# Oracle® Fusion Middleware Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator Oracle Fusion Middleware Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator, 12c (12.2.1.4.0) E95634-02 Copyright © 2010, 2020, Oracle and/or its affiliates. Primary Author: Oracle Corporation This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government. This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle. ## Contents | <i>.</i> | itorito | |----------|---------------| | | Preface | | | Audience | | | Documentation | | .1 Ove | rview | |---------|---------------------------------------------------------------| | Setting | Up the Environment | | .1 Befo | ore You Begin | | 2.1.1 | System Requirements and Certification | | 2.1.2 | Requesting ODI SAP Component Installation into the SAP System | | 2.1.3 | Requesting FTP Server Access | | 2.1.4 | Gathering SAP Connection Information | | | dating the Shared Folder Setup | | | dating the FTP Setup | | | dating SAP Privileges | | | dating SAP Transport Layer Name | | | alling Oracle Data Integrator | | | alling and Configuring the Oracle DB Target | | | alling and Configuring JCo | | | figuring Oracle Data Integrator | | 2.9.1 | Add the Open Tool | | onfigu | uring the Topology | | .1 Con | figuring the File Server for SAP ABAP | | | | | .2 Con | figuring the Target Data Server | vii | 3.3.2 | Configuring | the | Logical | Schema | |-------|-------------|-----|---------|--------| | | | | | | | $\boldsymbol{\gamma}$ | | - | |-----------------------|--|---| | | | | | . ) | | | | 3.3.2 Configuring the Logical Schema | | |----------------------------------------------------------------------------------------------|--| | Creating a New Project | | | 4.1 Creating a New Project | | | Reverse-Engineering Data Models | | | 5.1 Reverse-Engineering the Oracle Target | | | 5.2 Reverse-Engineering the SAP BW Source Datastores | | | 5.2.1 Creating the Data Model | | | 5.2.2 Validating the SAP Connection | | | 5.2.3 Starting the Reverse-Engineering Process | | | 5.2.4 Using the SAP Metadata Browser | | | 5.2.4.1 The Tree View | | | 5.2.4.2 The Search Panel | | | 5.2.5 Reverse-Engineering Without GUI | | | 6.1.1 Info Cube Extraction | | | 6.1 Creating the Mapping | | | 6.1.1.1 Create the Mapping | | | 6.1.1.2 Define the Source and Target Datastores | | | 6.1.1.3 Create the Mappings | | | 6.1.1.4 Define the Mapping Flow | | | 6.1.2 Info Object Extraction | | | 6.1.2.1 Create the Mapping | | | 6.1.2.2 Define the Source and Target Datastores | | | 6.1.2.3 Define Joins between Info Object's Main table and Text Table | | | 6.1.2.4 Create the Mappings | | | 6.1.2.5 Define the Mapping Flow | | | 6.1.3 Info Object Hierarchy Extraction | | | 6.1.3.1 Create the Mapping | | | 6.1.3.2 Define the Source and Target Datastores | | | 6.1.3.3 Create the Mappings | | | 6.1.3.4 Define the Mapping Flow | | | 6.1.4 Info Object Interval Hierarchy Extraction | | | 6.1.4.1 Create the Mapping | | | 6.1.4.2 Define the Source and Target Datastores | | | 6.1.4.3 Define Joins between Sources (Info Object Main table and InfoObject Hierarchy Table) | | | 8.1 | Going furt | ther with Oracle Data Integrator | 8-1 | |------------|------------|--------------------------------------------------------|------------| | Go | ing Furth | ner with Oracle Data Integrator | | | | | - ··· <del>- · · · · · · · · · · · · · · · ·</del> | | | 7.3<br>7.4 | · · | the Package | 7-3<br>7-4 | | 7.2 | _ | a Package for Delta Extraction | 7-2 | | 7.2 | • | the MIN_REQUEST_ID Variable | 7-2 | | 7.1 | | e Mapping Flow | 7-1 | | Cre | ating a | Package for Delta Extraction | | | ( | 6.2.3 Rev | view the Resulting Data | 6-26 | | ( | 6.2.2 Rev | view the Mapping Execution | 6-26 | | ( | 6.2.1 Run | nning the Mapping | 6-25 | | 6.2 | Running t | he Mapping | 6-25 | | | 6.1.8.4 | Define the Mapping Flow | 6-24 | | | 6.1.8.3 | Create the Mappings | 6-23 | | | 6.1.8.2 | Define the Source and Target Datastores | 6-23 | | | 6.1.8.1 | Create the Mapping | 6-23 | | ( | 6.1.8 Ope | en Hub Extraction | 6-23 | | | 6.1.7.5 | Define the Mapping Flow | 6-22 | | | 6.1.7.4 | Create the Mappings | 6-21 | | | 6.1.7.3 | Define Joins Between Sources (Info Cube & Info Object) | 6-19 | | | 6.1.7.2 | Define the Source and Target Datastores | 6-19 | | | 6.1.7.1 | Create the Mapping | 6-19 | | ( | 6.1.7 Info | Cube Extraction with Navigational Attributes | 6-19 | | | 6.1.6.5 | Define the Mapping Flow | 6-18 | | | 6.1.6.4 | Create the Mappings | 6-17 | | | 6.1.6.3 | Define Joins between Sources (Info Cube & Object) | 6-16 | | | 6.1.6.2 | Define the Source and Target Datastores | 6-16 | | | 6.1.6.1 | Create the Mapping | 6-15 | | ( | 6.1.6 Info | Cube & Related Info Object Extraction | 6-15 | | | 6.1.5.4 | Define the Mapping Flow | 6-15 | | | 6.1.5.3 | Create the Mappings | 6-14 | | | 6.1.5.2 | Define the Source and Target Datastores | 6-14 | | | 6.1.5.1 | Create the Mapping | 6-13 | | ( | | S/DSO Extraction | 6-13 | | | 6.1.4.5 | Define the Mapping Flow | 6-13 | | | 6.1.4.4 | Create the Mappings | 6-12 | #### SAP ABAP BW Required Privileges Α A.1 Important points to consider A-1 A.2 Authorizations Required for RKM SAP BW Upload A-2 A.3 Authorizations Required for RKM SAP BW Execution A-3 Authorizations Required for LKM SAP BW Upload (Background & A.4 Foreground) A-4 A.5 Authorizations Required for LKM SAP BW Execution (Background & Foreground) A-5 В SAP Stand-Alone Connection Test SAP Stand-Alone Connection Test B.1 B-1 Uninstalling ODI SAP Components C.1 **Updating ODI SAP Components** C-1 C.2 Uninstalling ODI SAP Components C-1 ## **Preface** The purpose of this document is to provide you with an overview of the possibilities offered by SAP BW Knowledge Modules and how to use them in Oracle Data Integrator. This document provides examples to help you understand how to approach an ETL project with Oracle Data Integrator, loading a Data Warehouse with data from SAP BW systems, while validating data quality. This project should take approximately 90 minutes to complete. You may save your work in order to pause and resume at any point in the project. It is recommended that you use Oracle Data Integrator before proceeding with this guide. A good introduction to Oracle Data Integrator is the guide *Data Integrator Getting Started*. It is recommended that you also review the SAP ABAP - BW chapter of *Application Adapters Guide for Oracle Data Integrator* for more information about the SAP BW KMs. ## **Audience** This document is intended for developers and administrators who want to use Oracle Data Integrator Application Adapters with SAP BW systems using SAP JCo libraries, as a development tool for their integration processes. ## **Documentation Accessibility** For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc. #### **Access to Oracle Support** Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit <a href="http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info">http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs</a> if you are hearing impaired. ## **Related Documents** For more information, see the following documents in Oracle Data Integrator Library. - Release Notes for Oracle Data Integrator - Understanding Oracle Data Integrator - Administering Oracle Data Integrator - Developing Integration Projects with Oracle Data Integrator - Installing and Configuring Oracle Data Integrator - Upgrading Oracle Data Integrator - Application Adapters Guide for Oracle Data Integrator - Developing Knowledge Modules with Oracle Data Integrator - Connectivity and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide - Migrating From Oracle Warehouse Builder to Oracle Data Integrator - Oracle Data Integrator Tools Reference - Data Services Java API Reference for Oracle Data Integrator - Open Tools Java API Reference for Oracle Data Integrator - Java API Reference for Oracle Data Integrator - Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator - Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the JDeveloper Help Center when you press F1 or from the main menu by selecting Help, and then Search or Table of Contents. ## Conventions The following text conventions are used in this document: | Convention | Meaning | |------------|----------------------------------------------------------------------------------------------------------------------------------------| | boldface | Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary. | | italic | Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values. | | monospace | Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter. | 1 # Overview of Oracle Data Integrator SAP BW Knowledge Modules This chapter provides an overview of Oracle Data Integrator SAP BW Knowledge Modules ## 1.1 Overview The Oracle Data Integrator SAP BW Knowledge Modules provide integration from SAP BW systems using SAP JCo libraries. This set of KMs has the following features: - Reads SAP data from SAP BW system - Loads this SAP data into Oracle / non-Oracle Staging Area - Reverse-engineers metadata of warehouse and proposes a tree browser to pick up only the required metadata This adapter includes two knowledge modules: - RKM SAP BW: Its main role is to perform customized reverse-engineering of SAP BW data targets into ODI datastores (Models). The SAP BW RKM is in charge of connecting to the SAP BW System, which provides the SAP BW data target's metadata information, and transforming and writing the resulting metadata into Oracle Data Integrator's repository. - The LKM SAP BW to Oracle (SQLLDR)/LKM SAP BW to SQL connects to SAP BW and retrieves data targets defined in the SAP Model. It is used in the mappings. The LKM is in charge of loading source data from a SAP BW System to an Oracle/non-Oracle staging area. 2 ## Setting Up the Environment This chapter describes how to set up your SAP BW environment for use with Oracle Data Integrator. This chapter includes the following sections: ## 2.1 Before You Begin Before you begin, consider the following: ## 2.1.1 System Requirements and Certification Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing. The Oracle Data Integrator requirements are listed in *Installing and Configuring Oracle Data Integrator*. The requirements specific to the Oracle Data Integrator SAP ABAP - BW Adapter are: - Oracle Data Integrator 11.1.1.7.0 or above. - A Java Connector (JCo) version compatible with adapter must be used. The list of supported JCo versions is available in the Compatibility Matrix available from My Oracle Support. A minimum version of JCo 3.0.2 is required. - A JVM version compatible with both Oracle Data Integrator and JCo must be used. A minimum version of JVM 1.5 is required due to JCo pre-requisites. - The connector supports two transfer modes for transferring data from SAP system to the ODI agent: data transfer using a Shared Directory and data transfer through FTP. For details and restrictions see File Transfer Considerations of Application Adapters Guide for Oracle Data Integrator. Depending on the chosen file transfer mode the following requirements must be met: - Data transfer through a Shared Directory (recommended transfer method) The LKM SAP BW to Oracle (SQLLDR) requires a folder that is shared between the SAP system and the ODI agent. The SAP application server transfers the data by writing it out into a folder that is accessible from the SAP system and the ODI agent machine. This is typically done by sharing a folder of the ODI agent machine with the SAP system. Note that the shared folder does not necessarily have to be located on the ODI agent machine. A shared folder on a third machine is also possible, as long as the shared folder is accessible to both the ODI agent machine and the SAP system. #### Note: For security reasons, the SAP folders should not be shared with the ODI agent. Share only folders of the ODI agent machine with the SAP system. The shared folder must be accessible to SAP system and not just to the underlying operating system. This means that the folder needs to be declared in SAP transaction AL11 and the folder opens successfully in AL11. - Data transfer through FTP LKM SAP BW to Oracle (SQLLDR) requires a FTP server to upload data from the SAP BW system. This data is either read locally by the agent executing the mapping (when this agent runs on the FTP server machine), or remotely (when this agent is located on a different machine than the FTP server). This FTP server must be accessible over the network from both the SAP BW machine and the agent machine. - For LKM SAP BW to Oracle (SQLLDR) only: SQLLoader is required on the machine running the agent. SQLLoader is used for loading data extracted from SAP BW system to the Oracle staging area. ## 2.1.2 Requesting ODI SAP Component Installation into the SAP System The ODI SAP adapter communicates with the SAP System using a few ODI SAP RFCs. These RFCs are installed by your SAP Basis team using SAP Transport requests. Please contact your SAP administrators for installing the ODI SAP Components and assigning the required SAP user authorizations by following the instructions given in the Installing ODI SAP Components section in *Application Adapters Guide for Oracle Data Integrator*. ## 2.1.3 Requesting FTP Server Access This section applies only if you plan to transfer data using FTP. You can skip this section if you use a Shared Directory for the data transfer or if your SAP system is older than the following: - SAP ECC6 EHP6 or later - SAP BW/BI 7.4 or later The following steps must be performed before any subsequent steps in this guide can be performed. These steps are typically performed by your SAP Basis team. Failure to perform these setup instructions will lead to FTP failure when running any ODI SAP extraction jobs. To request FTP server access: - Login to SAP server. - Execute transaction SE16. - 3. Enter SAPFTP\_SERVERS in the **Table Name** field and click $\square$ icon to create entries. - 4. Enter IP address of the FTP server in the FTP\_SERVER\_NAME field. - 5. Enter port of the FTP server in the FTP\_Server\_Port field. - 6. Click licon to save. ## 2.1.4 Gathering SAP Connection Information In order to connect to the SAP BW system, you must request the following information from your SAP administrators: - SAP BW System IP Address or Hostname: IP address/ Hostname is the technical name given to the host on which SAP is running. - SAP User: SAP User is the unique user name given to a user for logging on the SAP BW System. - **SAP Password**: Case-sensitive password used by the user to log in. - SAP Language: Code of the language used when logging in For example: EN for English, DE for German. - SAP Client Number: The three-digit number assigned to the self-contained unit which is called *Client* in SAP. A Client can be a training, development, testing or production client or represent different divisions in a large company. - SAP System Number: The two-digit number assigned to a SAP instance which is also called Web Application Server or WAS. - **SAP System ID**: The three-character, unique identifier of a SAP system in a landscape. - SAP Transport Layer Name: This string uniquely identifies a transport layer in a SAP landscape. It allows ODI to create transport requests for later deployment in SAP. Even though there is a default value here, this transport layer name must be provided by your SAP Basis team. Not doing so may result in significant delays during installation. - SAP BW Version: BW 3.5 or BI 7.0. - SAP Character Set: The character set is only required if your SAP system is not a UNICODE system. For a complete list of character sets, see "Locale Data" in the Oracle Database Globalization Support Guide. For example, EE8ISO8859P2 for Croatian Data. For UNICODE systems, use UTF8. All the connection data listed above (except SAP SNC Connection Properties and SAP Router String) are mandatory and should be requested from the SAP Administrators. You may consider requesting support during connection setup from your SAP administrators. ## 2.2 Validating the Shared Folder Setup Validating a shared folder setup applies only if you plan to transfer data using a Shared Directory. This section can be skipped, if the FTP transfer is used. The validation of the shared folder setup needs to be performed before any subsequent steps in this guide can be performed. This validation is typically performed by your SAP Basis team. #### Step 1: Validating folder access from the SAP application server - Start the SAPGUI. - 2. Use the ODI SAP user and password to connect to the SAP system and client. - Go to transaction AL11. - 4. Select the shared folder. - **5.** Double-click the shared folder to test the directory declaration. This should report a successful connection. If not, please contact your SAP basis team. Do not continue until this test passes. SAP uses the OS user *<sid>adm* to connect to the directories declared in Al 11. Print screen. #### Step 2: Validating folder access from the ODI agent machine - Log in to the ODI agent machine using the Windows user ID used for executing the ODI agent. - 2. Open shared directory path in Windows Explorer. This should list the content of the shared folder. Please make sure that you do NOT need to enter any credentials. If this does not work or you had to enter credentials, please contact your windows administrator or the system administrator of the system your shared folder is physically located on. Do not continue until this test passes. 3. Print screen. ## 2.3 Validating the FTP Setup Validating an FTP setup applies only, if you plan to transfer data using FTP. This section can be skipped, if you use a Shared Directory for the data transfer. The validation of the FTP setup needs to be performed before any subsequent steps in this guide can be performed. This validation is typically performed by your SAP Basis team. #### Step 1: Validating SAPFTPA destination - 1. Start the SAPGUI. - 2. Use the ODI SAP user and password to connect to the SAP system and client. - 3. Go to transaction SM59. - 4. Expand TCP/IP connections. - Open the SAPFTPA destination. - 6. Click Testconnection. This should report a successful connection. If not, please contact your SAP basis team. Do not continue until this test passes. 7. Print screen. #### Step 2: Testing FTP connection - Go to transaction SE38. - View the function module RSFTP002. - 3. Hit F8 to run the ABAP program. - 4. Enter the FTP userID and password. - 5. Enter the FTP server host name or IP address. - 6. Enter cd / or cd <ODI target directory>. - 7. In the RFC DESTINATION field, enter SAPFTPA. - 8. Hit F8 to run the test. This should report a successful connection. The message should be similar to the following: 250 CWD successful. If this test is not successful, please contact your SAP basis team. Do not continue until this test passes. 9. Print screen. ## 2.4 Validating SAP Privileges This section describes how to test some of the key SAP privileges. Proceed with the subsequent steps in this guide only after successful validation of these tests. This validation is typically performed by your SAP Basis team. Perform the following steps to validate whether a SAP user has appropriate dev rights and owns a dev license key: - Start SAPGUI. - 2. Use the ODI SAP user and password to connect to the SAP system and client. - 3. Go to transaction SE38. - 4. Enter any sample program name like ZSAP\_TEST in the program name field. - 5. Click Create. - 6. Perform similar tests for the transaction SE37 and SE11. If a transaction allows the creation of a program without asking for any key or other authorization message, then the SAP user has validated that it has the appropriate dev rights and license key. Otherwise your SAP basis team needs to register the SAP user in service.sap.com to get the license key and a Basis person can help him with dev rights. ## 2.5 Validating SAP Transport Layer Name As the SAP connector creates SAP objects, such as, for example, function modules, into the SAP development system, these changes need to be transported into QA and production systems once the development is done. The SAP's change and transport system uses the *SAP Transport Layer Name* to identify the route a change has to take. A transport layer is assigned to each development class and thus to all objects in that class. The transport layer determines: - In which SAP System developments or changes to the repository objects are made - If objects are transported to other systems within the group when development work has been completed A consolidation route is created from the development system to the quality assurance system through the transport layer Z<SID>. It then becomes the standard transport layer for customer development and customizing. A consolidation route is created from the development system to the quality assurance system through the transport layer SAP for the transport of SAP Standard objects. It is important to specify the correct transport layer name before running the RKM SAP BW for the first time. Perform the following steps to identify the list of defined transport layers in your SAP landscape: - Log on in client 000 in the SAP System serving as the transport domain controller via transaction STMS. - Select Overview > Transport Routes. The Display Transport Routes dialog is displayed. - 3. Select Goto > Graphical Editor. - 4. To switch the mode, select **Configuration > Display <-> Change**. - Position the cursor on the SAP System. - Select Edit > System > Change. The Change System Attriburtes dialog is displayed. - 7. Select the StandardTransport Layer tab. - 8. Change the transport layer of the SAP System. - **9.** The result is the list of the different transport Layers. By default, the RKM option SAP\_TRANSPORT\_LAYER\_NAME is set to SAP. Ask your SAP basis admin which transport layer you should use. This transport layer name must be set on the SAP\_TRANSPORT\_LAYER\_NAME RKM option. A wrong or invalid transport layer name will cause serious delays during the installation process. ## 2.6 Installing Oracle Data Integrator Before starting with this project, you need to install and configure Oracle Data Integrator. See the Data Integrator Getting Started and the Installing and Configuring Oracle Data Integrator for more information. ## 2.7 Installing and Configuring the Oracle DB Target This project uses an Oracle database engine as the target and as the staging area for the mappings. You can download for example an Oracle XE database from the Oracle Technology Network (OTN). Install and configure this database. This project targets an Oracle table that can be created using the following script: ``` -- Create demo target schema CREATE USER ODI_SAP_DEMO IDENTIFIED BY ODI_SAP_DEMO DEFAULT TABLESPACE USERS TEMPORARY TABLESPACE TEMP; GRANT CONNECT, RESOURCE TO ODI_SAP_DEMO; -- Create demo target tables -- For ODS/DSO CREATE TABLE ODI SAP DEMO.W PURCH DS ( PO_GUID VARCHAR2(100), ORDER_ITEM_GUID VARCHAR2(100), ACC_ASS_GUID VARCHAR2(100), GUIDE_CONTRCT VARCHAR2(100), ORDER_QUANT NUMBER, NET_PRICE NUMBER, PRICE_UNIT CHAR(5), NO_OF_PURCH_ODR NUMBER); ALTER TABLE ODI_SAP_DEMO.W_PURCH_DS ADD CONSTRAINT PK_W_PURCH_DS PRIMARY KEY (PO_GUID); -- For INFO OBJECT CREATE TABLE ODI_SAP_DEMO.W_ACCNT_VENDR_DS ( VENDOR CHAR(10), PCOMPANY CHAR(10), PHONE CHAR(20), PLANT CHAR(10), STREET VARCHAR(50), MED_DESC VARCHAR(100)); ALTER TABLE ODI_SAP_DEMO.W_ACCNT_VENDR_DS ADD CONSTRAINT PK_W_ACCNT_VENDR_DS PRIMARY KEY (VENDOR); -- For INFO OBJECT HIERARCHY CREATE TABLE ODI_SAP_DEMO.W_GL_ACCOUNT_HIER_DS ( HIER_NAME CHAR(50), NODEID NUMBER(20), INFOOBJECT_NAME CHAR(80), NODENAME CHAR(80), TLEVEL NUMBER(5), PARENTID NUMBER(20), CHILDID NUMBER(20), NEXTID NUMBER(20)); ALTER TABLE ODI_SAP_DEMO.W_GL_ACCOUNT_HIER_DS ADD CONSTRAINT PK_W_GL_ACCOUNT_HIER_DS PRIMARY KEY (HIER_NAME, NODEID); -- For INFO OBJECT INTERVAL HIERARCHY ``` ``` CREATE TABLE TARGET_INTERVAL_HIERARCHY RSHIENM VARCHAR2(30 BYTE), NODEID NUMBER(8), PARENTID NUMBER(8) INTERVL VARCHAR2(1 BYTE) LEAFFROM VARCHAR2(60 BYTE), LEAFTO VARCHAR2(60 BYTE), VERSION VARCHAR2(3 BYTE), CHRT_ACCTS VARCHAR2(4 BYTE), GL_ACCOUNT VARCHAR2(10 BYTE), BAL_FLAG VARCHAR2(1 BYTE), GLACCEXT VARCHAR2(18 BYTE), INCST_FLAG VARCHAR2(2 BYTE) ) -- For INFO CUBE CREATE TABLE ODI_SAP_DEMO.W_VENDR_BAL_DS ( OCOMP_CODE CHAR(6), OCREDITOR CHAR(10), ORC_ACCOUNT CHAR(10), TOT_DEBT_POST NUMBER, TOT_CR_POST NUMBER, CUMULATIVE_BAL NUMBER); ALTER TABLE ODI_SAP_DEMO.W_VENDR_BAL_DS ADD CONSTRAINT PK_W_VENDR_BAL_DS PRIMARY KEY (OCOMP_CODE); -- For INFO CUBE & INFO OBJECT Join CREATE TABLE ODI_SAP_DEMO.W_VENDER_CUBE_OBJ_DS ( COMP CODE CHAR(10), VENDOR CHAR(10), GL_ACCOUNT CHAR(10), SALES_FOR_PERIOD