaced by the data view linked to the journalized source datastore.

If one of the source datastores is a temporary datastore with the Use Temporary Mapping as
Derived Table (Sub-Select) box selected then a sub-select statement will be generated for
this temporary source by the getFrom method.

If partitioning is used on source datastores, this method automatically adds the partitioning
clauses when returning the object names.

Note that this method automatically generates lookups with no specific code required.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

Appendix B
Substitution Methods Reference

B-33

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=odiRef.getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

B.2.21 getGrpBy() Method
Use to return the entire SQL GROUP BY clause in the given context.

Usage

public java.lang.String getGrpBy(java.lang.Int pDSIndex)

Description

Allows you to retrieve the SQL GROUP BY string (on the "source" during the loading
phase, on the staging area during the integration phase) for a given data set. This
statement is automatically computed from the aggregation transformations detected in
the mapping expressions.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into
account by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an
LKM. It can be also omitted for IKMs. In this case, the data set taken into
account is the first one.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by
this command.

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=odiRef.getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

Appendix B
Substitution Methods Reference

B-34

B.2.22 getGrpByList() Method
Use to return properties for each GROUP BY clause for a given data set in a mapping. The
properties are organized according to a string pattern.

Usage

public java.lang.String getGrpByList(
java.lang.Int pDSIndex,
java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Alternative syntax:

public java.lang.String getGrpByList(
java.lang.Int pDSIndex,
java.lang.String pPattern,
java.lang.String pSeparator)

Description

Returns a list of occurrences of SQL GROUP BY for a given data set of a mapping.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into account
by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an LKM. It
can be also omitted for IKMs. In this case, the data set taken into account is the first
one.

The pPattern parameter is interpreted, then repeated for each element of the list and
separated from its predecessor with the pSeparator parameter. The generated string begins
with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and
an empty string is returned.

This list contains an element for each GROUP BY statement on the source or target
(according to the Knowledge Module that used it).

In the alternative syntax, any parameters not set are set to an empty string.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

pStart String This parameter marks the beginning of the string to generate.

Appendix B
Substitution Methods Reference

B-35

Parameter Type Description

pPattern String The pattern is repeated for each occurrence in the list.

The list of possible attributes in a pattern is detailed in the Pattern Attributes
List below.

Each attribute occurrence in the pattern string is substituted with its value.
The attributes must be between brackets ([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter is used to separate each pattern from its predecessor.

pEnd String This parameter marks the end of the string to be generated.

Pattern Attributes List

The following table lists the different values of the parameters as well as their
associated description.

Parameter Value Description

ID Internal identifier of the clause

EXPRESSION Text of the grouping statement

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getGrpByList("group by ", "[EXPRESSION]", " , ", "")%>
<%=odiRef.getHaving()%>

Explanation: the getGrpByList function will be used to generate the group by clause of
the select order that must start with "group by" and that repeats a pattern (each
grouping expression) separated by commas for each expression.

• The first parameter "group by" of the function indicates that we want to start the
string with "group by"

• The second parameter "[EXPRESSION]" indicates that we want to repeat this
pattern for each group by expression. The keyword [EXPRESSION] references a
valid keyword of the table Pattern Attributes List

• The third parameter ", " indicates that we want to separate the interpreted
occurrences of the pattern with a comma.

• The fourth parameter "" of the function indicates that we want to end the string
with no specific character

B.2.23 getHaving() Method
Use to return the entire SQL HAVING clause in the given context.

Usage

public java.lang.String getHaving(java.lang.Int pDSIndex)

Appendix B
Substitution Methods Reference

B-36

Description

Allows the retrieval of the SQL statement HAVING (on the source during loading, on the
staging area during integration) for a given data set. This statement is automatically
computed from the filter expressions containing detected aggregation functions.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into account
by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an LKM. It
can be also omitted for IKMs. In this case, the data set taken into account is the first
one.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

Examples

insert into <%=odiRef.getTable(
"L", "COLL_NAME", "W")%>
select <%=odiRef.getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)
 <%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

B.2.24 getHavingList() Method
Use to return properties for each HAVING clause of a mapping. The properties are organized
according to a string pattern.

Usage

public java.lang.String getHavingList(
java.lang.Int pDSIndex,
java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Alternative syntax:

public java.lang.String getHavingList(
java.lang.Int pDSIndex,
java.lang.String pPattern,
java.lang.String pSeparator)

Appendix B
Substitution Methods Reference

B-37

Description

Returns a list of the occurrences of SQL HAVING of a given data set in a mapping.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into
account by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an
LKM. It can be also omitted for IKMs. In this case, the data set taken into
account is the first one.

The parameter pPattern is interpreted and repeated for each element of the list, and
separated from its predecessor with the parameter pSeparator. The generated string
begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are
omitted and an empty string is returned.

This list contains one element for each HAVING expression to execute on the source
or target (depends on the Knowledge module that uses it).

In the alternative syntax, any parameters not set are set to an empty string.

Parameters

Parameters Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

pStart String This parameter marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of authorized attributes in a pattern is detailed in the Pattern
Attributes List below.

Each attribute occurrence in the pattern string is substituted with its
value. The attributes must be between brackets ([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This parameter marks the end of the string to generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as the
associated description.

Parameter Value Description

Parameter value Description

ID Internal identifier of the clause

EXPRESSION Text of the having expression

Appendix B
Substitution Methods Reference

B-38

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getGrpByList("group by ", "[EXPRESSION]", " , ", "")%>
<%=odiRef.getHavingList("having ", "([EXPRESSION])", " and ", "")%>

Explanation: The getHavingList function will be used to generate the having clause of the
select order that must start with "having" and that repeats a pattern (each aggregated filtered
expression) separated by "and" for each expression.

• The first parameter "having " of the function indicates that we want to start the string
with "having"

• The second parameter "([EXPRESSION])" indicates that we want to repeat this pattern
for each aggregated filter. The keyword [EXPRESSION] references a valid keyword of
the table Pattern Attributes List

• The third parameter" and " indicates that we want to separate each interpreted
occurrence of the pattern with the string " and ".

• The fourth parameter "" of the function indicates that we want to end the string with no
specific character

B.2.25 getIndex() Method
Use to return information about a specific index handled by an action.

Usage

public java.lang.String getIndex(java.lang.String pPropertyName)

Description

In an action, this method returns information related to the index currently handled by the
DDL command.

Parameters

Parameter Type Description

pPropertyName String String containing the name of the requested property.

The following table lists the different possible values for pPropertyName.

Parameter Value Description

ID Internal number of the index.

KEY_NAME Name of the index

FULL_NAME Full name of the index generated with the local object mask.

<flexfield code> Value of the flexfield for this index.

Appendix B
Substitution Methods Reference

B-39

B.2.26 getIndexColList() Method
Use to return information about the attributes of an index handled by an action.

Usage

public java.lang.String getIndexColList(java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Description

In an action, this method returns the list of the attributes of the index handled by the
DDL command, ordered by their position in the index.

The pPattern parameter is interpreted and then repeated for each element of the list. It
is separated from its predecessor by the pSeparator parameter. The generated string
starts with pStart and ends with pEnd. If no element is selected, pStart and pEnd are
omitted and an empty string is returned.

This list contains an element for each attribute of the current index.

Parameters

Parameter
s

Type Description

pStart String This sequence marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of attributes that can be used in a pattern is detailed in the Pattern
Attributes List below.

Each attribute occurrence in the pattern sequence is replaced with its
value. The attributes must be between brackets. ([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This sequence marks the end of the string to generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as their
associated description.

Parameter Value Description

I_COL Attribute internal identifier

COL_NAME Name of the index attribute

COL_HEADING Header of the index attribute

COL_DESC Attribute description

POS Position of the attribute

LONGC Length (Precision) of the attribute

SCALE Scale of the attribute

Appendix B
Substitution Methods Reference

B-40

Parameter Value Description

FILE_POS Beginning position of the attribute (fixed file)

BYTES Number of physical bytes of the attribute

FILE_END_POS End of the attribute (FILE_POS + BYTES)

IND_WRITE Write right flag of the attribute

COL_MANDATORY Mandatory character of the attribute. Valid values are:

• 0: null authorized
• 1: non null

CHECK_FLOW Flow control flag for of the attribute. Valid values are:

• 0: do not check
• 1: check

CHECK_STAT Static control flag of the attribute. Valid values are:

• 0: do not check
• 1: check

COL_FORMAT Logical format of the attribute

COL_DEC_SEP Decimal symbol for the attribute

REC_CODE_LIST List of the record codes retained for the attribute

COL_NULL_IF_ERR Processing flag for the attribute. Valid values are:

• 0: Reject
• 1: Set active trace to null
• 2: Set inactive trace to null

DEF_VALUE Default value for the attribute

EXPRESSION Not used

CX_COL_NAME Not used

ALIAS_SEP Grouping symbol used for the alias (from the technology)

SOURCE_DT Code of the attribute's datatype.

SOURCE_CRE_DT Create table syntax for the attribute's datatype.

SOURCE_WRI_DT Create table syntax for the attribute's writable datatype.

DEST_DT Code of the attribute's datatype converted to a datatype on the
target technology.

DEST_CRE_DT Create table syntax for the attribute's datatype converted to a
datatype on the target technology.

DEST_WRI_DT Create table syntax for the attribute's writable datatype converted to
a datatype on the target technology.

SCD_COL_TYPE Behavior defined for the Slowly Changing Dimensions for this
attribute in the data model.

<flexfield code> Flexfield value for the current attribute.

B.2.27 getInfo() Method
Use to return information about the current task.

Usage

public java.lang.String getInfo(java.lang.String pPropertyName)

Appendix B
Substitution Methods Reference

B-41

Description

This method returns information about the current task. The list of available
information is described in the pPropertyName values table.

Parameters

Parameter Type Description

pPropertyName String String containing the name of the requested property.

The following table lists the different values possible for pPropertyName:

Parameter Value Description

ERR_NAME Name of the error table

I_SRC_SET Numeric ID of the current execution unit if the current task is
in the context of an LKM. This parameter is deprecated, and
included for 11g compatibility only. The ID property is valid if
the repository is in 11g compatibility mode, but an error
message will be returned if the repository is in 12c mode.
GUID_SRC_SET is the replacement

GUID_SRC_SET Globally unique ID of the current Execution Unit if the task
belongs to a Loading Knowledge Module

SRC_SET_NAME Name of the current execution unit if the current task belongs
to a Loading Knowledge Module

COLL_NAME Name of the collection table used to stage data during
loading

INT_NAME Name of the integration table

TARG_NAME Name of the target table

SRC_CATALOG Name of the source catalog, derived from the logical schema
and context

SRC_SCHEMA Name of the physical source schema, derived from the
logical schema and context

SRC_WORK_CATALOG Name of the physical source work catalog, derived from the
logical schema and context

SRC_WORK_SCHEMA Name of the physical source work schema, derived from the
logical schema and context

DEST_CATALOG Name of the physical target catalog, derived from the logical
schema and context

DEST_SCHEMA Name of the physical target schema, derived from the logical
schema and context

DEST_WORK_CATALOG Name of the physical target work catalog, derived from the
logical schema and context

DEST_WORK_SCHEMA Name of the physical target work schema, derived from the
logical schema and context

SRC_TECHNO_NAME Name of the source technology

SRC_CON_NAME Name of the source connection

SRC_DSERV_NAME Name of the data server of the source machine

SRC_CONNECT_TYPE Connection type of the source machine

Appendix B
Substitution Methods Reference

B-42

Parameter Value Description

SRC_IND_JNDI JNDI URL flag

SRC_JAVA_DRIVER Name of the JDBC driver of the source connection

SRC_JAVA_URL JDBC URL of the source connection

SRC_JNDI_AUTHENT JNDI authentication type

SRC_JNDI_PROTO JNDI source protocol

SRC_JNDI_FACTORY JNDI source Factory

SRC_JNDI_URL Source JNDI URL

SRC_JNDI_RESSOURCE Accessed source JNDI resource

SRC_JNDI_USER User name for JNDI authentication on the source.

SRC_JNDI_ENCODED_PASS Encrypted password for JNDI authentication on the source.

SRC_USER_NAME User name of the source connection

SRC_ENCODED_PASS Encrypted password of the source connection

SRC_FETCH_ARRAY Size of the source array fetch

SRC_BATCH_UPDATE Size of the source batch update

SRC_EXE_CHANNEL Execution channel of the source connection

SRC_COL_ALIAS_WORD Term used to separated the attributes from their aliases for
the source technology

SRC_TAB_ALIAS_WORD Term used to separated the tables from their aliases for the
source technology

SRC_DATE_FCT Function returning the current date for the source technology

SRC_DDL_NULL Returns the definition used for the keyword NULL during the
creation of a table on the source

SRC_MAX_COL_NAME_LEN Maximum number of characters for the attribute name on the
source technology

SRC_MAX_TAB_NAME_LEN Maximum number of characters for the table name on the
source technology

SRC_REM_OBJ_PATTERN Substitution model for a remote object on the source
technology.

SRC_LOC_OBJ_PATTERN Substitution model for a local object name on the source
technology.

DEST_TECHNO_NAME Name of the target technology

DEST_CON_NAME Name of the target connection

DEST_DSERV_NAME Name of the data server of the target machine

DEST_CONNECT_TYPE Connection type of the target machine

DEST_IND_JNDI Target JNDI URL flag

DEST_JAVA_DRIVER Name of the JDBC driver of the target connection

DEST_JAVA_URL JDBC URL of the target connection

DEST_JNDI_AUTHENT JNDI authentication type of the target

DEST_JNDI_PROTO JNDI target protocol

DEST_JNDI_FACTORY JNDI target Factory

DEST_JNDI_URL JNDI URL of the target

DEST_JNDI_RESSOURCE Target JNDI resource that is accessed

Appendix B
Substitution Methods Reference

B-43

Parameter Value Description

DEST_JNDI_USER User name for JNDI authentication on the target.

DEST_JNDI_ENCODED_PASS Encrypted password for JNDI authentication on the target.

DEST_USER_NAME Name of the user for the target connection

DEST_ENCODED_PASS Encrypted password for the target connection

DEST_FETCH_ARRAY Size of the target array fetch

DEST_BATCH_UPDATE Size of the target batch update

DEST_EXE_CHANNEL Execution channel of the target connection

DEST_COL_ALIAS_WORD Term used to separate the attributes from their aliases on the
target technology

DEST_TAB_ALIAS_WORD Term used to separate the tables from their aliases on the
target technology

DEST_DATE_FCT Function returning the current date on the target technology

DEST_DDL_NULL Function returning the definition used for the keyword NULL
during the creation on a table on the target

DEST_MAX_COL_NAME_LEN Maximum number of characters of the attribute in the target
technology

DEST_MAX_TAB_NAME_LEN Maximum number of characters of the table name on the
target technology

DEST_REM_OBJ_PATTERN Substitution model for a remote object on the target
technology

DEST_LOC_OBJ_PATTERN Substitution model for a local object name on the target
technology

CT_ERR_TYPE Error type (F: Flow, S: Static). Applies only in the case of a
Check Knowledge Module

CT_ERR_ID Internal error table ID. This parameter is deprecated, and
included for 11g compatibility only. The ID property is valid if
the repository is in 11g compatibility mode. CT_ERR_GUID
must be used with version 12c

CT_ERR_GUID Globally unique ID of the error table

CT_ORIGIN Name of a table for static control, or name of a mapping
prefixed with the project code

JRN_NAME Journalized datastore name

JRN_VIEW Name of the view associated with the journalized datastore

JRN_DATA_VIEW Name of the data view associated with the journalized
datastore

JRN_TRIGGER Name of the trigger associated with the journalized datastore

JRN_ITRIGGER Name of the insert trigger associated with the journalized
datastore

JRN_UTRIGGER Name of the update trigger associated with the journalized
datastore

JRN_DTRIGGER Name of the delete trigger associated with the journalized
datastore

SUBSCRIBER_TABLE Name of the subscriber table

CDC_SET_TABLE Name of the CDC set table

Appendix B
Substitution Methods Reference

B-44

Parameter Value Description

CDC_TABLE_TABLE Name of the datastore that contains the list of tables
associated with sets

CDC_SUBS_TABLE Name of the datastore that contains the list of subscribers
that are subscribed to sets

CDC_OBJECTS_TABLE Name of the datastore that contains the list of the objects
added to sets

SRC_DEF_CATALOG Name of the catalog of the source physical schema, based
on the current context

