
Oracle® Fusion Middleware
Developing Applications with the WebLogic
Security Service

12c (12.2.1.4.0)
E90831-05
January 2023

Oracle Fusion Middleware Developing Applications with the WebLogic Security Service, 12c (12.2.1.4.0)

E90831-05

Copyright © 2007, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility x

Diversity and Inclusion x

Related Information x

Conventions xii

1 WebLogic Security Programming Overview

What Is Security? 1-1

Administration Console and Security 1-2

Types of Security Supported by WebLogic Server 1-2

Authentication 1-2

Authorization 1-2

Java EE Security 1-3

Security APIs 1-3

JAAS Client Application APIs 1-3

Java JAAS Client Application APIs 1-3

WebLogic JAAS Client Application APIs 1-4

SSL Client Application APIs 1-4

Java SSL Client Application APIs 1-4

WebLogic SSL Client Application APIs 1-4

Other APIs 1-5

2 Securing Web Applications

Authentication With Web Browsers 2-1

User Name and Password Authentication 2-2

Digital Certificate Authentication 2-3

Multiple Web Applications, Cookies, and Authentication 2-5

Using Secure Cookies to Prevent Session Stealing 2-5

Configuring the Session Cookie as a Secure Cookie 2-5

Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID 2-6

iii

Developing Secure Web Applications 2-7

Developing BASIC Authentication Web Applications 2-7

Using HttpSessionListener to Account for Browser Caching of Credentials 2-11

Understanding BASIC Authentication with Unsecured Resources 2-12

Setting the enforce-valid-basic-auth-credentials Flag 2-12

Using WLST to Check the Value of enforce-valid-basic-auth-credentials 2-13

Developing FORM Authentication Web Applications 2-13

Using Identity Assertion for Web Application Authentication 2-18

Using Two-Way SSL for Web Application Authentication 2-19

Providing a Fallback Mechanism for Authentication Methods 2-19

Configuration 2-20

Developing Swing-Based Authentication Web Applications 2-20

Deploying Web Applications 2-21

Using Declarative Security With Web Applications 2-22

Web Application Security-Related Deployment Descriptors 2-23

web.xml Deployment Descriptors 2-23

auth-constraint 2-23

security-constraint 2-24

security-role 2-25

security-role-ref 2-26

user-data-constraint 2-26

web-resource-collection 2-28

weblogic.xml Deployment Descriptors 2-28

externally-defined 2-29

run-as-principal-name 2-30

run-as-role-assignment 2-31

security-permission 2-32

security-permission-spec 2-32

security-role-assignment 2-33

Using Programmatic Security With Web Applications 2-33

getUserPrincipal 2-33

isUserInRole 2-34

Using the Programmatic Authentication API 2-35

Change the User's Session ID at Login 2-36

3 Using JAAS Authentication in Java Clients

JAAS and WebLogic Server 3-1

JAAS Authentication Development Environment 3-2

JAAS Authentication APIs 3-3

JAAS Client Application Components 3-6

iv

WebLogic LoginModule Implementation 3-7

JVM-Wide Default User and the runAs() Method 3-8

Writing a Client Application Using JAAS Authentication 3-9

Using JNDI Authentication 3-12

Java Client JAAS Authentication Code Examples 3-14

4 Using SSL Authentication in Java Clients

JSSE and WebLogic Server 4-1

Using JNDI Authentication 4-2

SSL Certificate Authentication Development Environment 4-4

SSL Authentication APIs 4-4

SSL Client Application Components 4-7

Writing Applications that Use SSL 4-8

Communicating Securely From WebLogic Server to Other WebLogic Servers 4-8

Writing SSL Clients 4-9

SSLClient Sample 4-9

SSLSocketClient Sample 4-10

Using Two-Way SSL Authentication 4-11

Two-Way SSL Authentication with JNDI 4-11

Writing a User Name Mapper 4-16

Using Two-Way SSL Authentication Between WebLogic Server Instances 4-17

Using Two-Way SSL Authentication with Servlets 4-18

Using a Custom Host Name Verifier 4-19

Using a Trust Manager 4-20

Using the CertPath Trust Manager 4-22

Using a Handshake Completed Listener 4-22

Using an SSLContext 4-23

Using URLs to Make Outbound SSL Connections 4-24

SSL Client Code Examples 4-25

5 Securing Enterprise JavaBeans (EJBs)

Java EE Architecture Security Model 5-1

Declarative Security 5-1

Declarative Authorization Via Annotations 5-2

Programmatic Security 5-2

Declarative Versus Programmatic Authorization 5-3

Using Declarative Security With EJBs 5-3

Implementing Declarative Security Via Metadata Annotations 5-3

Security-Related Annotation Code Examples 5-4

v

Implementing Declarative Security Via Deployment Descriptors 5-4

EJB Security-Related Deployment Descriptors 5-6

ejb-jar.xml Deployment Descriptors 5-6

method 5-6

method-permission 5-7

role-name 5-8

run-as 5-8

security-identity 5-9

security-role 5-9

security-role-ref 5-9

unchecked 5-10

use-caller-identity 5-11

weblogic-ejb-jar.xml Deployment Descriptors 5-11

client-authentication 5-12

client-cert-authentication 5-12

confidentiality 5-13

externally-defined 5-13

identity-assertion 5-15

iiop-security-descriptor 5-15

integrity 5-16

principal-name 5-16

role-name 5-17

run-as-identity-principal 5-17

run-as-principal-name 5-18

run-as-role-assignment 5-19

security-permission 5-21

security-permission-spec 5-21

security-role-assignment 5-22

transport-requirements 5-22

Using Programmatic Security With EJBs 5-23

getCallerPrincipal 5-23

isCallerInRole 5-23

6 Using Network Connection Filters

The Benefits of Using Network Connection Filters 6-1

Network Connection Filter API 6-1

Connection Filter Interfaces 6-2

ConnectionFilter Interface 6-2

ConnectionFilterRulesListener Interface 6-2

Connection Filter Classes 6-3

vi

ConnectionFilterImpl Class 6-3

ConnectionEvent Class 6-3

Guidelines for Writing Connection Filter Rules 6-3

Connection Filter Rules Syntax 6-4

Types of Connection Filter Rules 6-4

How Connection Filter Rules are Evaluated 6-5

Configuring the WebLogic Connection Filter 6-6

Developing Custom Connection Filters 6-6

7 Using Java Security to Protect WebLogic Resources

Using Java EE Security to Protect WebLogic Resources 7-1

Using the Java Security Manager to Protect WebLogic Resources 7-2

Setting Up the Java Security Manager 7-2

Modifying the weblogic.policy file for General Use 7-3

Setting Application-Type Security Policies 7-4

Setting Application-Specific Security Policies 7-5

Using Printing Security Manager 7-5

Printing Security Manager Startup Arguments 7-6

Starting WebLogic Server With Printing Security Manager 7-7

Writing Output Files 7-7

Using the Java Authorization Contract for Containers 7-7

Comparing the WebLogic JACC Provider with the WebLogic Authentication Provider 7-9

Enabling the WebLogic JACC Provider 7-9

8 SAML APIs

SAML API Description 8-1

Custom POST Form Parameter Names 8-4

Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties 8-5

Overview of Creating a Custom SAML Name Mapper 8-5

Do You Need Multiple SAMLCredentialAttributeMapper Implementations? 8-6

Classes, Interfaces, and Methods 8-6

SAMLAttributeStatementInfo Class 8-6

SAMLCredentialAttributeMapper Interface 8-9

Example Custom SAMLCredentialAttributeMapper Class 8-10

Make the Custom SAMLCredentialAttributeMapper Class Available in the Console 8-14

Configuring SAML SSO Attribute Support 8-15

What Are SAML SSO Attributes? 8-15

New API's for SAML Attributes 8-15

SAML 2.0 Basic Attribute Profile Required 8-16

vii

Passing Multiple Attributes to SAML Credential Mappers 8-16

How to Implement SAML Attributes 8-17

Examples of the SAML 2.0 Attribute Interfaces 8-19

Example Custom SAML 2.0 Credential Attribute Mapper 8-19

Custom SAML 2.0 Identity Asserter Attribute Mapper 8-21

Examples of the SAML 1.1 Attribute Interfaces 8-23

Example Custom SAML 1.1 Credential Attribute Mapper 8-23

Custom SAML 1.1 Identity Asserter Attribute Mapper 8-25

Make the Custom SAML Credential Attribute Mapper Class Available in the Console 8-26

Make the Custom SAML Identity Asserter Class Available in the Console 8-27

9 Using CertPath Building and Validation

CertPath Building 9-1

Instantiate a CertPathSelector 9-1

Instantiate a CertPathBuilderParameters 9-2

Use the JDK CertPathBuilder Interface 9-3

Example Code Flow for Looking Up a Certificate Chain 9-4

CertPath Validation 9-4

Instantiate a CertPathValidatorParameters 9-4

Use the JDK CertPathValidator Interface 9-5

Example Code Flow for Validating a Certificate Chain 9-6

10

Using JASPIC for a Web Application

Overview of Java Authentication Service Provider Interface for Containers (JASPIC) 10-1

Do You Need to Implement an Authentication Configuration Provider? 10-2

Do You Need to Implement a Principal Validation Provider? 10-2

Implement a SAM 10-3

Configure JASPIC for the Deployed Web Application 10-4

A Deprecated Security APIs

viii

Preface

This document explains how to use the WebLogic Server security programming features.

Audience
This document is intended for the following audiences:

• Application Developers

Java programmers who focus on developing client applications, adding security to Web
applications and Enterprise JavaBeans (EJBs). They work with other engineering, Quality
Assurance (QA), and database teams to implement security features. Application
developers have in-depth/working knowledge of Java (including Java Platform, Enterprise
Edition (Java EE) components such as servlets/JSPs and JSEE) and Java security.

Application developers use the WebLogic security and Java security application
programming interfaces (APIs) to secure their applications. Therefore, this document
provides instructions for using those APIs for securing Web applications, Java
applications, and Enterprise JavaBeans (EJBs).

• Security Developers

Developers who focus on defining the system architecture and infrastructure for security
products that integrate into WebLogic Server and on developing custom security
providers for use with WebLogic Server. They work with application architects to ensure
that the security architecture is implemented according to design and that no security
holes are introduced. They also work with WebLogic Server administrators to ensure that
security is properly configured. Security developers have a solid understanding of
security concepts, including authentication, authorization, auditing (AAA), in-depth
knowledge of Java (including Java Management eXtensions (JMX), and working
knowledge of WebLogic Server and security provider functionality.

Security developers use the Security Service Provider Interfaces (SSPIs) to develop
custom security providers for use with WebLogic Server. This document does not
address this task; for information on how to use the SSPIs to develop custom security
providers, see Overview of the Development Process in Developing Security Providers
for Oracle WebLogic Server.

• Server Administrators

Administrators who work closely with application architects to design a security scheme
for the server and the applications running on the server, to identify potential security
risks, and to propose configurations that prevent security problems. Related
responsibilities may include maintaining critical production systems, configuring and
managing security realms, implementing authentication and authorization schemes for
server and application resources, upgrading security features, and maintaining security
provider databases. WebLogic Server administrators have in-depth knowledge of the
Java security architecture, including Web application and EJB security, Public Key
security, and SSL.

ix

• Application Administrators

Administrators who work with WebLogic Server administrators to implement and
maintain security configurations and authentication and authorization schemes,
and to set up and maintain access to deployed application resources in defined
security realms. Application administrators have general knowledge of security
concepts and the Java Security architecture. They understand Java, XML,
deployment descriptors, and can identify security events in server and audit logs.

While administrators typically use the WebLogic Server Administration Console to
deploy, configure, and manage applications when they put the applications into
production, application developers may also use the WebLogic Server
Administration Console to test their applications before they are put into
production. At a minimum, testing requires that applications be deployed and
configured. This document does not cover some aspects of administration as it
relates to security, rather, it references Administering Security for Oracle WebLogic
Server, Securing Resources Using Roles and Policies for Oracle WebLogic
Server, and Oracle WebLogic Server Administration Console Online Help for
descriptions of how to use the WebLogic Server Administration Console to perform
security tasks.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Information
In addition to this document, Developing Applications with the WebLogic Security
Service, the following documents provide information on the WebLogic Security
Service:

• Understanding Security for Oracle WebLogic Server—This document summarizes
the features of the WebLogic Security Service and presents an overview of the

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

architecture and capabilities of the WebLogic Security Service. It is the starting point for
understanding the WebLogic Security Service.

• Securing a Production Environment for Oracle WebLogic Server— This document
highlights essential security measures for you to consider before you deploy WebLogic
Server into a production environment.

• Developing Security Providers for Oracle WebLogic Server—This document provides
security vendors and application developers with the information needed to develop
custom security providers that can be used with WebLogic Server.

• Administering Security for Oracle WebLogic Server—This document explains how to
configure security for WebLogic Server.

• Securing Resources Using Roles and Policies for Oracle WebLogic Server—This
document introduces the various types of WebLogic resources, and provides information
that allows you to secure these resources using WebLogic Server.

• Oracle WebLogic Server Administration Console Online Help—This document describes
how to use the WebLogic Server Administration Console to perform security tasks.

• Java API Reference for Oracle WebLogic Server —This document includes reference
documentation for the WebLogic security packages that are provided with and supported
by the WebLogic Server software.

Security Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the EXAMPLES_HOME\src\examples
directory, where EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured and can be found at ORACLE_HOME\wlserver\samples\server. For
more information about the WebLogic Server code examples, see Sample Applications and
Code Examples in Understanding Oracle WebLogic Server.

The following examples illustrate WebLogic security features:

• Java Authentication and Authorization Service

• Outbound and Two-way SSL

The security tasks and code examples provided in this document assume that you are using
the WebLogic security providers that are included in the WebLogic Server distribution, not
custom security providers. The usage of the WebLogic security APIs does not change if you
elect to use custom security providers, however, the management procedures of your custom
security providers may be different.

Note:

This document does not provide comprehensive instructions on how to configure
WebLogic Security providers or custom security providers. For information on
configuring WebLogic security providers and custom security providers, see
Configuring Security Providers in Administering Security for Oracle WebLogic
Server.

Preface

xi

New and Changed Security Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xii

1
WebLogic Security Programming Overview

Oracle WebLogic Server supports the ability to incorporate standard Java EE security
technologies such as the Java Authentication and Authorization Service (JAAS), Java Secure
Sockets Extensions (JSSE), Java Cryptography Architecture and Java Cryptography
Extensions (JCE), and Java Authentication Service Provider Interface for Containers
(JASPIC) in hosted applications, such as web applications, web services, Enterprise
JavaBeans, and more, and includes support for implementing declarative and programmatic
authorization in those applications.

• What Is Security?

• Administration Console and Security

• Types of Security Supported by WebLogic Server

• Security APIs

What Is Security?
Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised.Most security measures involve proof material and data
encryption. Proof material is typically a secret word or phrase that gives a user access to a
particular application or system. Data encryption is the translation of data into a form that
cannot be interpreted without holding or supplying the same secret.
Distributed applications, such as those used for electronic commerce (e-commerce), offer
many access points at which malicious people can intercept data, disrupt operations, or
generate fraudulent input. As a business becomes more distributed the probability of security
breaches increases. Accordingly, as a business distributes its applications, it becomes
increasingly important for the distributed computing software upon which such applications
are built to provide security.

An application server resides in the sensitive layer between end users and your valuable data
and resources. Oracle WebLogic Server provides authentication, authorization, and
encryption services with which you can guard these resources. These services cannot
provide protection, however, from an intruder who gains access by discovering and exploiting
a weakness in your deployment environment.

Therefore, whether you deploy WebLogic Server on the Internet or on an intranet, it is a good
idea to hire an independent security expert to go over your security plan and procedures,
audit your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues and appropriate
security measures. The document Securing a Production Environment for Oracle WebLogic
Serverhighlights essential security measures for you to consider before you deploy WebLogic
Server into a production environment. The document Securing Resources Using Roles and
Policies for Oracle WebLogic Serverintroduces the various types of WebLogic resources, and
provides information that allows you to secure these resources using WebLogic Server. For
the latest information about securing Web servers, Oracle also recommends reading the
Security Improvement Modules, Security Practices, and Technical Implementations
information (http://www.cert.org/) available from the CERT™ Coordination Center
operated by Carnegie Mellon University.

1-1

http://www.cert.org/

Oracle suggests that you apply the remedies recommended in our security advisories.
In the event of a problem with an Oracle product, Oracle distributes an advisory and
instructions with the appropriate course of action. If you are responsible for security
related issues at your site, please register to receive future notifications.

Administration Console and Security
You can use the WebLogic Server Administration Console to define and edit
deployment descriptors for Web Applications, EJBs, Java EE Connectors, and
Enterprise Applications.This document, Developing Applications with the WebLogic
Security Service, does not describe how to use the WebLogic Server Administration
Console to configure security. For information on how to use the WebLogic Server
Administration Console to define and edit deployment descriptors, see Securing
Resources Using Roles and Policies for Oracle WebLogic Server and Administering
Security for Oracle WebLogic Server.

Types of Security Supported by WebLogic Server
WebLogic Server supports security mechanisms such as authentication, authorization,
and Java EE security in deployed applications.

• Authentication

• Authorization

• Java EE Security

Authentication
Authentication is the mechanism by which callers and service providers prove that
they are acting on behalf of specific users or systems. Authentication answers the
question, "Who are you?" using credentials. When the proof is bidirectional, it is
referred to as mutual authentication.

WebLogic Server supports username and password authentication and certificate
authentication. For certificate authentication, WebLogic Server supports both one-way
and two-way SSL (Secure Sockets Layer) authentication. Two-way SSL authentication
is a form of mutual authentication.

In WebLogic Server, Authentication providers are used to prove the identity of users or
system processes. Authentication providers also remember, transport, and make
identity information available to various components of a system (via subjects) when
needed. You can configure the Authentication providers using the Web application and
EJB deployment descriptor files, or the WebLogic Server Administration Console, or a
combination of both.

Authorization
Authorization is the process whereby the interactions between users and WebLogic
resources are controlled, based on user identity or other information. In other words,
authorization answers the question, "What can you access?"

In WebLogic Server, a WebLogic Authorization provider is used to limit the interactions
between users and WebLogic resources to ensure integrity, confidentiality, and
availability. You can configure the Authorization provider using the Web application and

Chapter 1
Administration Console and Security

1-2

EJB deployment descriptor files, or the WebLogic Server Administration Console, or a
combination of both.

WebLogic Server also supports the use of programmatic authorization (also referred to in this
document as programmatic security) to limit the interactions between users and WebLogic
resources.

Java EE Security
For implementation and use of user authentication and authorization, WebLogic Server
utilizes the security services of the Java EE Development Kit. Like the other Java EE
components, the security services are based on standardized, modular components.
WebLogic Server implements these Java security service methods according to the standard,
and adds extensions that handle many details of application behavior automatically, without
requiring additional programming.

Security APIs
WebLogic Server supports and implements several security packages and classes. You use
these packages to secure interactions between WebLogic Server and client applications,
Enterprise JavaBeans (EJBs), and Web applications.

The following topics are covered in this section:

• JAAS Client Application APIs

• SSL Client Application APIs

• Other APIs

Note:

Several of the WebLogic security packages, classes, and methods are deprecated
in this release of WebLogic Server. For more detailed information on deprecated
packages and classes, see Deprecated Security APIs.

JAAS Client Application APIs
You use Java APIs and WebLogic APIs to write client applications that use JAAS
authentication.

The following topics are covered in this section:

• Java JAAS Client Application APIs

• WebLogic JAAS Client Application APIs

Java JAAS Client Application APIs
You use the following Java APIs to write JAAS client applications. The APIs are available at
https://docs.oracle.com/javase/8/docs/api/index.html.

• javax.naming

Chapter 1
Security APIs

1-3

https://docs.oracle.com/javase/8/docs/api/index.html

• javax.security.auth

• javax.security.auth.callback

• javax.security.auth.login

• javax.security.auth.spi

For information on how to use these APIs, see JAAS Authentication APIs.

WebLogic JAAS Client Application APIs
You use the following WebLogic APIs to write JAAS client applications:

• weblogic.security

• weblogic.security.auth

• weblogic.security.auth.callback

For information on how to use these APIs, see JAAS Authentication APIs.

SSL Client Application APIs
You use Java and WebLogic APIs to write client applications that use SSL
authentication:

The following topics are covered in this section:

• Java SSL Client Application APIs

• WebLogic SSL Client Application APIs

Java SSL Client Application APIs
You use the following Java APIs (available from http://docs.oracle.com/javase/8/
docs/api/index.html) to write SSL client applications:

• java.security

• java.security.cert

• javax.crypto

• javax.naming

• javax.net

• javax.security

• javax.servlet

• javax.servet.http

WebLogic Server also supports the javax.net.SSL API (http://docs.oracle.com/
javase/8/docs/api/index.html), but Oracle recommends that you use the
weblogic.security.SSL package when you use SSL with WebLogic Server.

For information on how to use these APIs, see SSL Authentication APIs.

WebLogic SSL Client Application APIs
You use the following WebLogic APIs to write SSL client applications.

Chapter 1
Security APIs

1-4

http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html

• weblogic.net.http

• weblogic.security.SSL

For information on how to use these APIs, see SSL Authentication APIs.

Other APIs
Additionally, you use the following APIs to develop WebLogic Server applications:

• weblogic.security.jacc
This API provides the RoleMapper interface. If you implement the Java Authorization
Contract for Containers (JACC), you can use this package with the javax.security.jacc
package (http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-
summary.html). See Using the Java Authorization Contract for Containers for information
about the WebLogic JACC provider. See http://docs.oracle.com/javaee/7/api/
javax/security/jacc/package-frame.html for information on developing a JACC
provider.

• weblogic.security.net
This API provides interfaces and classes that are used to implement network connection
filters. Network connection filters allow or deny connections to Oracle WebLogic Server
based on attributes such as the IP address, domain, or protocol of the initiator of the
network connection. For more information about how to use this API, see Using Network
Connection Filters.

• weblogic.security.pk
This API provides interfaces and classes to build and validate certification paths. See
Using CertPath Building and Validation for information on using this API to build and
validate certificate chains.

See the java.security.cert package (http://docs.oracle.com/javase/8/docs/api/java/
security/cert/package-summary.html) for additional information on certificates and
certificate paths.

• weblogic.security.providers.saml
This API provides interfaces and classes that are used to perform mapping of user and
group information to Security Assertion Markup Language (SAML) assertions, and to
cache and retrieve SAML assertions.

SAML is an XML-based framework for exchanging security information. WebLogic Server
supports SAML V2.0 and V1.1, including the Browser/Post and Browser/Artifact profiles.
SAML authorization is not supported.

For more information about SAML, see http://www.oasis-open.org.

• weblogic.security.service
This API includes interfaces, classes, and exceptions that support security providers. The
WebLogic Security Framework consists of interfaces, classes, and exceptions provided
by this API. The interfaces, classes, and exceptions in this API should be used in
conjunction with those in the weblogic.security.spi package. For more information
about how to use this API, see Security Providers and WebLogic Resources in
Developing Security Providers for Oracle WebLogic Server.

• weblogic.security.services

Chapter 1
Security APIs

1-5

http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-frame.html
http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-frame.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/package-summary.html
http://www.oasis-open.org

This API provides the server-side authentication class. This class is used to
perform a local login to the server. It provides login methods that are used with
CallbackHandlers to authenticate the user and return credentials using the default
security realm.

• weblogic.security.spi
This package provides the Security Service Provider Interfaces (SSPIs). It
provides interfaces, classes, and exceptions that are used for developing custom
security providers. In many cases, these interfaces, classes, and exceptions
should be used in conjunction with those in the weblogic.security.service API.
You implement interfaces, classes, and exceptions from this package to create
runtime classes for security providers. For more information about how to use the
SSPIs, see Security Services Provider Interfaces (SSPIs) in Developing Security
Providers for Oracle WebLogic Server.

• weblogic.servlet.security
This API provides a server-side API that supports programmatic authentication
from within a servlet application. For more about how to use this API, see Using
the Programmatic Authentication API.

Chapter 1
Security APIs

1-6

2
Securing Web Applications

Oracle WebLogic Server supports the Java EE architecture security model for securing Web
applications, which includes support for declarative authorization (also referred to as
declarative security) and programmatic authorization (also referred to as programmatic
security).

• Authentication With Web Browsers

• Multiple Web Applications, Cookies, and Authentication

• Developing Secure Web Applications

• Using Declarative Security With Web Applications

• Web Application Security-Related Deployment Descriptors

• Using Programmatic Security With Web Applications

• Using the Programmatic Authentication API

Note:

You can use deployment descriptor files and the WebLogic Server Administration
Console to secure Web applications. This document describes how to use
deployment descriptor files. For information on using the WebLogic Server
Administration Console to secure Web applications, see Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

WebLogic Server supports the use of the HttpServletRequest.isUserInRole and
HttpServletRequest.getUserPrincipal methods and the use of the security-role-ref
element in deployment descriptors to implement programmatic authorization in Web
applications.

Authentication With Web Browsers
Web browsers can connect to WebLogic Server over either a HyperText Transfer Protocol
(HTTP) port or an HTTP with SSL (HTTPS) port. WebLogic Server uses encryption and
digital certificate authentication when Web browsers connect to the server using the HTTPS
port.

The benefits of using an HTTPS port versus an HTTP port are two-fold. With HTTPS
connections:

• All communication on the network between the Web browser and the server is encrypted.
None of the communication, including the user name and password, is in clear text.

• As a minimum authentication requirement, the server is required to present a digital
certificate to the Web browser client to prove its identity.

2-1

If the server is configured for two-way SSL authentication, both the server and client
are required to present a digital certificate to each other to prove their identity.

User Name and Password Authentication
WebLogic Server performs user name and password authentication when users use a
Web browser to connect to the server via the HTTP port. In this scenario, the browser
and an instance of WebLogic Server interact in the following manner to authenticate a
user (see Figure 2-1):

1. A user invokes a WebLogic resource in Oracle WebLogic Server by entering the
URL for that resource in a Web browser. The HTTP URL contains the HTTP listen
port, for example, http://myserver:7001.

2. The Web server in Oracle WebLogic Server receives the request.

Note:

Oracle WebLogic Server provides its own Web server but also supports
the use of Apache Server, Microsoft Internet Information Server, and
Java System Web Server as Web servers.

3. The Web server determines whether the WebLogic resource is protected by a
security policy. If the WebLogic resource is protected, the Web server uses the
established HTTP connection to request a user name and password from the user.

4. When the user's Web browser receives the request from the Web server, it
prompts the user for a user name and password.

5. The Web browser sends the request to the Web server again, along with the user
name and password.

6. The Web server forwards the request to the Web server plug-in. Oracle WebLogic
Server provides the following plug-ins for Web servers:

• Apache-WebLogic Server plug-in

• Java System Web Server plug-in

• Internet Information Server (IIS) plug-in

The Web server plug-in performs authentication by sending the request, via the
HTTP protocol, to Oracle WebLogic Server, along with the authentication data
(user name and password) received from the user.

7. Upon successful authentication, Oracle WebLogic Server proceeds to determine
whether the user is authorized to access the WebLogic resource.

8. Before invoking a method on the WebLogic resource, the WebLogic Server
instance performs a security authorization check. During this check, the server
security extracts the user's credentials from the security context, determines the
user's security role, compares the user's security role to the security policy for the
requested WebLogic resource, and verifies that the user is authorized to invoke
the method on the WebLogic resource.

9. If authorization succeeds, the server fulfills the request.

Chapter 2
Authentication With Web Browsers

2-2

Figure 2-1 Secure Login for Web Browsers

Digital Certificate Authentication
WebLogic Server uses encryption and digital certificate authentication when Web browser
users connect to the server via the HTTPS port. In this scenario, the browser and WebLogic
Server instance interact in the following manner to authenticate and authorize a user (see
Figure 2-1):

1. A user invokes a WebLogic resource in Oracle WebLogic Server by entering the URL for
that resource in a Web browser. The HTTPS URL contains the SSL listen port, for
example, https://myserver:7002.

2. The Web server in Oracle WebLogic Server receives the request.

Note:

Oracle WebLogic Server provides its own Web server but also supports the use
of Apache Server, Microsoft Internet Information Server, and Java System Web
Server as Web servers.

3. The Web server checks whether the WebLogic resource is protected by a security policy.
If the WebLogic resource is protected, the Web server uses the established HTTPS
connection to request a user name and password from the user.

4. When the user's Web browser receives the request from Oracle WebLogic Server, it
prompts the user for a user name and password. (This step is optional.)

5. The Web browser sends the request again, along with the user name and password.
(Only supplied if requested by the server.)

Chapter 2
Authentication With Web Browsers

2-3

6. WebLogic Server presents its digital certificate to the Web browser.

7. The Web browser checks that the server's name used in the URL (for example,
myserver) matches the name in the digital certificate and that the digital certificate
was issued by a trusted third party, that is, a trusted CA

8. If two-way SSL authentication is in force on the server, the server requests a
digital certificate from the client.

Note:

Even though WebLogic Server cannot be configured to enforce the full
two-way SSL handshake with 1.0 Web Server proxy plug-ins, proxy plug-
ins can be configured to provide the client certificate to the server if it is
needed. To do this, configure the proxy plug-in to export the client
certificate in the HTTP Header for WebLogic Server. For instructions on
how to configure proxy plug-ins to export the client certificate to
WebLogic Server, see the configuration information for the specific plug-
in in Using Oracle WebLogic Server Proxy Plug-Ins.

The latest plug-ins provide two-way SSL support for verifying client
identity. Two-way SSL is automatically enforced when WebLogic Server
requests the client certificate during the handshake process. See
Configuring Two-Way SSL Between the Plug-In and Oracle WebLogic
Server in Using Oracle WebLogic Server Proxy Plug-Ins.

9. The Web server forwards the request to the Web server plug-in. If secure proxy is
set (this is the case if the HTTPS protocol is being used), the Web server plug-in
also performs authentication by sending the request, via the HTTPS protocol, to
the WebLogic resource in Oracle WebLogic Server, along with the authentication
data (user name and password) received from the user.

Note:

When using two-way SSL authentication, you can also configure the
server to do identity assertion based on the client's certificate, where,
instead of supplying a user name and password, the server extracts the
user name and password from the client's certificate.

10. Upon successful authentication, Oracle WebLogic Server proceeds to determine
whether the user is authorized to access the WebLogic resource.

11. Before invoking a method on the WebLogic resource, the server performs a
security authorization check. During this check, the server extracts the user's
credentials from the security context, determines the user's security role,
compares the user's security role to the security policy for the requested WebLogic
resource, and verifies that the user is authorized to invoke the method on the
WebLogic resource.

12. If authorization succeeds, the server fulfills the request.

See the following topics:

• Configuring SSL

Chapter 2
Authentication With Web Browsers

2-4

• Installing and Configuring the Apache HTTP Server Plug-In

• Installing and Configuring the Microsoft IIS Plug-In

Multiple Web Applications, Cookies, and Authentication
By default, WebLogic Server assigns the same cookie name (JSESSIONID) to all Web
applications. When you use any type of authentication, all Web applications that use the
same cookie name use a single sign-on for authentication. Once a user is authenticated, that
authentication is valid for requests to any Web Application that uses the same cookie name.
The user is not prompted again for authentication.

If you want to require separate authentication for a Web application, you can specify a unique
cookie name or cookie path for the Web application. Specify the cookie name using the
CookieName parameter and the cookie path with the CookiePath parameter, defined in the
weblogic.xml <session-descriptor> element. See session-descriptor in Administering
Server Startup and Shutdown for Oracle WebLogic Server.

If you want to retain the cookie name and still require independent authentication for each
Web application, you can set the cookie path parameter (CookiePath) differently for each
Web application.

However, note that a common Web security problem is session stealing. WebLogic Server
provides two features, or methods, that Web site designers can use to prevent session
stealing, described in Using Secure Cookies to Prevent Session Stealing.

Using Secure Cookies to Prevent Session Stealing
Session stealing happens when an attacker manages to get a copy of your session cookie,
generally while the cookie is being transmitted over the network. This can only occur when
the data is being sent in clear-text; that is, the cookie is not encrypted. WebLogic Server
provides two features for securing session cookies.

• Configuring the Session Cookie as a Secure Cookie

• Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID

Note:

These two features work correctly when the SSL request is terminated at WebLogic
Server. Proxy architectures that terminate the SSL connection at a Web server
plug-in or hardware load balancer can enable the WeblogicPluginEnabled attribute
for these features to work, but doing so exposes the session cookie behind the
proxy.

Configuring the Session Cookie as a Secure Cookie
You can prevent session stealing by configuring the application to use HTTPS. When
communication with WebLogic Server is secured by SSL, you can have WebLogic Server
make the session cookie secure by specifying the <cookie-secure> element in the
weblogic.xml deployment descriptor and setting its value to true. A secure cookie indicates
to the Web browser that the cookie should be sent using only a secure protocol, such as SSL.

Chapter 2
Multiple Web Applications, Cookies, and Authentication

2-5

Note that it is possible for an application with code running in the browser — for
example, an applet — to make non-HTTP outbound connections. In such connections,
the browser sends the session cookie. However, by specifying the <cookie-http-
only> element in weblogic.xml, you constrain the browser to send the cookie only
over an HTTP connection — the cookie is made inaccessible to applications or other
protocols running in the browser. So if you specify <cookie-http-only> in conjunction
with <cookie-secure>, you ensure that session cookies are sent only over HTTPS.

For more information about the <cookie-secure> and <cookie-http-only> elements,
see weblogic.xml Deployment Descriptor Elements in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID
WebLogic Server allows a user to securely access HTTPS resources in a session that
was initiated using HTTP, without loss of session data. To enable this feature, add
AuthCookieEnabled="true" to the WebServer element in config.xml:

<WebServer Name="myserver" AuthCookieEnabled="true"/>

Setting AuthCookieEnabled to true, which is the default setting, causes the WebLogic
Server instance to send a new secure cookie, _WL_AUTHCOOKIE_JSESSIONID, to the
browser when authenticating via an HTTPS connection. Once the secure cookie is set,
the session is allowed to access other security-constrained HTTPS resources only if
the cookie is sent from the browser.

Thus, WebLogic Server uses two cookies: the JSESSIONID cookie and the
_WL_AUTHCOOKIE_JSESSIONID cookie. By default, the JSESSIONID cookie is never
secure, but the _WL_AUTHCOOKIE_JSESSIONID cookie is always secure. A secure cookie
is only sent when an encrypted communication channel is in use. Assuming a
standard HTTPS login (HTTPS is an encrypted HTTP connection), your browser gets
both cookies.

For subsequent HTTP access, you are considered authenticated if you have a valid
JSESSIONID cookie, but for HTTPS access, you must have both cookies to be
considered authenticated. If you only have the JSESSIONID cookie, you must re-
authenticate.

With this feature enabled, once you have logged in over HTTPS, the secure cookie is
only sent encrypted over the network and therefore can never be stolen in transit. The
JSESSIONID cookie is still subject to in-transit hijacking. Therefore, a Web site designer
can ensure that session stealing is not a problem by making all sensitive data require
HTTPS. While the HTTP session cookie is still vulnerable to being stolen and used, all
sensitive operations require the _WL_AUTHCOOKIE_JSESSIONID, which cannot be stolen,
so those operations are protected.

You can also specify a cookie name for JSESSIONID or _WL_AUTHCOOKIE_JSESSIONID
using the CookieName parameter defined in the weblogic.xml deployment descriptor's
<session-descriptor> element, as follows:

<session-descriptor>
 <cookie-name>FOOAPPID</cookie-name>
</session-descriptor>

Chapter 2
Multiple Web Applications, Cookies, and Authentication

2-6

In this case, Weblogic Server will not use JSESSIONID and _WL_AUTHCOOKIE_JSESSIONID, but
FOOAPPID and _WL_AUTHCOOKIE_FOOAPPID to serve the same purpose, as shown in Table 2-1.

Table 2-1 WebLogic Server Cookies

User-Specified in Deployment
Descriptor

HTTP Session HTTPS Session

No - uses the JSESSIONID default JSESSIONID _WL_AUTHCOOKIE_JSESSIONI
D

Yes - specified as FOOAPPID FOOAPPID _WL_AUTHCOOKIE_FOOAPPID

Developing Secure Web Applications
WebLogic Server supports three types of authentication for Web browsers: BASIC, FORM,
and CLIENT-CERT.

The following sections cover the different ways to use these types of authentication:

• Developing BASIC Authentication Web Applications

• Understanding BASIC Authentication with Unsecured Resources

• Developing FORM Authentication Web Applications

• Using Identity Assertion for Web Application Authentication

• Using Two-Way SSL for Web Application Authentication

• Providing a Fallback Mechanism for Authentication Methods

• Developing Swing-Based Authentication Web Applications

• Deploying Web Applications

Developing BASIC Authentication Web Applications
With basic authentication, the Web browser pops up a login screen in response to a
WebLogic resource request. The login screen prompts the user for a user name and
password. Figure 2-2 shows a typical login screen.

Figure 2-2 Authentication Login Screen

Chapter 2
Developing Secure Web Applications

2-7

Note:

See Understanding BASIC Authentication with Unsecured Resources for
important information about how unsecured resources are handled.