NUMBER, CUM_BALANCE NUMBER, PLANT CHAR(10), MEDIUM_DESC VARCHAR2(100)); ALTER TABLE ODI_SAP_DEMO.W_VENDER_CUBE_OBJ_DS ADD CONSTRAINT PK_W_VENDER_CUBE_OBJ_DS PRIMARY KEY (COMP_CODE); CREATE TABLE "TARGET_NAVIGATIONAL_ATTRIBUTES" IOPK_CUSTOMER VARCHAR2(10 BYTE), IOPKCUST_GROUPVARCHAR2(2 BYTE), IOPKPK_CUSTOMERVARCHAR2(10 BYTE), IOPK_PK_PLANT VARCHAR2(4 BYTE), IOPKCALMONTH NUMBER(6), IOPK_CALWEEK NUMBER(6), IOPKTHIP_POINTVARCHAR2(4 BYTE), REQUIDVARCHAR2(30 BYTE), KF_ODEL_VOL NUMBER(17,3), KF_OSHIPDATE NUMBER(17), KF_OLOADDATEK NUMBER(17), KF_OACT_GI_DTKNUMBER(17), KF_OMATAV_DATKNUMBER(17), ``` ``` KF_OLATE_QTY NUMBER(17,3), CUSTOMERVARCHAR2(10 BYTE), PLANT VARCHAR2(4 BYTE), PHONE VARCHAR2(16 BYTE), PCOMPANYVARCHAR2(6 BYTE), OUTL_TYPEVARCHAR2(4 BYTE), NIELSEN_ID VARCHAR2(2 BYTE), LOGSYSVARCHAR2(10 BYTE), VISIT_RYTVARCHAR2(4 BYTE), USAGE_INDVARCHAR2(3 BYTE), SRCID VARCHAR2(4 BYTE), PRECISIDNUMBER(4), POSTCD_BOX VARCHAR2(10 BYTE), CUS F CONS VARCHAR2(1 BYTE), COUNTRYVARCHAR2(3 BYTE), BPARTNERVARCHAR2(10 BYTE), ACCNT_GRPVARCHAR2(4 BYTE), LANGU VARCHAR2(1 BYTE), KEYACCOUNT VARCHAR2(1 BYTE) -- For OPEN HUB DESTINATION CREATE TABLE ODI_SAP_DEMO.W_OPENHUB_SALES_DS ( OHREQUID NUMBER, DATA_PACKAGE NUMBER, DATA_RECORD NUMBER, CUSTOMER CHAR(1), MATERIAL CHAR(1), MATERIAL_PRICE NUMBER, CURRENCY NUMBER, QUANTITY NUMBER, TOTAL_REVENUE NUMBER); ALTER TABLE ODI SAP DEMO.W OPENHUB SALES DS ADD CONSTRAINT PK W OPENHUB SALES DS PRIMARY KEY (OHREQUID); ``` ## 2.8 Installing and Configuring JCo The SAP adapter uses Java Connector (JCo) to connect to the SAP system. JCo must be configured before proceeding with the project. To install and configure JCo: Download a supported JCo version for your configuration from http:// service.sap.com/connectors. Check the supported JCo version in the Certification Matrix available at My Oracle Support. Note that a minimum version of JCo 3.0.2 is required. #### Note: - Choose the SAP JCo package matching your operating system and your system architecture (32/64Bit). E.g. if you are running ODI inside a 32-Bit JVM, you must download the 32-Bit SAP JCo, even if the CPU and OS are 64-Bit. Mixing 32-bit and 64-bit architecture is not possible due to native libraries required by SAP JCo and will result in connection failure. - odi.conf contains the JDK path used for ODI Studio. - Unzip the appropriate distribution package into an arbitrary directory <sapjco-install-path>. - **3.** Follow the installation instructions in <sapjco-install-path>/javadoc/installation.html for the respective platform. - **4. Copy** sapjco3.jar **and** sapjco3.dll: For ODI 10g: Copy sapjco3.jar and sapjco3.dll (or respective binary like libsapjco3.so) into the oracledi/drivers directory. For ODI 11g: Copy sapjco3.jar and sapjco3.dll (or respective binary like libsapjco3.so) into the <ODI\_HOME>/odi\_misc directory (ODI Studio) and into the <ODI\_HOME>/oracledi/agent/drivers directory (Standalone Agent) and into the <WLS\_DOMAIN>/lib directory (JEE Agent). For ODI 12c: Copy sapjco3.jar and sapjco3.dll (or respective binary like libsapjco3.so) into the <ODI\_HOME>/odi/sdk/lib directory (ODI Studio, ODI Standalone Agent) and into the <WLS\_DOMAIN>/lib directory (JEE Agent). - 5. Restart ODI Studio and any agents. - 6. Check the JCo installation. This will be also checked later in this guide. ## 2.9 Configuring Oracle Data Integrator Perform the following steps to configure Oracle Data Integrator: ### 2.9.1 Add the Open Tool The complete process of installing and adding an Open Tool to ODI is described in *Oracle Data Integrator Tools Reference*. This section details only the SAP ABAP specific steps. - Connect to Designer. - 2. Select ODI > Add/Remove Open Tools... - 3. In the Add/remove Open Tools window, enter the following name in the Open Tool class name field: oracle.odi.sap.km.\_OdiSapAbapExecuteStoppable. - 4. Click Add Open Tool. - 5. The Open Tool appears as shown below. 6. Click OK. ## Configuring the Topology This chapter describes how to configure the topology by using a practical example. This project demonstrates how to extract data from the SAP BW data targets listed below: #### ODS/DSO: Source data target *OBBP\_PO* from SAP BW is the ODS containing vendor information. Target *W\_PURCH\_DS* is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains purchase order info. #### Info Object: Source data target *OCREDITOR* is the Info object from SAP BW containing Account number of supplier/vendor. Target *W\_ACCNT\_VENDR\_DS* is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains account number info of supplier/vendor. #### Info Object Hierarchy: Source data target *OGL\_ACCOUNT* is the Info object from SAP BW containing General Ledger Information. Target $W\_GL\_ACCOUNT\_HIER\_DS$ is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains account number info of supplier/vendor. #### Info Cube: Source data target *OFIAP\_C20* is the Info cube from SAP BW containing vendor balances. Target *W\_VENDR\_BAL\_DS* is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains vendor balances. #### Info Cube & related Info Objects: Source data targets *OFIAP\_C20* and *OCREDITOR* are the Info Cube & Info Object respectively both containing the vendor related information. Target *W\_VENDER\_CUBE\_OBJ\_DS* is a table in an Oracle database that needs to be loaded from the SAP BW Sources as per join condition. #### Open Hub: Source data target *ZOHD\_SALE* is an Open Hub destination name and its associated table is */BIC/OHZOHD SALE* which contains the sales information. Target *W\_OPENHUB\_SALES\_DS* is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains sales information. #### Delta Extraction: For delta Extraction you need to pass the value for two KM options i.e. FIRST\_REQ\_ID and LAST\_REQ\_ID from any above said data targets except Info Object after full load. The FIRST\_REQ\_ID is the start point of Delta Extraction and LAST\_REQ\_ID is the end point of Delta Extraction. This chapter includes the following sections: ## 3.1 Configuring the File Server for SAP ABAP Perform the following operations after installing or upgrading your Oracle Data Integrator version: - 1. Connect to Topology Manager. - 2. If this SAP ABAP technology does not exist in your Master Repository, import the SAP ABAP technology in Synonym INSERT\_UPDATE mode from the /impexp folder. - 3. Perform an upgrade of the Master Repository. Refer to the *Installing and Configuring Oracle Data Integrator* for more information on the Master Repository upgrade process. - 4. In Topology Manager, open the JavaBeanShell technology and check on the Language tab that the JYTHON language is listed. If not, add it. - 5. Create a File data server pointing to an existing FTP/file server into which the extraction file will be pushed from SAP and picked up for SQL\*Loader. For use with FTP transfer, set the following parameters. For use with shared folder transfer, the settings on the data server do not matter. - Host (Data Server): FTP server IP host name or IP address. - User: Username to log into FTP server. - Password: Password for the user. - **6.** For use with "LKM SAP BW to SQL" these additional parameters must be configured: - JDBC driver class: com.sunopsis.jdbc.driver.file.FileDriver - JDBC URL: jdbc:snps:dbfile?ENCODING=UTF8 - The above URL is for SAP UNICODE systems. For non-UNICODE systems, please see details on ENCODING parameter in Creating a File Data Server of *Connectivity and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide*. The encoding chosen on this URL must match the code page used by the SAP Application Server. - 7. In this File data server create a Physical Schema representing the folder in the File server to which the extraction file will be pushed. For use with FTP transfer, see details below. For use with shared folder transfer and for more details, see Transfer using a Shared Directory (recommended) of *Application Adapters Guide for Oracle Data Integrator*: - Data Schema: Path on the FTP server to upload or download extraction files from the remote location. This path is used when uploading extraction files from the SAP BW system into the FTP server. It is also used by a remote agent to download the extraction files. Note that this path must use slashes and must end with a slash character. Work Schema: Local path on the FTP server's machine. This path is used by an agent installed on this machine to access the extraction files without passing via the FTP server. This access method is used if the FTP\_TRANSFER\_METHOD parameter of the LKM SAP BW to Oracle (SQLLDR)/ LKM SAP BW to SQL is set to NONE. As Work Schema is an OS file name, slashes/ backslashes should be used according to OS. Path names given on Data and Work schemas are not necessarily the same: the FTP service may provide access to a FTP directory named /sapfiles while the files can be stored locally in c:\inetpub\ftproot\sapfiles. Refer to File Transfer Considerations of *Application Adapters Guide for Oracle Data Integrator*. 8. If the corresponding Logical Schema called File Server for SAP ABAP does not exist yet, create it. This Logical Schema name is fixed and must be mapped to the Physical Schema created in the previous step. ## 3.2 Configuring the Target Data Server This section describes how to setup an Oracle Data Server. Please use respective settings when configuring a non-Oracle Target Data Server for use with LKM SAP BW to SQL. - Connect to Topology Manager. - 2. In the Physical Architecture tree view, expand the Technologies node and select the Oracle technology. - Right-click and select New Data Server. - 4. Enter the data server Definition as shown below: Select the JDBC tab, and enter the JDBC connection information to your data server as shown below: Make sure to change the URL to match your Oracle instance configuration. - 6. Click **Test Connection** to test the connection to this data server. - 7. From the **File** menu, click **Save**. - 8. Right-click the data server you created and select New Physical Schema. - 9. In the Physical Schema windows that appears, select the <code>ODI\_SAP\_DEMO</code> for both Schema and Work Schema. If you already have a Work Schema for ODI defined for this data server, you can use it instead of the <code>ODI\_SAP\_DEMO</code> Schema. - 10. Go to the Context tab. - 11. Click Add and enter in the Logical Schema field the value ODI\_SAP\_DEMO. - 12. From the File menu, click Save. ## 3.3 Configuring the SAP Source Server The following topics describe how to configure the SAP source server: ## 3.3.1 Configuring the Data Server Except for the data server name, all the parameters that you provide while defining the SAP Data server should be provided by the SAP Administrators. See Gathering SAP Connection Informationfor more information about these parameters. - 1. In the Physical Architecture tree view, expand the Technologies node, select the SAP ABAP technology. - 2. Right-click and select New Data Server. - 3. Enter the data server definition. Set the parameters for this data server as follows: - Name: SAP\_BW. The name of the data server as it will appear in ODI. - Host (Data Server): SAP BW System IP Address or Hostname. - User: SAP User, as provided by the SAP Administrator. - Password: This user's SAP Password. This password is case-sensitive. - Set the Flexfield values for this data server in the Flexfields tab: - **SAP Language**: Code of the language used when logging in. For example EN for English, DE for German. - SAP Client Number: The three-digit number assigned to the self-contained unit which is called *Client* in SAP. A Client can be a training, development, testing or production client or represent different divisions in a large company. - SAP System Number: The two-digit number assigned to a SAP instance which is also called Web Application Server or WAS. - SAP System ID: The three-character, unique identifier of a SAP system in a landscape. - SAP Character Set: The character set is only required if your SAP system is not a UNICODE system. For a complete list of character sets, see "Locale Data" in the Oracle Database Globalization Support Guide. For example, EE8ISO8859P2 for Croatian Data. For UNICODE systems, use UTF8. #### Note: This FlexField is only used with "LKM SAP BW to Oracle (SQLLDR)". For use with "LKM SAP BW to SQL" please define the character set using the ENCODING parameter in the file driver URL, as described in Configuring the File Server for SAP ABAPfor non-UNICODE SAP systems. SAP BW Version: Enter the SAP BW Version as follows: For SAP BW 7.0 and higher systems enter 700 For SAP BI 3.5 systems enter 350 - SAP ERP Version & SAP ABAP Version: unused in SAP BW Connector. - 5. From the File menu, click Save. #### Note: The **Test Connection** button for validating SAP Connection definition is not supported for this connection. ## 3.3.2 Configuring the Logical Schema - 1. In the Physical Schema window, do not edit the Definition tab. - 2. Select the Context tab, click **Add** and enter the Logical Schema name LOGICAL\_SAP\_BW. 3. From the **File** menu, click **Save**. 