SRC_DEF_SCHEMA Default schema for the source data server

SRC_DEFW_CATALOG Default work catalog for the source data server

SRC_DEFW_SCHEMA Default work schema for the source data server

DEST_DEF_CATALOG Default catalog for the target data server

DEST_DEF_SCHEMA Default schema for the target data server

DEST_DEFW_CATALOG Default work catalog for the target data server

DEST_DEFW_SCHEMA Default work schema for the target data server

SRC_LSCHEMA_NAME Source logical schema name

DEST_LSCHEMA_NAME Target logical schema name

SRC_I_CONNECT Numeric ID of the source connection, based on the current
context. This parameter is deprecated, and included for 11g
compatibility only. The ID property is valid if the repository is
in 11g compatibility mode, but an error message will be
returned if the repository is in 12c mode.
SRC_CONNECT_GUID is the 12c replacement

SRC_CONNECT_GUID Globally unique ID of the source connection

SRC_I_PSCHEMA Numeric ID of the source physical schema, based on the
current context. This parameter is deprecated, and included
for 11g compatibility only. The ID property is valid if the
repository is in 11g compatibility mode, but an error message
will be returned if the repository is in 12c mode.
SRC_PSCHEMA_GUID is the 12c replacement

SRC_PSCHEMA_GUID Globally unique ID of the source physical schema, based on
the current context

SRC_I_LSCHEMA Numeric ID of the source logical schema. This parameter is
deprecated, and included for 11g compatibility only. The ID
property is valid if the repository is in 11g compatibility mode,
but an error message will be returned if the repository is in
12c mode. SRC_LSCHEMA_GUID is the 12c replacement

SRC_LSCHEMA_GUID Globally unique ID of the source logical schema

SRC_I_TECHNO Numeric ID of the source technology. This parameter is
deprecated, and included for 11g compatibility only. The ID
property is valid if the repository is in 11g compatibility mode,
but an error message will be returned if the repository is in
12c mode. SRC_TECHNO_GUID is the 12c replacement

SRC_TECHNO_GUID Globally unique ID of the source technology

Appendix B
Substitution Methods Reference

B-45

Parameter Value Description

DEST_I_CONNECT Numeric ID of the target connection, based on the current
context. This parameter is deprecated, and included for 11g
compatibility only. The ID property is valid if the repository is
in 11g compatibility mode, but an error message will be
returned if the repository is in 12c mode.
DEST_CONNECT_GUID is the 12c replacement

DEST_CONNECT_GUID Globally unique ID of the target connection

DEST_I_PSCHEMA Numeric ID of the target physical schema, based on the
current context. This parameter is deprecated, and included
for 11g compatibility only. The ID property is valid if the
repository is in 11g compatibility mode, but an error message
will be returned if the repository is in 12c mode.
DEST_PSCHEMA_GUID is the 12c replacement

DEST_PSCHEMA_GUID Globally unique ID of the target physical schema, based on
the current context

DEST_I_LSCHEMA Numeric ID of the target logical schema. This parameter is
deprecated, and included for 11g compatibility only. The ID
property is valid if the repository is in 11g compatibility mode,
but an error message will be returned if the repository is in
12c mode. DEST_LSCHEMA_GUID is the 12c replacement

DEST_LSCHEMA_GUID Globally unique ID of the target logical schema

DEST_I_TECHNO Numeric ID of the target technology. This parameter is
deprecated, and included for 11g compatibility only. The ID
property is valid if the repository is in 11g compatibility mode,
but an error message will be returned if the repository is in
12c mode. DEST_TECHNO_GUID is the 12c replacement

DEST_TECHNO_GUID Globally unique ID of the target technology

UNIQUE_STEP_TAG Tag used to make names unique in the scope of the current
Step

UNIQUE_SESSION_TAG Tag used to make names unique in the scope of the current
Session

IS_CONCURRENT Returns 1 if the current task is using unique names for the
temporary objects

SRC_SET_GUID GUID of the current Execution Unit if the task belongs to a
Loading Knowledge Module

ODI_MAJOR_VERSION The major product version for the current ODI installation.
For example, if your current release is 12.1.3.0.0, returns 12

SRC_PASS Returns clear text password to source data server
connection

DEST_PASS Returns clear text password to target data server connection

Examples

The current source condition is: <%=odiRef.getInfo("SRC_CON_NAME")%> on server:
<%=odiRef.getInfo("SRC_DSERV_NAME")%>

B.2.28 getJDBCConnection() Method
Use to return the source or target JDBC connection.

Appendix B
Substitution Methods Reference

B-46

Usage

java.sql.Connection getJDBCConnection(
java.lang.String pPropertyName)

Description

This method returns the source or target JDBC connection for the current task.

Note:

• This method does not return a string, but a JDBC connection object. This object
may be used in your Java code within the task.

• It is recommended to close the JDBC connections acquired using this method
once you are done with the connection. This will improve the concurrency if
your KM is used in ODI mappings.

• This method should be used with Groovy technology and Groovy language.

Parameters

Parameter Type Description

pPropertyName String Name of connection to be returned.

The following table lists the different values possible for pPropertyName:

Parameter Value Description

SRC Source connection for the current task.

DEST Target connection for the current task.

WORKREP Work Repository connection.

Examples

Gets the source connection and creates a statement for this connection.

java.sql.Connection sourceConnection = odiRef.getJDBCConnection("SRC");
java.sql.Statement s = sourceConnection.createStatement();

B.2.28.1 getJDBCConnection("WORKREP")
getJDBCConnection("WORKREP") is a restricted API.

Master Repository connection holds security data. To control who gets direct JDBC access to
Master Repository, this API will return a valid connection under any of the following
conditions:

• Master and work repositories are in different schemas.

• Master and work repositories are in the same schema and you have the specific privilege
called "Create JDBC Connection" which is a newly introduced privilege on Master
Repository object.

Appendix B
Substitution Methods Reference

B-47

If these conditions are not met then odiRef.getJDBCConnection("WORKREP") will
throw following error:

ODI-14179: For security reason you cannot use odiRef.getJDBCConnection
("WORKREP") since your work repository and master repository use the same
database schema.

If you require direct JDBC access to work repository connection during scenario
execution, please ask your Oracle Data Integrator Administrator to grant you <Create
JDBC Connection> permission on Master Repository object from Oracle Data
Integrator Studio Security Explorer and then try again. Please note that the <Create
JDBC Connection> permission is located under Master Repository object in the
Objects section from Security Explorer.

B.2.29 getJDBCConnectionFromLSchema() Method
Use to return a JDBC connection for a given logical schema.

Usage

public java.lang.String getJDBCConnectionFromLSchema(
java.lang.String pLogicalSchemaName,
java.lang.String pContextName)

public java.lang.String getJDBCConnectionFromLSchema(
java.lang.String pLogicalSchemaName)

Description

Returns a JDBC connection for a given logical schema. The pLogicalSchemaName
identifies the logical schema.

The first syntax resolves the logical schema in the context provided in the
pContextName parameter.

The second syntax resolves the logical schema in the current context.

Parameters

Parameter Type Description

pLogicalSchemaNam
e

String Name of the forced logical schema of the object.

pContextName String Forced context of the object

Note:

• This method does not return a string, but a JDBC connection object. This
object may be used in your Java code within the task.

• It is recommended to close the JDBC connections acquired using this
method once you are done with the connection. This will improve the
concurrency if your KM is used in ODI mappings.

Appendix B
Substitution Methods Reference

B-48

B.2.30 getJoin() Method
Use to return the entire WHERE clause section generated for the joins of a mapping.

Usage

public java.lang.String getJoin(java.lang.Int pDSIndex)

Description

Retrieves the SQL join string (on the source during the loading, on the staging area during
the integration) for a given data set of a mapping.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into account
by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an LKM. It
can be also omitted for IKMs. In this case, the data set taken into account is the first
one.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=odiRef.getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

B.2.31 getJoinList() Method
Use to return properties for each join of a mapping. The properties are organized according
to a string pattern.

Usage

public java.lang.String getJoinList(
java.lang.Int pDSIndex,
java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Appendix B
Substitution Methods Reference

B-49

Alternative syntax:

public java.lang.String getJoinList(
java.lang.Int pDSIndex,
java.lang.String pPattern,
java.lang.String pSeparator)

Description

Returns a list of the occurrences of the SQL joins in a given data set of a mapping for
the WHERE clause.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into
account by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an
LKM. It can be also omitted for IKMs. In this case, the data set taken into
account is the first one.

The pPattern parameter is interpreted and then repeated for each element in the list
and separated from its predecessor with the parameter pSeparator. The generated
string begins with pStart and ends up with pEnd.

In the alternative syntax, any parameters not set are set to an empty string.

Parameters

Parameter Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

pStart String This parameter marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of authorized attributes in a pattern is detailed in the Pattern
Attributes List below.

Each attribute occurrence in the pattern string is substituted with its
value. The attributes must be between brackets ([and])

Example My string [COL_NAME] is an attribute»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This parameter marks the end of the string to generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as the
associated description.

Parameter Value Description

ID Internal identifier of the join

EXPRESSION Text of the join expression

Appendix B
Substitution Methods Reference

B-50

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=odiRef.getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoinList("and ","([EXPRESSION])"," and ","")%>
<%=odiRef.getFilterList("and ","([EXPRESSION])"," and ","")%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

Explanation: the getJoinList function will be used to generate join expressions to put in the
WHERE part of the SELECT statement that must start with "and" and that repeats a pattern
(the expression of each join) separated by " and " for each join. Thus:

• The first parameter "and" of the function indicates that we want to start the string with
"and"

• The second parameter "([EXPRESSION])" indicates that we want to repeat this pattern
for each join. The keyword [EXPRESSION] references a valid keyword of the table
Pattern Attributes List

• The third parameter " and " indicates that we want to separate each interpreted
occurrence of the pattern with " and " (note the spaces before and after "and")

• The fourth parameter "" of the function indicates that we want to end the string with no
specific character

B.2.32 getJrnFilter() Method
Use to return the journalizing filter of a mapping.

Usage

public java.lang.String getJrnFilter(java.lang.Int pDSIndex)

Description

Returns the SQL Journalizing filter for a given data set in the current mapping. If the
journalized table in the source, this method can be used during the loading phase. If the
journalized table in the staging area, this method can be used while integrating.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into account
by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an LKM. It
can be also omitted for IKMs. In this case, the data set taken into account is the first
one.

Appendix B
Substitution Methods Reference

B-51

Parameters

Paramete
r

Typ
e

Description

pDSIndex Int Index identifying which of the data sets is taken into account by this
command.

Examples

<%=odiRef.getJrnFilter()%>

B.2.33 getJrnInfo() Method
Use to return journalizing information about a datastore.

Usage

public java.lang.String getJrnInfo(java.lang.String pPropertyName)

Description

Returns information about a datastore's journalizing for a JKM while journalizing a
model or datastore, or for a LKM or IKM in a mapping.

Note:

Journalizing information is only available when the code is generated in ODI
Studio. The same odiRef.getInfo() call returns an empty string if it is
evaluated in the agent (when the call is wrapped inside <? ... ?> or <@ ...
@>), because the metadata about journalizing is not available anymore in the
runtime repository.

Parameters

Parameter Type Description

pPropertyName String String containing the name of the requested property.

The following table lists the different values possible for pPropertyName:

Parameter Value Description

FULL_TABLE_NAME Full name of the journalized datastore.

JRN_FULL_NAME Full name of the journal datastore.

JRN_FULL_VIEW Full name of the view linked to the journalized datastore.

JRN_FULL_DATA_VIE
W

Full name of the data view linked to the journalized datastore.

JRN_FULL_TRIGGER Full name of the trigger linked to the journalized datastore.

JRN_FULL_ITRIGGER Full name of the Insert trigger linked to the journalized datastore.

Appendix B
Substitution Methods Reference

B-52

Parameter Value Description

JRN_FULL_UTRIGGER Full name of the Update trigger linked to the journalized datastore.

JRN_FULL_DTRIGGER Full name of the Delete trigger linked to the journalized datastore.

SNP_JRN_SUBSCRIB
ER

Name of the subscriber table in the work schema.

JRN_NAME Name of the journalized datastore.

JRN_VIEW Name of the view linked to the journalized datastore.

JRN_DATA_VIEW Name of the data view linked to the journalized datastore.

JRN_TRIGGER Name of the trigger linked to the journalized datastore.

JRN_ITRIGGER Name of the Insert trigger linked to the journalized datastore.

JRN_UTRIGGER Name of the Update trigger linked to the journalized datastore.

JRN_DTRIGGER Name of the Delete trigger linked to the journalized datastore.

SUBSCRIBER Name of the subscriber.

JRN_COD_MOD Code of the journalized data model.

JRN_METHOD Journalizing Mode (consistent or simple).

CDC_SET_TABLE Full name of the table containing list of CDC sets.

CDC_TABLE_TABLE Full name of the table containing the list of tables journalized through
CDC sets.

CDC_SUBS_TABLE Full name of the table containing the list of subscribers to CDC sets.

CDC_OBJECTS_TABL
E

Full name of the table containing the journalizing parameters and
objects.

Examples

The table being journalized is <%=odiRef.getJrnInfo("FULL_TABLE_NAME")%>

B.2.34 getLoadPlanInstance() Method
Use to return the Load Plan instance information.

Usage

public java.lang.String getLoadPlanInstance (java.lang.String pPropertyName)

Description

This method returns the current execution instance information for a Load Plan.

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property.

The following table lists the possible values for pPropertyName:

Appendix B
Substitution Methods Reference

B-53

Parameter Value Description

BATCH_ID Internal number of the reference constraint. This parameter is
deprecated, and included for 11g compatibility only. The ID
property works if the repository is in 11g compatibility mode, but
an error message will be returned if the repository is in 12c mode.

BATCH_GUID GUID of the instance.

RESTART_ATTEMPTS Number of execution attempts of this Load Plan instance. It starts
at 1 when the Load Plan instance is first started, and is
incremented each time the Load Plan instance is restarted.

LOAD_PLAN_NAME Name of the Load Plan.

START_DATE Starting date and time of the current Load Plan instance run.

Examples

The current Load Plan <%=odiRef.getLoadPlanInstance("LOAD_PLAN_NAME")%>
started execution at <%=odiRef.getLoadPlanInstance("START_DATE")%>

B.2.35 getModel() Method
Use to return information about a model.

Usage

public java.lang.String getModel(java.lang.String pPropertyName)

Description

This method returns information on the current data model during the processing of a
personalized reverse engineering. The list of available data is described in the
pPropertyName values table.

Note:

This method may be used on the source connection (data server being
reverse-engineered) as well as on the target connection (repository). On the
target connection, only the properties independent from the context can be
specified (for example, the schema and catalog names cannot be used).

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property

The following table lists the possible values for pPropertyName:

Parameter Value Description

ID Internal identifier of the current model

Appendix B
Substitution Methods Reference

B-54

Parameter Value Description

GLOBAL_ID GUID of the foreign key

MOD_NAME Name of the current model

LSCHEMA_NAME Name of the logical schema of the current model

MOD_TEXT Description of the current model

REV_TYPE Reverse engineering type: S for standard reverse, C for customize

REV_UPDATE Update flag of the model

REV_INSERT Insert flag for the model

REV_OBJ_PATT Mask for the objects to reverse

REV_OBJ_TYPE List of object types to reverse-engineer for this model. This is a
semicolon separated list of object types codes.

Valid codes are:

• T: Table
• V: View
• Q: Queue
• SY: System table
• AT: Table alias
• SY: Synonym

TECH_INT_NAME Internal name of the technology of the current model

LAGENT_NAME Name of the logical execution agent for the reverse engineering

REV_CONTEXT Execution context of the reverse engineering

REV_ALIAS_LTRIM Characters to be suppressed for the alias generation

CKM Check Knowledge Module

RKM Reverse-engineering Knowledge Module

SCHEMA_NAME Physical Name of the data schema in the current reverse context

WSCHEMA_NAME Physical Name of the work schema in the current reverse context

CATALOG_NAME Physical Name of the data catalog in the current reverse context

WCATALOG_NAME Physical Name of the work catalog in the current reverse context

<flexfield code> Value of the flexfield for the current model

Examples

Retrieve the list of tables that are part of the mask of objects to reverse:

select TABLE_NAME,
 RES_NAME,
 replace(TABLE_NAME, '<%=odiRef.getModel("REV_ALIAS_LTRIM")%>' , '')
 ALIAS,
 TABLE_DESC
from MY_TABLES
where
TABLE_NAME like '<%=odiRef.getModel("REV_OBJ_PATT")%>'

B.2.36 getNbInsert(), getNbUpdate(), getNbDelete(), getNbErrors() and
getNbRows() Methods

Use to get the number of inserted, updated, deleted or erroneous rows for the current task.

