
Oracle® Fusion Middleware
Developing Enterprise JavaBeans for Oracle
WebLogic Server

12c (12.2.1.4.0)
E90799-03
April 2023



Oracle Fusion Middleware Developing Enterprise JavaBeans for Oracle WebLogic Server, 12c (12.2.1.4.0)

E90799-03

Copyright © 2007, 2023, Oracle and/or its affiliates.

Primary Author:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

Related Documentation xiii

Conventions xiii

1   Introduction and Roadmap

Guide to this Document 1-1

Comprehensive Examples for the EJB Developer 1-1

EJB 3.2 Examples 1-2

EJB 3.1 Examples 1-2

EJB 3.0 Example 1-2

New and Changed Features in this Release 1-3

2   Understanding Enterprise JavaBeans

New Features and Changes in EJB 2-1

What Is New and Changed in EJB 3.2 2-1

What Was New and Changed in EJB 3.1 2-2

What Was New and Changed in EJB 3.0 2-3

Understanding EJB Components 2-4

Session EJBs Implement Business Logic 2-4

Stateful Session Beans 2-5

Stateless Session Beans 2-5

Singleton Session Beans 2-5

Message-Driven Beans Implement Loosely Coupled Business Logic 2-6

EJB Anatomy and Environment 2-6

EJB Components 2-6

The EJB Container 2-7

EJB Metadata Annotations 2-7

Optional EJB Deployment Descriptors 2-8

iii



EJB Clients and Communications 2-8

Accessing EJBs 2-8

EJB Communications 2-9

Securing EJBs 2-9

3   Simple Enterprise JavaBeans Examples

Simple Java Examples of 3.x EJBs 3-1

Example of a Simple No-interface Stateless EJB 3-1

Example of a Simple Business Interface Stateless EJB 3-2

Example of a Simple Stateful EJB 3-3

Example of an Interceptor Class 3-5

Packaged EJB 3.2 Examples in WebLogic Server 3-6

EJB 3.2: Example of Using the Session Bean Lifecyle 3-6

EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener 3-6

Packaged EJB 3.1 Examples in WebLogic Server 3-7

EJB 3.1: Example of a Singleton Session Bean 3-7

EJB 3.1: Example of an Asynchronous Method EJB 3-7

EJB 3.1: Example of a Calendar-based Timer EJB 3-8

EJB 3.1: Example of Simplified No-interface Programming and Packaging in a WAR
File 3-8

EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB 3-8

EJB 3.1: Example of Using the Embeddable EJB Container in Java SE 3-9

EJB 3.0: Example of Invoking an Entity From A Session Bean 3-9

4   Iterative Development of Enterprise JavaBeans

Overview of the EJB Development Process 4-1

Create a Source Directory 4-2

Directory Structure for Packaging a JAR 4-3

Directory Structure for Packaging a WAR 4-3

Program the Annotated EJB Class 4-3

Program the EJB Interface 4-4

Accessing EJBs Using the No-Interface Client View 4-4

Accessing EJBs Using the Business Interface 4-4

Business Interface Application Exceptions 4-5

Using Generics in EJBs 4-5

Serializing and Deserializing Business Objects 4-6

Optionally Program Interceptors 4-7

Optionally Program the EJB Timer Service 4-7

Overview of the Timer Service 4-7

Calendar-based EJB Timers 4-8

iv



Automatically-created EJB Timers 4-8

Non-persistent Timers 4-9

Clustered Versus Local EJB Timer Services 4-9

Clustered EJB Timer Services 4-9

Local EJB Timer Services 4-9

Configuring Clustered EJB Timers 4-10

Using Java Programming Interfaces to Program Timer Objects 4-11

EJB 3.2 Timer-related Programming Interfaces 4-11

WebLogic Server-specific Timer-related Programming Interfaces 4-12

Programming Access to EJB Clients 4-14

Remote Clients 4-14

Local Clients 4-15

Looking Up EJBs From Clients 4-15

Using Dependency Injection 4-15

Using the JNDI Portable Syntax 4-15

Customizing JNDI Names 4-16

Configuring EJBs to Send Requests to a URL 4-16

Specifying an HTTP Resource by URL 4-17

Specifying an HTTP Resource by Its JNDI Name 4-17

Accessing HTTP Resources from Bean Code 4-18

Configuring Network Communications for an EJB 4-18

Programming and Configuring Transactions 4-18

Programming Container-Managed Transactions 4-18

Configuring Automatic Retry of Container-Managed Transactions 4-19

Programming Bean-Managed Transactions 4-20

Programming Transactions That Are Distributed Across EJBs 4-21

Calling multiple EJBs from a client's transaction context 4-21

Using an EJB "Wrapper” to Encapsulate a Cross-EJB Transaction 4-22

Compile Java Source 4-22

Optionally Create and Edit Deployment Descriptors 4-22

Packaging EJBs 4-23

Packaging EJBs in a JAR 4-23

Packaging an EJB In a WAR 4-24

Deploying EJBs 4-25

5   Programming the Annotated EJB Class

Overview of Metadata Annotations and EJB Bean Files 5-1

Programming the Bean File: Requirements and Changes From EJB 2.x 5-2

Bean Class Requirements and Changes From EJB 2.x 5-2

Bean Class Method Requirements 5-3

v



Programming the Bean File 5-3

Typical Steps When Programming the Bean File 5-4

Specifying the Business and Other Interfaces 5-5

Specifying the Business Interface 5-5

Specifying the No-interface View 5-5

Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-Driven) 5-6

Injecting Resource Dependency into a Variable or Setter Method 5-7

Invoking a 3.0 Entity 5-8

Injecting Persistence Context Using Metadata Annotations 5-9

Finding an Entity Using the EntityManager API 5-9

Creating and Updating an Entity Using EntityManager 5-10

Specifying Interceptors for Business Methods or Life Cycle Callback Events 5-11

Specifying Business or Life Cycle Interceptors: Typical Steps 5-12

Programming the Interceptor Class 5-13

Programming Business Method Interceptor Methods 5-13

Programming Asynchronous Business Methods 5-14

Programming Life Cycle Callback Interceptor Methods 5-14

Specifying Default Interceptor Methods 5-16

Saving State Across Interceptors With the InvocationContext API 5-16

Programming Application Exceptions 5-17

Securing Access to the EJB 5-18

Specifying Transaction Management and Attributes 5-19

Complete List of Metadata Annotations By Function 5-20

Annotations to Specify the Bean Type 5-20

Annotations to Specify the Local or Remote Interfaces 5-20

Annotations to Support EJB 2.x Client View 5-21

Annotations to Invoke a 3.0 Entity Bean 5-21

Transaction-Related Annotations 5-21

Annotations to Specify Interceptors 5-22

Annotations to Specify Life Cycle Callbacks 5-22

Security-Related Annotations 5-23

Context Dependency Annotations 5-23

Timeout and Exceptions Annotations 5-24

Timer and Scheduling Annotations 5-24

6   Deployment Guidelines for Enterprise JavaBeans

Before You Deploy an EJB 6-1

Understanding and Performing Deployment Tasks 6-2

Deployment Guidelines for EJBs 6-2

Deploying Standalone EJBs as Part of an Enterprise Application 6-2

vi



Deploying EJBs as Part of an Web Application 6-3

Deploying EJBs That Call Each Other in the Same Application 6-3

Switching Protocol Limitation 6-3

Deploying EJBs That Use Dependency Injection 6-4

Deploying Homogeneously to a Cluster 6-4

Deploying EJBs to a Cluster 6-4

Redeploying an EJB 6-4

Using FastSwap Deployment to Minimize Deployment 6-5

Understanding Warning Messages 6-5

Disabling EJB Deployment Warning Messages 6-5

7   Using an Embedded EJB Container in Oracle WebLogic Server

Overview of the Embeddable EJB Container 7-1

EJB Lite Functionality Supported in the Embedded EJB Container 7-1

8   Configuring the Persistence Provider in Oracle WebLogic Server

Overview of Oracle TopLink 8-1

Specifying a Persistence Provider 8-2

Setting the Default Provider for the Domain 8-2

Specifying the Persistence Provider in an Application 8-3

Using Oracle TopLink in Oracle WebLogic Server 8-3

A   EJB Metadata Annotations Reference

Overview of EJB 3.x Annotations A-1

Annotations for Stateless, Stateful, and Message-Driven Beans A-1

javax.ejb.AccessTimeout A-2

Description A-2

Attributes A-3

javax.ejb.ActivationConfigProperty A-3

Description A-4

Attributes A-4

javax.ejb.AfterBegin A-4

Description A-4

javax.ejb.AfterCompletion A-5

Description A-5

javax.ejb.ApplicationException A-5

Description A-5

Attributes A-5

javax.ejb.Asynchronous A-6

vii



Description A-6

javax.ejb.BeforeCompletion A-6

Description A-6

javax.ejb.ConcurrencyManagement A-7

Description A-7

Attributes A-7

javax.ejb.DependsOn A-8

Description A-8

Attributes A-8

javax.ejb.EJB A-8

Description A-8

Attributes A-9

javax.ejb.EJBs A-10

Description A-10

Attribute A-10

javax.ejb.Init A-10

Description A-10

Attributes A-11

javax.ejb.Local A-11

Description A-11

Attributes A-11

javax.ejb.LocalBean A-12

Description A-12

javax.ejb.LocalHome A-12

Description A-12

Attributes A-12

javax.ejb.Lock A-13

Description A-13

Attributes A-13

javax.ejb.MessageDriven A-13

Description A-13

Attributes A-13

javax.ejb.PostActivate A-15

Description A-15

javax.ejb.PrePassivate A-15

Description A-15

javax.ejb.Remote A-16

Description A-16

Attributes A-16

javax.ejb.RemoteHome A-16

Description A-16

viii



Attributes A-17

javax.ejb.Remove A-17

Description A-17

Attributes A-17

javax.ejb.Schedule A-17

Description A-17

Attributes A-20

javax.ejb.Schedules A-21

Description A-21

Attributes A-21

javax.ejb.Singleton A-22

Description A-22

Attributes A-22

javax.ejb.Startup A-22

Description A-23

javax.ejb.StatefulTimeout A-23

Description A-23

Attributes A-23

javax.ejb.Stateless A-23

Description A-23

Attributes A-23

javax.ejb.Timeout A-24

Description A-24

javax.ejb.TransactionAttribute A-25

Description A-25

Attributes A-25

javax.ejb.TransactionManagement A-26

Description A-26

Attributes A-27

Annotations Used to Configure Interceptors A-27

javax.interceptor.AroundInvoke A-27

Description A-27

javax.interceptor.ExcludeClassInterceptors A-27

Description A-27

javax.interceptor.ExcludeDefaultInterceptors A-28

Description A-28

javax.interceptor.Interceptors A-28

Description A-28

Attributes A-28

Annotations Used to Interact With Entity Beans A-29

javax.persistence.PersistenceContext A-29

ix



Description A-29

Attributes A-29

javax.persistence.PersistenceContexts A-30

Description A-30

Attributes A-30

javax.persistence.PersistenceUnit A-31

Description A-31

Attributes A-31

javax.persistence.PersistenceUnits A-32

Description A-32

Attributes A-32

Standard JDK Annotations Used By EJB 3.x A-32

javax.annotation.PostConstruct A-33

Description A-33

javax.annotation.PreDestroy A-33

Description A-33

javax.annotation.Resource A-34

Description A-34

Attributes A-34

javax.annotation.Resources A-35

Description A-35

Attributes A-35

Standard Security-Related JDK Annotations Used by EJB 3.x A-36

javax.annotation.security.DeclareRoles A-36

Description A-36

Attributes A-36

javax.annotation.security.DenyAll A-36

Description A-36

javax.annotation.security.PermitAll A-37

Description A-37

javax.annotation.security.RolesAllowed A-37

Description A-37

Attributes A-37

javax.annotation.security.RunAs A-37

Description A-37

Attributes A-38

WebLogic Annotations A-38

weblogic.javaee.AllowRemoveDuringTransaction A-38

Description A-39

weblogic.javaee.CallByReference A-39

Description A-39

x



weblogic.javaee.DisableWarnings A-39

Description A-39

Attributes A-40

weblogic.javaee.EJBReference A-40

Description A-40

Attribute A-40

weblogic.javaee.Idempotent A-41

Description A-41

Attributes A-41

weblogic.javaee.JMSClientID A-41

Description A-42

Attributes A-42

weblogic.javaee.JNDIName A-42

Description A-42

Attributes A-43

weblogic.javaee.JNDINames A-43

Description A-43

Attributes A-43

weblogic.javaee.MessageDestinationConfiguration A-43

Description A-43

Attributes A-44

weblogic.javaee.TransactionIsolation A-44

Description A-44

Attributes A-44

weblogic.javaee.TransactionTimeoutSeconds A-45

Description A-45

Attributes A-45

xi



Preface

This document is a resource for software developers who develop applications that
include WebLogic Server Enterprise JavaBeans (EJBs) using the Java Platform,
Enterprise Edition (Java EE).

Audience
This document is a resource for software developers who develop applications that
include WebLogic Server Enterprise JavaBeans (EJBs). It is assumed that the reader
is familiar with Java EE and basic EJB programming concepts.

The document mostly discusses the EJB 3.2 programming model, in particular the use
of metadata annotations to simplify development. This document does not address
EJB topics that are different between versions 2.x and 3.x, such as design
considerations, EJB container architecture, entity beans, deployment descriptor use,
and so on. This document also does not address production phase administration,
monitoring, or performance tuning.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Related Documentation
This document contains EJB 3.2-specific development information. Additionally, it provides
information only for session and message-driven beans. For complete information on general
EJB design and architecture, the EJB 2.x programming model (which is fully supported in
EJB 3.x), see the following documents.

EJB Documentation in WebLogic Server
For information about developing and deploying EJBs with WebLogic Server, see:

• Enterprise Java Beans (EJBs) in Understanding Oracle WebLogic Server.

• For instructions on how to organize and build WebLogic Server EJBs in a split directory
environment, see Creating a Split Development Directory Environment in Developing
Applications for Oracle WebLogic Server.

• For information on programming and packaging 2.x EJBs, see Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications in development and production
environments.

Additional EJB Information
It is assumed the reader is familiar with programming in Java EE and EJB concepts and
features. To learn more about basic EJB concepts, such as the benefits of enterprise beans,
the types of enterprise beans, and their life cycles, then visit the following Web sites:

• Enterprise JavaBeans 3.2 Specification (JSR-345) at http://jcp.org/en/jsr/summary?
id=345

• The "Enterprise Beans" chapter of the Java EE 7 Tutorial at http://docs.oracle.com/
javaee/7/tutorial/partentbeans.htm#BNBLR

• Introducing the Java EE 6 Platform: Part 3 (EJB Technology, Even Easier to Use) at 
http://www.oracle.com/technetwork/articles/javaee/javaee6overview-
part3-139660.html#ejbeasy

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiii

http://jcp.org/en/jsr/summary?id=345
http://jcp.org/en/jsr/summary?id=345
http://docs.oracle.com/javaee/7/tutorial/partentbeans.htm#BNBLR
http://docs.oracle.com/javaee/7/tutorial/partentbeans.htm#BNBLR
http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part3-139660.html#ejbeasy
http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part3-139660.html#ejbeasy


1
Introduction and Roadmap

This chapter describes the contents and organization of this guide—Developing Enterprise
JavaBeans for Oracle WebLogic Server.
This chapter includes the following sections:

• Guide to this Document

• Comprehensive Examples for the EJB Developer

• New and Changed Features in this Release

Guide to this Document
• This chapter, Introduction and Roadmap, introduces the organization of this guide.

• Understanding Enterprise JavaBeans, provides an overview of the new EJB 3.1 features,
as well as a brief description of the differences between EJB 3.1 and 3.0.

• Simple Enterprise JavaBeans Examples, provides examples of programming EJBs using
the metadata annotations specified by EJB 3.x.

• Iterative Development of Enterprise JavaBeans, describes the EJB implementation
process, and provides guidance for how to get an EJB up and running in WebLogic
Server.

• Programming the Annotated EJB Class, describes the requirements and typical steps
when programming the EJB bean class that contains the metadata annotations.

• Deployment Guidelines for Enterprise JavaBeans, discusses EJB-specific deployment
issues and procedures.

• Using an Embedded EJB Container in Oracle WebLogic Server, discusses using an
embeddable EJB container in Oracle WebLogic Server.

• Configuring the Persistence Provider in Oracle WebLogic Server, provides an overview of
developing an Oracle TopLink application using Oracle WebLogic Server.

• EJB Metadata Annotations Reference, provides reference information for the EJB 3.x
metadata annotations, as well as information about standard metadata annotations that
are used by EJB.

Comprehensive Examples for the EJB Developer
In addition to this document and the basic examples described in Simple Enterprise
JavaBeans Examples,, Oracle provides comprehensive examples in the WebLogic Server
distribution kit.

When you install WebLogic Server complete with the examples, the examples source code is
placed in the EXAMPLES_HOME directory. The default path is
ORACLE_HOME\wlserver\samples\server. From this directory, you can access the source
code and instruction files for the examples without having to set up the samples domain. See 
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

1-1



Oracle recommends that you run these examples before programming your own
application that uses EJBs.

EJB 3.2 Examples
Oracle provides Java EE 7 examples that demonstrate new features in EJB 3.2, such
as:

• EJB 3.2: Example of Using the Session Bean Lifecyle

• EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener

For more information, see the EJB 3.2 examples in the WebLogic Server distribution
kit: EXAMPLES_HOME/examples/src/examples/javaee7/ejb where EXAMPLES_HOME
represents the directory in which the WebLogic Server code examples are configured.
See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.1 Examples
Oracle provides Java EE 6 examples that demonstrate new features in EJB 3.1, such
as:

• EJB 3.1: Example of a Singleton Session Bean

• EJB 3.1: Example of an Asynchronous Method EJB

• EJB 3.1: Example of a Calendar-based Timer EJB

• EJB 3.1: Example of Simplified No-interface Programming and Packaging in a
WAR File

• EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB

For more information, see these examples in the WebLogic Server distribution kit:
EXAMPLES_HOME/examples/src/examples/javaee6/ejb where EXAMPLES_HOME
represents the directory in which the WebLogic Server code examples are configured.
See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.0 Example
There is also an EJB 3.0 persistence service example, EJB 3.1: Example of Using the
Embeddable EJB Container in Java SE, that includes actual business code and
provides practical instructions on how to perform key EJB 3.0 development tasks. In
particular, the example demonstrates usage of EJB 3.x with:

• Java Persistence API

• Stateless Session Bean

• Message Driven Bean

• Asynchronous JavaScript based browser application

The example uses a persistent domain model for entity EJBs. For more information,
see the example in the WebLogic Server distribution kit: EXAMPLES_HOME/
examples/src/examples/ejb/ejb30 where EXAMPLES_HOME represents the directory in
which the WebLogic Server code examples are configured. See Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

Chapter 1
Comprehensive Examples for the EJB Developer

1-2



New and Changed Features in this Release
For a comprehensive listing of the new features in EJB 3.1 features introduced in this release
of WebLogic Server, see What Is New and Changed in EJB 3.2.

Chapter 1
New and Changed Features in this Release

1-3



2
Understanding Enterprise JavaBeans

This chapter describes the new features and programming model of EJB 3.2 and also
provides a basic overview EJB components, anatomy, and features.
This chapter includes the following sections:

• New Features and Changes in EJB

• Understanding EJB Components

• EJB Anatomy and Environment

• EJB Clients and Communications

• Securing EJBs

New Features and Changes in EJB
These sections summarize the changes in the EJB programming model and requirements
between EJB 3.2, 3.1 and 3.0, as well between EJB 2.x and 3.x.

What Is New and Changed in EJB 3.2
With Java EE 7, there is a continuing focus on ease of development by offering a simplified
application architecture with a cohesive integrated platform; increased efficiency with reduced
boiler-plate code and broader use of annotations.

The following summarizes the main new functionality and simplifications made in EJB 3.2 to
the earlier EJB APIs:

• Enhanced Message-driven Beans – Enhanced MDB contract with a no-methods
message listener interface to expose all public methods as message listener methods.
Also, enhanced the list of standard JMS MDB activation properties.

• EJB Lite – Extended the EJB Lite Group to include local asynchronous session bean
invocations and non-persistent EJB Timer Service. Also defined clear rules for an EJB
Lite Container to support other API groups.

• EJB Timer Enhancements – Enhanced the TimerService API to access all active
timers in the EJB module. Also, removed restrictions on javax.ejb.Timer and
javax.ejb.TimerHandle that required references to be used only inside a bean.

• Stateful Session Bean Enhancements – Added an option for the lifecycle callback
interceptor methods of stateful session beans to be executed in a transaction context
determined by the lifecycle callback method's transaction attribute. Also, introduced an
option to disable passivation of stateful session beans.

• Security Enhancements – Added container provided security role named "**" to
indicate any authenticated caller independent of the actual role name. Also, simplified
requirements for definition of a security role using the ejb deployment descriptor.

• Java Persistence 2.1 Support – JPA 2.1 includes new support or enhancements for
features including Criteria Bulk Update/Delete, stored procedures, JPQL Generic

2-1



function, injectable entity listeners, TREAT, converters, DDL generation, and entity
graphs. For the complete JPA 2.1 specification, see "JSR-000338 Java
Persistence 2.1 (Final Release)" at http://jcp.org/aboutJava/
communityprocess/final/jsr338/index.html.

• Technology Pruning – Support for the following features was made optional in
this release:

– EJB 2.1 and earlier Entity Bean Component Contract for Container-Managed
Persistence

– EJB 2.1 and earlier Entity Bean Component Contract for Bean-Managed
Persistence

– Client View of an EJB 2.1 and earlier Entity Bean

– EJB QL: Query Language for Container-Managed Persistence Query Methods

For a comprehensive listing of the new features and changes for EJBs in Java EE 7,
see the Enterprise JavaBeans 3.2 Specification (JSR-345) at http://
jcp.org/en/jsr/summary?id=345.

What Was New and Changed in EJB 3.1
The EJB 3.1 specification provides simplified programming and packaging model
changes. The mandatory use of Java interfaces from previous versions has been
removed, allowing plain old Java objects to be annotated and used as EJB
components. The simplification is further enhanced through the ability to place EJB
components directly inside of Web applications, removing the need to produce
separate archives to store the Web and EJB components and combine them together
in an EAR file.

The following summarizes the new functionality and simplifications made in EJB 3.1 to
the earlier EJB APIs:

• Singleton Session Bean – Singleton session beans provide a formal
programming construct that guarantees a session bean will be instantiated once
per application in a particular Java Virtual Machine (JVM), and that it will exist for
the life cycle of the application. With singletons, you can easily share state
between multiple instances of an enterprise bean component or between multiple
enterprise bean components in the application.

• Simplified No Interface Client View – The No-interface local client view type
simplifies EJB development by providing local session bean access without
requiring a separate local business interface, allowing components to have EJB
bean class instances directly injected.

• Packaging and Deploying EJBs Directly in a WAR File – EJB 3.1 provides the
ability to place EJB components directly inside of Web application archive (WAR)
files, removing the need to produce archives to store the Web and EJB
components and combine them together in an enterprise application archive
(EAR) file.

• Portable Global JNDI Names – The Portable Global JNDI naming option in EJB
3.1 provides a number of common, well-known namespaces in which EJB
components can be registered and looked up from using the pattern
java:global[/<app-name>]/<module-name>/<bean-name>. This standardizes how
and where EJB components are registered in JNDI, and how they can be looked
up and used by applications.

Chapter 2
New Features and Changes in EJB

2-2

http://jcp.org/aboutJava/communityprocess/final/jsr338/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr338/index.html
http://jcp.org/en/jsr/summary?id=345
http://jcp.org/en/jsr/summary?id=345


• Asynchronous Session Bean Invocations – An EJB 3.1 session bean can expose
methods with asynchronous client invocation semantics. Using the @Asynchronous
annotation in an EJB class or specific method will direct the EJB container to return
control immediately to the client when the method is invoked. The method may return a
future object to allow the client to check on the status of the method invocation, and
retrieve result values that are asynchronously produced.

• EJB Timer Enhancements – The EJB 3.1 Timer Service supports calendar-based EJB
Timer expressions. The scheduling functionality takes the form of CRON-styled schedule
definitions that can be placed on EJB methods, in order to have the methods be
automatically invoked according to the defined schedule. EJB 3.1 also supports the
automatic creation of a timer based on metadata in the bean class or deployment
descriptor, which allows the bean developer to schedule a timer without relying on a bean
invocation to programmatically invoke one of the Timer Service timer creation methods.
Automatically created timers are created by the container as a result of application
deployment.

• Embeddable EJB Container – EJB 3.1 supports an embeddable API for executing EJB
components within a Java SE environment. Unlike traditional Java EE server-based
execution, embeddable usage allows client code and its corresponding enterprise beans
to run within the same virtual machine and class loader. This provides better support for
testing, offline processing (e.g., batch jobs), and the use of the EJB programming model
in desktop applications.

• JPA 2.1 Support – Oracle EclipseLink is the default JPA 2.1 persistence provider that is
shipped with Oracle WebLogic Server. WebLogic Server runs with the JPA 2.1 JAR in the
server classpath. Although JPA 2.1 is upwardly compatible with JPA 2.0 and 1.0, JPA
2.1 introduced some methods to existing JPA interfaces that conflict with existing
signatures in OpenJPA interfaces.

As a result, applications that use Kodo/JPA as the persistence provider with earlier
releases of WebLogic Server must be recompiled. See Updating Applications to
Overcome Conflicts in Developing Enterprise JavaBeans for Oracle WebLogic Server for
WebLogic Server 12.1.3. See Configuring the Persistence Provider in Oracle WebLogic
Server.

What Was New and Changed in EJB 3.0
The following summarizes the new functionality and simplifications made in EJB 3.0 to the
earlier EJB APIs:

• You are no longer required to create the EJB deployment descriptor files (such as ejb-
jar.xml). You can now use metadata annotations in the bean file itself to configure
metadata. You are still allowed, however, to use XML deployment descriptors if you want;
in the case of conflicts, the deployment descriptor value overrides the annotation value.

• The only required metadata annotation in your bean file is the one that specifies the type
of EJB you are writing (@javax.ejb.Stateless, @javax.ejb.Stateful,
@javax.ejb.MessageDriven, or @javax.persistence.Entity). The default value for all
other annotations reflect typical and standard use of EJBs. This reduces the amount of
code in your bean file in the case where you are programming a typical EJB; you only
need to use additional annotations if the default values do not suit your needs.

• The bean file can be a plain old Java object (or POJO); it is no longer required to
implement javax.ejb.SessionBean or javax.ejb.MessageDrivenBean.

• As a result of not having to implement javax.ejb.SessionBean or
javax.ejb.MessageDrivenBean, the bean file no longer has to implement the lifecycle

Chapter 2
New Features and Changes in EJB

2-3

http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=EJBAD1420
http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=EJBAD1420


callback methods, such as ejbCreate, ejbPassivate, and so on. If, however, you
want to implement these callback methods, you can name them anything you want
and then annotate them with the appropriate annotation, such as
@javax.ejb.PostActivate.

• Session beans may expose client views via business interfaces. Session beans
may either explicitly implement the business interface or they can specify it using
the @javax.ejb.Remote or @javax.ejb.Local annotations.)

• The business interface is a plain old Java interface (or POJI); it should not extend
javax.ejb.EJBObject or javax.ejb.EJBLocalObject.

• The business interface methods may not throw java.rmi.RemoteException unless
the business interface extends java.rmi.Remote.

Note:

EJBs with a businesses interface that does not implement
java.rmi.Remote are not accessible from wlclient.jar, also known as
the IIOP thin client.

• Bean files supports dependency injection. Dependency injection is when the EJB
container automatically supplies (or injects) a variable or setter method in the bean
file with a reference to another EJB or resource or another environment entry in
the bean's context.

• Bean files support interceptors, which is a standard way of using aspect-oriented
programming with EJB.

– You can configure two types of interceptor methods: those that intercept
business methods and those that intercept lifecycle callbacks.

– You can configure multiple interceptor methods that execute in a chain in a
particular order.

– You can configure default interceptor methods that execute for all EJBs
contained in a JAR file.

Because the EJB 3.x programming model is so simple, Oracle no longer supports
using the EJBGen tags and code-generating tool on EJB 3.x beans. Rather, you can
use this tool only on 2.x beans. See the EJBGen Reference in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

Understanding EJB Components
Enterprise JavaBeans (EJB) 3.2 technology is the server-side component architecture
for Java EE 7. EJB 3.2 technology enables rapid and simplified development of
distributed, transactional, secure and portable applications based on Java technology.

Session EJBs Implement Business Logic
Session beans implement business logic. There are three types of session beans:
stateful, stateless, and singleton. Stateful and stateless session beans serve one client
at a time; whereas, singleton session beans can be invoked concurrently.

Chapter 2
Understanding EJB Components

2-4



For detailed information about the types of session beans and when to use them, see "What
Is a Session Bean" in the "Enterprise Beans" chapter of the Java EE 7 Tutorial at http://
docs.oracle.com/javaee/7/tutorial/index.html.

Stateful Session Beans
Stateful session beans maintain state information that reflects the interaction between the
bean and a particular client across methods and transactions. A stateful session bean can
manage interactions between a client and other enterprise beans, or manage a workflow.

Example: A company Web site that allows employees to view and update personal profile
information could use a stateful session bean to call a variety of other beans to provide the
services required by a user, after the user clicks View my Data on a page:

• Accept the login data from a JSP, and call another EJB whose job it is to validate the
login data.

• Send confirmation of authorization to the JSP.

