
Oracle® Fusion Middleware
Command Reference for Oracle WebLogic
Server

12c (12.2.1.4.0)
E90794-08
May 2025

Oracle Fusion Middleware Command Reference for Oracle WebLogic Server, 12c (12.2.1.4.0)

E90794-08

Copyright © 2016, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documentation vi

Conventions vii

1 Using the Oracle WebLogic Server Java Utilities

appc 1-2

AppletArchiver 1-2

Syntax 1-2

autotype (deprecated) 1-3

BuildXMLGen 1-3

CertGen 1-3

Syntax 1-3

Example 1-5

ClientDeployer 1-5

clientgen 1-6

Conversion (deprecated) 1-6

dbping 1-6

Creating a DB2 Package with dbping 1-6

Syntax 1-7

Examples 1-8

ddcreate (deprecated) 1-9

DDInit (deprecated) 1-9

WebInit (deprecated) 1-9

EarInit (deprecated) 1-9

Deployer 1-9

DeploymentPersistentTool 1-10

der2pem 1-11

Syntax 1-11

Example 1-11

Derby 1-11

iii

ejbc (deprecated) 1-11

EJBGen 1-12

encrypt 1-12

Syntax 1-12

Examples 1-13

getProperty 1-13

Syntax 1-13

Example 1-13

host2ior 1-14

Syntax 1-14

ImportPrivateKey 1-14

Syntax 1-14

Example 1-15

jhtml2jsp 1-16

Syntax 1-16

jspc (deprecated) 1-17

logToZip 1-17

Syntax 1-17

Examples 1-17

MBean Commands 1-17

MulticastTest 1-18

Syntax 1-18

Example 1-19

myip 1-19

Syntax 1-19

Example 1-19

pem2der 1-19

Syntax 1-20

Example 1-20

rmic 1-20

Schema 1-20

Syntax 1-20

Example 1-21

SearchAndBuild 1-21

Example 1-21

system 1-22

Syntax 1-22

Example 1-22

ValidateCertChain 1-22

verboseToZip 1-23

Syntax 1-23

Example 1-23

iv

WebLogicMBeanMaker 1-24

Syntax 1-24

wlappc 1-24

wlcompile 1-24

wlconfig 1-24

wldeploy 1-25

wlpackage 1-25

wlserver 1-25

wsdl2Service 1-25

2 weblogic.Server Command-Line Reference

Required Environment and Syntax for weblogic.Server 2-1

Environment 2-1

Modifying the Classpath 2-2

Syntax 2-2

Default Behavior 2-3

weblogic.Server Configuration Options 2-4

JVM Parameters 2-4

Location of Configuration Data 2-5

Example 2-6

Options that Override a Server's Configuration 2-6

Server Communication 2-7

SSL 2-10

HTTP Strict Transport Security 2-14

Security 2-15

Message Output and Logging 2-19

Clusters 2-20

Deployment 2-20

Other Server Configuration Options 2-21

Using the weblogic.Server Command Line to Start a Server Instance 2-24

Using the weblogic.Server Command Line to Create a Domain 2-25

Verifying Attribute Values That Are Set on the Command Line 2-26

v

Preface

This document describes Oracle WebLogic Server command-line reference features and Java
utilities and how to use them to administer Oracle WebLogic Server.

Audience
This document is written for system administrators and application developers deploying e-
commerce applications using the Java Platform, Enterprise Edition (Java EE). It is assumed
that readers are familiar with Web technologies and the operating system and platform where
Oracle WebLogic Server is installed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
• Using Ant Tasks to Configure and Use a WebLogic Server Domain in Developing

Applications with Oracle WebLogic Server

• Understanding the WebLogic Scripting Tool

• Administering Server Environments for Oracle WebLogic Server

• Oracle WebLogic Server Administration Console Online Help

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

1
Using the Oracle WebLogic Server Java
Utilities

Oracle WebLogic Server provides a number of Java utilities and Ant tasks for performing
administrative and programming tasks, installing and configuring the WebLogic Server
environment, building and deploying applications, generating certificates for development
environments, providing convenient shortcuts, and more.

To use these utilities and tasks, you must set your CLASSPATH correctly. For more information,
see Modifying the Classpath. The command-line syntax is specified for all utilities and, for
some, examples are provided.

The Apache Web site provides other useful Ant tasks as well, including tasks for packaging
EAR, WAR, and JAR files. For more information, see http://jakarta.apache.org/ant/
manual/.

• appc

• AppletArchiver

• autotype (deprecated)

• BuildXMLGen

• CertGen

• ClientDeployer

• clientgen

• Conversion (deprecated)

• dbping

• ddcreate (deprecated)

• DDInit (deprecated)

• Deployer

• der2pem

• Derby

• ejbc (deprecated)

• EJBGen

• encrypt

• getProperty

• host2ior

• ImportPrivateKey

• jhtml2jsp

• jspc (deprecated)

• logToZip

1-1

http://jakarta.apache.org/ant/manual/
http://jakarta.apache.org/ant/manual/

• MBean Commands

• MulticastTest

• myip

• pem2der

• rmic

• Schema

• SearchAndBuild

• system

• ValidateCertChain

• verboseToZip

• WebLogicMBeanMaker

• wlappc

• wlcompile

• wlconfig

• wldeploy

• wlpackage

• wlserver

• wsdl2Service

appc
The appc compiler generates and compiles the classes needed to deploy EJBs and JSPs to
Oracle WebLogic Server. It also validates the deployment descriptors for compliance with the
current specifications at both the individual module level and the application level.See appc
Reference in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

AppletArchiver
The AppletArchiver utility runs an applet in a separate frame, keeps a record of all of the
downloaded classes and resources used by the applet, and packages these into either a .jar
file or a .cab file. (The cabarc utility is available from Microsoft.)

Syntax

$ java utils.applet.archiver.AppletArchiver URL filename

Table 1-1 describes the arguments passed to the AppletArchiver utility.

Table 1-1 AppletArchiver Arguments

Argument Definition

URL URL for the applet.

filename Local filename that is the destination for the .jar/.cab archive.

Chapter 1
appc

1-2

autotype (deprecated)
Use the autotype Ant task to generate non-built-in data type components, such as the
serialization class, for Web Services. The fully qualified name for the autotype Ant task is
weblogic.ant.taskdefs.webservices.javaschema.JavaSchema.

For a complete list of Web Services Ant tasks, see Ant Task Reference in WebLogic Web
Services Reference for Oracle WebLogic Server.

BuildXMLGen
Use BuildXMLGen to generate a build.xml file for enterprise applications in the split-directory
structure. For complete documentation of this utility, see Building Applications in a Split
Development Directory in Developing Applications for Oracle WebLogic Server.

CertGen
The CertGen utility generates certificates that should only be used for demonstration or testing
purposes, not in a production environment.

As of version 12.1.2 of WebLogic Server, the CertGen utility generates certificates with the
following attributes by default:

• 2048-bit public key.

• SHA256 message digest algorithm.

• Subject Key Identifier extension.

• Authority Key Identifier extension (if the CA certificate contains a Subject Key ID.)

Syntax

$ java utils.CertGen
 -certfile <cert_file> -keyfile <private_key_file>
 -keyfilepass <private_key_password>
 [-cacert <ca_cert_file>][-cakey <ca_key_file>]
 [-cakeypass <ca_key_password>]
 [-selfsigned][-strength <key_strength>]
 [-digestalgorithm] <message digest algorithm>
 [-e <email_address>][-cn <common_name>]
 [-ou <org_unit>][-o <organization>]
 [-l <locality>][-s <state>][-c <country_code>]
 [-keyusage [digitalSignature,nonRepudiation,keyEncipherment,
 dataEncipherment,keyAgreement,keyCertSign,
 cRLSign,encipherOnly,decipherOnly]]
 [-keyusagecritical true|false]
 [-noskid]
 [-subjectkeyid <subject_key_identifier>]
 [-subjectkeyidformat UTF-8|BASE64]
 [-help]

Table 1-2 describes the arguments that are passed to the CertGen utility.

Chapter 1
autotype (deprecated)

1-3

Table 1-2 CertGen Arguments

Argument Definition

-certfile cert_file
-keyfile private_key_file

Respectively, the output file names without extensions of
the generated public certificate and private key. The
appropriate extensions are appended when the pem and
der files are created.

-keyfilepass private_key_password The password for the generated private key.

-cacert ca_cert_file
-cakey ca_key_file
-cakeypass ca_key_password

Respectively, the public certificate, private key file, and
private key password of the CA that will be used as the
issuer of the generated certificate. If one or more of
these options are not specified, the relevant
demonstration CA files will be used: CertGenCA.der
and CertGenCAKey.der. The CertGen utility first looks
in the current working directory, then in the
WL_HOME/lib directory.

-selfsigned Generates a self-signed certificate that can be used as a
trusted CA certificate. If this argument is specified, the
ca_cert_filename, ca_key_filename, and
ca_key_password arguments should not be specified.

-digestalgorithm [message digest
algorithm]

The message digest algorithm used with the signature
algorithm to sign the certificate. The default is SHA256.

Supported values are MD5, SHA1, SHA256, SHA384,
and SHA512.

-strength key_strength The length (in bits) of the keys to be generated. The
default is 2048 bits. The longer the key, the more difficult
it is for someone to break the encryption.

Generating a certificate with an RSA key length less
than 1024 bits may not work in JDK 7u40+. See
http://www.oracle.com/technetwork/java/
javase/7u40-relnotes-2004172.html for additional
information.

-e email_address The email address associated with the generated
certificate.

-cn common_name The name associated with the generated certificate.

-ou org_unit The name of the organizational unit associated with the
generated certificate.

-o organization The name of the organization associated with the
generated certificate.

-l locality The name of a city or town.

-s state The name of the state or province in which the
organizational unit (ou) operates if your organization is in
the United States or Canada, respectively. Do not
abbreviate.

-c country_code Two-letter ISO code for your country. The code for the
United States is US.

Chapter 1
CertGen

1-4

http://www.oracle.com/technetwork/java/javase/7u40-relnotes-2004172.html
http://www.oracle.com/technetwork/java/javase/7u40-relnotes-2004172.html

Table 1-2 (Cont.) CertGen Arguments

Argument Definition

-keyusage [digitalSignature,
nonRepudiation,keyEncipherment,
dataEncipherment,keyAgreement,
keyCertSign,cRLSign,
encipherOnly,decipherOnly]

Generate certificate with a key usage extension, and
with bits set according to the comma-separated list of bit
names.

Specify a key usage when you want to restrict the
operation for a key that could be used for more than one
operation.

-keyusagecritical true|false By default, a key usage extension is marked critical. To
generate a certificate with a non-critical extension, use -
keyusagecritical false.

-noskid Prevents a subject key identifier extension in the
certificate from being generated. CertGen ignores -
subjectkeyid and -subjectkeyidformat if you
specify -noskid.

-subjectkeyid
subject_key_identifier

Generates a certificate with the specified subject key
identifier.

-subjectkeyidformat UTF-8|BASE64 The format of the subjectkeyid value; UTF-8 is the
default.

Example
By default, the CertGen utility looks for the CertGenCA.der and CertGenCAKey.der files in the
current directory, or in the WL_HOME directory, as specified in the weblogic.home system
property or the CLASSPATH. Alternatively, you can specify CA files on the command line.

Enter the following command to generate certificate files named testcert with private key files
named testkey:

$ java utils.CertGen -keyfilepass mykeypass
-certfile testcert -keyfile testkey
Generating a certificate with common name machine-name and key strength 2048
issued by CA with certificate from CertGenCA.der file and key from CertGenCAKey.der file

ClientDeployer
You use weblogic.ClientDeployer to extract the client-side JAR file from a Java EE EAR file,
creating a deployable JAR file. The weblogic.ClientDeployer class is executed on the Java
command line with the following syntax:

java weblogic.ClientDeployer ear-file client

The ear-file argument is an expanded directory (or Java archive file with a .ear extension)
that contains one or more client application JAR files.

For example:

java weblogic.ClientDeployer app.ear myclient

In the preceding example, app.ear is the EAR file that contains a Java EE client packaged in
myclient.jar.

Chapter 1
ClientDeployer

1-5

Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and point it to a
WebLogic Server instance as follows:

java weblogic.j2eeclient.Main clientjar URL [application args]

For example:

java weblogic.j2eeclient.Main helloWorld.jar t3://localhost:7001 Greetings

clientgen
Use clientgen to generate the client-side artifacts, such as the JAX-RPC stubs, needed to
invoke a Web Service. See Ant Task Reference in WebLogic Web Services Reference for
Oracle WebLogic Server.