To develop a Web application that provides basic authentication, perform these steps:

1. Create the web.xml deployment descriptor. In this file you include the following
information (see Example 2-1):

a. Define the welcome file. The welcome file name is welcome.jsp.

b. Define a security constraint for each set of Web application resources, that is,
URL resources, that you plan to protect. Each set of resources share a
common URL. URL resources such as HTML pages, JSPs, and servlets are
the most commonly protected, but other types of URL resources are
supported. In Example 2-1, the URL pattern points to the welcome.jsp file
located in the Web application's top-level directory; the HTTP methods that
are allowed to access the URL resource, POST and GET; and the security role
name, webuser.

Note:

When specifying security role names, observe the following
conventions and restrictions:

• The proper syntax for a security role name is as defined for an
Nmtoken in the Extensible Markup Language (XML)
recommendation available on the Web at: http://
www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters
in this comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be
singular.

c. Use the <login-config> tag to define the type of authentication you want to
use and the security realm to which the security constraints will be applied. In
Example 2-1, the BASIC type is specified and the realm is the default realm,
which means that the security constraints will apply to the active security realm
when the WebLogic Server instance boots.

d. Define one or more security roles and map them to your security constraints.
In our sample, only one security role, webuser, is defined in the security
constraint so only one security role name is defined here (see the <security-
role> tag in Example 2-1). However, any number of security roles can be
defined.

2. Create the weblogic.xml deployment descriptor. In this file you map security role
names to users and groups. Example 2-2 shows a sample weblogic.xml file that
maps the webuser security role defined in the <security-role> tag in the web.xml

Chapter 2
Developing Secure Web Applications

2-8

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Nmtoken

file to a group named myGroup. Note that principals can be users or groups, so the
<principal-tag> can be used for either. With this configuration, WebLogic Server will
only allow users in myGroup to access the protected URL resource—welcome.jsp.

Note:

Starting in version 9.0, the default role mapping behavior is to create empty role
mappings when none are specified in weblogic.xml. In version 8.x, if you did not
include a weblogic.xml file, or included the file but did not include mappings for
all security roles, security roles without mappings defaulted to any user or group
whose name matched the role name. For information on role mapping behavior
and backward compatibility settings, see Understanding the Combined Role
Mapping Enabled Setting in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

3. Create a file that produces the Welcome screen that displays when the user enters a
user name and password and is granted access. Example 2-3 shows a sample
welcome.jsp file. Figure 2-3 shows the Welcome screen.

Note:

In Example 2-3, notice that the JSP is calling an API (request.getRemoteUser())
to get the name of the user that logged in. A different API,
weblogic.security.Security.getCurrentSubject(), could be used instead. To use
this API to get the name of the user, use it with the SubjectUtils API as follows:

String username = weblogic.security.SubjectUtils.getUsername
weblogic.security.Security.getCurrentSubject());

Figure 2-3 Welcome Screen

Chapter 2
Developing Secure Web Applications

2-9

4. Start WebLogic Server and define the users and groups that will have access to
the URL resource. In the weblogic.xml file (see Example 2-2), the <principal-
name> tag defines myGroup as the group that has access to the welcome.jsp.
Therefore, use the WebLogic Server Administration Console to define the myGroup
group, define a user, and add that user to the myGroup group. For information on
adding users and groups, see Users, Groups, and Security Roles in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user defined in the previous step to
access the protected URL resource.

a. For deployment instructions, see Deploying Web Applications.

b. Open a Web browser and enter this URL:

http://localhost:7001/basicauth/welcome.jsp
c. Enter the user name and password. The Welcome screen displays.

Example 2-1 Basic Authentication web.xml File

<?xml version='1.0' encoding='UTF-8'?>
<web-app version="4.0" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://
xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd">
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Success</web-resource-name>
 <url-pattern>/welcome.jsp</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>webuser</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
 </login-config>
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
</web-app>

Example 2-2 BASIC Authentication weblogic.xml File

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd">
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>myGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Chapter 2
Developing Secure Web Applications

2-10

Example 2-3 BASIC Authentication welcome.jsp File

<html>
 <head>
 <title>Browser Based Authentication Example Welcome Page</title>
 </head>
 <h1> Browser Based Authentication Example Welcome Page </h1>
 <p> Welcome <%= request.getRemoteUser() %>!
 </blockquote>
 </body>
</html>

Using HttpSessionListener to Account for Browser Caching of Credentials
The browser caches user credentials and frequently re-sends them to the server
automatically. This can give the appearance that WebLogic Server sessions are not being
destroyed after logout or timeout. Depending on the browser, the credentials can be cached
just for the current browser session, or across browser sessions.

You can validate that a WebLogic Server's session was destroyed by creating a class that
implements the javax.servlet.http.HttpSessionListener interface. Implementations of
this interface are notified of changes to the list of active sessions in a web application. To
receive notification events, the implementation class must be configured in the deployment
descriptor for the web application in web.xml.

To configure a session listener class:

1. Open the web.xml deployment descriptor of the Web application for which you are
creating a session listener class in a text editor. The web.xml file is located in the WEB-
INF directory of your Web application.

2. Add an event declaration using the listener element of the web.xml deployment
descriptor. The event declaration defines the event listener class that is invoked when the
event occurs. For example:

<listener>
 <listener-class>myApp.MySessionListener</listener-class>
</listener>

See Configuring an Event Listener Class in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server for additional information and guidelines.

Write and deploy the session listener class. The example shown in Example 2-4 uses a
simple counter to track the session count.

Example 2-4 Tracking the Session Count

package myApp;
import javax.servlet.http.HttpSessionListener;
import javax.servlet.http.HttpSessionEvent;
public class MySessionListener implements HttpSessionListener {
 private static int sessionCount = 0;

 public void sessionCreated(HttpSessionEvent se) {
 sessionCount++;
 // Write to a log or do some other processing.
 }
 public void sessionDestroyed(HttpSessionEvent se) {
 if(sessionCount > 0)
 sessionCount--;
 //Write to a log or do some other processing.

Chapter 2
Developing Secure Web Applications

2-11

 }
}

Understanding BASIC Authentication with Unsecured Resources
For WebLogic Server versions 9.2 and later, client requests that use HTTP BASIC
authentication must pass WebLogic Server authentication, even if access control is not
enabled on the target resource.

The setting of the Security Configuration MBean flag enforce-valid-basic-auth-
credentials determines this behavior. (The DomainMBean can return the new Security
Configuration MBean for the domain.) It specifies whether or not the system should
allow requests with invalid HTTP BASIC authentication credentials to access
unsecured resources.

Note:

The Security Configuration MBean provides domain-wide security
configuration information. The enforce-valid-basic-auth-credentials flag
effects the entire domain.

The enforce-valid-basic-auth-credentials flag is true by default, and WebLogic Server
authentication is performed. If authentication fails, the request is rejected. WebLogic
Server must therefore have knowledge of the user and password.

You may want to change the default behavior if you rely on an alternate authentication
mechanism. For example, you might use a backend web service to authenticate the
client, and WebLogic Server does not need to know about the user. With the default
authentication enforcement enabled, the web service can do its own authentication,
but only if WebLogic Server authentication first succeeds.

If you explicitly set the enforce-valid-basic-auth-credentials flag to false, WebLogic
Server does not perform authentication for HTTP BASIC authentication client requests
for which access control was not enabled for the target resource.

In the previous example of a backend web service that authenticates the client, the
web service can then perform its own authentication without WebLogic Server having
knowledge of the user.

Setting the enforce-valid-basic-auth-credentials Flag
To set the enforce-valid-basic-auth-credentials flag, perform the following steps:

1. Add the <enforce-valid-basic-auth-credentials> element to config.xml within
the <security-configuration> element.

:
<enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-
credentials>
 </security-configuration>

2. Start or restart all of the servers in the domain.

Chapter 2
Developing Secure Web Applications

2-12

Using WLST to Check the Value of enforce-valid-basic-auth-credentials
The WebLogic Server Administration Console does not display or log the enforce-valid-basic-
auth-credentials setting. However, you can use WLST to check the value in a running server.
Remember that enforce-valid-basic-auth-credentials is a domain-wide setting.

The WLST session shown in Example 2-5 demonstrates how to check the value of the
enforce-valid-basic-auth-credentials flag in a sample running server.

Example 2-5 Checking the Value of enforce-valid-basic-auth-credentials

wls:/offline> connect('','','t3://host:port')
Please enter your username :adminuser
Please enter your password :
Connecting to t3://host:port with userid adminuser ...
Successfully connected to Admin Server 'examplesServer' that belongs to domain '
wl_server'.
wls:/wl_server/serverConfig> cd('SecurityConfiguration')

wls:/wl_server/serverConfig/SecurityConfiguration> ls()
dr-- wl_server
wls:/wl_server/serverConfig/SecurityConfiguration> cd('wl_server')
wls:/wl_server/serverConfig/SecurityConfiguration/wl_server> ls()
dr-- DefaultRealm
dr-- Realms
-r-- AnonymousAdminLookupEnabled false
-r-- CompatibilityConnectionFiltersEnabled false
-r-- ConnectionFilter null
-r-- ConnectionFilterRules null
-r-- ConnectionLoggerEnabled false
-r-- ConsoleFullDelegationEnabled false
-r-- Credential ******
-r-- CredentialEncrypted ******
-r-- CrossDomainSecurityEnabled false
-r-- DowngradeUntrustedPrincipals false
-r-- EnforceStrictURLPattern true
-r-- EnforceValidBasicAuthCredentials false
:
:

Developing FORM Authentication Web Applications
When using FORM authentication with Web applications, you provide a custom login screen
that the Web browser displays in response to a Web application resource request and an
error screen that displays if the login fails. The login screen can be generated using an HTML
page, JSP, or servlet. The benefit of form-based login is that you have complete control over
these screens so that you can design them to meet the requirements of your application or
enterprise policy/guideline.

The login screen prompts the user for a user name and password. Figure 2-4 shows a typical
login screen generated using a JSP and Example 2-6 shows the source code.

Chapter 2
Developing Secure Web Applications

2-13

Figure 2-4 Form-Based Login Screen (login.jsp)

Figure 2-5 shows a typical login error screen generated using HTML and Example 2-7
shows the source code.

Figure 2-5 Login Error Screen

Chapter 2
Developing Secure Web Applications

2-14

To develop a Web application that provides FORM authentication, perform these steps:

1. Create the web.xml deployment descriptor and include the following information:

a. Define the welcome file. The welcome file name is welcome.jsp.

b. Define a security constraint for each set of URL resources that you plan to protect.
Each set of URL resources share a common URL. URL resources such as HTML
pages, JSPs, and servlets are the most commonly protected, but other types of URL
resources are supported. In the sample web.xml file provided in the following steps,
the URL pattern points to /admin/edit.jsp, thus protecting the edit.jsp file located in
the Web application's admin sub-directory, defines the HTTP method that is allowed
to access the URL resource, GET, and defines the security role name, admin.

Note:

Do not use hyphens in security role names. Security role names with
hyphens cannot be modified in the WebLogic Server Administration
Console. Also, the suggested convention for security role names is that
they be singular.

c. Define the type of authentication you want to use and the security realm to which the
security constraints will be applied. In this case, the FORM type is specified and no
realm is specified, so the realm is the default realm, which means that the security
constraints will apply to the security realm that is activated when a WebLogic Server
instance boots.

d. Define one or more security roles and map them to your security constraints. In our
sample, only one security role, admin, is defined in the security constraint so only one
security role name is defined here. However, any number of security roles can be
defined. The following is a sample web.xml file.

<?xml version='1.0' encoding='UTF-8'?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/j2ee" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
<web-app>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AdminPages</web-resource-name>
 <description>
 These pages are only accessible by authorized
 administrators.
 </description>
 <url-pattern>/admin/edit.jsp</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>
 These are the roles who have access.
 </description>
 <role-name>

Chapter 2
Developing Secure Web Applications

2-15

 admin
 </role-name>
 </auth-constraint>
 <user-data-constraint>
 <description>
 This is how the user data must be transmitted.
 </description>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/fail_login.html</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <description>
 An administrator
 </description>
 <role-name>
 admin
 </role-name>
 </security-role>
</web-app>

2. Create the weblogic.xml deployment descriptor as shown in the following
example. In this file, you map security role names to users and groups. The
following example shows a sample weblogic.xml file that maps the admin security
role defined in the <security-role> tag in the web.xml file to the group
supportGroup. With this configuration, WebLogic Server will only allow users in the
supportGroup group to access the protected WebLogic resource.

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<weblogic-web-app>
 <security-role-assignment>
 <role-name>admin</role-name>
 <principal-name>supportGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

However, you can use the WebLogic Server Administration Console to modify the
Web application's security role so that other groups can be allowed to access the
protected WebLogic resource.

3. Create a Web application file that produces the welcome screen when the user
requests the protected Web application resource by entering the URL. The

Chapter 2
Developing Secure Web Applications

2-16

following example shows a sample welcome.jsp file. Figure 2-3 shows the Welcome
screen.

<html>
 <head>
 <title>Security login example</title>
 </head>
 <%
 String bgcolor;
 if ((bgcolor=(String)application.getAttribute("Background")) ==
 null)
 {
 bgcolor="#cccccc";
 }
 %>
 <body bgcolor=<%="\""+bgcolor+"\""%>>
 <blockquote>

 <h1> Security Login Example </h1>
 <p> Welcome <%= request.getRemoteUser() %>!
 <p> If you are an administrator, you can configure the background
 color of the Web Application.

 Configure background.
 <% if (request.getRemoteUser() != null) { %>
 <p> Click here to logout.
 <% } %>
 </blockquote>
 </body>
</html>

Note:

In Example 2-3, notice that the JSP is calling an API (request.getRemoteUser())
to get the name of the user that logged in. A different API,
weblogic.security.Security.getCurrentSubject(), could be used instead. To use
this API to get the name of the user, use it with the SubjectUtils API as follows:

String username = weblogic.security.SubjectUtils.getUsername
weblogic.security.Security.getCurrentSubject());

4. Start WebLogic Server and define the users and groups that will have access to the URL
resource. In the sample weblogic.xml file, the <role-name> tag defines admin as the
group that has access to the edit.jsp file and defines the user, 'joe' as a member of that
group. Therefore, use the WebLogic Server Administration Console to define the admin
group, and define the user 'joe' and add 'joe' to the admin group. You can also define
other users and add them to the group to grant them access to the protected WebLogic
resource. For information on adding users and groups, see Users, Groups, and Security
Roles in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user defined in the previous step to access the
protected Web application resource.

Chapter 2
Developing Secure Web Applications

2-17

a. For deployment instructions, see Deploying Web Applications.

b. Open a Web browser and enter this URL:

http://hostname:7001/security/welcome.jsp
c. Enter the user name and password. The Welcome screen displays.

Example 2-6 Form-Based Login Screen Source Code (login.jsp)

<html>
 <head>)
 <title>Security WebApp login page</title>
 </head>
 <body bgcolor="#cccccc">
 <blockquote>

 <h2>Please enter your user name and password:</h2>
 <p>
 <form method="POST" action="j_security_check">
 <table border=1>
 <tr>
 <td>Username:</td>
 <td><input type="text" name="j_username"></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type="password" name="j_password"></td>
 </tr>
 <tr>
 <td colspan=2 align=right><input type=submit
 value="Submit"></td>
 </tr>
 </table>
 </form>
 </blockquote>
 </body>
</html>

Example 2-7 Login Error Screen Source Code

<html>
 <head>
 <title>Login failed</title>
 </head>
 <body bgcolor=#ffffff>
 <blockquote>

 <h2>Sorry, your user name and password were not recognized.</h2>
 <p>
 Return to welcome page or
 logout

 </blockquote>
 </body>
</html>

Using Identity Assertion for Web Application Authentication
You use identity assertion in Web applications to verify client identities for
authentication purposes. When using identity assertion, the following requirements
must be met:

Chapter 2
Developing Secure Web Applications

2-18

1. The authentication type must be set to CLIENT-CERT.

2. An Identity Assertion provider must be configured in the server. If the Web browser or
Java client requests a WebLogic Server resource protected by a security policy,
WebLogic Server requires that the Web browser or Java client have an identity. The
WebLogic Identity Assertion provider maps the token from a Web browser or Java client
to a user in a WebLogic Server security realm. For information on how to configure an
Identity Assertion provider, see Configuring Identity Assertion Providers in Administering
Security for Oracle WebLogic Server.

3. The user corresponding to the token's value must be defined in the server's security
realm; otherwise the client will not be allowed to access a protected WebLogic resource.
For information on configuring users on the server, see Users, Groups, and Security
Roles in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Using Two-Way SSL for Web Application Authentication
You use two-way SSL in Web applications to verify that clients are whom they claim to be.
When using two-way SSL, the following requirements must be met:

1. The authentication type must be set to CLIENT-CERT.

2. The server must be configured for two-way SSL. For information on using SSL and digital
certificates, see Using SSL Authentication in Java Clients. For information on configuring
SSL on the server, see Configuring SSL in Administering Security for Oracle WebLogic
Server.

3. The client must use HTTPS to access the Web application on the server.

4. An Identity Assertion provider must be configured in the server. If the Web browser or
Java client requests a WebLogic Server resource protected by a security policy,
WebLogic Server requires that the Web browser or Java client have an identity. The
WebLogic Identity Assertion provider allows you to enable a user name mapper in the
server that maps the digital certificate of a Web browser or Java client to a user in a
WebLogic Server security realm. For information on how to configure security providers,
see Configuring WebLogic Security Providers in Administering Security for Oracle
WebLogic Server.

5. The user corresponding to the Subject's Distinguished Name (SubjectDN) attribute in the
client's digital certificate must be defined in the server's security realm; otherwise the
client will not be allowed to access a protected WebLogic resource. For information on
configuring users on the server, see Users, Groups, and Security Roles in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

Note:

When you use SSL authentication, it is not necessary to use web.xml and
weblogic.xml files to specify server configuration because you use the
WebLogic Server Administration Console to specify the server's SSL
configuration.

Providing a Fallback Mechanism for Authentication Methods
The Servlet 3.1 specification (https://jcp.org/en/jsr/detail?id=340) allows you to define
the authentication method (BASIC, FORM, etc.) to be used in a Web application. WebLogic

Chapter 2
Developing Secure Web Applications

2-19

https://jcp.org/en/jsr/detail?id=340

Server provides an auth-method security module that allows you to define multiple
authentication methods (as a comma separated list), so the container can provide a
fall-back mechanism. Authentication will be attempted in the order the values are
defined in the auth-method list.

For example, you can define the following auth-method list in the login-config
element of your web.xml file:

<login-config>
 <auth-method>CLIENT-CERT,BASIC</auth-method>
</login-config>

Then the container will first try to authenticate by looking at the CLIENT-CERT value. If
that should fail, the container will challenge the user-agent for BASIC authentication.

If either FORM or BASIC are configured, then they must exist at the end of the list
since they require a round-trip communication with the user. However, both FORM and
BASIC cannot exist together in the list of auth-method values.

Configuration
The auth-method authentication security can be configured in two ways:

• Define a comma separated list of auth-method values in the login-config
element of your web.xml file.

• Define the auth-method values as a comma separated list on the RealmMBean and
in the login-config element of your web.xml use the REALM value, then the Web
application will pick up the authentication methods from the security realm.

WebLogic Java Management Extensions (JMX) enables you to access the
RealmMBean to create and manage the security resources. For more information, see
Overview of WebLogic Server Subsystem MBeans in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

Developing Swing-Based Authentication Web Applications
Web browsers can also be used to run graphical user interfaces (GUIs) that were
developed using Java Foundation Classes (JFC) Swing components.

For information on how to create a graphical user interface (GUI) for applications and
applets using the Swing components, see the Creating a GUI with JFC/Swing tutorial
(also known as The Swing Tutorial). You can access this tutorial on the Web at
http://docs.oracle.com/javase/tutorial/uiswing/.

After you have developed your Swing-based GUI, refer to Developing FORM
Authentication Web Applications and use the Swing-based screens to perform the
steps required to develop a Web application that provides FORM authentication.

Chapter 2
Developing Secure Web Applications

2-20

http://docs.oracle.com/javase/tutorial/uiswing/

Note:

When developing a Swing-based GUI, do not rely on the Java Virtual Machine-wide
user for child threads of the swing event thread. This is not Java EE compliant and
does not work in thin clients, or in IIOP in general. Instead, take either of the
following approaches:

• Make sure an InitialContext is created before any Swing artifacts.

• Or, use the Java Authentication and Authorization Service (JAAS) to log in and
then use the Security.runAs() method inside the Swing event thread and its
children.

Deploying Web Applications
To deploy a Web application on a server running in development mode, perform the following
steps:

Note:

For more information about deploying Web applications in either development of
production mode, see Deploying Applications and Modules with weblogic.deployer
in Deploying Applications to Oracle WebLogic Server.

1. Set up a directory structure for the Web application's files. Figure 2-6 shows the directory
structure for the Web application named basicauth. The top-level directory must be
assigned the name of the Web application and the sub-directory must be named WEB-
INF.

Figure 2-6 Basicauth Web Application Directory Structure

2. To deploy the Web application in exploded directory format, that is, not in the Java
archive (jar) format, simply move your directory to the applications directory on your
server. For example, you would deploy the basicauth Web application in the following
location:

Chapter 2
Developing Secure Web Applications

2-21

ORACLE_HOME\user_projects\domains\mydomain\applications\basicauth

If the WebLogic Server instance is running, the application should auto-deploy.
Use the WebLogic Server Administration Console to verify that the application
deployed.

If the WebLogic Server instance is not running, the Web application should auto-
deploy when you start the server.

3. If you have not done so already, use the WebLogic Server Administration Console
to configure the users and groups that will have access to the Web application. To
determine the users and groups that are allowed access to the protected
WebLogic resource, examine the weblogic.xml file. For example, the
weblogic.xml file for the basicauth sample (see Example 2-2) defines myGroup as
the only group to have access to the welcome.jsp file.

For more information on deploying secure Web applications, see Deploying
Applications and Modules with weblogic.deployer in Deploying Applications to Oracle
WebLogic Server.

Using Declarative Security With Web Applications
WebLogic Server supports three different ways to implement declarative security web
applications. You can define policies and roles using the WebLogic Server
Administration Console; you can use the Java Authorization Contract for Containers
(JACC) to configure a Java permission-based security model; or you can configure
security entirely within the web application's deployment descriptor files.

For information about configuring declarative security using the console, see Manage
security for Web applications and EJBs in the Oracle WebLogic Server Administration
Console Online Help. For information about using JACC, see Using the Java
Authorization Contract for Containers. The topics that follow explain how to configure
security in web application's deployment descriptors.

Which of these three methods is used is defined by the JACC flags and the security
model. (Security models are described in Options for Securing EJB and Web
Application Resources in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.)

To implement declarative security in Web applications, you can use deployment
descriptors (web.xml and weblogic.xml) to define security requirements. The
deployment descriptors map the application's logical security requirements to its
runtime definitions. And at runtime, the servlet container uses the security definitions
to enforce the requirements. For a discussion of using deployment descriptors, see
Developing Secure Web Applications.

For information about how to use deployment descriptors and the externally-
defined element to configure security in Web applications declaratively, see
externally-defined.

WebLogic Server supports several deployment descriptor elements that are used in
the web.xml and weblogic.xml files to define security requirements in Web
applications.

Chapter 2
Using Declarative Security With Web Applications

2-22

Web Application Security-Related Deployment Descriptors
WebLogic Server supports several deployment descriptor elements that are used in the
web.xml and weblogic.xm files to define security requirements in Web applications.

• web.xml Deployment Descriptors

• weblogic.xml Deployment Descriptors

web.xml Deployment Descriptors
The following web.xml security-related deployment descriptor elements are supported by
WebLogic Server:

• auth-constraint

• security-constraint

• security-role

• security-role-ref

• user-data-constraint

• web-resource-collection

auth-constraint
The optional auth-constraint element defines which groups or principals have access to the
collection of Web resources defined in this security constraint.

Note:

Any resource that is protected by an auth-constraint element should also be
protected by a Table 2-6 with a <transport-guarantee> of INTEGRAL or
CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the
user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee,
thereby ensuring that all communication on the network between the Web browser
and the server is encrypted and that none of the communication, including a user
name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSIONID
cookie and the encrypted _WL_AUTHCOOKIE_JSESSIONID cookie, as described in
Using Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within an auth-constraint
element.

Chapter 2
Web Application Security-Related Deployment Descriptors

2-23

Table 2-2 auth-constraint Element

Element Required/
Optional

Description

<description> Optional A text description of this security constraint.

<role-name> Optional Defines which security roles can access resources
defined in this <security-constraint>. Security role
names are mapped to principals using the <security-
role-ref> element. See security-role-ref.

Used Within
The auth-constraint element is used within the security-constraint element.

Example
See Example 2-8 for an example of how to use the auth-constraint element in a
web.xml file.

security-constraint
The security-constraint element is used in the web.xml file to define the access
privileges to a collection of resources defined by the web-resource-collection
element.

Note:

Any resource that is protected by an auth-constraint element should also
be protected by a Table 2-6 with a <transport-guarantee> of INTEGRAL or
CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection
when the user is authenticated using the INTEGRAL or CONFIDENTIAL
transport guarantee, thereby ensuring that all communication on the network
between the Web browser and the server is encrypted and that none of the
communication, including a user name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the
JSESSIONID cookie and the encrypted _WL_AUTHCOOKIE_JSESSIONID cookie,
as described in Using Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within a security-
constraint element.

Chapter 2
Web Application Security-Related Deployment Descriptors

2-24

Table 2-3 security-constraint Element

Element Required/
Optional

Description

<web-resource-
collection>

Required Defines the components of the Web Application to which this
security constraint is applied. See web-resource-collection.

<auth-
constraint>

Optional Defines which groups or principals have access to the
collection of web resources defined in this security
constraint. See auth-constraint.

<user-data-
constraint>

Optional Defines defines how data communicated between the client
and the server should be protected. See user-data-
constraint.

Example
Example 2-8 shows how to use the security-constraint element to defined security for the
SecureOrdersEast resource in a web.xml file.

Example 2-8 Security Constraint Example

web.xml entries:
<security-constraint>
 <web-resource-collection>
 <web-resource-name>SecureOrdersEast</web-resource-name>
 <description>
 Security constraint for
 resources in the orders/east directory
 </description>
 <url-pattern>/orders/east/*</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>
 constraint for east coast sales
 </description>
 <role-name>east</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
 <user-data-constraint>
 <description>SSL not required</description>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
</security-constraint>
...

security-role
The security-role element contains the definition of a security role. The definition consists
of an optional description of the security role, and the security role name.

The following table describes the elements you can define within a security-role element.

Chapter 2
Web Application Security-Related Deployment Descriptors

2-25

Table 2-4 security-role Element

Element Required/
Optional

Description

<description> Optional A text description of this security role.

<role-name> Required The role name. The name you use here must have a
corresponding entry in the WebLogic-specific
deployment descriptor, weblogic.xml, which maps
roles to principals in the security realm. See security-
role-assignment.

Example
See Example 2-11 for an example of how to use the security-role element in a
web.xml file.

security-role-ref
The security-role-ref element links a security role name defined by <security-
role> to an alternative role name that is hard-coded in the servlet logic. This extra
layer of abstraction allows the servlet to be configured at deployment without changing
servlet code.

The following table describes the elements you can define within a security-role-
ref element.

Table 2-5 security-role-ref Element

Element Required/
Optional

Description

<description> Optional Text description of the role.

<role-name> Required Defines the name of the security role or principal that is
used in the servlet code.

<role-link> Required Defines the name of the security role that is defined in a
<security-role> element later in the deployment
descriptor.

Example
See isUserInRole for an example of how to use the security-role-ref element in a
web.xml file.

user-data-constraint
The user-data-constraint element defines how data communicated between the
client and the server should be protected.

Chapter 2
Web Application Security-Related Deployment Descriptors

2-26

Note:

Any resource that is protected by an auth-constraint element should also be
protected by a Table 2-6 with a <transport-guarantee> of INTEGRAL or
CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the
user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee,
thereby ensuring that all communication on the network between the Web browser
and the server is encrypted and that none of the communication, including a user
name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSIONID
cookie and the encrypted _WL_AUTHCOOKIE_JSESSIONID cookie, as described in
Using Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within a user-data-constraint
element.

Table 2-6 user-data-constraint Element

Element Required/
Optional

Description

<description> Optional A text description.

<transport-
guarantee>

Required Specifies data security requirements for communications
between the client and the server.

Range of values:

• NONE—The application does not require any transport
guarantees.

• INTEGRAL—The application requires that the data be
sent between the client and server in such a way that it
cannot be changed in transit.

• CONFIDENTIAL—The application requires that data be
transmitted so as to prevent other entities from
observing the contents of the transmission.

WebLogic Server establishes a Secure Sockets Layer (SSL)
connection when the user is authenticated using the
INTEGRAL or CONFIDENTIAL transport guarantee.

Used Within
The user-data-constraint element is used within the security-constraint element.

Example
See Example 2-8 for an example of how to use the user-data-constraint element in a
web.xml file.

Chapter 2
Web Application Security-Related Deployment Descriptors

2-27

web-resource-collection
The web-resource-collection element identifies a subset of the resources and HTTP
methods on those resources within a Web application to which a security constraint
applies. If no HTTP methods are specified, the security constraint applies to all HTTP
methods.

The following table describes the elements you can define within a web-resource-
collection element.

Table 2-7 web-resource-collection Element

Element Required/
Optional

Description

<web-
resource-
name>

Required The name of this web resource collection.

<description> Optional Text description of the Web resource.

<url-pattern> Required The mapping, or location, of the Web resource
collection.

URL patterns must use the syntax defined in the Java
Servlet Specification (http://jcp.org/en/jsr/
detail?id=315).

The pattern <url-pattern>/</url-pattern> applies
the security constraint to the entire Web application.

<http-method> Optional The HTTP methods to which the security constraint
applies when clients attempt to access the Web
resource collection. If no HTTP methods are specified,
then the security constraint applies to all HTTP methods.

Specifying an HTTP method here limits the reach of the
security constraint. Unless you have a particular
requirement to specify an HTTP method, for security
reasons you should not set this element.

Used Within
The web-resource-collection element is used within the security-constraint
element.

Example
See Example 2-8 for an example of how to use the web-resource-collection
element in a web.xml file.

weblogic.xml Deployment Descriptors
The following weblogic.xml security-related deployment descriptor elements are
supported by WebLogic Server:

• externally-defined

• run-as-principal-name

Chapter 2
Web Application Security-Related Deployment Descriptors

2-28

http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315

• run-as-role-assignment

• security-permission

• security-permission-spec

• security-role-assignment

For additional information on weblogic.xml deployment descriptors, see XML Deployment
Descriptors in Developing Applications for Oracle WebLogic Server.

For additional information on the weblogic.xml elements, see weblogic.xml Deployment
Descriptor Elements in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

externally-defined
The externally-defined element lets you explicitly indicate that you want the security roles
defined by the role-name element in the web.xml deployment descriptors to use the
mappings specified in the WebLogic Server Administration Console. The element gives you
the flexibility of not having to specify a specific security role mapping for each security role
defined in the deployment descriptors for a particular Web application. Therefore, within the
same security realm, deployment descriptors can be used to specify and modify security for
some applications while the WebLogic Server Administration Console can be used to specify
and modify security for others.

The role mapping behavior for a server depends on which security deployment model is
selected on the WebLogic Server Administration Console. For information on security
deployment models, see Options for Securing EJB and Web Application Resources in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Note:

When specifying security role names, observe the following conventions and
restrictions:

• The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

Used Within
The externally-defined element is used within the security-role-assignment element.

Example
Example 2-9 and Example 2-10 show by comparison how to use the externally-defined
element in the weblogic.xml file. In Example 2-10, the specification of the "webuser"
externally-defined element in the weblogic.xml means that for security to be correctly

Chapter 2
Web Application Security-Related Deployment Descriptors

2-29

http://www.w3.org/TR/REC-xml#NT-Nmtoken

configured on the getReceipts method, the principals for webuser will have to be
created in the WebLogic Server Administration Console.

Note:

If you need to list a significant number of principals, consider specifying
groups instead of users. There are performance issues if you specify too
many users.

Example 2-9 Using the web.xml and weblogic.xml Files to Map Security Roles
and Principals to a Security Realm

web.xml entries:
<web-app>
 ...
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
 ...
</web-app>
<weblogic.xml entries:
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>myGroup</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Mary</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Example 2-10 Using the externally-defined tag in Web Application Deployment
Descriptors

web.xml entries:
<web-app>
 ...
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
 ...
</web-app>
<weblogic.xml entries:
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <externally-defined/>
 </security-role-assignment>

For information about how to use the WebLogic Server Administration Console to
configure security for Web applications, see Securing Web Applications and EJBs in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

run-as-principal-name
The run-as-principal-name element specifies the name of a principal to use for a
security role defined by a run-as element in the companion web.xml file.

Chapter 2
Web Application Security-Related Deployment Descriptors

2-30

Used Within
The run-as-principal-name element is used within a run-as-role-assignment element.

Example
For an example of how to use the run-as-principal-name element, see Example 2-11.

run-as-role-assignment
The run-as-role-assignment element maps a given role name, defined by a role-name
element in the companion web.xml file, to a valid user name in the system. The value can be
overridden for a given servlet by the run-as-principal-name element in the servlet-
descriptor. If the run-as-role-assignment element is absent for a given role name, the Web
application container chooses the first principal-name defined in the security-role-
assignment element.

The following table describes the elements you can define within a run-as-role-assignment
element.

Table 2-8 run-as-role-assignment Element

Element Required/
Optional

Description

<role-name> Required Specifies the name of a security role name specified in a
run-as element in the companion web.xml file.

<run-as-
principal-name>

Required Specifies a principal for the security role name defined in a
run-as element in the companion web.xml file.

Example:
Example 2-11 shows how to use the run-as-role-assignment element to have the
SnoopServlet always execute as a user joe.

Example 2-11 run-as-role-assignment Element Example

web.xml:
 <servlet>
 <servlet-name>SnoopServlet</servlet-name>
 <servlet-class>extra.SnoopServlet</servlet-class>
 <run-as>
 <role-name>runasrole</role-name>
 </run-as>
 </servlet>
 <security-role>
 <role-name>runasrole</role-name>
 </security-role>
weblogic.xml:
 <weblogic-web-app>
 <run-as-role-assignment>
 <role-name>runasrole</role-name>
 <run-as-principal-name>joe</run-as-principal-name>
 </run-as-role-assignment>
 </weblogic-web-app>

Chapter 2
Web Application Security-Related Deployment Descriptors

2-31

security-permission
The security-permission element specifies a security permission that is associated
with a Java EE Sandbox.

Example
For an example of how to used the security-permission element, see Example 2-12.

security-permission-spec
The security-permission-spec element specifies a single security permission based on
the Security policy file syntax. Refer to the following URL for the implementation of the
security permission specification:

http://docs.oracle.com/javase/8/docs/technotes/guides/security/
PolicyFiles.html#FileSyntax

Note:

Disregard the optional codebase and signedBy clauses.

Used Within
The security-permission-spec element is used within the security-permission
element.

Example
Example 2-12 shows how to use the security-permission-spec element to grant
permission to the java.net.SocketPermission class.

Example 2-12 security-permission-spec Element Example

<weblogic-web-app>
 <security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
<!--
A single grant statement following the syntax of
http://xmlns.jcp.org/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax,
without the "codebase" and "signedBy" clauses, goes here. For example:
-->
 grant {
 permission java.net.SocketPermission "*", "resolve";
 };
 </security-permission-spec>
 </security-permission>
</weblogic-web-app>

In Example 2-12, permission java.net.SocketPermission is the permission class
name, "*" represents the target name, and resolve indicates the action (resolve host/IP
name service lookups).

Chapter 2
Web Application Security-Related Deployment Descriptors

2-32

http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

security-role-assignment
The security-role-assignment element declares a mapping between a security role and
one or more principals in the WebLogic Server security realm.

Note:

For information on using the security-role-assignment element in a weblogic-
application.xml deployment descriptor for an enterprise application, see Enterprise
Application Deployment Descriptor Elements in Developing Applications for Oracle
WebLogic Server.

Example
Example 2-13 shows how to use the security-role-assignment element to assign principals
to the PayrollAdmin role.

Note:

If you need to list a significant number of principals, consider specifying groups
instead of users. There are performance issues if you specify too many users.

Example 2-13 security-role-assignment Element Example

<weblogic-web-app>
 <security-role-assignment>
 <role-name>PayrollAdmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Using Programmatic Security With Web Applications
You can write your servlets to access users and security roles programmatically in your
servlet code by using the following methods:
javax.servlet.http.HttpServletRequest.getUserPrincipal and
javax.servlet.http.HttpServletRequest.isUserInRole(String role).

• getUserPrincipal

• isUserInRole

getUserPrincipal
You use the getUserPrincipal() method to determine the current user of the Web
application. This method returns a WLSUser Principal if one exists in the current user. In the
case of multiple WLSUser Principals, the method returns the first in the ordering defined by

Chapter 2
Using Programmatic Security With Web Applications

2-33

the Subject.getPrincipals().iterator() method. If there are no WLSUser
Principals, then the getUserPrincipal() method returns the first non-WLSGroup
Principal. If there are no Principals or all Principals are of type WLSGroup, this
method returns null. This behavior is identical to the semantics of the
weblogic.security.SubjectUtils.getUserPrincipal() method.