• Call a bean that accesses profile information for the authorized user.

Stateless Session Beans
A stateless session bean does not store session or client state information between
invocations—the only state it might contain is not specific to a client, for instance, a cached
database connection or a reference to another EJB. At most, a stateless session bean may
store state for the duration of a method invocation. When a method completes, state
information is not retained.

Any instance of a stateless session bean can serve any client—any instance is equivalent.
Stateless session beans can provide better performance than stateful session beans,
because each stateless session bean instance can support multiple clients, albeit one at a
time. The client of a stateless session bean can be a web service endpoint.

Example: An Internet application that allows visitors to click a Contact Us link and send an
email could use a stateless session bean to generate the email, based on the to and from
information gathered from the user by a JSP.

Singleton Session Beans
Singleton session beans provide a formal programming construct that guarantees a session
bean will be instantiated once per application in a particular Java Virtual Machine (JVM), and
that it will exist for the life cycle of the application. With singletons, you can easily share state
between multiple instances of an enterprise bean component or between multiple enterprise
bean components in the application.

Singleton session beans offer similar functionality to stateless session beans but differ from
them in that there is only one singleton session bean per application, as opposed to a pool of
stateless session beans, any of which may respond to a client request. Like stateless session
beans, singleton session beans can implement Web service endpoints. Singleton session
beans maintain their state between client invocations but are not required to maintain their
state across server crashes or shutdowns.

Example: The Apache Web site provides a Simple Singleton: ComponentRegistry example
that demonstrates how a singleton bean uses Container-Managed Concurrency to utilize the
Read (@Lock(READ)) functionality, to allow multi-threaded access to the bean, and the Write
(@Lock(WRITE)) functionality, to enforce single-threaded access to the bean.

Chapter 2
Understanding EJB Components

2-5

http://docs.oracle.com/javaee/7/tutorial/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html
http://openejb.apache.org/examples-trunk/simple-singleton/


Message-Driven Beans Implement Loosely Coupled Business Logic
A message-driven bean implements loosely coupled or asynchronous business logic
in which the response to a request need not be immediate. A message-driven bean
receives messages from a JMS Queue or Topic, and performs business logic based
on the message contents. It is an asynchronous interface between EJBs and JMS.

Throughout its life cycle, an MDB instance can process messages from multiple
clients, although not simultaneously. It does not retain state for a specific client. All
instances of a message-driven bean are equivalent—the EJB container can assign a
message to any MDB instance. The container can pool these instances to allow
streams of messages to be processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean
instances and passing JMS messages to those instances as necessary. The container
creates bean instances at deployment time, adding and removing instances during
operation based on message traffic.

For detailed information, see Developing Message-Driven Beans for Oracle WebLogic
Server.

Example: In an on-line shopping application, where the process of taking an order
from a customer results in a process that issues a purchase order to a supplier, the
supplier ordering process could be implemented by a message-driven bean. While
taking the customer order always results in placing a supplier order, the steps are
loosely coupled because it is not necessary to generate the supplier order before
confirming the customer order. It is acceptable or beneficial for customer orders to
"stack up" before the associated supplier orders are issued.

EJB Anatomy and Environment
These sections briefly describe classes required for each bean type, the EJB run-time
environment, and the deployment descriptor files that govern a bean's run-time
behavior.

• EJB Components

• The EJB Container

• Optional EJB Deployment Descriptors

EJB Components
Every bean type requires a bean class. Table 2-1 defines the supported client views
that make up each type of EJB, and defines any additional required classes.

Chapter 2
EJB Anatomy and Environment

2-6



Note:

The EJB 2.1 and earlier API required that Local and Remote clients access the
stateful or stateless session bean by means of the session bean's local or remote
home and the local or remote component interfaces. These interfaces remain
available for use with EJB 3.x; however, the EJB 2.1 Remote and Local client view
is not supported for singleton session beans.

See Create EJB Classes and Interfaces in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

Table 2-1    Supported Client Views in EJB 3.2

Client Views Session Bean Types Additional Required Classes

Remote Client Stateful, Stateless, and Singleton
session beans

Remote business interface that
defines the bean's business and
lifecycle methods.

Local Client Stateful, Stateless, and Singleton
session beans

Local business interface that
defines the bean's business and
lifecycle methods.

Local No- interface Stateful, Stateless, and Singleton
session beans

Only requires the bean class.

Web Service Clients Stateless and Singleton session
beans

A Web service endpoint that is
accessed as a JAX-WS or JAX-
RPC service endpoint using the
JAX-WS or JAX-RPC client view
APIs.

The EJB Container
An EJB container is a run-time container for beans that are deployed to an application server.
The container is automatically created when the application server starts up, and serves as
an interface between a bean and run-time services such as:

• Life cycle management

• Code generation

• Security

• Transaction management

• Locking and concurrency control

EJB Metadata Annotations
The WebLogic Server EJB 3.2 programming model uses the Java EE 7 metadata annotations
feature in which you create an annotated EJB 3.2 bean file, and then compile the class with
standard Java compiler, which can then be packaged into a target module for deployment. At
runtime, WebLogic Server parses the annotations and applies the required behavioral
aspects to the bean file.

See Programming the Annotated EJB Class.

Chapter 2
EJB Anatomy and Environment

2-7



Optional EJB Deployment Descriptors
As of EJB 3.0, you are no longer required to create the EJB deployment descriptor
files (such as ejb-jar.xml). However, you can still use XML deployment descriptors if
you want. In the case of conflicts, the deployment descriptor value overrides the
annotation value.

If you are continuing to use deployment descriptors in your EJB implementation, refer
to EJB Deployment Descriptors in Developing Enterprise JavaBeans, Version 2.1, for
Oracle WebLogic Server.

The WebLogic Server EJB container supports three deployment descriptors:

• ejb-jar.xml—The standard Java EE deployment descriptor. The ejb-jar.xml
may be used to define EJBs and to specify standard configuration settings for the
EJBs. An ejb-jar.xml can specify multiple beans that will be deployed together.

• weblogic-ejb-jar.xml—WebLogic Server-specific deployment descriptor that
contains elements related to WebLogic Server features such as clustering,
caching, and transactions. This file is required if your beans take advantage of
WebLogic Server-specific features. Like ejb-jar.xml, weblogic-ejb-jar.xml can
specify multiple beans that will be deployed together.

• weblogic-cmp-jar.xml—WebLogic Server-specific deployment descriptor that
contains elements related to container-managed persistence for entity beans.
Entity beans that use container-managed persistence must be specified in a
weblogic-cmp-jar.xml file.

For descriptions of the WebLogic Server EJB deployment descriptors, refer to 
Deployment Descriptor Schema and Document Type Definitions Reference in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

EJB Clients and Communications
An EJB can be accessed by server-side or client-side objects such as servlets, Java
client applications, other EJBs, web services, and non-Java clients. Any client of an
EJB, whether in the same or a different application, accesses it in a similar fashion.
WebLogic Server automatically creates implementations of an EJB's remote home and
remote business interfaces, which can function remotely.

Accessing EJBs
Clients access enterprise beans either through a no-interface view or through a
business interface. A no-interface view of an enterprise bean exposes the public
methods of the enterprise bean implementation class to clients. Clients using the no-
interface view of an enterprise bean may invoke any public methods in the enterprise
bean implementation class or any super-classes of the implementation class. A
business interface is a standard Java programming language interface that contains
the business methods of the enterprise bean.

The client of an enterprise bean obtains a reference to an instance of an enterprise
bean through either dependency injection, using Java programming language
annotations, or JNDI lookup, using the Java Naming and Directory Interface syntax to
find the enterprise bean instance.

Chapter 2
EJB Clients and Communications

2-8



Dependency injection is the simplest way of obtaining an enterprise bean reference. Clients
that run within a Java EE server-managed environment, JavaServer Faces web applications,
JAX-RS web services, other enterprise beans, or Java EE application clients, support
dependency injection using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for identifying
Java EE components to simplify this explicit lookup. For more information see, Using the
JNDI Portable Syntax.

Because of network overhead, it is more efficient to access beans from a client on the same
machine than from a remote client, and even more efficient if the client is in the same
application.

For information on programming client access to an EJB, see "Accessing Enterprise Beans"
in the "Enterprise Beans" chapter of the Java EE 7 Tutorial at http://docs.oracle.com/
javaee/7/tutorial/index.html.

EJB Communications
WebLogic Server EJBs use:

• T3—To communicate with remote objects. T3 is a WebLogic-proprietary remote network
protocol that implements the Remote Method Invocation (RMI) protocol.

• RMI—To communicate with remote objects. RMI enables an application to obtain a
reference to an object located elsewhere in the network, and to invoke methods on that
object as though it were co-located with the client on the same JVM locally in the client's
virtual machine. An EJB with a remote interface is an RMI object. For more information
on WebLogic RMI, see Developing RMI Applications for Oracle WebLogic Server.

• HTTP—An EJB can obtain an HTTP connection to a Web server external to the
WebLogic Server environment by using the java.net.URL resource connection factory.
See Configuring EJBs to Send Requests to an URL in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

You can specify the attributes of the network connection an EJB uses by binding the EJB to a
WebLogic Server custom network channel. See Configuring Network Resources in
Administering Server Environments for Oracle WebLogic Server.

Securing EJBs
By default, any user can invoke the public methods of an EJB. Therefore, if you want to
restrict access to the EJB, you can use security-related annotations to specify the roles that
are allowed to invoke all, or a subset, of the methods, which is explained in Securing Access
to the EJB.

In addition, you create security roles and map users to roles using the WebLogic Server
Administration Console to update your security realm. See Manage Security Roles in the
Oracle WebLogic Server Administration Console Online Help.

For additional information about security and EJBs, see:

• Security Fundamentals in Understanding Security for Oracle WebLogic Server has
introductory information about authentication, authorization and other security topics.

Chapter 2
Securing EJBs

2-9

http://docs.oracle.com/javaee/7/tutorial/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html


• Securing Enterprise JavaBeans (EJBs) in Developing Applications with the
WebLogic Security Service provides instructions for configuring authentication and
authorization for EJBs.

• Securing Resources Using Roles and Policies for Oracle WebLogic Server
contains instructions for on configuring authentication and authorization for your
EJBs using the WebLogic Server Administration Console.

Chapter 2
Securing EJBs

2-10



3
Simple Enterprise JavaBeans Examples

This chapter describes Java examples of EJBs that use the version 3.x programming model.
This chapter includes the following sections:

• Simple Java Examples of 3.x EJBs

• Packaged EJB 3.2 Examples in WebLogic Server

• Packaged EJB 3.1 Examples in WebLogic Server

Simple Java Examples of 3.x EJBs
The following sections describe simple Java examples of EJBs that use the new metadata
annotation programming model. Some procedural sections in this guide that describe how to
program an EJB may reference these examples.

• Example of a Simple No-interface Stateless EJB

• Example of a Simple Business Interface Stateless EJB

• Example of a Simple Stateful EJB

• Example of an Interceptor Class

Example of a Simple No-interface Stateless EJB
The EJB 3.1 no-interface local client view type simplifies EJB development by providing local
session bean access without requiring a separate local business interface, allowing
components to have EJB bean class instances directly injected.

The following code shows a simple no-interface view for the ServiceBean stateless session
EJB:

package examples;
@Stateless
public class ServiceBean {
  public void sayHelloFromServiceBean() {
    System.out.println("Hello From Service Bean!");
  }
}

The main points to note about the preceding code are:

• The EJB automatically exposes the no-interface view because no other client views are
exposed and its bean class implements clause is empty.

• The ServiceBean bean file is a plain Java file; it is not required to implement any EJB-
specific interface.

• The class-level @Stateless metadata annotation specifies that the EJB is of type
stateless session.

3-1



Example of a Simple Business Interface Stateless EJB
The following code shows a simple business interface for the ServiceBean stateless
session EJB:

package examples;
/**
* Business interface of the Service stateless session EJB
*/
public interface Service {
  public void sayHelloFromServiceBean();
}

The code shows that the Service business interface has one method,
sayHelloFromServiceBean(), that takes no parameters and returns void.

The following code shows the bean file that implements the preceding Service
interface; the code in bold is described after the example:

package examples;
import javax.ejb.Stateless;
import javax.interceptor.ExcludeDefaultInterceptors;
/**
 * Bean file that implements the Service business interface.
 * Class uses following EJB 3.x annotations:
 *   - @Stateless - specifies that the EJB is of type stateless session
 *   - @ExcludeDefaultInterceptors - specifies any configured default
 *      interceptors should not be invoked for this class
 */
@Stateless
@ExcludeDefaultInterceptors
public class ServiceBean
  implements Service
{
  public void sayHelloFromServiceBean() {
    System.out.println("Hello From Service Bean!");
  }
}

The main points to note about the preceding code are:

• Use standard import statements to import the metadata annotations you use in
the bean file:

import javax.ejb.Stateless;
import javax.interceptor.ExcludeDefaultInterceptors

The annotations that apply only to EJB 3.1 are in the javax.ejb package.
Annotations that can be used by other Java EE Version 6 components are in more
generic packages, such javax.interceptor or javax.annotation.

• The ServiceBean bean file is a plain Java file that implements the Service
business interface; it is not required to implement any EJB-specific interface. This
means that the bean file does not need to implement the lifecycle methods, such
as ejbCreate and ejbPassivate, that were required in the 2.x programming
model.

Chapter 3
Simple Java Examples of 3.x EJBs

3-2



• The class-level @Stateless metadata annotation specifies that the EJB is of type
stateless session.

• The class-level @ExcludeDefaultInterceptors annotation specifies that default
interceptors, if any are defined in the ejb-jar.xml deployment descriptor file, should
never be invoked for any method invocation of this particular EJB.

Example of a Simple Stateful EJB
The following code shows a simple business interface for the AccountBean stateful session
EJB:

package examples;
/**
 * Business interface for the Account stateful session EJB.
 */
public interface Account {
  public void deposit(int amount);
  public void withdraw(int amount);
  public void sayHelloFromAccountBean();
}

The code shows that the Account business interface has three methods, deposit, withdraw,
and sayHelloFromAccountBean.

The following code shows the bean file that implements the preceding Account interface; the
code in bold is described after the example:

package examples;
import javax.ejb.Stateful;
import javax.ejb.Remote;
import javax.ejb.EJB;
import javax.annotation.PreDestroy;
import javax.interceptor.Interceptors;
import javax.interceptor.ExcludeClassInterceptors;
/**
 * Bean file that implements the Account business interface.
 * Uses the following EJB annotations:
 *    -  @Stateful: specifies that this is a stateful session EJB
 *    -  @Remote - specifies the Remote interface for this EJB
 *    -  @EJB - specifies a dependency on the ServiceBean stateless
 *         session ejb
 *    -  @Interceptors - Specifies that the bean file is associated with an
 *         Interceptor class; by default all business methods invoke the
 *         method in the interceptor class annotated with @AroundInvoke.
 *    -  @ExcludeClassInterceptors - Specifies that the interceptor methods
 *         defined for the bean class should NOT fire for the annotated
 *         method.
 *    -  @PreDestroy - Specifies lifecycle method that is invoked when the
 *         bean is about to be destoryed by EJB container.
 *
 */
@Stateful
@Remote({examples.Account.class})
@Interceptors({examples.AuditInterceptor.class})
public class AccountBean
 implements Account
{
  private int balance = 0;
  @EJB(beanName="ServiceBean")

Chapter 3
Simple Java Examples of 3.x EJBs

3-3



  private Service service;
  public void deposit(int amount) {
    balance += amount;
    System.out.println("deposited: "+amount+" balance: "+balance);
  }
  public void withdraw(int amount) {
    balance -= amount;
    System.out.println("withdrew: "+amount+" balance: "+balance);
  }
  @ExcludeClassInterceptors
  public void sayHelloFromAccountBean() {
    service.sayHelloFromServiceBean();
  }
  @PreDestroy
  public void preDestroy() {
   System.out.println("Invoking method: preDestroy()");  
  }
}

The main points to note about the preceding code are:

• Use standard import statements to import the metadata annotations you use in
the bean file:

import javax.ejb.Stateful;
import javax.ejb.Remote;
import javax.ejb.EJB;

import javax.annotation.PreDestroy;

import javax.interceptor.Interceptors;
import javax.interceptor.ExcludeClassInterceptors;

The annotations that apply only to EJB 3.1 are in the javax.ejb package.
Annotations that can be used by other Java EE 6 components are in more generic
packages, such javax.interceptor or javax.annotation.

• The AccountBean bean file is a plain Java file that implements the Account
business interface; it is not required to implement any EJB-specific interface. This
means that the bean file does not need to implement the lifecycle methods, such
as ejbCreate and ejbPassivate, that were required in the 2.x programming
model.

• The class-level @Stateful metadata annotation specifies that the EJB is of type
stateful session.

• The class-level @Remote annotation specifies the name of the remote interface of
the EJB; in this case it is the same as the business interface, Account.

• The class-level @Interceptors({examples.AuditInterceptor.class})
annotation specifies the interceptor class that is associated with the bean file. This
class typically includes a business method interceptor method, as well as lifecycle
callback interceptor methods. See Example of an Interceptor Class for details
about this class.

• The field-level @EJB annotation specifies that the annotated variable, service, is
injected with the dependent ServiceBean stateless session bean context. The data
type of the injected field, Service, is the business interface of the ServiceBean
EJB. The following code in the sayHelloFromAccountBean method shows how to
invoke the sayHelloFromServiceBean method of the dependent ServiceBean:

Chapter 3
Simple Java Examples of 3.x EJBs

3-4



service.sayHelloFromServiceBean();
• The method-level @ExcludeClassInterceptors annotation specifies that the

@AroundInvoke method specified in the associated interceptor class (AuditInterceptor)
should not be invoked for the sayHelloFromAccountBean method.

• The method-level @PreDestroy annotation specifies that the EJB container should invoke
the preDestroy method before the container destroys an instance of the AccountBean.
This shows how you can specify interceptor methods (for both business methods and
lifecycle callbacks) in the bean file itself, in addition to using an associated interceptor
class.

Example of an Interceptor Class
The following code shows an example of an interceptor class, specifically the
AuditInterceptor class that is referenced by the preceding AccountBean stateful session
bean with the @Interceptors({examples.AuditInterceptor.class}) annotation; the code in
bold is described after the example:

package examples;
import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;
/**
 * Interceptor class.  The interceptor method is annotated with the
 *  @AroundInvoke annotation.
 */
public class AuditInterceptor {
  public AuditInterceptor() {}
  @AroundInvoke
  public Object audit(InvocationContext ic) throws Exception {
    System.out.println("Invoking method: "+ic.getMethod());
    return ic.proceed();
  }
  @PostActivate
  public void postActivate(InvocationContext ic) {
    System.out.println("Invoking method: "+ic.getMethod());
  }
  @PrePassivate
  public void prePassivate(InvocationContext ic) {
    System.out.println("Invoking method: "+ic.getMethod());
  }
}

The main points to notice about the preceding example are:

• As usual, import the metadata annotations used in the file:

import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;

• The interceptor class is a plain Java class.

• The class has an empty constructor:

public AuditInterceptor() {}

Chapter 3
Simple Java Examples of 3.x EJBs

3-5



• The method-level @AroundInvoke specifies the business method interceptor
method. You can use this annotation only once in an interceptor class.

• The method-level @PostActivate and @PrePassivate annotations specify the
methods that the EJB container should call after reactivating and before
passivating the bean, respectively.

Note:

These lifecycle callback interceptor methods apply only to stateful
session beans.

Packaged EJB 3.2 Examples in WebLogic Server
The following sections describe the packaged Java EE 7 examples included with
Oracle WebLogic Server, which demonstrate new features in EJB 3.2.

• EJB 3.2: Example of Using the Session Bean Lifecyle

• EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener

EJB 3.2: Example of Using the Session Bean Lifecyle
This example shows the new session bean lifecycle callback interceptor methods API,
including @AroundConstruct and @AroundInvoke.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee7/ejb/lifecylce

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples
are configured. See Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

EJB 3.2: Example of a Message-Driven Bean with No-Methods
Listener

This example shows how a message-driven bean to implement a listener interface
with no methods. A bean that implements a no-methods interface exposes all non-
static public methods of the bean class and of any superclasses, except
java.lang.Object, as message listener methods.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee7/ejb/no-method-listener

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples
are configured. See Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

Chapter 3
Packaged EJB 3.2 Examples in WebLogic Server

3-6



Packaged EJB 3.1 Examples in WebLogic Server
The following sections describe the packaged Java EE 6 examples included with Oracle
WebLogic Server, which demonstrate new features in EJB 3.1.

• EJB 3.1: Example of a Singleton Session Bean

• EJB 3.1: Example of an Asynchronous Method EJB

• EJB 3.1: Example of a Calendar-based Timer EJB

• EJB 3.1: Example of Simplified No-interface Programming and Packaging in a WAR File

• EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB

• EJB 3.1: Example of Using the Embeddable EJB Container in Java SE

• EJB 3.0: Example of Invoking an Entity From A Session Bean

EJB 3.1: Example of a Singleton Session Bean
This example demonstrates the use of the EJB 3.1 singleton session bean, which provides
application developers with a formal programming construct that guarantees a session bean
will be instantiated once for an application in a particular Java Virtual Machine (JVM). In this
example, a @Singleton session bean provides a central counter service. The Counter EJB is
called from a Java client to demonstrate it is being used, with the count being consistently
incremented by "1" as the client is invoked multiple times.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/singletonBean

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.1: Example of an Asynchronous Method EJB
This example demonstrates the use of the EJB 3.1 asynchronous method invocation. Adding
the @Asynchronous annotation to an EJB class or specific method will direct the EJB
container to return control immediately to the client when the method is invoked. The method
may return a Future object to allow the client to check on the status of the method invocation,
and then retrieve result values that are asynchronously produced.

In this example, an @Stateless bean is annotated at the class level, with @Asynchronous
indicating its methods are all asynchronous, with each of the methods simulating a long-
running calculation. A servlet is used to call the various asynchronous methods, keeping
track of the invocation and completion times to demonstrate the asynchronous nature of the
method calls.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/asyncMethodOfEJB

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

Chapter 3
Packaged EJB 3.1 Examples in WebLogic Server

3-7



EJB 3.1: Example of a Calendar-based Timer EJB
This example demonstrates the enhanced scheduling capabilities of EJB 3.1. This
scheduling functionality takes the form of CRON-styled schedule definitions that can
be placed on EJB methods, in order for the methods to be automatically invoked
according to the defined schedule. This example shows the use of the @Schedule
annotation defined for a method of a @Singleton session bean, which generates and
stores the timestamp of when the method was called. A corresponding servlet is
provided, into which the TimerBean is injected, which retrieves the list of timestamps to
display in a browser.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/calendarStyledTimer

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples
are configured. See Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

EJB 3.1: Example of Simplified No-interface Programming and
Packaging in a WAR File

This example demonstrates the simplified programming and packaging model
changes provided in EJB 3.1. Since the mandatory use of Java interfaces from
previous versions has been removed in EJB 3.1, plain-old Java objects can be
annotated and used as EJB components. The simplification is further enhanced by the
ability to place EJB components directly inside of Web applications, thereby removing
the need to produce archives to store the Web and EJB components and combine
them together in an enterprise archive (EAR) file.

In this example, a @Stateless annotation is provided on a plain-old Java class that
exposes it as an EJB session bean. This is then injected into a @WebServlet class
using an @EJB annotation to demonstrate that it is being used as an EJB module. The
EJB session bean and servlet classes are then packaged and deployed together in a
single WAR file, which demonstrates the simplified packaging and deployment
changes available in Java EE 6.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/noInterfaceViewInWAR

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples
are configured. See Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB
This example demonstrates the use of the Portable Global JNDI naming option that is
available in EJB 3.1. Portable Global JNDI provides a number of common, well-known
namespaces in which EJB components can be registered and looked up from using
the pattern java:global[/<app-name>]/<module-name>/<bean-name>. This
standardizes how and where EJB components are registered in JNDI and how they

Chapter 3
Packaged EJB 3.1 Examples in WebLogic Server

3-8



can be looked up and used by applications. In this example, a servlet is used to look up an
EJB session bean using its portable JNDI name java:module/HelloBean.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/portableGlobalJNDIName

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.1: Example of Using the Embeddable EJB Container in Java SE
This example demonstrates using the embeddable EJB container available in EJB 3.1, which
allows client code and its corresponding enterprise beans to run in a Java SE environment
without having to deploy them to a Java EE server.

The example uses the embeddable WebLogic EJB container to view all the user objects
being invoked from a Java SE environment. All the user objects are predefined during eager
initialization of a singleton component InitBean when the application is started, using the
annotations @Startup and @PostConstruct. An instance of EJBContainer is created in the
Java client UserClient to look up the session bean reference UserBean and call its business
method viewUsers in the application.

After running the example, the client class is executed automatically and prints run-time
messages in the command shell in which the example was built. All the existing user objects
are retrieved from the samples database and are displayed in detail in the command shell.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/embeddableContainer

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.0: Example of Invoking an Entity From A Session Bean
For an example of invoking an entity from a session bean, see the EJB 3.0 example in the
distribution kit. After you have installed WebLogic Server, the example is in the following
directory:

EXAMPLES_HOME/examples/src/examples/ejb/ejb30

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

Chapter 3
Packaged EJB 3.1 Examples in WebLogic Server

3-9



4
Iterative Development of Enterprise
JavaBeans

This chapter describes the general EJB 3.2 implementation process, and provides guidance
for how to get an EJB up and running in WebLogic Server.
This chapter includes the following sections:

• Overview of the EJB Development Process

• Create a Source Directory

• Program the Annotated EJB Class

• Program the EJB Interface

• Optionally Program Interceptors

• Optionally Program the EJB Timer Service

• Programming Access to EJB Clients

• Programming and Configuring Transactions

• Compile Java Source

• Optionally Create and Edit Deployment Descriptors

• Packaging EJBs

• Deploying EJBs

Overview of the EJB Development Process
This section is a brief overview of the EJB 3.2 development process. It describes the key
implementation tasks and associated results.

The following section mostly discusses the EJB 3.2 programming model and points out the
differences between the EJB 3.x and EJB 2.x programming model in only a few places. If you
are an experienced EJB 2.x programmer and want the full list of differences between the two
models, see New Features and Changes in EJB.

Table 4-1    EJB Development Tasks and Results

# Step Description Result

1 Create a Source
Directory

Create the directory structure for your
Java source files, and optional
deployment descriptors.

A directory structure on your
local drive.

2 Program the
Annotated EJB Class

Create the Java file that implements the
interface and includes the EJB 3.2
metadata annotations that describe how
your EJB behaves.

.java file.

4-1



Table 4-1    (Cont.) EJB Development Tasks and Results

# Step Description Result

3 Program the EJB
Interface

Create no-interface client views or
business interfaces that describe your
EJB.

.java file for each interface.

4 Optionally Program
Interceptors

Optionally, create the interceptor classes
that describe the interceptors that
intercept a business method invocation or
a life cycle callback event.

.java file for each interceptor
class.

5 Optionally Program the
EJB Timer Service

Optionally, create timers that schedule
callbacks to occur when a timer object
expires for timed event.

Either metadata (for
automatic timers) and/or bean
class changes (for
programmatic timers).

6 Programming Access
to EJB Clients

Obtain a reference to an EJB through
either dependency injection or JNDI
lookup.

Metadata (annotations and/or
deployment descriptor
settings) and/or code
changes to the client.

7 Programming and
Configuring
Transactions

Program container-managed or bean-
managed transactions.

Metadata and possibly logic
to handle exceptions (retry
logic or calls to
setRollbackOnly).

8 Compile Java Source Compile source code. .class file for each class
and interface.

9 Optionally Create and
Edit Deployment
Descriptors

Optionally create the EJB-specific
deployment descriptors, although this
step is no longer required when using the
EJB 3.2 programming model.

• ejb-jar.xml,

• weblogic-ejb-
jar.xml, which contains
elements that control
WebLogic Server-
specific features.

10 Packaging EJBs Package compiled classes and optional
deployment descriptors for deployment.

If appropriate, you can leave your files
unarchived in an exploded directory.

Archive file (either an EJB
JAR or Enterprise Application
EAR) or equivalent exploded
directory.

11 Deploying EJBs Target the archive or application directory
to desired Managed Server, or a
WebLogic Server cluster, in accordance
with selected staging mode.

Deployed EJBs are ready to
service invocations.

Create a Source Directory
Create a source directory where you will assemble the EJB 3.2 module.

Oracle recommends a split development directory structure, which segregates source
and output files in parallel directory structures. For instructions on how to set up a split
directory structure and package your EJB 3.2 as an enterprise application archive
(EAR), see Overview of the Split Development Directory Environment in Developing
Applications for Oracle WebLogic Server.

Chapter 4
Create a Source Directory

4-2



Directory Structure for Packaging a JAR
If you prefer to package and deploy your EJBs in a JAR file, create a directory for your class
files. If you are also using the EJB deployment descriptor (which is optional but supported in
the EJB 3.2 programming model), you can package it as META-INF/ejb-jar.xml.

For more information see, Packaging EJBs in a JAR.

Example 4-1    Directory Structure for Packaging a JAR

myEJBjar/
     META-INF/
          ejb-jar.xml
          weblogic-ejb-jar.xml
          weblogic-cmp-jar.xml
     foo.class
     fooBean.class

Directory Structure for Packaging a WAR
EJBs can also be packaged directly in a web application module (WAR) by putting the EJB
classes in a subdirectory named WEB-INF/classes or in a JAR file within WEB-INF/lib
directory. Optionally, if you are also using the EJB deployment descriptor, you can package it
as WEB-INF/ejb-jar.xml.

