
Oracle® Fusion Middleware
Administering the WebLogic Persistent Store

12c (12.2.1.4.0)
E90835-01
September 2019

Oracle Fusion Middleware Administering the WebLogic Persistent Store, 12c (12.2.1.4.0)

E90835-01

Copyright © 2007, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility vi

Conventions vi

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1

1.2 Guide to This Document 1-1

1.3 Related Documentation 1-2

1.4 New and Changed Features in This Release 1-2

2 The WebLogic Persistent Store

2.1 What is a Persistent Store 2-1

2.2 Features of the Persistent Store 2-2

2.3 High-Performance Throughput and Transactional Support 2-3

2.4 Comparing File Stores and JDBC-accessible Stores 2-3

2.5 High Availability For Persistent Stores 2-4

2.5.1 Whole Server Migration 2-4

2.5.2 Automatic Service Migration 2-4

2.5.3 Service Restart In Place 2-5

2.5.3.1 Service Restart In Place in Combination with Migration 2-6

2.5.3.2 Additional Notes 2-7

2.5.4 High Availability Storage Solutions 2-7

2.6 Limitations and Considerations of the Persistent Store 2-8

2.7 Additional Requirement for High Availability File Stores 2-9

2.8 File Locations 2-9

3 Using the Default Persistent Store

3.1 Using the Default Persistent Store 3-1

3.2 Default Store Location 3-1

iii

3.3 Example of a Default File Store 3-2

4 Using Custom Persistent Stores

4.1 What are Custom File Stores and JDBC Stores 4-1

4.2 When to Use a Custom Persistent Store 4-1

4.3 Methods of Creating a Custom Persistent Store 4-2

4.4 Modifying Custom Persistent Store Parameters 4-2

5 Using Custom File Stores

5.1 Creating a Custom (User-Defined) File Store 5-1

5.2 Main Steps for Configuring a Custom File Store 5-1

5.3 Example of a Custom File Store 5-2

5.4 Guidelines for Configuring a Synchronous Write Policy 5-4

5.4.1 Direct-Write-With-Cache Policy 5-4

5.4.2 Direct-Write Policy 5-5

5.4.3 Cache-Flush Policy 5-6

5.4.4 Disabled Policy 5-6

6 Using a JDBC Store

6.1 Creating JDBC-accessible Stores 6-1

6.2 Using a JDBC TLog Store 6-1

6.2.1 Main Steps for Configuring a JDBC TLOG Store 6-1

6.2.1.1 Choosing a Data Source 6-2

6.2.2 Example of a JDBC TLOG Store 6-2

6.2.3 Configuration Guidelines 6-4

6.2.4 Additional Considerations 6-4

6.2.5 Server Migration when using a JDBC TLOG Store 6-5

6.2.6 Monitoring a JDBC TLOG Store 6-5

6.2.6.1 How to Monitor the JDBC TLOG Store Health State 6-5

6.2.6.2 How to Monitor Transaction Log Store Statistics 6-6

6.2.6.3 How to Monitor Transaction Log Store Connections 6-6

6.2.7 Security Considerations 6-6

6.3 Using a JDBC Store 6-6

6.3.1 Main Steps for Configuring a JDBC Store 6-6

6.3.2 Example of a JDBC Store 6-7

6.3.3 Supported JDBC Drivers 6-8

6.3.4 Creating a JDBC Store Table Using Default and Custom DDL Files 6-9

6.3.4.1 Creating a JDBC Store Table Using a Custom DDL File 6-10

6.3.4.2 Enabling Oracle BLOB Record Columns 6-10

iv

6.3.5 Managing JDBC Store Tables 6-11

6.3.5.1 Using the utils.Schema Utility to Delete a JDBC Store Table 6-12

6.3.6 Configuring JDBC Store Reconnect Retry 6-13

6.3.6.1 Using WLST and JMX MBeans 6-13

6.3.7 Important Tuning Considerations for Reconnect Retry 6-13

6.3.8 Configuring a JDBC Store Connection Caching Policy 6-14

6.3.8.1 Using WLST and JMX MBeans 6-14

6.3.8.2 JDBC Store Connection Caching Behavior 6-15

6.3.8.3 Important Tuning Considerations for the NONE Connection
Caching Policy 6-16

6.3.9 Guidelines for Configuring a JDBC Store 6-17

6.3.9.1 Using Prefixes with a JDBC Store 6-17

6.3.9.2 Recommended JDBC Data Source Settings for JDBC Stores 6-18

6.3.9.3 Handling JMS Transactions with JDBC Stores 6-19

6.3.10 Enabling I/O Multithreading for JDBC Stores 6-20

6.3.10.1 Rebuilding the Store Table Index for an Oracle Database 6-20

7 Managing the WebLogic Persistent Store

7.1 Administering a Persistent Store 7-1

7.1.1 Store Administration Using a Java Command Line 7-2

7.1.1.1 Accessing Store Administration Help 7-2

7.1.1.2 Dumping the Contents of a File Store 7-3

7.1.1.3 Compacting a File Store 7-3

7.1.2 Store Administration Using WLST 7-3

7.1.2.1 Accessing Store Administration Help 7-4

7.1.2.2 Dumping the Contents of a JDBC Store Using WLST 7-4

7.1.2.3 Compacting a File Store Using WLST 7-5

7.2 Secure File Store Data 7-5

8 Monitoring the WebLogic Persistent Store

8.1 Monitoring a Persistent Store 8-1

8.2 Monitoring Stores 8-1

8.3 Monitoring Store Connections 8-1

v

Preface

This preface describes the document accessibility features and conventions used in
this guide—Administering the WebLogic Persistent Store.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This section describes the contents and organization of this guide — Administering the
WebLogic Persistent Store.

• Document Scope and Audience

• Guide to This Document

• Related Documentation

• New and Changed Features in This Release

1.1 Document Scope and Audience
This document describes how you design, configure, and manage WebLogic Server
environments. It is a resource for system administrators and operators responsible for
implementing a WebLogic Server installation. This document is relevant to all phases
of a software project, from development through test and production phases.

It is assumed that the reader is familiar with Java EE and Web technologies, object-
oriented programming techniques, and the Java programming language.

1.2 Guide to This Document
The document is organized as follows:

• This chapter, Introduction and Roadmap describes the scope of this guide and
lists related documentation.

• The WebLogic Persistent Store describes the WebLogic Server execution model
and the process of configuring application access to the execute queue.

• Using the Default Persistent Store describes detecting, avoiding, and recovering
from overload conditions.

• Using Custom Persistent Stores describes optimizing your WebLogic Server
domain for your network.

• Using Custom File Stores describes using WebLogic Server as a Web server.

• Using a JDBC Store describes configuring and monitoring the persistent store, a
built-in, high-performance storage solution for WebLogic Server subsystems and
services that require persistence.

• Managing the WebLogic Persistent Store describes the WebLogic Server
introspection plug-in for Oracle Virtual Assembly Builder, which can be used to
examine a single WebLogic domain and the Middleware home directory in which it
resides.

• Monitoring the WebLogic Persistent Store describes the WebLogic Server
introspection plug-in for Oracle Virtual Assembly Builder, which can be used to
examine a single WebLogic domain and the Middleware home directory in which it
resides.

1-1

1.3 Related Documentation
• Understanding Domain Configuration for Oracle WebLogic Server

• Oracle WebLogic Server Administration Console Online Help

1.4 New and Changed Features in This Release
The chapter "Using the WebLogic Persistent Store" in Administering Server
Environments for Oracle WebLogic Server, that was published in 12.1.3 and earlier
versions, has been moved and reorganized in this new book.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

Chapter 1
Related Documentation

1-2

2
The WebLogic Persistent Store

This chapter explains how to configure and monitor the WebLogic Server persistent
store, which provides a built-in, high-performance storage solution for WebLogic
Server subsystems and services that require persistence. It also describes how to
configure high availability for JMS service artifacts that use persistent stores.