Appendix B
Substitution Methods Reference

B-55

Usage

public java.lang.Long getNbInsert()

public java.lang.Long getNbUpdate()

public java.lang.Long getNbDelete()

public java.lang.Long getNbErrors()

public java.lang.Long getNbRows()

Description

These methods get for the current task the values for:

• the number of rows inserted (getNbInsert)

• the number of rows updated (getNbUpdate)

• the number of rows deleted (getNbDelete)

• the number of rows in error (getNbErrors)

• total number of rows handled during this task (getNbRows)

These numbers can be set independently from the real number of lines processed
using the setNbInsert(), setNbUpdate(), setNbDelete(), setNbErrors() and
setNbRows() Methods.

Examples

In the Jython example below, we set the number of inserted rows to the constant value
of 50, and copy this value in the number of errors.

InsertNumber=50

odiRef.setNbInsert(InsertNumber)

odiRef.setNbErrors(odiRef.getNbInsert())

B.2.37 getNewColComment() Method
Use to return the new comment for a specific attribute handled by an action.

Usage

public java.lang.String getNewColComment()

Description

In an action, this method returns the new comment for the attribute being handled by
the DDL command, in a Modify column comment action.

B.2.38 getNewTableComment() Method
Use to return the new comment for a specific table handled by an action.

Appendix B
Substitution Methods Reference

B-56

Usage

public java.lang.String getNewTableComment()

Description

In an action, this method returns the new comment for the table being handled by the DDL
command, in a Modify table comment action.

B.2.39 getNotNullCol() Method
Use to return information about an attribute that is checked for not null.

Usage

public java.lang.String getNotNullCol(java.lang.String pPropertyName)

Description

This method returns information relative to a not null attribute of a datastore during a check
procedure. It is accessible from a Check Knowledge Module if the current task is tagged as
"mandatory".

Parameters

Parameter Type Description

Parameter Type Description

pPropertyName String String that contains the name of the requested
property.

The following table lists the different possible values for pPropertyName:

Parameter Value Description

ID Internal identifier for the current attribute. This The ID property works if the
repository is in 11g compatibility mode, but an error message will be
returned if the repository is in 12c mode.

GLOBAL_ID GUID for the current attribute.

COL_NAME Name of the Not null attribute.

MESS Standard error message.

<flexfield code> Flexfield value for the current not null attribute.

Examples

insert into...
select *
from ...
<%=odiRef.getNotNullCol("COL_NAME")%> is null

B.2.40 getObjectName() Method
Use to return the fully qualified named of an object.

Appendix B
Substitution Methods Reference

B-57

Usage

public java.lang.String getObjectName(
java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLocation)

public java.lang.String getObjectName(
java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLogicalSchemaName,
java.lang.String pLocation)

public java.lang.String getObjectName(
java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLogicalSchemaName,
java.lang.String pContextName,
java.lang.String pLocation)

public java.lang.String getObjectName(
java.lang.String pObjectName,
java.lang.String pLocation)

public java.lang.String getObjectName(
java.lang.String pObjectName)

public java.lang.String getObjectName(java.lang.String pMode,java.lang.String
pObjectName,java.lang.String pLogicalSchemaName,java.lang.String
pContextName,java.lang.String pLocation,
java.lang.String pPartitionType,
java.lang.String pPartitionName)

Description

Returns the fully qualified name of a physical object, including its catalog and schema.
The pMode parameter indicates the substitution mask to use.

Note:

The getObjectName methods truncates automatically object names to the
maximum object length allowed for the technology. In versions before ODI
11g, object names were not truncated. To prevent object name truncation
and reproduce the 10g behavior, add in the properties tab of the data server
a property called OBJECT_NAME_LENGTH_CHECK_OLD and set its value
to true.

The first syntax builds the object name according to the current logical schema in the
current context.

The second syntax builds the name of the object according to the logical schema
indicated in the pLogicalSchemaName parameter in the current context.

The third syntax builds the name from the logical schema and the context indicated in
the pLogicalSchemaName and pContextName parameters.

Appendix B
Substitution Methods Reference

B-58

The fourth syntax builds the object name according to the current logical schema in the
current context, with the local object mask (pMode = "L").

The fifth syntax is equivalent to the fourth with pLocation = "D".

The last syntax is equivalent to the third syntax but qualifies the object name specifically on a
given partition, using the pPartitionType and pPartitionName parameters.

Parameters

Parameter Type Description

pMode String "L" use the local object mask to build the complete path of the object.
"R" use the remote object mask to build the complete path of the
object.

Note: Use the getObjectNameDefaultPSchema method if you need
to use the default physical schema to resolve the object name when
using the remote object mask. For more information on this method,
see getObjectNameDefaultPSchema() Method.

pObjectName String Every string that represents a valid resource name (table or file). This
object name may be prefixed by a prefix code that will be replaced at
run-time by the appropriate temporary object prefix defined for the
physical schema.

pLogicalSchemaName String Name of the forced logical schema of the object.

pContextName String Forced context of the object

pLocation String The valid values are:

• W: Returns the complete name of the object in the physical
catalog and the "work" physical schema that corresponds to the
specified tuple (context, logical schema)

• D: Returns the complete name of the object in the physical
catalog and the data physical schema that corresponds to the
specified tuple (context, logical schema)

pPartitionType String Specify whether to qualify the object name for a specific partition or
subpartition. The valid values are:

• P: Qualify object for the partition provided in pPartitionName
• S: Qualify object for the subpartition provided in pPartitionName

pPartitionName String Name of the partition of subpartition to qualify the object name.

Prefixes

It is possible to prefix the resource name specified in the pObjectName parameter by a prefix
code to generate an Oracle Data Integrator temporary object name (Error or Integration table,
journalizing trigger, etc.).

The list of prefixes are given in the table below.

Prefix Description

Prefix Description

%INT_PRF Prefix for integration tables (default value is "I$_").

%COL_PRF Prefix for Loading tables (default value is "C$_").

%ERR_PRF Prefix for error tables (default value is "E$_").

%JRN_PRF_TAB Prefix for journalizing tables (default value is "J$_").

Appendix B
Substitution Methods Reference

B-59

Prefix Description

%INT_PRF_VIE Prefix for journalizing view (default value is "JV$_").

%JRN_PRF_TRG Prefix for journalizing triggers (default value is "T$_").

%IDX_PRF Prefix for temporary indexes (default value is "IX$_").

%UNIQUE_STEP_TAG Prefix used to inform the final phase of code generation that unique names
are enabled for temporary objects.

%UNIQUE_SESSION_
TAG

Prefix used to inform the final phase of code generation that unique names
are enabled for temporary objects.

Note:

Temporary objects are usually created in the work physical schema.
Therefore, pLocation should be set to "W" when using a prefix to create or
access a temporary object.

Examples

You have defined a physical schema as shown below.

Property Value

Data catalog: db_odi

Data schema: dbo

Work catalog: tempdb

Work schema: temp_owner

You have associated this physical schema to the logical schema MSSQL_ODI in the
context CTX_DEV.

A Call To Returns

<%=odiRef.getObjectName("L", "EMP", "MSSQL_ODI",
"CTX_DEV", "W")%>

tempdb.temp_owner.EM
P

<%=odiRef.getObjectName("L", "EMP", "MSSQL_ODI",
"CTX_DEV", "D")%>

db_odi.dbo.EMP

<%=odiRef.getObjectName("R", "%ERR_PRFEMP",
"MSSQL_ODI", "CTX_DEV", "W")%>

MyServer.tempdb.temp
_owner.E$_EMP

<%=odiRef.getObjectName("R", "EMP", "MSSQL_ODI",
"CTX_DEV", "D")%>

MyServer.db_odi.dbo.
EMP

B.2.41 getObjectNameDefaultPSchema() Method
Use to return the fully qualified named of an object in the default physical schema for
the data server.

Appendix B
Substitution Methods Reference

B-60

Usage

public java.lang.String getObjectNameDefaultPSchema(
java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLocation)

public java.lang.String getObjectNameDefaultPSchema(
java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLogicalSchemaName,
java.lang.String pLocation)

public java.lang.String getObjectNameDefaultPSchema(
java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLogicalSchemaName,
java.lang.String pContextName,
java.lang.String pLocation)

public java.lang.String getObjectNameDefaultPSchema(
java.lang.String pObjectName,
java.lang.String pLocation)

public java.lang.String getObjectNameDefaultPSchema(
java.lang.String pObjectName)

public java.lang.String getObjectNameDefaultPSchema(java.lang.String
pMode,java.lang.String pObjectName,java.lang.String
pLogicalSchemaName,java.lang.String pContextName,java.lang.String pLocation,
java.lang.String pPartitionType,
java.lang.String pPartitionName)

Description

The method is similar to the getObjectName method. However, the object name is computed
for the default physical schema of the data server to which the physical schema is attached.
In getObjectName, the object name is computed for the physical schema itself.

For more information, see getObjectName() Method.

B.2.42 getObjectShortName() Method
Use to return the short name of an object.

Usage

public java.lang.String getObjectShortName(
java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLocation)

public java.lang.String getObjectShortName(
java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLogicalSchemaName,
java.lang.String pLocation)

public java.lang.String getObjectShortName(

Appendix B
Substitution Methods Reference

B-61

java.lang.String pMode,
java.lang.String pObjectName,
java.lang.String pLogicalSchemaName,
java.lang.String pContextName,
java.lang.String pLocation)

Description

Returns the object name without the schema and catalog prefix, but adds delimiters if
necessary.

The pMode parameter indicates the substitution mask to use.

Parameters

Parameter Type Description

pMode String "L" use the local object mask to build the complete path of the
object. "R" use the remote object mask to build the complete
path of the object.

Note: When using the remote object mask,
getObjectShortName always resolves the object name using
the default physical schema of the remote server.

pObjectName String Every string that represents a valid resource name (table or
file). This object name may be prefixed by a prefix code that will
be replaced at run-time by the appropriate temporary object
prefix defined for the physical schema.

pLogicalSchemaNam
e

String Name of the forced logical schema of the object.

pContextName String Forced context of the object

pLocation String The valid values are:

• W: Returns the complete name of the object in the physical
catalog and the "work" physical schema that corresponds
to the specified tuple (context, logical schema)

• D: Returns the complete name of the object in the physical
catalog and the data physical schema that corresponds to
the specified tuple (context, logical schema)

Prefixes

The text can contain the prefixes available for getObjectName() Method, e.g.
%INT_PRF, %COL_PRF, %ERR_PRF, %IDX_PRF and so on.

For example, if the logical schema is pointing to Oracle SCOTT schema:

<%= odiRef.getObjectShortName("L", "%COL_PRFEMP", "D") %>

returns

C$EMP

Examples

If the local work schema is Oracle technology:

<%= odiRef.getObjectShortName("L", "ABC", "W") %>

produces ABC in the generated code, while

Appendix B
Substitution Methods Reference

B-62

<%= odiRef.getObjectShortName("L", "abc", "W") %>

produces "abc" in the generated code (with double quotes).

B.2.43 getOdiGeneratedAccessName() Method
Use to return the ODI runtime execution phase access name for an object.

Usage

public static java.lang.String getOdiGeneratedAccessName(
java.lang.String pProperty,
MapPhysicalNode pPhysNode,
java.lang.String pSchemaLoc)

Description

Allows the retrieval of the ODI runtime execution phase access name for an object. The
design time name is interpreted by the 11g-compatible beanshell/java parser, and the OdiRef
calls are executed by the upgraded OdiRef object. An example of a design time name would
be :

<%=odiRef.getTable("L","COLL_NAME","W")%>

Note:

The getOdiGeneratedAccessName() method is called from “OdiRef”, which means
that it is a static method that can be called from any context. It can also be called
from “odiRef”, if odiRef is in scope for the current context.

Parameters

Parameter Type Description

pProperty String The ODI getTable substitution
API property.

pPhysNode MapPhysicalNode (which is an
ODI class. The full path is
“oracle.odi.domain.mapping.phys
ical.MapPhysicalNode”.)

The physical node associated
with the object.

Appendix B
Substitution Methods Reference

B-63

Parameter Type Description

pSchemaLoc String The schema location for the
object. The valid values are:

• D: ‘D’ means Schema. This
schema contains the source
and target tables. Oracle
Data Integrator can get data
from source tables and
insert/update data into target
tables.

• W: ‘W’ means Work
Schema. Oracle Data
integrator can create and
manipulate temporary tables
in the work schema. These
temporary tables can
associate to the source and
target tables in Schema.

Examples

<%=OdiRef.getOdiGeneratedAccessName("COLL_NAME", physicalNode, "W")%>

Returns the name of the loading table in Work Schema.

<%=OdiRef.getOdiGeneratedAccessName("COLL_NAME", physicalNode, "D")%>

Returns the name of the loading table in Schema.

B.2.44 getOdiInstance() Method
Use to return the current session instance of a connection to an ODI master / work
repositories couple.

Usage

public oracle.odi.core.OdiInstance getOdiInstance(java.lang.String pPropertyName)

Description

Returns the current session instance of a connection to an ODI master / work
repositories couple.

An OdiInstance is the central class in ODI Core Infrastructure, providing low level
infrastructure services required by ODI consumers needing read / write access to an
ODI master / work repositories couple. This method can be used in Jython or Groovy
in ODI procedures or knowledge modules. Users are responsible for closing the
instance.

B.2.45 getOggModelInfo() Method
Use to retrieve the property values associated with the GoldenGate Journalized
Model.

Appendix B
Substitution Methods Reference

B-64

Usage

public String getOggModelInfo(String Property) throws SnpsSimpleMessageException

Description

This method retrieves the property values associated with GoldenGate Journalized Model
which were added for ODI-OGG Integration JKM/Tools.

Parameters

Parameter Type Description

Property String String that contains the property
type of the GoldenGate
Journalized Model.

The following table lists the different values possible for Property:

Parameter Value Description

EXTRACT_LSCHEMA Extract process logical schema associated with a
model.

INIT_EXTRACT_LSCHEMA Initial Extract process logical schema associated
with a model.

REPLICAT_LSCHEMA Replicat process logical schema associated with a
model.

INIT_REPLICAT_LSCHEMA Initial Replicat process logical schema associated
with a model.

SRC_LSCHEMA Logical schema name of the model's schema.

SRC_DB_USER User name of source model's DB.

SRC_DB_PASS Password of source model's DB.

Examples

Extract process logical schema associated with the GoldenGate Journalized model is

<%=odiRef.getOggModelInfo("EXTRACT_LSCHEMA")%>

Initial extract process logical schema associated with the JRN Model is

<%=odiRef.getOggModelInfo("INIT_EXTRACT_LSCHEMA")%>

Replicat process logical schema associated with a OGG JRN model is

<%=odiRef.getOggModelInfo("REPLICAT_LSCHEMA")%>

Initial Replicat process logical schema associated with the JRN Model is

<%=odiRef.getOggModelInfo("INIT_REPLICAT_LSCHEMA")%>

Logical schema name of the JRN model is

<%=odiRef.getOggModelInfo("SRC_LSCHEMA")%>

Appendix B
Substitution Methods Reference

B-65

B.2.46 getOggProcessInfo() Method
Use to retrieve the value of the property associated with a process.

Usage

public String getOggProcessInfo(String LogicalSchemaName, String Property)
throws SnpsSimpleMessageException

Description

This method retrieves the value of the property associated with a process added for
ODI-OGG Integration JKM/Tools.

Parameters

Parameter Type Description

LogicalSchema String String that contains the
Logical Schema Name
associated with a process
added for the ODI-OGG
Integration JKM/Tools.

Property String String that contains the
property type to retrieve value
from the OGG process.

The following table describes the different values of the parameters.

Property Description

NAME Name of the process.

LTRAIL_FILE_PATH Trail file path.

DISCARD_FILE_PATH Discard file path.

DEF_FILE_PATH Definition file path.

RTRAIL_FILE_PATH Remote trail file path.

TRAIL_FILE_SIZE Trail file size.

Examples

Name of the OGG process is

<%=odiRef.getProcessInfo("NAME")%>

Trail file path of the above OGG process is

<%=odiRef.getProcessInfo("LTRAIL_FILE_PATH")%>

Discard file path of the above OGG process is

<%=odiRef.getProcessInfo("DISCARD_FILE_PATH")%>

Definition file path of the above OGG process is

<%=odiRef.getProcessInfo("DEF_FILE_PATH")%>

Appendix B
Substitution Methods Reference

B-66

Remote trail path of the above OGG process is

<%=odiRef.getProcessInfo("RTRAIL_FILE_PATH")%>

Trail file size of the above OGG process is

<%=odiRef.getProcessInfo("TRAIL_FILE_SIZE")%>

B.2.47 getOption() Method
Use to return the value of a KM or procedure option.