Conversion (deprecated)
WebLogic Server 9.0 does not support conversion or upgrading from a pre-6.0 version of
Oracle WebLogic Server. To upgrade from version 6.1 or later, see Upgrading Oracle
WebLogic Server.

dbping
The dbping command-line utility tests the connection between a DBMS and your client
machine via a JDBC driver. You must complete the installation of the driver before attempting
to use this utility. To install a driver, see the documentation from your driver vendor. Also see
Using Third-Party Drivers with WebLogic Server in Developing JDBC Applications for Oracle
WebLogic Server.

Creating a DB2 Package with dbping
With the WebLogic Type 4 JDBC Driver for DB2, you can also use the dbping utility to create a
package on the DB2 server. When you ping the database with the dbping utility, the driver
automatically creates the default package on the database server if it does not already exist. If
the default package already exists on the database server, the dbping utility uses the existing
package.

The default DB2 package includes 200 dynamic sections. You can specify a different number
of dynamic sections to create in the DB2 package with the -d option. The -d option also sets
CreateDefaultPackage=true and ReplacePackage=true on the connection used in the
connection test, which forces the DB2 driver to replace the DB2 package on the DB2 server.
(See Using DataDirect Documentation in Developing JDBC Applications for Oracle WebLogic
Server.) You can use the -d option with dynamic sections set at 200 to forcibly recreate a
default package on the DB2 server.

Chapter 1
clientgen

1-6

Note:

When you specify the -d option, the dbping utility recreates the default package and
uses the value you specify for the number of dynamic sections. It does not modify the
existing package.

To create a DB2 package, the user that you specify must have CREATE PACKAGE
privileges on the database.

Syntax

$ java utils.dbping DBMS [-d dynamicSections] user password DB

Table 1-3 describes the arguments that are passed to the dbping command-line utility.

Table 1-3 dbping Arguments

Argument Definition

DBMS Varies by DBMS and JDBC driver:

DB2B—WebLogic Type 4 JDBC Driver for DB2

DERBY—Embedded Derby driver

JCONN2—Sybase JConnect (JDBC 2.0) driver

JCONN3—Sybase JConnect (JDBC 2.0) driver

JCONNECT—Sybase JConnect driver

INFORMIXB—WebLogic Type 4 JDBC Driver for Informix

MSSQLSERVER4—WebLogic jDriver for Microsoft SQL Server

MSSQLSERVERB—WebLogic Type 4 JDBC Driver for Microsoft SQL Server

MYSQL— MySQL's Type 4 Driver

ORACLE—WebLogic jDriver for Oracle

ORACLEB—WebLogic Type 4 JDBC Driver for Oracle

ORACLE_THIN—Oracle Thin Driver

POINTBASE—PointBase Universal Driver

SYBASEB—WebLogic Type 4 JDBC Driver for Sybase

[-d dynamicSections] Specifies the number of dynamic sections to create in the DB2 package. This
option is for use with the WebLogic Type 4 JDBC Driver for DB2 only.

If the -d option is specified, the driver automatically sets
CreateDefaultPackage=true and ReplacePackage=true on the connection
and creates a DB2 package with the number of dynamic sections specified.

user Valid database username for login. Use the same values you use with isql,
sqlplus, or other SQL command-line tools.

For DB2 with the -d option, the user must have CREATE PACKAGE
privileges on the database.

password Valid database password for the user. Use the same values you use with
isql or sqlplus.

Chapter 1
dbping

1-7

Table 1-3 (Cont.) dbping Arguments

Argument Definition

DB Name and location of the database. Use the following format, depending on
which JDBC driver you use:

DB2B—Host:Port/DBName

DERBY—Host:Port/DBName

JCONN2—Host:Port/DBName

JCONN3—Host:Port/DBName

JCONNECT—Host:Port/DBName

INFORMIXB—Host:Port/DBName/InformixServer

MSSQLSERVER4—Host:Port/DBName or [DBName@]Host[:Port]

MSSQLSERVERB—Host:Port/DBName

MYSQL—Host:Port/DBName

ORACLE—DBName (as listed in tnsnames.ora)

ORACLEB—Host:Port/DBName

ORACLE_THIN—Host:Port/DBName

POINTBASE—Host[:Port]/DBName

SYBASEB—Host:Port/DBName

Where:

• Host is the name of the machine hosting the DBMS.

• Port is port on the database host where the DBMS is listening for
connections.

• DBName is the name of a database on the DBMS.

• InformixServer is an Informix-specific environment variable that
identifies the Informix DBMS server.

Examples
The following is an example using the Oracle Thin Driver.

C:\>java utils.dbping ORACLE_THIN scott tiger dbserver1:1561:demo

**** Success!!! ****

You can connect to the database in your app using:

java.util.Properties props = new java.util.Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("dll", "ocijdbc9");
 props.put("protocol", "thin");
 java.sql.Driver d =
 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();
 java.sql.Connection conn =
 Driver.connect("jdbc:oracle:thin:@dbserver1:1561:demo", props);

The following is an example using the Derby driver. Derby is an open source relational
database management system bundled with WebLogic Server for use by the sample
applications and code examples as a demonstration database.

Chapter 1
dbping

1-8

$ java utils.dbping DERBY examples examples localhost:1527/demo
**** Success!!! ****
You can connect to the database in your app using:

 java.util.Properties props = new java.util.Properties();
 props.put("user", "examples");
 props.put("password", "examples");
 java.sql.Driver d =
 Class.forName("org.apache.derby.jdbc.ClientDriver").newInstance();
 java.sql.Connection conn =
 Driver.connect("jdbc:derby://localhost:1527/demo", props);

ddcreate (deprecated)
This Ant task calls EARInit, which generates an application.xml and a weblogic-
application.xml file for an EAR.See EarInit (deprecated).

DDInit (deprecated)
DDInit is a utility for generating deployment descriptors for applications to be deployed on
Oracle WebLogic Server. Target a module's archive or folder and DDInit uses information from
the module's class files to create appropriate deployment descriptor files.

In its command-line version, DDInit writes new files that overwrite existing descriptor files. If
META-INF or WEB-INF does not exist, DDInit creates it.

Specify the type of Java EE deployable unit (either Web Application or Enterprise Application)
for which you want deployment descriptors generated by using the DDInit command specific
to the type, as described below.

WebInit (deprecated)
Target a WAR file or a folder containing files that you intend to archive as a WAR file, and WebInit
will create web.xml and weblogic.xml files for the module.

prompt> java weblogic.marathon.ddinit.WebInit <module>

EarInit (deprecated)
The EarInit tool is deprecated in this version of Oracle WebLogic Server. As a result, you
should not:

• Use the DDInit utility to generate deployment descriptors for Enterprise applications.

• Use the ddcreate ant task, which calls EarInit.

Generate an application.xml and a weblogic-application.xml file for an EAR using this
command. Target an existing EAR or a folder containing JAR or WAR files you intend to archive
into an EAR file.

prompt> java weblogic.marathon.ddinit.EarInit <module>

Deployer
Using the weblogic.Deployer tool, you can deploy Java EE applications and components to
WebLogic Servers in a command-line or scripting environment. For detailed information on

Chapter 1
ddcreate (deprecated)

1-9

using this tool, see weblogic.Deployer Command-Line Reference in Deploying Applications to
Oracle WebLogic Server.
The weblogic.Deployer utility replaces the weblogic.deploy utility, which has been
deprecated.

DeploymentPersistentTool
The DeploymentPersistentTool utility reads the application's runtime state from the persistent
store.

Syntax

$ java weblogic.deploy.utils.DeploymentPersistentTool [-list] [-remove] [-dir
directory] [-store store-name] [-appexp application-id-regular-expression] [-
nofilecheck]

Table 1-4 DeploymentPersistentTool Arguments

Argument Definition

-list Lists the application's runtime states.

-remove Removes the application runtime states.

-dir directory Specify the name of the directory contain the store.
File path can be either absolute or relative.

-store store-name Specify the name of the persistence store to open.

-appexp application-id-regular-
expression

Specify which application's names to print using a
user specified regular expression as a filter. By
default, this is set to * and matches all application
names.

-nofilecheck When set, the DeploymentPersistentTool will not
check for the existence of a file prior to running.

Examples

This example runs the DeploymentPersistentTool utility on the Administration Server:

$ java weblogic.deploy.utils.DeploymentPersistentTool -list -dir $
{adminServer.dir}/servers/adminServer/data/store/default -store
_WLS_ADMINSERVER

This example runs the DeploymentPersistentTool utility on different Managed Servers:

$ java weblogic.deploy.utils.DeploymentPersistentTool -list -dir $
{adminServer.dir}/servers/server1/data/store/default -store _WLS_SERVER1

$ java weblogic.deploy.utils.DeploymentPersistentTool -list -dir $
{adminServer.dir}/servers/server2/data/store/default -store _WLS_SERVER2

Chapter 1
DeploymentPersistentTool

1-10

der2pem
The der2pem utility converts an X509 certificate from DER format to PEM format. The .pem file
is written in the same directory and has the same filename as the source .der file.

Syntax

$ java utils.der2pem derFile [headerFile] [footerFile]

Table 1-5 describes the arguments that are passed to the der2pem utility.

Table 1-5 der2pem Arguments

Argument Description

derFile The name of the file to convert. The filename must end with a .der extension, and
must contain a valid certificate in .der format.

headerFile The header to place in the PEM file. The default header is "-----BEGIN
CERTIFICATE-----".

Use a header file if the DER file being converted is a private key file, and create the
header file containing one of the following:

• "-----BEGIN RSA PRIVATE KEY-----" for an unencrypted private key.
• "-----BEGIN ENCRYPTED PRIVATE KEY-----" for an encrypted private key.
Note: There must be a new line at the end of the header line in the file.

footerFile The header to place in the PEM file. The default header is "-----END
CERTIFICATE-----".

Use a footer file if the DER file being converted is a private key file, and create the
footer file containing one of the following in the header:

• "-----END RSA PRIVATE KEY-----" for an unencrypted private key.
• "-----END ENCRYPTED PRIVATE KEY-----" for an encrypted private key.
Note: There must be a new line at the end of the header line in the file.

Example
$ java utils.der2pem graceland_org.der
Decoding
..

Derby
Derby is an open source relational database management system based on Java, JDBC, and
SQL standards. It is bundled with WebLogic Server for use by the sample applications and
code examples as a demonstration database.See http://db.apache.org/derby.

ejbc (deprecated)
For each deployment descriptor either specified in the command line or present in a .jar file,
ejbc creates wrapper classes for the corresponding EJBean class. It then runs these through

Chapter 1
der2pem

1-11

http://db.apache.org/derby

the RMI compiler, which generates a client-side stub and a server-side skeleton.See appc
Reference in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

EJBGen
EJBGen is an Enterprise JavaBeans 2.0 code generator. You can annotate your Bean class file
with javadoc tags and then use EJBGen to generate the Remote and Home classes and the
deployment descriptor files for an EJB application, reducing to one the number of EJB files you
need to edit and maintain.

See EJBGen Reference in Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

encrypt
The weblogic.security.Encrypt utility encrypts clear text strings for use with Oracle
WebLogic Server. The utility uses the encryption service of the current directory, or the
encryption service for a specified Oracle WebLogic Server domain root directory.

Note:

An encrypted string must have been encrypted by the encryption service in the
Oracle WebLogic Server domain where it will be used. If not, the server will not be
able to decrypt the string.

You can run the weblogic.security.Encrypt utility only on a machine that has at least one
server instance in an Oracle WebLogic Server domain; it cannot be run from a client.

Note:

Oracle recommends running the utility from the Administration Server domain
directory or on the machine hosting the Administration Server and specifying a
domain root directory.

Syntax

java [-Dweblogic.RootDirectory=dirname]
 [-Dweblogic.management.allowPasswordEcho=true]
 weblogic.security.Encrypt [password]

Table 1-6 describes the arguments that are passed to the weblogic.security.Encrypt utility.

Chapter 1
EJBGen

1-12

Table 1-6 Encrypt Arguments

Argument Definition

dirname Optional. Oracle WebLogic Server domain directory in which the
encrypted string will be used. If not specified, the default domain
root directory is the current directory (the directory in which the
utility is being run).

weblogic.management.allowPass
wordEcho

Optional. Allows echoing characters entered on the command
line. weblogic.security.Encryptexpects that no-echo is
available; if no-echo is not available, set this property to true.

password Optional. Cleartext string to be encrypted. If omitted from the
command line, you will be prompted to enter a password.