• What is a Persistent Store

• Features of the Persistent Store

• High-Performance Throughput and Transactional Support

• Comparing File Stores and JDBC-accessible Stores

• High Availability For Persistent Stores

• Limitations and Considerations of the Persistent Store

• Additional Requirement for High Availability File Stores

• File Locations

2.1 What is a Persistent Store
The persistent store provides a built-in, high-performance storage solution for
WebLogic Server subsystems and services that require persistence. For example, it
can store persistent JMS messages or temporarily store messages sent using the
Store-and-Forward feature. The persistent store supports persistence to a file-based
store or to a JDBC-accessible store in a database.

Table 2-1 defines many of the WebLogic services and subsystems that can create
connections to the persistent store. Each subsystem that uses the persistent store
specifies a unique connection ID that identifies that subsystem.

Table 2-1 Persistent Store Users

Subsystem/Service What It Stores More Information

Diagnostic Service Log records, data events, and
harvested metrics.

Understanding WLDF Configuration in
Configuring and Using the Diagnostics
Framework for Oracle WebLogic
Server

JMS Messages Persistent messages and
durable subscribers.

Understanding the Messaging Models
in Developing JMS Applications for
Oracle WebLogic Server

JMS Paging Store One per JMS server. Paged
persistent and non-persistent
messages.

Main Steps for Configuring Basic JMS
System Resources in Administering
JMS Resources for Oracle WebLogic
Server.

2-1

Table 2-1 (Cont.) Persistent Store Users

Subsystem/Service What It Stores More Information

JTA Transaction Log
(TLOG)

Information about committed
transactions coordinated by the
server that may not have been
completed. TLOGs can be
stored in the default persistent
store or a JDBC TLOG store.

• Managing Transactions in
Developing JTA Applications for
Oracle WebLogic Server.

• Using a JDBC TLog Store

Path Service The mapping of a group of
messages to a messaging
resource.

Using the WebLogic Path Service in
Administering JMS Resources for
Oracle WebLogic Server

Store-and-Forward
(SAF) Service
Agents

Messages for a sending SAF
agent for retransmission to a
receiving SAF agent

Understanding the Store-and-Forward
Service in Administering the Store-and-
Forward Service for Oracle WebLogic
Server.

Web Services Request and response SOAP
messages from an invocation
of a reliable WebLogic Web
Service.

Using Web Services Reliable
Messaging in Developing JAX-WS
Web Services for Oracle WebLogic
Server.

EJB Timer Services EJB Timer objects. Understanding Enterprise JavaBeans
in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic
Server

See Monitoring Store Connections.

2.2 Features of the Persistent Store
The key features of the persistent store include:

• Default file store for each server instance that requires no configuration.

• The Default and custom stores are shareable by multiple subsystems, as long as
they are all targeted to the same server instance, cluster, or migratable target.

• When configured, a JDBC TLOG store which contains information about
committed transactions coordinated by the server that may not have been
completed. You can select to persist TLOG information either in the default store
or the JDBC TLOG store, depending on your application needs. See Using a
JDBC TLog Store.

• High-performance throughput and transactional support.

• Modifiable parameters that let you create customized file stores and JDBC stores.

• Monitoring capabilities for persistent store statistics and open store connections.

• In a clustered environment, the JDBC TLOG store and customized stores can be
migrated from an unhealthy server to a backup server, either on the whole-server
level or on the service level.

• When targeted to a cluster, the high availability parameters of the persistent store
control the distribution and high availability behavior of JMS services. It also
eliminates the need to configure Migratable Targets. See Simplified JMS Cluster

Chapter 2
Features of the Persistent Store

2-2

and High Availability Configuration in Administering JMS Resources for Oracle
WebLogic Server.

2.3 High-Performance Throughput and Transactional
Support

Throughput is the main performance goal of the persistent store. Multiple subsystems
can share the same default or custom store, as long as they are all targeted to the
same server instance, cluster, or migratable target.

Note:

• The JDBC TLOG store is only used to persist information about
committed transactions coordinated by the server that may not have
been completed. It can not be shared by other subsystems.

• The JDBC TLOG store does not allow HA configuration settings.

This is a performance advantage because the persistent store is treated as a single
resource by the transaction manager for a particular transaction, even if the
transaction involves multiple services that use the same store. For example, if the
TLOG, JMS and EJB timers share a file store, and a JMS message and an EJB timer
are created in a single transaction, the transaction will be one-phase and incur a single
resource write, rather than two-phase, which incurs four resource writes (two on each
resource), plus a transaction entry write (on the transaction log).

Both a file store and a JDBC store can survive a process crash or hardware power
failure without losing any committed updates. Uncommitted updates may be retained
or lost, but in no case will a transaction be left partially complete after a crash.

2.4 Comparing File Stores and JDBC-accessible Stores
The following are some similarities and differences between file stores and JDBC-
accessible stores:

• The default persistent store can only be a file store. Therefore, a JDBC store
cannot be used as a default persistent store.

• Both have the same transaction semantics and guarantees. As with JDBC store
writes, file store writes are guaranteed to be persisted to disk and are not simply
left in an intermediate (that is, unsafe) cache.

• Both have the same application interface (no difference in application code).

• All things being equal, file stores generally offer better throughput than a JDBC
store.

Chapter 2
High-Performance Throughput and Transactional Support

2-3

Note:

If a database is running on high-end hardware with very fast disks, and
WebLogic Server is running on slower hardware or with slower disks,
then you may get better performance from the JDBC store.

• File stores are generally easier to configure and administer, and do not require
that WebLogic subsystems depend on any external component.

• File stores generate no network traffic; whereas, JDBC stores generate network
traffic if the database is on a different machine from WebLogic Server.

• JDBC stores may make it easier to handle failure recovery since the JDBC
interface can access the database from any machine on the same network. With
the file store, the disk must be shared or migrated.

• Dynamic Scalability: When custom logical persistent stores are configured and
targeted to a cluster, by default, the system automatically creates one physical
instance on each of the cluster member, and the instance is named uniquely for
monitoring purposes. This allows the store and related JMS artifacts to
dynamically scale without the need for individually configuring them on each
cluster member. This behavior can be changed such that the system only creates
one physical instance and make it high available in the cluster. See Simplified JMS
Cluster and High Availability Configuration in Administering JMS Resources for
Oracle WebLogic Server.

2.5 High Availability For Persistent Stores
For high availability, WebLogic Server offers the following options:

• Whole Server Migration

• Automatic Service Migration

• Service Restart In Place

• High Availability Storage Solutions

2.5.1 Whole Server Migration
A persistent file-based store (default, or custom) can be migrated along with its parent
server as part of the "whole server-level" migration feature, which provides both
automatic and manual migration at the server level, rather than on the service level.
See Whole Server Migration in Administering Clusters for Oracle WebLogic Server.
However, file-based stores must be configured on a shared disk that is available to all
servers in the cluster.

2.5.2 Automatic Service Migration
File-based stores and JDBC-accessible stores can also be migrated as part of a
"service-level" migration for JMS-related services, such as JMS servers, SAF agents,
and the path service, which rely on stores to maintain data. WebLogic Server supports
automatic service migration in two ways:

Chapter 2
High Availability For Persistent Stores

2-4

• By using simplified JMS cluster configuration: This enables the automatic service
migration for both store and all the JMS service artifacts that reference the store.
The configuration settings will take effect whenever the store is targeted to a
cluster. This model offers enhanced HA capabilities such as automatic failback,
dynamic load balancing, and failover. See Simplified JMS Cluster and High
Availability Configuration in Administering JMS Resources for Oracle WebLogic
Server.

