
Oracle® Fusion Middleware
Administering Oracle Traffic Director

12c (12.2.1.4.0)
E96373-02
November 2019

Oracle Fusion Middleware Administering Oracle Traffic Director, 12c (12.2.1.4.0)

E96373-02

Copyright © 2016, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Trupthi N. T.

Contributors: Isvaran Krishnamurthy, Amit Gupta, Savija Vijayaraghavan, Prem Kumar Venkatasalapathy,
Praveen Chandrashekaran

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiv

Documentation Accessibility xiv

Related Documents xiv

Conventions xv

What's New in this Release? xv

1 Introduction

Overview 1-1

Features of Oracle Traffic Director 1-2

Administration Interfaces 1-5

Command Line Interface-WebLogic Scripting Tool 1-5

Usage Modes 1-6

Graphical User Interface-Fusion Middleware Control 1-6

Oracle Traffic Director Terminology 1-6

Overview of Administration Tasks 1-8

2 Typical Deployment Topology

3 Setting up an Administration Domain

Types of Administration Domain 3-1

Creating a Managed Domain 3-3

Creating a Managed Domain Using Restricted JRF Template 3-4

Creating a Domain using Full JRF Template 3-6

Creating a Repository using Repository Creation Utility in Graphical Mode 3-9

Creating a Repository in Silent Mode 3-9

Logging to the Administration Console 3-10

Creating the Load Balancer for a Managed Domain 3-10

Creating a Standalone Domain 3-13

Creating a Standalone Domain using the Configuration Wizard 3-13

iii

Creating a Standalone Domain Using Offline WLST Commands 3-14

Creating the Load Balancer for a Standalone Domain 3-14

Verifying the Load-Balancing Behavior of the Oracle Traffic Director Instance 3-16

4 Configuring Oracle Traffic Director for High Availability

Overview 4-1

Failover configuration modes 4-1

Failover in Active-Passive Mode 4-1

Failover in Active-Active Mode 4-3

Preparing your System for High Availability 4-4

Configuring High Availability 4-5

5 Managing Configurations

Creating an Oracle Traffic Director Configuration 5-1

Creating a Configuration Using Fusion Middleware Control 5-2

Creating a Configuration Using WLST 5-2

Viewing a List of Configurations 5-3

Viewing a List of Configurations Using Fusion Middleware Control 5-3

Viewing a List of Configurations Using WLST 5-3

Activating Configuration Changes 5-4

Activate Configuration Changes Using Fusion Middleware Control 5-4

Activate Configuration Changes Using WLST 5-4

Modifying an Oracle Traffic Director Configuration 5-5

Modifying a Configuration Using Fusion Middleware Control 5-5

Modifying a Configuration Using WLST 5-6

Copying an Oracle Traffic Director Configuration 5-8

Copying a Configuration Using Fusion Middleware Control 5-8

Copying a Configuration Using WLST 5-8

Deleting an Oracle Traffic Director Configuration 5-8

Deleting a Configuration Using Fusion Middleware Control 5-9

Deleting a Configuration Using WLST 5-10

6 Managing Instances

Creating Oracle Traffic Director Instances 6-1

Creating Oracle Traffic Director Instances Using Fusion Middleware Control 6-1

Creating Oracle Traffic Director Instance Using WLST 6-2

Viewing a List of Oracle Traffic Director Instances 6-2

Viewing a List of Oracle Traffic Director Instances Using Fusion Middleware
Control 6-3

iv

Viewing a List of Oracle Traffic Director Instances Using WLST 6-3

Starting, Stopping, and Restarting Oracle Traffic Director Instances 6-3

Starting, Stopping, and Restarting Oracle Traffic Director Instances Using
Fusion Middleware Control 6-4

Starting, Stopping, and Restarting Oracle Traffic Director Instances Using WLST
6-4

Updating Oracle Traffic Director Instances Without Restarting 6-5

Reconfiguring an Oracle Traffic Director Instance Using Fusion Middleware
Control 6-5

Reconfiguring Oracle Traffic Director Instances Using WLST 6-6

Deleting Oracle Traffic Director Instances 6-6

Deleting Oracle Traffic Director Instances Using Fusion Middleware Control 6-6

Deleting Oracle Traffic Director Instances Using WLST 6-7

Controlling Oracle Traffic Director Instances Through Scheduled Events 6-7

Managing Events Using Fusion Middleware Control 6-7

Managing Events Using WLST 6-8

7 Managing Origin-Server Pools

Creating an Origin-Server Pool 7-1

Creating an Origin-Server Pool Using Fusion Middleware Control 7-2

Creating an Origin-Server Pool Using WLST 7-3

Viewing a List of Origin-Server Pools 7-3

Viewing a List of Origin-Server Pools Using Fusion Middleware Control 7-4

Viewing a List of Origin-Server Pools Using WLST 7-4

Modifying an Origin-Server Pool 7-4

Changing the Properties of an Origin-Server Pool Using Fusion Middleware
Control 7-5

Changing the Properties of an Origin-Server Pool Using WLST 7-7

Deleting an Origin-Server Pool 7-7

Deleting an Origin-Server Pool Using Fusion Middleware Control 7-8

Deleting an Origin-Server Pool Using WLST 7-9

Configuring an Oracle WebLogic Server Cluster as an Origin-Server Pool 7-9

How Dynamic Discovery Works 7-9

Enabling Dynamic Discovery 7-10

Configuring a Custom Maintenance Page 7-12

Configuring Health-Check Settings for Origin-Server Pools 7-13

Configuring Health-Check Settings for Origin Servers Using the Fusion
Middleware Control 7-14

Configuring Health-Check Settings for Origin Servers Using WLST 7-14

Using an External Health-Check Executable to Check the Health of a Server 7-15

Configuring Health-Check Settings to Use an External Executable 7-15

Parameters to the External Health Check Executable 7-16

v

Logging 7-17

8 Managing Origin Servers

Adding an Origin Server to a Pool 8-1

Adding an Origin Server to a Pool Using Fusion Middleware Control 8-2

Adding an Origin Server to a Pool Using WLST 8-3

Viewing a List of Origin Servers 8-3

Viewing a List of Origin Servers Using Fusion Middleware Control 8-3

Viewing a List of Origin Servers Using WLST 8-4

Modifying an Origin Server 8-4

Modifying an Origin Server Using Fusion Middleware Control 8-4

Changing the Properties of an Origin Server Using WLST 8-5

Managing Ephemeral Ports 8-6

Removing an Origin Server from a Pool 8-6

Removing an Origin Server from a Pool Using Fusion Middleware Control 8-7

Removing an Origin Server from a Pool Using WLST 8-7

9 Managing Virtual Servers

Creating Virtual Servers 9-1

Creating a Virtual Server Using Fusion Middleware Control 9-2

Creating a Virtual Server Using WLST 9-3

Viewing a List of Virtual Servers 9-3

Viewing a List of Virtual Servers Using Fusion Middleware Control 9-3

Viewing a List of Virtual Servers Using WLST 9-4

Modifying Virtual Server Settings 9-4

Modifying a Virtual Server Using Fusion Middleware Control 9-4

Modifying a Virtual Server Using WLST 9-6

Configuring Routes for a Virtual Server 9-7

Configuring Routes Using Fusion Middleware Control 9-8

Configuring Routes Using WLST 9-9

Copying a Virtual Server 9-12

Copying a Virtual Server Using Fusion Middleware Control 9-12

Copying a Virtual Server Using WLST 9-13

Deleting a Virtual Server 9-13

Deleting a Virtual Server Using Fusion Middleware Control 9-13

Deleting a Virtual Server Using WLST 9-14

Caching in Oracle Traffic Director 9-14

Reviewing Cache Settings and Metrics for an Instance 9-14

Tunable Caching Parameters 9-16

vi

Configuring Caching Parameters 9-17

Content Serving 9-20

Content Serving Using Fusion Middleware Control 9-21

Configuring Content Serving Using WLST 9-22

10

Managing TCP Proxies

Creating a TCP Proxy 10-1

Creating a TCP Proxy Using Fusion Middleware Control 10-2

Creating a TCP Proxy Using WLST 10-3

Viewing a List of TCP Proxies 10-3

Viewing a List of TCP Proxies Using Fusion Middleware Control 10-3

Viewing a List of TCP Proxies Using WLST 10-4

Modifying a TCP Proxy 10-4

Modifying a TCP Proxy Using Fusion Middleware Control 10-4

Modifying a TCP Proxy Using WLST 10-5

Deleting a TCP Proxy 10-6

Deleting a TCP Proxy Using Fusion Middleware Control 10-6

Deleting a TCP Proxy Using WLST 10-6

11

Managing Listeners

Creating a Listener 11-1

Creating a Listener Using Fusion Middleware Control 11-2

Creating a Listener Using WLST 11-3

Viewing a List of Listeners 11-4

Viewing a List of Listeners Using Fusion Middleware Control 11-4

Viewing a List of Listeners Using WLST 11-5

Modifying a Listener 11-5

Modifying a Listener Using Fusion Middleware Control 11-5

Modifying a Listener Using WLST 11-6

Deleting a Listener 11-7

Deleting a Listener Using Fusion Middleware Control 11-7

Deleting a Listener Using WLST 11-8

Configuring Status Listener 11-8

Configuring Status Listener using Fusion Middleware Control 11-8

Configuring Status Listener Using WLST 11-9

12

Managing Security

SSL/TLS Concepts 12-1

About SSL 12-1

vii

About Ciphers 12-2

Cipher Suites Supported by Oracle Traffic Director 12-2

About Keys 12-3

About Certificates 12-4

RSA and ECC Certificates 12-4

Managing Certificates 12-4

Obtaining a Certificate 12-5

Generating a Keypair 12-6

Before You Begin 12-6

Generating a Keypair Using Fusion Middleware Control 12-6

Generating a Keypair using WLST 12-8

Generating a Certificate Signing Request (CSR) 12-9

Generating a CSR Using Fusion Middleware Control 12-9

Generating a CSR Using WLST 12-9

Importing a Certificate 12-10

Importing a CA Signed Certificate 12-10

Importing an Existing Certificate 12-11

Importing a Trusted Certificate 12-12

Viewing a List of Certificates 12-14

Deleting a Certificate 12-15

Deleting a Certificate using Fusion Middleware Control 12-15

Deleting a Certificate Using WLST 12-15

Configuring SSL/TLS on Oracle Traffic Director 12-16

Configuring SSL/TLS Between Oracle Traffic Director and Clients 12-16

Configuring SSL on a HTTP/TCP Listener 12-16

Configuring SSL On a Virtual Server 12-19

Configuring SSL/TLS Between Oracle Traffic Director and Origin Servers 12-21

About One-Way and Two-Way SSL/TLS 12-22

Configuring One-Way SSL/TLS Between Oracle Traffic Director and Origin
Servers 12-22

Configuring Two-Way SSL/TLS 12-23

Configuring Ciphers On an Origin Server Pool 12-24

Configure SSL Termination At a Hardware Load Balancer front-ending Oracle
Traffic Director 12-25

Configure WebLogic to receive SSL information from Web Tier / Traffic Director 12-27

Configure SSL Pass through on Oracle Traffic Director 12-28

Managing Certificate Revocation Lists 12-28

Installing and Deleting CRLs Manually 12-28

Installing CRLs Manually Using Fusion Middleware Control 12-28

Installing and Deleting CRLs Manually Using WLST 12-29

Update CRLs Automatically 12-29

viii

Configuring Oracle Traffic Director to Install CRLs Automatically Using
Fusion Middleware Control 12-30

Configuring Oracle Traffic Director to Install CRLs Automatically Using
WLST 12-31

13

Managing Logs

About the Oracle Traffic Director Logs 13-1

Access Log 13-1

Server Log 13-2

Viewing Logs 13-2

Viewing Logs Using Fusion Middleware Control 13-3

Viewing Logs Using WLST 13-3

Configuring Log Preferences 13-3

Configuring Log Preferences Using Fusion Middleware Control 13-4

Configuring Log Preferences Using WLST 13-4

About Log Rotation 13-7

Rotating Logs Manually 13-7

Rotating Logs Manually Using Fusion Middleware Control 13-7

Rotating Logs Manually Using WLST 13-8

Configuring Oracle Traffic Director to Rotate Logs Automatically 13-9

Creating Log-Rotation Events Using Fusion Middleware Control 13-9

Creating Log-Rotation Events Using WLST 13-10

14

Managing Event Notifications

Origin server status change event 14-1

Subscribing to origin server status event using Fusion Middleware Control 14-1

Subscribing to origin server status change event Using WLST 14-2

Notification format 14-3

JSON Schema 14-3

Example 14-5

Error handling 14-5

Request limit exceeded event 14-6

Subscribing to Request Limit Exceeded Event Using WLST 14-6

Notification format 14-7

JSON schema 14-8

Example 14-9

ix

15

Managing Failover Groups

Creating Failover Groups 15-1

Creating Failover Groups Using Fusion Middleware Control 15-2

Creating Failover Groups Using WLST 15-2

Managing Failover Groups 15-3

16

Monitoring Oracle Traffic Director Instances

Methods for Monitoring Oracle Traffic Director Instances 16-1

Configuring Statistics-Collection Settings 16-2

Configuring URI Access to Statistics Reports 16-3

Viewing Statistics Using WLST 16-6

Viewing stats-xml and perfdump Reports Through a Browser 16-6

Monitoring Using SNMP 16-8

Configuring Oracle Traffic Director Instances for SNMP Support 16-8

Configuring the SNMP Subagent 16-9

SNMP v3 User configuration 16-10

Starting and Stopping the SNMP Subagent 16-12

Viewing Statistics Using snmpwalk 16-13

Monitoring Using DMS 16-16

Sample XML (stats-xml) Report 16-17

Sample Plain-Text (perfdump) Report 16-19

17

Tuning Oracle Traffic Director for Performance

General Tuning Guidelines 17-1

Tuning the File Descriptor Limit 17-2

Tuning the Thread Pool and Connection Queue 17-4

About Threads and Connections 17-4

Reviewing Thread Pool Metrics for an Instance 17-5

Reviewing Connection Queue Metrics for an Instance 17-6

Tuning the Thread Pool and Connection Queue Settings 17-7

Tuning HTTP Listener Settings 17-8

Tuning Keep-Alive Settings 17-9

About Keep-Alive Connections 17-9

Reviewing Keep-Alive Connection Settings and Metrics 17-10

Tuning Keep-Alive Settings 17-12

Changing Keep-Alive Settings Using Fusion Middleware Control 17-12

Changing Keep-Alive Settings Using WLST 17-12

Tuning HTTP Request and Response Limits 17-13

Tuning DNS Caching Settings 17-14

x

Viewing DNS Cache Settings and Metrics 17-14

Configuring DNS Cache Settings 17-15

Tuning SSL/TLS-Related Settings 17-16

SSL/TLS Session Caching 17-16

Configuring SSL/TLS Session Cache Settings Using Fusion Middleware
Control 17-16

Configuring SSL/TLS Session Caching Settings Using WLST 17-17

Ciphers and Certificate Keys 17-17

Configuring Access-Log Buffer Settings 17-18

Enabling and Configuring Content Compression 17-19

Tuning Connections to Origin Servers 17-23

Solaris-specific Tuning 17-25

Files Open in a Single Process (File Descriptor Limits) 17-26

Failure to Connect to HTTP Server 17-26

Tuning TCP Buffering 17-27

Reduce File System Maintenance 17-27

Long Service Times on Busy Volumes or Disks 17-27

Short-Term System Monitoring 17-27

Long-Term System Monitoring 17-28

Tuning for Performance Benchmarking 17-28

18

Diagnosing and Troubleshooting Problems

Roadmap for Troubleshooting Oracle Traffic Director 18-1

Troubleshooting High Availability Configuration Issues 18-2

Solutions to Common Errors 18-2

Startup failure: could not bind to port 18-2

Unable to start server with HTTP listener port 80 18-3

Oracle Traffic Director consumes excessive memory at startup 18-4

Operating system error: Too many open files in system 18-4

Oracle Traffic Director does not maintain session stickiness 18-4

Frequently Asked Questions 18-5

What is a "configuration"? 18-6

How do I access Fusion Middleware Control? 18-6

Why do I see a certificate warning when I access Fusion Middleware Control for
the first time? 18-6

Can I manually edit configuration files? 18-6

In Fusion Middleware Control, what is the difference between saving a
configuration and deploying it? 18-6

Why is the "Deployment Pending" message displayed in Fusion Middleware
Control? 18-6

Why is the "Instance Configuration Deployed" message is displayed in Fusion
Middleware Control? 18-7

xi

Why does Fusion Middleware Control session end abruptly? 18-7

How do I access the WLST? 18-7

Why is a certificate warning message displayed when I tried to access the
WLST for the first time? 18-7

How do I find out the short names for the options of a WLST command? 18-7

Why am I unable to select TCP as the health-check protocol when dynamic
discovery is enabled? 18-7

After I changed the origin servers in a pool to Oracle WebLogic Servers, they
are not discovered automatically, though dynamic discovery is enabled. Why? 18-8

How do I view the request and response headers sent and received by Oracle
Traffic Director? 18-8

How do I enable SSL/TLS for an Oracle Traffic Director instance? 18-9

How do I find out which SSL/TLS cipher suites are supported and enabled? 18-10

How do I view a list of installed certificates? 18-10

How do I issue test requests to an SSL/TLS-enabled Oracle Traffic Director
instance? 18-10

How do I analyze SSL/TLS connections? 18-10

How do I view details of SSL/TLS communication between Oracle Traffic
Director instances and Oracle WebLogic Server origin servers? 18-13

Why are certain SSL/TLS-enabled origin servers marked offline after health
checks, even though the servers are up? 18-13

Does Oracle Traffic Director rewrite the source IP address of clients before
forwarding requests to the origin servers? 18-14

Why does Oracle Traffic Director return a 405 status code? 18-14

Contacting Oracle for Support 18-14

A Metrics Tracked by Oracle Traffic Director

Instance Metrics A-1

Process Metrics A-3

Connection Queue Metrics A-4

Thread Pool Metrics A-5

DNS Cache Metrics A-6

Keep-Alive Metrics A-6

Thread Metrics A-7

Compression and Decompression Metrics A-8

Virtual Server Metrics A-8

CPU Metrics A-10

Origin Server Metrics A-11

Failover Instance Metrics A-12

Cache Metrics A-13

DMS Metrics Tables A-13

xii

B Web Application Firewall Examples and Use Cases

Basics of Rules B-1

Rules Against Major Attacks B-2

Brute Force Attacks B-2

SQL Injection B-4

XSS Attacks B-5

xiii

Preface

This guide provides an overview of Oracle Traffic Director, and describes how to
create, administer, monitor, and troubleshoot Oracle Traffic Director instances.

Audience
This guide is intended for users who are responsible for installing, configuring,
administering, monitoring, and troubleshooting web-tier components such as web
servers, reverse proxy servers, and load balancers.

It is assumed that readers of this guide are familiar with the following:

• Using web browsers

• Working in a terminal window

• Executing operating system commands on UNIX-like platforms

In addition, a basic understanding HTTP and SSL/TSL protocols is desirable, though
not mandatory.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents, which are available on the Oracle
Technology Network:

• Oracle Traffic Director Release Notes

• Oracle Traffic Director Installation Guide

• Oracle Traffic Director WebLogic Server Scripting Tool Reference

• Oracle Traffic Director Configuration Files Reference

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New in this Release?
This preface introduces the new and changed features of Oracle Traffic Director and
other significant changes that are described in this guide, and provides pointers to
additional information:

• Weblogic Management Framework

Oracle Traffic Director now supports database-based installation, or Restricted
JRF-based installation. See Prerequisites for installing Oracle Traffic Director.
Oracle Traffic Director introduces the WebLogic Management Framework, a set of
tools that leverage Oracle WebLogic interfaces to provide a simple, consistent and
distributed framework for managing Oracle. See What is the Weblogic
Management Framework.

• WebLogic Scripting Tool Commands

Oracle Traffic Director now supports a command line interface, Weblogic Scripting
Tool (WLST). WLST commands are used to configure and administer Oracle
Traffic Director.

There are two types of WLST commands:

– Online Command

– Offline Command

The online commands requires connection to the WebLogic Server. The offline
commands does not require connection to the WebLogic Server. Some commands
are both online and offline, and can be invoked in both ways. All the commands
configured through WLST should be activated.

See WebLogic Scripting Tool Command Reference for Oracle Traffic Director.

• Multi-tenancy Support

Oracle WebLogic Server provides a sharable infrastructure for multiple
organizations. It allows one domain to support multiple tenants at a time, where a
dedicated domain is not required.

Multi-tenancy provides resource isolation within a domain partition, an
administrative and runtime partition of a WebLogic domain dedicated to running
application instances and related resources for a tenant. In a typical deployment
scenario, WebLogic Server is front-ended by Oracle Traffic Director. When

Preface

xv

partition tasks are performed from WebLogic Server, Oracle Traffic Director must
be configured appropriately to successfully front- end the Web Logic Partition.

With the Multi-tenancy support, Oracle Traffic Director is configured automatically
without user action. See
See Configuring Oracle Traffic Director and Life Cycle Management.

See Oracle Fusion Middleware Using WebLogic Server Multitenant

• Queueing with Request Limiting

The requests that overflow are queued and are de-queued as per request priority.
The request and response bandwidth can be controlled by this feature.

See Tuning the Thread Pool and Connection Queue.

• Origin Server Traffic Control

The user can set limit on reusing same origin server connection for multiple
requests by the keep-alive option. Bandwidth can be limited and controlled for
each origin server. This feature can be used to control the HTTP origin server
pools, but, not the TCP origin server pools.

See Tuning Keep-Alive Settings.

• Prioritized Backend Connection Management

Oracle Traffic Director supports the prioritized requests to the back end server, for
critical application requests. With this feature, requests with higher priority are de-
queued before the ones with lower priority.

• ModSecurity Upgrade

Web Application Firewall support based on ModSecurity version 2.6.7 has been
upgraded to 2.8.0 .

• Event Notifications

Oracle Traffic Director supports sending notifications to one or more user
configured HTTP endpoints for the following two events:

– Origin Server Status Change event

– Request Limit Exceeded event

See Event Notifications.

• High Availability Using Active-Active Failover Mode

Oracle Traffic Director provides support for failover between the instances by
deploying two or more OTD instances on the nodes which are in the same subnet.
One of the nodes is chosen as the active router node and the remaining node(s)
are the backup router node(s).The traffic will be managed among all the OTD
instances.

See Configuring Oracle Traffic Director for High Availability.

• Status Listeners to check Oracle Traffic Director instances

Oracle Traffic Director supports configuring a dedicated status listener to check
the health of an Oracle Traffic Director instance.

See Configuring Status Listener.

• Support for Front-ending FTP Traffic

Oracle Traffic Director provides options to enable FTP support on a TCP proxy.
You can enable client FTP and server FTP settings on a TCP proxy.

Preface

xvi

See Managing TCP Proxies.

Preface

xvii

1
Introduction

Learn about the features of Oracle Traffic Director and also understand the basic
terminology and the administration tasks.

Note:

As of 12.2.1.4.0, Oracle Traffic Director is deprecated. In the future, use
Oracle HTTP Server, Microsoft IIS Web Server, or Apache HTTP Server
plug-ins, or a native Kubernetes load balancer, such as Traefik for equivalent
functionality.

This chapter includes the following sections:

• Overview

• Features of Oracle Traffic Director

• Administration Interfaces

• Oracle Traffic Director Terminology

• Overview of Administration Tasks

Overview
Oracle Traffic Director distributes the requests that it receives from clients to servers in
the back end based on the specified load-balancing method, routes the requests
based on specified rules, caches frequently accessed data, prioritizes traffic, and
controls the quality of service.

Oracle Traffic Director is a fast, reliable, and scalable layer-7 software load balancer.
You can set up Oracle Traffic Director to serve as the reliable entry point for all HTTP,
HTTPS, FTP and TCP traffic to application servers and web servers in the back end.
Depending on the needs of your IT environment, you can configure Oracle Traffic
Director to apply multiple, complex rules when distributing requests to the back-end
servers and when forwarding responses to clients.

The architecture of Oracle Traffic Director enables it to handle large volumes of
application traffic with low latency. The product is optimized for use in Oracle Exalogic
Elastic Cloud and Oracle SuperCluster. It can communicate with servers in the back
end over Exalogic's InfiniBand fabric using protocols such as Socket Direct Protocol
(SDP) for better throughput. For more information about Exalogic, see the Oracle
Exalogic Elastic Cloud documentation, http://docs.oracle.com/cd/E18476_01/
index.htm. Oracle Traffic Director is also certified with various Fusion Middleware
products.

1-1

http://docs.oracle.com/cd/E18476_01/index.htm
http://docs.oracle.com/cd/E18476_01/index.htm

Features of Oracle Traffic Director
Oracle Traffic Director 12c (12.2.1) includes new features in high availability,
websocket connections support, integration with Oracle Fusion Middleware , enhanced
security and performance, and more. This document describes the new features made
in the initial release of 12c (12.2.1), and also describes the changes made in the
subsequent patch set releases: 12.2.1.1.0, 12.2.1.2.0, and 12.2.1.3.0.

On engineered system platforms, you can set up pairs of Oracle Traffic Director
instances and leverage its built-in High Availability capability to setup either Active-
Passive or Active-Active failover with additional back-end servers to which it can route
the requets. These back-end servers can also be added dynamically by the origin-
serve. for example, in the WebLogic cluster, the Oracle Traffic Director auto detects
such changes using Dynamic Node Discovery method . As the volume of traffic to your
network grows, you can easily scale the environment by reconfiguring Oracle Traffic
Director with additional back-end servers to which it can route requests.

Oracle Traffic Director provides the following features:

• Advanced methods for load distribution

Configure Oracle Traffic Director to distribute client requests to servers in the
back-end using one of these methods:

– Round robin

– Least connection count

– Least response time

– Weighted round robin

– Weighted least connection count

– IP Hash

• Flexible routing and load control on back-end servers

– Request-based routing

Oracle Traffic Director can be configured to route HTTP/S requests to specific
servers in the back end based on information in the request URI: pattern,
query string, domain, source and destination IP addresses, and so on.

– Content-based routing

Oracle Traffic Director can be configured to route HTTP/S requests to specific
servers in the back end based on contents within a request. This way, web
service requests such as XML or JSON can be easily routed to specific origin
servers based on specific elements within the body content. Content-based
routing is enabled by default.

– Request rate acceleration

Administrators can configure the rate at which Oracle Traffic Director
increases the load (number of requests) for specific servers in the back end.
By using this feature, administrators can allow a server that has just been
added to the pool, or has restarted, to perform startup tasks such as loading
data and allocating system resources.

– Connection limiting

Chapter 1
Features of Oracle Traffic Director

1-2

Oracle Traffic Director can be configured to limit the number of concurrent
connections to a back end origin-server. When the configured connection limit
for a server is reached, further requests that require new connections are not
sent to that server.

• Controlling the request load and quality of service

– Request rate limiting

Oracle Traffic Director can be set up to limit the rate of incoming requests from
specific clients and for specific types of requests. This feature enables
administrators to optimize the utilization of the available bandwidth, guarantee
a certain level of quality of service, and prevent denial-of-service (DoS)
attacks.

– Quality of service tuning

To ensure equitable utilization of the available network resources for incoming
requests, you can configure Oracle Traffic Director virtual servers to limit the
maximum number of concurrent connections to clients and the maximum
speed at which data can be transferred to clients.

• Support for WebSocket connections

Oracle Traffic Director handles WebSocket connections by default. WebSocket
connections are long-lived and allow support for live content, games in real-time,
video chatting, and so on. In addition, Oracle Traffic Director can be configured to
ensure that only those clients that strictly adhere to RFC 6455 are allowed. See
Configuring Routes for a Virtual Server and the Oracle Traffic Director Command-
Line Reference.

• Integration with Oracle Fusion Middleware

– Oracle Traffic Director is designed to recognize and handle headers that are
part of requests to, and responses from, Oracle WebLogic Server managed
servers in the back end.

– When an Oracle Traffic Director instance is configured to distribute client
requests to clustered Oracle WebLogic Server managed servers, Oracle
Traffic Director automatically detects changes in the cluster—such as the
removal or addition of managed servers, and considers such changes while
routing requests.

– Patches that Oracle delivers for the Oracle Traffic Director software can be
applied by using OPatch, a Java-based utility, which is the standard method
for applying patches to Oracle Fusion Middleware products.

• Easy-to-use administration interfaces

Administrators can use either a graphical user interface or a command-line
interface to administer Oracle Traffic Director instances.

Administrators can also use Fusion Middleware Control, a browser-based
graphical user interface, to monitor statistics and perform lifecycle tasks for Oracle
Traffic Director instances.

• Security

Oracle Traffic Director enables and enhances security for your IT infrastructure in
the following ways:

– Reverse proxy

Chapter 1
Features of Oracle Traffic Director

1-3

By serving as an intermediary between clients outside the network and servers
in the back end, Oracle Traffic Director masks the names of servers in the
back end and provides a single point at which you can track access to critical
data and applications hosted by multiple servers in the back end.

– Support for TLS 1.1, and 1.2

To secure data during transmission and to ensure that only authorized users
access the servers in the back end, you can configure TLS-enabled HTTP and
TCP listeners for Oracle Traffic Director instances.

You can either use digital certificates issued by commercial CAs such as
VeriSign or generate RSA- and Elliptic Curve Cryptography (ECC)-type self-
signed certificates with key sizes of up to 4096 bits by using the administration
console or the WLST.

– Web Application Firewall

A Web application firewall enables you to apply a set of rules to an HTTP
request, which are useful for preventing common attacks such as Cross-site
Scripting (XSS) and SQL Injection. The Web Application Firewall module for
Oracle Traffic Director supports open source ModSecurity 2.8.0.

– HTTP Forward Proxy Support in Origin Server Pools

In an environment where access to intended origin servers is restricted
through corporate proxy servers, you can optionally associate an HTTP
forward proxy server with an origin server pool so that all of its member origin
servers (of said pool) are communicated with via the configured HTTP forward
proxy server.

• High availability

On engineered systems platforms, you can set up pairs of Oracle Traffic Director
instances and leverage its built-in High Availability capability to setup either Active-
Passive or Active-Active failover. As the volume of traffic to your network grows,
you can easily scale the environment by reconfiguring Oracle Traffic Director with
additional back-end servers to which it can route requests.

Oracle Traffic Director provides high availability for your enterprise applications
and services through the following mechanisms:

– Health checks for the back end

If a server in the back end is no longer available or is fully loaded, Oracle
Traffic Director detects this situation automatically through periodic health
checks and stops sending client requests to that server. When the failed
server becomes available again, Oracle Traffic Director detects this
automatically and resumes sending requests to the server.

– Backup servers in the back end

When setting up server pools for an Oracle Traffic Director instance, you can
designate a few servers in the back end as backup servers. Oracle Traffic
Director sends requests to the backup servers only when none of the primary
servers are available. This feature ensures continued availability even when
some servers in the back end fail.

– Failover for load balancing

Oracle Traffic Director instances can be deployed in an active-passive or
active-active configuration. If the primary Oracle Traffic Director instance fails,
the backup instance takes over.

Chapter 1
Features of Oracle Traffic Director

1-4

– Dynamic reconfiguration

Most configuration changes to Oracle Traffic Director instances can be
deployed dynamically, without restarting the instances and without affecting
requests that are being processed.

• Monitoring statistics

Administrators can monitor a wide range of statistics pertaining to the performance
of Oracle Traffic Director instances through several methods: the administration
console, the command-line interface, and a report in XML format.

• High performance

– SSL/TLS offloading

Oracle Traffic Director can be configured as the SSL/TLS termination point for
HTTP/S and TCP requests. This reduces the processing of overhead on the
servers in the back end.

– Content caching

Oracle Traffic Director can be configured to cache (in its process memory)
content that it receives from origin servers. By caching content, Oracle Traffic
Director helps reduce the load on servers in the back end and helps improve
performance for clients.

– HTTP compression

Administrators can configure Oracle Traffic Director instances to compress the
data received from servers in the back end and forward the compressed
content to the requesting clients. This feature improves the response time for
clients connected on slow connections.

Administration Interfaces
Oracle Traffic Director includes a robust command-line interface-WebLogic Scripting
Tool as well as a simple, wizard-driven graphical interface-Fusion Middleware Control
to help you administer Oracle Traffic Director instances. You can create, modify, and
manage Oracle Traffic Director instances.

Command Line Interface-WebLogic Scripting Tool
The command line interface in Oracle Traffic Director is the WebLogic Scripting Tool
(WLST).

The WLST scripting environment is based on Jython which is an implementation of the
Python language for the Java platform. The tool can be used both online and offline.
Oracle Traffic Director ships custom WLST commands that you can run using WLST.

Note:

Oracle Traffic Director ships a wlst.sh wrapper <oracle_home>/otd/
common/bin/wlst.sh which initializes the required environment and libraries
for Oracle Traffic Director commands. All Oracle Traffic Director custom
commands can only be executed from this wlst.sh.

Chapter 1
Administration Interfaces

1-5

See WebLogic Scripting Tool Command Reference for Oracle Traffic Director.

Usage Modes
You can use the following techniques to invoke Oracle Traffic Director custom
commands.

• Interactive Mode

• Script Mode

• Embedded Mode

Graphical User Interface-Fusion Middleware Control
To display Fusion Middleware Control, you enter the Fusion Middleware Control URL,
which includes the name of the host and the administration port number assigned
during the installation. The following shows the format of the URL:

http://hostname.domain:port/em

The port number is the port number of the Fusion Middleware Control. By default, the
port number is 7001. The port number is listed in the following file:

DOMAIN_HOME/config/config.xml

For some installation types, such as Web Tier, if you saved the installation information
by clicking Save on the last installation screen, the URL for Fusion Middleware Control
is included in the file that is written to disk (by default to your home directory). For
other installation types, the information is displayed on the Create Domain screen of
the Configuration Wizard when the configuration completes.

To display Fusion Middleware Control:

1. Enter the URL in your Web browser. For example:

http://host1.example.com:7001/em

2. Enter the Fusion Middleware Control administrator user name and password and
click Login.

You can now create Oracle Traffic Director configurations and deploy them as
instances on Node Managers.

Oracle Traffic Director Terminology
Learn about the terms used in this document when describing administrative tasks for
Oracle Traffic Director.

The following table describes the Oracle Traffic Director terms used throughout this
document.

Chapter 1
Oracle Traffic Director Terminology

1-6

Term Description

Configuration A collection of configurable elements (metadata) that determine the
run-time behavior of an Oracle Traffic Director instance.

A typical configuration contains definitions for the listeners (IP address
and port combinations) on which Oracle Traffic Director should listen
for requests and information about the servers in the back end to
which the requests should be sent. Oracle Traffic Director reads the
configuration when an Oracle Traffic Director instance starts and while
processing client requests.

Instance An Oracle Traffic Director server that is instantiated from a
configuration and deployed on a Node Manager.

Failover group Two Oracle Traffic Director instances grouped by a virtual IP address
(VIP), to provide high availability in active-active or active-passive
mode. Requests are received at the VIP and routed to the Oracle
Traffic Director instance that is designated as the primary instance. If
the primary instance is not reachable, requests are routed to the
backup instance.

For active-active failover, two failover groups are required, each with a
unique VIP, but both consisting of the same nodes with the primary
and backup roles reversed. Each instance in the failover group is
designated as the primary instance for one VIP and the backup for the
other VIP.

ORACLE_HOME A directory of your choice in which you install the Oracle Traffic
Director binaries.

DOMAIN_HOME A path to the directory which contains Oracle Traffic Director domain,

Fusion Middleware
Control

A web-based graphical interface on the server that you can use to
create, deploy, and manage Oracle Traffic Director instances.

Client Any agent—a browser or an application, for example—that sends
HTTP, HTTPS and TCP requests to Oracle Traffic Director instances.

Origin server A server in the back end, to which Oracle Traffic Director forwards the
HTTP, HTTPS and TCP requests that it receives from clients, and from
which it receives responses to client requests.

Origin servers can be application servers like Oracle WebLogic Server
managed servers, web servers, and so on.

Origin-server pool A collection of origin servers that host the same application or service
that you can load-balance by using Oracle Traffic Director.

Oracle Traffic Director distributes client requests to servers in the
origin-server pool based on the load-distribution method that is
specified for the pool.

Virtual server A virtual entity within an Oracle Traffic Director server instance that
provides a unique IP address (or host name) and port combination
through which Oracle Traffic Director can serve requests for one or
more domains.

An Oracle Traffic Director instance on a node can contain multiple
virtual servers. Administrators can configure settings such as the
maximum number of incoming connections specifically for each virtual
server. They can also customize how each virtual server handles
requests.

Chapter 1
Oracle Traffic Director Terminology

1-7

Overview of Administration Tasks
An Oracle Traffic Director administrator can install the product, configure domain,
manage instances, and so on. The tools to manage are WebLogic Scripting
Tool(WLST) and Fusion Middleware Control.

Prerequisites

• Install the product.

You can install Oracle Traffic Director on Oracle Linux 6.5+ on an x86_64 system,
by using an interactive graphical wizard or in silent mode. Note that in 12c, Oracle
Traffic Director does not have its own separate Administration Server, but uses the
Administration Server in Oracle WebLogic Server.

See Installing Oracle Traffic Director.

• Create a WebLogic domain for Oracle Traffic Director. See Creating Domains
Using the Pack and Unpack Commands or Creating WebLogic Domains Using the
Configuration Wizard.

• Access Fusion Middleware Control and WLST

You can use Fusion Middleware Control and command-line interface of Oracle
Traffic Director to create, modify, and monitor Oracle Traffic Director
configurations.

For information about accessing Fusion Middleware Control and command-line
interface, see Administration Interfaces.

The standard tasks include:

• Create and manage configurations

Create configurations that define your Oracle Traffic Director instances. A
configuration is a collection of metadata that you can use to instantiate Oracle
Traffic Director. Oracle Traffic Director reads the configuration when a server
instance starts and while processing client requests.

See Managing Configurations.

• Create and manage instances

After creating a configuration, you can create Oracle Traffic Director server
instances by deploying the configuration on one or more hosts. You can view the
current state of each instance, start or stop it, reconfigure it to reflect configuration
changes, and so on.

See Managing Instances.

• Define and manage origin-server pools

For an Oracle Traffic Director instance to distribute client requests, you should
define one or more origin-server pools or in the back end. For each origin-server
pool, you can define the load-distribution method that Oracle Traffic Director
should use to distribute requests. In addition, for each origin server in a pool, you
can define how Oracle Traffic Director should control the request load.

See Managing Origin Servers and Managing Origin-Server Pools.

• Create and manage virtual servers and listeners

Chapter 1
Overview of Administration Tasks

1-8

An Oracle Traffic Director instance running on a node contains one or more virtual
servers. Each virtual server provides one or more listeners for receiving requests
from clients. For each virtual server, you can configure parameters such as the
origin-server pool to which the virtual server should route requests, the quality of
service settings, request limits, caching rules, and log preferences.

See Managing Virtual Servers and Managing Listeners.

• Manage security

Oracle Traffic Director, by virtue of its external-facing position in a typical network,
plays a critical role in protecting data and applications in the back end against
attacks and unauthorized access from outside the network. In addition, the
security and integrity of data traversing through Oracle Traffic Director to the rest
of the network needs to be guaranteed.

See Managing Security.

• Manage logs

Oracle Traffic Director records data about server events such as configuration
changes, instances being started and stopped, errors while processing requests,
and so on in log files. You can use the logs to troubleshoot errors and to tune the
system for improved performance.

See Managing Logs.

• Monitor statistics

The state and performance of Oracle Traffic Director instances are influenced by
several factors: configuration settings, volume of incoming requests, health of
origin servers, nature of data passing through the instances, and so on. As the
administrator, you can view metrics for all of these factors through the command-
line interface and Fusion Middleware Control, and extract the statistics in the form
of XML files for detailed analysis. You can also adjust the granularity at which
Oracle Traffic Director collects statistics.

See Monitoring Oracle Traffic Director Instances.

• Set up Oracle Traffic Director instances for high availability

In the event that an Oracle Traffic Director instance or the node on which it runs
fails, you need to ensure that the load-balancing service that the instance provides
continues to be available uninterrupted. You can achieve this goal by configuring a
backup Oracle Traffic Director instance that can take over processing of requests
when the primary instance fails.

See Setting up Failover.

• Tune for performance

Based on your analysis of performance statistics and to respond to changes in the
request load profile, you might want to adjust the request processing parameters
of Oracle Traffic Director to maintain or improve the performance. Oracle Traffic
Director provides a range of performance-tuning controls and knobs that you can
use to limit the size and volume of individual requests, control timeout settings,
configure thread pool settings, SSL/TLS caching behavior, and so on.

See Tuning Oracle Traffic Director for Performance.

• Diagnose and troubleshoot problems

Despite the best possible precautions, you might occasionally run into problems
when installing, configuring, and monitoring Oracle Traffic Director instances. You

Chapter 1
Overview of Administration Tasks

1-9

can diagnose and solve some of these problems based on the information
available in error messages and logs. For complex problems, you would need to
gather certain data that Oracle support personnel can use to understand,
reproduce, and diagnose the problem.

See Diagnosing and Troubleshooting Problems.

Chapter 1
Overview of Administration Tasks

1-10

2
Typical Deployment Topology

In the simplest implementation, you can have a single Oracle Traffic Director instance
running on a dedicated compute node distributing client requests to a pool of servers
in the back end.

The topology that you create for Oracle Traffic Director varies depending on your
business requirements such as the number of back-end applications for which you
want to use Oracle Traffic Director to balance requests, IT requirements such as
security, and the features of Oracle Traffic Director that you want to use.

To ensure that the node on which an Oracle Traffic Director instance runs does not
become the single point of failure in the topology, you can have Oracle Traffic Director
instances running on different nodes forming a failover group for high availability. The
failover group is represented by virtual IP (VIP) addresses. Both the hosts in a failover
group must run the same operating system version, use identical patches and service
packs, and run Oracle Traffic Director instances of the same configuration.

2-1

The topology consists of two Oracle Traffic Director instances—otd_1 and otd_2-
forming a failover pair and providing a single virtual IP address for client requests.
Based on the mode of failover configured, the primary node will determine how and
where to forward the request. For information on failover modes, see Failover
configuration modes.

Note that the topology shows only two server pools in the back end, but you can
configure Oracle Traffic Director to route requests to servers in multiple server pools.

Chapter 2

2-2

3
Setting up an Administration Domain

Setting up an Oracle Traffic Director domain starts with creating an administration
domain, either managed or standalone. It also includes creating a repository and
creating a load balancer.

This chapter includes the following sections:

• Types of Administration Domain

• Creating a Managed Domain

• Creating a Standalone Domain

• Verifying the Load-Balancing Behavior of the Oracle Traffic Director Instance

Types of Administration Domain
You need to create an administration domain for managing Oracle Traffic Director
instances. The administration domain can either be managed or standalone.

This section describes the various domain types supported in Oracle Traffic Director.

Managed Domain

A managed domain includes a special WebLogic Server instance, Administration
Server, the central point from where all Oracle Traffic Director instances in the domain
are configured and managed. This consists of:

• A node where Oracle Traffic Director is installed collocated with WebLogic
Administration Server within an Oracle Fusion Middleware Infrastructure Oracle
home.

• Zero or more remote nodes managed by the administration server.

A managed domain allows you to use Fusion Middleware Control or custom WLST
commands for administering Oracle Traffic Director.

3-1

Standalone Domain

This is a single node installation where Oracle Traffic Director is installed in standalone
mode. There is no administration support for standalone domains and the custom
WLST commands for administering Oracle Traffic Director cannot be used in a
standalone domain.

Chapter 3
Types of Administration Domain

3-2

Choosing Between Managed Domain and Standalone Domain

Table 3-1 Managed Domain vs Standalone Domain

Advantages/
Disadvantages

Managed Domain Standalone Domain

Advantages • Oracle Traffic Director
Administration support including
support for SSL and HA.

• Farm wide deployment with
minimum overhead.

• Monitoring / Server Lifecycle on
multiple machines through Node
manager.

• Sandbox Environment with
complete Isolation.

• No JRE or WebLogic Server
dependency.

Disadvantages • Requires Node Manager to
communicate with Administration
Server.

• JRE and Node manager are
needed for Oracle Traffic
Director administration. These
can be shutdown post
provisioning.

• No Oracle Traffic Director
administration support other than
Oracle Traffic Director instance
creation/deletion.

• Monitoring/Server Lifecycle
management is limited to the
local Oracle Traffic Director
instance.

Note:

An Oracle Traffic Director instance can be deployed in a DMZ environment
by making it a part of a managed Oracle Traffic Director domain. The
administration server on a remote node can be used to manage the same
through the Node manager. If you do not want to run the Node manager in
DMZ environment, Oracle Traffic Director can be deployed in a standalone
domain.

Creating a Managed Domain
After installing Oracle Traffic Director collocated with WebLogic Server, you can create
an Oracle Traffic Director managed domain. The Oracle Traffic Director managed
domain is created from an Oracle Traffic Director domain template. An Oracle Traffic
Director domain can either be created using restricted JRF template or a full JRF
template.

Restricted JRF is the recommended template for creating an Oracle Traffic Director
domain. The restricted JRF mode creates a WebLogic Server runtime without a data
source connection. Hence, there is no need for a running Oracle database to create
the domain. You should use full JRF template if Oracle Traffic Director and SOA must
be in the same domain.

Chapter 3
Creating a Managed Domain

3-3

Choosing Between Restricted JRF and Full JRF

Table 3-2 Restricted JRF vs Full JRF

Advantages/
Disadvantages

Restricted JRF Template Full JRF Template

Advantages • Recommended mode of creating
an Oracle Traffic Director
domain.

• Does not need a data-source
connection.

• Domain supports various
components/scenarios such as
CCWS, OPSS support for
partitions, OPSS support for up-
stack components of WebLogic
and so on.

• ADF applications and Oracle
Fusion Middleware products
such as SOA and WebCenter
depend on Full JRF Template.

• Supports cross-component
wiring.

Disadvantages • You cannot migrate the domain
to a full JRF domain later.

• ADF applications and Oracle
Fusion Middleware products
such as SOA and WebCenter
does not support this template.

• Does not support cross-
component wiring.

• You require an Oracle database
to create a domain using full JRF
template.

Topics

• Creating a Domain Using Restricted JRF Template

• Creating a Domain using Full JRF Template

• Logging to the Administration Console

• Creating the Load Balancer for a Managed Domain

Creating a Managed Domain Using Restricted JRF Template
The restricted JRF mode creates a WebLogic Server runtime without a data source
connection. Hence, one does not need a running Oracle database to create the
domain.

Follow these steps to create the Oracle Traffic Director domain using Restricted JRF
Template:

1. Run the configuration wizard using config.sh located in the$FMW_HOME/
oracle_common/common/bin directory.

The Create Domain screen appears.

2. Select the default values and click Next.

The Templates screen appears.

3. Select Create Domain Using Product Templates. In the Available Templates
section, choose Oracle Traffic Director - Restricted JRF [otd].

Chapter 3
Creating a Managed Domain

3-4

Oracle Enterprise Manager - Restricted JRF, Oracle Restricted JRF and Weblogic
Coherence Cluster Extension are automatically selected. Retain the selection.

4. Click Next.

The Application Location screen appears.

5. Retain the default value for Application location and click Next.

The Administrator Account screen appears. Enter the WebLogic Domain
administration user name and password. This information is needed to access
WebLogic Server Control and Fusion Middleware Control.

6. Click Next.

The Domain Mode and JDK screen appears.

7. Choose the default Domain Mode, Development and Default for JDK

. Click Next
The Advanced Configuration screen appears.

8. Select 'Admin Server', 'Node Manager', 'Topology'.

Note:

Select 'Managed Server' to configure a 'Machine'. The screen for
Machine is visible only if 'Managed Servers ' option is selected.

9. Click Next.

The Administration Server screen appears. Enter the following:

• Server Name: Use default (AdminServer)

• Listen Address: Use default (All local Addresses)

• Listen Port: $WLS_ADMIN_PORT

• Enable SSL: Use default (unchecked)

• SSL Port: Use default (disabled)

• Server Groups: Use default (unspecified)

10. Click Next.

The Node Manager screen appears. Use the default values (default: Per Domain).
For Node Manager Credentials, enter the following:

• User Name: $NM_USER

• Password: $NM_PASSWORD

• Confirm password: $NM_PASSWORD

11. Click Next.

The Managed Servers screen appears. Do not add any managed servers.

12. Click Next.

The Clusters screen appears. Do not add any clusters.

13. Click Next.

The Server Templates screen appears.

Chapter 3
Creating a Managed Domain

3-5

14. Click Next.

The Coherence Clusters screen appears. Do not add any clusters.

15. Click Next.

The Machines screen appears. Click Add and enter the following information:

• Name: $MACHINE_NAME

• Node Manager Listen Address: Use default (localhost)

• Node Manager Listen Port: $NM_PORT

16. Click Next.

The Assign Servers to Machines screen appears.

17. Select one or more servers in the left pane and one machine in the right pane.
Then use the right arrow button (>) to assign the server or servers to the machine.
Select 'Admin Server', 'new_ManagedServer_1','new_Machine_1'. Click Next.

The Virtual Targets screen appears. Do not add any virtual targets.

18. Click Next.

The Partitions screen appears.

19. Click Next.

The Configuration Summary screen appears. If the message The Security
configuration in your domain is invalid appears, you may ignore it.

20. Click Create.

The Configuration Progress screen appears, which indicates the progress of the
Configuration. After successful completion of the configuration process, the
Domain Created Successfully message appears.

21. Click Next.

Wait for this part of the configuration to complete. Depending on the location and
performance of the Repository database, this process may take a few minutes.
Click Finish. The End of Configuration screen appears.

Creating a Domain using Full JRF Template
Follow these steps to create the Oracle Traffic Director domain using the Full JRF
Template:

Note:

You require an Oracle database to create a domain using full JRF template.

1. Run the configuration wizard using config.sh located in the $FMW_HOME/
oracle_common/common/bin directory.

The first screen in the Config Wizard, Create Domain appears.

2. Choose Create a new domain, and enter the required domain home path.

3. Click Next.

Chapter 3
Creating a Managed Domain

3-6

The dependent templates are automatically selected. The dependent templates
are Oracle Enterprise Manager Plug-in for OTD - 12.2.1.x.0 [em] and Oracle
JRF screen appears.

4. In the Available Templates section, choose Oracle Traffic Director - 12.2.1.2.0
[otd] and click Next.

The Application Location screen appears. Keep the default value for Application
location.

5. Click Next.

The Administrator Account screen appears. Enter the WebLogic Domain
administration username and password. This information is needed to access
WebLogic Server Control and Fusion Middleware Control.

6. Click Next.

The Domain Mode and JDK screen appears. Choose the Domain Mode
Development. Leave the default JDK selection as it appears.

7. Click Next.

The Database Configuration Typescreen appears. Enter the RCU DB
connection information. Enter the following:

• Auto Configuration Option: RCU Data

• Vendor: Oracle

• Driver: Oracle's Driver (Thin) for Service connection; Version:9.0.1 and later

• DBMS/Service - $SERVICE_ID (xe for Oracle XE)

• Port: $DB_PORT (default is 1521)

• Schema owner - ${SCHEMA_PREFIX}_STB

• Passwd - $DB_PASSWORD

8. Click Get RCU Configuration. Wait for the verification process to complete.

9. Click Next.

The Component DataSources screen appears. Ensure that the hostname and
port information is correct.

10. Click Next.

The Component JDBC Schema Test screen appears. Wait for the test to
complete.

11. Click Next.

The Advanced Configuration screen appears. Select Admin Server, Managed
Servers, Clusters and Coherence.

12. Click Next.

The Administration Server screen appears. Enter the following:

• Server Name: Use default (AdminServer)

• Listen Address: Use default (All local Addresses)

• Listen Port: $WLS_ADMIN_PORT

• Enable SSL: Use default (unchecked)

Chapter 3
Creating a Managed Domain

3-7

• SSL Port: Use default (disabled)

• Server Groups: Use default (unspecified)

13. Click Next.

The Node Manager screen appears. Do not add any nodes. Use defaults (default:
Per Domain). For Node Manager Credentials, enter the following and click Next.

• User Name: $NM_USER

• Password: $NM_PASSWORD

• Confirm password: $NM_PASSWORD

14. Click Next.

The Managed Servers screen appears. Do not add any managed servers.

15. Click Next.

The Clusters screen appears. Do not add any clusters.

16. Click Next.

The Coherence Clusters screen appears. Do not add any clusters.

17. Click Next.

The Machines screen appears. Click Add and enter the following information:

• Name: $MACHINE_NAME

• Node Manager Listen Address: Use default (localhost)

• Node Manager Listen Port: $NM_PORT

18. Click Next.

The Configuration Summary screen appears. If the message The Security
configuration in your domain is invalid appears, you may ignore it.

19. Click Create.

The Configuration Progress screen appears.

20. Click Next.

Wait for this part of the configuration to complete. Depending on the location and
performance of the Repository database, this process may take a few minutes.
Click Finish. The End of Configuration screen appears.

Note:

The creation of Oracle Traffic Director configuration/instance is not supported
using configuration wizard, the system component screen in the
configuration wizard should be ignored while configuring Oracle Traffic
Director. For creating Oracle Traffic Director configurations/instances, use
either Oracle Traffic Director custom WLST commands or Fusion Middleware
Control.

Chapter 3
Creating a Managed Domain

3-8

Creating a Repository using Repository Creation Utility in Graphical Mode
Before proceeding to the next tasks, use the Repository Creation Utility (RCU). RCU is
available with the Oracle Fusion Middleware Infrastructure distribution. Follow these
steps.

1. Run $FMW_HOME/oracle_common/bin/rcu.sh

2. The Welcome page appears. Click Next.

3. The Create Repository page appears. Select CreateRepository, and System Load
and Product Load (default). Click Next.

4. The Database Connection Details page appears. Enter the RCU DB connection
information as shown in the screen below. Click Next.

5. The Checking Prerequisites box pops up. It shows the progress of prerequisites
checking. When it is complete, click OK.

6. The Select Components page appears. Select the Create newprefix radio button
and provide a schema prefix (such as DEMO). Select the following components:
Oracle Platform Security Services, Audit Services, Audit Services Append and
Audit Services Viewer. Click Next.

7. The Checking Prerequisites box pops up. It shows the progress of prerequisites
checking. When it is complete, click OK.

8. The Schema Passwords page appears.Leave the default Use same passwords for
all schemas radio button selected, and enter the password in the Password field.
Click Next.

9. The Map Tablespaces page appears. No action is required. Click Next.

10. A Repository Creation Utility box pops up, requiring your confirmation. Click OK.

11. A Creating Tablespaces pop up appears, showing the progress of tablespace
creation. Click OK, then Next.

12. The Summary page appears, showing your actions and choices. Click Create.

13. A System Load progress box appears, showing progress.The box will disappear
when complete.

14. Click Close.

Creating a Repository in Silent Mode
When you install Oracle Traffic Director in a managed domain, the recommended
configuration is to use the Restricted JRF domain template. In that configuration a
database is not required, and you do not have to create a repository. However, in the
case where you did not use the Restricted JRF domain template in the managed
domain, you will require a database and a repository with schema space for the
domain. To create a repository, run the repository creation.

$ORACLE_HOME/oracle_common/bin/rcu -silent -createRepository -
connectString $DB_HOST:$DB_PORT:$SERVICE_ID
-dbUser $DB_USER -dbRole $DB_ROLE -schemaPrefix $SCHEMA_PREFIX -
useSamePasswordForAllSchemaUsers true
-selectDependentsForComponents true -component OPSS -component IAU -f <
<path_to_password_file>

Chapter 3
Creating a Managed Domain

3-9

The contents of the password file should appear as follows:

Password1
Password1
Password1
Password1
Password1
Password1

Example:

$ORACLE_HOME/oracle_common/bin/rcu -silent -createRepository -connectString $
{DB_HOST}:1521:xe
-dbUser sys -dbRole SYSDBA -schemaPrefix $SCHEMA_PREFIX -
useSamePasswordForAllSchemaUsers true -selectDependentsForComponents true
-component OPSS -component IAU -f < /tmp/pass.txt

Processing command line
Repository Creation Utility - Checking Prerequisites
Checking Global Prerequisites
The database you are connecting is not a supported version. Refer to the
certification matrix for supported DB versions.
...
Repository Creation Utility - Create : Operation Completed

Logging to the Administration Console
After installing Oracle Traffic Director, you can verify the installation by trying to log in
to the administration console of the Oracle Traffic Director administration server, by
performing the following steps:

1. Start the administration server instance, by running the following command:

$DOMAIN_HOME/bin/startWebLogic.sh

2. In your web browser, enter the URL that you noted in the previous step.

https://bin.example.com:1895/em

An error message about a problem with the server's security certificate is
displayed. The text of the message varies depending on the browser you use. The
error message is displayed because the Oracle Traffic Director administration
server uses a self-signed certificate, rather than a certificate issued by a trusted
certificate authority.

3. Proceed to the log-in page of the administration console by choosing to trust the
certificate.

The steps to be performed to trust a certificate vary depending on the browser you
use. As an example, in Mozilla Firefox 4.0, click on the I Understand the Risks
link on the error page, then click the Add Exception button, and finally, on the
result page, click the Confirm Security Exception button.