4 ## Creating a New Project This chapter describes how to create a new Project for SAP. In order to work with the data servers you have created, you must create a project and import the appropriate knowledge modules for reverse-engineering the data structures and integrating the data. ## 4.1 Creating a New Project To create a new Project for SAP BW: - Connect to Designer. - 2. In the Projects tree view click **New Project**. - 3. In the Definition tab, enter SAP BW Demo for the Project name. - 4. From the File menu, click Save to save your project. - 5. Expand the SAP Demo Project, select the First Folder node. - 6. Rename this folder to SDE\_BW\_DataTargets. - 7. Right-click the SAP Demo Project in the Projects tree view. - 8. Right-click and select Import Knowledge Modules. - 9. Select in the File import directory the directory containing your BW KMs. By default, they are located in the ../impexp directory. - 10. Select the following KMs: - IKM Oracle Incremental Update - LKM SAP BW to Oracle (SQLLDR) - LKM SAP BW to SQL - RKM SAP BW - RKM SAP ERP Connection Test - 11. Click **OK** to perform the import. 5 ## Reverse-Engineering Data Models This chapter describes how to reverse-engineer the Oracle target and SAP source data models. This chapter includes the following sections: ## 5.1 Reverse-Engineering the Oracle Target To reverse-engineer the Oracle data model: - Connect to Designer. - 2. In the Models tree view, click **New Model**. - 3. In the Definition tab, enter the model parameters as shown below: 4. In the Reverse Engineer tab, select the **Global** context. - Click Reverse Engineer, then from the File menu, click Save. - 6. The W\_PURCH\_DS, W\_ACCNT\_VENDR\_DS, W\_GL\_ACCOUNT\_HIER\_DS, W\_VENDR\_BAL\_DS, W\_VENDER\_CUBE\_OBJ\_DS, W\_OPENHUB\_SALES\_DS, W\_DELTA\_DS datastore appear in your Oracle Target model, as shown below. ## 5.2 Reverse-Engineering the SAP BW Source Datastores To reverse-engineer the SAP BW Source data targets you need to perform the following tasks: - 1. Creating the Data Model - 2. Validating the SAP Connection - 3. Starting the Reverse-Engineering Process This section also includes the following topics: ## 5.2.1 Creating the Data Model - 1. In the Models tree view, click **New Model**. - 2. In the Definition tab, select SAP ABAP technology and the Logical Schema previously created (in our example it is the LOGICAL\_SAP\_BW Logical Schema ). - 3. In the Reverse Engineer tab: - a. Select Customized option. - b. Select the Global context. - c. Select the RKM SAP Connection Test you have imported in the SAP BW Demo project. ## 5.2.2 Validating the SAP Connection - 1. In the Models tree view, open the SAP BW Source Model. - Click Reverse Engineer and confirm the start of the reverse-engineering process. This process runs two tests: - Establish a test connection to the SAP BW system and - Validate the proper setup of SAP JCo by displaying the About dialog. - 3. In a few seconds, you should see the SAP JCo-About dialog as shown here: Please verify the JCo version number (see System Requirements and Certificationfor more details) and verify that a path for the JCo Library is given (.dll for Windows). If this is not the case or you see any error message in this about dialog, please review the SAP JCo installation, as described in your SAP JCo package, and run this test again. Closing the JCo-About-Dialog will also close ODI. - 4. Once you have validated SAP JCo installation, open ODI Operator. - 5. In the Operator, expand the Reverse-Engineering session down to the task level. - 6. Verify whether the task "Test SAP Connection" has been executed successfully. If not, view the task details to identify the connection problem. The output of this task *must* contain Successfully connected to SAP System. If not, the connection test has failed and the connection problem must be analyzed *before* you continue. Do not continue until you have successfully validated the SAP connection! If you want to validate the SAP connectivity independent of ODI, please see SAP Stand-Alone Connection Test. ## 5.2.3 Starting the Reverse-Engineering Process To start the reverse-engineering process of the SAP BW datastores: 1. Import TR. See also, Installing SAP Transport Request (TR) in the Application Adapters Guide for Oracle Data Integrator. - 2. In the Models tree view, open the SAP BW Source Model. - 3. In the Reverse Engineer tab: - a. Select the Global context. - b. Select the Customized option. - c. Select the RKM SAP BW you have imported in the SAP BW Demo project. - d. Set the USE\_GUI KM option to Yes. - e. Set upload\_abap\_code and upload\_abap\_base to False. #### Caution: Make sure to provide the correct value for the SAP\_TRANSPORT\_LAYER\_NAME option. - f. Set other parameters according to your SAP configuration. See the Application Adapters Guide for Oracle Data Integrator for more information on the RKM options. - 4. From the **File** menu, click **Save** to save your changes. - 5. Click **Reverse Engineer** to start the reverse-engineering process. - 6. Click OK. The Sessions Started Dialog is displayed. 7. Click OK. ## 5.2.4 Using the SAP Metadata Browser As you have set the USE\_GUI option to Yes, the RKM displays in the **SAP BW Metadata Browser** the SAP objects organized in the tree view as shown below. #### Note: In case that the below dialog does not show up, see ODI Operator and ODI Logs for details. Refer to Log Files in *Application Adapters Guide for Oracle Data Integrator* for more details. #### 5.2.4.1 The Tree View The SAP BW Data targets are organized into a tree view. Only the SAP BW Data targets available in the SAP BW system are displayed. By expanding the tree view, you can see Info Cubes, Info Objects, ODS/DSO, Open Hub, and select those that you want to reverse-engineer. Note that only the data targets selected in the tree view are reverse-engineered. #### 5.2.4.2 The Search Panel The **Search** option group allows you search specific objects in the browser, based on: - Info Cube Name - Info Object Name - ODS/DSO - Open Hub For the example project for Info Cube, the data target OFIAP\_C20 is used: - 1. Enter OFIAP\_C20 in the Name field. - Select the InfoCube data target. - Click Search to find the object to reverse-engineer. The results are highlighted in the tree view. - Click Reverse. - 5. Oracle Data Integrator starts the reverse-engineering process on the selected data target. The reverse-engineered data targets appear under the Model. - **6.** Perform steps 1 to 5 to reverse-engineer the following objects: - a. InfoCube OSD\_C04 - b. InfoObject OSOLD\_TO - c. InfoObject OCREDITOR - d. InfoObject OGL\_ACCOUNT - e. ODS/DSO 0BBP\_PO - f. Open Hub destination ZOHD SALE (/BIC/OHZOHD SALE) ## 5.2.5 Reverse-Engineering Without GUI If you want to perform a reverse-engineering without using the SAP BW Metadata Browser, you set the corresponding parameters in the SAP BW KM . For example, for Info Cube, enter the following parameters in the SAP BW KM options: - USE\_GUI: No - INFOCUBE NAME: 0FIAP C20 With this configuration, the Info Cube data target will be reverse-engineered without displaying the SAP BW Metadata Browser. By using the appropriate KM options, you can also select a filter for the reversed data targets based on for example an Info object, or a ODS/DSO, or an Open Hub table. Refer to the *Application Adapters Guide for Oracle Data Integrator* for more information on the RKM options. #### Note: It is not possible to view the data in the SAP BW data targets from Oracle Data Integrator. #### What happens when you reverse-engineer SAP BW data targets? First, Oracle Data Integrator uploads ABAP code in the SAP BW system allowing for retrieving the SAP BW data targets metadata. This RFC is uploaded only if the <code>UPLOAD\_ABAP\_CODE</code> and <code>UPLOAD\_ABAP\_BASE</code> options are selected (this option is typically activated only once). The ABAP programs are generated in the SAP function group given in the <code>SAP\_FUNCTION\_GROUP\_ODI\_DEV</code> and <code>SAP\_FUNCTION\_GROUP\_ODI\_PROD</code> RKM options. Once this code is set up on SAP BW, Oracle Data Integrator is able to retrieve the SAP BW metadata and to display it in the SAP BW Metadata Browser. Selected metadata is then reverse-engineered from SAP BW into the Oracle Data Integrator repository. The repository only contains the description of the SAP BW metadata, and no data at all. In addition to the data targets definitions organized and enriched with user-friendly information, the keys definitions are also retrieved. The model appearing in Oracle Data Integrator shows all the information required for performing integration tasks on the SAP BW Model. 6 # Creating and Running the Mapping This chapter describes how to create and run the mapping. This chapter includes the following sections: # 6.1 Creating the Mapping Now that the ODI source and target data models have been created, it is possible to create the ODI mappings to extract data from the following SAP BW data targets: - The Info Cube OFIAP\_C20 data target to W\_VENDR\_BAL\_DS Oracle table. - The Info Object OCREDITOR data target to W\_ACCNT\_VENDR\_DS Oracle table. - The Hierarchy data from Info Object OGL\_ACCOUNT to W\_GL\_ACCOUNT\_HIER\_DS Oracle table. - The Interval Hierarchy data from InfoObject OGL\_ACCOUNT to TARGET\_INTERVAL\_HIERARCHY Oracle table. - The ODS/DSO OBBP PO data target to W PURCH DS Oracle table. - The Info Cube OFIAP\_C20 and Info Object OCREDITOR data targets join to W\_VENDER\_CUBE\_OBJ\_DS Oracle table. - The InfoCube and Navigation Attribute data from IC 0SD\_C04 / IO 0SOLD\_TO to TARGET\_NAVIGATIONAL\_ATTRIBUTES Oracle table. - The Open Hub destination ZOHD\_SALE (/BIC/OHZOHD\_SALE) to W\_OPENHUB\_SALES\_DS Oracle table. - Delta Extraction can be done on any above said data targets except Info Object. How to perform delta extraction is described in Creating a Package for Delta Extraction . To create the mapping, perform the following steps: ## 6.1.1 Info Cube Extraction This section describes how to create a mapping in ODI in order to load data from the SAP BW source model representing the InfoCube <code>0FIAP\_C20</code> data target to the <code>W\_VENDR\_BAL\_DS</code> Oracle target model. ## 6.1.1.1 Create the Mapping To create the mapping: - 1. Open Designer. - 2. In the Projects tree view, expand the SAP BW Demo Project. - 3. Expand the SAP\_BW\_DataTargets folder. - Select the Mappings node. - 5. Right-click and select New Mapping. - **6.** In the Mapping Definition tab, enter the mapping name: InfoCube\_SAP\_BW\_VendorBal.W\_VENDR\_BAL\_DS. - 7. From the **File** menu, click **Save** to save your mapping. ## 6.1.1.2 Define the Source and Target Datastores To define the source and target datastores: - 1. In the Models tree view, select the W\_VENDR\_BAL\_DS datastore from the Oracle\_Target Model. - 2. Drag this datastore into the Target Datastore area of the Logical diagram (right area of the Logical diagram). - 3. In the Models tree view, select the OFIAP\_C20 Vendor Balances datastore from the SAP BW Source model. - **4.** Drag this datastore into the Sources area of the Logical diagram (left area of the Logical diagram). ## 6.1.1.3 Create the Mappings To create the mappings of the target datastore: - **1.