Examples
The utility returns an encrypted string using the encryption service of the domain located in the
current directory.

java weblogic.security.Encrypt xxxxxx
{AES}yWv/i0qhfM4/IvzoghzjHj/xpJUkQPF8OWuSfh0f0Ss=

The utility returns an encrypted string using the encryption service of the specified domain
location.

java -Dweblogic.RootDirectory=./mydomain weblogic.security.Encrypt xxxxxx
{AES}wr86u9Z5DHr+5p7WIbzTDSy4M/sl7EYnX/K5xzcarDQ=

The utility returns an encrypted string in the current directory, without echoing the password.

java weblogic.security.Encrypt
Password:
{AES}LIX8hoiStcAhph0PGCpveouw/0UO0lciODuj+TQh/bs=

getProperty
The getProperty utility gives you details about your Java setup and your system. It takes no
arguments.

Syntax
$ java utils.getProperty

Example
$ java utils.getProperty
-- listing properties --
user.language=en
java.home=c:\java11\bin\..
awt.toolkit=sun.awt.windows.WToolkit
file.encoding.pkg=sun.io
java.version=1.1_Final
file.separator=\
line.separator=
user.region=US

Chapter 1
getProperty

1-13

file.encoding=8859_1
java.vendor=Sun Microsystems Inc.
user.timezone=PST
user.name=mary
os.arch=x86
os.name=Windows NT
java.vendor.url=http://www.sun.com/
user.dir=C:\weblogic
java.class.path=c:\weblogic\classes;c:\java\lib\cla...
java.class.version=45.3
os.version=4.0
path.separator=;
user.home=C:\

host2ior
The host2ior utility obtains the Interoperable Object Reference (IOR) of an Oracle WebLogic
Server.

Syntax
$ java utils.host2ior hostname port

ImportPrivateKey
The ImportPrivateKey utility is used to load a private key into a private keystore file.

Syntax
$ java utils.ImportPrivateKey
 -certfile <cert_file> -keyfile <private_key_file>
 [-keyfilepass <private_key_password>]
 -keystore <keystore> -storepass <storepass> [-storetype <storetype>]
 -alias <alias> [-keypass <keypass>]
 [-help]

Table 1-7 describes the arguments that are passed to the ImportPrivateKey utility.

Table 1-7 ImportPrivateKey Arguments

Argument Definition

-certfile cert_file The name of the certificate associated with the private key.

-keyfile
private_key_file

The name of the generated private key file.

-keyfilepass
private_key_password

The password for the private key.

-keystore keystore The name of the keystore file. A new keystore is created if one does not
exist.

-storepass storepass The password for the keystore.

Chapter 1
host2ior

1-14

Table 1-7 (Cont.) ImportPrivateKey Arguments

Argument Definition

-storetype storetype The type (format) of the keystore.

The storetype argument, which is the same as that used by the
keytool command, specifies the type of Java keystore. The default
storetype is jks, defined by the keystore.type property in the
java.security file:

keystore.type=jks
You can specify another storetype (for example, pcks12 or
nCipher.SWorld) if a configured security provider supports that type.

-alias alias The name that is used for looking up the certificate and private key
being imported into the keystore.

-keypass keypass The password of the private key entry being imported into the keystore.
If keypass is not specified, the first default is private_key_password,
and the second default is storepass.

Note:

If you used CertGen to create a private key file protected by a password (-
keyfilepass private_key_password), that password is the one required by
ImportPrivateKey to extract the key from the key file and insert the key in the newly
created keystore (which will contain both the certificate(s) from cert_file and the
private key from private_key_file).

Example
Use the following steps to:

• Generate a certificate and private key using the CertGen utility

• Create a keystore and store a private key using the ImportPrivateKey utility

Note:

By default, the CertGen utility looks for the CertGenCA.der and
CertGenCAKey.der files in the current directory, or in the WL_HOME/server/lib
directory, as specified in the weblogic.home system property or the CLASSPATH.

Alternatively, you can specify CA files on the command line. If you want to use
the default settings, there is no need to specify CA files on the command line.

To generate a certificate:

1. Enter the following command to generate certificate files named testcert with private key
files named testkey:

$ java utils.CertGen -keyfilepass mykeyfilepass
-certfile testcert -keyfile testkey

Chapter 1
ImportPrivateKey

1-15

Generating a certificate with common name return and key strength 1024
issued by CA with certificate from CertGenCA.der file and key from CertGenCAKey.der
file

2. Convert the certificate from DER format to PEM format.

$ java utils.der2pem CertGenCA.der
3. Concatenate the certificate and the Certificate Authority (CA).

$ cat testcert.pem CertGenCA.pem >> newcerts.pem
4. Create a new keystore named mykeystore and load the private key located in the

testkey.pem file.

$ java utils.ImportPrivateKey -keystore mykeystore -storepass password
-keyfile mykey -keyfilepass mykeyfilepass -certfile newcerts.pem -keyfile
testkey.pem -alias passalias

No password was specified for the key entry
Key file password will be used

Imported private key testkey.pem and certificate newcerts.pem
into a new keystore mykeystore of type jks under alias passalias

jhtml2jsp
The jhtml2jsp utility converts JHTML files to JSP files. Be sure to inspect the results carefully.
Given the unpredictable nature the JHTML code, jhtml2jsp does not necessarily produce
flawless translations.

The output is a new JSP file named after the original file.

The HTTP servlets auto-generated from JSP pages differ from the regular HTTP servlets
generated from JHTML. JSP servlets extend weblogic.servlet.jsp.JspBase, and so do not
have access to the methods available to a regular HTTP servlet.

If your JHTML pages reference these methods to access the servlet context or config
objects, you must substitute these methods with the reserved words in JSP that represent
these implicit objects.

If your JHTML uses variables that have the same name as the reserved words in JSP, the tool
will output a warning. You must edit your Java code in the generated JSP page to change the
variable name to something other than a reserved word.

Syntax

$ java weblogic.utils.jhtml2jsp [-d directory] filename.jhtml

Table 1-8 describes the argument that is passed to the jhtml2jsp tool.

Table 1-8 jhtml2jsp Arguments

Argument Definition

-d directory Optional. The target directory. If the target directory isn't specified, output is
written to the current directory.

Chapter 1
jhtml2jsp

1-16

jspc (deprecated)
The jspc utility is a JSP-specific compiler task. Use appc instead.

logToZip
The logToZip utility searches an HTTP server log file, finds the Java classes loaded into it by
the server, and creates an uncompressed .zip file that contains those Java classes. It is
executed from the document root directory of your HTTP server.
To use this utility, you must have access to the log files created by the HTTP server.

Syntax

$ java utils.logToZip logfile codebase zipfile

Table 1-9 describes the arguments that are passed to the logToZip utility.

Table 1-9 logToZip Arguments

Argument Definition

logfile Required. Fully-qualified pathname of the log file.

codebase Required. Code base for the applet, or "" if there is no code base. By
concatenating the code base with the full package name of the applet, you get the
full pathname of the applet (relative to the HTTP document root).

zipfile Required. Name of the .zip file to create. The resulting .zip file is created in the
directory in which you run the program. The path name for the specified file can
be relative or absolute. In the examples shown below, a relative path name is
given, so the .zip file is created in the current directory.

Examples
The following example shows how a .zip file is created for an applet that resides in the
document root itself, that is, with no code base:

$ cd /HTTP/Serv/docs
$ java utils.logToZip /HTTP/Serv/logs/access "" app2.zip

The following example shows how a .zip file is created for an applet that resides in a
subdirectory of the document root:

C:\>cd \HTTP\Serv
C:\HTTP\Serv>java utils.logToZip \logs\applets\classes app3.zip

MBean Commands
Use the MBean commands (CREATE, DELETE, GET, INVOKE, and SET) to administer MBeans. See
Editing Commands in WLST Command Reference for WebLogic Server.

Chapter 1
jspc (deprecated)

1-17

MulticastTest
The MulticastTest utility helps you debug multicast problems when configuring a WebLogic
cluster. The utility sends out multicast packets and returns information about how effectively
multicast is working on your network. Specifically, MulticastTest displays the following types
of information via standard output:

1. A confirmation and sequence ID for each message sent out by the current server.

2. The sequence and sender ID of each message received from any clustered server,
including the current server.

3. A missed-sequenced warning when a message is received out of sequence.

4. A missed-message warning when an expected message is not received.

To use MulticastTest, start one copy of the utility on each node on which you want to test
multicast traffic.

Tip:

Do NOT run the MulticastTest utility by specifying the same multicast address (the
-a parameter) as that of a currently running WebLogic Cluster. The utility is intended
to verify that multicast is functioning properly before starting your clustered WebLogic
Servers.

For information about setting up multicast, see the configuration documentation for the
operating system and hardware of the WebLogic Server host machine. See Administering
Clusters for Oracle WebLogic Server.

Syntax

$ java utils.MulticastTest -n name -a address [-p portnumber]
 [-t timeout] [-s send]

Table 1-10 describes the arguments that are passed to the MulticastTest utility.

Table 1-10 MulticastTest Arguments

Argument Definition

-n name Required. A name that identifies the sender of the sequenced messages.
Use a different name for each test process you start.

-a address The multicast address on which: (a) the sequenced messages should be
broadcast; and (b) the servers in the clusters are communicating with each
other. (The default is 237.0.0.1.)

-p portnumber Optional. The multicast port on which all the servers in the cluster are
communicating. (The multicast port is the same as the listen port set for
WebLogic Server, which defaults to 7001 if not set.)

-t timeout Optional. Idle timeout, in seconds, if no multicast messages are received. If
not set, the default is 600 seconds (10 minutes). If a timeout is exceeded, a
positive confirmation of the timeout is sent to stdout.

Chapter 1
MulticastTest

1-18

Table 1-10 (Cont.) MulticastTest Arguments

Argument Definition

-s send Optional. Interval, in seconds, between sends. If not set, the default is 2
seconds. A positive confirmation of each message sent out is sent to
stdout.

Example
$ java utils.MulticastTest -N server100 -A 237.155.155.1
Set up to send and receive on Multicast on Address 237.155.155.1 on port 7001
Will send a sequenced message under the name server100 every 2 seconds.
Received message 506 from server100
Received message 533 from server200
 I (server100) sent message num 507
Received message 507 from server100
Received message 534 from server200
 I (server100) sent message num 508
Received message 508 from server100
Received message 535 from server200
 I (server100) sent message num 509
Received message 509 from server100
Received message 536 from server200
 I (server100) sent message num 510
Received message 510 from server100
Received message 537 from server200
 I (server100) sent message num 511
Received message 511 from server100
Received message 538 from server200
 I (server100) sent message num 512
Received message 512 from server100
Received message 539 from server200
 I (server100) sent message num 513
Received message 513 from server100

myip
The myip utility returns the IP address of the host.

Syntax
$ java utils.myip

Example
$ java utils.myip
Host toyboat.toybox.com is assigned IP address: 192.0.0.1

pem2der
The pem2der utility converts an X509 certificate from PEM format to DER format. The .der file
is written in the same directory as the source .pem file.

Chapter 1
myip

1-19

Syntax

$ java utils.pem2der pemFile

Table 1-11 describes the argument that is passed to the pem2der utility.

Table 1-11 pem2der Arguments

Argument Description

pemFile The name of the file to be converted. The filename must end with a .pem
extension, and it must contain a valid certificate in .pem format.

Example
$ java utils.pem2der graceland_org.pem
Decoding
..
..
..
..
..

rmic
The WebLogic RMI compiler is a command-line utility for generating and compiling remote
objects. Use weblogic.rmic to generate dynamic proxies on the client-side for custom remote
object interfaces in your application, and to provide hot code generation for server-side objects.
See Using the WebLogic RMI Compiler in Developing RMI Applications for Oracle WebLogic
Server.

Schema
The Schema utility lets you upload SQL statements to a database using the WebLogic JDBC
drivers. For additional information about database connections, see Developing JDBC
Applications for Oracle WebLogic Server.

Syntax

$ java utils.Schema driverURL driverClass [-u username]
 [-p password] [-verbose] SQLfile

Table 1-12 describes the arguments that are passed to the Schema utility.

Table 1-12 Schema Arguments

Argument Definition

driverURL Required. URL for the JDBC driver.

Chapter 1
rmic

1-20

Table 1-12 (Cont.) Schema Arguments

Argument Definition

driverClass Required. Pathname of the JDBC driver class.

-u username Optional. Valid username.

-p password Optional. Valid password for the user.

-verbose Optional. Prints SQL statements and database messages.

SQLfile Required. Text file with SQL statements.

Example
The following code shows a Schema command line for the examples.utils package:

$ java utils.Schema
"jdbc:derby://localhost:1527/demo"
"org.apache.derby.jdbc.ClientDriver" -u examples
-p examples examples/utils/ddl/demo.ddl

utils.Schema will use these parameters:
 url: jdbc:derby://localhost:1527/demo
 driver: org.apache.derby.jdbc.ClientDriver
 user: examples
 password: examples
 SQL file: examples/utils/ddl/demo.ddl

SearchAndBuild
This Ant task executes build.xml files that are included within the FileSet. The task assumes
that all of the files defined in FileSet are valid build files, and executes the Ant task of each of
them.
Make certain that your FileSet filtering is correct. If you include the build.xml file that
SearchAndBuildTask is being called from, you will be stuck in an infinite loop as this task will
execute the top level build file—itself—forever.