Usage

public java.lang.String getOption(java.lang.String pOptionName)
public java.lang.String getUserExit(java.lang.String pOptionName)

Description

Returns the value of a KM or procedure option.

The getUserExit syntax is deprecated and is only kept for compatibility reasons.

Parameters

Parameter Type Description

pOptionName String String that contains the name of the requested option.

Examples

The value of my MY_OPTION_1 option is <%=odiRef.getOption("MY_OPTION_1")%>

B.2.48 getPackage() Method
Use to return information about the current package.

Usage

public java.lang.String getPackage(java.lang.String pPropertyName)

Description

This method returns information about the current package. The list of available properties is
described in the pPropertyName values table.

Parameters

Parameters Type Description

pPropertyName String String that contains the name of the requested property.

The following table lists the different possible values for pPropertyName:

Appendix B
Substitution Methods Reference

B-67

Parameter Value Description

I_PACKAGE Internal ID of the package. The ID property works if the repository
is in 11g compatibility mode, but an error message will be
returned if the repository is in 12c mode.

PACKAGE_GUID GUID of the package.

PACKAGE_NAME Name of the package

<flexfield code> Value of the flexfield for this package.

Examples

Package <%=odiRef.getPackage("PACKAGE_NAME")%> is running.

B.2.49 getParentLoadPlanStepInstance() Method
Use to return the parent Load Plan step instance of this session.

Usage

public java.lang.String getParentLoadPlanStepInstance(java.lang.String
pPropertyName)

Description

This method returns the step execution instance information of the parent of the
current step for a Load Plan instance. It will return an empty string if the parent step is
the root step.

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property.

The following table lists the different possible values for pPropertyName.

Parameter Value Description

BATCH_ID Load Plan instance identifier (also Instance ID). Every time a Load Plan
is started, a new Load Plan instance with a unique identifier is created.

RESTART_ATTEMPT
S

Number of execution attempts of this Load Plan parent step instance. It
starts at 1 when the Load Plan parent step instance is first started, and
is incremented each time the Load Plan parent step instance is
restarted.

STEP_NAME Name of the Load Plan parent step

STEP_TYPE Type of the Load Plan parent step

START_DATE Starting date and time of the parent step instance of the current step of
the current Load Plan instance run.

Appendix B
Substitution Methods Reference

B-68

Examples

Step <%=odiRef.getParentLoadPlanStepInstance("STEP_NAME")%> has been executed
<%=odiRef.getParentLoadPlanStepInstance("RESTART_ATTEMPTS")%> times

B.2.50 getPK() Method
Use to return information about a primary key.

Usage

public java.lang.String getPK(java.lang.String pPropertyName)

Description

This method returns information relative to the primary key of a datastore during a check
procedure.

In an action, this method returns information related to the primary key currently handled by
the DDL command.

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property.

The following table lists the different possible values for pPropertyName.

Parameter Value Description

ID Internal number of the PK constraint. This parameter is deprecated, and
included for 11g compatibility only. The ID property works if the repository
is in 11g compatibility mode, but an error message will be returned if the
repository is in 12c mode.

PACKAGE_GUID GUID of the primary key.

KEY_NAME Name of the primary key

MESS Error message relative to the primary key constraint.

FULL_NAME Full name of the PK generated with the local object mask.

<flexfield code> Flexfield value for the primary key.

Examples

The primary key of my table is called: <%=odiRef.getPK("KEY_NAME")%>

B.2.51 getPKColList() Method
Use to return information about the attributes of a primary key.

Usage

public java.lang.String getPKColList(java.lang.String pStart,
java.lang.String pPattern,

Appendix B
Substitution Methods Reference

B-69

java.lang.String pSeparator,
java.lang.String pEnd)

Description

Returns a list of attributes and expressions for the primary key being checked.

The pPattern parameter is interpreted and then repeated for each element of the list. It
is separated from its predecessor by the pSeparator parameter. The generated string
starts with pStart and ends with pEnd. If no element is selected, pStart and pEnd are
omitted and an empty string is returned.

This list contains an element for each attribute of the current primary key. It is
accessible from a Check Knowledge Module if the current task is tagged as an
"primary key".

In an action, this method returns the list of the attributes of the primary key handled by
the DDL command, ordered by their position in the key.

Parameters

Parameter Type Description

pStart String This sequence marks the beginning of the string
to generate.

pPattern String The pattern is repeated for each occurrence in
the list.

The list of attributes that can be used in a
pattern is detailed in the Pattern Attributes List
below.

Each attribute occurrence in the pattern
sequence is replaced with its value. The
attributes must be between brackets. ([and])

Example «My string [COL_NAME] is an
attribute»

pSeparator String This parameter separates each pattern from its
predecessor.

pEnd String This sequence marks the end of the string to
generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as their
associated description.

Parameter Value Description

I_COL Attribute internal identifier

COL_NAME Name of the key attribute

COL_HEADING Header of the key attribute

COL_DESC Attribute description

POS Position of the attribute

LONGC Length (Precision) of the attribute

SCALE Scale of the attribute

Appendix B
Substitution Methods Reference

B-70

Parameter Value Description

FILE_POS Beginning position of the attribute (fixed file)

BYTES Number of physical bytes of the attribute

FILE_END_POS End of the attribute (FILE_POS + BYTES)

IND_WRITE Write right flag of the attribute

COL_MANDATORY Mandatory character of the attribute. Valid values are:

• 0: null authorized
• 1: not null

CHECK_FLOW Flow control flag for of the attribute. Valid values are:

• 0: do not check
• 1: check

CHECK_STAT Static control flag of the attribute. Valid values are:

• 0: do not check
• 1: check

COL_FORMAT Logical format of the attribute

COL_DEC_SEP Decimal symbol for the attribute

REC_CODE_LIST List of the record codes retained for the attribute

COL_NULL_IF_ER
R

Processing flag for the attribute. Valid values are:

• 0: Reject
• 1: Set active trace to null
• 2: Set inactive trace to null

DEF_VALUE Default value for the attribute

EXPRESSION Not used

CX_COL_NAME Not used

ALIAS_SEP Grouping symbol used for the alias (from the technology)

SOURCE_DT Code of the attribute's datatype.

SOURCE_CRE_DT Create table syntax for the attribute's datatype.

SOURCE_WRI_DT Create table syntax for the attribute's writable datatype.

DEST_DT Code of the attribute's datatype converted to a datatype on the target
technology.

DEST_CRE_DT Create table syntax for the attribute's datatype converted to a datatype
on the target technology.

DEST_WRI_DT Create table syntax for the attribute's writable datatype converted to a
datatype on the target technology.

SCD_COL_TYPE Behavior defined for the Slowly Changing Dimensions for this attribute in
the data model.

<flexfield code> Flexfield value for the current attribute.

Examples

If the CUSTOMER table has an primary key PK_CUSTOMER (CUST_ID, CUST_NAME) and
you want to generate the following code:

create table T_PK_CUSTOMER (CUST_ID numeric(10) not null, CUST_NAME
varchar(50) not null)

You can use the following code:

Appendix B
Substitution Methods Reference

B-71

create table T_<%=odiRef.getPK("KEY_NAME")%>
<%=odiRef.getPKColList("(", "[COL_NAME] [DEST_CRE_DT] not null", ", ", ")")%>

Explanation: the getPKColList function will be used to generate the (CUST_ID
numeric(10) not null, CUST_NAME varchar(50) not null) part, which starts and
stops with a parenthesis and repeats the pattern (attribute, a data type, and not null)
separated by commas for each attribute of the primary key. Thus

• the first parameter "(" of the function indicates that we want to start the string with
the string "("

• the second parameter "[COL_NAME] [DEST_CRE_DT] not null" indicates that
we want to repeat this pattern for each attribute of the primary key. The keywords
[COL_NAME] and [DEST_CRE_DT] reference valid keywords of the Pattern
Attributes List table

• the third parameter ", " indicates that we want to separate interpreted occurrences
of the pattern with the string ", "

• the forth parameter ")" of the function indicates that we want to end the string with
the string ")"

B.2.51.1 getPop() Method
Use to return information about a mapping.

Usage

public java.lang.String getPop(java.lang.String pPropertyName)

Description

This method returns information about the current mapping. The list of available
information is described in the pPropertyName values table.

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property.

The following table lists the different possible values for pPropertyName:

Parameter Value Description

I_POP Internal number of the mapping.

FOLDER Name of the folder of the mapping.

POP_NAME Name of the mapping.

IND_WORK_TARG Position flag of the staging area.

LSCHEMA_NAME Name of the logical schema which is the staging area of the
mapping.

DESCRIPTION Description of the mapping.

WSTAGE Flag indicating the nature of the target datastore:

• E - target datastore is an existing table (not a temporary table).
• N - target datastore is a temporary table in the data schema.
• W - target datastore is a temporary table in the work schema.

Appendix B
Substitution Methods Reference

B-72

Parameter Value Description

TABLE_NAME Name of the target table.

KEY_NAME Name of the update key.

DISTINCT_ROWS Flag for doubles suppression.

OPT_CTX Name of the optimization context of the mapping.

TARG_CTX Name of the execution context of the mapping.

MAX_ERR Maximum number of accepted errors.

MAX_ERR_PRCT Error indicator in percentage.

IKM Name of the Integration Knowledge Module used in this mapping.

LKM Name of the Loading Knowledge Module specified to load data from
the staging area to the target if a single-technology IKM is selected
for the staging area.

CKM Name of the Check Knowledge Module used in this mapping.

HAS_JRN Returns 1 if there is a journalized table in source of the mapping, 0
otherwise.

PARTITION_NAME Name of the partition or subpartition selected for the target datastore.
If no partition is selected, returns an empty string.

PARTITION_TYPE Type of the partition or subpartition selected for the target datastore.
If no partition is selected, returns an empty string.

• P: Partition
• S: Subpartition

<flexfield code> Flexfield value for the mapping.

IS_CONCURRENT Returns 1 if unique names are being used for the temporary objects,
0 otherwise.

Examples

The current mapping is: <%=odiRef.getPop("POP_NAME")%> and runs on the logical schema:
<%=odiRef.getInfo("L_SCHEMA_NAME")%>

B.2.52 getPrevStepLog() Method
Use to return information about the previous step executed in the package.

Usage

public java.lang.String getPrevStepLog(java.lang.String pPropertyName)

Description

Returns information about the most recently executed step in a package. The information
requested is specified through the pPropertyName parameter. If there is no previous step (for
example, if the getPrevStepLog step is executed from outside a package), the exception "No
previous step" is raised.

Appendix B
Substitution Methods Reference

B-73

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property
about the previous step. See the list of valid properties
below.

The following table lists the different possible values for pPropertyName:

Parameter Value Description

SESS_NO The number of the session. This parameter is deprecated, and
included for 11g compatibility only. The ID property works if the
repository is in 11g compatibility mode, but an error message will be
returned if the repository is in 12c mode.

SESS_GUID GUID of the session.

NNO The number of the step within a package. The first step executed is
0.

STEP_NAME The name of the step.

STEP_TYPE A code indicating the type of step. The following values may be
returned:

• F: Mapping
• VD: Variable declaration
• VS: Set/Increment variable
• VE: Evaluate variable
• V: Refresh variable
• T: Procedure
• OE: OS command
• SE: ODI Tool
• RM: Reverse-engineer model
• CM: Check model
• CS: Check sub-model
• CD: Check datastore
• JM: Journalize model
• JD: Journalize datastore

CONTEXT_NAME The name of the context in which the step was executed.

MAX_ERR The maximum number or percentage of errors tolerated.

MAX_ERR_PRCT Returns 1 if the maximum number of errors is expressed as a
percentage, 0 otherwise.

RUN_COUNT The number of times this step has been executed.

BEGIN The date and time that the step began.

END The date and time that the step terminated.

DURATION Time the step took to execute in seconds.

Appendix B
Substitution Methods Reference

B-74

Parameter Value Description

STATUS Returns the one-letter code indicating the status with which the
previous step terminated. The state R (Running) is never returned.

• D: Done (success)
• E: Error
• Q: Queued
• W: Waiting
• M: Warning

RC Return code. 0 indicates no error.

MESSAGE Error message returned by previous step, if any. Blank string if no
error.

INSERT_COUNT Number of rows inserted by the step.

DELETE_COUNT Number of rows deleted by the step.

UPDATE_COUNT Number of rows updated by the step.

ERROR_COUNT Number of erroneous rows detected by the step, for quality control
steps.

Examples

Previous step '<%=odiRef.getPrevStepLog("STEP_NAME")%>' executed
in '<%=odiRef.getPrevStepLog("DURATION")%>' seconds.

B.2.53 getQuotedString() Method
Use to return a quoted string.

Usage

public java.lang.String getQuotedString(java.lang.String pString)

Description

This method returns a string surrounded with quotes. It preserves quotes and escape
characters such as \n, \t that may appear in the string.

This method is useful to protect a string passed as a value in Java, Groovy or Jython code.

Parameters

Parameter Type Description

Parameter Type Description

pString String String that to be protected with quotes.

Examples

In the following Java code, the getQuotedString method is used to generate a valid string
value.

String condSqlOK = <%=odiRef.getQuotedString(odiRef.getCK("MESS"))%>;
String condSqlKO = <%=odiRef.getCK("MESS")%>;

Appendix B
Substitution Methods Reference

B-75

If the message for the condition is "Error:\n Zero is not a valid value", the generated
code is as shown below. Without the getQuotedString, the code is incorrect, as the \n
is not preserved and becomes a carriage return.

String condSqlOK = "Error:\n Zero is not a valid value";
String condSqlKO = "Error:
Zero is not a valid value";

B.2.54 getSchemaName() Method
Use to return a schema name from the topology.

Usage

public java.lang.String getSchemaName(
java.lang.String pLogicalSchemaName,
java.lang.String pLocation)

public java.lang.String getSchemaName(
java.lang.String pLogicalSchemaName,
java.lang.String pContextCode,
java.lang.String pLocation)

public java.lang.String getSchemaName(java.lang.String pLocation)

public java.lang.String getSchemaName()

Description

Retrieves the physical name of a data schema or work schema from its logical
schema.

If the first syntax is used, the returned schema corresponds to the current context.

If the second syntax is used, the returned schema corresponds to context specified in
the pContextCode parameter.

The third syntax returns the name of the data schema (D) or work schema (W) for the
current logical schema in the current context.

The fourth syntax returns the name of the data schema (D) for the current logical
schema in the current context.

Parameters

Parameter Type Description

pLogicalSchemaNam
e

String Name of the logical schema of the schema

pContextCode String Forced context of the schema

pLocation String The valid values are:

• D: Returns the data schema of the physical schema
that corresponds to the tuple (context, logical
schema)

• W: Returns the work schema of the physical schema
that corresponds to the tuple (context, logical
schema)

Appendix B
Substitution Methods Reference

B-76

Examples

If you have defined the physical schema: Pluton.db_odi.dbo

Property Value

Data catalog: db_odi

Data schema: dbo

Work catalog: tempdb

Work schema: temp_owner

and you have associated this physical schema to the logical schema: MSSQL_ODI in the
context CTX_DEV

The Call To Returns

<%=odiRef.getSchemaName("MSSQL_ODI", "CTX_DEV", "W")%> temp_owner

<%=odiRef.getSchemaName("MSSQL_ODI", "CTX_DEV", "D")%> dbo

B.2.55 getSchemaNameDefaultPSchema() Method
Use to return a catalog name for the default physical schema from the topology.

Usage

public java.lang.String getSchemaNameDefaultPSchema(
java.lang.String pLogicalSchemaName,
java.lang.String pLocation)

public java.lang.String getSchemaNameDefaultPSchema(
java.lang.String pLogicalSchemaName,
java.lang.String pContextCode,
java.lang.String pLocation)

public java.lang.String getSchemaNameDefaultPSchema(
java.lang.String pLocation)

public java.lang.String getSchemaNameDefaultPSchema(

Description

Allows you to retrieve the name of the default physical data schema or work schema for the
data server to which is associated the physical schema corresponding to the tuple (logical
schema, context). If no context is specified, the current context is used. If no logical schema
name is specified, then the current logical schema is used. If no pLocation is specified, then
the data schema is returned.

Parameters

Parameter Type Description

pLogicalSchemaName String Name of the logical schema

pContextCode String Code of the enforced context of the schema

Appendix B
Substitution Methods Reference

B-77

Parameter Type Description

pLocation String The valid values are:

• D: Returns the data schema of the physical schema
corresponding to the tuple (context, logical schema)

• W: Returns the work schema of the default physical
schema associate to the data server to which the physical
schema corresponding to the tuple (context, logical
schema) is also attached.