4. Log in using the administrator user name and password that you specified while
creating the administration server instance.

Creating the Load Balancer for a Managed Domain
You can create a load balancer after deploying Oracle Traffic Director in a managed
domain by using either Fusion Middleware Control or the WLST as described in the
following topics.

Chapter 3
Creating a Managed Domain

3-10

Using Fusion Middleware Control

To create a load balancer by using Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Graphical
User Interface-Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

4. In the Common Tasks pane select the Create button.

The Create Configuration wizard opens.

5. Follow the on-screen prompts to complete creation of the configuration by using
the details as specified below.

• Name: hr-config

• (Listener) Port number: 1905

• IP Address: default

• Server Name: default

• Origin Server Name: hr-apps.example.com

• Origin Server Port Number: 80

6. In the Deployment page, check the listed machine under the Machine list and click
Next.

The Create Configuration: Review page appears.

7. Click Create Configuration.

After the configuration is created, the Results screen of the New Configuration
wizard displays a message confirming successful creation of the configuration. If
you chose to create instances of the configuration, then a message confirming
successful creation of the instances is also displayed.

8. Perform lifecycle tasks.

a. In the left panel, Target Navigation, click and expand Traffic Director.

The instances are listed under the configurations.

b. Click on the instance you want to start.

c. To start an instance.

i. Navigate to the resulting page on the right panel.

ii. Click Start Up. The following message appears.

Start Operation on target /Domain_em_domain/em_domain/otd_hr-
config_example.com. Completed Successfully

d. To stop an instance.

i. Click Shut Down.

ii. Provide your confirmation in the resulting confirmation dialogue box. The
following message appears.

Shutdown Operation on target /Domain_em_domain/em_domain/otd_hr-
config_example.com completed successfully.

Chapter 3
Creating a Managed Domain

3-11

Using WLST Commands

To create a load balancer using offline WLST commands, do the following tasks:

1. Launch WLST command and connect to the Administration server.

$ORACLE_HOME$/oracle_common/common/bin/wlst.sh
> connect("$WLS_ADMIN_USER", "$WLS_ADMIN_PASSWORD","t3://localhost:$
{WLS_ADMIN_PORT}")

2. Start an edit session.

> editCustom()
> startEdit()

3. Create a configuration hr-config using the otd_createConfiguration WLST
command.

props = {}
props['configuration'] = 'hr-config'
props['listener-port'] = '1905'
props['server-name'] = 'hr-apps.example.com'
props['origin-server'] = 'hr-1.example.com:80,hr-2.example.com:80'
otd_createConfiguration(props)

4. Create an instance of the configuration hr-config by running the
otd_createInstance WLST command. Specify the machine as the name you
specified when creating the machine in Fusion Middleware Control, corresponding
to the host name of the machine on which the Oracle Traffic Director instance is
running.

props = {}
props['configuration'] = 'hr-config'
props['machine'] = 'machine1'
otd_createInstance(props)

5. Activate the changes. This propagates the changes to each instance of the
configuration and creates it only if it currently does not exist.

activate()

6. Once the command runs successfully, check if the instance directory is created
from the system command line.

ls $DOMAIN_HOME/config/fmwconfig/components/OTD/instances/hr-config_machine1

7. Perform lifecycle tasks.

> start("hr-config_machine1", 'SystemComponent')
Starting system component "hr-config_machine1"
System component with name "hr-config_machine1" started successfully
[Handle the machine-name as we do in schema-prefix]

> state("hr-config_machine1")
Current state of "hr-config_machine1" : RUNNING

> softRestart("hr-config_machine1")
Restarting the system component with name "hr-config_machine1"
System component with name "hr-config_machine1" restarted successfully

> shutdown("hr-config_machine1")
Shutting down the system component with name "hr-config_machine1"
System component with name "hr-config_machine1" shutdown successfully

Chapter 3
Creating a Managed Domain

3-12

> state("hr-config_machine1")
Current state of "hr-config_machine1" : SHUTDOWN

We have now successfully created an Oracle Traffic Director configuration, and started
the instance.

Creating a Standalone Domain
Learn how to create Oracle Traffic Director on a standalone domain using Oracle
Traffic Director standalone template.

You can create a standalone domain by using either Coonfiguration Wizard or WLST
as described in the following topics:

• Creating a Standalone Domain using the Configuration Wizard

• Creating a Standalone Domain Using Offline WLST Commands

• Creating the Load Balancer for a Standalone Domain

Creating a Standalone Domain using the Configuration Wizard
To create a standalone domain using Configuration Wizard, do the following tasks:

1. Run the installer.

$ORACLE_HOME/oracle_common/common/bin/config.sh -log=config.log

The Create Domain page appears.

2. Use the default values and click Next.

The Templates page appears.

Note:

• The Basic Standalone System Component Domain - 12.2.1.x.0
[wlserver] is selected by default.

• The other Oracle Traffic Director templates, Oracle Traffic Director
- 12.2.1.x.0 [otd] and Oracle Traffic Director - Restricted JRF -
12.2.1.x.0 [otd] are not applicable for standalone domain.

3. In the Available Templates section, choose Oracle Traffic Director - Standalone
12.2.1.x.0 [otd]and click Next.

The JDK Selection page appears

4. Retain the default JDK and click Next.

The System Components page appears.

5. Click Next.

The Node Manager page appears.

Chapter 3
Creating a Standalone Domain

3-13

Note:

You need not create system component, as Oracle Traffic Director has
commands for configuring system components.

6. Select the following options.

• Node Manager Type: default/Per Domain Default Location

• User Name: USERNAME

• Password: PASSWORD

• Confirm Password: PASSWORD

7. Click Next

The Configuration Summary page appears.

8. Click Create.

The Configuration Progress page appears. This shows the progress of the
configuration.

9. After the standalone domain is created successfully, click Next.

The Configuration Success page appears.

10. Click Finish.

Creating a Standalone Domain Using Offline WLST Commands
To create a standalone domain using offline WLST commands, do the following tasks:

1. Launch the WLST command shell.

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

2. Run the otd_createStandaloneDomain command to create an Oracle Traffic
Director standalone domain. See otd_createStandaloneDomain command in
WebLogic Scripting Tool Command Reference for Oracle Traffic Director.

> props = {'domain-home': '$DOMAIN_HOME'}
> otd_createStandaloneDomain(props)

Creating the Load Balancer for a Standalone Domain

The following section describes creating a load balancer after deploying Oracle Traffic
Director in standalone mode and creating a standalone domain as shown
above. There is no Fusion Middleware Control in standalone domain. You should use
Oracle Traffic Director offline WLST commands for creating the load balancer.

Chapter 3
Creating a Standalone Domain

3-14

The topology is based on the following configuration:

• Oracle Traffic Director to receive requests from clients: hr-apps.example.com:
1905

• Host and port of origin servers (web servers in this example):

– hr-1.example.com:80

– hr-2.example.com:80

In the real world, both origin servers would serve identical content. But for this
example, to be able to see load balancing in action, we will set up the index.html
page to show slightly different content, as follows:

– For hr-1.example.com:80: "Page served from origin-server 1"

– For hr-2.example.com:80: "Page served from origin-server 2"

• Load-balancing method is seat as Round robin.

Note:

The custom WLST commands for administering Oracle Traffic Director
cannot be used in a standalone domain.

Chapter 3
Creating a Standalone Domain

3-15

Using Offline WLST Commands

1. Launch the WLST command shell.

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

2. Create an Oracle Traffic Director instance.

> props = {'domain-home': '$DOMAIN_HOME', 'origin-server': 'hr-1.example.com:
80,hr-2.example.com:80', 'listener-port': '1905', 'instance': 'hr', 'server-
name': 'hr-apps.example.com'}

> otd_createStandaloneInstance(props)

3. Once the command runs successfully, check if the instance directory is created
from the system command line.

ls $DOMAIN_HOME/config/fmwconfig/components/OTD/instances/hr

4. Perform instance management tasks.

• Start

$DOMAIN_HOME/config/fmwconfig/components/OTD/instances/hr/bin/startserv

• Stop

$DOMAIN_HOME/config/fmwconfig/components/OTD/instances/hr/bin/stop

• Restart

$DOMAIN_HOME/config/fmwconfig/components/OTD/instances/hr/bin/restart

• Reconfigure

$DOMAIN_HOME/config/fmwconfig/components/OTD/instances/hr/bin/reconfig

• Rotate log files

$DOMAIN_HOME/config/fmwconfig/components/OTD/instances/hr/bin/rotate

Verifying the Load-Balancing Behavior of the Oracle Traffic
Director Instance

You can verify the load-balancing behavior of the Oracle Traffic Director instance by
using your browser. The Oracle Traffic Director instance that we created and started
earlier is now listening for HTTP requests at the URL http://hr-apps.example.com:
1905.

Ensure that the web servers hr-1.example.com:80 and hr-2.example.com:80 are
running. If necessary, update the /etc/hosts file on the host from which you are going
to access the Oracle Traffic Director virtual server, to make sure that the browser can
resolve hr-apps.example.com to the correct IP address.

1. Enter the URL http://hr-apps.example.com:1905 in your browser.

A page with the following text is displayed:

"Page served from origin-server 1"

This indicates that the Oracle Traffic Director instance running on the
apps.example.com Node Manager received the HTTP request that you sent from
the browser, and forwarded it to the origin server hr-1.example.com:80.

Chapter 3
Verifying the Load-Balancing Behavior of the Oracle Traffic Director Instance

3-16

2. Send another HTTP request to http://hr-apps.example.com:1905 by refreshing
the browser window.

A page with the following text is displayed:

"Page served from origin-server 2"

This indicates that Oracle Traffic Director sent the second request to the origin
server hr-2.example.com:80

3. Send a third HTTP request to http://hr-apps.example.com:1905 by refreshing
the browser window again.

A page with the following text is displayed:

"Page served from origin-server 1"

This indicates that Oracle Traffic Director used the simple round-robin load-
distribution method to send the third HTTP request to the origin server
hr-1.example.com:80.

Chapter 3
Verifying the Load-Balancing Behavior of the Oracle Traffic Director Instance

3-17

4
Configuring Oracle Traffic Director for High
Availability

High availability is the ability of a system or device to be available when it is needed. A
high availability architecture ensures that users can access a system without loss of
service. Deploying a high availability system minimizes the time when the system is
down, or unavailable, and maximizes the time when it is running, or available.

This section describes the instructions for configuring Oracle Traffic Director for
failover across Oracle Traffic Director instances. It includes the following sections:

• Overview

• Preparing your System for High Availability

• Configuring High Availability

Overview
The high availability solution for Oracle Traffic Director provides the ability to create
multiple instances and then configure the IP failover for a given VIP between the
instances.

In Oracle Traffic Director, high availability solution creates a redundancy for a given
virtual IP address (VIP) by configuring IP failover between two or more instances. The
IP failover is configured as a Failover Group which is a grouping of a VIP, an instance
designated as the primary and one or more instances designated as the backup
instances. The failover is transparent to both the client which is sending the traffic and
the Oracle Traffic Director instance that is receiving the traffic.

Failover configuration modes
You can configure the Oracle Traffic Director instances in a failover group to work in
the following modes:

• Active-passive: A single VIP address is used. One instance in the failover group
is designated as the primary node. If the primary node fails, the requests are
routed through the same VIP to the other instance.

• Active-active: A single VIP address is used. One of the nodes is the master node,
and the other nodes are backup nodes. The incoming requests to VIP is
distributed among the OTD instances. If the master node fails, then the backup
node having the highest priority will be chosen as the next master node.

Failover in Active-Passive Mode
In the active-passive setup described here, one node in the failover group is redundant
at any point in time.

4-1

Oracle Traffic Director provides support for failover between the instances in a failover
group by using an implementation of the Virtual Routing Redundancy Protocol
(VRRP), such as keepalived for Linux and vrrpd (native) for Solaris. This mode of
failover is supported only on Solaris and Linux platforms.

Keepalived provides other features such as load balancing and health check for origin
servers, but Oracle Traffic Director uses only the VRRP subsystem. For more
information about Keepalived, go to http://www.keepalived.org.

VRRP specifies how routers can failover a VIP address from one node to another if the
first node becomes unavailable for any reason. The IP failover is implemented by a
router process running on each of the nodes. In a two-node failover group, the router
process on the node to which the VIP is currently assigned is called the master. The
master continuously advertises its presence to the router process on the second node.

Note:

On a Linux host that has an Oracle Traffic Director instance configured as a
member of a failover group, Oracle Traffic Director should be the only
consumer of Keepalived. Otherwise, when Oracle Traffic Director starts and
stops the keepalived daemon for effecting failovers during instance
downtime, other services using keepalived on the same host can be
disrupted.

If the node on which the master router process is running fails, the router process on
the second node waits for about three seconds before deciding that the master is
down, and then assumes the role of the master by assigning the VIP to its node. When

Chapter 4
Overview

4-2

http://www.keepalived.org

the first node is online again, the router process on that node takes over the master
role. For more information about VRRP, see RFC 5798 at http://
datatracker.ietf.org/doc/rfc5798.

Failover in Active-Active Mode
Oracle Traffic Director provides support for failover between the instances by
deploying instances on the nodes which are in the same subnet. One of the nodes is
chosen as the active router node and the remaining node(s) are the backup router
node(s).The traffic will be managed among all the Oracle Traffic Director instances.

This mode of failover is supported only on the Linux platform. The solution also uses
Keepalived v 1.2.13 and Linux Virtual Server (LVS) to perform load balancing and
failover tasks. In addition, the following packages are required.

• ipvsadm (1.26 or later)

• iptables (1.4.7 or later)

Host 2Host 1 Keepalived

VIP

Client 1 Client 2

OTD

Active LVS
Router

OTD

Active LVS
Router

Host n

OTD

Active LVS
Router

Backup LVS NodesPrimary LVS Node

In the beginning, all the nodes are configured as the backup nodes and the nodes are
assigned different priorities. The highest priority node is chosen as the master and the
other nodes are the backup nodes. If the master node fails, then the backup node
having the highest priority is chosen as the next master node. The keepalived master
node will also be the master node for LVS.

Keepalived does following:

• Plumbs the virtual IP on the master

• Sends out gratuitous ARP messages for the VIP

• Configure the LVS (ipvsadm)

• Health-check for Keepalived on other nodes

LVS does following:

Chapter 4
Overview

4-3

http://datatracker.ietf.org/doc/rfc5798
http://datatracker.ietf.org/doc/rfc5798

• Balance the load across the Oracle Traffic Director instances

• Share the existing connection information to the backup nodes via multicasting.

• To check the integrity of the services on each Oracle Traffic Director instance. In
case, an Oracle Traffic Director instance fails then that instance will be removed
from the LVS configuration and when it comes back online then it will be added
again.

Preparing your System for High Availability
The typical deployment topology for Oracle Traffic Director is a three-node installation
which are part of a single domain.

• There is the WebLogic Server Administration machine on which Oracle Traffic
Director is collocated with a WebLogic Server and JRF installation. This hosts the
WebLogic Server Administration server.

• There are two other machines which have the Oracle Traffic Director standalone
installations which have only a subset of WebLogic Server binaries and which
hosts managed Oracle Traffic Director domains.

• The two Oracle Traffic Director instances typically provide high availability for a
VIP (virtual IP) by forming a failover group.

Prerequisites

Operating System High Availability
Requirements

System Requirements

Linux Active-Active
• keepalived package

(1.2.13 or later)

• 3 machines with OEL 6.6 or above.
• 2 machines must be in the same

subnet.
• A virtual IP on the same subnet to

create a failover group. This IP
address should be free and should
not already be assigned to any
machine on the network.

Linux Active-Passive
• keepalived package

(1.2.12 or later)

Solaris Active-Active Not Supported

Solaris Active-Passive
• vrrpadm package
• ipadm package

• 3 machines with S11u2 or above.
• 2 machines must be in the same

subnet.
• A virtual IP on the same subnet to

create a failover group. This IP
address should be free and should
not already be assigned to any
machine on the network.

Windows Active-Active Not Supported

Windows Active-Passive Not Supported

AIX Active-Active Not Supported

AIX Active-Passive Not Supported

Notations

The following tokens are used to represent the same data throughout this chapter.

Chapter 4
Preparing your System for High Availability

4-4

Token Description

OTD_HOST_1 Host name of the machine on which the primary instance of
the failover group is running.

OTD_HOST_2 Host name of the machine on which the back up instance of
the failover group is running.

OTD_MACHINE_1 Name specified while creating machine corresponding to
OTD_HOST_1 in Weblogic Server Console.

OTD_MACHINE_2 Name specified while creating machine corresponding to
OTD_HOST_2 in Weblogic Server Console.

VIP The virtual IP (on the same subnet as OTD_HOST_1 and
OTD_HOST_2) used to create a failover group.

WLS_ADMIN_HOST Host name of the server on which WebLogic Server admin
runs.

Configuring High Availability
Configuring high availability for Oracle Traffic Director starts with installing WebLogic
Server, Oracle Traffic Director. It also includes creating a WebLogic domain, a
standalone Oracle Traffic Director installation and then creating failover instances.

1. Install WebLogic Server. See Installing WebLogic Server.

2. Install Oracle Traffic Director on a collocated mode with WebLogic Server and
restricted JRF template. See Installing Oracle Traffic Director.

3. Create a WebLogic domain using JRF template to manage Oracle Traffic Director
instances on remote machines. See Creating a Domain using JRF Template.

4. Create a standalone Oracle Traffic Director installation on 2 other hosts
OTD_HOST_1 and OTD_HOST_2. See Installing Oracle Traffic Director in a Standalone
Domain.

5. Create Managed Domains with Standalone Oracle Traffic Director Installations.

a. Open a new terminal on the WLS_ADMIN_HOST and start the WebLogic
Administration Server.

Syntax: $DOMAIN_HOME/startWeblogic.sh

b. Log on to the WebLogic Server console at
http://$WLS_ADMIN_HOST:$WLS_ADMIN_PORT/console with credentials
WLS_ADMIN_USER and WLS_ADMIN_PASSWORD.

c. Create machine entries corresponding to OTD_HOST_1 and OTD_HOST_2 with the
properties shown in the table below. For information on creating and
configuring machines, see Create and configure machines.

Chapter 4
Configuring High Availability

4-5

Table 4-1 Create machine entries using these values

Parameter Sub-Parameter Value

Machine Properties Name It is recommended that this be the
same as the host name of the
machine (OTD_HOST_1 or
OTD_HOST_2). This name will be
referred to hereafter as
OTD_MACHINE_1 and
OTD_MACHINE_2.

Machine
Properties-Machine
OS

Use the default value.

Node Manager
Properties

Type SSL

Listen Address Host name of the remote host
(OTD_HOST_1 or OTD_HOST_2).

Listen Port The port the Node Manager is
configured to listen on the remote
host (default is 5556).

For example:

Table 4-2 Example for creating machine entries

Parameter Sub-Parameter Value

Machine Properties Name example.com.

Machine Properties-
Machine OS

Use the default value

Node Manager
Properties

Type SSL

Listen Address example.com.

Listen Port 5556

d. Open a terminal on WLS_ADMIN_HOST and execute the pack.sh command.

Note:

Ensure that both the remote hosts OTD_HOST_1 and OTD_HOST_2 are
added as machines on the console before packing the domain.

Syntax: $ORACLE_HOME/oracle_common/common/bin/pack.sh -domain=<full
path to the domain that needs to be packed> -template=<full path to
a template jar file to be created> -template_name=<description> -
managed=true

Example: $ORACLE_HOME/oracle_common/common/bin/pack.sh -
domain=$DOMAIN_HOME -template=/share/files/otd_ha.jar -
template_name=ha -managed=true

Chapter 4
Configuring High Availability

4-6

This command creates a template archive .jar file that contains a subset of the
domain that can be used to create an Oracle Traffic Director managed domain
on the remote machine.

e. Copy the template jar created by pack to OTD_HOST_1 and OTD_HOST_2 or keep
the jar in a file system location which can be accessed from OTD_HOST_1 and
OTD_HOST_2.

f. Execute the unpack.sh command on both OTD_HOST_1 and OTD_HOST_2 to
create an Oracle Traffic Director managed domain.

Syntax: $ORACLE_HOME/oracle_common/common/bin/unpack.sh -
domain=<full path to the domain that needs to be created> -
template=<full path to the template jar file created using pack>

Example: $ORACLE_HOME/oracle_common/common/bin/unpack.sh -
domain=$DOMAIN_HOME -template=/share/files/otd_ha.jar

g. Start the Node Manager in a new terminal on both OTD_HOST_1 and
OTD_HOST_2.

Syntax: $DOMAIN_HOME/bin/startNodeManager.sh

h. Log on to the Weblogic Server Console on WLS_ADMIN_HOST and ensure
that the status of the Node Manager on OTD_HOST_1 and OTD_HOST_2 is shown
as active. For information about monitoring the Node Monitor status, see
Monitor Node Manager status .

6. Create Remote Instances and Enable Failover.

a. Install Oracle Traffic Director on two remote hosts OTD_HOST_1 and
OTD_HOST_2.

Note:

To enable failover, the two remote hosts must be on the same
subnet.

b. Ensure that WebLogic Server is running on WLS_ADMIN_HOST and Node
Managers are running on OTD_HOST_1 and OTD_HOST_2.

c. Connect to the Administration Server and start an edit session using WLST
command interface.

Syntax:

> $ORACLE_HOME/oracle_common/common/bin/wlst.sh
>
connect('$WLS_ADMIN_USER','$WLS_ADMIN_PASSWORD','t3://$WLS_ADMIN_HOS
T:$WLS_ADMIN_PORT')
> editCustom()
> startEdit()

d. Create a new Oracle Traffic Director configuration.

Syntax:

> props = {'origin-server': '<origin servers>', 'listener-port':
'<listener port>', 'name': '<config name>', 'server-name': '<server

Chapter 4
Configuring High Availability

4-7

http://docs.oracle.com/middleware/12212/wls/WLACH/taskhelp/machines/MonitorNodeManagerStatus.html

name>'}
> otd_createConfiguration(props)

Example:

> props = {'origin-server': 'localhost:20004', 'listener-port':
'20009', 'name': 'ha', 'server-name': 'myservername'}
> otd_createConfiguration(props)

e. Create Oracle Traffic Director instance on the 2 remote machines.

Syntax:

> props={'configuration': '<config name>', 'machine':
'$OTD_MACHINE_1'}
> otd_createInstance(props)
> props={'configuration': '<config name>', 'machine':
'$OTD_MACHINE_2'}
> otd_createInstance(props)

This creates 2 instances, otd_<config name>_$OTD_MACHINE_1 and
otd_<config name>_$OTD_MACHINE_2.

> props={'configuration': 'ha', 'machine': 'example.com'}
> otd_createInstance(props)
> props={'configuration': 'ha', 'machine': 'example.com'}
> otd_createInstance(props)

f. Create a failover group using the two instances.

• To create an active-active failover:

– Syntax:

> props = {'configuration': '<config name>', 'virtual-ip':
'$VIP', 'failover-type': 'active-active'}
> otd_createFailoverGroup(props)

Example:

> startEdit()
> props = {'configuration': 'ha', 'virtual-ip':
'10.20.30.40', 'failover-type': 'active-active'}
> otd_createFailoverGroup(props)

– Add 2 failover instance details from different nodes to the active-active
Failover group.

Syntax:

> props = {'configuration': '<config name>', 'virtual-ip':
'$VIP', 'instance': 'otd_ha_$OTD_MACHINE_1', 'nic':
'<network interface name>'}
> otd_addFailoverInstance(props)

Chapter 4
Configuring High Availability

4-8

Example:

> startEdit()
> props = {'configuration': 'ha', 'virtual-ip':
'10.20.30.40', 'instance': 'otd_ha_example1.com', 'nic':
'eth0'}
> otd_addFailoverInstance(props)
> props = {'configuration': 'ha', 'virtual-ip':
'10.20.30.40', 'instance': 'otd_ha_example2.com', 'nic':
'eth0'}
> otd_addFailoverInstance(props)

– Verify the failover group creation.

Syntax:

> props = {'configuration': '<config name>', 'virtual-ip':
'$VIP'}
> otd_getFailoverGroupProperties(props)

Example:

> props = {'configuration': 'ha', 'virtual-ip':
'10.20.30.40'}
> otd_getFailoverGroupProperties(props)

The details of the created group are displayed as follows:

> failover-type=active-active
> router-id=72
> virtual-ip=10.20.30.40
> instances=otd_ha_example1.com,otd_ha_example2.com

• To create an active-passive failover:

Syntax:

> props = {'configuration': '<config name>', 'virtual-ip':
'$VIP', 'primary-instance': 'otd_ha_$OTD_MACHINE_1', 'backup-
instance': 'otd_ha_$OTD_MACHINE_2',
 'primary-nic': 'network interface on the primary
instance', 'backup-nic': 'network interface on the backup
instance'}
> otd_createFailoverGroup(props)

Chapter 4
Configuring High Availability

4-9

Note:

– VIP should be an IP address on the same subnet as
OTD_HOST_1 and OTD_HOST_2.

– Ensure that VIP has not been assigned to any machine on
the subnet.

Example:

> startEdit()
> props = {'configuration': 'ha', 'virtual-ip': '10.20.30.40',
'primary-instance': 'otd_ha_example.com', 'backup-instance':
'otd_ha_example.com',
 'primary-nic': 'eth0', 'backup-nic': 'eth0'}
> otd_createFailoverGroup(props)

g. Activate the changes. This propagates the failover configuration to the 2
instances on OTD_HOST_1 and OTD_HOST_2.

Syntax: activate()

The instance is created in the path, <DOMAIN_HOME>/config/fmwconfig/
components/OTD/instances/otd_<config name>_<machine name> on both the
machines.

7. Start Failover. After creating remote Oracle Traffic Director instances on the
remote hosts OTD_HOST_1 and OTD_HOST_2, you must start failover using Superuser
privileges.

Ensure that Weblogic Server is running on WLS_ADMIN_HOST and Node Manager is
running on both OTD_HOST_1 and OTD_HOST_2.

a. Using the WLST Command interface on the WLS_ADMIN_HOST connect to the
WebLogic Administration Server.

Syntax:

> $ORACLE_HOME/oracle_common/common/bin/wlst.sh
> connect('$WLS_ADMIN_USER','$WLS_ADMIN_PASSWORD','t3://
localhost:$WLS_ADMIN_PORT')

b. Start instance otd_<config name>_$OTD_MACHINE_N using WLST command.

Syntax:

> start('otd_<config name>_$OTD_MACHINE_1', 'SystemComponent')
> state('otd_<config name>_$OTD_MACHINE_1')
Current state of "otd_<config name>_$OTD_MACHINE_1" : RUNNING
> start('otd_<config name>_$OTD_MACHINE_2', 'SystemComponent')
> state('otd_<config name>_$OTD_MACHINE_2')
Current state of "otd_<config name>_$OTD_MACHINE_2" : RUNNING

Chapter 4
Configuring High Availability

4-10

Example:

> start('otd_ha_example.com', 'SystemComponent')
> state('otd_ha_example.com')
Current state of "otd_ha_example.com" : RUNNING
> start('otd_ha_example.com', 'SystemComponent')
> state('otd_ha_example.com')
Current state of "otd_ha_example.com" : RUNNING

c. Start failover on both OTD_HOST_1 and OTD_HOST_2. Run otd_startFailover
with Superuser privileges since the failover daemon needs to be started as
root.

On OTD_HOST_1, run the following:

sudo $ORACLE_HOME/oracle_common/common/bin/wlst.sh
> props={'domain-home': $DOMAIN_HOME, 'instance':
otd_ha_$OTD_MACHINE_1, 'log-verbose': 'true'}
> otd_startFailover(props)

On OTD_HOST_2, run the following:

sudo $ORACLE_HOME/oracle_common/common/bin/wlst.sh
> props={'domain-home': $DOMAIN_HOME, 'instance':
otd_ha_$OTD_MACHINE_2, 'log-verbose': 'true'}
> otd_startFailover(props)

For example:

sudo $ORACLE_HOME/oracle_common/common/bin/wlst.sh

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline> props = {'domain-home': '$ORACLE_HOME/user_projects/
domains/base_domain', 'instance': 'otd_ha_example.com', 'log-
verbose': 'true'}
wls:/offline> otd_startFailover(props)

OTD-67856 Failover has been started successfully.

Chapter 4
Configuring High Availability

4-11

5
Managing Configurations

The first step toward creating a load-balanced service with Oracle Traffic Director is to
create a configuration. A configuration is a collection of metadata defining the run-time
characteristics of an Oracle Traffic Director server. After creating a configuration, you
can use it to create instances of Oracle Traffic Director servers on one or more
administration nodes.
This chapter contains the following topics:

• Creating a Configuration

• Viewing a List of Configurations

• Activating Configuration Changes

• Modifying an Oracle Traffic Director Configuration

• Copying an Oracle Traffic Director Configuration

• Deleting an Oracle Traffic Director Configuration

See Oracle Traffic Director Terminology for the definitions of the Oracle Traffic Director
terminology such as configuration, administration node, and instance. To understand
the relationship between configurations, node managers, and instances, see Overview
of Administration Tasks.

Creating an Oracle Traffic Director Configuration
You can create configurations that define your Oracle Traffic Director instances. A
configuration is a collection of metadata that you can use to instantiate Oracle Traffic
Director. Oracle Traffic Director reads the configuration when a server instance starts
and while processing client requests.

Before You Begin

Before you begin creating a configuration, decide the following:

• A unique name for the configuration. Choose the name carefully. After creating a
configuration, you cannot change the name.

• A unique listener host:port combination for the default virtual server that you
create as part of the configuration.

• host:port addresses of the servers in the origin-server pool that you create as
part of the configuration.

• (optional) Host names of the Node Managers on which you want to create
instances of the configuration.

While creating a configuration using the New Configuration wizard, you can also
choose to instantiate the configuration on one or more Node Managers. The
wizard displays the host names of the Node Managers that are registered with the
server.

5-1

Topics

• Creating a Configuration Using Fusion Middleware Control

• Creating a Configuration Using WLST

Creating a Configuration Using Fusion Middleware Control
To create a configuration by using Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Graphical
User Interface-Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

4. In the Common Tasks pane select the Create button.

The New Configuration wizard opens.

5. Follow the on-screen prompts to complete creation of the configuration by using
the details—origin server type, and so on—that you decided earlier.

After the configuration is created, the Results screen of the New Configuration
wizard displays a message confirming successful creation of the configuration. If
you chose to create instances of the configuration, then a message confirming
successful creation of the instances is also displayed.

6. Click Close on the Results screen.

In the New Configuration wizard, if you chose not to create an instance of the
configuration, the message Undeployed Configuration is displayed, indicating
that the configuration that you just created is yet to be deployed.

Creating a Configuration Using WLST
To create a configuration, run the otd_createConfiguration command. This
command can be run in online and offline mode.

The example creates a configuration named soa.example.com with an origin server,
vault.example.com:80.

Online
props = {}
props['name'] = 'soa.example.com'
props['listener-port'] = '12345'
props['server-name'] = 'foo'
props['origin-server'] = 'vault.example.com:80'
otd_createConfiguration(props)

The example creates a configuration named foo with an origin server,
vault.mycompany.com:80.

Offline
readDomain('/export/domains/otd_domain')
props = {}
props['name'] = 'foo'
props['listener-port'] = '12345'
props['server-name'] = 'foo'
props['origin-server'] = 'vault.mycompany.com:80'

Chapter 5
Creating an Oracle Traffic Director Configuration

5-2

otd_createConfiguration(props)
updateDomain()
closeDomain()

Viewing a List of Configurations
After creating Oracle Traffic Director configurations, you can view a list of the available
configurations at any time. To view a list of configurations, run the
otd_listConfigurations command.

You can view the list of configurations by using either Fusion Middleware Control or
the WLST as described in the following topics:

Topics

• Viewing a List of Configurations Using Fusion Middleware Control

• Viewing a List of Configurations Using WLST

Viewing a List of Configurations Using Fusion Middleware Control

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

You can view the properties of a configuration by clicking on its name.

Viewing a List of Configurations Using WLST

To view a list of the available configurations, run the otd_listConfigurations command,
as shown in the following example. You can run this command in online and offline
mode.

Online
otd_listConfigurations()

Offline
readDomain('/export/2110_12c/iplanet/ias/server/work/TD_Linux2.6_DBG.OBJ/domains/
otd_domain')
otd_listConfigurations()
closeDomain()

See Offline Commands in the WebLogic Scripting Tool Command Reference for
Oracle Traffic Director for information about using WLST commands in offline mode.

Chapter 5
Viewing a List of Configurations

5-3

Activating Configuration Changes
You can activate configuration changes to instances using the activate command.
The activate command activates changes done after starting an edit session by
executing the command startEdit.

Apart from activating the changes to Oracle Traffic Director, the activate command
also activates changes to other components and managed servers done after starting
an edit session. Certain configuration changes cannot be applied dynamically without
restarting the instances.

You can activate the configuration changes by using either Fusion Middleware Control
or WLST as described in the following topics:

• Activate Configuration Changes Using Fusion Middleware Control

• Activate Configuration Changes Using WLST

Activate Configuration Changes Using Fusion Middleware Control
To activate configuration changes using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the button just below Weblogic Domain.

3. The Auto-Commit Mode is enabled by default.

• Enable: Enable Auto-Commit Mode and create a configuration. It displays a
information that all changes have been activated.

• Disable: Disable Auto-Commit Mode and create a configuration. It displays a
information that changes are pending for activation. Use change center to
activate pending changes.

Activate Configuration Changes Using WLST

All commands executed in WLST must be activated using the activate command.

For example, the following command updates all instances of the configuration with
the latest configuration settings.

wls:/mydomain/edit !> activate(200000, block='true')
Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released once the activation
iscompleted.
Action completed.
wls:/mydomain/edit>

Chapter 5
Activating Configuration Changes

5-4

Note:

See Updating Oracle Traffic Director Instances Without Restarting for
information about parameters that can be re-configured without restarting
Oracle Traffic Director instances.

Modifying an Oracle Traffic Director Configuration
After you create a configuration and create instances from it, you might need to
change some of the settings such as log preferences, performance parameters, virtual
server listener, origin-server pools, and so on.

You can modify a configuration by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Modifying a Configuration Using Fusion Middleware Control

• Modifying a Configuration Using WLST

Modifying a Configuration Using Fusion Middleware Control

To modify a configuration by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Displaying
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration that you want to modify.

5. In the navigation pane, you can select the following additional categories of
settings for the configuration. The parameters relevant to the selected category
are displayed on the main pane.

• SSL

– Schedule and manage CRL-update events. See Update CRLs
Automatically.

– SSL/TLS caching preferences. See SSL/TLS Session Caching.

• Logging

– Set and change parameters for the server log file-name and location of the
log file, log level, date format, and so on.

– Enable and disable the access log.

– Set and change parameters for the access log file-name and location of
the log file and log format

– Schedule and manage events to rotate the server and access log files.

Chapter 5
Modifying an Oracle Traffic Director Configuration

5-5

– Configure access-log buffer settings to tune performance. See Managing
Logs.

• Advanced Settings

– Specify general settings: the server user ID, the temporary directory in
which the process ID and socket information for the instances of the
configuration are stored, and the localization preferences.

– Configure DNS lookup and cache settings. See Tuning DNS Caching
Settings.

– Create, enable, disable, view, delete events for the configuration. See
Controlling Oracle Traffic Director Instances Through Scheduled Events.

– HTTP: Set and change parameters to tune the performance of the virtual
servers defined for the configuration such as, request buffer size,
response buffer size, timeout thresholds for the request body and header,
thread-pool settings, and keep-alive settings. See Tuning HTTP Request
and Response Limits.

– Monitoring: Enable and disable statistics collection, profiling, and the
SNMP subagent. Specify the statistics-collection interval. See Monitoring
Oracle Traffic Director Instances.

6. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Save button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Reset button.

7. After making the required changes, click Save.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

• In addition, the Deployment Pending message is displayed at the top of the
main pane. You can either deploy the updated configuration immediately by
clicking Deploy Changes, or you can do so later after making further changes
as described in Activate Configuration Changes.

Note:

In the Advanced Settings page, if you change the Temporary Directory
value, you should first stop all the instances of the configuration, deploy
the changes, and then start the instances.

Modifying a Configuration Using WLST
WLST provides several commands that you can use to change specific parameters of
a configuration.

Chapter 5
Modifying an Oracle Traffic Director Configuration

5-6

Table 5-1 WLST Commands for Modifying a Configuration

Task WLST Commands

Change the configuration properties otd_setConfigurationProperties

Change access-log buffer properties otd_setAccessLogBufferProperties

otd_getAccessLogBufferProperties

Change caching properties otd_setCacheProperties

otd_getCacheProperties

Change DNS properties otd_setDnsProperties

otd_getDnsProperties

Change DNS caching properties otd_setDnsCacheProperties

otd_getDnsCacheProperties

Change HTTP request properties otd_setHttpProperties

otd_getHttpProperties

Change keep-alive settings for client
connections

otd_setKeepAliveProperties

otd_getKeepAliveProperties

Change error log settings otd_setLogProperties

otd_getLogProperties

Enable SNMP otd_setSnmpProperties

otd_getSnmpProperties

Change SSL/TLS session caching properties otd_setSslSessionCacheProperties

otd_getSslSessionCacheProperties

Change statistics collection properties otd_setStatsProperties

otd_getStatsProperties

Change TCP thread pool properties set-tcp-thread-pool-prop

Change HTTP thread pool properties otd_setHttpThreadPoolProperties

otd_getHttpThreadPoolProperties

Change TCP thread pool properties otd_setTcpThreadPoolProperties

otd_getTcpThreadPoolProperties

For example, the following command changes the log level for the configuration foo to
the most verbose (finest) setting, TRACE:32.

props = {}
props['configuration'] = 'foo'
otd_getConfigurationProperties(props)

See WebLogic Scripting Tool Command Reference for Oracle Traffic Director or run
the commands with the --help option.

Chapter 5
Modifying an Oracle Traffic Director Configuration

5-7

Copying an Oracle Traffic Director Configuration
When you want to create a configuration that is similar to an existing configuration, you
can copy the existing configuration and make the required changes later.

You can copy a configuration by using either Fusion Middleware Control or the WLST
as described in the following topics:

Topics

• Copying a Configuration Using Fusion Middleware Control

• Copying a Configuration Using WLST

Copying a Configuration Using Fusion Middleware Control

To copy a configuration by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Displaying
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration that you want to copy.

5. In the Common Tasks pane, click Duplicate Configuration.

6. In the resulting dialog box, enter a name for the new configuration, and then click
OK

A message is displayed confirming that the configuration was copied.

7. Click OK.

Copying a Configuration Using WLST
To copy a configuration, run the otd_copyConfiguration command.

For example, the following command copies the configuration foo to a new
configuration named foo1.

props = {}
props['source-configuration'] = 'foo'
props['dest-configuration'] = 'bar'
otd_copyConfiguration(props)

Deleting an Oracle Traffic Director Configuration
You can delete configurations that are not required. To delete Oracle Traffic Director
configurations, run the otd_deleteConfiguration command.

You can delete Oracle Traffic Director configurations by using either Fusion
Middleware Control or the WLST.

Chapter 5
Copying an Oracle Traffic Director Configuration

5-8

Note:

To delete a configuration that has one or more failover groups, you should
first delete the failover groups. See Managing Failover Groups.

Topics

• Deleting a Configuration Using Fusion Middleware Control

• Deleting a Configuration Using WLST

Deleting a Configuration Using Fusion Middleware Control

To delete a configuration by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration that you want to delete.

5. In the Common Tasks pane, click Delete Configuration.

• If there are no instances of the configuration that you want to delete, a prompt
to confirm deletion of the configuration is displayed.

a. Click OK.

A message is displayed confirming that the configuration was deleted.

b. Click OK.

• If there are instances of the configuration that you want to delete, a dialog box
is displayed listing the administration nodes on which the configuration is
deployed. The list also indicates whether the instances are running.

a. If you want to proceed with the deletion, you can choose to save the log
files of the instances by selecting the Save Instance Logs check box.

To confirm deletion, click OK.

A message is displayed confirming that the configuration and its instances
were deleted.

b. Click OK.

Note:

If you selected the Save Instance Logs check box, the server
access and error logs for the instances that were deleted are
retained in the INSTANCE_HOME/net-config_name/logs directory.

6. Click the Delete button corresponding to the configuration that you want to delete.

Chapter 5
Deleting an Oracle Traffic Director Configuration

5-9

Deleting a Configuration Using WLST

To delete a configuration, run the otd_deleteConfiguration command, as shown in
the following example. You can run the command in online and offline modes.

Online
props = {}
props['configuration'] = 'foo'
otd_deleteConfiguration(props)

Offline
readDomain('/export/2110_12c/iplanet/ias/server/work/TD_Linux2.6_DBG.OBJ/domains/
otd_domain')
props = {}
props['configuration'] = 'foo'
otd_deleteConfiguration(props)
updateDomain()
closeDomain()

Chapter 5
Deleting an Oracle Traffic Director Configuration

5-10

6
Managing Instances

An instance is an Oracle Traffic Director server running on a Node Manager, or on the
server, and listening on one or more ports for requests from clients.
This chapter contains the following sections:

• Creating Oracle Traffic Director Instances

• Viewing a List of Oracle Traffic Director Instances

• Starting, Stopping, and Restarting Oracle Traffic Director Instances

• Updating Oracle Traffic Director Instances Without Restarting

• Deleting Oracle Traffic Director Instances

• Controlling Oracle Traffic Director Instances Through Scheduled Events

Creating Oracle Traffic Director Instances
After creating a configuration, you can create Oracle Traffic Director server instances
by deploying the configuration on one or more hosts.

You can create Oracle Traffic Director instances of a configuration by using either
Fusion Middleware Control or the WLST as described in the following topics:

Note:

Ensure that you have defined a configuration before you create an instance.
See Creating an Oracle Traffic Director Configuration

Topics

• Creating Oracle Traffic Director Instances Using Fusion Middleware Control

• Creating Oracle Traffic Director Instance Using WLST

Creating Oracle Traffic Director Instances Using Fusion Middleware
Control

To create Oracle Traffic Director instances of a configuration by using the Fusion
Middleware Control, do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Displaying
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

6-1

4. Select the configuration for which you want to create an instance.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Instances.

The Instances page is displayed

7. In the Common Tasks pane, click Create.

The New Instance wizard is displayed.

8. Select the check boxes corresponding to the administration nodes on which you
want to create instances of the configuration. Then, click OK.

A message is displayed confirming the successful creation of the instance. The
Instances page is displayed, showing the instance that you just created.

Creating Oracle Traffic Director Instance Using WLST
To create one or more Oracle Traffic Director instances, run the otd_createInstance
command. You can run the command in online and offline modes.

Note:

On Microsoft Windows, only a single domain with Oracle Traffic Director
instance is allowed. However, there can be multiple domains without Oracle
Traffic Director instances.

In the examples, the otd_createInstance creates an instance of the configuration
named foo on machine machine1.

Online
props = {}
props['configuration'] = 'foo'
props['machine'] = 'machine1'
otd_createInstance(props)

Offline
readDomain('/export/2110_12c/iplanet/ias/server/work/TD_Linux2.6_DBG.OBJ/domains/
otd_domain')
props = {}
props['configuration'] = 'foo'
props['machine'] = 'machine1'
otd_createInstance(props)
updateDomain()
closeDomain()

Viewing a List of Oracle Traffic Director Instances
After creating Oracle Traffic Director server instances, you can view the current state
of each instance. To view a list of the Oracle Traffic Director instances of a
configuration, run the otd_listInstances command.

You can view a list of Oracle Traffic Director instances by using either Fusion
Middleware Control or the WLST as described in the following topics:

Chapter 6
Viewing a List of Oracle Traffic Director Instances

6-2

Topics

• Viewing a List of Oracle Traffic Director Instances Using Fusion Middleware
Control

• Viewing a List of Oracle Traffic Director Instances Using WLST

Viewing a List of Oracle Traffic Director Instances Using Fusion
Middleware Control

To view a list of the Oracle Traffic Director instances of a configuration by using the
Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Graphical
User Interface-Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to view instance.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Instances.

The Instances page is displayed, showing the instances of the configuration.

You can view the properties of an instance by clicking on its name.

Viewing a List of Oracle Traffic Director Instances Using WLST
To view a list of the Oracle Traffic Director instances of a configuration, run the
otd_listInstances command, as shown in the following example. You can run this
command in online and offline modes.

Online
props = {}
props['configuration'] = 'foo'
otd_listInstances(props)

Offline
readDomain('/export/2110_12c/iplanet/ias/server/work/TD_Linux2.6_DBG.OBJ/domains/
otd_domain')
props = {}
props['configuration'] = 'foo'
otd_listInstances(props)
closeDomain()

Starting, Stopping, and Restarting Oracle Traffic Director
Instances

After creating a configuration, you can create start or stop them. To start, stop, or
restart one or more Oracle Traffic Director instances of a configuration, run the start,
shutdown, or softRestart command.

Chapter 6
Starting, Stopping, and Restarting Oracle Traffic Director Instances

6-3

You can start, stop or restart configurations by using either Fusion Middleware Control
or WLST as described in the following topics:

Topics

• Starting, Stopping, and Restarting Oracle Traffic Director Instances Using Fusion
Middleware Control

• Starting, Stopping, and Restarting Oracle Traffic Director Instances Using WLST

Starting, Stopping, and Restarting Oracle Traffic Director Instances
Using Fusion Middleware Control

To start, stop, or restart Oracle Traffic Director instances by using the Fusion
Middleware Control, do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Displaying
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to start, stop, or restart instances.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Instances.

The Instances page is displayed

7. Select on the list of instances available.

Click the Start Instances, Stop Instances, or Restart Instances button, as required,
for the instance that you want to start, stop, or restart.

Starting, Stopping, and Restarting Oracle Traffic Director Instances
Using WLST

To start, stop, or restart one or more Oracle Traffic Director instances of a
configuration, run the start, shutdown, or softRestart command.

For example, the following three commands start, restart, and stop the instance the
instance on the machine otd_foo_machine1.

start('otd_foo_machine1')

shutdown('otd_foo_machine1')

softRestart('otd_foo_machine1')

Chapter 6
Starting, Stopping, and Restarting Oracle Traffic Director Instances

6-4

Updating Oracle Traffic Director Instances Without
Restarting

When you make changes to some configuration parameters, the running Oracle Traffic
Director instances of the configuration need not be restarted for the changes in the
configuration to take effect. You can dynamically reconfigure the Oracle Traffic
Director instances to reflect the new configuration.

Only dynamically reconfigurable changes in the configuration take effect. Changes in
the user, temp-path, log, thread-pool, pkcs11, stats, dns, dns-cache, ssl-
session-cache, and access-log-buffer settings remain the same after a
reconfiguration procedure is completed. A restart-required exception is thrown if
there are any such changes that require restart when a reconfiguration is done.

For a list of the parameters that support dynamic reconfiguration, see Dynamic
Reconfiguration in the Configuration File Reference for Oracle Traffic Director .

You can dynamically reconfigure the running instances of a configuration by using
either Fusion Middleware Control or the WLST as described in the following topics:

Topics

• Reconfiguring an Oracle Traffic Director Instance Using Fusion Middleware
Control

• Reconfiguring Oracle Traffic Director Instances Using WLST

Reconfiguring an Oracle Traffic Director Instance Using Fusion
Middleware Control

To reconfigure an Oracle Traffic Director instance by using the Fusion Middleware
Control, do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Displaying
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations. A list of the available configurations
is displayed.

4. Select the configuration for which you want to reconfigure instances.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Instances. The Instances page is displayed

7. Select the Instance from the list available.

8. Click the Reconfigure button for the instance that you want to update dynamically.

A message is displayed in the Console Messages pane confirming that the
instance was reconfigured.

Chapter 6
Updating Oracle Traffic Director Instances Without Restarting

6-5

http://docs.oracle.com/middleware/12213/otd/cfrref/intro.htm#OTCFR-GUID-10A2784C-7383-41D6-A3E6-248169B40C7D
http://docs.oracle.com/middleware/12213/otd/cfrref/intro.htm#OTCFR-GUID-10A2784C-7383-41D6-A3E6-248169B40C7D

Reconfiguring Oracle Traffic Director Instances Using WLST

To reconfigure instances of a configuration using WLST, run the softrestart
command.

For example, the softrestart command reconfigures the instance on the machine
otd_foo_machine1.

props = java.util.Properties()
props.setProperty("MODE", "RECONFIG")
softRestart('otd_foo_machine1', props=props)

Deleting Oracle Traffic Director Instances
You can delete Oracle Traffic Director instances that are no longer required. To delete
Oracle Traffic Director instances of a configuration, run the otd_deleteInstance
command

You can delete instances of a configuration by using either Fusion Middleware Control
or the WLST as described in the following topics:

Topics

• Deleting Oracle Traffic Director Instances Using Fusion Middleware Control

• Deleting Oracle Traffic Director Instances Using WLST

Deleting Oracle Traffic Director Instances Using Fusion Middleware
Control

Note:

To delete an instance that is part of a failover group, you should first remove
the instance from the failover group. See Managing Failover Groups.

To delete an Oracle Traffic Director instance by using the Fusion Middleware Control,
do the following:

1. Log in to Fusion Middleware Control for Traffic Director, as described in Displaying
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to delete instances.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Instances.

The Instances page is displayed.

Chapter 6
Deleting Oracle Traffic Director Instances

6-6

7. Select the Instance from the list available.

8. Click the Delete button for the instance that you want to delete.

A message is displayed in the Console Messages pane confirming that the
instance was deleted.

Deleting Oracle Traffic Director Instances Using WLST
To delete Oracle Traffic Director instances of a configuration, run the
otd_deleteInstance command. You can run this command in online and offline
modes.

For example, the following command deletes the instance of the configuration:

Online
props = {}
props['configuration'] = 'foo'
props['instance'] = 'otd_foo_machine1'
otd_deleteInstance(props)

Offline
readDomain('/export/2110_12c/iplanet/ias/server/work/TD_Linux2.6_DBG.OBJ/domains/
otd_domain')
props = {}
props['configuration'] = 'foo'
props['instance'] = 'otd_foo_machine1'
otd_deleteInstance(props)
updateDomain()
closeDomain()

Controlling Oracle Traffic Director Instances Through
Scheduled Events

If you have to manage a large number of configurations and their instances you can
schedule events for tasks to be performed automatically at defined intervals; or on
specific days of the week, times of the day, or dates of the month.

You can create and manage events by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Managing Events Using Fusion Middleware Control

• Managing Events Using WLST

Managing Events Using Fusion Middleware Control
To create and manage events by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

Chapter 6
Controlling Oracle Traffic Director Instances Through Scheduled Events

6-7

3. Select Administration > OTD Configurations. A list of the available configurations
is displayed.

4. Select the configuration for which you want to do schedule events.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Advanced Configurations > Scheduled Events.

The Scheduled Events page is displayed.

7. Scroll down to the Scheduled Events section of the page.

The events that are currently scheduled for the configuration are listed.

• To enable or disable an event, select the Enable/Disable check box.

• To delete an event, click the Delete icon.

• To create an event, click New Event.

The New Configuration Event dialog box is displayed.

8. Select the event that you want to schedule, and specify the interval or time at
which the event should be performed, and then click OK.

A message, confirming the change, is displayed in the Console Messages pane. In
addition, the Deployment Pending message is displayed at the top of the main
pane. You can either deploy the updated configuration immediately by clicking
Deploy Changes, or you can do so later after making further changes as
described in Activating Configuration Changes.

Managing Events Using WLST

• Creating an event

To create an event, run the otd_createEvent command, as shown in the following
examples.

props = {}
props['configuration'] = 'foo'
props['event'] = 'event-1'
props['command'] = 'bar'
props['time'] = '12:00'
otd_createEvent(props)

The first command schedules an event to perform the command 'bar' at 12:00pm.

Note:

For the scheduled events to take effect, you should redeploy the
configuration.

• Viewing a list of events

To view a list of scheduled events, run the otd_listEvents command.

For example, to display the events scheduled for instances of the configuration:

Chapter 6
Controlling Oracle Traffic Director Instances Through Scheduled Events

6-8

props = {}
props['configuration'] = 'foo'
otd_listEvents(props)

• Disabling an event

When you create an event, it is enabled automatically:

The command 'otd_setEventProperties' with 'enabled' as 'false' can be used to
disable the event

To disable an event, set the enabled property to false:

props = {}
props['configuration'] = 'foo'
props['event'] = 'bar'
props['enabled'] = 'false'
otd_setEventProperties(props)

• Enabling an event

The command 'otd_setEventProperties' with 'enabled' as 'true' must be used to
enable the event

To enable an event, set the enabled property to true:

props = {}
props['configuration'] = 'foo'
props['event'] = 'event-1'
props['enabled'] = 'true'
otd_setEventProperties(props)

• Deleting an event

To delete an event, run the otd_deleteEvent command:

props = {}
props['configuration'] = 'foo'
props['event'] = 'event-1'
otd_deleteEvent(props)

Chapter 6
Controlling Oracle Traffic Director Instances Through Scheduled Events

6-9

7
Managing Origin-Server Pools

You can define origin-server pools in a configuration, and then configure each virtual
server in an Oracle Traffic Director instance to route client requests to a specific pool.

An origin server is a back-end server to which Oracle Traffic Director forwards
requests that it receives from clients, and from which it receives responses to client
requests. The origin servers could, for example, be Oracle WebLogic Server instances
or Oracle iPlanet Web Server instances. A group of origin servers providing the same
service or serving the same content is called an origin-server pool.

This chapter describes how create and manage several such origin-server pools. It
contains the following sections:

• Creating an Origin-Server Pool

• Viewing a List of Origin-Server Pools

• Modifying an Origin-Server Pool

• Deleting an Origin-Server Pool

• Configuring an Oracle WebLogic Server Cluster as an Origin-Server Pool

• Configuring a Custom Maintenance Page

• Configuring Health-Check Settings for Origin-Server Pools

Creating an Origin-Server Pool
You can define origin-server pools in a configuration, and then configure each virtual
server in an Oracle Traffic Director instance to route client requests to a specific pool.

Before You Begin

Before you begin creating an origin-server pool, decide the following:

• A unique name for the origin-server pool. Choose the name carefully; after
creating an origin-server pool, you cannot change its name.

• host:port combinations for the servers in the origin-server pool.

Note:

If the origin servers for which you want to create a pool are Oracle
WebLogic Server managed servers in a cluster, it is sufficient to create
the pool with any one of the managed servers as the origin server. You
can then configure Oracle Traffic Director to discover the other managed
servers in the pool dynamically. See Configuring an Oracle WebLogic
Server Cluster as an Origin-Server Pool.

• The communication protocol—HTTP, HTTPS or TCP—of the servers in the pool.

7-1

• The address family that the servers in the origin-server pool use to listen for
requests.

The supported address families are:

– inet (IPv4)

– inet6 (IPv6)

– inet-sdp (Sockets Direct Protocol): Select this family if the servers in the
origin-server pool are on the InfiniBand fabric and listen on an SDP interface,
such as Oracle WebLogic Servers deployed on Oracle Exalogic machines.

Note:

When you create an origin-server pool, you are, in effect, modifying a
configuration. So for the settings of the new origin-server pool to take effect
in the Oracle Traffic Director instances, you should redeploy the
configuration as described in Activate Configuration Changes.

You can create an origin-server pool by using either Fusion Middleware Control or
WLST as described in the following topics:

Topics

• Creating an Origin-Server Pool Using Fusion Middleware Control

• Creating an Origin-Server Pool Using WLST

Creating an Origin-Server Pool Using Fusion Middleware Control
To create an origin-server pool by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to Origin-Server Pool.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed. It shows a list of the server pools (HTTP/S
and TCP server pools) defined for the configuration.

7. Select the Server Pool for which you want to configure.

8. In the Common Tasks pane, click Create button.

The Create Origin-Server Pool page is displayed.

9. Follow the on-screen prompts to complete creation of the origin-server pool by
using the details—name, type, and so on—that you decided earlier.

Chapter 7
Creating an Origin-Server Pool

7-2

After the origin-server pool is defined, Click OK on the right top of the screen. The
results screen of the New Origin-Server Pool displays a message confirming
successful creation of the origin-server pool.

10. The details of the origin-server pool that you just created are displayed on the
Origin-Server Pools page.

In addition, the Deployment Pending message is displayed at the top of the main
pane. You can either deploy the updated configuration immediately by clicking
Deploy Changes, or you can do so later after making further changes as
described in Activating Configuration Changes.

Creating an Origin-Server Pool Using WLST

To create an origin-server pool, run the otd_createOriginServerPool command.

For example, the following command creates an origin-server pool origin-server-
pool-1 containing origin server www.example.com:12345 in the configuration foo.

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['origin-server'] = 'www.example.com:12345'
otd_createOriginServerPool(props)

Specifying an HTTP Forward Proxy Server

The otd_createOriginServerPool command takes proxy-server as an optional
option which you can use to specify a HTTP forward proxy server to be associated
with an origin server pool so that all member origin servers of the pool are
communicated with via the configured HTTP forward proxy server. The type must be
http or https.