Note:

EJB 2.1 Entity Beans and EJB 1.1 Entity Beans are not supported within WAR files.
These component types must only be packaged in a stand-alone ejb-jar file or an
ejb-jar file packaged within an EAR file.

For more information see, Packaging an EJB In a WAR.

Example 4-2    Directory Structure for Packaging a WAR

myEJBwar/
     WEB-INF/
          ejb-jar.xml
          weblogic.xml
          weblogic-ejb-jar.xml
          /classes
               foo.class
               fooServlet.class
               fooBean.class

Program the Annotated EJB Class
The EJB bean class is the main EJB programming artifact. It implements the EJB business
interface and contains the EJB metadata annotations that specify semantics and
requirements to the EJB container, request container services, and provide structural and
configuration information to the application deployer or the container runtime.

Chapter 4
Program the Annotated EJB Class

4-3



In the 3.2 programming model, there is only one required annotation: either
@javax.ejb.Stateful, @javax.ejb.Stateless, or @javax.ejb.MessageDriven to
specify the type of EJB. Although there are many other annotations you can use to
further configure your EJB, these annotations have typical default values so that you
are not required to explicitly use the annotation in your bean class unless you want it
to behave other than in the default manner. This programming model makes it very
easy to program an EJB that exhibits typical behavior.

For additional details and examples of programming the bean class, see Programming
the Annotated EJB Class.

Program the EJB Interface
Clients access enterprise beans either through a no-interface view or through a
business interface.

Accessing EJBs Using the No-Interface Client View
The EJB 3.2 No-interface local client view type simplifies EJB development by
providing local session bean access without requiring a separate local business
interface, allowing components to have EJB bean class instances directly injected.

The no-interface view has the same behavior as the EJB 3.0 local view. For example,
it supports features such as pass-by-reference calling semantics and transaction, and
security propagation. However, a no-interface view does not require a separate
interface. That is, all public methods of the bean class are automatically exposed to
the caller. By default, any session bean that has an empty implements clause and
does not define any other local or remote client views, exposes a no-interface client
view.

You can follow these links to explore code examples of a no-interface client view:

• Example of a Simple No-interface Stateless EJB

• EJB 3.1: Example of Simplified No-interface Programming and Packaging in a
WAR File .

• EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener.

For more detailed information about the implementing the no-interface client view, see
"Accessing Local Enterprise Beans Using the No-Interface View" in the "Enterprise
Beans" chapter of the Java EE 7 Tutorial at http://docs.oracle.com/javaee/7/
tutorial/index.html.

Accessing EJBs Using the Business Interface
The EJB 3.2 business interface is a plain Java interface that describes the full
signature of all the business methods of the EJB. For example, assume an Account
EJB represents a client's checking account; its business interface might include three
methods (withdraw, deposit, and balance) that clients can use to manage their bank
accounts.

The business interface can extend other interfaces. In the case of message-driven
beans, the business interface is typically the message-listener interface that is
determined by the messaging type used by the bean, such as

Chapter 4
Program the EJB Interface

4-4

http://docs.oracle.com/javaee/7/tutorial/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html


javax.jms.MessageListener in the case of JMS. The interface for a session bean has not
such defining type; it can be anything that suits your business needs.

Note:

The only requirement for an EJB 3.2 business interface is That it must not extend
javax.ejb.EJBObject or javax.ejb.EJBLocalObject, as required in EJB 2.x.

See Example of a Simple Business Interface Stateless EJB and Example of a Simple Stateful
EJB for examples of business interfaces implemented by stateless and stateful session
beans.

For additional details and examples of specifying the business interface, see Specifying the
Business and Other Interfaces.

Business Interface Application Exceptions
When you design the business methods of your EJB, you can define an application exception
in the throws clause of a method of the EJB's business interface. An application exception is
an exception that you program in your bean class to alert a client of abnormal application-
level conditions. For example, a withdraw() method in an Account EJB that represents a
bank checking account might throw an application exception if the client tries to withdraw
more money than is available in their account.

Application exceptions are different from system exceptions, which are thrown by the EJB
container to alert the client of a system-level exception, such as the unavailability of a
database management system. You should not report system-level errors in your application
exceptions.

Finally, your business methods should not throw the java.rmi.RemoteException, even if the
interface is a remote business interface, the bean class is annotated with the @WebService
JWS annotation, or the method is annotated with @WebMethod. The only exception is if the
business interface extends java.rmi.Remote. If the EJB container encounters problems at
the protocol level, the container throws an EJBException which wraps the underlying
RemoteException.

Note:

The @WebService and @WebMethod annotations are in the javax.jws package; you
use them to specify that your EJB implements a Web Service and that the EJB
business will be exposed as public Web Service operations. For details about these
annotations and programming Web Services in general, see Developing JAX-WS
Web Services for Oracle WebLogic Server.

Using Generics in EJBs
The EJB 3.2 programming model supports the use of generics in the business interface at the
class level.

Chapter 4
Program the EJB Interface

4-5



Oracle recommends as a best practice that you first define a super-interface that uses
the generics, and then have the actual business interface extend this super-interface
with a specific data type.

The following example shows how to do this. First, program the super-interface that
uses generics:

  public interface RootI<T> {
    public T getObject();
    public void updateObject(T object);
  }

Then program the actual business interface to extend RootI<T> for a particular data
type:

  @Remote
  public interface StatelessI extends RootI<String> { }

Finally, program the actual stateless session bean to implement the business interface;
use the specified data type, in this case String, in the implementation of the methods:

  @Stateless
  public class StatelessSample implements StatelessI {
    public String getObject() {
      return null;
    }
    public void updateObject(String object) {
    }
  }

If you define the type variables on the business interface or class, they will be erased.
In this case, the EJB application can be deployed successfully only when the bean
class parameterizes the business interface with upper bounds of the type parameter
and no other generic information. For example, in the following example, the upper
bound is Object:

public class StatelessSample implements StatelessI<Object> { 
   public Object getObject() { 
      return null;
   } 
   public void updateObject(Object object) { 
   } 
} 

Serializing and Deserializing Business Objects
Business object serialization and deserialization are supported by the following
interfaces, which are implemented by all business objects:

• weblogic.ejb.spi.BusinessObject
• weblogic.ejb.spi.BusinessHandle
Use the BusinessObject._WL_getBusinessObjectHandle() method to get the
business handle object and serialize the business handle object.

To deserialize a business object, deserialize the business handle object and use the
BusinessHandle.getBusinessObject() method to get the business object.

Chapter 4
Program the EJB Interface

4-6



Optionally Program Interceptors
An interceptor is a method that intercepts the invocation of a business method or a life cycle
callback event.

You can define an interceptor method within the actual bean class, or you can program an
interceptor class (distinct from the bean class itself) and associate it with the bean class using
the @javax.ejb.Interceptor annotation.

See Specifying Interceptors for Business Methods or Life Cycle Callback Events for
information on programming the bean class to use interceptors.

Optionally Program the EJB Timer Service
WebLogic Server supports the EJB timer service defined in the EJB 3.2 Specification. As per
the EJB 3.2 "specification, the EJB Timer Service is a "container-managed service that allows
callbacks to be scheduled for time-based events. The container provides a reliable and
transactional notification service for timed events. Timer notifications may be scheduled to
occur according to a calendar-based schedule, at a specific time, after a specific elapsed
duration, or at specific recurring intervals."

The Timer Service is implemented by the EJB container. An enterprise bean accesses this
service by means of dependency injection, through the EJBContext interface, or through
lookup in the JNDI namespace.

The Timer Service is intended to be used as a coarse-grained timer service. Rather than
having a large number of timer objects performing the same task on a unique set of data,
Oracle recommends using a small number of timers that perform bulk tasks on the data. For
example, assume you have an EJB that represents an employee's expense report. Each
expense report must be approved by a manager before it can be processed. You could use
one EJB timer to periodically inspect all pending expense reports and send an email to the
corresponding manager to remind them to either approve or reject the reports that are waiting
for their approval.

Overview of the Timer Service
The timer service provides methods for the programmatic creation and cancellation of timers,
as well as for locating the timers that are associated with a bean. Timers can also be created
automatically by the container at deployment time based on metadata in the bean class or in
the deployment descriptor. Timer objects can be created for stateless session beans,
singleton session beans, message-driven beans, and 2.1 entity beans. Timers cannot be
created for stateful session beans.

Note:

The calendar-based timer, automatically-created timers, and non-persistent timer
functionality is not supported for 2.1 Entity beans.

A timer is created to schedule timed callbacks. The bean class of an enterprise bean that
uses the timer service must provide one or more timeout callback methods, as follows:

Chapter 4
Optionally Program Interceptors

4-7



• Programmatic Timers – For programmatically-created timers, this method may
be a method that is annotated with the Timeout annotation, or the bean may
implement the javax.ejb.TimedObject interface. The javax.ejb.TimedObject
interface has a single method, the timer callback method ejbTimeout.

• Automatic Timers – For automatically-created timers, the timeout method may be
a method that is annotated with the Schedule annotation.

• 2.1 Entity Bean Timers – A timer that is created for a 2.1 entity bean is
associated with the entity bean's identity. The timeout callback method invocation
for a timer that is created for a stateless session bean or a message-driven bean
may be called on any bean instance in the pooled state.

Calendar-based EJB Timers
The EJB 31. Timer Service supports calendar-based EJB Timer expressions. The
scheduling functionality takes the form of CRON-styled schedule definitions that can
be placed on EJB methods, in order to have the methods be automatically invoked
according to the defined schedule.

Note:

Calendar-based timers are not supported for EJB 2.x entity beans.

Calendar-based timers can be created programmatically using the two methods in the
javax.ejb.TimerService that accept a javax.ejb.ScheduleExpression as an
argument. The ScheduleExpression is constructed and populated prior to creating the
Timer. For creating automatic calendar-base timers, the javax.ejb.Schedule
annotation (and its corresponding ejb-jar.xml element) contains a number of
attributes that allow for calendar-based timer expressions to be configured.

For detailed information about the seven attributes in a calendar-based time
expression, see "Section 18.2.1, Calendar Based Timer Expressions" in the Enterprise
JavaBeans 3.2 Specification (JSR-345) at http://jcp.org/en/jsr/summary?id=345.

Automatically-created EJB Timers
The EJB 3.2 Timer Service supports the automatic creation of a timer based on
metadata in the bean class or deployment descriptor. This allows the bean developer
to schedule a timer without relying on a bean invocation to programmatically invoke
one of the Timer Service timer creation methods. Automatically created timers are
created by the container as a result of application deployment.

The javax.ejb.Schedule annotation can be used to automatically create a timer with
a particular timeout schedule. This annotation is applied to a method of a bean class
(or super-class) that should receive the timer callbacks associated with that schedule.
Multiple automatic timers can be applied to a single timeout callback method using the
javax.ejb.Schedules annotation.

When the clustered EJB Timer implementation is used, each Schedule annotation
corresponds to a single persistent timer, regardless of the number of servers across
which the EJB is deployed.

Chapter 4
Optionally Program the EJB Timer Service

4-8

http://jcp.org/en/jsr/summary?id=345


Non-persistent Timers
By default, EJB timers are persistent. A non-persistent timer is a timer whose lifetime is tied
to the JVM in which it is created. A non-persistent timer is considered canceled in the event
of application shutdown, container crash, or a failure/shutdown of the JVM on which the timer
was started.

Note:

Non-persistent timers are not supported for EJB 2.x Entity Beans.

Non-persistent timers can be created programmatically or automatically (using @Schedule or
the deployment descriptor).

Automatic non-persistent timers can be specified by setting the persistent attribute of the
@Schedule annotation to false. For automatic non-persistent timers, the container creates a
new non-persistent timer during application initialization for each JVM across which the
container is distributed.

Clustered Versus Local EJB Timer Services
You can configure two types of EJB timer services: clustered or local.

Clustered EJB Timer Services
Clustered EJB timer services provide the following advantages:

• Better visibility.

Timers are accessible from any node in a cluster. For example, the
javax.ejb.TimerService.getTimers() method returns a complete list of all stateless
session or message-driven bean timers in a cluster that were created for the EJB. If you
pass the primary key of the entity bean to the getTimers() method, a list of timers for
that entity bean are returned.

• Automatic load balancing and failover.

Clustered EJB timer services take advantage of the load balancing and failover
capabilities of the Job Scheduler.

For information about the configuring a clustered EJB timer service, see Configuring
Clustered EJB Timers.

Local EJB Timer Services
Local EJB timer services execute only on the server on which they are created and are
visible only to the beans on that server. With a local EJB timer service, you do not have to
configure a cluster, database, JDBC data source, or leasing service, as you do for clustered
EJB timer services.

You cannot migrate a local EJB timer object from one server to another; timer objects can
only be migrated as part of an entire server. If a server that contains EJB timers goes down

Chapter 4
Optionally Program the EJB Timer Service

4-9



for any reason, you must restart the server or migrate the entire server in order for the
timers to execute.

Caution:

In a clustered environment, the local timer implementation has severe
limitations; therefore Oracle recommends not using local timers in a
clustered environment. Instead, use the clustered timer implementation in a
clustered environment. A deployment-time warning will be thrown when a
local timer implementation is configured to be used in a clustered
environment.

Configuring Clustered EJB Timers

Note:

To review the advantages of using clustered EJB timers, see Clustered
Versus Local EJB Timer Services.

To configure the clustering of EJB timers, perform the following steps:

1. Ensure that you have configured the following:

• A clustered domain. See Setting up WebLogic Clusters in Administering
Clusters for Oracle WebLogic Server.

• Features of the Job Scheduler, including:

– HA database, such as Oracle, DB2, Informix, MySQL, Sybase, or MSSQL.

– JDBC data source that is mapped to the HA database using the <data-
source-for-job-scheduler> element in the config.xml file.

– Leasing service. By default, database leasing will be used and the JDBC
data source defined by the <data-source-for-job-scheduler> element in
the config.xml file will be used.

For more information about configuring the Job Scheduler, see The Timer and
Work Manager API in Developing CommonJ Applications for Oracle WebLogic
Server.

2. To enable the clustered EJB timer service, set the timer-implementation element
in the weblogic-ejb-jar.xml deployment descriptor to Clustered:

<timer-implementation>Clustered</timer-implementation>

For more information, see the timer-implementation element description in the
weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

Please note the following changes in the behavior of the clustered EJB timer service:

• The weblogic.ejb.WLTimer* interfaces are not supported with clustered EJB timer
services.

Chapter 4
Optionally Program the EJB Timer Service

4-10



• When creating a new clustered EJB timer using the createTimer() method, you may
notice a delay in timeout execution during the initial setup of the timer.

• The Job Scheduler provides an "at least once" execution guarantee. When a clustered
EJB timer expires, the database is not updated until the timer listener callback method
completes. If the server were to crash before the database is updated, the timer
expiration would be executed twice.

• Timer configuration options related to the actions to take in the event of failure are not
valid for the clustered EJB timer service. These configuration options include: retry delay,
maximum number of retry attempts, maximum number of time-outs, and time-out failure
actions.

• The Job Scheduler queries the database every 30 seconds to identify timers that are due
to expire. Execution may be delayed for timers with an interval duration less than 30
seconds.

• Only transactional timers will be retried in the event of failure.

• Fixed rate scheduling of timer execution is not supported.

Note:

When you migrate a resource group that has not been shut down, the group is
multitargeted. However, because clustered EJB timers do not support
multitargeting, a clustered EJB timer may not run as expected. To avoid this
problem, Oracle recommends that you shut down the resource group before you
migrate the group. For more information about live, non-live, targeted, and
multitargeted groups, see Using Oracle WebLogic Server Multitenant.

Using Java Programming Interfaces to Program Timer Objects
This section summarizes the Java programming interfaces defined in the EJB 3.2
Specification that you can use to program timers. For detailed information on these
interfaces, refer to the EJB 3.2 Specification. This section also provides details about the
WebLogic Server-specific timer-related interfaces.

EJB 3.2 Timer-related Programming Interfaces
EJB 3.2 interfaces you can use to program timers are described in the following table.

Table 4-2    EJB 3.2 Timer-related Programming Interfaces

Programming Interface Description

javax.ejb.ScheduleExpress
ion

Create calendar-based EJB Timer expressions.

javax.ejb.Schedule Automatically create a timer with a particular timeout schedule.

Multiple automatic timers can be applied to a single timeout callback
method using the javax.ejb.Schedules annotation.

javax.ejb.TimedObject Implement for the enterprise bean class of a bean that will be
registered with the timer service for timer callbacks. This interface
has a single method, ejbTimeout.

Chapter 4
Optionally Program the EJB Timer Service

4-11



Table 4-2    (Cont.) EJB 3.2 Timer-related Programming Interfaces

Programming Interface Description

EJBContext Access the timer service using the getTimerService method.

javax.ejb.TimerService Create new EJB timers or access existing EJB timers for the EJB.

javax.ejb.Timer Access information about a particular EJB timer.

javax.ejb.TimerHandle Define a serializable timer handle that can be persisted. Since
timers are local objects, a TimerHandle must not be passed
through a bean's remote interface or Web service interface.

For more information on EJB 2.1 timer-related programming interfaces, see the EJB
2.1 Specification.

WebLogic Server-specific Timer-related Programming Interfaces
WebLogic Server-specific interfaces you can use to program timers include:

• weblogic.management.runtime.EJBTimerRuntimeMBean—provides runtime
information and administrative functionality for timers from a particular EJBHome.
The weblogic.management.runtime.EJBTimerRuntimeMBean interface is shown in 
Example 4-3.

Example 4-3    weblogic.management.runtime.EJBTimerRuntimeMBean Interface

public interface weblogic.management.runtime.EJBTimerRuntimeMBean {
  public int getTimeoutCount(); // get the number of successful timeout 
notifications that have been made
  public int getActiveTimerCount(); // get the number of active timers for this 
EJBHome
  public int getCancelledTimerCount(); // get the number of timers that have 
been cancelled for this EJBHome
  public int getDisabledTimerCount(); // get the number of timers temporarily 
disabled for this EJBHome
  public void activateDisabledTimers(); // activate any temporarily disabled 
timers
}

• weblogic.ejb.WLTimerService interface—extends the javax.ejb.TimerService
interface to allow users to specify WebLogic Server-specific configuration
information for a timer. The weblogic.ejb.WLTimerService interface is shown in 
Example 4-4; for information on the javax.ejb.TimerService, see the EJB 2.1
Specification.

Note:

The weblogic.ejb.WLTimerService interface is not supported by the
clustered EJB timer service, as described in Configuring Clustered EJB
Timers.

Chapter 4
Optionally Program the EJB Timer Service

4-12



Example 4-4    weblogic.ejb.WLTimerService Interface

public interface WLTimerService extends TimerService {
  public Timer createTimer(Date initial, long duration, Serializable info,
    WLTimerInfo wlTimerInfo)
    throws IllegalArgumentException, IllegalStateException, EJBException;
  public Timer createTimer(Date expiration, Serializable info,
    WLTimerInfo wlTimerInfo)
    throws IllegalArgumentException, IllegalStateException, EJBException;
  public Timer createTimer(long initial, long duration, Serializable info
    WLTimerInfo wlTimerInfo)
    throws IllegalArgumentException, IllegalStateException, EJBException;
  public Timer createTimer(long duration, Serializable info,
    WLTimerInfo wlTimerInfo)
    throws IllegalArgumentException, IllegalStateException, EJBException;
}

• weblogic.ejb.WLTimerInfo interface—used in the weblogic.ejb.WLTimerService
interface to pass WebLogic Server-specific configuration information for a timer. The
weblogic.ejb.WLTimerInfo method is shown in Example 4-5.

Note:

The weblogic.ejb.WLTimerService interface is not supported by the clustered
EJB timer service, as described in Configuring Clustered EJB Timers.

Example 4-5    weblogic.ejb.WLTimerInfo Interface

public final interface WLTimerInfo {
  public static int REMOVE_TIMER_ACTION  = 1;
  public static int DISABLE_TIMER_ACTION = 2;
  public static int SKIP_TIMEOUT_ACTION  = 3;
  /**
   * Sets the maximum number of retry attempts that will be
   * performed for this timer.  If all retry attempts
   * are unsuccesful, the timeout failure action will
   * be executed.
   */
  public void setMaxRetryAttempts(int retries);
  public int getMaxRetryAttempts();
  /**
   * Sets the number of milliseconds that should elapse
   * before any retry attempts are made.
   */
  public void setRetryDelay(long millis);
  public long getRetryDelay();
  /**
   * Sets the maximum number of timeouts that can occur
   * for this timer.  After the specified number of
   * timeouts have occurred successfully, the timer
   * will be removed.
   */
  public void setMaxTimeouts(int max);
  public int getMaxTimeouts();
/**
   * Sets the action the container will take when ejbTimeout
   * and all retry attempts fail.  The REMOVE_TIMER_ACTION,
   * DISABLE_TIMER_ACTION, and SKIP_TIMEOUT_ACTION fields

Chapter 4
Optionally Program the EJB Timer Service

4-13



   * of this interface define the possible values.
   */
  public void setTimeoutFailureAction(int action);
  public int getTimeoutFailureAction();
}

• weblogic.ejb.WLTimer interface—extends the javax.ejb.Timer interface to
provide additional information about the current state of the timer. The
weblogic.ejb.WLTimer interface is shown in Example 4-6.

Note:

The weblogic.ejb.WLTimerService interface is not supported by the
clustered EJB timer service, as described in Configuring Clustered EJB
Timers.

Example 4-6    weblogic.ejb.WLTimer Interface

public interface WLTimer extends Timer {
  public int getRetryAttemptCount();
  public int getMaximumRetryAttempts();
  public int getCompletedTimeoutCount();
}

Programming Access to EJB Clients
This section provides some guidelines in determining the client view to provide for
accessing an enterprise bean.

Remote Clients
As stated in the EJB 3.2 specification, a remote client accesses a session bean
through the bean's remote business interface. For a session bean client and
component written to the EJB 2.1 and earlier APIs, the remote client accesses the
session bean through the session bean's remote home and remote component
interfaces.

Note:

The EJB 2.1 and earlier API required that a remote client access the stateful
or stateless session bean by means of the session bean's remote home and
remote component interfaces. These interfaces remain available for use with
EJB 3.x, and are described in Create EJB Classes and Interfaces in 
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

The remote client view of an enterprise bean is location independent. A client running
in the same JVM as a bean instance uses the same API to access the bean as a client
running in a different JVM on the same or different machine.

Chapter 4
Programming Access to EJB Clients

4-14



Local Clients
As stated in the EJB 3.2 specification, a local client accesses a session bean through the
bean's local business interface or through a no-interface client view representing all the public
methods of the bean class. For a session bean or entity bean client and component written to
the EJB 2.1 and earlier APIs, the local client accesses the enterprise bean through the bean's
local home and local component interfaces. The container object that implements a local
business interface or the no-interface local view is a local Java object.

A local client is a client that is collocated in the same application with the session bean that
provides the local client view and which may be tightly coupled to the bean. A local client of a
session bean may be another enterprise bean or a Web component. Access to an enterprise
bean through the local client view requires the collocation in the same application of both the
local client and the enterprise bean that provides the local client view. The local client view
therefore does not provide the location transparency provided by the remote client view.

Looking Up EJBs From Clients
The client of an enterprise bean obtains a reference to an instance of an enterprise bean
through either dependency injection, using Java programming language annotations, or JNDI
lookup, using the Java Naming and Directory Interface syntax to find the enterprise bean
instance.

Note:

For instructions on how clients can look up 2.x or earlier enterprise beans using
EJB Links, see Using EJB Links in Developing Enterprise JavaBeans, Version 2.1,
for Oracle WebLogic Server.

Using Dependency Injection
Dependency injection is when the EJB container automatically supplies (or injects) a bean's
variable or setter method with a reference to a resource or another environment entry in the
bean's context. Dependency injection is simply an easier-to-program alternative to using the
javax.ejb.EJBContext interface or JNDI APIs to look up resources.

You specify dependency injection by annotating a variable or setter method with one of the
following annotations, depending on the type of resource you want to inject:

• @javax.ejb.EJB—Specifies a dependency on another EJB.

• @javax.annotation.Resource—Specifies a dependency on an external resource, such
as a JDBC datasource or a JMS destination or connection factory.

For detailed information, see Injecting Resource Dependency into a Variable or Setter
Method.

Using the JNDI Portable Syntax
The Portable Global JNDI naming option in EJB 3.2 provides a number of common, well-
known namespaces in which EJB components can be registered and looked up from using

Chapter 4
Programming Access to EJB Clients

4-15



the patterns listed in this section. This standardizes how and where EJB components
are registered in JNDI, and how they can be looked up and used by applications.

Three JNDI namespaces are used for portable JNDI lookups: java:global,
java:module, and java:app.

• The java:global JNDI namespace is the portable way of finding remote
enterprise beans using JNDI lookups. JNDI addresses are of the following form:

java:global[/application name]/module name/enterprise bean name[/
interface name]

Application name and module name default to the name of the application and
module minus the file extension. Application names are required only if the
application is packaged within an EAR. The interface name is required only if the
enterprise bean implements more than one business interface.

• The java:module namespace is used to look up local enterprise beans within the
same module. JNDI addresses using the java:module namespace are of the
following form:

java:module/enterprise bean name/[interface name]

The interface name is required only if the enterprise bean implements more than
one business interface.

• The java:app namespace is used to look up local enterprise beans packaged
within the same application. That is, the enterprise bean is packaged within an
EAR file containing multiple Java EE modules. JNDI addresses using the
java:app namespace are of the following form:

java:app[/module name]/enterprise bean name[/interface name]

The module name is optional. The interface name is required only if the enterprise
bean implements more than one business interface.

For example, if an enterprise bean, MyBean, is packaged within the Web application
archive myApp.war, the default module name is myApp. (In this example, the module
name could be explicitly configured in the web.xml file.) The portable JNDI name is
java:module/MyBean. An equivalent JNDI name using the java:global namespace is
java:global/myApp/MyBean.

Customizing JNDI Names
Though global JNDI bindings are registered by default, you can also customize the
JNDI names of your EJB client view bindings by using the weblogic.javaee.JNDIName
and weblogic.javaee.JNDINames annotations. For more information, see 
weblogic.javaee.JNDIName and weblogic.javaee.JNDINames.

For EJBs using deployment descriptors, you can specify the custom JNDI bindings in
the weblogic-ejb-jar.xml deployment descriptor by using the jndi-binding element.
See EJB Deployment Descriptors in Developing Enterprise JavaBeans, Version 2.1,
for Oracle WebLogic Server.

Configuring EJBs to Send Requests to a URL
To enable an EJB to open an HttpURLConnection to an external HTTP server using
the java.net.URL resource manager connection factory type, specify the URL, or

Chapter 4
Programming Access to EJB Clients

4-16



specify an object bound in the JNDI tree that maps to a URL, using either the @Resource
annotation in the bean class, or if using deployment descriptors, by using the resource-ref
element in ejb-jar.xml and the res-ref-name element in weblogic-ejb-jar.xml.

Specifying an HTTP Resource by URL
When using annotations to specify the URL to which an EJB sends requests:

1. Annotate a URL field in your bean class with @Resource.

2. Specify the URL value using the look-up element of @Resource.

When using deployment descriptors to specify the URL to which an EJB sends requests:

1. In ejb-jar.xml, specify the URL in the <jndi-name> element of the resource-ref
element.

2. In weblogic-ejb-jar.xml, specify the URL in the <jndi-name> element of the resource-
description element:

<resource-description>
    <res-ref-name>url/MyURL</res-ref-name>
    <jndi-name>http://www.rediff.com/</jndi-name>
</resource-description>

WebLogic Server creates a URL object with the jndi-name provided and binds the object
to the java:comp/env.

Specifying an HTTP Resource by Its JNDI Name
When using annotations to specify an object that is bound in JNDI and maps to a URL,
instead of specifying a URL:

1. Annotate a URL field in your bean class with @Resource.

2. Specify the name by which the URL is bound in JNDI using the look-up element of
@Resource.

When using deployment descriptors to specify an object that is bound in JNDI and maps to a
URL, instead of specifying a URL:

1. In ejb-jar.xml, specify the name by which the URL is bound in JNDI in the <jndi-name>
element of the resource-ref element.

2. In weblogic-ejb-jar.xml, specify the name by which the URL is bound in JNDI in the
<jndi-name> element of the resource-description element:

<resource-description>
    <res-ref-name>url/MyURL1</res-ref-name>
    <jndi-name>firstName</jndi-name>
</resource-description>

where firstName is the object bound to the JNDI tree that maps to the URL. This binding
could be done in a startup class. When jndi-name is not a valid URL, WebLogic Server
treats it as an object that maps to a URL and is already bound in the JNDI tree, and binds
a LinkRef with that jndi-name.

Chapter 4
Programming Access to EJB Clients

4-17



Accessing HTTP Resources from Bean Code
Regardless of how you specified an HTTP resource—by its URL or a JNDI name that
maps to the URL—you can access it from EJB code in this way:

URL url = (URL) context.lookup("java:comp/env/url/MyURL");
connection = (HttpURLConnection)url.openConnection();

Configuring Network Communications for an EJB
You can control the attributes of the network connection an EJB uses for
communications by configuring a custom network channel and assigning it to the EJB.
For information about WebLogic Server network channels and associated
configuration instructions see Configure Network Resources in Administering Server
Environments for Oracle WebLogic Server. After you configure a custom channel,
assign it to an EJB using the network-access-point element in weblogic-ejb-
jar.xml.

Programming and Configuring Transactions
The following sections contain guidelines for programming transactions.