• By using Migratable Target configuration: In this model, a migratable target serves
as a grouping mechanism for related JMS services, and the entire group is hosted
on only one physical server in a cluster.

Note:

For automatic service migration, use simplified JMS cluster configuration
instead of the legacy migratable target model.

In both these models, the related hosted services can be automatically migrated from
the current unhealthy hosting server to a healthy active server with the help of the
Health Monitoring subsystem. In a cluster targeted Store case, when any store
instance migrates, all the associated JMS service instances that are referencing that
Store instances are also migrated.

In this release, Service-level migration is controlled by targeting the Store to the same
cluster as the associated JMS service artifacts, with appropriate high availability
parameter settings on the Store. See Simplified JMS Cluster and High Availability
Configuration in Administering JMS Resources for Oracle WebLogic Server. This type
of migration is supported in all the cluster types (configured, dynamic, and mixed) and
eliminates the need for Migratable Target configuration. This option also supports
automatic failback as well as it controls the service migration of the JMS artifact.As in
the previous releases, you can still enable Service-level migration by targeting related
JMS services to a Migratable Target, which serves as a grouping of JMS-related
services and which is hosted on only one physical server in a cluster. In Migratable
Target based configuration, the JMS services hosted by a migratable target can also
be manually migrated on demand as part of regularly scheduled server maintenance.

In both the cases, JMS services can be automatically migrated from the current
unhealthy hosting server to a healthy active server with the help of the Health
Monitoring subsystem. When the migration takes place, all pinned services associated
with the Store and are hosted by that Server are also migrated.

See Service Migration in Administering Clusters for Oracle WebLogic Server.

In the cluster or migratable target based model, JMS-related services cannot use the
default file store, so you must configure a custom file store or JDBC store and target it
to the same migratable target as the JMS server, SAF agent, or path service
associated with the store.

For best practices, see Additional Requirement for High Availability File Stores.

2.5.3 Service Restart In Place
Service Restart In Place provides options to automatically recover a failed custom
store and its dependent services on their original running WebLogic Server. For

Chapter 2
High Availability For Persistent Stores

2-5

information about Service Restart In Place for other store types and messaging
bridges, see the Service Restart In Place in Combination with Migration and Additional
Notes sections below.

When Restart In Place is not configured and in effect, WebLogic Server marks failed
custom stores and their dependent JMS services as unhealthy and shuts them down.
For example, this can happen when a file store gets an error from a file system or
when a JDBC store cannot access its database. Messages persisted prior to a store
shutdown are unavailable for consumption until either the store is restarted or is
migrated to another server within the same cluster.

The way to enable Service Restart In Place on a custom store varies based on the
store target.

Custom Store Target Service Restart In Place Option

Standalone server or cluster Option 1: Explicitly configure the store
Restart In Place setting to true.

Option 2: Set the store Migration Policy to
Always or On-Failure. This causes the
Restart In Place setting to default to true.

With either option, you can fine-tune Restart In
Place behavior by changing Seconds
Between Restarts (default 30) and Number
Of Restart Attempts (default 6) in the
store configuration.

Migratable target Enable Restart In Place on the migratable
target.

You can fine-tune Restart In Place behavior by
changing Seconds Between Restarts
(default 30) and Number Of
RestartAttempts (default 6) in the
migratable target configuration. See In-Place
Restarting of Failed Migratable Services in
Administering Clusters for Oracle WebLogic
Server.

Managed Server instance within a cluster It is not possible to enable Restart In Place on
stores that are directly targeted to a server
within a cluster. Oracle recommends targeting
stores and their dependent services to the
cluster or to a migratable target instead.

2.5.3.1 Service Restart In Place in Combination with Migration
Service Restart In Place can be configured independently of whole server migration or
service migration. When Restart In Place and migration are both configured, they work
as follows:

Restart In Place and Service Migration

If Restart In Place is enabled, if the store's original host JVM is still running, and if a
failed store is configured to migrate from one server to another within a WebLogic
cluster, then the system tries to restart the store on its original host JVM before it tries
a migration. See Service Migration in Administering Clusters for Oracle WebLogic
Server.

Chapter 2
High Availability For Persistent Stores

2-6

Restart In Place and Whole Server Migration

If a globally-scoped store is targeted to a standalone server, is targeted to a server
within a cluster, or is targeted to a cluster and has a MigrationPolicy of Off, then the
store places its host WebLogic Server instance in a failed health state after all of its
restart attempts fail. The failed WebLogic Server health state allows the optional
Whole Server Migration framework to detect the problem and attempt to either restart
the WebLogic Server JVM or to migrate the JVM to another server. See Whole Server
Migration in Administering Clusters for Oracle WebLogic Server.

If a store is scoped to a partition, is targeted to a cluster and has a MigrationPolicy of
Always or On-Failure, or is targeted to a Migratable Target that enables restart-on-
failure, then a failed store does not cause a WebLogic Server to enter a Failed health
state even after all of its restart attempts fail as migration will kick in. Whole server
migration and whole server restart do not apply in this case. To handle the situation
manually, you can use the WebLogic Server Administration Console to restart the
affected partition or the entire WebLogic Server JVM. To handle the situation
automatically, you can develop custom WLST scripts that do the same.

2.5.3.2 Additional Notes
• Service Restart In Place is not applicable to WebLogic default stores, Transaction

Log Store, or messaging bridges.

– Failed default stores cause a server to enter a Failed health state, and require
a Whole Server Migration or Whole Server restart to recover. Oracle
recommends that you configure services to persist critical information in
custom stores instead of default stores.

– For information about how to tune a Transaction Log Store restart, see
Configure the Transaction Log Store in Oracle WebLogic Server
Administration Console Online Help.

– Messaging Bridges ignore Restart In Place settings. Instead, they
automatically handle failures by periodically retrying when they fail to connect
to their source or target destinations.

• Custom JDBC Stores have an additional internal retry mechanism that takes effect
first before they shutdown and requires the store and its dependent services to
restart. This functionality is helpful for silent recovery from brief database outages.
See Configuring JDBC Store Reconnect Retry.

2.5.4 High Availability Storage Solutions
If you have applications that need access to persistent stores that reside on remote
machines after the migration of a JMS server or JTA transaction log, then you should
implement one of the following highly-available storage solutions:

• File-based stores (default or custom)—Implement a hardware solution, such as a
dual-ported SCSI disk or Storage Area Network (SAN) to make a file store
available from shareable disks or remote machines.

Chapter 2
High Availability For Persistent Stores

2-7

Note:

– Persistent file stores that may migrate to a different JVM or machine
must be explicitly configured to reference a shared directory. See
Additional Requirement for High Availability File Stores.

– If a file store is disconnected and re-connected again, its host server
instance must be rebooted to successfully continue sending/
receiving persistent JMS messages. For example, if for some reason
the file system containing a file store is unmounted and then
remounted, attempts to send persistent JMS messages will generate
JMS exceptions until the host server is rebooted.

• JDBC-accessible stores—Configure a JDBC store or JDBC TLOG store and use
JDBC to access this store, which can be on yet another server. Applications can
then take advantage of any high-availability or failover solutions offered by your
database vendor. In addition, JDBC stores support GridLink data sources and
multi data sources, which provide failover between nodes of a highly available
database system, such as Oracle Real Application Clusters (Oracle RAC). For
more information, see:

– Configuring JDBC Multi Data Sources in Administering JDBC Data Sources for
Oracle WebLogic Server

– Using GridLink Data Sources in Administering JDBC Data Sources for Oracle
WebLogic Server

• Any persistent store—Use high-availability clustering software which provides an
integrated, out-of-the-box solution for WebLogic Server-based applications.