For more information about how to use the getUserPrincipal() method, see http://
www.oracle.com/technetwork/java/javaee/tech/index.html.

isUserInRole
The javax.servlet.http.HttpServletRequest.isUserInRole(String role) method
returns a boolean indicating whether the authenticated user is granted the specified
logical security "role." If the user has not been authenticated, this method returns false.

The isUserInRole() method maps security roles to the group names in the security
realm. The following example shows the elements that are used with the <servlet>
element to define the security role in the web.xml file.

Begin web.xml entries:
...
<servlet>
 <security-role-ref>
 <role-name>user-rolename</role-name>
 <role-link>rolename-link</role-link>
 </security-role-ref>
</servlet>
<security-role>
 <role-name>rolename-link</role-name>
</security-role>
...
Begin weblogic.xml entries:
...
<security-role-assignment>
 <role-name>rolename-link</role-name>
 <principal-name>groupname</principal>
 <principal-name>username</principal>
</security-role-assignment>
...

In this example, the string role is mapped to the name supplied in the <role-name>
element, which is nested inside the <security-role-ref> element of a <servlet>
declaration in the web.xml deployment descriptor. The <role-name> element defines
the name of the security role or principal (the user or group) that is used in the
servlet code. The <role-link> element maps to a <role-name> defined in the
<security-role-assignment> element in the weblogic.xml deployment descriptor.

Chapter 2
Using Programmatic Security With Web Applications

2-34

http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

Note:

When specifying security role names, observe the following conventions and
restrictions:

• The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

For example, if the client has successfully logged in as user Bill with the security role of
manager, the following method would return true:

request.isUserInRole("manager")

Example 2-14 provides an example.

Example 2-14 Example of Security Role Mapping

Servlet code:
out.println("Is the user a Manager? " +
 request.isUserInRole("manager"));
web.xml entries:
<servlet>
. . .
 <role-name>manager</role-name>
 <role-link>mgr</role-link>
. . .
</servlet>
<security-role>
 <role-name>mgr</role-name>
</security-role>
weblogic.xml entries:
<security-role-assignment>
 <role-name>mgr</role-name>
 <principal-name>bostonManagers</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Ralph</principal-name>
</security-role-ref>

Using the Programmatic Authentication API
WebLogic Server provides a server-side
weblogic.servlet.security.ServletAuthentication API that supports programmatic
authentication from within a servlet application.

You can use the weblogic.servlet.security.ServletAuthentication API to authenticate
and log in the user. Once the login is completed, it appears as if the user logged in using the
standard mechanism.

Chapter 2
Using the Programmatic Authentication API

2-35

http://www.w3.org/TR/REC-xml#NT-Nmtoken

You have the option of using either of two WebLogic-supplied classes with the
ServletAuthentication API, the weblogic.security.SimpleCallbackHandler class
or the weblogic.security.URLCallbackHandler class. For more information on these
classes, see Java API Reference for Oracle WebLogic Server.

Example 2-15 shows an example that uses SimpleCallbackHandler. Example 2-16
shows an example that uses URLCallbackHandler.

Example 2-15 Programmatic Authentication Code Fragment Using the
SimpleCallbackHandler Class

CallbackHandler handler = new SimpleCallbackHandler(username,
 password);
Subject mySubject =
 weblogic.security.services.Authentication.login(handler);
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request);
// Where request is the httpservletrequest object.

Example 2-16 Programmatic Authentication Code Fragment Using the
URLCallbackHandler Class

CallbackHandler handler = new URLCallbackHandler(username,
 password);
Subject mySubject =
 weblogic.security.services.Authentication.login(handler);
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request);
// Where request is the httpservletrequest object.

Change the User's Session ID at Login
When an HttpSession is created in a servlet, it is associated with a unique ID. The
browser must provide this session ID with its request in order for the server to find the
session data again.

In order to avoid a type of attack called "session fixation," you should change the
user's session ID at login. To do this, call the generateNewSessionID method of
weblogic.servlet.security.ServletAuthentication after you call the login
method.

The generateNewSessionID method moves all current session information into a
completely different session ID and associates this session with this new ID.

Note:

The session itself does not change, only its identifier.

It is possible that legacy applications might depend on the session ID remaining the
same before and after login. Calling generateNewSessionID would break such an
application. Oracle recommends that you do not build this dependency into your
application. However, if you do, or if you are dealing with a legacy application of this
type, Oracle recommends that you use SSL to protect all access to the application.

Note that, by default, the WebLogic container automatically regenerates IDs for non-
programmatic logins.

Chapter 2
Using the Programmatic Authentication API

2-36

See ServletAuthentication for additional information about the generateNewSessionID()
method.

Chapter 2
Using the Programmatic Authentication API

2-37

3
Using JAAS Authentication in Java Clients

Oracle WebLogic Server provides support for using JAAS authentication in Java clients.
Learn how to implement this type of authentication.

• JAAS and WebLogic Server

• JAAS Authentication Development Environment

• Writing a Client Application Using JAAS Authentication

• Using JNDI Authentication

• Java Client JAAS Authentication Code Examples

The sections refer to sample code which is included in the WebLogic Server distribution at:

EXAMPLES_HOME\src\examples\security\jaas

The EXAMPLES_HOME directory can be found at ORACLE_HOME\wlserver\samples\server.

The jaas directory contains an instructions.html file, ant build files, a
sample_jaas.config file, and the following Java files:

• BaseClient.java
• BaseClientConstants.java
• SampleAction.java
• SampleCallbackHandler.java
• SampleClient.java
• TradeResult.java
• TraderBean.java
You will need to look at the examples when reading the information in the following sections.

JAAS and WebLogic Server
The Java Authentication and Authorization Service (JAAS) is a standard extension to the
security in the Java EE Development Kit. JAAS provides the ability to enforce access controls
based on user identity. WebLogic Server provides JAAS as an alternative to the JNDI
authentication mechanism. There are certain considerations when using JAAS
authentication.

WebLogic Server clients use the authentication portion of the standard JAAS only. The JAAS
LoginContext provides support for the ordered execution of all configured authentication
provider LoginModule instances and is responsible for the management of the completion
status of each configured provider.

Note the following considerations when using JAAS authentication for Java clients:

• WebLogic Server clients can either use the JNDI login or JAAS login for authentication,
however JAAS login is the preferred method.

3-1

• While JAAS is the preferred method of authentication, the WebLogic-supplied
LoginModule (weblogic.security.auth.login.UsernamePasswordLoginModule)
only supports username and password authentication. Thus, for client certificate
authentication (also referred to as two-way SSL authentication), you should use
JNDI. To use JAAS for client certificate authentication, you must write a custom
LoginModule that does certificate authentication.

Note:

If you write your own LoginModule for use with WebLogic Server clients,
have it call weblogic.security.auth.Authenticate.authenticate() to perform
the login.

• To perform a JAAS login from a remote Java client (that is, the Java client is not a
WebLogic Server client), you may use the WebLogic-supplied LoginModule to
perform the login. However, if you elect not to use the WebLogic-supplied
LoginModule but decide to write your own instead, you must have it call the
weblogic.security.auth.Authenticate.authenticate() method to perform the
login.

• If you are using a remote, or perimeter, login system such as Security Assertion
Markup Language (SAML), you do not need to call
weblogic.security.auth.Authenticate.authenticate(). You only need to call
the authenticate() method if you are using WebLogic Server to perform the
logon.

Note:

WebLogic Server provides full container support for JAAS authentication
and supports full use of JAAS authentication and authorization in
application code.

• Within WebLogic Server, JAAS is called to perform the login. Each Authentication
provider includes a LoginModule. This is true for servlet logins as well as Java
client logins via JNDI or JAAS. The method WebLogic Server calls internally to
perform the JAAS logon is
weblogic.security.auth.Authentication.authenticate(). When using the
Authenticate class, weblogic.security.SimpleCallbackHandler may be a useful
helper class.

• While WebLogic Server does not protect any resources using JAAS authorization
(it uses WebLogic security), you can use JAAS authorization in application code to
protect the application's own resources.

For more information about JAAS, see the JAAS documentation at http://
www.oracle.com/technetwork/java/javase/jaas/index.html.

JAAS Authentication Development Environment
WebLogic Server uses the JAAS classes to reliably and securely authenticate to the
server. JAAS implements a Java version of the Pluggable Authentication Module
(PAM) framework, which permits applications to remain independent from underlying

Chapter 3
JAAS Authentication Development Environment

3-2

http://www.oracle.com/technetwork/java/javase/jaas/index.html
http://www.oracle.com/technetwork/java/javase/jaas/index.html

authentication technologies. Therefore, the PAM framework allows the use of new or updated
authentication technologies without requiring modifications to a Java application.

WebLogic Server uses JAAS for remote Java client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and
developers of remote Java client applications need to be involved with JAAS directly. Users of
Web browser clients or developers of within-container Java client applications (for example,
those calling an EJB from a servlet) do not require direct use or knowledge of JAAS.

Note:

In order to implement security in a WebLogic client you must install the WebLogic
Server software distribution kit on the Java client.

The following topics are covered in this section:

• JAAS Authentication APIs

• JAAS Client Application Components

• WebLogic LoginModule Implementation

JAAS Authentication APIs
To implement Java clients that use JAAS authentication on WebLogic Server, you use a
combination of Java EE application programming interfaces (APIs) and WebLogic APIs.

Table 3-1 lists and describes the Java API packages used to implement JAAS authentication.
The information in Table 3-1 is taken from the Java API documentation and annotated to add
WebLogic Server specific information. For more information on the Java APIs, see the
Javadocs at http://docs.oracle.com/javase/8/docs/api/index.html and http://
docs.oracle.com/javaee/7/api/.

Table 3-1 lists and describes the WebLogic APIs used to implement JAAS authentication.
See Java API Reference for Oracle WebLogic Server.

Table 3-1 Java JAAS APIs

Java JAAS API Description

javax.security.auth.Subject The Subject class represents the source of the request, and can be
an individual user or a group. The Subject object is created only after
the subject is successfully logged in.

Chapter 3
JAAS Authentication Development Environment

3-3

http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javase/8/docs/api/index.html

Table 3-1 (Cont.) Java JAAS APIs

Java JAAS API Description

javax.security.auth.login.Logi
nContext

The LoginContext class describes the basic methods used to
authenticate Subjects and provides a way to develop an application
independent of the underlying authentication technology. A
Configuration specifies the authentication technology, or
LoginModule, to be used with a particular application. Therefore,
different LoginModules can be plugged in under an application without
requiring any modifications to the application itself.

After the caller instantiates a LoginContext, it invokes the login
method to authenticate a Subject. This login method invokes the
login method from each of the LoginModules configured for the name
specified by the caller.

If the login method returns without throwing an exception, then the
overall authentication succeeded. The caller can then retrieve the newly
authenticated Subject by invoking the getSubject method.
Principals and credentials associated with the Subject may be
retrieved by invoking the Subject's respective getPrincipals,
getPublicCredentials, and getPrivateCredentials methods.

To log the Subject out, the caller invokes the logout method. As with
the login method, this logout method invokes the logout method for
each LoginModule configured for this LoginContext.

For a sample implementation of this class, see Writing a Client
Application Using JAAS Authentication.

javax.security.auth.login.Confi
guration

This is an abstract class for representing the configuration of
LoginModules under an application. The Configuration specifies
which LoginModules should be used for a particular application, and in
what order the LoginModules should be invoked. This abstract class
needs to be subclassed to provide an implementation which reads and
loads the actual configuration.

In WebLogic Server, use a login configuration file instead of this class.
For a sample configuration file, see Writing a Client Application Using
JAAS Authentication. By default, WebLogic Server uses the
configuration class, which reads from a configuration file.

javax.security.auth.spi.Login
Module

LoginModule describes the interface implemented by authentication
technology providers. LoginModules are plugged in under applications
to provide a particular type of authentication.

While application developers write to the LoginContext API,
authentication technology providers implement the LoginModule
interface. A configuration specifies the LoginModule(s) to be used with
a particular login application. Therefore, different LoginModules can be
plugged in under the application without requiring any modifications to
the application itself.

Note: WebLogic Server provides an implementation of the
LoginModule (weblogic.security.auth.login.
UsernamePasswordLoginModule). Oracle recommends that you use
this implementation for JAAS authentication in WebLogic Server Java
clients; however, you can develop your own LoginModule.

Chapter 3
JAAS Authentication Development Environment

3-4

http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html

Table 3-1 (Cont.) Java JAAS APIs

Java JAAS API Description

javax.security.auth.callback.C
allback

Implementations of this interface are passed to a CallbackHandler,
allowing underlying security services to interact with a calling
application to retrieve specific authentication data, such as usernames
and passwords, or to display information such as error and warning
messages.

Callback implementations do not retrieve or display the information
requested by underlying security services. Callback implementations
simply provide the means to pass such requests to applications, and for
applications to return requested information to the underlying security
services.

javax.security.auth.callback.C
allbackHandler

An application implements a CallbackHandler and passes it to
underlying security services so that they can interact with the
application to retrieve specific authentication data, such as usernames
and passwords, or to display information such as error and warning
messages.

CallbackHandlers are implemented in an application-dependent
fashion.

Underlying security services make requests for different types of
information by passing individual Callbacks to the
CallbackHandler. The CallbackHandler implementation decides
how to retrieve and display information depending on the Callbacks
passed to it. For example, if the underlying service needs a username
and password to authenticate a user, it uses a NameCallback and
PasswordCallback. The CallbackHandler can then choose to
prompt for a username and password serially, or to prompt for both in a
single window.

Table 3-2 WebLogic JAAS APIs

WebLogic JAAS API Description

weblogic.security.auth.Authen
ticate

An authentication class used to authenticate user credentials.

The WebLogic implementation of the LoginModule,
(weblogic.security.auth.login.
UsernamePasswordLoginModule, uses this class to authenticate a
user and add Principals to the Subject. Developers who write
LoginModules must also use this class for the same purpose.

weblogic.security.auth.Callba
ck.ContextHandlerCallback

Underlying security services use this class to instantiate and pass a
ContextHandlerCallback to the invokeCallback method of a
CallbackHandler to retrieve the ContextHandler related to this
security operation. If no ContextHandler is associated with this
operation, the
javax.security.auth.callback.UnsupportedCallbackexcepti
on is thrown.

This callback passes the ContextHandler to LoginModule.login()
methods.

weblogic.security.auth.Callba
ck.GroupCallback

Underlying security services use this class to instantiate and pass a
GroupCallback to the invokeCallback method of a
CallbackHandler to retrieve group information.

Chapter 3
JAAS Authentication Development Environment

3-5

http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html

Table 3-2 (Cont.) WebLogic JAAS APIs

WebLogic JAAS API Description

weblogic.security.auth.Callba
ck.URLCallback

Underlying security services use this class to instantiate and pass a
URLCallback to the invokeCallback method of a
CallbackHandler to retrieve URL information.

The WebLogic implementation of the LoginModule,
(weblogic.security.auth.login.
UsernamePasswordLoginModule, uses this class.

Note: Application developers should not use this class to retrieve URL
information. Instead, they should use the
weblogic.security.URLCallbackHandler.

weblogic.security.Security This class implements the WebLogic Server client runAs methods.
Client applications use the runAs methods to associate their Subject
identity with the PrivilegedAction or
PrivilegedExceptionAction that they execute.

For a sample implementation, see Writing a Client Application Using
JAAS Authentication.

weblogic.security.URLCallbac
kHandler

The class used by application developers for returning a username,
password and URL. Application developers should use this class to
handle the URLCallback to retrieve URL information.

JAAS Client Application Components
At a minimum, a JAAS authentication client application includes the following
components:

• Java client

The Java client instantiates a LoginContext object and invokes the login by calling
the object's login() method. The login() method calls methods in each
LoginModule to perform the login and authentication.

The LoginContext also instantiates a new empty javax.security.auth.Subject
object (which represents the user or service being authenticated), constructs the
configured LoginModule, and initializes it with this new Subject and
CallbackHandler.

The LoginContext subsequently retrieves the authenticated Subject by calling the
LoginContext's getSubject method. The LoginContext uses the
weblogic.security.Security.runAs() method to associate the Subject identity
with the PrivilegedAction or PrivilegedExceptionAction to be executed on
behalf of the user identity.

• LoginModule

The LoginModule uses the CallbackHandler to obtain the user name and
password and determines whether that name and password are the ones required.

If authentication is successful, the LoginModule populates the Subject with a
Principal representing the user. The Principal the LoginModule places in the
Subject is an instance of Principal, which is a class implementing the
java.security.Principal interface.

Chapter 3
JAAS Authentication Development Environment

3-6

You can write LoginModule files that perform different types of authentication, including
username/password authentication and certificate authentication. A client application can
include one LoginModule (the minimum requirement) or several LoginModules.

Note:

Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic Server
applications do not associate the Subject with the client actions. You can use
the doAs methods to implement Java EE security in WebLogic Server
applications, but such usage is independent of the need to use the
Security.runAs() method.

• Callbackhandler

The CallbackHandler implements the
javax.security.auth.callback.CallbackHandler interface. The LoginModule uses the
CallbackHandler to communicate with the user and obtain the requested information,
such as the username and password.

• Configuration file

This file configures the LoginModule(s) used in the application. It specifies the location of
the LoginModule(s) and, if there are multiple LoginModules, the order in which they are
executed. This file enables Java applications to remain independent from the
authentication technologies, which are defined and implemented using the LoginModule.

• Action file

This file defines the operations that the client application will perform.

• ant build script (build.xml)

This script compiles all the files required for the application and deploys them to the
WebLogic Server applications directories.

For a complete working JAAS authentication client that implements the components
described here, see the JAAS sample application in
EXAMPLES_HOME\src\examples\security\jaas, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOME\wlserver\samples\server. For more information about the WebLogic Server
code examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

For more information on the basics of JAAS authentication, see JAAS Authentication Tutorial
available at http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/
tutorials/GeneralAcnOnly.html.

WebLogic LoginModule Implementation
The WebLogic implementation of the LoginModule class
(UsernamePasswordLoginModule.class) is provided in the WebLogic Server distribution in the
weblogic.jar file, located in the WL_HOME\server\lib directory.

Chapter 3
JAAS Authentication Development Environment

3-7

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/tutorials/GeneralAcnOnly.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/tutorials/GeneralAcnOnly.html

Note:

WebLogic Server supports all callback types defined by JAAS as well as all
callback types that extend the JAAS specification.

The WebLogic Server UsernamePasswordLoginModule checks for existing system user
authentication definitions prior to execution, and does nothing if they are already
defined.

For more information about implementing JAAS LoginModules, see the LoginModule
Developer's Guide at http://docs.oracle.com/javase/8/docs/technotes/guides/
security/jaas/JAASLMDevGuide.html

JVM-Wide Default User and the runAs() Method
The first time you use the WebLogic Server implementation of the LoginModule
(weblogic.security.auth.login.UsernamePasswordLoginModule) to log on, the
specified user becomes the machine-wide default user for the JVM (Java virtual
machine). When you execute the weblogic.security.Security.runAs() method, it
associates the specified Subject with the current thread's access permissions and
then executes the action. If a specified Subject represents a non-privileged user
(users who are not assigned to any groups are considered non-privileged), the JVM-
wide default user is used. Therefore, it is important make sure that the runAs()
method specifies the desired Subject. You can do this using one of the following
options:

• Option 1: If the client has control of main(), implement the wrapper code shown in
Example 3-1 in the client code.

• Option 2: If the client does not have control of main(), implement the wrapper
code shown in Example 3-1 on each thread's run() method.

Example 3-1 runAs() Method Wrapper Code

import java.security.PrivilegedAction;
import javax.security.auth.Subject;
import weblogic.security.Security;

public class client
{
 public static void main(String[] args)
 {
 Security.runAs(new Subject(),
 new PrivilegedAction() {
 public Object run() {
 //
 //If implementing in client code, main() goes here.
 //
 return null;
 }
 });
 }
}

Chapter 3
JAAS Authentication Development Environment

3-8

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Writing a Client Application Using JAAS Authentication
To use JAAS in a WebLogic Server Java client for authentication, you implement the
LoginModule and the CallbackHandler classes, write a configuration file that specifies which
LoginModule classes to use, and perform other tasks.

Perform the following procedure to use JAAS in a WebLogic Server Java client to
authenticate a subject:

1. Implement LoginModule classes for the authentication mechanisms you want to use with
WebLogic Server. You will need a LoginModule class for each type of authentication
mechanism. You can have multiple LoginModule classes for a single WebLogic Server
deployment.

Note:

Oracle recommends that you use the implementation of the LoginModule
provided by WebLogic Server
(weblogic.security.auth.login.UsernamePasswordLoginModule) for username/
password authentication. You can write your own LoginModule for username/
password authentication, however, do not attempt to modify the WebLogic
Server LoginModule and reuse it. If you write your own LoginModule, you must
have it call the weblogic.security.auth.Authenticate.authenticate() method to
perform the login. If you use a remote login mechanism such as SAML, you do
not need to call the authenticate() method. You only need to call authenticate()
if you are using WebLogic Server to perform the logon.

The weblogic.security.auth.Authenticate class uses a JNDI Environment object for
initial context as described in Table 3-1.

2. Implement the CallbackHandler class that the LoginModule will use to communicate with
the user and obtain the requested information, such as the username, password, and
URL. The URL can be the URL of a WebLogic cluster, providing the client with the
benefits of server failover. The WebLogic Server distribution provides a
SampleCallbackHandler which is used in the JAAS client sample. The
SampleCallbackHandler.java code is available as part of the distribution in the directory
EXAMPLES_HOME\src\examples\security\jaas. The EXAMPLES_HOME directory can be
found at ORACLE_HOME\wlserver\samples\server.

Note:

Instead of implementing your own CallbackHandler class, you can use either of
two WebLogic-supplied CallbackHandler classes,
weblogic.security.SimpleCallbackHandler or
weblogic.security.URLCallbackHandler. For more information on these classes,
see Java API Reference for Oracle WebLogic Server.

3. Write a configuration file that specifies which LoginModule classes to use for your
WebLogic Server and in which order the LoginModule classes should be invoked. See

Chapter 3
Writing a Client Application Using JAAS Authentication

3-9

the following sample configuration file used in the JAAS client sample provided in
the WebLogic Server distribution.

/** Login Configuration for the JAAS Sample Application **/
Sample {
 weblogic.security.auth.login.UsernamePasswordLoginModule
 required debug=false;
};

4. In the Java client, write code to instantiate a LoginContext. The LoginContext
consults the configuration file, sample_jaas.config, to load the default
LoginModule configured for WebLogic Server. See the following sample
LoginContext instantiation.

...
import javax.security.auth.login.LoginContext;
...
 LoginContext loginContext = null;
 try
 {
 // Create LoginContext; specify username/password login module
 loginContext = new LoginContext("Sample",
 new SampleCallbackHandler(username, password, url));
 }

Note:

If you use another means to authenticate the user, such as an Identity
Assertion provider or a remote instance of WebLogic Server, the default
LoginModule is determined by the remote source.

5. Invoke the login() method of the LoginContext instance. The login() method
invokes all the loaded LoginModules. Each LoginModule attempts to authenticate
the subject. If the configured login conditions are not met, the LoginContext
throws a LoginException. See the following example of the login() method.

...
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.AccountExpiredException;
import javax.security.auth.login.CredentialExpiredException;
...
 /**
 * Attempt authentication
 */
 try
 {
 // If we return without an exception, authentication succeeded
 loginContext.login();
 }
 catch(FailedLoginException fle)

Chapter 3
Writing a Client Application Using JAAS Authentication

3-10

 {
 System.out.println("Authentication Failed, " +
 fle.getMessage());
 System.exit(-1);
 }
 catch(AccountExpiredException aee)
 {
 System.out.println("Authentication Failed: Account Expired");
 System.exit(-1);
 }
 catch(CredentialExpiredException cee)
 {
 System.out.println("Authentication Failed: Credentials
 Expired");
 System.exit(-1);
 }
 catch(Exception e)
 {
 System.out.println("Authentication Failed: Unexpected
 Exception, " + e.getMessage());
 e.printStackTrace();
 System.exit(-1);
 }

6. Write code in the Java client to retrieve the authenticated Subject from the LoginContext
instance using the javax.security.auth.Subject.getSubject() method and call the
action as the Subject. Upon successful authentication of a Subject, access controls can
be placed upon that Subject by invoking the weblogic.security.Security.runAs()
method. The runAs() method associates the specified Subject with the current thread's
access permissions and then executes the action. See the following example
implementation of the getSubject() and runAs() methods.

...
/**
 * Retrieve authenticated subject, perform SampleAction as Subject
 */
 Subject subject = loginContext.getSubject();
 SampleAction sampleAction = new SampleAction(url);
 Security.runAs(subject, sampleAction);
 System.exit(0);
...

Note:

Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic Server
applications do not associate the Subject with the client actions. You can use
the doAs methods to implement Java EE security in WebLogic Server
applications, but such usage is independent of the need to use the
Security.runAs() method.

7. Write code to execute an action if the Subject has the required privileges. Oracle
provides a sample implementation, SampleAction, of the

Chapter 3
Writing a Client Application Using JAAS Authentication

3-11

javax.security.PrivilegedAction class that executes an EJB to trade stocks.
The SampleAction.java code is available as part of the distribution in the directory
EXAMPLES_HOME\src\examples\security\jaas, where EXAMPLES_HOME represents
the directory in which the WebLogic Server code examples are configured, and
can be found at ORACLE_HOME\wlserver\samples\server.

8. Invoke the logout() method of the LoginContext instance. The logout() method
closes the user's session and clear the Subject. See the following example of the
login() method.

...
import javax.security.auth.login.LoginContext;
...
try
 {
 System.out.println("logging out...");
 loginContext.logout();
 }

Note:

The LoginModule.logout() method is never called for a WebLogic
Authentication provider or a custom Authentication provider, because
once the Principals are created and placed into a Subject, the WebLogic
Security Framework no longer controls the lifecycle of the Subject.
Therefore, code that creates the JAAS LoginContext to log in and obtain
the Subject should also call the LoginContext to log out. Calling
LoginContext.logout() results in the clearing of the Principals from the
Subject.

Using JNDI Authentication
Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. To do this, a Java client establishes a connection with Oracle
WebLogic Server by getting a JNDI InitialContext.and uses InitialContext to look
up the resources it needs in the Oracle WebLogic Server JNDI tree.

.

Chapter 3
Using JNDI Authentication

3-12

Note:

JAAS is the preferred method of authentication, however, the WebLogic
Authentication provider's LoginModule supports only user name and password
authentication. Thus, for client certificate authentication (also referred to as two-way
SSL authentication), you should use JNDI. To use JAAS for client certificate
authentication, you must write a custom Authentication provider whose
LoginModule does certificate authentication. For information on how to write
LoginModules, see http://docs.oracle.com/javase/8/docs/technotes/guides/
security/jaas/JAASLMDevGuide.html.

To specify a user and the user's credentials, set the JNDI properties listed in Table 3-1.

Table 3-3 JNDI Properties for Authentication

Property Meaning

INITIAL_CONTEXT_FACTORY Provides an entry point into the Oracle WebLogic Server
environment. The class weblogic.jndi.WLInitialContextFactory is
the JNDI SPI for Oracle WebLogic Server.

PROVIDER_URL Specifies the host and port of the WebLogic Server that provides
the name service. For example: t3://weblogic:7001.

SECURITY_PRINCIPAL Specifies the identity of the user when that user authenticates to
the default (active) security realm.

SECURITY_CREDENTIALS Specifies the credentials of the user when that user
authenticates to the default (active) security realm.

These properties are stored in a hash table that is passed to the InitialContext
constructor. Example 3-2 illustrates how to use JNDI authentication in a Java client running
on WebLogic Server.

Note:

For information on JNDI contexts and threads and how to avoid potential JNDI
context problems, see JNDI Contexts and Threads and How to Avoid Potential
JNDI Context Problems in Developing JNDI Applications for Oracle WebLogic
Server.

In versions of WebLogic Server prior to 9.0, when using protocols other than IIOP
with JNDI, the first user is "sticky" in the sense that it becomes the default user
when no other user is present. This is not a good practice, as any subsequent
logins that do not have a username and credential are granted the identify of the
default user.

In version 9.0, this is no longer true and there is no default user.

To return to the previous behavior, the
weblogic.jndi.WLContext.ENABLE_DEFAULT_USER field must be set, either via the
command line or through the InitialContext interface.

Chapter 3
Using JNDI Authentication

3-13

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Example 3-2 Example of Authentication

...
Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3://weblogic:7001");
 env.put(Context.SECURITY_PRINCIPAL, "javaclient");
 env.put(Context.SECURITY_CREDENTIALS, "javaclientpassword");
 ctx = new InitialContext(env);

Java Client JAAS Authentication Code Examples
The WebLogic Server product provides a complete working JAAS authentication
sample.The sample provided by WebLogic Server is located in
EXAMPLES_HOME\src\examples\security\jaas, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured and can be
found at ORACLE_HOME\wlserver\samples\server. For a description of the sample and
instructions on how to build, configure, and run this sample, see the package.html file
in the sample directory. You can modify this code example and reuse it.

Chapter 3
Java Client JAAS Authentication Code Examples

3-14

4
Using SSL Authentication in Java Clients

The Java Secure Socket Extension (JSSE) is a set of packages that support and implement
the SSL and TLS protocols. Oracle WebLogic Server provides Secure Sockets Layer (SSL)
support for encrypting data transmitted between WebLogic Server clients and servers, Java
clients, Web browsers, and other servers. Learn how to implement SSL and digital certificate
authentication in Java clients.

• JSSE and WebLogic Server

• Using JNDI Authentication

• SSL Certificate Authentication Development Environment

• Writing Applications that Use SSL

• SSL Client Code Examples

The sections refer to sample code which is optionally included in the WebLogic Server
distribution at:

EXAMPLES_HOME\src\examples\security\sslclient

The EXAMPLES_HOME directory can be found at
ORACLE_HOME\wlserver\samples\server\examples.

The sslclient directory contains an instructions.html file, ant build files, and the following
Java and JavaServer Pages (.jsp) files:

• MyListener.java
• NulledHostnameVerifier.java
• NulledTrustManager.java
• SSLClient.java
• SSLClientServlet.java
• SSLSocketClient.java
• SnoopServlet.jsp
You will need to look at the examples when reading the information in the following sections.

JSSE and WebLogic Server
There are certain restrictions when using SSL in WebLogic server-side applications.

The JSSE implementation of WebLogic Server can be used by WebLogic clients, but is not
required. Other JSSE implementations can be used for their client-side code outside the
server as well.

4-1

Note:

JSSE is the only SSL implementation that is supported. The Certicom-based
SSL implementation is removed and is no longer supported in WebLogic
Server.

The following restrictions apply when using SSL in WebLogic server-side applications:

• The use of other (third-party) JSSE implementations to develop WebLogic Server
applications is not supported. The SSL implementation that WebLogic Server uses
is static to the server configuration and is not replaceable by customer
applications.

• The WebLogic implementation of JSSE does support JCE Cryptographic Service
Providers (CSPs); however, due to the inconsistent provider support for JCE,
Oracle cannot guarantee that untested providers will work out of the box. Oracle
has tested WebLogic Server with the following providers:

– The default JCE provider (SunJCE provider). See http://docs.oracle.com/
javase/8/docs/technotes/guides/security/crypto/
HowToImplAProvider.html and http://docs.oracle.com/javase/8/docs/
technotes/guides/security/crypto/CryptoSpec.html for information about
the SunJCE provider.

– The RSA JCE provider.

– The nCipher JCE provider.

Other providers may work with WebLogic Server, but an untested provider is not
likely to work out of the box. For more information on using the JCE providers
supported by WebLogic Server, see Using JCE Providers with WebLogic Server in
Administering Security for Oracle WebLogic Server.

WebLogic Server uses the HTTPS port for Secure Sockets Layer (SSL) encrypted
communication; only SSL can be used on that port.

Note:

In order to implement security in a WebLogic client, you must install the
WebLogic Server software distribution kit on the Java client.

Note:

Although JSSE supports Server Name Indication (SNI) in its SSL
implementation, WebLogic Server does not support SNI.

Using JNDI Authentication
Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. A Java client establishes a connection with Oracle WebLogic Server

Chapter 4
Using JNDI Authentication

4-2

http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/HowToImplAProvider.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/HowToImplAProvider.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/HowToImplAProvider.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

by getting a JNDI InitialContext. The Java client then uses the InitialContext to look up
the resources it needs in the Oracle WebLogic Server JNDI tree.

Note:

JAAS is the preferred method of authentication; however, the Authentication
provider's LoginModule supports only username and password authentication.
Thus, for client certificate authentication (also referred to as two-way SSL
authentication), you should use JNDI. To use JAAS for client certificate
authentication, you must write a custom Authentication provider whose
LoginModule does certificate authentication.

To specify a user and the user's credentials, set the JNDI properties listed in Table 4-1.

Table 4-1 JNDI Properties Used for Authentication

Property Meaning

INITIAL_CONTEXT_FAC
TORY

Provides an entry point into the Oracle WebLogic Server environment. The
class weblogic.jndi.WLInitialContextFactory is the JNDI SPI for Oracle
WebLogic Server.

PROVIDER_URL Specifies the host and port of the WebLogic Server that provides the name
service. For example: t3s://weblogic:7002.

(t3s is a WebLogic Server proprietary version of SSL.)

SECURITY_PRINCIPAL Specifies the identity of the user when that user authenticates to the default
(active) security realm.

SECURITY_CREDENTIAL
S

Specifies the credentials of the user when that user authenticates to the
default (active) security realm.

These properties are stored in a hash table which is passed to the InitialContext
constructor.

Example 4-1 demonstrates how to use one-way SSL certificate authentication in a Java
client. For a two-SSL authentication code example, see Example 4-4.

Note:

For information on JNDI contexts and threads and how to avoid potential JNDI
context problems, see JNDI Contexts and Threads and How to Avoid Potential
JNDI Context Problems in Developing JNDI Applications for Oracle WebLogic
Server.

Example 4-1 Example One-Way SSL Authentication Using JNDI

...
Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3s://weblogic:7002");
 env.put(Context.SECURITY_PRINCIPAL, "javaclient");

Chapter 4
Using JNDI Authentication

4-3

 env.put(Context.SECURITY_CREDENTIALS, "javaclientpassword");
 Context ctx = new InitialContext(env);

SSL Certificate Authentication Development Environment
To implement SSL authentication in WebLogic Server, you can use a combination of
Java application programming interfaces (APIs) and WebLogic APIs. There are certain
components of SSL client application such as, HostnameVerifier and TrustManager,
that facilitate the implementation of SSL in WebLogic Server.

The following topics are covered in this section:

• SSL Authentication APIs

• SSL Client Application Components

SSL Authentication APIs
To implement Java clients that use SSL authentication on WebLogic Server, use a
combination of Java application programming interfaces (APIs) and WebLogic APIs.

Table 4-2 lists and describes the Java APIs packages used to implement certificate
authentication. The information in this table is taken from the Java API documentation
and annotated to add WebLogic Server specific information. For more information on
the Java APIs, see the Javadocs at http://docs.oracle.com/javase/8/docs/api/
index.html and http://docs.oracle.com/javaee/7/api/.

Table 4-3 lists and describes the WebLogic APIs used to implement certificate
authentication. See Java API Reference for Oracle WebLogic Server.

Table 4-2 Java Certificate APIs

Java Certificate APIs Description

javax.crypto (http://
docs.oracle.com/
javase/8/
docs/api/
index.html)

This package provides the classes and interfaces for cryptographic
operations. The cryptographic operations defined in this package
include encryption, key generation and key agreement, and Message
Authentication Code (MAC) generation.

Support for encryption includes symmetric, asymmetric, block, and
stream ciphers. This package also supports secure streams and
sealed objects.

Many classes provided in this package are provider-based (see the
java.security.Provider class). The class itself defines a
programming interface to which applications may be written. The
implementations themselves may then be written by independent third-
party vendors and plugged in seamlessly as needed. Therefore,
application developers can take advantage of any number of provider-
based implementations without having to add or rewrite code.

javax.net (http://
docs.oracle.com/
javase/8/
docs/api/
index.html)

This package provides classes for networking applications. These
classes include factories for creating sockets. Using socket factories
you can encapsulate socket creation and configuration behavior.

Chapter 4
SSL Certificate Authentication Development Environment

4-4

http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html

Table 4-2 (Cont.) Java Certificate APIs

Java Certificate APIs Description

javax.net.SSL
(http://
docs.oracle.com/
javase/8/
docs/api/
index.html)

While the classes and interfaces in this package are supported by
WebLogic Server, Oracle recommends that you use the
weblogic.security.SSL package when you use SSL with WebLogic
Server.

java.security.cert
(http://
docs.oracle.com/
javase/8/
docs/api/
index.html)

This package provides classes and interfaces for parsing and
managing certificates, certificate revocation lists (CRLs), and
certification paths. It contains support for X.509 v3 certificates and
X.509 v2 CRLs.

java.security.KeyStore
(http://
docs.oracle.com/
javase/8/
docs/api/
index.html)

This class represents an in-memory collection of keys and certificates.
It is used to manage two types of keystore entries:

• Key Entry

This type of keystore entry holds cryptographic key information,
which is stored in a protected format to prevent unauthorized
access.

Typically, a key stored in this type of entry is a secret key, or a
private key accompanied by the certificate chain for the
corresponding public key.

Private keys and certificate chains are used by a given entity for
self-authentication. Applications for this authentication include
software distribution organizations that sign JAR files as part of
releasing and/or licensing software.