Programming Container-Managed Transactions
Container-managed transactions are simpler to program than bean-managed
transactions, because they leave the job of demarcation—starting and stopping the
transaction—to the EJB container. You configure the desired transaction behaviors
using EJB annotations javax.ejb.TransactionAttribute or by using EJB
deployment descriptors ejb-jar.xml and weblogic-ejb-jar.xml.

• For more information about using EJB annotations to specify container-managed
transactions in a bean file, see Specifying Transaction Management and
Attributes.

• For more information about using EJB deployment descriptors to specify
container-managed transactions, see Container-Managed Transaction Elements in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Key programming guidelines for container-managed transactions include:

• Preserve transaction boundaries—Do not invoke methods that interfere with the
transaction boundaries set by the container. Do not use:

– The commit, setAutoCommit, and rollback methods of java.sql.Connection
– The getUserTransaction method of javax.ejb.EJBContext
– Any method of javax.transaction.UserTransaction

• Roll back transactions explicitly—To cause the container to roll back a container-
managed transaction explicitly, invoke the setRollbackOnly method of the
EJBContext interface. (If the bean throws a non-application exception, typically an
EJBException, the rollback is automatic.)

• Avoid serialization problems—Many data stores provide limited support for
detecting serialization problems, even for a single user connection. In such cases,

Chapter 4
Programming and Configuring Transactions

4-18



even with transaction-isolation in weblogic-ejb-jar.xml set to
TransactionSerializable, exceptions or rollbacks in the EJB client might occur if
contention occurs between clients for the same rows. To avoid such exceptions, you can:

– Include code in your client application to catch SQL exceptions, and resolve them
appropriately; for example, by restarting the transaction.

– For Oracle databases, use the transaction isolation settings described in isolation-
level in the weblogic-ejb-jar.xml Deployment Descriptor Reference appendix in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Configuring Automatic Retry of Container-Managed Transactions
In Oracle WebLogic Server, you can specify that, if a business method that has started a
transaction fails because of a transaction rollback that is not related to a system exception,
the EJB container will start a new transaction and retry the failed method up to a specified
number of times. If the method fails for the specified number of retry attempts, the EJB
container throws an exception.

Note:

The EJB container does not retry any transactions that fail because of system
exception-based errors.

To configure automatic retry of container-managed transactions:

1. Make sure your bean is a container-managed session or entity bean.

You can configure automatic retry of container-managed transactions for container-
managed session and entity beans only. You cannot configure automatic retry of
container-managed transactions for message-driven beans because MDBs do not
acknowledge receipt of a message they are processing when the transaction that
brackets the receipt of the message is rolled back; messages are automatically retried
until they are acknowledged. You also cannot configure automatic retry of container-
managed transactions for timer beans because, when a timer bean's ejbTimeout method
starts and is rolled back, the timeout is always retried.

2. Make sure the business methods for which you want to configure automatic retry of
transactions are defined in the bean's remote or local interface or as home methods
(local home business logic that is not specific to a particular bean instance) in the home
interface; the methods must have one of the following container-managed transaction
attributes:

• RequiresNew. If a method's transaction attribute (trans-attribute element in ejb-
jar.xml) is RequiresNew, a new transaction is always started prior to the invocation
of the method and, if configured, automatic retry of transactions occurs if the
transaction fails.

• Required. If a method's transaction attribute (trans-attribute element in ejb-
jar.xml) is Required, the method is retried with a new transaction only if the failed
transaction was begun on behalf of the method.

For more information on:

• Programming interfaces, see Programming Access to EJB Clients.

Chapter 4
Programming and Configuring Transactions

4-19



• The trans-attribute element in ejb-jar.xml, see Container-Managed
Transaction Elements in Developing Enterprise JavaBeans, Version 2.1, for
Oracle WebLogic Server, which provides detailed information about creating
and editing EJB deployment descriptors.

3. Make sure the methods for which you want to enable automatic retry of
transactions are safe to be re-invoked. A retry of a failed method must yield results
that are identical to the results the previous attempt, had it been successful, would
have yielded. In particular:

• If invoking a method initiates a call chain, it must be safe to re-invoke the
entire call chain when the method is retried.

• All of the method's parameters must be safe for reuse; when a method is
retried, it is retried with the same parameters that were used to invoke the
failed attempt. In general, parameters that are primitives, immutable objects,
or are references to read-only objects are safe for reuse. If a parameter is a
reference to an object that is to be modified by the method, re-invoking the
method must not negatively affect the result of the method call.

• If the bean that contains the method that is being retried is a stateful session
bean, the bean's conversational state must be safe to re-invoke. Since a
stateful session bean's state is not transactional and is not restored during a
transaction rollback, in order to use the automatic retry of transactions feature,
you must first be sure the bean's state is still valid after a rollback.

4. Specify the methods for which you want the EJB container to automatically retry
transactions and the number of retry attempts you want the EJB container to make
in the retry-methods-on-rollback element in weblogic-ejb-jar.xml.

The retry-count sub-element to retry-methods-on-rollback can also be modified
via the WebLogic Server Administration Console.

Programming Bean-Managed Transactions
This section contains programming considerations for bean-managed transactions.

• Demarcate transaction boundaries—To define transaction boundaries in EJB or
client code, you must obtain a UserTransaction object and begin a transaction
before you obtain a Java Transaction Service (JTS) or JDBC database connection.
To obtain the UserTransaction object, use this command:

ctx.lookup("javax.transaction.UserTransaction");

After obtaining the UserTransaction object, specify transaction boundaries with
tx.begin(), tx.commit(), tx.rollback().

If you start a transaction after obtaining a database connection, the connection has
no relationship to the new transaction, and there are no semantics to "enlist" the
connection in a subsequent transaction context. If a JTS connection is not
associated with a transaction context, it operates similarly to a standard JDBC
connection that has autocommit equal to true, and updates are automatically
committed to the data store.

Once you create a database connection within a transaction context, that
connection is reserved until the transaction commits or rolls back. To optimize
performance and throughput, ensure that transactions complete quickly, so that
the database connection can be released and made available to other client
requests.

Chapter 4
Programming and Configuring Transactions

4-20



Note:

You can associate only a single database connection with an active transaction
context.

• Setting transaction isolation level—For bean-managed transactions, you define isolation
level in the bean code. Allowable isolation levels are defined on the java.sql.Connection
interface. For information on isolation level behaviors, see isolation-level in the 
weblogic-ejb-jar.xml Deployment Descriptor Reference appendix in Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

See Example 4-7 for a code sample.

Example 4-7    Setting Transaction Isolation Level in BMT

import javax.transaction.Transaction;
import java.sql.Connection
import weblogic.transaction.TxHelper:
import weblogic.transaction.Transaction;
import weblogic.transaction.TxConstants;
User Transaction tx = (UserTransaction)
ctx.lookup("javax.transaction.UserTransaction");
//Begin user transaction
    tx.begin();
//Set transaction isolation level to TransactionReadCommitted
Transaction tx = TxHelper.getTransaction();
    tx.setProperty (TxConstants.ISOLATION_LEVEL, new Integer
    (Connection.TransactionReadCommitted));
//perform transaction work 
    tx.commit();

• Avoid restricted methods—Do not invoke the getRollbackOnly and setRollbackOnly
methods of the EJBContext interface in bean-managed transactions. These methods
should be used only in container-managed transactions. For bean-managed transactions,
invoke the getStatus and rollback methods of the UserTransaction interface.

• Use one connection per active transaction context—You can associate only a single
database connection with an active transaction context.

Programming Transactions That Are Distributed Across EJBs
This section describes two approaches for distributing a transaction across multiple beans,
which may reside on multiple server instances.

Calling multiple EJBs from a client's transaction context
The code fragment below is from a client application that obtains a UserTransaction object
and uses it to begin and commit a transaction. The client invokes two EJBs within the context
of the transaction.

import javax.transaction.*;
...
u = (UserTransaction) jndiContext.lookup("javax.transaction.UserTransaction");
u.begin();
account1.withdraw(100);
account2.deposit(100);

Chapter 4
Programming and Configuring Transactions

4-21



u.commit();
...

The updates performed by the account1 and account2 beans occur within the context
of a single UserTransaction. The EJBs commit or roll back together, as a logical unit,
whether the beans reside on the same server instance, different server instances, or a
WebLogic Server cluster.

All EJBs called from a single transaction context must support the client transaction—
each beans' trans-attribute element in ejb-jar.xml must be set to Required,
Supports, or Mandatory.

Using an EJB "Wrapper” to Encapsulate a Cross-EJB Transaction
You can use a wrapper EJB that encapsulates a transaction. The client calls the
wrapper EJB to perform an action such as a bank transfer, and the wrapper starts a
new transaction and invokes one or more EJBs to do the work of the transaction.

The wrapper EJB can explicitly obtain a transaction context before invoking other
EJBs, or WebLogic Server can automatically create a new transaction context, if the
wrapper's trans-attribute element in ejb-jar.xml is set to Required or
RequiresNew.

All EJBs invoked by the wrapper EJB must support the wrapper EJB's transaction
context— their trans-attribute elements must be set to Required, Supports, or
Mandatory.

Compile Java Source
Once you have written the Java source code for your EJB bean class and optional
interceptor class, you must compile it into class files, typically using the standard Java
compiler. The resulting class files can then be packaged into a target module for
deployment. Typical tools to compile include:

• javac —The javac compiler provided with the Java SE SDK provides Java
compilation capabilities. See http://www.oracle.com/technetwork/java/
javase/documentation/index.html.

• weblogic.appc—To reduce deployment time, use the weblogic.appc Java class
(or its equivalent Ant task wlappc) to pre-compile a deployable archive file, (WAR,
JAR, or EAR). Precompiling with weblogic.appc generates certain helper classes
and performs validation checks to ensure your application is compliant with the
current Java EE specifications. See Building Modules and Applications Using
wlappc in Developing Applications for Oracle WebLogic Server.

• wlcompile Ant task—Invokes the javac compiler to compile your application's
Java components in a split development directory structure. See Compiling
Applications Using wlcompile in Developing Applications for Oracle WebLogic
Server.

Optionally Create and Edit Deployment Descriptors
An important aspect of the EJB 3.x programming model was the introduction of
metadata annotations. Annotations simplify the EJB development process by allowing
a developer to specify within the Java class itself how the bean behaves in the

Chapter 4
Compile Java Source

4-22

http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html


container, requests for dependency injection, and so on. Annotations are an alternative to
deployment descriptors that were required by older versions (2.x and earlier) of EJB.

However, EJB 3.2 fully supports the use of deployment descriptors, even though the standard
Java EE 6 ones are not required. For example, you may prefer to use the old 2.x
programming model, or might want to allow further customizing of the EJB at a later
development or deployment stage; in these cases you can create the standard deployment
descriptors in addition to, or instead of, the metadata annotations.

Deployment descriptor elements always override their annotation counterparts. For example,
if you specify the @javax.ejb.TransactionManagement(BEAN) annotation in your bean class,
but then create an ejb-jar.xml deployment descriptor for the EJB and set the
<transaction-type> element to container, then the deployment descriptor value takes
precedence and the EJB uses container-managed transaction demarcation.

Note:

This version of EJB 3.2 also supports all 2.x WebLogic-specific EJB features.
However, the features that are configured in the weblogic-ejb-jar.xml or
weblogic-cmp-rdbms-jar.xml deployment descriptor files must continue to be
configured that way for this release of EJB 3.2 because currently they do not have
any annotation equivalent.

The 2.x version of Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server provides detailed information about creating and editing EJB deployment descriptors,
both the Java EE standard and WebLogic-specific ones. In particular, see the following
sections:

• EJB Deployment Descriptors (Overview Information)

• Edit Deployment Descriptors

• Deployment Descriptor Schema and Document Type Definitions Reference

• weblogic-ejb-jar.xml Deployment Descriptor Reference

• weblogic-cmp-jar.xml Deployment Descriptor Reference

Packaging EJBs
Oracle recommends that you package EJBs as part of an enterprise application. See 
Deploying and Packaging from a Split Development Directory in Developing Applications for
Oracle WebLogic Server.

However, EJB 3.2 simplifies packaging by providing the ability to place EJB components
directly inside of Web application archive (WAR) files, removing the need to produce separate
archives to store the Web and EJB components and combine them together in an enterprise
application archive (EAR) file.

Packaging EJBs in a JAR
WebLogic Server supports the use of ejb-client.jar files for packaging the EJB classes
that a programmatic client in a different application requires to access the EJB.

Chapter 4
Packaging EJBs

4-23



Specify the name of the client JAR in the ejb-client-jar element of the bean's ejb-
jar.xml file. When you run the appc compiler, a JAR file with the classes required to
access the EJB is generated.

Make the client JAR available to the remote client. For Web applications, put the ejb-
client.jar in the /lib directory. For non-Web clients, include ejb-client.jar in the
client's classpath.

Note:

WebLogic Server classloading behavior varies, depending on whether the
client is stand-alone. Stand-alone clients with access to the ejb-client.jar
can load the necessary classes over the network. However, for security
reasons, programmatic clients running in a server instance cannot load
classes over the network.

Packaging an EJB In a WAR
EJB 3.2 has removed the restriction that enterprise bean classes must be packaged in
an ejb-jar file. Therefore, EJB classes can be packaged directly inside a Web
application archive (WAR) using the same packaging guidelines that apply to Web
application classes. Simply put your EJB classes in the WEB-INF/classes directory or
in a JAR file within WEB-INF/lib directory. Optionally, if you are also using the EJB
deployment descriptor, you can package it as WEB-INF/ejb-jar.xml. When you run
the appc compiler, a WAR file with the classes required to access the EJB components
is generated.

In a WAR file there is a single component naming environment shared between all the
components (web, enterprise bean, etc.) defined by the module. Each enterprise bean
defined by the WAR file shares this single component environment namespace with all
other enterprise beans defined by the WAR file and with all other web components
defined by the WAR file.

Enterprise beans (and any related classes) packaged in a WAR file have the same
class loading requirements as other non-enterprise bean classes packaged in a WAR
file. This means, for example, that a servlet packaged within a WAR file is guaranteed
to have visibility to an enterprise bean component packaged within the same WAR file,
and vice versa.

Caution:

EJB 2.1 Entity Beans and EJB 1.1 Entity Beans are not supported within
WAR files. These component types must only be packaged in a stand-alone
ejb-jar file or an ejb-jar file packaged within an EAR file. Applications that
violate this restriction will fail to deploy.

There is an example of using the simplified WAR packaging method bundled in the
WebLogic Server distribution kit. See EJB 3.1: Example of Simplified No-interface
Programming and Packaging in a WAR File .

Chapter 4
Packaging EJBs

4-24



Deploying EJBs
Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients.
You can deploy an EJB using one of several procedures, depending on your environment and
whether or not your EJB is in production.

For general instructions on deploying WebLogic Server applications and modules, including
EJBs, see Deploying Applications to Oracle WebLogic Server. For EJB-specific deployment
issues and procedures, see Deploying Standalone EJBs as Part of an Enterprise Application.
and Deploying EJBs as Part of an Web Application.

For more information about deploying an EJB created with the 2.x programming model, see 
Deployment Guidelines For Enterprise JavaBeans in the Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server guide, which concentrates on the 2.x programming
model.

Chapter 4
Deploying EJBs

4-25



5
Programming the Annotated EJB Class

This chapter describes how to program the annotated EJB 3.2 class file.
This chapter includes the following sections:

• Overview of Metadata Annotations and EJB Bean Files

• Programming the Bean File: Requirements and Changes From EJB 2.x

• Programming the Bean File

• Complete List of Metadata Annotations By Function

Overview of Metadata Annotations and EJB Bean Files
The WebLogic Server EJB 3.2 programming model uses the Java EE 7 metadata annotations
feature in which you create an annotated EJB 3.2 bean file, compile the class with the
standard Java compiler, and the resulting class can then be packaged into a target module
for deployment. At runtime, WebLogic Server parses the annotations and applies the required
behavioral aspects to the bean file.

Tip:

To reduce deployment time, you can also use the WebLogic compile tool
weblogic.appc (or its Ant equivalent wlappc) to pre-compile a deployable archive
file, (WAR, JAR, or EAR). Precompiling with weblogic.appc generates certain
helper classes and performs validation checks to ensure your application is
compliant.

The annotated 3.2 bean file is the core of your EJB. It contains the Java code that determines
how your EJB behaves. The 3.2 bean file is an ordinary Java class file that implements an
EJB business interface that outlines the business methods of your EJB. You then annotate
the bean file with JDK metadata annotations to specify the shape and characteristics of the
EJB, document your EJB, and provide special services such as enhanced business-level
security or special business logic during runtime.

See Complete List of Metadata Annotations By Function for a breakdown of the annotations
you can specify in a bean file, by function. These annotations include those described by the
following specifications:

• Enterprise JavaBeans 3.2 Specification (JSR-345) at http://jcp.org/en/jsr/summary?
id=345

• Common Annotations for the Java Platform (JSR-250) at http://www.jcp.org/en/jsr/
detail?id=250

See EJB Metadata Annotations Reference, for reference information about the annotations,
listed in alphabetical order. This topic is part of the iterative development procedure for
creating an EJB 3.2, described in Iterative Development of Enterprise JavaBeans.

5-1

http://jcp.org/en/jsr/summary?id=318
http://jcp.org/en/jsr/summary?id=318
http://www.jcp.org/en/jsr/detail?id=250
http://www.jcp.org/en/jsr/detail?id=250


For more information on general EJB design and architecture, see the following
documents:

• Enterprise JavaBeans web site at http://www.oracle.com/technetwork/java/
ejb-141389.html

• Introducing the Java EE 6 Platform: Part 3 (EJB Technology, Even Easier to Use)
at http://www.oracle.com/technetwork/articles/javaee/javaee6overview-
part3-139660.html#ejbeasy

• The Java EE 7 Tutorial at http://docs.oracle.com/javaee/7/tutorial/
index.html

Programming the Bean File: Requirements and Changes
From EJB 2.x

The requirements for programming the EJB 3.2 bean class file are essentially the
same as the EJB 2.x requirements. This section briefly describes the basic mandatory
requirements of the bean class, mostly for overview purposes, as well as changes in
requirements between EJB 2.x and EJB 3.2.

See Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server for
detailed information about the mandatory and optional requirements for programming
the bean class.

Bean Class Requirements and Changes From EJB 2.x
The following bullets list the EJB 3.2 requirements for programming a bean class, as
well as the EJB 2.x requirements that no longer apply:

• The class must specify its bean type, typically using one of the following metadata
annotations, although you can also override this using a deployment descriptor:

– @javax.ejb.Stateless
– @javax.ejb.Stateful
– @javax.ejb.Singleton
– @javax.ejb.MessageDriven

Note:

Oracle Kodo JPA/JDO is not supported in this release of WebLogic
Server. However, if you still using Oracle Kodo, programming a 3.0
entity bean (@javax.ejb.Entity) is discussed in a separate
document.

Customers are encouraged to use Oracle TopLink, which supports
JPA 2.1. Kodo supports only JPA 1.0. For more information, see 
Using Oracle TopLink in Oracle WebLogic Server.

• If the bean is a session bean, the bean class can implement either:

Chapter 5
Programming the Bean File: Requirements and Changes From EJB 2.x

5-2

http://www.oracle.com/technetwork/java/ejb-141389.html
http://www.oracle.com/technetwork/java/ejb-141389.html
http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part3-139660.html#ejbeasy
http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part3-139660.html#ejbeasy
http://docs.oracle.com/javaee/7/tutorial/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html


– The no-interface local client view type, which simplifies EJB development by
providing local session bean access without requiring a separate local business
interface. (As of EJB 3.2, MDBs can also use the no-interface local client view.)

– The bean's business interface(s) or the methods of the bean's business interface(s),
if any.

• Session beans no longer need to implement javax.ejb.SessionBean, which means the
bean no longer needs to implement the ejbXXX() methods, such as ejbCreate(),
ejbPassivate(), and so on.

• Stateful session beans no longer need to implement java.io.Serializable.

• Message-driven beans no longer need to implement javax.ejb.MessageDrivenBean.

The following requirements are the same as in EJB 2.x and are provided only as a brief
overview:

• The class must be defined as public, must not be final, and must not be abstract. The
class must be a top level class.

• The class must have a public constructor that takes no parameters.

• The class must not define the finalize() method.

• If the bean is message-driven, the bean class must implement, directly or indirectly, the
message listener interface required by the messaging type that it supports or the
methods of the message listener interface. In the case of JMS, this is the
javax.jms.MessageListener interface.

Bean Class Method Requirements
The method requirements have not changed since EJB 2.x and are provided in this section
for a brief overview only.

The requirements for programming the session bean class' methods (that implement the
business interface methods) are as follows:

• The method names can be arbitrary.

• The business method must be declared as public and must not be final or static.

• The argument and return value types for a method must be legal types for RMI/IIOP if the
method corresponds to a business method on the session bean's remote business
interface or remote interface.

• The throws clause may define arbitrary application exceptions.

The requirements for programming the message-driven bean class' methods are as follows:

• The methods must implement the listener methods of the message listener interface.

• The methods must be declared as public and must not be final or static.

Programming the Bean File
The sections that follow provide the recommended steps when programming the annotated
EJB 3.2 class file.

• Typical Steps When Programming the Bean File

• Specifying the Business and Other Interfaces

Chapter 5
Programming the Bean File

5-3



• Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-Driven)

• Injecting Resource Dependency into a Variable or Setter Method

• Invoking a 3.0 Entity

• Specifying Interceptors for Business Methods or Life Cycle Callback Events

• Programming Application Exceptions

• Securing Access to the EJB

• Specifying Transaction Management and Attributes

Typical Steps When Programming the Bean File
The following procedure describes the typical basic steps when programming the 3.2
bean file for a EJB. The steps you follow depends, of course, on what your EJB does.

Refer to Simple Enterprise JavaBeans Examples, for code examples of the topics
discussed in the remaining sections.

1. Import the EJB 3.2 and other common annotations that will be used in your bean
file. The general EJB annotations are in the javax.ejb package, the interceptor
annotations are in the javax.interceptor package, the annotations to invoke a
3.2 entity are in the javax.persistence package, and the common annotations
are in the javax.common or javax.common.security packages. For example:

import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.interceptor.ExcludeDefaultInterceptors;

2. Specify the interface that your EJB is going to implement, either a business
interface or a no-interface view, as well as other standard interfaces. You can
either explicitly implement the interface, or use an annotation to specify it.

See Specifying the Business and Other Interfaces.

3. Use the required annotation to specify the type of bean you are programming
(session or message-driven).

See Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-Driven).

4. Optionally, use dependency injection to use external resources, such as another
EJB or other Java EE 7 object.

See Injecting Resource Dependency into a Variable or Setter Method.

5. Optionally, create an EntityManager object and use the entity annotations to inject
entity information.

See Invoking a 3.0 Entity.

6. Optionally, program and configure business method or life cycle callback method
interceptor method. You can program the interceptor methods in the bean file
itself, or in a separate Java file.

See Specifying Interceptors for Business Methods or Life Cycle Callback Events.

7. If your business interface specifies that business methods throw application
exceptions, you must program the exception class, the same as in EJB 2.x.

See Programming Application Exceptions for EJB 3.2 specific information.

Chapter 5
Programming the Bean File

5-4



8. Optionally, specify the security roles that are allowed to invoke the EJB methods using
the security-related metadata annotations.

See Securing Access to the EJB.

9. Optionally, change the default transaction configuration in which the EJB runs.

See Specifying Transaction Management and Attributes.

Specifying the Business and Other Interfaces
The EJB 3.x local or remote client of a session bean written to the EJB 3.x API accesses a
session bean through its business interface. A local client may also access a session bean
through a no-interface view that exposes all public methods of the bean class.

Specifying the Business Interface
There are two ways you can specify the business interface for the EJB bean class:

• By explicitly implementing the business interface, using the implements Java keyword.

• By using metadata annotations (such as javax.ejb.Local and javax.ejb.Remote) to
specify the business interface. In this case, the bean class does not need to explicitly
implement the business interface.

Typically, if an EJB bean class implements an interface, it is assumed to be the business
interface of the EJB. Additionally, the business interface is assumed to be the local interface
unless you explicitly denote it as the remote interface, either by using the javax.ejb.Remote
annotation or updating the appropriate EJB deployment descriptor. You can specify the
javax.ejb.Remote annotation. as well as the javax.ejb.Local annotation, in either the
business interface itself, or the bean class that implements the interface.

A bean class can have more than one interface. In this case (excluding the interfaces listed
below), you must specify the business interface of the EJB by explicitly using the
javax.ejb.Local or javax.ejb.Remote annotations in either the business interface itself, the
bean class that implements the business interface, or the appropriate deployment descriptor.

The following interfaces are excluded when determining whether the bean class has more
than one interface:

• java.io.Serializable
• java.io.Externalizable
• Any of the interfaces defined by the javax.ejb package

The following code snippet shows how to specify the business interface of a bean class by
explicitly implementing the interface:

public class ServiceBean
  implements Service

For the full example, see Example of a Simple Business Interface Stateless EJB.

Specifying the No-interface View
Client access to an enterprise bean that exposes a local, no-interface view is accomplished
through either dependency injection or JNDI lookup. As of EJB 3.2, MDBs can also use the
no-interface local client view.

Chapter 5
Programming the Bean File

5-5



• To obtain a reference to the no-interface view of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the
enterprise bean's implementation class:

@EJB
ExampleBean exampleBean;

• To obtain a reference to the no-interface view of an enterprise bean through JNDI
lookup, use the javax.naming.InitialContext interface's lookup method:

ExampleBean exampleBean = (ExampleBean)
InitialContext.lookup("java:module/ExampleBean");

Clients do not use the new operator to obtain a new instance of an enterprise bean
that uses a no-interface view.

There are code examples of using the No-interface client view bundled in the
WebLogic Server distribution kit. See EJB 3.1: Example of Simplified No-interface
Programming and Packaging in a WAR File and EJB 3.2: Example of a Message-
Driven Bean with No-Methods Listener.

For more detailed information about the implementing the no-interface client view, see
"Accessing Local Enterprise Beans Using the No-Interface View" in the "Enterprise
Beans" chapter of the Java EE 7 Tutorial at http://docs.oracle.com/javaee/7/
tutorial/index.html.

Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-
Driven)

There is only one required metadata annotation in a 3.2 bean class: an annotation that
specifies the type of bean you are programing. You must specify one, and only one, of
the following:

• @javax.ejb.Stateless—Specifies that you are programming a stateless session
bean.

• @javax.ejb.Singleton—Specifies that you are programming a singleton session
bean.

• @javax.ejb.Stateful—Specifies that you are programming a stateful session
bean.

• @javax.ejb.MessageDriven—Specifies that you are programming a message-
driven bean.

Note:

Oracle Kodo JPA/JDO is not supported in this release of WebLogic
Server. However, if you still using Oracle Kodo, programming a 3.0 entity
bean (@javax.ejb.Entity) is discussed in a separate document.

Customers are encouraged to use Oracle TopLink, which supports JPA
2.1. Kodo supports only JPA 1.0. For more information, see Using Oracle
TopLink in Oracle WebLogic Server.

Although not required, you can specify attributes of the annotations to further describe
the bean type. For example, you can set the following attributes for all bean types:

Chapter 5
Programming the Bean File

5-6

http://docs.oracle.com/javaee/7/tutorial/index.html
http://docs.oracle.com/javaee/7/tutorial/index.html


• name—Name of the bean class; the default value is the unqualified bean class name.

• mappedName—Product-specific name of the bean.

• description—Description of what the bean does.

If you are programming a message-driven bean, then you can specify the following optional
attributes:

• messageListenerInterface—Specifies the message listener interface, if you haven't
explicitly implemented it or if the bean implements additional interfaces.

• activationConfig—Specifies an array of activation configuration name-value pairs that
configure the bean in its operational environment.

The following code snippet shows how to specify that a bean is a stateless session bean:

@Stateless
public class ServiceBean
  implements Service

For the full example, see Example of a Simple Business Interface Stateless EJB.

Injecting Resource Dependency into a Variable or Setter Method
Dependency injection is when the EJB container automatically supplies (or injects) a bean's
variable or setter method with a reference to a resource or another environment entry in the
bean's context. Dependency injection is simply an easier-to-program alternative to using the
javax.ejb.EJBContext interface or JNDI APIs to look up resources.

You specify dependency injection by annotating a variable or setter method with one of the
following annotations, depending on the type of resource you want to inject:

• @javax.ejb.EJB—Specifies a dependency on another EJB.

• @javax.annotation.Resource—Specifies a dependency on an external resource, such
as a JDBC datasource or a JMS destination or connection factory.

Note:

This annotation is not specific to EJB; rather, it is part of the common set of
metadata annotations used by many different types of Java EE components.

Both annotations have an equivalent grouping annotation to specify a dependency on
multiple resources (@javax.ejb.EJBs and @javax.annotation.Resources).

Although not required, you can specify attributes to these dependency annotations to
explicitly describe the dependent resource. The amount of information you need to specify
depends upon its usage context and how much information the EJB container can infer from
that context. See javax.ejb.EJB and javax.annotation.Resource for detailed information on
the attributes and when you should specify them.

The following code snippet shows how to use the @javax.ejb.EJB annotation to inject a
dependency on an EJB into a variable; only the relevant parts of the bean file are shown:

package examples;
import javax.ejb.EJB;
...