Examples

If you have defined the physical schemas: Pluton.db_odi.dbo

Property Value

Data catalog: db_odi

Data schema: dbo

Work catalog: tempdb

Work schema: temp_odi

Default Schema Yes

that you have associated with this physical schema: MSSQL_ODI in the context CTX_DEV,
and Pluton.db_doc.doc

Property Value

Data catalog: db_doc

Data schema: doc

Work catalog: tempdb

Work schema: temp_doc

Default Schema No

that you have associated with this physical schema: MSSQL_DOC in the context
CTX_DEV

The Call To Returns

<%=odiRef.getSchemaNameDefaultPSchema("MSSQL_DOC",
"CTX_DEV", "W")%>

temp_odi

<%=odiRef.getSchemaNameDefaultPSchema("MSSQL_DOC",
"CTX_DEV", "D")%>

dbo

B.2.56 getSession() Method
Use to return information about the current session.

Usage

public java.lang.String getSession(java.lang.String pPropertyName)

Appendix B
Substitution Methods Reference

B-78

Description

This method returns information about the current session. The list of available properties is
described in the pPropertyName values table.

Parameters

Parameters Type Description

pPropertyName String String that contains the name of the requested property.

The following table lists the different possible values for pPropertyName:

Parameter Value Description

SESS_NO Internal number of the session.

SESS_GUID GUID of the session.

SESS_NAME Name of the session

SCEN_NAME Name of the scenario

SCEN_VERSION Current scenario version

CONTEXT_NAME Name of the execution context

CONTEXT_CODE Code of the execution context

AGENT_NAME Name of the physical agent in charge of the execution

SESS_BEG Date and time of the beginning of the session

USER_NAME ODI User running the session.

Examples

The current session is: <%=odiRef.getSession("SESS_NAME")%>

B.2.57 getSessionVarList() Method
Reserved for future use.

Usage

public java.lang.String getSessionVarList(java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd,
java.lang.String pSelector)

Description

Reserved for future use.

Parameters

Reserved for future use.

Examples

Reserved for future use.

Appendix B
Substitution Methods Reference

B-79

B.2.58 getSrcColList() Method
Use to return properties for each attribute from a filtered list of source attributes
involved in a loading or integration phase. The properties are organized according to a
string pattern.

Usage

public java.lang.String getSrcColList(
java.lang.Int pDSIndex,
java.lang.String pStart,
java.lang.String pUnMappedPattern,
java.lang.String pMappedPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

public java.lang.String getSrcColList(
java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

public java.lang.String getSrcColList(
java.lang.String pStart,
java.lang.String pUnMappedPattern,
java.lang.String pMappedPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

public java.lang.String getSrcColList(
int dsIndex,
java.lang.String pStart,
java.lang.String pUnMappedPattern,
java.lang.String pMappedPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Description

This method available in LKMs and IKMs, returns properties for a list of attributes in a
given data set. This list includes all the attributes of the sources processed by the LKM
(from the source) or the IKM (from the staging area). The list is sorted by the attribute
position in the source tables.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into
account by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an
LKM. It can be also omitted for IKMs. In this case, the data set taken into
account is the first one.

The properties displayed depend on whether the attribute is mapped or not. If the
attribute is mapped, the properties returned are defined in the pMappedPattern pattern.

Appendix B
Substitution Methods Reference

B-80

If the attribute is not mapped, the properties returned are defined in the pUnMappedPattern
pattern.

The attributes usable in a pattern are detailed in "Pattern Attributes List". Each occurrence of
the attributes in the pattern string is replaced by its value. Attributes must be between
brackets ([and]). Example: "My string [COL_NAME] is an attribute".

The pMappedPattern or pUnMappedPattern parameter is interpreted and then repeated for
each element of the list. Patterns are separated with pSeparator. The generated string
begins with pStart and ends with pEnd.

If pPattern parameter is used in the variant getSrcColList(String pStart, String
pPattern, String pSeparator, String pEnd), this indicates that the same pPattern value
is used as argument for both pUnMappedPattern and pMappedPattern parameters to call the
variant getSrcColList(String pStart, String pUnMappedPattern, String
pMappedPattern,String pSeparator, String pEnd).

If there is a journalized datastore in the source of the mapping, the three journalizing pseudo
attributes JRN_FLG, JRN_DATE and JRN_SUBSCRIBER are added as attributes of the journalized
source datastore.

Parameters

Parameter Type Description

dsIndex Int Index identifying which of the data sets is taken into account by this
command.

pStart String This sequence marks the beginning of the string to generate.

pPattern String The value of pPattern is used as an argument for both
pUnMappedPattern and pMappedPattern.

pUnMappedPattern String The pattern is repeated for each occurrence in the list if the attribute is
not mapped.

pMappedPattern String The pattern is repeated for each occurrence in the list, if the attribute is
mapped.

pSeparator String This parameter separates patterns.

pEnd String This sequence marks the end of the string to generate.

Pattern Attributes List

The following table lists different parameters values as well as their associated description.

Parameter Value Description

I_COL Internal identifier of the attribute

COL_NAME Name of the attribute

ALIAS_NAME Name of the attribute. Unlike COL_NAME, the attribute name without
the optional technology delimiters is returned. These delimiters
appear when the attribute name contains for instance spaces.

COL_HEADING Header of the attribute

COL_DESC Description of the attribute

POS Position of the attribute

LONGC Attribute length (Precision)

Appendix B
Substitution Methods Reference

B-81

Parameter Value Description

SCALE Scale of the attribute

FILE_POS Beginning (index) of the attribute

BYTES Number of physical bytes in the attribute

FILE_END_POS End of the attribute (FILE_POS + BYTES)

IND_WRITE Write right flag of the attribute

COL_MANDATORY Mandatory character of the attribute. Valid values are: (0: null
authorized, 1: not null)

• 0: null authorized
• 1: not null

CHECK_FLOW Flow control flag of the attribute. Valid values are: (0: do not check, 1:
check)

• 0: do not check
• 1: check

CHECK_STAT Static control flag of the attribute. Valid values are: (0: do not check, 1:
check)

• 0: do not check
• 1: check

COL_FORMAT Logical format of the attribute

COL_DEC_SEP Decimal symbol of the attribute

REC_CODE_LIST List of the record codes retained in the attribute

COL_NULL_IF_ERR Processing flag of the attribute. Valid values are:

• 0: Reject
• 1: Set to null active trace
• 2: Set to null inactive trace

DEF_VALUE Default value of the attribute

EXPRESSION Text of the expression (as typed in the mapping field) executed on the
source (LKM) or the staging area (IKM). If the attribute is not mapped,
this parameter returns an empty string.

CX_COL_NAME Not supported.

ALIAS_SEP Separator used for the alias (from the technology)

SOURCE_DT Code of the attribute's datatype.

SOURCE_CRE_DT Create table syntax for the attribute's datatype.

SOURCE_WRI_DT Create table syntax for the attribute's writable datatype.

DEST_DT Code of the attribute's datatype converted to a datatype on the target
(IKM) or staging area (LKM) technology.

DEST_CRE_DT Create table syntax for the attribute's datatype converted to a datatype
on the target technology.

DEST_WRI_DT Create table syntax for the attribute's writable datatype converted to a
datatype on the target technology.

SCD_COL_TYPE Behavior defined for the Slowly Changing Dimensions for this attribute
in the data model.

MANDATORY_CLAUSE Returns NOT NULL if the attribute is mandatory. Otherwise, returns the
null keyword for the technology.

DEFAULT_CLAUSE Returns DEFAULT <default value> if any default value exists.
Otherwise, returns and empty string.

Appendix B
Substitution Methods Reference

B-82

Parameter Value Description

<flexfield code> Flexfield value for the current attribute.

POP_ALIAS Alias of the datastore used in the mapping.

Examples

To create a table similar to a source file:

create table <%=odiRef.getTable("L","COLL_NAME", "D")%>_F
(
<%=odiRef.getSrcColList("","[COL_NAME] [DEST_CRE_DT]","[COL_NAME]
[DEST_CRE_DT]",",\n","")%>
)

B.2.59 getSrcTablesList() Method
Use to return properties for each source table of a mapping. The properties are organized
according to a string pattern.

Usage

public java.lang.String getSrcTablesList(
java.lang.Int pDSIndex,
java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Alternative syntax:

public java.lang.String getSrcTablesList(
java.lang.Int pDSIndex,
java.lang.String pPattern,
java.lang.String pSeparator)

Description

Returns a list of source tables of a given data set in a mapping. This method can be used to
build a FROM clause in a SELECT order. However, it is advised to use the getFrom() method
instead.

In IKMs only, the pDSIndex parameter identifies which of the data sets is taken into account
by this command.

Note:

The pDSIndex parameter can be omitted when this method is used in an LKM. It
can be also omitted for IKMs. In this case, the data set taken into account is the first
one.

The pPattern pattern is interpreted and then repeated for each element of the list and
separated from its predecessor with the parameter pSeparator. The generated string begins

Appendix B
Substitution Methods Reference

B-83

with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted
and an empty string is returned.

In the alternative syntax, any parameters not set are set to an empty string.

Parameters

Parameters Type Description

pDSIndex Int Index identifying which of the data sets is taken into account by
this command.

pStart String This parameter marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of possible attributes in a pattern is detailed in the
Pattern Attributes List below.

Each attribute occurrence in the pattern string is substituted
with its value. The attributes must be between brackets
([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This parameter marks the end of the string to generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as the
associated description.

Attribute Description

I_TABLE Internal identifier of the current source table if available. This parameter
is deprecated, and included for 11g compatibility only. The ID property
works if the repository is in 11g compatibility mode, but an error
message will be returned if the repository is in 12c mode.

TABLE_GUID GUID of the source table if available.

MODEL_NAME Name of the model of the current source table, if available.

SUB_MODEL_NAM
E

Name of the sub-model of the current source table, if available

TECHNO_NAME Name of the technology of the source datastore

LSCHEMA_NAME Logical schema of the source table

TABLE_NAME Logical name of the source datastore

RES_NAME Physical access name of the resource (file name or JMS queue,
physical name of the table, etc.). If there is a journalized datastore in
source of the mapping, the source table is the clause is replaced by the
data view linked to the journalized source datastore.

CATALOG Catalog of the source datastore (resolved at runtime)

WORK_CATALOG Work catalog of the source datastore

SCHEMA Schema of the source datastore (resolved at runtime)

WORK_SCHEMA Work schema of the source datastore

TABLE_ALIAS Alias of the datastore as it appears in the tables list, if available

POP_TAB_ALIAS Alias of the datastore as it appears in the current mapping, if available.

Appendix B
Substitution Methods Reference

B-84

Attribute Description

TABLE_TYPE Type of the datastore, if available: Q = Queue, S = Synonym, T = Table, V
= View.

DESCRIPTION Description of the source datastore, if available.

R_COUNT Number of records of the source datastore, if available.

FILE_FORMAT File format, if available: D = Delimited, F = Fixed.

FILE_SEP_FIELD File field separator in character text (for example, tab character).

XFILE_SEP_FIELD File field separator in escaped text (for example, tab character). Line
feed and carriage return is escaped to \r and \n, while unicode
characters are escaped to \uXXXX.

SFILE_SEP_FIELD File field separator in hexadecimal (for example, 09 for the tab
character). The return string can be in two hexadecimal digits or four
hexadecimal digits, and it is two hexadecimal digits while the higher byte
of the field separator is 0.

FILE_ENC_FIELD Text delimiter as shown in the datastore editor (two character
maximum).

FILE_SEP_ROW File record separator in character text.

XFILE_SEP_ROW File record separator in escape text. Line feed and carriage return is
escaped to \r and \n, while unicode characters are escaped to
\uXXXX.

SFILE_SEP_ROW File record separator in hexadecimal. Line feed and carriage return is
escaped to \r and \n, while unicode characters are escaped to
\uXXXX.

FILE_FIRST_ROW Number of header lines to ignore, if available.

FILE_DEC_SEP Default decimal separator for the datastore, if available.

METADATA Description in ODI format of the metadata of the current resource, if
available.

OLAP_TYPE OLAP type of the datatstore: DH = Slowly Changing Dimension, DI =
Dimension, FA = Fact Table, <empty> = Undefined.

IND_JRN Flag indicating whether the datastore is included in CDC: 1 = Yes, 0 =
No.

JRN_ORDER Order of the datastore in the CDC set for consistent journalizing.

PARTITION_NAME Name of the partition or subpartition selected for the source datastore. If
no partition is selected, returns an empty string.

PARTITION_TYPE Type of the partition or subpartition selected for the source datastore. If
no partition is selected, returns an empty string.

• P: Partition
• S: Subpartition

<flexfield code> Flexfield value for the current table.

Examples

insert into <%=odiRef.getTable("L", "COLL_NAME", "W")%>
select <%=odiRef.getColList("", "[EXPRESSION]", ", ", "", "INS=1")%>
from <%=odiRef.getSrcTablesList("", "[CATALOG].[SCHEMA].[TABLE_NAME] AS
[POP_TAB_ALIAS]", ", ", "")%>
where (1=1)
<%=odiRef.getJoinList("and ","([EXPRESSION])"," and ","")%>
<%=odiRef.getFilterList("and ","([EXPRESSION])"," and ","")%>

Appendix B
Substitution Methods Reference

B-85

<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

Explanation: the getSrcTablesList function will be used to generate the FROM clause
of the SELECT STATEMENT that repeats the pattern
(CATALOG.SCHEMA.TABLE_NAME as POP_TAB_ALIAS) separated by commas for
each table in source.

• The first parameter "" of the function indicates that we want do not want to start
the string with any specific character.

• The second parameter "[CATALOG].[SCHEMA].[TABLE_NAME] as
[POP_TAB_ALIAS]" indicates that we want to repeat this pattern for each source
table. The keywords [CATALOG], [SCHEMA], [TABLE_NAME] and
[POP_TAB_ALIAS] reference valid keywords of the table Pattern Attributes List

• The third parameter", " indicates that we want to separate each interpreted
occurrence of the pattern with the string ", "

• The fourth parameter "" of the function indicates that we want to end the string
with no specific character

B.2.60 getStep() Method
Use to return information about the current step.

Usage

public java.lang.String getStep(java.lang.String pPropertyName)

Description

This method returns information about the current step. The list of available
information is described in the pPropertyName values table.

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property.

The following table lists the possible values for pPropertyName:

Parameter Value Description

SESS_NO Number of the session to which the step belongs. This parameter is
deprecated, and included for 11g compatibility only. The ID property
works if the repository is in 11g compatibility mode, but an error
message will be returned if the repository is in 12c mode.

SESS_GUID GUID of the session.

NNO Number of the step in the session

NB_RUN Number of execution attempts

STEP_NAME Step name

STEP_TYPE Step type

CONTEXT_NAME Name of the execution context

Appendix B
Substitution Methods Reference

B-86

Parameter Value Description

VAR_INCR Step variable increment

VAR_OP Operator used to compare the variable

VAR_VALUE Forced value of the variable

OK_EXIT_CODE Exit code in case of success

OK_EXIT End the package in case of success

OK_NEXT_STEP Next step in case of success.

OK_NEXT_STEP_NAM
E

Name of the next step in case of success

KO_RETRY Number of retry attempts in case of failure.

KO_RETRY_INTERV Interval between each attempt in case of failure

KO_EXIT_CODE Exit code in case of failure.

KO_EXIT End the package in case of failure.

KO_NEXT_STEP Next step in case of failure.

KO_NEXT_STEP_NAM
E

Name of the next step in case of failure

Examples

The current step is: <%=odiRef.getStep("STEP_NAME")%>

B.2.61 getSubscriberList() Method
Use to return properties for each of the subscribers of a journalized table. The properties are
organized according to a string pattern.

Usage

public java.lang.String getSubscriberList(java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Alternative syntax:

public java.lang.String getSubscriberList(
java.lang.String pPattern,
java.lang.String pSeparator,

Description

Returns a list of subscribers for a journalized table. The pPattern parameter is interpreted and
then repeated for each element of the list, and separated from its predecessor with the
parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no
element is selected, pStart and pEnd are omitted and an empty string is returned.

In the alternative syntax, any parameters not set are set to an empty string.

Appendix B
Substitution Methods Reference

B-87

Parameters

Parameter Type Description

pStart String This sequence marks the beginning of the string to
generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of the attributes usable in a pattern is detailed in the
Pattern Attributes List below.

Each occurrence of the attributes in the pattern string is
replaced by its value. Attributes must be between brackets
([and])

Example «My name is [SUBSCRIBER]»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This sequence marks the end of the string to generate.

Pattern Attributes List

The following table lists different parameters values as well as their associated
description.