• Trusted Certificate Entry

This type of entry contains a single public key certificate belonging
to another party. It is called a trusted certificate because the
keystore owner trusts that the public key in the certificate indeed
belongs to the identity identified by the subject (owner) of the
certificate.

This type of entry can be used to authenticate other parties.

java.security.PrivateKe
y (http://
docs.oracle.com/
javase/8/
docs/api/
index.html)

A private key. This interface contains no methods or constants. It
merely serves to group (and provide type safety for) all private key
interfaces.

Note: The specialized private key interfaces extend this interface. For
example, see the DSAPrivateKey interface in
java.security.interfaces.

java.security.Provider
(http://
docs.oracle.com/
javase/8/
docs/api/
index.html)

This class represents a "Cryptographic Service Provider" for the Java
Security API, where a provider implements some or all parts of Java
Security, including:

• Algorithms (such as DSA, RSA, MD5 or SHA-1).
• Key generation, conversion, and management facilities (such as

for algorithm-specific keys).
Each provider has a name and a version number, and is configured in
each runtime it is installed in.

To supply implementations of cryptographic services, a team of
developers or a third-party vendor writes the implementation code and
creates a subclass of the Provider class.

Chapter 4
SSL Certificate Authentication Development Environment

4-5

http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html

Table 4-2 (Cont.) Java Certificate APIs

Java Certificate APIs Description

javax.servlet.http.Http
ServletRequest
(http://
docs.oracle.com/
javaee/7/api/
index.html)

This interface extends the ServletRequest interface to provide
request information for HTTP servlets.

The servlet container creates an HttpServletRequest object and
passes it as an argument to the servlet's service methods (doGet,
doPost, and so on.).

javax.servlet.http.Http
ServletResponse
(http://
docs.oracle.com/
javaee/7/api/
index.html)

This interface extends the ServletResponse interface to provide
HTTP-specific functionality in sending a response. For example, it has
methods to access HTTP headers and cookies.

The servlet container creates an HttpServletRequest object and
passes it as an argument to the servlet's service methods (doGet,
doPost, and so on.).

javax.servlet.ServletO
utputStream (http://
docs.oracle.com/
javaee/7/api/
index.html)

This class provides an output stream for sending binary data to the
client. A ServletOutputStream object is normally retrieved via the
ServletResponse.getOutputStream() method.

This is an abstract class that the servlet container implements.
Subclasses of this class must implement the
java.io.OutputStream.write(int) method.

javax.servlet.ServletR
esponse (http://
docs.oracle.com/
javaee/7/api/
index.html)

This class defines an object to assist a servlet in sending a response
to the client. The servlet container creates a ServletResponse object
and passes it as an argument to the servlet's service methods (doGet,
doPost, and so on.).

Table 4-3 WebLogic Certificate APIs

WebLogic Certificate
APIs

Description

weblogic.net.http.Http
sURLConnection

This class is used to represent a HTTP with SSL (HTTPS) connection
to a remote object. Use this class to make an outbound SSL
connection from a WebLogic Server acting as a client to another
WebLogic Server.

weblogic.security.SSL.
HostnameVerifier

During an SSL handshake, hostname verification establishes that the
hostname in the URL matches the hostname in the server's
identification; this verification is necessary to prevent man-in-the-
middle attacks.

WebLogic Server provides a certificate-based implementation of
HostnameVerifier which is used by default, and which verifies that the
URL hostname matches the CN field value of the server certificate.

You can replace this default hostname verifier with a custom hostname
verifier by using the Advanced Options pane under the WebLogic
Server Administration Console SSL tab; this will affect the default for
SSL clients running on the server using the WebLogic SSL APIs. In
addition, WebLogic SSL APIs such as HttpsURLConnection, and
SSLContext allow the explicit setting of a custom HostnameVerifier.

Chapter 4
SSL Certificate Authentication Development Environment

4-6

http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html

Table 4-3 (Cont.) WebLogic Certificate APIs

WebLogic Certificate
APIs

Description

weblogic.security.SSL.
TrustManager

This interface permits the user to override certain validation errors in
the peer's certificate chain and allow the handshake to continue. This
interface also permits the user to perform additional validation on the
peer certificate chain and interrupt the handshake if need be.

weblogic.security.SSL.
CertPathTrustManage
r

This class makes use of the configured CertPathValidation providers to
perform extra validation; for example, revocation checking.

By default, CertPathTrustManager is installed but configured not to call
the CertPathValidators (controlled by the SSLMBean attributes
InboundCertificateValidation and OutboundCertificateValidation).

Applications that install a custom TrustManager will replace
CertPathTrustManager. An application that wants to use a custom
TrustManager, and call the CertPathProviders at the same time, can
delegate to a CertPathTrustManager from its custom TrustManager.

weblogic.security.SSL.
SSLContext

This class holds all of the state information shared across all sockets
created under that context.

weblogic.security.SSL.
SSLSocketFactory

This class provides the API for creating SSL sockets.

weblogic.security.SSL.
SSLValidationConstan
ts

This class defines context element names. SSL performs some built-in
validation before it calls one or more CertPathValidator objects to
perform additional validation. A validator can reduce the amount of
validation it must do by discovering what validation has already been
done.

SSL Client Application Components
At a minimum, an SSL client application includes the following components:

• Java client

Typically, a Java client performs these functions:

– Initializes an SSLContext with client identity, trust, a HostnameVerifier, and a
TrustManager.

– Loads a keystore and retrieves the private key and certificate chain

– Uses an SSLSocketFactory

– Uses HTTPS to connect to a JSP served by an instance of WebLogic Server

• HostnameVerifier

The HostnameVerifier implements the weblogic.security.SSL.HostnameVerifier
interface.

• HandshakeCompletedListener

The HandshakeCompletedListener implements the
javax.net.ssl.HandshakeCompletedListener interface. It is used by the SSL client to
receive notifications about the completion of an SSL handshake on a given SSL
connection.

• TrustManager

Chapter 4
SSL Certificate Authentication Development Environment

4-7

The TrustManager implements the weblogic.security.SSL.TrustManager
interface.

For a complete working SSL authentication client that implements the components
described here, see the SSLClient sample application in
EXAMPLES_HOME\src\examples\security\sslclient, where EXAMPLES_HOME
represents the directory in which the WebLogic Server code examples are configured
and can be found at ORACLE_HOME\wlserver\samples\server.

For more information on JSSE authentication, see Java Secure Socket Extension
(JSSE) Reference Guide available at http://docs.oracle.com/javase/8/docs/
technotes/guides/security/jsse/JSSERefGuide.html.

Writing Applications that Use SSL
When you write an application that uses SSL, consider how the application will be
used and the special requirements it has for secure communication, such as whether
the application is hosted on a WebLogic Server instance acting as a client to another
WebLogic Server instance. Other considerations include whether you need to use two-
way SSL, a custom host name verifier, a Trust Manager, or other security artifacts.

• Communicating Securely From WebLogic Server to Other WebLogic Servers

• Writing SSL Clients

• Using Two-Way SSL Authentication

• Using a Custom Host Name Verifier

• Using a Trust Manager

• Using an SSLContext

• Using URLs to Make Outbound SSL Connections

Communicating Securely From WebLogic Server to Other WebLogic
Servers

You can use a URL object to make an outbound SSL connection from a WebLogic
Server instance acting as a client to another WebLogic Server instance. The
weblogic.net.http.HttpsURLConnection class provides a way to specify the security
context information for a client, including the digital certificate and private key of the
client.

The weblogic.net.http.HttpsURLConnection class provides methods for determining
the negotiated cipher suite, getting/setting a hostname verifier, getting the server's
certificate chain, and getting/setting an SSLSocketFactory in order to create new SSL
sockets.

The SSLClient code example uses the weblogic.net.http.HttpsURLConnection
class to make an outbound SSL connection. The SSLClient code example is available
in the examples.security.sslclient package in
EXAMPLES_HOME\src\examples\security\sslclient, where EXAMPLES_HOME
represents the directory in which the WebLogic Server code examples are configured
and can be found at ORACLE_HOME\wlserver\samples\server.

Chapter 4
Writing Applications that Use SSL

4-8

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

Writing SSL Clients
This section uses examples to show how to write various types of SSL clients. Examples of
the following types of SSL clients are provided:

• SSLClient Sample

• SSLSocketClient Sample

• Using Two-Way SSL Authentication

SSLClient Sample
The SSLClient sample demonstrates how to use the WebLogic SSL library to make outgoing
SSL connections using URL and URLConnection objects. It shows both how to do this from a
stand-alone application as well as from a servlet in WebLogic Server.

Note:

WebLogic Server acting as an SSL client uses the server's identity certificate for
outgoing SSL connections. Applications running on WebLogic Server and using the
previously described SSL APIs do not share the server's identity certificates by
default, only the trust.

Example 4-2 shows code fragments from the SSLClient example; the complete example is
located in the EXAMPLES_HOME\src\examples\security\sslclient directory in the
SSLClient.java file.

The EXAMPLES_HOME directory can be found at ORACLE_HOME\wlserver\samples\server.
Example 4-2 SSLClient Sample Code Fragments

package examples.security.sslclient;

import java.io.*;
import java.net.URL;
import java.security.Provider;
import javax.servlet.ServletOutputStream;
...
 /*
 * This method contains an example of how to use the URL and
 * URLConnection objects to create a new SSL connection, using
 * WebLogic SSL client classes.
 */
 public void wlsURLConnect(String host, String port,
 String sport, String query,
 OutputStream out)
 throws Exception {
...
 URL wlsUrl = null;
 try {
 wlsUrl = new URL("http", host, Integer.valueOf(port).intValue(),
 query);
 weblogic.net.http.HttpURLConnection connection =
 new weblogic.net.http.HttpURLConnection(wlsUrl);

Chapter 4
Writing Applications that Use SSL

4-9

 tryConnection(connection, out);
 }
...
 wlsUrl = new URL("https", host, Integer.valueOf(sport).intValue(),
 query);
 weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConnection(wlsUrl);
...

SSLSocketClient Sample
The SSLSocketClient sample demonstrates how to use SSL sockets to go directly to
the secure port to connect to a JSP served by an instance of WebLogic Server and
display the results of that connection. It shows how to implement the following
functions:

• Initializing an SSLContext with client identity, a HostnameVerifier, and a
TrustManager

• Loading a keystore and retrieving the private key and certificate chain

• Using an SSLSocketFactory
• Using HTTPS to connect to a JSP served by WebLogic Server

• Implementing the javax.net.ssl.HandshakeCompletedListener interface

• Creating a dummy implementation of the
weblogic.security.SSL.HostnameVerifier class to verify that the server the
example connects to is running on the desired host

Example 4-3 shows code fragments from the SSLSocketClient example; the complete
example is located in the EXAMPLES_HOME\src\examples\security\sslclient
directory in the SSLSocketClient.java file. (The SSLClientServlet example in the
sslclient directory is a simple servlet wrapper of the SSLClient example.) The
EXAMPLES_HOME directory can be found at ORACLE_HOME\wlserver\samples\server.

Example 4-3 SSLSocketClient Sample Code Fragments

package examples.security.sslclient;

import java.io.*;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.Certificate;
import javax.net.ssl.HandshakeCompletedListener;
import javax.net.ssl.SSLSocket;
import weblogic.security.SSL.HostnameVerifier;
import weblogic.security.SSL.SSLContext;
import weblogic.security.SSL.SSLSocketFactory;
import weblogic.security.SSL.TrustManager;
...
 SSLContext sslCtx = SSLContext.getInstance("https");
 File KeyStoreFile = new File ("mykeystore");
...
 // Open the keystore, retrieve the private key, and certificate chain
 KeyStore ks = KeyStore.getInstance("jks");
 ks.load(new FileInputStream("mykeystore"), null);
 PrivateKey key = (PrivateKey)ks.getKey("mykey",
 "testkey".toCharArray());
 Certificate [] certChain = ks.getCertificateChain("mykey");

Chapter 4
Writing Applications that Use SSL

4-10

 sslCtx.loadLocalIdentity(certChain, key);
 HostnameVerifier hVerifier = null;
 if (argv.length < 3)
 hVerifier = new NulledHostnameVerifier();
 else
 hVerifier = (HostnameVerifier)
 Class.forName(argv[2]).newInstance();

 sslCtx.setHostnameVerifier(hVerifier);
 TrustManager tManager = new NulledTrustManager();
 sslCtx.setTrustManager(tManager);
 System.out.println(" Creating new SSLSocketFactory with SSLContext");
 SSLSocketFactory sslSF = (SSLSocketFactory)
 sslCtx.getSocketFactory();
 System.out.println(" Creating and opening new SSLSocket with
 SSLSocketFactory");
 // using createSocket(String hostname, int port)
 SSLSocket sslSock = (SSLSocket) sslSF.createSocket(argv[0],
 new Integer(argv[1]).intValue());
 System.out.println(" SSLSocket created");
 HandshakeCompletedListener mListener = null;
 mListener = new MyListener();
 sslSock.addHandshakeCompletedListener(new MyListener());
 ...

Using Two-Way SSL Authentication
When using certificate authentication, Oracle WebLogic Server sends a digital certificate to
the requesting client. The client examines the digital certificate to ensure that it is authentic,
has not expired, and matches the Oracle WebLogic Server instance that presented it.

With two-way SSL authentication (a form of mutual authentication), the requesting client also
presents a digital certificate to Oracle WebLogic Server. When the instance of WebLogic
Server is configured for two-way SSL authentication, requesting clients are required to
present digital certificates from a specified set of certificate authorities. Oracle WebLogic
Server accepts only digital certificates that are signed by trusted certificate authorities.

For information on how to configure WebLogic Server for two-way SSL authentication, see
the Configuring SSL in Administering Security for Oracle WebLogic Server.

The following sections describe the different ways two-way SSL authentication can be
implemented in WebLogic Server.

• Two-Way SSL Authentication with JNDI

• Using Two-Way SSL Authentication Between WebLogic Server Instances

• Using Two-Way SSL Authentication with Servlets

Two-Way SSL Authentication with JNDI
When using JNDI for two-way SSL authentication in a Java client, you can use either of the
following methods in the WebLogic JNDI Environment class:

• loadLocalIdentity()— This method loads an array of certificates and a private key for
the local identity onto the current thread for client authentication.

• setSSLContext()— This method sets SSLContext onto the current thread for client
authentication.

Chapter 4
Writing Applications that Use SSL

4-11

Note:

setSSLClientCertificate() and setSSLClientKeyPassword() have been
deprecated in this release.

You can use loadLocalIdentity(certs, privateKey) to pass a client’s identity
certificate to the server when the server is configured for two-way SSL. This method
takes two parameters: an X509Certificate array and a private key associated with the
certificate. In most cases, the certificate chain array consists of just one element.

Note:

The loadLocalIdentity method is supported only when running as a client
within WebLogic Server, or as a standalone client using weblogic.jar in the
system classpath. The loadLocalIdentity method is not supported in the
WebLogic thin T3 client (wlthint3client.jar).

Example 4-4 demonstrates how to use the loadLocalIdentity() method for two-way
SSL authentication in a Java client.

Example 4-4 Example of a Two-Way SSL Authentication Client That Uses JNDI
Environment loadLocalIdentity Method

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import java.security.KeyStore;
import weblogic.jndi.Environment;
import weblogic.security.PEMInputStream;
import java.io.InputStream;
import java.io.FileInputStream;
...

public class SSLJNDIClient

{
 public static void main(String[] args) throws Exception
 {
 Context context = null;
 try {
 Environment env = new Environment();
 // set connection parameters
 env.setProviderUrl("t3s://localhost:7002");
 // The next two set methods are optional if you are using
 // a UserNameMapper interface.
 env.setSecurityPrincipal("system");
 env.setSecurityCredentials("weblogic");

 // Read the certificate & private key entry from a JKS file
 // This example assumes the private key and certificate chain were stored
to the keystore with
 // setKeyEntry(String alias, Key key, char[] password, Certificate[] chain)
 KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
 // For simplicity, this example just uses a hardcoded password for the

Chapter 4
Writing Applications that Use SSL

4-12

keystore
 char[] keyStorePassword = "a keystore password".getBytes();
 java.io.FileInputStream fis = null;
 try {
 fis = new java.io.FileInputStream("full_path_to_keystore_file");
 ks.load(fis, keyStorePassword);
 } finally {
 if (fis != null) {
 fis.close();
 }
 }

 // The private key password that was used to store the private key entry
 // This example uses a hardcoded private key password for simplicity
 char[] privateKeyPassword = "a private key entry password".getBytes();
 KeyStore.ProtectionParameter passwordProtParam = new
KeyStore.PasswordProtection(privateKeyPassword);

 // get my private key
 KeyStore.PrivateKeyEntry pkEntry = (KeyStore.PrivateKeyEntry)
ks.getEntry("privateKeyAlias", passwordProtParam);
 PrivateKey privateKey = pkEntry.getPrivateKey();
 Certificate[] certs = pkEntry.getCertificateChain();

 env.loadLocalIdentity(certs, privateKey);
 env.setInitialContextFactory(Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);
 context = env.getInitialContext();
 Object myEJB = (Object) context.lookup("myEJB");
 }
 finally {
 if (context != null) context.close();
 }
 }
}

To use setSSLContext(SSLContext sslctx), you pass an SSLContext, with a client
certificate created from trustManager and keyManager, to the server using JNDI when the
server is configured for two-way SSL. See Class SSLContext in Java™ Platform, Standard
Edition 8 API Specification.

Note:

Invoking the setSSLContext method requires the WebLogic thin T3 client
(wlthint3client.jar).

setSSLContext() takes precedence over the current private key and certificate
loading, loadLocalIdentity(Certificate[] certs, PrivateKey privateKey) or
setSSLClientCertificate(InputStream[] chain). That is, if sslContext is
configured at the same time as client certificate and privateKey, sslContext is
used.

Example 4-5 demonstrates how to use the setSSLContext() method for two-way SSL
authentication in a Java client.

Chapter 4
Writing Applications that Use SSL

4-13

http://docs.oracle.com/javase/8/docs/api/index.html?javax/net/ssl/SSLContext.html

Example 4-5 Example of a Two-Way SSL Authentication Client That Uses JNDI
Environment setSSLContext Method

import java.security.*;
import java.net.*;
import javax.naming.Context;
import javax.net.ssl.*;
import java.security.cert.X509Certificate;
import java.security.cert.CertificateException;
import javax.security.auth.Subject;
import weblogic.jndi.Environment;
import weblogic.jndi.api.ServerEnvironment;
import weblogic.security.auth.Authenticate;
...

public class JNDISSLContextClient
{
 private static javax.net.ssl.SSLContext m_sslContext = null;

 public static void main(String[] args) {

 try {
 KeyStore keystore;
 keystore = KeyStore.getInstance("Windows-MY",
"SunMSCAPI");
 keystore.load(null, null);
 KeyManagerFactory kmf =
KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm());
 kmf.init(keystore, null);
 KeyManager[] keyManagers = kmf.getKeyManagers();

 KeyStore truststore;
 truststore = KeyStore.getInstance("Windows-ROOT",
"SunMSCAPI");
 truststore.load(null, null);
 TrustManagerFactory tmf =
TrustManagerFactory.getInstance("SunX509");
 tmf.init(truststore);
 TrustManager[] trustManagers =
tmf.getTrustManagers();

 m_sslContext = SSLContext.getInstance("TLS");
 m_sslContext.init(keyManagers, trustManagers, new
SecureRandom());

 weblogic.jndi.api.ServerEnvironment env = new
Environment();
 env.setProviderUrl(url); //e.g t3s://host:port
 env.setSecurityPrincipal("system");
 env.setSecurityCredentials("weblogic");
 env.setSSLContext(m_sslContext);

env.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");

 Context context = env.getInitialContext();

Chapter 4
Writing Applications that Use SSL

4-14

 Subject soggetto =
weblogic.security.Security.getCurrentSubject();
 Object ejbObj = context.lookup("ejb");
 ...
 } catch (Exception e) {
 ;
 } finally {
 if (context != null) context.close();
 }
 }
}

Note:

Security provider plug-ins are loaded from the system classpath. The system
classpath must specify the implementation of a custom
weblogic.security.providers.authentication.UserNameMapper interface.

If you have not configured an Identity Assertion provider that performs certificate-based
authentication, a Java client running in a JVM with an SSL connection can change the Oracle
WebLogic Server user identity by creating a new JNDI InitialContext and supplying a new
user name and password in the JNDI SECURITY_PRINCIPAL and SECURITY_CREDENTIALS
properties. Any digital certificates passed by the Java client after the SSL connection is made
are not used. The new Oracle WebLogic Server user continues to use the SSL connection
negotiated with the initial user's digital certificate.

If you have configured an Identity Assertion provider that performs certificate-based
authentication, Oracle WebLogic Server passes the digital certificate from the Java client to
the class that implements the UserNameMapper interface and the UserNameMapper class maps
the digital certificate to a Oracle WebLogic Server user name. Therefore, if you want to set a
new user identity when you use the certificate-based identity assertion, you cannot change
the identity. This is because the digital certificate is processed only at the time of the first
connection request from the JVM for each Environment.

Note:

Multiple, concurrent, user logins to WebLogic Server from a single client JVM when
using two-way SSL and JNDI is not supported. If multiple logins are executed on
different threads, the results are undeterminable and might result in one user's
requests being executed on another user's login, thereby allowing one user to
access another user's data. WebLogic Server does not support multiple, concurrent,
certificate-based logins from a single client JVM. For information on JNDI contexts
and threads and how to avoid potential JNDI context problems, see JNDI Contexts
and Threads and How to Avoid Potential JNDI Context Problems in Developing
JNDI Applications for Oracle WebLogic Server.

When the JNDI getInitialContext() method is called, the Java client and Oracle WebLogic
Server execute mutual authentication in the same way that a Web browser performs mutual
authentication to get a secure Web server connection. An exception is thrown if the digital

Chapter 4
Writing Applications that Use SSL

4-15

certificates cannot be validated or if the Java client's digital certificate cannot be
authenticated in the default (active) security realm. The authenticated user object is
stored on the Java client's server thread and is used for checking the permissions
governing the Java client's access to any protected WebLogic resources.

When you use the WebLogic JNDI Environment class, you must create a new
Environment object for each call to the getInitialContext() method. Once you
specify a User object and security credentials, both the user and their associated
credentials remain set in the Environment object. If you try to reset them and then call
the JNDI getInitialContext() method, the original user and credentials are used.

When you use two-way SSL authentication from a Java client, Oracle WebLogic
Server gets a unique Java Virtual Machine (JVM) ID for each client JVM so that the
connection between the Java client and Oracle WebLogic Server is constant. Unless
the connection times out from lack of activity, it persists as long as the JVM for the
Java client continues to execute. The only way a Java client can negotiate a new SSL
connection reliably is by stopping its JVM and running another instance of the JVM.

The code in Example 4-4 generates a call to the WebLogic Identity Assertion provider
that implements the
weblogic.security.providers.authentication.UserNameMapper interface. The class
that implements the UserNameMapper interface returns a user object if the digital
certificate is valid. Oracle WebLogic Server stores this authenticated user object on the
Java client's thread in Oracle WebLogic Server and uses it for subsequent
authorization requests when the thread attempts to use WebLogic resources protected
by the default (active) security realm.

Writing a User Name Mapper
When using two-way SSL, WebLogic Server verifies the digital certificate of the Web
browser or Java client when establishing an SSL connection. However, the digital
certificate does not identify the Web browser or Java client as a user in the WebLogic
Server security realm. If the Web browser or Java client requests a WebLogic Server
resource protected by a security policy, WebLogic Server requires the Web browser or
Java client to have an identity. To handle this requirement, the WebLogic Identity
Assertion provider allows you to enable a user name mapper that maps the digital
certificate of a Web browser or Java client to a user in a WebLogic Server security
realm. The user name mapper must be an implementation the
weblogic.security.providers.authentication.UserNameMapper interface.

You have the option of the using the default implementation of the
weblogic.security.providers.authentication.UserNameMapper interface,
DefaultUserNameMapperImpl, or developing your own implementation.

The WebLogic Identity Assertion provider can call the implementation of the
UserNameMapper interface for the following types of identity assertion token types:

• X.509 digital certificates passed via the SSL handshake

• X.509 digital certificates passed via CSIv2

• X.501 distinguished names passed via CSIv2

If you need to map different types of certificates, write your own implementation of the
UserNameMapper interface.

To implement a UserNameMapper interface that maps a digital certificate to a user
name, write a UserNameMapper class that performs the following operations:

Chapter 4
Writing Applications that Use SSL

4-16

1. Instantiates the UserNameMapper implementation class.

2. Creates the UserNameMapper interface implementation.

3. Uses the mapCertificateToUserName() method to map a certificate to a user name
based on a certificate chain presented by the client.

4. Maps a string attribute type to the corresponding Attribute Value Assertion field type.

Security provider plug-ins are loaded from the system classpath. The system classpath must
specify the implementation of the
weblogic.security.providers.authentication.UserNameMapper interface.

Using Two-Way SSL Authentication Between WebLogic Server Instances
You can use two-way SSL authentication in server-to-server communication in which one
WebLogic Server instance is acting as the client of another WebLogic Server instance. Using
two-way SSL authentication in server-to-server communication enables you to have
dependable, highly-secure connections, even without the more common client/server
environment.

Example 4-6 shows an example of how to establish a secure connection from a servlet
running in one instance of WebLogic Server to a second WebLogic Server instance called
server2.weblogic.com.

• setProviderURL—specifies the URL of the Oracle WebLogic Server instance acting as
the SSL server. The WebLogic Server instance acting as SSL client calls this method.
The URL specifies the t3s protocol which is a WebLogic Server proprietary protocol built
on the SSL protocol. The SSL protocol protects the connection and communication
between the two WebLogic Servers instances.

• setSSLClientCertificate—specifies the private key and certificate chain to use for the
SSL connection. You use this method to specify an input stream array that consists of a
private key (which is the first input stream in the array) and a chain of X.509 certificates
(which make up the remaining input streams in the array). Each certificate in the chain of
certificates is the issuer of the certificate preceding it in the chain.

• setSSLServerName—specifies the name of the Oracle WebLogic Server instance acting
as the SSL server. When the SSL server presents its digital certificate to the WebLogic
Server acting as the SSL client, the name specified using the setSSLServerName method
is compared to the common name field in the digital certificate. In order for hostname
verification to succeed, the names must match. This parameter is used to prevent man-
in-the-middle attacks.

• setSSLRootCAFingerprint—specifies digital codes that represent a set of trusted
certificate authorities, thus specifying trust based on a trusted certificate fingerprint. The
root certificate in the certificate chain received from the WebLogic Server instance acting
as the SSL server has to match one of the fingerprints specified with this method in order
to be trusted. This parameter is used to prevent man-in-the-middle attacks. It provides an
addition to the default level of trust, which for clients running on WebLogic Server is that
specified by the WebLogic Server trust configuration.

Chapter 4
Writing Applications that Use SSL

4-17

Note:

For information on JNDI contexts and threads and how to avoid potential
JNDI context problems, see JNDI Contexts and Threads and How to
Avoid Potential JNDI Context Problems in Developing JNDI Applications
for Oracle WebLogic Server.

Example 4-6 Establishing a Secure Connection to Another WebLogic Server
Instance

FileInputStream [] f = new FileInputStream[3];
 f[0]= new FileInputStream("demokey.pem");
 f[1]= new FileInputStream("democert.pem");
 f[2]= new FileInputStream("ca.pem");
Environment e = new Environment ();
e.setProviderURL("t3s://server2.weblogic.com:443");
e.setSSLClientCertificate(f);
e.setSSLServerName("server2.weblogic.com");
e.setSSLRootCAFingerprints("ac45e2d1ce492252acc27ee5c345ef26");

e.setInitialContextFactory
("weblogic.jndi.WLInitialContextFactory");
Context ctx = new InitialContext(e.getProperties())

In Example 4-6, the WebLogic JNDI Environment class creates a hash table to store
the following parameters:

Using Two-Way SSL Authentication with Servlets
To authenticate Java clients in a servlet (or any other server-side Java class), you
must check whether the client presented a digital certificate and if so, whether the
certificate was issued by a trusted certificate authority. The servlet developer is
responsible for asking whether the Java client has a valid digital certificate. When
developing servlets with the WebLogic Servlet API, you must access information about
the SSL connection through the getAttribute() method of the HTTPServletRequest
object.

The following attributes are supported in WebLogic Server servlets:

• javax.servlet.request.X509Certificate
• java.security.cert.X509Certificate []—returns an array of the X.509

certificate.

• javax.servlet.request.cipher_suite—returns a string representing the cipher
suite used by HTTPS.

• javax.servlet.request.key_size— returns an integer (0, 40, 56, 128, 168)
representing the bit size of the symmetric (bulk encryption) key algorithm.

• weblogic.servlet.request.SSLSession
• javax.net.ssl.SSLSession—returns the SSL session object that contains the

cipher suite and the dates on which the object was created and last used.

You have access to the user information defined in the digital certificates. When you
get the javax.servlet.request.X509Certificate attribute, it is an array of type

Chapter 4
Writing Applications that Use SSL

4-18

java.security.cert.X509Certificate. You simply cast the array to that type and examine
the certificates.

A digital certificate includes information, such as the following:

• The name of the subject (holder, owner) and other identification information required to
verify the unique identity of the subject.

• The subject's public key

• The name of the certificate authority that issued the digital certificate

• A serial number

• The validity period (or lifetime) of the digital certificate (as defined by a start date and an
end date)

Using a Custom Host Name Verifier
A host name verifier validates that the host to which an SSL connection is made is the
intended or authorized party. A host name verifier is useful when a WebLogic client or a
WebLogic Server instance is acting as an SSL client to another application server. It helps
prevent man-in-the-middle attacks.

Note:

Demonstration digital certificates are generated during installation so they do
contain the host name of the system on which the WebLogic Server software
installed. Therefore, you should leave host name verification on when using the
demonstration certificates for development or testing purposes.

By default, WebLogic Server, as a function of the SSL handshake, compares the CN field of
the SSL server certificate Subject DN with the host name in the URL used to connect to the
server. If these names do not match, the SSL connection is dropped.

The dropping of the SSL connection is caused by the SSL client, which validates the host
name of the server against the digital certificate of the server. If anything but the default
behavior is desired, you can either turn off host name verification or register a custom host
name verifier. Turning off host name verification leaves the SSL connections vulnerable to
man-in-the-middle attacks.

You can turn off host name verification in the following ways:

• In the WebLogic Server Administration Console, specify None in the Hostname
Verification field that is located on the Advanced Options pane under the Keystore & SSL
tab for the server (for example, myserver).

• On the command line of the SSL client, enter the following argument:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

You can write a custom host name verifier. The weblogic.security.SSL.HostnameVerifier
interface provides a callback mechanism so that implementers of this interface can supply a
policy on whether the connection to the URL's host name should be allowed. The policy can
be certificate-based or can depend on other authentication schemes.

Chapter 4
Writing Applications that Use SSL

4-19

To use a custom host name verifier, create a class that implements the
weblogic.security.SSL.HostnameVerifier interface and define the methods that
capture information about the server's security identity.

Note:

This interface takes new style certificates and replaces the
weblogic.security.SSL.HostnameVerifierJSSE interface, which is deprecated.

Before you can use a custom host name verifier, you need to specify the class for your
implementation in the following ways:

• In the WebLogic Server Administration Console, set the SSL.HostName Verifier
field on the SSL tab under Server Configuration to the name of a class that
implements this interface. The specified class must have a public no-arg
constructor.

• On the command line, enter the following argument:

-Dweblogic.security.SSL.hostnameVerifier=hostnameverifier

The value for hostnameverifier is the name of the class that implements the custom
host name verifier.

Example 4-7 shows code fragments from the NulledHostnameVerifier example; the
complete example is located in the
EXAMPLES_HOME\src\examples\security\sslclient directory in the
NulledHostnameVerifier.java file. The EXAMPLES_HOME directory can be found at
ORACLE_HOME\wlserver\samples\server. This code example contains a
NulledHostnameVerifier class which always returns true for the comparison. The
sample allows the WebLogic SSL client to connect to any SSL server regardless of the
server's host name and digital certificate SubjectDN comparison.

Example 4-7 Hostname Verifier Sample Code Fragment

public class NulledHostnameVerifier implements
 weblogic.security.SSL.HostnameVerifier {
 public boolean verify(String urlHostname, javax.net.ssl.SSLSession session) {
 return true;
 }
}

Using a Trust Manager
The weblogic.security.SSL.TrustManager interface provides the ability to:

• Ignore specific certificate validation errors

• Perform additional validation on the peer certificate chain

Chapter 4
Writing Applications that Use SSL

4-20

Note:

This interface takes new style certificates and replaces the
weblogic.security.SSL.TrustManagerJSSE interface, which is deprecated.

When an SSL client connects to an instance of WebLogic Server, the server presents its
digital certificate chain to the client for authentication. That chain could contain an invalid
digital certificate. The SSL specification says that the client should drop the SSL connection
upon discovery of an invalid certificate. You can use a custom implementation of the
TrustManager interface to control when to continue or discontinue an SSL handshake. Using
a trust manager, you can ignore certain validation errors, optionally perform custom validation
checks, and then decide whether or not to continue the handshake.

Use the weblogic.security.SSL.TrustManager interface to create a trust manager. The
interface contains a set of error codes for certificate verification. You can also perform
additional validation on the peer certificate and interrupt the SSL handshake if need be. After
a digital certificate has been verified, the weblogic.security.SSL.TrustManager interface
uses a callback function to override the result of verifying the digital certificate. You can
associate an instance of a trust manager with an SSL context through the
setTrustManager() method.

You can only set up a trust manger programmatically; its use cannot be defined through the
WebLogic Server Administration Console or on the command-line.

Note:

Depending on the checks performed, use of a trust manager may potentially impact
performance.

Example 4-8 shows code fragments from the NulledTrustManager example; the complete
example is located in the EXAMPLES_HOME\src\examples\security\sslclient directory in the
NulledTrustManager.java file. The EXAMPLES_HOME directory can be found at
ORACLE_HOME\wlserver\samples\server. The SSLSocketClient example uses the custom
trust manager. The SSLSocketClient shows how to set up a new SSL connection by using an
SSL context with the trust manager.

Example 4-8 NulledTrustManager Sample Code Fragments

package examples.security.sslclient;

import weblogic.security.SSL.TrustManager;
import java.security.cert.X509Certificate;
...
public class NulledTrustManager implements TrustManager{
 public boolean certificateCallback(X509Certificate[] o, int validateErr) {
 System.out.println(" --- Do Not Use In Production ---\n" +
 " By using this NulledTrustManager, the trust in" +
 " the server's identity is completely lost.\n"
+ " --------------------------------");
 for (int i=0; i<o.length; i++)
 System.out.println(" certificate " + i + " -- " + o[i].toString());
 return true;

Chapter 4
Writing Applications that Use SSL

4-21

 }
}

Using the CertPath Trust Manager
The CertPathTrustManager, weblogic.security.SSL.CertPathTrustManager, makes
use of the default security realm's configured CertPath validation providers to perform
extra validation such as revocation checking.

By default, application code using outbound SSL in the server has access only to the
built-in SSL certificate validation. However, application code can specify the
CertPathTrustManager in order to access any additional certificate validation that the
administrator has configured for the server. If you want your application code to also
run the CertPath validators, the application code should use the
CertPathTrustManager.

There are three ways to use this class:

• The Trust Manager calls the configured CertPathValidators only if the administrator
has set a switch on the SSLMBean stating that outbound SSL should use the
validators. That is, the application completely delegates validation to whatever the
administrator configures. You use the setUseConfiguredSSLValidation() method
for this purpose. This is the default.

• The Trust Manager always calls any configured CertPathValidators. You use the
setBuiltinSSLValidationAndCertPathValidators() method for this purpose.

• The Trust Manager never calls any configured CertPathValidators. You use the
setBuiltinSSLValidationOnly() method for this purpose.

Using a Handshake Completed Listener
The javax.net.ssl.HandshakeCompletedListener interface defines how an SSL
client receives notifications about the completion of an SSL protocol handshake on a
given SSL connection. Example 4-9 shows code fragments from the MyListener
example; the complete example is located in the
EXAMPLES_HOME\src\examples\security\sslclient directory in the MyListener.java
file. The EXAMPLES_HOME directory can be found at
ORACLE_HOME\wlserver\samples\server.

Example 4-9 MyListener (HandshakeCompletedListener) Sample Code
Fragments

package examples.security.sslclient;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import javax.net.ssl.HandshakeCompletedListener;
import java.util.Hashtable;
import javax.net.ssl.SSLSession;
...
 public class MyListener implements HandshakeCompletedListener
 {
 public void handshakeCompleted(javax.net.ssl.HandshakeCompletedEvent
 event)

Chapter 4
Writing Applications that Use SSL

4-22

 {
 SSLSession session = event.getSession();
 System.out.println("Handshake Completed with peer " +
 session.getPeerHost());
 System.out.println(" cipher: " + session.getCipherSuite());
 Certificate[] certs = null;
 try
 {
 certs = session.getPeerCertificates();
 }
 catch (SSLPeerUnverifiedException puv)
 {
 certs = null;
 }
 if (certs != null)
 {
 System.out.println(" peer certificates:");
 for (int z=0; z<certs.length; z++)
 System.out.println(" certs["+z+"]: " + certs[z]);
 }
 else
 {
 System.out.println("No peer certificates presented");
 }
 }
 }

Using an SSLContext
The SSLContext class is used to programmatically configure SSL and to retain SSL session
information. Each instance can be configured with the keys, certificate chains, and trusted CA
certificates that will be used to perform authentication. SSL sockets created with the same
SSLContext and used to connect to the same SSL server could potentially reuse SSL
session information. Whether the session information is actually reused depends on the SSL
server.