Chapter 5
Programming the Bean File

5-7



@Stateful
public class AccountBean
 implements Account
{
  @EJB(beanName="ServiceBean")
  private Service service;
...
  public void sayHelloFromAccountBean() {
    service.sayHelloFromServiceBean();
  }

In the preceding example, the private variable service is annotated with the
@javax.ejb.EJB annotation, which makes reference to the EJB with a bean name of
ServiceBean. The data type of the service variable is Service, which is the business
interface implemented by the ServiceBean bean class. As soon as the EJB container
creates the AccountBean EJB, the container injects a reference to ServiceBean into
the service variable; the variable then has direct access to all the business methods
of SessionBean, as shown in the sayHelloFromAccountBean method implementation in
which the sayHelloFromServiceBean method is invoked.

Invoking a 3.0 Entity
This section describes how to invoke and update a 3.0 entity from within a session
bean.

Note:

Oracle TopLink, a JPA 2.1 persistence provider, is the default JPA provider,
replacing Kodo, which was the default provider in previous releases. Any
application that does not specify a JPA provider in persistence.xml will now
use TopLink by default. For more information, see Configuring the
Persistence Provider in Oracle WebLogic Server.

An entity is a persistent object that represents datastore records; typically an instance
of an entity represents a single row of a database table. Entities make it easy to query
and update information in a persistent store from within another Java EE component,
such as a session bean. A Person entity, for example, might include name, address,
and age fields, each of which correspond to the columns of a table in a database.
Using an javax.persistence.EntityManager object to access and manage the
entities, you can easily retrieve a Person record, based on either their unique id or by
using a SQL query, and then change the information and automatically commit the
information to the underlying datastore.

The following sections describe the typical programming tasks you perform in your
session bean to interact with entities:

• Injecting Persistence Context Using Metadata Annotations

• Finding an Entity Using the EntityManager API

• Creating and Updating an Entity Using EntityManager

Chapter 5
Programming the Bean File

5-8



Injecting Persistence Context Using Metadata Annotations
In your session bean, use the following metadata annotations inject entity information into a
variable:

• @javax.persistence.PersistenceContext—Injects a persistence context into a variable
of data type javax.persistence.EntityManager. A persistence context is simply a set of
entities such that, for any persistent identity, there is a unique entity instance. The
persistence.xml file defines and names the persistence contexts available to a session
bean.

• @javax.persistence.PersistenceContexts—Specifies a set of multiple persistence
contexts.

• @javax.persistence.PersistenceUnit—Injects a persistence context into a variable of
data type javax.persistence.EntityManagerFactory.

• @javax.persistence.PersistenceUnits—Specifies a set of multiple persistence
contexts.

The @PersistenceContext and @PersistenceUnit annotations perform a similar function:
inject persistence context information into a variable; the main difference is the data type of
the instance into which you inject the information. If you prefer to have full control over the life
cycle of the EntityManager in your session bean, then use @PersistenceUnit to inject into
an EntityManagerFactory instance, and then write the code to manually create an
EntityManager and later destroy when you are done, to release resources. If you prefer that
the EJB container manage the life cycle of the EntityManager, then use the
@PersistenceContext annotation to inject directly into an EntityManager.

The following example shows how to inject a persistence context into the variable em of data
type EntityManager; relevant code is shown in bold:

package examples;

import javax.ejb.Stateless;

import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;

@Stateless
public class ServiceBean
  implements Service

{
  @PersistenceContext private EntityManager em;

...

Finding an Entity Using the EntityManager API
Once you have instantiated an EntityManager object, you can use its methods to interact
with the entities in the persistence context. This section discusses the methods used to
identify and manage the life cycle of an entity; see Using Oracle TopLink in Oracle WebLogic
Server. for additional uses of the EntityManager, such as transaction management, caching,
and so on.

Chapter 5
Programming the Bean File

5-9



Note:

For clarity, this section assumes that the entities are configured such that
they represent actual rows in a database table.

Use the EntityManager.find() method to find a row in a table based on its primary
key. The find method takes two parameters: the entity class that you are querying,
such as Person.class, and the primary key value for the particular row you want to
retrieve. Once you retrieve the row, you can use standard getXXX methods to get
particular properties of the entity. The following code snippet shows how to retrieve a
Person with whose primary key value is 10, and then get their address:

public List<Person> findPerson () {

   Person p = em.find(Person.class, 10);
   Address a = p.getAddress();

    Query q = em.createQuery("select p from Person p where p.name = :name");
   q.setParameter("name", "Patrick");
   List<Person> l = (List<Person>) q.getResultList();

   return l;

  }

The preceding example also shows how to use the EntityManager.createQuery()
method to create a Query object that contains a custom SQL query; by contrast, the
EntityManager.find() method allows you to query using only the table's primary key.
In the example, the table is queried for all Persons whose first name is Patrick; the
resulting set of rows populates the List<Person> object and is returned to the
findPerson() invoker.

Creating and Updating an Entity Using EntityManager
To create a new entity instance (and thus add a new row to the database), use the
EntityManager.persist method, as shown in the following code snippet

  @TransactionAttribute(REQUIRED)
  public Person createNewPerson(String name, int age) {

    Person p = new Person(name, age);
    em.persist(p); // register the new object with the database

    Address a = new Address();
    p.setAddress(a);
    em.persist(a); // depending on how things are configured, this may or 
                   // may not be required
    return p;

  }

Chapter 5
Programming the Bean File

5-10



Note:

Whenever you create or update an entity, you must be in a transaction, which is
why the @TransactionAttribute annotation in the preceding example is set to
REQUIRED.

The preceding example shows how to create a new Person, based on parameters passed to
the createNewPerson method, and then call the EntityManager.persist method to
automatically add the row to the database table.

The preceding example also shows how to update the newly-created Person entity (and thus
new table row) with an Address by using the setAddress() entity method. Depending on the
cascade configuration of the Person entity, the second persist() call may not be necessary;
this is because the call to the setAddress() method might have automatically triggered an
update to the database. For more information about cascading operations, see Using Oracle
TopLink in Oracle WebLogic Server.

If you use the EntityManager.find() method to find an entity instance, and then use a
setXXX method to change a property of the entity, the database is automatically updated and
you do not need to explicitly call the EntityManager.persist() method, as shown in the
following code snippet:

  @TransactionAttribute(REQUIRED)
  public Person changePerson(int id, int newAge) {   
    Person p = em.find(Person.class, id);
    p.setAge(newAge);
    return p;
  }

In the preceding example, the call to the Person.setAge() method automatically triggered an
update to the appropriate row in the database table.

Finally, you can use the EntityManager.merge() method to quickly and easily update a row
in the database table based on an update to an entity made by a client, as shown in the
following example:

  @TransactionAttribute(REQUIRED)
  public Person applyOfflineChanges(Person pDTO) {
    return em.merge(pDTO);
  }

In the example, the applyOfflineChanges() method is a business method of the session
bean that takes as a parameter a Person, which has been previously created by the session
bean client. When you pass this Person to the EntityManager.merge() method, the EJB
container automatically finds the existing row in the database table and automatically updates
the row with the new data. The merge() method then returns a copy of this updated row.

Specifying Interceptors for Business Methods or Life Cycle Callback
Events

An interceptor is a method that intercepts a business method invocation or a life cycle
callback event. There are two types of interceptors: those that intercept business methods
and those that intercept life cycle callback methods.

Chapter 5
Programming the Bean File

5-11



Interceptors can be specified for session and message-driven beans.

You can program an interceptor method inside the bean class itself, or in a separate
interceptor class which you then associate with the bean class with the
@javax.interceptor.Interceptors annotation. You can create multiple interceptor
methods that execute as a chain in a particular order.

Interceptor instances may hold state. The life cycle of an interceptor instance is the
same as that of the bean instance with which it is associated. Interceptors can invoke
JNDI, JDBC, JMS, other enterprise beans, and the EntityManager. Interceptor
methods share the JNDI name space of the bean for which they are invoked.
Programming restrictions that apply to enterprise bean components to apply to
interceptors as well.

Interceptors are configured using metadata annotations in the javax.interceptor
package, as described in later sections.

The following topics discuss how to actually program interceptors for your bean class:

• Specifying Business or Life Cycle Interceptors: Typical Steps

• Programming the Interceptor Class

• Programming Business Method Interceptor Methods

• Programming Asynchronous Business Methods

• Programming Life Cycle Callback Interceptor Methods

• Specifying Default Interceptor Methods

• Saving State Across Interceptors With the InvocationContext API

Specifying Business or Life Cycle Interceptors: Typical Steps
The following procedure provides the typical steps to specify and program interceptors
for your bean class.

See Example of a Simple Stateful EJB for an example of specifying interceptors and 
Example of an Interceptor Class for an example of programming an interceptor class.

1. Decide whether interceptor methods are programmed in bean class or in a
separate interceptor class.

2. If you decide to program the interceptor methods in a separate interceptor class

a. Program the class, as described in Programming the Interceptor Class.

b. In your bean class, use the @javax.interceptor.Interceptors annotation to
associate the interceptor class with the bean class. The method in the
interceptor class annotated with the @javax.interceptor.AroundInvoke
annotation then becomes a business method interceptor method of the bean
class. Similarly, the methods annotated with the life cycle callback annotations
become the life cycle callback interceptor methods of the bean class.

You can specify any number of interceptor classes for a given bean class—the
order in which they execute is the order in which they are listed in the annotation.
If you specify the interceptor class at the class-level, the interceptor methods apply
to all appropriate bean class methods. If you specify the interceptor class at the
method-level, the interceptor methods apply to only the annotated method.

Chapter 5
Programming the Bean File

5-12



3. In the bean class or interceptor class (wherever you are programming the interceptor
methods), program business method interceptor methods, as described in Programming
Business Method Interceptor Methods.

4. In the bean class or interceptor class (wherever you are programming the interceptor
methods), program life cycle callback interceptor methods, as described in Programming
Business Method Interceptor Methods.

5. In the bean class, optionally annotate methods with the
@javax.interceptor.ExcludeClassInterceptors annotation to exclude any interceptors
defined at the class-level.

6. In the bean class, optionally annotate the class or methods with the
@javax.interceptor.ExcludeDefaultInterceptors annotation to exclude any default
interceptors that you might define later. Default interceptors are configured in the ejb-
jar.xml deployment descriptor, and apply to all EJBs in the JAR file, unless you explicitly
use the annotation to exclude them.

7. Optionally specify default interceptors for the entire EJB JAR file, as described in 
Specifying Default Interceptor Methods.

Programming the Interceptor Class
The interceptor class is a plain Java class that includes the interceptor annotations to specify
which methods intercept business methods and which intercept life cycle callback methods.

Interceptor classes support dependency injection, which is performed when the interceptor
class instance is created, using the naming context of the associated enterprise bean.

You must include a public no-argument constructor.

You can have any number of methods in the interceptor class, but restrictions apply as to how
many methods can be annotated with the interceptor annotations, as described in the
following sections.

For an example, see Example of an Interceptor Class.

Programming Business Method Interceptor Methods
You specify business method interceptor methods by annotating them with the
@AroundInvoke annotation.

An interceptor class or bean class can have only one method annotated with @AroundInvoke.
To specify that multiple interceptor methods execute for a given business method, you must
associate multiple interceptor classes with the bean file, in addition to optionally specifying an
interceptor method in the bean file itself. The order in which the interceptor methods execute
is the order in which the associated interceptor classes are listed in the @Interceptor
annotation. Interceptor methods in the bean class itself execute after those defined in the
interceptor classes.

You cannot annotate a business method itself with the @AroundInvoke annotation.

The signature of an @AroundInvoke method must be:

 Object <METHOD>(InvocationContext) throws Exception

The method annotated with the @AroundInvoke annotation must always call
InvocationContext.proceed() or neither the business method will be invoked nor any

Chapter 5
Programming the Bean File

5-13



subsequent @AroundInvoke methods. See Saving State Across Interceptors With the
InvocationContext API for additional information about the InvocationContext API.

Business method interceptor method invocations occur within the same transaction
and security context as the business method for which they are invoked. Business
method interceptor methods may throw runtime exceptions or application exceptions
that are allowed in the throws clause of the business method.

For an example, see Example of an Interceptor Class.

Programming Asynchronous Business Methods
Session beans can implement asynchronous methods, business methods where
control is returned to the client by the enterprise bean container before the method is
invoked on the session bean instance. Clients may then use the Java SE concurrency
API to retrieve the result, cancel the invocation, and check for exceptions.
Asynchronous methods are typically used for long-running operations, for processor-
intensive tasks, for background tasks, to increase application throughput, or to improve
application response time if the method invocation result isn't required immediately.

When a session bean client invokes a typical non-asynchronous business method,
control is not returned to the client until the method has completed. Clients calling
asynchronous methods, however, immediately have control returned to them by the
enterprise bean container. This allows the client to perform other tasks while the
method invocation completes. If the method returns a result, the result is an
implementation of the java.util.concurrent.Future<V> interface, where “V" is the
result value type. The Future<V> interface defines methods the client may use to
check if the computation is completed, wait for the invocation to complete, retrieve the
final result, and cancel the invocation.

Asynchronous method invocation semantics only apply to the no-interface, local
business, and remote business client views. Methods exposed through the EJB 2.x
local, EJB 2.x remote, and Web service client views must not be designated as
asynchronous.

For detailed instructions on creating an asynchronous business method, see
"Asynchronous Method Invocation" in the "Enterprise Beans" chapter of the Java EE 7
Tutorial at http://docs.oracle.com/javaee/7/tutorial/index.html.

Programming Life Cycle Callback Interceptor Methods
You specify a method to be a life cycle callback interceptor method so that it can
receive notification of life cycle events from the EJB container. Life cycle events
include creation, passivation, and destruction of the bean instance.

You can name the life cycle callback interceptor method anything you want; this is
different from the EJB 2.x programming model in which you had to name the methods
ejbCreate(), ejbPassivate(), and so on.

You use the following life cycle interceptor annotations to specify that a method is a life
cycle callback interceptor method:

• @javax.ejb.PrePassivate—Specifies the method that the EJB container notifies
when it is about to passivate a stateful session bean.

• @javax.ejb.PostActivate—Specifies the method that the EJB container notifies
right after it has reactivated a stateful session bean.

Chapter 5
Programming the Bean File

5-14

http://docs.oracle.com/javaee/7/tutorial/index.html


• @javax.annotation.PostConstruct—Specifies the method that the EJB container
notifies before it invokes the first business method and after it has done dependency
injection. You typically apply this annotation to the method that performs initialization.

Note:

This annotation is in the javax.annotation package, rather than javax.ejb.

• @javax.annotation.PreDestroy—Specifies the method that the EJB container notifies
right before it destroys the bean instance. You typically apply this annotation to the
method that release resources that the bean class has been holding.

Note:

This annotation is in the javax.annotation package, rather than javax.ejb.

You use the preceding annotations the same way, whether the annotated method is in the
bean class or in a separate interceptor class. You can annotate the same method with more
than one annotation.

You can also specify any subset or combination of life cycle callback annotations in the bean
class or in an associated interceptor class. However, the same callback annotation may not
be specified more than once in a given class. If you do specify a callback annotation more
than once in a given class, the EJB will not deploy.

To specify that multiple interceptor methods execute for a given life cycle callback event, you
must associate multiple interceptor classes with the bean file, in addition to optionally
specifying the life cycle callback interceptor method in the bean file itself. The order in which
the interceptor methods execute is the order in which the associated classes are listed in the
@Interceptor annotation. Interceptor methods in the bean class itself execute after those
defined in the interceptor classes.

The signature of the annotated methods depends on where the method is defined:

• Life cycle callback methods defined on a bean class have the following signature:

 void <METHOD>()
• Life cycle callback methods defined on an interceptor class have the following signature:

 void <METHOD>(InvocationContext)
See Saving State Across Interceptors With the InvocationContext API for additional
information about the InvocationContext API.

See javax.ejb.PostActivate, javax.ejb.PrePassivate, javax.annotation.PostConstruct, and 
javax.annotation.PreDestroy for additional requirements when programming the life cycle
interceptor class.

For an example, see Example of an Interceptor Class.

Chapter 5
Programming the Bean File

5-15



Specifying Default Interceptor Methods
Default interceptor methods apply to all components in a particular EJB JAR file or
exploded directory, and thus can only be configured in the ejb-jar.xml deployment
descriptor file and not with metadata annotations, which apply to a particular EJB.

The EJB container invokes default interceptor methods, if any, before all other
interceptors defined for an EJB (both business and life cycle). If you do not want the
EJB container to invoke the default interceptors for a particular EJB, specify the class-
level @javax.interceptor.ExcludeDefaultInterceptors annotation in the bean file.

In the ejb-jar.xml file, use the <interceptor-binding> child element of <assembly-
descriptor> to specify default interceptors. In particular, set the <ejb-name> child
element to *, which means the class applies to all EJBs, and then the <interceptor-
class> child element to the name of the interceptor class.

The following snippet from an ejb-jar.xml file shows how to specify the default
interceptor class org.mycompany.DefaultIC:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar version="3.2"
     xmlns="xmlns.jcp.org/xml/ns/javaee"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
           http://xmlns.jcp.org/xml/ns/javaee/ejb-jar_3_2.xsd">

...

   <assembly-descriptor>

...

      <interceptor-binding>
        <ejb-name>*</ejb-name>
        <interceptor-class>org.mycompany.DefaultIC</interceptor-class>
      </interceptor-binding>

   </assembly-descriptor>

</ejb-jar>

Saving State Across Interceptors With the InvocationContext API
Use the javax.interceptor.InvocationContext API to pass state information
between the interceptors that execute for a given business method or life cycle
callback. The EJB Container passes the same InvocationContext instance to each
interceptor method, so you can, for example save information when the first business
method interceptor method executes, and then retrieve this information for all
subsequent interceptor methods that execute for this business method. The
InvocationContext instance is not shared between business method or life cycle
callback invocations.

All interceptor methods must have an InvocationContext parameter. You can then
use the methods of the InvocationContext interface to get and set context
information. The InvocationContext interface is shown below:

Chapter 5
Programming the Bean File

5-16



public interface InvocationContext {
    public Object getBean();
    public Method getMethod();
    public Object[] getParameters();
    public void setParameters(Object[]);
    public java.util.Map getContextData();
    public Object proceed() throws Exception;
}

The getBean method returns the bean instance. The getMethod method returns the name of
the business method for which the interceptor method was invoked; in the case of life cycle
callback interceptor methods, getMethod returns null.

The proceed method causes the invocation of the next interceptor method in the chain, or the
business method itself if called from the last @AroundInvoke interceptor method.

For an example of using InvocationContext, see Example of an Interceptor Class.

Programming Application Exceptions
If you specified in the business interface that a method throws an application method, then
you must program the exception as a separate class from the bean class.

Use the @javax.ejb.ApplicationException annotation to specify that an exception class is
an application exception thrown by a business method of the EJB. The EJB container reports
the exception directly to the client in the event of the application error.

Use the rollback Boolean attribute of the @ApplicationException annotation to specify
whether the application error causes the current transaction to be rolled back. By default, the
current transaction is not rolled back in event of the error.

You can annotate both checked and unchecked exceptions with this annotation.

The following ProcessingException.java file shows how to use the @ApplicationException
annotation to specify that an exception class is an application exception thrown by one of the
business methods of the EJB:

package examples;

import javax.ejb.ApplicationException;

/**
 * Application exception class thrown when there was a processing error
 * with a business method of the EJB.  Annotated with the
 * @ApplicationException annotation.
 */

@ApplicationException()
public class ProcessingException extends Exception {

  /**
   * Catches exceptions without a specified string
   *
   */
  public ProcessingException() {}

  /**
   * Constructs the appropriate exception with the specified string
   *
   * @param message           Exception message

Chapter 5
Programming the Bean File

5-17



   */
  public ProcessingException(String message) {super(message);}
}

Securing Access to the EJB
By default, any user can invoke the public methods of an EJB. If you want to restrict
access to the EJB, you can use the following security-related annotations to specify
the roles that are allowed to invoke all, or a subset, of the methods:

• javax.annotation.security.DeclareRoles—Explicitly lists the security roles that
will be used to secure the EJB.

• javax.annotation.security.RolesAllowed—Specifies the security roles that are
allowed to invoke all the methods of the EJB (when specified at the class-level) or
a particular method (when specified at the method-level.)

• javax.annotation.security.DenyAll—Specifies that the annotated method can
not be invoked by any role.

• javax.annotation.security.PermitAll—Specifies that the annotated method
can be invoked by all roles.

• javax.annotation.security.RunAs—Specifies the role which runs the EJB. By
default, the EJB runs as the user who actually invokes it.

The preceding annotations can be used with many Java EE components that allow
metadata annotations, not just EJB 3.2.

You create security roles and map users to roles using the WebLogic Server
Administration Console to update your security realm. See Manage Security Roles in
the Oracle WebLogic Server Administration Console Online Help.

The following example shows a simple stateless session EJB that uses all of the
security-related annotations; the code in bold is discussed after the example:

package examples;

import javax.ejb.Stateless;

import javax.annotation.security.DeclareRoles;
import javax.annotation.security.PermitAll;
import javax.annotation.security.DenyAll;
import javax.annotation.security.RolesAllowed;
import javax.annotation.security.RunAs;

/**
 * Bean file that implements the Service business interface.
 */

@Stateless
@DeclareRoles( { "admin", "hr" } )
@RunAs ("admin")

public class ServiceBean
  implements Service
{
  @RolesAllowed ( {"admin", "hr"} )
  public void sayHelloRestricted() {
    System.out.println("Only some roles can invoke this method.");
  }

Chapter 5
Programming the Bean File

5-18



  @DenyAll
  public void sayHelloSecret() {
    System.out.println("No one can invoke this method.");
  }

  @PermitAll
  public void sayHelloPublic() {
    System.out.println("Everyone can invoke this method.");
  }
}

The main points to note about the preceding example are:

• Import the security-related metadata annotations:

import javax.annotation.security.DeclareRoles;
import javax.annotation.security.PermitAll;
import javax.annotation.security.DenyAll;
import javax.annotation.security.RolesAllowed;
import javax.annotation.security.RunAs;

• The class-level @DeclareRoles annotation explicitly specifies that the admin and hr
security roles will later be used to secure some or all of the methods. This annotation is
not required; any security role referenced in, for example, the @RolesReferenced
annotation is implicitly declared. However, explicitly declaring the security roles makes
your code easier to read and understand.

• The class-level @RunAs annotation specifies that, regardless of the user who actually
invokes a particular method of the EJB, the EJB container runs the method as the admin
role, assuming, of course, that the original user is allowed to invoke the method.

• The @RolesAllowed annotation on the sayHelloRestricted method specifies that only
users mapped to the admin and hr roles are allowed to invoke the method.

• The @DenyAll annotation on the sayHelloSecret method specifies that no one is allowed
to invoke the method.

• The @PermitAll annotation on the sayHelloPublic method specifies that all users
mapped to any roles are allowed to invoke the method.

Specifying Transaction Management and Attributes
By default, the EJB container invokes a business method within a transaction context.
Additionally, the EJB container itself decides whether to commit or rollback a transaction; this
is called container-managed transaction demarcation.

You can change this default behavior by using the following annotations in your bean file:

• javax.ejb.TransactionManagement—Specifies whether the EJB container or the bean
file manages the demarcation of transactions. If you specify that the bean file manages it,
then you must program transaction management in your bean file, typically using the
Java Transaction API (JTA).

• javax.ejb.TransactionAttribute—Specifies whether the EJB container invokes
methods within a transaction.

For an example of using the javax.ejb.TransactionAttribute annotation, see Example of a
Simple Stateful EJB.

Chapter 5
Programming the Bean File

5-19



Complete List of Metadata Annotations By Function
The tables in the sections that follow group the annotations based on what task they
perform. EJB Metadata Annotations Reference, provides full reference information
about the EJB 3.2 metadata annotations in alphabetical order.

• Annotations to Specify the Bean Type

• Annotations to Specify the Local or Remote Interfaces

• Annotations to Support EJB 2.x Client View

• Annotations to Invoke a 3.0 Entity Bean

• Transaction-Related Annotations

• Annotations to Specify Interceptors

• Annotations to Specify Life Cycle Callbacks

• Security-Related Annotations

• Context Dependency Annotations

• Timeout and Exceptions Annotations

Annotations to Specify the Bean Type
The following summarize the annotations used to specify the bean type.

Table 5-1    Annotations to Specify the Bean Type

Annotation Description

@javax.ejb.Stateless Specifies that the bean class is a stateless session bean.
For more information, see javax.ejb.Stateless.

@javax.ejb.Singleton Specifies that the bean class is a singleton session bean.
For more information, see javax.ejb.Singleton.

@javax.ejb.Stateful Specifies that the bean class is a stateful session bean.
For more information, see javax.ejb.Startup.

@javax.ejb.Init Specifies the correspondence of a stateful session bean
class method with a create<METHOD> method for an
adapted EJB 2.1 EJBHome and/or EJBLocalHome client
view. For more information, see javax.ejb.Init.

@javax.ejb.Remove Specifies a remove method of a stateful session bean. For
more information, see javax.ejb.Remove.

@javax.ejb.MessageDriven Specifies that the bean class is a message-driven bean.
For more information, see javax.ejb.MessageDriven.

@javax.ejb.ActivationConfi
gProperty

Specifies properties used to configure a message-driven
bean in its operational environment. For more information,
see javax.ejb.ActivationConfigProperty.

Annotations to Specify the Local or Remote Interfaces
The following summarize the annotations used to specify the local or remote
interfaces.

Chapter 5
Complete List of Metadata Annotations By Function

5-20



Table 5-2    Annotations to Specify the Local or Remote Interfaces

Annotation Description

@javax.ejb.Local Specifies a local interface of the bean. For more information,
see javax.ejb.Local.

@javax.ejb.Remote Specifies a remote interface of the bean. For more information,
see javax.ejb.Remote.

Annotations to Support EJB 2.x Client View
The following summarize the annotations used to support EJB 2.x client view.

Table 5-3    Annotations to Support EJB 2.x Client View

Annotation Description

@javax.ejb.LocalHome Specifies a local home interface of the bean. For more
information, see javax.ejb.LocalHome.

@javax.ejb.RemoteHome Specifies a remote home interface of the bean. For more
information, see javax.ejb.RemoteHome.

Annotations to Invoke a 3.0 Entity Bean
The following summarize the annotations used to invoke a 3.0 entity bean.

Table 5-4    Annotations to Invoke a 3.0 Entity Bean

Annotation Description

@javax.persistence.PersistenceContext Specifies a dependency on an EntityManager
persistence context. For more information, see 
javax.persistence.PersistenceContext.

@javax.persistence.PersistenceContext
s

Specifies one or more PersistenceContext
annotations. For more information, see 
javax.persistence.PersistenceContexts.

@javax.persistence.PersistenceUnit Specifies a dependency on an
EntityManagerFactory. For more information,
see javax.persistence.PersistenceUnit.

@javax.persistence.PersistenceUnits Specifies one or more PersistenceUnit
annotations. For more information, see 
javax.persistence.PersistenceUnits.

Transaction-Related Annotations
The following summarize the annotations used for transactions.

Chapter 5
Complete List of Metadata Annotations By Function

5-21



Table 5-5    Transaction-Related Annotations

Annotation Description

@javax.ejb.TransactionManagement Specifies the transaction management
demarcation type (container- or bean-managed).
For more information, see 
javax.ejb.TransactionManagement.

@javax.ejb.TransactionAttribute Specifies whether a business method is invoked
within the context of a transaction. For more
information, see 
javax.ejb.TransactionManagement.

Annotations to Specify Interceptors
The following summarize the annotations used to specify interceptors.

Table 5-6    Annotations to Specify Interceptors

Annotation Description

@javax.interceptor.Interceptors Specifies the list of interceptor classes associated
with a bean class or method. For more
information, see javax.interceptor.Interceptors.

@javax.interceptor.AroundInvoke Specifies an interceptor method. For more
information, see javax.interceptor.AroundInvoke.

@javax.interceptor.ExcludeClassIn
terceptors

Specifies that, when the annotated method is
invoked, the class-level interceptors should not
invoke. For more information, see 
javax.interceptor.ExcludeClassInterceptors.

@javax.interceptor.ExcludeDefault
Interceptors

Specifies that, when the annotated method is
invoked, the default interceptors should not
invoke. For more information, see 
javax.interceptor.ExcludeDefaultInterceptors.

Annotations to Specify Life Cycle Callbacks
The following summarize the annotations used to specify life cycle callbacks.

Table 5-7    Annotations to Specify Life Cycle Callbacks

Annotation Description

@javax.ejb.PostActivate Designates a method to receive a callback after a
stateful session bean has been activated. For
more information, see javax.ejb.PostActivate.

@javax.ejb.PrePassivate Designates a method to receive a callback before
a stateful session bean is passivated. For more
information, see javax.ejb.PrePassivate.

Chapter 5
Complete List of Metadata Annotations By Function

5-22



Table 5-7    (Cont.) Annotations to Specify Life Cycle Callbacks

Annotation Description

@javax.annotation.PostConstruct Specifies the method that needs to be executed
after dependency injection is done to perform any
initialization. For more information, see 
javax.annotation.PostConstruct.

@javax.annotation.PreDestroy Specifies a method to be a callback notification to
signal that the instance is in the process of being
removed by the container. For more information,
see javax.annotation.PreDestroy.

Security-Related Annotations
The following metadata annotations are not specific to EJB 3.2, but rather, are general
security-related annotations in the javax.annotation.security package.

Table 5-8    Security-Related Annotations

Annotation Description

@javax.annotation.security.DeclareRo
les

Specifies the references to security roles in the bean
class. For more information, see 
javax.annotation.security.DeclareRoles.

@javax.annotation.security.RolesAllo
wed

Specifies the list of security roles that are allowed to
invoke the bean's business methods. For more
information, see 
javax.annotation.security.RolesAllowed.