2.6 Limitations and Considerations of the Persistent Store
The following limitations apply to the persistent store:

• A persistent file store should not be opened simultaneously by two server
instances; otherwise, there is no guarantee that the data in the file will not be
corrupted. If possible, the persistent store will attempt to return an error in this
case, but it will not be possible to detect this condition in every case. It is the
responsibility of the administrator to ensure that the persistent store is being used
in an environment in which multiple servers will not try to access the same store at
the same time. (Two file stores are considered the "same store" if they have the
same name and the same directory.)

• Two JDBC stores must not share the same database table, because this will result
in data corruption. A JDBC store will normally prevent this from happening by
detecting if a backing table has already been opened by another instance, but it is
not possible to detect this condition in every case. It is the responsibility of the
administrator to ensure that the persistent store is being used in an environment in
which multiple servers will not try to access the same store at the same time. (Two
JDBC stores can reference the same table if they have the same table name prefix
and database schema.)

• A persistent store may not survive arbitrary corruption. If the disk file is overwritten
with arbitrary data, then the results are undefined. The store may return
inconsistent data in this case, or even fail to recover at all.

Chapter 2
Limitations and Considerations of the Persistent Store

2-8

• A file store may return exceptions when its disk is full. However, it will resume
normal operation by no longer throwing an exception when disk space has been
made available. Also, the data in the persistent store must remain intact as
described in the previous points.

• When using MySQL as the backing database for a JDBC store, Oracle
recommends using the InnoDB engine because it provides safe writes. If the
MyISAM engine is used, data may be lost in some cases.

2.7 Additional Requirement for High Availability File Stores
Custom and default file stores that are configured for high availability via service
migration or whole server migration must explicitly configure a directory on a central
location on a shared disk. This ensures that the same directory and files are available
to all servers and machines that may host a store, and is required to ensure that a
store can recover its data after it migrates.

This applies to default and custom file store locations, it does not apply to cache or
page file directories as the latter do not need to be highly available and can and should
be located on a local drive for performance reasons.

See File Locations.

See Migratable Target and Simplified JMS Cluster and High Availability Configuration
in Administering JMS Resources for Oracle WebLogic Server.

2.8 File Locations
Persistent stores create a number of files in the file system for different
purposes. Among them are file store data files, file store cache files (for file stores with
a DirectWriteWithCache synchronous write policy), and JMS server and SAF agent
paging files.

Table 2-2 describes the location of various files used by the file store system at the
domain level. For WebLogic Server MT locations, see File Locations in Using Oracle
WebLogic Server Multitenant.

Table 2-2 File Locations

Store Type Store Path Not
Configured

Relative Store
Path

Absolute Store
Path

File Name

default <domainRoot>/
servers/
<serverName>/
data/store/
default

<domainRoot>/
<relPath>

<absPath> _WLS_<serverN
ame>NNNNNN.DA
T

custom file <domainRoot>/
servers/
<serverName>/
data/store/
<storeName>

<domainRoot>/
<relPath>

<absPath> <storeName>NN
NNNN.DAT

Chapter 2
Additional Requirement for High Availability File Stores

2-9

Table 2-2 (Cont.) File Locations

Store Type Store Path Not
Configured

Relative Store
Path

Absolute Store
Path

File Name

cache $
{java.io.tmpd
ir}/
WLStoreCache
/$
{domainName}/
<storeUuid>

<domainRoot>/
<relPath>

<absPath> <storeName>NN
NNNN.CACHE

paging <domainRoot>/
servers/
<serverName>/
tmp

<domainRoot>/
<relPath>

<absPath> <jmsServerNam
e>NNNNNN.TMP

<safAgentName
>NNNNNN.TMP

Table 2-3 shows how each of the prior store types configure their directory location.

Table 2-3 Store Type Directory Configuration

Store Type Directory Configuration

default The directory configured on a WebLogic
Server default store. See Using the Default
Persistent Store.

custom file The directory configured on a custom file
store. See Using Custom File Stores.

cache The cache directory configured on a custom or
default file store that has
a DirectWriteWithCache synchronous write
policy. See Tuning the WebLogic Persistent
Store in Tuning Performance of Oracle
WebLogic Server.

paging The paging directory configured on a SAF
agent or JMS server. See Paging Out
Messages To Free Up Memory in Tuning
Performance of Oracle WebLogic Server.

Chapter 2
File Locations

2-10

3
Using the Default Persistent Store

This chapter explains how to configure and monitor the WebLogic Server persistent
store, which provides a built-in, high-performance storage solution for WebLogic
Server subsystems and services that require persistence.

• Using the Default Persistent Store

• Default Store Location

• Example of a Default File Store

3.1 Using the Default Persistent Store
Each server instance, including the Administration Server, has a default persistent
store that requires no configuration. The default store is a file-based store that
maintains its data in a group of files in a server instance data\store\default
directory. A directory for the default store is automatically created if one does not
already exist. This default store is available to subsystems that do not require explicit
selection of a particular store and function best by using the system's default storage
mechanism. For example, a JMS Server with no persistent store configured will use
the default store for its Managed Server and will support persistent messaging.

The default store can be configured by directly manipulating DefaultFileStoreMBean
parameters. If this MBean is not defined in the domain configuration file, then the
configuration subsystem ensures that the DefaultFileStoreMBean always exists with
the default values.

Also, the WebLogic Server Administration Console enables you to change the default
store parameters, such as its default directory location and Synchronous Write Policy,
as described in Modify the Default Store Settings in the Oracle WebLogic Server
Administration Console Online Help.

3.2 Default Store Location
The default store maintains its data in a data\store\default directory inside the
servername subdirectory of a domain's root directory

For example, if no directory name is specified for the default file store, it defaults to:

ORACLE_HOME\user_projects\domains\domain-name\servers\server-name\data\store\default

where domainname is the root directory of your domain, typically c:\oracle
\user_projects\domains\domainname, which is parallel to the directory in which
WebLogic Server program files are stored, typically c:\oracle\wlserver_12.1.

You can, however, specify another location for the default store by directly
manipulating the DefaultFileStoreMBean parameters or by using the WebLogic Server
Administration Console, as described in Modify the Default Store Settings in the
Oracle WebLogic Server Administration Console Online Help.

3-1

3.3 Example of a Default File Store
Here's an example of how a default file store may look in a domain's configuration file,
with the default directory location and Synchronous Write Policy settings overridden:

<server
 <name>myserver</name>
 <default-file-store>
 <directory>C:/store</directory>
 </default-file-store>
</server>

Chapter 3
Example of a Default File Store

3-2

4
Using Custom Persistent Stores

This chapter explains how to configure and monitor the WebLogic Server persistent
store, which provides a built-in, high-performance storage solution for WebLogic
Server subsystems and services that require persistence.

• What are Custom File Stores and JDBC Stores

• When to Use a Custom Persistent Store

• Methods of Creating a Custom Persistent Store

• Modifying Custom Persistent Store Parameters

4.1 What are Custom File Stores and JDBC Stores
In addition to using the default file store, you can also configure a file store or JDBC
store to suit your specific needs. A custom file store, like the default file store,
maintains its data in a group of files in a directory. However, you may want to create a
custom file store so that the file store's data is persisted to a particular storage device
or when you want a JMS service that accesses a file store to be able to migrate with
the store to another server member in a cluster. When configuring a file store
directory, the directory must be accessible to the server instance on which the file
store is located.