Parameter Value Description

SUBSCRIBER Name of the Subscriber

Examples

Here is list of Subscribers: <%=odiRef.getSubscriberList("\nBegin List\n", "-
[SUBSCRIBER]", "\n", "\nEnd of List\n")%>

B.2.62 getSysDate() Method
Use to return the system date of the machine running the session in a given format.

Usage

public java.lang.String getSysDate()

public java.lang.String getSysDate(pDateFormat)

Description

This method returns the system date of the machine running the session.

Parameters

Parameter Type Description

pDateFormat String Date format used to return the system date. This pattern should
follow the Java Date and Time pattern.

Examples

Current year is: <%=odiRef.getSysDate("y")%>

Appendix B
Substitution Methods Reference

B-88

B.2.63 getTable() Method
Use to return the fully qualified named of a table. This table may be a source or target table,
or one of the temporary or infrastructure table handled by Oracle Data Integrator.

Usage

public java.lang.String getTable(
java.lang.String pMode,
java.lang.String pProperty,
java.lang.String pLocation)

public java.lang.String getTable(
java.lang.String pProperty,
java.lang.String pLocation)

public java.lang.String getTable(
java.lang.String pProperty)

Description

Allows the retrieval of the fully qualified name of temporary and permanent tables handled by
Oracle Data Integrator.

Parameters

Parameters Type Description

pMode String "L": Uses the local object mask to build the complete path of the object. This
value is used when pMode is not specified.

"R": Uses the object mask to build the complete path of the object

"A" Automatic: Defines automatically the adequate mask to use.

Appendix B
Substitution Methods Reference

B-89

Parameters Type Description

pProperty String Parameter that indicates the name of the table to be built. The list of possible
values is:

• ID: Datastore identifier. This parameter is deprecated, and included for
11g compatibility only. The ID property works if the repository is in 11g
compatibility mode, but an error message will be returned if the
repository is in 12c mode.

• GLOBAL_ID: GUID of the target table.
• TARG_NAME: Full name of the target datastore. In actions, this

parameter returns the name of the current table handled by the DDL
command. If partitioning is used on the target datastore of a mapping,
this property automatically includes the partitioning clause in the
datastore name.

• COLL_NAME: Full name of the loading datastore.
• INT_NAME: Full name of the integration datastore.
• ERR_NAME: Full name of the error datastore.
• CHECK_NAME: Name of the error summary datastore.
• CT_NAME: Full name of the checked datastore.
• FK_PK_TABLE_NAME: Full name of the datastore referenced by a

foreign key.
• JRN_NAME: Full name of the journalized datastore.
• JRN_VIEW: Full name of the view linked to the journalized datastore.
• JRN_DATA_VIEW: Full name of the data view linked to the journalized

datastore.
• JRN_TRIGGER: Full name of the trigger linked to the journalized

datastore.
• JRN_ITRIGGER: Full name of the Insert trigger linked to the journalized

datastore.
• JRN _UTRIGGER: Full name of the Update trigger linked to the

journalized datastore.
• JRN_DTRIGGER: Full name of the Delete trigger linked to the

journalized datastore.
• SUBSCRIBER_TABLE: Full name of the datastore containing the

subscribers list.
• CDC_SET_TABLE: Full name of the table containing list of CDC sets.
• CDC_TABLE_TABLE: Full name of the table containing the list of tables

journalized through CDC sets.
• CDC_SUBS_TABLE: Full name of the table containing the list of

subscribers to CDC sets.
• CDC_OBJECTS_TABLE: Full name of the table containing the

journalizing parameters and objects.
• <flexfield_code>: Flexfield value for the current target table.

pLocation String W: Returns the full name of the object in the physical catalog and the physical
work schema that corresponds to the current tuple (context, logical schema)

D: Returns the full name of the object in the physical catalog and the physical
data schema that corresponds to the current tuple (context, logical schema)

A: Lets Oracle Data Integrator determine the default location of the object.
This value is used if pLocation is not specified.

Examples

If you have defined a physical schema called Pluton.db_odi.dbo as shown below:

Appendix B
Substitution Methods Reference

B-90

Property Value

Data catalog: db_odi

Data schema: dbo

Work catalog: tempdb

Work schema: temp_owner

Local Mask: %CATALOG.%SCHEMA.%OBJECT

Remote mask: %DSERVER:%CATALOG.%SCHEMA.%OBJECT

Loading prefix: CZ_

Error prefix: ERR_

Integration prefix: I$_

You have associated this physical schema to the logical schema called MSSQL_ODI in the
context CTX_DEV and your working with a table is named CUSTOMER.

A Call To Returns

<%=odiRef.getTable("L", "COLL_NAME", "W")%> tempdb.temp_owner.CZ_0CUSTOMER

<%=odiRef.getTable("R", "COLL_NAME", "D")%> MyServer:db_odi.dbo.CZ_0CUSTOMER

<%=odiRef.getTable("L", "INT_NAME", "W")%> tempdb.temp_owner.I$_CUSTOMER

<%=odiRef.getTable("R", "ERR_NAME", "D")%> MyServer:db_odi.dbo.ERR_CUSTOMER

B.2.64 getTargetColList() Method
Use to return information about the active attributes of the target table of a mapping. Active
attributes are those having an active mapping. To return information about all attributes of the
target table, including active and non-active attributes, use the getAllTargetColList() Method.

Usage

public java.lang.String getTargetColList(java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd,
java.lang.String pSelector)

Alternative syntaxes:

public java.lang.String getTargetColList(java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

public java.lang.String getTargetColList(java.lang.String pPattern,
java.lang.String pSeparator)

Description

Provides a list of attributes for the mapping's target table.

The pPattern parameter is interpreted and then repeated for each element of the list
(selected according to pSelector parameter) and separated from its predecessor with the

Appendix B
Substitution Methods Reference

B-91

parameter pSeparator. The generated string begins with pStart and ends with pEnd. If
no element is selected, pStart and pEnd are omitted and an empty string is returned.

In the alternative syntaxes, any parameters not set are set to an empty string.

Parameters

Parameters Type Description

pStart String This sequence marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of the attributes usable in a pattern is detailed in the
Pattern Attributes List below.

Each occurrence of the attributes in the pattern string is replaced
by its value. Attributes must be between brackets ([and])

Example «My string [COL_NAME] is an attribute of the target»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This sequence marks the end of the string to generate.

pSelector String String that designates a Boolean expression that allows to filter the
elements of the initial list with the following format:

<SELECTOR> <Operator> <SELECTOR> etc. Parenthesis are
authorized.

Authorized operators:

1. No: NOT or!

2. Or: OR or ||

3. And: AND or &&

Example: (INS AND UPD) OR TRG

The description of valid selectors is provided below.

Pattern Attributes List

The following table lists different parameters values as well as their associated
description.

Parameter Value Description

I_COL Internal identifier of the attribute

COL_NAME Name of the attribute

COL_HEADING Header of the attribute

COL_DESC Description of the attribute

POS Position of the attribute

LONGC Attribute length (Precision)

SCALE Scale of the attribute

FILE_POS Beginning (index) of the attribute

BYTES Number of physical bytes in the attribute

FILE_END_POS End of the attribute (FILE_POS + BYTES)

IND_WRITE Write right flag of the attribute

Appendix B
Substitution Methods Reference

B-92

Parameter Value Description

COL_MANDATORY Mandatory character of the attribute. Valid values are:

• 0: null authorized
• 1: not null

CHECK_FLOW Flow control flag of the attribute. Valid values are: (0: do not
check, 1: check)

• 0: do not check
• 1: check

CHECK_STAT Static control flag of the attribute. Valid values are: (0: do not
check, 1: check)

• 0: do not check
• 1: check

COL_FORMAT Logical format of the attribute

COL_DEC_SEP Decimal symbol of the attribute

REC_CODE_LIST List of the record codes retained in the attribute

COL_NULL_IF_ERR Processing flag of the attribute. Valid values are: (0 = Reject, 1 =
Set to null active trace, 2= set to null inactive trace)

• 0: Reject
• 1: Set to null active trace
• 2: Set to null inactive trace

DEF_VALUE Default value of the attribute

ALIAS_SEP Separator used for the alias (from the technology)

SOURCE_DT Code of the attribute's datatype.

SOURCE_CRE_DT Create table syntax for the attribute's datatype.

SOURCE_WRI_DT Create table syntax for the attribute's writable datatype.

DEST_DT Code of the attribute's datatype converted to a datatype on the
target technology.

DEST_CRE_DT Create table syntax for the attribute's datatype converted to a
datatype on the target technology.

DEST_WRI_DT Create table syntax for the attribute's writable datatype converted
to a datatype on the target technology.

SCD_COL_TYPE Behavior defined for the Slowly Changing Dimensions for this
attribute in the data model.

MANDATORY_CLAUSE Returns NOT NULL is the attribute is mandatory. Otherwise,
returns the null keyword for the technology.

DEFAULT_CLAUSE Returns DEFAULT <default value> if any default value exists.
Otherwise, returns and empty string.

JDBC_TYPE Data Services - JDBC Type of the attribute returned by the driver.

<flexfield code> Flexfield value for the current attribute.

Selectors Description

Parameter Value Description

INS • LKM: Not applicable
• IKM: Only for mapping expressions marked with insertion
• CKM: Not applicable

Appendix B
Substitution Methods Reference

B-93

Parameter Value Description

UPD • LKM: Not applicable
• IKM: Only for the mapping expressions marked with update
• CKM: Non applicable

TRG • LKM: Not applicable
• IKM: Only for the mapping expressions executed on the target
• CKM: Mapping expressions executed on the target.

NULL • LKM: Not applicable
• IKM: All mapping expressions loading not nullable attributes
• CKM: All target attributes that do not accept null values

PK • LKM: Not applicable
• IKM: All mapping expressions loading the primary key attributes
• CKM: All the target attributes that are part of the primary key

UK • LKM: Not applicable.
• IKM: All the mapping expressions loading the update key attribute chosen

for the current mapping.
• CKM: Not applicable.

REW • LKM: Not applicable.
• IKM: All the mapping expressions loading the attributes with read only

flag not selected.
• CKM: All the target attributes with read only flag not selected.

MAP • LKM: Not applicable
• IKM: Not applicable
• CKM:
Flow control: All attributes of the target table loaded with expressions in the
current mapping.

Static control: All attributes of the target table.

SCD_SK LKM, CKM, IKM: All attributes marked SCD Behavior: Surrogate Key in the
data model definition.

SCD_NK LKM, CKM, IKM: All attributes marked SCD Behavior: Natural Key in the data
model definition.

SCD_UPD LKM, CKM, IKM: All attributes marked SCD Behavior: Overwrite on Change in
the data model definition.

SCD_INS LKM, CKM, IKM: All attributes marked SCD Behavior: Add Row on Change in
the data model definition.

SCD_FLAG LKM, CKM, IKM: All attributes marked SCD Behavior: Current Record Flag in
the data model definition.

SCD_START LKM, CKM, IKM: All attributes marked SCD Behavior: Starting Timestamp in
the data model definition.

SCD_END LKM, CKM, IKM: All attributes marked SCD Behavior: Ending Timestamp in
the data model definition.

WS_INS SKM: The attribute is flagged as allowing INSERT using Data Services.

WS_UPD SKM: The attribute is flagged as allowing UDATE using Data Services.

WS_SEL SKM: The attribute is flagged as allowing SELECT using Data Services.

Examples

create table TARGET_COPY <%=odiRef.getTargetColList("(", "[COL_NAME] [DEST_DT]
null", ", ", ")", "")%>

Appendix B
Substitution Methods Reference

B-94

B.2.65 getTableName() Method
Use to return an unsolved string which indicates the name and type of the table.

Usage

public java.lang.String getTableName(
java.lang.String pProperty)

Description

This method returns an unsolved string which has a prefix indicating the type of table. The
rest of the string indicates the name of the table.

Parameters

Parameters Type Description

pProperty String Parameter that indicates the name of the table to retrieve. The list of
possible values is:

• INT_SHORT_NAME: Name of the integration table.
• COLL_SHORT_NAME: Name of the loading table.
• CT_SHORT_NAME: Name of the integration table. If the mapping

uses flow control, returns the same value as INT_SHORT_NAME.
If the mapping uses static control, returns the target table name
<table name>.

• ERR_SHORT_NAME: Name of the error table.

Examples

<%=odiRef.getObjectName("L", odiRef.getTableName("COLL_SHORT_NAME"), "W")%>
<%=odiRef.getObjectShortName("L", odiRef.getTableName("INT_SHORT_NAME"), "W")%>

B.2.66 getTargetTable() Method
Use to return information about the target table of a mapping.

Usage

public java.lang.String getTargetTable(java.lang.String pPropertyName)

Description

This method returns information about the current target table. The list of available data is
described in the pPropertyName values table.

In an action, this method returns information on the table being processed by the DDL
command.

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property.

The following table lists the possible values for pPropertyName:

Appendix B
Substitution Methods Reference

B-95

Parameter Value Description

I_TABLE Internal identifier of the datastore. This parameter is deprecated, and
included for 11g compatibility only. The ID property works if the
repository is in 11g compatibility mode, but an error message will be
returned if the repository is in 12c mode.

TABLE_GUID GUID of the target table.

MODEL_NAME Name of the model of the current datastore.

SUB_MODEL_NAME Name of the sub-model of the current datastore.

TECHNO_NAME Name of the target technology.

LSCHEMA_NAME Name of the target logical schema.

TABLE_NAME Name of the target datastore.

RES_NAME Physical name of the target resource.

CATALOG Catalog name.

WORK_CATALOG Name of the work catalog.

SCHEMA Schema name

WORK_SCHEMA Name of the work schema.

TABLE_ALIAS Alias of the current datastore.

TABLE_TYPE Type of the datastore.

DESCRIPTION Description of the current mapping.

TABLE_DESC Description of the current mapping's target datastore. For a DDL
command, description of the current table.

R_COUNT Number of lines of the current datastore.

FILE_FORMAT Format of the current datastore (file)

FILE_SEP_FIELD Field separator (file)

XFILE_SEP_FIELD Hexadecimal field separator (file)

SFILE_SEP_FIELD Field separator string (file)

FILE_ENC_FIELD Field beginning and ending character (file)

FILE_SEP_ROW Record separator (file)

XFILE_SEP_ROW Hexadecimal record separator (file)

SFILE_SEP_ROW Record separator string (file)

FILE_FIRST_ROW Number of lines to ignore at the beginning of the file (file)

FILE_DEC_SEP Decimal symbol (file)

METADATA_DESC Description of the metadata of the datastore (file)

OLAP_TYPE OLAP type specified in the datastore definition

IND_JRN Flag indicating that the datastore is including in CDC.

JRN_ORDER Order of the datastore in the CDC set for consistent journalizing.

WS_NAME Data Services - Name of the Web service generated for this
datastore's model.

WS_NAMESPACE Data Services - XML namespace of the web Service.

WS_JAVA_PACKAGE Data Services - Java package generated for the web Service.

WS_ENTITY_NAME Data Services - Entity name used for this datastore in the web service.

WS_DATA_SOURCE Data Services - Datasource specified for this datastore's web service.

Appendix B
Substitution Methods Reference

B-96

Parameter Value Description

PARTITION_NAME Name of the partition or subpartition selected for the target datastore.
If no partition is selected, returns an empty string.

PARTITION_TYPE Type of the partition or subpartition selected for the target datastore. If
no partition is selected, returns an empty string.

• P: Partition
• S: Subpartition

<flexfield code> Flexfield value for the current table.

Examples

The current table is: <%=odiRef.getTargetTable("RES_NAME")%>

B.2.67 getTemporaryIndex() Method
Use to return information about a temporary index defined for optimizing a join or a filter in a
mapping.

Usage

public java.lang.String getTemporaryIndex(java.lang.String pPropertyName)

Description

This method returns information relative to a temporary index being created or dropped by a
mapping.

It can be used in a Loading or Integration Knowledge Module task if the Create Temporary
Index option is set to On Source or On Target for this task.

Parameters

Parameter Type Description

pPropertyName String String containing the name of the requested property.

The following table lists the different possible values for pPropertyName.

Parameter Value Description

IDX_NAME Name of the index. This name is computed and prefixed with the temporary
index prefix defined for the physical schema.

FULL_IDX_NAME Fully qualified name of the index. On the target tab, this name is qualified to
create the index in the work schema of the staging area. On the source tab,
this name is qualified to create the index in the source default work schema
(LKM) or in the work schema of the staging area (IKM).

COLL_NAME Fully qualified name of the loading table for an LKM. This property does not
apply to IKMs.

CATALOG Catalog containing the table to be indexed.

SCHEMA Schema containing the table to be indexed.

WORK_CATALOG Work catalog for the table to be indexed.