@javax.annotation.security.PermitAll Specifies that all security roles are allowed to invoke
the method. For more information, see 
javax.annotation.security.PermitAll.

@javax.annotation.security.DenyAll Specifies that no security roles are allowed to invoke
the method. For more information, see 
javax.annotation.security.DenyAll.

@javax.annotation.security.RunAs Specifies the security role which the method is run
as. For more information, see 
javax.annotation.security.RunAs.

Context Dependency Annotations
The following summarize the annotations used for context dependency.

Table 5-9    Context Dependency Annotations

Annotation Description

@javax.ejb.EJB Specifies a dependency to an EJB business interface
or home interface. For more information, see 
javax.ejb.EJB.

@javax.ejb.EJBs Specifies one or more @EJB annotations. For more
information, see javax.ejb.EJBs.

Chapter 5
Complete List of Metadata Annotations By Function

5-23



Table 5-9    (Cont.) Context Dependency Annotations

Annotation Description

@javax.annotation.Resource Specifies a dependency on an external resource in
the bean's environment. For more information, see 
javax.annotation.Resource.

@javax.annotation.Resources Specifies one or more @Resource annotations. For
more information, see javax.annotation.Resources.

Timeout and Exceptions Annotations
The following summarize the annotations used for timeout and exceptions.

Table 5-10    Timeout and Exception Annotations

Annotation Description

@javax.ejb.Timeout Specifies the timeout method of the bean class.
For more information, see javax.ejb.Timeout.

@javax.ejb.ApplicationException Specifies that an exception is an application
exception and should be reported to the client
directly. For more information, see 
javax.ejb.ApplicationException.

Timer and Scheduling Annotations
The following summarize the annotations used for timers scheduling-specific
annotations.

Table 5-11    Timer and Scheduling Annotations

Annotation Description

@javax.ejb.Timeout Specifies the timeout method of the bean class.
For more information, see javax.ejb.Timeout.

@javax.ejb.ApplicationException Specifies that an exception is an application
exception and should be reported to the client
directly. For more information, see 
javax.ejb.ApplicationException.

Chapter 5
Complete List of Metadata Annotations By Function

5-24



6
Deployment Guidelines for Enterprise
JavaBeans

This chapter provides EJB-specific deployment guidelines. For deployment topics that are
common to all deployable application units, this chapter gives cross-references to topics in 
Deploying Applications to Oracle WebLogic Server, a comprehensive guide to deploying
WebLogic Server applications and modules.
This chapter includes the following sections:

• Before You Deploy an EJB

• Understanding and Performing Deployment Tasks

• Deployment Guidelines for EJBs

Before You Deploy an EJB
Before starting the deployment process you should have:

• Functional, tested bean code, in an exploded directory format or packaged in an archive
file—a JAR for a stand-alone EJB, an EAR if the EJB is part of an enterprise application,
or a WAR if the EJB is part of a Web application—along with the deployment descriptors.
For production environments, Oracle recommends that you package your application as
an EAR.

Note:

EJB 3.1 (and later) removed the restriction that enterprise bean classes must
be packaged in an ejb-jar file. Therefore, EJB classes can be packaged
directly inside a Web application archive (WAR) using the same packaging
guidelines that apply to Web application classes. See Deploying EJBs as Part
of an Web Application.

For an overview of the steps required to create and package an EJB, see Overview of the
EJB Development Process.

• Program the required annotated EJB class to specify the type of EJB—either:
@javax.ejb.Stateful, @javax.ejb.Stateless, @javax.ejb.Singleton, or
@javax.ejb.MessageDriven.

For additional details and examples of programming the bean class, see Programming
the Annotated EJB Class.

• Configured the optional, but supported, deployment descriptors—ejb-jar.xml and
weblogic-ejb-jar.xml, and, for entity EJBs that use container-managed persistence,
weblogic-cmp-jar.xml.

6-1



To create EJB deployment descriptors, see Generate Deployment Descriptors in 
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Understanding and Performing Deployment Tasks
Table 6-1 is a guide to WebLogic Server documentation topics that help you make
decisions about deployment strategies and provide instructions for performing
deployment tasks. For EJB-specific deployment topics, see Deployment Guidelines for
EJBs.

Table 6-1    Deployment Tasks and Topics

If You Want To.... See This Topic

Deploy in a development
environment

Deploying and Packaging from a Split Development
Directory in Developing Applications for Oracle WebLogic
Server.

Select a deployment tool Deployment Tools in Deploying Applications to Oracle
WebLogic Server

Determine appropriate packaging
for a deployment

Preparing Applications and Modules for Deployment in
Deploying Applications to Oracle WebLogic Server.

Organizing EJB components in a
split directory structure.

EJBs in Developing Applications for Oracle WebLogic
Server.

Select staging mode Controlling Deployment File Copying with Staging Modes in
Deploying Applications to Oracle WebLogic Server.

Perform specific deployment tasks Overview of the Deployment Process in Deploying
Applications to Oracle WebLogic Server.

Deployment Guidelines for EJBs
The following sections provide guidelines for deploying EJBs.

• Deploying Standalone EJBs as Part of an Enterprise Application

• Deploying EJBs as Part of an Web Application

• Deploying EJBs That Call Each Other in the Same Application

• Deploying EJBs That Use Dependency Injection

• Deploying Homogeneously to a Cluster

• Deploying EJBs to a Cluster

• Redeploying an EJB

• Using FastSwap Deployment to Minimize Deployment

• Understanding Warning Messages

• Disabling EJB Deployment Warning Messages

Deploying Standalone EJBs as Part of an Enterprise Application
Oracle recommends that you package and deploy your stand-alone EJB applications
as part of an Enterprise application. An Enterprise application is a Java EE 7

Chapter 6
Understanding and Performing Deployment Tasks

6-2



deployment unit that bundles together Web applications, EJBs, and Resource Adapters into a
single deployable unit.

This is a Oracle best practice, which allows for easier application migration, additions, and
changes. Also, packaging your applications as part of an Enterprise application allows you to
take advantage of the split development directory structure, which provides a number of
benefits over the traditional single directory structure.

See Overview of the Split Development Directory Environment in Developing Applications for
Oracle WebLogic Server.

Deploying EJBs as Part of an Web Application
Enterprise beans can also be packaged within a web application module (WAR).

EJB 3.1 (and later) removed the restriction that enterprise bean classes must be packaged in
an ejb-jar file. Therefore, EJB classes can be packaged directly inside a Web application
archive (WAR) using the same packaging guidelines that apply to Web application classes.
Simply put your EJB classes in the WEB-INF/classes directory or in a JAR file within WEB-
INF/lib directory. Optionally, if you are also using the EJB deployment descriptor, you can
package it as WEB-INF/ejb-jar.xml. When you run the appc compiler, a WAR file with the
classes required to access the EJB components is generated.

See Packaging an EJB In a WAR.

Deploying EJBs That Call Each Other in the Same Application
When an EJB in one application calls an EJB in another application, WebLogic Server passes
method arguments by value, due to classloading requirements. When EJBs are in the same
application, WebLogic Server can pass method arguments by reference; this improves the
performance of method invocation because parameters are not copied.

For best performance, package components that call each other in the same application, and
set enable-call-by-reference in weblogic-ejb-jar.xml to True. (By default, enable-call-
by-reference is False.)

Switching Protocol Limitation

If an application client request has multiple hops, and QOS is configured differently between
servers, then you must switch the protocol.

For example, when a client sends an SSL request to a JMS front-end cluster, the JMS front-
end cluster then forwards the request to the JMS back-end cluster using clear text. In this
case, you may need to switch from the t3s protocol to the t3 protocol.

Note:

You can switch the protocol only in a default channel. Custom channels do not
support protocol switching.

Chapter 6
Deployment Guidelines for EJBs

6-3



Deploying EJBs That Use Dependency Injection
When an EJB uses dependency injection, the resource name defined in the class and
the superclass must be unique. For example:

public class ClientServlet extends HttpServlet {
    @EJB(name = 'DateServiceBean', beanInterface = DateService.class)
    private DateService bean; .... } 
public class DerivedClientServlet extends ClientServlet { 
    @EJB(name = MyDateServiceBean', beanInterface = DateService.class)
    private DateService bean; .... }
 

For more information about dependency injection, see Using Java EE Annotations and
Dependency Injection in Developing Applications for Oracle WebLogic Server.

Deploying Homogeneously to a Cluster
If your EJBs will run on a WebLogic Server cluster, Oracle recommends that you
deploy them homogeneously—to each Managed Server in the cluster. Alternatively,
you can deploy an EJB to only to a single server in the cluster (that is, "pin" a module
to a server). This type of deployment is less common, and should be used only in
special circumstances where pinned services are required. See Understanding Cluster
Configuration in Administering Clusters for Oracle WebLogic Server.

Deploying EJBs to a Cluster
During deployment, the uncompiled EJB is copied to every server instance in the
cluster, but it is compiled only on the server instance to which it has been deployed. As
a result, the server instances in the cluster to which the EJB was not targeted lack the
classes necessary to invoke the EJB.

If you are deploying or redeploying an EJB to a single server instance in a cluster, a
client can now invoke the EJB application through other servers in the cluster.

For information on pinned deployments, see Deploying to a Single Server Instance
(Pinned Deployment) in Administering Clusters for Oracle WebLogic Server.

Redeploying an EJB
When you make changes to a deployed EJB's classes, you must redeploy the EJB. If
you use automatic deployment, deployment occurs automatically when you restart
WebLogic Server. Otherwise, you must explicitly redeploy the EJB.

Redeploying an EJB deployment enables an EJB provider to make changes to a
deployed EJB's classes, recompile, and then "refresh" the classes in a running server.

When you redeploy, the classes currently loaded for the EJB are immediately marked
as unavailable in the server, and the EJB's classloader and associated classes are
removed. At the same time, a new EJB classloader is created, which loads and
maintains the revised EJB classes.

When clients next acquire a reference to the EJB, their EJB method calls use the
changed EJB classes.

Chapter 6
Deployment Guidelines for EJBs

6-4



You can redeploy an EJB that is standalone or part of an application using any of the
administration tools listed in Summary of System Administration Tools and APIs in
Understanding Oracle WebLogic Server. See Redeploying Applications in a Production
Environment in Deploying Applications to Oracle WebLogic Server.

Production redeployment is not supported for:

• applications that use JTS drivers.

• applications that include EJB 1.1 container-managed persistence (CMP) EJBs. To use
production redeployment with applications that include CMP EJBs, use EJB 2.x CMP
instead of EJB 1.1 CMP.

For more information on production redeployment limitations, see Requirements and
Restrictions for Production Redeployment in Deploying Applications to Oracle WebLogic
Server.

Using FastSwap Deployment to Minimize Deployment
During iterative development of an EJB application, you make many modifications to the EJB
implementation class file, typically redeploying an EJB module multiple times during its
development.

Java EE 5 introduces the ability to redefine a class at runtime without dropping its
ClassLoader or abandoning existing instances. This allows containers to reload altered
classes without disturbing running applications, vastly speeding up iterative development
cycles and improving the overall development and testing experiences.

With FastSwap, Java classes are redefined in-place without reloading the ClassLoader,
thereby having the decided advantage of fast turnaround times. This means that you do not
have to wait for an application to redeploy for your changes to take affect. Instead, you can
make your changes, auto compile, and then see the effects immediately.

For more information about FastSwap, see Using FastSwap Deployment to Minimize
Redeployment in Deploying Applications to Oracle WebLogic Server.

Understanding Warning Messages
To get information about a particular warning, use the weblogic.GetMessage tool. For
example:

java weblogic.GetMessage -detail -id BEA-010202

Disabling EJB Deployment Warning Messages
You can disable certain WebLogic Server warning messages that occur during deployment.
You may find this useful if the messages provide information of which you are already aware.

For example, if the methods in your EJB makes calls by reference rather than by value,
WebLogic Server generates this warning during deployment: "Call-by-reference not
enabled."
You can use the disable-warning element in weblogic-ejb-jar.xml to disable certain
messages. For a list of messages you can disable, and instructions for disabling the
messages, see disable-warning in the weblogic-ejb-jar.xml Deployment Descriptor Reference
chapter of Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Chapter 6
Deployment Guidelines for EJBs

6-5



7
Using an Embedded EJB Container in Oracle
WebLogic Server

This chapter provides an overview of using an embeddable EJB container in Oracle
WebLogic Server.
This chapter includes the following sections:

• Overview of the Embeddable EJB Container

• EJB Lite Functionality Supported in the Embedded EJB Container

Overview of the Embeddable EJB Container
Unlike traditional Java EE server-based execution, embeddable container usage allows client
code and its corresponding enterprise beans to run in a Java SE environment without having
to deploy them to a Java EE server. This provides better support for testing, offline
processing (e.g., batch jobs), and the use of the EJB programming model in desktop
applications.

Most of the services present in the enterprise bean container in a Java EE server are
available in the embedded enterprise bean container, including injection, container-managed
transactions, and security. Enterprise bean components execute similarly in both embedded
and Java EE environments, and therefore the same enterprise bean can be easily reused in
both standalone and networked applications.

For a detailed example of using the Embedded EJB container in a Java SE environment, see 
EJB 3.1: Example of Using the Embeddable EJB Container in Java SE.

EJB Lite Functionality Supported in the Embedded EJB
Container

The EJB Lite subset of the EJB 3.2 API is supported in the Embedded EJB Container. EJB
Lite is by definition a subset of functionality and doesn't describe any new feature or
functionality. This section outlines the requirements of EJB Lite support as defined by the EJB
3.2 specification.

Table 7-1 represents the official requirements for EJB Lite functionality support as defined by
the EJB 3.2 specification.

Table 7-1    Requirements for EJB Lite vs. EJB 3.2 Full

Requirements EJB Lite EJB 3.2 Full

Components

Session Beans (stateful, stateless, singleton) Yes Yes

Message-Driven Beans No Yes

7-1



Table 7-1    (Cont.) Requirements for EJB Lite vs. EJB 3.2 Full

Requirements EJB Lite EJB 3.2 Full

2.x/1.1 CMP/BMP Entity Beans No Yes

JPA 2.1 Yes Yes

Session Bean Client Views

Local/No Interface Yes Yes

3.x Remote No Yes

2.x Remote Home/Component No Yes

JAX-WS Web Services Endpoint No Yes

JAX-RPC Web Services Endpoint No Yes

Services

EJB Timer Service (non-persistent) Yes Yes

Asynchronous Session Bean Invocations (local) Yes Yes

Interceptors Yes Yes

RMI-IIOP Interoperability No Yes

Container-managed Transactions/Bean-managed
Transactions

Yes Yes

Declarative and Programmatic Security Yes Yes

Miscellaneous

Embeddable API Yes Yes

Chapter 7
EJB Lite Functionality Supported in the Embedded EJB Container

7-2



8
Configuring the Persistence Provider in
Oracle WebLogic Server

This chapter describes Oracle TopLink, the default persistence provider in Oracle WebLogic
Server, and introduces how to use it. This chapter also tells how to set the default persistence
provider in WebLogic Server.
This chapter includes the following sections:

• Overview of Oracle TopLink

• Specifying a Persistence Provider

• Using Oracle TopLink in Oracle WebLogic Server

Overview of Oracle TopLink
Oracle TopLink is the default persistence provider in WebLogic Server 12c and later. It is a
comprehensive standards-based object-persistence and object-transformation framework
that provides APIs, schemas, and run-time services for the persistence layer of an
application.

The core component of TopLink is the EclipseLink project's produced libraries and utilities.
EclipseLink is the open source implementation of the development framework and the
runtime provided in TopLink. EclipseLink implements the following specifications, plus value-
added extensions:

• Java Persistence 2.1 (JPA 2.1).

JPA 2.1 includes new support or enhancements for features including Criteria Bulk
Update/Delete, stored procedures, JPQL Generic function, injectable entity listeners,
TREAT, converters, DDL generation, and entity graphs. For the complete JPA 2.1
specification, see "JSR-000338 Java Persistence 2.1 (Final Release)" at http://
jcp.org/aboutJava/communityprocess/final/jsr338/index.html.

• Java Architecture for XML Binding (JAXB) 2.2. (The EclipseLink JAXB implementation,
plus EclipseLink extensions, is called MOXy.)

For the JAXB 2.0 specification, see "JSR-000222 Java Architecture for XML Binding
(JAXB) 2.0 " at http://jcp.org/aboutJava/communityprocess/pfd/jsr222/
index.html.

• EclipseLink also includes Database Web Service (DBWS), which provides access to
relational database artifacts by using a Java API for XML Web Services (JAX-WS) 2 Web
service.

EclipseLink also provides support for Oracle Spatial and Oracle XDB mapping.

For more information about EclipseLink, including other supported services, see the
EclipseLink project home at http://wiki.eclipse.org/EclipseLink and the EclipseLink
Documentation Center at http://wiki.eclipse.org/EclipseLink/UserGuide.

In addition to all of EclipseLink, Oracle TopLink includes:

8-1

http://jcp.org/aboutJava/communityprocess/final/jsr338/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr338/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html
http://wiki.eclipse.org/EclipseLink
http://wiki.eclipse.org/EclipseLink/UserGuide


• TopLink Grid, an integration between EclipseLink JPA with Oracle Coherence that
allows EclipseLink to use Oracle Coherence as a level 2 (L2) cache and
persistence layer for entities. See Developing Applications with Oracle Coherence

Note:

You must have a license for Oracle Coherence to be able to use TopLink
Grid.

• Logging integration with WebLogic Server.

• MBean support in WebLogic Server.

For information about developing, deploying, and configuring Oracle TopLink
applications, see the following:

• Solutions Guide for Oracle TopLink

• Understanding Oracle TopLink

• Java API Reference for Oracle TopLink

Note:

The preceding documents are for Oracle TopLink 12.1.3, but they also apply
to the current version of WebLogic Server.

See also the following EclipseLink resources:

• EclipseLink Documentation Center at http://www.eclipse.org/eclipselink/
documentation/

• EclipseLink examples at http://wiki.eclipse.org/EclipseLink/Examples.

Specifying a Persistence Provider
You can specify what persistence provider to use for a persistence unit in the
application code or by accepting the default persistence provider set for the WebLogic
Server domain, as described in the following sections:

• Setting the Default Provider for the Domain

• Specifying the Persistence Provider in an Application

Setting the Default Provider for the Domain
Unless you specify otherwise, TopLink is used as the default persistence provider for a
WebLogic Server domain. The default provider is used for any entities in an application
that are not configured to use a different persistence provider. The default provider is
used for both injected and application-managed entity managers and factories.

You can set the default provider in the WebLogic Server Administration Console or by
directly setting JPAMBean.DefaultJPAProvider.

Chapter 8
Specifying a Persistence Provider

8-2

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=COHDG
http://www.eclipse.org/eclipselink/documentation/
http://www.eclipse.org/eclipselink/documentation/
http://wiki.eclipse.org/EclipseLink/Examples


Note:

Oracle Kodo JPA/JDO is not supported in this release of WebLogic Server.
Customers are encouraged to use Oracle TopLink, which supports JPA 2.1. Kodo
supports only JPA 1.0.

For instructions on setting the default through the WebLogic Server Administration Console,
see Configure the Default JPA Persistence Provider in Oracle WebLogic Server
Administration Console Online Help.

If you change the default provider, you must do the following for any deployed applications
that do not specify a JPA provider:

• Restart applications that use application-managed entity manager factories.

• Redeploy applications that use injected entity manager factories or entity managers.

Specifying the Persistence Provider in an Application
A persistence provider specified in an application takes precedence over the default provider
set for the WebLogic Server domain.

You can set the provider to use in the following ways:

• Specify the provider in the <provider> element for a persistence unit in the
persistence.xml file, for example:

 <persistence-unit name="example">
    <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
...
  </persistence-unit>

• Specify the provider in the javax.persistence.provider property passed to the Map
parameter of the
javax.persistence.Persistence.createEntityManagerFactory(String, Map) method.

Using Oracle TopLink in Oracle WebLogic Server
For detailed information about using Oracle TopLink in WebLogic server, see Using TopLink
with WebLogic Server in Solutions Guide for Oracle TopLink. Note that this is an Oracle
TopLink 12.1.3 publication, but it applies to the current version of WebLogic Server.

Chapter 8
Using Oracle TopLink in Oracle WebLogic Server

8-3



A
EJB Metadata Annotations Reference

This appendix provides reference information for the EJB 3.x metadata annotations.
This appendix includes the following sections:

• Overview of EJB 3.x Annotations

• Annotations for Stateless, Stateful, and Message-Driven Beans

• Annotations Used to Configure Interceptors

• Annotations Used to Interact With Entity Beans

• Standard JDK Annotations Used By EJB 3.x

• Standard Security-Related JDK Annotations Used by EJB 3.x

• WebLogic Annotations

Overview of EJB 3.x Annotations
The WebLogic Server EJB 3.2 programming model uses the Java EE 7 metadata annotations
feature in which you create an annotated EJB 3.2 bean file, and then compile the class with
standard Java compiler, which can then be packaged into a target module for deployment. At
runtime, WebLogic Server parses the annotations and applies the required behavioral
aspects to the bean file.

The following sections provide reference information for the metadata annotations you can
specify in the EJB bean file. Some of the annotations are in the javax.ejb package, and are
thus specific to EJBs; others are more common and are used by other Java EE 7
components, and are thus in more generic packages, such as javax.annotation.

Note:

If you are continuing to use deployment descriptors in your EJB implementation,
refer to EJB Deployment Descriptors in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server.

Annotations for Stateless, Stateful, and Message-Driven Beans
This section provides reference information for the following annotations:

• javax.ejb.AccessTimeout

• javax.ejb.ActivationConfigProperty

• javax.ejb.AfterBegin

• javax.ejb.AfterCompletion

• javax.ejb.ApplicationException

A-1



• javax.ejb.Asynchronous

• javax.ejb.BeforeCompletion

• javax.ejb.ConcurrencyManagement

• javax.ejb.DependsOn

• javax.ejb.EJB

• javax.ejb.EJBs

• javax.ejb.Init

• javax.ejb.Local

• javax.ejb.LocalBean

• javax.ejb.LocalHome

• javax.ejb.Lock

• javax.ejb.MessageDriven

• javax.ejb.PostActivate

• javax.ejb.PrePassivate

• javax.ejb.Remote

• javax.ejb.RemoteHome

• javax.ejb.Remove

• javax.ejb.Schedule

• javax.ejb.Schedules

• javax.ejb.Singleton

• javax.ejb.Startup

• javax.ejb.StatefulTimeout

• javax.ejb.Stateless

• javax.ejb.Timeout

• javax.ejb.TransactionAttribute

• javax.ejb.TransactionManagement

javax.ejb.AccessTimeout
The following sections describe the annotation in more detail.

Description
Target: Method, Type

Specifies the amount of time in a given time unit that a concurrent access attempt
should block before timing out.

This annotation may be applied to a stateful session bean or to a singleton session
bean that uses container managed concurrency.

By default, clients are allowed to make concurrent calls to a stateful session object and
the container is required to serialize such concurrent requests. The AccessTimeout

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-2



annotation is used to specify the amount of time a stateful session bean request should block
in the case that the bean instance is already processing a different request. Use of the
AccessTimeout annotation with a value of 0 specifies to the container that concurrent client
requests to a stateful session bean are prohibited.

The AccessTimeout annotation can be specified on a business method or a bean class. If it is
specified on a class, it applies to all business methods of that class. If it is specified on both a
class and on a business method of the class, the method-level annotation takes precedence
for the given method.

Access time-outs for a singleton session bean only apply to methods eligible for concurrency
locks. The AccessTimeout annotation can be specified on the singleton session bean class or
on an eligible method of the class. If AccessTimeout is specified on both a class and on a
method of that class, the method-level annotation takes precedence for the given method.

For details, see Optionally Program the EJB Timer Service..

Attributes
The following table summarizes the attributes.

Table A-1    Attributes of the javax.ejb.AccessTimeout Annotation

Name Description Data Type Required?

value Specifies the amount of time in a given time unit
that a concurrent access attempt should block
before timing out.

• A value > 0 indicates a timeout value in the
units specified by the unit element.

• A value of 0 means concurrent access is
not permitted.

• A value of -1 indicates that the client
request will block indefinitely until forward
progress it can proceed.

Values less than -1 are not valid.

Long No

unit Specifies the units used for the specified value.

The default value for this attribute is
java.util.concurrent.TimeUnit.MILLISE
CONDS.

TimeUnit No

javax.ejb.ActivationConfigProperty
The following sections describe the annotation in more detail.

Note:

Based on the Enterprise JavaBean specification, the
javax.ejb.ActivationConfigProperty annotation is used for MDBs only. This
annotation is not used for session or entity beans.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-3



Description
Target: Any

Specifies properties used to configure a message-driven bean in its operational
environment. This may include information about message acknowledgement modes,
message selectors, expected destination or endpoint types, and so on. The
ActivationConfigProperty is used only for message-driven beans only; it is not used
for session beans or entity beans.

This annotation is used only as a value to the activationConfig attribute of the
@javax.ejb.MessageDriven annotation. For more information about this annotation,
see Using EJB 3.2 Compliant MDBs and Deployment Elements and Annotations for
MDBs in Developing Message-Driven Beans for Oracle WebLogic Server.

Attributes
The following table summarizes the attributes.

Table A-2    Attributes of the javax.ejb.ActivationConfigProperty Annotation

Name Description Data Type Required?

propertyName Specifies the name of the activation
property.

String Yes

propertyValue Specifies the value of the activation property. String Yes

javax.ejb.AfterBegin
The following sections describe the annotation in more detail.

Description
Target: Method

Designate a stateful session bean method to receive the after begin session
synchronization callback.

The after begin callback notifies a stateful session bean instance that a new
transaction has started and that the subsequent business methods on the instance will
be invoked in the context of the transaction.

This method executes in the proper transaction context. A bean must have at most
one AfterBegin method. The signature of this method must observe the following
rules:

• The method must not be declared as final or static.

• The method may have any access type.

• The return type must be void.

• The method must take no arguments.

This method executes with no transaction context.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-4



A stateful session bean class may use either the SessionSynchronization interface or the
session synchronization annotations, but not both.

javax.ejb.AfterCompletion
The following sections describe the annotation in more detail.

Description
Target: Method

Designate a stateful session bean method to receive the after completion session
synchronization callback.

The after completion callback notifies a stateful session bean instance that a transaction
commit protocol has completed. A completion status of true indicates that the transaction has
committed. A status of false indicates that a rollback has occurred.

A bean must have at most one AfterCompletion method. The signature of this method must
observe the following rules:

• The method must not be declared as final or static.

• The method may have any access type.

• The return type must be void.

• The method must take a single argument of type boolean.

This method executes with no transaction context.

A stateful session bean class may use either the SessionSynchronization interface or the
session synchronization annotations, but not both.

javax.ejb.ApplicationException
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies that an exception is an application exception and that it should be reported to the
client application directly, or unwrapped.

This annotation can be applied to both checked and unchecked exceptions.

Attributes
The following table summarizes the attributes.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-5



Table A-3    Attributes of the javax.ejb.ApplicationException Annotation

Name Description Data Type Required?

rollback Specifies whether the EJB container
should rollback the transaction, if the
bean is currently being invoked inside of
one, if the exception is thrown.

Valid values for this attribute are true
and false. Default value is false, or
the transaction should not be rolled
back.

boolean No

javax.ejb.Asynchronous
The following sections describe the annotation in more detail.

Description
Target: Method, Type

Used to mark a session bean method as an asynchronous method or to designate all
business methods of a session bean class as asynchronous, where control is returned
to the client by the enterprise bean container before the method is invoked on the
session bean instance. Asynchronous methods are typically used for long-running
operations, for processor-intensive tasks, for background tasks, to increase application
throughput, or to improve application response time if the method invocation result isn't
required immediately.

Clients calling asynchronous methods, immediately have control returned to them by
the enterprise bean container. This allows the client to perform other tasks while the
method invocation completes. If the method returns a result, the result is an
implementation of the return type void or java.util.concurrent.Future<V> interface,
where V is the result value type. The Future<V> interface defines methods the client
may use to check if the computation is completed, wait for the invocation to complete,
retrieve the final result, and cancel the invocation.

Asynchronous method invocation semantics only apply to the no-interface, local
business, and remote business client views. Methods exposed through the EJB 2.x
local, EJB 2.x remote, and Web service client views must not be designated as
asynchronous.

javax.ejb.BeforeCompletion
The following sections describe the annotation in more detail.

Description
Target: Method

Designate a stateful session bean method to receive the before completion session
synchronization callback.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-6



The before completion callback notifies a stateful session bean instance that a transaction is
about to be committed.

This method executes in the proper transaction context.

Note:

The instance may still cause the container to rollback the transaction by invoking
the setRollbackOnly() method on the session context or by throwing an exception.
A bean must have at most one BeforeCompletion method.

The signature of this method must observe the following rules:

• The method must not be declared as final or static.

• The method may have any access type.

• The return type must be void.

• The method must take no arguments.

This method executes with no transaction context.

A stateful session bean class may use either the SessionSynchronization interface or the
session synchronization annotations, but not both.

javax.ejb.ConcurrencyManagement
The following sections describe the annotation in more detail.

Description
Target: Type

Declares a singleton session bean's concurrency management type.

If this annotation is not specified, the singleton bean is assumed to have container managed
concurrency.

This annotation may be applied to stateful session beans, but doing so has no impact on the
semantics of concurrency management for such beans. The concurrency management type
for bean-managed concurrency (BEAN) does not apply to stateful session beans.

Attributes
The following table summarizes the attributes.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-7



Table A-4    Attributes of the javax.ejb.ConcurrencyManagement Annotation

Name Description Data Type Required?

value Specifies the concurrency management type
used by the bean class.