A JDBC store can be configured when a relational database is used for storage. A
JDBC store enables you to store persistent messages in a standard JDBC-accessible
database, which is accessed through a designated JDBC data source. The data is
stored in the JDBC store's database table, which has a logical name of WLStore. It is
up to the database administrator to configure the database for high availability and
performance. JDBC stores also support migratable targets for automatic or manual
JMS service migration.

See When to Use a Custom Persistent Store.

4.2 When to Use a Custom Persistent Store
WebLogic Server provides configuration options for creating a custom file store or
JDBC-accessible store. For example, you may want to:

• Place a file store's files on a particular device.

• Use a JDBC store rather than a file store for a particular server instance. If you
want to persist transaction logs, use a JDBC TLOG store. See Using a JDBC TLog
Store.

• Allow all physical stores in a cluster to share the same logical name.

• Logically separate different services to use different files or tables. (This may
simplify administration and maintenance at the expense of reduced performance.)

• Migratable JMS-related services cannot use the default persistent store, so you
must configure a custom store and target it to the same migratable target as the

4-1

migratable JMS service. See Service Migration in Administering Clusters for
Oracle WebLogic Server.

4.3 Methods of Creating a Custom Persistent Store
A user-defined persistent store can be configured in the following ways:

• Use the WebLogic Server Administration Console. To configure a custom file store
or JDBC store, see Configure Persistent Stores in the Oracle WebLogic Server
Administration Console Online Help. To configure a JDBC TLOG store, see
Configure the Transaction Log Store in the Oracle WebLogic Server
Administration Console Online Help.

• Directly edit the configuration file (config.xml) of the server instance that is
hosting a persistent store.

• Use the WebLogic Java Management Extensions (JMX) to create persistent
stores. JMX is the Java EE solution for monitoring and managing resources on a
network. See Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

• Use the WebLogic Scripting Tool (WLST) to create persistent stores. WLST is a
command-line scripting interface that you use to interact with and configure
WebLogic Server instances and domains. See Understanding the WebLogic
Scripting Tool.

• Use the WebLogic Configuration Wizard to change the options of the default
persistent store. For detailed information on how to use the Configuration Wizard
to configure a persistent store, see Creating a WebLogic Domain in Creating
WebLogic Domains Using the Configuration Wizard.

4.4 Modifying Custom Persistent Store Parameters
Modifying certain custom store configuration options, such as a JDBC store's prefix or
a file store's directory, do not necessarily require a server restart if you do the
following:

1. Set the targets of any dependent services to null (such as a JMS server that uses
the custom store), and then setting the custom store target to null. (Setting a
service's target to null implicitly shuts down the service.)

2. Reverse the process by setting the custom store target back to its original value
and then setting the dependent resource targets back to their original values.

In cases where the custom store and JMS servers share a migratable target, you can
administratively restart the migratable target.

Chapter 4
Methods of Creating a Custom Persistent Store

4-2

5
Using Custom File Stores

This chapter explains how to configure the custom file stores for WebLogic Server. It
includes the following sections:

• Creating a Custom (User-Defined) File Store

• Main Steps for Configuring a Custom File Store

• Example of a Custom File Store

• Guidelines for Configuring a Synchronous Write Policy

5.1 Creating a Custom (User-Defined) File Store
The following sections provide an example of a custom file store and configuration
guidelines for choosing a synchronous write policy.

To create a custom file store, you can directly modify the default FileStoreMBean
parameters. For instructions on using the WebLogic Server Administration Console to
create a custom file store, see Create File Stores in the Oracle WebLogic Server
Administration Console Online Help.

5.2 Main Steps for Configuring a Custom File Store
The main steps for creating a custom file store are as follows:

1. Create a directory where the file store's data will be persisted.

2. Make a note of the following information:

• For stores that may migrate, such as cluster targeted stores with a Migration
Policy != Off, stores that are targeted to a migratable target, or stores
hosted on a WebLogic Server JVM that may be moved to a different machine,
always configure a directory that is centrally accessible from any location that
the store may migrate to (do not leave the directory name at the default). This
is necessary for migrated stores to recover any data written before the
migration - including, for example, queued JMS messages. See Whole Server
Migration and Service Migration in Administering Clusters for Oracle WebLogic
Server.

• For information about default, absolute, and relative file locations, see File
Locations.

3. Associate the custom file store with the subsystem(s) or migratable target that will
be accessing it, such as:

• For JMS servers, select the custom file store on the General Configuration
page.

• For Store-and-Forward agents, select the custom file store on the General
Configuration page.

5-1

• For a Path Service, select the custom file store on the General Configuration
page.

5.3 Example of a Custom File Store
Here's an example of how a custom file store may look in a domain's configuration file
with its files kept in a /disk1/jmslog directory.

<file-store>
 <name>SampleFileStore</name>
 <target>myserver</target>
 <directory>/disk1/jmslog</directory>
</file-store>

Table 5-1 briefly describes the file store configuration parameters that can be modified.

Table 5-1 Custom File Store Configuration Options

Option Required What It Does

Name Yes The name of the file store, which must be unique across all
stores in the domain.

Targets Yes The server instance, cluster, or migratable target where a file
store is targeted. Multiple subsystems can share the same
file store, as long as they are all targeted to the same server
instance or migratable target.

Note:
• When using a cluster to host a JMS Server, you must

target the file store to the same cluster used by the JMS
Server. See Simplified JMS Cluster and High Availability
Configuration in Administering JMS Resources for
Oracle WebLogic Server.

• When using migratable targets for JMS services, you
must target the file store to the same migratable target
used by the JMS service. See Service Migration in
Administering Clusters for Oracle WebLogic Server.

Chapter 5
Example of a Custom File Store

5-2

Table 5-1 (Cont.) Custom File Store Configuration Options

Option Required What It Does

Directory Yes The path name to the directory on the file system where the
file store is kept.

Note:

• For stores that may
migrate, such as cluster
targeted stores with a
Migration Policy != Off,
stores that are targeted to
a migratable target, or
stores hosted on a
WebLogic Server JVM that
may be moved to a
different machine, always
configure a directory that
is centrally accessible
from any location that the
store may migrate to (do
not leave the directory
name at the default). This
is necessary for migrated
stores to recover any data
written before the
migration - including, for
example, queued JMS
messages. See Whole
Server Migration and
Service Migration in
Administering Clusters for
Oracle WebLogic Server.

• For information about
default, absolute, and
relative file locations, see
File Locations.

• Modifying an existing file
store's directory does not
necessarily require a
server restart, as
described in Modifying
Custom Persistent Store
Parameters.

CacheDirectory No This setting only applies for the Direct-Write-With-
Cache file store synchronous write policy. See Guidelines for
Configuring a Synchronous Write Policy.

Chapter 5
Example of a Custom File Store

5-3

Table 5-1 (Cont.) Custom File Store Configuration Options

Option Required What It Does

Logical Name No Optionally used with subsystems, like EJBs, when deploying
a module to an entire cluster, but also require a different
physical store on each server instance in the cluster. In such
a configuration, each physical store would have its own
name, but all the persistent stores would share the same
logical name.

Synchronous Write
Policy

No Defines the IO behavior of a file store including immediate
durability of individual write operations. Values are: Direct-
Write (default), Direct-Write-With-Cache, Cache-Flush, and
Disabled.

See Guidelines for Configuring a Synchronous Write Policy.

For instructions on configuring a custom file store using the WebLogic Server
Administration Console, see Create File Stores in the Oracle WebLogic Server
Administration Console Online Help.