Example
<project name="all_modules" default="all" basedir=".">
<taskdef name="buildAll"
classname="weblogic.ant.taskdefs.build.SearchAndBuildTask"/>
<target name="all">
<buildAll>
<fileset dir="${basedir}">
<include name="**\build.xml"/>
<exclude name="build.xml"/>
</fileset>
</buildAll>
</target>
</project>

Chapter 1
SearchAndBuild

1-21

system
The system utility displays basic information about your computer's operating environment,
including the manufacturer and version of your JDK, your CLASSPATH, and details about your
operating system.

Syntax
$ java utils.system

Example
$ java utils.system
* * * * * * * java.version * * * * * * *
1.8.0_121

* * * * * * * java.vendor * * * * * * *
Oracle Corporation

* * * * * * * java.class.path * * * * * * *
C:\Oracle\wlserver\samples\server\examples\build\serverclasses;C:\Java\JDK18~1.0_7\lib\to
ols.jar;
C:\Oracle\wlserver\server\lib\weblogic.jar;C:\Oracle\oracle_common\modules\net.sf.antcont
rib_1.1.0.0_1-0b3\lib
\ant-contrib.jar;C:\Oracle\wlserver\modules\features\oracle.wls.common.nodemanager.jar;
C:\Oracle\wlserver\common\derby\lib\derbynet.jar;C:\Oracle\wlserver\common\derby\lib\derb
yclient.jar;
C:\Oracle\wlserver\common\derby\lib\derby.jar;C:\Oracle\wlserver\samples\server\examples\
build\clientclasses

* * * * * * * os.name * * * * * * *
Windows 7

* * * * * * * os.arch * * * * * * *
amd64

* * * * * * * os.version * * * * * * *
6.1

ValidateCertChain
WebLogic Server provides the ValidateCertChain utility to check whether or not an existing
certificate chain will be rejected by WebLogic Server.
The utility uses certificate chains from PEM files, PKCS-12 files, PKCS-12 keystores, and JKS
keystores.

Note:

Support for PEM and PKCS-12 files is deprecated in this release.

A complete certificate chain must be used with the utility. The following is the syntax for the
ValidateCertChain utility:

Chapter 1
system

1-22

java utils.ValidateCertChain -file pemcertificatefilename (Deprecated, use -pkcs12store
or -jks)
java utils.ValidateCertChain -pem pemcertificatefilename (Deprecated, use -pkcs12store
or -jks)
java utils.ValidateCertChain -pkcs12store pkcs12storefilename
java utils.ValidateCertChain -pkcs12file pkcs12filename password (Deprecated, use -
pkcs12store or -jks)
java utils.ValidateCertChain -jks alias storefilename [storePass]

Example of valid certificate chain:

java utils.ValidateCertChain -jks mykey mykeystore
Cert[0]: CN=zippy,OU=FORTESTINGONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US
Cert[1]: CN=CertGenCAB,OU=FOR TESTINGONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain appears valid

Example of invalid certificate chain:

java utils.ValidateCertChain -jks mykey mykeystore
Cert[0]: CN=corba1 OU=FOR TESTING ONLY, O=MyOrganization,L=MyTown,ST=MyState,C=US
CA cert not marked with critical BasicConstraint indicating it is a CA
Cert[1]: CN=CACERT,OU=FOR TESTING ONLY, O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain is invalid

verboseToZip
When executed from the document root directory of your HTTP server, verboseToZip takes the
standard output from a Java application run in verbose mode, finds the Java classes
referenced, and creates an uncompressed .zip file that contains those Java classes.

Syntax

$ java utils.verboseToZip inputFile zipFileToCreate

Table 1-13 describes the arguments that are passed to verboseToZip.

Table 1-13 verboseToZip Arguments

Argument Definition

inputFile Required. Temporary file that contains the output of the application running
in verbose mode.

zipFileToCreate Required. Name of the .zip file to be created. The resulting .zip file is be
created in the directory in which you run the program.

Example
$ java -verbose myapplication > & classList.tmp
$ java utils.verboseToZip classList.tmp app2.zip

Chapter 1
verboseToZip

1-23

WebLogicMBeanMaker
The WebLogicMBeanMaker utility takes an XML MBean Description File (MDF) and outputs
some intermediate Java files, including an MBean interface, an MBean implementation, and an
associated MBean information file. Together, these intermediate files form the MBean type for
a custom security provider
See Understand What the WebLogic MBeanMaker Provides in Developing Security Providers
for Oracle WebLogic Server.

Syntax
$ java -DMDF=xmlfile -DFiles=filesdir -DcreateStubs=true|false
weblogic.management.commo.WebLogicMBeanMaker

Table 1-14 describes the arguments that are passed to WebLogicMBeanMaker.

Table 1-14 WebLogicMBeanMaker Arguments

Argument Description

-DMDF=xmlfile Specifies that the WebLogic MBeanMaker utility should translate the
MDF file, represented by xmlfile, into code. Whenever xmlfile is
specified, a new set of output files is generated.

-DFiles=filesdir Specifies the location, represented by filesdir, where the WebLogic
MBeanMaker utility places the intermediate files for the MBean type.

-DcreateStubs=true|false Specifies whether the WebLogic MBeanMaker utility overwrites any
existing MBean implementation file.

wlappc
The wlappc utility compiles and validates a Java EE EAR file, an EJB JAR file, or a WAR file
for deployment.

See Building Modules and Applications Using wlappc in Developing Applications for Oracle
WebLogic Server.

wlcompile
Use the wlcompile Ant task to invoke the javac compiler to compile your application's Java
files in a split development directory structure.

wlconfig
The wlconfig Ant task enables you to configure a WebLogic Server domain by creating,
querying, or modifying configuration MBeans on a running Administration Server instance.
For complete documentation on this Ant task, see Using Ant Tasks to Configure a WebLogic
Server Domain in Developing Applications for Oracle WebLogic Server.

Chapter 1
WebLogicMBeanMaker

1-24

wldeploy
The wldeploy Ant task enables you to perform weblogic.Deployer tool functions using
attributes specified in an Ant task.
See Deployer. For more information about wldeploy, see Deploying and Packaging from a
Split Development Directory in Developing Applications for Oracle WebLogic Server.

wlpackage
You use the wlpackage Ant task to package your split development directory application as a
traditional EAR file that can be deployed to WebLogic Server.
See Deploying and Packaging from a Split Development Directory in Developing Applications
for Oracle WebLogic Server.

wlserver
The wlserver Ant task enables you to start, reboot, shutdown, or connect to a WebLogic
Server instance.
The server instance may already exist in a configured WebLogic Server domain, or you can
create a new single-server domain for development by using the generateconfig=true
attribute. For complete documentation on this Ant task, see Starting Servers and Creating
Domains Using the wlserver Ant Task in Developing Applications for Oracle WebLogic Server.

wsdl2Service
The wsdl2Service Ant task is a web services tool that takes as input an existing WSDL file and
generates the Java interface that represents the implementation of your web service and the
web-services.xml file that describes the web service.
See Developing WebLogic Web Services Starting From a WSDL File: Main Steps in
Developing JAX-WS Web Services for Oracle WebLogic Server.

Chapter 1
wldeploy

1-25

2
weblogic.Server Command-Line Reference

The weblogic.Server class is the main class for a WebLogic Server instance. You start a
server instance by invoking weblogic.Server in a Java command.You can invoke the class
directly in a command prompt (shell), indirectly through scripts, or through Node Manager.
Oracle recommends using java weblogic.Server primarily for initial development but not as a
standard mechanism for starting production systems for the following reasons:

• java weblogic.Server will not function if you select a product directory outside of the
ORACLE_HOME directory.

• When executing java weblogic.Server, patches will not be recognized by the WebLogic
Server run time.

The following sections explain how to use the weblogic.Server class to start WebLogic
Server:

• Required Environment and Syntax for weblogic.Server

• Default Behavior

• weblogic.Server Configuration Options

• Using the weblogic.Server Command Line to Start a Server Instance

• Using the weblogic.Server Command Line to Create a Domain

• Verifying Attribute Values That Are Set on the Command Line

For information about using scripts to start an instance of WebLogic Server, see Starting an
Administration Server with a Startup Script and Starting Managed Servers With a Startup
Script in Administering Server Startup and Shutdown for Oracle WebLogic Server.

For information about using the Node Manager to start an instance of WebLogic Server, see
Using Node Manager to Control Servers in the Administering Node Manager for Oracle
WebLogic Server.

Required Environment and Syntax for weblogic.Server
Before you can use the weblogic.Server class to start a WebLogic Server instance, you must
install WebLogic Server, set the CLASSPATH environment variable, and include a Java Virtual
Machine (JVM) in your PATH environment variable.

Environment
To set up your environment for the weblogic.Server command:

1. Install and configure the WebLogic Server software, as described in Installing and
Configuring Oracle WebLogic Server and Coherence.

2. If desired, modify the CLASSPATH environment variable, as described in Modifying the
Classpath.

3. Include a Java Virtual Machine (JVM) in your PATH environment variable. You can use any
JVM that is listed in Supported Configurations.

2-1

If you do not include a JVM in the PATH environment variable, you must provide a
pathname for the Java executable file that the JVM provides.

Modifying the Classpath
After installation, WebLogic Server's classpath is already set, but you may choose to modify it
for a number of reasons such as adding a patch to WebLogic Server, updating the version of
Derby you are using, or adding support for Log4j logging.

To apply a patch to ALL of your WebLogic Server domains without the need to modify the
classpath of a domain, give the patch JAR file the name, weblogic_sp.jar, and copy it into the
WL_HOME/server/lib directory. The commEnv.cmd/sh script will automatically include a JAR
named weblogic_sp on the classpath for you.

If you would rather not use the name weblogic_sp.jar for your patch file or you would just like
to make sure a JAR file, such as one mentioned below, comes before weblogic.jar on the
classpath:

• For ALL domains, edit the commEnv.cmd/sh script in WL_HOME/common/bin and prepend
your JAR file to the WEBLOGIC_CLASSPATH environment variable.

• To apply a patch to a SPECIFIC WebLogic Server domain, edit the setDomainEnv.cmd/sh
script in that domain's bin directory, and prepend the JAR file to the PRE_CLASSPATH
environment variable.

Note:

setDomainEnv is designed to be sourced from other scripts, such as the
startWebLogic script. setDomainEnv should not be called directly from within an
interactive shell. Doing so can cause unpredictable issues in the domain.

If you use Derby, the open-source all-Java database management system included with Oracle
WebLogic Server for use by the sample applications and code examples, include the following
files on the classpath:

• WL_HOME/common/derby/lib/derbyclient.jar - for the driver on the client side

• WL_HOME/common/derby/lib/derbynet.jar and WL_HOME/common/derby/lib/derby.jar - for
running the Derby network server

If you use WebLogic Enterprise Connectivity, include the following files on the classpath:

WL_HOME/server/lib/wlepool.jar

WL_HOME/server/lib/wleorb.jar

If you use Log4j logging, include the following file on the classpath:

WL_HOME/server/lib/log4j.jar

The shell environment in which you run a server determines which character you use to
separate path elements. On Windows, you typically use a semicolon (;). In a BASH shell, you
typically use a colon (:).

Syntax
The syntax for invoking weblogic.Server is as follows:

Chapter 2
Required Environment and Syntax for weblogic.Server

2-2

java [options] weblogic.Server [-help]

The java weblogic.Server -help command returns a list of frequently used options.

Default Behavior
Understand the default sequence of operations that occur when a WebLogic Server instance is
started without any options having been passed to the weblogic.Server class.

If you have set up the required environment described in Environment, when you enter the
command java weblogic.Server with no options, WebLogic Server does the following:

1. Looks in the domain_name/config directory for a file named config.xml.

2. If config.xml exists in the domain_name/config directory, WebLogic Server does the
following:

a. If only one server instance is defined in config/config.xml, it starts that server
instance.

For example, if you issue java weblogic.Server from
ORACLE_HOME\user_projects\domains\medrec, WebLogic Server starts the MedRec
server.

b. If there are multiple server instances defined in config/config.xml:

• If an Administration Server is defined, it looks for the server with that name.

• If an Administration Server is not defined, it looks for a server configuration named
myserver. If it finds such a server configuration, it starts the myserver instance.

• If it does not find a server named myserver, WebLogic Server exits the
weblogic.Server process and generates an error message.