Valid values for this attribute are:

• ConcurrencyManagementType.CONTAI
NER

• ConcurrencyManagementType.BEAN
The default value for this attribute is
javax.ejb.ConcurrencyManagementType
.CONTAINER.

String No.

javax.ejb.DependsOn
The following sections describe the annotation in more detail.

Description
Target: Type

Used to express an initialization dependency between singleton components.

The container ensures that all singleton beans with which a singleton has a DependsOn
relationship have been initialized before the singleton's PostConstruct method is
called.

During application shutdown the container ensures that all singleton beans on with
which the singleton has a DependsOn relationship are still available during the
singleton's PreDestroy method.

Attributes
The following table summarizes the attributes.

Table A-5    Attributes of the javax.ejb.DependsOn Annotation

Name Description Data Type Required?

value Specifies ejb-names of singleton components
whose initialization must occur before this
singleton. The order in which these names
are listed is not significant.

String No.

javax.ejb.EJB
The following sections describe the annotation in more detail.

Description
Target: Class, Method, Field

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-8



Specifies a dependency or reference to an EJB business or home interface.

You annotate a bean's instance variable with the @EJB annotation to specify a dependence on
another EJB. WebLogic Server automatically initializes the annotated variable with the
reference to the EJB on which it depends; this is also called dependency injection. This
initialization occurs before any of the bean's business methods are invoked and after the
bean's EJBContext is set.

You can also annotate a setter method in the bean class; in this case WebLogic Server uses
the setter method itself when performing dependency injection. This is an alternative to
instance variable dependency injection.

If you apply the annotation to a class, the annotation declares the EJB that the bean will look
up at runtime.

Whether using variable or setter method injection, WebLogic Server determines the name of
the referenced EJB by either the name or data type of the annotated instance variable or
setter method parameter. If there is any ambiguity, you should use the beanName or
mappedName attributes of the @EJB annotation to explicitly name the dependent EJB.

Attributes
The following table summarizes the attributes.

Table A-6    Attributes of the javax.ejb.EJB Annotation

Name Description Data Type Required?

name Specifies the name by which the
referenced EJB is to be looked up in the
environment.

This name must be unique within the
deployment unit, which consists of the
class and its superclass.

String No

beanInterface Specifies the interface type of the
referenced EJB (either a business or home
interface).

Default value for this attribute is
Object.class

Class No

beanName Specifies the name of the referenced EJB.

This attribute corresponds to the name
element of the @Stateless or @Stateful
annotation in the referenced EJB, which by
default is the unqualified name of the
referenced bean class.

This attribute is most useful when multiple
session beans in an EJB JAR file
implement the same interface, because the
name of each bean must be unique.

String No

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-9



Table A-6    (Cont.) Attributes of the javax.ejb.EJB Annotation

Name Description Data Type Required?

mappedName Specifies the global JNDI name of the
referenced EJB.

For example:

mappedName="bank.Account"
specifies that the referenced EJB has a
global JNDI name of bank.Account and is
deployed in the WebLogic Server JNDI
tree.

Note: EJBs that use mapped names may
not be portable.

String No

description Describes the EJB reference. String No

javax.ejb.EJBs
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies an array of @javax.ejb.EJB annotations.

Attribute
The following table summarizes the attributes.

Table A-7    Attribute of the javax.ejb.EJBs Annotation

Name Description Data Type Required?

value Specifies the array of @javax.ejb.EJB
annotations

EJB[] No

javax.ejb.Init
The following sections describe the annotation in more detail.

Description
Target: Method

Specifies the correspondence of a method in the bean class with a createMETHOD
method for an adapted EJB 2.1 EJBHome or EJBLocalHome client view.

This annotation is used only in conjunction with stateful session beans, or those that
have been annotated with the @javax.ejb.Stateful class-level annotation,

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-10



The return type of a method annotated with the @javax.ejb.Init annotation must be void,
and its parameter types must be exactly the same as those of the referenced createMETHOD
method or methods.

The @Init annotation is required only for stateful session beans that provide a Remote-Home
or LocalHome interface. You must specify the name of the adapted create method of the
Home or LocalHome interface, using the value attribute, if there is any ambiguity.

Attributes
The following table summarizes the attributes.

Table A-8    Attributes of the javax.ejb.Init Annotation

Name Description Data Type Required?

value Specifies the name of the corresponding
createMETHOD method.

This attribute is required only when the
@Init annotation is used to associate an
adapted Home interface of a stateful
session bean that has more than one
create<METHOD> method.

String No

javax.ejb.Local
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies the local interface or interfaces of a session bean. The local interface exposes
business logic to local clients—those running in the same application as the EJB. It defines
the business methods a local client can call.

You are required to specify this annotation if your bean class implements more than a single
interface, not including the following:

• java.io.Serializable
• java.io.Externalizable
• javax.ejb.*
This annotation applies only to stateless or stateful session beans.

Attributes
The following table summarizes the attributes.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-11



Table A-9    Attributes of the javax.ejb.Local

Name Description Data Type Required?

value Specifies the list of local interfaces as an
array of classes.

You are required to specify this attribute only
if your bean class implements more than a
single interface, not including the following:

• java.io.Serializable
• java.io.Externalizable
• javax.ejb.*

Class[] No

javax.ejb.LocalBean
The following sections describe the annotation in more detail.

Description
Target: Type

Designates that a session bean exposes a no-interface view.

javax.ejb.LocalHome
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies the local home interface of the bean class.

The local home interface provides methods that local clients—those running in the
same application as the EJB—can use to create, remove, and in the case of an entity
bean, find instances of the bean. The local home interface also has home methods—
business logic that is not specific to a particular bean instance.

This attribute applies only to stateless and stateful session beans.

You typically specify this attribute only if you are going to provide an adapted EJB 2.1
component view of the EJB 3.x bean. You can also use this annotation with bean
classes that have been written to the EJB 2.1 APIs.

Attributes
The following table summarizes the attributes.

Table A-10    Attributes of the javax.ejb.LocalHome Annotation

Name Description Data Type Required?

value Specifies the local home class. Class Yes

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-12



javax.ejb.Lock
The following sections describe the annotation in more detail.

Description
Target: Type, Method

Declares a concurrency lock for a singleton session bean with container managed
concurrency.

This annotation may be specified on the bean class, the business methods of the bean class
or both. Specifying the annotation on a business method overrides the value specified at
class level, if any.

If this annotation is not used, a value of Lock(WRITE) is assumed.

Attributes
The following table summarizes the attributes.

Table A-11    Attributes of the javax.ejb.LockType Annotation

Name Description Data Type Required?

value Specifies the concurrency lock used by the
singleton session bean with container managed
concurrency.

Valid values for this attribute are:

• LockType.READ
• LockType.WRITE
Default value is javax.ejb.LockType.WRITE.

String No.

javax.ejb.MessageDriven
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies that the Enterprise JavaBean is a message-driven bean.

Attributes
The following table summarizes the attributes.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-13



Table A-12    Attributes of the javax.ejb.MessageDriven Annotation

Name Description Data Type Required?

name Specifies the name of the message-
driven bean.

If you do not specify this attribute, the
default value is the unqualified name
of the bean class.

String No

messageListenerInt
erface

Specifies the message-listener
interface of the bean class.

You must specify this attribute if the
bean class does not explicitly
implement the message-listener
interface, or if the bean class
implements more than one interface
other than java.io.Serializable,
java.io.Externalizable, or any
of the interfaces in the javax.ejb
package.

The default value for this attribute is
Object.class.

Class No

activationConfig Specifies the configuration of the
message-driven bean in its
operational environment. This may
include information about message
acknowledgement modes, message
selectors, expected destination or
endpoint types, and so on.

You specify activation configuration
information using an Array of
@javax.ejb.ActivationConfigP
roperty annotation, specify the
property name and value.

ActivationC
onfigPrope
rty[]

No

mappedName Specifies the product-specific name
to which the message-driven bean
should be mapped.

You can also use this attribute to
specify the JNDI name of the
message destination of this
message-driven bean. For example:

mappedName="my.Queue"
specifies that this message-driven
bean is associated with a JMS
queue, whose JNDI name is
my.Queue and is deployed in the
WebLogic Server JNDI tree.

Note: If you specify this attribute, the
message-driven bean may not be
portable.

String No

description Specifies a description of the
message-driven bean.

String No

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-14



javax.ejb.PostActivate
The following sections describe the annotation in more detail.

Description
Target: Method

Specifies the life cycle callback method that signals that the EJB container has just
reactivated the bean instance.

This annotation applies only to stateful session beans. Because the EJB container
automatically maintains the conversational state of a stateful session bean instance when it is
passivated, you do not need to specify this annotation for most stateful session beans. You
only need to use this annotation, along with its partner @PrePassivate, if you want to allow
your stateful session bean to maintain the open resources that need to be closed prior to a
bean instance's passivation and then reopened during the bean instance's activation.

Only one method in the bean class can be annotated with this annotation. If you annotate
more than one method with this annotations, the EJB will not deploy.

The method annotated with @PostActivate must follow these requirements:

• The return type of the method must be void.

• The method must not throw a checked exception.

• The method may be public, protected, package private or private.

• The method must not be static.

• The method must not be final.

This annotation does not have any attributes.

javax.ejb.PrePassivate
The following sections describe the annotation in more detail.

Description
Target: Method

Specifies the life cycle callback method that signals that the EJB container is about to
passivate the bean instance.

This annotation applies only to stateful session beans. Because the EJB container
automatically maintains the conversational state of a stateful session bean instance when it is
passivated, you do not need to specify this annotation for most stateful session beans. You
only need to use this annotation, along with its partner @PostActivate, if you want to allow
your stateful session bean to maintain the open resources that need to be closed prior to a
bean instance's passivation and then reopened during the bean instance's activation.

Only one method in the bean class can be annotated with this annotation. If you annotate
more than one method with this annotations, the EJB will not deploy.

The method annotated with @PrePassivate must follow these requirements:

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-15



• The return type of the method must be void.

• The method must not throw a checked exception.

• The method may be public, protected, package private or private.

• The method must not be static.

• The method must not be final.

This annotation does not have any attributes.

javax.ejb.Remote
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies the remote interface or interfaces of a session bean. The remote interface
exposes business logic to remote clients—clients running in a separate application
from the EJB. It defines the business methods a remote client can call.

This annotation applies only to stateless or stateful session beans.

Attributes
The following table summarizes the attributes.

Table A-13    Attributes of the javax.ejb.Remote Annotation

Name Description Data Type Required?

value Specifies the list of remote interfaces as an
array of classes.

You are required to specify this attribute only if
your bean class implements more than a
single interface, not including the following:

• java.io.Serializable
• java.io.Externalizable
• javax.ejb.*

Class[] No

javax.ejb.RemoteHome
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies the remote home interface of the bean class.

The remote home interface provides methods that remote clients—those running in a
separate application from the EJB—can use to create, remove, and find instances of
the bean.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-16



This attribute applies only to stateless and stateful session beans.

You typically specify this attribute only if you are going to provide an adapted EJB 2.1
component view of the EJB 3.x bean. You can also use this annotation with bean classes that
have been written to the EJB 2.1 APIs.

Attributes
The following table summarizes the attributes.

Table A-14    Attributes of the javax.ejb.RemoteHome Annotation

Name Description Data Type Required?

value Specifies the remote home class. Class Yes

javax.ejb.Remove
The following sections describe the annotation in more detail.

Description
Target: Method

Use the @javax.ejb.Remove annotation to denote a remove method of a stateful session
bean.

When the method completes, the EJB container will invoke the method annotated with the
@javax.annotation.PreDestroy annotation, if any, and then destroy the stateful session
bean.

Attributes
The following table summarizes the attributes.

Table A-15    Attributes of the javax.ejb.Remove Annotation

Name Description Data Type Required?

retainIfException Specifies that the container should not remove the
stateful session bean if the annotated method
terminates abnormally with an application
exception.

Valid values are true and false. Default value is
false.

boolean No

javax.ejb.Schedule
The following sections describe the annotation in more detail.

Description
Target: Class

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-17



Schedule a timer for automatic creation with a timeout schedule based on a CRON-
like time expression. The annotated method is used as the timeout callback method.

All elements of this annotation are optional. If none are specified a persistent timer will
be created with callbacks occurring every day at midnight in the default time zone
associated with the container in which the application is executing.

There are seven elements that constitute a schedule specification which are listed
below. In addition, the timezone element may be used to specify a non-default time
zone in whose context the schedule specification is to be evaluated; the persistent
element may be used to specify a non-persistent timer, and the info element may be
used to specify additional information that may be retrieved when the timer callback
occurs.

Calendar-based Schedule Elements
The elements that specify the calendar-based schedule itself are as follows:

• second – one or more seconds within a minute.

Allowable values: [0,59]

• minute – one or more minutes within an hour.

Allowable values: [0,59]

• hour – one or more hours within a day.

Allowable values: [0,23]

• dayOfMonth – one or more days within a month.

Allowable values:]

– 1,31]

– -7, -1

– "Last"

– {"1st", "2nd", "3rd", "4th", "5th", "Last"} {"Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", "Sat"}

"Last" means the last day of the month.

-x (where x is in the range [-7, -1]) means x day(s) before the last day of the month

"1st","2nd", etc. applied to a day of the week identifies a single occurrence of that
day within the month.

• month – one or more months within a year.

Allowable values:]

– [1,12]

– {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov",
Dec"}

• dayOfWeek – one or more days within a week.

Allowable values:]

– [0,7]

– {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-18



"0" and "7" both refer to Sunday

• year – a particular calendar year.

Allowable values: a four-digit calendar year

Forms of Supported Element Values
Each element supports values expressed in one of the following forms:

• Single Value – Constrains the attribute to only one of its possible values.

Example: second = "10"
Example: month = "Sep"

• Wild Card – "*" Represents all allowable values for a given attribute.

Example: second = "*"
Example: dayOfWeek = "*"

• List – Constrains the attribute to two or more allowable values or ranges, with a comma
used as a separator character within the string. Each item in the list must be a single
value or range. List items cannot be lists, wild cards, or increments. Duplicate values are
ignored.

Example: second = "10,20,30"
Example: dayOfWeek = "Mon,Wed,Fri"
Example: minute = "0-10,30,40"

• Range – Constrains the attribute to an inclusive range of values, with a dash separating
both ends of the range. Each side of the range must be a single attribute value. Members
of a range cannot be lists, wild cards, ranges, or increments. If x is larger than y in a
range "x-y", the range is equivalent to "x-max, min-y", where max is the largest value of
the corresponding attribute and min is the smallest. The range "x-x", where both range
values are the same, evaluates to the single value x. The day of the week range "0-7" is
equivalent to "*".

Example: second = "1-10"
Example: dayOfWeek = "Fri-Mon"
Example: dayOfMonth = "27-3" (Equivalent to "27-Last , 1-3"

• Increments – The forward slash constrains an attribute based on a starting point and an
interval, and is used to specify every N seconds, minutes, or hours within the minute,
hour, or day, respectively. For the expression x/y, the attribute is constrained to every yth
value within the set of allowable values beginning at time x. The x value is inclusive. The
wild card character (*) can be used in the x position, and is equivalent to 0. The use of
increments is only supported within the second, minute, and hour elements. For the
second and minute elements, x and y must each be in the range [0,59]. For the hour
element, x and y must each be in the range [0,23].

Example: minute = "?/5" (Every five minutes within the hour)

This is equivalent to: minute = "0,5,10,15,20,25,30,35,40,45,50,55"

Example: second = "30/10" (Every 10 seconds within the minute, starting at second 
30) 

This is equivalent to: second = "30,40,50"

Note that the set of matching increment values stops once the maximum value for that
attribute is exceeded. It does not "roll over" past the boundary.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-19



Example : ( minute = "?/14", hour="1,2") 

This is equivalent to: (minute = "0,14,28,42,56", hour = "1,2") (Every 14 minutes
within the hour, for the hours of 1 and 2 a.m.)

Additional Rules for Schedule Specification Elements
The following additional rules apply to the schedule specification elements.

• If the dayOfMonth element has a non-wildcard value and the dayOfWeek element
has a non-wildcard value, then any day matching either the dayOfMonth value or
the dayOfWeek value will be considered to apply.

• Whitespace is ignored, except for string constants and numeric values.

• All string constants (e.g., "Sun", "Jan", "1st", etc.) are case insensitive.

Schedule-based timer times are evaluated in the context of the default time zone
associated with the container in which the application is executing. A schedule-based
timer may optionally override this default and associate itself with a specific time zone.
If the schedule-based timer is associated with a specific time zone, all its times are
evaluated in the context of that time zone, regardless of the default time zone in which
the container is executing.

The timeout callback method to which the Schedule annotation is applied must have
one of the following signatures, where <METHOD> designates the method name:

void <METHOD>()
 void <METHOD>(Timer timer)

A timeout callback method can have public, private, protected, or package level
access. A timeout callback method must not be declared as final or static. Timeout
callback methods must not throw application exceptions.

Attributes
The following table summarizes the attributes.

Table A-16    Attributes of the javax.ejb.Schedule Annotation

Name Description Data Type Required?

dayofMonth Specifies one or more days within a month.

Default value is *.

String No

dayofWeek Specifies one or more days within a week.

Default value is *.

String No

hour Specifies one or more hours within a day.

Default value is 0.

String No

info Specifies an information string that is
associated with the timer.

Default value is 0.

String No

minute Specifies one or more minutes within a hour.

Default value is 0.

String No

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-20



Table A-16    (Cont.) Attributes of the javax.ejb.Schedule Annotation

Name Description Data Type Required?

month Specifies one or more months within a year.

Default value is *.

String No

persistent Specifies whether the timer that is created is
persistent.

Valid values for this attribute are true and
false. Default value is true.

Boolean No

second Specifies one or more seconds with in a
minute.

Default value is 0.

String No

timezone Specifies the time zone within which the
schedule is evaluated. Time zones are
specified as an ID string. The set of required
time zone IDs is defined by the Zone
Name(TZ) column of the public domain
zoneinfo database.

Default value: If a timezone is not specified,
the schedule is evaluated in the context of the
default timezone associated with the
container in which the application is
executing.

String No

year Specifies one or more years.

Default value is *.

String No

javax.ejb.Schedules
The following sections describe the annotation in more detail.

Description
Target: Method

Applied to a timer callback method to schedule multiple calendar-based timers for the
method. The method to which the Schedules annotation is applied must have one of the
following signatures, where <METHOD> designates the method name:

void <METHOD>()
void <METHOD>(Timer timer)

Attributes
The following table summarizes the attributes.

Table A-17    Attributes of the javax.ejb.Schedules Annotation

Name Description Data Type Required?

value Specifies one or more calendar-based timer
specifications.

Schedule[] Yes

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-21



javax.ejb.Singleton
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies that the Enterprise JavaBean is a singleton session bean.

Attributes
The following table summarizes the attributes.

Table A-18    Attributes of the javax.ejb.Singleton Annotation

Name Description Data Type Required?

name Specifies the name of the singleton session
bean.

If you do not specify this attribute, the default
value is the unqualified name of the bean
class.

String No

mappedName Specifies the product-specific name to which
the singleton session bean should be
mapped.

You can also use this attribute to specify the
JNDI name of this singleton session bean.
WebLogic Server uses the value of the
mappedName attribute when creating the
bean's global JNDI name. In particular, the
JNDI name will be:

mappedName#name_of_businessInterfac
e
where name_of_businessInterface is the
fully qualified name of the business interface
of this session bean.

For example, if you specify
mappedName="bank" and the fully qualified
name of the business interface is
com.CheckingAccount, then the JNDI of the
business interface is
bank#com.CheckingAccount.

Note: If you specify this attribute, the
singleton session bean may not be portable.

String No

description Describes the singleton session bean. String No.

javax.ejb.Startup
The following sections describe the annotation in more detail.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-22



Description
Target: Class

Specifies that the Enterprise JavaBean is a stateful session bean.

javax.ejb.StatefulTimeout
The following sections describe the annotation in more detail.

Description
Target: Type

Specifies the amount of time a stateful session bean can be idle (not receive any client
invocations) before it is eligible for removal by the container.

Attributes
The following table summarizes the attributes.

Table A-19    Attributes of the javax.ejb.StatefulTimeout Annotation

Name Description Data Type Required?

value Specifies the amount of time the stateful session
bean can be idle.

• A value > 0 indicates a timeout value in the
units specified by the unit element.

• A value of 0 means concurrent access is
not permitted.

• A value of -1 indicates that the client
request will block indefinitely until forward
progress it can proceed.

Values less than -1 are not valid.

Long No

unit Specifies the units used for the specified value.

The default value for this attribute is
java.util.concurrent.TimeUnit.MINUTES
.

TimeUnit No

javax.ejb.Stateless
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies that the Enterprise JavaBean is a stateless session bean.

Attributes
The following table summarizes the attributes.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-23



Table A-20    Attributes of the javax.ejb.Stateless Annotation

Name Description Data Type Required?

name Specifies the name of the stateless session
bean.

If you do not specify this attribute, the default
value is the unqualified name of the bean
class.

String No

mappedName Specifies the product-specific name to which
the stateless session bean should be
mapped.

You can also use this attribute to specify the
JNDI name of this stateless session bean.
WebLogic Server uses the value of the
mappedName attribute when creating the
bean's global JNDI name. In particular, the
JNDI name will be:

mappedName#name_of_businessInterfac
e
where name_of_businessInterface is the
fully qualified name of the business interface
of this session bean.

For example, if you specify
mappedName="bank" and the fully qualified
name of the business interface is
com.CheckingAccount, then the JNDI of the
business interface is
bank#com.CheckingAccount.

Note: If you specify this attribute, the
stateless session bean may not be portable.

String No

description Describes the stateless session bean. String No.

javax.ejb.Timeout
The following sections describe the annotation in more detail.

Description
Target: Method

Specifies the timeout method of the bean class.

This annotation makes it easy to program an EJB timer service in your bean class.
The EJB timer service is an EJB-container provided service that allows you to create
timers that schedule callbacks to occur when a timer object expires.

Previous to EJB 3.x, your bean class was required to implement
javax.ejb.TimedObject if you wanted to program the timer service. Additionally, your
bean class had to include a method with the exact name ejbTimeout. These
requirements are relaxed in Version 3.x of EJB. You no longer are required to
implement the javax.ejb.TimedObject interface, and you can name your timeout
method anything you want, as long as you annotate it with the @Timeout annotation.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-24



You can, however, continue to use the pre-3.x way of programming the timer service if you
want.

For details, see Optionally Program the EJB Timer Service.

This annotation does not have any attributes.

javax.ejb.TransactionAttribute
The following sections describe the annotation in more detail.

Description
Target: Class, Method

Specifies whether the EJB container invokes an EJB business method within a transaction
context.

Note:

If you specify this annotation, you are also required to use the
@TransactionManagement annotation to specify container-managed transaction
demarcation.

You can specify this annotation on either the bean class, or a particular method of the class
that is also a method of the business interface. If specified at the bean class, the annotation
applies to all applicable business interface methods of the class. If specified for a particular
method, the annotation applies to that method only. If the annotation is specified at both the
class and the method level, the method value overrides if the two disagree.

If you do not specify the @TransactionAttribute annotation in your bean class, and the bean
uses container managed transaction demarcation, the semantics of the REQUIRED
transaction attribute are assumed.

Attributes
The following table summarizes the attributes.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-25



Table A-21    Attributes of the javax.ejb.TransactionAttribute Annotation

Name Description Data Type Required?

value Specifies how the EJB container manages the
transaction boundaries when invoking a
business method.

For details about these values, see the
description of the trans-attribute element in
the Container-Managed Transaction Elements
table in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

Valid values for this attribute are:

• TransactionAttributeType.MANDATO
RY

• TransactionAttributeType.REQUIRE
D

• TransactionAttributeType.REQUIRE
D_NEW

• TransactionAttributeType.SUPPORT
S

• TransactionAttributeType.NOT_SUP
PORTED

• TransactionAttributeType.NEVER
Default value is
TransactionAttributeType.REQUIRED.

String No.

javax.ejb.TransactionManagement
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies the transaction management demarcation type of the session bean or
message-driven bean.

A transaction is a unit of work that changes application state—whether on disk, in
memory or in a database—that, once started, is completed entirely, or not at all.
Transactions can be demarcated—started, and ended with a commit or rollback—by
the EJB container, by bean code, or by client code. This annotation specifies whether
the EJB container or the user-written bean code manages the demarcation of a
transaction.

If you do not specify this annotation in your bean class, it is assumed that the bean
has container-managed transaction demarcation.

For additional information about transactions, see Transaction Design and
Management Options in Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

Appendix A
Annotations for Stateless, Stateful, and Message-Driven Beans

A-26



Attributes
The following table summarizes the attributes.

Table A-22    Attributes of the javax.ejb.TransactionManagement Annotation

Name Description Data Type Required?

value Specifies the transaction management
demarcation type used by the bean class.

Valid values for this attribute are:

• TransactionManagementType.CONTAINER
• TransactionManagementType.BEAN
Default value is
TransactionManagementType.CONTAINER.

String No.

Annotations Used to Configure Interceptors
This section provides reference information for the annotations described in the following
sections:

• javax.interceptor.AroundInvoke

• javax.interceptor.ExcludeClassInterceptors

• javax.interceptor.ExcludeDefaultInterceptors

• javax.interceptor.Interceptors

javax.interceptor.AroundInvoke
The following sections describe the annotation in more detail.

Description
Target: Method

Specifies the business method interceptor for either a bean class or an interceptor class.

You can annotate only one method in the bean class or interceptor class with the
@AroundInvoke annotation; the method cannot be a business method of the bean class.

This annotation does not have any attributes.

javax.interceptor.ExcludeClassInterceptors
The following sections describe the annotation in more detail.

Description
Target: Method

Appendix A
Annotations Used to Configure Interceptors

A-27



Specifies that any class-level interceptors should not be invoked for the annotated
method. This does not include default interceptors, whose invocation are excluded
only with the @ExcludeDefaultInterceptors annotation.

This annotation does not have any attributes.

javax.interceptor.ExcludeDefaultInterceptors
The following sections describe the annotation in more detail.

Description
Target: Class, Method

Specifies that any defined default interceptors (which can be specified only in the EJB
deployment descriptors, and not with annotations) should not be invoked.

If defined at the class-level, the default interceptors are never invoked for any of the
bean's business methods. If defined at the method-level, the default interceptors are
never invoked for the particular business method, but they are invoked for all other
business methods that do not have the @ExludeDefaultInterceptors annotation.

This annotation does not include any attributes.

javax.interceptor.Interceptors
The following sections describe the annotation in more detail.

Description
Target: Class, Method

Specifies the interceptor classes that are associated with the bean class or method.
An interceptor class is a class—distinct from the bean class itself—whose methods are
invoked in response to business method invocations and/or life cycle events on the
bean.

The interceptor class can include both an business interceptor method (annotated with
the @javax.interceptor.AroundInvoke annotation) and life cycle callback methods
(annotated with the @javax.annotation.PostConstruct,
@javax.annotation.PreDestroy, @javax.ejb.PostActivate, and
@javax.ejb.PrePassivate annotations).

Any number of interceptor classes may be defined for a bean class. If more than one
interceptor class is defined, they are invoked in the order they are specified in the
annotation.

If the annotation is specified at the class-level, the interceptors apply to all business
methods of the EJB. If specified at the method-level, the interceptors apply to just that
method. You can specify the same interceptor class to more than one method of the
bean class. By default, method-level interceptors are invoked after all applicable
interceptors (default interceptors, class-level interceptors, and so on).

Attributes
The following table summarizes the attributes.

Appendix A
Annotations Used to Configure Interceptors

A-28



Table A-23    Attributes of the javax.interceptor.Interceptors Annotation

Name Description Data Type Required?

value Specifies the array of interceptor classes. If there
is more than one interceptor class in the array,
the order in which they are listed defines the
order in which they are invoked.

Class[] Yes

Annotations Used to Interact With Entity Beans
This section provides reference information about the annotations described in the following
sections:

• javax.persistence.PersistenceContext

• javax.persistence.PersistenceContexts

• javax.persistence.PersistenceUnit

• javax.persistence.PersistenceUnits

javax.persistence.PersistenceContext
The following sections describe the annotation in more detail.

Description
Target: Class, Method, Field

Specifies a dependency on a container-managed EntityManager persistence context.

You use this annotation to interact with a 3.x entity bean, typically by performing dependency
injection into an EntityManager instance.

The EntityManager interface defines the methods that are used to interact with the
persistence context. A persistence context is a set of entity instances; an entity is a
lightweight persistent domain object. The EntityManager API is used to create and remove
persistent entity instances, to find entities by their primary key, and to query over entities.

Attributes
The following table summarizes the attributes.

Table A-24    Attributes of the javax.persistence.PersistenceContextAnnotation

Name Description Data Type Required?

name Specifies the name by which the EntityManager
and its persistence unit are to be known within the
context of the session or message-driven bean.

You only need to specify this attribute if you use a
JNDI lookup to obtain an EntityManager; if you
use dependency injection, then you do not need
to specify this attribute.

String No

Appendix A
Annotations Used to Interact With Entity Beans

A-29



Table A-24    (Cont.) Attributes of the javax.persistence.PersistenceContextAnnotation

Name Description Data Type Required?

unitName Specifies the name of the persistence unit.

If you specify a value for this attribute that is the
same as the name of a persistence unit in the
persistence.xml file, the EJB container
automatically deploys the persistence unit and
sets its JNDI name to its persistence unit name.
Similarly, if you do not specify this attribute, but
the name of the variable into which you are
injecting the persistence context information is the
same as the name of a persistence unit in the
persistence.xml file, then the EJB container
again automatically deploys the persistence unit
with its JNDI name equal to its unit name.