5.4 Guidelines for Configuring a Synchronous Write Policy
There are several Synchronous Write Policies available for file stores. The
Synchronous Write Policy determines the behavior of the write operation of the file
store. You should select a policy that best suits your environment and meets your
needs for runtime performance and data integrity after a possible crash. See Tuning
the WebLogic Persistent Store in Tuning Performance of Oracle WebLogic Server for
more details about tuning and performance specifics of Synchronous Write Policy and
other file store options.

Note:

To view a running custom or default file store's synchronous write policy and
driver, check the WL-280008 and WL-280009 messages in the server log.

5.4.1 Direct-Write-With-Cache Policy
For most scenarios, Oracle recommends using the Direct-Write-With-Cache policy.
When this policy is selected, WebLogic Server writes synchronously to a primary set of
files in the location defined by the Directory attribute of the file store configuration
using a native I/O wlfileio driver. WebLogic Server also asynchronously writes to a
corresponding cache file in the location defined by the CacheDirectory attribute of the
file store configuration, which is done implicitly by using OS memory caching the
cache file blocks as output buffers for the primary data file. The cache files are used
for performance optimizations at runtime and boot time and for recovery. This
combination of direct writing with a native file driver and the use of corresponding
cache files typically provides the best overall performance with the most safe disk
writes.

Chapter 5
Guidelines for Configuring a Synchronous Write Policy

5-4

This option uses approximately twice as much disk space as other policies and stores
files in two locations. You may need to consider disk space allocations in these
locations and you may need to secure both of these locations.

When configuring file locations with the Direct-Write-With-Cache policy, the location
of the CacheDirectory attribute should be a local directory, even when configuring for
high availability (Whole Server Migration or Automatic Service Migration). The cache
files are used for performance optimizations only. The true persistent storage for
messages is defined by the Directory attribute of the file store configuration. Only that
directory needs to be available to the migrated WebLogic Server instance or JMS
service after migration. The same applies to disaster recovery scenarios: only the files
defined in the Directory location need to replicated to the backup site.

Note:

If the file store native wlfileio driver cannot be loaded, the store
automatically runs in an alternate specialized Direct-Write policy mode. To
view a running custom or default file store's configured and actual
synchronous write policy and driver, examine the server log for WL-280008
and WL-280009 messages.

Certain older versions of Microsoft Windows may incorrectly report storage
device synchronous write completion if the Windows default Write Cache
Enabled setting is used. This violates the transactional semantics of
transactional products (not specific to Oracle), including file stores configured
with a Direct-Write (default) or Direct-Write-With-Cache policy, as a
system crash or power failure can lead to a loss or a duplication of records/
messages. One of the visible symptoms is that this problem may manifest
itself in high persistent message/transaction throughput exceeding the
physical capabilities of your storage device. You can address the problem by
applying a Microsoft supplied patch, disabling the Windows Write Cache
Enabled setting, or by using a power-protected storage device. See http://
support.microsoft.com/kb/281672 and http://
support.microsoft.com/kb/332023.

5.4.2 Direct-Write Policy
When the Direct-Write policy is selected, WebLogic Server writes synchronously to a
primary set of files in the location defined by the Directory attribute of the file store
configuration using a native I/O wlfileio driver. This policy typically performs slower
than the Direct-Write-With-Cache policy, but it uses less disk space and may have
fewer environmental considerations to manage. The Direct-Write policy is typically
faster than the Cache-Flush policy.

Chapter 5
Guidelines for Configuring a Synchronous Write Policy

5-5

http://support.microsoft.com/kb/281672
http://support.microsoft.com/kb/281672
http://support.microsoft.com/kb/332023
http://support.microsoft.com/kb/332023

Note:

Certain older versions of Microsoft Windows may incorrectly report storage
device synchronous write completion if the Windows default Write Cache
Enabled setting is used. This violates the transactional semantics of
transactional products (not specific to Oracle), including file stores configured
with a Direct-Write (default) or Direct-Write-With-Cache policy, as a
system crash or power failure can lead to a loss or a duplication of records/
messages. One of the visible symptoms is that this problem may manifest
itself in high persistent message/transaction throughput exceeding the
physical capabilities of your storage device. You can address the problem by
applying a Microsoft supplied patch, disabling the Windows Write Cache
Enabled setting, or by using a power-protected storage device. See http://
support.microsoft.com/kb/281672 and http://
support.microsoft.com/kb/332023.

5.4.3 Cache-Flush Policy
When the Cache-Flush policy is selected, WebLogic Server enables the default file
write behavior of the operating system and storage device, which typically includes
caching and scheduling file writes, but forces a flush of the cache to disk before
completing a transaction. Transactions cannot complete until all of their writes have
been flushed down to disk. This policy is reliable and scales well as the number of
simultaneous users increases. It is transactionally safe, but tends to provide lower
runtime performance than the direct-write policies in typical use cases, except in those
cases with large numbers of simultaneous producers or consumers.

5.4.4 Disabled Policy
When the Disabled policy is selected, WebLogic Server relies on the default file write
behavior of the operating system and storage device. In most cases, file writes are
cached in memory and are scheduled for writing instead of being directly written to
disk. The Disabled policy generally improves file store performance, often quite
dramatically, but at the expense of possibly losing sent messages or generating
duplicate received messages (even if messages are transactional) in the event of an
operating system crash or a hardware failure. This is because transactions are
complete as soon as their writes are cached in memory, instead of waiting for the
writes to successfully reach the disk. Simply shutting down an operating system or
killing a WebLogic Server process does not generate these failures, as an OS flushes
all outstanding writes under these circumstances during a normal shutdown. Instead,
these failures can be emulated by abruptly shutting the power off to a busy server.

Chapter 5
Guidelines for Configuring a Synchronous Write Policy

5-6

http://support.microsoft.com/kb/281672
http://support.microsoft.com/kb/281672
http://support.microsoft.com/kb/332023
http://support.microsoft.com/kb/332023

6
Using a JDBC Store

This chapter explains how to configure and monitor the WebLogic Server persistent
store, which provides a built-in, high-performance storage solution for WebLogic
Server subsystems and services that require persistence.

• Creating JDBC-accessible Stores

• Using a JDBC TLog Store

• Using a JDBC Store

6.1 Creating JDBC-accessible Stores
The following sections provide information on how to configure and use JDBC-
accessible stores:

• JDBC TLog Stores: to persist transaction logs (TLOGs) in a database. See Using
a JDBC TLog Store.

• JDBC Stores: to persist WebLogic Server instance services and subsystem
information, excluding TLOGs, in a database. See Using a JDBC Store.

6.2 Using a JDBC TLog Store
You can configure a JDBC TLOG store to persist transaction logs to a database, which
provides the following benefits:

• Leverages replication and HA characteristics of the underlying database.

• Simplifies disaster recovery by allowing the easy synchronization of the state of
the database and TLOGs.

• Improved Transaction Recovery service migration as the transaction logs to do not
need to be migrated (copied) to a new location.

6.2.1 Main Steps for Configuring a JDBC TLOG Store
The main steps for creating a JDBC TLOG store are as follows:

1. Create a JDBC data source, GridLink data source, or multi data source to interface
with the JDBC store. See Choosing a Data Source.

2. Create a JDBC TLOG store and associate it with the JDBC data source, GridLink
data source, or multi data source created in Step 1. See Configure the Transaction
Log Store in the Oracle WebLogic Server Administration Console Online Help.

3. Optional. It is highly recommended that you configure the Prefix option to a unique
value for each configured JDBC TLOG store.