** Select the OCOMP\_CODE attribute from the target datastore. - 2. Drag the IOPK\_OFIAP\_C201\_0COMP\_CODE\_PK\_COMP\_CODE attribute from the 0FIAP\_C20 Vendor Balances source datastore onto the COMP\_CODE attribute of the target datastore. - 3. Make sure that the **Execute on Hint** is set to **Source**. The mapping should look as shown below: - 4. Repeat this operation to perform the following simple mappings: - W\_VENDR\_BAL\_DS.OCREDITOR = 0FIAP\_C20.IOPK\_0FIAP\_C202\_0CREDITOR\_PK\_VENDOR - W\_VENDR\_BAL\_DS.ORC ACCOUNT = 0FIAP\_C20.IOPK\_0FIAP\_C202\_0RC\_ACCOUNT\_PK\_GL\_ACCOUNT - W\_VENDR\_BAL\_DS.TOTAL DEBIT POSTING = OFIAP\_C20.KF\_ODEBIT - W\_VENDR\_BAL\_DS.TOTAL CREDIT POSTING 0FIAP\_C20.KF\_0DEBIT - W\_VENDR\_BAL\_DS.CUMULATIVE BALANCE 0FIAP\_C20.KF\_0BALANCE ## 6.1.1.4 Define the Mapping Flow To define the mapping flow: 1. Select the Physical diagram. The Flow diagram looks as shown below: - In the target group, select the access point for the source group that contains Info Cube OFIAP\_C20 data target. This source group represents the source dataset made up of SAP BW data target. - 3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list. - 4. In the target group, select the target Oracle database, which is also used as the staging area for this mapping. - 5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list. - 6. Set the IKM options as follows: - Select No for the FLOW\_CONTROL option. - b. Leave other options as they are. - 7. From the **File** menu, click **Save** and close your mapping. # 6.1.2 Info Object Extraction This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the Info Object OCREDITOR data target to the $W\_ACCNT\_VENDR\_DS$ Oracle target model. ## 6.1.2.1 Create the Mapping - 1. Open Designer. - 2. In the Projects tree view, expand the SAP BW Demo Project. - 3. Expand the SAP\_BW\_DataTargets folder. - 4. Select the Mappings node. - 5. Right-click and select New Mapping. - 6. In the Mapping Definition tab, enter the mapping name: InfoObject\_SAP\_BW\_VendorAcc.W\_ACCNT\_VENDR\_DS. - 7. From the **File** menu, click **Save** to save your mapping. ## 6.1.2.2 Define the Source and Target Datastores To define the source and target datastores: - 1. In the Models tree view, select the W\_ACCNT\_VENDR\_DS datastore from the Oracle\_Target Model. - 2. Drag this datastore into the Target Datastore area of the Logical diagram (right area of the Logical diagram). - 3. In the Models tree view, select the Info Object's main table OCREDITOR Vendor datastore from the SAP BW Source model. - 4. Drag this datastore into the Sources area of the Logical diagram (left area of the Logical diagram). - 5. Perform the same operation for the Info Object text table TXT\_OCREDITOR Texts: Char. Vendor datastore from the SAP BW Source model. ## 6.1.2.3 Define Joins between Info Object's Main table and Text Table To create joins between the source datastores of Info Object's main table and text table in the mapping: 1. In the Logical diagram when you drag the Info Object's text table <code>TXT\_OCREDITOR Texts: Char.Vendor</code> the join will be automatically created on attribute vendor from the <code>OCREDITOR Vendor Info</code> object's main table datastore and the <code>Vendor attribute</code> of Info Object's text table <code>TXT\_OCREDITOR Texts: Char. Vendor</code>. This defines the first join on the vendor Key identifier, as shown below: 2. In the Properties panel, select Join Order and make sure that the **Execute on Hint** option is set to **Source** as shown below: 3. Make sure that table number of main table <code>OCREDITOR</code> is smaller than that of text table <code>TXT\_OCREDITOR</code>. In 1:n relationships the parent table has to be the first in a join. **4.** Change join type to left outer join (All rows from OCREDITOR and matching ones from TXT\_OCREDITOR. ## 6.1.2.4 Create the Mappings To create the mappings of the target datastore: - Select the VENDOR attribute from the target datastore. - 2. Drag the VENDOR attribute from the OCREDITOR source data target onto the VENDOR attribute of the target datastore. - 3. Make sure that the **Execute on Hint** option is set to **Source**. The mapping should look as shown below: - **4.** Repeat this operation to perform the following simple mappings: - W\_ACCNT\_VENDR\_DS.PCOMPANY = OCREDITOR.PCOMPANY - W ACCNT VENDR DS.PHONE = OCREDITOR.PHONE - W\_ACCNT\_VENDR\_DS.PLANT = 0CREDITOR.PLANT - W\_ACCNT\_VENDR\_DS.STREET = 0CREDITOR.STREET - W\_ACCNT\_VENDR\_DS.MED\_DESC = TXT\_0CREDITOR.TXTMD ## 6.1.2.5 Define the Mapping Flow To define the mapping flow: 1. Select the Physical diagram. The Flow diagram looks as shown below: - 2. In the target group, select the access point for the source group that contains both the Info Object's main table <code>OCREDITOR</code> and text table <code>TXT\_OCREDITOR</code>. This source group represents the source dataset made up of Info Object's main table & text table joined <code>SAP BW</code> data targets. - 3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list. - 4. In the target group, select the target Oracle database, which is also used as the staging area for this mapping. - 5. In the Property panel, under the Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list. - 6. Set the IKM options as follows: - a. Select No for the FLOW\_CONTROL option. - b. Leave other options as they are. - 7. From the **File** menu, click **Save** and close your mapping. ## 6.1.3 Info Object Hierarchy Extraction This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the hierarchy data for Info Object <code>OGL\_ACCOUNT</code> data target to the <code>W GL ACCOUNT HIER DS</code> Oracle target model. ## 6.1.3.1 Create the Mapping - 1. Open Designer. - 2. In the Projects tree view, expand the SAP BW Demo Project. - Expand the SAP\_BW\_DataTargets folder. - 4. Select the Mappings node. - 5. Right-click and select New Mapping. - 6. In the Mapping Definition tab, enter the mapping name: InfoObject\_SAP\_BW\_GlAccount.W\_GL\_ACCOUNT\_HIER\_DS. 7. From the File menu, click Save to save your mapping. ## 6.1.3.2 Define the Source and Target Datastores To define the source and target datastores: - In the Models tree view, select the W\_GL\_ACCOUNT\_DS datastore from the Oracle Target Model. - 2. Drag this datastore into the target area of the Logical diagram (right area of the Logical diagram). - 3. In the Models tree view, select the Info Object's hierarchy table HIER\_OGL\_ACCOUNT datastore from the SAP BW Source model. - Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram). - 5. Add the following filter condition on the RSHIENM source attribute: HIER\_OGL\_ACCOUNT.RSHHIENM = 'ACI1' Please note that ACI1 is the name of a hierarchy defined for OGL\_ACCOUNT. A list of defined hierarchies is available under **Description** section of the **Definition** tab when opening the hierarchy data store. **6.** After adding the filter condition the Sources diagram should look as shown below: ## 6.1.3.3 Create the Mappings To create the mappings of the target datastore: - 1. Select the HIER NAME attribute from the target datastore. - 2. Drag the RSHIENM attribute from the HIER\_OGL\_ACCOUNT source data target onto the HIER\_NAME attribute of the target datastore. - 3. Make sure that the **Execute on Hint** option is set to **Source**. The mapping should look as shown below: - 4. Repeat this operation to perform the following simple mappings: - W\_GL\_ACCOUNT\_HIER\_DS.NODEID = HIER\_OGL\_ACCOUNT.NODEID - W\_GL\_ACCOUNT\_HIER\_DS.INFOOBJECT\_NAME = HIER\_0GL\_ACCOUNT.IOBJNM - W\_GL\_ACCOUNT\_HIER\_DS.NODENAME = HIER\_OGL\_ACCOUNT.NODENAME - W GL ACCOUNT HIER DS.TLEVEL = HIER OGL ACCOUNT.TLEVEL - W\_GL\_ACCOUNT\_HIER\_DS.PARENTID = HIER\_OGL\_ACCOUNT.PARENTID - W\_GL\_ACCOUNT\_HIER\_DS.CHILDID = HIER\_OGL\_ACCOUNT.CHILDID - W\_GL\_ACCOUNT\_HIER\_DS.NEXTID = HIER\_OGL\_ACCOUNT.NEXTID ## 6.1.3.4 Define the Mapping Flow To define the mapping flow: 1. Select the Physical diagram. The Flow diagram looks as shown below: - In the target group, select the access point for the source group that contains both the Info Object's main table OCREDITOR and text table TXT\_OCREDITOR. This source group represents the source dataset made up of Info Object's main table & text table joined SAP BW data targets. - 3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list. - **4.** In the target group, select the target Oracle database, which is also used as the staging area for this mapping. - 5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list. - **6.** Set the IKM options as follows: - a. Select No for the FLOW CONTROL option. - **b.** Leave other options as they are. - 7. From the **File** menu, click **Save** and close your mapping. ## 6.1.4 Info Object Interval Hierarchy Extraction This section describes how to extract data from InfoObject and InfoObject hierarchy table containing an interval hierarchy. The data is extracted from InfoObject OGL\_ACCOUNT and InfoObject hierarchy table HIER\_OGL\_ACCOUNT. ## 6.1.4.1 Create the Mapping - 1. Open Designer. - 2. In the Projects tree view, expand the SAP BW Demo Project. - 3. Expand the SAP\_BW\_DataTargets folder. - 4. Select the Mappings node. - 5. Right-click and select New Mapping. - 6. In the Mapping Definition tab, enter the mapping name: InfoObject\_InfoObjectHierarchy\_join.OGL\_ACCOUNT. - 7. From the File menu, click Save to save your mapping. ## 6.1.4.2 Define the Source and Target Datastores To define the source and target datastores: - 1. In the Models tree view, select the TARGET\_INTERVAL\_HIERARCHY datastore from the Oracle Target Model W SD DELIVERY CUBE SOLDTO. - 2. Drag this datastore into the target area of the Logical diagram (right area of the Logical diagram). - In the Models tree view, select the InfoObject OGL\_ACCOUNT from the SAP BW source model. - Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram). - 5. Perform the same operation for the InfoObject hierarchy table HIER\_OGL\_ACCOUNT datastore from the SAP BW Source model. # 6.1.4.3 Define Joins between Sources (Info Object Main table and InfoObject Hierarchy Table) The join between InfoObject and InfoObject Hierarchy table may automatically be added by ODI. - There may be situations when more than one join shows up. E.g. when the same InfoObject is referenced more than once in different characteristics. Such unwanted extra joins have to be removed. Apply source-side Filters on RSHIENM and VERSION: Add joins: all joins must be executed on staging area. Not on source. The join expression looks like this: The final join and filter setup should look like this: ## 6.1.4.4 Create the Mappings To create the mappings of the target datastore: - Drag the NODEID attribute from the HIER\_OGL\_ACCOUNT source data target onto the NODEID attribute of the TARGET\_INTERVAL\_HIERARCHY target datastore. - 2. Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below: - 3. Repeat this operation to perform the following simple mappings: - TARGET\_INTERVAL\_HIERARCHY.RSHIENM = HIER\_OGL\_ACCOUNT.RSHIENM - TARGET INTERVAL HIERARCHY.PARENTID = HIER OGL ACCOUNT.PARENTID - TARGET INTERVAL HIERARCHY.INTERVL = HIER\_OGL\_ACCOUNT.INTERVAL - TARGET\_INTERVAL\_HIERARCHY.LEAFFROM = HIER\_OGL\_ACCOUNT.LEAFFROM - TARGET INTERVAL HIERARCHY.LEAFTO = HIER\_OGL\_ACCOUNT.LEAFTO - TARGET\_INTERVAL\_HIERARCHY.VERSION = HIER\_OGL\_ACCOUNT.VERSION - TARGET\_INTERVAL\_HIERARCHY.CHRT\_ACCTS = OGL\_ACCOUNT.CHRT\_ACCTS - TARGET\_INTERVAL\_HIERARCHY.GL\_ACCOUNT = OGL\_ACCOUNT.GL\_ACCOUNT - TARGET INTERVAL HIERARCHY.BAL\_FLAG = OGL\_ACCOUNT.BAL\_FLAG - TARGET\_INTERVAL\_HIERARCHY.GLACCEXT = OGL\_ACCOUNT.GLACCEXT - TARGET\_INTERVAL\_HIERARCHY.INCST\_FLAG = OGL\_ACCOUNT.INCST\_FLAG ## 6.1.4.5 Define the Mapping Flow To define the mapping flow: 1. Select the Physical diagram. The Flow diagram looks as shown below: - 2. In the target group, select the access point for the ODI Source Group. - 3. In the Property panel, under Loading Knowledge Module, verify that LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL has been set. - **4.** In the target group, select the target Oracle datastore, which is also used as the staging area for this mapping. - In the Property panel, under Integration Knowledge Module, verify that IKM SQL Control Append has been set. - **6.