WORK_SCHEMA Work schema for the table to be indexed.

Appendix B
Substitution Methods Reference

B-97

Parameter Value Description

DEF_CATALOG Default catalog containing the table to be indexed.

DEF_SCHEMA Default schema containing the table to be indexed.

DEF_WORK_CATALOG Default work catalog for the table to be indexed.

DEF_WORK_SCHEMA Default work schema for the table to be indexed.

DEF_WORK_SCHEMA Default work schema for the table to be indexed.

LSCHEMA_NAME Logical schema of the table to be indexed.

TABLE_NAME Name of the table to be indexed.

FULL_TABLE_NAME Fully qualified name of the table to be indexed.

INDEX_TYPE_CODE Code representing the index type.

INDEX_TYPE_CLAUSE Clause for creating an index of this type.

POP_TYPE_CLAUSE Type of the clause for which the index is generated:

• J: Join.
• F: Filter.

EXPRESSION Expression of the join or filer clause. Use for debug purposes.

Examples

Create <%=odiRef.getTemporaryIndex (" [INDEX_TYPE_CLAUSE] index [FULL_IDX_NAME]
on [FULL_TABLE_NAME] ")%><%=odiRef.getTemporaryIndexColList("(", "[COL_NAME]",
", ", ")")%>

B.2.68 getTemporaryIndexColList() Method
Use to return information about the columns of a temporary index for a mapping.

Usage

public java.lang.String getTemporaryIndexColList(java.lang.String pStart,
java.lang.String pPattern,
java.lang.String pSeparator,
java.lang.String pEnd)

Description

Returns a list of columns of a temporary index.

The parameter pPattern is interpreted and repeated for each element of the list, and
separated from its predecessor with the parameter pSeparator. The generated string
begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are
omitted and an empty string is returned.

This list contains one element for each column of the temporary index.

It can be used in a Loading or Integration Knowledge Module task if the Create
Temporary Index option is set to On Source or On Target for this task.

Appendix B
Substitution Methods Reference

B-98

Parameters

Parameter Type Description

Parameter Type Description

pStart String This parameter marks the beginning of the string to generate.

pPattern String The pattern is repeated for each occurrence in the list.

The list of possible attributes in a pattern is detailed in the Pattern
Attributes List below.

Each attribute occurrence in the pattern string is substituted with its
value. The attributes must be between brackets ([and])

Example «My string [COL_NAME] is an attribute»

pSeparator String This parameter separates each pattern from its predecessor.

pEnd String This parameter marks the end of the string to generate.

Pattern Attributes List

The following table lists the different values of the parameters as well as the associated
description.

Parameter Value Description

CX_COL_NAME Computed name of the attribute used as a container for the current expression
on the staging area

COL_NAME Name of the attribute participating to the index.

POS Position of the first occurrence of this attribute in the join or filter clause this
index optimizes.

Examples

Create <%=odiRef.getTemporaryIndex (" [INDEX_TYPE_CLAUSE] index [FULL_IDX_NAME] on
[FULL_TABLE_NAME] ")%><%=odiRef.getTemporaryIndexColList("(", "[COL_NAME]", ", ", ")")
%>

B.2.69 getUser() Method
Use to return information about the user running the current session.

Usage

public java.lang.String getUser(java.lang.String pPropertyName)

Description

This method returns information about the user executing the current session. The list of
available properties is described in the pPropertyName values table.

Parameters

Parameter Type Description

pPropertyName String String that contains the name of the requested property.

Appendix B
Substitution Methods Reference

B-99

The following table lists the different possible values for pPropertyName:

Parameter Value Description

Parameter Value Description

I_USER User identifier. This parameter is deprecated, and included for 11g
compatibility only. The ID property works if the repository is in 11g
compatibility mode, but an error message will be returned if the
repository is in 12c mode.

USER_GUID GUID of the user.

USER_NAME User name

IS_SUPERVISOR Boolean flag indicating if the user is supervisor (1) or not (0).

Examples

This execution is performed by <%=odiRef.getUser("USER_NAME")%>

B.2.70 getVersion() Method
Use to return the current version of ODI.

Usage

public java.lang.String getVersion()

Description

This method returns the full version number for the running ODI installation.

Examples

The KM text:

This execution is performed in <%=odiRef.getVersion()%>

would return:

This execution is performed in 12.1.3.0.0

B.2.71 hasPK() Method
Use to return whether if the current datastore has a primary key.

Usage

public java.lang.Boolean hasPK()

Description

This method returns a boolean. The returned value is true if the datastore for which a
web service is being generated has a primary key.

This method can only be used in SKMs.

Appendix B
Substitution Methods Reference

B-100

Examples

<% if (odiRef.hasPK()) { %>

 There is a PK :

 <%=odiRef.getPK("KEY_NAME")%> : <%=odiRef.getPKColList("{",
 "\u0022[COL_NAME]\u0022", ", ", "}")%>

<% } else {%>

 There is NO PK.

<% } %>

B.2.72 isColAttrChanged() Method
Use to return whether a column attribute or comment is changed.

Usage

public java.lang.Boolean
isColAttrChanged(java.lang.String pPropertyName)

Description

This method is usable in a column action for altering a column attribute or comment. It returns
a boolean indicating if the column attribute passed as a parameter has changed.

Parameters

Parameter Type Description

pPropertyName String Attribute code (see below).

The following table lists the different possible values for pPropertyName

Parameter Value Description

DATATYPE Column datatype, length or precision change.

LENGTH Column length change (for example, VARCHAR(10) changes to
VARCHAR(12)).

PRECISION Column precision change (for example, DECIMAL(10,3) changes to
DECIMAL(10,4)).

COMMENT Column comment change.

NULL_TO_NOTNULL Column nullable attribute change from NULL to NOT NULL.

NOTNULL_TO_NULL Column nullable attribute change from NOT NULL to NULL.

NULL Column nullable attribute change.

DEFAULT Column default value change.

Appendix B
Substitution Methods Reference

B-101

Examples

<% if (odiRef.IsColAttrChanged("DEFAULT")) { %>
 /* Column default attribute has changed. */
<% } %>

B.2.73 isVersionCompatible() Method
Use to check if the current version of ODI is compatible with the provided version.
Version VER1 is compatible with version VER2 if VER1 > VER2 (for example,
12.1.3.0.0 > 11.1.1.7.0).

Usage

public boolean isVersionCompatible(java.lang.String compatibleVersion)

Description

This method returns true if the given version is compatible with the current version of
the product. Version VER1 is compatible with version VER2 if VER1 > VER2 (for
example, 12.1.3.0.0 > 11.1.1.7.0).

Examples

The KM text:

This version is compatible to 11.1.1.7.0:
<%=odiRef.isVersionCompatible("11.1.1.7.0") %>

would return:

This version is compatible to 11.1.1.7.0: true

B.2.74 nextAK() Method
Use to move to the next alternate key for a datastore.

Usage

public java.lang.Boolean nextAK()

Description

This method moves to the next alternate key (AK) of the datastore for which a Web
service is being generated.

When first called, this method returns true and positions the current AK to the first AK
of the datastore. If there is no AK for the datastore, it returns false.

Subsequent calls position the current AK to the next AKs of the datastore, and return
true. If the is no next AK, the method returns false.

This method can be used only in SKMs.

Appendix B
Substitution Methods Reference

B-102

Examples

In the example below, we iterate of all the AKs of the datastore. In each iteration of the while
loop, the getAK and getAKColList methods return information on the various AKs of the
datastore.

<% while (odiRef.nextAK()) { %>
 <%=odiRef.getAK("KEY_NAME")%>
 Columns <%=odiRef.getAKColList("{", "\u0022[COL_NAME]\u0022", ",
 ", "}")%>
 Message : <%=odiRef.getAK("MESS")%>
<% } %>

B.2.75 nextCond() Method
Use to move to the next condition for a datastore.

Usage

public java.lang.Boolean nextCond()

Description

This method moves to the next condition (check constraint) of the datastore for which a Web
service is being generated.

When first called, this method returns true and positions the current condition to the first
condition of the datastore. If there is no condition for the datastore, it returns false.

Subsequent calls position the current condition to the next conditions of the datastore, and
return true. If the is no next condition, the method returns false.

This method can be used only in SKMs.

Examples

In the example below, we iterate of all the conditions of the datastore. In each iteration of the
while loop, the getCK method return information on the various conditions of the datastore.

<% while (odiRef.nextCond()) { %>
 <%=odiRef.getCK("COND_NAME")%>
 SQL :<%=odiRef.getCK("COND_SQL")%>
 MESS :<%=odiRef.getCK("MESS")%>
<% } %>

B.2.76 nextFK() Method
Use to move to the next foreign key for a datastore.

Usage

public java.lang.Boolean nextFK()

Description

This method moves to the next foreign key (FK) of the datastore for which a Web service is
being generated.

Appendix B
Substitution Methods Reference

B-103

When first called, this method returns true and positions the current FK to the first FK
of the datastore. If there is no FK for the datastore, it returns false.

Subsequent calls position the current FK to the next FKs of the datastore, and return
true. If the is no next FK, the method returns false.

This method can be used only in SKMs.

Examples

In the example below, we iterate of all the FKs of the datastore. In each iteration of the
while loop, the getFK and getFKColList methods return information on the various
FKs of the datastore.

<% while (odiRef.nextFK()) { %>
 FK : <%=odiRef.getFK("FK_NAME")%>
 Referenced Table : <%=odiRef.getFK("PK_TABLE_NAME")%>
 Columns <%=odiRef.getFKColList("{", "\u0022[COL_NAME]\u0022", ",
 ", "}")%>
 Message : <%=odiRef.getFK("MESS")%>
<% } %>

B.2.77 setNbInsert(), setNbUpdate(), setNbDelete(), setNbErrors() and
setNbRows() Methods

Use to set the number of inserted, updated, deleted or erroneous rows for the current
task.

Usage

public java.lang.Void setNbInsert(public java.lang.Long)

public java.lang.Void setNbUpdate(public java.lang.Long)

public java.lang.Void setNbDelete(public java.lang.Long)

public java.lang.Void setNbErrors(public java.lang.Long)

public java.lang.Void setNbRows(public java.lang.Long)

Description

These methods set for the current task report the values for:

• the number of rows inserted (setNbInsert)

• the number of rows updated (setNbUpdate)

• the number of rows deleted (setNbDelete)

• the number of rows in error (setNbErrors)

• total number of rows handled during this task (setNbRows)

These numbers can be set independently from the real number of lines processed.

Appendix B
Substitution Methods Reference

B-104

Note:

This method can be used only within scripting engine commands, such as in Jython
code, and should not be enclosed in <%%> tags.

Examples

In the Jython example below, we set the number of inserted rows to the constant value of 50,
and the number of erroneous rows to a value coming from an ODI variable called
#DEMO.NbErrors.

InsertNumber=50

odiRef.setNbInsert(InsertNumber)

ErrorNumber=#DEMO.NbErrors

odiRef.setNbErrors(ErrorNumber)

B.2.78 setTableName() Method
Use to set the name of the loading or integration table.

Usage

public java.lang.Void setTableName(
java.lang.String pProperty,
java.lang.String pTableName)

Description

This method sets the name of temporary table used for loading or integration. this name can
be any value.

When using the method, the loading or integration table name is no longer generated by ODI
and does not follow the standard naming convention (for example, a loading table will not be
prefixed with a C$ prefix). Yet, other methods using this table name will return the newly set
value.

The fist parameter pProperty indicates the temporary table name to set. The second
parameter can be any valid table name.

Parameters

Parameters Type Description

pProperty String Parameter that indicates the table name to set. The list of possible
values is:

• INT_SHORT_NAME: Name of the integration table.
• COLL_SHORT_NAME: Name of the loading table.

pTableName String New name for the temporary table.

Appendix B
Substitution Methods Reference

B-105

Examples

<% odiRef.setTableName("COLL_SHORT_NAME", "C" + getInfo("I_SRC_SET")) %>

<% odiRef.setTableName("COLL_SHORT_NAME", odiRef.getOption("Flow # ") +
odiRef.getTable("ID")) %>

B.2.79 setTaskName() Method
Use to set the name of a session task in a Knowledge Module, Procedure, or action.

Usage

public java.lang.String setTaskName(
java.lang.String taskName)

Description

This method sets the name of a task to the taskName value. This value is set at run-
time. This method is available in all Knowledge Modules, procedures, and actions
(Global Methods).

Parameters

Parameter
s

Type Description

taskName String Parameter that indicates the task name to set. If this vlaue is empty, the
task remains the one defined in the Knowledge Module or Procedure
task.

Examples

<$=odiRef.setTaskName("Create Error Table " +
"<%=odiRef.getTable("L","ERR_NAME","W")%>") $>
<$=odiRef.setTaskName("Insert Error for " + "<%=odiRef.getFK("FK_NAME")%>") $>
<$=odiRef.setTaskName("Loading " + "<%=odiRef.getTable("L", "COLL_NAME", "W")%>"
+ " from " + "<%=odiRef.getSrcTablesList("", "RES_NAME", ",", ".")%>") $>

Appendix B
Substitution Methods Reference

B-106

C
SNP_REV Tables Reference

The Oracle Data Integrator SNP_REV tables are stored in a design-time repository and are
used as staging tables for model metadata.
Customized Reverse-engineering processes load these tables before integrating their content
into the repository tables describing the models.

See Reverse-Engineering Strategies for more information.

This appendix includes the following sections:

• SNP_REV_SUB_MODEL

• SNP_REV_TABLE

• SNP_REV_COL

• SNP_REV_KEY

• SNP_REV_KEY_COL

• SNP_REV_JOIN

• SNP_REV_JOIN_COL

• SNP_REV_COND

C.1 SNP_REV_SUB_MODEL
SNP_REV_SUB_MODEL describes the sub-models hierarchy to reverse-engineer.

Column Type Mandatory Description

I_MOD numeric(10) Yes Model ID

SMOD_CODE varchar(35) Yes Sub-model code

SMOD_NAME varchar(400) No Sub-model name

SMOD_PARENT_COD
E

varchar(35) No Parent sub-model code

IND_INTEGRATION varchar(1) No Deprecated.

TABLE_NAME_PATTER
N

varchar(35) No Automatic assignment mask used to distribute
datastores in this sub-model

REV_APPY_PATTERN varchar(1) No Datastores distribution rule:

• 0: No distribution
• 1: Automatic distribution of all datastores

not already in a sub-model
• 2: Automatic distribution of all datastores

REV_PATTERN_ORDE
R

varchar(10) No Order into which the pattern is applied.

C-1

C.2 SNP_REV_TABLE
SNP_REV_TABLE describes the datastores (tables, views, etc.) to reverse-engineer.

Column Type Mandatory Description

I_MOD numeric(10) Yes Model ID

TABLE_NAME varchar(128) Yes Datastore name

RES_NAME varchar(400) No Resource Name: Physical table or file name.

TABLE_ALIAS varchar(128) No Default datastore alias

TABLE_TYPE varchar(2) No Datastore type:

• T: Table or File
• V: View
• Q: Queue
• AT: Table Alias
• SY: Synonym
• ST: System Table

TABLE_DESC varchar(250) No Datastore description

IND_SHOW varchar(1) No Datastore visibility:

• 0: Hidden
• 1: Displayed

R_COUNT numeric(10) No Estimated row count

FILE_FORMAT varchar(1) No Record format (applies only to files and JMS
messages):

• D: Delimited file
• F: Fixed length file

FILE_SEP_FIE
LD

varchar(24) No Field separator (only applies to files and JMS
messages)

FILE_ENC_FIE
LD

varchar(2) No Text delimiter (only applies to files and JMS
messages)

FILE_SEP_RO
W

varchar(24) No Record separator (only applies to files and JMS
messages)

FILE_FIRST_R
OW

numeric(10) No Number of header records to skip (only applies
to files and JMS messages)

FILE_DEC_SE
P

varchar(1) No Default decimal separator for numeric fields of
the file (only applies to files and JMS messages)

SMOD_CODE varchar(35) No Code of the sub-model containing this datastore.
If null, the datastore is in the main model.

OLAP_TYPE varchar(2) No OLAP Type:

• DH : Slowly Changing Dimension
• DI : Dimension
• FA : Fact Table

WS_NAME varchar(400) No Data service name.

WS_ENTITY_N
AME

varchar(400) No Data service entity name.

Appendix C
SNP_REV_TABLE

C-2

Column Type Mandatory Description

SUB_PARTITIO
N_METH

varchar(1) No Partitioning method:

• H: Hash
• R: Range
• L: List

PARTITION_M
ETH

varchar(1) No Subpartitioning method:

• H: Hash
• R: Range
• L: List

C.3 SNP_REV_COL
SNP_REV_COL lists the datastore attributes to reverse-engineer.