Note: The persistence.xml file is an XML file,
located in the META-INF directory of the EJB JAR
file, that specifies the database used with the
entity beans and specifies the default behavior of
the EntityManager.

You must specify this attribute if there is more
than one persistence unit within the referencing
scope.

String No

type Specifies whether the lifetime of the persistence
context is scoped to a transaction or whether it
extends beyond that of a single transaction.

Valid values for this attribute are:

• PersistenceContextType.TRANSACTION
• PersistenceContextType.EXTENDED
Default value is
PersistenceContextType.TRANSACTION.

Persisten
ceContext
Type

No

javax.persistence.PersistenceContexts
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies an array of @javax.persistence.PersistenceContext annotations.

Attributes
The following table summarizes the attributes.

Appendix A
Annotations Used to Interact With Entity Beans

A-30



Table A-25    Attributes of the javax.persistence.PersistenceContexts Annotation

Name Description Data Type Required?

value Specifies the array of
@javax.persistence.PersistenceContext
annotations.

Persisten
ceContex
t[]

Yes.

javax.persistence.PersistenceUnit
The following sections describe the annotation in more detail.

Description
Target: Class, Method, Field

Specifies a dependency on an EntityManagerFactory object.

You use this annotation to interact with a 3.x entity bean, typically by performing dependency
injection into an EntityManagerFactory instance. You can then use the
EntityManagerFactory to create one or more EntityManager instances. This annotation is
similar to the @PersistenceContext annotation, except that it gives you more control over the
life of the EntityManager because you create and destroy it yourself, rather than let the EJB
container do it for you.

The EntityManager interface defines the methods that are used to interact with the
persistence context. A persistence context is a set of entity instances; an entity is a
lightweight persistent domain object. The EntityManager API is used to create and remove
persistent entity instances, to find entities by their primary key, and to query over entities.

Attributes
The following table summarizes the attributes.

Table A-26    Attributes of the javax.persistence.PersistenceUnit Annotation

Name Description Data Type Required?

name Specifies the name by which the
EntityManagerFactory is to be known within
the context of the session or message-driven
bean

You are not required to specify this attribute if
you use dependency injection, only if you also
use JNDI to look up information.

String No

Appendix A
Annotations Used to Interact With Entity Beans

A-31



Table A-26    (Cont.) Attributes of the javax.persistence.PersistenceUnit Annotation

Name Description Data Type Required?

unitName Refers to the name of the persistence unit as
defined in the persistence.xml file. This file is
an XML file, located in the META-INF directory
of the EJB JAR file, that specifies the database
used with the entity beans and specifies the
default behavior of the EntityManager.

If you set this attribute, the EJB container
automatically deploys the referenced
persistence unit and sets its JNDI name to its
persistence unit name. Similarly, if you do not
specify this attribute, but the name of the
variable into which you are injecting the
persistence context information is the same as
the name of a persistence unit in the
persistence.xml file, then the EJB container
again automatically deploys the persistence unit
with its JNDI name equal to its unit name.

You are required to specify this attribute only if
there is more than one persistence unit in the
referencing scope.

String No

javax.persistence.PersistenceUnits
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies an array of @javax.persistence.PersistenceUnit annotations.

Attributes
The following table summarizes the attributes.

Table A-27    Attributes of the javax.persistence.PersistenceUnits Annotation

Name Description Data Type Required?

value Specifies the array of
@javax.persistence.PersistenceU
nit annotations.

Persiste
nceUnit[
]

Yes

Standard JDK Annotations Used By EJB 3.x
This section provides reference information about the annotations described in the
following sections:

• javax.annotation.PostConstruct

Appendix A
Standard JDK Annotations Used By EJB 3.x

A-32



• javax.annotation.PreDestroy

• javax.annotation.Resource

• javax.annotation.Resources

javax.annotation.PostConstruct
The following sections describe the annotation in more detail.

Description
Target: Method

Specifies the life cycle callback method that the EJB container should execute before the first
business method invocation and after dependency injection is done to perform any
initialization.

You may specify a @PostConstruct method in any bean class that includes dependency
injection.

Only one method in the bean class can be annotated with this annotation. If you annotate
more than one method with this annotations, the EJB will not deploy.

The method annotated with @PostConstruct must follow these requirements:

• The return type of the method must be void.

• The method must not throw a checked exception.

• The method may be public, protected, package private or private.

• The method must not be static.

• The method must not be final.

This annotation does not have any attributes.

javax.annotation.PreDestroy
The following sections describe the annotation in more detail.

Description
Target: Method

Specifies the life cycle callback method that signals that the bean class instance is about to
be destroyed by the EJB container. You typically apply this annotation to methods that
release resources that the bean class has been holding.

Only one method in the bean class can be annotated with this annotation. If you annotate
more than one method with this annotations, the EJB will not deploy.

The method annotated with @PreDestroy must follow these requirements:

• The return type of the method must be void.

• The method must not throw a checked exception.

• The method may be public, protected, package private or private.

Appendix A
Standard JDK Annotations Used By EJB 3.x

A-33



• The method must not be static.

• The method must not be final.

This annotation does not have any attributes.

javax.annotation.Resource
The following sections describe the annotation in more detail.

Description
Target: Class, Method, Field

Specifies a dependence on an external resource, such as a JDBC data source or a
JMS destination or connection factory.

If you specify the annotation on a field or method, the EJB container injects an
instance of the requested resource into the bean when the bean is initialized. If you
apply the annotation to a class, the annotation declares a resource that the bean will
look up at runtime.

Attributes
The following table summarizes the attributes.

Table A-28    Attributes of the javax.annotation.Resource Annotation

Name Description Data Type Required?

name Specifies the name of the resource
reference.

If you apply the @Resource annotation to a
field, the default value of the name attribute
is the field name, qualified by the class
name. If you apply it to a method, the default
value is the JavaBeans property name
corresponding to the method, qualified by
the class name. If you apply the annotation
to class, there is no default value and thus
you are required to specify the attribute.

String No

type Specifies the Java data type of the resource.

If you apply the @Resource annotation to a
field, the default value of the type attribute
is the type of the field. If you apply it to a
method, the default is the type of the
JavaBeans property. If you apply it to a
class, there is no default value and thus you
are required to specify this attribute.

Class No

Appendix A
Standard JDK Annotations Used By EJB 3.x

A-34



Table A-28    (Cont.) Attributes of the javax.annotation.Resource Annotation

Name Description Data Type Required?

authenticationType Specifies the authentication type to use for
the resource.

You specify this attribute only for resources
representing a connection factory of any
supported type.

Valid values for this attribute are:

• AuthenticationType.CONTAINER
• AuthenticationType.APPLICATION
Default value is
AuthenticationType.CONTAINER

Authenticat
ionType

No

shareable Indicates whether a resource can be shared
between this EJB and other EJBs.

You specify this attribute only for resources
representing a connection factory of any
supported type or ORB object instances.

Valid values for this attribute are true and
false. Default value is true.

boolean No

mappedName Specifies the global JNDI name of the
dependent resource.

For example:

mappedName="my.Datasource"
specifies that the JNDI name of the
dependent resources is my.Datasource
and is deployed in the WebLogic Server
JNDI tree.

String No

description Specifies a description of the resource. String No

javax.annotation.Resources
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies an array of @Resource annotations.

Attributes
The following table summarizes the attributes.

Table A-29    Attributes of the javax.annotation.Resources Annotation

Name Description Data Type Required?

value Specifies the array of @Resource
annotations.

Resource[
]

Yes

Appendix A
Standard JDK Annotations Used By EJB 3.x

A-35



Standard Security-Related JDK Annotations Used by EJB
3.x

This section provides reference information about the annotations described in the
following sections:

• javax.annotation.security.DeclareRoles

• javax.annotation.security.DenyAll

• javax.annotation.security.PermitAll

• javax.annotation.security.RolesAllowed

• javax.annotation.security.RunAs

javax.annotation.security.DeclareRoles
The following sections describe the annotation in more detail.

Description
Target: Class

Defines the security roles that will be used in the EJB.

You typically use this annotation to define roles that can be tested from within the
methods of the annotated class, such as using the isUserInRole method. You can
also use the annotation to explicitly declare roles that are implicitly declared if you use
the @RolesAllowed annotation on the class or a method of the class.

You create security roles in WebLogic Server using the WebLogic Server
Administration Console. See Manage Security Roles in the Oracle WebLogic Server
Administration Console Online Help.

Attributes
The following table summarizes the attributes.

Table A-30    Attributes of the javax.annotation.security.DeclareRoles Annotation

Name Description Data Type Required?

value Specifies an array of security roles that will
be used in the bean class.

String[] Yes.

javax.annotation.security.DenyAll
The following sections describe the annotation in more detail.

Description
Target: Method

Appendix A
Standard Security-Related JDK Annotations Used by EJB 3.x

A-36



Specifies that no security role is allowed to access the annotated method, or in other words,
the method is excluded from execution in the EJB container.

This annotation does not have any attributes.

javax.annotation.security.PermitAll
The following sections describe the annotation in more detail.

Description
Target: Method

Specifies that all security roles currently defined for WebLogic Server are allowed to access
the annotated method.

This annotation does not have any attributes.

javax.annotation.security.RolesAllowed
The following sections describe the annotation in more detail.

Description
Target: Class, Method

Specifies the list of security roles that are allowed to access methods in the EJB.

If you specify it at the class-level, then it applies to all methods in the bean class. If you
specify it at the method-level, then it only applies to that method. If you specify the annotation
at both the class- and method-level, the method value overrides the class value.

You create security roles in WebLogic Server using the WebLogic Server Administration
Console. See Manage Security Roles in the Oracle WebLogic Server Administration Console
Online Help.

Attributes
The following table summarizes the attributes.

Table A-31    Attributes of the javax.annotation.security.RolesAllowed Annotation

Name Description Data Type Required?

value List of security roles that are allowed to
access methods of the bean class.

String[] Yes.

javax.annotation.security.RunAs
The following sections describe the annotation in more detail.

Description
Target: Class

Appendix A
Standard Security-Related JDK Annotations Used by EJB 3.x

A-37



Specifies the security role which actually executes the EJB in the EJB container.

The security role must exist in the WebLogic Server security realm and map to a user
or group. See Manage Security Roles in the Oracle WebLogic Server Administration
Console Online Help.

Attributes
The following table summarizes the attributes.

Table A-32    Attributes of the javax.annotation.security.RunAs Annotation

Name Description Data Type Required?

value Specifies the security role which the
EJB should run as.

String Yes.

WebLogic Annotations
This section provides reference information for the WebLogic annotations described in
the following sections:

• weblogic.javaee.AllowRemoveDuringTransaction

• weblogic.javaee.CallByReference

• weblogic.javaee.DisableWarnings

• weblogic.javaee.EJBReference

• weblogic.javaee.Idempotent

• weblogic.javaee.JMSClientID

• weblogic.javaee.JNDIName

• weblogic.javaee.JNDINames

• weblogic.javaee.MessageDestinationConfiguration

• weblogic.javaee.TransactionIsolation

• weblogic.javaee.TransactionTimeoutSeconds

Note:

The annotations descried in this section are overridden if the comparable
configuration is defined in the weblogic-ejb-jar.xml deployment
descriptor. See weblogic-ejb-jar.xml Deployment Descriptor Reference in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server.

weblogic.javaee.AllowRemoveDuringTransaction
The following sections describe the annotation in more detail.

Appendix A
WebLogic Annotations

A-38



Description
Target: Class (Stateful session EJBs only)

Flag that specifies whether an instance can be removed during a transaction.

Note:

This annotation is overridden by the allow-remove-during-transaction element in
the weblogic-ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml
Deployment Descriptor Reference in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server.

weblogic.javaee.CallByReference
The following sections describe the annotation in more detail.

Description
Target: Class (Stateful or stateless sessions EJBs only)

Flag that specifies whether parameters are copied—or passed by reference—regardless of
whether the EJB is called remotely or from within the same EAR.

Note:

Method parameters are always passed by value when an EJB is called remotely.
This annotation is overridden by the enable-call-by-reference element in the
weblogic-ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml
Deployment Descriptor Reference in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server.

weblogic.javaee.DisableWarnings
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies that WebLogic Server should disable the warning message whose ID is specified.

Appendix A
WebLogic Annotations

A-39



Note:

This annotation is overridden by the disable-warning element in the
weblogic-ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml
Deployment Descriptor Reference in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

Attributes
The following table summarizes the attributes.

Table A-33    Attributes of the weblogic.javaee.DisableWarnings

Name Description Data Type Required?

WarningCode Specifies the warning code. Set this
element to one of the following four
values:

• BEA-010001—Disables this
warning message: "EJB class
loaded from system classpath
during deployment."

• BEA-010054—Disables this
warning message: "EJB class
loaded from system classpath
during compilation."

• BEA-010200—Disables this
warning message: "EJB impl class
contains a public static field,
method or class."

• BEA-010202—Disables this
warning message: "Call-by-
reference not enabled."

String Yes

weblogic.javaee.EJBReference
The following sections describe the annotation in more detail.

Description
Target: Class, Method, Field

Maps EJB reference name to its JNDI name.

Attribute
The following table summarizes the attributes.

Appendix A
WebLogic Annotations

A-40



Table A-34    Attribute of the weblogic.javaee.EJBReference Annotation

Name Description Data Type Required?

name Specifies the name by which the referenced
EJB is to be looked up in the environment.

This name must be unique within the
deployment unit, which consists of the class and
its superclass.

String Yes

jndiName Specifies the JNDI name of an actual EJB,
resource, or reference available in WebLogic
Server.

String Yes

weblogic.javaee.Idempotent
The following sections describe the annotation in more detail.

Description
Target: Class

Specifies an EJB that is written in such a way that repeated calls to the same method with the
same arguments has exactly the same effect as a single call. This allows the failover handler
to retry a failed call without knowing whether the call actually compiled on the failed server.
When you enable idempotent for a method, the EJB stub can automatically recover from any
failure as long as it can reach another server hosting the EJB.

Note:

This annotation is overridden by the idempotent-method and retry-methods-on-
rollback elements in the weblogic-ejb-jar.xml deployment descriptor. See 
weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

Attributes
The following table summarizes the attributes.

Table A-35    Attributes of the weblogic.javaee.Idempotent

Name Description Data Type Required?

retryOnRollbackCoun
t

Number of times to automatically retry
container-managed transactions that have rolled
back.

This attribute defaults to 0.

int No

weblogic.javaee.JMSClientID
The following sections describe the annotation in more detail.

Appendix A
WebLogic Annotations

A-41



Description
Target: Method

Specifies a client ID for the MDB when it connects to a JMS destination. Required for
durable subscriptions to JMS topics.

If you specify the connection factory that the MDB uses in 
weblogic.javaee.MessageDestinationConfiguration, the client ID can be defined in the
ClientID element of the associated JMSConnectionFactory element in config.xml.

If JMSConnectionFactory in config.xml does not specify a ClientID, or if you use the
default connection factory, (you do not specify 
weblogic.javaee.MessageDestinationConfiguration) the MDB uses the jms-client-id
value as its client id.

Note:

This annotation is overridden by the jms-client-id element in the
weblogic-ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml
Deployment Descriptor Reference in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

Attributes
The following table summarizes the attributes.

Table A-36    Attributes of the weblogic.javaee.JMSClientID

Name Description Data Type Required?

value Client ID. String No

generateUniqueID Flag that indicates whether or not you want
the EJB container to generate a unique client
ID for every instance of an MDB. Enabling this
flag makes it easier to deploy durable MDBs
to multiple server instances in a WebLogic
Server cluster.

Class No

weblogic.javaee.JNDIName
The following sections describe the annotation in more detail.

Description
Target: Class (Stateful or stateless session EJBs only)

Specifies a custom JNDI name that can be applied to a bean class for a certain client
view. When applied to a bean class to indicate the JNDI name of a no-interface view,
the className is optional.

Appendix A
WebLogic Annotations

A-42



Note:

This annotation is overridden by the jndi-binding element in the weblogic-ejb-
jar.xml deployment descriptor. See weblogic-ejb-jar.xml Deployment Descriptor
Reference in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server.

Attributes
The following table summarizes the attributes.

Table A-37    Attributes of the weblogic.javaee.JNDIName

Name Description Data Type Required?

classname Class name of the client view. String No

value JNDI name of the client view. String No

weblogic.javaee.JNDINames
The following sections describe the annotation in more detail.

Description
Target: Class (Stateful or stateless session EJBs only)

Specifies the multiple, custom JNDI names that can be applied to an EJB.

Attributes
The following table summarizes the attributes.

Table A-38    Attributes of the weblogic.javaee.JNDINames

Name Description Data Type Required?

value Multiple, custom JNDI names for the EJB. JNDIName No

weblogic.javaee.MessageDestinationConfiguration
The following sections describe the annotation in more detail.

Description
Target: Class (Message-driven EJBs only)

Specifies the JNDI name of the JMS Connection Factory that a message-driven EJB looks up
to create its queues and topics.

Appendix A
WebLogic Annotations

A-43



Note:

This annotation is overridden by the connection-factory-jndi-name
element in the weblogic-ejb-jar.xml deployment descriptor. See weblogic-
ejb-jar.xml Deployment Descriptor Reference in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

Attributes
The following table summarizes the attributes.

Table A-39    Attributes of the weblogic.javaee.MessageDestinationConfiguration

Name Description Data Type Required?

connectionFactoryJ
NDIName

Connection factory JNDI name. This
attribute defaults to an empty string.

String No

initialContextFactory WebLogic initial context factory. This
attribute defaults to
weblogic.jndi.WLInitialConte
xtFactory.class.

Class No

providerURL URL of the provider. This attribute
defaults to t3://localhost:7001.

String No

weblogic.javaee.TransactionIsolation
The following sections describe the annotation in more detail.

Description
Target: Method

Method-level transaction isolation settings for an EJB.

Note:

This annotation is overridden by the trans-timeout-seconds element in the
weblogic-ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml
Deployment Descriptor Reference in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

Attributes
The following table summarizes the attributes.

Appendix A
WebLogic Annotations

A-44



Table A-40    Attributes of the weblogic.javaee.Idempotent

Name Description Data Type Required?

IsolationLevel Isolation level. Valid values include:

• READ_COMMITTED—Transaction can view
only committed updates from other
transactions.

• READ_UNCOMITTED—Transactions can
view uncomitted updates from other
transactions.

• REPEATABLE_READ—Once the
transaction reads a subset of data, repeated
reads of the same data return the same
values, even if other transactions have
subsequently modified the data.

• SERIALIZABLE—Simultaneously executing
this transaction multiple times has the same
effect as executing the transaction multiple
times in a serial fashion.

This attribute defaults to DEFAULT.

int No

weblogic.javaee.TransactionTimeoutSeconds
The following sections describe the annotation in more detail.

Description
Target: Class

Defines the timeout for transactions in seconds.

Attributes
The following table summarizes the attributes.

Table A-41    Attributes of the weblogic.javaee.TransactionTimeoutSeconds

Name Description Data Type Required?

value Transaction timeout value in seconds. This
attribute defaults to 30 (seconds).

int No

Appendix A
WebLogic Annotations

A-45


	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	EJB Documentation in WebLogic Server
	Additional EJB Information

	Conventions

	1 Introduction and Roadmap
	Guide to this Document
	Comprehensive Examples for the EJB Developer
	EJB 3.2 Examples
	EJB 3.1 Examples
	EJB 3.0 Example

	New and Changed Features in this Release

	2 Understanding Enterprise JavaBeans
	New Features and Changes in EJB
	What Is New and Changed in EJB 3.2
	What Was New and Changed in EJB 3.1
	What Was New and Changed in EJB 3.0

	Understanding EJB Components
	Session EJBs Implement Business Logic
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans

	Message-Driven Beans Implement Loosely Coupled Business Logic

	EJB Anatomy and Environment
	EJB Components
	The EJB Container
	EJB Metadata Annotations
	Optional EJB Deployment Descriptors

	EJB Clients and Communications
	Accessing EJBs
	EJB Communications

	Securing EJBs

	3 Simple Enterprise JavaBeans Examples
	Simple Java Examples of 3.x EJBs
	Example of a Simple No-interface Stateless EJB
	Example of a Simple Business Interface Stateless EJB
	Example of a Simple Stateful EJB
	Example of an Interceptor Class

	Packaged EJB 3.2 Examples in WebLogic Server
	EJB 3.2: Example of Using the Session Bean Lifecyle
	EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener

	Packaged EJB 3.1 Examples in WebLogic Server
	EJB 3.1: Example of a Singleton Session Bean
	EJB 3.1: Example of an Asynchronous Method EJB
	EJB 3.1: Example of a Calendar-based Timer EJB
	EJB 3.1: Example of Simplified No-interface Programming and Packaging in a WAR File
	EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB
	EJB 3.1: Example of Using the Embeddable EJB Container in Java SE
	EJB 3.0: Example of Invoking an Entity From A Session Bean


	4 Iterative Development of Enterprise JavaBeans
	Overview of the EJB Development Process
	Create a Source Directory
	Directory Structure for Packaging a JAR
	Directory Structure for Packaging a WAR

	Program the Annotated EJB Class
	Program the EJB Interface
	Accessing EJBs Using the No-Interface Client View
	Accessing EJBs Using the Business Interface
	Business Interface Application Exceptions
	Using Generics in EJBs
	Serializing and Deserializing Business Objects


	Optionally Program Interceptors
	Optionally Program the EJB Timer Service
	Overview of the Timer Service
	Calendar-based EJB Timers
	Automatically-created EJB Timers
	Non-persistent Timers
	Clustered Versus Local EJB Timer Services
	Clustered EJB Timer Services
	Local EJB Timer Services

	Configuring Clustered EJB Timers
	Using Java Programming Interfaces to Program Timer Objects
	EJB 3.2 Timer-related Programming Interfaces
	WebLogic Server-specific Timer-related Programming Interfaces


	Programming Access to EJB Clients
	Remote Clients
	Local Clients
	Looking Up EJBs From Clients
	Using Dependency Injection
	Using the JNDI Portable Syntax
	Customizing JNDI Names

	Configuring EJBs to Send Requests to a URL
	Specifying an HTTP Resource by URL
	Specifying an HTTP Resource by Its JNDI Name
	Accessing HTTP Resources from Bean Code
	Configuring Network Communications for an EJB

	Programming and Configuring Transactions
	Programming Container-Managed Transactions
	Configuring Automatic Retry of Container-Managed Transactions
	Programming Bean-Managed Transactions
	Programming Transactions That Are Distributed Across EJBs
	Calling multiple EJBs from a client's transaction context
	Using an EJB "Wrapper” to Encapsulate a Cross-EJB Transaction


	Compile Java Source
	Optionally Create and Edit Deployment Descriptors
	Packaging EJBs
	Packaging EJBs in a JAR
	Packaging an EJB In a WAR

	Deploying EJBs

	5 Programming the Annotated EJB Class
	Overview of Metadata Annotations and EJB Bean Files
	Programming the Bean File: Requirements and Changes From EJB 2.x
	Bean Class Requirements and Changes From EJB 2.x
	Bean Class Method Requirements

	Programming the Bean File
	Typical Steps When Programming the Bean File
	Specifying the Business and Other Interfaces
	Specifying the Business Interface
	Specifying the No-interface View

	Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-Driven)
	Injecting Resource Dependency into a Variable or Setter Method
	Invoking a 3.0 Entity
	Injecting Persistence Context Using Metadata Annotations
	Finding an Entity Using the EntityManager API
	Creating and Updating an Entity Using EntityManager

	Specifying Interceptors for Business Methods or Life Cycle Callback Events
	Specifying Business or Life Cycle Interceptors: Typical Steps
	Programming the Interceptor Class
	Programming Business Method Interceptor Methods
	Programming Asynchronous Business Methods
	Programming Life Cycle Callback Interceptor Methods
	Specifying Default Interceptor Methods
	Saving State Across Interceptors With the InvocationContext API

	Programming Application Exceptions
	Securing Access to the EJB
	Specifying Transaction Management and Attributes

	Complete List of Metadata Annotations By Function
	Annotations to Specify the Bean Type
	Annotations to Specify the Local or Remote Interfaces
	Annotations to Support EJB 2.x Client View
	Annotations to Invoke a 3.0 Entity Bean
	Transaction-Related Annotations
	Annotations to Specify Interceptors
	Annotations to Specify Life Cycle Callbacks
	Security-Related Annotations
	Context Dependency Annotations
	Timeout and Exceptions Annotations
	Timer and Scheduling Annotations


	6 Deployment Guidelines for Enterprise JavaBeans
	Before You Deploy an EJB
	Understanding and Performing Deployment Tasks
	Deployment Guidelines for EJBs
	Deploying Standalone EJBs as Part of an Enterprise Application
	Deploying EJBs as Part of an Web Application
	Deploying EJBs That Call Each Other in the Same Application
	Switching Protocol Limitation

	Deploying EJBs That Use Dependency Injection
	Deploying Homogeneously to a Cluster
	Deploying EJBs to a Cluster
	Redeploying an EJB
	Using FastSwap Deployment to Minimize Deployment
	Understanding Warning Messages
	Disabling EJB Deployment Warning Messages


	7 Using an Embedded EJB Container in Oracle WebLogic Server
	Overview of the Embeddable EJB Container
	EJB Lite Functionality Supported in the Embedded EJB Container

	8 Configuring the Persistence Provider in Oracle WebLogic Server
	Overview of Oracle TopLink
	Specifying a Persistence Provider
	Setting the Default Provider for the Domain
	Specifying the Persistence Provider in an Application

	Using Oracle TopLink in Oracle WebLogic Server

	A EJB Metadata Annotations Reference
	Overview of EJB 3.x Annotations
	Annotations for Stateless, Stateful, and Message-Driven Beans
	javax.ejb.AccessTimeout
	Description
	Attributes

	javax.ejb.ActivationConfigProperty
	Description
	Attributes

	javax.ejb.AfterBegin
	Description

	javax.ejb.AfterCompletion
	Description

	javax.ejb.ApplicationException
	Description
	Attributes

	javax.ejb.Asynchronous
	Description

	javax.ejb.BeforeCompletion
	Description

	javax.ejb.ConcurrencyManagement
	Description
	Attributes

	javax.ejb.DependsOn
	Description
	Attributes

	javax.ejb.EJB
	Description
	Attributes

	javax.ejb.EJBs
	Description
	Attribute

	javax.ejb.Init
	Description
	Attributes

	javax.ejb.Local
	Description
	Attributes

	javax.ejb.LocalBean
	Description

	javax.ejb.LocalHome
	Description
	Attributes

	javax.ejb.Lock
	Description
	Attributes

	javax.ejb.MessageDriven
	Description
	Attributes

	javax.ejb.PostActivate
	Description

	javax.ejb.PrePassivate
	Description

	javax.ejb.Remote
	Description
	Attributes

	javax.ejb.RemoteHome
	Description
	Attributes

	javax.ejb.Remove
	Description
	Attributes

	javax.ejb.Schedule
	Description
	Calendar-based Schedule Elements
	Forms of Supported Element Values
	Additional Rules for Schedule Specification Elements

	Attributes

	javax.ejb.Schedules
	Description
	Attributes

	javax.ejb.Singleton
	Description
	Attributes

	javax.ejb.Startup
	Description

	javax.ejb.StatefulTimeout
	Description
	Attributes

	javax.ejb.Stateless
	Description
	Attributes

	javax.ejb.Timeout
	Description

	javax.ejb.TransactionAttribute
	Description
	Attributes

	javax.ejb.TransactionManagement
	Description
	Attributes


	Annotations Used to Configure Interceptors
	javax.interceptor.AroundInvoke
	Description

	javax.interceptor.ExcludeClassInterceptors
	Description

	javax.interceptor.ExcludeDefaultInterceptors
	Description

	javax.interceptor.Interceptors
	Description
	Attributes


	Annotations Used to Interact With Entity Beans
	javax.persistence.PersistenceContext
	Description
	Attributes

	javax.persistence.PersistenceContexts
	Description
	Attributes

	javax.persistence.PersistenceUnit
	Description
	Attributes

	javax.persistence.PersistenceUnits
	Description
	Attributes


	Standard JDK Annotations Used By EJB 3.x
	javax.annotation.PostConstruct
	Description

	javax.annotation.PreDestroy
	Description

	javax.annotation.Resource
	Description
	Attributes

	javax.annotation.Resources
	Description
	Attributes


	Standard Security-Related JDK Annotations Used by EJB 3.x
	javax.annotation.security.DeclareRoles
	Description
	Attributes

	javax.annotation.security.DenyAll
	Description

	javax.annotation.security.PermitAll
	Description

	javax.annotation.security.RolesAllowed
	Description
	Attributes

	javax.annotation.security.RunAs
	Description
	Attributes


	WebLogic Annotations
	weblogic.javaee.AllowRemoveDuringTransaction
	Description

	weblogic.javaee.CallByReference
	Description

	weblogic.javaee.DisableWarnings
	Description
	Attributes

	weblogic.javaee.EJBReference
	Description
	Attribute

	weblogic.javaee.Idempotent
	Description
	Attributes

	weblogic.javaee.JMSClientID
	Description
	Attributes

	weblogic.javaee.JNDIName
	Description
	Attributes

	weblogic.javaee.JNDINames
	Description
	Attributes

	weblogic.javaee.MessageDestinationConfiguration
	Description
	Attributes

	weblogic.javaee.TransactionIsolation
	Description
	Attributes

	weblogic.javaee.TransactionTimeoutSeconds
	Description
	Attributes