For more information on session caching see SSL Session Behavior in Administering
Security for Oracle WebLogic Server. To associate an instance of a trust manager class with
its SSL context, use the weblogic.security.SSL.SSLContext.setTrustManager() method.

You can only set up an SSL context programmatically; not by using the WebLogic Server
Administration Console or the command line. A Java new expression or the getInstance()
method of the SSLContext class can create an SSLContext object. The getInstance()
method is static and it generates a new SSLContext object that implements the specified
secure socket protocol. An example of using the SSLContext class is provided in the
SSLSocketClient.java sample in EXAMPLES_HOME\src\examples\security\sslclient,
where EXAMPLES_HOME represents the directory in which the WebLogic Server code examples
are configured and can be found at ORACLE_HOME\wlserver\samples\server. The
SSLSocketClient example shows how to create a new SSL socket factory that will create a
new SSL socket using SSLContext.

Example 4-10 shows a sample instantiation using the getInstance() method.

Example 4-10 SSL Context Code Example

import weblogic.security.SSL.SSLContext;
 SSLcontext sslctx = SSLContext.getInstance ("https")

Chapter 4
Writing Applications that Use SSL

4-23

Using URLs to Make Outbound SSL Connections
You can use a URL object to make an outbound SSL connection from a WebLogic
Server instance acting as a client to another WebLogic Server instance. WebLogic
Server supports both one-way and two-way SSL authentication for outbound SSL
connections.

For one-way SSL authentication, you use the java.net.URL,
java.net.URLConnection, and java.net.HTTPURLConnection classes to make
outbound SSL connections using URL objects. Example 4-11 shows a simpleURL class
that supports both HTTP and HTTPS URLs and that only uses these Java classes
(that is, no WebLogic classes are required). To use the simpleURL class for one-way
SSL authentication (HTTPS) on WebLogic Server, all that is required is that
"weblogic.net" be defined in the system property for java.protocols.handler.pkgs.

Note:

Because the simpleURL sample shown in Example 4-11 defaults trust and
hostname checking, this sample requires that you connect to a real Web
server that is trusted and that passes hostname checking by default.
Otherwise, you must override trust and hostname checking on the command
line.

Example 4-11 One-Way SSL Authentication URL Outbound SSL Connection
Class That Uses Java Classes Only

import java.net.URL;
import java.net.URLConnection;
import java.net.HttpURLConnection;
import java.io.IOException;
public class simpleURL
{
 public static void main (String [] argv)
 {
 if (argv.length != 1)
 {
 System.out.println("Please provide a URL to connect to");
 System.exit(-1);
 }
 setupHandler();
 connectToURL(argv[0]);
 }
 private static void setupHandler()
 {
 java.util.Properties p = System.getProperties();
 String s = p.getProperty("java.protocol.handler.pkgs");
 if (s == null)
 s = "weblogic.net";
 else if (s.indexOf("weblogic.net") == -1)
 s += "|weblogic.net";
 p.put("java.protocol.handler.pkgs", s);
 System.setProperties(p);
 }
 private static void connectToURL(String theURLSpec)

Chapter 4
Writing Applications that Use SSL

4-24

 {
 try
 {
 URL theURL = new URL(theURLSpec);
 URLConnection urlConnection = theURL.openConnection();
 HttpURLConnection connection = null;
 if (!(urlConnection instanceof HttpURLConnection))
 {
 System.out.println("The URL is not using HTTP/HTTPS: " +
 theURLSpec);
 return;
 }
 connection = (HttpURLConnection) urlConnection;
 connection.connect();
 String responseStr = "\t\t" +
 connection.getResponseCode() + " -- " +
 connection.getResponseMessage() + "\n\t\t" +
 connection.getContent().getClass().getName() + "\n";
 connection.disconnect();
 System.out.println(responseStr);
 }
 catch (IOException ioe)
 {
 System.out.println("Failure processing URL: " + theURLSpec);
 ioe.printStackTrace();
 }
 }
}

For two-way SSL authentication, the weblogic.net.http.HttpsURLConnection class
provides a way to specify the security context information for a client, including the digital
certificate and private key of the client. Instances of this class represent an HTTPS
connection to a remote object.

The SSLClient sample code demonstrates using the WebLogic URL object to make an
outbound SSL connection (see Example 4-12). The code example shown in Example 4-12 is
excerpted from the SSLClient.java file in the
EXAMPLES_HOME\src\examples\security\sslclient directory. The EXAMPLES_HOME directory
can be found at ORACLE_HOME\wlserver\samples\server.

Example 4-12 WebLogic Two-Way SSL Authentication URL Outbound SSL
Connection Code Example

wlsUrl = new URL("https", host, Integer.valueOf(sport).intValue(),
 query);
weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConnection(wlsUrl);
...
InputStream [] ins = new InputStream[2];
 ins[0] = new FileInputStream("clientkey.pem");
 ins[1] = new FileInputStream("client2certs.pem");
 String pwd = "clientkey";
 sconnection.loadLocalIdentity(ins[0], ins[1], pwd.toCharArray());

SSL Client Code Examples
The WebLogic Server product provides a complete working SSL authentication sample.The
sample provided by WebLogic Server is located in
EXAMPLES_HOME\src\examples\security\sslclient, where EXAMPLES_HOME represents the

Chapter 4
SSL Client Code Examples

4-25

directory in which the WebLogic Server code examples are configured and can be
found at ORACLE_HOME\wlserver\samples\server. For a description of the sample and
instructions on how to build, configure, and run this sample, see the package.html file
in the sample directory. You can modify this code example and reuse it.

Chapter 4
SSL Client Code Examples

4-26

5
Securing Enterprise JavaBeans (EJBs)

Oracle WebLogic Server supports the Java EE architecture security model for securing
Enterprise JavaBeans (EJBs), which includes support for declarative authorization (also
referred to in this document as declarative security) and programmatic authorization (also
referred to in this document as programmatic security).

• Java EE Architecture Security Model

• Using Declarative Security With EJBs

• EJB Security-Related Deployment Descriptors

• Using Programmatic Security With EJBs

Note:

You can use metadata annotations, deployment descriptor files, the WebLogic
Server Administration Console, and JACC to secure EJBs. For information on
using the WebLogic Server Administration Console to secure EJBs, see
Options for Securing Web Application and EJB Resources in Securing
Resources Using Roles and Policies for Oracle WebLogic Server. For
information on JACC, see Using the Java Authorization Contract for Containers.

Java EE Architecture Security Model
Enterprise tier and web tier applications are made up of components that are deployed into
various containers. These components are combined to build a multitier enterprise
application. Security for components is provided by their containers. A container provides two
kinds of security: declarative and programmatic.

See Overview of Java EE Security in The Java EE Tutorial, Release 7 for complete details
about the Java EE security architecture.

Declarative Security
The Java EE Tutorial, Release 7 states that declarative security expresses an application
component's security requirements by using either deployment descriptors or annotations.

A deployment descriptor is an XML file that is external to the application and that expresses
an application's security structure, including security roles, access control, and authentication
requirements.

Annotations, also called metadata, are used to specify information about security within a
class file. When the application is deployed, this information can be either used by or
overridden by the application deployment descriptor. Annotations save you from having to
write declarative information inside XML descriptors. Instead, you simply put annotations on
the code, and the required information gets generated. For this tutorial, annotations are used
for securing applications wherever possible.

5-1

https://docs.oracle.com/javaee/7/tutorial/security-intro001.htm#BNBWK

Declarative Authorization Via Annotations
As of EJB 3.x, to make the deployer's task easier, the application developer can define
security roles. Developers can specify security metadata annotations directly in the
EJB bean class to identify the roles that are allowed to invoke all, or a subset, of the
EJB's methods.

As stated in the Securing an Enterprise Bean Using Declarative Security section of the
The Java EE Tutorial, Release 7, "Declarative security enables the application
developer to specify which users are authorized to access which methods of the
enterprise beans and to authenticate these users with basic, or user name/password,
authentication. Frequently, the person who is developing an enterprise application is
not the same person who is responsible for deploying the application. An application
developer who uses declarative security to define method permissions and
authentication mechanisms is passing along to the deployer a security view of the
enterprise beans contained in the EJB JAR. When a security view is passed on to the
deployer, he or she uses this information to define method permissions for security
roles. If you don't define a security view, the deployer will have to determine what each
business method does to determine which users are authorized to call each method."

At deployment time, the deployer then creates these security roles if they do not
already exist and maps users to these roles using the WebLogic Server Administration
Console to update the security realm. For details, see Manage Security Roles in the
Oracle WebLogic Server Administration Console Online Help. The deployer can also
map any security roles to users using the weblogic-ejb-jar.xml deployment
descriptor.

Note:

Deployment descriptor elements always override their annotation
counterparts. In the case of conflicts, the deployment descriptor value
overrides the annotation value.

Programmatic Security
The Java EE Tutorial, Release 7 states that for an enterprise bean, code embedded in
a business method that is used to access a caller's identity programmatically and that
uses this information to make security decisions. Programmatic security is useful when
declarative security alone is not sufficient to express the security model of an
application. The API for programmatic security consists of methods of the EJBContext
interface and the HttpServletRequest interface. These methods allow components to
make business-logic decisions based on the security role of the caller or remote user.

In the section Accessing an Enterprise Bean Caller's Security Context, The Java EE
Tutorial, Release 7 states that, in general, ssecurity management should be enforced
by the container in a manner that is transparent to the enterprise bean's business
methods. The security API described in this section should be used only in the less
frequent situations in which the enterprise bean business methods need to access the
security context information, such as when you want to restrict access to a particular
time of day.

Chapter 5
Java EE Architecture Security Model

5-2

https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#GJGDI
https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#GJGCR

The javax.ejb.EJBContext interface provides two methods that allow the bean provider to
access security information about the enterprise bean's caller:

• getCallerPrincipal allows the enterprise bean methods to obtain the current caller
principal's name. The methods might, for example, use the name as a key to information
in a database.

• isCallerInRoleallows the developer to code the security checks that cannot be easily
defined using method permissions. Such a check might impose a role-based limit on a
request, or it might depend on information stored in the database.

The enterprise bean code can use the isCallerInRole method to test whether the
current caller has been assigned to a given security role. Security roles are defined by
the bean provider or the application assembler and are assigned by the deployer to
principals or principal groups that exist in the operational environment.

Declarative Versus Programmatic Authorization
Programmatic security is used by security-aware applications when declarative security alone
is not sufficient to express the security model of the application. When choosing the security
model that works best for you, consider who is responsible for managing security in your
organization. Developers are most familiar with the application components they build, but
they might not necessarily be familiar with the deployment environment in which those
components run. In addition, as security policies change, it is more economical to reconfigure
security declaratively instead of rebuilding, retesting, and redeploying applications, which
may be necessary when making programmatic security updates.

As described in Declarative Authorization Via Annotations, to make the deployer's task
easier, the application developer can specify security metadata annotations directly in the
EJB bean class to identify the roles that are allowed to invoke all, or a subset, of the EJB's
methods. However, deployment descriptor elements always override their annotation
counterparts, which gives the deployer final control.

Using Declarative Security With EJBs
You can implement declarative security using the security providers via the Administration
Console, or by using Java Authorization Contract for Containers (JACC). You also use
deployment descriptors and metadata annotations for implementing declarative security.

There are three ways to implement declarative security:

1. Security providers via the WebLogic Server Administration Console, as described in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

2. Java Authorization Contract for Containers (JACC), as described in Using the Java
Authorization Contract for Containers.

3. Deployment descriptors and metadata annotations, which are discussed in this section.

Which of these three methods is used is defined by the JACC flags and the security model.
(Security models are described in Options for Securing EJB and Web Application Resources
in Securing Resources Using Roles and Policies for Oracle WebLogic Server)

Implementing Declarative Security Via Metadata Annotations
As of EJB 3.0, (see What Was New and Changed in EJB 3.0 in Developing Enterprise
JavaBeans for Oracle WebLogic Server), you are no longer required to create the

Chapter 5
Using Declarative Security With EJBs

5-3

deployment descriptor files (such as ejb-jar.xml). You can now use metadata
annotations in the bean file itself to configure metadata.

You can still use XML deployment descriptors in addition to, or instead of, the
metadata annotations if you so choose.

Note:

Deployment descriptor elements always override their annotation
counterparts. In the case of conflicts, the deployment descriptor value
overrides the annotation value.

To use metadata annotations:

1. Use the metadata annotations feature and create an annotated EJB bean file.

2. At deployment time, the deployer must then create these security roles if they do
not already exist and map users to these roles using the WebLogic Server
Administration Console to update the security realm. See Manage Security Roles
in the Oracle WebLogic Server Administration Console Online Help.

The annotations are part of the javax.security.annotation package. The following
security-related annotations are available:

• javax.annotation.security.DeclareRoles — Explicitly lists the security roles that will
be used to secure the EJB.

• javax.annotation.security.RolesAllowed — Specifies the security roles that are
allowed to invoke all the methods of the EJB (when specified at the class-level) or
a particular method (when specified at the method-level.)

• javax.annotation.security.DenyAll — Specifies that the annotated method can not
be invoked by any role.

• javax.annotation.security.PermitAll — Specifies that the annotated method can be
invoked by all roles.

• javax.annotation.security.RunAs — Specifies the role which runs the EJB. By
default, the EJB runs as the user who actually invokes it.

Security-Related Annotation Code Examples
The section Securing Access to the EJB in Developing Enterprise JavaBeans for
Oracle WebLogic Server provides an example of a simple stateless session EJB that
uses all of the security-related annotations.

The section Specifying Authorized Users by Declaring Security Roles in the Java EE 7
Tutorial also discusses how to use annotations to specify the method permissions for
the methods of a bean class, with accompanying code examples.

Implementing Declarative Security Via Deployment Descriptors
To implement declarative security in EJBs you can use deployment descriptors (ejb-
jar.xml and weblogic-ejb-jar.xml) to define the security requirements. Example 5-1
shows examples of how to use the ejb-jar.xml and weblogic-ejb-jar.xml
deployment descriptors to map security role names to a security realm. The

Chapter 5
Using Declarative Security With EJBs

5-4

http://docs.oracle.com/javaee/6/api/javax/annotation/security/package-tree.html
https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#GJGCQ
https://docs.oracle.com/javaee/7/tutorial/index.html
https://docs.oracle.com/javaee/7/tutorial/index.html

deployment descriptors map the application's logical security requirements to its runtime
definitions. And at runtime, the EJB container uses the security definitions to enforce the
requirements.

To configure security in the EJB deployment descriptors, perform the following steps (see
Example 5-1):

1. Use a text editor to create ejb-jar.xml and weblogic-ejb-jar.xml deployment
descriptor files.

2. In the ejb-jar.xml file, define the security role name, the EJB name, and the method
name.

Note:

The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

When specifying security role names, observe the following conventions and
restrictions:

• Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

For more information on configuring security in the ejb-jar.xml file, see the
Enterprise JavaBeans Specification, Version 2.0 which is at this location on the
Internet: http://www.oracle.com/technetwork/java/docs-135218.html.

3. In the WebLogic-specific EJB deployment descriptor file, weblogic-ejb-jar.xml, define
the security role name and link it to one or more principals (users or groups) in a security
realm.

For more information on configuring security in the weblogic-ejb-jar.xml file, see
weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

Example 5-1 Using ejb-jar.xml and weblogic-ejb-jar.xml Files to Map Security Role
Names to a Security Realm

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>

Chapter 5
Using Declarative Security With EJBs

5-5

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.oracle.com/technetwork/java/docs-135218.html

 </method>
 </method-permission>
 ...
</assembly-descriptor>
 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>
 <role-name>manager</role-name>
 <principal-name>al</principal-name>
 <principal-name>george</principal-name>
 <principal-name>ralph</principal-name>
 </security-role-assignment>
 ...

EJB Security-Related Deployment Descriptors
WebLogic Server supports several deployment descriptor elements that are used in
the ejb-jar.xml and weblogic-ejb-jar.xml files to define security requirements in
EJBs.

• ejb-jar.xml Deployment Descriptors

• weblogic-ejb-jar.xml Deployment Descriptors

ejb-jar.xml Deployment Descriptors
The following ejb-jar.xml deployment descriptor elements are used to define security
requirements in WebLogic Server:

• method

• method-permission

• role-name

• run-as

• security-identity

• security-role

• security-role-ref

• unchecked

• use-caller-identity

method
The method element is used to denote a method of an enterprise bean's home or
component interface, or, in the case of a message-driven bean, the bean's onMessage
method, or a set of methods.

The following table describes the elements you can define within an method element.

Chapter 5
EJB Security-Related Deployment Descriptors

5-6

Table 5-1 method Element

Element Required/
Optional

Description

<description> Optional A text description of the method.

<ejb-name> Required Specifies the name of one of the enterprise beans declared
in the ejb-jar.xml file.

<method-intf> Optional Allows you to distinguish between a method with the same
signature that is multiply defined across both the home and
component interfaces of the enterprise bean.

<method-name> Required Specifies a name of an enterprise bean method or the
asterisk (*) character. The asterisk is used when the
element denotes all the methods of an enterprise bean's
component and home interfaces.

<method-params> Optional Contains a list of the fully-qualified Java type names of the
method parameters.

Used Within
The method element is used within the method-permission element.

Example
For an example of how to use the method element, see Example 5-1.

method-permission
The method-permission element specifies that one or more security roles are allowed to
invoke one or more enterprise bean methods. The method-permission element consists of
an optional description, a list of security role names or an indicator to state that the method is
unchecked for authorization, and a list of method elements.

The security roles used in the method-permission element must be defined in the security-
role elements of the deployment descriptor, and the methods must be methods defined in
the enterprise bean's component and/or home interfaces.

The following table describes the elements you can define within a method-permission
element.

Table 5-2 method-permission Element

Element Required/
Optional

Description

<description> Optional A text description of this security constraint.

Chapter 5
EJB Security-Related Deployment Descriptors

5-7

Table 5-2 (Cont.) method-permission Element

Element Required/
Optional

Description

<role-name> or
<unchecked>

Required The role-name element or the unchecked element must be
specified.

The role-name element contains the name of a security
role. The name must conform to the lexical rules for an
NMTOKEN.

The unchecked element specifies that a method is not
checked for authorization by the container prior to invocation
of the method.

<method> Required Specifies a method of an enterprise bean's home or
component interface, or, in the case of a message-driven
bean, the bean's onMessage method, or a set of methods.

Used Within
The method-permission element is used within the assembly-descriptor element.

Example
For an example of how to use the method-permission element, see Example 5-1.

role-name
The role-name element contains the name of a security role. The name must conform
to the lexical rules for an NMTOKEN.

Used Within
The role-name element is used within the method-permission, run-as, security-
role, and security-role-ref elements.

Example
For an example of how to use the role-name element, see Example 5-1.

run-as
The run-as element specifies the run-as identity to be used for the execution of the
enterprise bean. It contains an optional description, and the name of a security role.

Used Within
The run-as element is used within the security-identity element.

Example
For an example of how to use the run-as element, see Example 5-8.

Chapter 5
EJB Security-Related Deployment Descriptors

5-8

security-identity
The security-identity element specifies whether the caller's security identity is to be used
for the execution of the methods of the enterprise bean or whether a specific run-as identity is
to be used. It contains an optional description and a specification of the security identity to be
used.

The following table describes the elements you can define within an security-identity
element.

Table 5-3 security-identity Element

Element Required/
Optional

Description

<description> Optional A text description of the security identity.

<use-caller-
identity> or
<run-as>

Required The use-caller-identity element or the run-as element
must be specified.

The use-caller-identity element specifies that the
caller's security identity be used as the security identity for
the execution of the enterprise bean's methods.

The run-as element specifies the run-as identity to be used
for the execution of the enterprise bean. It contains an
optional description, and the name of a security role.

Used Within
The security-identity element is used within the entity, message-driven, and session
elements.

Example
For an example of how to use the security-identity element, see Example 5-3 and
Example 5-8.

security-role
The security-role element contains the definition of a security role. The definition consists
of an optional description of the security role, and the security role name.

Used Within
The security-role element is used within the assembly-descriptor element.

Example
For an example of how to use the assembly-descriptor element, see Example 5-1.

security-role-ref
The security-role-ref element contains the declaration of a security role reference in the
enterprise bean's code. The declaration consists of an optional description, the security role

Chapter 5
EJB Security-Related Deployment Descriptors

5-9

name used in the code, and an optional link to a security role. If the security role is not
specified, the Deployer must choose an appropriate security role.

The value of the role-name element must be the String used as the parameter to the
EJBContext.isCallerInRole(String roleName) method or the
HttpServletRequest.isUserInRole(String role) method.

Used Within
The security-role-ref element is used within the entity and session elements.

Example
For an example of how to use the security-role-ref element, see Example 5-2.

Example 5-2 Security-role-ref Element Example

<!DOC<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd">
<ejb-jar>
 <enterprise-beans>
 ...
 <session>
 <ejb-name>SecuritySLEJB</ejb-name>
 <home>weblogic.ejb20.security.SecuritySLHome</home>
 <remote>weblogic.ejb20.security.SecuritySL</remote>
 <ejb-class>weblogic.ejb20.security.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-role-ref>
 <role-name>rolenamedifffromlink</role-name>
 <role-link>role121SL</role-link>
 </security-role-ref>
 <security-role-ref>
 <role-name>roleForRemotes</role-name>
 <role-link>roleForRemotes</role-link>
 </security-role-ref>
 <security-role-ref>
 <role-name>roleForLocalAndRemote</role-name>
 <role-link>roleForLocalAndRemote</role-link>
 </security-role-ref>
 </session>
 ...
 </enterprise-beans>
</ejb-jar>

unchecked
The unchecked element specifies that a method is not checked for authorization by the
container prior to invocation of the method.

Used Within
The unchecked element is used within the method-permission element.

Chapter 5
EJB Security-Related Deployment Descriptors

5-10

Example
For an example of how to use the unchecked element, see Example 5-1.

use-caller-identity
The use-caller-identity element specifies that the caller's security identity be used as the
security identity for the execution of the enterprise bean's methods.

Used Within
The use-caller-identity element is used within the security-identity element.

Example
For an example of how to use the use-caller-identity element, see Example 5-3.

Example 5-3 use-caller-identity Element Example

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>
 <local>weblogic.ejb20.SecurityLocalSL</local>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 <message-driven>
 <ejb-name>SecurityEJB</ejb-name>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

weblogic-ejb-jar.xml Deployment Descriptors
The following weblogic-ejb-jar.xml deployment descriptor elements are used to define
security requirements in WebLogic Server:

• client-authentication

• client-cert-authentication

• confidentiality

• externally-defined

• identity-assertion

Chapter 5
EJB Security-Related Deployment Descriptors

5-11

• iiop-security-descriptor

• integrity

• principal-name

• role-name

• run-as-identity-principal

• run-as-principal-name

• run-as-role-assignment

• security-permission

• security-permission-spec

• security-role-assignment

• transport-requirements

client-authentication
The client-authentication element specifies whether the EJB supports or requires
client authentication.

The following table defines the possible settings.

Table 5-4 client-authentication Element

Setting Definition

none Client authentication is not supported.

supported Client authentication is supported, but not required.

required Client authentication is required.

Example
For an example of how to use the client-authentication element, see Example 5-6.

client-cert-authentication
The client-cert-authentication element specifies whether the EJB supports or
requires client certificate authentication at the transport level.

The following table defines the possible settings.

Table 5-5 client-cert-authentication Element

Setting Definition

none Client certificate authentication is not supported.

supported Client certificate authentication is supported, but not required.

required Client certificate authentication is required.

Chapter 5
EJB Security-Related Deployment Descriptors

5-12

Example
For an example of how to use the client-cert-authentication element, see Example 5-10.

confidentiality
The confidentiality element specifies the transport confidentiality requirements for the
EJB. Using the confidentiality element ensures that the data is sent between the client
and server in such a way as to prevent other entities from observing the contents.

The following table defines the possible settings.

Table 5-6 confidentiality Element

Setting Definition

none Confidentiality is not supported.

supported Confidentiality is supported, but not required.

required Confidentiality is required.

Example
For an example of how to use the confidentiality element, see Example 5-10 .

externally-defined
The externally-defined element lets you explicitly indicate that you want the security roles
defined by the role-name element in the weblogic-ejb-jar.xml deployment descriptors to
use the mappings specified in the WebLogic Server Administration Console. The element
gives you the flexibility of not having to specify a specific security role mapping for each
security role defined in the deployment descriptors for a particular Web application.
Therefore, within the same security realm, deployment descriptors can be used to specify
and modify security for some applications while the WebLogic Server Administration Console
can be used to specify and modify security for others.

Note:

Starting in version 9.0, the default role mapping behavior is to create empty role
mappings when none are specified. In version 8.1, EJB required that role mappings
be defined in the weblogic-ejb-jar.xml descriptor or deployment would fail. With 9.0,
EJB and WebApp behavior are consistent in creating empty role mappings.

For information on role mapping behavior and backward compatibility settings, see
the section Understanding the Combined Role Mapping Enabled Setting in
Securing Resources Using Roles and Policies for Oracle WebLogic Server. The
role mapping behavior for a server depends on which security deployment model is
selected on the WebLogic Server Administration Console. For information on
security deployment models, see Options for Securing EJB and Web Application
Resources in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

Chapter 5
EJB Security-Related Deployment Descriptors

5-13

When specifying security role names, observe the following conventions and
restrictions:

• The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

Example 5-4 and Example 5-5 show by comparison how to use the externally-
defined element in the weblogic-ejb-jar.xml file. In Example 5-5, the specification
of the "manager" externally-defined element in the weblogic-ejb-jar.xml means
that for security to be correctly configured on the getReceipts method, the principals
for manager will have to be created in the WebLogic Server Administration Console.

Example 5-4 Using the ejb-jar.xml and weblogic-ejb-jar.xml Deployment
Descriptors to Map Security Roles in EJBs

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>
 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>
 <role-name>manager</role-name>
 <principal-name>joe</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Mary</principal-name>
 ...
</security-role-assignment>
 ...

Example 5-5 Using the externally-defined Element in EJB Deployment
Descriptors for Role Mapping

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>

Chapter 5
EJB Security-Related Deployment Descriptors

5-14

http://www.w3.org/TR/REC-xml#NT-Nmtoken

 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>
 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>
 <role-name>manager</role-name>
 <externally-defined/>
 ...
 </security-role-assignment>
 ...

For more information on using the WebLogic Server Administration Console to configure
security for EJBs, see Options for Securing EJB and Web Application Resources in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

identity-assertion
The identity-assertion element specifies whether the EJB supports identity assertion.

The following table defines the possible settings.

Table 5-7 identity-assertion Element

Setting Definition

none Identity assertion is not supported

supported Identity assertion is supported, but not required.

required Identity assertion is required.

Used Within
The identity-assertion element is used with the iiop-security-descriptor element.

Example
For an example of how to the identity-assertion element, see Example 5-6.

iiop-security-descriptor
The iiop-security-descriptor element specifies security configuration parameters at the
bean-level. These parameters determine the IIOP security information contained in the
interoperable object reference (IOR).

Chapter 5
EJB Security-Related Deployment Descriptors

5-15

Example
For an example of how to use the iiop-security-descriptor element, see
Example 5-6.

Example 5-6 iiop-security-descriptor Element Example

<weblogic-enterprise-bean>
 <iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authorization>
 supported
 </client-cert-authentication>
 </transport-requirements>
 <client-authentication>supported<client-authentication>
 <identity-assertion>supported</identity-assertion>
 </iiop-security-descriptor>
</weblogic-enterprise-bean>

integrity
The integrity element specifies the transport integrity requirements for the EJB.
Using the integrity element ensures that the data is sent between the client and server
in such a way that it cannot be changed in transit.

The following table defines the possible settings.

Table 5-8 integrity Element

Setting Definition

none Integrity is not supported.

supported Integrity is supported, but not required.

required Integrity is required.

Used Within
The integrity element is used within the transport-requirements element.

Example
For an example of how to use the integrity element, see Example 5-10.

principal-name
The principal-name element specifies the name of the principal in the WebLogic
Server security realm that applies to role name specified in the security-role-
assignment element. At least one principal is required in the security-role-
assignment element. You may define more than one principal-name for each role
name.

Chapter 5
EJB Security-Related Deployment Descriptors

5-16

Note:

If you need to list a significant number of principals, consider specifying groups
instead of users. There are performance issues if you specify too many users.

Used Within
The mk,?"{>L" -name element is used within the security-role-assignment element.

Example
For an example of how to use the principal-name element, see Example 5-1.

role-name
The role-name element identifies an application role name that the EJB provider placed in
the companion ejb-jar.xml file. Subsequent principal-name elements in the stanza map
WebLogic Server principals to the specified role-name.

Used Within
The role-name element is used within the security-role-assignment element.

Example
For an example of how to use the role-name element, see Example 5-1.

run-as-identity-principal
The run-as-identity-principal element specifies which security principal name is to be
used as the run-as principal for a bean that has specified a security-identity run-as role-name
in its ejb-jar deployment descriptor. For an explanation of how of run-as role-names to are
mapped to run-as-identity-principals (or run-as-principal-names, see run-as-role-assignment.

Note:

Deprecated: The run-as-identity-principal element is deprecated in the WebLogic
Server 8.1. Use the run-as-principal-name element instead.

Used Within
The run-as-identity-principal element is used within the run-as-role-assignment
element.

Example
For an example of how to use the run-as-identity-principal element, see Example 5-7.

Chapter 5
EJB Security-Related Deployment Descriptors

5-17

Example 5-7 run-as-identity-principal Element Example

ebj-jar.xml:
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>Caller2EJB</ejb-name>
 <home>weblogic.ejb11.security.CallerBeanHome</home>
 <remote>weblogic.ejb11.security.CallerBeanRemote</remote>
 <ejb-class>weblogic.ejb11.security.CallerBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-ref><ejb-ref-name>Callee2Bean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>weblogic.ejb11.security.CalleeBeanHome</home>
 <remote>weblogic.ejb11.security.CalleeBeanRemote</remote>
 </ejb-ref>
 <security-role-ref>
 <role-name>users1</role-name>
 <role-link>users1</role-link>
 </security-role-ref>
 <security-identity>
 <run-as>
 <role-name>users2</role-name>
 </run-as>
 </security-identity>
 </session>
 </enterprise-beans>
</ejb-jar>
woblogic-ejb-jar.xml:
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>Caller2EJB</ejb-name>
 <reference-descriptor>
 <ejb-reference-description>
 <ejb-ref-name>Callee2Bean</ejb-ref-name>
 <jndi-name>security.Callee2Bean</jndi-name>
 </ejb-reference-description>
 </reference-descriptor>
 <run-as-identity-principal>wsUser3</run-as-identity-principal>
 </weblogic-enterprise-bean>
 <security-role-assignment>
 <role-name>user</role-name>
 <principal-name>wsUser2</principal-name>
 <principal-name>wsUser3</principal-name>
 <principal-name>wsUser4</principal-name>
 </security-role-assignment>
</weblogic-ejb-jar>

run-as-principal-name
The run-as-principal-name element specifies which security principal name is to be
used as the run-as principal for a bean that has specified a security-identity run-as
role-name in its ejb-jar deployment descriptor. For an explanation of how the run-as
role-names map to run-as-principal-names, see run-as-role-assignment.

Used Within
The run-as-principal-name element is used within the run-as-role-assignment
element.

Chapter 5
EJB Security-Related Deployment Descriptors

5-18

Example
For an example of how to use the run-as-principal-name element, see Example 5-8.

run-as-role-assignment
The run-as-role-assignment element is used to map a given security-identity run-as role-
name that is specified in the ejb-jar.xml file to a run-as-principal-name specified in the
weblogic-ejb-jar.xml file. The value of the run-as-principal-name element for a given
role-name is scoped to all beans in the ejb-jar.xml file that use the specified role-name as
their security-identity. The value of the run-as-principal-name element specified in
weblogic-ejb-jar.xml file can be overridden at the individual bean level by specifying a
run-as-principal-name element under that bean's weblogic-enterprise-bean element.

Note:

For a given bean, if there is no run-as-principal-name element specified in either a
run-as-role-assignment element or in a bean specific run-as-principal-name
element, then the EJB container will choose the first principal-name of a security
user in the weblogic-enterprise-bean security-role-assignment element for the role-
name and use that principal-name as the run-as-principal-name.

Example
For an example of how to use the run-as-role-assignment element, see Example 5-8.

Example 5-8 run-as-role-assignment Element Example

In the ejb-jar.xml file:
// Beans "A_EJB_with_runAs_role_X" and "B_EJB_with_runAs_role_X"
// specify a security-identity run-as role-name "runAs_role_X".
// Bean "C_EJB_with_runAs_role_Y" specifies a security-identity
// run-as role-name "runAs_role_Y".
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>
 <local>weblogic.ejb20.SecurityLocalSL</local>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 <message-driven>
 <ejb-name>SecurityEJB</ejb-name>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <run-as>
 <role-name>runAs_role_X</role-name>

Chapter 5
EJB Security-Related Deployment Descriptors

5-19

 </run-as>
 </security-identity>
 <security-identity>
 <run-as>
 <role-name>runAs_role_Y</role-name>
 </run-as>
 </security-identity>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

weblogic-ejb-jar file:

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>A_EJB_with_runAs_role_X</ejb-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>B_EJB_with_runAs_role_X</ejb-name>
 <run-as-principal-name>Joe</run-as-principal-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>C_EJB_with_runAs_role_Y</ejb-name>
 </weblogic-enterprise-bean>
 <security-role-assignment>
 <role-name>runAs_role_Y</role-name>
 <principal-name>Harry</principal-name>
 <principal-name>John</principal-name>
 </security-role-assignment>
 <run-as-role-assignment>
 <role-name>runAs_role_X</role-name>
 <run-as-principal-name>Fred</run-as-principal-name>
 </run-as-role-assignment>
</weblogic-ejb-jar>

Each of the three beans shown in Example 5-8 will choose a different principal name
to run as.

• A_EJB_with_runAs_role_X

This bean's run-as role-name is runAs_role_X. The jar-scoped <run-as-role-
assignment> mapping will be used to look up the name of the principal to use. The
<run-as-role-assignment> mapping specifies that for <role-name> runAs_role_X
we are to use <run-as-principal-name> Fred. Therefore, Fred is the principal
name that will be used.

• B_EJB_with_runAs_role_X

This bean's run-as role-name is also runAs_role_X. This bean will not use the jar
scoped <run-as-role-assignment> to look up the name of the principal to use
because that value is overridden by this bean's <weblogic-enterprise-bean>
<run-as-principal-name> value Joe. Therefore Joe is the principal name that will
be used.

• C_EJB_with_runAs_role_Y

This bean's run-as role-name is runAs_role_Y. There is no explicit mapping of
runAs_role_Y to a run-as principal name, that is, there is no jar scoped <run-as-
role-assignment> for runAs_role_Y nor is there a bean scoped <run-as-
principal-name> specified in this bean's <weblogic-enterprise-bean>. To
determine the principal name to use, the <security-role-assignment> for <role-

Chapter 5
EJB Security-Related Deployment Descriptors

5-20

name> runAs_role_Y is examined. The first <principal-name> corresponding to a user
that is not a Group is chosen. Therefore, Harry is the principal name that will be used.

security-permission
The security-permission element specifies a security permission that is associated with a
Java EE Sandbox.

Example
For an example of how to use the security-permission element, see Example 5-9.

security-permission-spec
The security-permission-spec element specifies a single security permission based on the
Security policy file syntax.

See the implementation of the security permission specification:

http://docs.oracle.com/javase/8/docs/technotes/guides/security/
PolicyFiles.html#FileSyntax

Note:

Disregard the optional codebase and signedBy clauses.

Used Within
The security-permission-spec element is used within the security-permission element.

Example
For an example of how to use the security-permission-spec element, see Example 5-9.

Example 5-9 security-permission-spec Element Example

<weblogic-ejb-jar>
 <security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
<!
A single grant statement following the syntax of
http://xmlns.jcp.org/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax,
without the codebase and signedBy clauses, goes here. For example:
-->
 grant {
 permission java.net.SocketPermission *, resolve;
 };
 </security-permission-spec>
 </security-permission>
</weblogic-ejb-jar>

Chapter 5
EJB Security-Related Deployment Descriptors

5-21

http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

In Example 5-9, permission java.net.SocketPermission is the permission class
name, "*" represents the target name, and resolve (resolve host/IP name service
lookups) indicates the action.

security-role-assignment
The security-role-assignment element maps application roles in the ejb-jar.xml
file to the names of security principals available in WebLogic Server.

Note:

For information on using the security-role-assignment element in a weblogic-
application.xml deployment descriptor for an enterprise application, see
Enterprise Application Deployment Descriptor Elements in Developing
Applications for Oracle WebLogic Server.

Example
For an example of how to use the security-role-assignment element, see
Example 5-1.

transport-requirements
The transport-requirements element defines the transport requirements for the EJB.

Used Within
The transport-requirements element is used within the iiop-security-descriptor
element.

Example
For an example of how to use the transport-requirements element, see
Example 5-10.