For example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['origin-server'] = 'www.example.com:12345'
props['type'] = 'http'
props['proxy-server'] = 'proxy.example.com:12345'
otd_createOriginServerPool(props)

Viewing a List of Origin-Server Pools
After creating orgin-server pool in a configuration, you can view a list of Oracle Traffic
Director instances associated to origin-server pools. To view a list of origin-server
pools, run the otd_listOriginServerPool command.

You can view the list of origin-server pools by using either Fusion Middleware Control
or WLST as described in the following topics:

Topics

• Viewing a List of Origin-Server Pools Using Fusion Middleware Control

• Viewing a List of Origin-Server Pools Using WLST

Chapter 7
Viewing a List of Origin-Server Pools

7-3

Viewing a List of Origin-Server Pools Using Fusion Middleware Control
To view a list of origin-server pools by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to view Origin-Server Pools.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed.

7. It shows a list of the origin-server pools defined for that configuration.

Viewing a List of Origin-Server Pools Using WLST

To view a list of origin-server pools, run the otd_listOriginServerPools command,
as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_listOriginServerPools(props)

You can view the general properties and health-check settings of an origin-server pool
by running the otd_getOriginServerPoolProperties and
otd_getHealthCheckProperties commands respectively.

Modifying an Origin-Server Pool
After you create an origin-server pool, you might need to change some of the settings
such as network protocol, proxy server, load balancing method and so on.

You can modify a configuration by using either Fusion Middleware Control or the
WLST as described in the following topics:

Note:

When you modify an origin-server pool, you are, in effect, modifying a
configuration. So for the updated origin-server pool settings to take effect in
the Oracle Traffic Director instances, you should redeploy the configuration
as described in Activate Configuration Changes.

Chapter 7
Modifying an Origin-Server Pool

7-4

Topics

• Changing the Properties of an Origin-Server Pool Using Fusion Middleware
Control

• Changing the Properties of an Origin-Server Pool Using WLST

Changing the Properties of an Origin-Server Pool Using Fusion
Middleware Control

To change the properties of an origin-server pool by using the Fusion Middleware
Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify Origin-Server Pools.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed.

7. It shows a list of the origin-server pools that are defined for that configuration.

8. Click the name of the origin-server pool that you want to modify. Click the Edit
button in the common task pane

The Origin Server Pool Settings page is displayed. On this page, you can do the
following:

• Change the network protocol—IPv4, IPv6, or SDP—for the servers in the pool.

• Set a proxy server via the Connect to Origin Servers via Proxy Server
section. This setting specifies a HTTP forward proxy server to be associated
with an origin server pool so that all member origin servers of the pool are
communicated with via the configured HTTP forward proxy server.

• Change the load-balancing method that Oracle Traffic Director should use to
distribute client requests to the pool.

– Least connection count (default): When processing a request, Oracle
Traffic Director assesses the number of connections that are currently
active for each origin server, and forwards the request to the origin server
with the least number of active connections.

The least connection count method works on the premise that origin
servers that are faster have fewer active connections, and so can take on
more load. To further adjust the load distribution based on the capacities
of the origin servers, you can assign relative weights to the origin servers.

Chapter 7
Modifying an Origin-Server Pool

7-5

Note:

WebSocket connections affect the least connection count load
balancing algorithm because WebSocket connections are
potentially long lasting and will be counted as active connections
until they are closed.

– Least response time: Though least connection count works well on most
workloads, there could be situations when the response time of origin
servers in a given pool for the same amount of load could differ. For
example:

- When origin servers of a given pool are deployed on machines that differ
in hardware specification.

- When some origin server nodes are used for other services.

- When network connectivity for different nodes is not uniform or some
network interfaces are more loaded than others.

Least response time is useful in such scenarios because it is a dynamic
weighted least connection algorithm and it calculates weights based on
the response time. These weights are continuously adjusted based on
how the origin servers respond. Least response time helps you avoid
manual tuning of weights in the least connection algorithm.

– Round robin: Oracle Traffic Director forwards requests sequentially to the
available origin servers—the first request to the first origin server in the
pool, the second request to the next origin server, and so on. After it
sends a request to the last origin server in the pool, it starts again with the
first origin server.

Though the round-robin method is simple, predictable, and low on
processing overhead, it ignores differences in the origin servers'
capabilities. So, over time, requests can accumulate at origin servers that
are significantly slow. To overcome this problem, you can use a weighted
round-robin method, by assigning relative weights to the origin servers.

– IP Hash: All the incoming requests from the same client IP address should
go to the same content origination server. This load balancing policy is
especially useful in the context of TCP Load Balancing, Oracle Traffic
Director suggests customers to make use of this load balancing policy.

See Modifying an Origin Server information about assigning weights to origin
servers.

• Configure health-check settings. See Configuring Health-Check Settings for
Origin-Server.

• Specify whether Oracle Traffic Director should dynamically discover Oracle
WebLogic Server managed servers in a cluster. See Configuring an Oracle
WebLogic Server Cluster as an Origin-Server Pool.

Chapter 7
Modifying an Origin-Server Pool

7-6

Note:

You can add, modify, and remove origin servers in the pool, by selecting
Origin Servers in the navigation pane. See Managing Origin Servers.

9. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Save button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Cancel button.

10. After making the required changes, click OK.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

• In addition, the Deployment Pending message is displayed at the top of the
main pane. You can either deploy the updated configuration immediately by
clicking Deploy Changes, or you can do so later after making further changes
as described in Activate Configuration Changes.

Changing the Properties of an Origin-Server Pool Using WLST
• To change the network protocol and load-balancing method for an origin-server

pool, run the otd_setOriginServerPoolProperties command.

For example, the following command changes the load-balancing method for the
origin-server pool origin-server-pool-1 in the configuration foo to the least
connection count method.

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['load-distribution'] = 'least-connection-count'
otd_setOriginServerPoolProperties(props)

• To change the health-check parameters for an origin-server pool, run the
otd_setHealthCheckProperties command.

For example, the following command changes the size of the response body for
servers in the origin-server pool origin-server-pool-1 of the configuration foo to
4096 bytes.

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['response-body-match-size'] = '4096'
otd_setHealthCheckProperties(props)

Deleting an Origin-Server Pool
You can delete orgin-server pools that are no longer required. To delete origin-server
pool instances of a configuration, run the otd_deleteOriginServerPool command.

Chapter 7
Deleting an Origin-Server Pool

7-7

Note:

• You cannot delete an origin-server pool that is associated with one or
more routes in virtual servers.

To delete an origin-server pool that is associated with routes, you must
first delete the referring routes, as described in Configuring Routes.

• When you delete an origin-server pool, you are, in effect, modifying a
configuration. So for the updated configuration to take effect in the
Oracle Traffic Director instances, you should redeploy the configuration
as described in Activating Configuration Changes.

You can delete an origin-server pool by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Deleting an Origin-Server Pool Using Fusion Middleware Control

• Deleting an Origin-Server Pool Using WLST

Deleting an Origin-Server Pool Using Fusion Middleware Control
To delete an origin-server pool by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to delete Origin-Server Pools.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed.

7. It shows a list of the origin-server pools that are defined for that configuration.

8. Select the pool which you want to delete from the list available.

9. Click the Delete button in the common task pane.

• If the origin-server pool is associated with one or more routes in virtual
servers, a message is displayed indicating that you cannot delete the pool.

• If the origin-server pool is not associated with any virtual server, a prompt to
confirm the deletion is displayed.

10. Click Yes.

The origin-server pool is deleted.

Chapter 7
Deleting an Origin-Server Pool

7-8

Deleting an Origin-Server Pool Using WLST

To delete an origin-server pool, run the otd_deleteOriginServerPool command, as
shown in the following example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
otd_deleteOriginServerPool(props)

Configuring an Oracle WebLogic Server Cluster as an
Origin-Server Pool

You can configure Oracle Traffic Director to discover the presence of other Oracle
WebLogic Server instances in the cluster dynamically, and distribute client requests to
the managed server that is configured as an origin server and to the dynamically
discovered managed servers in the same cluster.

If you want to create an origin-server pool that represents a cluster of Oracle
WebLogic Server managed servers, you need not specify each managed server in the
cluster as an origin server. It is sufficient to specify any one of the managed servers as
the sole origin server in the pool.

So when dynamic discovery is enabled, if any of the managed servers in the cluster is
stopped, added, or removed, you need not update the definition of the origin-server
pool. However, for detecting changes in the Oracle WebLogic Server cluster, Oracle
Traffic Director sends health-check requests at a specified interval, which causes
some overhead.

Note:

Oracle Traffic Director has built-in support for some common functionality
offered by the WebLogic Server plug-in. Hence Oracle Traffic Director does
not require any other plug-in to inter-operate with WebLogic Server.

• How Dynamic Discovery Works

• Enabling Dynamic Discovery

How Dynamic Discovery Works
When dynamic discovery is enabled for an origin-server pool, Oracle Traffic Director
discovers the remaining Oracle WebLogic Server managed servers in the cluster, by
doing the following:

1. When an Oracle Traffic Director instance starts, it checks whether the origin
servers specified in the pool are Oracle WebLogic Server managed servers and
whether the servers belong to a cluster, by sending an HTTP health-check request
to each configured origin server.

Chapter 7
Configuring an Oracle WebLogic Server Cluster as an Origin-Server Pool

7-9

The origin server's response indicates whether the server is an Oracle WebLogic
Server managed server. If the origin server is an Oracle WebLogic Server
managed server that belongs to a cluster, the response also includes a list of the
managed servers in the cluster.

2. Oracle Traffic Director uses the information in the response from the origin server
to update the configuration with the discovered managed servers.

The dynamically discovered origin servers inherit all of the properties—weight,
maximum connections, and so on—that are specified for the configured origin
server.

3. Subsequently, at each health-check interval (default: 30 seconds) configured
for the origin-server pool, Oracle Traffic Director attempts to detect changes in
the cluster, by sending dynamic-discovery health-check requests to the Oracle
WebLogic Server instances that are configured as origin servers in the pool.

If the response indicates a change—removal or addition of a managed server—in
the cluster since the previous health check, Oracle Traffic Director updates the
configuration with the new set of dynamically discovered origin servers.

Note:

• Dynamically discovered origin servers are not stored permanently in the
origin-server pool definition of the instance's configuration. So when you
restart an Oracle Traffic Director instance, the process of dynamic
discovery starts afresh.

• The HTTP request type that Oracle Traffic Director sends for dynamic
discovery is the health-check request type that is currently configured for
the origin-server pool—OPTIONS (default) or GET. See Configuring Health-
Check Settings for Origin-Server Pools.

Enabling Dynamic Discovery
When you create an origin-server pool, dynamic discovery of Oracle WebLogic Server
managed servers in a cluster is not enabled by default. You can enable dynamic
discovery by using either Fusion Middleware Control or the WLST.

Note:

When you modify an origin-server pool, you are, in effect, modifying a
configuration. So for the updated origin-server pool settings to take effect in
the Oracle Traffic Director instances, you must redeploy the configuration as
described in Activating Configuration Changes.

Enabling Dynamic Discovery Using Fusion Middleware Control

To enable dynamic discovery of WebLogic Server managed servers in a cluster by
using the Fusion Middleware Control, do the following:

Chapter 7
Configuring an Oracle WebLogic Server Cluster as an Origin-Server Pool

7-10

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to enable dynamic discovery.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed.

7. It shows a list of the origin-server pools that are defined for that configuration.

8. Select the pool which you want to enable dynamic discovery from the list available.

9. Go to the Advanced Settings section of the page.

10. Under the Health Check subsection, make sure that the Protocol is HTTP, select
the Dynamic Discovery check box.

11. Click OK button on the top right corner of the window.

Note:

If the current health-check protocol is TCP, an error message is
displayed indicating that the protocol must be changed to HTTP in order
to enable dynamic discovery.

A message is displayed in the Console Message pane confirming that the updated
health-check settings were saved.

Enabling Dynamic Discovery Using WLST

To enable dynamic discovery of Oracle WebLogic Server managed servers in a
cluster, run the otd_setHealthCheckProperties command.

For example, the following command enables dynamic discovery of managed servers
in the WebLogic Server cluster that the origin-server-pool-1 origin-server pool
represents.

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['dynamic-server-discovery'] = '4096'
otd_setHealthCheckProperties(props)

Note:

If TCP is the current health-check protocol, an error message is displayed
indicating that the protocol must be changed to HTTP in order to enable
dynamic discovery.

Chapter 7
Configuring an Oracle WebLogic Server Cluster as an Origin-Server Pool

7-11

Configuring a Custom Maintenance Page
You can configure custom maintenance pages in Oracle Traffic Director to serve a
custom response code, and HTML page, when back-end servers maintenance is
required.

When maintenance is enabled for an origin server pool, then:

• All the requests to Oracle Traffic Director, are aborted with a 503 response code, if
both response-code and response-file are not configured.

• All the requests to Oracle Traffic Director, are aborted with response-code value
as the response code, if only response-code is specified.

• All the requests to Oracle Traffic Director, are not aborted, but are responded to
with a response-file content and response-code value as the response code, if
both are specified.

• Health-check is disabled on its origin servers.

When maintenance is not enabled for an origin server pool but no origin servers are
configured or enabled, then:

• All the requests to Oracle Traffic Director, are aborted with a 503 response code.

• Health-check is disabled on its origin servers.

Monitoring of Statistics for Origin Server Pool in Maintenance

If the origin-server pool is in a maintenance state, there will be no statistics for the
origin server pool and the origin servers. Statistics will be available only for active
origin server pools and active origin servers.

Enabling or Disabling Maintenance for an Origin-Server Pool Using WLST

To enable maintenance for an origin-server pool, run the
otd_enableOriginServerPoolMaintenance command.

For example, the following command enables maintenance for the origin-server-
pool-1 origin-server pool, and specifies a response-code of 503. This command takes
response-code and response-file as optional properties. A response-code of 200 is
not allowed without a response-file.

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['response-code'] = '503'
otd_enableOriginServerPoolMaintenance(props)

To disable maintenance, use the otd_disableOriginServerPoolMaintenance
command:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
otd_disableOriginServerPoolMaintenance(props)

To return the enabled, response-file and response-code properties for the origin-
server pool, use the otd_getOriginServerPoolMaintenanceProperties command:

Chapter 7
Configuring a Custom Maintenance Page

7-12

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
otd_getOriginServerPoolMaintenanceProperties(props)

Configuring Health-Check Settings for Origin-Server Pools
To ensure that requests are distributed to only those origin servers that are available
and can receive requests, Oracle Traffic Director monitors the availability and health of
origin servers by sending health-check requests to all of the origin servers in a pool.

You can configure health-check parameters for an origin-server pool by using either
Fusion Middleware Control or the WLST.

Note:

When you configure health-check settings for an origin-server pool, you are,
in effect, modifying a configuration. So for the updated configuration to take
effect in the Oracle Traffic Director instances, you should redeploy the
configuration as described in Activating Configuration Changes.

When Does Oracle Traffic Director Send Health-Check Requests?

When an Oracle Traffic Director instance starts, it performs an initial health check for
all the origin servers in all of the configured origin-server pools.

If the initial health check indicates that an origin server is healthy, Oracle Traffic
Director sends further health-check requests to an origin server only in the following
situations:

• The server has not served any request successfully for the entire duration of the
previous health-check interval.

• Dynamic discovery is enabled for this origin server pool. See Configuring an
Oracle WebLogic Server Cluster as an Origin-Server Pool.

If a health check—either initial or subsequent—indicates that an origin server is not
available, Oracle Traffic Director repeats the health check at the specified health-
check interval.

When Is an Origin Server Considered Available and Healthy?

If the configured health-check connection type is TCP, an origin server is considered
available if the connection is successfully established, indicating that the server is
actively listening on its service port.

If the configured health-check connection type is HTTP, an origin server is considered
available and health when all of the following conditions are fulfilled:

• There is no error while sending the HTTP request.

• The response is received before timeout period is reached.

• The status code in the response matches any of the acceptable response codes, if
specified.

Chapter 7
Configuring Health-Check Settings for Origin-Server Pools

7-13

By default, Oracle Traffic Director accepts response codes from 1xx to 4xx as
indicators of a healthy origin server.

• The response body matches the acceptable response body, if specified.

Configuring Health-Check Settings for Origin Servers Using the Fusion
Middleware Control

To view and change health-check settings origin servers in a pool by using the Fusion
Middleware Control, do the following:

1. Log in to the Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the Configurations button that is situated at the upper left corner of the
page.

A list of the available configurations is displayed.

3. Select the configuration for which you want to view or change origin-server health-
check settings.

4. In the navigation pane, expand Origin-Server Pools, and select the origin-server
pool for which you want to view or change health-check settings.

The Origin-Server Pools page is displayed. It shows a list of the origin-server pools
that are defined for the configuration.

5. Click the name of the origin-server pool that you want to modify.

The Server Pool Settings page is displayed.

6. Go to the Advanced Settings section of the page.

7. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Save button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Reset button.

8. After making the required changes, click Save.

Configuring Health-Check Settings for Origin Servers Using WLST

• To view the current health-check settings for an origin-server pool in a
configuration, run the otd_getHealthCheckProperties command, as shown in the
following example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
otd_getHealthCheckProperties(props)

protocol=HTTP
interval=30
timeout=5
failover-threshold=3
request-method=OPTIONS
request-uri=/

Chapter 7
Configuring Health-Check Settings for Origin-Server Pools

7-14

response-body-match-size=2048
dynamic-server-discovery=false

• To change the health-check settings for an origin-server pool in a configuration,
run the otd_setHealthCheckProperties command.

For example, the following command changes the health-check interval to 60
seconds and the health-check timeout period to 10 seconds for the origin-server
pool origin-server-pool-1 in the configuration foo.

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['interval'] = '60'
props['timeout'] = '10'
otd_setHealthCheckProperties(props)

Using an External Health-Check Executable to Check the Health of a
Server

Oracle Traffic Director supports a generic health check hook-up mechanism, so that
you can write your own health check programs/scripts to monitor the health of specific
origin servers. An external executable is especially useful for a protocol-level health
check monitor for the origin servers.

If you configure Oracle Traffic Director to use an external executable to check the
health of a server, Oracle Traffic Director periodically invokes the executable and
passes certain parameters to it as arguments and environment variables. If the
executable successfully returns a status code 0 before a timeout, Oracle Traffic
Director sets the server's status to online. If the executable returns a value other than
zero or a timeout occurs before the execution ends, Oracle Traffic Director
immediately sets the server status to offline without retrying, and terminates the
execution in the timeout case. There are different reasons why the executable could
return a non-zero status code, including a core dump, signal termination, or the logic of
external executable itself. Oracle Traffic Director marks the server offline whenever the
return status is non-zero.

Also, Oracle Traffic Director captures the standard output and standard error from the
executable and logs the messages into the event log (server log).

The external executable handles the actual health check jobs, including establishing
connection to the origin server, sending/receiving request/response, dealing with SSL
(if applicable), retry logic (if required), and so on. The executable is expected to exit
with a status 0 after it finishes the health check operation and wants to set the server
status to online. If the executable wants to have some messages logged in the event
log, it should print those messages to standard output.

Configuring Health-Check Settings to Use an External Executable
To configure the health-check settings to use an external executable for an origin-
server pool in a configuration, run the otd_setHealthCheckProperties command.

For example, the following command sets the health-check method to command, and
specifies a path of /path/myhcscript for the external health-check executable. The
interval, and timeout properties are also specified.

Chapter 7
Configuring Health-Check Settings for Origin-Server Pools

7-15

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['protocol'] = 'command'
props['interval'] = '60'
props['timeout'] = '10'
props['command'] = '/path/myhcscript'
otd_setHealthCheckProperties(props)

Note:

In case of an HTTP type of origin server pool, the COMMAND health check
protocol is not considered if:

• the origin server type is UNDETECTED or,

• the origin server type is WLS and dynamic discovery is set.

For the updated configuration to take effect, you should deploy it to the Oracle Traffic
Director instances by using the activate command.

Parameters to the External Health Check Executable
Oracle Traffic Director passes parameters to the external health check executable in
two ways. In particular, Oracle Traffic Director passes the origin server host, origin
server port, and timeout value via arguments, and passes all the existing environment
variables as well as ORACLE_HOME, INSTANCE_HOME, INSTANCE_NAME, DOMAIN_HOME, and
OTD_LOG_LEVEL as environment variables. The argument parameters are passed in the
format of command line options, as shown in the following example command:

/path/myhcscript -h server1.myserver.com -p 389 -t 10

Where, -h, -p, and -t stand for host, port, and timeout respectively.

Table 7-1 Argument Parameters

Option Meaning

-h Origin server host.

-p Origin server port.

-t Health-check timeout.

You can pass other parameters to the external executable by specifying additional
option arguments in the parameter command:

/path/myhcscript --secure -d /dbpath

Correspondingly, Oracle Traffic Director passes those additional arguments to the
external executable:

/path/myhcscript --secure -d /dbpath -h server1.myserver.com -p 389 -t 10

Chapter 7
Configuring Health-Check Settings for Origin-Server Pools

7-16

Oracle Traffic Director does not automatically pass the origin server port type (for
example, LDAP over SSL) to the executable. If the type information is needed in the
executable, you can specify the type information in the command string as an
additional argument (as shown in the example above) or have the type hard-coded or
obtained from other resource (for example, its own configuration file or environment
variable) in their health check program/script.

Furthermore, it is recommended that the external executable takes the timeout value
into account and tries to complete execution and return status before timeout. If
timeout occurs but execution is not complete, Oracle Traffic Director terminates the
process and set the server status to offline.

Logging
Oracle Traffic Director passes the configured logging level to the external program via
the environment variable OTD_LOG_LEVEL, and the value of the environment variable is
an integer. In the external executable, you can customize the amount of logging
messages based on the logging level. The following table defines the mapping
between the Oracle Traffic Director logging levels and the argument values.

Table 7-2 Mapping Oracle Traffic Director Logging Levels and Argument
Values

Value Oracle Traffic Director Logging Level

0 NOTIFICATION:1 or higher

1 TRACE:1

2 TRACE:16

3 TRACE:32

Oracle Traffic Director logs contents in both standard output and the standard error of
the external executable in a single log entry in the server log. If the exit status of the
command health check script is 0, the messages are logged at TRACE:1 level.
Otherwise, standard output is logged at NOTIFICATION:1 level and the standard error
is logged at WARNING:1 level.

Chapter 7
Configuring Health-Check Settings for Origin-Server Pools

7-17

8
Managing Origin Servers

An origin server is a back-end server to which Oracle Traffic Director forwards
requests that it receives from clients, and from which it receives responses to client
requests. The origin servers could, for example, be Oracle WebLogic Server instances
or Oracle iPlanet Web Server instances.
This chapter describes how to create and manage origin servers. It contains the
following sections:

• Adding an Origin Server to a Pool

• Viewing a List of Origin Servers

• Modifying an Origin Server

• Removing an Origin Server from a Pool

Adding an Origin Server to a Pool
You can add an origin server to an origin-server pool by specifying the host name, IP
address and the proportion of the total request load to be distributed to the origin
server.

When you add an origin server to a pool, you are, in effect, modifying a configuration.
So for the updated configuration to take effect in the Oracle Traffic Director instances,
you should redeploy the configuration as described in Activating Configuration
Changes.

Before You Begin

Before you begin adding an origin server to a pool, decide the following:

• The origin-server pool to which you want to add the origin server.

• The host name or IP address of the origin server. It is recommended that the IP
address that you provide is the InfiniBand interface IP address (IPoIB) or Socket
Director Protocol (SDP) address.

Note:

SDP is a native Infiniband protocol. With SDP, performance is very
specific to work load. Hence, it is important to evaluate and compare the
performance with SDP and IPoIB, and then select the one that meets
your requirement.

• The port number at which the origin server listens for requests.

• Whether the server is a backup origin server.

Oracle Traffic Director forwards requests to a backup origin server only when the
health check indicates that none of the primary origin servers is available.

8-1

• The proportion of the total request load that Oracle Traffic Director should
distribute to the origin server. You define this proportion as a weight number that
is relative to the weights assigned to the other origin servers in the pool.

You can use weights to get Oracle Traffic Director to distribute the request load
based on the relative capacities of the origin servers in a pool.

Consider a pool consisting of three origin servers—os1, os2, and os3, with the
weights 1, 2, and 2 respectively. The total of the weights assigned to all the
servers in the pool is 1+2+2=5. Oracle Traffic Director distributes a fifth (1/5) of the
total load to os1, and two-fifths (2/5) of the load to each of os2 and os3.

You can add an origin server to an origin-server by using either Fusion Middleware
Control or WLST as described in the following topics:

Topics

• Adding an Origin Server to a Pool Using Fusion Middleware Control

• Adding an Origin Server to a Pool Using WLST

Adding an Origin Server to a Pool Using Fusion Middleware Control
To add an origin server to a pool by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to add origin server.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed. It shows a list of the server pools (HTTP/S
and TCP server pools) defined for the configuration.

7. Select the Server Pool for which you want to configure origin server.

8. In the Common Tasks pane, click Configure Origin Server.

9. Click Create button in the common task pan

The new Create Origin Server page appears.

10. Follow the on-screen prompts to complete creation of the origin-server pool by
using the details—origin-server pool, host, port, and so on—that you decided
earlier. Click OK button on right top corner of the page.

After the origin server is created, the Results screen of the New Origin Server
wizard displays a message confirming successful creation of the origin server.

11. The details of the origin server that you just defined are displayed on the Origin
Servers page.

Chapter 8
Adding an Origin Server to a Pool

8-2

Adding an Origin Server to a Pool Using WLST

To add an origin server to a pool, run the otd_createOriginServer command.

For example, the following command adds host www.example.com and port 12345 as
the origin server in the pool origin-server-pool-1 of the configuration foo.

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['host'] = 'www.example.com'
props['port'] = '12345'
otd_createOriginServer(props)

Viewing a List of Origin Servers
After adding an origin server to an origin-server pool, you can view the current list of
each origin server. To view a list of origin servers, run the otd_listOriginServers
command.

You can view a list of origin servers by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Viewing a List of Origin Servers Using Fusion Middleware Control

• Viewing a List of Origin Servers Using WLST

Viewing a List of Origin Servers Using Fusion Middleware Control
To view a list of origin servers by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to view origin server.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed. It shows a list of the server pools (HTTP/S
and TCP server pools) defined for the configuration.

7. Select the Server Pool for which you want to view origin server.

8. In the Common Tasks pane, click Configure Origin Server.

9. Select the Server Pool for which you want to view origin server.

Chapter 8
Viewing a List of Origin Servers

8-3

Viewing a List of Origin Servers Using WLST

To view a list of origin servers defined in a pool, run the otd_listOriginServers
command as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
otd_listOriginServers(props)

You can view the properties of an origin server in detail by running the
otd_getOriginServerProperties command.

Modifying an Origin Server
After you add an origin server to a pool, you might need to change some of the
settings such as host, port, or enable/disable the origin server. To modify the
properties of an origin server, run the otd_setOriginServerProperties command.

This section describes how you can do the following:

• Change the properties–host, port, weight, and so on–that you defined while
creating the origin server.

• Enable or disable the origin server.

• Specify the maximum number of connections that the origin server can handle
concurrently.

• Specify the duration (ramp-up time) over which Oracle Traffic Director should
increase the request-sending rate to the origin server. You can use this parameter
to ensure that the request load, on origin servers that have just come up after
being offline, is increased gradually up to the capacity of the server.

Note:

When you change the properties of an origin server in a pool, you are
modifying a configuration. To see the updated configuration in the Oracle
Traffic Director instances, you should redeploy the configuration as
described in Activating Configuration Changes.

You can modify the properties of an origin server by using either Fusion Middleware
Control or the WLST as described in the following topics:

Topics

• Modifying an Origin Server Using Fusion Middleware Control

• Changing the Properties of an Origin Server Using WLST

Modifying an Origin Server Using Fusion Middleware Control
To change the properties of an origin server by using the Fusion Middleware Control,
do the following:

Chapter 8
Modifying an Origin Server

8-4

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify origin server.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed. It shows a list of the server pools (HTTP/S
and TCP server pools) defined for the configuration.

7. Select the Server Pool for which you want to modify origin server.

8. In the Common Tasks pane, click Configure Origin Server.

9. Select the Server Pool for which you want to modify origin server.

10. Click the name of the origin server that you want to modify.

The Editing Origin Server dialog box is displayed. In this dialog box, you can do
the following:

• General Settings:

– Enable and disable the origin server

– Change the host and port

– Mark the origin server as a backup server

• Advanced Settings:

– Change the relative weight

– Set the maximum number of connections that the origin server can handle
concurrently

– Set the time that Oracle Traffic Director should take to ramp up the
request-forwarding rate to the full capacity of the origin server

11. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the OK button near the upper right corner of the page is enabled.

12. After making the required changes, click OK.

A message, confirming that the updated configuration was saved, is displayed in
the Console Messages pane.

Changing the Properties of an Origin Server Using WLST

To change the properties of an origin server, run the otd_setOriginServerProperties
command.

For example, the following command changes the ramp up time to 1200 for the origin
server www.example.com in the pool origin-server-pool-1 of the configuration foo.

Chapter 8
Modifying an Origin Server

8-5

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['host'] = 'www.example.com'
props['port'] = '12345'
props['ramp-up-time'] = '1200'
otd_setOriginServerProperties(props)

Managing Ephemeral Ports
In a topology that includes a client, OTD and Oracle WebLogic Server (WLS), OTD
receives external requests at the configured HTTP listener port. OTD then opens up
another connection while communicating and proxying the request to the WLS/origin
server.

As part of this connection, OTD leverages ephemeral ports so that WLS/origin server
can send data back to OTD. An ephemeral port is a short-lived transport protocol port
for Internet Protocol (IP) communications allocated automatically from a predefined
range by the IP software. In Linux, you can limit or restrict these ephemeral ports.

Note:

OTD relies on having sufficient ephemeral ports available so that it can have
sufficient pool of connections established with WLS/origin server. Not having
enough ephemeral ports will cause delays processing the requests.

Removing an Origin Server from a Pool
You can remove an origin server from a pool that is no longer required. To delete
origin server, run the otd_deleteOriginServer command.

Note:

When dynamic discovery is enabled (see Configuring an Oracle WebLogic
Server Cluster as an Origin-Server Pool), if you delete an origin server that is
an Oracle WebLogic Server instance in a cluster, and then re-configure the
Oracle Traffic Director instance. The instance might not start if no valid origin
servers remain in the pool.

You can remove an origin server by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Removing an Origin Server from a Pool Using Fusion Middleware Control

• Removing an Origin Server from a Pool Using WLST

Chapter 8
Managing Ephemeral Ports

8-6

Removing an Origin Server from a Pool Using Fusion Middleware
Control

To remove an origin server from a pool by using the Fusion Middleware Control, do
the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to delete origin server.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Server Pools.

The Server Pools page is displayed. It shows a list of the server pools (HTTP/S
and TCP server pools) defined for the configuration.

7. Select the Server Pool for which you want to delete origin server.

8. In the Common Tasks pane, click Configure Origin Server.

9. Click the name of the origin server that you want to delete.

10. Click the Delete icon for the origin server that you want to delete After that a
window prompts for confirmation, click OK.

A message, confirming that the origin server is deleted.

Removing an Origin Server from a Pool Using WLST

To remove the origin server with the specified host and port from a pool, run the
otd_deleteOriginServer command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['host'] = 'www.example.com'
props['port'] = '12345'
otd_deleteOriginServer(props)

Chapter 8
Removing an Origin Server from a Pool

8-7

9
Managing Virtual Servers

You can use multiple virtual servers within a single Oracle Traffic Director instance to
provide several entry points—domain names and IP addresses—for client requests,
and to offer differentiated services for caching, quality of service, and so on. You can
bind virtual servers to one or more listeners—HTTP or HTTPS—and configure them to
forward requests to different origin-server pools.
You can configure caching, compression, routing, quality of service, log-file and web
application firewall settings individually for each virtual server.

This chapter describes how to create, view, modify, and delete virtual servers, and
configure caching. It contains the following sections:

• Creating Virtual Servers

• Viewing a List of Virtual Servers

• Modifying Virtual Server Settings

• Configuring Routes for a Virtual Server

• Copying a Virtual Server

• Deleting a Virtual Server

• Content Serving

Creating Virtual Servers
When you create a configuration, a virtual server is created automatically with the
same name as that of the configuration and is associated with the HTTP listener that
was specified while creating the configuration. A default routing rule is also created for
the virtual server, to distribute all requests received at the associated HTTP listener to
the origin servers that were specified while creating the configuration.

You can create additional virtual servers in a configuration by using either Fusion
Middleware Control or WLST as described in the following topics:

• Creating a Virtual Server Using Fusion Middleware Control

• Creating a Virtual Server Using WLST

Note:

When you create a virtual server, you are, in effect, modifying a
configuration. So for the new virtual-server to take effect in the Oracle Traffic
Director instances, you should redeploy the configuration as described in
Activate Configuration Changes.

9-1

Before You Begin

Before you begin creating a virtual server, decide the following:

• A unique name for the virtual server. Choose the name carefully; after creating a
virtual server, you cannot change its name.

• One or more unique listen ports. For information about creating listeners, see
Managing Listeners.

• The names of the hosts, or the host patterns, for which the virtual server will
handle requests.

When a request is received, Oracle Traffic Director determines the virtual server
that should process it, by comparing the Host header in the request with the host
patterns defined for each virtual server in the configuration.

– The request is routed to the first virtual server that has a host pattern matching
the Host header in the request.

– If the Host header in the request does not match the host patterns defined for
any of the virtual servers, or if the request does not contain the Host header,
the request is routed to the default virtual server that is associated with the
HTTP listener through which the request was received.

Note:

When Strict SNI Host Matching is enabled for an HTTP listener, and if for
that listener at least one of the virtual servers has certificates, then
Oracle Traffic Director returns a 403-Forbidden error to the client, if any
of the following conditions is true:

– The client did not send the SNI host extension during the SSL/TLS
handshake.

– The request does not have the Host: header.

– The host name sent by the client in the SNI host extension during
the SSL/TLS handshake does not match the Host: header in the
request.

• The name of the origin-server pool to which the virtual server should forward
requests. For information about creating origin-server pools, see Managing Origin-
Server Pools.

Creating a Virtual Server Using Fusion Middleware Control
To create a virtual server by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to create a virtual server.

Chapter 9
Creating Virtual Servers

9-2

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Server.

7. In the Common Tasks pane, click Create.

The New Virtual Server wizard appears.

8. Follow the on-screen prompts to complete creation of the virtual server by using
the details-listener, origin-server pool, and so on-that you decided earlier.

After the virtual server is created, the Results screen of the New Virtual Server
wizard displays a message confirming successful creation of the virtual server.

9. Click Create Virtual Server on the Results screen.

The details of the virtual server that you just created are displayed on the Virtual
Servers page.

Creating a Virtual Server Using WLST
To create a virtual server, run the otd_createVirtualServer command.

For example, the following command creates a virtual server named bar for the
configuration foo, and configures the virtual server to forward client requests to the
origin-server pool origin-server-pool-1.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['origin-server-pool'] = 'origin-server-pool-1'
otd_createVirtualServer(props)

Viewing a List of Virtual Servers
After a virtual server is created, you can view the current list of virtual servers. To view
a list of virtual servers, run the otd_listVirtualServers command.

You can view a list of virtual servers by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Viewing a List of Virtual Servers Using Fusion Middleware Control

• Viewing a List of Virtual Servers Using WLST

Viewing a List of Virtual Servers Using Fusion Middleware Control
To view a list of virtual servers by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

Chapter 9
Viewing a List of Virtual Servers

9-3

4. Select the configuration for which you want to view virtual server.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > virtual server.

You can view the properties of a virtual server by clicking on its name.

You can view the properties of a virtual server by clicking on its name.

Viewing a List of Virtual Servers Using WLST
To view a list of virtual servers, run the otd_listVirtualServers command, as shown
in the following example:

props = {}
props['configuration'] = 'foo'
otd_listVirtualServers(props)

You can view the properties of a virtual server in detail by running the
otd_getVirtualServerProperties command.

You can set the properties of a virtual serer by running the
otd_setVirtualServerProperties command.

Modifying Virtual Server Settings
After you add a virtual server, you might want to change some of the settings such as
host patterns, HTTP listeners, language options, and so on.

You can modify virtual servers by using either Fusion Middleware Control or the WLST
as described in the following topics:

Note:

When you modify a virtual server, you are, in effect, modifying a
configuration. So for the new virtual-server settings to take effect in the
Oracle Traffic Director instances, you should redeploy the configuration as
described in Activating Configuration Changes.

Topics

• Modifying a Virtual Server Using Fusion Middleware Control

• Modifying a Virtual Server Using WLST

Modifying a Virtual Server Using Fusion Middleware Control

To modify a virtual server by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

Chapter 9
Modifying Virtual Server Settings

9-4

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify virtual server.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Server.

The Virtual Servers page is displayed. It shows a list of the virtual servers defined
for the configuration.

7. Select the virtual server that you want to modify and click Edit button in common
tasks pan.

The Virtual Server Settings page is displayed. On this page, you can do the
following:

• Enable and disable the virtual server.

• Add, remove, and change host patterns served by the virtual server.

• Add and remove HTTP listeners. For information about creating HTTP
listeners, see Creating a Listener.

• Enable SSL/TLS, by associating an RSA or an ECC certificate (or both) with
the virtual server. See RSA and ECC Certificates.

• Configure the virtual server to serve instance-level statistics in the form of XML
and plain-text reports that users can access through a browser. Note that the
statistics displayed in the XML and plain-text reports are for the Oracle Traffic
Director instance as a whole and not specific to each virtual server. See
Configuring URL Access to Statistics.

• The default language for messages is English. If required, this can be set to
other languages that Oracle Traffic Director supports.

• Specify error pages that the virtual server should return to clients for different
error codes. This is necessary only if you do not wish to use the default error
pages and would like to customize them.

To specify error codes and error pages of your choice, first create html pages
that you would like displayed for specific error codes and save them to any
directory that can be accessed by the administration server. Next, on the
Virtual Server Settings page, in the Error Pages section, click New Error
Page.

In the New Error Page dialog box that appears, select an error code and enter
the full path to the error page for that particular error code. In addition to the
error codes that are provided, you can create your own custom error code by
clicking Custom Error Code and entering a value for the same. When done,
click Create Error Page.

• Enable and quality of service limits—the maximum speed at which the virtual
server should transfer data to clients and the maximum number of concurrent
connections that the virtual server can support.

In the navigation pane, under the Virtual Servers node, you can select the
following additional categories of settings for the virtual server. The parameters
relevant to the selected category are displayed in the main pane.

• Settings: Create, change, and delete rules for routing requests to origin
servers. See Configuring Routes for a Virtual Server.

• Routes: Create, change, and delete rules for routing requests to origin
servers.

Chapter 9
Modifying Virtual Server Settings

9-5

• Caching: Create, change, and delete rules for caching responses received
from origin servers. See Configuring Caching Parameters.

• Compression: Create, change, and delete rules for compressing responses
from origin servers before forwarding them to the clients. See Enabling and
Configuring Content Compression.

• Request Limits: Create, change, and delete rules for limiting the number and
rate of requests received by the virtual server.

• Bandwidth Limits: Enable, change, and delete rules for the number of
requests received by the virtual server.

• Content Serving: Create, change, and delete rules for static content serving
to origin servers. See Content Serving Using Fusion Middleware Control.

• Web Application Firewall: Enable or disable web application firewall rule set,
specify rule set patterns and install rule set files.

• Logging: Define a server log file and location that is specific to the virtual
server. See Configuring Log Preferences.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

9. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Modifying a Virtual Server Using WLST

WLST provides several commands that you can use to change specific parameters of
a virtual server.

Table 9-1 WLST Commands for Modifying a Virtual Server

Task/s WLST Command/s

Enable or disable a virtual server; change the host,
the HTTP listener, name and location of the log file;
enable SSL/TLS by associating an RSA, or an ECC
certificate, or both (see also: RSA and ECC
Certificates and Configuring Log Preferences)

otd_setVirtualServerProperties

Create and manage routes (see Configuring Routes) otd_createRoute

otd_listRoutes

otd_deleteRoute

otd_setRouteProperties

otd_getRouteProperties

Chapter 9
Modifying Virtual Server Settings

9-6

Table 9-1 (Cont.) WLST Commands for Modifying a Virtual Server

Task/s WLST Command/s

Create and manage caching rules (see Caching in
Oracle Traffic Director

otd_createCacheRule

otd_listCacheRules

otd_deleteCacheRule

otd_getCacheRuleProperties

otd_setCacheRuleProperties

Create and manage compression rules (see
Enabling and Configuring Content Compression)

otd_createCompressionRule

otd_setCompressionRulePropertie
s

otd_deleteCompressionRule

otd_listCompressionRules

otd_getCompressionRulePropertie
s

Change request limiting settings otd_createRequestLimit

otd_deleteRequestLimit

otd_getRequestLimitProperties

otd_listRequestLimits

otd_setRequestLimitProperties

Create and manage content rules (see Content
Serving Using Fusion Middleware Control)

otd_createContentRule

otd_deleteContentRule

otd_listContentRules

otd_setContentRuleProperties

otd_getContentRuleProperties

Create and manage error pages otd_createErrorPage

otd_deleteErrorPage

otd_listErrorPages

For example, the following command changes the name of the HTTP listener
associated with the virtual server bar to http-listener-1.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['http-listener-name'] = 'http-listener-1'
otd_setVirtualServerProperties(props)

Configuring Routes for a Virtual Server
When you create a configuration, a virtual server is automatically created with the
listener that you specified while creating the configuration. For the automatically
created virtual server, as well as for any virtual server that you add subsequently in the
configuration, a default route is created. The default route rule specifies that all
requests to the virtual server should be routed to the origin-server pool that you

Chapter 9
Configuring Routes for a Virtual Server

9-7

specified while creating the virtual server. The default route of a virtual server cannot
be deleted, but you can change its properties.

You can create additional routes for the virtual server, to route requests that satisfy
specified conditions to specific origin-server pools. For example, in a banking software
solution, if customer transactions for loans and deposits are processed by separate
applications, you can host each of those applications in a separate origin-server pool
behind an Oracle Traffic Director instance. To route customer requests to the
appropriate origin-server pool depending on whether the request pertains to the loans
or deposits applications, you can set up two routes as follows:

• Route 1: If the request URI starts with /loan, send the request to the origin-server
pool that hosts the loans application.

• Route 2: If the request URI starts with /deposit, send the request to the origin-
server pool that hosts the deposits application.

When a virtual server that is configured with multiple routes receives a request, it
checks the request URI against each of the available routes. The routes are checked
in the order in which they were created.

• If the request satisfies the condition in a route, Oracle Traffic Director sends the
request to the origin-server pool specified for that route.

• If the request does not match the condition in any of the defined routes, Oracle
Traffic Director sends the request to the origin-server pool specified in the default
route.

WebSocket upgrade is enabled by default. In Fusion Middleware Control, use the
WebSocket Upgrade check box to enable or disable WebSocket protocol for a route.
Similarly, WebSocket protocol can also be enabled or disabled using the websocket-
upgrade-enabled property, which can be set using the otd_setRouteProperties
WLST command.

You can configure routes in a virtual server by using either Fusion Middleware Control
or WLST as described in the following topics:

• Configuring Routes Using Fusion Middleware Control

• Configuring Routes Using WLST

Configuring Routes Using Fusion Middleware Control

To configure routes by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure routes.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Servers.

The Virtual Servers page is displayed.

Chapter 9
Configuring Routes for a Virtual Server

9-8

7. In the navigation pane, expand Virtual Servers, expand the name of the virtual
server for which you want to configure routes, and select Routes.

The Routes page is displayed. It lists the routes that are currently defined for the
virtual server.

8. Creating a Route

a. Click Create.

The New Route dialog box is displayed.

In the Name field, enter a name for the new route.

In the Origin Server Pool field, select the origin-server pool to which requests
that satisfy the specified condition should be routed.

b. In the Condition Information pane, select a Variable/Function and an Operator
from the respective drop-down lists, and provide a value in the Value field.

Select the and/or operator from the drop-down list when configuring multiple
expressions. Similarly, use the Not operator when you want the route to be
applied only when the given expression is not true.

Click Ok.

To enter a condition manually, click Cancel and then click Edit Expressions,
the new window opens, Click Edit Manually. In the Condition field, specify
the condition under which the routing rule should be applied. For information
about building condition expressions, click the help button near the Condition
field or see Using Variables, Expressions, Wildcards, and String Interpolation
in Configuration File Reference for Oracle Traffic Director .

c. Click OK.

The route that you just created is displayed on the Routes page.

Editing a Route

To change the settings of a route, do the following:

a. Click the Name and select Edit button for the route.

The Route Settings page is displayed.

b. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you
changed, the OK button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Cancel button.

c. After making the required changes, click OK.

The updated configuration is saved.

Deleting a Route Rule

To delete a route rule, click the Delete button. At the confirmation prompt, click
OK.

Configuring Routes Using WLST

To create a route, run the otd_createRoute command.

Chapter 9
Configuring Routes for a Virtual Server

9-9

Examples:

• – The following command creates a route named loan-route in the virtual
server bar of the configuration foo, to send requests for which the URI
matches the pattern /loan to the origin-server pool loan-app.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'loan-route'
props['origin-server-pool'] = 'loan-app'
props['condition'] = "headers{'content-length'} < 400"
otd_createRoute(props)

– The following command creates a route named images-route in the virtual
server bar of the configuration foo, to send requests for which the URI path
matches the pattern /images to the origin-server pool images-repo.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'images-route'
props['origin-server-pool'] = 'images-repo'
props['condition'] = '$path='/images/*''
otd_createRoute(props)

– The following command creates a route named subnet-route in the virtual
server bar of the configuration foo, to send requests from any client in the
subnet 130.35.46.* to the origin-server pool dedicated-osp.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'subnet-route'
props['origin-server-pool'] = 'dedicated-osp'
props['condition'] = '$ip='130.35.46.*''
otd_createRoute(props)

– The following command creates a route named body-route in the virtual
server bar of the configuration foo, to route requests to the origin-server pool
dedicated-osp if the request body contains the word alpha.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'body-route'
props['origin-server-pool'] = 'dedicated-osp'
props['condition'] = '$body ='alpha''
otd_createRoute(props)

Note that the value of the condition property should be a regular expression. For
information about building condition expressions, see Using Variables,
Expressions, Wildcards, and String Interpolation in Configuration File Reference
for Oracle Traffic Director .

• To view a list of the routes defined for a virtual server, run the otd_listRoutes
command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_listRoutes(props)

Chapter 9
Configuring Routes for a Virtual Server

9-10

• To view the properties of a route, run the otd_getRouteProperties command, as
shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'loan-route'
otd_getRouteProperties(props)

keep-alive-timeout=15
sticky-cookie=JSESSIONID
condition="$uri = '/loan'"
validate-server-cert=true
always-use-keep-alive=false
origin-server-pool=origin-server-pool-1
sticky-param=jsessionid
route-header=Proxy-jroute
rewrite-headers=location,content-location
use-keep-alive=true
route=loan-route
log-headers=false
route-cookie=JROUTE
timeout=300

• To change the properties of a route, run the otd_setRouteProperties command.

Examples:

– The following command changes the websocket idle timeout setting for the
route named route-1 in the virtual server bar of the configuration foo to 1200
seconds.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'route-1'
props['websocket-idle-timeout'] = '1200'
otd_setRouteProperties(props)

– The following command enables logging of the headers that Oracle Traffic
Director sends to, and receives from, the origin servers associated with the
route named default-route in the virtual server bar of the configuration foo.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'default-route'
props['log-headers'] = 'true'
otd_setRouteProperties(props)

• To disable WebSocket support, run the otd_setRouteProperties command with
the websocket-upgrade-enabled property, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'default-route'
props['websocket-upgrade-enabled'] = 'false'
otd_setRouteProperties(props)

• To delete a route, run the otd_deleteRoute command, as shown in the following
example:

Chapter 9
Configuring Routes for a Virtual Server

9-11

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'route-1'
otd_deleteRoute(props)

Copying a Virtual Server
When you want to create a virtual server that is similar to an existing virtual server, you
can copy the existing configuration and make the required changes later.

Note:

When you copy a virtual server, you are, in effect, modifying a configuration.
So for the new virtual server to take effect in the Oracle Traffic Director
instances, you should redeploy the configuration as described in Activating
Configuration Changes.

You can copy a virtual server by using either Fusion Middleware Control or the WLST
as described in the following topics:

Topics

• Copying a Virtual Server Using Fusion Middleware Control

• Copying a Virtual Server Using WLST

Copying a Virtual Server Using Fusion Middleware Control
To copy a virtual server by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to copy virtual server.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > virtual server.

The Virtual Servers page is displayed. It shows a list of the virtual servers defined
for the configuration.

7. Click the Duplicate icon for the virtual server that you want to copy.

The Duplicate Virtual Server dialog box is displayed.

8. Enter a name for the new virtual server, and click OK.

A message is displayed confirming that the new virtual server was created.

Chapter 9
Copying a Virtual Server

9-12

Copying a Virtual Server Using WLST

To copy a virtual server, run the otd_copyVirtualServer command.

For example, the following command creates a copy (baz) of the virtual server bar.

props = {}
props['configuration'] = 'foo'
props['source-virtual-server'] = 'bar'
props['dest-virtual-server'] = 'baz'
otd_copyVirtualServer(props)

Deleting a Virtual Server
You can delete virtual server instances that are no longer required. To delete virtual
server instances , run the otd_deleteVirtualServer command.

You can delete instances of virtual server by using either Fusion Middleware Control
or the WLST as described in the following topics:

Topics

• Deleting a Virtual Server Using Fusion Middleware Control

• Deleting a Virtual Server Using WLST

Deleting a Virtual Server Using Fusion Middleware Control
To delete a virtual server by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to delete virtual server.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > virtual server.

The Virtual Servers page is displayed. It shows a list of the virtual servers defined
for the configuration.

7. Click the Delete icon for the virtual server that you want to delete.

A prompt to confirm the deletion is displayed.

8. Click OK.

A message is displayed in the Console Message pane confirming that the virtual
server was deleted.

Chapter 9
Deleting a Virtual Server

9-13

Deleting a Virtual Server Using WLST

To delete a virtual server, run the otd_deleteVirtualServer command, as shown in
the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_deleteVirtualServer(props)

Caching in Oracle Traffic Director
Caching frequently requested data reduces the time that clients have to wait for
responses. In addition, when frequently accessed objects (response body and
headers) are stored in memory, the load on the origin servers is significantly reduced.

To enable caching, you must configure caching rules.

• Both static and dynamically generated content from origin servers are cached.

• Only Successful responses (response code: 200) are cached.

• Responses to only HTTP GET and HEAD requests are cached.

• Oracle Traffic Director caches the response body and all of the response headers
except Dest-IP, Proxy-Agent, Proxy-Connection, Server, Set-Cookie, State-
Info, and Status.

• Oracle Traffic Director honors Cache-Control directives from origin servers,
including directives to revalidate content and to not cache certain headers.

• You can configure one or more caching rules specific to each virtual server,
subject to the overall limits—maximum heap space, maximum entries, and
maximum object size—specified for the configuration.

You can configure the caching rules to be applicable either to all requests or to
only those requests that match a specified condition.

• Cached data is held in the process memory (heap), separately for each virtual
server. When the instance is stopped or restarted, the cache becomes empty.

• WebSocket upgrade requests are not cached.

When a client first requests an object, Oracle Traffic Director sends the request to an
origin server. This request is a cache miss. If the requested object matches a caching
rule, Oracle Traffic Director caches the object. For subsequent requests for the same
object, Oracle Traffic Director serves the object from its cache to the client. Such
requests are cache hits.

The caching behavior in Oracle Traffic Director is consistent with the specification in
section 13 of RFC 2616. See http://www.w3.org/Protocols/rfc2616/rfc2616-
sec13.html.

Reviewing Cache Settings and Metrics for an Instance
Viewing Caching Settings

Chapter 9
Caching in Oracle Traffic Director

9-14

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

• To view the current caching settings for a configuration, run the
otd_getCacheProperties command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_getCacheProperties(props)

enabled=true
max-entries=1024
replacement=lru
max-heap-object-size=524288
max-heap-size=10485760

• To view a list of the caching rules defined for a virtual server, run the
otd_listCacheRules command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_listCacheRules(props)

cache-rule-1
cache-rule-2

• To view the current settings of a virtual server-specific caching rule, run the
otd_getCacheRuleProperties command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['cache-rule'] = 'cache-rule-1'
otd_getCacheRuleProperties(props)

condition="$uri = '^/images"
enabled=true
max-reload-interval=3600
min-reload-time=0
last-modified-factor=0
min-object-size=1
cache-https-response=true
rule=cache-rule-2
query-maxlen=0
compression=true
cache-http-response=false

Viewing Caching Metrics

You can view the current cache-hit rate, the cache heap usage, and the rate of
successful revalidation of cache entries in the plain-text perfdump report, as shown in
the following example:

Proxy Cache:

Proxy Cache Enabled yes
Object Cache Entries 42
Cache lookup (hits/misses) 183/79
Requests served from Cache 22
Revalidation (successful/total) 30/38 (78.95%)
Heap space used 16495

• Proxy Cache Enabled indicates whether caching is enabled for the instance.

Chapter 9
Caching in Oracle Traffic Director

9-15

• Object Cache Entries is the number of entries (URIs) currently in the cache.

• Cache lookup (hits/misses)

– The first number is the number of times an entry was found in the cache for
the requested URI.

– The second number is the number of times the requested URI was not found
in the cache.

• Requests served from Cache is the number of requests that Oracle Traffic
Director served from the cache.

• Revalidation (successful/total)

– The first number is the number of times revalidation of cached content was
successful.

– The second number is the total number of times Oracle Traffic Director
attempted to revalidate cached content.

– The percentage value is the ratio of successful revalidations to the total
number of revalidation attempts.

• Heap space used is the amount of cache heap space that is currently used.

Tunable Caching Parameters
Caching can be considered effective in reducing the response time for clients when
the cache-hit rate is high; that is, a relatively large number of requests are served from
the cache instead of being sent to origin servers. For a high cache-hit rate, there
should be sufficient memory to store cacheable responses from origin servers and the
entries in the cache should be validated regularly.

Note:

Dynamic content is generally not cacheable. So if the application or content
being served by the origin servers consists mostly of dynamic content, the
cache-hit rate is bound to be low. In such cases, enabling and tuning caching
might not yield a significant performance improvement.

To improve the cache-hit rate, you can tune the following caching parameters:

• Cache-entry replacement method

When the cache becomes full—that is, the number of entries reaches the
maximum entries limit, or the cache heap size reaches the maximum cache heap
space—further entries in the cache can be accommodated only if existing entries
are removed. The cache-entry replacement method specifies how Oracle Traffic
Director determines the entries that can be removed from the cache.

– The default replacement method is Least Recently Used (lru). When the
cache is full, Oracle Traffic Director discards the least recently used entries
first.

– The other available method is Least Frequently Used (lfu). When the cache is
full, Oracle Traffic Director discards the least frequently used entry first.

Chapter 9
Caching in Oracle Traffic Director

9-16

In either method, every time Oracle Traffic Director serves content from the cache,
it needs to track usage information—the time the content was served in the case
of the lru replacement method, and the number of times the content was served
in the case of lfu. So the time saved by serving content directly from the cache
instead of sending the request to the origin server, is offset to a certain extent by
the latency caused by the need to track usage information. Between the two
methods, lru requires marginally lower computing resources.

You can disable cache-entry replacement by specifying false as the replacement
method.

• Maximum cache heap space

If only a small portion of the available heap space is used, it is possible that
responses are not being cached because the virtual server-specific caching rules
are defined too narrowly.

The optimal cache heap size depends upon how much system memory is free.
With a large cache heap, Oracle Traffic Director can cache more content and
therefore obtain a better hit ratio. However, the heap size should not be so large
that the operating system starts paging cached content.

• Maximum number of entries in the cache

If the number of entries in the cache, as shown in the perfdump report, is
consistently near, or at, the maximum number of entries, it is an indication that the
cache might not be large enough. Consider increasing the maximum number of
entries.

If the number of entries in the cache is very low when compared with the
maximum allowed entries, it is possible that responses are not being cached
because the virtual server-specific caching rules are defined too narrowly.

• Maximum size of cacheable object

To conserve system resources, you can limit the size of objects that are cached,
even if the objects fulfill other caching rules.

If you observe that objects that are larger than the maximum cached object size
are requested frequently, consider increasing the limit.

In a caching rule for a specific virtual server, you can specify the following parameters:

• Minimum and maximum size of objects that can be cached

• Minimum and maximum interval between cache-validation checks

• Maximum number of characters in a query string that can be cached

• Whether to compress content before caching

• Whether to cache HTTPS responses

Configuring Caching Parameters
You can configure caching settings by using either Fusion Middleware Control or the
WLST.

Configuring Caching Settings Using Fusion Middleware Control

To configure caching settings by using the Fusion Middleware Control, do the
following:

Chapter 9
Caching in Oracle Traffic Director

9-17

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Servers.

The Virtual Servers page is displayed.

7. In the navigation pane, expand Virtual Servers, expand the name of the virtual
server for which you want to configure cache, and select Caching.