Column Type Mandatory Description

I_MOD numeric(10) Yes Model ID

TABLE_NAME varchar(128) Yes Datastore name

COL_NAME varchar(128) Yes Attribute name

COL_HEADING varchar(128) No Short description of the attribute

COL_DESC varchar(250) No Long description of the attribute

DT_DRIVER varchar(35) No Data type of the attribute. This data type should match
the data type code as defined in Oracle Data Integrator
Topology for this technology

POS numeric(10) No Position of the attribute (not used for fixed length
attributes of files)

LONGC numeric(10) No Logical length of the attribute (precision for numeric)

SCALEC numeric(10) No Logical scale of the attribute

FILE_POS numeric(10) No Starting position of the attribute (used only for fixed
length files)

BYTES numeric(10) No Number of physical bytes to read from file (not used for
table attributes)

IND_WRITE varchar(1) No 1/0 to indicate whether the attribute is writable.

COL_MANDATO
RY

varchar(1) No 1/0 to indicate whether the attribute is mandatory.

CHECK_FLOW varchar(1) No 1/0 to indicate whether to include the mandatory
constraint check by default in the static control.

CHECK_STAT varchar(1) No 1/0 to indicate whether to include the mandatory
constraint check by default in the static control.

COL_FORMAT varchar(35) No Attribute format. Typically this field applies only to files
and JMS messages to define the date format.

COL_DEC_SEP varchar(1) No Decimal separator for the attribute (applies only to files
and JMS messages)

REC_CODE_LI
ST

varchar(250) No Record code to filter multiple record files (applies only to
files and JMS messages)

Appendix C
SNP_REV_COL

C-3

Column Type Mandatory Description

COL_NULL_IF_
ERR

varchar(1) No Indicate behavior in case of error with this attribute:

• 0: Reject Error
• 1: Null if error (inactive trace)
• 2: Null if error (active trace)

DEF_VALUE varchar(100) No Default value for this attribute.

SCD_COL_TYP
E

varchar(2) No Slowly Changing Dimension type:

• CR: Current Record Flag
• ET: Ending Timestamp
• IR: Add Row on Change
• NK: Natural Key
• OC: Overwrite on Change
• SK: Surrogate Key
• ST: Starting Timestamp

IND_WS_SELE
CT

varchar(2) No 0/1 to indicate whether this attribute is selectable using
data services

IND_WS_UPDA
TE

varchar(2) No 0/1 to indicate whether this attribute is updatable using
data services

IND_WS_INSE
RT

varchar(2) No 0/1 to indicate whether data can be inserted into this
attribute using data services

C.4 SNP_REV_KEY
SNP_REV_KEY describes the datastore primary keys, alternate keys and indexes to
reverse-engineer.

Column Type Mandator
y

Description

I_MOD numeric(10) Yes Model ID

TABLE_NAME varchar(128) Yes Name of the datastore containing this
constraint

KEY_NAME varchar(128) Yes Key or index name

CONS_TYPE varchar(2) Yes Key type:

• PK: Primary key
• AK: Alternate key
• I: Index

IND_ACTIVE varchar(1) No 0/1 to indicate whether this constraint is active.

CHECK_FLOW varchar(1) No 1/0 to indicate whether to include this
constraint check by default in the flow control.

CHECK_STAT varchar(1) No 1/0 to indicate whether to include this
constraint check by default in the static control.

C.5 SNP_REV_KEY_COL
SNP_REV_KEY_COL lists the attributes participating to the primary keys, alternate
keys and indexes to reverse-engineer.

Appendix C
SNP_REV_KEY

C-4

Column Type Mandatory Description

I_MOD numeric(10) Yes Model ID

TABLE_NAME varchar(128) Yes Name of the datastore containing this constraint

KEY_NAME varchar(128) Yes Key or index name

COL_NAME varchar(128) Yes Name of the attribute in the key or index

POS numeric(10) No Position of the attribute in the key

C.6 SNP_REV_JOIN
SNP_REV_JOIN describes the datastore references (foreign keys) to reverse-engineer.

Column Type Mandatory Description

I_MOD numeric(10) Yes Model ID

FK_NAME varchar(128) Yes Reference (foreign key) name

TABLE_NAME varchar(128) Yes Name of the referencing table

FK_TYPE varchar(1) No Reference type:

• D: Database reference
• U: User-defined reference
• C: Complex user reference

PK_CATALOG varchar(128) No Catalog of the referenced table (if different from the
catalog of the referencing table)

PK_SCHEMA varchar(128) No Schema of the referenced table (if different from the
schema of the referencing table)

PK_TABLE_NAM
E

varchar(128) No Name of the referenced table

IND_ACTIVE varchar(1) No 0/1 to indicate whether this constraint is active.

CHECK_FLOW varchar(1) No 1/0 to indicate whether to include this constraint
check by default in the flow control.

CHECK_STAT varchar(1) No 1/0 to indicate whether to include this constraint
check by default in the static control.

DEFER varchar(1) No Deferred constraint:

• D : Deferrable
• I : Immediate
• N: Not Deferrable
Not that this field is not used.

UPD_RULE varchar(1) No On Update behavior:

• C: Cascade
• N: No Action
• R : Restrict
• S : Set Null

DEL_RULE varchar(1) No On Delete behavior:

• C: Cascade
• N: No Action
• R : Restrict
• S : Set Null

Appendix C
SNP_REV_JOIN

C-5

C.7 SNP_REV_JOIN_COL
SNP_REV_JOIN_COL lists the matching attributes participating to the references
(foreign keys) to reverse-engineer.

Column Type Mandatory Description

I_MOD numeric(10) Yes Model ID

FK_NAME varchar(128) Yes Reference (foreign key) name

FK_COL_NAME varchar(128) Yes Name of the attribute in the referencing table

FK_TABLE_NAM
E

varchar(128) No Name of the referencing table

PK_COL_NAME varchar(128) Yes Name of the attribute in the referenced table

PK_TABLE_NAM
E

varchar(128) No Name of the referenced table

POS numeric(10) No Position of the attribute in the reference

C.8 SNP_REV_COND
SNP_REV_COND describes the datastore condition and filters to reverse-engineer.

Column Type Mandatory Description

I_MOD numeric(10) Yes Model ID

TABLE_NAME varchar(128) Yes Name of the datastore containing this
constraint

COND_NAME varchar(128) Yes Condition or check constraint name

COND_TYPE varchar(1) Yes Condition type:

• C: Oracle Data Integrator condition
• D: Database condition
• F: Filter

COND_SQL varchar(250) No SQL expression for applying this condition
or filter

COND_MESS varchar(250) No Error message for this condition

IND_ACTIVE varchar(1) No 0/1 to indicate whether this constraint is
active.

CHECK_FLOW varchar(1) No 1/0 to indicate whether to include this
constraint check by default in the flow
control.

CHECK_STAT varchar(1) No 1/0 to indicate whether to include this
constraint check by default in the static
control.

Appendix C
SNP_REV_JOIN_COL

C-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Knowledge Modules
	1.1 What is a Knowledge Module?
	1.2 Reverse-Engineering Knowledge Modules (RKM)
	1.3 Check Knowledge Modules (CKM)
	1.4 Loading Knowledge Modules (LKM)
	1.5 Integration Knowledge Modules (IKM)
	1.6 Extract Knowledge Modules (XKM)
	1.7 Journalizing Knowledge Modules (JKM)
	1.8 Service Knowledge Modules (SKM)
	1.9 Guidelines for Knowledge Module Developers

	2 Introduction to Component KMs
	2.1 What is a Component KM?
	2.2 Syntax Elements of Component KMs
	2.3 Component KM — Flow Control Commands
	2.4 Global Templates
	2.5 KM Inheritance
	2.6 Groovy Variable Definition Scripts
	2.7 Structured Substitution API
	2.8 Task Control Objects
	2.9 Seeded Component KMs

	3 Introduction to OdiRef Substitution API
	3.1 Introduction to the Substitution API
	3.2 Using Substitution Methods
	3.2.1 Generic Syntax
	3.2.2 Specific Syntax for CKM
	3.2.3 Using Flexfields
	3.2.4 Using Code Generation Tags

	3.3 Using Substitution Methods in Actions
	3.3.1 Action Lines Code
	3.3.2 Action Calls Method

	3.4 Working with Object Names
	3.5 Working with Lists of Tables, Columns and Expressions
	3.5.1 Using INSERT.getTargetColList to create a table
	3.5.2 Using getTargetColList to create a table
	3.5.3 Using getColList in an Insert values statement
	3.5.4 Using getSrcTableList

	3.6 Generating the Source Select Statement
	3.7 Obtaining Other Information with the API
	3.8 Advanced Techniques for Code Generation

	4 Reverse-Engineering Strategies
	4.1 Customized Reverse-Engineering Process
	4.1.1 SNP_REV tables
	4.1.2 Customized Reverse-Engineering Strategy

	4.2 Case Studies
	4.2.1 RKM Oracle
	4.2.1.1 Reset SNP_REV Tables
	4.2.1.2 Get Tables
	4.2.1.3 Get views, partitions, columns, FK, Keys and other Oracle Metadata
	4.2.1.4 Set Metadata

	5 Data Integrity Strategies
	5.1 Data Integrity Check Process
	5.1.1 Check Knowledge Module Overview
	5.1.2 Error Tables Structures
	5.1.2.1 Error Table Structure
	5.1.2.2 Summary Table Structure

	5.2 Case Studies
	5.2.1 Oracle CKM
	5.2.1.1 Drop Check Table
	5.2.1.2 Create Check Table
	5.2.1.3 Create Error Table
	5.2.1.4 Insert PK Errors
	5.2.1.5 Delete Errors from Controlled Table

	5.2.2 Dynamically Create Non-Existing References
	5.2.2.1 Use Case
	5.2.2.2 Discussion
	5.2.2.3 Implementation Details
	5.2.2.3.1 Create Errors Table
	5.2.2.3.2 Insert FK Errors
	5.2.2.3.3 Insert Missing References
	5.2.2.3.4 Delete Errors from Controlled Table

	6 Loading Strategies
	6.1 Loading Process
	6.1.1 Loading Process Overview
	6.1.2 Loading Table Structure
	6.1.3 Loading Method
	6.1.3.1 Loading Using the Agent
	6.1.3.2 Loading File Using Loaders
	6.1.3.3 Loading Using Unload/Load
	6.1.3.4 Loading Using RDBMS-Specific Strategies

	6.2 Case Studies
	6.2.1 LKM SQL to SQL
	6.2.1.1 Drop Work Table
	6.2.1.2 Create Work Table
	6.2.1.3 Load Data
	6.2.1.4 Drop Work Table

	7 Integration Strategies
	7.1 Integration Process
	7.1.1 Integration Process Overview
	7.1.2 Integration Strategies
	7.1.2.1 Strategies with Staging Area on the Target
	7.1.2.1.1 Append
	7.1.2.1.2 Control Append
	7.1.2.1.3 Incremental Update
	7.1.2.1.4 Slowly Changing Dimensions

	7.1.2.2 Strategies with the Staging Area Different from the Target
	7.1.2.2.1 File to Server Append
	7.1.2.2.2 Server to Server Append
	7.1.2.2.3 Server to File or JMS Append

	7.2 Case Studies
	7.2.1 Simple Replace or Append
	7.2.1.1 Delete Target Table
	7.2.1.2 Insert New Rows

	7.2.2 Backup the Target Table Before Loading
	7.2.2.1 Drop Backup Table
	7.2.2.2 Create Backup Table

	7.2.3 Tracking Records for Regulatory Compliance
	7.2.3.1 Load Tracking Records

	A SQL Structured Substitution API Reference
	A.1 SqlInsertStatement.getColumnList()
	A.2 SqlInsertStatement.getQuery()
	A.3 SqlQuery.getSubqueries ()
	A.4 SqlInsertStatement.getTargetTable ()
	A.5 SqlQuery.getFromList ()
	A.6 SqlQuery.getSelectList ()
	A.7 FromClause.getJoinTable ()
	A.8 FromClause.getSourceTables ()
	A.9 FromClause.getTableQuery ()
	A.10 ArrayExpression.getTemplate()
	A.11 ArrayExpression.getChildMap()

	B Substitution API Reference
	B.1 Substitution Methods List
	B.1.1 Global Methods
	B.1.2 Journalizing Knowledge Modules
	B.1.3 Loading Knowledge Modules
	B.1.4 Check Knowledge Modules
	B.1.5 Integration Knowledge Modules
	B.1.6 Reverse-Engineering Knowledge Modules
	B.1.7 Service Knowledge Modules
	B.1.8 Actions

	B.2 Substitution Methods Reference
	B.2.1 getAK() Method
	B.2.2 getAKColList() Method
	B.2.3 getAllTargetColList() Method
	B.2.4 getCatalogName() Method
	B.2.5 getCatalogNameDefaultPSchema() Method
	B.2.6 getCK() Method
	B.2.7 getColDefaultValue() Method
	B.2.8 getColList() Method
	B.2.9 getColumn() Method
	B.2.10 getContext() Method
	B.2.11 getDataSet() Method
	B.2.12 getDataSetCount() Method
	B.2.13 getDataType() Method
	B.2.14 getFilter() Method
	B.2.15 getFilterList() Method
	B.2.16 getFK() Method
	B.2.17 getFKColList() Method
	B.2.18 getFlexFieldValue() Method
	B.2.19 getFormattedName() Method
	B.2.20 getFrom() Method
	B.2.21 getGrpBy() Method
	B.2.22 getGrpByList() Method
	B.2.23 getHaving() Method
	B.2.24 getHavingList() Method
	B.2.25 getIndex() Method
	B.2.26 getIndexColList() Method
	B.2.27 getInfo() Method
	B.2.28 getJDBCConnection() Method
	B.2.28.1 getJDBCConnection("WORKREP")

	B.2.29 getJDBCConnectionFromLSchema() Method
	B.2.30 getJoin() Method
	B.2.31 getJoinList() Method
	B.2.32 getJrnFilter() Method
	B.2.33 getJrnInfo() Method
	B.2.34 getLoadPlanInstance() Method
	B.2.35 getModel() Method
	B.2.36 getNbInsert(), getNbUpdate(), getNbDelete(), getNbErrors() and getNbRows() Methods
	B.2.37 getNewColComment() Method
	B.2.38 getNewTableComment() Method
	B.2.39 getNotNullCol() Method
	B.2.40 getObjectName() Method
	B.2.41 getObjectNameDefaultPSchema() Method
	B.2.42 getObjectShortName() Method
	B.2.43 getOdiGeneratedAccessName() Method
	B.2.44 getOdiInstance() Method
	B.2.45 getOggModelInfo() Method
	B.2.46 getOggProcessInfo() Method
	B.2.47 getOption() Method
	B.2.48 getPackage() Method
	B.2.49 getParentLoadPlanStepInstance() Method
	B.2.50 getPK() Method
	B.2.51 getPKColList() Method
	B.2.51.1 getPop() Method

	B.2.52 getPrevStepLog() Method
	B.2.53 getQuotedString() Method
	B.2.54 getSchemaName() Method
	B.2.55 getSchemaNameDefaultPSchema() Method
	B.2.56 getSession() Method
	B.2.57 getSessionVarList() Method
	B.2.58 getSrcColList() Method
	B.2.59 getSrcTablesList() Method
	B.2.60 getStep() Method
	B.2.61 getSubscriberList() Method
	B.2.62 getSysDate() Method
	B.2.63 getTable() Method
	B.2.64 getTargetColList() Method
	B.2.65 getTableName() Method
	B.2.66 getTargetTable() Method
	B.2.67 getTemporaryIndex() Method
	B.2.68 getTemporaryIndexColList() Method
	B.2.69 getUser() Method
	B.2.70 getVersion() Method
	B.2.71 hasPK() Method
	B.2.72 isColAttrChanged() Method
	B.2.73 isVersionCompatible() Method
	B.2.74 nextAK() Method
	B.2.75 nextCond() Method
	B.2.76 nextFK() Method
	B.2.77 setNbInsert(), setNbUpdate(), setNbDelete(), setNbErrors() and setNbRows() Methods
	B.2.78 setTableName() Method
	B.2.79 setTaskName() Method

	C SNP_REV Tables Reference
	C.1 SNP_REV_SUB_MODEL
	C.2 SNP_REV_TABLE
	C.3 SNP_REV_COL
	C.4 SNP_REV_KEY
	C.5 SNP_REV_KEY_COL
	C.6 SNP_REV_JOIN
	C.7 SNP_REV_JOIN_COL
	C.8 SNP_REV_COND