Example 5-10 transport-requirements Element Example

<weblogic-enterprise-bean>
 <iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authorization>
 supported
 </client-cert-authentication>
</transport-requirements>
 </iiop-security-descriptor>
<weblogic-enterprise-bean>

Chapter 5
EJB Security-Related Deployment Descriptors

5-22

Using Programmatic Security With EJBs
WebLogic Server supports the use of the javax.ejb.EJBContext.getCallerPrincipal() and
the javax.ejb.EJBContext.isCallerInRole() methods to implement programmatic security
in EJBs.

• getCallerPrincipal

• isCallerInRole

getCallerPrincipal
Use the getCallerPrincipal() method to determine the caller of the EJB. The
javax.ejb.EJBContext.getCallerPrincipal() method returns a WLSUser Principal if one
exists in the Subject of the calling user. In the case of multiple WLSUser Principals, the
method returns the first in the ordering defined by the Subject.getPrincipals().iterator()
method. If there are no WLSUser Principals, then the getCallerPrincipal() method returns
the first non-WLSGroup Principal. If there are no Principals or all Principals are of type
WLSGroup, this method returns
weblogic.security.WLSPrincipals.getAnonymousUserPrincipal(). This behavior is similar
to the semantics of weblogic.security.SubjectUtils.getUserPrincipal() except that
SubjectUtils.getUserPrincipal() returns a null whereas
EJBContext.getCallerPrincipal()returns WLSPrincipals.getAnonmyousUserPrincipal().

For more information about how to use the getCallerPrincipal() method, see http://
www.oracle.com/technetwork/java/javaee/tech/index.html.

isCallerInRole
The isCallerInRole() method is used to determine if the caller (the current user) has been
assigned a security role that is authorized to perform actions on the WebLogic resources in
that thread of execution. For example, the method
javax.ejb.EJBContext.isCallerInRole("admin")will return true if the current user has
admin privileges.

For more information about how to use the isCallerInRole() method, see http://
www.oracle.com/technetwork/java/javaee/tech/index.html.

Chapter 5
Using Programmatic Security With EJBs

5-23

http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

6
Using Network Connection Filters

Network connection filters can be used to protect WebLogic resources on individual servers,
server clusters, or an entire internal network. Learn how to implement network connection
filters in Oracle WebLogic Server.

• The Benefits of Using Network Connection Filters

• Network Connection Filter API

• Guidelines for Writing Connection Filter Rules

• Configuring the WebLogic Connection Filter

• Developing Custom Connection Filters

The Benefits of Using Network Connection Filters
Network connection filters act as a firewall that can be used to allow or deny access to
servers in your WebLogic domain based on certain protocols, network addresses and DNS
node names.Security roles and security policies let you secure WebLogic resources at the
domain level, the application level, and the application-component level. Connection filters let
you deny access at the network level. Thus, the network connection filters provide an
additional layer of security at the network level. Connection filters can be used to protect
server resources on individual servers, server clusters, or an entire internal network.
Connection filters are particularly useful for controlling access through the Administration
port. Depending on your network firewall configuration, you might be able to use a connection
filter to further restrict administration access. A typical use is to restrict access to the
Administration port to only the servers and machines in the domain. Even if an attacker gets
access to a machine inside the firewall, they will not be able to perform administration
operations unless they are on one of the permitted machines.

Network connection filters are a type of firewall in that they can be configured to filter on
protocols, IP addresses, and DNS node names. For example, you can deny any non-SSL
connections originating outside of your corporate network. This would ensure that all access
from systems on the Internet would be secure.

Network Connection Filter API
Connection filter rules allow you to limit the number of network connections that are
accepted. Learn how to create effective connection filter rules and how they are evaluated.

The weblogic.security.net API package provides interfaces and classes for developing
network connection filters. It also includes a class, ConnectionFilterImpl, which is a ready-
to-use implementation of a network connection filter. See Java API Reference for Oracle
WebLogic Server for complete reference information on the network connection filter API.

This section covers the following topics:

• Connection Filter Interfaces

• Connection Filter Classes

6-1

Connection Filter Interfaces
To implement connection filtering, write a class that implements the connection filter
interfaces. The following weblogic.security.net interfaces are provided for
implementing connection filters:

• ConnectionFilter Interface

• ConnectionFilterRulesListener Interface

ConnectionFilter Interface
This interface defines the accept() method, which is used to implement connection
filtering. To program the server to perform connection filtering, instantiate a class that
implements this interface and then configure that class in the WebLogic Server
Administration Console. This interface is the minimum implementation requirement for
connection filtering.

Note:

Implementing this interface alone does not permit the use of the WebLogic
Server Administration Console to enter and modify filtering rules to restrict
client connections; you must use some other form (such as a flat file, which
is defined in the WebLogic Server Administration Console) for that purpose.
To use the WebLogic Server Administration Console to enter and modify
filtering rules, you must also implement the ConnectionFilterRulesListener
interface. For a description of the ConnectionFilterRulesListener interface,
see ConnectionFilterRulesListener Interface.

ConnectionFilterRulesListener Interface
The server uses this interface to determine whether the rules specified in the
WebLogic Server Administration Console in the ConnectionFilterRules field are valid
during startup and at runtime.

Note:

You can implement this interface or just use the WebLogic connection filter
implementation, weblogic.security.net.ConnectionFilterImpl, which is
provided as part of the WebLogic Server product.

This interface defines two methods that are used to implement connection filtering:
setRules() and checkRules(). Implementing this interface in addition to the
ConnectionFilter interface allows the use of the WebLogic Server Administration
Console to enter filtering rules to restrict client connections.

Chapter 6
Network Connection Filter API

6-2

Note:

In order to enter and edit connection filtering rules on the WebLogic Server
Administration Console, you must implement the ConnectionFilterRulesListener
interface; otherwise some other means must be used. For example, you could use
a flat file.

Connection Filter Classes
Two weblogic.security.net classes are provided for implementing connection filters:

• ConnectionFilterImpl Class

• ConnectionEvent Class

ConnectionFilterImpl Class
This class is the WebLogic connection filter implementation of the ConnectionFilter and
ConnectionFilterRulesListener interfaces. Once configured using the WebLogic Server
Administration Console, this connection filter accepts all incoming connections by default,
and also provides static factory methods that allow the server to obtain the current connection
filter. To use this connection to deny access, simply enter connection filter rules using the
WebLogic Server Administration Console.

This class is provided as part of the WebLogic Server product. To configure this class for use,
see Configuring the WebLogic Connection Filter.

ConnectionEvent Class
This is the class from which all event state objects are derived. All events are constructed
with a reference to the object, that is, the source that is logically deemed to be the object
upon which a specific event initially occurred. To create a new ConnectionEvent instance,
applications use the methods provided by this class: getLocalAddress(), getLocalPort(),
getRemoteAddress(), getRemotePort(), and hashcode().

Guidelines for Writing Connection Filter Rules
There are certain guidelines for writing connection filter rules. If you do not specify connection
rules, then all connections are accepted.

Depending on how you implement connection filtering, connection filter rules can be written in
a flat file or input directly on the WebLogic Server Administration Console.

The following sections provide information and guidelines for writing connection filter rules:

• Connection Filter Rules Syntax

• Types of Connection Filter Rules

• How Connection Filter Rules are Evaluated

Chapter 6
Guidelines for Writing Connection Filter Rules

6-3

Connection Filter Rules Syntax
The syntax of connection filter rules is as follows:

• Each rule must be written on a single line.

• Tokens in a rule are separated by white space.

• A pound sign (#) is the comment character. Everything after a pound sign on a line
is ignored.

• Whitespace before or after a rule is ignored.

• Lines consisting only of whitespace or comments are skipped.

The format of filter rules differ depending on whether you are using a filter file to enter
the filter rules or you enter the filter rules on the WebLogic Server Administration
Console.

• When entering the filter rules on the WebLogic Server Administration Console,
enter them in the following format:

targetAddress localAddress localPort action protocols
• When specifying rules in the filter file, enter them in the following format:

targetAddress action protocols

– targetAddress specifies one or more systems to filter.

– localAddress defines the host address of the WebLogic Server instance. (If
you specify an asterisk (*), the match returns all local IP addresses.)

– localPort defines the port on which the WebLogic Server instance is
listening. (If you specify an asterisk (*), the match returns all available ports on
the server).

– action specifies the action to perform. This value must be allow or deny.

– protocols is the list of protocol names to match. The following protocols may
be specified: http, https, t3, t3s, ldap, ldaps, iiop, iiops, and com.
(Although the giop, giops, and dcom protocol names are still supported, their
use is deprecated as of release 9.0; you should use the equivalent iiop,
iiops, and com protocol names.)

Note:

The SecurityConfigurationMBean provides a
CompatibilityConnectionFiltersEnabled attribute for enabling
compatibility with previous connection filters.

– If no protocol is defined, all protocols will match a rule.

Types of Connection Filter Rules
Two types of filter rules are recognized:

• Fast rules

Chapter 6
Guidelines for Writing Connection Filter Rules

6-4

A fast rule applies to a hostname or IP address with an optional netmask. If a hostname
corresponds to multiple IP addresses, multiple rules are generated (in no particular
order). Netmasks can be specified either in numeric or dotted-quad form. For example:

dialup-555-1212.pa.example.net 127.0.0.1 7001 deny t3 t3s #http(s) OK
192.168.81.0/255.255.254.0 127.0.0.1 8001 allow #23-bit netmask
192.168.0.0/16 127.0.0.1 8002 deny #like /255.255.0.0

Hostnames for fast rules are looked up once at startup of the WebLogic Server instance.
While this design greatly reduces overhead at connect time, it can result in the filter
obtaining out of date information about what addresses correspond to a hostname.
Oracle recommends using numeric IP addresses instead.

• Slow rules

A slow rule applies to part of a domain name. Because a slow rule requires a connect-
time DNS lookup on the client-side in order to perform a match, it may take much longer
to run than a fast rule. Slow rules are also subject to DNS spoofing. Slow rules are
specified as follows:

*.script-kiddiez.org 127.0.0.1 7001 deny

An asterisk only matches at the head of a pattern. If you specify an asterisk anywhere
else in a rule, it is treated as part of the pattern. Note that the pattern will never match a
domain name since an asterisk is not a legal part of a domain name.

How Connection Filter Rules are Evaluated
When a client connects to WebLogic Server, the rules are evaluated in the order in which
they were written. The first rule to match determines how the connection is treated. If no rules
match, the connection is permitted.

To further protect your server and only allow connections from certain addresses, specify the
last rule as:

0.0.0.0/0 * * deny

With this as the last rule, only connections that are allowed by preceding rules are allowed, all
others are denied. For example, if you specify the following rules:

<Remote IP Address> * * allow https
0.0.0.0/0 * * deny

Only machines with the Remote IP Address are allowed to access the instance of WebLogic
Server running connection filter. All other systems are denied access.

Note:

The default connection filter implementation interprets a target address of 0
(0.0.0.0/0) as meaning "the rule should apply to all IP addresses." By design, the
default filter does not evaluate the port or the local address, just the action. To
clearly specify restrictions when using the default filter, modify the rules.

Another option is to implement a custom connection filter.

Chapter 6
Guidelines for Writing Connection Filter Rules

6-5

Configuring the WebLogic Connection Filter
WebLogic Server provides an out-of-the-box network connection filter, which you can
configure using the WebLogic Server Administration Console.For information about
how to configure connection filters, see Configure connection filtering in the Oracle
WebLogic Server Administration Console Online Help.

Developing Custom Connection Filters
If you do not want to use the WebLogic connection filter and want to develop you own,
you can use the application programming interface (API) provided in the
weblogic.security.net package to do so.

For a description of the weblogic.security.net package, see Network Connection
Filter API.

To develop custom connection filters with Oracle WebLogic Server, perform the
following steps:

1. Write a class that implements the ConnectionFilter interface (minimum
requirement).

Or, optionally, if you want to use the WebLogic Server Administration Console to
enter and modify the connection filtering rules directly, write a class that
implements both the ConnectionFilter interface and the
ConnectionFilterRulesListener interface.

2. If you choose the minimum requirement in step 1 (only implementing the
ConnectionFilter interface), enter the connection filtering rules in a flat file and
define the location of the flat file in the class that implements the
ConnectionFilter interface. Then use the WebLogic Server Administration
Console to configure the class in WebLogic Server. For instructions for configuring
the class in the WebLogic Server Administration Console, see Using Connection
Filters in Administering Security for Oracle WebLogic Server.

3. If you choose to implement both interfaces in step 1, use the WebLogic Server
Administration Console to configure the class and to enter the connection filtering
rules. For instructions on configuring the class in the WebLogic Server
Administration Console, see Using Connection Filters in Administering Security for
Oracle WebLogic Server.

Note that if connection filtering is implemented when a Java or Web browser client
tries to connect to a WebLogic Server instance, The WebLogic Server instance
constructs a ConnectionEvent object and passes it to the accept() method of your
connection filter class. The connection filter class examines the ConnectionEvent
object and accepts the connection by returning, or denies the connection by throwing a
FilterException.

Both implemented classes (the class that implements only the ConnectionFilter
interface and the class that implements both the ConnectionFilter interface and the
ConnectionFilterRulesListener interface) must call the accept() method after
gathering information about the client connection. However, if you only implement the
ConnectionFilter interface, the information gathered includes the remote IP address
and the connection protocol: http, https, t3, t3s, ldap, ldaps, iiop, iiops, or com. If
you implement both interfaces, the information gathered includes the remote IP

Chapter 6
Configuring the WebLogic Connection Filter

6-6

address, remote port number, local IP address, local port number and the connection
protocol.

Chapter 6
Developing Custom Connection Filters

6-7

7
Using Java Security to Protect WebLogic
Resources

To protect WebLogic resources, Oracle WebLogic Server supports the use of Java security
artifacts, such as, Java EE security, Java Security Manager, and Java Authorization Contract
for Containers (JACC).

• Using Java EE Security to Protect WebLogic Resources

• Using the Java Security Manager to Protect WebLogic Resources

• Using the Java Authorization Contract for Containers

Using Java EE Security to Protect WebLogic Resources
You can use Java EE security to protect URL (Web), Enterprise JavaBeans (EJBs), and
Connector components. Additionally, WebLogic Server extends the connector model of
specifying additional security policies in the deployment descriptor to the URL and EJB
components.

The connector specification provides for deployment descriptors to specify additional security
policies using the <security-permission> tag (see Example 7-1):

Example 7-1 Security-Permission Tag Sample

<security-permission>
<description> Optional explanation goes here </description>
<security-permission-spec>
<!--
A single grant statement following the syntax of http://xmlns.jcp.org/j2se/1.4.2/docs/
guide/security/PolicyFiles.html#FileSyntax
without the "codebase" and "signedBy" clauses goes here. For example:
-->
grant {
permission java.net.SocketPermission "*", "resolve";
};
</security-permission-spec>
</security-permission>

Besides support of the <security-permission> tag in the rar.xml file, WebLogic Server
adds the <security-permission> tag to the weblogic.xml and weblogic-ejb-jar.xml files.
This extends the connector model to the two other application types, Web applications and
EJBs, provides a uniform interface to security policies across all component types, and
anticipates future Java EE specification changes.

7-1

Note:

Java EE has requirements for Java security default permissions for different
application types (see the Java EE specification) as does the Java EE
Connector Architecture specification.

Using the Java Security Manager to Protect WebLogic
Resources

You can set up the Java Security Manager to be used with WebLogic Server to provide
additional protection for resources running in a Java Virtual Machine (JVM). You can
also use Printing Security Manager which is an enhancement to the Java Security
Manager.

Using a Java Security Manager is an optional security step. The following sections
describe how to use the Java Security Manager with WebLogic Server:

• Setting Up the Java Security Manager

• Using Printing Security Manager

For more information on Java Security Manager, see the Java Security Web page at
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html.

Setting Up the Java Security Manager
When you run WebLogic Server, WebLogic Server can use the Java Security
Manager, which prevents untrusted code from performing actions that are restricted by
the Java security policy file.

The JVM has security mechanisms built into it that allow you to define restrictions to
code through a Java security policy file. The Java Security Manager uses the Java
security policy file to enforce a set of permissions granted to classes. The permissions
allow specified classes running in that instance of the JVM to permit or not permit
certain runtime operations. In many cases, where the threat model does not include
malicious code being run in the JVM, the Java Security Manager is unnecessary.
However, when untrusted third-parties use WebLogic Server and untrusted classes are
being run, the Java Security Manager may be useful.

To use the Java Security Manager with WebLogic Server, specify the -
Djava.security.policy and -Djava.security.manager arguments when starting
WebLogic Server. The -Djava.security.policy argument specifies a filename (using
a relative or fully-qualified pathname) that contains Java security policies.

WebLogic Server provides a sample Java security policy file, which you can edit and
use. The file is located at WL_HOME\server\lib\weblogic.policy.

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

7-2

http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html

Note:

This sample policy file is not complete and is not sufficient to start WebLogic Server
without first being modified. In particular, you will need to add various permissions
based on your configuration in order for WLS and all applications to work properly.

Pay particular attention if you apply patches. If you apply patches that include code
with system privileges, you may need to make associated changes to
weblogic.policy or to any custom Java policy file you are using.

For example, to successfully start WebLogic Server and deploy an application via the
WebLogic Server Administration Console, you might need to add permissions such as the
following to weblogic.policy:

permission java.util.PropertyPermission '*', 'read';
permission java.lang.RuntimePermission '*';
permission java.io.FilePermission ' <<ALL FILES>>', 'read,write';
permission javax.management.MBeanPermission '*', '*';

If you enable the Java Security Manager but do not specify a security policy file, the Java
Security Manager uses the default security policies defined in the java.policy file in
the $JAVA_HOME\jre\lib\security directory.

Define security policies for the Java Security Manager in one of the following ways:

• Modifying the weblogic.policy file for General Use

• Setting Application-Type Security Policies

• Setting Application-Specific Security Policies

Modifying the weblogic.policy file for General Use
To use the Java Security Manager security policy file with your WebLogic Server deployment,
you must specify the location of the weblogic.policy file to the Java Security Manager when
you start WebLogic Server. To do this, you set the following arguments on the Java command
line you use to start the server:

• java.security.manager tells the JVM to use a Java security policy file.

• java.security.policy tells the JVM the location of the Java security policy file to use.
The argument is the fully qualified name of the Java security policy, which in this case is
weblogic.policy.

For example:

java...-Djava.security.manager \
 -Djava.security.policy==c:\weblogic\weblogic.policy

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

7-3

Note:

Be sure to use == instead of = when specifying the java.security.policy
argument so that only the weblogic.policy file is used by the Java Security
Manager. The == causes the weblogic.policy file to override any default
security policy. A single equal sign (=) causes the weblogic.policy file to be
appended to an existing security policy.

If you have extra directories in your CLASSPATH or if you are deploying applications in
extra directories, add specific permissions for those directories to your
weblogic.policy file.

Oracle recommends taking the following precautions when using the weblogic.policy
file:

• Make a backup copy of the weblogic.policy file and put the backup copy in a
secure location.

• Set the permissions on the weblogic.policy file via the operating system such
that the administrator of the WebLogic Server deployment has write and read
privileges and no other users have access to the file.

Note:

The Java Security Manager is partially disabled during the booting of
Administration and Managed Servers. During the boot sequence, the
current Java Security Manager is disabled and replaced with a variation
of the Java Security Manager that has the checkRead() method
disabled. While disabling this method greatly improves the performance
of the boot sequence, it also minimally diminishes security. The startup
classes for WebLogic Server are run with this partially disabled Java
Security Manager and therefore the classes need to be carefully
scrutinized for security considerations involving the reading of files.

For more information about the Java Security Manager, see the Javadoc for the
java.lang.SecurityManager class, available at http://docs.oracle.com/javase/8/
docs/api/java/lang/SecurityManager.html.

Setting Application-Type Security Policies
Set default security policies for servlets, EJBs, and Java EE Connector Architecture
resource adapters in the Java security policy file. The default security policies for
servlets, EJBs, and resource adapters are defined in the Java security policy file under
the following codebases:

• Servlets—"file:/weblogic/application/defaults/Web"
• EJBs—"file:/weblogic/application/defaults/EJB"
• Resource adapters—"file:/weblogic/application/defaults/Connector"

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

7-4

http://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html
http://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html

Note:

These security policies apply to all servlets, EJBs, and resource adapters
deployed in the particular instance of WebLogic Server.

Setting Application-Specific Security Policies
Set security policies for a specific servlet, EJB, or resource adapter by adding security
policies to their deployment descriptors. Deployment descriptors are defined in the following
files:

• Servlets—weblogic.xml
• EJBs—weblogic-ejb-jar.xml
• Resource adapters—rar.xml

Note:

The security policies for resource adapters follow the Java EE standard while
the security policies for servlets and EJBs follow the WebLogic Server
extension to the Java EE standard.

Example 7-2 shows the syntax for adding a security policy to a deployment descriptor:

Note:

The <security-permission-spec> tag cannot currently be added to a weblogic-
application.xml file, you are limited to using this tag within a weblogic-ejb-jar.xml,
rar.xml, or weblogic.xml file. Also, variables are not supported in the <security-
permission-spec> attribute.

Example 7-2 Security Policy Syntax

<security-permission>
 <description>
 Allow getting the J2EEJ2SETest4 property
 </description>
 <security-permission-spec>
 grant {
 permission java.util.PropertyPermission "welcome.J2EEJ2SETest4","read";
 };
 </security-permission-spec>
</security-permission>

Using Printing Security Manager
Printing Security Manager is an enhancement to the Java Security Manager. You can use
Printing Security Manager to identify all of the required permissions for any Java application
running under Java Security Manager. Unlike The Java Security Manager, which identifies

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

7-5

needed permissions one at a time, the Printing Security Manager identifies all of the
needed permissions without intervention.

For more information on Java Security Manager, see the Java Security Web page at
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/
jsoverview.html.

Note:

Do not use Printing Security Manager in production environments. It is
intended solely for development to identify missing permissions.

It does not prevent untrusted code operations.

Printing Security Manager Startup Arguments
To use the Java Security Manager with WebLogic Server, you specify two arguments
when starting WebLogic Server:

• -Djava.security.manager=weblogic.security.psm.PrintingSecurityManager
The -Djava.security.manager argument tells WebLogic Server which Java
Security Manager to start, in this case the Printing Security Manager.

• -Djava.security.policy
The -Djava.security.policy argument specifies a file name (using a relative or
fully-qualified path name) that contains Java 2 security policies. WebLogic Server
provides a sample Java security policy file, which you can edit and use. The file is
located at WL_HOME\server\lib\weblogic.policy.

By default, the startWebLogic script already includes the -
Djava.security.policy property, which is set to WL_HOME/server/lib/
weblogic.policy, so you do not need to specify it unless you want to use another
Java security policy file.

Note:

This sample policy file is not complete and is not sufficient to start WebLogic
Server without first being modified. In particular, you will need to add various
permissions based on your configuration in order for WLS and all
applications to work properly.

See the following sections:

• Modifying the weblogic.policy file for General Use

• Setting Application-Type Security Policies

• Setting Application-Specific Security Policies

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

7-6

http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html

Starting WebLogic Server With Printing Security Manager
To start WebLogic Server with the Printing Security Manager from a UNIX shell, pass the
following argument to the startWebLogic.sh script in DOMAIN_HOME. This example uses the
default weblogic.policy Java policy file from startWeblogic.sh.

startWeblogic.sh
-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

For a Windows system without a UNIX shell, first set the startup options in JAVA_OPTIONS,
and then use the startWebLogic.cmd script in DOMAIN_HOME to start WebLogic Server.
This example uses the default weblogic.policy Java policy file from startWeblogic.cmd.

$ set JAVA_OPTIONS=-
Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

$ DOMAIN_HOME\startWeblogic.cmd

Writing Output Files
Printing Security Manager generates output that lists which code source needs which
permissions. It also generates a policy grant that you can copy and paste into the policy file.

By default, output is to System.out. You can configure output files via two arguments:

• -Doracle.weblogic.security.manager.printing.file=psm_perms.txt
• -

Doracle.weblogic.security.manager.printing.generated.grants.file=psm_grants.
txt

The value of the first system argument is a file to which Printing Security Manager writes all
missing-permission messages. The value of the second argument is a file to which Printing
Security Manager writes the missing policy grants.

For example, for a Windows system without a UNIX shell, add the argument to
JAVA_OPTIONS:

$ set JAVA_OPTIONS=-
Djava.security.manager=weblogic.security.psm.PrintingSecurityManager
-Doracle.weblogic.security.manager.printing.file=psm_perms.txt

$ startWeblogic.cmd

If you do not specify the full path for the output files, they are created in DOMAIN_HOME.

Using the Java Authorization Contract for Containers
The Java Authorization Contract for Containers (JACC) provides an alternate authorization
mechanism for the EJB and servlet containers in a WebLogic Server domain. You can enable
the WebLogic JACC provider by specifying certain system property-value pairs.

JACC is part of Java EE. JACC extends the Java permission-based security model to EJBs
and servlets. JACC is defined by JSR-115 (http://www.jcp.org/en/jsr/detail?id=115).

Chapter 7
Using the Java Authorization Contract for Containers

7-7

http://www.jcp.org/en/jsr/detail?id=115

As shown in Table 7-2, when JACC is configured, the WebLogic Security framework
access decisions, adjudication, and role mapping functions are not used for EJB and
servlet authorization decisions.

WebLogic Server implements a JACC provider which, although fully compliant with
JSR-115, is not as optimized as the WebLogic Authorization provider. The Java JACC
classes are used for rendering access decisions. Because JSR-115 does not define
how to address role mapping, WebLogic JACC classes are used for role-to-principal
mapping.

Note:

The JACC classes used by WebLogic Server do not include an
implementation of a Policy object for rendering decisions but instead rely on
the java.security.Policy (http://docs.oracle.com/javase/8/docs/api/
java/security/Policy.html) object.

This section discusses the following topics:

• Comparing the WebLogic JACC Provider with the WebLogic Authentication
Provider

• Enabling the WebLogic JACC Provider

Table 7-2 shows which providers are used for role mapping when JACC is enabled.

Table 7-1 When JACC is Enabled

Status Provider used for EJB/
Servlet Authorization
and Role Mapping

Provider used for all
other Authorization and
Role Mapping

EJB/Servlet Roles
and Policies Can be
Viewed and Modified
by the WebLogic
Server
Administration
Console

JACC is enabled JACC provider WebLogic Security
Framework providers

No

JACC is not
enabled

WebLogic Security
Framework providers

WebLogic Security
Framework providers

Yes, depending on
settings

Chapter 7
Using the Java Authorization Contract for Containers

7-8

http://docs.oracle.com/javase/8/docs/api/java/security/Policy.html
http://docs.oracle.com/javase/8/docs/api/java/security/Policy.html

Note:

In a domain, either enable JACC on all servers or on none. The reason is that
JACC is server-specific, while the WebLogic Security Framework is realm/domain
specific. If you enable JACC, either by using the WebLogic JACC provider or
(recommended) by creating your own JACC provider, you are responsible for
keeping EJB and servlet authorization policies synchronized across the domain. For
example, applications are redeployed each time a server boots. If a server
configured for JACC reboots without specifying the JACC options on the command
line, the server uses the default WebLogic Authorization provider for EJB and
servlet role mapping and authorization decisions.

Comparing the WebLogic JACC Provider with the WebLogic Authentication
Provider

The WebLogic JACC provider fully complies with JSR-115; however, it does not support
dynamic role mapping, nor does it address authorization decisions for resources other than
EJBs and servlets. For better performance, and for more flexibility regarding security
features, Oracle recommends using SSPI-based providers.

Table 7-2 compares the features provided by the WebLogic JACC provider with those of the
WebLogic Authorization provider.

Table 7-2 Comparing the WebLogic JACC Provider with the WebLogic Authorization
Provider

WebLogic JACC Provider WebLogic Authorization Provider

Implements the JACC specification (JSR-115) Value-added security framework

Addresses only EJB and servlet deployment/
authorization decisions

Addresses deployment/authorization decisions

Uses the java.security.Policy object to
render decisions

Allows for multiple authorization/role providers

Static role mapping at deployment time Dynamic role mapping

Java EE permissions control access Entitlements engine controls access

Role and role-to-principal mappings are modifiable
only through deployment descriptors

Roles and role-to-principal mappings are
modifiable through deployment descriptors and
the WebLogic Server Administration Console

Enabling the WebLogic JACC Provider
In the command that starts WebLogic Server, you can enable the WebLogic JACC provider
by specifying the following system property/value pairs:

• Property:

javax.security.jacc.PolicyConfigurationFactory.provider
Value:

weblogic.security.jacc.simpleprovider.PolicyConfigurationFactoryImpl

Chapter 7
Using the Java Authorization Contract for Containers

7-9

• Property:

javax.security.jacc.policy.provider
Value:

weblogic.security.jacc.simpleprovider.SimpleJACCPolicy
• Property:

weblogic.security.jacc.RoleMapperFactory.provider
Value:

weblogic.security.jacc.simpleprovider.RoleMapperFactoryImpl

Note:

If the system properties, -
Djavax.security.jacc.PolicyConfigurationFactory.provider and -
Djavax.security.jacc.policy.provider are specified, then WebLogic
Server automatically initializes the default RoleMapperFactory property.
Therefore, you do not need to specify the
weblogic.security.jacc.RoleMapperFactory.provider system property to
enable the WebLogic JACC provider.

For example, assuming a properly configured weblogic.policy file, the following
command line enables the WebLogic JACC provider:

./startWebLogic.sh -Djavax.security.jacc.policy.provider=\
weblogic.security.jacc.simpleprovider.SimpleJACCPolicy \
-Djavax.security.jacc.PolicyConfigurationFactory.provider=\
weblogic.security.jacc.simpleprovider.PolicyConfigurationFactoryImpl \

Chapter 7
Using the Java Authorization Contract for Containers

7-10

8
SAML APIs

Oracle WebLogic Server supports the use of Security Assertion Markup Language (SAML)
APIs. SAML is an XML-based protocol for exchanging security information between software
entities on the Web. SAML security is based on the interaction of asserting and relying
parties.SAML provides single sign-on capabilities; users can authenticate at one location and
then access service providers at other locations without having to log in multiple times.
WebLogic Server supports SAML versions 2.0 and 1.1. The WebLogic Server
implementation:

• Supports the HTTP POST and HTTP Artifact bindings for the Web SSO profile for SAML
1.1. For SAML 2.0, WebLogic Server adds the HTTP Redirect binding for the Web SSO
profile.

• Supports SAML authentication and attribute statements (does not support SAML
authorization statements)

For a general description of SAML and SAML assertions in a WebLogic Server environment,
see Security Assertion Markup Language (SAML) in Understanding Security for Oracle
WebLogic Server.

For information on configuring a SAML credential mapping provider, see Configuring a SAML
Credential Mapping Provider for SAML 1.1 and Configuring a SAML 2.0 Credential Mapping
Provider for SAML 2.0 in Administering Security for Oracle WebLogic Server.

For access to the SAML specifications, go to http://www.oasis-open.org. Also see the
Technical Overview of the OASIS Security Assertion Markup Language (SAML) V1.1
(http://www.oasis-open.org/committees/download.php/6628/sstc-saml-tech-
overview-1.1-draft-05.pdf) and Security Assertion Markup Language (SAML) 2.0
Technical Overview (http://www.oasis-open.org/committees/download.php/11511/sstc-
saml-tech-overview-2.0-draft-03.pdf).

This chapter includes the following sections:

• SAML API Description

• Custom POST Form Parameter Names

• Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

• Configuring SAML SSO Attribute Support

SAML API Description
Learn about the WebLogic SAML APIs that you can use to implement SAML in WebLogic
Server.

Table 8-1 lists the WebLogic SAML APIs. Table 8-2 lists the WebLogic SAML 2.0 APIs. See
the Javadoc for details.

8-1

http://www.oasis-open.org
http://www.oasis-open.org/committees/download.php/6628/sstc-saml-tech-overview-1.1-draft-05.pdf
http://www.oasis-open.org/committees/download.php/6628/sstc-saml-tech-overview-1.1-draft-05.pdf
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf

Table 8-1 WebLogic SAML APIs

WebLogic SAML API Description

weblogic.security.providers.
saml

The WebLogic SAML package.

SAMLAssertionStore Interface that defines methods for storing and retrieving
assertions for the Artifact profile. This interface is deprecated in
favor of SAMLAssertionStoreV2.

SAMLAssertionStoreV2 The SAMLAssertionStoreV2 interface extends the
SAMLAssertionStore interface, adding methods to support
identification and authentication of the destination site requesting
an assertion from the SAML ARS.

Note that V2 refers to the second version of the WebLogic SAML
provider, not to version 2 of the SAML specification.

SAMLCredentialAttributeM
apper

Interface used to perform mapping from Subject to
SAMLAssertion attributes.

SAMLCredentialNameMap
per

Interface that defines methods used to map subject information to
fields in a SAML assertion.

SAMLIdentityAssertionAttri
buteMapper

Interface used to perform mapping from SAML Attribute
Statement to Attribute Principals.

SAMLIdentityAssertionNam
eMapper

Interface that defines methods used to map information from a
SAML assertion to user and group names.

SAMLUsedAssertionCache Interface that defines methods for caching assertion IDs so that
the POST profile one-use policy can be enforced.

Classes implementing this interface must have a public no-arg
constructor.

SAMLNameMapperInfo Instances of this class are used to pass user and group
information to and from the name mappers. The class also
defines several useful constants.

SAMLAssertionStoreV2.As
sertionInfo

The AssertionInfo class is returned by
SAMLAssertionStoreV2.retrieveAssertionInfo(). It contains the
retrieved assertion and related information. An implementation of
the SAMLAssertionStoreV2 interface would have to return this
class.

SAMLAttributeInfo A class that represents a single attribute of a SAMLAssertion
AttributeStatement.

SAMLAttributeStatementInf
o

A class that represents an AttributeStatement in a
SAMLAssertion.

SAMLNameMapperInfo The SAMLNameMapperInfo is used to represent user name and
group information for SAML assertions.

SAMLCommonPartner Abstract representation of attributes common to a SAML 1.1
Partner.

SAMLRelyingParty Represents a SAML relying party entry in the SAML relying party
registry.

SAMLAssertingParty Represents a SAML asserting party entry in the LDAP asserting
party registry.

SAMLPartner Abstract representation of a SAML partner.

Chapter 8
SAML API Description

8-2

Note:

The SAML name mapper classes are required to be in the system classpath. If you
create a custom SAMLIdentityAssertionNameMapper,
SAMLCredentialNameMapper, SAMLAssertionStore, or
SAMLUsedAssertionCache, you must place the respective class in the system
classpath.

Table 8-2 WebLogic SAML 2.0 APIs

WebLogic SAML 2.0 APIs Description

com.bea.security.saml2.provi
ders

Provides interfaces and classes for the configuration, control, and
monitoring of SAML 2.0 security providers in a WebLogic security
realm.

SAML2AttributeInfo A class that represents a single attribute of a SAML 2.0 Assertion
AttributeStatement.

SAML2AttributeStatementInfo A class that represents an AttributeStatement in a SAML 2.0 Assertion.

SAML2CredentialAttributeMa
pper

Interface used to perform mapping from Subject to SAML 2.0 Assertion
attributes.

SAML2CredentialNameMapp
er

Interface used to perform the mapping of user and group information to
SAML 2.0 assertions.

SAML2IdentityAsserterAttribu
teMapper

Interface used to perform mapping from SAML 2.0 Attribute Statement
to Attribute Principals.

SAML2IdentityAsserterName
Mapper

Interface used to perform the mapping of user information contained in
a SAML 2.0 assertion to a local user name.

SAML2NameMapperInfo The SAML2NameMapperInfo is used to represent user name and
group information contained in SAML 2.0 assertions.

com.bea.security.saml2.provi
ders.registry

Abstract interfaces for SAML 2.0 Identity Provider and Service Provider
partners and metadata.

BindingClientPartner Binding Client partner is a partner that supports backend channel
communication.

IdPPartner Abstract representation of a SAML 2.0 Identity Provider partner.

Endpoint Abstract representation of a SAML 2.0 service endpoint.

IndexedEndpoint This class represents the end point that could be indexed, like Artifact
Resolution Service's end point.

MetadataPartner Metadata partner contains contact information for the partner, which is
mainly required by the SAML 2.0 metadata profile.

Partner Abstract representation of a SAML 2.0 partner. This interface defines
mandatory information for a partner.

SPPartner Abstract representation of a SAML 2.0 Service Provider partner.

WebSSOIdPPartner Abstract representation of a SAML 2.0 Identity Provider partner for Web
SSO profile.

WebSSOPartner Abstract representation of a SAML 2.0 partner for Web SSO profile.

WebSSOSPPartner Abstract representation of a SAML 2.0 Service Provider partner for
Web SSO profile.

Chapter 8
SAML API Description

8-3

Table 8-2 (Cont.) WebLogic SAML 2.0 APIs

WebLogic SAML 2.0 APIs Description

WSSIdPPartner Abstract representation of a SAML 2.0 Identity Provider partner for
WSS SAML Token profile.

WSSPartner Abstract representation of a SAML 2.0 partner for WSS SAML Token
profile.

WSSSPPartner Abstract representation of a SAML 2.0 Service Provider partner for
WSS SAML Token profile. It has no specific attributes/methods.

Custom POST Form Parameter Names
When a custom POST form is specified for SAML POST profile handling, the
parameter names passed to the POST form depend on the particular SAML provider
that is configured. That is, the parameter names required by the SAML V1 provider are
different from those required by the SAML V2 provider.