The Cache Rules page is displayed. It lists the Cache rules that are currently
defined for the virtual server.

8. In the navigation pane, select Advanced Settings.

The Advanced Settings page is displayed.

9. Specify the caching parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the OK button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Cancel button.

10. After making the required changes, click OK.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Configuring Virtual Server-Specific Caching Rules Using Fusion Middleware
Control

To create virtual server-specific caching rules by using the Fusion Middleware Control,
do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to create virtual server-specific caching
rules.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Servers.

The Virtual Servers page is displayed.

7. In the navigation pane, expand Virtual Servers, expand the name of the virtual
server for which you want to create caching rules, and select Caching.

Chapter 9
Caching in Oracle Traffic Director

9-18

The Caching page is displayed. It lists the caching rules that are currently defined
for the virtual server, and indicates whether the rules are enabled.

Creating a Caching Rule

a. Click New Caching Rule.

The New Cache Rule dialog box is displayed.

In the Name field, enter a name for the new caching rule.

b. Click Ok.

The caching rule that you just created is displayed on the Caching page.

Editing a Caching Rule

To enable or disable a caching rule, or to change the settings of a rule, do the
following:

a. Click the Name of the caching rule that you want to edit.

The Edit Cache Rule dialog box is displayed.

Note:

To access the condition builder to edit conditions, select Requests
satisfying the condition and click Edit. The condition builder
enables you to delete old expressions and add new ones.

b. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

For information about building condition expressions, click the help button near
the Condition field or see Using Variables, Expressions, and String
Interpolation command in the Configuration File Reference for Oracle Traffic
Director .

When you change the value in a field or tab out of a text field that you
changed, the Save button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Reset button.

c. After making the required changes, click Save.

A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Deleting a Caching Rule

To delete a caching rule, click the Delete button. At the confirmation prompt, click
OK.

Configuring Caching Settings Using WLST

• To change the caching properties for a configuration, run the
otd_setCacheProperties command.

For example, the following command changes the maximum cache heap space to
20 MB.

props = {}
props['configuration'] = 'foo'

Chapter 9
Caching in Oracle Traffic Director

9-19

props['max-heap-space'] = '20971520'
otd_setCacheProperties(props)

• To create a caching rule for a virtual server, run the otd_createCacheRule
command.

For example, the following command creates a rule named cache-rule-images for
the virtual server bar in the configuration foo, to cache the requests for which the
expression $uri='^/images' evaluates to true.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['cache-rule'] = 'cache-rule-images'
props['condition'] = '$uri='^/images''
otd_createCacheRule(props)

Note that the value of the condition property should be a regular expression. For
information about building condition expressions, see Using Variables,
Expressions, and String Interpolation command in the Configuration File
Reference for Oracle Traffic Director .

• To change a caching rule, run the otd_setCacheRuleProperties command.

For example, the following command disables compression of content for the
caching rule cache-rule-images.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['cache-rule'] = 'cache-rule-images'
props['compression'] = 'false'
otd_setCacheRuleProperties(props)

• To delete a caching rule, run the otd_deletecacheRule command, as shown in the
following example.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['cache-rule'] = 'cache-rule-1'
otd_deleteCacheRule(props)

Content Serving
Oracle Traffic Director supports static content serving by managing content-rules. No
dynamic content serving is supported. Content-rule is created based on URI-prefix and
URI-prefix should be unique across all the content-rule. Oracle Traffic Director admin
supports static content serving only for content-rule, mime types and file cache.

You can configure content serving by using either Fusion Middleware Control or WLST
as described in the following topics:

Topics

• Content Serving Using Fusion Middleware Control

• Configuring Content Serving Using WLST

Chapter 9
Content Serving

9-20

Content Serving Using Fusion Middleware Control
To configure content serving by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure content serving.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Servers.

The Virtual Servers page is displayed.

7. In the navigation pane, expand Virtual Servers, expand the name of the virtual
server for which you want to configure content serving, and select Content
serving.

The content serving page is displayed. It lists the content serving that are currently
defined for the virtual server.

8. Creating a Content serving

a. Click Create.

The New Content Serving dialog box is displayed.

b. In the Name field, enter a name for the new content rule.

c. In the URI Prefix field, enter the specified URI for that content rule.

d. In the Directory Path field, enter the specified directory where all the new
content rules are available.

Click OK.

The Content Serving that you just created is displayed on the Content Serving
page.

Editing a Content Serving

To change the settings of a Content Serving, do the following:

a. Click the Name and select Edit button for the Content Serving.

The Content Serving Settings page is displayed.

b. Specify the parameters that you want to change.

When you change the value in a field or tab out of a text field that you
changed, the OK button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Cancel button.

c. After making the required changes, click OK.

The updated configuration is saved.

Deleting a Content Serving

Chapter 9
Content Serving

9-21

To delete a Content Serving rule, click the Delete button. At the confirmation
prompt, click OK.

Configuring Content Serving Using WLST
• To create a content rule, run the otd_createContentRule command, as shown in

the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['uri-prefix'] = '/baz'
props['directory-path'] = '/qux'
props['content-rule'] = 'content-rule-1'
otd_createContentRule(props)

• To view the list of content rules defined for a virtual server, run the
otd_listContentRules command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_listContentRules(props)

• To view the content rule properties run the otd_getContentRuleProperties
command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['content-rule'] = 'content-rule-1'
otd_getContentRuleProperties(props)

• To set content rule properties run the otd_setContentRuleProperties command,
as shown in the following example:

props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['content-rule'] = 'content-rule-1'
props['index-files'] = 'home.htm'
otd_setContentRuleProperties(props)

• To delete a content rule, run the otd_deleteContentRule command, as shown in
the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['content-rule'] = 'content-rule-1'
otd_deleteContentRule(props)

• To create a mime type, run the otd_createMimeType command, as shown in the
following example:

props = {}
props['configuration'] = 'foo'
props['content-type'] = 'bar'
props['extensions'] = 'baz'
otd_createMimeType(props)

• To view the list of mime types, run the otd_listMimeTypes command, as shown in
the following example:

Chapter 9
Content Serving

9-22

props = {}
props['configuration'] = 'foo'
otd_listMimeTypes(props)

• To delete a mime type, run the otd_deleteMimeType command, as shown in the
following example:

props = {}
props['configuration'] = 'foo'
props['content-type'] = 'bar'
props['extensions'] = 'baz'
otd_createMimeType(props)

• To view the file cache properties run the otd_getFileCacheProperties command,
as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_getFileCacheProperties(props)

• To set File Cache properties run the otd_setFileCacheProperties command, as
shown in the following example:

props = {}
props['configuration'] = 'foo'
props['max-age'] = '1200'
otd_setFileCacheProperties(props)

Chapter 9
Content Serving

9-23

10
Managing TCP Proxies

A TCP Proxy handles TCP requests through TCP listeners for traffic tunnelling. While
a TCP Proxy can have several TCP listeners associated with it, a TCP listener can be
associated with only one TCP Proxy.
This chapter describes how to create, view, modify, and delete TCP proxies. It
contains the following topics:

• Creating a TCP Proxy

• Viewing a List of TCP Proxies

• Modifying a TCP Proxy

• Deleting a TCP Proxy

Creating a TCP Proxy
You can create TCP proxies to handle requests through TCP listeners. To create a
TCP proxy, run the otd_createTcpProxy command.

Note:

When you create a TCP Proxy, you are, in effect, modifying a configuration.
So for the new TCP Proxy settings to take effect in the Oracle Traffic Director
instances, you should redeploy the configuration as described in Activating
Configuration Changes.

Before You Begin

Before you begin creating a TCP Proxy, decide the following:

• A unique name for the proxy. Choose the name carefully. After creating a proxy,
you cannot change its name.

• A unique IP address (or host name) and port number combinations for the listener.

You can define multiple TCP listeners with the same IP address combined with
different port numbers, or with a single port number combined with different IP
addresses. So each of the following IP address and port number combinations
would be considered a unique listener:

10.10.10.1:80
10.10.10.1:81
10.10.10.2:80
10.10.10.2:81

• The name of the origin-server pool to which the TCP Proxy should forward
requests. See Managing Origin Server Pools.

You can create a TCP proxy by either using Fusion Middleware Control or the WLST
as described in the following topics:

10-1

Topics

• Creating a TCP Proxy Using Fusion Middleware Control

• Creating a TCP Proxy Using WLST

Creating a TCP Proxy Using Fusion Middleware Control
To create a TCP Proxy by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to create a TCP proxy.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > TCP proxies.

7. In the Common Tasks pane, click Create.

The New TCP Proxy wizard appears.

8. Follow the on-screen prompts to complete creation of the TCP Proxy by using the
details—proxy name, listener name, IP address, port, and so on-that you decided
earlier.

Note:

• Select Enable FTP option if you want to enable FTP support on a
TCP proxy.

• If the TCP traffic on the port is over SSL, for example T3S, then
select the SSL/TLS check box on the first screen of the New TCP
Proxy wizard and select the certificate to be used. See Configuring
SSL on a HTTP/TCP Listener.

After the proxy is created, the Results screen of the New TCP Proxy wizard
displays a message confirming successful creation of the proxy.

9. Click Close on the Results screen.

• The details of the TCP Proxies that you just created are displayed on the TCP
proxies page.

• In addition, the Deployment Pending message is displayed at the top of the
main pane. You can either deploy the updated configuration immediately by
clicking Deploy Changes, or you can do so later after making further
changes, as described in Activating Configuration Changes.

Chapter 10
Creating a TCP Proxy

10-2

Creating a TCP Proxy Using WLST
To create a TCP proxy with a set of initial values, run the otd_createTcpProxy
command.

For example, the following command creates a TCP Proxy named bar for the
configuration foo with the origin-server-pool as tcp-origin-server-pool-1.

props = {}
props['configuration'] = 'foo'
props['tcp-proxy'] = 'bar'
props['origin-server-pool-name'] = 'tcp-origin-server-pool-1'
otd_createTcpProxy(props)

For example, the following command creates a TCP Proxy named bar for the
configuration foo with the origin-server-pool as tcp-origin-server-pool-1 and
protocol as ftp.

props = {}
props['configuration'] = 'foo'
props['tcp-proxy'] = 'bar'
props['protocol'] = 'ftp'
props['origin-server-pool'] = 'tcp-origin-server-pool-1'
otd_createTcpProxy(props)

The FTP configuration is enabled for the tcp proxy with properties ssl-termination,
origin-explicit-ftps and client-explicit-ftps being 'false' and 'true'
respectively. These properties can be modified later using
otd_setTcpProxyProperties.

Viewing a List of TCP Proxies
After creating a TCP proxy, you can view the current state of the proxies. to view a list
of TCP proxies, run the otd_listTcpProxies command.

You can view a list of TCP proxies by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Viewing a List of TCP Proxies Using Fusion Middleware Control

• Viewing a List of TCP Proxies Using WLST

Viewing a List of TCP Proxies Using Fusion Middleware Control
To view a list of TCP proxies by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to view a TCP proxy.

Chapter 10
Viewing a List of TCP Proxies

10-3

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > TCP proxies.

The TCP Proxies page is displayed. It shows a list of the TCP proxies defined for
the configuration.

Viewing a List of TCP Proxies Using WLST

To view a list of TCP proxies, run the otd_listTcpProxies command, as shown in the
following example:

props = {}
props['configuration'] = 'foo'
otd_listTcpProxies(props)

tcp_proxy1
tcp_proxy2

You can view the properties of a TCP Proxy in detail by running the
otd_getTcpProxyProperties command.

Modifying a TCP Proxy
After you create a TCP Proxy instance, you may want to change some of the settings
such as port range, client/server FTP settings, and so on. To modify TCP Proxy
settings, use the otd_setTcpProxyProperties command.

You can modify TCP Proxy settings by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Modifying a TCP Proxy Using Fusion Middleware Control

• Modifying a TCP Proxy Using WLST

Modifying a TCP Proxy Using Fusion Middleware Control
To modify a TCP Proxy by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify a TCP proxy.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > TCP proxies.

The TCP Proxies page is displayed. It shows a list of the TCP proxies defined for
the configuration.

7. Click the name of the TCP Proxy that you want to modify.

Chapter 10
Modifying a TCP Proxy

10-4

The TCP Proxy Settings page is displayed. On this page, you can do the following:

• Enable and disable the TCP Proxy.

• Change the origin server pool and idle timeout.

• Add and remove TCP listeners. For information about creating TCP listeners,
see Creating a Listener.

• Modify port ranges for active and passive FTP connections.

• View the client FTP settings.

Client Explicit SSL is enabled. This means that SSL is enabled on request for
the client connection. This can only be disabled if all the associated TCP
listeners have SSL enabled.

• Modify the server FTP settings.

Server Explicit SSL is enabled. This means that SSL is enabled on request for
the origin server connection.

Server FTP settings cannot be changed because SSL is not enabled on the
server pool. Click Edit to navigate to the server pool edit page and enable
SSL.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the OK button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Cancel button.

9. After making the required changes, click OK.

A message, confirming that the updated proxy was saved, is displayed in the
Console Messages pane.

Modifying a TCP Proxy Using WLST

To change the properties of a TCP proxy, run the otd_setTcpProxyProperties
command.

• For example, the following command changes the session idle timeout of the
proxy bar in the configuration foo to 1200.

props = {}
props['configuration'] = 'foo'
props['tcp-proxy'] = 'bar'
props['session-idle-timeout'] = '1200'
otd_setTcpProxyProperties(props)

• For example, the following command enables FTP configuration for the TCP proxy
with properties 'ssl-termination', 'origin-explicit-ftps' and 'client-explicit-ftps' as
'false', 'true' and 'true' respectively.

props = {}
props['configuration'] = 'foo'
props['tcp-proxy'] = 'bar'
props['client-explicit-ftps'] = 'true'
otd_setTcpProxyProperties(props)

Chapter 10
Modifying a TCP Proxy

10-5

Deleting a TCP Proxy
You can delete TCP Proxy instances that are no longer required. To delete TCP Proxy
instances, run the otd_deleteTcpProxy command.

You can delete TCP Proxy instances by using either Fusion Middleware Control or the
WLST as described in the following topics:

Topics

• Deleting a TCP Proxy Using Fusion Middleware Control

• Deleting a TCP Proxy Using WLST

Deleting a TCP Proxy Using Fusion Middleware Control
To delete a TCP Proxy by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to delete a TCP proxy.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > TCP proxies.

The TCP Proxies page is displayed. It shows a list of the TCP proxies defined for
the configuration.

7. Click the Delete icon for the TCP Proxy that you want to delete.

A prompt to confirm deletion of the proxy is displayed. If the proxy is associated
with any listeners, the prompt shows the names of those listeners.

8. To proceed with the deletion, click Yes.

A message is displayed in the Console Message pane confirming that the TCP
Proxy was deleted.

In addition, the Deployment Pending message is displayed at the top of the main
pane. You can either deploy the updated configuration immediately by clicking
Deploy Changes, or you can do so later after making further changes, as
described in Activating Configuration Changes.

Deleting a TCP Proxy Using WLST
To delete a TCP Proxy, run the otd_deleteTcpProxy command, as shown in the
following example:

props = {}
props['configuration'] = 'foo'
props['tcp-proxy'] = 'bar'
otd_deleteTcpProxy(props)

Chapter 10
Deleting a TCP Proxy

10-6

11
Managing Listeners

Connections between the clients and Oracle Traffic Director instances are created
through HTTP and TCP listeners. Each listener is a unique combination of an IP
address (or host name) and a port number.
This chapter describes how to create, view, modify, and delete listeners. It contains
the following topics:

• Creating a Listener

• Viewing a List of Listeners

• Modifying a Listener

• Deleting a Listener

• Configuring Status Listener

Creating a Listener
You can create listeners to bind them to a virtual server and configure them to forward
requests to different origin-server pools. To create a HTTP listener, run the
otd_createHttpListener command, and to create a TCP listener, run the
otd_createTcpListener command.

Before You Begin

Before you begin creating an listener, decide the following:

• A unique name for the listener. Choose the name carefully. After creating a
listener, you cannot change its name.

• A unique IP address (or host name) and port number combinations for the listener.

You can define multiple listeners with the same IP address combined with different
port numbers, or with a single port number combined with different IP addresses.
So each of the following IP address and port number combinations would be
considered a unique listener:

10.10.10.1:80
10.10.10.1:81
10.10.10.2:80
10.10.10.2:81

• For HTTP listeners:

– The default virtual server for the listener.

Oracle Traffic Director routes requests to the default virtual server if it cannot
match the Host value in the request header with the host patterns specified for
any of the virtual servers bound to the listener. For information about
specifying the host patterns for virtual servers, see Creating Virtual Servers.

– The server name to be included in any URLs that are generated automatically
by the server and sent to the client. This server name should be the virtual
host name, or the alias name if your server uses an alias. If a colon and port

11-1

number are appended to the server name then that port number is used in the
autogenerated URLs.

• For TCP listeners: TCP proxy for the listener.

A TCP proxy handles TCP requests through TCP listeners for traffic tunnelling. A
TCP proxy can have several TCP listeners associated with it. You can associate
TCP listeners and configure TCP proxy settings from this page. See Creating a
TCP Proxy.

You can create listeners by using either Fusion Middleware Control or WLST as
described in the following topics:

Topics

• Creating a Listener Using Fusion Middleware Control

• Creating a Listener Using WLST

Creating a Listener Using Fusion Middleware Control
To create an HTTP listener by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to create a HTTP Listener.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Listener.

7. In the Common Tasks pane, click Create under HTTP Listener.

The New HTTP Listener wizard appears.

8. Follow the on-screen prompts to complete creation of the HTTP listener by using
the details—listener name, IP address, port, and so on—that you decided earlier.

Note:

If certificates are available in the configuration, in the second screen of
the wizard, an SSL/TLS check box will be available. If you want the new
listener to receive HTTPS requests, click the check box to enable
SSL/TLS and then select the appropriate certificate from the drop-down
list.

After the HTTP listener is created, the Results screen of the New HTTP Listener
wizard displays a message confirming successful creation of the listener.

9. Click OK on the Results screen.

• The details of the listener that you just created are displayed on the Listeners
page.

Chapter 11
Creating a Listener

11-2

Creating a TCP Listener Using Fusion Middleware Control

To create a TCP listener by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to create a TCP Listener.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Listener.

7. In the Common Tasks pane, click Create TCP Listener.

The New TCP Listener wizard appears.

8. Follow the on-screen prompts to complete creation of the TCP listener by using
the details—listener name, IP address, port, and so on—that you decided earlier.

Note:

If certificates are available in the configuration, in the second screen of
the wizard, an SSL/TLS check box will be available. If you want the new
listener to receive T3S requests, click the check box to enable SSL/TLS
and then select the appropriate certificate from the drop-down list.

After the TCP listener is created, the Results screen of the New TCP Listener
wizard displays a message confirming successful creation of the listener.

9. Click OK on the Results screen.

The details of the listener that you just created are displayed on the Listeners
page.

Creating a Listener Using WLST

• To create an HTTP listener, run the otd_createHttpListener command.

For example, the following command creates an HTTP listener named http-
listener-1 for the configuration foo with the port as 23456 and the default virtual
server as bar.

props = {}
props['configuration'] = 'foo'
props['http-listener'] = 'http-listener-1'
props['port'] = '23456'
props['server-name'] = 'example.com'
props['default-virtual-server-name'] = 'bar'
otd_createHttpListener(props)

• To create a TCP listener, run the otd_createTcpListener command.

Chapter 11
Creating a Listener

11-3

For example, the following command creates a TCP listener named
tcp_listener_1 for the configuration foo with the port as 34567 and the TCP
proxy as tcp_proxy-1.

props = {}
props['configuration'] = 'foo'
props['tcp-listener'] = 'tcp-listener-1'
props['port'] = '34567'
props['tcp-proxy-name'] = 'tcp-proxy-1'
otd_createTcpListener(props)

Viewing a List of Listeners
After creating listeners, you can view the current list of listeners. To view the list of
listeners, run the otd_listHttpListeners or the otd_listTcpListeners commands.

You can view the list of listeners by using either Fusion Middleware Control or WLST
as described in the following topics:

Topics

• Viewing a List of Listeners Using Fusion Middleware Control

• Viewing a List of Listeners Using WLST

Viewing a List of Listeners Using Fusion Middleware Control
To view a list of HTTP or TCP listeners by using the Fusion Middleware Control, do
the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to view a HTTP or TCP Listener.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Listener.

The Listeners page is displayed. It shows a list of the listeners defined for the
configuration.

Note:

HTTP and TCP listeners can also be identified by their icons.

You can view the properties of a listener in detail by clicking on its name.

Chapter 11
Viewing a List of Listeners

11-4

Viewing a List of Listeners Using WLST
• To view a list of HTTP listeners, run the otd_listHttpListeners command, as

shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_listHttpListeners(props)

listener-1
listener-2

You can view the properties of an HTTP listener in detail by running the
otd_getHttpListenerProperties command.

• To view a list of TCP listeners, run the otd_listTcpListeners command, as
shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_listTcpListeners(props)

listener-1
listener-2

You can view the properties of a TCP listener in detail by running the
otd_getTcpListenerProperties command.

Modifying a Listener
After you create a listener, you may need to modify some of the settings such as,
listener port number, IP address, protocol family, and so on.

You can modify the listener settings by using either Fusion Middleware Control or
WLST as described in the following topics:

Topics

• Modifying a Listener Using Fusion Middleware Control

• Modifying a Listener Using WLST

Modifying a Listener Using Fusion Middleware Control
To modify an HTTP or TCP listener by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify a HTTP or TCP Listener.

5. Click the Traffic Director Configuration In the Common Tasks pane.

Chapter 11
Modifying a Listener

11-5

6. Select Administration > Listener.

The Listeners page is displayed. It shows a list of the HTTP or TCP listeners
defined for the configuration.

7. Click the name of the listener that you want to modify.

The Listener Settings page is displayed. On this page, you can do the following:

• Enable and disable the listener.

• Change the listener port number and IP address.

• For HTTP listeners: Change the server name and the default virtual server.

• For TCP listeners: Change the TCP proxy.

• If server certificates have been created for the configuration, you can enable
SSL/TLS and configure SSL/TLS settings for the listener. See Configuring
SSL on a HTTP/TCP Listener.

• Change the protocol family—IPv4, IPv6, or SDP—for which the listener should
accept requests.

• For HTTP listeners: Configure parameters to tune the performance of the
virtual server—the number of acceptor threads, the listen queue size, receive
buffer size, and so on. See Tuning HTTP Listener Settings.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Save button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Reset button.

9. After making the required changes, click Save.

• A message, confirming that the updated listener was saved, is displayed in the
Console Messages pane.

• In addition, the Deployment Pending message is displayed at the top of the
main pane. You can either deploy the updated configuration immediately by
clicking Deploy Changes, or you can do so later after making further changes
as described in Activating Configuration Changes.

Modifying a Listener Using WLST

• To change the properties of an HTTP listener, run the
otd_setHttpListenerProperties command. For example, the following command
changes the maximum requests per connection of the listener http-listener-1 in
the configuration foo to 1024.

props = {}
props['configuration'] = 'foo'
props['http-listener'] = 'http-listener-1'
props['max-requests-per-connection'] = '1024'
otd_setHttpListenerProperties(props)

To change the SSL/TLS settings of an HTTP listener, run the
otd_setHttpListenerSslProperties command. For example, the following

Chapter 11
Modifying a Listener

11-6

command disables TLS 1.0 support for the listener http-listener-1 in the
configuration foo.

• props = {}
props['configuration'] = 'foo'
props['http-listener'] = 'http-listener-1'
props['tls10'] = 'false'
otd_setHttpListenerSslProperties(props)

To change the properties of a TCP listener, run the
otd_setTcpListenerProperties command. For example, the following command
changes the maximum requests per connection of the listener tcp-listener-1 in
the configuration foo to 1024.

• props = {}
props['configuration'] = 'foo'
props['tcp-listener'] = 'tcp-listener-1'
props['max-requests-per-connection'] = '1024'
otd_setTcpListenerProperties(props)

To change the SSL/TLS settings of an TCP listener, run the
otd_setTcpListenerSslProperties command. For example, the following
command disables TLS 1.0 support for the listener tcp-listener-1 in the
configuration foo.

• props = {}
props['configuration'] = 'foo'
props['tcp-listener'] = 'tcp-listener-1'
props['tls10'] = 'false'
otd_setTcpListenerSslProperties(props)

Deleting a Listener
You can delete listeners that are no longer required. To delete listeners, run the
otd_deleteHttpListener or the otd_deleteTcpListener command.

You can delete listeners by using either Fusion Middleware Control or WLST as
described in the following topics:

Topics

• Deleting a Listener Using Fusion Middleware Control

• Deleting a Listener Using WLST

Deleting a Listener Using Fusion Middleware Control
To delete an HTTP or TCP listener by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to delete an HTTP or TCP Listener.

Chapter 11
Deleting a Listener

11-7

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Listener.

The Listeners page is displayed. It shows a list of the HTTP/TCP listeners defined
for the configuration.

7. Click the Delete icon for the listener that you want to delete.

A prompt to confirm deletion of the listener is displayed.

Note:

If the HTTP listener is associated with virtual servers, the prompt shows
the names of those virtual servers.

8. Click Yes to proceed with the deletion.

A message is displayed in the Console Message pane confirming that the
HTTP/TCP listener was deleted.

Deleting a Listener Using WLST

• To delete an HTTP listener, run the otd_deleteHttpListener command, as
shown in the following example:

props = {}
props['configuration'] = 'foo'
props['http-listener'] = 'http-listener-1'
otd_deleteHttpListener(props)

• To delete an TCP listener, run the otd_deleteTcpListener command, as shown
in the following example:

props = {}
props['configuration'] = 'foo'
props['tcp-listener'] = 'tcp-listener-1'
otd_deleteTcpListener(props)

Configuring Status Listener
You can now configure dedicated status listeners to check the status of Oracle Traffic
Director instances. Using a dedicated port to serve Oracle Traffic Director status
ensures that Oracle Traffic Director is available to service status requests even when it
is loaded.

In addition, you can secure the status listener by configuring SSL settings for the port.

You can configure listeners by using either Fusion Middleware Control or the WLST.

Configuring Status Listener using Fusion Middleware Control
To configure status listener by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

Chapter 11
Configuring Status Listener

11-8

2. If Certificates are not present, this section will ask you to generate certificates.
Click the Weblogic Domain button at the upper right corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure a status listener.

5. Click the Traffic Director Configuration in the Common Tasks pane.

6. Select Advanced Configuration > Status Listener.

7. In the General Settings section, enable status listener by checking the Enabled
check box and specify the details like port, IP address, and so on - that you
decided earlier.

8. Click Apply.

• The details of the status listener that you just configured are displayed on the
Status Listener page.

• The SSL/TLS Settings and Advanced Settings sections are displayed.

9. In the SSL/TLS Settings section, enable SSL for the listener.

If certificates are present, this section will allow you to select a certificate and
enable SSL for the listener. To generate a certificate, click Manage Certificates.

• Select the SSL/TLS check box to enable certificates

• In the RSA Certificate and ECC Certificate fields, select the certificates that
you want to use to authenticate the server.

10. The Advanced Settings pane displays the SSL/TLS advanced settings. SSL/TLS
Settings are available if the configuration has certificates.

In the SSL/TLS Settings section, specify settings for the SSL or TLS security
protocols- that you decided earlier.

11. After entering the details, click Apply.

A message confirming that a status listener was configured, is displayed in the
Console Messages pane.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

12. Restart the instances of the configuration by clicking Start Instances/Restart
Instances in the Oracle Traffic Director Configuration pane.

Configuring Status Listener Using WLST
• Enabling/changing properties of a status listener

To enable a status listener or to change the non-SSL properties of a status
listener, run the otd_enableStatusListener command, as shown in the example:

– To enable a status listener

props = {}
props['configuration'] = 'foo'
props['port'] = '12345'
otd_enableStatusListener(props)

Chapter 11
Configuring Status Listener

11-9

– To change the non-SSL properties of a status listener

Consider a status listener which was enabled as shown in the previous
example. This means that the ip and family values are * and default
respectively. To re-configure the IP address and port for this status listener,
run the otd_enableStatusListener command, as shown in the example:

props = {}
props['configuration'] = 'foo'
props['ip'] = '127.0.0.1'
props['port'] = '2016'
otd_enableStatusListener(props)

• Disabling a status listener

To disable a status listener, run the otd_disableStatusListener command, as
shown in the example:

props = {}
props['configuration'] = 'foo'
otd_disableStatusListener(props)

• Viewing properties of status listener properties

To view the status listener properties, run the otd_getStatusListenerProperties
command, as shown in the example:

props = {}
props['configuration'] = 'foo'
otd_getStatusListenerProperties(props)

• Changing the SSL properties of status listener

To change the SSL properties of status listener, run the
otd_setStatusListenerSslProperties command, as shown in the example:

To disable SSL on a status listener, set the enabled property to false.

props = {}
props['configuration'] = 'foo'
props['enabled'] = 'false'
otd_setStatusListenerSslProperties(props)

• Viewing the status listener SSL properties

To view the SSL properties of a status listener, run the
otd_getStatusListenerSslProperties command, as shown in the example:

props = {}
props['configuration'] = 'foo'
otd_getStatusListenerSslProperties(props)

Chapter 11
Configuring Status Listener

11-10

12
Managing Security

You can secure access to the Oracle Traffic Director administration server and enable
SSL/TLS for Oracle Traffic Director virtual servers. In addition, you can configure client
authentication and use Oracle Traffic Director to secure access to origin servers.
This chapter contains the following sections:

• SSL/TLS Concepts

• Managing Certificates

• Configuring SSL/TLS on Oracle Traffic Director

• Managing Certificate Revocation Lists

SSL/TLS Concepts
Before you begin administering Oracle Traffic Director security, you need to
understand some basic concepts about Oracle Traffic Director security management,
the set of security standards supported by Oracle Traffic Director , and the tasks
involved in securing an Oracle Traffic Director domain.

This section provides basic information about security-related concepts. It contains the
following topics:

• About SSL

• About Ciphers

• About Keys

• About Certificates

About SSL
Secure Socket Layer (SSL) is a protocol for securing Internet communications and
transactions. It enables secure, confidential communication between a server and
clients through the use of digital certificates. Oracle Traffic Director supports Transport
Layer Security (TLS) v1, v1.1, and v1.2.

In a 2-way HTTP over SSL (HTTPS) connection, each party—say a browser or a web
server—first verifies the identity of the other. This phase is called the SSL/TLS
handshake. After the identities are verified, the connection is established and data is
exchanged in an encrypted format. The following are the steps in the SSL/TLS
handshake between an SSL-enabled browser and an SSL-enabled server:

1. The browser attempts to connect to the server by sending a URL that begins with
https:// instead of http://.

2. The server sends its digital certificate (see About Certificates) and public key to
the client.

3. The client checks whether the server's certificate is current (that is, it has not
expired) and is issued by a certificate authority (CA) that the client trusts.

12-1

4. If the certificate is valid, the client generates a one-time, unique session key and
encrypts it with the server's public key, and then sends the encrypted session key
to the server.

5. The server decrypts the message from the client by using its private key and
retrieves the session key.

At this point, the client has verified the identity of the server; and only the client and the
server have a copy of the client-generated, unique session key. Till the session is
terminated, the client and the server use the session key to encrypt all communication
between them.

About Ciphers

A cipher is an algorithm, a mathematical function, used for encrypting and decrypting
data. Some ciphers are stronger and more secure than others. Usually, the more bits a
cipher uses, the harder it is to decrypt the data encrypted using that cipher.

Clients and servers support different cipher suites (sets of ciphers), depending on
factors such as the supported protocol, organizational policies on encryption strength,
and government restrictions on export of encrypted software.

In any 2-way encryption process, the client and the server must use the same cipher
suite. During the SSL/TLS handshake process, the server and client negotiate the
cipher suite—typically, the strongest one—that they use to communicate.

Cipher Suites Supported by Oracle Traffic Director
During the SSL/TLS handshake, Oracle Traffic Director and clients negotiate the
cipher suites to be used. The cipher suites supported in Oracle Traffic Director are
listed. You can view this list by running the otd_getVirtualServerSslProperties
WLST command.

The name of each cipher suite indicates the key-exchange algorithm, the hashing
algorithm, and the encryption algorithm, as depicted in the table.

• Protocols supported

– TLS: TLS 1.0, 1.1, 1.2

• Key exchange algorithms supported

– RSA

– RSA_EXPORT

– RSA_EXPORT1024

– RSA_FIPS

– ECDHE_RSA

– ECDH_RSA

– ECDH_ECDSA

– ECDHE_ECDSA

• Encryption algorithms supported

– AES_256_CBC: 256-bit key

Chapter 12
SSL/TLS Concepts

12-2

– 3DES_EDE_CBC: 168-bit key

– AES_128_CBC: 128-bit key

– RC4_128: 128-bit key

– DES_CBC: 56-bit key

– RC4_40 and RC2_CBC_40: 128-bit key but only 40 bits have cryptographic
significance

– NULL: No encryption

• Message Authentication Code (MAC) algorithms supported

– SHA: 160-bit hash

– NULL: No hashing

Cipher Suites Supported in Oracle Traffic Director

• SSL_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_ECDHE_RSA_WITH_RC4_128_SHA

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

• TLS_RSA_WITH_AES_128_CBC_SHA

• TLS_RSA_WITH_AES_256_CBC_SHA

• TLS_RSA_WITH_AES_128_CBC_SHA256

• TLS_RSA_WITH_AES_256_CBC_SHA256

• TLS_RSA_WITH_AES_128_GCM_SHA256

• TLS_RSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

About Keys
Encryption using ciphers, by itself, does not ensure data security. A key must be used
with the encrypting cipher to produce the actual encrypted result, or to decrypt
previously encrypted information. The encryption process uses two keys—a public key
and a private key. The keys are mathematically related; so information that is
encrypted using a public key can be decrypted only using the associated private key,
and vice versa. The public key is published by the owner as part of a certificate (see
About Certificates); only the associated private key is safeguarded.

Chapter 12
SSL/TLS Concepts

12-3

About Certificates
A certificate is a collection of data that uniquely identifies a person, company, or other
entity on the Internet. It enables secure, confidential communication between two
entities. Personal certificates are used by individuals; server certificates are used to
establish secure sessions between the server and clients over SSL.

Certificates can be self-signed (by the server), signed by a trusted third party called
Certification Authority (CA) or one that you created. The holder of a certificate can
present the certificate as proof of identity to establish encrypted, confidential
communication. The CA could be a third-party vendor or an internal department
responsible for issuing certificates for an organization's servers.

Certificates are based on public-key cryptography, which uses a pair of keys (very long
numbers) to encrypt information so that it can be read only by its intended recipient.
The recipient then decrypts the information using one of the keys.

A certificate binds the owner's public key to the owner's identity. In addition to the
public key, a certificate typically includes information such as the following:

• The name of the holder and other identification, such as the URL of the server
using the certificate

• The name of the CA that issued the certificate

• The digital signature of the issuing CA

• The validity period of the certificate

RSA and ECC Certificates

Oracle Traffic Director supports generation of the traditional RSA-type keys and the
more advanced Elliptic Curve Cryptography (ECC) keys. ECC offers equivalent
security with smaller key sizes, which results in faster computations, lower power
consumption, and memory and bandwidth savings.

Key size for RSA and ECC

• RSA keys: you can specify 2048, 4096 bits. Long keys provide better encryption,
but Oracle Traffic Director would need more time to generate them.

• ECC keys: you should specify the curve for generating the key pair. Oracle Traffic
Director supports the following curves: 163 (sect163r2), 192 (secp192r1),
224(secp224r1), 233(sect233k1), 256(secp256r1), 283(sect283k1),
384(secp384r1), 409(sect409k1), 521(secp521r1), 571(sect571k1).

Managing Certificates
To obtain a digital certificate, you must generate a Certificate Signing Request (CSR)
and issue it to a reputable CA. The CA returns a digital certificate that is signed with
the CA's private key and that is used for establishing identity. You then import the
digital certificate for identity into your identity keystore.

This section contains the following topics:

• Obtaining a Certificate

Chapter 12
Managing Certificates

12-4

• Generating a Keypair

• Generating a Certificate Signing Request (CSR)

• Importing a Certificate

• Viewing a List of Certificates

• Deleting a Certificate

Obtaining a Certificate
To enable SSL/TLS for an Oracle Traffic Director instance, you must associate an
RSA or ECC certificate, or both with an Oracle Traffic Director listener or a virtual
server. The certificate can be a self-signed certificate, demo CA signed certificate or
a certificate issued by a third-party Certificate Authority (CA) like Verisign.

Demo CA signed Certificate

To obtain a demo CA signed certificate, you must a generate keypair from Oracle
Traffic Director. See section Generating a Keypairfor information on generating a
keypair. The keypair generated is signed by a demonstration CA by default. Use this
keypair if you do not need your certificate to be signed by a CA. In addition, you can
use this keypair if you want to test the SSL/TLS implementation while the CA is in the
process of signing your certificate request.

Third party CA signed certificate

To obtain a certificate signed by a CA, generate a keypair from Oracle Traffic
Director. See section Generating a Keypair. Then, generate a Certificate Signing
Request (CSR) for the generated keypair, submit it to the CA, and follow the process
to obtain the signed certificate. The Certificate Signing Request (CSR) is a digital file,
a block of encrypted text in Base-64 encoded PEM format containing information such
as your server name, organization name, and country. It also contains the public key
that is included in the certificate. See section, Generating a CSR Using Fusion
Middleware Control for generating the CSR from a keypair.

After obtaining the CA-signed certificate in response to your CSR, import the certificate
in to the appropriate configuration, as described in section Importing a CA Signed
Certificate.

Self-signed Certificate

You cannot create a self-signed certificate from Oracle Traffic Director. Use tools like
orapki, keytool, and openssl. The certificate can then be imported into Oracle Traffic
Director as described here. The following commands create a self-signed certificate
and import the same into Oracle Traffic Director.
Using openssl and java keytool

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365
openssl pkcs12 -export -name myservercert -in cert.pem -inkey key.pem -out
keystore.p12
keytool -importkeystore -destkeystore mykeystore.jks -srckeystore
keystore.p12 -srcstoretype pkcs12 -alias myservercert

Importing the certificate using wlst command
svc = getOpssService("KeyStoreService")

Chapter 12
Managing Certificates

12-5

svc.importKeyStore(appStripe='OTD', name='foo', password='<keystore
password>', keypasswords='key passwords', type='OracleWallet',
permission=true, filepath='<directory containing wallet>')

Using orapki

cd <ORACLE_HOME>/oracle_common/bin
./orapki wallet create -wallet ./myservercert -pwd <password>
./orapki wallet add -wallet ./myservercert -keysize 1024 -
dn "CN=Custom_Root_CA,O=oracle,C=US" -self_signed -validity 3650 -pwd <password>

Importing the certificate using wlst command
svc = getOpssService("KeyStoreService")
svc.importKeyStore(appStripe='OTD', name='foo', password='<keystore password>',
keypasswords='<key passwords>', type='OracleWallet', permission=true,
filepath='<directory containing wallet>')

Generating a Keypair
You can generate a keypair if you do not need your certificate to be signed by a CA, or
if you want to test the SSL/TLS implementation while the CA is in the process of
signing your demo CA certificate.

Note that if you use a keypair to enable SSL/TLS for an Oracle Traffic Director virtual
server, when a client accesses the https:// URL of the virtual server, an error
message is displayed indicating that the signing CA is unknown and not trusted. To
proceed with the connection, the client can choose to trust the self-signed certificate.

You can generate a keypair by using either Fusion Middleware Control or the WLST.

Before You Begin
Before you begin generating a keypair, decide the following:

• The nickname of the keypair (required only for generating a keypair).

• The key type—RSA or ECC.

See RSA and ECC Certificates.

Generating a Keypair Using Fusion Middleware Control

To generate a keypair by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

4. Select the configuration for which you want to create an self-signed certificate.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Security > Manage Certificates

7. Click the Generate Keypair button in the common task bar.

The Generate Keypair wizard appears.

Chapter 12
Managing Certificates

12-6

8. Specify the Alias, Common Name and Subject Alternate Names.

Chapter 12
Managing Certificates

12-7

Note:

• Alternate names for the server can be specified using the Subject
Alternate Names field as a comma separated list of domain names.
For example, test.com,www.test.com,my.test.com

• Since many modern browsers ignore the Common Name field when
matching hostnames, you may need to specify the domain name
mentioned in the Common Name field as a Subject Alternate Name
as well to ensure browser interoperability.

9. Click OK.

The new certificate is displayed in the certificate list.

10. View the certificate details by clicking on the certificate alias The key pair is
wrapped in a demonstration CA signed certificate and stored in the truststore. If
your applications not using the truststore, then you must import the demonstration
CA certificate to a custom keystore.

Generating a Keypair using WLST

To generate a keypair, run the generateKeyPair command, as shown in the following
example:

svc = getOpssService("KeyStoreService")
svc.generateKeyPair(appStripe='OTD', name='myconfig', password='', alias='mycert',
keypassword='',dn='CN=test.com', OU=Webtier, O=\'Oracle Corporation\',
ST=California, C=US', keysize='1024',
ext_san="DNS:test.com,DNS:www.test.com,DNS:my.test.com")

For the updated configuration to take effect, you should deploy it to the Oracle Traffic
Director instances by using the activate command.

See generateKeyPair in the WebLogic Scripting Tool Command Reference for Oracle
Traffic Director.

Note:

• Alternate domain names for the server (also known as Subject Alternate
Names or SAN) can be added to the keypair using the ext_san
parameter. Ensure that you specify the correct syntax for specifying
domain names.

• Since many modern browsers ignore the CN (Common Name) field
when matching hostnames, you may need to add the domain name
mentioned in the CN as an alternate domain name as well using the
ext_san parameter to ensure browser interoperability.

Chapter 12
Managing Certificates

12-8

Generating a Certificate Signing Request (CSR)
The CSR is a digital file-a block of encrypted text in Base-64 encoded PEM format-
containing information such as your server name, organization name, and country. It
also contains the public key that will be included in the certificate.

You can generate a Certificate Signing Request (CSR) by using either Fusion
Middleware Control or the WLST.

Generating a CSR Using Fusion Middleware Control
To generate a CSR using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to create a CSR.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Security > Manage Certificates

A new page displays on screen.

7. A list of the available certificates are displayed. Select the certificate for which you
want to generate CSR.

8. Click the Generate CSR button in the common pane.

It opens a new window where you can export Generate CSR.

9. Follow the on-screen prompts to Export CSR, Click on Export CSR to have a
copy of it, and click Close.

Generating a CSR Using WLST

To generate a CSR, run the exportKeyStoreCertificateRequest command, as
shown in the following example:

generate the CSR and put it in to a text file
svc.exportKeyStoreCertificateRequest(appStripe='OTD', name='myconfig', password='',
alias='mycert', keypassword='', filepath='/scratch/certreq.crt')

This command generates a CSR and displays the encrypted text of the CSR as shown
in Generating a Keypair using Fusion Middleware Control.

For the updated configuration to take effect, you should deploy it to the Oracle Traffic
Director instances by using the activate command. After obtaining the CA-signed
certificate in response to your CSR, you should import the certificate in the appropriate
configuration, as described in Importing a Certificate.

Chapter 12
Managing Certificates

12-9

Importing a Certificate
You can import a generated keypair or CA-signed certificate by using Fusion
Middleware Control or the WLST.

This section contains the following topics:

• Importing a Certificate Using Fusion Middleware Control

• Importing a Certificate Using WLST

Importing a CA Signed Certificate

Before you begin

The CA signed certificate that must be imported should be a base-64 encoded PEM
formatted file containing all the certificates that form the certificate chain starting from
server certificate, intermediate certificate and the root certificates. OTD also supports
importing a certificate chain that is in base-64 encoded PEM formatted PKCS7 file
(.p7b file).

Sample PEM formatted certificate chain file

-----BEGIN CERTIFICATE-----
(Server SSL certificate)
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
(Intermediate certificate)
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
(Root certificate)
-----END CERTIFICATE-----

Sample pkcs7 certificate chain file (.p7b file)

-----BEGIN PKCS7-----
[... certificate content here ...]
-----END PKCS7-----

Importing a CA Signed Certificate Using Fusion Middleware Control

1. Login to Fusion Middleware Control, as described in Displaying Fusion Middleware
Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to import a certificate.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Security > Manage Certificates

A new page displays on screen.

7. Click the Import button.

Chapter 12
Managing Certificates

12-10

The Import Certificate wizard opens.

8. Choose Certificate Chain from the Certificate Type drop-down.

9. Choose an existing (created while generating the keypair) from the Alias from the
drop-down.

10. Specify the certificate source. If you are using the Paste option, then copy and
paste the certificate directly into the text field. If you are using the Select a file
option, then click Browse to choose the file from the operating system.

11. Click OK. The imported certificate or trusted certificate is displayed in the list of
certificates.

Importing a CA Signed Certificate Using WLST
To Import a Certificate Chain, run the importKeyStoreCertificate command, as shown
in the following example. See Importing a Certificate in Securing Applications with
Oracle Platform Security Services.

svc = getOpssService("KeyStoreService")
svc.importKeyStoreCertificate(appStripe='OTD', name='<configuration name>',
password='<key store password>', alias='test_cert', keypassword='<key password>',
type='CertificateChain', filepath='/export/home/testCertChain.crt')

Importing an Existing Certificate
Existing certificates could be self signed certificates or certificates with keypair
generated outside the current Oracle Traffic Director installation.

A self signed certificate is generated using tools like orapki, keytool and openssl.
There is no option in Fusion Middleware Control to import these certificates, as the
private key exists outside the current Oracle Traffic Director installation. This can be

Chapter 12
Managing Certificates

12-11

done using WLST by using the importKeyStore command. Oracle Traffic Director
supports importing KeyStores of type JKS or Oracle Wallet.

Note:

Note that except for the self signed certificates, the KeyStore must contain
the entire certificate chain including the root certificate in the same alias as
well as the private key.

Importing an Existing Certificate Using WLST

• Import JKS keystore: The following commands show how the CA signed
certificate, the private key and CA certificate can be added to a JKS keystore
which can then be imported into the Oracle Traffic Director configuration using
WLST commands.

Convert the certificates and key into a pkcs12 file
servercert.pem - Base-64 encoded PEM formatted file containing containing CA
signed certificate obtained from the CA.
serverkey.pem - Private key generated while creating the certificate signing
request
cacert.pem - Base-64 encoded PEM formatted file containing all the
certificates that are needed to form the certificate chain starting from
intermediate certificates (if any) and the root certificate
cat intermediate.pem root.pem > cacert.pem

openssl pkcs12 -export -name myservercert -in servercert.pem -inkey
serverkey.pem -certfile cacert.pem -out keystore.p12

Convert pksc12 file into jks key store
keytool -importkeystore -destkeystore mykeystore.jks -srckeystore keystore.p12 -
srcstoretype pkcs12 -alias myservercert

Import the JKS key store created above into the OTD configuration using WLST:
svc = getOpssService("KeyStoreService")

svc.importKeyStore(appStripe='OTD', name='foo', password='<keystore password>',
keypasswords='key passwords', aliases='myservercert', type='JKS',
permission=true, filepath='mykeystore.jks')

• Import Oracle Wallet: The certificate can also be imported from an Oracle wallet
provided the wallet contains the CA signed certificate, the private key, the CA
certificate and any intermediate certificates that are needed to form the certificate
chain.

svc = getOpssService("KeyStoreService")
svc.importKeyStore(appStripe='OTD', name='foo', password='<keystore
password>',keypasswords='key passwords', type='OracleWallet', permission=true,
filepath='<directory containing wallet>')

Importing a Trusted Certificate

When SSL/TLS is enabled for an Oracle Traffic Director virtual server and you access
the https:// URL of the virtual server, an error message is displayed indicating that the
signing CA is unknown and not trusted if the signing CA is not part of trusted
certificates in Oracle Traffic Director. To proceed with the connection, the client can

Chapter 12
Managing Certificates

12-12

choose to trust the certificate or import the certificate of the signing CA as a trusted
certificate. The Trusted certificate that must be imported should be a base-64 encoded
PEM formatted file.

-----BEGIN CERTIFICATE-----
(Trusted certificate)
-----END CERTIFICATE-----

Importing a Trusted Certificate Using Fusion Middleware Control

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to import a certificate.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Security > Manage Certificates

A new page displays on screen.

7. Click the Import button.

The Import Certificate wizard opens.

8. Choose Trusted Certificate from the Certificate Type drop-down.

9. Specify an Alias name for the imported certificate from the drop-down.

10. Specify the certificate source. If using the Paste option, then copy and paste the
certificate directly into the text field. If using the Select a file option, then click
Browse to choose the file from the operating system.

Chapter 12
Managing Certificates

12-13

11. Click OK. The imported certificate or trusted certificate is displayed in the list of
certificates.

Importing a Trusted Certificate Using WLST
To Import a trusted certificate, run the importKeyStoreCertificate command, as
shown in the following example.

svc = getOpssService("KeyStoreService")
svc.importKeyStoreCertificate(appStripe='OTD', name='<configuration name>',
password='<key store password>', alias='test_cert', keypassword='<key password>',
type='TrustedCertificate', filepath='/export/home/trustedCertificate.crt')

Viewing a List of Certificates
You can view a list of the certificates installed in a configuration by using either Fusion
Middleware Control or the WLST

Viewing a List of Certificates Using Fusion Middleware Control

To view a list of the certificates installed in a configuration by using the administration
console, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to view certificates.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Security > Manage Certificates

A new page displays on screen.

7. Below the common task bar, certificates are listed.

Viewing a List of Certificates Using WLST

• To view a list of the certificates installed in a configuration, run the
otd_listCertificates command, as shown in the following examples.

The following command displays a list of the server certificates in the
configuration.

props = {}
props['configuration'] = 'foo'
otd_listCertificates(props)

• To view the properties of a certificate, run the
getKeyStoreCertificatescommand, as shown in the following example.

svc = getOpssService("KeyStoreService")
svc.getKeyStoreCertificates(appStripe='OTD', name='myconfig',
password='', alias='mycert')

Chapter 12
Managing Certificates

12-14

Deleting a Certificate
You can delete certificates in a configuration by using either Fusion Middleware
Control or the WLST.

Deleting a Certificate using Fusion Middleware Control
To delete a certificate using Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to delete certificates.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Security > Manage Certificates

A new page displays on screen.

7. Below the common task bar it displays a list of certificates.

8. Click the Delete button for the certificate that you want to delete.

• If one or more listeners are associated with the certificate that you are
deleting, a message is displayed indicating that the certificate cannot be
deleted.

• If the certificate that you are deleting is not associated with any listener, a
prompt to confirm deletion of the certificate is displayed.

Click OK to proceed.

A message is displayed in the Console Messages pane, confirming that the
certificate has been deleted.

Deleting a Certificate Using WLST
Deleting a Certificate Using WLST

To delete a certificate, run the deleteKeyStoreEntry command.

Example:

svc = getOpssService("KeyStoreService")
svc.deleteKeyStoreEntry(appStripe='OTD', name='myconfig', password='',
alias='mycert', keypassword='')

If the certificate that you are deleting is associated with one or more listeners, the
following message is displayed.

OTD-64309 Certificate 'rsa-1' is being referred by listeners: listener1,listenerN

You can delete the certificate forcibly by including the --force option.

Chapter 12
Managing Certificates

12-15

For the updated configuration to take effect, you should deploy it to the Oracle Traffic
Director instances by using the activate command.

Configuring SSL/TLS on Oracle Traffic Director
Learn how to configure Oracle Traffic Director to use Secure Sockets Layer (SSL)/
Trasport Layer Security (TLS).

Topics

• Configuring SSL/TLS Between Oracle Traffic Director and Clients

• Configuring SSL/TLS Between Oracle Traffic Director and Origin Servers

• Configure SSL Termination At a Hardware Load Balancer front-ending Oracle
Traffic Director

• Configure WebLogic to receive SSL information from Web Tier / Traffic Director

• Configure SSL Pass through on Oracle Traffic Director

Configuring SSL/TLS Between Oracle Traffic Director and Clients
This section describes how you can use SSL/TLS to secure communication between
clients and Oracle Traffic Director instances.

To enable SSL/TLS for an OTD instance, you must associate an RSA or ECC
certificate, or both, with one or more listeners of the instance.

When an HTTPS request is received, the certificate that Oracle Traffic Director sends
to the client during the SSL/TLS handshake could be one of the following:

• A certificate associated with a virtual server bound to a configured HTTP listener.

• A certificate associated with the HTTP/TCP listener

Configuring SSL on a HTTP/TCP Listener

You can configure a listener to receive HTTPS or TCP requests by using either Fusion
Middleware Control or the WLST.

Configuring SSL/TLS for a Listener Using Fusion Middleware Control

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure SSL/TLS-enabled
listeners.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Listeners.

7. Select the listener for which you want to enable and configure SSL/TLS among
HTTP listeners/TCP Listeners.

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-16

The Listener Settings page is displayed.

8. Select Settings > SSL/TLS Settings.

The SSL/TLS settings page i s displayed.

9. In the SSL Settings section, select the SSL Enabled check box.

10. In the RSA Certificate and ECC Certificate fields, select the certificates that you
want to use to authenticate the server.

If you associate a listener with an RSA certificate and with an ECC certificate, the
certificate that the server eventually presents to the client is determined during the
SSL/TLS handshake, based on the cipher suite that the client and the server
negotiate to use.

You can also specify the following advanced SSL/TLS settings in the Advanced
Settings section of the Listener Settings page:

Configuring Client Authentication: Client authentication is the verification of a
client by the HTTP/TCP Listener based on the certificate that the client
provides. Client authentication is not enabled by default. To configure client
authentication, do the following:

a. Select Settings > Advanced Settings > SSL/TLS Settings.

The SSL/TLS settings page is displayed.

b. Select the required SSL/TLS Client Authentication mode.

• Required: The server requests the client for a certificate; if the client does
not provide a certificate, the connection is closed.

• Optional: The server requests the client for a certificate, but does
not require it. The connection is established even if the client does not
provide a certificate.

• Disabled (default): Client authentication is disabled.

c. Specify the Authentication Timeout and Maximum Authentication Data
Parameters.

Configuring Ciphers: To enable and disable SSL and TLS ciphers, do the
following:

a. Select Settings > Advanced Settings > SSL/TLS Settings.

The SSL/TLS settings page is displayed

b. In the SSL Settings section, you can select the Ciphers from the available
ciphers for the listener.

Note:

You can select ciphers only if SSL/TLS is enabled for the Listener.

11. The on-screen help and prompts are provided for all parameters. When you
change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled. At any time,
you can discard the changes by clicking the Revert button.

12. After making the required changes, click Apply.

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-17

A message, confirming that the updated listener was saved, is displayed in the
Console Messages pane.

13. Restart the instances of the configuration by clicking Start/Restart Instances in
the Common Tasks pane.

Configuring SSL/TLS for a Listener Using WLST
• To view the SSL/TLS properties of an HTTP or TCP listener, run

the otd_getHttpListenerSslProperties or otd_getTcpListernerSslProperties comma
nd, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['http-listener'] = 'http-listener-1'
otd_getHttpListenerSslProperties(props)

enabled=false
client-auth=false
client-auth-timeout=60
max-client-auth-data=1048576
tls11=true
tls12=true
override-cipher-order=false
...

• To configure SSL/TLS for an HTTP or TCP listener, run
the otd_setHttpListenerSslProperties or otd_setTcpListenerSslProperties comman
d, as shown in the following example:

props['configuration'] = 'foo'
props['http-listener'] = 'http-listener-1'
props['tls10'] = 'false'
otd_setHttpListenerSslProperties(props)

• Configuring Client Authentication: Client authentication is the verification of a
client by the HTTP/TCP Listener based on the certificate that the client
provides. Client authentication is not enabled by default. To configure client
authentication for a listener, run the
otd_setHttpListenerSslProperties/ otd_setTcpListenerSslProperties command.

props = {}
props['configuration'] = 'foo'
props['http-listener'] = 'bar'
props['client-auth'] = 'false'
otd_setHttpListenerSslProperties(props)

• Configuring Ciphers: To view the ciphers that are currently enabled for a listener,
run the otd_getHttpListenerSslProperties/
otd_getTcpListenerSslProperties command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['http-listener'] = 'bar'
otd_getTcpListenerSslProperties(props)

A comma-separated list of ciphers that are currently enabled is returned in
the cipher property.

• To enable or disable specific ciphers for a listener, run
the otd_setHttpListenerSslProperties/otd_setTcpListenerSslProperties command
and specify the ciphers to be enabled in the ciphers property.

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-18

• The list of supported ciphers will be listed as apart of a property "supported-
ciphers", when you run the otd_getHttpListenerSslProperties/
otd_getTcpListenerSslProperties command.

Configuring SSL On a Virtual Server

Configuring SSL On a Virtual Server Using Fusion Middleware Control

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure SSL/TLS-enabled
listeners.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Servers.

The Virtual Servers page is displayed. It shows a list of the virtual servers defined
for the configuration

You can view the properties of a virtual server by clicking on its name.

7. Select the listener for which you want to enable and configure SSL/TLS.

The Listener Settings page is displayed.