3. If there is no config.xml file in the current directory, WebLogic Server prompts you to
create one. If you respond y, WebLogic Server does the following:

a. Creates a server configuration named myserver, and persists the configuration in a file
named config/config.xml.

Any options that you specify are persisted to the config.xml file. For example, if you
specify -Dweblogic.ListenPort=8001, then WebLogic Server saves 8001 in the
config.xml file. For any options that you do not specify, the server instance uses
default values.

You can configure WebLogic Server to make backup copies of the configuration files.
This facilitates recovery in cases where configuration changes need to be reversed or
the unlikely case that configuration files become corrupted. See Configuration File
Archiving in Understanding Domain Configuration for Oracle WebLogic Server.

b. Uses the username and password that you supply to create a user with administrative
privileges. It stores the definition of this user along with other basic, security-related
data in domain_name/security files named DefaultAuthenticatorInit.ldift,
DefaultRoleMapperInit.ldift, and SerializedSystemIni.dat.

WebLogic Server also encrypts and stores your username and password in a
server_name/security/boot.properties file, which enables you to bypass the login
prompt during subsequent instantiations of the server. See Boot Identity Files in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

c. Creates two scripts, bin/startWebLogic.cmd and bin/startWebLogic.sh, which you
can use to start subsequent instantiations of the server. You can use a text editor to

Chapter 2
Default Behavior

2-3

modify startup options such as whether the server starts in production mode or
development mode. The startWebLogic script contains comments that describe each
option.

Note that the server starts as an Administration Server in a new domain. There are no
other servers in this domain, nor are any of your deployments or third-party solutions
included. You can add them as you would add them to any WebLogic domain.

weblogic.Server Configuration Options
You can use weblogic.Server options to configure the attributes of a server instance. The
following attributes are commonly used when starting a server instance:

• JVM Parameters

• Location of Configuration Data

• Options that Override a Server's Configuration

WebLogic Server provides other startup options that enable you to temporarily override a
server's saved configuration. For information about these startup options, see Options that
Override a Server's Configuration.

Unless you are creating a new domain as described in Using the weblogic.Server Command
Line to Create a Domain, all startup options apply to the current server instantiation; they do
not modify the persisted values in an existing config.xml file. Use the WebLogic Server
Administration Console or WebLogic Scripting Tool (WLST) to modify the config.xml file. See
Creating Domains Using WLST Offline in Understanding the WebLogic Scripting Tool.

For information on verifying the WebLogic Server attribute values that you set, see Verifying
Attribute Values That Are Set on the Command Line.

JVM Parameters
Table 2-1 describes frequently used options that configure the Java Virtual Machine (JVM) in
which the server instance runs. For a complete list of JVM options, see the documentation for
your specific JVM. For a list of JVMs that can be used with WebLogic Server, see Supported
Configurations.

Table 2-1 Frequently Used Options for Setting JVM Parameters

Option Description

-Xms and -Xmx Specify the minimum and maximum values (in megabytes) for
Java heap memory.

For example, you might want to start the server with the default
allocation of 256 megabytes of Java heap memory to the
WebLogic Server. To do so, start the server using the java -
Xms256m and -Xmx512m options.

The values assigned to these parameters can dramatically
affect the performance of your WebLogic Server and are
provided here only as general defaults. In a production
environment you should carefully consider the correct memory
heap size to use for your applications and environment.

Chapter 2
weblogic.Server Configuration Options

2-4

Table 2-1 (Cont.) Frequently Used Options for Setting JVM Parameters

Option Description

-classpath The minimum content for this option is described under
Modifying the Classpath.

Instead of using this argument, you can use the CLASSPATH
environment variable to specify the classpath.

-client -server Used by some JVMs to start a HotSpot virtual machine, which
enhances performance. For a list of JVMs that can be used with
WebLogic Server, see Supported Configurations.

-Dfile.encoding=Canonical Name
weblogic.Server

To display special characters on Linux browsers, set the JVM
file.encoding system property to ISO8859_1. For example:

java -Dfile.encoding=ISO8859_1 weblogic.Server
For a complete listing, see the Supported Encodings page
available at http://docs.oracle.com/javase/7/docs/
technotes/guides/intl/encoding.doc.html.

Location of Configuration Data
All server instances must have access to configuration data. Table 2-2 provides options for
indicating the location of this data.

Table 2-2 Options for Indicating the Location of Configuration Data

Option Description

-Dweblogic.home=WL_HOME Specifies the location of the WebLogic home directory, which
contains essential information.

By default, weblogic.Server determines the location of the
WebLogic home directory based on values in the classpath.

-Dweblogic.RootDirectory=path Specifies the server's root directory. See A Server's Root
Directory in Understanding Domain Configuration for Oracle
WebLogic Server.

By default, the root directory is the directory from which you
issue the start command.

-
Dweblogic.management.GenerateDefaultConfig=true

Prevents the weblogic.Server class from prompting for
confirmation when creating a config.xml file.

Valid only if you invoke weblogic.Server in an empty
directory. See Default Behavior.

Chapter 2
weblogic.Server Configuration Options

2-5

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

Table 2-2 (Cont.) Options for Indicating the Location of Configuration Data

Option Description

-Dweblogic.Domain=domain Specifies the name of the domain.

If you are using weblogic.Server to create a domain, you
can use this option to give the domain a specific name.

In addition, this option supports a directory structure that
WebLogic Server required in releases prior to 7.0 and
continues to support in current releases. Prior to 7.0, all
configuration files were required to be located in the following
pathname:

.../config/domain_name/config.xml
In this pathname, domain_name is the name of the domain.

If your domain's configuration file conforms to that pathname,
and if you invoke the weblogic.Server command from a
directory other than config/domain_name, you can include
the -Dweblogic.Domain=domain argument to cause
WebLogic Server to search for a config.xml file in a
pathname that matches config/domain_name/
config.xml.

For information on how a Managed Server retrieves its configuration data, see the -
Dweblogic.management.server entry in Table 2-3.

The WebLogic Server Administration Console does not display values that you set on the
command line. For information on verifying the attribute values that you set, see Verifying
Attribute Values That Are Set on the Command Line.

Example
The following example starts a Managed Server instance named SimpleManagedServer.
Specifying a config.xml file is not valid because Managed Servers contact the Administration
Server for their configuration data. Multiple instances of WebLogic Server can use the same
root directory. However, if your server instances share a root directory, make sure that all
relative filenames are unique. In this example, SimpleManagedServer shares its root directory
with SimpleServer. The command itself is issued from the D:\ directory after running
WL_HOME\server\bin\setWLSEnv.cmd:

D:\> java -Dweblogic.Name=SimpleManagedServer
 -Dweblogic.management.server=http://localhost:7001
 -Dweblogic.RootDirectory=c:\my_domains\SimpleDomain weblogic.Server

Options that Override a Server's Configuration
In most cases, you do not use startup options to override the configuration that is saved in the
domain's config.xml file. However, in some extraordinary cases you might need to do so.

Chapter 2
weblogic.Server Configuration Options

2-6

Tip:

When you use a startup option to override a configuration value, the server instance
uses this value for the duration of its life cycle. Even if you use the WebLogic Server
Administration Console, the WebLogic Scripting Tool, or some other utility to change
the value in the configuration, the value will remain overridden until you restart the
server without using the override.

For example, in a production environment, your organization might have a policy against
modifying the domain's config.xml file, but you need to shut down the Administration Server
and restart it using a temporary listen port. In this case, when you use the weblogic.Server
command to start the Administration Server, you can include the -Dweblogic.ListenPort=7501
startup option to change the listen port for the current server session. The server instance
initializes its configuration MBeans from the config.xml file but substitutes 7501 as the value
of its listen port. When you subsequently restart the server without passing the startup option, it
will revert to using the value from the config.xml file, 8010. (See Figure 2-1.)

Figure 2-1 Overriding config.xml Values

Server A

Configuration MBean

weblogic.ListenPort=7501

config.xml
ListenPort=8010

At startup, servers initialize
configuration MBeans with data

from the configuration files.

1

Startup options override the
values in the configuration files

2

java weblogic.Server
-Dweblogic.ListenPort=7501

The following options temporarily override a server's configuration:

• Server Communication

• SSL

• HTTP Strict Transport Security

• Security

• Message Output and Logging

• Other Server Configuration Options

• Clusters

• Deployment

Server Communication
Table 2-3 describes the options for configuring how servers communicate.

Chapter 2
weblogic.Server Configuration Options

2-7

Table 2-3 Options for Configuring Server Communication

Option Description

-
Dweblogic.management.server=[protocol://]A
dmin-host:port

Starts a server instance as a Managed Server and specifies the
Administration Server that will configure and manage the server
instance.

The domain's configuration file does not specify whether a server
configuration is an Administration Server or a Managed Server.
You determine whether a server instance is in the role of
Administration Server or Managed Server with the options that you
use to start the instance. If you omit the -
Dweblogic.management.server option in the start command,
the server starts as an Administration Server (although within a
given domain, there can be only one active Administration Server
instance). Once an Administration Server is running, you must
start all other server configurations as Managed Servers by
including the -Dweblogic.management.server option in the
start command.

For protocol, specify HTTP, HTTPS, T3, or T3S. The T3S and
HTTPS protocols require you to enable SSL on the Managed
Server and the Administration Server and specify the
Administration Server's SSL listen port.

Note: Regardless of which protocol you specify, the initial
download of a Managed Server's configuration is over HTTP or
HTTPS. After the RMI subsystem initializes, the server instance
can use the T3 or T3S protocol.

For Admin-host, specify localhost or the DNS name or IP address
of the machine where the Administration Server is running.

For port, specify the Administration Server's listen port. If you set
up the domain-wide administration port, port must specify the
domain-wide administration port.

See Configuring Managed Server Connections to the
Administration Server in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

-Dweblogic.ListenAddress=host Specifies the address at which this server instance listens for
requests. The host value must be either the DNS name or the IP
address of the computer that is hosting the server instance.

This startup option overrides any listen address value specified in
the config.xml file. The override applies to the current server
instantiation; it does not modify the value in the config.xml file.
Use any of the administration tools listed in Summary of System
Administration Tools and APIs in Understanding Oracle WebLogic
Server to modify the config.xml file.

See Configure listen addresses in the Oracle WebLogic Server
Administration Console Online Help and Creating Domains Using
WLST Offline in Understanding the WebLogic Scripting Tool.

Chapter 2
weblogic.Server Configuration Options

2-8

Table 2-3 (Cont.) Options for Configuring Server Communication

Option Description

-Dweblogic.ListenPort=portnumber Enables and specifies the plain-text (non-SSL) listen port for the
server instance.

This startup option overrides any listen port value specified in the
config.xml file. The override applies to the current server
instantiation; it does not modify the value in the config.xml file.
Use any of the administration tools listed in Summary of System
Administration Tools and APIs in Understanding Oracle WebLogic
Server to modify the config.xml file.

The default listen port is 7001.

See Configure listen ports in the Oracle WebLogic Server
Administration Console Online Help and Creating Domains Using
WLST Offline in Understanding the WebLogic Scripting Tool.

-Dweblogic.ssl.ListenPort=portnumber Enables and specifies the port at which this WebLogic Server
instance listens for SSL connection requests.

This startup option overrides any SSL listen port value specified in
the config.xml file. The override applies to the current server
instantiation; it does not modify the value in the config.xml file.
Use any of the administration tools listed in Summary of System
Administration Tools and APIs in Understanding Oracle WebLogic
Server to modify the config.xml file.

The default SSL listen port is 7002.

See Configure listen ports in the Oracle WebLogic Server
Administration Console Online Help and Creating Domains Using
WLST Offline in Understanding the WebLogic Scripting Tool.

-Dweblogic.management.discover={true|
false}

Note: This option was removed as of WebLogic Server 9.0.

Determines whether an Administration Server recovers control of a
domain after the server fails and is restarted.

A true value causes an Administration Server to communicate
with all known Managed Servers and inform them that the
Administration Server is running.

A false value prevents an Administration Server from
communicating with any Managed Servers that are currently active
in the domain.

Tip: Specify false for this option only in the development
environment of a single server. Specifying false can cause server
instances in the domain to have an inconsistent set of deployed
modules.

In WebLogic Server 9.0, this command is deprecated because if
an Administration Server stops running while the Managed Servers
in the domain continue to run, each Managed Server will
periodically attempt to reconnect to the Administration Server at
the interval specified by the ServerMBean attribute
AdminReconnectIntervalSecs. See Administering Server
Startup and Shutdown for Oracle WebLogic Server.

The WebLogic Server Administration Console does not display values that you set on the
command line. For information on verifying the attribute values that you set, see Verifying
Attribute Values That Are Set on the Command Line.

Chapter 2
weblogic.Server Configuration Options

2-9

SSL
Each Weblogic Server instance uses an instance of
weblogic.management.configuration.SSLMBean to represent its SSL configuration.