** Execute the Mapping. Verify that data got populated into the target datastore. ## 6.1.5 ODS/DSO Extraction This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the <code>ODS/DSO OBBP\_PO</code> data target to the <code>W\_PURCH\_DS</code> Oracle target model. ## 6.1.5.1 Create the Mapping - 1. Open Designer. - 2. In the Projects tree view, expand the SAP BW Demo Project. - 3. Expand the SAP\_BW\_DataTargets folder. - 4. Select the Mappings node. - 5. Right-click and select **New Mapping**. - 6. In the Mapping Definition tab, enter the mapping name: ODS\_SAP\_BW\_PurchOrdl.W\_PURCH\_DS. - 7. From the File menu, click Save to save your mapping. ## 6.1.5.2 Define the Source and Target Datastores To define the source and target datastores: - In the Models tree view, select the W\_PURCH\_DS datastore from the Oracle\_Target Model. - 2. Drag this datastore into the targets area of the Logical diagram (right area of the Logical diagram). - 3. In the Models tree view, select the <code>OBBP\_PO Purchase Order Single Documents datastore</code> from the <code>SAP BW Source model</code>. - Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram). ## 6.1.5.3 Create the Mappings To create the mappings of the target datastore: - **1.** Select the PO\_GUIDE attribute from the target datastore. - 2. Drag the BBP\_POGUID attribute from the OBBP\_PO Purchase Order Single Documents source data target onto the PO\_GUIDE attribute of the target datastore. - Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below: - 4. Repeat this operation to perform the following simple mappings: - W\_PURCH\_DS.ORDER\_ITEM\_GUID = 0BBP\_PO.BBP\_POITGU - W\_PURCH\_DS.ACC\_ASS\_GUID = 0BBP\_PO.BBP\_ACGUID - W\_PURCH\_DS.GUIDE\_CONTRCT = 0BBP\_PO.BBP\_CTGUID - W\_PURCH\_DS.ORDER\_QUANT = 0BBP\_PO.BBP\_ASPQOU - W\_PURCH\_DS.NET\_PRICE = 0BBP\_PO.BBP\_NETPRC - W\_PURCH\_DS.PRICE\_UNIT = 0BBP\_PO.BBP\_PRCUNT - W\_PURCH\_DS.NO\_OF\_PURCH\_ODR = 0BBP\_PO.BBP\_POCT ## 6.1.5.4 Define the Mapping Flow To define the mapping flow: 1. Select the Physical diagram. The Flow diagram looks as shown below: - 2. In the target group, select the access point for the source group that contains ODS/DSO OBBP\_PO data targets. This source group represents the source dataset made up of SAP BW data target. - 3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list. - **4.** In the target group, select the target Oracle database, which is also used as the staging area for this mapping. - 5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list. - 6. Set the IKM options as follows: - a. Select No for the FLOW\_CONTROL option. - b. Leave other options as they are. - From the File menu, click Save and close your mapping. ## 6.1.6 Info Cube & Related Info Object Extraction This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the Info Cube <code>OFIAP\_C20</code> and Info Object <code>OCREDITOR</code> data targets join to the <code>W\_VENDER\_CUBE\_OBJ\_DS</code> Oracle target model. ## 6.1.6.1 Create the Mapping - 1. Open Designer. - 2. In the Projects tree view, expand the SAP BW Demo Project. - 3. Expand the SAP\_BW\_DataTargets folder. - 4. Select the Mappings node. - 5. Right-click and select New Mapping. - 6. In the Mapping Definition tab, enter the mapping name: InfoCube\_InfoObject\_join.W\_VENDER\_CUBE\_OBJ\_DS. 7. From the **File** menu, click **Save** to save your mapping. ## 6.1.6.2 Define the Source and Target Datastores To define the source and target datastores: - 1. In the Models tree view, select the W\_VENDER\_CUBE\_OBJ\_DS datastore from the Oracle\_Target Model. - 2. Drag this datastore into the target area of the Logical diagram (right area of the Logical diagram). - 3. In the Models tree view, select the Info Cube OFIAP\_C20 Vendor Balances datastore from the SAP BW Source model. - Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram). - 5. Perform the same operation for the Info Object's main table OCREDITOR Vendor and text table TXT\_OCREDITOR Texts: Char. Vendor datastore from the SAP BW Source model. ## 6.1.6.3 Define Joins between Sources (Info Cube & Object) To create joins between the source datastores of a mapping: 1. In the Sources area of the Logical diagram drag the IOPK\_OFIAP\_C202\_OCREDITOR\_PK\_VENDOR attribute from the Info Cube OFIAP\_C20 Vendor Balances datastore onto the VENDOR attribute in the Info Object's main table OCREDITOR Vendor. This defines the first join on the Vendor Key identifier, as shown below: 2. In the Properties panel, you can see the join clause: 0FIAP\_C20.IOPK\_0FIAP\_C202\_0CREDITOR\_PK\_VENDOR=0CREDITOR.VENDOR 3. In the Properties panel, select **Generate ANSI Syntax** and **Join Order** options, and make sure that **Execute on Hint** option is set to Source as shown below: - **4.** Make sure that table number of <code>OFIAP\_C20</code> is smaller than that of <code>OCREDITOR</code>. In *1:n* relationships the parent data target has to be the first in a join. - 5. Change join between OFIAP\_C20 and OCREDITOR to left outer join (All rows from OFIAP\_C20 and matching ones from OCREDITOR. - 6. Change join between OCREDITOR and TXT\_OCREDITOR to left outer join (All rows from OCREDITOR and matching ones from TXT\_OCREDITOR. ## 6.1.6.4 Create the Mappings To create the mappings of the target datastore: - **1.** Select the COMP\_CODE attribute from the target datastore. - 2. Drag the IOPK\_0FIAP\_C201\_0COMP\_CODE\_PK\_COMP\_CODE attribute from the 0FIAP\_C20 Vendor Balances source data target onto the COMP\_CODE attribute of the target datastore. - 3. Make sure that the **Execute on Hint** option is set to **Source**. The mapping should look as shown below: - 4. Repeat this operation to perform the following simple mappings: - W\_VENDER\_CUBE\_OBJ\_DS.VENDOR = 0FIAP\_C20.IOPK\_0FIAP\_C202\_0CREDITOR\_PK\_VENDOR - W\_VENDER\_CUBE\_OBJ\_DS.GL\_ACCOUNT = OFIAP\_C20.IOPK\_OFIAP\_C202\_ORC\_ACCOUNT\_PK\_GL\_ACCOUNT - W\_VENDER\_CUBE\_OBJ\_DS.SALES\_FOR\_PERIOD = OFIAP\_C20.KF\_OSALES - W\_VENDER\_CUBE\_OBJ\_DS.CUM\_BALANCE = 0FIAP\_C20.KF\_0BALANCE - W VENDER CUBE OBJ DS.PLANT = OCREDITOR.PLANT - W\_VENDER\_CUBE\_OBJ\_DS.MEDIUM\_DESC = TXT\_OCREDITOR.TXTMD ## 6.1.6.5 Define the Mapping Flow To define the mapping flow: 1. Select the Physical diagram. The Flow diagram looks as shown below: - 2. In the target group, select the access point for the source group that contains both the Info Cube and Info Object tables. This source group represents the source dataset made up of two joined SAP BW data targets. - 3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list. - 4. In the Property panel, select the target Oracle database, which is also used as the staging area for this mapping. - 5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list. - **6.** Set the IKM options as follows: - a. Select No for the FLOW\_CONTROL option. - **b.** Leave other options as they are. - 7. From the **File** menu, click **Save** and close your mapping. ## 6.1.7 Info Cube Extraction with Navigational Attributes This section describes how to create a mapping in ODI in order to load data from a SAP InfoCube and its navigation attributes. The data is extracted from Info Cube OSD\_C04 and InfoObject OSOLD\_TO. ## 6.1.7.1 Create the Mapping - 1. Open Designer. - 2. In the Projects tree view, expand the SAP BW Demo Project. - 3. Expand the SAP\_BW\_DataTargets folder. - 4. Select the Mappings node. - Right-click and select New Mapping. - 6. In the Mapping Definition tab, enter the mapping name: InfoCube\_InfoObject\_Nav\_join.0SD\_C04. - 7. From the File menu, click Save to save your mapping. ## 6.1.7.2 Define the Source and Target Datastores To define the source and target datastores: - 1. In the Models tree view, select the <code>OSD\_CO4</code> datastore from the Oracle Target Model <code>TARGET\_NAVIGATIONAL</code> ATTRIBUTES. - 2. Drag this datastore into the targets area of the Logical diagram (right area of the Logical diagram). - 3. In the Models tree view, select the Info Cube OSD\_CO4 Delivery service datastore from the SAP BW Source model. - 4. Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram). - 5. Perform the same operation for the Info Object main table <code>OSOLD\_TO Customer datastore</code> from the SAP BW Source model. ## 6.1.7.3 Define Joins Between Sources (Info Cube & Info Object) The join between InfoCube and InfoObject will automatically be added by ODI. - There may be situations when more than one join shows up. E.g. when the same InfoObject is referenced more than once in different characteristics. Such unwanted extra joins have to be removed. The final join setup with its join expression should look like this: All InfoObject joins for retrieving navigation attributes must be executed on \*staging\* area. Not on source: ## 6.1.7.4 Create the Mappings To create the mappings of the target datastore: - 1. Drag the OSD\_CO4.IOPK\_OSD\_CO41\_OSOLD\_TO\_PK\_CUSTOMER attribute from the OSD\_CO41 Delivery service Source data target onto the IOPK\_OSD\_CO41\_OCUST\_GROUP\_PK\_CUST\_GROUP attribute of the target datastore. - 2. Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below: 3. Repeat this operation to perform the following simple mappings: ## 6.1.7.5 Define the Mapping Flow To define the mapping flow: 1. Select the Physical diagram. The Flow diagram appears as follows: - 2. In the target group, select the access points for the ODI Source Datastores. - 3. In the Property panel, verify that LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL has been set for every ODI Source Datastore. #### Note: This mapping will generate several SAP ABAP extraction programs. One for retrieving any display attributes and key figures from the InfoCube and one for each InfoObject containing navigation attributes. - **4.** In the target group, select the target Oracle database, which is also used as the staging area for this mapping. - 5. In the Property panel, under Integration Knowledge Module, verify that IKM SQL Control Append has been set for the target datastore. - **6.** Execute the Mapping. Verify that Info Cube and Navigational attributes got populated into the target datastore. ## 6.1.8 Open Hub Extraction This section describes how to create a mapping in ODI in order to load data from a SAP BW source model representing the Open Hub destination <code>ZOHD\_SALE</code> (/BIC/OHZOHD\_SALE) to the <code>W\_OPENHUB\_SALES\_DS</code> Oracle target model. ## 6.1.8.1 Create the Mapping - 1. Open Designer. - 2. In the Projects tree view, expand the SAP BW Demo Project. - 3. Expand the SAP\_BW\_DataTargets folder. - 4. Select the Mappings node. - 5. Right-click and select **New Mapping**. - 6. In the Mapping Definition tab, enter the mapping name: OpenHub\_Sales.W\_OPENHUB\_SALES\_DS. - 7. From the **File** menu, click **Save** to save your mapping. ## 6.1.8.2 Define the Source and Target Datastores To define the source and target datastores: - 1. In the Models tree view, select the W\_OPENHUB\_SALES\_DS datastore from the Oracle\_Target Model. - 2. Drag this datastore into the targets area of the Logical diagram (right area of the Logical diagram). - In the Models tree view, select the ZOHD\_SALE datastore from the SAP BW Source model. - **4.** Drag this datastore into the sources area of the Logical diagram (left area of the Logical diagram). ## 6.1.8.3 Create the Mappings To create the mappings of the target datastore: - 1. Select the OHREQUID attribute from the target datastore. - 2. Drag the OHREQUID attribute from the ZOHD\_SALE source data target onto the OHREQUID attribute of the target datastore. - 3. Make sure that the Execute on Hint option is set to Source. The mapping should look as shown below: - **4.** Repeat this operation to perform the following simple mappings: - W\_OPENHUB\_SALES\_DS.DATA\_PACKAGE = ZOHD\_SALE.DATAPAKID - W\_OPENHUB\_SALES\_DS.DATA\_RECORD = ZOHD\_SALE.RECORD - W\_OPENHUB\_SALES\_DS.CUSTOMER = ZOHD\_SALE.D\_CUSTOMER - W\_OPENHUB\_SALES\_DS.MATERIAL = ZOHD\_SALE.D\_MATERIAL - W\_OPENHUB\_SALES\_DS.MATERIAL\_PRICE = ZOHD\_SALE.PRICE\_MAT - W\_OPENHUB\_SALES\_DS.CURRENCY = ZOHD\_SALE.CURRENCY - W\_OPENHUB\_SALES\_DS.QUANTITY = ZOHD\_SALE./BIC/ZQTY - W OPENHUB SALES DS.TOTAL REVENUE = ZOHD SALE./BIC/ZREV ## 6.1.8.4 Define the Mapping Flow To define the mapping flow: 1. Select the Physical diagram. The Flow diagram looks as shown below: - 2. In the target group, select the access point for the source group that contains Open Hub Destination Table ZOHD\_SALE. This source group represents the source dataset made up of SAP BW Open Hub table. - 3. In the Property panel, under Loading Knowledge Module, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL from the Loading Knowledge Module drop-down list. - **4.