8. Select Settings > SSL/TLS Settings.

The SSL/TLS settings page is displayed.

9. In the SSL Settings section, select the SSL Enabled check box.

10. In the RSA Certificate and ECC Certificate fields, select the certificates that you
want to use to authenticate the server.

If you associate a listener with an RSA certificate and with an ECC certificate, the
certificate that the server eventually presents to the client is determined during the
SSL/TLS handshake, based on the cipher suite that the client and the server
negotiate to use.

You can also specify the following advanced SSL/TLS settings in the Advanced
Settings section of the Listener Settings page:

Configuring Client Authentication: Client authentication is the verification of a
client by the OTD virtual server based on the certificate that the client
provides. Client authentication is not enabled by default. To configure client
authentication, do the following:

a. Select Settings > Advanced Settings > SSL/TLS Settings.

The SSL/TLS settings page is displayed.

b. Select the required SSL/TLS Client Authentication mode.

• Required: The server requests the client for a certificate; if the client does
not provide a certificate, the connection is closed.

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-19

• Optional: The server requests the client for a certificate, but does
not require it. The connection is established even if the client does not
provide a certificate.

• Disabled (default): Client authentication is disabled.

c. Specify the Authentication Timeout and Maximum Authentication Data
Parameters.

Configuring Ciphers: To enable and disable SSL and TLS ciphers, do the
following:

a. Select Settings > Advanced Settings > SSL/TLS Settings.

The SSL/TLS settings page is displayed

b. In the SSL Settings section, you can select the Ciphers from the available
ciphers for the listener.

Note:

You can select ciphers only if SSL/TLS is enabled for the Listener.

11. The on-screen help and prompts are provided for all parameters. When you
change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled. At any time,
you can discard the changes by clicking the Revert button.

12. After making the required changes, click Apply.

A message, confirming that the updated listener was saved, is displayed in the
Console Messages pane.

13. Restart the instances of the configuration by clicking Start/Restart Instances in
the Common Tasks pane.

Configuring SSL On a Virtual Server Using WLST
• To view the certificates that are currently associated with a virtual server, run

the otd_getVirtualServerSslProperties command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_getVirtualServerSslProperties(props)

max-client-auth-data=1048576

client-auth=false

tls12=true

tls11=true

override-cipher-order=false

tls10=true

enabled=false

server-cert-alias=None

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-20

client-auth-timeout=60

...

• To associate a certificate with a virtual server, run
the otd_setVirtualServerSslProperties command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['server-cert-alias'] = 'cert-1'
otd_setVirtualServerSslProperties(props)

Ensure that a certificate of the same type—ECC or RSA—that you want to
associate with the virtual server, is also associated with the listeners to which the
virtual server is bound.

• Client authentication is the verification of a client by the OTD virtual server based
on the certificate that the client provides. Client authentication is not enabled by
default. To enable client authentication for an virtual server, run the
otd_setVirtualServerSslProperties

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['client-auth'] = 'false'
otd_setVirtualServerSslProperties(props)

• To view the ciphers that are currently enabled for a Virtual Server, run
the otd_getVirtualServerSslProperties command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_getVirtualServerSslProperties(props)

A comma-separated list of ciphers that are currently enabled is returned in
the cipher property.

• To enable or disable specific ciphers for a virtual server, run
the otd_setVirtualServerSslProperties command and specify the ciphers to be
enabled in the ciphers property.

• The list of supported ciphers will be listed as apart of a property "supported-
ciphers", when you run the otd_getVirtualServerListenerSslProperties command.

Configuring SSL/TLS Between Oracle Traffic Director and Origin
Servers

This section describes how to use SSL/TLS to secure connections between Oracle
Traffic Director instances and origin servers that are Oracle WebLogic Server and
Oracle HTTP Server instances. It contains the following topics:

• About One-Way and Two-Way SSL/TLS

• Configuring One-Way SSL/TLS Between Oracle Traffic Director and Origin
Servers

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-21

• Configuring Two-Way SSL/TLS Between Oracle Traffic Director and Origin
Servers

• Configuring Ciphers On an Origin Server Pool

• Configure SSL Pass through on Oracle Traffic Director

About One-Way and Two-Way SSL/TLS
The connections between Oracle Traffic Director and origin servers in the back end
can be secured using one-way or two-way SSL/TLS.

• One-way SSL/TLS: The SSL/TLS-enabled origin server presents its certificate to
the Oracle Traffic Director instance. The Oracle Traffic Director instance is not
configured to present any certificate to the origin server during the SSL/TLS
handshake.

• Two-way SSL/TLS: The SSL/TLS-enabled origin server presents its certificate to
the Oracle Traffic Director instance. The Oracle Traffic Director instance too
presents its own certificate to the origin server. The origin server verifies the
identity of the Oracle Traffic Director instance before establishing the SSL/TLS
connection. Additionally, either end of the SSL/TLS connection—Oracle Traffic
Director and/or origin servers—can be configured to verify the host name while
exchanging certificates.

Configuring One-Way SSL/TLS Between Oracle Traffic Director and Origin
Servers

1. Import a trusted certificate. For information about importing a certificate as trusted
certificate into Oracle Traffic Director, see Importing a Trusted Certificate.

2. Configure Oracle Traffic Director to verify the host name in the origin server's
certificate by using the command otd_setOriginServerPoolSslProperties, if
required.

Syntax:

otd_setOriginServerPoolSslProperties(props)

Example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'bar'
props['validate-server-cert-hostname'] = 'true'
otd_setOriginServerPoolSslProperties(props)

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-22

Note:

Since Oracle Traffic Director is configured to validate the host name in
the origin server's certificate during the SSL/TLS handshake, the
following must be done to avoid failure. When the origin server presents
its certificate, Oracle Traffic Director cannot validate the host name in the
certificate, and so the SSL/TLS handshake fails.

• Ensure that the server name (CN) in the origin server's certificate
matches the origin server's hostname as specified in the origin-
server pool of the OTD configuration. See Managing Origin-Server
Pools

• Ensure that dynamic discovery is disabled (default setting). See
Configuring an Oracle WebLogic Server Cluster as an Origin-Server
Pool

Configuring Two-Way SSL/TLS
To configure two-way SSL/TLS between Oracle Traffic Director and origin servers, do
the following:

1. Perform the procedure for configuring one-way SSL/TLS, as described in
Configuring One-Way SSL/TLS Between Oracle Traffic Director and Origin
Servers.

2. Obtain a CA-issued server certificate for Oracle Traffic Director, as described in
Obtaining a Certificate.

3. Install the CA-issued server certificate in the Oracle Traffic Director configuration,
as described in Importing a Certificate.

4. Configure the required Oracle Traffic Director route with the certificate that Oracle
Traffic Director should present to the origin server, by using the
otd_setOriginServerPoolSslProperties WLST.

Syntax:

otd_setOriginServerPoolSslProperties(props)

Example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'bar'
props['client-cert-alias'] = 'baz'
otd_setOriginServerPoolSslProperties(props)

5. Export the root certificate of the CA that signed the certificate for the OTD, from
the keystore.

Syntax

svc = getOpssService("KeyStoreService")
svc.exportKeyStoreCertificate(appStripe='<stripe>', name='<keystore>',
password='<password>', alias='<alias>', type='<entrytype>',
filepath='<absolute_file_path>')

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-23

svc is the service command object obtained through a call to
getOpssService(), appstripe is the name of the stripe containing the
keystore, name is the name of the keystore, password is the keystore password

alias is the alias of the entry to be exported

type is the type of keystore entry to be exported. Valid values are Certificate,
Trusted Certificate, and Certificate Chain

filepath is the absolute path of the file where certificate, trusted certificate or
certificate chain is exported

Example:

svc = getOpssService("KeyStoreService")
svc.exportKeyStoreCertificate(appStripe='OTD', name='myconfig', password='',
alias='rootca', keypassword='', type='TrustedCertificate', filepath='/scratch/
rootcert.txt')

For more information about the exportKeyStoreCertificate command, run the
following command:

svc = getOpssService("KeyStoreService")
svc.help('exportKeyStoreCertificate')

6. Import the root certificate that you exported in the previous step into the trust
keystore of the origin servers.

7. Configure the origin servers to require Oracle Traffic Director to present its client
certificate during the SSL/TLS handshake.

• For Oracle WebLogic Server origin servers:

Perform the procedure described in Configure two-way SSL in the Oracle
WebLogic Server Fusion Middleware Control Online Help.

Note:

By default, host name verification is enabled in Oracle WebLogic
Server. For information about disabling host name verification, see
Disable host name verification in the Oracle WebLogic Server Fusion
Middleware Control Online Help.

• For Oracle HTTP Server origin servers:

Add the following directive in the httpd.conf file: SSLVerifyClient require

Configuring Ciphers On an Origin Server Pool
You can configure Ciphers on an Origin Server Pool by using either Fusion
Middleware Control or WLST, as specified in the topics below:

Configuring Ciphers On an Origin Server Pool Using Fusion Middleware Control

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-24

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure ciphers.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Origin Server Pool.

The Origin Server Pools page is displayed. It shows a list of the Origin Server
Pools defined for the configuration.

7. Select the Origin Server Pool for which you want to configure ciphers.

The Origin Server Pool Settings page is displayed.

8. Select Settings > Advanced Settings > SSL/TLS Settings.

The SSL/TLS settings page is displayed. You can select ciphers only if SSL/TLS is
enabled for the Origin Server Pool.

9. In the SSL Settings section, you can manage the Certificates.

10. When you change the value in a field or tab out of a text field that you changed,
the OK button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Cancel button.

11. After making the required changes, click OK.

A message, confirming that the updated listener was saved, is displayed in the
Console Messages pane.

Configuring Ciphers On an Origin Server Pool Using WLST

• To view the ciphers that are currently enabled for a Origin Server Pool, run
the otd_getOriginServerPoolSslProperties command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'bar'
otd_getOriginServerPoolSslProperties(props)

A comma-separated list of ciphers that are currently enabled is returned in
the cipher property.

• To enable or disable specific ciphers for a virtual server, run the
otd_setOriginServerPoolSslProperties command and specify the ciphers to be
enabled in the ciphers property.

• The list of supported ciphers are listed as apart of a property, supported-ciphers,
when you run the otd_getOriginServerPoolSslProperties command.

Configure SSL Termination At a Hardware Load Balancer front-ending
Oracle Traffic Director

This section lists the configuration steps necessary to handle this use case
where customers want to terminate SSL at an external hardware load balancer front
ending Oracle Traffic Director.

In a typical production deployment topology (as shown below), customers terminate
SSL within the (external) hardware load balancer and have only HTTP communication
within the internal load balancer (reverse proxy) and application tiers.

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-25

In this scenario, customers need to perform a few additional steps within the internal
load balancer / reverse proxy solution as well as the application tiers so that any
request redirect can happen correctly. This section will focus on the steps necessary
within the internal load balancer (Oracle Traffic Director) / reverse proxy solution.

1. Configure OTD to pass SSL information.

a. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

b. Click the WebLogic Domain button at the upper left corner of the page.

c. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

d. Select the configuration for which you want to configure ciphers.

e. Click the Traffic Director Configuration In the Common Tasks pane.

f. Select Administration > Virtual Servers.

The Virtual Servers page is displayed, with a list of the Virtual Servers
defined for the configuration.

g. Select the Virtual Server for which you want to configure ciphers.

The Virtual Server Settings page is displayed.

h. Click on Routes tab and select the route that needs to be changed.

i. Select Advanced Settings, and do the following:

• Update Route.

• Disable OTD from rewriting any 'Location' or 'Content-Location' headers
by changing 'Rewrite-headers' to be empty. This is important when SSL
termination is on at an external load balancer.

• Uncheck all SSL related headers sent to the origin server.

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-26

j. After making the required changes, click OK.

A message, confirming that the updated listener was saved, is displayed in the
Console Messages pane.

At the end of the above step, OTD now does NOT rewrite any headers
(typically this happens when the application tier redirects the request to
another location) and can pass the external hardware load balancer provided
SSL information, via the incoming request headers within the incoming
requests to origin servers.

2. Configure F5-BigIP to send SSL information via headers to OTD.

If you choose to terminate SSL within the hardware load balancer such as F5-
BigIp, then you will need to configure this hardware load balancer to explicitly send
a specific header - WL-Proxy-SSL - to OTD and WLS.

This procedure explains how to configure F5-BigIp to send this header (Source: F5
Big IP product documentation).

a. On the Main tab, expand Local Traffic, and then click Profiles. The HTTP
Profiles screen opens.

b. In the upper right portion of the screen, click the Create button. The New
HTTP Profile screen opens.

c. In the Name box, type a name for this profile. In our example, we type bea-ssl.

d. From the Parent Profile list, select http-acceleration if you are using the
WebAccelerator. If you are not using the WebAccelerator, select http-wan-
optimized-compression-caching.

e. In the Request Header Insert row, check the Custom box. In the box, type:
WL-Proxy-SSL:true.

f. In the Redirect Rewrite row, check the Custom box. From the Redirect Rewrite
list, select Match.

g. Modify any of the other settings as applicable for your network. In our
example, we leave the settings at their default levels.

h. Click Finish.

If you are also using OTD to front-end Oracle Access Manager (OAM/IDM),
then you will need to configure your hardware load balancer to additionally
insert header 'IS_SSL:ssl' to the incoming request headers.

Configure WebLogic to receive SSL information from Web Tier / Traffic
Director

When Oracle Traffic Director is terminating a connection, the attribute 'WebLogic Plug-
In Enabled' in WebLogic Server Fusion Middleware Control can be set to 'true'. This
way, Oracle Traffic Director communicates the certificate information to the
applications deployed on the WebLogic Server. An application can then validate for
specific information in the certificate, such as key size or cipher, before allowing the
clients to access the application. This flag can be tuned on either within a specific
WebLogic Managed Server or at WebLogic cluster level. This ensures that WebLogic
is able to appropriately rewrite the headers when SSL termination happens within
Traffic Director / Web Tier.

Chapter 12
Configuring SSL/TLS on Oracle Traffic Director

12-27

1. Open http://<wls-admin-hostname>:7001/console and login with weblogic user/
password.

2. Within WLS Managed Server, 'Configuration->General' settings tab, expand
'Advanced Settings' and scroll down to check "Weblogic Plugin Enabled" to 'Yes'
and click "Save".

3. If you have Weblogic cluster enabled, then we recommend doing this at cluster
level.

Configure SSL Pass through on Oracle Traffic Director
Oracle Traffic Director when configured for TCP load balancing with a TCP proxy and
TCP listeners can be used for SSL pass-through for any TCP based protocol including
HTTPS. In this case, the requests are handled as generic TCP connections and SSL
will be terminated at the origin servers for HTTPS/LDAPS/FTPS/T3S, and so on.

Managing Certificate Revocation Lists
A Certificate Revocation List (CRL) is a list that a CA publishes to inform users about
certificates that the CA has decided to revoke before they expire. CRLs are updated
periodically; the updated CRLs can be downloaded from the CA's website.

To ensure that Oracle Traffic Director servers do not trust server certificates that have
been revoked by CA, you should download the latest CRLs from the CAs' websites
regularly and install them in your Oracle Traffic Director configurations.

You can install CRLs manually. You can also configure Oracle Traffic Director to take
the downloaded CRLs from a specified directory and install them automatically at
specified intervals.

Related Topics

• Installing CRLs Manually Using Fusion Middleware Control

• Update CRLs Automatically

Installing and Deleting CRLs Manually

You can install and delete CRLs manually by using either Fusion Middleware Control
or the WLST.

• Installing CRLs Manualy using Fusion Middleware Control

• Installing and Deleting CRLs Manually Using WLST

Installing CRLs Manually Using Fusion Middleware Control
To install a downloaded CRL by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in `.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

Chapter 12
Managing Certificate Revocation Lists

12-28

4. Select the configuration for which you want to install a certificate.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Security > Certificate Revocation List

A new page displays on screen.

7. Click the Install CRL button.

The Install Certificate Revocation List dialog box is displayed.

8. Specify the location of the downloaded CRL file, and click Install CRL.

• A message, confirming successful installation of the CRL, is displayed in the
Console Messages pane.

• The CRL that you just installed is displayed on the Certificate Authorities page.

Installing and Deleting CRLs Manually Using WLST
• To install a downloaded CRL, run the otd_installCrl command, as shown in the

following example:

props = {}
props['configuration'] = 'foo'
props['file-path'] = '/export/ServerSign.crl'
otd_installCrl(props).

• To view a list of the installed CRLs in a configuration, run the otd_listCrls
command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_listCrls(props)

"Class 1 Public Primary Certification Authority" "Sat Apr 15 16:59:59 PDT 2000"
"VeriSign Class 3 Code Signing 2010 CA" "Mon Aug 29 14:00:03 PDT 2011"
"VeriSign Class 3 Organizational CA" "Sun May 18 13:48:16 PDT 2014"

• To delete a CRL, run the otd_deleteCrl command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['issuer'] = 'CN=GlobalSign ServerSign CA,OU=ServerSign CA,O=GlobalSign nv-
sa,C=BE'
otd_deleteCrl(props)

When you delete a CRL, it is removed from the Oracle Traffic Director
configuration and from the directory in which the downloaded CRL was stored.

For the updated configuration to take effect, you should deploy it to the Oracle Traffic
Director instances by using the activate command.

Update CRLs Automatically
You can configure Oracle Traffic Director to periodically take downloaded CRL files
from a specified directory and install them automatically by using either Fusion
Middleware Control or the WLST.

At the specified interval, Oracle Traffic Director looks for updated CRL files in the
specified directory.

Chapter 12
Managing Certificate Revocation Lists

12-29

• If Oracle Traffic Director detects new CRL files, it installs them in the configuration
and logs a message in the server log.

• If existing CRL files have been changed, Oracle Traffic Director installs the
updated CRL files in the configuration and logs a message in the server log.

• If Oracle Traffic Director detects that previously installed CRL files have been
removed from the directory, it deletes the CRLs from the configuration and logs a
message in the server log.

• If no changes are detected in the CRL directory, Oracle Traffic Director does not
perform any update.

Configuring Oracle Traffic Director to Install CRLs Automatically Using Fusion
Middleware Control

To configure Oracle Traffic Director to install CRLs automatically using the Fusion
Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control

2. Click WebLogic Domain.

3. Select Administration > OTD Configurations.

4. Click the name of the configuration that you want to set up to install CRLs
automatically.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Security > Certificate Revocation List .

7. Click the Install CRL button.

8. Specify the location of the downloaded CRL file, and click Install CRL.

• A message, confirming successful installation of the CRL, is displayed in the
Console Messages pane.

• The CRL that you just installed is displayed on the Certificate Authorities page.

9. Go to the Advanced Settings section of the page.

10. In the CRL Update Event field, enter the absolute path to the directory that
contains the updated CRL files.

11. Click New Event

12. Specify the interval or time of the day at which the CRLs should be updated, and
then click OK.

• A message, confirming creation of the event, is displayed in the Console
Messages pane.

• The new event is displayed in the CRL Update Events list.

– New events are enabled by default. To change the status, select the
Enable/Disable check box.

– To delete an event, click the Delete button.

Chapter 12
Managing Certificate Revocation Lists

12-30

Configuring Oracle Traffic Director to Install CRLs Automatically Using WLST
To configure Oracle Traffic Director to install CRLs automatically using WLST, do the
following:

Schedule an event for Oracle Traffic Director to take the downloaded CRLs from the
specified directory and install them automatically, by using the otd_createEvent
command.

For example, the following command specifies that the CRLs for the configuration foo
should be updated after every 12:00.

props = {}
props['configuration'] = 'foo'
props['event'] = 'event-1'
props['command'] = 'update CRL'
props['time'] = '12:00'
otd_createEvent(props)

See the otd_createEvent command in the WebLogic Scripting Tool Command
Reference for Oracle Traffic Director.

Chapter 12
Managing Certificate Revocation Lists

12-31

13
Managing Logs

Oracle Traffic Director records data about server events such as configuration
changes, instances being started and stopped, errors while processing requests, and
so on in log files. You can use the logs to diagnose server problems, evaluate server
usage patterns, and tune the system for improved performance.
This chapter contains the following sections:

• About the Oracle Traffic Director Logs

• Viewing Logs

• Configuring Log Preferences

• About Log Rotation

• Rotating Logs Manually

• Configuring Oracle Traffic Director to Rotate Logs Automatically

About the Oracle Traffic Director Logs
Each Oracle Traffic Director instance, including the administration server, has two
logs-an access log and a server log. You can enable access and server logs for each
virtual server in the instance.

The default location of the access log and server log for an Oracle Traffic Director
instance is the DOMAIN_HOME/servers/instance-name/logs directory.

In addition to the access and server logs, there are instance logs that are enabled by
default and initialized when the instance is started for the first time.

This section provides an overview of the access and server logs. For information about
changing log settings, including the name and location of log files, see Configuring Log
Preferences.

Access Log
The access log contains information about requests to, and responses from, the
server. The default name of the access log file is access.log.

The following example shows the first three lines in a typical access log:

format=%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%] "%Req->reqpb.clf-request
%" %Req->srvhdrs.clf-status% %Req->srvhdrs.content-length% %Req->vars.ecid%
10.177.243.207 - - [28/Aug/2011:23:28:30 -0700] "GET / HTTP/1.1" 200 4826 -
10.177.243.207 - - [28/Aug/2011:23:28:31 -0700] "GET / HTTP/1.1" 200 916 -

The first line indicates the access log format. The second and third lines are the actual
entries.

You can change the access log format, file name, and location. You can also disable
the access log. See Configuring Log Preferences.

13-1

Server Log
The server log contains data about lifecycle events—server start-up, shut down, and
restart; configuration updates; and so on. It also contains errors and warnings that the
server encountered. The default name of the server log file is server.log.

The following line is an example of an entry in a server log.

[2011-10-03T02:04:59.000-07:00] [net-soa] [NOTIFICATION] [OTD-10358] []
 [pid: 11722] http-listener-1: http://example.com:1904 ready to accept requests

The default server-log level is NOTIFICATION:1, at which only major lifecycle events,
warnings, and errors are logged.

You can change the log level, the log file name, and the log file location. See
Configuring Log Preferences.

Table 13-1 lists the log levels that you can specify for the server log.

Table 13-1 Server Log Levels

Log Level Description

INCIDENT_ERROR:1 A serious problem caused by unknown reasons. You
should contact Oracle for support.

ERROR:1

ERROR:16

ERROR:32

A serious problem that requires your immediate
attention.

WARNING:1 A potential problem that you should review.

NOTIFICATION:1 (default) A major lifecycle event, such as a server being started
or restarted.

TRACE:1

TRACE:16

TRACE:32

Trace or debug information to help you or Oracle
Support diagnose problems with a particular subsystem.

The number following each log level indicates the severity of the logged event on the
scale 1–32. An ERROR:1 message is of higher severity than an ERROR:16 message.

TRACE:32 is the most verbose log level and INCIDENT_ERROR:1 is the least verbose.
Enabling the TRACE log levels might affect performance, because of the high volume of
messages that are logged. Therefore, avoid enabling verbose log levels in production
systems, except in situations when you need more detailed information to debug
issues.

Viewing Logs
After creating logs for virtual servers, you can view the list of logs for each virtual
server. To view a list of logs, run the displayLogs command.

You can view the access and server logs of Oracle Traffic Director instances and
virtual servers by using either Fusion Middleware Control or the WLST.

Chapter 13
Viewing Logs

13-2

Note:

• Besides using WLST or Fusion Middleware Control, you can also use
the standard operating-system commands such as ls and more to list
and view the log files.

• The Log Viewer in Fusion Middleware Control and the displayLogs
CWLST command display only the log entries that currently exist in the
access log file, TCP access log, and error log on the disk. They do not
display items from the access-log buffer (see Configuring Access-Log
Buffer Settings)).

Viewing Logs Using Fusion Middleware Control
View log data for a node, an instance, or virtual server within an instance by using the
Fusion Middleware Control,

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page..

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to view logs.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Logging.

7. The Oracle Traffic Director Log Viewer window is displayed.

8. A list of the Server Log Preferences, Access Log Preference, and TCP Access
Log Preferences Tabs are displayed.

• To view the server log, select the Server Log Preference tab.

• To view the access log, select the Access Log Preference tab.

• To view the TCP access log, select the TCP Access Log Preference tab.

Viewing Logs Using WLST

To view the access log for an instance or a virtual server, run the displayLogs
command.

For example, the following command displays the access-log records for the instance
of the configuration foo.

displayLogs(target="sc:otd_foo_machine1")

Configuring Log Preferences
When you create a configuration, the server and access logs are enabled with certain
default settings. You can change the server log level, file name, and location. You can

Chapter 13
Configuring Log Preferences

13-3

change the access log format, file name, and location. You can also disable the
access log. If you change the location of the server log, you should restart the instance
for the change to take effect.

The log preferences defined in a configuration are applicable to all the virtual servers
in the configuration. At the virtual-server level, you can define the access-log location
and format, and the server-log location.

You can configure log preferences for Oracle Traffic Director instances by using either
Fusion Middleware Control or the WLST as described in the following topics:

Configuring Log Preferences Using Fusion Middleware Control
Configure log preferences for a configuration or a virtual server by using the Fusion
Middleware Control

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure log preferences.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Logging.

7. The Oracle Traffic Director Log Viewer window is displayed.

8. A list of the Server Log Preferences, Access Log Preference, and TCP Access
Log Preferences Tabs are displayed.

• To view the server log, select the Server Log Preference tab.

• To view the access log, select the Access Log Preference tab.

• To view the TCP access log, select the TCP Access Log Preference tab.

9. Specify the parameters that you want to change in the each Tab.

On-screen help and prompts are provided for all of the parameters.

For information about specifying a custom access-log format, see Using the
Custom Access-Log Format in the Configuration File Reference for Oracle Traffic
Director .

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

10. After making the required changes, click Apply.

Configuring Log Preferences Using WLST
• To view the current access-log preferences for a configuration or a virtual server,

run the getConfigurationAccessLogProperties or
otd_getVirtualServerAccessLogProperties commands.

Chapter 13
Configuring Log Preferences

13-4

For example, the following command displays the access-log preferences for the
configuration foo.

props = {}
props['configuration'] = 'foo'
otd_getConfigurationAccessLogProperties(props)

log-file=$DOMAIN_HOME/servers/$INSTANCE_NAME/logs/access.log
format=%Ses->client.ip% - %Req->vars.auth-user% %SYSDATE% "%Req->reqpb.clf-
request%" %Req->srvhdrs.clf-status% %Req->srvhdrs.content-length% %Req->vars.ecid
% %Req->vars.origin-server%
default-access-log-format=%Ses->client.ip% - %Req->vars.auth-user% %SYSDATE%
"%Req->reqpb.clf-request%" %Req->srvhdrs.clf-status% %Req->srvhdrs.content-length
% %Req->vars.ecid% %Req->vars.origin-server%

• To set or change access-log preferences for a configuration or a virtual server, run
the setConfigurationAccessLogProperties or
otd_setVirtualServerAccessLogProperties commands.

For example, the following command changes the location of the access log for
the configuration foo to logs/access.log.

props = {}
props['configuration'] = 'foo'
props['log-file'] = 'logs/access.log'
otd_setConfigurationAccessLogProperties(props)

For information about specifying a custom access-log format, see Using the
Custom Access-Log Format in the Configuration File Reference for Oracle Traffic
Director .

• To disable the access log for a virtual server, run the
otd_disableVirtualServerAccessLog command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_disableVirtualServerAccessLog(props)

• To view the current server-log preferences for a configuration, run the
otd_getLogProperties command.

For example, the following command displays the server-log preferences for the
configuration soa.

props = {}
props['configuration'] = 'foo'
otd_getLogProperties(props)

log-stdout=true
log-stderr=true
log-virtual-server-name=false
create-console=false
log-to-console=true
log-to-syslog=false
log-level=NOTIFICATION:1
log-file=../logs/server.log

• To set or change server-log preferences for a configuration, run the
otd_setLogProperties command. Note that if you change the location of the
server log, you should restart the instance for the change to take effect.

Chapter 13
Configuring Log Preferences

13-5

For example, the following command changes the server-log level for the
configuration foo to TRACE:32.

props = {}
props['configuration'] = 'foo'
props['log-level'] = 'TRACE:32'
otd_setLogProperties(props)

• To view the current access-log preferences for a configuration or a virtual server,
run the getConfigurationAccessLogProperties or
otd_getVirtualServerAccessLogProperties commands.

For example, the following command displays the access-log preferences for the
configuration foo.

props = {}
props['configuration'] = 'foo'
otd_getConfigurationAccessLogProperties(props)

log-file=$DOMAIN_HOME/servers/$INSTANCE_NAME/logs/access.log
format=%Ses->client.ip% - %Req->vars.auth-user% %SYSDATE% "%Req->reqpb.clf-
request%" %Req->srvhdrs.clf-status% %Req->srvhdrs.content-length% %Req->vars.ecid
% %Req->vars.origin-server%
default-access-log-format=%Ses->client.ip% - %Req->vars.auth-user% %SYSDATE%
"%Req->reqpb.clf-request%" %Req->srvhdrs.clf-status% %Req->srvhdrs.content-length
% %Req->vars.ecid% %Req->vars.origin-server%

• To set or change access-log preferences for a configuration or a virtual server, run
the setConfigurationAccessLogProperties or
otd_setVirtualServerAccessLogProperties commands.

For example, the following command changes the location of the access log for
the configuration foo to logs/access.log.

props = {}
props['configuration'] = 'foo'
props['log-file'] = 'logs/access.log'
otd_setConfigurationAccessLogProperties(props)

For information about specifying a custom access-log format, see Using the
Custom Access-Log Format in the Configuration File Reference for Oracle Traffic
Director .

• To disable the access log for a virtual server, run the
otd_disableVirtualServerAccessLog command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_disableVirtualServerAccessLog(props)

• To view the current server-log preferences for a configuration, run the
otd_getLogProperties command.

For example, the following command displays the server-log preferences for the
configuration soa.

props = {}
props['configuration'] = 'foo'
otd_getLogProperties(props)

log-stdout=true

Chapter 13
Configuring Log Preferences

13-6

log-stderr=true
log-virtual-server-name=false
create-console=false
log-to-console=true
log-to-syslog=false
log-level=NOTIFICATION:1
log-file=../logs/server.log

• To set or change server-log preferences for a configuration, run the
otd_setLogProperties command. Note that if you change the location of the
server log, you should restart the instance for the change to take effect.

For example, the following command changes the server-log level for the
configuration foo to TRACE:32.

props = {}
props['configuration'] = 'foo'
props['log-level'] = 'TRACE:32'
otd_setLogProperties(props)

About Log Rotation
You can configure Oracle Traffic Director to automatically rotate (archive) the logs at
specified intervals. You can also rotate the logs manually whenever required.

When the logs are rotated, the old log files are renamed with a suffix indicating the
rotation date (in the yyyymmdd format) and 24-hour time (in the hhmm format). For
example, the file name of the server log archive created at 11 p.m. on August 25, 2017
would be server-201108252300.log.

After log rotation, the server and access logs are re-initialized.

Note:

Rotate Access Log event will also rotate TCP access logs.

Rotating Logs Manually
You can rotate the logs manually whenever require. The server saves the old log files
and marks the saved files with a name that includes the date and time when they were
saved.

You can rotate the server and access logs of Oracle Traffic Director instances
manually by using either Fusion Middleware Control or the WLST as described in the
following topics:

Rotating Logs Manually Using Fusion Middleware Control
Rotate logs by using the Fusion Middleware Control

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control..

Chapter 13
About Log Rotation

13-7

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

4. Select the configuration for which you want to rotate logs.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Log Rotation.

7. If you want Oracle Traffic Director to run a specific command on the rotated log
files, specify the absolute path to the required command in the Archive
Command field

a. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

b. Click the WebLogic Domain button at the upper left corner of the page.

c. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

d. Select the configuration for which you want to rotate logs.

e. Click the Traffic Director Configuration In the Common Tasks pane.

f. Select Administration > Log Rotation.

g. The Oracle Traffic Director Log Rotation window is displayed.

h. If you want Oracle Traffic Director to run a specific command on the rotated
log files, specify the absolute path to the required command in the Archive
Command field

i. For example, if you specify /usr/bin/gzip as the archive command, after
rotating the logs, Oracle Traffic Director compresses the rotated log files
by running the following commands:

$ /usr/bin/gzip access-yyyymmddhhmm.log
$ /usr/bin/gzip server-yyyymmddhhmm.log

ii. Click Rotate Logs Now.

The server and access logs, including any virtual server-specific logs, for
all the instances of the configuration are archived.

To rotate logs for a specific instance of the selected configuration, do the
following:

i. In the navigation pane, select Instances.

The Instances page is displayed.

ii. Click the Rotate Logs button for the required instance.

The server and access logs, including any virtual server-specific logs, for
the selected instance are archived.

A message is displayed in the Console Messages pane confirming that the
logs were rotated.

Rotating Logs Manually Using WLST
To rotating logs manually using WLST, do the following:

Chapter 13
Rotating Logs Manually

13-8

To rotate logs for an instance, run the otd_rotateLog command. For example, the
following command rotates the access and server logs for the otd_foo_machine1
instance.

props = {}
props['instance'] = 'otd_foo_machine1'
otd_rotateLog(props)

Note:

If you want Oracle Traffic Director to run a specific command on the rotated
log files, specify the absolute path to the required command by running the
otd_setLogProperties command and specifying the archive-command
property. as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['archive-command] = '/usr/bin/gzip'
otd_setLogProperties(props)

In this example, after rotating the logs, Oracle Traffic Director compresses
the rotated log files by running the following commands:

$ /usr/bin/gzip access-yyyymmddhhmm.log
$ /usr/bin/gzip server-yyyymmddhhmm.log

Configuring Oracle Traffic Director to Rotate Logs
Automatically

You can configure Oracle Traffic Director to rotate logs automatically at specified times
or intervals by creating log-rotation events.

You can create log-rotation events by using either Fusion Middleware Control or the
WLST as described in the following topics:

Creating Log-Rotation Events Using Fusion Middleware Control
To create log-rotation events by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to rotate logs.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Log Rotation.

7. The Oracle Traffic Director Log Rotation window is displayed.

Chapter 13
Configuring Oracle Traffic Director to Rotate Logs Automatically

13-9

8. If you want Oracle Traffic Director to run a specific command on the rotated log
files, specify the absolute path to the required command in the Archive
Command field.

For example, if you specify /usr/bin/gzip as the archive command, after rotating
the logs, Oracle Traffic Director compresses the rotated log files by running the
following commands:

$ /usr/bin/gzip access-yyyymmddhhmm.log
$ /usr/bin/gzip server-yyyymmddhhmm.log

9. Click Create.

The New Log Rotation Event dialog box is displayed.

10. Specify whether the event is for the server log or the access log.

11. Specify the interval or time of the day at which the log should be updated, and
then click OK.

• A message, confirming creation of the event, is displayed in the Console
Messages pane.

• The new event is displayed in the Log Rotation Events list.

– New events are enabled by default. To change the status, select the
Enable/Disable check box.

– To delete an event, click the Delete button.

Creating Log-Rotation Events Using WLST
To create log-rotation events, run the otd_createEvent command.

For example, the following commands configure Oracle Traffic Director to rotate the
access logs and server logs for all instances of the configuration foo at 12pm.

props = {}
props['configuration'] = 'foo'
props['event'] = 'event-1'
props['command'] = 'rotate-log'
props['time'] = '12:00'
otd_createEvent(props)

props = {}
props['configuration'] = 'foo'
props['event'] = 'event-1'
props['command'] = 'rotate-access-log'
props['time'] = '12:00'
otd_createEvent(props)

Chapter 13
Configuring Oracle Traffic Director to Rotate Logs Automatically

13-10

14
Managing Event Notifications

Oracle Traffic Director allows users to subscribe to notifications about events that it
detects. To receive such notifications, you can provide an HTTP endpoint URL of your
choice. Oracle Traffic Director sends information about the events that it has detected
through a HTTP POST message to this URL.
The HTTP POST request contains event information in JSON format. Oracle Traffic
Director supports notifications for the following two events:

• Origin server status change event

• Request limit exceeded event

Origin server status change event
Learn about how Oracle Traffic Director sends notifications to configured HTTP
endpoint URL when it detects a change in the origin server status.

The origin server status change event is said to occur when one of the two events
occur:

• OTD marks the origin server as offline.

• OTD marks the origin server back as online from offline.

A notification message is sent when there is a status change of any origin server that
is part of the configuration. You cannot receive notifications for a particular origin
server of interest while subscribing to the notifications.

Multiple notifications can be sent when there is a change in the status of an origin
server that is part of multiple origin server pools or multiple Oracle Traffic Director
instances.

Subscribing to origin server status event using Fusion Middleware
Control

1. Log in to Fusion Middleware Control for Traffic Director, as described in Graphical
User Interface-Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left (or) right corner of the page.

3. Select Administration > OTD Configurations.

A list of available OTD Configurations is displayed.

Select a configuration for which Event Subscriptions will be enabled.

4. Select Configuration > Advanced Configuration > Event Subscriptions.

The Events Subscriptions page is displayed.

5. In the Common Tasks pane, click Create under Event Subscription.

The New Event Subscription wizard opens.

14-1

Follow the on-screen prompts to complete the creation of the Event Subscription
by using the details- Name of the subscription, URL, and so on - that you decided
earlier.

6. Click OK on the Results screen.

After the Event Subscription is created, the Results screen of the New Event
Subscription wizard displays a message confirming the successful creation of the
Event Subscription.

Subscribing to origin server status change event Using WLST
• Creating an event subscription

To create an event subscription, run the otd_createEventSubscription
command, as shown in the example.

props = {}
props['configuration'] = 'foo'
props['event-subscription'] = 'bar'
props['url'] = 'http://example.com:7777/subscriber'
otd_createEventSubscription(props)

The first command subscribes to the URL: http://example.com:7777/subscriber

• Viewing a list of event subscriptions

To view a list of subscribed event subscriptions, run the
otd_listEventSubscriptions command.

For example, to display the event subscriptions scheduled for instances of the
configuration:

props = {}
props['configuration'] = 'foo'
otd_listEventSubscriptions(props)

• Deleting an event subscription

To delete an event subscription, run the otd_deleteEventSubscription
command, as shown in the example.

props = {}
props['configuration'] = 'foo'
props['event-subscription'] = 'bar'
otd_deleteEventSubscription(props)

• Setting an event subscription properties

When you create an event subscription, it is enabled automatically.

The command otd_setEventSubscriptionProperties with 'enabled' as 'false' can
be used to disable event subscriptions.

To disable an event, set the enabled property to false.

props = {}
props['configuration'] = 'foo'
props['event-subscription'] = 'bar'
props['enabled'] = 'true'
otd_setEventSubscriptionProperties(props)

• Getting an event subscription properties

Chapter 14
Origin server status change event

14-2

The command otd_getEventSubscriptionProperties with 'enabled' as 'true' must be
used to get the event subscription properties.

To enable an event, set the enabled property to true:

props = {}
props['configuration'] = 'foo'
props['event-subscription'] = 'bar'
otd_getEventSubscriptionProperties(props)

To know the details of the command and its each parameter/option, use help, as
shown below:

 help('otd_createEventSubscription')

Notification format
When a notification to a subscribed URL is sent, the Content-type header value is set
to application/json. When an event occurs, the OTD sends HTTP POST to the
endpoint with a message body that contains a JSON document with the name/value
pairs as described in this section.

Table 14-1 JSON properties common to all events

JSON property Description

event-type Type of the event. Value: origin-server-status-change.

domain-name Name of the domain where Oracle Traffic Director instance is
configured.

instance-name Name of the Oracle Traffic Director instance.

timestamp The time when the event occurred and detected by OTD.

Table 14-2 JSON property specific to origin-server-status-change event

JSON property Description

pool-name Origin server pool name to which the origin server is associated
with.

host Origin server host for which the status being sent.

port Origin server port.

status Online or offline.

reason Reason for Oracle Traffic Director marking the origin server as
offline or online.

protocol Health check protocol used.

JSON Schema
{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "id":"",
 "type":"object",
 "properties":{
 "v1.0":{
 "id":"/v1.0",

Chapter 14
Origin server status change event

14-3

 "type":"object",
 "properties":{
 "event-type":{
 "id":"/v1.0/event-type",
 "type":"string"
 },
 "domain-name":{
 "id":"/v1.0/domain-name",
 "type":"string"
 },
 "instance-name":{
 "id":"/v1.0/instance-name",
 "type":"string"
 },
 "origin-server":{
 "id":"/v1.0/origin-server",
 "type":"object",
 "properties":{
 "pool-name":{
 "id":"/v1.0/origin-server/pool-name",
 "type":"string"
 },
 "host":{
 "id":"/v1.0/origin-server/host",
 "type":"string"
 },
 "port":{
 "id":"/v1.0/origin-server/port",
 "type":"integer"
 },
 "health-check":{
 "id":"/v1.0/origin-server/health-check",
 "type":"object",
 "properties":{
 "protocol":{
 "id":"/v1.0/origin-server/health-check/protocol",
 "type":"string"
 },
 "status":{
 "id":"/v1.0/origin-server/health-check/status",
 "type":"string"
 },
 "reason":{
 "id":"/v1.0/origin-server/health-check/reason",
 "type":"string"
 }
 },
 "required":[
 "status"
]
 }
 },
 "required":[
 "host",
 "port",
 "health-check"
]
 },
 "timestamp":{
 "id":"/v1.0/timestamp",
 "type":"string"

Chapter 14
Origin server status change event

14-4

 }
 },
 "required":[
 "event-type",
 "domain-name",
 "instance-name",
 "origin-server",
 "timestamp"
]
 }
 },
 "required":[
 "v1.0"
]
}

Example
Content-Type: application/json

Content:

{
 "v1.0":{
 "event-type":"origin-server-status-change",
 "domain-name":"base_domain",
 "instance-name":"otd1",
 "origin-server":{
 "pool-name":"testpool",
 "host":"slc06cdz",
 "port":7777,
 "health-check":{
 "protocol":"HTTP",
 "status":"offline",
 "reason":"Server not reachable"
 }
 },
 "timestamp":"Mon, 18 Apr 2016 04:34:23 -07:00"
 }
}

Error handling
When a subscriber responds with an error code, Oracle Traffic Director:

• Logs the following warning message to the server log:

– Event Dispatcher: response code <http_response_code> received from
subscriber <subscription_url>

– Event Dispatcher: unable to post event <json_notification_data> to subscriber
<subscription_url>

– Discards the event.

When a subscriber is not reachable, Oracle Traffic Director:

• Tries re posting the event three times

• Logs the following warning message to the server log:

Chapter 14
Origin server status change event

14-5

– Event Dispatcher: unable to receive response from subscriber
<subscription_url>

– Event Dispatcher: unable to post event <json_notification_data> to subscriber
<subscription_url>

• Discards the event.

Request limit exceeded event
A request limit exceeded event occurs when a request limit configured for a virtual
server is exceeded. OTD checks if a request limit was exceeded in the specified
interval of time, event-notification-interval and sends a notification message to the
configured HTTP endpoint.

The event-notification-interval is a configurable parameter set by the user for a
request limit, while subscribing to notifications from it. A notification message is sent
for every request limit that exceeds the configured request limit. A request limit is
identified using the name provided while configuring the request limit.

If the request limit uses the monitor attribute to monitor requests, the notification
message will contain a JSON array of all monitors that exceeded the thresholds.

When the virtual server exceeds the specified request limit, OTD rejects all
subsequent requests that match the monitor attribute. The notification message will
include information on the number of requests rejected for each monitor.

Note:

When a request limit is exceeded, OTD does not send a notification
immediately.

When there is a high burst of traffic, request limit may exceed multiple times
at close intervals of time. If OTD sends a notification message every time the
request limit exceeds, there would be many notification messages. To avoid
this, OTD checks if a request limit was exceeded in an interval of time and
sends a notification message if it detects that the limit was exceeded.

Subscribing to Request Limit Exceeded Event Using WLST
• Create an event subscription. See Subscribing to origin server status change

event Using WLST.

• Enabling request limit exceeded event

To enable events for a specified request limit, run the
otd_enableRequestLimitEvents command, as shown in the example.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['request-limit'] = 'request-limit-1'
props['event-notification-interval'] = '60'
otd_enableRequestLimitEvents(props)

• Disabling request limit exceeded event

Chapter 14
Request limit exceeded event

14-6

To disable events for a specified request limit, run the
otd_disableRequestLimitEvents command, as shown in the example.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['request-limit'] = 'request-limit-1'
otd_disableRequestLimitEvents(props)

• Viewing request limit exceeded event properties

To view the properties of a specified request limit, run the
otd_getRequestLimitProperties command.

Notification format
POST messages sent to the endpoint has a message body that contains a JSON
document with the name/value pairs described in this section.

Table 14-3 JSON properties common to all events

JSON property Description

event-type Type of the event. Value: request-limit-exceeded.

domain-name Name of the domain where Oracle Traffic Director instance is
configured.

instance-name Name of the Oracle Traffic Director instance.

Table 14-4 JSON properties specific to notifications from request-limit-
exceeded

JSON property Description

time-begin Timestamp that indicates the begin of the event notification
interval.

time-end Timestamp that indicates the end of the event notification
interval.

virtual-server Name of the virtual server for which request-limiting is enabled.

request-limit-rule Identifies the request limit rule that generated this notification
message.

monitor Value of the request attribute that is being monitored.

For example, if monitor=$ip is specified in the -request-limit rule,
the JSON property monitor will be set to the value of the
"$ip"variable, the Client IP address.

If the monitor is not specified in the request-limit rule, this
property will be set to unnamed.

total-queue-overflows Total requests rejected due to queue overflow.

total-queue-timeouts Total requests rejected due to timeout while waiting in the
queue.

Chapter 14
Request limit exceeded event

14-7

JSON schema
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "/",
 "type": "object",
 "properties": {
 "v1.0": {
 "id": "v1.0",
 "type": "object",
 "properties": {
 "event-type": {
 "id": "event-type",
 "type": "string"
 },
 "domain-name": {
 "id": "domain-name",
 "type": "string"
 },
 "instance-name": {
 "id": "instance-name",
 "type": "string"
 },
 "event-notification-interval": {
 "id": "event-notification-interval",
 "type": "object",
 "properties": {
 "time-begin": {
 "id": "time-begin",
 "type": "string"
 },
 "time-end": {
 "id": "time-end",
 "type": "string"
 }
 }
 },
 "virtual-server": {
 "id": "virtual-server",
 "type": "string"
 },
 "request-limit-rule": {
 "id": "request-limit-rule",
 "type": "string"
 },
 "monitors": {
 "id": "monitors",
 "type": "array",
 "items": {
 "id": "0",
 "type": "object",
 "properties": {
 "monitor": {
 "id": "monitor",
 "type": "string"
 },
 "total-rejects": {
 "id": "total-rejects",
 "type": "object",

Chapter 14
Request limit exceeded event

14-8

 "properties": {
 "total-queue-overflows": {
 "id": "total-queue-overflows",
 "type": "integer"
 },
 "total-queue-timeouts": {
 "id": "total-queue-timeouts",
 "type": "integer"
 }
 }
 }
 }
 }
 }
 },
 "required": [
 "event-type",
 "domain-name",
 "instance-name",
 "event-notification-interval",
 "virtual-server",
 "request-limit-rule",
 "monitors"
]
 }
 },
 "required": [
 "v1.0"
]
}

Example
{
"v1.0": {
 "event-type": "request-limit-exceeded",
 "domain-name": "base domain",
 "instance-name": "otd1",
 "event-notification-interval": {
 "time-begin": "Mon, 18 Apr 2016 04:34:23 -07:00",
 "time-end": "Mon, 18 Apr 2016 04:35:23 -07:00"
 },
 "virtual-server": "1.example.com",
 "request-limit-rule": "request-limit-1",
 "monitors": [
 {
 "monitor": "16.181.76.89",
 "total-rejects": {
 "total-queue-overflows": 2,
 "total-queue-timeouts": 3
 }
 }
]
}
}

Chapter 14
Request limit exceeded event

14-9

15
Managing Failover Groups

Learn about how to configure the Oracle Traffic Director instances in a failover group
in the active-passive and active-active modes.

This section contains the following topics:

• Creating Failover Groups

• Managing Failover Groups

Creating Failover Groups
Learn how to implement a high available pair of Oracle Traffic Director instances by
creating failover groups.

Before You Begin

• Decide the unique VIP address that you want to assign to the failover group.

– The VIP addresses should belong to the same subnet as that of the nodes in
the failover group.

– The VIP addresses must be accessible to clients.

• Identify the instances that would be part of the failover group. The nodes should
be in the same subnet.

• Identify the network interface for each node.

A network interface, on the node where instance is running, upon which the VIP
must be managed. The first network interface that results in a match is used as the
network interface for the VIP.

For this comparison, depending on whether the VIP specified for the failover group
is an IPv4 or IPv6 address, the administration server considers only those network
interfaces on the host that are configured with an IPv4 or IPv6 address,
respectively.

• You can bind to a VIP IP address within the HTTP listener by performing a system
configuration that allows you to bind to a non-existing address, as a sort of forward
binding. Perform one of the following system configurations:

echo 1 > /proc/sys/net/ipv4/ip_nonlocal_bind

or,

sysctl net.ipv4.ip_nonlocal_bind=1 (change in /etc/sysctl.conf to keep
after a reboot)

Make sure that the IP addresses of the listeners in the configuration for which you
want to create a failover group are either an asterisk (*) or the same address as
the VIP. Otherwise, requests sent to the VIP will not be routed to the virtual
servers.

• Ensure that the router ID for each failover group is unique.

15-1

If the router ID is not specified, the default router ID will be a random number
between 1 and 255.

Creating Failover Groups Using Fusion Middleware Control
To create a failover group by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control..

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to create a failover group.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Failover Groups.

The Failover Groups page is displayed. It shows a list of the Failover Groups
defined for the configuration.

7. Click Create.

The New Failover Group wizard is displayed.

8. Follow the on-screen prompts to complete creation of the failover group by using
the details—virtual IP address, network interface, primary, backup instances, and
so on—that you decided earlier.

After the failover group is created, the Results screen of the New Failover Group
wizard displays a message confirming successful creation of the failover group.

9. Click Close on the Results screen.

The details of the failover group that you just created are displayed on the Failover
Groups page.

Creating Failover Groups Using WLST
To create a failover group, run the otd_createFailoverGroup command.

For example, the following command creates an active-passive failover group with the
following details:

• Configuration: ha

• Primary instance: 1.example.com

• Backup instance: 2.example.com

• Virtual IP address: 192.0.2.1

props = {}
props['configuration'] = 'ha'
props['virtual-ip'] = '192.0.2.1'
props['primary-instance'] = '1.example.com'
props['backup-instance'] = '2.example.com'
props['primary-nic'] = 'eth0'
props['backup-nic'] = 'eth0'

Chapter 15
Creating Failover Groups

15-2

props['failover-type'] = 'active-passive'
otd_createFailoverGroup(props)

Note:

After creating a failover group you must run otd_startFailover on those
machines as a root user. This is to manually start the failover. If this
command is not executed, failover will not start and there will be no high
availability.

For example, the following command creates an active-active failover group with the
following details:

• Configuration: ha

• Primary instance: 1.example.com

• Backup instance: 2.example.com

• Virtual IP address: 192.0.2.1

props = {}
props['configuration'] = 'ha'
props['virtual-ip'] = '192.0.2.1'
props['failover-type'] = 'active-active'
otd_createFailoverGroup(props)

Managing Failover Groups
After creating failover groups, you can list them, view their settings, change the
primary instance for a failover group, switch the primary and backup instances, and
delete them.

To manage the failover groups, the failover daemon needs to run as a privileged user
(typically root), otd_startFailover command should be executed as a privileged user
on the machines on which the primary and backup instances of the failover group run.
Similarly to stop the daemon, you should run the otd_stopFailover. The configuration
parameters for the keepalived daemon are stored in a file named keepalived.conf in
the config directory of each instance that is part of the failover group. See
otd_startFailover and otd_stopFailover commands in the WebLogic Scripting Tool
Command Reference for Oracle Traffic Director.

You can view, modify, and delete failover groups by using either Fusion Middleware
Control or the WLST. Note that to change the VIP or any property of a failover group,
you should delete the failover group and create it afresh.

Managing Failover Groups Using Fusion Middleware Control

To view, modify, and delete failover groups by using the Fusion Middleware Control,
do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

Chapter 15
Managing Failover Groups

15-3

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to manage failover groups.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Failover Groups.

7. The Failover Groups page is displayed. It shows a list of the Failover Groups
defined for the configuration.

• To view the properties of a failover group, click its virtual IP.

• To switch the hosts for the primary and backup nodes, click the Toggle
Primary button. In the resulting dialog box, click OK.

• To delete a failover group, click the Delete button. In the resulting dialog box,
click OK.

8. If you add or remove a failover instance from an active-active failover group,
ensure to stop and start the failover group on all nodes to see the changes.

Note:

• If you want to assign a different primary or backup instance in a failover
group, you should create the failover group afresh.

• There can be a maximum of 255 failover groups across configurations.

Managing Failover Groups Using WLST

For example, run the otd_listFailoverGroups command, for list of failover groups:

props = {}
props['configuration'] = 'ha'
otd_listFailoverGroups(props)

For example, run the otd_toggleFailovergroupPrimary command, for toggle a
failover group:

props = {}
props['configuration'] = 'ha'
props['virtual-ip'] = '10.128.67.44'
otd_toggleFailovergroupPrimary(props)

For example, run the otd_getFailoverGroupProperties command, for change
properties of a failover group:

props = {}
props['configuration'] = 'ha'
props['primary-instance'] = '1.example.com'
otd_getFailoverGroupProperties(props)

For example, run the otd_deleteFailoverGroup command, for deleting a failover
group:

props = {}
props['configuration'] = 'ha'

Chapter 15
Managing Failover Groups

15-4

props['virtual-ip'] = '10.128.67.44'
otd_deleteFailoverGroup(props)

WLST commands specific to active-active HA

For example, run the otd_addFailoverInstance command, for adding a failover
instance:

props = {}
props['configuration'] = 'ha'
props['virtual-ip'] = '10.128.67.44'
props['instance'] = '1.example.com'
props['nic'] = 'eth0'
otd_addFailoverInstance(props)

For example, run the otd_removeFailoverInstance command, for removing a failover
instance:

props = {}
props['configuration'] = 'ha'
props['virtual-ip'] = '10.128.67.44'
props['instance'] = '1.example.com'
otd_removeFailoverInstance(props)

For example, run the otd_listFailoverInstances command, for the list of failover
instances:

props = {}
props['configuration'] = 'ha'
props['virtual-ip'] = '10.128.67.44'
otd_listFailoverInstances(props)

For example, run the otd_setFailoverInstanceOrder command, for changing the
failover instance order.

props = {}
props['configuration'] = 'ha'
props['virtual-ip'] = '10.128.67.44'
props['instances'] = '1.example.com, 2.example.com'
otd_setFailoverInstanceOrder(props)

Chapter 15
Managing Failover Groups

15-5

16
Monitoring Oracle Traffic Director
Instances

Learn about the monitoring capabilities of Oracle Traffic Director.
Oracle Traffic Director records statistics about server activity at different levels-
instances, virtual servers, listeners, connections, and origin servers. For example, for
each instance of a configuration, Oracle Traffic Director collects statistics about the
duration for which the instance has been running, number of requests processed,
volume of data received and sent, number of responses that the instance sent of each
type, average load, and so on. Similarly for each virtual server in an instance, Oracle
Traffic Director collects statistics about the number of requests processed, volume of
data received and sent, and the number of responses of each type. For a full list of the
metrics that Oracle Traffic Director collects, see Metrics Tracked by Oracle Traffic
Director.

This chapter contains the following sections:

• Methods for Monitoring Oracle Traffic Director Instances

• Configuring Statistics-Collection Settings

• Configuring URI Access to Statistics Reports

• Viewing Statistics Using WLST

• Viewing stats-xml and perfdump Reports Through a Browser

• Monitoring Using SNMP

• Monitoring Using DMS

• Sample XML (stats-xml) Report

• Sample Plain-Text (perfdump) Report

Methods for Monitoring Oracle Traffic Director Instances
Table 16-1 summarizes the methods that you can use to view statistical data about an
instance of a configuration and about individual virtual servers within an instance.

16-1

Table 16-1 Methods for Monitoring Oracle Traffic Director Instances

Monitoring Method Requirements Advantages

WLST
• View runtime statistics for

various subsystems for an
instance:

To view in plain-text format:
otd_getPerfDump

To view in XML format:
otd_getStatsXml

• Display runtime statistics
about all instances, or a
specific instance, from metric
tables collected by DMS:
displayMetricTables

See Viewing Statistics using
WLST, and Monitoring Using DMS.

Administration server
must be running.

Enabled by default.

Accessible even when request-
processing threads are hanging.

Browser
• Detailed statistics for a specific

virtual server in XML format
• Summary report for a specific

virtual server in plain-text
format

See Viewing stats-xml and
perfdump Reports Through a
Browser.

Must be enabled and
configured explicitly.

See Configuring URI
Access to Statistics
Reports.

The administration server need
not be running. It is sufficient if
the instance is running.

SNMP Must be configured
explicitly.