• For the WebLogic Server 9.1 and higher, Federation Services implementation (in
effect when V2 providers are configured), see Table 8-3.

• For the WebLogic Server 9.0 SAML services implementation (in effect when V1
providers are configured), see Table 8-4.

The tables provide the parameter names and their data types (required for casting the
returned Java Object).

For both implementations, the SAML response itself is passed using the parameter
name specified by SAML:

SAMLResponse (String): The base64-encoded SAML Response element.

Table 8-3 SAML V2 Provider Custom POST Form Parameters

Parameter Description

TARGET (String) The TARGET URL specified as a query parameter on the
incoming Intersite Transfer Service (ITS) request.

SAML_AssertionConsumerURL
(String)

The URL of the Assertion Consumer Service (ACS) at the
destination site (where the form should be POSTed).

SAML_AssertionConsumerPara
ms (Map)

A Map containing name/value mappings for the assertion
consumer parameters configured for the relying party. Names
and values are Strings.

SAML_ITSRequestParams
(Map)

A Map containing name/value mappings for the query
parameters received with the ITS request. Names and values
are Strings. The Map may be empty. TARGET and Rich
Presence Information Data Format (RPID) parameters are
removed from the map before passing it to the form.

Chapter 8
Custom POST Form Parameter Names

8-4

Table 8-4 SAML V1 Provider Custom POST Form Parameters

Parameter Description

targetURL (String) The TARGET URL specified as a query parameter on the
incoming ITS request.

consumerURL (String) The URL of the ACS at the destination site (where the form should
be POSTed).

Creating Assertions for Non-WebLogic SAML 1.1 Relying
Parties

If you use the SAML 1.1 Credential Mapping Provider Version 2 to configure a source site,
but configure a third-party SAML relying party that is implemented on a non-WebLogic Server
platform, the SAML assertions generated by WebLogic Server might not support all of the
attributes required by the configured third-party SAML relying party. In this case the relying
party might be unable to work with the asserting party because certain expected attributes of
the assertion are not available. You can create a custom SAML name mapper that maps
subjects to the specific SAML 1.1 assertion attributes required by your third-party SAML
relying party.

This can be achieved by implementing the SAMLCredentialAttributeMapper interface, which
is provided by WebLogic Server. Details about the SAMLCredentialAttributeMapper are
available in the Java API Reference for Oracle WebLogic Server.

The following sections explain how to create a custom SAML name mapper:

• Overview of Creating a Custom SAML Name Mapper

• Do You Need Multiple SAMLCredentialAttributeMapper Implementations?

• Classes, Interfaces, and Methods

• Example Custom SAMLCredentialAttributeMapper Class

• Make the Custom SAMLCredentialAttributeMapper Class Available in the Console

Overview of Creating a Custom SAML Name Mapper
To create a custom implementation of the SAMLCredentialAttributeMapper interface, you
must do the following:

• Use the following classes to describe the attribute data for an assertion:

– SAMLAttributeStatementInfo
– SAMLAttributeInfo

• Also implement the SAMLCredentialNameMapper interface. The
SAMLCredentialAttributeMapper and SAMLCredentialNameMapper interfaces must both
be in the same implementation.

By also implementing the SAMLCredentialNameMapper interface, you can later use the
WebLogic Server Administration Console to set the NameMapperClassName attribute to the
class name of this SAMLCredentialAttributeMapper instance.

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-5

You configure the custom SAML name mapper in the active security realm, using
the User Name Mapper Class Name attribute of the SAML Credential Mapping
Provider Version 2.

Do You Need Multiple SAMLCredentialAttributeMapper
Implementations?

The name mapper class name you configure for a SAML Credential Mapping Provider
Version 2, as described in Make the Custom SAMLCredentialAttributeMapper Class
Available in the Console , is used as the default for that provider. However, you can
optionally set a name mapper class name specific to any or all of the relying parties
configured for the SAML Credential Mapping Provider Version 2. Setting the name
mapper class name in this manner overrides the default value. If the configured SAML
relying parties require different attributes, you can create multiple
SAMLCredentialAttributeMapper implementations.

Classes, Interfaces, and Methods
This section describes the new classes, interfaces, and methods that you must use
when creating your custom SAML name mapper implementation. See Example
Custom SAMLCredentialAttributeMapper Class, for example code.

SAMLAttributeStatementInfo Class
Example 8-1 shows the methods and arguments in the SAMLAttributeStatementInfo
class. Embedded comments provide additional information and context.

Example 8-1 Listing of SAMLAttributeStatementInfo Class

/**
 * A class that represents the attributes of an AttributeStatement
 * in a SAML Assertion
 */

class SAMLAttributeStatementInfo {

/**
 * Constructs a SAMLAttributeStatementInfo with
 * no attributes. The SAMLAttributeStatementInfo
 * represents a empty SAMLAttributeStatement. It is
 * expected that SAMLAttributeInfo elements will be
 * added to this instance.
 *

Public SAMLAttributeStatementInfo();

/**
 * Constructs a SAMLAttributeStatementInfo containing multiple
 * SAMLAttributeInfo elements. The SAMLAttributeStatementInfo
 * represents a SAML AttributeStatement with multiple Attributes.
 *
 *
 * @param data SAMLAttributeInfo
 */

 public SAMLAttributeStatementInfo(Collection data);

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-6

/**
 * returns a Collection of SAMLAttributeInfo elements. The
 * collection represents the Attributes contained by
 * a single AttributeStatement of a SAML Assertion
 *
 * The returned Collection is immutable and may be empty.
 *
 * @return Collection
 */

 public Collection getAttributeInfo();

/**
 * adds a Collection of SAMLAttributeInfo instances to
 * this SAMLAttributeStatementInfo instance, to the
 * end of the existing list, in the order that the
 * param Collection iterates through the Collection.
 *
 * See SAMLAttributeInfo(String, String, Collection)
 * for information on parameter handling.
 *
 * @param data
 *
 */

 public void setAttributeInfo(Collection data);

/**
 * Adds a single SAMLAttributeInfo instance to this
 * SAMLAttributeStatementInfo instance, at the end of
 * the existing list.
 *
 * See SAMLAttributeInfo(String, String, Collection)
 * for information on parameter handling.
 *
 * @param info
 */

 public void addAttributeInfo(SAMLAttributeInfo info);

SAMLAttributeInfo Class
Example 8-2 shows the methods and arguments in the SAMLAttributeInfo class. Embedded
comments provide additional information and context.

Example 8-2 Listing of SAMLAttributeInfo Class

/**
 * A class that represents a single Attribute of a SAML Assertion
 * AttributeStatement.
 */

class SAMLAttributeInfo {

/**
 * Constructs a SAMLAttributeInfo instance with all null fields
 */

 public SAMLAttributeInfo();

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-7

/**
 * Constructs a SAMLAttributeInfo instance representing the SAML 1.1
 * Attribute fields
 *
 * null elements of the Collection are ignored.
 * Elements with null 'name' or 'namespace' fields
 * are ignored; the resulting SAMLAttributeInfo will not
 * be included in a created SAMLAssertion. Null
 * attribute values are added as the empty string (ie, "").
 * @param name String
 * @param namespace String
 * @param values Collection of String values
 */

 public SAMLAttributeInfo(String name, String namespace, Collection values;

/**
 * Constructs a SAMLAttributeInfo instance representing the attribute fields
 * See SAMLAttributeInfo(String, String, Collection) for
 * information on parameter handling.
 *
 * @param name String
 * @param namespace String
 * @param value String
 */

 public SAMLAttributeInfo(String name, String namespace, String value);

/**
 * sets the name and namespace of this attribute
 * See SAMLAttributeInfo(String, String, Collection) for
 * information on parameter handling.
 *
 * @param name String, cannot be null
 * @param namespace String, cannot be null
 */

 public void setAttributeName(String name, String namespace);

/**
 * returns the name of this attribute.
 * @return String
 */

 public String getAttributeName();

/**
 * returns a String representing this attribute's namespace
 * @return String
 */

 public String getAttributeNamespace();

/**
 * sets a Collection of Strings representing this attribute's values
 * an empty collection adds no values to this instance, collection elements
 * that are null are added as empty strings.
 *
 * @param values Collection
 */

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-8

 public void setAttributeValues(Collection values);

/**
 * adds a single String value to the end
 * of this instance's Collection of elements
 * See SAMLAttributeInfo(String, String, Collection) for
 * information on parameter handling.
 *
 * @param value String
 */

 public void addAttributeValue(String value);

/**
 * returns a Collection of Strings representing this
 * attribute's values, in the order they were added.
 * If this attribute has no values, the returned
 * value is null.
 *
 * @return Collection
 */

 public Collection getAttributeValues();
}

SAMLCredentialAttributeMapper Interface
The SAML Credential Mapping Provider Version 2 determines if the custom SAML name
mapper is an implementation of the attribute mapping interface and, if so, calls the methods
of the attribute mapping interface to obtain SAML attribute name/value pairs to write to the
generated SAML assertion. If the implementation does not support the attribute mapping
interface, attribute mapping is silently skipped.

The SAML Credential Mapping Provider Version 2 does not validate the attribute names or
values obtained from the custom attribute mapper. Attribute names and values are treated as
follows:

• Any attribute with a non-null attribute name and namespace is written to the SAML
assertion.

• An attribute with a null attribute name or namespace is ignored, and subsequent
attributes of the same Collection are processed normally.

• Any attribute with a null value is written to the SAMLAttributeInfo instances with a value
of "". The resulting SAML assertion is written as the string <AttributeValue></
AttributeValue>.

Example 8-3 Listing of SAMLCredentialAttributeMapper Interface

/**
 * Interface used to perform mapping of Subject to SAMLAssertions
 * attributes.
 * <p>
 * To specify an instance of this interface to be used by the SAML
 * Credential Mapper, set the <tt>NameMapperClassName</tt> attribute.
 * <p>
 * Classes implementing this interface must have a public no-arg
 * constructor and must be in the system classpath.
 *
 * @author Copyright (c) 2008 by BEA Systems, Inc. All Rights Reserved.
 */

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-9

public interface SAMLCredentialAttributeMapper
{
/**
 * Maps a <code>Subject</code> to a set of values used to construct a
 * <code>SAMLAttributeStatementInfo</code> element for a SAML assertion.
 * The returned <code>Collection</code> contains
 * SAMLAttributeStatementInfo elements, each element
 * of which will be used to
 * construct a SAML <code>AttributeStatement</code> element for the SAML
 * assertion.
 *
 * @param subject The <code>Subject</code> that should be mapped.
 * @param handler The <code>ContextHandler</code> passed to the SAML
 * Credential Mapper.
 *
 * @return A <code>Collection</code> of SAMLAttributeStatementInfo
 * instances,or <code>null</code> if no mapping is made.
 */

 public Collection mapAttributes(Subject subject, ContextHandler handler);

New Methods for SAMLNameMapperInfo Class
The SAMLCredentialNameMapper calls new methods on the SAMLNameMapperInfo class
to get and set the authentication method attribute to be written to the SAML Assertion.

The new methods are shown in Example 8-4. Embedded comments provide additional
information and context.

Example 8-4 Listing of SAMLNameMapperInfo Class

public class SAMLNameMapperInfo
{
[existing definition]
/**
 * Called by the SAML Credential Name Mapper implementation to set
 * the authentication method attribute to be written to the SAML Assertion.
 * See SAML 1.1 Assertions and Protocols, Section 7.1 for possible
 * values returned.
 *
 * @param value the Authentication Method
 */

 public void setAuthenticationMethod(String value);

/**
 * Called by the SAML Credential Mapper to retrive the authentication
 * method attribute to be written to the SAML Assertion. See SAML 1.1
 * Assertions and Protocols, Section 7.1 for possible values returned.
 *
 * @return the Authentication Method
 */

 public String getAuthenticationMethod();

Example Custom SAMLCredentialAttributeMapper Class
Example 8-5 shows an example implementation of the SAMLCredentialNameMapper
and SAMLCredentialAttributeMapper interfaces.

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-10

While the SAMLCredentialNameMapper example implementation maps user and group
information stored in the Subject, the SAMLCredentialAttributeMapper example
implementation maps attribute information stored in the ContextHandler.

This example does not show how the attributes are placed in the ContextHandler.

Note that you could implement the SAMLCredentialAttributeMapper to map information
stored in the Subject rather than the ContextHandler.

Embedded comments provide additional information and context.

Example 8-5 Listing of Example Custom SAMLCredentialAttributeMapper Class

import java.util.ArrayList;
import java.util.Collection;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.security.providers.saml.SAMLAttributeStatementInfo;
import weblogic.security.providers.saml.SAMLAttributeInfo;
import weblogic.security.providers.saml.SAMLCredentialNameMapper;
import weblogic.security.providers.saml.SAMLCredentialAttributeMapper;
import weblogic.security.providers.saml.SAMLNameMapperInfo;
import weblogic.security.service.ContextHandler;
import weblogic.security.service.ContextElement;
import weblogic.security.spi.WLSGroup;
import weblogic.security.spi.WLSUser;

/**
 * @exclude
 *
 * The <code>CustomSAMLAttributeMapperImpl</code> class implements
 * name and attribute mapping for the SAML Credential Mapper.
 *
 * @author Copyright (c) 2004 by BEA Systems, Inc. All Rights Reserved.
 */

public class CustomSAMLAttributeMapperImpl implements
SAMLCredentialNameMapper,SAMLCredentialAttributeMapper
{

/**
 * Your logging code here
 */

 private final static String defaultAuthMethod =
 "urn:oasis:names:tc:SAML:1.0:am:unspecified";

 private final static String SAML_CONTEXT_ATTRIBUTE_NAME =
 "com.bea.contextelement.saml.context.attribute.name";

 private String nameQualifier = null;
 private String authMethod = defaultAuthMethod;

 public CustomSAMLAttributeMapperImpl()
 {
 // make constructor public
 }

/**
 * Set the name qualifier value
 */

 public synchronized void setNameQualifier(String nameQualifier) {
 this.nameQualifier = nameQualifier;
 }

/**

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-11

 * Map a <code>Subject</code> and return mapped user and group
 * info as a <code>SAMLNameMapperInfo</code> object.
 */

 public SAMLNameMapperInfo mapSubject(Subject subject, ContextHandler handler) {

 // Provider checks for null Subject...
 Set subjects = subject.getPrincipals(WLSUser.class);
 Set groups = subject.getPrincipals(WLSGroup.class);
 String userName = null;

 if (subjects == null || subjects.size() == 0) {
 yourlogcode("mapSubject: No valid WLSUser principals
 found in Subject, returning null");
 return null;
 }

 if (groups == null || groups.size() == 0) {
 yourlogcode("mapSubject: No valid WLSGroup pricipals
 found in Subject, continuing");
 }

 if (subjects.size() != 1) {
 yourlogcode("mapSubject: More than one WLSUser
 principal found in Subject, taking first user only");
 }

 userName = ((WLSUser)subjects.iterator().next()).getName();
 if (userName == null || userName.equals("")) {
 yourlogcode("mapSubject: Username string is null or
 empty, returning null");
 return null;
 }

 // Return mapping information...
 yourlogcode("mapSubject: Mapped subject: qualifier: " +
 nameQualifier + ", name: " + userName + ", groups: " + groups);
 return new SAMLNameMapperInfo(nameQualifier, userName,
 groups);
 }
/**
 * Map a <code>String</code> subject name and return mapped user and group
 * info as a <code>SAMLNameMapperInfo</code> object.
 */

 public SAMLNameMapperInfo mapName(String name, ContextHandler handler) {

 yourlogcode("mapName: Mapped name: qualifier: " +
 nameQualifier + ", name: " + name);
 return new SAMLNameMapperInfo(nameQualifier, name, null);
 }

/**
 * Returns the SAML AttributeName for group information.
 *
 * @return The AttributeName.
 */

 public String getGroupAttrName() {
 return SAMLNameMapperInfo.BEA_GROUP_ATTR_NAME;
 }

/**
 * Returns the SAML AttributeNamespace for group information.
 *
 * @return The AttributeNamespace.
 */

 public String getGroupAttrNamespace() {

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-12

 return SAMLNameMapperInfo.BEA_GROUP_ATTR_NAMESPACE;
 }

/**
 * set the auth method.
 * @param method String
 */

 public void setAuthenticationMethod(String method)
 {
 if (method != null)
 authMethod = method;
 }

/**
 * get the auth method
 * @return method String
 */

 public String getAuthenticationMethod()
 {
 return authMethod;
 }

/**
 * maps a Subject/Context to a Collection of SAMLAttributeStatementInfo
 * instances.
 *
 * @return <code>Collection</code>
 */

 public Collection mapAttributes(Subject subject, ContextHandler handler)
 {
 yourlogcode("mapAttributes: Subject: "+subject.toString()+",
 ContextHandler: "+handler.toString());

 Object element = handler.getValue(SAML_CONTEXT_ATTRIBUTE_NAME);

 yourlogcode("mapAttributes: got element from ContextHandler");
 yourlogcode("mapAttributes: element is a:"+element.getClass().getName());
 TestAttribute[] tas = (TestAttribute[])element;

/*
 * loop through all test attributes and write a SAMLAttributeStatementInfo
 * for each one.
 */

 ArrayList statementList = new ArrayList();
 for (int k = 0; k < tas.length; k++)
 {
 ArrayList al = null;
 String[] values = tas[k].getValues();
 if (values != null)
 {
 al = new ArrayList();
 for (int i = 0; i < values.length; i++)
 if (values[i] != null)
 al.add(values[i]);
 else al.add("");
 }

 SAMLAttributeInfo ai = new SAMLAttributeInfo(tas[k].getName(),
 tas[k].getNamespace(), al);

 SAMLAttributeStatementInfo asi = new
 SAMLAttributeStatementInfo();
 asi.addAttributeInfo(ai);
 statementList.add(asi);
 }

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-13

 return statementList;
 }
}

Make the Custom SAMLCredentialAttributeMapper Class Available in
the Console

To have the SAML Credential Mapping Provider Version 2 use this
SAMLCredentialAttributeMapper instance, you use the WebLogic Server
Administration Console to set the existing NameMapperClassName attribute to the class
name of this SAMLCredentialAttributeMapper instance.

That is, you use the Console control for the name mapper class name attribute to
specify the class name of the SAMLCredentialAttributeMapper in the active security
realm.

You can configure the user name mapper class name attribute in one of the following
ways:

• Once for the SAML Provider Version 2

• Individually for one or more relying parties

• Both for the SAML Credential Mapping Provider Version 2, and individually for
relying parties.

To use a custom user name mapper with the WebLogic SAML Credential Mapping
Provider Version 2:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. On the Security Realms page, select the name of the realm you are configuring
(for example, TestRealm).

3. Expand Providers > Credential Mapping and select the name of the SAML
Credential Mapping Provider Version 2.

4. Select the Provider Specific tab.

5. In the Default Name Mapper Class Name field, enter the class name of your
SAMLCredentialAttributeMapper implementation.

The class name must be in the system classpath.

6. Click Save.

7. To activate these changes, in the Change Center, click Activate Changes.

When you configure a SAML relying party, you can optionally set a name mapper class
specific to that relying party, which will override the default value you set here for the
default name mapper class name.

For details about how to set a name mapper class name in the WebLogic Server
Administration Console, see Configure a custom user name mapper in Oracle
WebLogic Server Administration Console Online Help..

Chapter 8
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

8-14

Configuring SAML SSO Attribute Support
A SAML assertion is a piece of data produced by a SAML authority regarding either an act of
authentication performed on a subject, attribute information about the subject, or
authorization data applying to the subject with respect to a specified resource. You can
configure SAML SSO attributes to be used with SAML 2.0 and SAML 1.1.

This section describes the following topics:

• What Are SAML SSO Attributes?

• New API's for SAML Attributes

• SAML 2.0 Basic Attribute Profile Required

• Passing Multiple Attributes to SAML Credential Mappers

• How to Implement SAML Attributes

• Examples of the SAML 2.0 Attribute Interfaces

• Examples of the SAML 1.1 Attribute Interfaces

• Make the Custom SAML Credential Attribute Mapper Class Available in the Console

• Make the Custom SAML Identity Asserter Class Available in the Console

What Are SAML SSO Attributes?
The SAML specification (see http://www.oasis-open.org) allows additional, unspecified
information about a particular subject to be exchanged between SAML partners as attribute
statements in an assertion. A SAML attribute assertion is therefore a particular type of
SAML assertion that conveys site-determined information about attributes of a Subject.

In previous versions of WebLogic Server, the SAML 1.1 Credential Mapping provider
supported attribute information, stored in the Subject, that specified the groups to which the
identity contained in the assertion belonged

In this release, WebLogic Server enhances the SAML 1.1 and 2.0 Credential Mapping
provider and Identity Assertion provider mechanisms to support the use of a custom attribute
mapper that can obtain additional attributes (other than group information) to be written into
SAML assertions, and to then map attributes from incoming SAML assertions.

To do this:

• The SAML credential mapper (on the SAML Identity Provider site) determines how to
package the attributes based on the existence of this custom attribute mapper.

• The SAML identity asserter (on the SAML Service Provider site) determines how to get
the attributes based on the configuration of the custom name mapper.

• The Java Subject is used to make the attributes extracted from assertions available to
applications. This requires that the SAML Authentication provider be configured and the
virtual user be enabled on a SAML partner.

New API's for SAML Attributes
This release includes the following new SAML attribute API's for SAML 2.0:

• SAML2AttributeInfo

Chapter 8
Configuring SAML SSO Attribute Support

8-15

http://www.oasis-open.org

• SAML2AttributeStatementInfo
• SAML2CredentialAttributeMapper
• SAML2IdentityAsserterAttributeMapper
For SAML 1.1 you can instead use the following existing SAML attribute API's:

• SAMLAttributeInfo
• SAMLAttributeStatementInfo
• SAMLCredentialNameMapper

SAMLCredentialAttributeMapper
• SAMLIdentityAssertionAttributeMapper
Subsequent sections describe the use of these SAML attribute API's.

SAML 2.0 Basic Attribute Profile Required
SAML 1.1 does not prescribe the name format of the SAML attribute.

However, only the SAML 2.0 Basic Attribute Profile is supported for SAML 2.0. Only
attributes with the urn:oasis:names:tc:SAML:2.0:attrname-format:basic name
format in SAML2AttributeInfo are written into a SAML 2.0 assertion.

The urn:oasis:names:tc:SAML:2.0:attrname-format:basic name format is the
default, so you need not set it.

If you do set the name format, you must specify
urn:oasis:names:tc:SAML:2.0:attrname-format:basic in the
SAML2.AttributeInfo.setAttributeNameFormat method, as follows:

SAML2AttributeInfo attrInfo = new SAML2AttributeInfo(
"AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-
format:basic");
attrs.add(attrInfo);

Passing Multiple Attributes to SAML Credential Mappers
When the configured attribute mapper is called, it returns
Collection<SAML2AttributeStatementInfo>. You can specify multiple attribute
statements, each containing multiple attributes, each possibly having multiple attribute
values.

An example of doing this is as follows:

private Collection<SAML2AttributeStatementInfo> getAttributeStatementInfo(
Subject subject, ContextHandler handlers) {
Collection<SAML2AttributeInfo> attrs = new ArrayList<SAML2AttributeInfo>();

SAML2AttributeInfo attrInfo = new SAML2AttributeInfo(
"AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-
format:basic");
attrs.add(attrInfo);

ArrayList<String> v = new ArrayList<String>();

Chapter 8
Configuring SAML SSO Attribute Support

8-16

v.add("Value1OfAttributeWithMultipleValue");
v.add("Value2OfAttributeWithMultipleValue");
v.add("Value3OfAttributeWithMultipleValue");
SAML2AttributeInfo attrInfo1 = new SAML2AttributeInfo(
"AttributeWithMultipleValue", v);
attrInfo1.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");

attrs.add(attrInfo1);

SAML2AttributeInfo attrInfo2 = new SAML2AttributeInfo(
"AttributeWithInvalidNameFormat",
"ValueOfAttributeWithInvalidNameFormatValue");
attrInfo2.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified");
attrs.add(attrInfo2);

SAML2AttributeInfo attrInfo3 = new SAML2AttributeInfo(
"AttributeWithNullValue", "null");
attrInfo3.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
attrs.add(attrInfo3);
:
:
Collection<SAML2AttributeStatementInfo> attrStatements = new
ArrayList<SAML2AttributeStatementInfo>();
attrStatements.add(new SAML2AttributeStatementInfo(attrs));
attrStatements.add(new SAML2AttributeStatementInfo(attrs1));
return attrStatements;
}

How to Implement SAML Attributes
This section walks through the process you follow to implement SAML attributes.

Note:

This section uses the SAML 2.0 interface names for the purpose of example. SAML
1.1 usage is similar except for different interface names for the mapper- and
partner-related classes, as well as the attribute and method names used for the
mapper configuration.

From the SAML credential mapping (Identity Provider) site:

1. Instantiate the SAML2AttributeInfo and SAML2AttributeStatementInfo classes.

Implement the SAML2CredentialAttributeMapper interface.

Also implement the SAML2CredentialNameMapper interface in the same implementation.
(The SAML2CredentialAttributeMapper and SAML2CredentialNameMapper interfaces
must both be in the same implementation.)

By implementing the SAML2CredentialNameMapper interface, you can then use the
WebLogic Server Administration Console to set the NameMapperClassName attribute to the
class name of your SAML2CredentialAttributeMapper instance.

2. Use the WebLogic Server Administration Console to configure your new custom attribute
mapper on a SAML provider, or on each individual partner, using the
NameMapperClassName attribute of the SAML Credential Mapping provider to identify it.

Chapter 8
Configuring SAML SSO Attribute Support

8-17

See Make the Custom SAML Credential Attribute Mapper Class Available in the
Console .

3. The SAML Credential Mapping provider determines if the configured custom name
mapper is an implementation of the attribute mapping interface and, if so, calls
your custom attribute mapping interface to obtain attribute values to write to the
generated SAML assertions.

4. The SAML Credential Mapping provider does not validate the attribute names or
values obtained from your custom attribute mapper.

Any attribute with a non-null attribute name is written to the attribute statements in
the SAML assertion. An attribute with a null or empty attribute name is ignored,
and subsequent attributes are processed.

If an attribute has multiple values, each value appears as an <AttributeValue>
element of a single <Attribute> in SAML attribute statements.

For SAML 1.1, attributes with a null value are written to the SAML assertion as an
empty string ("").

For SAML 2.0, null or empty attribute values are handled based on Assertions and
the Protocols for the OASIS SAML V2.0 March 2005 (http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf).

An attribute with a name format other than
urn:oasis:names:tc:SAML:2.0:attrname-format:basic is skipped.

From the SAML Identity Assertion (Service Provider) site:

1. Implement the SAML2IdentityAsserterAttributeMapper and
SAML2IdentityAsserterNameMapper interfaces in the same implementation. (The
SAML2IdentityAsserterAttributeMapper and
SAML2IdentityAsserterNameMapper interfaces must both be in the same
implementation.)

By implementing the SAML2IdentityAsserterNameMapper interface, you can then
use the WebLogic Server Administration Console to set the NameMapperClassName
attribute to the class name of your SAML2IdentityAsserterAttributeMapper
instance.

2. Use the WebLogic Server Administration Console to configure the SAML Identity
Assertion provider, as described in Make the Custom SAML Identity Asserter
Class Available in the Console. Set the NameMapperClassName attribute to the class
name of your custom SAML2IdentityAsserterAttributeMapper instance.

The SAML Identity Assertion provider processes <AttributeStatement> elements
of the incoming SAML assertions and constructs a collection of SAML attribute
statements.

3. The SAML Identity Assertion provider determines if the configured custom name
mapper implements the SAML2IdentityAsserterAttributeMapper interface. If it
does, the SAML Identity Assertion provider calls the mapAttributeInfo method to
obtain the SAML assertion's attributes.

Your mapAttributeInfo method takes a Collection of
SAMLAttributeStatementInfo instances that represent the attributes of attribute
statements in a SAML Assertion, and maps the desired attributes in any
application specific way.

Chapter 8
Configuring SAML SSO Attribute Support

8-18

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

4. The SAML IdentityAssertion provider makes the attributes from a SAML assertion
available to consumers via the Java Subject. This requires that the SAML Authentication
provider be configured and the virtual user be enabled on a SAML partner.

The attributes returned by the mapper are stored as subject principals or private
credentials, depending on the class type of the mapped attributes. Specifically, if the
mapper returns a collection of Principal objects, the mapped attributes are stored into
the subject principal set. Otherwise, the subject private credential set is used to carry the
mapped attributes.

The consuming code needs to know the class type of the object that the mapper uses to
represent attributes added to the subject, as shown in Example 8-7.

5. The SAML Identity Assertion provider checks the ContextHandler and attribute mapper.
(This walk through assumes the presence of the attribute mapper as stated in Step 4).

Note:

If both the ContextHandler and attribute mapper are present and configured,
the attributes are instead made available to Web services via the
ContextHandler, as described in Securing WebLogic Web Services for Oracle
WebLogic Server.

Examples of the SAML 2.0 Attribute Interfaces
This section provides examples of implementing the SAML 2.0 attribute interfaces that allow
writing additional attributes into SAML assertions.

Example Custom SAML 2.0 Credential Attribute Mapper
Example 8-6 shows an example of a single class that implements both the
SAML2CredentialNameMapper interface and the SAML2CredentialAttributeMapper interface.

Example 8-6 SAML 2.0 Credential Attribute Mapper

public class CustomSAML2CredentialAttributeMapperImpl implements
SAML2CredentialNameMapper, SAML2CredentialAttributeMapper {
private String nameQualifier = null;

public Collection<SAML2AttributeStatementInfo> mapAttributes(
Subject subject, ContextHandler handler) {
return getAttributeStatementInfo(subject, handler);
}
 /**
 * same as SAML2NameMapperImpl
 */
 public SAML2NameMapperInfo mapName(String name, ContextHandler handler) {
 System.out
 .println("CustomSAML2CredentialAttributeMapperImpl:mapNa
me: Mapped name: qualifier: "
 + nameQualifier + ", name: " + name);
 return new SAML2NameMapperInfo(nameQualifier, name, null);
 }

 /**
 * same as SAML2NameMapperImpl

Chapter 8
Configuring SAML SSO Attribute Support

8-19

 */
 public synchronized void setNameQualifier(String nameQualifier) {
 this.nameQualifier = nameQualifier;
 }

 /**
 * same as SAML2NameMapperImpl
 */
 public SAML2NameMapperInfo mapSubject(Subject subject,
 ContextHandler handler) {

 // Provider checks for null Subject...
 Set subjects = subject.getPrincipals(WLSUser.class);
 Set groups = subject.getPrincipals(WLSGroup.class);
 String userName = null;
 Set<String> groupStrings = new java.util.HashSet();

 if (subjects == null || subjects.size() == 0) {
 System.out
 .println("CustomSAML2CredentialAttributeM
apperImpl:mapSubject: No valid WLSUser pricipals found in Subject, returning
null");
 return null;
 }

 if (groups == null || groups.size() == 0) {
 System.out
 .println("CustomSAML2CredentialAttributeM
apperImpl:mapSubject: No valid WLSGroup pricipals found in Subject, continuing");
 }
 else{
 java.util.Iterator<WLSGroup> it = groups.iterator();
 while(it.hasNext()){
 WLSGroup wg = it.next();
 groupStrings.add(wg.getName());
 }
 }

 if (subjects.size() != 1) {
 System.out
 .println("CustomSAML2CredentialAttributeM
apperImpl:mapSubject: More than one WLSUser principal found in Subject, taking
first user only");
 }

 userName = ((WLSUser) subjects.iterator().next()).getName();
 if (userName == null || userName.equals("")) {
 System.out
 .println("CustomSAML2CredentialAttributeM
apperImpl:mapSubject: Username string is null or empty, returning null");
 return null;
 }

 // Return mapping information...
 System.out

TRACE.info("CustomSAML2CredentialAttributeMapperImpl:mapSubject: Mapped subject:
qualifier: "
 + nameQualifier
 + ", name: "
 + userName

Chapter 8
Configuring SAML SSO Attribute Support

8-20

 + ", groups: "
 + groups);

 SAML2NameMapperInfo saml2NameMapperInfo = new
 SAML2NameMapperInfo(nameQualifier, userName, groupStrings);
 //SAML2NameMapperInfo saml2NameMapperInfo = new
 SAML2NameMapperInfo(nameQualifier, userName, groups);

 return new SAML2NameMapperInfo(nameQualifier, userName, groups);
 }

private Collection<SAML2AttributeStatementInfo> getAttributeStatementInfo(
Subject subject, ContextHandler handlers) {
Collection<SAML2AttributeInfo> attrs = new ArrayList<SAML2AttributeInfo>();

SAML2AttributeInfo attrInfo = new SAML2AttributeInfo(
"AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
attrs.add(attrInfo);

ArrayList<String> v = new ArrayList<String>();
v.add("Value1OfAttributeWithMultipleValue");
v.add("Value2OfAttributeWithMultipleValue");
v.add("Value3OfAttributeWithMultipleValue");
SAML2AttributeInfo attrInfo1 = new SAML2AttributeInfo(
"AttributeWithMultipleValue", v);
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");

attrs.add(attrInfo1);
:
:
Collection<SAML2AttributeStatementInfo> attrStatements = new
ArrayList<SAML2AttributeStatementInfo>();
attrStatements.add(new SAML2AttributeStatementInfo(attrs));
attrStatements.add(new SAML2AttributeStatementInfo(attrs1));
return attrStatements;
}
}

Use the WebLogic Server Administration Console to configure the User Name Mapper class
name to the fully-qualified class name of this mapper implementation, as described in Make
the Custom SAML Credential Attribute Mapper Class Available in the Console .

The attributes encapsulated in the collection of SAML2AttributeStatementInfo objects
returned by the custom mapper implementation are included in the generated assertions by
the SAML 2.0 Credential Mapping provider.

Custom SAML 2.0 Identity Asserter Attribute Mapper
Example 8-7 shows an example implementation of SAML2IdentityAsserterNameMapper and
SAML2IdentityAsserterAttributeMapper.

Example 8-7 Custom SAML 2.0 Identity Asserter Attribute Mapper

public class CustomSAML2IdentityAsserterAttributeMapperImpl implements
SAML2IdentityAsserterNameMapper, SAML2IdentityAsserterAttributeMapper {
/**
 * same as SAML2NameMapperImpl
 */
public String mapNameInfo(SAML2NameMapperInfo info, ContextHandler handler) {

Chapter 8
Configuring SAML SSO Attribute Support

8-21

// Get the user name ...
String userName = info.getName();
System.out
.println("CustomSAML2IdentityAsserterAttributeMapperImpl:mapNameInfo: returning
name: "
+ userName);
return userName;
}
}
:
:
public Collection<Object> mapAttributeInfo0(
Collection<SAML2AttributeStatementInfo> attrStmtInfos,
ContextHandler contextHandler) {
if (attrStmtInfos == null || attrStmtInfos.size() == 0) {
System.out
.println("CustomIAAttributeMapperImpl: attrStmtInfos has no elements");
return null;
}

Collection<Object> customAttrs = new ArrayList<Object>();

for (SAML2AttributeStatementInfo stmtInfo : attrStmtInfos) {
Collection<SAML2AttributeInfo> attrs = stmtInfo.getAttributeInfo();
if (attrs == null || attrs.size() == 0) {
System.out
.println("CustomIAAttributeMapperImpl: no attribute in statement: "
+ stmtInfo.toString());
} else {
for (SAML2AttributeInfo attr : attrs) {
if (attr.getAttributeName().equals("AttributeWithSingleValue")){
 CustomPrincipal customAttr1 = new CustomPrincipal(attr
.getAttributeName(), attr.getAttributeNameFormat(),
attr.getAttributeValues());
 customAttrs.add(customAttr1);
}else{
String customAttr = new StringBuffer().append(
attr.getAttributeName()).append(",").append(
attr.getAttributeValues()).toString();
customAttrs.add(customAttr);
}
}
}
}
return customAttrs;
}

public Collection<Principal> mapAttributeInfo(
Collection<SAML2AttributeStatementInfo> attrStmtInfos,
ContextHandler contextHandler) {
if (attrStmtInfos == null || attrStmtInfos.size() == 0) {
System.out
.println("CustomIAAttributeMapperImpl: attrStmtInfos has no elements");
return null;
}

Collection<Principal> pals = new ArrayList<Principal>();

for (SAML2AttributeStatementInfo stmtInfo : attrStmtInfos) {
Collection<SAML2AttributeInfo> attrs = stmtInfo.getAttributeInfo();
if (attrs == null || attrs.size() == 0) {

Chapter 8
Configuring SAML SSO Attribute Support

8-22

System.out
.println("CustomIAAttributeMapperImpl: no attribute in statement: "
+ stmtInfo.toString());
} else {
for (SAML2AttributeInfo attr : attrs) {
CustomPrincipal pal = new CustomPrincipal(attr
.getAttributeName(), attr.getAttributeNameFormat(),
attr.getAttributeValues());
pals.add(pal);
}
}
}
return pals;
}

The SAML 2.0 IdentityAssertion provider makes the attributes from a SAML assertion
available to consumers via the subject.

Use the WebLogic Server Administration Console to configure the User Name Mapper class
name to the fully-qualified class name of this mapper implementation, as described in Make
the Custom SAML Identity Asserter Class Available in the Console.