4. For high availability, make your data source available to backup servers. See
Server Migration when using a JDBC TLOG Store.

6-1

6.2.1.1 Choosing a Data Source
You can choose one of the following data source types, depending on your WebLogic
Server license and application needs:

• Generic Data Sources—See Creating a JDBC Data Source in Administering JDBC
Data Sources for Oracle WebLogic Server.

• GridLink Data Sources—See Using GridLink Data Sources in Administering JDBC
Data Sources for Oracle WebLogic Server.

• Multi data sources—Backed by a fully replicated, zero-latency database, such as
Oracle RAC. See Configuring JDBC Multi Data Sources and Using Multi Data
Sources with Oracle RAC in Administering JDBC Data Sources for Oracle
WebLogic Server.

6.2.2 Example of a JDBC TLOG Store
Here's an example of how a JDBC TLOG store may look in the configuration file, using
the JDBC data source MyDataSource, and with a logical name specified:

<server>
 <transaction-log-jdbc-store>
 <data-source>MyDataSource</data-source>
 <prefix-name>TLOG_MS1</prefix-name>
 <create-table-ddl-file>myDDL/myCreateTable.sql</create-table-ddl-file>
 <max-retry-seconds-before-tlog-fail>120</max-retry-seconds-before-tlog-fail>
 </transaction-log-jdbc-store>
</server>

Table 6-1 describes the JDBC TLOG store configuration parameters that can be
modified.

Table 6-1 JDBC TLOG Store Configuration Options

Option Required What it Does

Prefix Name No The prefix for the JDBC store's table is generally
entered in the following format:
[[[catalog.]schema.]prefix]

When using multiple JDBC stores, it is required
to set this option to a unique value for each
configured JDBC store. When no prefix is
specified, the JDBC store table name is simply
WLStore and the database implicitly determines
the schema according the current user of the
JDBC connection. Also, two JDBC stores cannot
share the same database table. See Using
Prefixes with a JDBC Store.

Modifying an existing JDBC store's prefix does
not necessarily require a server restart, as
described in Modifying Custom Persistent Store
Parameters.

Chapter 6
Using a JDBC TLog Store

6-2

Table 6-1 (Cont.) JDBC TLOG Store Configuration Options

Option Required What it Does

Create Table from DDL File No Optionally used with supported DDL (data
definition language) files to create the JDBC
store's database table (WLStore). This option is
ignored when the JDBC store's database table
already exists. See Creating a JDBC Store
Table Using Default and Custom DDL Files.

Deletes Per Batch Maximum Default is
20.

The maximum number of table rows that are
deleted per database call.

Inserts Per Batch Maximum Default is
20.

The maximum number of table rows that are
inserted per database call.

Deletes Per Statement
Maximum

Default is
20

The maximum number of table rows that are
deleted per database call.

MaxRetrySecondsBeforeTLogF
ail

Default is
300.

The maximum amount of time, in seconds,
WebLogic Server tries to recover from a JDBC
TLog store failure. If store remains unusable
after this period, WebLogic Server set the health
state to HEALTH_FAILED. A value of 0 indicates
WebLogic Server does not conduct a retry and
and immediately sets the health state as
HEALTH_FAILED.

MaxRetrySecondsBeforeTXRoll
back

Default is
60.

The maximum amount of time, in seconds,
WebLogic Server waits before trying to recover
from a JDBC TLog store failure while processing
a transaction. If store remains unusable after this
amount of time, WebLogic Server rolls back the
affected transaction. A value of 0 indicates
WebLogic Server does not conduct a retry and
rolls back the transaction immediately. The
practical maximum value is a value less than the
current value of
MaxRetrySecondsBeforeTLogFail.

RetryIntervalSeconds Default is
5.

The amount of time, in seconds, WebLogic
Server waits before attempting to verify the
health of the TLOG store after a store failure has
occurred.

N/A 1000 The amount of time, in milliseconds, a JDBC
Store reconnect retry or a TLOG-in-DB Store
attempts to re-establish a connection to a
database, before the Store shuts down, and all
the operations waiting on the Store are
unblocked.The minimum value that can be
configured through the
ReconnectRetryPeriodMillis is 200, and
the maximum value is 300000. For more
information about JDBC Store reconnect retry,
see Configuring JDBC Store Reconnect Retry.

Chapter 6
Using a JDBC TLog Store

6-3

Table 6-1 (Cont.) JDBC TLOG Store Configuration Options

Option Required What it Does

ReconnectRetryIntervalMillis 200 The amount of time in milliseconds, between
reconnect attempts, during the connection retry
period. The minimum value that can be
configured through the
ReconnectRetryIntervalMillis is 100, and
the maximum value is 10000. See Configuring
JDBC Store Reconnect Retry.

For instructions on configuring a JDBC TLOG store using the WebLogic Server
Administration Console, see Configure the Transaction Log Store in the Oracle
WebLogic Server Administration Console Online Help.

6.2.3 Configuration Guidelines
The following section provides guidelines for configuring JDBC TLOG stores.

• Only globally-scoped (not application-scoped) data sources can be targeted to a
JDBC TLOG store.

• Only one JDBC TLOG store can be configured per WebLogic Server. Conversely,
multiple WebLogic Servers can not share a JDBC TLOG store.

• You must configure a JDBC TLOG store. The default is to persist TLOG
information to the server's default persistent store.

• You cannot use a data source that is configured to use an XA JDBC driver or is
configured to support global transactions. Use a non-XA data source.

• For general rules on JDBC-accessible stores, see Guidelines for Configuring a
JDBC Store.

6.2.4 Additional Considerations
The following section provides additional information on JDBC TLOG store behavior
and limitations:

• The database used to store the TLOG information must be available at server
startup. If the database is not available, the WebLogic Server instance will fail to
boot.

• Only the JTA sub-system can use the JDBC TLOG store to persist information
about committed transactions coordinated by the server that may not have been
completed. No other systems can access the JDBC TLOG store.

• Using a JDBC TLOG store does not change LLR behavior. A JDBC TLOG store
can be used with or without LLR. When used in tandem with LLR transactions, the
transaction committing information is stored in a LLR table but the checkpoint
records and heuristic logs are stored in the JDBC TLOG store.

• If the TLOG store is changed from one store type to another or from one location
to another, the change takes effect only after reboot and all pending transactions
in the old store are not be copied to the new store. You must ensure there are no
pending transactions before changing the TLOG store type or location.

Chapter 6
Using a JDBC TLog Store

6-4

• If the JDBC TLOG store becomes unavailable, the JTA health state transitions to
FAILED and any global transactions will fail. In turn, the server life-cycle changes to
FAILED. The JTA Transaction Recovery System then attempts to recover from
transient runtime errors if possible and resolves any in-doubt transactions. See
Server Migration when using a JDBC TLOG Store.

• If the database used to store TLOG is corrupted and can not be restored, than all
pending transaction information is lost.

• If database tables or rows used by the JDBC TLOG store are locked for some
reason in the database, the database administrator must resolve these locks
manually. Otherwise, the JTA subsystem is blocked and will be suspended until
the lock(s) are released, or encounters an exception due to lock. The JTA
subsystem will remain unable to operate correctly until the lock(s) are released or
the value of MaxRetrySecondsBeforeTLOGFail is exceeded.

Note:

Different databases have different features for locked local transactions.
Some databases may have trouble resolving database locks in a timely
manner. You may need to contact your database administrator for more
information on basic row locking issues that may occur in your
application environment.