See Monitoring Using
SNMP.

Statistics available through
network management systems.

Configuring Statistics-Collection Settings
When you create an Oracle Traffic Director configuration, statistics collection is
enabled by default, with five seconds as the update interval. You can disable, enable,
and configure statistics collection

Configuring Statistics-Collection Settings Using Fusion Middleware Control

To configure statistics-collection settings by using the Fusion Middleware Control, do
the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure statistics-collection
settings.

Chapter 16
Configuring Statistics-Collection Settings

16-2

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > virtual server.

The Virtual Servers page is displayed. It shows a list of the virtual servers defined
for the configuration.

7. Select the name of the virtual server you want to configure.

8. Select Settings > Monitoring.

9. Go to the Statistics Collection section of the page.

10. Specify the parameters that you want to change.

Note:

When deciding the statistics-collection interval, remember that frequent
collection of statistics affects performance.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

11. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Configuring Statistics-Collection Settings Using WLST

• To view the current statistics-collection properties, run the
otd_getStatsProperties command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_getStatsProperties(props)

• To configure statistics-collection properties, run the otd_setStatsProperties
command.

For example, the following command changes the interval at which statistics are
updated for the configuration to 10 seconds.

props = {}
props['configuration'] = 'foo'
props['interval'] = '10'
otd_setStatsProperties(props)

Configuring URI Access to Statistics Reports
As described in Methods for Monitoring Oracle Traffic Director Instances, in addition to
viewing activity statistics by using WLST, you can view the following reports through a
URI.

• stats-xml: Detailed statistics in XML format. For a sample, see Sample XML
(stats-xml) Report.

Chapter 16
Configuring URI Access to Statistics Reports

16-3

• perfdump: A summary report in plain-text format containing a subset of the data in
the stats-xml report. For a sample, see Sample Plain-Text (perfdump) Report.
Note that though you enable the perf-dump report at the virtual-server level, the
data in the report is aggregated at the instance level.

Relative Advantages of URI-Based and WLST Access to Statistics Reports

• The administration server need not be running for users to access the stats-xml
and perfdump reports through URIs. When compared with accessing statistics by
using WLST, accessing URI-based reports involves lower processing overhead.

• Access to statistics by using WLST is enabled by default, but to view statistics
through the browser, you should explicitly enable URI-based reporting and specify
the URIs at which users can access the reports.

You can configure URI-based reporting of statistics by using either Fusion Middleware
Control or the WLST.

Configuring URI Access to Statistics Using Fusion Middleware Control

To configure URI-based reporting by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure URI-based reports.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > virtual server.

The Virtual Servers page is displayed. It shows a list of the virtual servers defined
for the configuration.

7. Select the name of the virtual server you want to configure.

8. Select Settings > Monitoring.

9. Select Settings > Advanced Settings

10. Go to the Monitoring section of the page.

• To enable URI-based reporting in XML format, select the XML Report check
box and specify a valid URI.

• To enable URI-based reporting in plain-text format, select the Plain Text
Report check box and specify a valid URI for the report.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

11. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Chapter 16
Configuring URI Access to Statistics Reports

16-4

Configuring URI Access to Statistics in XML Format Using WLST

• To view the current XML reporting settings, run the otd_getStatsXmlProperties
command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_getStatsXmlProperties(props)

enabled=false
uri=/stats-xml

• To enable and configure URI-based XML reporting, run the otd_enableStatsXml
command.

For example, the following command enables URI-based statistics reporting in
XML format for the virtual server bar in the configuration foo and specifies that the
report should be available at the URI /stats.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['uri'] = '/stats'
otd_enableStatsXml(props)

• To disable URI-based XML reporting, run the otd_disableStatsXml command, as
shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_disableStatsXml(props)

Configuring URI Access to Statistics in Plain-Text Format Using WLST

• To view the plain-text reporting settings, run the otd_getPerfDumpProperties
command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_getPerfDumpProperties(props)

• To enable and configure the plain-text reporting, run the otd_enablePerfDump
command.

For example, the following command enables URI-based statistics reporting in
plain-text format for the virtual server bar in the configuration foo and specifies
that the report should be available at the URI /perf.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['uri'] = '/perf'
otd_enablePerfDump(props)

• To disable URI-based plain-text reporting, run the otd_disablePerfDump
command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_disablePerfDump(props)

Chapter 16
Configuring URI Access to Statistics Reports

16-5

Viewing Statistics Using WLST
By using WLST, you can view statistics for one or all instances of a configuration.

• To view detailed statistics for an instance in XML format, run the otd_getStatsXml
command, as shown in the following example:

props = {}
props['instance'] = 'otd_foo_machine1'
otd_getStatsXml(props)

For a sample of the report, see Sample XML (stats-xml) Report.

• To view a summary of the statistics for an instance in plain-text format, run the
otd_getPerfDump command, as shown in the following example:

props = {}
props['instance'] = 'otd_foo_machine1'
otd_getPerfDump(props)

For a sample of the report, see Sample Plain-Text (perfdump) Report.

• To view statistics for one or all instances of a configuration using metric tables
collected from Oracle Dynamic Monitoring Service (DMS) for Oracle Traffic
Director, run the displayMetricTables command, as shown in the following
examples. For more details about Oracle Dynamic Monitoring Service (DMS), see
Monitoring Using DMS

To view metrics for all Oracle Traffic Director instances:

displayMetricTables('OTD_*')

To view origin server metrics for all instances:

displayMetricTables('OTD_OriginServer')

To get a list of metric tables for a specific instance:

displayMetricTableNames(servers='/OTD/otd_test_myserver.example.com')

To view all metrics for a specific instance:

displayMetricTables(servers='/OTD/otd_test_myserver.example.com')

To view instance metrics for a specific instance:

displayMetricTables('OTD_Instance', servers='/OTD/otd_test_myserver.example.com')

Viewing stats-xml and perfdump Reports Through a Browser
If you enable URI access to statistics as described in Configuring URI Access to
Statistics Reports, you can access the stats-xml and perfdump reports through a
browser by using the following URL:

http://host:port/uri

host and port are the IP address (or host name) and port number of the virtual server
for which you enabled URI access to statistics. uri is the location that you specified
while enabling URI access. Note that if a virtual server is associated with multiple

Chapter 16
Viewing Statistics Using WLST

16-6

listeners, you can use the address host:port of any of the listeners to access the URI-
based reports.

• For example, if /perfdump is the configured URI for the plain-text report for the
virtual server soa.example.com:1904, the URL that you should use to access the
report would be the following:

http://soa.example.com:1904/perfdump

In the URL, you can also specify the interval, in seconds, after which the browser
should refresh the perfdump report automatically, as shown in the following
example:

http://soa.example.com:1904/perfdump?refresh=5

• Similarly, if /stats-xml is the configured URI for the XML report for the virtual
server soa.example.com:1904, the URL that you should use to access the XML
report would be the following:

http://soa.example.com:1904/stats-xml

You can limit the data that the XML report provides by specifying a URL query
string indicating the elements that should not be displayed. If you do not include a
query string, all the elements in the XML report are displayed.

For example, the query string specified in the following URL suppresses display of
the virtual-server and server-pool elements in the XML report.

http://soa.example.com:1904/stats-xml?virtual-server=0&server-pool=0

The following list shows the hierarchy of elements in the statistics XML report.
Note that when you opt to suppress an element in the report, the child elements of
that element are also suppressed.

stats
 server
 process
 connection-queue
 thread-pool
 dns
 keepalive
 thread
 request-bucket
 profile-bucket
 compression
 decompression
 origin-server-pool
 origin-server
 websocket
 service-queue
 virtual-server
 request-bucket
 websocket
 webapp-firewall
 profile-bucket
 route
 request-bucket
 cpu-info
 tcp-proxy
 cache
 failover
 partition

Chapter 16
Viewing stats-xml and perfdump Reports Through a Browser

16-7

 request-bucket
 ssl-session-cache

Monitoring Using SNMP
Simple Network Management Protocol (SNMP) is a standard that enables
management of devices in a network from a network management application running
on a remote system. The network management application might, for example, show
which servers in the network are running or stopped at any point in time, and the
number and type of error messages received.

Oracle Traffic Director instances are monitored using SNMP, by default. To be able to
do this, you should do the following:

• Configure the instances to support monitoring through SNMP.

• Configure the SNMP subagent on the nodes.

• Start the SNMP subagent on the nodes.

This section contains the following topics:

• Configuring Oracle Traffic Director Instances for SNMP Support

• Configuring the SNMP Subagent

• Configuring SNMP v3 User

• Starting and Stopping the SNMP Subagent

• Viewing Statistics Using snmpwalk

Configuring Oracle Traffic Director Instances for SNMP Support
When you create a configuration, support for monitoring the instances through SNMP
is enabled by default. You can disable, enable, and configure support for SNMP
monitoring by using either Fusion Middleware Control or the WLST.

Configuring SNMP Support Using Fusion Middleware Control

To enable SNMP support for a configuration by using the Fusion Middleware Control,
do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to enable SNMP support.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Advanced Configuration > Settings.

The Settings page is displayed, scroll down It shows a SNMP settings.

7. In the SNMP section of the page, select the SNMP check box Enabled. The other
parameters in the section are optional.

On-screen help and prompts are provided for all of the parameters.

Chapter 16
Monitoring Using SNMP

16-8

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

8. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Configuring SNMP Support Using WLST

To enable SNMP using the WLST commands, do the following:

• To view the current SNMP settings for a configuration, run the
otd_getSnmpProperties command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_getSnmpProperties(props)

• SNMP is enabled by default. To enable or disable SNMP support, run the
otd_setSnmpProperties command, as shown in the following example:

props = {}
props['enabled'] = 'true'
props['organization'] = 'bar'
otd_setSnmpProperties(props)

Configuring the SNMP Subagent
When you create an Oracle Traffic Director node, an SNMP subagent is created
automatically. The SNMP subagent collects information about the instances running
on the node.

The SNMP subagent's configuration settings, including the frequency at which the
subagent updates statistics, the duration after which cached statistics are timed out,
and the port through which the subagent process communicates, are stored in the
following file:

• SNMP configuration file can be found at: <domain-home>/config/
fmwconfig/components/OTD/snmp/config/snmpagt.conf

• SNMP persistent file can be found at: <domain-home>/config/fmwconfig/
components/OTD/snmp/store/snmpagt.conf

You can configure the SNMP subagent's settings by editing the snmpagt.conf file.
SNMP Subagent Configuration Parameters lists the key SNMP subagent parameters.

Table 16-2 SNMP Subagent Configuration Parameters

Parameter in
smnpagt.conf

Description Default Value

agentAddress Ports at which the SNMP subagent receives
requests

11161

statInterval Statistics update frequency (seconds) 5

cacheTimeOut Cache timeout period (seconds) 5

Chapter 16
Monitoring Using SNMP

16-9

The syntax for entries in snmpagt.conf should be as described in the documentation
for snmpd.conf at: http://www.net-snmp.org/docs/man/snmpd.conf.html.

After configuring the SNMP subagent on a node, you should start it. The subagent
then begins collecting statistics about the Oracle Traffic Director instances on the
node.

SNMP v3 User configuration
On a system with fresh Oracle Traffic Director installation, SNMP v3 users and access
control are not configured by default. A user must be added and access control
configured before the server status can be queried via SNMP.

Adding an SNMP v3 user

1. Stop the SNMP agent and add an SNMP v3 user by modifying the SNMP
configuration files manually. Optionally enable encryption of all requests and
responses.

• Persistent file: <domain-home>/config/fmwconfig/components/OTD/
snmp/store/ snmpagt.conf

A user can be added by adding an entry in the following format:

createUser <user-name> SHA <auth-password> [AES <crypt-password>]

SHA is the encryption for authentication password

DES and AES are the encryption protocols

privpassphrase is the password to encrypt the snmp request and response

• Examples

– Create user 'user1' and specify password used for authentication

createUser user1 SHA user1pwd

– Create user 'user2' and encrypt all requests and responses.

createUser user2 SHA user2pwd AES

– Create user 'user3' and encrypt all requests and responses with separate
crypt password

createUser user3 SHA user3pwd AES cryptpwd

• Configuration file: <domain-home>/config/fmwconfig/components/OTD/
snmp/config /snmpagt.conf

Access permissions for a SNMP user can be specified by adding an entry in
the following format:

rouser username [noauth|auth|priv]

rouser is for read-only access. Authentication and encryption can be specified
as:

noauth: To allow unauthenticated requests

auth: To enforce authentication of username with authpassphrase

priv: To enforce use of encryption

Chapter 16
Monitoring Using SNMP

16-10

http://www.net-snmp.org/docs/man/snmpd.conf.html

2. After adding the SNMP v3 user, the SNMP agent should be started and stopped
once. When the SNMP agent is stopped, user authentication parameters provided
in "createUser" line is encrypted and stored in the persistent file.

3. Ensure that the SNMP agent and one or more OTD instances are running. The
SNMP agent can now be queried over SNMP v3 using <user-name> and <auth-
password>.

4. Run the snmpwalk command. User can run the snmpcmd from remote host.

snmpcmd(snmpwalk/snmpget)

snmpwalk -m <oracle-home>/otd/lib/ORACLE-TRAFFICDIRECTOR-MIB.txt -v 3
-u username -l<authentication level> -a SHA -A authpassphrase -x (DES|
AES) -X privpassphrase <hostname>:11161 ORACLE-TRAFFICDIRECTOR-
MIB::originServer

snmpwalk example

snmpwalk -m <oracle-home>/otd/lib/ORACLE-TRAFFICDIRECTOR-MIB.txt -v 3
-u <user-name> -l priv -a SHA -A <auth-password> -x AES -X <crypt-
password> <hostname>:11161 ORACLE-TRAFFICDIRECTOR-
MIB::originServerTable

Deleting an SNMP v3 user

The user can be deleted by removing the relevant user entries from both the
configuration file and persistent file and restarting the SNMP agent.

Integrating SNMP with Master Agent

Oracle Traffic Director SNMP can be integrated with the SNMP master agent running
on the system on Linux and Solaris using the agentx protocol. This requires the SNMP
agent to be started in agentx mode. When running in this mode, the Oracle Traffic
Director SNMP agent cannot communicate via the SNMP protocol. All requests should
be made to the SNMP master agent, which in-turn retrieves the requested information
from the SNMP agent via the agentx protocol.
The default agentx transport specifier for Oracle Traffic Director SNMP is specified as
below. The transport specifier can be changed as mentioned in the man page of
snmpd.conf.

agentx transport specifier

agentxsocket tcp:127.0.0.1:705

1. Configure operating system master agent to communicate to sub-agents via
agentx protocol. This requires the following changes to the master agent
configuration (/etc/snmp/snmpd.conf on Linux and /etc/net-snmp/snmp/
snmpd.conf on Solaris). The master agent needs to be restarted after making this
change.

Directives that need to be added to the master agent configuration (snmpd.conf)

master agentx

agentxsocket tcp:127.0.0.1:705

• Changes to the master agent configuration requires super-user privileges.

• The agentxsocket directive should be the same on both the OTD SNMP agent
and the OS master agent.

Chapter 16
Monitoring Using SNMP

16-11

http://www.net-snmp.org/docs/man/snmpd.html

2. Start the SNMP agent in agentx mode.

WLST command to start OTD SNMP agent

Online

otd_startSnmpSubAgent({'machine':<machine_name>, 'agentx':'true'})

Offline

otd_startSnmpSubAgent({'domain-
home':<otd_domain_directory_path>, 'agentx':'true'})

3. Send an SNMP request directly to the operating system master agent.

Configuring TRAP Notifications

The Oracle Traffic Director SNMP agent can also generate an SNMP trap notification
whenever an instance is started or stopped. This notification can be sent to one or
more destinations that are specified in the configuration file at <domain-home>/
config/fmwconfig/components/OTD/snmp/config/snmpagt.conf.
Examples for specifying trap destinations in snmpagt.conf

Send an SNMPv1 trap

trapsink 127.0.0.1:1127 trapComm

Send an SNMPv2 trap

trap2sink 192.168.1.99:1199 trapComm

Send an SNMPv2 inform which the remote side should confirm

informsink 192.1.68.88:1188 trapComm

Send an SNMPv3 trap without any auth

trapsess -v 3 -u v3user -l noAuth 127.0.0.1:11162

Send a SNMPv3 inform with full SNMPv3 security

trapsess -v 3 -r 0 -Ci -u myuser -n "" -l authPriv -a SHA -A <auth-
password> -x AES -X <crypt-password> 192.168.1.77:1177

For more information on these directives see the man page.

Starting and Stopping the SNMP Subagent
You can start and stop the SNMP subagent on a node by using WLST commands.

Starting and Stopping the SNMP Subagent Using WLST

• To start the SNMP subagent on one or more nodes, run the
otd_startSnmpSubAgent command, as shown in the following example:

Online
props = {}
props['machine-name'] = 'abc123.example.com'
otd_startSnmpSubAgent(props)

Offline
props = {}

Chapter 16
Monitoring Using SNMP

16-12

http://www.net-snmp.org/docs/man/snmpd.html

props['domain-home'] = '/export/domains/otd_domain'
otd_startSnmpSubAgent(props)

• To stop the SNMP subagent on one or more nodes, run the
sotd_stopSnmpSubAgent command, as shown in the following example:

Online
props = {}
props['machine-name'] = 'host.example.com'
otd_stopSnmpSubAgent(props)

Offline
props = {}
props['domain-home'] = '/export/domains/otd_domain'
otd_stopSnmpSubAgent(props)

Viewing Statistics Using snmpwalk
You can view statistics collected by the SNMP subagent, by using the snmpwalk
command-line utility that is available in the Net-SNMP suite of applications (http://
www.net-snmp.org).

Note:

The prerequisites for using snmpwalk are as follows:

• For Linux: Make sure the contents snmpwalk package net-snmp-
utils-5.3.2.2-9.0.1.el5_5.1 RPM or higher and standard MIBS
package net-snmp-5.3.2.2-9.0.1.el5_5.1 RPM or higher are installed.

• For Solaris: Make sure the package located at system/management/
snmp/net-snmp is installed. This package contains contents snmpwalk
and standards MIBS.

Simplifying Commands by Setting Defaults

Before using snmpwalk, if required, you can set most of the snmpwalk options in the
snmp.conf file, located at ~/.snmp/snmp.conf.

The advantage of setting various options in snmp.conf is that after setting the options,
you can run the snmpwalk command without specifying the options that are already set
in snmp.conf. The snmp.conf enables you to set the following options:

Default Options Description

defSecurityNam SNMPv3 user-name

defAuthType SHA (authentication method)

defSecurityLevel security level for the user. i.e
authNoPriv, authPriv etc

defAuthPassphrase auth-password

defPrivType privacy protocol to use. AES

defPrivPassphrase privpassphrase

Chapter 16
Monitoring Using SNMP

16-13

http://www.net-snmp.org
http://www.net-snmp.org

Default Options Description

defVersion 3

defaultport 11161

mibirds +<path to ORACLE-TRAFFICDIRECTOR-MIB.txt>

mibs +ORACLE-TRAFFICDIRECTOR-MIB

snmpwalk with defaults

snmpwalk <hostname> ORACLE-TRAFFICDIRECTOR-MIB::originServerTable

snmpwalk output

When you run the snmpwalk command, the output would be as follows:

ORACLE-TRAFFICDIRECTOR-MIB::originServerName.1.1.0 = STRING:

http://example.com:4000

ORACLE-TRAFFICDIRECTOR-MIB::originServerType.1.1.0 = STRING: generic

(Oracle-iPlanet-Web-Server/7.0)

ORACLE-TRAFFICDIRECTOR-MIB::originServerStatus.1.1.0 = INTEGER: online(1)

ORACLE-TRAFFICDIRECTOR-MIB::originServerDiscoveredStatus.1.1.0 =

INTEGER: false(2)

ORACLE-TRAFFICDIRECTOR-MIB::originServerRampedupStatus.1.1.0 = INTEGER:

true(1)

ORACLE-TRAFFICDIRECTOR-MIB::originServerBackupStatus.1.1.0 = INTEGER:

active(1)

ORACLE-TRAFFICDIRECTOR-MIB::originServerTimeOnline.1.1.0 = Counter64:

1566 seconds

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountDetectedOffline.1.1.0 =

Counter32: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountBytesTransmitted.1.1.0 =

Counter64: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountBytesReceived.1.1.0 =

Counter64: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountActiveConnections.1.1.0 =

Gauge32: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountIdleConnections.1.1.0 =

Gauge32: 2

Chapter 16
Monitoring Using SNMP

16-14

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountActiveStickyConnections.1.1.0

= Gauge32: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountClosedConnections.1.1.0 =

Counter64: 100

ORACLE-TRAFFICDIRECTOR-
MIB::originServerCountClosedConnectionsByOriginServer.1.1.0

= Counter64: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountConnectAttempts.1.1.0 =

Counter64: 102

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountConnectFailures.1.1.0 =

Counter64: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountRequestsAborted.1.1.0 =

Counter64: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountRequestsTimedout.1.1.0 =

Counter64: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountRequests.1.1.0 = Counter64: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountHealthCheckRequests.1.1.0 =

Counter64: 102

ORACLE-TRAFFICDIRECTOR-MIB::originServerCountStickyRequests.1.1.0 =

Counter64: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerDynamicWeight.1.1.0 = STRING:
1.00

ORACLE-TRAFFICDIRECTOR-MIB::originServerSecondsKeepAliveTimeout.1.1.0 =

Counter64: 0 seconds

ORACLE-TRAFFICDIRECTOR-
MIB::originServerMillisecondsConnectionActiveAverage.1.1.0

= STRING: milliseconds

ORACLE-TRAFFICDIRECTOR-MIB::originServerServerPoolName.1.1.0 = STRING:

origin-server-pool-1

ORACLE-TRAFFICDIRECTOR-MIB::originServerInstanceName.1.1.0 = STRING:

otd_test_partha-Latitude-E7440

ORACLE-TRAFFICDIRECTOR-MIB::originServerRequests1MinuteAverage.1.1.0 =

STRING: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerRequests5MinuteAverage.1.1.0 =

Chapter 16
Monitoring Using SNMP

16-15

STRING: 0

ORACLE-TRAFFICDIRECTOR-MIB::originServerRequests15MinuteAverage.1.1.0 =

STRING: 0

Each line in the output shows the value of a metric, but because the OID is shown in
numeric format, it is difficult to identify the name of the specific metric. The snmpwalk
utility can resolve numeric OIDs to textual names by using the management
information base (MIB) definitions. For Oracle Traffic Director, the MIB definitions file is
available in the following directory:

ORACLE_HOME/lib/snmp/ORACLE-TRAFFICDIRECTOR-MIB.txt

For a list of the SNMP MIB object names that you can use to query for specific
statistics, see Metrics Tracked by Oracle Traffic Director.

For more information about snmpwalk, see the documentation at: http://www.net-
snmp.org/docs/man/snmpwalk.html.

Monitoring Using DMS
The Oracle Dynamic Monitoring Service (DMS) provides a set of Java and C APIs that
measure and report performance metrics, trace performance and provide a context
correlation service for Fusion Middleware and other Oracle products. Apart from the
APIs, DMS provides interfaces to enable application developers, support analysts,
system administrators and others to measure application-specific performance
information.

The DMS metrics for OTD are available as a set of metric tables (see DMS Metrics
Tables). The monitoring data is exposed to DMS via a single Component Metric
MBean. When DMS requests for monitoring data for an OTD instance, a plugin
(MetricsPlugin) is invoked on the corresponding node manager to retrieve the
statistics from the specified OTD instance. The plugin communicates with the OTD
instance via native OTD interfaces to retrieve the monitoring data. The monitoring data
returned from the node manager is cached on the administration server for a period of
5 seconds, during which time any request from DMS for monitoring data is satisfied
from the cache.

You can view the DMS Metrics using a variety of interfaces including the DMS Spy
Servlet and Oracle Fusion Middleware Control. You can also view metrics using the
DMS custom WLST commands. See DMS Custom WLST Commands in WLST
Command Reference for Infrastructure Components.

Example 16-1 Viewing DMS Metrics Using Custom DMS WLST Commands

View metrics for all OTD instances
displayMetricTables('OTD_*')

View origin server metrics for all instances
displayMetricTables('OTD_OriginServer')

Get list of metric tables for a specific instance
displayMetricTableNames(servers='/OTD/otd_test_myserver.example.com')

View all metrics for a specific instance
displayMetricTables(servers='/OTD/otd_test_myserver.example.com')

Chapter 16
Monitoring Using DMS

16-16

http://www.net-snmp.org/docs/man/snmpwalk.html
http://www.net-snmp.org/docs/man/snmpwalk.html

View instance metrics for a specific instance
displayMetricTables('OTD_Instance', servers='/OTD/otd_test_myserver.example.com')

Dump all metrics for a specific instance
dumpMetrics(servers='/OTD/otd_test_myserver.example.com')

Sample XML (stats-xml) Report
This section contains a sample statistics report in XML format, which you can view by
using the otd_getStatsXml command or through a URI. See Viewing Statistics Using
WLST and Viewing stats-xml and perfdump Reports Through a Browser.

Note that the values shown in this sample report might not be meaningful. The sample
report is provided here merely to indicate the metrics that the report includes and to
give you a general idea about the format and structure of the report.

<?xml version="1.0" encoding="utf-8"?>
<stats versionMajor="1" versionMinor="3" flagEnabled="1">
<server id="otd_test_otd_Machine_1" versionServer="Oracle Traffic Director
12.2.1.2.0 B160911.182037 (Linux)" timeStarted="1475563593" secondsRunning="8209"
ticksPerSecond="1000" maxProcs="1" maxThreads="256" flagProfilingEnabled="1"
load1MinuteAverage="0.030000" load5MinuteAverage="0.020000"
load15MinuteAverage="0.050000" rateBytesTransmitted="7225" rateBytesReceived="1596"
requests1MinuteAverage="0.016667" requests5MinuteAverage="0.003333"
requests15MinuteAverage="0.000000" errors1MinuteAverage="0.000000"
errors5MinuteAverage="0.000000" errors15MinuteAverage="0.000000"
responseTime1MinuteAverage="1.000000" responseTime5MinuteAverage="1.000000"
responseTime15MinuteAverage="0.000000">
 <connection-queue id="cq1"/>
 <thread-pool id="thread-pool-0" name="NativePool"/>
 <profile id="profile-0" name="all-requests" description="All requests"/>
 <profile id="profile-1" name="default-bucket" description="Default bucket"/>
 <profile id="profile-2" name="cache-bucket" description="Cached responses"/>
 <process pid="19949" mode="active" timeStarted="1475563593"
countConfigurations="3" sizeVirtual="1191404" sizeResident="15788"
fractionSystemMemoryUsage="0.0022">
 <connection-queue connectionQueueId="cq1" countTotalConnections="9"
countQueued="0" peakQueued="1" maxQueued="1536" countOverflows="0"
countTotalQueued="9" ticksTotalQueued="1" count
Queued1MinuteAverage="0.000000" co untQueued5MinuteAverage="0.000000"
countQueued15MinuteAverage="0.000000"/>
 <thread-pool threadPoolId="thread-pool-0" countIdleThreads="1"
countThreads="1" maxThreads="128" countQueued="0" peakQueued="0" maxQueued="0"/>
 <dns flagCacheEnabled="1" countCacheEntries="0" maxCacheEntries="1024"
countCacheHits="0" countCacheMisses="0" flagAsyncEnabled="0"
countAsyncNameLookups="0" countAsyncAddrLookups="0" countAsyncLookupsInProgress="0"/>
 <keepalive countConnections="1" maxConnections="3072" countHits="0"
countFlushes="0" countRefusals="0" countTimeouts="0" secondsTimeout="30"/>
 <compression countRequests="0" bytesInput="0" bytesOutput="0"
compressionRatio="0.000000" pageCompressionAverage="0.000000"/>
 <decompression countRequests="0" bytesInput="0" bytesOutput="0"/>
 <thread mode="idle" type="sync" asyncState="async-none"
timeStarted="1475563593" connectionQueueId="keep-alive">
 <request-bucket countRequests="0" countBytesReceived="0"
countBytesTransmitted="0" count2xx="0" count3xx="0" count4xx="0" count5xx="0"
countOther="0" count200="0" count302="0" count30 4="0" count400="0"
count401="0" count403="0" count404="0" count503="0"/>
 <profile-bucket profile="profile-0" countCalls="0" countRequests="0"
ticksDispatch="0" ticksFunction="0"/>
 <profile-bucket profile="profile-1" countCalls="0" countRequests="0"

Chapter 16
Sample XML (stats-xml) Report

16-17

ticksDispatch="0" ticksFunction="0"/>
 <profile-bucket profile="profile-2" countCalls="0" countRequests="0"
ticksDispatch="0" ticksFunction="0"/>
 </thread><thread mode="idle" type="sync" asyncState="async-none"
timeStarted="1475563593" connectionQueueId="keep-alive">
 <request-bucket countRequests="0" countBytesReceived="0"
countBytesTransmitted="0" count2xx="0" count3xx="0" count4xx="0" count5xx="0"
countOther="0" count200="0" count302="0" count304="0" count400="0" count401="0"
count403="0" count404="0" count503="0"/>
 <profile-bucket profile="profile-0" countCalls="0" countRequests="0"
ticksDispatch="0" ticksFunction="0"/>
 <profile-bucket profile="profile-1" countCalls="0" countRequests="0"
ticksDispatch="0" ticksFunction="0"/>
 <profile-bucket profile="profile-2" countCalls="0" countRequests="0"
ticksDispatch="0" ticksFunction="0"/>
 </thread>
 <thread mode="response" type="sync" asyncState="async-none"
timeStarted="1475563593" function="stats-xml" connectionQueueId="cq1"
virtualServerId="test" timeRequestStarted="1475572257009438">
 <request-bucket method="GET" uri="/stats-xml" countRequests="5"
countBytesReceived="1435" countBytesTransmitted="22730" count2xx="4" count3xx="0"
count4xx="0" count5xx="1" countOther="0" count200="4" count302="0" count304="0"
count400="0" count401="0" count403="0" count404="0" count503="0"/>
 <profile-bucket profile="profile-0" countCalls="48" countRequests="5"
ticksDispatch="1" ticksFunction="7581"/>
 <profile-bucket profile="profile-1" countCalls="48" countRequests="5"
ticksDispatch="1" ticksFunction="7581"/>
 <profile-bucket profile="profile-2" countCalls="0" countRequests="0"
ticksDispatch="0" ticksFunction="0"/>
 </thread>
 <thread mode="idle" type="sync" asyncState="async-none" timeStarted="1475563593"
connectionQueueId="cq1">
 <request-bucket countRequests="4" countBytesReceived="784"
countBytesTransmitted="19544" count2xx="4" count3xx="0" count4xx="0" count5xx="0"
countOther="0" count200="4" count302="0" count304="0" count400="0" count401="0"
count403="0" count404="0" count503="0"/>
 <profile-bucket profile="profile-0" countCalls="36" countRequests="4"
ticksDispatch="1" ticksFunction="1"/>
 <profile-bucket profile="profile-1" countCalls="36" countRequests="4"
ticksDispatch="1" ticksFunction="1"/>
 <profile-bucket profile="profile-2" countCalls="0" countRequests="0"
ticksDispatch="0" ticksFunction="0"/>
 </thread>
 </process>
 <virtual-server id="test" flagEnabled="1">
 <request-bucket method="GET" uri="/.perf" countRequests="9"
countBytesReceived="2219" countBytesTransmitted="42274" count2xx="8" count3xx="0"
count4xx="0" count5xx="1" countOther="0" count200="8" count302="0" count304="0"
count400="0" count401="0" count403="0" count404="0" count503="0"/>
 <profile-bucket profile="profile-0" countCalls="84" countRequests="9"
ticksDispatch="2" ticksFunction="7582"/>
 <profile-bucket profile="profile-1" countCalls="84" countRequests="9"
ticksDispatch="2" ticksFunction="7582"/>
 <profile-bucket profile="profile-2" countCalls="0" countRequests="0"
ticksDispatch="0" ticksFunction="0"/>
 <webapp-firewall countRequestsIntercepted="0" countRequestsAllowed="0"
countRequestsDenied="0" countRequestsDropped="0" countRequestsRedirected="0"
countRequestsDenyDetected="0" countRequestsDropDetected="0"
countRequestsRedirectDetected="0"/>
 <websocket countUpgradeRequests="0" countUpgradeRequestsFailed="0"
countUpgradeRequestsRejected="0" countActiveConnections="0" countRequestsAborted="0"

Chapter 16
Sample XML (stats-xml) Report

16-18

countRequestsTimedout="0" countBytesReceived="0" countBytesTransmitted="0"
millisecondsConnectionActiveAverage="0"/>
 <route id="default-route" condition="default">
 <request-bucket countRequests="2" countBytesReceived="390"
countBytesTransmitted="715" count2xx="1" count3xx="0" count4xx="0" count5xx="1"
countOther="0" count200="1" count302="0" count304="0" count400="0" count401="0"
count403="0" count404="0" count503="0"/>
 </route>
</virtual-server>
<server-pool name="origin-server-pool-1" type="http" countRetries="9">
 <service-queue countQueued="0" countQueuedHighPriority="0"
countQueuedNormalPriority="0" countQueuedLowPriority="0" countQueuedTimedout="0"
countTotalQueued="0" countTotalQueuedHighPriority="0"
countTotalQueuedNormalPriority="0" countTotalQueuedLowPriority="0"
countTotalQueuedSticky="0" countTotalStickyToNonSticky="0"
millisecondsQueuedHighPriorityAverage="0"
millisecondsQueuedNormalPriorityAverage="0"
millisecondsQueuedLowPriorityAverage="0"/>
 <origin-server name="http://example.com:4000" status="online" flagDiscovered="0"
flagRampedUp="1" type="generic (Oracle-iPlanet-Web-Server/7.0)" flagBackup="0"
secondsOnline="6774" countDetectedOffline="1" countConnectAttempts="339"
countConnectFailures="120" countClosedConnections="218"
countConnectionsClosedByOriginServer="0" countActiveConnections="0"
countIdleConnections="1" countActiveStickyConnections="0"
secondsKeepAliveTimeout="0" countRequestsAborted="0" countRequestsTimedout="0"
countStickyRequests="0" countRequests="1" countHealthCheckRequests="218"
countBytesTransmitted="508" countBytesReceived="484" weightResponseTime="1.00"
requests1MinuteAverage="0.000000" requests5MinuteAverage="0.000000"
requests15MinuteAverage="0.000000">
 <websocket countUpgradeRequests="0" countUpgradeRequestsFailed="0"
countUpgradeRequestsRejected="0" countActiveConnections="0" countRequestsAborted="0"
countRequestsTimedout="0" countBytesReceived="0" countBytesTransmitted="0"
millisecondsConnectionActiveAverage="0"/>
 </origin-server>
</server-pool>
<cache flagEnabled="1" countEntries="0" sizeHeapCache="16580" countContentHits="0"
countContentMisses="0" countHits="0" countRevalidationRequests="0"
countRevalidationFailures="0"/>
<cpu-info cpu="1" percentIdle="99.283209" percentUser="0.501040"
percentKernel="0.215751"/>
<cpu-info cpu="2" percentIdle="99.234605" percentUser="0.540530"
percentKernel="0.224865"/>
</server>
</stats>

Sample Plain-Text (perfdump) Report
This section contains a sample perfump statistics report that you can view by using the
otd_getPerfDump command or through a URI. For information about viewing the plain-
text report, see Viewing Statistics Using WLST and Viewing stats-xml and perfdump
Reports Through a Browser .

Note that the values shown in this sample report might not be meaningful. The sample
report is provided here merely to indicate the metrics that the report includes and to
give you a general idea about the format of the report.

Oracle Traffic Director 12.2.1.2.0 B160911.182037 (Linux)

Server started Mon Oct 03 23:46:32 2016
Process 19949 started Mon Oct 03 23:46:32 2016

Chapter 16
Sample Plain-Text (perfdump) Report

16-19

ConnectionQueue

Current/Peak/Limit Queue Length 0/1/1536
Total Connections Queued 8
Average Queue Length (1, 5, 15 minutes) 0.00, 0.00, 0.00
Average Queuing Delay 0.12 milliseconds

HTTP Listener http-listener-1

Address 0.0.0.0:8080
Acceptor Threads 1
Default Virtual Server test

KeepAliveInfo

KeepAliveCount 0/3072
KeepAliveHits 0
KeepAliveFlushes 0
KeepAliveRefusals 0
KeepAliveTimeouts 0
KeepAliveTimeout 30 seconds

SessionCreationInfo

Active Sessions 1
Keep-Alive Sessions 0
Keep-Alive threads 2
Active Async Sessions 0
HTTP Sessions current/max 4/258
TCP Sessions current/max 2/2

Cache

Cache Enabled yes
Object Cache Entries 0
Cache lookup (hits/misses) 0/0
Requests served from Cache 0
Revalidation (successful/total) 0/0 (0.00%)
Heap space used 16580

Thread Pool NativePool

Idle/Peak/Limit 1/1/128
Work Queue Length/Peak/Limit 0/0/0

DNSCacheInfo

enabled yes
CacheEntries 0/1024
HitRatio 0/0 (0.00%)

Async DNS disabled

Chapter 16
Sample Plain-Text (perfdump) Report

16-20

Performance Counters

Total number of requests 8
Average Request processing time 0.9479
Total Request processing time 7.5830

default-bucket (Default bucket)

Counter Name Average Total Percent

Number of Requests 8 (100.00%)
Number of Invocations 75 (100.00%)
Latency 0.0003 0.0020 (0.03%)
Function Processing Time 0.9476 7.5810 (99.97%)
Total Response Time 0.9479 7.5830 (100.00%)

HTTP Origin Servers

Pool-name Host:Port Status ActiveConn
IdleConn StickyConn Timeouts Aborted Sticky-Reqs Total-Reqs BytesTrans
BytesRecvd

origin-server-pool-1 http://example.com:4000 online 0 1
0 0 0 0 1 508 484

TCP Origin Servers

No TCP origin servers are configured

Sessions

Process Session Status Async-state Client Age VS Method URI
Function Origin-Server

19949 sync response - 148.87.19.37 1 test GET /.perf
service-dump/ -

TCP Proxy

Active Connections 0
Avg Duration 0.00 seconds
Requests (timeout/aborted/total) 0/0/0

SSL session cache statistics (global)

Total SSL sessions stored since starting: 0
Total SSL sessions expired since starting: 0
Total (pre-expiry) SSL sessions scrolled out of the cache: 0
Total SSL session retrieves since starting: 0 hits, 0 misses
Total SSL session removes since starting: 0 hits, 0 misses

Chapter 16
Sample Plain-Text (perfdump) Report

16-21

17
Tuning Oracle Traffic Director for
Performance

You can use statistical data about Oracle Traffic Director instances and virtual servers
to identify potential performance bottlenecks. Also, you can configure changes that
you can make to improve Oracle Traffic Director performance.
This chapter contains the following sections:

• General Tuning Guidelines

• Tuning the File Descriptor Limit

• Tuning the Thread Pool and Connection Queue

• Tuning HTTP Listener Settings

• Tuning Keep-Alive Settings

• Tuning HTTP Request and Response Limits

• Tuning DNS Caching Settings

• Tuning SSL/TLS-Related Settings

• Configuring Access-Log Buffer Settings

• Enabling and Configuring Content Compression

• Tuning Connections to Origin Servers

• Solaris-specific Tuning

General Tuning Guidelines
The outcome of the tuning suggestions provided in this chapter might vary depending
on your specific environment. When deciding the tuning parameters that are suitable
for your needs, keep the following guidelines in mind:

• Adjust one parameter at a time

To the extent possible, make one adjustment at a time. Measure the performance
before and after each change, and revert any change that does not result in
measurable improvement.

• Establish test cases that you can use to create a performance benchmark

Before changing any parameter, set up test cases, and automate them if possible,
to test the effect of the changes on performance.

• Tune gradually

When adjusting a quantitative parameter, make changes in small increments. This
approach is most likely to help you identify the optimal setting quickly.

• Start afresh after a hardware or software change

17-1

At each major system change, a hardware or software upgrade, for example,
verify whether the previous tuning changes still apply.

Tuning the File Descriptor Limit
The operating system uses file descriptors to handle file-system files as well as
pseudo files, such as connections and listener sockets.

When an Oracle Traffic Director instance starts, the following parameters are taken
into consideration when auto-configuring values related to file descriptors:

• HTTP processing threads (<thread-pool>)

• Access log counts for all virtual servers (<access-log>)

• Listeners (<http-listener>, <tcp-listener>)

• Keep-alive connections (<keep-alive>)

• Number of origin server pools (<origin-server-pool>)

• Number of origin servers (<origin-server>)

• Origin server connections (<origin-server>/<max-connections>)

• TCP processing threads (<tcp-thread-pool>)

The key Oracle Traffic Director objects that require file descriptors are keep-alive
connections, queued connections, and connections to origin servers. If you do not
explicitly specify limits for these objects, then when the Oracle Traffic Director instance
starts, it configures the limits—maximum keep-alive connections, connection queue
size, and maximum connections for each origin server—automatically based on the
total number of available file descriptors in the system.

When the file descriptor limit is set to a very high value, auto-configuration of
unspecified parameters can cause Oracle Traffic Director instances to consume
excessive amount of memory or can result in sub-optimal configurations. To avoid
these issues, specify values for these parameters explicitly on systems that have a
high file-descriptor limit.

For instance, max-threads * 4 should ideally be less than the maximum number of
file descriptors available to the process. For example, if the file descriptor limit is set to
65536, then setting max-threads to 20000 will cause sub-optimal tuning as 80000
(20000*4=80000) will exhaust/reserve file descriptors for the worker threads, which
does not leave much for other subsystems. Hence a high value should be set for max-
threads only after some experimentation.

The number of allocated file descriptors cannot exceed the limit that the system can
support. To find out the current system limit for file descriptors, run the following
command:

$ cat /proc/sys/fs/file-max
2048

To find out how many of the available file descriptors are being currently used, run the
following command:

$ cat /proc/sys/fs/file-nr

The command returns an output that resembles the following:

Chapter 17
Tuning the File Descriptor Limit

17-2

625 52 2048

In this example, 625 is the number of allocated file descriptors, 52 is the number of free
allocated file descriptors, and 2048 is the maximum number of file descriptors that the
system supports.

Note:

In Solaris, system wide file descriptors in use can be found by using the
following command:

echo ::kmastat | mdb -k | grep file_cache

This command returns an output that resembles the following:

file_cache 56 1154 1305 73728B 659529 0

In this example, 1154 is the number of file descriptors in use and 1305 the
number of allocated file descriptors. Note that in Solaris, there is no
maximum open file descriptors setting. They are allocated on demand as
long as there is free RAM available.

When the number of allocated file descriptors reaches the limit for the system, the
following error message is displayed in the system console when you try to open a file:

Too many open files in system.

The following message is written to the server log:

[ERROR:16] [OTD-10546] Insufficient file descriptors for optimum configuration.

This is a serious problem, indicating that the system is unable to open any more files.
To avoid this problem, consider increasing the file descriptor limit to a reasonable
number.

To change the number of file descriptors in Linux, do the following as the root user:

1. Edit the following line in the /etc/sysctl.conf file:

fs.file-max = value

value is the new file descriptor limit that you want to set.

2. Apply the change by running the following command:

/sbin/sysctl -p

Chapter 17
Tuning the File Descriptor Limit

17-3

Note:

In Solaris, change the value of rlim_fd_max in the /etc/system file to
specify the “hard" limit on file descriptors that a single process might
have open. Overriding this limit requires superuser privilege. Similarly,
rlim_fd_cur defines the “soft" limit on file descriptors that a single
process can have open. A process might adjust its file descriptor limit to
any value up to the “hard" limit defined by rlim_fd_max by using the
setrlimit() call or by issuing the limit command in whatever shell it is
running. You do not require superuser privilege to adjust the limit to any
value less than or equal to the hard limit.

For example, to increase the hard limit, add the following command
to /etc/system and reboot it once:

set rlim_fd_max = 65536

For more information about Solaris file descriptor settings, see Files
Open in a Single Process (File Descriptor Limits).

As a rough rule of thumb, the thread-pool element, max-threads * 4 should be less
than the maximum number of file descriptors available to the process. That is, max-
threads should be less than 1/5th of the maximum number of file descriptors.

For example, if the file descriptor limit is set to 65536, then setting max-threads to
20000 will cause sub-optimal tuning as 20000*4=80000 will exhaust/reserve file
descriptors for the worker threads, leaving little else for other subsystems.

High values of max-threads should be used only after experimentation. Having tens of
thousands of threads in a process may hurt performance.

Tuning the Thread Pool and Connection Queue
This section contains the following topics:

• About Threads and Connections

• Reviewing Thread Pool Metrics for an Instance

• Reviewing Connection Queue Metrics for an Instance

• Tuning the Thread Pool and Connection Queue Settings

About Threads and Connections
When a client sends a request to an HTTP listener in an Oracle Traffic Director
instance, the connection is first accepted by an acceptor thread that is associated with
the HTTP listener. The acceptor thread puts the connection in a connection queue and
then waits for the next client request. A request processing thread from a thread pool
takes the connection from the connection queue and processes the request. Note that
if the thread pool is disabled, acceptor threads themselves process every request. The
connection queue and request-processing threads do not exist.

Connection Handling in Oracle Traffic Director depicts the connection handling
process.

Chapter 17
Tuning the Thread Pool and Connection Queue

17-4

Figure 17-1 Connection Handling in Oracle Traffic Director

Acceptor

Threads

Connection

Queue

Request

Processing

Threads

Requests

Thread Pool

When an Oracle Traffic Director instance starts, it creates the specified number of
acceptor threads for each listener and a thread pool that contains a specified,
minimum number of request-processing threads.

• If the number of acceptor threads for a listener is not specified, Oracle Traffic
Director creates one acceptor thread per CPU on the host.

• If the minimum size of the thread pool is not specified, Oracle Traffic Director
creates one request-processing thread per processor on the host on which the
instance is running.

As the request load increases, Oracle Traffic Director compares the number of
requests in the connection queue with the number of request-processing threads. If
the number of requests in the queue is more than the number of request-processing
threads, Oracle Traffic Director creates additional threads, up to the specified
maximum size for the thread pool.

The default value of the maximum number of request-processing threads will never be
more than quarter of the maximum number of file descriptors available to the process.
If there are 1, 2 CPUs, then the default is 256 and if there are 3, 4 CPUs, the default is
512. If there are more than 4 CPUs, the default is 1024.

The maximum number of threads is a hard limit for the number of sessions that can
run simultaneously. Note that the maximum threads limit applies across all the virtual
servers in the instance.

Reviewing Thread Pool Metrics for an Instance
You can review the thread-pool information for an instance in the
SessionCreationInfo section of the plain-text perfdump report, as shown in the
following example.

SessionCreationInfo:

Active Sessions 2187
Keep-Alive Sessions 0
Total Sessions Created 4016/4016

• Active Sessions is the number of request-processing threads that are currently
servicing requests.

• Keep-Alive Sessions shows the number of HTTP request processing threads
serving keep-alive sessions.

• Total Sessions Created

Chapter 17
Tuning the Thread Pool and Connection Queue

17-5

– The first number is the number of request-processing threads created.

– The second number is the maximum threads allowed in the thread pool; that
is, the sum of the maximum threads configured in the thread-pool and the
number of keep alive threads.

If you observe that the total number of request-processing threads created is
consistently near the maximum number of threads, consider increasing the thread
limit. Otherwise, requests might have to wait longer in the connection queue; and, if
the connection queue becomes full, further requests are not accepted. If the average
queueing delay (see Reviewing Connection Queue Metrics for an Instance) is
significantly high in proportion to the average response time, that too is an indication
that the thread limit needs to be increased.

Reviewing Connection Queue Metrics for an Instance
If the maximum size of the connection queue is not large enough, client requests might
be rejected during peak load periods. You can detect this situation by examining the
connection queue section in the perfdump plain-text report, as shown in the following
example.

ConnectionQueue:

Current/Peak/Limit Queue Length 0/1853/160032
Total Connections Queued 11222922
Average Queue Length (1, 5, 15 minutes) 90.35, 89.64, 54.02
Average Queueing Delay 4.80 milliseconds

• The Current/Peak/Limit Queue Length line indicates the following:

– Current: The number of connections currently in the queue.

– Peak: The largest number of connections that have been in the queue
simultaneously.

If the peak queue length is close to the limit, it is an indication that the
connection queue might not be large enough for the given load.

– Limit: The maximum size of the connection queue, which is equal to the size
of the thread-pool queue + maximum threads + the size of the keep-alive
queue.

• Total Connections Queued is the total number of times a connection has been
queued. This number includes newly-accepted connections and connections from
the keep-alive system.

• Average Queue Length is the average number of connections in the queue during
the most recent 1-minute, 5-minute, and 15-minute intervals.

• Average Queueing Delay is the average amount of time a connection spends in
the connection queue. It represents the delay between when a request is accepted
by the server and when a request-processing thread begins processing the
request. If the average queueing delay is relatively high in proportion to the the
average response time, consider increasing the number of threads in the thread
pool.

Chapter 17
Tuning the Thread Pool and Connection Queue

17-6

Tuning the Thread Pool and Connection Queue Settings
You can change the thread pool and connection queue settings by using either Fusion
Middleware Control or the WLST, as described in the following sections:

Changing the Thread Pool and Connection Queue Settings Using Fusion
Middleware Control

To change the thread-pool settings by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Advanced Configuration > Settings.

7. Go to the Thread Pool section on the page.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

9. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Changing the Thread Pool and Connection Queue Settings Using WLST

• To view the current thread-pool settings, run the
otd_getHttpThreadPoolProperties or otd_getTcpThreadPoolProperties
commands, as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_getHttpThreadPoolProperties(props)

enabled=true
queue-size=2000
min-threads=20480
max-threads=20480
stack-size=262145

• To change the thread-pool settings, run the otd_setHttpThreadPoolProperties or
otd_setTcpThreadPoolProperties commands,.

For example, to change the stack size for HTTP processing threads, run the
following command:

Chapter 17
Tuning the Thread Pool and Connection Queue

17-7

props = {}
props['configuration'] = 'foo'
props['stack-size'] = '8192'
otd_setHttpThreadPoolProperties(props)

Tuning HTTP Listener Settings
The following are the key HTTP listener parameters that affect performance:

• Listener address

The listener address consists of an IP address and a port number. The host on
which an Oracle Traffic Director instance is running can have multiple network
interfaces and multiple IP addresses.

A listener that is configured to listen for client requests on all network interfaces on
the host machine would have 0.0.0.0 as its IP address. While specifying 0.0.0.0
as the IP address for a listener is convenient, it results in one additional system
call for each connection. For better performance, consider specifying an actual IP
address for the listener.

• Number of acceptor threads

Acceptor threads receive client requests and put them in the connection queue.
When an Oracle Traffic Director instance starts, it creates the specified number of
acceptor threads for each listener. If the number of acceptor threads for a listener
is not specified, Oracle Traffic Director creates one acceptor thread per CPU on
the host

Too many idle acceptor threads place an unnecessary burden on the system,
while having too few acceptor threads might result in client requests not being
accepted. One acceptor thread per CPU, which is the default setting, is an
acceptable trade-off in most situations.

For HTTP 1.0 workloads, which necessitate opening and closing a relatively large
number of connections, the default number of acceptor threads—1 per listener—
would be suboptimal. Consider increasing the number of acceptor threads.

• Listen queue size

As explained earlier, acceptor threads receive client requests and put them in the
connection queue. If the operating system has not yet scheduled the acceptor
thread, the operating system kernel maintains TCP connections on behalf of
Oracle Traffic Director process. The kernel can accept connections up to the limit
specified by the listen queue size.

HTTP 1.0-style workloads can have many connections established and
terminated. So if clients experience connection timeouts when an Oracle Traffic
Director instance is heavily loaded, you can increase the size of the HTTP listener
backlog queue by setting the listen queue size to a larger value.

The plain-text perfdump report shows the IP address and the number of acceptor
threads for each HTTP listener in the configuration, as shown in the following example:

ListenSocket ls1:

Address https://0.0.0.0:1904
Acceptor Threads 1
Default Virtual Server net-soa

Chapter 17
Tuning HTTP Listener Settings

17-8

You can change the HTTP listener settings by using either Fusion Middleware Control
or WLST , as described in Modifying a Listener.

Tuning Keep-Alive Settings
This section contains the following topics:

• About Keep-Alive Connections

• Reviewing Keep-Alive Connection Settings and Metrics

• Tuning Keep-Alive Settings

About Keep-Alive Connections
HTTP 1.0 and HTTP 1.1 support sending multiple requests over a single HTTP
connection. This capability, which was called keep alive in HTTP 1.0, is called
persistent connections in HTTP 1.1 and is enabled by default in Oracle Traffic Director.

Keeping a connection active even after processing the original request reduces the
time and overhead associated with creating and closing TCP connections for future
similar requests. However, keep-alive connections over which few or no requests are
received are an unnecessary burden on the system.

Connection Handling in Oracle Traffic Director with Keep Alive Enabled depicts the
connection handling process when keep-alive is enabled.

Chapter 17
Tuning Keep-Alive Settings

17-9

Figure 17-2 Connection Handling in Oracle Traffic Director with Keep Alive
Enabled

To avoid this problem, you can specify the maximum number of waiting keep-alive
connections. If there are more open connections waiting for requests than the
specified maximum number, the oldest connection is closed when a keep-alive request
is received. In addition, you can specify the period after which inactive keep-alive
connections must be closed.

Reviewing Keep-Alive Connection Settings and Metrics
The plain-text perfdump report shows the current keep-alive settings and metrics, as
shown in the following example:

KeepAliveInfo:

KeepAliveCount 26/60000
KeepAliveHits 154574634
KeepAliveFlushes 0
KeepAliveRefusals 0
KeepAliveTimeouts 5921
KeepAliveTimeout 120 seconds

The KeepAliveInfo section of the perdump report shows the following:

• KeepAliveCount:

Chapter 17
Tuning Keep-Alive Settings

17-10

– The first number is the number of connections in keep-alive mode.

– The second number is the maximum number of keep-alive connections
allowed.

• KeepAliveHits is the number of times a request was successfully received over a
connection that was kept alive.

If KeepAliveHits is high when compared with KeepAliveFlushes, it indicates that
the keep-alive connections are being utilized well.

If KeepAliveHits is low, it indicates that a large number of keep-alive connections
remain idle, unnecessarily consuming system resources. To address this situation,
you can do the following:

– Decrease the maximum number of keep-alive connections so that fewer
connections are kept alive.

Note that the number of connections specified by the maximum connections
setting is divided equally among the keep-alive threads. If the maximum
connections setting is not equally divisible by the keep-alive threads setting,
the server might allow slightly more than the maximum number of keep-alive
connections.

– Decrease the KeepAliveTimeout so that keep-alive connections do not remain
idle for long. Note that if the KeepAliveTimeout is very low, the overhead of
setting up new TCP connections increases.

• KeepAliveFlushes is the number of times the server closed connections that the
client requested to be kept alive.

To reduce keep-alive flushes, increase the keep-alive maximum connections.

Caution:

On UNIX/Linux systems, if the keep-alive maximum connections setting
is too high, the server can run out of open file descriptors. Typically,
1024 is the limit for open files on UNIX/Linux; so increasing the keep-
alive maximum connections above 500 is not recommended.
Alternatively, you can increase the file descriptor limit, as described in
Tuning the File Descriptor Limit.

• KeepAliveRefusals is the number of times the server could not hand off a
connection to a keep-alive thread, possibly because the KeepAliveCount
exceeded the keep-alive maximum connections. If this value is high, consider
increasing the maximum number of keep-alive connections.

• KeepAliveTimeouts is the number of times idle keep-alive connections were
closed because no requests were received over them during the last
KeepAliveTimeout period.

• KeepAliveTimeout is the duration, in seconds, after which idle keep-alive
connections are closed.

Another parameter that is configurable and affects performance, but is not shown
in the perfdump report is the keep-alive poll interval, which, together with
KeepAliveTimeout, controls latency and throughput. Decreasing the poll interval
and the timeout period reduces latency on lightly loaded systems. Increasing the
values of these settings raises the aggregate throughput on heavily loaded

Chapter 17
Tuning Keep-Alive Settings

17-11

systems. However, if there is too much latency and too few clients, the aggregate
throughput suffers, because the server remains idle unnecessarily. Therefore, at a
given load, if there is idle CPU time, decrease the poll interval; if there is no idle
CPU time, increase the poll interval.

Tuning Keep-Alive Settings
You can tune the keep-alive settings by using either Fusion Middleware Control or the
WLST.

Changing Keep-Alive Settings Using Fusion Middleware Control
To change the keep-alive settings by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Advanced Configuration > HTTP.

7. Go to the Keep Alive section on the page.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

9. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Changing Keep-Alive Settings Using WLST
• To view the current the keep-alive settings, run the otd_getKeepaliveProperties

command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_getKeepaliveProperties(props)

enabled=true
threads=20
max-connections=2000
timeout=30
poll-interval=0.001

• To change the keep-alive settings, run the otd_setKeepaliveProperties
command.