All of the options in the following table that start with -Dweblogic.security.SSL modify the
configuration of the server's SSLMBean. For example, the -
Dweblogic.security.SSL.ignoreHostnameVerification option sets the value of the
SSLMBean's ignoreHostnameVerification attribute.

Table 2-4 describes the options for configuring a server to communicate using Secure Sockets
Layer (SSL).

Note:

As of WebLogic Server version 12.1.1, JSSE is the only SSL implementation that is
supported. The Certicom-based SSL implementation is removed and is no longer
supported in WebLogic Server.

Table 2-4 Options for Configuring SSL

Option Description

-Dweblogic.security.SSL.
ignoreHostnameVerification=true

Disables host name verification, which enables you to use the
demonstration digital certificates that are shipped with
WebLogic Server.

By default, when a WebLogic Server instance is in the role of
SSL client (it is trying to connect to some other server or
application via SSL), it verifies that the host name that the SSL
server returns in its digital certificate matches the host name
of the URL used to connect to the SSL server. If the host
names do not match, the connection is dropped.

If you disable host name verification, either by using this
option or by modifying the server's configuration in the
config.xml file, the server instance does not verify host
names when it is in the role of SSL client.

Note: Oracle does not recommend using the demonstration
digital certificates or turning off host name verification in a
production environment.

This startup option overrides any host name verification
setting in the config.xml file. The override applies to the
current server instantiation; it does not modify the value in the
config.xml file. Use the WebLogic Server Administration
Console or WLST to modify the config.xml file.

See Using Host Name Verification in Administering Security
for Oracle WebLogic Server.

-
Dweblogic.security.SSL.HostnameVerifier=hostna
meverifierimplementation

Specifies the name of a custom host name verifier class. The
class must implement the
weblogic.security.SSL.HostnameVerifier interface.

Chapter 2
weblogic.Server Configuration Options

2-10

Table 2-4 (Cont.) Options for Configuring SSL

Option Description

-
Dweblogic.security.SSL.sessionCache.ttl=sessio
nCacheTimeToLive

Modifies the default server-session time-to-live for SSL
session caching.

The sessionCacheTimeToLive value specifies (in
milliseconds) the time to live for the SSL session. The default
value is 90000 milliseconds (90 seconds). This means if a
client accesses the server again (via the same session ID)
within 90 seconds, WebLogic Server will use the existing SSL
session. You can change this value by setting -
Dweblogic.security.SSL.sessionCache.ttl in the server startup
script.

For sessionCache.ttl:

• The minimum value is 1
• The maximum value is Integer.MAX_VALUE
• The default value is 90000

-
Dweblogic.security.SSL.CertificateCallback=cal
lback-handler

Specifies a certificate callback handler class, which evaluates
details contained the end-user certificate passed in a secure
connection request to WebLogic Server.

Depending on the details contained in the certificate, the
callback handler returns a true or false, which determines
whether authentication is successful.

Note: If you use a certificate callback implementation in
WebLogic Server, a callback is generated whenever a request
is received over a secure port. As a result, using certificate
callbacks may impose a performance overhead that should be
taken into consideration. See Checking the Validity of End
User Certificates in Administering Security for Oracle
WebLogic Server.

-Dweblogic.management.pkpassword=pkpassword Specifies the password for retrieving SSL private keys from an
encrypted flat file.

Use this option if you store private keys in an encrypted flat
file.

-Dweblogic.security.SSL.trustedCAKeyStore=path Deprecated.

If you configure a server instance to use the SSL features that
were available before WebLogic Server 8.1, you can use this
argument to specify the certificate authorities that the server
or client trusts. The path value must be a relative or qualified
name to the Sun JKS keystore file (contains a repository of
keys and certificates).

If a server instance is using the SSL features that were
available before 8.1, and if you do not specify this argument,
the WebLogic Server or client trusts all of the certificates that
are specified in JAVA_HOME\jre\lib\security.

Oracle recommends that you do not use the demonstration
certificate authorities in any type of production deployment.

See Configuring SSL in Administering Security for Oracle
WebLogic Server.

Chapter 2
weblogic.Server Configuration Options

2-11

Table 2-4 (Cont.) Options for Configuring SSL

Option Description

-Dsecurity.use.interopCA=true If you are using WebLogic Server together with a version of
WebLogic Server prior to 12.1.2, be aware that the demo trust
keystore of the previous versions does not contain the demo
CA certificate used as of version 12.1.2. Therefore, if an
instance of WebLogic Server sends its public certificate to an
instance of WebLogic Server running a prior version, that
public certificate will not automatically be trusted.

Use this system property to generate interoperable demo
certificates signed by the previous demo CA certificate.

-
Dweblogic.security.SSL.protocolVersion=protoco
l

Specifies the protocol that is used for SSL connections.

The protocol value can be one of the following:

• SSL3 — Only SSL v3.0 messages are sent and accepted.

• TLS1 — Enables any protocol starting with TLS for
messages that are sent and accepted; for example, TLS
v1.0, TLS v1.1, TLS v1.2 and TLS v1.3.

Note:
– WebLogic Server supports TLS v1.3 only with JDK 8

Update 261 (JDK 8u261) or later. If you are running
an earlier JDK version, then TLS v1.3 may not be
available.

– Support for TLS v1.0 and v1.1 is deprecated.
Although TLS v1.1 is the default minimum protocol
version configured in WebLogic Server, Oracle
strongly recommends that you do not use TLS v1.0
and v1.1 in production environments. In addition,
these versions may be disabled by default in certain
JDK updates by the underlying JSSE provider.

• ALL — Depends on the JSSE provider and JDK version.
(This is the default.)

See Using the weblogic.security.SSL.protocolVersion System
Property in Administering Security for Oracle WebLogic
Server.

Chapter 2
weblogic.Server Configuration Options

2-12

Table 2-4 (Cont.) Options for Configuring SSL

Option Description

-
Dweblogic.security.SSL.minimumProtocolVersion=
protocol

Specifies the minimum protocol version that is used for SSL
connections.

The protocol value can be one of the following:

• SSLv3 — Specifies SSL v3.0 as the minimum protocol
version enabled in SSL connections.

• TLSv1 — Specifies TLS v1.0 as the minimum protocol
version enabled in SSL connections.

• TLSvx.y — Specifies TLS vx.y as the minimum protocol
version enabled in SSL connections, where x is between
1 and 9, and y is between 0 and 9, inclusive.

Note:
• TLS v1.1 is the default minimum protocol version

configured in WebLogic Server. However, Oracle
recommends the use of TLS v1.2 or later in a production
environment.

• Support for TLS v1.0 and v1.1 is deprecated. Oracle
strongly recommends that you do not use TLS v1.0 and
v1.1. In addition, these versions may be disabled by
default in certain JDK updates by the underlying JSSE
provider.

• WebLogic Server supports TLS v1.3 only with JDK 8
Update 261 (JDK 8u261) or later. If you are running an
earlier JDK version, then TLS v1.3 may not be available.

See Using the weblogic.security.SSL.minimumProtocolVersion
System Property in Administering Security for Oracle
WebLogic Server.

-Dweblogic.security.ssl.sslcontext.protocol=
protocol

Specifies the javax.net.ssl.SSLContext algorithm for the
JSSE provider.

For some JSSE providers, there is a correlation between the
javax.net.ssl.SSLContext algorithm and the initially
enabled SSL/TLS protocols. If the JSSE provider configured in
your system interprets the protocol parameter differently, you
may need to set this property. Refer to the vendor-specific
documentation for the correlations between the
javax.net.ssl.SSLContext setting and the enabled
SSL/TLS protocols.

Note: When using the IBM JSSE provider, WebLogic Server
attempts to select a javax.net.ssl.SSLContext algorithm
equivalent to the default TLS.

Standard supported values are SSL, SSLv3, TLS (the default),
TLSv1, TLSv1.1, TLSv1.2, and TLSv1.3. WebLogic Server
does not support SSLv2. Note that support for TLSv1.3 is
available only with JDK 8 Update 261 (JDK 8u261) or later.
For earlier JDK versions, TLS v1.3 may not be available.

See Using the weblogic.security.ssl.sslcontext.protocol
System Property in Administering Security for Oracle
WebLogic Server.

The WebLogic Server Administration Console does not display values that you set on the
command line. For information on verifying the attribute values that you set, see Verifying
Attribute Values That Are Set on the Command Line.

Chapter 2
weblogic.Server Configuration Options

2-13

Setting Additional SSL Attributes
To set additional SSL attributes from the startup command, do the following:

1. To determine which SSL attributes can be configured from startup options, view the
WebLogic Server Javadoc for the SSLMBean and ServerMBean, described in MBean
Reference for Oracle WebLogic Server. The Javadoc also indicates valid values for each
attribute.

Each attribute that SSLMBean and ServerMBean expose as a setter method can be set by a
startup option.

2. To set attributes in the SSLMBean, add the following option to the start command:

-Dweblogic.ssl.attribute-name=value
where attribute-name is the name of the MBean's setter method without the set prefix.

3. To set attributes in the ServerMBean, add the following option to the start command:

-Dweblogic.server.attribute-name=value
where attribute-name is the name of the MBean's setter method without the set prefix.

For example, the SSLMBean exposes its Enabled attribute with the following setter method:

setEnabled()
To enable SSL for a server instance named MedRecServer, use the following command when
you start MedRecServer:

java -Dweblogic.Name=MedRecServer -Dweblogic.ssl.Enabled=true weblogic.Server
The WebLogic Server Administration Console does not display values that you set on the
command line. For information on verifying the attribute values that you set, see Verifying
Attribute Values That Are Set on the Command Line.

HTTP Strict Transport Security
HTTP Strict Transport Security (HSTS) is a web security policy mechanism that allows a web
server to be configured so that web browsers, or other user agents, can access the server
using only secure connections, such as HTTPS. Web servers declare this policy using the
Strict-Transport-Security HTTP response header field.

For more information about HSTS, see Using HTTP Strict Transport Security in Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Table 2-5 describes the system properties that you add to WebLogic Server domain start up
scripts to enable HSTS and customize the response header.

Chapter 2
weblogic.Server Configuration Options

2-14

Table 2-5 Options for Configuring HSTS

Option Description

-Dweblogic.http.headers.enableHSTS={true|false} Specifies whether the server is configured to use
HSTS. The default value of this system property is
false, indicating that WebLogic Server will NOT send
the HSTS header by default.

Set this property to true to enable HSTS. When
enabled, the following default HSTS header is sent
with all responses:

Strict-Transport-Security: max-
age=31536000; includeSubDomains; preload
The values specified in this response are the
minimum values required by the HSTS preload
submission web site https://hstspreload.org/.
You can customize these values using the system
properties described in the following rows of this table.

-Dweblogic.http.headers.hsts.maxage=max-age-seconds Specifies the time, in seconds, that the browser
remembers that a site is only to be accessed using
HTTPS. The default value is 31536000 seconds (one
year).

-
Dweblogic.http.headers.hsts.includesubdomains={true|
false}

Specifies whether the HSTS policy applies to this
HSTS host as well as any subdomains of the host's
domain name. If this directive is not specified, the
property defaults to true and is included in the
header response.

-Dweblogic.http.headers.hsts.preload={true|false} Specifies that the site is requesting inclusion in the
HTTP Strict Transport Security (HSTS) preload list,
which is a list of sites that are hardcoded into Chrome
(and other browsers) as using HTTPS only. If this
directive is not specified, the property defaults to true
and is included in the header response.

Ensure that your site meets all the necessary
requirements before including the preload directive
in your response header. To ensure your site is
successfully preloaded, request submission at
https://hstspreload.org/.

Security
Table 2-6 describes the options for configuring general security parameters.

Chapter 2
weblogic.Server Configuration Options

2-15

https://hstspreload.org/
https://hstspreload.org/

Table 2-6 Options for General Security Parameters

Option Description

-Dweblogic.management.username=username Specifies the username under which the server instance will run.

As of WebLogic Server 12.1.1, the boot username property
weblogic.management.username has been deprecated and will
be removed in a future release, and you will no longer be able to
specify the username in the command for starting WebLogic
Server in production mode.

As an alternative, Oracle recommends that you use the
boot.properties file to specify the boot username for WebLogic
Server. See Boot Identity Files in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

See Provide User Credentials to Start and Stop Servers in
Administering Server Startup and Shutdown for Oracle WebLogic
Server.

-Dweblogic.management.password=password Specifies the user password.

As of WebLogic Server 12.1.1, the boot password system property
weblogic.management.password has been deprecated and will
be removed in a future release, and you will no longer be able to
specify the password in the command for starting WebLogic Server
in production mode.