If you are allowing virtual users to log in via SAML, you need to create and configure an
instance of the SAML Authentication provider. See Configuring the SAML Authentication
Provider.

If the virtual user is enabled and SAML Authenticator provider configured, the attributes
returned by the custom attribute mapper are added into the subject.

The attributes returned by the mapper are stored as subject principals or private credentials,
depending on the class type of the mapped attributes. Specifically, if the mapper returns a
collection of Principal objects, the mapped attributes are stored into the subject principal
set. Otherwise, the subject private credential set is used to carry the mapped attributes. The
example code shows both approaches.

Your application code needs to know the class type of the object that the mapper uses to
represent attributes added to the subject. Applications can retrieve the SAML attributes from
the subject private credential or principal set, given the class type that the customer attribute
mapper uses to represent the attributes.

Examples of the SAML 1.1 Attribute Interfaces
This section provides examples of implementing the SAML 1.1 attribute interfaces that allow
writing additional attributes into SAML assertions.

Example Custom SAML 1.1 Credential Attribute Mapper
Example 8-8 shows an example of a single class that implements both the
SAMLCredentialNameMapper interface and the SAMLCredentialAttributeMapper interface.

Example 8-8 SAML 1.1 Credential Attribute Mapper

public class CustomCredentialAttributeMapperImpl implements
 SAMLCredentialNameMapper, SAMLCredentialAttributeMapper {
 private String nameQualifier = null;

 public Collection<SAMLAttributeStatementInfo> mapAttributes(Subject subject,
 ContextHandler handler) {
 return AttributeStatementInfoGenerator.getInfos(subject, handler);

Chapter 8
Configuring SAML SSO Attribute Support

8-23

 }
…
public SAMLNameMapperInfo mapSubject(Subject subject, ContextHandler handler) {

 // Provider checks for null Subject...
 Set subjects = subject.getPrincipals(WLSUser.class);
 Set groups = subject.getPrincipals(WLSGroup.class);
 String userName = null;
:
 userName = ((WLSUser) subjects.iterator().next()).getName();
 if (userName == null || userName.equals("")) {
 System.out
 .println("CustomCredentialAttributeMapperImpl:mapSubject: Username
string is null or empty, returning null");
 return null;
 }
:
 // Return mapping information...
 System.out
 .println("CustomCredentialAttributeMapperImpl:mapSubject: Mapped
subject: qualifier: "
 + nameQualifier + ", name: " + userName + ", groups: " + groups);
 return new SAMLNameMapperInfo(nameQualifier, userName, groups);
 }
:
:
class AttributeStatementInfoGenerator {
 static final String SAML_ATTR_NAME_SAPCE = "urn:bea:security:saml:attributes";

 static Collection<SAMLAttributeStatementInfo> getInfos(Subject subject,
 ContextHandler handlers) {
 SAMLAttributeInfo info1 = new SAMLAttributeInfo("AttributeWithSingleValue",
 SAML_ATTR_NAME_SAPCE, "ValueOfAttributeWithSingleValue");

 ArrayList<String> v2 = new ArrayList<String>();
 v2.add("Value1OfAttributeWithMultipleValue");
 v2.add("Value2OfAttributeWithMultipleValue");
 SAMLAttributeInfo info2 = new SAMLAttributeInfo("AttributeWithMultipleValue",
 SAML_ATTR_NAME_SAPCE, v2);

 SAMLAttributeStatementInfo stmt1 = new SAMLAttributeStatementInfo();
 stmt1.addAttributeInfo(info1);
 stmt1.addAttributeInfo(info2);

 ArrayList<SAMLAttributeStatementInfo> result = new
ArrayList<SAMLAttributeStatementInfo>();
 result.add(stmt1);
:
:
 return result;
 }

Use the WebLogic Server Administration Console to configure the User Name Mapper
class name to the fully-qualified class name of this mapper implementation, as
described in Make the Custom SAML Credential Attribute Mapper Class Available in
the Console .

The attributes encapsulated in the collection of SAMLAttributeStatementInfo objects
returned by the custom mapper implementation are included in the generated
assertions by the SAML 1.1 Credential Mapping provider.

Chapter 8
Configuring SAML SSO Attribute Support

8-24

Custom SAML 1.1 Identity Asserter Attribute Mapper
Example 8-9 shows an example implementation of SAMLIdentityAssertionNameMapper and
SAMLIdentityAssertionAttributeMapper.

Example 8-9 Custom SAML 1.1 Identity Asserter Attribute Mapper

public class CustomIdentityAssertionAttributeMapperImpl implements
 SAMLIdentityAssertionNameMapper, SAMLIdentityAssertionAttributeMapper {

 public String mapNameInfo(SAMLNameMapperInfo info, ContextHandler handler) {
 // Get the user name ...
 String userName = info.getName();
 System.out
 .println("CustomIdentityAssertionAttributeMapperImpl:mapNameInfo: returning
name: "
 + userName);
 return userName;
 }

:
public void mapAttributeInfo(
 Collection<SAMLAttributeStatementInfo> attrStmtInfos,
 ContextHandler contextHandler) {
 if (attrStmtInfos == null || attrStmtInfos.size() == 0) {
 System.out
 .println("CustomIAAttributeMapperImpl: attrStmtInfos has no elements");
 return;
 }
:
 Object obj =
contextHandler .getValue(ContextElementDictionary.SAML_ATTRIBUTE_PRINCIPALS);
 if (obj == null || !(obj instanceof Collection)) {
 System.out.println("CustomIAAttributeMapperImpl: can't get "
 + ContextElementDictionary.SAML_ATTRIBUTE_PRINCIPALS
 + " from context handler");
 return;
 }
:
 Collection<Principal> pals = (Collection<Principal>) obj;

 for (SAMLAttributeStatementInfo stmtInfo : attrStmtInfos) {
 Collection<SAMLAttributeInfo> attrs = stmtInfo.getAttributeInfo();
 if (attrs == null || attrs.size() == 0) {
 System.out
 .println("CustomIAAttributeMapperImpl: no attribute in statement: "
 + stmtInfo.toString());
 } else {
 for (SAMLAttributeInfo attr : attrs) {
 CustomPrincipal pal = new CustomPrincipal(attr.getAttributeName(),
 attr.getAttributeNamespace(), attr.getAttributeValues());
 pals.add(pal);
 }
 }
 }
 }

The SAML 1.1 IdentityAssertion provider makes the attributes from a SAML assertion
available to consumers via the subject.

Chapter 8
Configuring SAML SSO Attribute Support

8-25

Use the WebLogic Server Administration Console to configure the User Name Mapper
class name to the fully-qualified class name of this mapper implementation, as
described in Make the Custom SAML Identity Asserter Class Available in the Console.

If you are allowing virtual users to log in via SAML, you need to create and configure
an instance of the SAML Authentication provider. See Configuring the SAML
Authentication Provider.

If the virtual user is enabled and SAML Authenticator provider configured, the
attributes returned by the custom attribute mapper are added into the subject.

The attributes returned by the mapper are stored as subject principals or private
credentials, depending on the class type of the mapped attributes. Specifically, if the
mapper returns a collection of Principal objects, the mapped attributes are stored
into the subject principal set. Otherwise, the subject private credential set is used to
carry the mapped attributes.

Your application code needs to know the class type of the object that the mapper uses
to represent attributes added to the subject. Applications can retrieve the SAML
attributes from the subject private credential or principal set, given the class type that
the customer attribute mapper uses to represent the attributes.

Make the Custom SAML Credential Attribute Mapper Class Available
in the Console

To have the SAML Credential Mapping provider use your
SAML2CredentialAttributeMapper (SAML 2.0) or SAMLCredentialAttributeMapper
(SAML 1.1) instance, you use the WebLogic Server Administration Console to set the
existing NameMapperClassName attribute to the class name of this
SAML2CredentialAttributeMapper or SAML2CredentialAttributeMapper instance.

That is, you use the Console control for the name mapper class name attribute to
specify the class name of the SAML2CredentialAttributeMapper or
SAMLCredentialAttributeMapper instance in the active security realm.

To use a custom user name mapper with the WebLogic SAML Credential Mapping
provider

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. On the Security Realms page, select the name of the realm you are configuring
(for example, TestRealm).

3. Expand Providers > Credential Mapping and select the name of the SAML 2.0
Credential Mapping provider, or the SAML Credential Mapping provider Version 2.

4. Select the Provider Specific tab.

5. In the Name Mapper Class Name (SAML 2.0) or Default Name Mapper Class
Name (SAML 1.1) field, enter the class name of your
SAML2CredentialAttributeMapper or SAMLCredentialAttributeMapper
implementation.

The class name must be in the system classpath.

6. Click Save.

7. To activate these changes, in the Change Center, click Activate Changes.

Chapter 8
Configuring SAML SSO Attribute Support

8-26

Make the Custom SAML Identity Asserter Class Available in the Console
To have the SAML Identity Assertion provider use this
SAML2IdentityAsserterAttributeMapper (SAML 2.0) or
SAMLIdentityAssertionAttributeMapper (SAML 1.1) instance, you use the WebLogic
Server Administration Console to set the existing NameMapperClassName attribute to the class
name of this SAML2IdentityAsserterAttributeMapper or
SAMLIdentityAssertionAttributeMapper instance.

That is, you use the Console control for the name mapper class name attribute to specify the
class name of the SAML2IdentityAsserterAttributeMapper or
SAMLIdentityAssertionAttributeMapper instance in the active security realm.

To use a custom user name mapper with the WebLogic SAML Identity Asserter provider:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. On the Security Realms page, select the name of the realm you are configuring (for
example, TestRealm).

3. Expand Providers > Authentication and select the name of the SAML 2.0 Identity
Asserter, or the SAML Identity Asserter Version 2.

4. Select the Provider Specific tab.

5. In the Name Mapper Class Name (SAML 2.0) or Default Name Mapper Class Name
(SAML 1.1) field, enter the class name of your SAML2IdentityAsserterAttributeMapper
or SAMLIdentityAssertionAttributeMapper implementation.

The class name must be in the system classpath.

6. Click Save.

7. To activate these changes, in the Change Center, click Activate Changes.

For details about how to set a name mapper class name in the WebLogic Server
Administration Console, see Configure a custom user name mapper in the Oracle WebLogic
Server Administration Console Online Help.

Chapter 8
Configuring SAML SSO Attribute Support

8-27

9
Using CertPath Building and Validation

The WebLogic Security service provides the Certificate Lookup and Validation (CLV) API that
finds and validates X509 certificate chains. Use the CertPath providers provided by Oracle
WebLogic Server to build and validate certificate chains, or any custom CertPath providers.
A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath is also
used to refer to the JDK architecture and framework that is used to locate and validate
certificate chains. The CLV framework extends and completes the JDK CertPath functionality.
CertPath providers rely on a tightly coupled integration of WebLogic and JDK interfaces.

This chapter includes the following sections:

• CertPath Building

• CertPath Validation

• Instantiate a CertPathSelector

• Instantiate a CertPathBuilderParameters

• Use the JDK CertPathBuilder Interface

• Instantiate a CertPathValidatorParameters

• Use the JDK CertPathValidator Interface

CertPath Building
To use a CertPath Builder in your application, you must perform a sequence of steps such as,
instantiating a CertPathSelector object, instantiating a CertPathBuilderParameters object,
and implementing the JDK CertPathBuilder interface.

1. Instantiate a CertPathSelector

2. Instantiate a CertPathBuilderParameters

3. Use the JDK CertPathBuilder Interface

Instantiate a CertPathSelector
The CertPathSelector interface (weblogic.security.pk.CertPathSelector) contains the
selection criteria for locating and validating a certification path. Because there are many ways
to look up certification paths, a derived class is created for each type of selection criteria.

Each selector class has one or more methods to retrieve the selection data and a constructor.

The classes in weblogic.security.pk that implement the CertPathSelector interface, one
for each supported type of certificate chain lookup, are as follows:

• EndCertificateSelector – used to find and validate a certificate chain given its end
certificate.

• IssuerDNSerialNumberSelector – used to find and validate a certificate chain from its end
certificate's issuer DN and serial number.

9-1

• SubjectDNSelector – used to find and validate a certificate chain from its end
certificate's subject DN.

• SubjectKeyIdentifierSelector – used to find and validate a certificate chain from its
end certificate's subject key identifier (an optional field in X509 certificates).

Note:

The selectors that are supported depend on the configured CertPath
providers. The configured CertPath providers are determined by the
administrator.

The WebLogic CertPath provider uses only the EndCertificateSelector
selector.

Example 9-1 shows an example of choosing a selector.

Example 9-1 Make a certificate chain selector

// you already have the end certificate
// and want to use it to lookup and
// validate the corresponding chain
X509Certificate endCertificate = ...
// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);

Instantiate a CertPathBuilderParameters
You pass an instance of CertPathBuilderParameters as the CertPathParameters
object to the JDK's CertPathBuilder.build() method.

The following constructor and method are provided:

• CertPathBuilderParameters

public CertPathBuilderParameters(String realmName,
 CertPathSelector selector,
 X509Certificate[]
 trustedCAs,
 ContextHandler context)

Constructs a CertPathBuilderParameters object.

You must provide the realm name. To do this, get the domain's
SecurityConfigurationMBean. Then, get the SecurityConfigurationMBean's default
realm attribute, which is a realm MBean. Finally, get the realm MBean's name
attribute. You must use the runtime JMX MBean server to get the realm name.

You must provide the selector. You use one of the
weblogic.security.pk.CertPathSelector interfaces derived classes, described
in Instantiate a CertPathSelector to specify the selection criteria for locating and
validating a certification path.

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are
used. These are just a hint to the configured CertPath builder and CertPath
validators which, depending on their lookup/validation algorithm, may or may not
use these trusted CAs.

Chapter 9
CertPath Building

9-2

ContextHandler is used to pass in an optional list of name/value pairs that the configured
CertPathBuilder and CertPathValidators may use to look up and validate the chain. It
is symmetrical with the context handler passed to other types of security providers.
Setting context to null indicates that there are no context parameters.

• clone

Object clone()

This interface is not cloneable.

Example 9-2 shows an example of passing an instance of CertPathBuilderParameters.

Example 9-2 Pass An Instance of CertPathBuilderParameters

// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);
String realm = _;
// create and populate a context handler if desired, or null
ContextHandler context = _;
// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;
// make the params
CertPathBuilderParams params =
new CertPathBuilderParameters(realm, selector, context, trustedCAs);

Use the JDK CertPathBuilder Interface
The java.security.cert.CertPathBuilder class is the base class for creating the
CertPathBuilder object. To use the JDK CertPathBuilder interface, do the following:

1. Call the static CertPathBuilder.getInstance method to retrieve the CLV framework's
CertPathBuilder. You must specify WLSCertPathBuilder as the algorithm name that's
passed to the call.

2. Once the CertPathBuilder object has been obtained, call the "build" method on the
returned CertPathBuilder. This method takes one argument - a CertPathParameters that
indicates which chain to find and how it should be validated.

You must pass an instance of weblogic.security.pk.CertPathBuilderParameters as
the CertPathParameters object to the JDK's CertPathBuilder.build() method, as
described in Instantiate a CertPathBuilderParameters.

3. If successful, the result (including the CertPath that was built) is returned in an object that
implements the CertPathBuilderResult interface. The builder determines how much of
the CertPath is returned.

4. If not successful, the CertPathBuilder build method throws
InvalidAlgorithmParameterException if the params is not a WebLogic
CertPathBuilderParameters, if the configured CertPathBuilder does not support the
selector, or if the realm name does not match the realm name of the default realm from
when the server was booted.

The CertPathBuilder build method throws CertPathBuilderException if the cert path
could not be located or if the located cert path is not valid

Chapter 9
CertPath Building

9-3

Example Code Flow for Looking Up a Certificate Chain
Example 9-3 Looking up a Certificate Chain

import weblogic.security.pk.CertPathBuilderParameters;
import weblogic.security.pk.CertPathSelector;
import weblogic.security.pk.EndCertificateSelector;
import weblogic.security.service.ContextHandler;
import java.security.cert.CertPath;
import java.security.cert.CertPathBuilder;
import java.security.cert.X509Certificate;
// you already have the end certificate
// and want to use it to lookup and
// validate the corresponding chain
X509Certificate endCertificate = ...

// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);

String realm = _;

// create and populate a context handler if desired
ContextHandler context = _;

// pass in a list of trusted CAs if desired
X509Certificate[] trustedCAs = _;

// make the params
CertPathBuilderParams params =
new CertPathBuilderParameters(realm, selector, context, trustedCAs);
// get the WLS CertPathBuilder
CertPathBuilder builder =
CertPathBuilder.getInstance("WLSCertPathBuilder");

// use it to look up and validate the chain
CertPath certpath = builder.build(params).getCertPath();
X509Certificate[] chain =
certpath.getCertificates().toArray(new X509Certificate[0]);

CertPath Validation
To use a CertPath Validator in your application, you must instantiate a
CertPathValidatorParameters and use the JDK CertPathValidator interface.

1. Instantiate a CertPathValidatorParameters

2. Use the JDK CertPathValidator Interface

Instantiate a CertPathValidatorParameters
You pass an instance of CertPathValidatorParameters as the CertPathParameters
object to the JDK's CertPathValidator.validate() method.

The following constructor and method are provided:

• CertPathValidatorParameters

Chapter 9
CertPath Validation

9-4

public CertPathValidatorParameters(String realmName,
 X509Certificate[] trustedCAs,
 ContextHandler context)

Constructs a CertPathValidatorParameters.

You must provide the realm name. To do this, get the domain's
SecurityConfigurationMBean. Then, get the default realm attribute of the
SecurityConfigurationMBean, which is a realm MBean. Finally, get the realm MBean's
name attribute. You must use the runtime JMX MBean server to get the realm name.

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are used.
These are just a hint to the configured CertPath builder and CertPath validators which,
depending on their lookup/validation algorithm, may or may not use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the configured
CertPathBuilder and CertPathValidators may use to look up and validate the chain. It is
symmetrical with the context handler passed to other types of security providers. Setting
context to null indicates that there are no context parameters.

• clone

Object clone()

This interface is not cloneable.

Example 9-4 shows an example of passing an instance of CertPathValidatorParameters.

Example 9-4 Pass an Instance of CertPathValidatorParameters

// get the WLS CertPathValidator
CertPathValidator validator =
CertPathValidator.getInstance("WLSCertPathValidator");

String realm = _;

// create and populate a context handler if desired, or null
ContextHandler context = _;

// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

// make the params (for the default security realm)
CertPathValidatorParams params =
new CertPathValidatorParams(realm, context, trustedCAs);

Use the JDK CertPathValidator Interface
The java.security.cert.CertPathValidator class is the base class for creating a
CertPathValidator object. To use the JDK CertPathValidator interface, do the following:

1. Call the static CertPathValidator.getInstance method to retrieve the CLV framework's
CertPathValidator. You must specify WLSCertPathValidator as the algorithm name that's
passed to the call.

2. Once the CertPathValidator object has been obtained, call the validate method on the
returned CertPathValidator. This method takes one argument - a CertPathParameters
that indicates how it should be validated.

Chapter 9
CertPath Validation

9-5

You must pass an instance of
weblogic.security.pk.CertPathValidatorParameters as the
CertPathParameters object to the JDK's CertPathValidator.validate() method,
as described in Instantiate a CertPathValidatorParameters.

3. If successful, the result is returned in an object that implements the
CertPathValidatorResult interface.

4. If not successful, the CertPathValidator.validate() method throws
InvalidAlgorithmParameterException if params is not a WebLogic
CertPathValidatorParameters or if the realm name does not match the realm
name of the default realm from when the server was booted.

The CertPathValidator validate method throws CertPathValidatorException if the
certificates in the CertPath are not ordered (the end certificate must be the first
cert) or if the CertPath is not valid.

Example Code Flow for Validating a Certificate Chain
Example 9-5 Performing Extra Validation

import weblogic.security.pk.CertPathValidatorParams;
import weblogic.security.service.ContextHandler;
import java.security.cert.CertPath;
import java.security.cert.CertPathValidator;
import java.security.cert.X509Certificate;

// you already have an unvalidated X509 certificate chain
// and you want to get it validated
X509Certificate[] chain = ...

// convert the chain to a CertPath
CertPathFactory factory = CertPathFactory.getInstance("X509");
ArrayList list = new ArrayList(chain.length);
for (int i = 0; i < chain.length; i++) {
list.add(chain[i]);
}
CertPath certPath = factory.generateCertPath(list);

// get the WLS CertPathValidator
CertPathValidator validator =
CertPathValidator.getInstance("WLSCertPathValidator");

String realm = _;

// create and populate a context handler if desired, or null
ContextHandler context = _;

// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

// make the params (for the default security realm)
CertPathValidatorParams params =
new CertPathValidatorParams(realm, context, trustedCAs);

// use it to validate the chain
validator.validate(certPath, params);

Chapter 9
CertPath Validation

9-6

10
Using JASPIC for a Web Application

Oracle WebLogic Server supports the use of Java Authentication Service Provider Interface
for Containers (JASPIC) to configure an Authentication Configuration Provider for a Web
application and using that instead of the default WLS authentication mechanism for that Web
application. Learn how to configure JASPIC for the deployed web application.

• Overview of Java Authentication Service Provider Interface for Containers (JASPIC)

• Do You Need to Implement an Authentication Configuration Provider?

• Do You Need to Implement a Principal Validation Provider?

• Implement a SAM

• Configure JASPIC for the Deployed Web Application

This section assumes that you are familiar with a basic overview of JASPIC, as described in
JASPIC Security in Understanding Security for Oracle WebLogic Server.

Overview of Java Authentication Service Provider Interface for
Containers (JASPIC)

The JASPIC Authentication Configuration provider assumes responsibility for authenticating
the user credentials for a Web application and returning a subject. It authenticates incoming
Web application messages and returns the identity (the expected subject) established as a
result of the message authentication to WebLogic Server.

The JASPIC programming model is described in the Java Authentication Service Provider
Interface for Containers (JASPIC) specification (http://www.jcp.org/en/jsr/detail?
id=196). It defines a service provider interface (SPI) by which authentication providers that
implement message authentication mechanisms can be integrated in server Web application
message processing containers or runtimes.

WebLogic Server allows you to use JASPIC to delegate authentication for Web applications
to your configured Authentication Configuration providers. You do not have to modify your
Web application code to use JASPIC. Instead, you use the WebLogic Server Administration
Console or WLST to enable JASPIC for the Web application post deployment.

For each of your deployed Web applications in the domain, determine whether you want
JASPIC to be disabled (the default), or select one of your configured Authentication
Configuration providers to authenticate the user credentials and return a valid subject. If you
configure an Authentication Configuration provider for a Web application, it is used instead of
the WLS authentication mechanism for that Web application. You should therefore exercise
care when you specify an Authentication Configuration provider to make sure that it satisfies
your security authentication needs.

10-1

http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196

Do You Need to Implement an Authentication Configuration
Provider?

If you have a specific requirement that is not addressed by the default WebLogic
Authentication provider, then you can implement your own Authentication
Configuration provider.

You can use either the default WebLogic Server Authentication Configuration provider,
or you can implement your own. To use the default WebLogic Server Authentication
Configuration provider and configure it, see the steps described in Securing JASPIC
Security.

As described in the Java Authentication Service Provider Interface for Containers
(JASPIC) specification (http://www.jcp.org/en/jsr/detail?id=196), the
Authentication Configuration provider (called "authentication context configuration
provider" in the specification) is an implementation of the
javax.security.auth.message.config.AuthConfigProvider interface.

The Authentication Configuration provider provides a configuration mechanism used to
define the registered Server Authentication Modules (SAM's) and bindings to
applications that require protection from unauthenticated/authorized access.

Do You Need to Implement a Principal Validation Provider?
Authentication providers rely on Principal Validation providers to sign and verify the
authenticity of principals (users and groups) contained within a subject. The Principal
Validation provider, thus, prevents malicious individuals from tampering with the
principals stored in a subject.

Principals are sent to the specified Principal Validation provider, which signs the
principals and then returns them to the client application via WebLogic Server.
Whenever the principals stored within the subject are required for other security
operations, the same Principal Validation provider will verify that the principals stored
within the subject have not been modified since they were signed.

Such verification provides an additional level of trust and may reduce the likelihood of
malicious principal tampering. The authenticity of the subject's principals is also
verified when making authorization decisions.

You must therefore use a Principal Validation provider as described in Principal
Validation Providers.

Whether you use the existing WebLogic Principal Validation provider or implement a
custom Principal Validation provider depends on the type of principals you are using:

• WebLogic Server principals — The WebLogic Principal Validation provider
includes implementations of the WLSUser and WLSGroup interfaces, named
WLSUserImpl and WLSGroupImpl. These are located in the
weblogic.security.principal package.

It also includes an implementation of the PrincipalValidator SSPI called
PrincipalValidatorImpl (located in the com.bea.common.security.provider
package). To use this class, make the PrincipalValidatorImpl class the runtime

Chapter 10
Do You Need to Implement an Authentication Configuration Provider?

10-2

http://www.jcp.org/en/jsr/detail?id=196

class for your Principal Validation provider. See the PrincipalValidator SSPI for usage
information.

• Custom Principals — If you have your own validation scheme and do not want to use the
WebLogic Principal Validation provider, or if you want to provide validation for principals
other than WebLogic Server principals, then you need to develop a custom Principal
Validation provider.

Note:

If you add custom principals, you must add a Principal Validation provider or
authorization fails. The WebLogic Server security framework performs principal
validation as part of authorization. (The only exception is if you are using JACC
for authorization. Even in the case of JACC, if your Web application or EJB
accesses any other server resource (for example, JDBC), WebLogic Server
authorization and principal validation are used.)

In this case, you must also develop an Authentication provider. The
AuthenticationProviderV2 SSPI includes a method called getPrincipalValidator in
which you specify the Principal Validation provider's runtime class. WebLogic Server uses
this method to get the Principal Validation provider. (In this use, the other methods can
return null.)

Both options are described in Principal Validation Providers in Developing Security Providers
for Oracle WebLogic Server.

Implement a SAM
A key step in adding an authentication mechanism to a compatible server-side message
processing runtime is acquiring a Server Authentication Module (SAM) that implements the
desired authentication mechanism.

You must implement your own SAM that works with the default WebLogic Server
Authentication Configuration provider, or with your own Authentication Configuration provider.

The SAM represents the implementation of a server-side authentication provider that is
JASPIC-compliant. As described in the Java Authentication Service Provider Interface for
Containers (JASPIC) specification (http://www.jcp.org/en/jsr/detail?id=196), a SAM
implements the javax.security.auth.message.module.ServerAuthModule interface and is
invoked by WebLogic Server at predetermined points in the message processing model.

Note:

A sample SAM implementation is described in Adding Authentication Mechanisms
to the Servlet Container in the GlassFish Server Open Source Edition Application
Development Guide. Although written from the GlassFish Server perspective, the
tips for writing a SAM, and the sample SAM itself, are instructive.

Chapter 10
Implement a SAM

10-3

http://www.jcp.org/en/jsr/detail?id=196
https://javaee.github.io/glassfish/doc/4.0/application-development-guide.pdf
https://javaee.github.io/glassfish/doc/4.0/application-development-guide.pdf

Configure JASPIC for the Deployed Web Application
To configure JASPIC for your deployed Web application, you must add the jar for your
SAM to the system classpath using the command line, enable JASPIC in your domain
using the WebLogic Server Administration Console, and configure the desired
Authentication Configuration provider to specify the classname of the SAM.

Perform the following steps to configure JASPIC for a Web application:

1. Add the jar for your SAM to the system classpath via the startup scripts or the
command line used to start the WebLogic Server instance.

If you also configured a custom Authentication Configuration provider, you must
add the jar for your custom Authentication Configuration provider to the system
classpath via the startup scripts or the command line used to start the WebLogic
Server instance.

2. Enable JASPIC in the domain, as described in Configuring JASPIC Security.

3. Configure the WebLogic Server Authentication Configuration provider or the
custom Authentication Configuration provider to specify the classname of the SAM
as described in Configuring JASPIC Security.

4. In the left pane of the Console, select Deployments.

A table that lists the deployments currently installed on WebLogic Server appears
in the right pane. The Type column specifies whether a deployment is an
Enterprise application, a Web application, or an EJB module.

5. In the right pane, click the name of the Web application you want to configure.

6. Select Security > JASPIC to view and change the JASPIC properties.

By default, JASPIC is disabled for Web applications. To enable JASPIC for this
Web application, select the correct Authentication Configuration providers from the
drop-down list.

7. Click Save to save any changes.

8. Save the changes to the deployment plan, as prompted.

9. Repeat steps 5 through 7 for any additional Web applications for which you want
to enable JASPIC.

10. Redeploy the Web application.

11. Restart WebLogic Server.

Chapter 10
Configure JASPIC for the Deployed Web Application

10-4

A
Deprecated Security APIs

Some or all of the Security interfaces, classes, and exceptions in the WebLogic security
packages, weblogic.security.service and weblogic.security.SSL, were deprecated prior
to the current release of Oracle WebLogic Server.For specific information on the interfaces,
classes, and exceptions deprecated in each package, see the Java API Reference for Oracle
WebLogic Server.

A-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Information
	Security Examples in the WebLogic Server Distribution
	New and Changed Security Features in This Release

	Conventions

	1 WebLogic Security Programming Overview
	What Is Security?
	Administration Console and Security
	Types of Security Supported by WebLogic Server
	Authentication
	Authorization
	Java EE Security

	Security APIs
	JAAS Client Application APIs
	Java JAAS Client Application APIs
	WebLogic JAAS Client Application APIs

	SSL Client Application APIs
	Java SSL Client Application APIs
	WebLogic SSL Client Application APIs

	Other APIs

	2 Securing Web Applications
	Authentication With Web Browsers
	User Name and Password Authentication
	Digital Certificate Authentication

	Multiple Web Applications, Cookies, and Authentication
	Using Secure Cookies to Prevent Session Stealing
	Configuring the Session Cookie as a Secure Cookie
	Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID

	Developing Secure Web Applications
	Developing BASIC Authentication Web Applications
	Using HttpSessionListener to Account for Browser Caching of Credentials

	Understanding BASIC Authentication with Unsecured Resources
	Setting the enforce-valid-basic-auth-credentials Flag
	Using WLST to Check the Value of enforce-valid-basic-auth-credentials

	Developing FORM Authentication Web Applications
	Using Identity Assertion for Web Application Authentication
	Using Two-Way SSL for Web Application Authentication
	Providing a Fallback Mechanism for Authentication Methods
	Configuration

	Developing Swing-Based Authentication Web Applications
	Deploying Web Applications

	Using Declarative Security With Web Applications
	Web Application Security-Related Deployment Descriptors
	web.xml Deployment Descriptors
	auth-constraint
	Used Within
	Example

	security-constraint
	Example

	security-role
	Example

	security-role-ref
	Example

	user-data-constraint
	Used Within
	Example

	web-resource-collection
	Used Within
	Example

	weblogic.xml Deployment Descriptors
	externally-defined
	Used Within
	Example

	run-as-principal-name
	Used Within
	Example

	run-as-role-assignment
	Example:

	security-permission
	Example

	security-permission-spec
	Used Within
	Example

	security-role-assignment
	Example

	Using Programmatic Security With Web Applications
	getUserPrincipal
	isUserInRole

	Using the Programmatic Authentication API
	Change the User's Session ID at Login

	3 Using JAAS Authentication in Java Clients
	JAAS and WebLogic Server
	JAAS Authentication Development Environment
	JAAS Authentication APIs
	JAAS Client Application Components
	WebLogic LoginModule Implementation
	JVM-Wide Default User and the runAs() Method

	Writing a Client Application Using JAAS Authentication
	Using JNDI Authentication
	Java Client JAAS Authentication Code Examples

	4 Using SSL Authentication in Java Clients
	JSSE and WebLogic Server
	Using JNDI Authentication
	SSL Certificate Authentication Development Environment
	SSL Authentication APIs
	SSL Client Application Components

	Writing Applications that Use SSL
	Communicating Securely From WebLogic Server to Other WebLogic Servers
	Writing SSL Clients
	SSLClient Sample
	SSLSocketClient Sample

	Using Two-Way SSL Authentication
	Two-Way SSL Authentication with JNDI
	Writing a User Name Mapper
	Using Two-Way SSL Authentication Between WebLogic Server Instances
	Using Two-Way SSL Authentication with Servlets

	Using a Custom Host Name Verifier
	Using a Trust Manager
	Using the CertPath Trust Manager
	Using a Handshake Completed Listener
	Using an SSLContext
	Using URLs to Make Outbound SSL Connections

	SSL Client Code Examples

	5 Securing Enterprise JavaBeans (EJBs)
	Java EE Architecture Security Model
	Declarative Security
	Declarative Authorization Via Annotations

	Programmatic Security
	Declarative Versus Programmatic Authorization

	Using Declarative Security With EJBs
	Implementing Declarative Security Via Metadata Annotations
	Security-Related Annotation Code Examples

	Implementing Declarative Security Via Deployment Descriptors

	EJB Security-Related Deployment Descriptors
	ejb-jar.xml Deployment Descriptors
	method
	Used Within
	Example

	method-permission
	Used Within
	Example

	role-name
	Used Within
	Example

	run-as
	Used Within
	Example

	security-identity
	Used Within
	Example

	security-role
	Used Within
	Example

	security-role-ref
	Used Within
	Example

	unchecked
	Used Within
	Example

	use-caller-identity
	Used Within
	Example

	weblogic-ejb-jar.xml Deployment Descriptors
	client-authentication
	Example

	client-cert-authentication
	Example

	confidentiality
	Example

	externally-defined
	identity-assertion
	Used Within
	Example

	iiop-security-descriptor
	Example

	integrity
	Used Within
	Example

	principal-name
	Used Within
	Example

	role-name
	Used Within
	Example

	run-as-identity-principal
	Used Within
	Example

	run-as-principal-name
	Used Within
	Example

	run-as-role-assignment
	Example

	security-permission
	Example

	security-permission-spec
	Used Within
	Example

	security-role-assignment
	Example

	transport-requirements
	Used Within
	Example

	Using Programmatic Security With EJBs
	getCallerPrincipal
	isCallerInRole

	6 Using Network Connection Filters
	The Benefits of Using Network Connection Filters
	Network Connection Filter API
	Connection Filter Interfaces
	ConnectionFilter Interface
	ConnectionFilterRulesListener Interface

	Connection Filter Classes
	ConnectionFilterImpl Class
	ConnectionEvent Class

	Guidelines for Writing Connection Filter Rules
	Connection Filter Rules Syntax
	Types of Connection Filter Rules
	How Connection Filter Rules are Evaluated

	Configuring the WebLogic Connection Filter
	Developing Custom Connection Filters

	7 Using Java Security to Protect WebLogic Resources
	Using Java EE Security to Protect WebLogic Resources
	Using the Java Security Manager to Protect WebLogic Resources
	Setting Up the Java Security Manager
	Modifying the weblogic.policy file for General Use
	Setting Application-Type Security Policies
	Setting Application-Specific Security Policies

	Using Printing Security Manager
	Printing Security Manager Startup Arguments
	Starting WebLogic Server With Printing Security Manager
	Writing Output Files

	Using the Java Authorization Contract for Containers
	Comparing the WebLogic JACC Provider with the WebLogic Authentication Provider
	Enabling the WebLogic JACC Provider

	8 SAML APIs
	SAML API Description
	Custom POST Form Parameter Names
	Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties
	Overview of Creating a Custom SAML Name Mapper
	Do You Need Multiple SAMLCredentialAttributeMapper Implementations?
	Classes, Interfaces, and Methods
	SAMLAttributeStatementInfo Class
	SAMLAttributeInfo Class

	SAMLCredentialAttributeMapper Interface
	New Methods for SAMLNameMapperInfo Class

	Example Custom SAMLCredentialAttributeMapper Class
	Make the Custom SAMLCredentialAttributeMapper Class Available in the Console

	Configuring SAML SSO Attribute Support
	What Are SAML SSO Attributes?
	New API's for SAML Attributes
	SAML 2.0 Basic Attribute Profile Required
	Passing Multiple Attributes to SAML Credential Mappers
	How to Implement SAML Attributes
	Examples of the SAML 2.0 Attribute Interfaces
	Example Custom SAML 2.0 Credential Attribute Mapper
	Custom SAML 2.0 Identity Asserter Attribute Mapper

	Examples of the SAML 1.1 Attribute Interfaces
	Example Custom SAML 1.1 Credential Attribute Mapper
	Custom SAML 1.1 Identity Asserter Attribute Mapper

	Make the Custom SAML Credential Attribute Mapper Class Available in the Console
	Make the Custom SAML Identity Asserter Class Available in the Console

	9 Using CertPath Building and Validation
	CertPath Building
	Instantiate a CertPathSelector
	Instantiate a CertPathBuilderParameters
	Use the JDK CertPathBuilder Interface
	Example Code Flow for Looking Up a Certificate Chain

	CertPath Validation
	Instantiate a CertPathValidatorParameters
	Use the JDK CertPathValidator Interface
	Example Code Flow for Validating a Certificate Chain

	10 Using JASPIC for a Web Application
	Overview of Java Authentication Service Provider Interface for Containers (JASPIC)
	Do You Need to Implement an Authentication Configuration Provider?
	Do You Need to Implement a Principal Validation Provider?
	Implement a SAM
	Configure JASPIC for the Deployed Web Application

	A Deprecated Security APIs