Chapter 17
Tuning Keep-Alive Settings

17-12

For example to change the maximum number of keep-alive subsystem threads,
run the following command:

props = {}
props['configuration'] = 'foo'
props['threads'] = '128'
otd_setKeepaliveProperties(props)

Tuning HTTP Request and Response Limits
To optimize the time that an Oracle Traffic Director instance spends in processing
requests and responses, you can configure parameters such as the size of request
and response headers, the number of allowed header fields in a request, and the time
that Oracle Traffic Director waits to receive an HTTP request body and header.

You can view the change the HTTP request and response limits by using either Fusion
Middleware Control or the WLST.

Viewing and Changing HTTP Request/Response Limits Using Fusion
Middleware Control

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Advanced Configuration > HTTP.

7. Go to the HTTP section on the page.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

9. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Viewing and Changing HTTP Request/Response Limits Using WLST

• To view the current settings, run the otd_getHttpProperties command, as shown
in the following example:

props = {}
props['configuration'] = 'foo'
otd_getHttpProperties(props)

server-header=Oracle Traffic Director/12.2.1
etag=true
request-header-buffer-size=8192
strict-request-headers=false

Chapter 17
Tuning HTTP Request and Response Limits

17-13

websocket-strict-upgrade=false
discard-misquoted-cookies=true
max-request-headers=64
body-buffer-size=1024
output-buffer-size=8192
max-unchunk-size=8192
unchunk-timeout=60
io-timeout=30
request-body-timeout=-1
request-header-timeout=30
ecid=true
favicon=true

• To change the request and response limits, run the otd_setHttpProperties
command.

For example to change the un-chunk timeout, run the following command:

props = {}
props['configuration'] = 'foo'
props['unchunk-timeout'] = '120'
otd_setHttpProperties(props)

Tuning DNS Caching Settings
DNS caching helps reduce the number of DNS lookups that Oracle Traffic Director
needs to perform to resolve client host names to IP addresses. The DNS cache is
enabled by default in Oracle Traffic Director and stores IP address-to-DNS name
mappings. Each entry in the DNS cache represents a single IP address or DNS name
lookup. The DNS cache is used only when DNS lookup is enabled and when Oracle
Traffic Director performs operations that require DNS lookup, such as recording client
IP addresses and host names in the access log.

For the DNS cache hit rate to be high, the cache should be large enough to store the
IP address-to-DNS name mappings for the maximum number of clients that you
expect to access Oracle Traffic Director concurrently. You can tune the maximum
number of entries allowed in the DNS cache and the cache expiry time. Note that
setting the cache size too high might result in wasted memory.

This section contains the following topics:

• Viewing DNS Cache Settings and Metrics

• Configuring DNS Cache Settings

Viewing DNS Cache Settings and Metrics
Viewing DNS Cache Settings

To view the current DNS cache settings for a configuration, run the
otd_getDnsCacheProperties command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
otd_getDnsCacheProperties(props)

enabled=true
max-age=120
max-entries=1024

Chapter 17
Tuning DNS Caching Settings

17-14

Viewing DNS Cache Metrics

You can view the current DNS cache utilization and hit rate in the plain-text perfdump
report, as shown in the following example:

DNSCacheInfo:

enabled yes
CacheEntries 0/1024
HitRatio 0/0 (0.00%)

Async DNS disabled

• The first line indicates whether the DNS cache is enabled.

• CacheEntries shows the number of entries currently in the DNS cache and the
maximum number of entries allowed.

• HitRatio is the number of cache hits compared to the number of DNS cache
lookups.

• The last line indicates whether asynchronous DNS lookup is enabled.

You can configure Oracle Traffic Director to perform DNS lookups by using either
its own asynchronous resolver or the operating system's synchronous resolver.
DNS lookups performed by using the operating system's resolver are faster.

Configuring DNS Cache Settings
You configure the DNS cache settings for a configuration by using either Fusion
Middleware Control or the WLST.

Configuring DNS Cache Settings Using Fusion Middleware Control

To configure DNS cache settings by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Advanced Configuration > Settings.

7. Go to the DNS section on the page.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

9. After making the required changes, click Apply.

Chapter 17
Tuning DNS Caching Settings

17-15

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Configuring DNS Cache Settings Using WLST

To change the DNS cache settings for a configuration, run the
otd_setDnsCacheProperties command.

For example, the following command changes the maximum amount of time to cache
a DNS lookup result to 240 seconds:

props = {}
props['configuration'] = 'foo'
props['max-age'] = '240'
otd_setDnsCacheProperties(props)

Tuning SSL/TLS-Related Settings
This section contains the following topics:

• SSL/TLS Session Caching

• Ciphers and Certificate Keys

SSL/TLS Session Caching

During the initial SSL/TLS handshake process for an HTTPS connection, the client
and server negotiate the cipher suites to be used, and the encryption/decryption and
MAC keys (see SSL/TLS Concepts). This activity requires significant CPU time,
depending on whether RSA or ECC private keys are used, and the size of the keys.

The initial SSL/TLS handshake results in the generation of a unique SSL/TLS session
ID. If the SSL/TLS session ID is cached, then the next time that same HTTPS client
opens a new socket connection, the server can reduce the time taken to establish the
connection by retrieving the SSL/TLS session ID from the cache and performing an
abbreviated SSL/TLS handshake, which is less CPU-intensive than the initial
handshake.

SSL/TLS session caching is enabled by default in Oracle Traffic Director. When a new
connection is established on an SSL/TLS-enabled listener, Oracle Traffic Director
checks whether the SSL/TLS session cache contains a session ID for the client. If the
session ID for the client exists in the cache and is valid, Oracle Traffic Director allows
the client to reuse the session.

You can configure the maximum number of entries in the SSL/TLS session cache and
the duration for which SSL/TLS session IDs should be stored in the cache.

You can configure the SSL/TLS session cache settings for a configuration by using
either Fusion Middleware Control or the WLST.

Configuring SSL/TLS Session Cache Settings Using Fusion Middleware
Control

To configure SSL/TLS session cache settings by using the Fusion Middleware Control,
do the following:

Chapter 17
Tuning SSL/TLS-Related Settings

17-16

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to modify.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Advanced Configuration > Settings.

7. Go to the SSL/TLS Cache section on the page.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

9. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Configuring SSL/TLS Session Caching Settings Using WLST

• To view the current SSL/TLS caching settings for a configuration, run the
otd_getSslSessionCacheProperties command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
otd_getSslSessionCacheProperties(props)

enabled=true
max-entries=10000

• To change the SSL/TLS session caching settings, run the
otd_setSslSessionCacheProperties command.

For example, the following command changes the maximum number of entries
allowed in the SSL/TLS session cache to 20000.

props = {}
props['configuration'] = 'foo'
props['max-entries'] = '20000'
otd_setSslSessionCacheProperties(props)

Ciphers and Certificate Keys
Strong ciphers and large private keys provide better security for SSL/TLS connections,
but they affect performance.

• In SSL/TLS connections, certain ciphers—such as AES, require less computing
resources for the data transfer than stronger ciphers such as 3DES. Consider this

Chapter 17
Tuning SSL/TLS-Related Settings

17-17

factor when you select SSL/TLS ciphers for listeners for which Strict SNI Host
Matching is enabled.

For information about configuring ciphers for listeners, see Configuring SSL on a
HTTP/TCP Listener.

• The initial SSL/TLS handshake process takes less time for RSA certificates with
small key sizes— 2048 bits—than for certificates with large key sizes—3072 and
4096 bits.

For information about creating self-signed certificates and certificate-signing
requests, see Managing Certificates.

Configuring Access-Log Buffer Settings
The access log contains information about client requests to, and responses from, the
server. When the rate at which an Oracle Traffic Director instance receives client
requests is very high, which is usually the case in a production environment, the
frequency of writing entries to the log file on the disk increases. Writing frequently to
the disk is an I/O-intensive activity that can affect the performance of the server.

To reduce the frequency at which Oracle Traffic Director writes entries to the access
log on the disk, access log updates can be buffered. Access-log buffering is enabled
by default in Oracle Traffic Director.

You can specify limits for the access-log buffer size, the number of access-log buffers
per server, and the maximum duration for which entries should be held in the buffer.
When the buffer size, the number of buffers, or the age of an entry in the buffer
reaches the specified limit, Oracle Traffic Director writes the buffered data to the
access log on the disk.

You can configure the access-log buffer settings by using either Fusion Middleware
Control or the WLST.

Configuring Access-Log Buffer Settings Using Fusion Middleware Control

To configure access-log buffer settings by using the Fusion Middleware Control, do the
following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure access-log buffer
preferences.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Logging.

The Log Preferences page is displayed.

7. Go to the Advanced Settings section on the page, and scroll down to the Access
Log Buffer subsection.

8. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

Chapter 17
Configuring Access-Log Buffer Settings

17-18

When you change the value in a field or tab out of a text field that you changed,
the Apply button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Revert button.

9. After making the required changes, click Apply.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Configuring Access-Log Buffer Settings Using WLST

• To view the current access-log buffer properties, run the
otd_getAccessLogBufferProperties command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
otd_getAccessLogBufferProperties(props)

enabled=true
buffer-size=8192
direct-io=false
max-buffers=1000
max-buffers-per-file=default
max-age=1

• To change the access-log buffer properties, run the
otd_setAccessLogBufferProperties command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['max-buffers'] = '2000'
otd_setAccessLogBufferProperties(props)

For information about viewing logs, configuring log preferences, rotating logs, and so
on, see Managing Logs.

Enabling and Configuring Content Compression
Compressed objects are delivered faster to clients, with fewer round-trips, reducing the
overall latency without increasing the investment in expensive hardware.

You can create one or more compression rules specific to each Oracle Traffic Director
virtual server, and configure the rules to be applicable either to all requests or to only
those requests that match a specified condition.

Note:

Certain files—such as GIF, JPEG, and PNG images; and zipped files—are
either already compressed or cannot be compressed any further. Requiring
Oracle Traffic Director to compress such files causes additional overhead
without providing any compression benefit. Therefore, when creating
compression rules for a virtual server, exclude such files.

For each compression rule, you can also specify the following parameters:

Chapter 17
Enabling and Configuring Content Compression

17-19

• Compression level, on the scale 1–9. At level 1, the compression time is the least;
at level 9, the compression ratio is the best.

At the higher compression levels, more CPU resources are consumed during the
compression process, but relatively less network bandwidth is required to transmit
the compressed content. On the other hand, compression at the lower levels is
relatively less CPU-intensive, but more bandwidth is required to transmit the
resulting content. So when choosing the compression level, consider which
resource is more expensive in your environment—CPU resources or network
bandwidth.

– If CPU usage is more expensive, select a lower compression level.

– If network bandwidth is the primary constraint, select a higher compression
level.

• Number of bytes (fragment size) that should be compressed at a time.

• Whether the Vary: Accept-Encoding header should be included the response.

The Vary: Accept-Encoding header instructs proxies situated between the client
and Oracle Traffic Director that the compressed content should not be served to
clients that cannot decompress the content.

Configuring Compression Rules Using Fusion Middleware Control

To create compression rules by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to create compression rules.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Servers.

The Virtual Servers page is displayed.

7. In the navigation pane, expand Virtual Servers, expand the name of the virtual
server for which you want to create compression rules, and select Compression.

The Compression Rules page is displayed. It lists the compression rules that are
currently defined for the virtual server, and indicates whether the rules are
enabled.

Creating a Compression Rule

a. Click New Compression Rule.

The New Compression Rule dialog box is displayed.

In the Name field, enter a name for the new compression rule.

Note:

Only small letters are available. If the value contains capital letters, it
will be changed to small letters without any notifications.

Chapter 17
Enabling and Configuring Content Compression

17-20

b. Click Next.

If you wish to apply the condition, select Edit Expression. In the New
Expression pane, select Create button a new page displays, Select Variable/
Functions and an Operator from the respective drop-down lists and provide a
value in the Value field.

Select the and/or operator from the drop-down list when configuring multiple
expressions. Similarly, use the Not operator when you want the route to be
applied only when the given expression is not true.

To enter a condition manually, click Edit Manually on the right top corner of
the page. In the Condition field, specify the condition under which the rule
should be applied. For information about building condition expressions, click
the help button near the Condition field or see Using Variables, Expressions,
and String Interpolation in the Configuration File Reference for Oracle Traffic
Director .

c. Click OK and then click Create Compression Rule.

The caching rule that you just created is displayed on the Compression Rules
page.

Editing a Compression Rule

To enable or disable a compression rule, or to change the settings of a rule, do the
following:

a. Click the Name of the compression rule that you want to change.

The Edit Compression Rule dialog box is displayed.

Note:

To access the condition builder to edit conditions, select Requests
satisfying the condition and click Edit. The condition builder
enables you to delete old expressions and add new ones.

b. Specify the parameters that you want to change.

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you
changed, the Ok button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Cancel button.

c. After making the required changes, click Ok.

A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Deleting a Compression Rule

To delete a compression rule, click the Delete button. At the confirmation prompt,
click Yes.

Configuring Compression Rules Using WLST

• To create a compression rule for a virtual server, run the
otd_createCompressionRule command.

Chapter 17
Enabling and Configuring Content Compression

17-21

For example, the following command creates a rule named compress-docs for the
virtual server bar in the configuration foo, to cache the requests for which the
expression $uri='^/docs' evaluates to true.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['compression-rule'] = 'compress-docs'
props['condition'] = '$uri='^/docs''
otd_createCompressionRule(props)

Note that the value of the condition property should be a regular expression. For
information about building condition expressions, see Using Variables,
Expressions, and String Interpolation in the Configuration File Reference for
Oracle Traffic Director .

• To view a list of the compression rules defined for a virtual server, run the
otd_listCompressionRules command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
otd_listCompressionRules(props)

compress-docs
compress-all

• To view the current settings of a compression rule, run the
otd_getCompressionRuleProperties command, as shown in the following
example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['compression-rule'] = 'compression-rule-1'
otd_getCompressionRuleProperties(props)

name=compression-rule-1
condition="$uri = '^/doc'"
insert-vary-header=true
compression-level=6
fragment-size=8192

• To change a compression rule, run the otd_setCompressionRuleProperties
command.

For example, the following command changes the compression level for the rule
compression-rule-1 to level 8.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['compression-rule'] = 'compression-rule-1'
props['compression-level'] = '8'
otd_setCompressionRuleProperties(props)

• To delete a compression rule, run the otd_deleteCompressionRule command, as
shown in the following example.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'

Chapter 17
Enabling and Configuring Content Compression

17-22

props['compression-rule'] = 'compression-rule-1'
otd_deleteCompressionRule(props)

Tuning Connections to Origin Servers
Each Oracle Traffic Director virtual server acts as a reverse proxy through which
clients outside the network can access critical data and applications hosted on multiple
origin servers in the back end. This section describes the parameters that you can
tune to improve the performance of Oracle Traffic Director as a reverse-proxy server.

• Enable keep-alive: This parameter indicates whether the Oracle Traffic Director
virtual server should attempt to use persistent connections to the origin server or
create a new connection for each request. It is enabled by default.

• Keep-alive timeout: This parameter specifies the maximum duration, in seconds,
for which a persistent connection can be kept open. The default timeout duration is
29 seconds.

• Idle timeout: This parameter specifies the maximum duration, in seconds, for
which a connection to the origin server can remain idle. The default duration is 300
seconds.

• Always use keep-alive: This parameter indicates whether the Oracle Traffic
Director virtual server can reuse existing persistent connections to origin servers
for all types of requests. If this parameter is not enabled (default), the Oracle
Traffic Director virtual server attempts to use persistent connections to the origin
server only for the GET, HEAD, and OPTIONS request methods.

• Proxy buffer size: This parameter specifies the size of the buffer in which Oracle
Traffic Director stores data received from the origin server, before sending the
data to the client. Larger the buffer, lower is the number of write system calls. The
default size of the proxy buffer is 16 kilobytes.

The reverse-proxy settings for connections between an Oracle Traffic Director virtual
server and an origin server pool are defined in routes. To change the reverse-proxy
settings, you should edit the routes by using either Fusion Middleware Control or the
WLST.

Chapter 17
Tuning Connections to Origin Servers

17-23

Note:

In the current release, you cannot configure the proxy buffer size by using
Fusion Middleware Control or WLST.

To configure the proxy buffer size for a route, do the following:

1. Add the proxy-buffer-size parameter to the http-client-config
server application function (SAF) in the vs_name-obj.conf configuration
file of the virtual server that contains the route that you want to edit.

The vs_name-obj.conf file is located in the following directory:

INSTANCE_HOME/net-config_name/config

The following is an example of a route (route1) for which the proxy-
buffer-size and other reverse-proxy parameters have been configured.

<Object name="route1">
ObjectType fn="http-client-config" keep-alive-timeout="31" always-use-
keep-alive="true" keep-alive="false" timeout="360" proxy-buffer-
size="32768"
Route fn="set-origin-server" origin-server-pool="origin-server-pool-1"
</Object>

2. Save and close the vs_name-obj.conf file.

3. Run the pullComponentChanges command to update the configuration
store on the administration server and to give effect to this change in all
the instances of the configuration.

pullComponentChanges('otd_example.com')

otd_example.com is the name of the node on which you configured the
proxy buffer size.

For more information about the http-client-config server application
function (SAF), see the Configuration File Reference for Oracle Traffic
Director .

Editing Routes Using Fusion Middleware Control

To edit routes by using the Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control, as described in Displaying Fusion
Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to edit routes.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Servers.

The Virtual Servers page is displayed.

Chapter 17
Tuning Connections to Origin Servers

17-24

7. In the navigation pane, expand Virtual Servers, expand the name of the virtual
server for which you want to edit routes, and select Routes.

The Routes page is displayed. It lists the routes that are currently defined for the
virtual server.

8. Click the Name of the route that you want to edit.

The Route Settings page is displayed.

9. Specify the reverse-proxy parameters in the following fields in the Advanced
Settings: Client Configuration for Connections with Origin Servers section on
the Route Settings page:

• Keep Alive

• Keep Alive Timeout

• Always Use Keep Alive

• Idle Timeout

On-screen help and prompts are provided for all of the parameters.

When you change the value in a field or tab out of a text field that you changed,
the Ok button near the upper right corner of the page is enabled.

At any time, you can discard the changes by clicking the Cancel button.

10. After making the required changes, click Ok.

• A message, confirming that the updated configuration was saved, is displayed
in the Console Messages pane.

Configuring Routes Using WLST

To change the properties of a route, run the otd_setRouteProperties command. The
following are the names of the reverse-proxy parameters described earlier:

keep-alive-timeout
always-use-keep-alive
use-keep-alive
timeout

For example, the following command changes the keep-alive timeout duration for the
route route1 in the virtual server bar of the configuration foo to 30 seconds.

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'route-1'
props['keep-alive-timeout'] = '30'
otd_setRouteProperties(props)

For more information about the WLST commands mentioned in this section, see the
WebLogic Scripting Tool Command Reference for Oracle Traffic Director.

Solaris-specific Tuning
This section provides tuning information that is specific to Solaris. Note that these are
platform-specific tuning tips and any changes that you make could affect other process
on the system.

Chapter 17
Solaris-specific Tuning

17-25

Files Open in a Single Process (File Descriptor Limits)
Different platforms have different limits on the number of files that can be open in a
single process at one time. For busy sites, increase that number. On Solaris systems,
control this limit by setting rlim_fd_max and rlim_fd_cur in the /etc/system file. For
Solaris 11, the default for rlim_fd_max is 65536 and the default value for rlim_fd_cur
is 256.

After making this or any change in the /etc/system file, reboot Solaris for the new
settings to take effect. In addition, if you upgrade to a new version of Solaris, remove
any line added to /etc/system and add it again only after verifying that it is still valid.

An alternative way to make this change is by using the ulimit –n <value> command.
Using this command does not require a system restart. However, this command only
changes the login shell, whereas editing the etc/system file affects all shells.

Failure to Connect to HTTP Server
If clients experience connection timeouts when an Oracle Traffic Director instance is
heavily loaded, you can increase the size of the HTTP listener backlog queue. To
increase this setting, edit the HTTP listener's listen queue value.

In addition to this, you must also increase the limits within the Solaris TCP/IP
networking code. There are two parameters that are changed by executing the
following commands:

ipadm set-prop -p _conn_req_max_q=4096 tcp

ipadm set-prop -p _conn_req_max_q0=4096 tcp

These two settings increase the maximum number of two Solaris listen queues that
can fill up with waiting connections. The setting _conn_req_max_q increases the
number of completed connections waiting to return from an accept() call. The setting
_conn_req_max_q0 increases the maximum number of connections with the handshake
incomplete. The default values for _conn_req_max_q and _conn_req_max_q0 are 128
and 1024, respectively.

You can monitor the effect of these changes by using the netstat -s command and
looking at the tcpListenDrop, tcpListenDropQ0, and tcpHalfOpenDrop values.
Review them before adjusting these values. If the counters are not zero, adjust the
value to 2048 initially, and continue monitoring the netstat output.

Do not accept more connections than Oracle Traffic Director is able to process. The
value of 2048 for the parameters tcpListenDrop, tcpListenDropQ0, and
tcpHalfOpenDrop typically reduces connection request failures, and improvement has
been seen with values as high as 4096.

The HTTP listener's listen queue setting and the related Solaris _conn_req_max_q and
_conn_req_max_q0 settings are meant to match the throughput of Oracle Traffic
Director. These queues act as a buffer to manage the irregular rate of connections
coming from web users. These queues allow Solaris to accept the connections and
hold them until they are processed by Oracle Traffic Director.

Chapter 17
Solaris-specific Tuning

17-26

Tuning TCP Buffering
TCP buffering can be tuned by using the send_buf and recv_buf parameters. For
more information about these parameters, see Table 17-1.

Reduce File System Maintenance
UNIX file system (UFS) volumes maintain the time that each file was accessed. If the
file access time updates are not important in your environment, you can turn them off
by adding the noatime parameter to the data volume's mount point in /etc/vfstab.
For example:

/dev/dsk/c0t5d0s6 /dev/rdsk/c0t5d0s6 /data0 ufs 1 yes noatime

Note:

The noatime parameter does not turn off the access time updates when the
file is modified, but only when the file is accessed.

For ZFS, you can use the zfs set command to modify any settable dataset property.
The following example sets the atime property to off for tank/home.

zfs set atime=off tank/home

Long Service Times on Busy Volumes or Disks
An Oracle Traffic Director instance's responsiveness depends greatly on the
performance of the disk subsystem. The iostat utility can be used to monitor how
busy the disks are and how rapidly they complete I/O requests (the %b and svc_t
columns, respectively). Service times are not important for disks that are less than
30% busy. However, for busier disks, service times should not exceed about 20
milliseconds. If busy disks have slower service times, improving disk performance can
help performance substantially.If some disks are busy while others are lightly loaded,
balance the load by moving some files from the busy disks to the idle disks.

Short-Term System Monitoring
Solaris offers several tools for keeping track of system behavior. Although you can
capture their output in files for later analysis, the tools listed below are primarily meant
for monitoring system behavior in real time:

• The iostat -x 60 command reports disk performance statistics at 60-second
intervals.

To see how busy each disk is, take a look at the %b column. For any disk that is
busy more than 20% of the time, pay attention to the service time as reported in
the svct column. Other columns provide information about I/O operation rates,
amount of data transferred, and so on.

• The vmstat 60 command summarizes virtual memory activity and some CPU
statistics at 60-second intervals.

Chapter 17
Solaris-specific Tuning

17-27

Take a look at the sr column to keep track of the page scan rate and take action if
it is too high. In addition, monitor the us, sy, and id columns to see how heavily
the CPUs are being used. Note that you need to keep plenty of CPU power in
reserve to handle sudden bursts of activity. Also keep track of the r column to see
how many threads are competing for CPU time. If this remains higher than about
four times the number of CPUs, reduce the server's concurrency.

• The mpstat 60 command provides detailed view of the CPU statistics, while the
dlstat show-link -i 60 command summarizes network activity.

Long-Term System Monitoring
While it is important to monitor system performance with the tools mentioned above,
collecting longer-term performance histories is equally important, as it can help you
detect trends. For example, a baseline record of a system will help you find out what
has changed if the system starts behaving poorly. Enable the system activity reporting
package by doing the following:

• Run the following command:

svcadm enable system/sar

• Run the command crontab -e sys and remove the # comment characters from
the lines with the sa1 and sa2 commands. You can adjust how often the
commands run and the time depending on your site's activity profile. For an
explanation of the format of this file see the crontab man page.

This command causes the system to store performance data in files in
the /var/adm/sa directory, where they are retained for one month by default. You
can then use the sar command to examine the statistics for time periods of
interest.

Tuning for Performance Benchmarking
The following table shows the operating system tuning for Solaris used when
benchmarking for performance and scalability. These values are an example of how
you can tune your system to achieve the desired result.

Table 17-1 Tuning Solaris for Performance Benchmarking

Parameter Scope Default
Value

Tuned
Value

Comments

rlim_fd_cur /etc/system 256 65536 Soft limit

rlim_fd_max /etc/system 65536 65536 Process open file descriptors limit;
accounts for the expected load (for
the associated sockets, files, and
pipes if any).

_time_wait_
interval

ipadm set-prop 60000 600000 Set on clients as well.

_conn_req_m
ax_q

ipadm set-prop 128 1024

_conn_req_m
ax_q0

ipadm set-prop 1024 4096

Chapter 17
Solaris-specific Tuning

17-28

Table 17-1 (Cont.) Tuning Solaris for Performance Benchmarking

Parameter Scope Default
Value

Tuned
Value

Comments

_ip_abort_i
nterval

ipadm set-prop 300000 600000

keepalive
interval

ipadm set-prop 7200000 9000000 For high traffic web sites, lower this
value.

_rexmit_int
erval_initi
al

ipadm set-prop 1000 3000 If re-transmission is greater than
30-40%, increase this value.

_rexmit_int
erval_max

ipadm set-prop 60000 100000

_rexmit_int
erval_min

ipadm set-prop 200 3000

smallest_an
on_port

ipadm set-prop 32768 65535 Set on clients as well.

send_buf ipadm set-prop 49152 128000 To increase the transmit buffer.

recv_buf ipadm set-prop 128000 1048576 To increase the receive buffer.

Chapter 17
Solaris-specific Tuning

17-29

18
Diagnosing and Troubleshooting Problems

Learn about the methods and information sources you can use for diagnosing and
solving problems that you might encounter while using Oracle Traffic Director.
This chapter contains the following sections:

• Roadmap for Troubleshooting Oracle Traffic Director

• Solutions to Common Errors

• Frequently Asked Questions

• Contacting Oracle for Support

Roadmap for Troubleshooting Oracle Traffic Director
This section provides the sequence of tasks you can perform to diagnose and solve
problems with Oracle Traffic Director.

1. Verify whether the system configuration is correct.

For information about the supported platforms and operating systems, see the
Oracle Fusion Middleware Supported System Configurations at:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-
certification-100350.html

2. Look for a solution to the problem in Solutions to Common Errors.

3. Check whether the information in Frequently Asked Questions helps you
understand or solve the problem.

4. Try to diagnose the problem.

a. Review the messages logged in the server log. Look for messages of type
WARNING, ERROR, and INCIDENT_ERROR.

For messages of type WARNING and ERROR, try to solve the problem by following
the directions, if any, in the error message.

An INCIDENT_ERROR message indicates a serious problem caused by unknown
reasons. You should contact Oracle for support.

b. Increase the verbosity of the server log, and try to reproduce the problem.

Oracle Traffic Director supports several log levels for the server log, as
described in Server Log. The default log level is NOTIFICATION:1. The least
verbose log level is INCIDENT_ERROR, at which only serious error messages are
logged. At the TRACE:1, TRACE:16, or TRACE:32 levels, the logs are increasingly
verbose, but provide more detailed information, which can be useful for
diagnosing problems.

Increase the log verbosity and then try to reproduce the problem. When the
problem occurs again, review the messages logs for pointers to the cause of
the problem.

18-1

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

For information about changing the server log level, see Configuring Log
Preferences.

5. Contact Oracle for support, as described in Contacting Oracle for Support.

Troubleshooting High Availability Configuration Issues
This section provides information about the tasks you can perform to diagnose and
solve problems with an Oracle Traffic Director high availability configuration.

• The Oracle Traffic Director configuration must be deployed on two nodes. See
Managing Failover Groups.

• The router ID for each failover group has to be unique.

• Make sure that KeepAlived is installed. In most cases KeepAlived software is
installed by default on both the Exalogic compute nodes (or VMs) where Oracle
Traffic Director instances are running. To check if KeepAlived is installed, run the
following command:

rpm -qa | grep keepalived

If KeepAlived is correctly installed, an output similar to the following is displayed:

keepalived-1.2.2-1.el5

Note that if KeepAlived is not installed, the RPM can be found in the software
repository.

• For KeepAlived specific information, check the logs in the /var/log/messages.

• Make sure to provide the correct VIP address and the appropriate subnet mask
(netmask) bit-size for successfully completing the high availability configuration. In
addition, ensure that both the nodes that host the instances must be in the same
subnet. See Creating Failover Groups.

Solutions to Common Errors
This section provides solutions to the following problems:

• Startup failure: could not bind to port

• Unable to start server with HTTP listener port 80

• Oracle Traffic Director consumes excessive memory at startup

• Operating system error: Too many open files in system

• Oracle Traffic Director does not maintain session stickiness

Startup failure: could not bind to port
This error occurs when one or more HTTP listeners in the configuration are assigned
to a TCP port number that is already in use by another process.

[ERROR:32] startup failure: could not bind to port port (Address already in use)
[ERROR:32] [OTD-10380] http-listener-1: http://host:port: Error creating socket
(Address already in use)
[ERROR:32] [OTD-10376] 1 listen sockets could not be created
[ERROR:32] server initialization failed

Chapter 18
Solutions to Common Errors

18-2

You can find out the process that is listening on a given port by running the following
command:

> netstat -npl | grep :port | grep LISTEN

If the configured HTTP listener port is being used by another process, then either free
the port or change it as described in Modifying a Listener.

Unable to start server with HTTP listener port 80
This error occurs if you configure an HTTP listener port up to 1024 (say 80) and
attempt to start the Oracle Traffic Director instance as a non-root user.

The following messages are written to the server log:

[ERROR:32] [OTD-10376] 1 listen sockets could not be created
[ERROR:32] [OTD-10380] http-listener-1: http://soa.example.com:80:
 Error creating socket (No access rights)

Port numbers up to 1024 are assigned by the Internet Assigned Numbers Authority
(IANA) to various services. These port numbers are accessible only by the root user.

To solve this problem, you can do one of the following:

• Configure the Oracle Traffic Director listener with a port number higher than 1024
(say, 8080), and create an IP packet-filtering rule to internally redirect requests
received at port 80 to the configured Oracle Traffic Director port, as shown in the
following examples:

/sbin/iptables -t nat -A PREROUTING -p tcp -m tcp --dport 80 -j REDIRECT --to-
ports 8080
/sbin/iptables -t nat -A PREROUTING -p udp -m udp --dport 80 -j REDIRECT --to-
ports 8080

Make sure that the iptables service is started by default when the server restarts
by running the chkconfig command, as shown in the following example:

chkconfig --level 35 iptables on

• If xinetd is installed in the system, create a file (named otd, for example) in
the /etc/xinetd.d/ directory with the following entry:

service otd
{
type = UNLISTED
disable = no
socket_type = stream
protocol = tcp
user = root
wait = no
port = 80
redirect = 127.0.0.1 8080
}

This entry redirects all incoming TCP traffic received on port 80 to port 8080 on the
local machine.

See the Linux xinetd documentation.

Chapter 18
Solutions to Common Errors

18-3

Oracle Traffic Director consumes excessive memory at startup
When you start an Oracle Traffic Director instance, the values for certain parameters—
maximum number of keep-alive connections, size of the connection queue, and
maximum number of connections to origin servers—are assigned automatically based
on the system's file descriptor limit.

If the file descriptor limit is very high, the auto-assigned values for undefined
parameters can be needlessly high, causing Oracle Traffic Director to consume an
excessive amount of memory. To avoid this problem, explicitly configure the maximum
number of keep-alive connections (Tuning Keep-Alive Settings), the size of the
connection queue (Tuning the Thread Pool and Connection Queue Settings), and the
maximum number of connections to individual origin servers (Modifying an Origin
Server).

Operating system error: Too many open files in system
This operating system error occurs in Linux when the number of allocated file
descriptors reaches the limit for the system.

The following message is written to the server log:

[ERROR:16] [OTD-10546] Insufficient file descriptors for optimum configuration.

To avoid this error, increase the file descriptor limit on Linux from the default of 1024 to
a reasonable number. See Tuning the File Descriptor Limit.

Oracle Traffic Director does not maintain session stickiness
Oracle Traffic Director can maintain session stickiness as follows:

Cookie Based Session Persistence

This is a common scenario where clients accept cookies from web or application
servers. In this scenario, Oracle Traffic Director, while load balancing HTTP traffic,
ensures session persistence using its own cookie. This ensures that sticky requests,
requests containing HTTP Session cookie, are routed to the same back-end
application server where this session cookie originated.

URI Based Session Persistence

This is not a very common scenario. In this case, cookies are disabled on clients and
back-end web or application servers maintain session persistence by appending HTTP
session information to the URI.

In this scenario, Oracle Traffic Director can honor session persistence if the back-end
application server appends Oracle Traffic Director's JRoute cookie to the URI. Origin
servers like WebLogic Server 10.3.6.2 and higher, 12.1 and higher, and GlassFish 2.0
and higher have the ability to append this JRoute cookie to the URI. Hence, Oracle
Traffic Director is able to maintain URI based session persistence only with these
origin servers.

Chapter 18
Solutions to Common Errors

18-4

Frequently Asked Questions
This section contains the following subsections:

• What is a "configuration"?

• How do I access Fusion Middleware Control?

• Why do I see a certificate warning when I access Fusion Middleware Control for
the first time?

• Can I manually edit configuration files?

• In Fusion Middleware Control, what is the difference between saving a
configuration and deploying it?

• Why is the "Deployment Pending" message displayed in Fusion Middleware
Control?

• Why is the "Instance Configuration Deployed" message is displayed in Fusion
Middleware Control?

• Why does Fusion Middleware Control session end abruptly?

• How do I access the WLST?

• Why is a certificate warning message displayed when I tried to access the WLST
for the first time?

• How do I find out the short names for the options of a WLST command?

• Why am I unable to select TCP as the health-check protocol when dynamic
discovery is enabled?

• After I changed the origin servers in a pool to Oracle WebLogic Servers, they are
not discovered automatically, though dynamic discovery is enabled. Why?

• How do I view the request and response headers sent and received by Oracle
Traffic Director?

• How do I enable SSL/TLS for an Oracle Traffic Director instance?

• How do I find out which SSL/TLS cipher suites are supported and enabled?

• How do I view a list of installed certificates?

• How do I issue test requests to an SSL/TLS-enabled Oracle Traffic Director
instance?

• How do I analyze SSL/TLS connections?

• How do I view details of SSL/TLS communication between Oracle Traffic Director
instances and Oracle WebLogic Server origin servers?

• Why are certain SSL/TLS-enabled origin servers marked offline after health
checks, even though the servers are up?

• Does Oracle Traffic Director rewrite the source IP address of clients before
forwarding requests to the origin servers?

• Why does Oracle Traffic Director return a 405 status code?

Chapter 18
Frequently Asked Questions

18-5

What is a "configuration"?
A configuration, in Oracle Traffic Director terminology, is a collection of configurable
elements (metadata) that determine the run-time behavior of an Oracle Traffic Director
instance.

For more information, see Oracle Traffic Director Terminology.

How do I access Fusion Middleware Control?
See Displaying Fusion Middleware Control.

Why do I see a certificate warning when I access Fusion Middleware
Control for the first time?

The browser displays a warning because the administration server has a self-signed
certificate. To proceed, you should choose to trust the certificate.

Can I manually edit configuration files?
The files in the configuration store are updated automatically when you edit a
configuration by using either Fusion Middleware Control or the WLST. Unless
otherwise instructed in the Oracle Traffic Director documentation, DO NOT edit the
files in the configuration store manually.

For the configuration changes to take effect, you should activate the configuration to
the instances as described in Activating Configuration Changes.

In Fusion Middleware Control, what is the difference between saving a
configuration and deploying it?

When you save a configuration, the changes you made are saved in the configuration
store on the administration server. For the changes to take effect in the instances of
the configuration, you must activate the configuration as described in Activating
Configuration Changes.

Why is the "Deployment Pending" message displayed in Fusion
Middleware Control?

The Deployment Pending message is displayed in Fusion Middleware Control when
you change a configuration and save it on the administration server. It indicates that
the changes are yet to be copied over to the instances of the configuration.

If you have finished making the required configuration changes, you can deploy the
changes to all of the instances by clicking Deploy Changes in Fusion Middleware
Control or by running the activate WLST command, as described in Activating
Configuration Changes.

Chapter 18
Frequently Asked Questions

18-6

Why is the "Instance Configuration Deployed" message is displayed in
Fusion Middleware Control?

The Instance Configuration Deployed message is displayed in Fusion Middleware
Control when you manually edit the configuration files of an instance. It indicates that
the configuration files of one or more instances are different from the corresponding
configuration files stored in the configuration store on the administration server.

Why does Fusion Middleware Control session end abruptly?
If an Fusion Middleware Control session remains inactive for 30 minutes, it ends
automatically. You should log in again.

How do I access the WLST?
See Accessing WebLogic Scripting Tool.

Why is a certificate warning message displayed when I tried to access
the WLST for the first time?

The WLST connects to the SSL port of the administration server. The administration
server has a self-signed certificate. The message that you see when you connect to
the administration server for the first time is a prompt to choose whether you trust the
certificate. Make sure that you are connecting to the correct server and port, and enter
y to trust the certificate. For subsequent invocations of the WLST, the warning
message is not displayed.

How do I find out the short names for the options of a WLST
command?

See help for the command, by running the command with the --help option.

Why am I unable to select TCP as the health-check protocol when
dynamic discovery is enabled?

When dynamic discovery is enabled, Oracle Traffic Director needs to send, at a
specified interval, an HTTP request containing specific headers to determine whether
the origin servers specified in the pool are Oracle WebLogic Server instances and
whether the servers belong to a cluster. The response to a TCP health-check request
would not provide the necessary information to determine the presence of Oracle
WebLogic Server instances. So when dynamic discovery is enabled, the health-check
protocol must be set to HTTP.

Chapter 18
Frequently Asked Questions

18-7

After I changed the origin servers in a pool to Oracle WebLogic
Servers, they are not discovered automatically, though dynamic
discovery is enabled. Why?

If dynamic discovery is enabled, when the Oracle Traffic Director instance starts, it
determines whether or not the configured origin server is an Oracle WebLogic Server
instance.

So if you initially configured, say, an Oracle GlassFish Server instance as the origin
server, then at startup, Oracle Traffic Director determines that the origin server is not
an Oracle WebLogic Server instance. Subsequently, if you replace the origin server
with an Oracle WebLogic Server instance, then for Oracle Traffic Director to determine
afresh that the origin server is now an Oracle WebLogic Server instance, you must
either restart the Oracle Traffic Director instances or reconfigure them.

If you want to change the origin servers from Oracle WebLogic Server instances to
other servers, or vice versa, without restarting the instances, do the following:

1. Create a new origin-server pool with the required origin servers, and delete the old
pool. For more information, see Managing Origin-Server Pools.

2. Update the appropriate routes to point to the new pool, as described in Configuring
Routes for a Virtual Server.

3. Reconfigure the Oracle Traffic Director instances by using the softRestart WLST
command, as described in Updating Oracle Traffic Director Instances Without
Restarting..

How do I view the request and response headers sent and received by
Oracle Traffic Director?

You can enable logging of the request and response headers in the server log by
modifying the appropriate route, using either Fusion Middleware Control or the WLST.

• Using Fusion Middleware Control

1. Log in to Fusion Middleware Control, as described in Graphical User Interface-
Fusion Middleware Control.

2. Click the WebLogic Domain button at the upper left corner of the page.

3. Select Administration > OTD Configurations.

A list of the available configurations is displayed.

4. Select the configuration for which you want to configure routes.

5. Click the Traffic Director Configuration In the Common Tasks pane.

6. Select Administration > Virtual Servers.

The Virtual Servers page is displayed.

7. In the navigation pane, expand Virtual Servers, expand the name of the
virtual server for which you want to edit routes, and select Routes.

The Routes page is displayed. It lists the routes that are currently defined for
the selected virtual server.

Chapter 18
Frequently Asked Questions

18-8

8. Click the Name of the route that you want to configure.

The Route Settings page is displayed.

9. Go to the Advanced Settings section of the Route Settings page, and scroll
down to the Client Configuration for Connections with Origin Servers
subsection.

10. Select the Log Headers check box.

11. Click OK.

• Using WLST

Run the otd_setRouteProperties command, as shown in the following example:

props = {}
props['configuration'] = 'foo'
props['virtual-server'] = 'bar'
props['route'] = 'route-1'
props['log-headers'] = 'true'
otd_setRouteProperties(props)

This command enables logging of the headers that Oracle Traffic Director sends
to, and receives from, the origin servers associated with the route named route-1
in the virtual server bar of the configuration foo.

The headers are logged in the server log as shown in the following example:

[2011-11-11T03:45:00.000-08:00] [net-test] [NOTIFICATION] [OTD-11008] []
 [pid: 8184] for host 10.177.243.152 trying to OPTIONS / while trying to GET
 /favicon.ico, service-http reports: request headers sent to origin
server(soa.example.com:1900) :[[
OPTIONS / HTTP/1.1
Proxy-agent: Oracle-Traffic-Director/12.2.1.0
Surrogate-capability: otd="Surrogate/1.0"
Host: dadvma0178:1900
Proxy-ping: true
X-weblogic-force-jvmid: unset
Via: 1.1 net-test
Connection: keep-aliv e
]]
[2011-11-11T03:45:00.000-08:00] [net-test] [NOTIFICATION] [OTD-11009] []
 [pid: 8184] for host 10.177.243.152 trying to OPTIONS / while trying to GET
 /favicon.ico, service-http reports: response headers received from origin
server(soa.example.com:1900) :[[
HTTP/1.1 200 OK
date: Fri, 11 Nov 2011 11:45:00 GMT
server: Apache/2.2.17 (Unix)
allow: GET,HEAD,POST,OPTIONS,TRACE
content-length: 0
keep-alive: timeout=5, max=100
connection: Keep-Alive
content-type: text/html]

How do I enable SSL/TLS for an Oracle Traffic Director instance?
See Configuring SSL/TLS Between Oracle Traffic Director and Clients.

Chapter 18
Frequently Asked Questions

18-9

How do I find out which SSL/TLS cipher suites are supported and
enabled?

See Cipher Suites Supported by Oracle Traffic Director.

How do I view a list of installed certificates?
See Viewing a List of Certificates.

How do I issue test requests to an SSL/TLS-enabled Oracle Traffic
Director instance?

Run the following command:

$ openssl s_client -host hostname -port portnumber -quiet

• If you omit the -quiet option, information about the SSL/TLS connection—such as
the server DN, certificate name, and the negotiated cipher suite—is displayed.

• For testing with a specific cipher, specify the -cipher option.

After the SSL/TLS connection is established, enter an HTTP request, as shown in the
following example.

GET /

For more information, see the s_client man page.

How do I analyze SSL/TLS connections?
Several tools are available to observe request and response data over SSL/TLS
connections. One such tool is ssltap, which serves as a simple proxy between the
client and the Oracle Traffic Director and displays information about the connections
that it forwards.

Run the following command:

$ ssltap -l -s otd_host:otd_port

For example, to observe the communication between clients and the SSL/TLS-
enabled Oracle Traffic Director listener soa.example.com:1905, run the following
command:

$ ssltap -l -s soa.example.com:8080

The following messages are displayed:

Looking up "localhost"...
Proxy socket ready and listening

By default, ssltap listens on port 1924. Connect to https://localhost:1924 by using
your browser.

You will see an output similar to the following:

Chapter 18
Frequently Asked Questions

18-10

Connection #1 [Tue Oct 25 04:29:46 2011]
Connected to localhost:8080
--> [
(177 bytes of 172)
SSLRecord { [Tue Oct 25 04:29:46 2011]
 type = 22 (handshake)
 version = { 3,1 }
 length = 172 (0xac)
 handshake {
 type = 1 (client_hello)
 length = 168 (0x0000a8)
 ClientHelloV3 {
 client_version = {3, 1}
 random = {...}
 session ID = {
 length = 0
 contents = {...}
 }
 cipher_suites[29] = {
 (0x00ff) TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 (0xc00a) TLS/ECDHE-ECDSA/AES256-CBC/SHA
 (0xc014) TLS/ECDHE-RSA/AES256-CBC/SHA
 (0x0039) TLS/DHE-RSA/AES256-CBC/SHA
 (0x0038) TLS/DHE-DSS/AES256-CBC/SHA
 (0xc00f) TLS/ECDH-RSA/AES256-CBC/SHA
 (0xc005) TLS/ECDH-ECDSA/AES256-CBC/SHA
 (0x0035) TLS/RSA/AES256-CBC/SHA
 (0xc007) TLS/ECDHE-ECDSA/RC4-128/SHA
 (0xc009) TLS/ECDHE-ECDSA/AES128-CBC/SHA
 (0xc011) TLS/ECDHE-RSA/RC4-128/SHA
 (0xc013) TLS/ECDHE-RSA/AES128-CBC/SHA
 (0x0033) TLS/DHE-RSA/AES128-CBC/SHA
 (0x0032) TLS/DHE-DSS/AES128-CBC/SHA
 (0xc00c) TLS/ECDH-RSA/RC4-128/SHA
 (0xc00e) TLS/ECDH-RSA/AES128-CBC/SHA
 (0xc002) TLS/ECDH-ECDSA/RC4-128/SHA
 (0xc004) TLS/ECDH-ECDSA/AES128-CBC/SHA
 (0x0004) SSL3/RSA/RC4-128/MD5
 (0x0005) SSL3/RSA/RC4-128/SHA
 (0x002f) TLS/RSA/AES128-CBC/SHA
 (0xc008) TLS/ECDHE-ECDSA/3DES-EDE-CBC/SHA
 (0xc012) TLS/ECDHE-RSA/3DES-EDE-CBC/SHA
 (0x0016) SSL3/DHE-RSA/3DES192EDE-CBC/SHA
 (0x0013) SSL3/DHE-DSS/DES192EDE3CBC/SHA
 (0xc00d) TLS/ECDH-RSA/3DES-EDE-CBC/SHA
 (0xc003) TLS/ECDH-ECDSA/3DES-EDE-CBC/SHA
 (0xfeff) SSL3/RSA-FIPS/3DESEDE-CBC/SHA
 (0x000a) SSL3/RSA/3DES192EDE-CBC/SHA
 }
 compression[1] = {
 (00) NULL
 }
 extensions[55] = {
 extension type server_name, length [29] = {
 0: 00 1b 00 00 18 64 61 64 76 6d 61 30 31 37 38 2e |soa.
 10: 75 73 2e 6f 72 61 63 6c 65 2e 63 6f 6d | example.com
 }
 extension type elliptic_curves, length [8] = {
 0: 00 06 00 17 00 18 00 19 |
 }
 extension type ec_point_formats, length [2] = {

Chapter 18
Frequently Asked Questions

18-11

 0: 01 00 | ..
 }
 extension type session_ticket, length [0]
 }
 }
 }
}

This is the SSL/TLS client hello sent from the browser to the Oracle Traffic Director
instance. Note the list of cipher suites sent by the browser. These are the cipher suites
that the browser is configured to handle, sorted in order of preference. The server
selects one of the cipher suites for the handshake. If the server is not configured any
of the cipher suites indicated by the client, the connection fails. In the above example,
the session ID is empty, indicating that the browser does not have any cached
SSL/TLS session with the specified server.

The Oracle Traffic Director instance's response would be similar to the following
output:

<-- [
(823 bytes of 818)
SSLRecord { [Tue Oct 25 04:29:46 2011]
 type = 22 (handshake)
 version = { 3,1 }
 length = 818 (0x332)
 handshake {
 type = 2 (server_hello)
 length = 77 (0x00004d)
 ServerHello {
 server_version = {3, 1}
 random = {...}
 session ID = {
 length = 32
 contents = {...}
 }
 cipher_suite = (0x0035) TLS/RSA/AES256-CBC/SHA
 compression method = (00) NULL
 extensions[5] = {
 extension type renegotiation_info, length [1] = {
 0: 00 | .
 }
 }
 }
 type = 11 (certificate)
 length = 729 (0x0002d9)
 CertificateChain {
 chainlength = 726 (0x02d6)
 Certificate {
 size = 723 (0x02d3)
 data = { saved in file 'cert.001' }
 }
 }
 type = 14 (server_hello_done)
 length = 0 (0x000000)
 }
}
]
--> [

Chapter 18
Frequently Asked Questions

18-12

The server selected the cipher suite, TLS/RSA/AES256-CBC/SHA and a session ID,
which the client will include in subsequent requests.

The server also sent its certificate chain for the browser to verify. ssltap saved the
certificates in the file cert.001. You can examine the certificates with any tool that can
parse X.509 certificates. For example, run the following command:

$ openssl x509 -in cert.001 -text -inform DER

Note:

ssltap is a single threaded proxy server. So if you issue multiple requests
through it, the requests will get serialized. If you need to analyze a specific
problem with your application that only occurs on concurrent requests
through SSL/TLS, try running multiple ssltap instances.

How do I view details of SSL/TLS communication between Oracle
Traffic Director instances and Oracle WebLogic Server origin servers?

Configure SSL debugging for the Oracle WebLogic Server instance by adding the -
Dssl.debug=true system property in the start script of the serve. For more information,
see SSL Debugging in the Oracle Fusion Middleware Securing Oracle WebLogic
Server.

Increase the verbosity of the Oracle Traffic Director server log by setting the log level
to TRACE:32, as described in Configuring Log Preferences.

Why are certain SSL/TLS-enabled origin servers marked offline after
health checks, even though the servers are up?

This error can occur for the following origin servers:

• SSL/TLS-enabled origin servers that are configured in the origin-server pool by
using IP addresses instead of host names.

• Dynamically discovered, SSL/TLS-enabled Oracle WebLogic Server origin
servers. Oracle Traffic Director refers to them using their IP addresses rather than
the host names.

While Oracle Traffic Director refers to such origin servers by using their IP addresses,
the certificates of the origin servers contain the servers' host names. So, in response
to health-check requests, when the origin servers present certificates, Oracle Traffic
Director attempts, unsuccessfully, to validate them. The SSL/TLS handshake fails. As
a result, the health checks show such origin servers to be offline. Note that server-
certificate validation is enabled by default.

If you set the server-log level to TRACE:32, you can view the message logged for this
failure, as shown in the following example:

[2011-11-21T09:50:54-08:00] [net-soa] [TRACE:1] [OTD-10969] [] [pid: 22466]
 trying to OPTIONS /, service-http reports: error sending request
 (SSL_ERROR_BAD_CERT_DOMAIN: Requested domain name does not match the server's
certificate.)

Chapter 18
Frequently Asked Questions

18-13

To solve this problem, disable validation of the origin-server certificates for the origin
server, by running the otd_setOriginServerPoolSslProperties WLST command, as
shown in the following example:

props = {}
props['configuration'] = 'foo'
props['origin-server-pool'] = 'origin-server-pool-1'
props['validate-server-cert'] = 'false'
otd_setOriginServerPoolSslProperties(props)

For more information, see otd_setOriginServerPoolSslProperties command in the
WebLogic Scripting Tool Command Reference for Oracle Traffic Director.

Does Oracle Traffic Director rewrite the source IP address of clients
before forwarding requests to the origin servers?

The default behavior of Oracle Traffic Director is to rewrite the source IP address.
However, Oracle Traffic Director does send the client IP address in an additional
request header Proxy-client-ip. You can set up Oracle Traffic Director to block or
forward Proxy-client-ip and other request headers by configuring the appropriate
route as described in Configuring Routes for a Virtual Server.

Note that Oracle Traffic Director cannot maintain case sensitivity of the HTTP request
headers while forwarding them to origin servers.

Why does Oracle Traffic Director return a 405 status code?
If an HTTP request does not meet the conditions specified in any of the defined routes
and there is no default (=unconditional) route in the configuration, then Oracle Traffic
Director returns the 405 status code. This error indicates that Oracle Traffic Director
did not find any valid route for the request. This situation can occur only if the default
route, which is used when the request does not meet the conditions specified in any of
the other routes, is deleted manually in the obj.conf configuration file. To solve this
issue the administrator must create a valid route.

Note:

The default (=unconditional) route cannot be deleted through Fusion
Middleware Control and the WLST, and should not be deleted manually.

Contacting Oracle for Support
If you have a service agreement with Oracle, you can contact Oracle Support (http://
support.oracle.com) for help with Oracle Traffic Director problems.

Before Contacting Oracle Support

Before contacting Oracle Support, do the following:

• Try all the appropriate diagnostics and troubleshooting guidelines described in this
document Oracle Traffic Director Administrator's Guide).

Chapter 18
Contacting Oracle for Support

18-14

http://support.oracle.com
http://support.oracle.com

• Check whether the problem you are facing, or a similar problem, has been
discussed in the OTN Discussion Forums at http://forums.oracle.com/.

If the information available on the forum is not sufficient to help you solve the
problem, post a question on the forum. Other Oracle Traffic Director users on the
forum might respond to your question.

• To the extent possible, document the sequence of actions you performed just
before the problem occurred.

• Where possible, try to restore the original state of the system, and reproduce the
problem using the documented steps. This helps to determine whether the
problem is reproducible or an intermittent issue.

• If the issue can be reproduced, try to narrow down the steps for reproducing the
problem. Problems that can be reproduced by small test cases are typically easier
to diagnose when compared with large test cases.

Narrowing down the steps for reproducing problems enables Oracle Support to
provide solutions for potential problems faster.

Information You Should Provide to Oracle Support

When you contact Oracle for support, provide the following information.

• The release number of Oracle Traffic Director.

• A brief description of the problem, including the actions you performed just before
the problem occurred.

• If you need support with using the administration interfaces, the name of the
command-line subcommand or the title of the administration-console screen for
which you require help.

• Zip file containing the configuration files for the configuration in which you
encountered the error.

• The latest server and access log files.

Note:

When you send files to Oracle Support, remember to provide the MD5
checksum value for each file, so that Oracle Support personnel can
verify the integrity of the files before using them for troubleshooting the
problem.

Chapter 18
Contacting Oracle for Support

18-15

http://forums.oracle.com/

A
Metrics Tracked by Oracle Traffic Director

This appendix lists the metrics for which Oracle Traffic Director tracks and maintains
statistics.

• Instance Metrics

• Process Metrics

• Connection Queue Metrics

• Thread Pool Metrics

• DNS Cache Metrics

• Keep-Alive Metrics

• Thread Metrics

• Compression and Decompression Metrics

• Virtual Server Metrics

• CPU Metrics

• Origin Server Metrics

• Failover Instance Metrics

• Cache Metrics

• DMS Metrics Tables

Instance Metrics
This section lists the metrics that Oracle Traffic Director tracks for individual instances.
For each metric, the object name in the SNMP MIB and the names of the
corresponding element and attribute in the stats-xml report are provided. Metrics that
are not available through SNMP or in the stats-xml report are marked NA.