As an alternative, Oracle recommends that you use the
boot.properties file to specify the boot password for WebLogic
Server. See Boot Identity Files in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

See Provide User Credentials to Start and Stop Servers in
Administering Server Startup and Shutdown for Oracle WebLogic
Server.

-Dweblogic.system.StoreBootIdentity=true Creates a boot.properties file in the server's root directory. The
file contains the username and an encrypted version of the
password that was used to start the server.

Do not specify this argument in a server's ServerStartMBean.
See Specifying User Credentials When Starting a Server with the
Node Manager in Administering Server Startup and Shutdown for
Oracle WebLogic Server.

Oracle recommends that you do not add this argument to a startup
script. Instead, use it only when you want to create a
boot.properties file.

See Boot Identity Files in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

-Dweblogic.system.BootIdentityFile=filename Specifies a boot identity file that contains a username and
password.

The filename value must be the fully qualified pathname of a
valid boot identity file. For example:

-Dweblogic.system.BootIdentityFile=
WL_HOME\mydomain\servers\myserver\security
\boot.properties
If you do not specify a filename, a server instance, or the WLST
SHUTDOWN command, use the boot.properties file in the
server's root directory.

If there is no boot identity file, when starting a server, the server
instance prompts you to enter a username and password.

Chapter 2
weblogic.Server Configuration Options

2-16

Table 2-6 (Cont.) Options for General Security Parameters

Option Description

-Dweblogic.system.RemoveBootIdentity=true Removes the boot identity file after a server starts.

-Dweblogic.security.anonymousUserName=name Assigns a user ID to anonymous users. By default, all anonymous
users are identified with the string <anonymous>.

To emulate the security behavior of WebLogic Server 6.x, specify
guest for the name value and create a user named guest in your
security realm.

See Users, Groups, and Security Roles in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

-Djava.security.manager
-Djava.security.policy[=]=filename

Standard Java EE options that enable the Java Security Manager
and specify a filename (using a relative or fully-qualified pathname)
that contains Java 2 security policies.

To use the WebLogic Server sample policy file, specify
WL_HOME\server\lib\weblogic.policy.

Using -Djava.security.policy==filename (note the double
equal sign (==)) causes the policy file to override any default
security policy. When JACC is enabled, this property causes
WebLogic Server to ignore any policy files that are used for servlet
and EJB authorization. A single equal sign (=) causes the policy
file to be appended to an existing security policy.

Note: The WebLogic JACC provider does not require the Java
Security Manager to be enabled.

See Using the Java Security Manager to Protect WebLogic
Resources in Developing Applications with the WebLogic Security
Service.

-
Dweblogic.security.fullyDelegateAuthorizati
on=true

By default, roles and security policies cannot be set for an EJB or
Web application through the WebLogic Server Administration
Console unless security constraints were defined in the
deployment descriptor for the EJB or Web application.

Use this option when starting WebLogic Server to override this
problem.

This startup option does not work with EJBs or EJB methods that
use <unchecked> or <restricted> tags or Web applications
that do not have a role-name specified in the <auth-
constraint> tag.

-
Dweblogic.management.anonymousAdminLookupEn
abled=true

Enables you to retrieve an MBeanHome interface without specifying
user credentials. The MBeanHome interface is part of the WebLogic
Server JMX API.

If you retrieve MBeanHome without specifying user credentials, the
interface gives you read-only access to the value of any MBean
attribute that is not explicitly marked as protected by the Weblogic
Server MBean authorization process.

This startup option overrides the Anonymous Admin Lookup
Enabled setting on the domain_name > Security > General page in
the WebLogic Server Administration Console.

By default, the MBeanHome API allows access to MBeans only for
WebLogic users who are in one of the default security roles. See
Users, Groups, an Security Roles in Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

Chapter 2
weblogic.Server Configuration Options

2-17

Table 2-6 (Cont.) Options for General Security Parameters

Option Description

-
Dweblogic.security.identityAssertionTTL=sec
onds

Configures the number of seconds that the Identity Assertion
cache stores a Subject.

When using an Identity Assertion provider (either for an X.509
certificate or some other type of token), Subjects are cached within
the server. This greatly enhances performance for servlets and
EJB methods with <run-as> tags as well as for other places
where identity assertion is used but not cached (for example,
signing and encrypting XML documents). There might be some
cases where this caching violates the desired semantics.

By default, Subjects remain in the cache for 300 seconds, which is
also the maximum allowed value. Setting the value to -1 disables
the cache.

Setting a high value generally improves the performance of identity
assertion, but makes the Identity Assertion provider less
responsive to changes in the configured Authentication provider.
For example, a change in the user's group will not be reflected until
the Subject is flushed from the cache and recreated.

-
Djavax.security.jacc.PolicyConfigurationFac
tory.provider=
weblogic.security.jacc.simpleprovider .Poli
cyConfigurationFactoryImpl
-Djavax.security.jacc.policy.provider=
weblogic.security.jacc.simpleprovider .Simp
leJACCPolicy
-
Dweblogic.security.jacc.RoleMapperFactory.p
rovider=
weblogic.security.jacc.simpleprovider.RoleM
apperFactoryImpl

Defining these three system properties is required to enable the
use of the Java Authorization Contract for Containers in the
security realm. When these providers are in use, JACC handles
authorization decisions for the EJB and servlet containers for
external applications. Any other authorization decisions for internal
applications are handled by the authorization in the WebLogic
Security framework.

Note: JACC authorization does not require the use of Java SE
security.

The WebLogic JACC implementation expects that the policy object
is the default sun.security.provider.PolicyFile class.

When starting, WebLogic Server attempts to locate and instantiate
the classes specified by the JACC startup properties and fails if it
cannot find or instantiate them (if, for example, the files specified
by the startup properties are not valid classes).

See Using the Java Authorization Contract for Containers in
Developing Applications with the WebLogic Security Service

-Dweblogic.security.ldap. maxSize=<max
bytes>

Limits the size of the data file used by the embedded LDAP server.
When the data file exceeds the specified size, WebLogic Server
eliminates from the data file space occupied by deleted entries.

-
Dweblogic.security.ldap.changeLogThreshold=
<number of entries>

Limits the size of the change log file used by the embedded LDAP
server. When the change log file exceeds the specified number of
entries, WebLogic Server truncates the change log by removing all
entries that have been sent to all Managed Servers.

Chapter 2
weblogic.Server Configuration Options

2-18

Table 2-6 (Cont.) Options for General Security Parameters

Option Description

-
Dweblogic.security.providers.authentication
.ldap.socketTimeout=seconds

Sets a timeout value for the LDAP Authentication provider
connection to an LDAP server. If multiple LDAP servers are
specified in the LDAPServerMBean.Host attribute, the socket
timeout applies to each individual LDAP server connection attempt
that is made. The default value is 0, which sets no socket timeout
on connections.

Note that the LDAPServerMBean.ConnectTimeout attribute sets
the timeout limit for all connection attempts that are made.
Typically the socket timeout is used in conjunction with the connect
timeout and the parallel connect delay. See Configuring Failover for
LDAP Authentication Providers in Administering Security for Oracle
WebLogic Server.

The WebLogic Server Administration Console does not display values that you set on the
command line. See Verifying Attribute Values That Are Set on the Command Line.

Message Output and Logging
Table 2-7 describes options for configuring a server instance's message output.

Table 2-7 Options for Configuring Message Output

Option Description

-Dweblogic.Stdout="filename" Redirects the server and JVM standard output stream to a file. You
can specify a pathname that is fully qualified or relative to the
WebLogic Server root directory.

See Redirect JVM output in the Oracle WebLogic Server
Administration Console Online Help.

-Dweblogic.Stderr="filename" Redirects the server and JVM standard error stream to a file. You
can specify a pathname that is fully qualified or relative to the
WebLogic Server root directory.

See Redirecting JVM Output in Configuring Log Files and Filtering
Log Messages for Oracle WebLogic Server.

-
Dweblogic.AdministrationMBeanAuditingEnable
d={true|false}

Determines whether the Administration Server emits configuration
auditing log messages when a user changes the configuration or
invokes management operations on any resource within a domain.

By default, the Administration Server does not emit configuration
auditing messages.

See Enable configuration auditing in the Oracle WebLogic Server
Administration Console Online Help.

The WebLogic Server Administration Console does not display values that you set on the
command line. For information on verifying the attribute values that you set, see Verifying
Attribute Values That Are Set on the Command Line.

Setting Logging Attributes
Each Weblogic Server instance uses an instance of
weblogic.management.configuration.LogMBean to represent the configuration of its logging
services.

Chapter 2
weblogic.Server Configuration Options

2-19

To set values for LogMBean attributes from the startup command, do the following:

1. To determine which log attributes can be configured from startup options, see LogMBean in
MBean Reference for Oracle WebLogic Server. The Javadoc also indicates valid values for
each attribute.

Each attribute that the LogMBean exposes as a setter method can be set by a startup
option.

2. Add the following option to the start command:

-Dweblogic.log.attribute-name=value

where attribute-name is the name of the MBean's setter method without the set prefix.

The LogMBean exposes its FileName attribute with the following setter method:

setFileName()

To specify the name of the MedRecServer instance's local log file, use the following command
when you start MedRecServer:

java -Dweblogic.Name=MedRecServer
 -Dweblogic.log.FileName="C:\logfiles\myServer.log"
 weblogic.Server

The WebLogic Server Administration Console does not display values that you set on the
command line. For information on verifying the attribute values that you set, see Verifying
Attribute Values That Are Set on the Command Line.

Clusters
Table 2-8 describes options for configuring additional attributes of a cluster.

Table 2-8 Options for Configuring Cluster Attributes

Option Description

-Dweblogic.cluster.multicastAddress Determines the Multicast Address that clustered servers use to
send and receive cluster-related communications. By default, a
clustered server refers to the Multicast Address that is defined in
the config.xml file. Use this option to override the value in
config.xml.

Note: The WebLogic Server Administration Console does not
display values that you set on the command line. For information
on verifying the attribute values that you set, see Verifying Attribute
Values That Are Set on the Command Line.

Regardless of how you set the Multicast Address, all servers in a
cluster must communicate at the same Multicast Address.

Deployment
Table 2-9 describes options for configuring additional attributes for deployment.

Chapter 2
weblogic.Server Configuration Options

2-20

Table 2-9 Options for Configuring Deployment Attributes

Option Description

-
Dweblogic.deployment.IgnorePrepareStateFai
lures=true

Overrides the default deployment behavior by allowing a server to
transition to Running even with static deployment Prepare
failures.

Note: This server level flag may cause inconsistent deployment
behavior within clusters, such as issues with
HttpSessionReplication or SFSB replication.

Other Server Configuration Options
Table 2-10 describes options for configuring additional attributes of a server instance.

Table 2-10 Options for Configuring Server Attributes

Option Description

-Dweblogic.Name=servername Specifies the name of the server instance that you want to start.
The specified value must refer to the name of a server that has
been defined in the domain's config.xml file.

-Dweblogic.ProductionModeEnabled={true|
false}

This attribute is deprecated in WebLogic Server 9.0.

Determines whether a server starts in production mode.

A true value prevents a WebLogic Server from automatically
deploying and updating applications that are in the domain_name/
autodeploy directory.

If you do not specify this option, the assumed value is false.

To enable production mode, you can use WLST to set
DomainMBean.isProductionModeEnabled to true, or use the
WebLogic Server Administration Console. See Change to
production mode in the Oracle WebLogic Server Administration
Console Online Help.

Note: It is recommended that you enable production mode via the
WebLogic Server Administration Console, in config.xml, or by
supplying the production argument to startWebLogic script, for
example, startWebLogic.cmd production. You should only
enable production mode from the command line on the
Administration Server.

Note: It is important to note that when ProductionModeEnabled is
set from the command line on the Administration Server, this value
is propagated to all Managed Servers.

Chapter 2
weblogic.Server Configuration Options

2-21

Table 2-10 (Cont.) Options for Configuring Server Attributes

Option Description

-Dweblogic.management.startupMode=MODE The argument MODE represents either of the following:

• STANDBY — Starts a server and places it in the STANDBY
state. See Administering Server Startup and Shutdown for
Oracle WebLogic Server.

To use this startup argument, the domain must be configured
to use the domain-wide administration port.

See Administration Port and Administrative Channel in
Administering Server Environments for Oracle WebLogic
Server and Configure the domain-wide administration port in
the Oracle WebLogic Server Administration Console Online
Help.

• ADMIN — Starts a server and places it in the ADMIN state. See
Administering Server Startup and Shutdown for Oracle
WebLogic Server.

Specifying the startup mode startup option overrides any startup
mode setting in the config.xml file. The override applies to the
current server instantiation and in the config.xml file. The
system property has the highest precedence over the server
configuration settings in the config.xml and becomes part of edit
session changes if starting an edit session via Administration
Console or WLST.