** In the target group, select the target Oracle database, which is also used as the staging area for this mapping. - 5. In the Property panel, under Integration Knowledge Module, select IKM Oracle Incremental Update from the Integration Knowledge Module drop-down list. - 6. Set the IKM options as follows: - a. Select No for the FLOW\_CONTROL option. - b. Leave other options as they are. - 7. From the File menu, click Save and close your mapping. # 6.2 Running the Mapping This section contains the following topics: - Running the Mapping - Review the Mapping Execution - Review the Resulting Data ## 6.2.1 Running the Mapping To run the mapping: - In the Projects tree view, expand the SAP Demo Project - Expand the SAP\_BW\_DataTargets folder. - 3. Expand the Mappings node. - 4. Select the InfoCube\_SAP\_BW\_VendorBal.W\_VENDR\_BAL\_DS mapping. - 5. Right-click and select Run. - 6. In the Execution window that appears, click **OK**. - 7. Click **OK** in the Session Started window. #### What happens when you run the mapping? First, Oracle Data Integrator creates an ABAP program that does the following: - 1. It performs the extraction of the data on the SAP BW system. In this example, the extraction will be done on Info Cube source data targets and then returns the resultset in an extraction file. - 2. It uploads the extraction file into a FTP data server. This FTP host is specified via the File Logical Schema called File Server for SAP ABAP. This Logical Schema is mapped to a Physical Schema and therefore a data server in the given context. This data server contains the connection information for the FTP host. Then, the ABAP code is uploaded using the *OdiSapAbapExecute* tool. The ABAP program is pushed into the SAP Function group given in the SAP\_FUNCTION\_GROUP\_NAME LKM option. This phase can be suppressed by setting the UPLOAD ABAP CODE LKM option to No. The ABAP code is executed also by the *OdiSapAbapExecute* tool. At the end of the ABAP code execution, the extraction file is available in the FTP host. The Oracle Data Integrator agent is able to download this extraction file from the FTP host, or directly access it, depending on the FTP\_TRANSFER\_METHOD specified in the IKM option. Finally, when the agent accesses the extraction file, it uses SQL\*Loader or a JDBC Connection to load this file into the Oracle/non-Oracle staging area. The rest of the integration process takes place within the Oracle/non-Oracle engine. ## 6.2.2 Review the Mapping Execution To review the mapping execution: - Connect to Operator. - 2. In the Operator, select the Session List tree view. - 3. Expand the All Executions node in this tree view. - 4. The latest session is the first entry of this list. - 5. Double click the InfoCube\_SAP\_BW\_VendorBal.W\_VENDR\_BAL\_DS node to see the session details and the number of lines processed. ## 6.2.3 Review the Resulting Data To review the resulting data: - 1. In the Designer, in the Models tree view, expand the Oracle Target Model. - 2. Select the w\_VENDR\_BAL\_DS datastore, right-click and select **Data** to view the data integrated into the target Oracle table. - 3. Repeat the same steps for remaining mappings: - InfoObject\_SAP\_BW\_VendorAcc.W\_ACCNT\_VENDR\_DS - ODS\_SAP\_BW\_PurchOrdl.W\_PURCH\_DS - InfoCube\_InfoObject\_join.W\_VENDER\_CUBE\_OBJ\_DS - OpenHub\_Sales.W\_OPENHUB\_SALES\_DS 7 # Creating a Package for Delta Extraction This chapter describes how to create a package for delta extraction. So far we have seen examples of extracting data from BW data targets. The instructions in this chapter explain how the mappings introduced in the previous chapters can be turned into *delta extraction mappings*. In delta extraction mappings only the data, which was changed after last extraction, is extracted. Delta extraction mappings are only supported for InfoCubes, ODS/DSO and Open Hub objects, but not for InfoObjects. This chapter includes the following sections: - Modify the Mapping Flow - Creating the MIN\_REQUEST\_ID Variable - · Creating a Package for Delta Extraction - Running the Package # 7.1 Modify the Mapping Flow The first step is to modify the mapping: - 1. Select the desired Mappings. - 2. Double click the mapping. - 3. Select the Physical diagram. - 4. In the target group, select the access point for the source group. - 5. In the Property panel, under Loading Knowledge Module, set KM option values for FIRST\_REQ\_ID to #MIN\_REQUEST\_ID and LAST\_REQ\_ID to <@=odiSAPBWDeltaRef.getLastOrMaxRegId()@> as shown below. From the File menu, click Save and close your mapping. # 7.2 Creating the MIN\_REQUEST\_ID Variable The second step consists of creating an ODI variable that stores the last extracted request ID. This request ID serves as the starting point for the next extraction run: Create a MIN\_REQUEST\_ID variable to hold the last request id. The MIN\_REQUEST\_ID variable has to be a numeric variable with a Keep History or Last-value Action as shown below. 2. The value of this variable is updated at the end of the delta extraction package described in the third step. It happens once delta extraction is finished and the MAX REQUEST ID will be fetched from SAP BW system and will be stored into the ODI Variable (MIN\_REQUEST\_ID). The refresh expression shown here is used to update the variable: # 7.3 Creating a Package for Delta Extraction In the third step the building blocks created in the previous steps are put together: Variable and Mappings are arranged into a Package: - 1. Open the SAP Demo Project. - 2. Create a new Package named SAP Demo. - 3. Insert a Declare Variable step to this Package: Drag and Drop the MIN\_REQUEST\_ID variable and select the "Declare Variable" step type. Insert a Flow step to this Package: Drag and drop the Mapping created in the previous sections for InfoCube/ ODS or OpenHub-Extraction in the Package. 5. Insert a Refresh Variable step to this Package. Drag and Drop the MIN\_REQUEST\_ID variable and select the "Refresh Variable" step type. - Define the step sequence. - Define the Declare Variable step as the First Step. - **b.** Link it to the Flow step that is the next step upon success. - c. Link the Flow step to the Refresh Variable step that is the next step upon success and the last step in the Package. Add arrows between the variables. Your Package should look as shown on this screenshot. # 7.4 Running the Package #### To run the Package: - In the Projects tree view, expand the SAP Demo Project. - Select the SAP Demo Package. - Right-click and select Run. - In the Execution window, click OK. - In the Session Started window, click OK. #### What happens when you execute the delta extraction Package? First, Oracle Data Integrator initializes the variable MIN\_REQUEST\_ID with the last historized value (declare variable step). This value is then passed into ABAP extraction program to specify where to start the data extraction. The KM queries the SAP system for the highest assigned request ID. All data between min and max request ID will be extracted (mapping). After the execution of the mapping the refresh variable step stores the highest request ID into MIN\_REQUEST\_ID for next extraction run. 8 # Going Further with Oracle Data Integrator This chapter describes what steps to take next with Oracle Data Integrator. You have now completed a Project extracting data from a SAP BW system. In this Project, you have: - Set up the environment and topology to work with SAP BW. - Created and reverse-engineered a SAP BW data model. - Created different mappings to load the data from Info Cube, Info Object, ODS/ DSO, Info Cube & Info Object join, Open Hub destination table, Delta SAP BW data targets & tables into the Oracle database. Refer to individual KM options and their descriptions as well as to *Considerations for SAP BW Integration* in *Application Adapters Guide for Oracle Data Integrator* for more information on the SAP BW KM features and options. #### Note: In case the execution did not complete successfully, please check the ODI Operator and ODI Logs for details. In addition to this, the following log files will contain execution information. - <System Temp Dir or local FTP dir>/ ZODI\_<Mapping Id>\_<SrcSet>\_<Context>.out - <System Temp Dir or local FTP dir>/ ZODI\_<Mapping Id>\_<SrcSet>\_<Context>.err Refer to Log Files in *Application Adapters Guide for Oracle Data Integrator* for more details. # 8.1 Going further with Oracle Data Integrator Use the demonstration environment to familiarize yourself with Oracle Data Integrator. You can go further with Oracle Data Integrator by taking advantage of the samples available on the Oracle Technology Network. # SAP ABAP BW Required Privileges This appendix lists the required privileges for accessing the SAP system using Oracle Data Integrator. For connecting to the SAP system a SAP dialog user is required for RKM installation and LKM execution during development. A SAP RFC user is *not* sufficient. This user has to have a developer license key. License keys can be retrieved from <a href="http://service.sap.com">http://service.sap.com</a>. Any execution attempts without this developer license key will lead to failure and may cause the need for clean-up operations. Later for RKM execution and LKM execution in production a SAP RFC user is sufficient. These SAP user types can be used for the following operations: Table A-1 Required SAP User Types | Operation | Required SAP User Type | |---------------------------------------|---------------------------------| | RKM: Setup | SAP Dialog user | | RKM: Reverse Engineering | SAP Dialog user or SAP RFC user | | LKM: Development | SAP Dialog user or SAP RFC user | | LKM: Production | SAP Dialog user or SAP RFC user | | Testing ODI Generated Extraction RFCs | SAP Dialog user or SAP RFC user | The following tables list the privileges required for using SAP BW Knowledge Modules: - Authorizations Required for RKM SAP BW Upload - Authorizations Required for RKM SAP BW Execution - Authorizations Required for LKM SAP BW Upload (Background & Foreground) - Authorizations Required for LKM SAP BW Execution (Background & Foreground) # A.1 Important points to consider Consider the following points while configuring the SAP privilieges: - **S\_DATASET** is an authorization object that controls access to physical file, so you need to provide access to SAP directories & folder mounted path. The values provided here are sample paths, you need to provide your landscape directories path or provide \*(all). - NR or (NR) means NOT REQUIRED. # A.2 Authorizations Required for RKM SAP BW Upload The following SAP authorizations are required, only in rare cases when explicitly requested by Oracle product support. For standard installations, these authorizations are not required. Note: Developer Key is required in this authorization. | Object | Field Name | Value (BI 7.0) | Value (BI 7.5) | |------------|------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------| | S RFC | ACTVT | 16 | 16 | | S_RFC | RFC_NAME | RFC1, RSAB,<br>RSB3RD,<br>SDIFRUNTIME,<br>SUTL, SYST, SYSU,<br>ZODI* | RFC1, RSAB,<br>RSB3RD,<br>SDIFRUNTIME,<br>SUTL, SYST,<br>SYSU, ZODI*,<br>RSBAPI_IOBJ | | S_RFC | RFC_TYPE | FUGR | FUGR | | S_RFCRAIAR | RFC_RAIAR | NR | 16 | | S_TCODE | TCD | SU53, SE38 | SU53, SE38 | | S_ADMI_FCD | S_ADMI_FCD | RFCA | RFCA | | S_CTS_ADMI | CTS_ADMFCT | TABL | TABL | | S_DATASET | ACTVT | 06,33,34 | 06,33,34,A7 | | S_DATASET | FILENAME | * | * | | S_DATASET | PROGRAM | SAPLSLOG,<br>SAPLSTRF,<br>SAPLZODI* | * | | S_TABU_DIS | ACTVT | 3 | 2,3 | | S_TABU_DIS | DICBERCLS | * | * | | S_DEVELOP | ACTVT | 01,02,03,06,07,16<br>,70,MA | 01,02,03,06,07,16<br>,70,MA | | S_DEVELOP | DEVCLASS | \$TMP,ZODI_LKM_PCK<br>G,ZODI_RKM_PCKG,R<br>SS,ZODI* | \$TMP,ZODI_LKM_PCK<br>G,ZODI_RKM_PCKG,R<br>SS,ZODI* | | S_DEVELOP | OBJNAME | * | * | | S_DEVELOP | OBJTYPE | FUGR, PROG, DEVC, DE<br>BUG | * | | S_DEVELOP | P_GROUP | * | * | | S_TRANSPRT | ACTVT | 01,02,03 | 01,02,03 | | S_TRANSPRT | TTYPE | DTRA, TASK | DTRA, TASK | | S_RS_ADMWB | ACTVT | 03,16 | 03,16 | | Object | Field Name | Value (BI 7.0) | Value (BI 7.5) | |------------|------------|------------------|------------------| | S_RS_ADMWB | RSADMWBOBJ | INFOOBJECT | INFOOBJECT | | S_RS_ICUBE | ACTVT | 03 | 03 | | S_RS_ICUBE | RSICUBEOBJ | * | * | | S_RS_ICUBE | RSINFOAREA | * | * | | S_RS_ICUBE | RSINFOCUBE | * | * | | S_RS_IOBJ | ACTVT | 03 | 03 | | S_RS_IOBJ | RSIOBJ | * | * | | S_RS_IOBJ | RSIOBJCAT | * | * | | S_RS_IOBJ | RSIOBJPART | DEFINITION | DEFINITION | | S_RS_ODSO | ACTVT | 03 | 03 | | S_RS_ODSO | RSINFOAREA | * | * | | S_RS_ODSO | RSODSOBJ | * | * | | S_RS_ODSO | RSODSPART | DATA, DEFINITION | DATA, DEFINITION | # A.3 Authorizations Required for RKM SAP BW Execution The following authorizations are required for **RKM SAP BW** execution. | Object | Field Name | Value (BI 7.0) | Value (BI 7.5) | |------------|------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------| | S_RFC | ACTVT | 16 | 16 | | S_RFC | RFC_NAME | RFC1, RSAB,<br>RSB3RD,<br>SDIFRUNTIME, SUTL,<br>SYST, SYSU, ZODI* | RFC1, RSAB, RSB3RD,<br>SDIFRUNTIME, SUTL,<br>SYST, SYSU, ZODI*,<br>RSBAPI_IOBJ | | S_RFC | RFC_TYPE | FUGR | FUGR | | S_TCODE | TCD | SU53 | SU53 | | S_DATASET | ACTVT | 06, 33, 34 | 06, 33, 34 | | S_DATASET | FILENAME | * | * | | S_DATASET | PROGRAM | SAPLSTRF,<br>SAPLSLOG,<br>SAPLZODI* | SAPLSTRF, SAPLSLOG,<br>SAPLZODI* | | S_TABU_DIS | ACTVT | 03 | 03 | | S_TABU_DIS | DICBERCLS | * | * | | S_TRANSPRT | ACTVT | 01, 02, 03 | 01, 02, 03 | | S_TRANSPRT | TTYPE | DTRA, TASK | DTRA, TASK | | S_RS_ADMWB | ACTVT | 03,16 | 03,16 | | S_RS_ADMWB | RSADMWBOBJ | * | * | | S_RS_ICUBE | ACTVT | 03 | 03 | | S_RS_ICUBE | RSICUBEOBJ | DATA, DEFINITION | DATA, DEFINITION | | Object | Field Name | Value (BI 7.0) | Value (BI 7.5) | |------------|------------|------------------|------------------| | S_RS_ICUBE | RSINFOAREA | * | * | | S_RS_ICUBE | RSINFOCUBE | * | * | | S_RS_IOBJ | ACTVT | 03 | 03 | | S_RS_IOBJ | RSIOBJ | * | * | | S_RS_IOBJ | RSIOBJCAT | * | * | | S_RS_IOBJ | RSIOBJPART | DEFINITION | DEFINITION | | S_RS_ODSO | ACTVT | 03 | 03 | | S_RS_ODSO | RSINFOAREA | * | * | | S_RS_ODSO | RSODSOBJ | * | * | | S_RS_ODSO | RSODSPART | DATA, DEFINITION | DATA, DEFINITION | | S_RS_AUTH | BIAUTH | 0 * | 0* | | | | | | # A.4 Authorizations Required for LKM SAP BW Upload (Background & Foreground) The following authorizations are required for ${\bf LKM\ SAP\ BW}$ execution in a SAP development environment. Developer Key is required in this authorization. This section contains authorizations for both background and foreground executions. | Object | Field Name | Value (BI 7.0) | Value (BI 7.5) | |-----------|------------|--------------------------------------------|--------------------------------------------| | S_RFC | ACTVT | 16 | 16 | | S_RFC | RFC_NAME | RFC1,<br>SDIFRUNTIME,<br>SLST, SYST, ZODI* | RFC1,<br>SDIFRUNTIME,<br>SLST, SYST, ZODI* | | S_RFC | RFC_TYPE | FUGR | FUGR | | S_TCODE | TCD | SE38,SU53 | SE38,SU53 | | S_DEVELOP | ACTVT | 1, 2, 3, 6, 7, 16 | 1, 2, 3, 6, 7, 16 | | S_DEVELOP | DEVCLASS | * | * | | S_DEVELOP | OBJNAME | * | * | | S_DEVELOP | OBJTYPE | FUGR, FUNC,<br>PROG*, SUSO | FUGR, FUNC,<br>PROG*, SUSO | | S_DEVELOP | P_GROUP | NR | NR | | S_PROGRAM | P_ACTION | BTCSUBMIT,<br>SUBMIT, VARIANT | BTCSUBMIT,<br>SUBMIT, VARIANT | | Object | Field Name | Value (BI 7.0) | Value (BI 7.5) | |------------|------------|------------------|------------------| | S_PROGRAM | P_GROUP | NR | NR | | S_TRANSPRT | ACTVT | 1, 2, 43 | 1, 2, 43 | | S_TRANSPRT | TTYPE | DTRA,TASK | DTRA, TASK | | S_TABU_DIS | ACTVT | 3 | 3 | | S_TABU_DIS | DICBERCLS | * | * | | S_BTCH_ADM | BTCADMIN | Υ | Y | | S_BTCH_JOB | JOBACTION | RELE | RELE | | S_BTCH_JOB | JOBGROUP | \ / | \ / | | S_CTS_ADMI | CTS_ADMFCT | TABL | TABL | | S_DATASET | ACTVT | 06,33,34 | 06,33,34 | | S_DATASET | FILENAME | * | * | | S_DATASET | PROGRAM | * | * | | S_RS_AUTH | BIAUTH | * | * | | S_RS_ICUBE | ACTVT | 3, 6 | 3, 6 | | S_RS_ICUBE | RSICUBEOBJ | DATA, DEFINITION | DATA, DEFINITION | | S_RS_ICUBE | RSINFOAREA | * | * | | S_RS_ICUBE | RSINFOCUBE | * | * | | S_RS_IOBJ | ACTVT | 3 | 3 | | S_RS_IOBJ | RSIOBJ | * | * | | S_RS_IOBJ | RSIOBJCAT | * | * | | S_RS_IOBJ | RSIOBJPART | DATA, DEFINITION | DATA, DEFINITION | | S_RS_ODSO | ACTVT | 3 | 3 | | S_RS_ODSO | RSINFOAREA | * | * | | S_RS_ODSO | RSODSOBJ | * | * | | S_RS_ODSO | RSODSPART | DATA, DEFINITION | DATA, DEFINITION | | S_APP_LOG | ACTVT | 03, 06 | 03, 06 | | S_APP_LOG | ALG_OBJECT | * | * | | S_APP_LOG | ALG_SUBOBJ | * | * | # A.5 Authorizations Required for LKM SAP BW Execution (Background & Foreground) The following authorizations are required for ${\bf LKM\ SAP\ BW}$ execution in a SAP production environment. This section contains authorizations for both background and foreground executions. | Object | Field Name | Value (BI 7.0) | Value (BI 7.5) | |------------|------------|--------------------------------------------------------|--------------------------------------------------------| | S_RFC | ACTVT | 16 | 16 | | S_RFC | RFC_NAME | RFC1,<br>SDIFRUNTIME,<br>SLST, SYST,<br>ZODI_FGR_PROD* | RFC1,<br>SDIFRUNTIME,<br>SLST, SYST,<br>ZODI_FGR_PROD* | | S_RFC | RFC_TYPE | FUGR | FUGR | | S_TCODE | TCD | SU53 | SU53 | | S_TABU_DIS | ACTVT | 3 | 3 | | S_TABU_DIS | DICBERCLS | * | * | | S_BTCH_ADM | BTCADMIN | Y | Y | | S_BTCH_JOB | JOBACTION | RELE | RELE | | S_BTCH_JOB | JOBGROUP | \ / | \ / | | S_DATASET | ACTVT | 06,33,34 | 06, 33, 34 | | S_DATASET | FILENAME | * | * | | S_DATASET | PROGRAM | * | * | | S_TRANSPRT | ACTVT | 1, 2, 43 | 1, 2, 43 | | S_TRANSPRT | TTYPE | DTRA, TASK | DTRA, TASK | | S_RS_AUTH | BIAUTH | * | * | | S_RS_ICUBE | ACTVT | 3, 6 | 3, 6, 23, 63, 66 | | S_RS_ICUBE | RSICUBEOBJ | * | * | | S_RS_ICUBE | RSINFOAREA | * | * | | S_RS_ICUBE | RSINFOCUBE | * | * | | S_RS_IOBJ | ACTVT | 3 | 3 | | S_RS_IOBJ | RSIOBJ | * | * | | S_RS_IOBJ | RSIOBJCAT | * | * | | S_RS_IOBJ | RSIOBJPART | DATA, DEFINITION | DATA, DEFINITION | | S_RS_ODSO | ACTVT | 3 | 3 | | S_RS_ODSO | RSINFOAREA | * | * | | S_RS_ODSO | RSODSOBJ | * | * | | S_RS_ODSO | RSODSPART | DATA, DEFINITION | DATA, DEFINITION | | S_APP_LOG | ACTVT | 03, 06 | 03, 06 | | S_APP_LOG | ALG_OBJECT | * | * | | S_APP_LOG | ALG_SUBOBJ | * | * | B ## SAP Stand-Alone Connection Test This appendix describes how to perform an SAP stand-alone connection test. In addition to the Connection Testing described above, a test can be performed outside of ODI using a standalone java utility: ## **B.1 SAP Stand-Alone Connection Test** To use a standalone java utility to test the connection: - 1. Open a command window. - 2. Change to <ODI\_HOME>/odi/sdk/lib directory. - 3. Make sure that JAVA\_HOME points to a JVM (at least 1.5). - **4.** Make sure that you have installed SAP Java Connector and that the sapjco3.jar and the sapjco3 library are in the <ODI\_HOME>/odi/sdk/lib directory. - 5. Launch the utility using the following command: #### On Windows: ``` java -cp sapjco3.jar;odi-sap.jar oracle.odi.sap.km.test.JCoTest On Linux/UNIX: java -cp sapjco3.jar:odi-sap.jar oracle.odi.sap.km.test.JCoTest ``` This should result in an output similar to this: ``` JCO3 Libraray available!! JCO Version: 3.0.2 (2009-03-29) Creating connection Pool... Error: com.sap.conn.jco.JCoException: (102) RFC_ERROR_COMMUNICATION: Connect to SAP gateway failed Connection parameters: TYPE-A DEST-ODI_SAP_CON_POOL ASHOST=(SAP Application Server) SYSNR-00 PCS=1 LOCATION CPIC (TCP/IP) on local host with Unicode ERROR hostname '(SAP Application Server)' unknown TIME Tue Sep 08 16:07:27 200 RELEASE 711 COMPONENT NI (network interface) VERSION 39 RC -2 MODULE ninti.c LINE 895 DETAIL NiPGetHostByName: '(SAP Application Server)' not found SYSTEM CALL getaddrinfo COUNTER 2 ``` **6.** Use a text editor to open the ODI\_SAP\_CON\_POOL.jcoDestination file in the oracledi/drivers directory. The file should look like this: ``` #for tests only! jco.client.lang=EN jco.destination.peak_limit=10 jco.client.client=800 jco.client.passwd=<SAP Password> jco.client.user=<SAP User> jco.client.sysnr=00 jco.destination.pool_capacity=5 jco.client.ashost=<SAP Application Server> ``` 7. Enter your SAP connection information, which you have received from your SAP administrator. The file will then look similar to this (use your connection information!): ``` #for tests only ! jco.client.lang=EN jco.destination.peak_limit=10 jco.client.client=800 jco.client.passwd=ODI123 jco.client.user=ODI jco.client.sysnr=00 jco.destination.pool_capacity=5 jco.client.ashost=123.123.123.123. ``` 8. Launch the utility again using the following command: #### On Windows: ``` java -cp sapjco3.jar;odi-sap.jar oracle.odi.sap.km.test.JCoTest ``` #### On Linux/UNIX: ``` java -cp sapjco3.jar:odi-sap.jar oracle.odi.sap.km.test.JCoTest ``` This should result in an output similar to this: ``` C:\WINDOWS\system32\cmd.exe SYSTEM CALL getaddrinfo D:\OraHome_1\oracledi\drivers\java -cp odi-sap.jar;sapjco3.jar oracle.odi.sap.km.test.JCoTest JCO3 Libraray available!! JCO Version: 3.0.2 (2009-03-29) Greating connection Pool... R3 Name: null Attributes: DEST: ODI_SAP_CON_POOL OWN_HOST: PARTNER_HOST: SYSINR: 00 SYSIO: NPI SYSID: CLIENT: CLIENT: USER: LANGUAGE: ISO_LANGUAGE: OWN_CODEPAGE: OWN_CHARSET: OWN_EHCODING: OWN_BYTES_PER_CHAR: PARTNER_CODEPAGE: PARTNER_CHARSET: PARTNER_ENCODING: PARNER_BYTES_PER_CHAR: OWN_REL: PARTNER_REL: PARTNER_REL: TRACE: TRACE: 800 1100 IS08859_1 iso-8859-1 1100 IS08859_1 iso-8859-1 1 711 46C 3 46D TRACE: RFC_ROLE: CE OWN_TYPE: CPIC_CONVID: 00000000 Successfuly Connected to SAP System... Z_ODI_RFC_GET_TABLES is exist in specified SAP System... Z_ODI_RFC_READ_TABLE is exist in specified SAP System... Z_ODI_RFC_TABLE_KEYS is exist in specified SAP System... Z_ODI_RFC_GET_TABLE_INDEXES is exist in specified SAP System... D:\OraHome_1\oracledi\drivers>. ``` In addition to just testing the SAP connection, the utility will also validate the existence of certain Function Modules required for the RKM. These are installed during first execution of the RKM (UPLOAD\_ABAP\_CODE and UPLOAD\_ABAP\_BASE set to true). 9. Delete the ${\tt ODI\_SAP\_CON\_POOL.jcoDestination}$ file after execution, as it contains the SAP login credentials. C # Uninstalling ODI SAP Components This appendix describes how to uninstall ODI components from your SAP system. For removing ODI connectivity from the SAP system, please follow the steps described in this section. Please note that this will delete ALL components including generated extractor programs. ## C.1 Updating ODI SAP Components During first-time installation the RKM installs some ODI objects into the SAP system. This installation consists of two parts: some base objects and some RFCs. Such full installation requires that no ODI SAP objects are installed in the SAP system. See Uninstalling ODI SAP Components if needed. If the ODI objects installed into your SAP systems have been installed by RKM SAP ERP v34 or later / RKM SAP BW v25 or later, there is no need for reinstalling the base objects and it is sufficient to update just the RFCs. Reinstalling the RFCs is achieved by executing a reverse engineering run with RKM option UPLOAD\_ABAP\_BASE set to false and RKM option UPLOAD\_ABAP\_CODE set to true. # C.2 Uninstalling ODI SAP Components To upgrade to a newer ODI SAP Connector release or to permanently remove the ODI connectivity: - 1. Start the SAP GUI. - 2. Connect to the SAP systems you want to uninstall. - 3. Go to the transaction SE80. - 4. Select the package or development class option from the drop down box. - 5. Enter ZODI\_RKM\_PCKG in the package or development class field. Note that for older installations the package name is ZODI\_DEVCLASS. - 6. Right-click the ZODI\_RKM\_PCKG object below the object name tab. - 7. Select **Delete** in the drop down menu and delete the development class. If it does not allow deleting the development class individually, delete all the objects inside one by one. For the contained Function Group please make sure to delete it in one go and do not delete the Function Group's Function Modules individually. Once all objects have been removed, delete the development class itself. - 8. Go to transaction SE10. Select Modifiable and Workbench Requests. Click Display. - 9. Select the transport requests which have the ODI Objects and Release them. - 10. Now repeat the steps 3 to 7 to delete Development Class. - **11.** Go to transaction SE01. Select **Modifiable** and **Workbench Requests**. Click **Display**. Release the Transport Request which has ZODI\_RKM\_PCKG. - 12. Repeat Step 4 to 11 for package ZODI\_LKM\_PCKG.