Table A-1 Instance Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element: Attribute

Number of seconds the instance
has been running

instanceUptime server: secondsRunning

Number of requests processed instanceRequests request-bucket: countRequests

Number of octets received instanceInOctets request-bucket:
countBytesReceived

Number of octets transmitted instanceOutOctets request-bucket:
countBytesTransmitted

Number of 2xx (Successful)
responses issued

instanceCount2xx request-bucket: count2xx

A-1

Table A-1 (Cont.) Instance Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element: Attribute

Number of 3xx (Redirection)
responses issued

instanceCount3xx request-bucket: count3xx

Number of 4xx (Client Error)
responses issued

instanceCount4xx request-bucket: count4xx

Number of 5xx (Server Error)
responses issued

instanceCount5xx request-bucket: count5xx

Number of other (neither 2xx,
3xx, 4xx, nor 5xx) responses
issued

instanceCountOther request-bucket: countOther

Number of 200 (OK) responses
issued

instanceCount200 request-bucket: count200

Number of 302 (Moved
Temporarily) responses issued

instanceCount302 request-bucket: count302

Number of 304 (Not Modified)
responses issued

instanceCount304 request-bucket: count304

Number of 400 (Bad Request)
responses issued

instanceCount400 request-bucket: count400

Number of 401 (Unauthorized)
responses issued

instanceCount401 request-bucket: count401

Number of 403 (Forbidden)
responses issued

instanceCount403 request-bucket: count403

Number of 404 (Not Found)
responses issued

instanceCount404 request-bucket: count404

Number of 503 (Unavailable)
responses issued

instanceCount503 request-bucket: count503

Average load in the last 1 minute instanceLoad1MinuteAve
rage

server: load1MinuteAverage

Average load in the last 5
minutes

instanceLoad5MinuteAve
rage

server: load5MinuteAverage

Average load for in the last
minutes

instanceLoad15MinuteAv
erage

server: load15MinuteAverage

Number of octets transmitted on
the network per second

instanceNetworkInOctets server: rateBytesReceived

Number of octets received on the
network per second

instanceNetworkOutOcte
ts

server: rateBytesTransmitted

Average number of requests
served in the last 1 minute

instanceRequests1Minut
eAverage

server: requests1MinuteAverage

Average number of requests
served in the last 5 minutes

instanceRequests5Minut
eAverage

server: requests5MinuteAverage

Average number of requests
served in the last 15 minutes

instanceRequests15Minu
teAverage

server:
requests15MinuteAverage

Average number of error
responses in the last 1 minute

instanceErrors1MinuteAv
erage

server: errors1MinuteAverage

Appendix A
Instance Metrics

A-2

Table A-1 (Cont.) Instance Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element: Attribute

Average number of error
responses in the last 5 minutes

instanceErrors5MinuteAv
erage

server: errors5MinuteAverage

Average number of error
responses in the last 15 minutes

instanceErrors15MinuteA
verage

server: errors15MinuteAverage

Average response time for the
requests in the last 1 minute

instanceResponseTime1
MinuteAverage

server:
responseTime1MinuteAverage

Average response time for the
requests in the last 5 minutes

instanceResponseTime5
MinuteAverage

server:
responseTime5MinuteAverage

Average response time for the
requests in the last 15 minutes

instanceResponseTime1
5MinuteAverage

server:
responseTime15MinuteAverage

Number of open connections at
the time when statistics were
gathered

NA request-bucket:
countOpenConnections

Name of the TCP proxy for which
this element holds statistics

tcpProxyName tcp-proxy:name

State of the TCP proxy at the
time of gathering the statistics

tcpProxyEnabled tcp-proxy:flagEnabled

The IP address and port on
which this TCP proxy listens for
requests

tcpProxyListeners tcp-proxy:listeners

Number of active TCP proxy
connections

tcpProxyCountActiveCon
nections

tcp-
proxy:countActiveConnections

Total number of requests
processed

tcpProxyCountRequests tcp-proxy:countRequests

Total number of requests that
were aborted

tcpProxyCountRequests
Aborted

tcp-proxy:countRequestsAborted

Total number of requests that
were closed because of timeout

tcpProxyCountRequests
Timedout

tcp-
proxy:countRequestsTimedout

Number of bytes received from
the clients

tcpProxyCountBytesRec
eived

tcp-proxy:countBytesReceived

Number of bytes transmitted to
the clients

tcpProxyCountBytesTran
smitted

tcp-proxy:countBytesTransmitted

Average duration of active
connections in milliseconds

tcpProxyMillisecondsCon
nectionActiveAverage

tcp-
proxy:millisecondsConnectionAct
iveAverage

Process Metrics
This section lists the metrics that Oracle Traffic Director tracks at the process level.
For each metric, the object name in the SNMP MIB and the names of the
corresponding element and attribute in the stats-xml report are provided. Metrics that
are not available through SNMP or in the stats-xml report are marked NA.

Appendix A
Process Metrics

A-3

Table A-2 Process Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element: Attribute

Number of request processing
threads currently available

processThreadCount thread-pool: countThreads

Number of request processing
threads currently idle

processThreadIdle thread-pool: countIdleThreads

Number of connections currently
in keepalive queue

processKeepaliveCount keepalive: countConnections

Maximum number of connections
allowed in keepalive queue

processKeepaliveMax keepalive: maxConnections

Number of requests that were
processed on connections in the
Keep Alive subsystem

NA keepalive: countHits

Number of connections in the
Keep Alive subsystem that were
flushed

NA keepalive: countFlushes

Number of times the server could
not hand off the connection to a
keep-alive thread.

NA keepalive: countRefusals

Number of connections that were
closed due to Keep Alive
subsystem being idle beyond the
specified timeout period

NA keepalive: countTimeouts

Idle period after which the Keep
Alive subsystem should time out

NA keepalive: secondsTimeout

Process size in kbytes processSizeVirtual process: sizeVirtual

Process resident size in kbytes processSizeResident process: sizeResident

Fraction of process memory in
system memory

processFractionSystemM
emoryUsage

process:
fractionSystemMemoryUsage

Total number of active
connections for which requests
are getting processed

NA tcp-
thread:countActiveConnections

Connection Queue Metrics
This section lists the connection-queue metrics that Oracle Traffic Director tracks. For
each metric, the object name in the SNMP MIB and the names of the corresponding
element and attribute in the stats-xml report are provided. Metrics that are not
available through SNMP or in the stats-xml report are marked NA.

Appendix A
Connection Queue Metrics

A-4

Table A-3 Connection Queue Metrics

Metric Object Name in the SNMP
MIB

stats-xml Element: Attribute

Number of connections
currently in connection
queue

connectionQueueCount connection-queue: countQueued

Total number of
connections added to
this connection queue
since start up

NA connection-queue: countTotalQueued

Average length of the
queue in the last one
minute

NA connection-queue:
countQueued1MinuteAverage

Average length of the
queue in the last one
minutes

NA connection-queue:
countQueued5MinuteAverage

Average length of the
queue in the last
fifteen minutes

NA connection-queue:
countQueued15MinuteAverage

Largest number of
connections that have
been queued
simultaneously

connectionQueuePeak connection-queue: peakQueued

Maximum number of
connections allowed in
connection queue

connectionQueueMax connection-queue: maxQueued

Total number of
connections that have
been accepted since
start up

connectionQueueTotal connection-queue:
countTotalConnections

Number of connections
rejected due to
connection queue
overflow

connectionQueueOverflows connection-queue: countOverflows

Thread Pool Metrics
This section lists the metrics that Oracle Traffic Director tracks for server threads. For
each metric, the object name in the SNMP MIB and the names of the corresponding
element and attribute in the stats-xml report are provided.

Table A-4 Thread Pool Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

Number of requests queued for processing
by this thread pool.

threadPoolCount thread-pool:
countQueued

Largest number of requests that have
been queued simultaneously

threadPoolPeak thread-pool:
peakQueued

Appendix A
Thread Pool Metrics

A-5

Table A-4 (Cont.) Thread Pool Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

Maximum number of requests allowed in
the queue

threadPoolMax thread-pool: max-
threads

DNS Cache Metrics
This section lists the DNS cache lookup metrics that Oracle Traffic Director tracks. For
each metric, the element and attribute in the stats-xml report are provided.

Table A-5 DNS Cache Metrics

Metric stats-xml Element: Attribute

Total number of entries in the cache dns: countCacheEntries

Total number of times a cache lookup
succeeded

dns: countCacheHits

Total number of times a cache lookup failed dns: countCacheMisses

Number of asynchronous lookups dns: countAsyncNameLookups

Total number of asynchronous DNS address
lookups performed

dns: countAsyncAddrLookups

Number of asynchronous DNS lookups
currently in progress

dns: countAsyncLookupsInProgress

Keep-Alive Metrics
This section lists the metrics that Oracle Traffic Director tracks related to the keep-
alive subsystem within the process.

For each metric, the object name in the SNMP MIB and the names of the
corresponding element and attribute in the stats-xml report are provided. Metrics that
are not available through SNMP or in the stats-xml report are marked NA.

Table A-6 Keep-Alive Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

Total number of connections that
were added to the keep-alive
subsystem

keepaliveCountConnection
s

keepalive:
countConnections

Maximum number of connections
that can be maintained in the keep-
alive subsystem

keepaliveMaxConnections keepalive: maxConnections

Number of requests that were
processed on connections in the
keep-alive subsystem

keepaliveCountHits keepalive: countHits

Appendix A
DNS Cache Metrics

A-6

Table A-6 (Cont.) Keep-Alive Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

Number of connections in the keep-
alive subsystem that were flushed

keepaliveCountFlushes keepalive: countFlushes

Number of times a connection was
not able to enter the keep-alive
subsystem because the max-
connection limit was reached

keepaliveCountRefusals keepalive: countRefusals

Number of connections that were
closed due to idle timeout expiring

keepaliveCountTimeouts keepalive: countTimeouts

Idle timeout value for the keep-alive
subsystem

keepaliveSecondsTimeout keepalive: secondsTimeout

Thread Metrics
This section lists the metrics that Oracle Traffic Director tracks for a particular worker
thread in the server process.

For each metric, the object name in the SNMP MIB and the names of the
corresponding element and attribute in the stats-xml report are provided. Metrics that
are not available through SNMP or in the stats-xml report are marked NA.

Table A-7 Thread Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

The activity mode of the thread at the
time of gathering the statistics

NA thread: mode

The time when this thread started
executing.

NA thread: timeStarted

The SAF which thread was running
at the time the statistics was
gathered.

NA thread: function

The ID of the connection queue from
which this worker thread is picking
up requests.

NA thread: connectionQueueId

The virtual server for which the
thread was serving request at the
time the statistics was gathered.

NA thread: virtualServerId

IP address of the client for which
thread is processing the request at
the time the statistics was gathered.

NA thread: clientAddress

The time when thread started
executing the current request.

NA thread: timeRequestStarted

Current state of the thread within
proxy-retrieve.

NA thread: proxyMode

Appendix A
Thread Metrics

A-7

Table A-7 (Cont.) Thread Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

Origin server which is processing the
current request.

NA thread: originServer

Compression and Decompression Metrics
This section lists the metrics for response data that Oracle Traffic Director compresses
and decompresses. For each metric, the object name in the SNMP MIB and the
names of the corresponding element and attribute in the stats-xml report are provided.

Table A-8 Compression and Decompression Metrics

Metric Object Name in the SNMP MIB stats-xml Element:
Attribute

Total number of requests
compressed

countRequestsCompressed compression: countRequests

Total number of input bytes
for compression

countBytesForCompression compression: bytesInput

Total number of output bytes
after compression

countBytesCompressed compression: bytesOutput

Average compression per
page

pageCompressionAverage compression:
pageCompressionAverage

Overall compression ratio compressionRatio compression:
compressionRatio

Total number of requests
decompressed

countRequestsDecompressed decompression:
countRequests

Total number of input bytes
for decompression

countBytesForDecompression decompression: bytesInput

Total number of output bytes
after decompression

countBytesDecompressed decompression: bytesOutput

Virtual Server Metrics
This section lists the metrics that Oracle Traffic Director tracks for individual virtual
servers. For each metric, the object name in the SNMP MIB and the names of the
corresponding element and attribute in the stats-xml report are provided.

Table A-9 Virtual Server Metrics

Metric Object Name in the SNMP
MIB

stats-xml Element: Attribute

Number of requests processed vsRequests request-bucket: countRequests

Number of octets received vsInOctets request-bucket:
countBytesReceived

Appendix A
Compression and Decompression Metrics

A-8

Table A-9 (Cont.) Virtual Server Metrics

Metric Object Name in the SNMP
MIB

stats-xml Element: Attribute

Number of octets transmitted vsOutOctets request-bucket:
countBytesTransmitted

Number of 2xx (Successful)
responses issued

vsCount2xx request-bucket: count2xx

Number of 3xx (Redirection)
responses issued

vsCount3xx request-bucket: count3xx

Number of 4xx (Client Error)
responses issued

vsCount4xx request-bucket: count4xx

Number of 5xx (Server Error)
responses issued

vsCount5xx request-bucket: count5xx

Number of other (neither 2xx,
3xx, 4xx, nor 5xx) responses
issued

vsCountOther request-bucket: countOther

Number of 200 (OK)
responses issued

vsCount200 request-bucket: count200

Number of 302 (Moved
Temporarily) responses issued

vsCount302 request-bucket: count302

Number of 304 (Not Modified)
responses issued

vsCount304 request-bucket: count304

Number of 400 (Bad Request)
responses issued

vsCount400 request-bucket: count400

Number of 401 (Unauthorized)
responses issued

vsCount401 request-bucket: count401

Number of 403 (Forbidden)
responses issued

vsCount403 request-bucket: count403

Number of 404 (Not Found)
responses issued

vsCount404 request-bucket: count404

Number of 503 (Unavailable)
responses issued

vsCount503 request-bucket: count503

The total number of upgrade
requests processed

websocketCountUpgraded
Requests

websocket:countUpgradeReques
ts

Number of WebSocket
requests that were denied
upgrade by origin server

websocketCountUpgradeR
ejectedRequests

websocket:countUpgradeReques
tsRejected

Number of WebSocket
requests that were denied
upgrade by server

websocketCountFailedStric
tRequests

websocket:countUpgradeReques
tsFailed

Number of active WebSocket
connections

websocketCountActiveCon
nections

websocket:countActiveConnectio
ns

Total number of requests that
were aborted

websocketCountAbortedRe
quests

websocket:countRequestsAborte
d

Total number of requests that
were closed because of
timeout

websocketCountTimeoutRe
quests

websocket:countRequestsTimed
out

Appendix A
Virtual Server Metrics

A-9

Table A-9 (Cont.) Virtual Server Metrics

Metric Object Name in the SNMP
MIB

stats-xml Element: Attribute

Number of bytes received from
the clients

websocketCountBytesRece
ived

websocket:countBytesReceived

Number of bytes transmitted to
the clients

websocketCountBytesTran
smitted

websocket:countBytesTransmitte
d

Average duration of active time
in millisecond

websocketMillisecondsCon
nectionActiveAverage

websocket:millisecondsConnecti
onActiveAverage

Total number of requests
intercepted by webapp firewall

wafCountInterceptedReque
sts

webapp-
firewall:countRequestsIntercepte
d

Total number of requests
allowed by webapp firewall
(allow action)

wafCountAllowedRequests webapp-
firewall:countRequestsAllowed

Total number of denied
requests (deny action)

wafCountDeniedRequests webapp-
firewall:countRequestsDenied

Total number of dropped
requests (drop action)

wafCountDroppedRequests webapp-
firewall:countRequestsDropped

Total number of redirected
requests (redirect action)

wafCountRedirectedReque
sts

webapp-
firewall:countRequestsRedirecte
d

Total number of detected
denied requests (deny action)

wafCountDenyDetectedRe
quests

webapp-
firewall:countRequestsDenyDete
cted

Total number of detected
dropped requests (drop action)

wafCountDropDetectedReq
uests

webapp-
firewall:countRequestsDropDete
cted

Total number of detected
redirected requests (redirect
action)

wafCountRedirectDetected
Requests

webapp-
firewall:countRequestsRedirectD
etected

CPU Metrics
This section lists the CPU-related metrics that Oracle Traffic Director tracks. For each
metric, the object name in the SNMP MIB and the names of the corresponding
element and attribute in the stats-xml report are provided.

Table A-10 CPU Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

Percentage of the time that the CPU is
idle

cpuIdleTime cpu-info: percentIdle

Percentage of the time the CPU is
spending in user space

cpuUserTime cpu-info: percentUser

Percentage of the time the CPU is
spending in kernel space

cpuKernelTime cpu-info: percentKernel

Appendix A
CPU Metrics

A-10

Origin Server Metrics
This section lists the metrics that Oracle Traffic Director tracks for origin server pools
and origin servers. For each metric, the object name in the SNMP MIB and the names
of the corresponding element and attribute in the stats-xml report are provided.

Table A-11 Origin Server Metrics

Metric Object Name in the SNMP
MIB

stats-xml Element:
Attribute

Number of times a request was
retried (to same or different
origin server)

originServerPoolCountRetries server-pool: countRetries

Type of origin server pool (tcp
or http)

originServerPoolType server-pool:type

Status indicating whether the
origin server is currently marked
offline,online, or unavailable.

originServerStatus origin-server: status

Flag indicating whether the
node was dynamically
discovered

originServerDiscoveryStatus origin-server: flagDiscovered

Flag indicating whether the
node is fully ramped up

originServerRampedupStatus origin-server: flagRampedUp

Flag indicating whether the
origin server is a backup node

originServerBackupStatus origin-server: flagBackup

Total time, in seconds, since the
origin server was marked online

originServerRunningTime origin-server: secondsOnline

Total number of times the origin
server was marked offline

originServerCountOffline origin-server:
countDetectedOffline

Total number of bytes
transmitted to the origin server

originServerCountBytesTrans
mitted

origin-server:
countBytesTransmitted

Total number of bytes received
from the origin server

originServerCountBytesRecei
ved

origin-server:
countBytesReceived

Total number of open
connections to the origin server
for which requests are getting
processed

originServerCountActiveConn
ections

origin-server:
countActiveConnections

Total number of idle
connections to the origin server

originServerCountIdleConnec
tions

origin-server:
countIdleConnections

Total number of active
connections belonging to sticky
requests when time statistics
were collected

originServerCountActiveStick
yConnections

origin-
server:countActiveStickyConn
ections

Total number of times a
connection to the origin server
was attempted

originServerCountConnectAtt
empts

origin-server:
countConnectAttempts

Total number of times an
attempt to connect to the origin
server failed

originServerCountConnectFai
lures

origin-server:
countConnectFailures

Appendix A
Origin Server Metrics

A-11

Table A-11 (Cont.) Origin Server Metrics

Metric Object Name in the SNMP
MIB

stats-xml Element:
Attribute

Total number of requests that
were aborted when proxying
requests with this origin server

originServerCountRequestsA
borted

origin-server:
countRequestsAborted

Total number of times the
request timed out when sending
or receiving data from the origin
server

originServerCountRequestsTi
medout

origin-server:
countRequestsTimedout

Total number of requests
served by the origin server

originServerCountRequests origin-server: countRequests

Total number of health check
requests

originServerCountHealthChec
kRequests

origin-
server:countHealthCheckReq
uests

Total number of connections
closed

originServerCountConnection
sClosed

origin-
server:countConnectionsClos
ed

Total number of keep-alive
connections closed by the origin
server

originServerCountConnection
sClosedByOriginServer

origin-
server:countConnectionsClos
edByOriginServer

Dynamically calculated keep-
alive timeout value for the origin
server

originServerSecondsKeepAliv
eTimeout

origin-
server:secondsKeepAliveTim
eout

Total number of sticky requests originServerCountStickyRequ
ests

origin-
server:countStickyRequests

Dynamic weight detected based
on response time (applicable
when algorithm is least-
response-time)

originServerWeightResponse
Time

origin-
server:weightResponseTime

Type of origin-server (generic/
weblogic/undetected)

originServerType origin-server:type

Average duration of active time
in milliseconds

originServerMillisecondsConn
ectionActiveAverage

origin-
server:millisecondsConnectio
nActiveAverage

Failover Instance Metrics
This section lists the metrics for each VIP in the server instance.

These metrics show the current state of the failover instance, as well as which nodes
are configured as primary and backup for a failover group.

Appendix A
Failover Instance Metrics

A-12

Table A-12 Failover Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

Actual current state of this failover
instance. An integer (1 if active, 0 for
not active).

failoverFlagActive failover: flagActive

Name of the node which is
configured as backup

failoverBackupInstance failover: backupInstance

Name of the node which is
configured as primary

failoverPrimaryInstance failover: primaryInstance

Virtual IP address of the failover
group

failoverVirtualIp failover: virtualIp

Cache Metrics
This section lists the reverse proxy caching metrics that Oracle Traffic Director tracks.

For each metric, the object name in the SNMP MIB and the names of the
corresponding element and attribute in the stats-xml report are provided.

Table A-13 Cache Metrics

Metric Object Name in the
SNMP MIB

stats-xml Element:
Attribute

Flag to indicate if cache is enabled cacheEnabled cache: flagEnabled

Total number of entries in the cache cacheCountEntries cache: countEntries

Amount of heap space used by
cache content

cacheSizeHeap cache: sizeHeapCache

Total number of times a cache
lookup succeeded

cacheCountContentHits cache: countContentHits

Total number of times a cache
lookup failed

cacheCountContentMisses cache:
countContentMisses

Total number of times an entry was
served from cache

cacheCountHits cache: countHits

Total number of requests that were
revalidated from the origin server

cacheCountRevalidationRe
quests

cache:
countRevalidationRequests

Total number of times the
revalidation requests failed

cacheCountRevalidationFai
lures

cache:
countRevalidationFailures

DMS Metrics Tables
This section lists the Oracle Traffic Director metric tables that are exposed to Oracle
Dynamic Monitoring Service (DMS).

This section lists the Oracle Traffic Director metric tables that are exposed to Oracle
Dynamic Monitoring Service (DMS).

Table A-14 shows DMS metrics for the OTD_Instance metric table.

Appendix A
Cache Metrics

A-13

The key columns are: instanceName.

Table A-14 DMS Metrics: OTD_Instance Metric Table

Column Name Type

instanceName String

configName String

instanceVersion String

timeStarted Long

secondsRunning Long

ticksPerSecond Long

maxProcs Long

maxThreads Long

flagProfilingEnabled Boolean

countRequests Long

countBytesReceived Long

countBytesTransmitted Long

countOpenConnections Long

count2xx Long

count3xx Long

count4xx Long

count5xx Long

countOther Long

count200 Long

count302 Long

count304 Long

count400 Long

count401 Long

count403 Long

count404 Long

count503 Long

load1MinuteAverage Double

load5MinuteAverage Double

load15MinuteAverage Double

inOctets Long

outOctets Long

req1MinuteAverage Double

req5MinuteAverage Double

req15MinuteAverage Double

err1MinuteAverage Double

err5MinuteAverage Double

Appendix A
DMS Metrics Tables

A-14

Table A-14 (Cont.) DMS Metrics: OTD_Instance Metric Table

Column Name Type

err15MinuteAverage Double

responseTime1Minute Double

responseTime5Minute Double

responseTime15Minute Double

shows DMS metrics for the OTD_Process metric table.

The key columns are: (instanceName, processId).

Table A-15 DMS Metrics: OTD_Process Metric Table

Column Name Type

instanceName String

processId Long

configName String

countThreads Long

idleThreads Long

sizeVirtual Long

sizeResident Long

fractionSystemMemoryUsage Double

compression.countRequests Long

compression.bytesInput Long

compression.bytesOutput Long

compression.ratioAverage Double

compression.ratio Double

decompression.countRequests Long

decompression.bytesInput Long

decompression.bytesOutput Long

keepalive.countConnections Long

keepalive.maxConnections Long

keepalive.countHits Long

keepalive.countFlushes Long

keepalive.countRefusals Long

keepalive.countTimeouts Long

keepalive.secondsTimeout Long

connectionQueue.connectionQueueId String

connectionQueue.connectionQueueCount Long

connectionQueue.connectionQueuePeak Long

Appendix A
DMS Metrics Tables

A-15

Table A-15 (Cont.) DMS Metrics: OTD_Process Metric Table

Column Name Type

connectionQueue.connectionQueueMax Long

connectionQueue.connectionQueueTotal Long

connectionQueue.connectionQueueTicksTotal Long

connectionQueue.connectionQueueOverflows Long

connectionQueue.connectionQueue1MinuteAverage Double

connectionQueue.connectionQueue5MinuteAverage Double

connectionQueue.connectionQueue15MinuteAverage Double

dns.flagCacheEnabled Boolean

dns.countCacheEntries Long

dns.maxCacheEntries Long

dns.countCacheHits Long

dns.countCacheMisses Boolean

dns.flagAsyncEnabled Long

dns.countAsyncNameLookups Long

dns.countAsyncAddrLookups Long

dns.countAsyncLookupsInProgress Long

threadPool.threadPoolId String

threadPool.countIdleThreads Long

threadPool.countThreads Long

threadPool.countQueued Long

threadPool.maxQueued Long

threadPool.maxThreads Long

threadPool.peakQueued Long

shows DMS metrics for the OTD_Cache metric table.

The key columns are: (instanceName).

Table A-16 DMS Metrics: OTD_Cache Metric Table

Column Name Type

instanceName String

configName String

flagEnabled Boolean

countEntries Long

sizeHeapCache Long

countContentHits Long

countContentMisses Long

Appendix A
DMS Metrics Tables

A-16

Table A-16 (Cont.) DMS Metrics: OTD_Cache Metric Table

Column Name Type

countHits Long

countRevalidationRequests Long

countRevalidationFailures Long

shows DMS metrics for the OTD_VirtualServer metric table.

The key columns are: (instanceName, vsName).

Table A-17 DMS Metrics: OTD_VirtualServer Metric Table

Column Name Type

instanceName String

vsName String

configName String

flagEnabled Boolean

listeners String

hosts String

countRequests Long

countBytesReceived Long

countBytesTransmitted Long

countOpenConnections Long

count2xx Long

count3xx Long

count4xx Long

count5xx Long

countOther Long

count200 Long

count302 Long

count304 Long

count400 Long

count401 Long

count403 Long

count404 Long

count503 Long

waf.countRequestsIntercepted Long

waf.countAllowedRequests Long

waf.countRequestsDenied Long

waf.countRequestsDropped Long

Appendix A
DMS Metrics Tables

A-17

Table A-17 (Cont.) DMS Metrics: OTD_VirtualServer Metric Table

Column Name Type

waf.countRequestsRedirected Long

waf.countRequestsDenyDetected Long

waf.countRequestsDropDetected Long

waf.countRequestsRedirectDetected Long

websocket.countUpgradeRequests Long

websocket.countUpgradeRequestsRejected Long

websocket.countUpgradeRequestsFailed Long

websocket.countRequestsAborted Long

websocket.countRequestsTimedout Long

websocket.countBytesReceived Long

websocket.countBytesTransmitted Long

websocket.countActiveConnections Long

websocket.millisecondsConnectionActiveAverage Double

shows DMS metrics for the OTD_Route metric table.

The key columns are: (instanceName, vsName, routeName)

Table A-18 DMS Metrics: OTD_Route Metric Table

Column Name Type

instanceName String

vsName String

routeName String

condition String

configName String

countRequests Long

countBytesReceived Long

countBytesTransmitted Long

countOpenConnections Long

count2xx Long

count3xx Long

count4xx Long

count5xx Long

countOther Long

count200 Long

count302 Long

count304 Long

Appendix A
DMS Metrics Tables

A-18

Table A-18 (Cont.) DMS Metrics: OTD_Route Metric Table

Column Name Type

count400 Long

count401 Long

count403 Long

count404 Long

count503 Long

shows DMS metrics for the OTD_OriginServerPool metric table.

The key columns are: (instanceName, serverPoolName)

Table A-19 DMS Metrics: OTD_OriginServerPool Metric Table

Column Name Type

instanceName String

serverPoolName String

configName String

serverPoolType String

countRetries String

serviceQueue.countQueued Long

serviceQueue.countQueuedHighPriority Long

serviceQueue.countQueuedLowPriority Long

serviceQueue.countQueuedNormalPriority Long

serviceQueue.countQueuedTimedout Long

serviceQueue.countTotalQueued Long

serviceQueue.countTotalQueuedHighPriority Long

serviceQueue.countTotalQueuedLowPriority Long

serviceQueue.countTotalQueuedNormalPriority Long

serviceQueue.countTotalQueuedSticky Long

serviceQueue.countTotalStickyToNonSticky Long

serviceQueue.millisecondsQueuedHighPriorityAverage Double

serviceQueue.millisecondsQueuedLowPriorityAverage Double

serviceQueue.millisecondsQueuedNormalPriorityAverage Double

shows DMS metrics for the OTD_OriginServer metric table.

The key columns are: (instanceName, serverPoolName, originServerName)

Appendix A
DMS Metrics Tables

A-19

Table A-20 DMS Metrics: OTD_OriginServer Metric Table

Column Name Type

instanceName String

serverPoolName String

originServerName String

configName String

type String

status String

discovered Boolean

rampedup Boolean

backup Boolean

secondsOnline Long

countDetectedOffline Long

countBytesTransmitted Long

countBytesReceived Long

countActiveConnections Long

countIdleConnections Long

countActiveStickyConnections Long

countConnectionsClosed Long

countConnectionsClosedByOriginServer Long

countConnectAttempts Long

countConnectFailures Long

countRequestsAborted Long

countRequestsTimedout Long

countRequests Long

countHealthCheckRequests Long

countStickyRequests Long

weightResponseTime Double

secondsKeepAliveTimeout Long

websocket.countUpgradeRequests Long

websocket.countUpgradeRequestsRejected Long

websocket.countUpgradeRequestsFailed Long

websocket.countRequestsAborted Long

websocket.countRequestsTimedout Long

websocket.countBytesReceived Long

websocket.countBytesTransmitted Long

websocket.countActiveConnections Long

websocket.millisecondsConnectionActiveAverage Double

Appendix A
DMS Metrics Tables

A-20

shows DMS metrics for the OTD_TcpOriginServer metric table.

The key columns are: (instanceName, serverPoolName, originServerName)

Table A-21 DMS Metrics: OTD_TcpOriginServer Metric Table

Column Name Type

instanceName String

serverPoolName String

originServerName String

configName String

status String

backup Boolean

secondsOnline Long

countDetectedOffline Long

countBytesTransmitted Long

countBytesReceived Long

countActiveConnections Long

countClosedConnections Long

countConnectAttempts Long

countConnectFailures Long

countRequestsAborted Long

countRequestsTimedout Long

countRequests Long

countHealthCheckRequests Long

millisecondsConnectionActiveAverage Double

shows DMS metrics for the OTD_TcpProxy metric table.

The key columns are: (instanceName, tcpProxyName)

Table A-22 DMS Metrics: OTD_TcpProxy Metric Table

Column Name Type

instanceName String

tcpProxyName String

configName String

flagEnabled Boolean

listeners String

countActiveConnections Long

countRequests Long

countRequestsAborted Long

countRequestsTimedout Long

Appendix A
DMS Metrics Tables

A-21

Table A-22 (Cont.) DMS Metrics: OTD_TcpProxy Metric Table

Column Name Type

countBytesReceived Long

countBytesTransmitted Long

millisecondsConnectionActiveAverage String

shows DMS metrics for the OTD_Listener metric table.

The key columns are: (instanceName, listenerName)

Table A-23 DMS Metrics: OTD_Listener Metric Table

Column Name Type

instanceName String

listenerName String

configName String

type String(tcp/http)

addressType String(inet/inet6/inet-sdp)

address String

port Long

sslEnabled Boolean

shows DMS metrics for the OTD_Failover metric table.

The key columns are: (virtualIp)

Table A-24 DMS Metrics: OTD_Failover Metric Table

Column Name Type

primaryInstance String

backupInstance String

flagActive Integer

shows DMS metrics for the OTD_Partition metric table.

The key columns are: (instanceName, partitionName)

Table A-25 DMS Metrics: OTD_Partition Metric Table

Column Name Type

instanceName String

partitionName String

configName String

countRequests Long

Appendix A
DMS Metrics Tables

A-22

Table A-25 (Cont.) DMS Metrics: OTD_Partition Metric Table

Column Name Type

countBytesReceived Long

countBytesTransmitted Long

countOpenConnections Long

count2xx Long

count3xx Long

count4xx Long

count5xx Long

countOther Long

count200 Long

count302 Long

count304 Long

count400 Long

count401 Long

count403 Long

count404 Long

count503 Long

Appendix A
DMS Metrics Tables

A-23

B
Web Application Firewall Examples and
Use Cases

The attack prevention feature of web application firewall stands between the client and
origin servers. If the web application firewall finds a malicious payload, it will reject the
request, performing any one of the built-in actions. This section provides some basic
information about how web application firewall works and how some rules are used for
preventing attacks.
Some of the features of web application firewall are audit logging, access to any part
of the request (including the body) and the response, a flexible rule engine, file-upload
interception, real-time validation and buffer-overflow protection.

Web application firewall's functionality is divided into four main areas:

• Parsing: Parsers extract bits of each request and/or response, which are stored for
use in the rules.

• Buffering: In a typical installation, both request and response bodies are buffered
so that the module generally sees complete requests (before they are passed to
the application for processing), and complete responses (before they are sent to
clients). Buffering is the best option for providing reliable blocking.

• Logging: Logging is useful for recording complete HTTP traffic, allowing you to log
all response/request headers and bodies.

• Rule engine: Rule engines work on the information from other components, to
evaluate the transaction and take action, as required.

Basics of Rules
The web application firewall rule engine is where gathered information is checked for
any specific or malicious content.

This section provides information about basic rule-writing syntax, and rule directives
for securing Web applications from attacks.

The main directive that is used for creating rules is SecRule. The syntax for SecRule is:

SecRule VARIABLES OPERATOR [TRANSFORMATION_FUNCTIONS, ACTIONS]

• VARIABLES: Specify where to check in an HTTP transaction. Web application
firewall pre-processes raw transaction data, which makes it easy for rules to focus
on the logic of detection. A rule must specify one or more variables. Multiple rules
can be used with a single variable by using the | operator.

• OPERATORS: Specify how a transformed variable is to be analyzed. Operators
always begin with an @ character, and are followed by a space. Only one operator
is allowed per rule.

• TRANSFORMATION_FUNCTIONS: Change input in some way before the rule
operator is run. A rule can specify one or more transformation functions.

B-1

• ACTIONS: Specify the required action if the rule evaluates to true, which could be,
display an error message, step on to another rule, or some other task.

Here is an example of a rule:

SecRule ARGS|REQUEST_HEADERS "@rx <script" msg:'XSSAttack',deny,status:404

• ARGS and REQUEST_HEADERS are variables (request parameters and request
headers, respectively).

• @rx is the regular expression operator. It is used to match a pattern in the
variables.

In the example, the pattern is <script.

• msg, deny and status are actions to be performed if a pattern is matched.

The rule in the example is used to avoid XSS attacks, which is done by checking
for a <script pattern in the request parameters and header, and an XSS Attack
log message is generated. Any matching request is denied with a 404 status
response.

Rules Against Major Attacks
This section provides information about some rules that are used for preventing major
attacks on Web applications.

Brute Force Attacks
Brute force attacks involve an attacker repeatedly trying to gain access to a resource
by guessing usernames, passwords, e-mail addresses, and similar credentials. Brute
force attacks can be very effective if no protection is in place, especially when users
choose passwords that are short and easy to remember.

A good way to defend against brute force attacks is to allow a certain number of login
attempts, after which the login is either delayed or blocked. Here is an example of how
this can be accomplished using Oracle Traffic Director web application firewall.

If your login verification page is situated at yoursite.com/login and is served by the
virtual server waf-vs, then the following rules, in waf-vs.conf file configured at the
virtual server level, will keep track of the number of login attempts by the users:

Block further login attempts after 3 failed attempts

Initalize IP collection with user's IP address
SecAction "initcol:ip=%{REMOTE_ADDR},pass,nolog"

Detect failed login attempts
SecRule RESPONSE_BODY "Unauthorized" "phase:4,pass,setvar:ip.failed_logins=
+1,expirevar:ip.failed_logins=60"

Block subsequent login attempts
SecRule IP:FAILED_LOGINS "@gt 2" deny

The rules initialize the IP collection and increment the field IP:FAILED_LOGINS after
each failed login attempt. When more than three failed logins are detected, further
attempts are blocked. The expirevar action is used to reset the number of failed login
attempts to zero after 60 seconds, so the block will be in effect for a maximum of 60
seconds.

Appendix B
Rules Against Major Attacks

B-2

To use the persistent collection, IP, you should specify the path to store the persisted
data using the SecDataDir directive. Since the scope of this directive is Main, it should
be specified at the server level. This can be accomplished as follows:

The name of the debug log file
SecDebugLog ../logs/brute_force_debug_log

Debug log level
SecDebugLogLevel 3

Enable audit logging
SecAuditEngine On

The name of the audit log file
SecAuditLog ../logs/brute_force_audit_log

Path where persistent data is stored
SecDataDir "/var/run/otd/waf/"

If this rules file is called waf-server.conf , <instance-dir>/config/server.xml
would look like this:

<server>
...
...
 <webapp-firewall-ruleset>/waf-rules/waf-server.conf</webapp-firewall-ruleset>
...
...
 <virtual-server>
 <name>waf-vs</name>
 <host>yoursite.com</host>
 ...
 <object-file>waf-vs-obj.conf</object-file>
 <webapp-firewall-ruleset>/waf-rules/waf-vs.conf</webapp-firewall-ruleset>
 </virtual-server>
...
...
</server>

Web application firewall and response body processing (equivalent of
SecResponseBodyAccess directive) should be enabled for the /login URI in waf-vs-
obj.conf. waf-vs-obj.conf would look like this:

<Object name="default">
<If $uri eq "/login">
AuthTrans fn="webapp-firewall" process-response-body="on"
</If>
...
...
</Object>

After 3 failed attempts to login, audit log would have the following message:

--5c4adf36-A--
[19/Mar/2013:05:06:57 --0700] ygfh3010000000000,0 127.0.0.1 49619 127.0.0.1 5021
--5c4adf36-B--
GET /acl/acl02.html HTTP/1.1
user-agent: curl/7.15.5 (x86_64-redhat-linux-gnu) libcurl/7.15.5 OpenSSL/0.9.8b zlib/
1.2.3 libidn/0.6.5
accept: */*
host: yoursite.com

Appendix B
Rules Against Major Attacks

B-3

authorization: Basic YWxwaGE6YmV0YQ==

--5c4adf36-F--
HTTP/1.1 403 Forbidden
status: 403 Forbidden
content-length: 208
content-type: text/html

--5c4adf36-H--
Message: Warning. Unconditional match in SecAction. [file "/waf-rules/waf-vs.conf"]
[line "10"]
Message: Access denied with code 403 (phase 2). Operator GT matched 2 at
IP:failed_logins. [file "/waf-rules/waf-vs.conf"] [line "25"]
Action: Intercepted (phase 2)
Stopwatch: 1363694817000000 898560 (- - -)
Stopwatch2: 1363694817000000 898560; combined=370, p1=14, p2=336, p3=0, p4=0, p5=19,
sr=131, sw=1, l=0, gc=0
Producer: ModSecurity for Apache/2.6.7 (http://www.modsecurity.org/).
Server: Oracle Traffic Director/11.1.1.7

--5c4adf36-Z--

SQL Injection
SQL injection attacks can occur if an attacker is able to supply data to a Web
application that is then used in unsanitized form in an SQL query. This can cause the
SQL query to do something that is completely different from what was intended by the
developers of the Web application. For example, an attacker can try deleting all
records from a MySQL table, like this:

http://www.example.com/login.php?user=user1';DELETE%20FROM%20users--

This can be prevented by using the following directives:

SecDefaultAction "phase:2,log,auditlog,deny,status:403"
SecRule ARGS "(select|create|rename|truncate|load|alter|delete|update|insert|desc)
\s*" "t:lowercase,msg:'SQL Injection'"

Whenever the web application firewall engine spots such a request, something similar
to the following code is logged to audit_log:

--3923b655-A--
[20/Mar/2013:02:58:35 --0700] Xkjx6010000000000,0 127.0.0.1 35971 127.0.0.1 5021
--3923b655-B--
GET /acl/acl02.html?user=user1';DELETE%20FROM%20users-- HTTP/1.1
host: waf.test.com
connection: close

--3923b655-F--
HTTP/1.1 403 Forbidden
status: 403 Forbidden
content-length: 208
content-type: text/html
connection: close

--3923b655-H--
Message: Access denied with code 403 (phase 2). Pattern match "(select|create|rename|
truncate|load|alter|delete|update|insert|desc)\\s*" at ARGS:user. [file "/waf-rules/
sql_injection_attack.conf"] [line "2"] [msg "SQL Injection"]
Action: Intercepted (phase 2)

Appendix B
Rules Against Major Attacks

B-4

Stopwatch: 1363773515000000 668049 (- - -)
Stopwatch2: 1363773515000000 668049; combined=131, p1=8, p2=104, p3=0, p4=0, p5=19,
sr=0, sw=0, l=0, gc=0
Producer: ModSecurity for Apache/2.6.7 (http://www.modsecurity.org/).
Server: Oracle Traffic Director/11.1.1.7

--3923b655-Z--

In response to the attack, SecDefaultAction is applied. in which case the request is
denied and logged, and the attacker receives a 403 error. If you would like a different
action to take place, such as redirect the request to an HTML page with a customized
warning content, specify it in the rule, as follows:

SecRule ARGS "(select|create|rename|truncate|load|alter|delete|update|insert|desc)
\s*" "t:lowercase,msg:'SQL Injection',redirect:http://yoursite.com/
invalid_request.html

XSS Attacks
Cross-site scripting (XSS) attacks occur when user input is not properly sanitized and
ends up in pages sent back to users. This makes it possible for an attacker to include
malicious scripts in a page by providing them as input to the page. The scripts will be
no different from scripts included in pages by creators of the website, and will thus
have all the privileges of an ordinary script within the page, such as the ability to read
cookie data and session IDs.

Here is an example of a simple rule to block <script in the request parameter:

SecDefaultAction phase:2,deny,status:403,log,auditlog
SecRule REQUEST_COOKIES|REQUEST_COOKIES_NAMES|REQUEST_FILENAME|ARGS_NAMES|ARGS|
XML:/* "(?i:<script.*?>)" "phase:
2,capture,t:none,t:htmlEntityDecode,t:compressWhiteSpace,t:lowercase,block,msg:'Cross
-site Scripting (XSS) Attack',id:'101'"

Appendix B
Rules Against Major Attacks

B-5

Index

A
activating statistics, 16-2, 16-3
archiving

log files, 13-7

C
CA

definition (Certificate Authority), 12-4
Certificate Authority

definition, 12-4
ciphers

definition, 12-2
connection queue information, 17-7
connections, 17-4
content compression

configuring for content compression, 17-19

D
DNS cache, 17-14

E
Elliptic Curve Cryptography, 12-4
enabling statistics, 16-2, 16-3

H
HTTP 1.1-style workload, 17-13

I
Instance, term, 1-7

K
keep-alive, 17-9

key
definition, 12-3

L
log files

archiving, 13-7

P
persistent connection information, 17-9
processes, 17-4

S
SNMP

basics, 16-8
subagent, 16-9

statistics
activating, 16-2, 16-3

subagent
SNMP, 16-9

T
threads, 17-4
tips

general, 17-1
tuning the Web Server

threads, processes, and connections, 17-4
tuning tips

general, 17-1

V
Virtual Server, term, 1-7

Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	What's New in this Release?

	1 Introduction
	Overview
	Features of Oracle Traffic Director
	Administration Interfaces
	Command Line Interface-WebLogic Scripting Tool
	Usage Modes

	Graphical User Interface-Fusion Middleware Control

	Oracle Traffic Director Terminology
	Overview of Administration Tasks

	2 Typical Deployment Topology
	3 Setting up an Administration Domain
	Types of Administration Domain
	Creating a Managed Domain
	Creating a Managed Domain Using Restricted JRF Template
	Creating a Domain using Full JRF Template
	Creating a Repository using Repository Creation Utility in Graphical Mode
	Creating a Repository in Silent Mode

	Logging to the Administration Console
	Creating the Load Balancer for a Managed Domain

	Creating a Standalone Domain
	Creating a Standalone Domain using the Configuration Wizard
	Creating a Standalone Domain Using Offline WLST Commands
	Creating the Load Balancer for a Standalone Domain

	Verifying the Load-Balancing Behavior of the Oracle Traffic Director Instance

	4 Configuring Oracle Traffic Director for High Availability
	Overview
	Failover configuration modes
	Failover in Active-Passive Mode
	Failover in Active-Active Mode

	Preparing your System for High Availability
	Configuring High Availability

	5 Managing Configurations
	Creating an Oracle Traffic Director Configuration
	Creating a Configuration Using Fusion Middleware Control
	Creating a Configuration Using WLST

	Viewing a List of Configurations
	Viewing a List of Configurations Using Fusion Middleware Control
	Viewing a List of Configurations Using WLST

	Activating Configuration Changes
	Activate Configuration Changes Using Fusion Middleware Control
	Activate Configuration Changes Using WLST

	Modifying an Oracle Traffic Director Configuration
	Modifying a Configuration Using Fusion Middleware Control
	Modifying a Configuration Using WLST

	Copying an Oracle Traffic Director Configuration
	Copying a Configuration Using Fusion Middleware Control
	Copying a Configuration Using WLST

	Deleting an Oracle Traffic Director Configuration
	Deleting a Configuration Using Fusion Middleware Control
	Deleting a Configuration Using WLST

	6 Managing Instances
	Creating Oracle Traffic Director Instances
	Creating Oracle Traffic Director Instances Using Fusion Middleware Control
	Creating Oracle Traffic Director Instance Using WLST

	Viewing a List of Oracle Traffic Director Instances
	Viewing a List of Oracle Traffic Director Instances Using Fusion Middleware Control
	Viewing a List of Oracle Traffic Director Instances Using WLST

	Starting, Stopping, and Restarting Oracle Traffic Director Instances
	Starting, Stopping, and Restarting Oracle Traffic Director Instances Using Fusion Middleware Control
	Starting, Stopping, and Restarting Oracle Traffic Director Instances Using WLST

	Updating Oracle Traffic Director Instances Without Restarting
	Reconfiguring an Oracle Traffic Director Instance Using Fusion Middleware Control
	Reconfiguring Oracle Traffic Director Instances Using WLST

	Deleting Oracle Traffic Director Instances
	Deleting Oracle Traffic Director Instances Using Fusion Middleware Control
	Deleting Oracle Traffic Director Instances Using WLST

	Controlling Oracle Traffic Director Instances Through Scheduled Events
	Managing Events Using Fusion Middleware Control
	Managing Events Using WLST

	7 Managing Origin-Server Pools
	Creating an Origin-Server Pool
	Creating an Origin-Server Pool Using Fusion Middleware Control
	Creating an Origin-Server Pool Using WLST

	Viewing a List of Origin-Server Pools
	Viewing a List of Origin-Server Pools Using Fusion Middleware Control
	Viewing a List of Origin-Server Pools Using WLST

	Modifying an Origin-Server Pool
	Changing the Properties of an Origin-Server Pool Using Fusion Middleware Control
	Changing the Properties of an Origin-Server Pool Using WLST

	Deleting an Origin-Server Pool
	Deleting an Origin-Server Pool Using Fusion Middleware Control
	Deleting an Origin-Server Pool Using WLST

	Configuring an Oracle WebLogic Server Cluster as an Origin-Server Pool
	How Dynamic Discovery Works
	Enabling Dynamic Discovery

	Configuring a Custom Maintenance Page
	Configuring Health-Check Settings for Origin-Server Pools
	Configuring Health-Check Settings for Origin Servers Using the Fusion Middleware Control
	Configuring Health-Check Settings for Origin Servers Using WLST
	Using an External Health-Check Executable to Check the Health of a Server
	Configuring Health-Check Settings to Use an External Executable
	Parameters to the External Health Check Executable
	Logging

	8 Managing Origin Servers
	Adding an Origin Server to a Pool
	Adding an Origin Server to a Pool Using Fusion Middleware Control
	Adding an Origin Server to a Pool Using WLST

	Viewing a List of Origin Servers
	Viewing a List of Origin Servers Using Fusion Middleware Control
	Viewing a List of Origin Servers Using WLST

	Modifying an Origin Server
	Modifying an Origin Server Using Fusion Middleware Control
	Changing the Properties of an Origin Server Using WLST

	Managing Ephemeral Ports
	Removing an Origin Server from a Pool
	Removing an Origin Server from a Pool Using Fusion Middleware Control
	Removing an Origin Server from a Pool Using WLST

	9 Managing Virtual Servers
	Creating Virtual Servers
	Creating a Virtual Server Using Fusion Middleware Control
	Creating a Virtual Server Using WLST

	Viewing a List of Virtual Servers
	Viewing a List of Virtual Servers Using Fusion Middleware Control
	Viewing a List of Virtual Servers Using WLST

	Modifying Virtual Server Settings
	Modifying a Virtual Server Using Fusion Middleware Control
	Modifying a Virtual Server Using WLST

	Configuring Routes for a Virtual Server
	Configuring Routes Using Fusion Middleware Control
	Configuring Routes Using WLST

	Copying a Virtual Server
	Copying a Virtual Server Using Fusion Middleware Control
	Copying a Virtual Server Using WLST

	Deleting a Virtual Server
	Deleting a Virtual Server Using Fusion Middleware Control
	Deleting a Virtual Server Using WLST

	Caching in Oracle Traffic Director
	Reviewing Cache Settings and Metrics for an Instance
	Tunable Caching Parameters
	Configuring Caching Parameters

	Content Serving
	Content Serving Using Fusion Middleware Control
	Configuring Content Serving Using WLST

	10 Managing TCP Proxies
	Creating a TCP Proxy
	Creating a TCP Proxy Using Fusion Middleware Control
	Creating a TCP Proxy Using WLST

	Viewing a List of TCP Proxies
	Viewing a List of TCP Proxies Using Fusion Middleware Control
	Viewing a List of TCP Proxies Using WLST

	Modifying a TCP Proxy
	Modifying a TCP Proxy Using Fusion Middleware Control
	Modifying a TCP Proxy Using WLST

	Deleting a TCP Proxy
	Deleting a TCP Proxy Using Fusion Middleware Control
	Deleting a TCP Proxy Using WLST

	11 Managing Listeners
	Creating a Listener
	Creating a Listener Using Fusion Middleware Control
	Creating a Listener Using WLST

	Viewing a List of Listeners
	Viewing a List of Listeners Using Fusion Middleware Control
	Viewing a List of Listeners Using WLST

	Modifying a Listener
	Modifying a Listener Using Fusion Middleware Control
	Modifying a Listener Using WLST

	Deleting a Listener
	Deleting a Listener Using Fusion Middleware Control
	Deleting a Listener Using WLST

	Configuring Status Listener
	Configuring Status Listener using Fusion Middleware Control
	Configuring Status Listener Using WLST

	12 Managing Security
	SSL/TLS Concepts
	About SSL
	About Ciphers
	Cipher Suites Supported by Oracle Traffic Director

	About Keys
	About Certificates
	RSA and ECC Certificates

	Managing Certificates
	Obtaining a Certificate
	Generating a Keypair
	Before You Begin
	Generating a Keypair Using Fusion Middleware Control
	Generating a Keypair using WLST

	Generating a Certificate Signing Request (CSR)
	Generating a CSR Using Fusion Middleware Control
	Generating a CSR Using WLST

	Importing a Certificate
	Importing a CA Signed Certificate
	Importing a CA Signed Certificate Using WLST

	Importing an Existing Certificate
	Importing a Trusted Certificate
	Importing a Trusted Certificate Using WLST

	Viewing a List of Certificates
	Deleting a Certificate
	Deleting a Certificate using Fusion Middleware Control
	Deleting a Certificate Using WLST

	Configuring SSL/TLS on Oracle Traffic Director
	Configuring SSL/TLS Between Oracle Traffic Director and Clients
	Configuring SSL on a HTTP/TCP Listener
	Configuring SSL/TLS for a Listener Using WLST

	Configuring SSL On a Virtual Server
	Configuring SSL On a Virtual Server Using WLST

	Configuring SSL/TLS Between Oracle Traffic Director and Origin Servers
	About One-Way and Two-Way SSL/TLS
	Configuring One-Way SSL/TLS Between Oracle Traffic Director and Origin Servers
	Configuring Two-Way SSL/TLS
	Configuring Ciphers On an Origin Server Pool

	Configure SSL Termination At a Hardware Load Balancer front-ending Oracle Traffic Director
	Configure WebLogic to receive SSL information from Web Tier / Traffic Director
	Configure SSL Pass through on Oracle Traffic Director

	Managing Certificate Revocation Lists
	Installing and Deleting CRLs Manually
	Installing CRLs Manually Using Fusion Middleware Control
	Installing and Deleting CRLs Manually Using WLST

	Update CRLs Automatically
	Configuring Oracle Traffic Director to Install CRLs Automatically Using Fusion Middleware Control
	Configuring Oracle Traffic Director to Install CRLs Automatically Using WLST

	13 Managing Logs
	About the Oracle Traffic Director Logs
	Access Log
	Server Log

	Viewing Logs
	Viewing Logs Using Fusion Middleware Control
	Viewing Logs Using WLST

	Configuring Log Preferences
	Configuring Log Preferences Using Fusion Middleware Control
	Configuring Log Preferences Using WLST

	About Log Rotation
	Rotating Logs Manually
	Rotating Logs Manually Using Fusion Middleware Control
	Rotating Logs Manually Using WLST

	Configuring Oracle Traffic Director to Rotate Logs Automatically
	Creating Log-Rotation Events Using Fusion Middleware Control
	Creating Log-Rotation Events Using WLST

	14 Managing Event Notifications
	Origin server status change event
	Subscribing to origin server status event using Fusion Middleware Control
	Subscribing to origin server status change event Using WLST
	Notification format
	JSON Schema
	Example

	Error handling

	Request limit exceeded event
	Subscribing to Request Limit Exceeded Event Using WLST
	Notification format
	JSON schema
	Example

	15 Managing Failover Groups
	Creating Failover Groups
	Creating Failover Groups Using Fusion Middleware Control
	Creating Failover Groups Using WLST

	Managing Failover Groups

	16 Monitoring Oracle Traffic Director Instances
	Methods for Monitoring Oracle Traffic Director Instances
	Configuring Statistics-Collection Settings
	Configuring URI Access to Statistics Reports
	Viewing Statistics Using WLST
	Viewing stats-xml and perfdump Reports Through a Browser
	Monitoring Using SNMP
	Configuring Oracle Traffic Director Instances for SNMP Support
	Configuring the SNMP Subagent
	SNMP v3 User configuration
	Starting and Stopping the SNMP Subagent
	Viewing Statistics Using snmpwalk

	Monitoring Using DMS
	Sample XML (stats-xml) Report
	Sample Plain-Text (perfdump) Report

	17 Tuning Oracle Traffic Director for Performance
	General Tuning Guidelines
	Tuning the File Descriptor Limit
	Tuning the Thread Pool and Connection Queue
	About Threads and Connections
	Reviewing Thread Pool Metrics for an Instance
	Reviewing Connection Queue Metrics for an Instance
	Tuning the Thread Pool and Connection Queue Settings

	Tuning HTTP Listener Settings
	Tuning Keep-Alive Settings
	About Keep-Alive Connections
	Reviewing Keep-Alive Connection Settings and Metrics
	Tuning Keep-Alive Settings
	Changing Keep-Alive Settings Using Fusion Middleware Control
	Changing Keep-Alive Settings Using WLST

	Tuning HTTP Request and Response Limits
	Tuning DNS Caching Settings
	Viewing DNS Cache Settings and Metrics
	Configuring DNS Cache Settings

	Tuning SSL/TLS-Related Settings
	SSL/TLS Session Caching
	Configuring SSL/TLS Session Cache Settings Using Fusion Middleware Control
	Configuring SSL/TLS Session Caching Settings Using WLST

	Ciphers and Certificate Keys

	Configuring Access-Log Buffer Settings
	Enabling and Configuring Content Compression
	Tuning Connections to Origin Servers
	Solaris-specific Tuning
	Files Open in a Single Process (File Descriptor Limits)
	Failure to Connect to HTTP Server
	Tuning TCP Buffering
	Reduce File System Maintenance
	Long Service Times on Busy Volumes or Disks
	Short-Term System Monitoring
	Long-Term System Monitoring
	Tuning for Performance Benchmarking

	18 Diagnosing and Troubleshooting Problems
	Roadmap for Troubleshooting Oracle Traffic Director
	Troubleshooting High Availability Configuration Issues

	Solutions to Common Errors
	Startup failure: could not bind to port
	Unable to start server with HTTP listener port 80
	Oracle Traffic Director consumes excessive memory at startup
	Operating system error: Too many open files in system
	Oracle Traffic Director does not maintain session stickiness

	Frequently Asked Questions
	What is a "configuration"?
	How do I access Fusion Middleware Control?
	Why do I see a certificate warning when I access Fusion Middleware Control for the first time?
	Can I manually edit configuration files?
	In Fusion Middleware Control, what is the difference between saving a configuration and deploying it?
	Why is the "Deployment Pending" message displayed in Fusion Middleware Control?
	Why is the "Instance Configuration Deployed" message is displayed in Fusion Middleware Control?
	Why does Fusion Middleware Control session end abruptly?
	How do I access the WLST?
	Why is a certificate warning message displayed when I tried to access the WLST for the first time?
	How do I find out the short names for the options of a WLST command?
	Why am I unable to select TCP as the health-check protocol when dynamic discovery is enabled?
	After I changed the origin servers in a pool to Oracle WebLogic Servers, they are not discovered automatically, though dynamic discovery is enabled. Why?
	How do I view the request and response headers sent and received by Oracle Traffic Director?
	How do I enable SSL/TLS for an Oracle Traffic Director instance?
	How do I find out which SSL/TLS cipher suites are supported and enabled?
	How do I view a list of installed certificates?
	How do I issue test requests to an SSL/TLS-enabled Oracle Traffic Director instance?
	How do I analyze SSL/TLS connections?
	How do I view details of SSL/TLS communication between Oracle Traffic Director instances and Oracle WebLogic Server origin servers?
	Why are certain SSL/TLS-enabled origin servers marked offline after health checks, even though the servers are up?
	Does Oracle Traffic Director rewrite the source IP address of clients before forwarding requests to the origin servers?
	Why does Oracle Traffic Director return a 405 status code?

	Contacting Oracle for Support

	A Metrics Tracked by Oracle Traffic Director
	Instance Metrics
	Process Metrics
	Connection Queue Metrics
	Thread Pool Metrics
	DNS Cache Metrics
	Keep-Alive Metrics
	Thread Metrics
	Compression and Decompression Metrics
	Virtual Server Metrics
	CPU Metrics
	Origin Server Metrics
	Failover Instance Metrics
	Cache Metrics
	DMS Metrics Tables

	B Web Application Firewall Examples and Use Cases
	Basics of Rules
	Rules Against Major Attacks
	Brute Force Attacks
	SQL Injection
	XSS Attacks