If a system property is specified on the server startup:

• The value cannot be changed in the run time.
• Starting a new edit session can cause the system property

value to be persisted in config.xml.

-
Dweblogic.apache.xerces.maxentityrefs=nume
rical-value

Limits the number of entities in an XML document that the
WebLogic XML parser resolves.

If you do not specify this option, the XML parser that WebLogic
Server installs resolves 10,000 entity references in an XML
document, regardless of how many an XML document contains.

-Dweblogic.jsp.windows.caseSensitive=true Causes the JSP compiler on Windows systems to preserve case
when it creates output files names.

See Using the WebLogic JSP Compiler in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Chapter 2
weblogic.Server Configuration Options

2-22

Table 2-10 (Cont.) Options for Configuring Server Attributes

Option Description

-
Dweblogic.servlet.optimisticSerialization=
true

When optimistic-serialization is turned on, WebLogic
Server does not serialize-deserialize context and request attributes
upon getAttribute(name) when the request is dispatched
across servlet contexts.

This means that you must make sure that the attributes common to
Web applications are scoped to a common parent classloader
(application scoped) or you must place them in the system
classpath if the two Web applications do not belong to the same
application.

When optimistic-serialization is turned off (default value),
WebLogic Server serialize-deserializes context and request
attributes upon getAttribute(name) to avoid the possibility of
ClassCastExceptions.

The optimistic-serialization value can also be specified at domain
level in the WebAppContainerMBean, which applies for all Web
applications. The value in weblogic.xml, if specified, overrides the
domain level value.

The default value is false.

-
Dweblogic.servlet.maxLoggingURILength=leng
th

By default, when using extended log format in HTTP access logs,
the maximum logged URI length is 256 characters. If the URI
exceeds that length, the logged URI is truncated.

You can use this property to increase the length of the URI that is
logged. See DNS Related Fields in Administering Server
Environments for Oracle WebLogic Server.

-Dweblogic.jdbc.qualifyRMName=false When set, restores pre-WebLogic Server 11gR1 (10.3.1) behavior
of not qualifying the JTA registration name with the domain name.

-Dweblogic.ScatteredReadsEnabled=true
and

-Dweblogic.GatheredWritesEnabled=true

When each is set to true, increases efficiency during I/O in
environments with high network throughput.

These command options are used together to optimize WebLogic
Server performance for use with Oracle Exalogic. See the Oracle
Exalogic Enterprise Deployment Guide.

-
Dweblogic.replication.enableLazyDeserializ
ation= true

When set to true, increases efficiency with session replication.

This command option is used to optimize WebLogic Server
performance for use with Oracle Exalogic. See the Oracle Exalogic
Enterprise Deployment Guide.

-
Dweblogic.resourcepool.max_test_wait_secs=
seconds

The amount of time, in seconds, WebLogic Server waits before
considering a connection test failed. By default, a server instance
is assigned a value of 10 seconds. If set to zero, the server
instance waits indefinitely.

Chapter 2
weblogic.Server Configuration Options

2-23

Table 2-10 (Cont.) Options for Configuring Server Attributes

Option Description

-Dweblogic.wsee.client.ssl.usejdk=true When set to true, switches from WlsSSLAdapter to
JdkSSLAdapter.

By default, WebLogic Server Web services use the
weblogic.wsee.connection.transport.https.WlsSSLAdap
ter class for the SSL adapter. Setting the flag to true forces the
use of JdkSSLAdapter from
weblogic.wsee.connection.transport.https.JdkSSLAdap
ter.

The
weblogic.wsee.connection.transport.https.HTTPSClien
tTransport class that defines the USE_JDK_SSL_PROPERTY is
used only in JAX-RPC. The property is not currently supported in
JAX-WS.

-Dweblogic.http.URIDecodeEncoding=charset-
name

The argument charset-name specifies the encoding used by the
WebLogic Server Web container to decode the URI of an HTTP
request or to encode the Location header in an HTTP response.
The default value is UTF-8.

See Determining the Encoding of an HTTP Request in Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

-
Dweblogic.utils.http.requestparams.useArra
yMap= true

When set to true in the server startup command, HTTP request
parameters are stored using an ArrayMap. By default, HTTP
request parameters are stored in a TreeMap.

The WebLogic Server Administration Console does not display values that you set on the
command line. For information on verifying the attribute values that you set, see Verifying
Attribute Values That Are Set on the Command Line.

Using the weblogic.Server Command Line to Start a Server
Instance

The basic procedure to start a WebLogic Server instance is to run the setWLSEnv script to set
the environment, change to the root directory of a domain, and enter the java
weblogic.Server command.

Complete the following steps:

1. In a command shell, set up the required environment variables by running the following
script:

WL_HOME\server\bin\setWLSEnv.cmd (on Windows)

WL_HOME/server/bin/setWLSEnv.sh (on UNIX)

where WL_HOME is the directory in which you installed the WebLogic Server software.

2. In the command shell, change to the root of the domain directory, usually
ORACLE_HOME\user_projects\domains\DOMAIN_NAME. For example, change to the
ORACLE_HOME\user_projects\domains\medrec directory.

3. To start an Administration Server, enter the following command:

java weblogic.Server

Chapter 2
Using the weblogic.Server Command Line to Start a Server Instance

2-24

Note:

The password you use must be a string of at least 8 case-sensitive characters.
The space character is not supported. See Creating a WebLogic Domain in
Creating WebLogic Domains Using the Configuration Wizard.

4. If the domain's Administration Server is already running, and if you have already defined a
Managed Server in the config.xml file, you can start a Managed Server as follows:

java -Dweblogic.Name=managed-server-name
-Dweblogic.management.server=url-for-Administration-Server
weblogic.Server

For example, if you create a Managed Server named MedRecManagedServer in the
MedRec domain, you can enter the following command:

java -Dweblogic.Name=MedRecManagedServer
-Dweblogic.management.server=localhost:7011
weblogic.Server

Note:

If you are using the demo certificates in a multi-server domain, Managed Server
instances will fail to boot if you specify the fully-qualified DNS name of the
Administration Server host machine, as in the argument url-for-Administration
Server. See Limitation on CertGen Usage in Administering Security for Oracle
WebLogic Server.

Using the weblogic.Server Command Line to Create a Domain
You can invoke the weblogic.Server class to create a domain that contains a single server
instance. However, you cannot invoke the weblogic.Server class either to add Managed
Server instances to a domain, or to modify an existing domain.
As described in Default Behavior, if weblogic.Server is unable to find a config.xml file, it
offers to create the file. Any command option that you specify and that corresponds to an
attribute that is persisted in the config.xml file will be persisted. For example, the -
Dweblogic.Name and -Dweblogic.Domain options specify the name of a server configuration
and the name of a domain. If weblogic.Server is unable to find a config.xml file, both of
these values are persisted in config.xml. However, the -
Dweblogic.system.BootIdentityFile option, which specifies a file that contains user
credentials for starting a server instance, is not an attribute that the config.xml file persists.

To create and instantiate a simple example domain and server, do the following:

1. In a command shell, set up the required environment variables by running the following
script:

WL_HOME\server\bin\setWLSEnv.cmd (on Windows)

WL_HOME/server/bin/setWLSEnv.sh (on UNIX)

where WL_HOME is the directory in which you installed the WebLogic Server software.

2. In the command shell, create an empty directory.

Chapter 2
Using the weblogic.Server Command Line to Create a Domain

2-25

3. In the empty directory, enter the following command:

java -Dweblogic.Domain=SimpleDomain -Dweblogic.Name=SimpleServer
-Dweblogic.management.username=weblogic -Dweblogic.management.password=password
-Dweblogic.ListenPort=7001 weblogic.Server

After you enter this command, WebLogic Server asks if you want to create a new config.xml
file. If you enter y, it then instantiates a domain named SimpleDomain. The domain's
Administration Server is configured as follows:

• The name of the Administration Server is SimpleServer.

• The domain's security realm defines one administrative user, weblogic, with a password of
password.

• For the listen address of the Administration Server, you can use localhost, the IP address
of the host computer, or the DNS name of the host computer. See Configure listen
addresses in the Oracle WebLogic Server Administration Console Online Help.

• The Administration Server listens on port 7001.

Entering the weblogic.Server command as described in this section creates the following
files:

• config.xml
• DefaultAuthenticatorInit.ldift, DefaultRoleMapperInit.ldift, and

SerializedSystemIni.dat, which store basic security-related data.

• boot.properties file, which contains the username and password in an encrypted format.
This file enables you to bypass the prompt for username and password when you start the
server. See Boot Identity Files in Administering Server Startup and Shutdown for Oracle
WebLogic Server.

• startWebLogic.cmd and startWebLogic.sh, that you can use to start subsequent
instantiations of the server.

Note:

Invoking weblogic.Server in an empty directory results in implicit domain
creation which uses the same configuration process as WLST offline and the
Configuration Wizard and thus ensures that you always see uniform domains. As
a result, implicitly creating a domain in an empty directory using
weblogic.Server may take around 15 seconds.

Verifying Attribute Values That Are Set on the Command Line
The WebLogic Server Administration Console does not display values that you set on the
command line because the startup options set attribute values for the server's local
configuration MBean. To see the values that are in a server's local configuration MBean, use
WLST instead as follows:

1. Complete the procedure described in Main Steps for Using WLST in Interactive or Script
Mode in Understanding the WebLogic Scripting Tool.

>java weblogic.WLST
2. Start a WebLogic Server instance (see Starting and Stopping Servers in Administering

Server Startup and Shutdown for Oracle WebLogic Server) and connect WLST to the

Chapter 2
Verifying Attribute Values That Are Set on the Command Line

2-26

server using the connect command. For detailed information about the connect command,
see connect in the WLST Command Reference for WebLogic Server.

wls:/(offline)> connect('username','password','t3s://localhost:7002')
Connecting to weblogic server instance running at t3s://localhost:7002 as username
weblogic ...

wls:/mydomain/serverConfig>
3. For example, to determine the multicast address that a cluster member is using, connect

WLST to that server instance and enter the following commands:

wls:/mydomain/serverConfig> cd('Clusters/cluster_name')
wls:/mydomain/serverConfig/Clusters/mycluster> cmo.getMulticastAddress()

'239.192.0.0'
4. To determine the severity level of messages that the server instance prints to standard out,

connect WLST to that server instance and enter the following commands:

wls:/mydomain/serverConfig> cd('Servers/server_name/Log/server_name')
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver>cmo.getStdoutSeverity()

'Notice'
See Understanding the WebLogic Scripting Tooland Understanding WebLogic Server MBeans
in Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

Chapter 2
Verifying Attribute Values That Are Set on the Command Line

2-27

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Using the Oracle WebLogic Server Java Utilities
	appc
	AppletArchiver
	Syntax

	autotype (deprecated)
	BuildXMLGen
	CertGen
	Syntax
	Example

	ClientDeployer
	clientgen
	Conversion (deprecated)
	dbping
	Creating a DB2 Package with dbping
	Syntax
	Examples

	ddcreate (deprecated)
	DDInit (deprecated)
	WebInit (deprecated)
	EarInit (deprecated)

	Deployer
	DeploymentPersistentTool
	der2pem
	Syntax
	Example

	Derby
	ejbc (deprecated)
	EJBGen
	encrypt
	Syntax
	Examples

	getProperty
	Syntax
	Example

	host2ior
	Syntax

	ImportPrivateKey
	Syntax
	Example

	jhtml2jsp
	Syntax

	jspc (deprecated)
	logToZip
	Syntax
	Examples

	MBean Commands
	MulticastTest
	Syntax
	Example

	myip
	Syntax
	Example

	pem2der
	Syntax
	Example

	rmic
	Schema
	Syntax
	Example

	SearchAndBuild
	Example

	system
	Syntax
	Example

	ValidateCertChain
	verboseToZip
	Syntax
	Example

	WebLogicMBeanMaker
	Syntax

	wlappc
	wlcompile
	wlconfig
	wldeploy
	wlpackage
	wlserver
	wsdl2Service

	2 weblogic.Server Command-Line Reference
	Required Environment and Syntax for weblogic.Server
	Environment
	Modifying the Classpath
	Syntax

	Default Behavior
	weblogic.Server Configuration Options
	JVM Parameters
	Location of Configuration Data
	Example

	Options that Override a Server's Configuration
	Server Communication
	SSL
	Setting Additional SSL Attributes

	HTTP Strict Transport Security
	Security
	Message Output and Logging
	Setting Logging Attributes

	Clusters
	Deployment
	Other Server Configuration Options

	Using the weblogic.Server Command Line to Start a Server Instance
	Using the weblogic.Server Command Line to Create a Domain
	Verifying Attribute Values That Are Set on the Command Line