6.2.5 Server Migration when using a JDBC TLOG Store
WebLogic Server supports both manual and automatic migration of the Transaction
Recovery Service when using a JDBC TLOG store. The data source used by the
JDBC TLOG store must be targeted on both the primary server instance and a backup
server instance. Oracle recommends targeting the data source to all the server
instances of a cluster. See Transaction Recovery After a Server Fails in Developing
JTA Applications for Oracle WebLogic Server.

6.2.6 Monitoring a JDBC TLOG Store
You can monitor statistics for Transaction Log Store statistics and for each open store
connection. For general information on how to monitor persistent stores, see
Monitoring the WebLogic Persistent Store.

6.2.6.1 How to Monitor the JDBC TLOG Store Health State
When you configure WebLogic Server to use a JDBC TLOG store, the store is
registered with the Health system as a non-critical subsystem using a name with the
following pattern:

PersistentStore.TLOG_servername

where servername is the name of the WebLogic Server instance hosting the primary
TLOG store.

You can monitor the JDBC TLOG store health state in the WebLogic Server
Administration Console, see Monitor server health in Oracle WebLogic Server
Administration Console Online Help.

Chapter 6
Using a JDBC TLog Store

6-5

6.2.6.2 How to Monitor Transaction Log Store Statistics
You can monitor Transaction Log Store statistics in the WebLogic Server
Administration Console, see View transaction log statistics for a server in Oracle
WebLogic Server Administration Console Online Help.

6.2.6.3 How to Monitor Transaction Log Store Connections
You can monitor Transaction Log Store connection statistics in the WebLogic Server
Administration Console, see View statistics for TLOG store connections in Oracle
WebLogic Server Administration Console Online Help.

6.2.7 Security Considerations
Properly secure your application environment, including the JDBC TLOG store table.
Failure to do so may allow a process to:

• Delete information, maliciously or unintentionally. Such a deletion can cause
transaction information to be lost and cause affected global transactions to be
completed heuristically.

• Modify information, maliciously or unintentionally. Such modification can cause
unexpected behavior.

• Read confidential transaction information, such as when transaction starts and
what resources are involved.

• Access the database instance or database machine.

• Access the network between JTA and the database, potentially intercepting,
viewing, or modifying data.

See Secure File Store Data.

6.3 Using a JDBC Store
The following sections provide an example of a JDBC store, and information about
creating a database table for a JDBC store, either using an existing DDL, a custom
DDL, and using Oracle blob record columns in a DDL file.

To create a JDBC store, you can directly modify the default JDBCStoreMBean
parameters. For instructions on using the WebLogic Server Administration Console to
create a JDBC store, see Create JDBC Stores in the Oracle WebLogic Server
Administration Console Online Help.

For configuration guidelines on using prefixes with JDBC stores and recommended
JDBC data source settings, see Guidelines for Configuring a JDBC Store.

6.3.1 Main Steps for Configuring a JDBC Store
The main steps for creating a JDBC store are as follows:

1. Create a JDBC data source or multi data source to interface with the JDBC store.

2. Create a JDBC store and associate it with the JDBC data source or multi data
source.

Chapter 6
Using a JDBC Store

6-6

3. It is highly recommended that you configure the Prefix option to a unique value for
each configured JDBC store table.

4. Associate the JDBC store with the subsystem(s) that will be using it, such as:

• For JMS servers, select the JDBC store on the General Configuration page.

• For Store-and-Forward agents, select the JDBC store on the General
Configuration page.

• For a Path Service, select the custom file store on the General Configuration
page.

6.3.2 Example of a JDBC Store
Here's an example of how a JDBC store may look in the configuration file, using the
JDBC data source MyDataSource, and with a logical name specified:

<jdbc-store>
 <name>SampleJDBCStore</name>
 <target>yourserver</target>
 <data-source>MyDataSource</data-source>
 <logical-name>Baz</logical-name>
</jdbc-store>

Table 6-2 describes the JDBC store configuration parameters that can be modified.

Table 6-2 JDBC Store Configuration Options

Option Required What It Does

Name Yes The name of the JDBC store, which must be unique
across all stores in the domain.

Targets Yes The server instance, cluster, or migratable target where
a JDBC store is targeted. Multiple subsystems can
share the same JDBC store, as long as they are all
targeted to the same server instance or migratable
target.

Note:
• When using a cluster to host a JMS Server, you

must target the JDBC store to the same cluster
used by the JMS Server. See Configuring Dynamic
Clustered JMS in Administering JMS Resources for
Oracle WebLogic Server.

• When using migratable targets for JMS services,
you must target the JDBC store to the same
migratable target used by the JMS service. See
Service Migration in Administering Clusters for
Oracle WebLogic Server.

Chapter 6
Using a JDBC Store

6-7

Table 6-2 (Cont.) JDBC Store Configuration Options

Option Required What It Does

Data Source Yes The JDBC data source or multi data source used by this
JDBC store to access the store's database table
(WLStore). This data source or multi data source must
be targeted to the same target as the JDBC store.

Note: The JDBC store must use a JDBC data source
that uses a non-XA JDBC driver and has Supports
Global Transactions disabled. This limitation does not
remove the XA capabilities of layered subsystems that
use JDBC stores. For example, WebLogic JMS is fully
XA-capable regardless of whether it uses a file store or
any JDBC store.

Prefix Name No The prefix for the JDBC store's table is generally
entered in the following format:
[[[catalog.]schema.]prefix]

When using multiple JDBC stores, it is required to set
this option to a unique value for each configured JDBC
store. When no prefix is specified, the JDBC store table
name is simply WLStore and the database implicitly
determines the schema according the current user of
the JDBC connection. Also, two JDBC stores cannot
share the same database table. See Using Prefixes with
a JDBC Store.

Modifying an existing JDBC store's prefix does not
necessarily require a server restart, as described in
Modifying Custom Persistent Store Parameters.

Logical Name No Optionally used with WebLogic Server subsystems, like
EJBs, when deploying a module to an entire cluster, but
also require a different physical store on each server
instance in the cluster. In such a configuration, each
physical store would have its own name, but all the
persistent stores would share the same logical name.

Create Table from
DDL File

No Optionally used with supported DDL (data definition
language) files to create the JDBC store's database
table (WLStore). This option is ignored when the JDBC
store's database table already exists. See Creating a
JDBC Store Table Using Default and Custom DDL Files.

For instructions on configuring a JDBC store using the WebLogic Server
Administration Console, see Create JDBC Stores in the Oracle WebLogic Server
Administration Console Online Help.

6.3.3 Supported JDBC Drivers
When using a JDBC store, the backing database can be any database that is
accessible through a JDBC driver. WebLogic Server detects some drivers for
supported databases.

For each of these databases, there are corresponding DDL (data definition language)
files within the ORACLE_HOME\wlserver\modules
\com.bea.core.store.jdbc_1.0.0.0.jar file, in the weblogic/store/io/jdbc/ddl

Chapter 6
Using a JDBC Store

6-8

directory, where ORACLE_HOME is the top-level installation directory of your
WebLogic Server installation.

Table 6-3 Supported JDBC Drivers and Corresponding DDL Files

Database DDL Files

IBM DB2
db2.ddl
db2v6.ddl

Informix
informix.ddl

Microsoft SQL (MSSQL) Server
mssql.ddl

MySQL
mysql.ddl

Oracle
oracle.ddl
oracle_blob.ddl
oracle_blob_securefile.ddl

Sybase
sysbase.ddl

The DDL files are actually text files containing the SQL commands (terminated by
semicolons) that create the JDBC store's database table (WLStore). Therefore, if you
are using a database that is not included in this list, you can copy and edit any one of
the existing DDL files to suit your specific database, as described in Creating a JDBC
Store Table Using a Custom DDL File.

6.3.4 Creating a JDBC Store Table Using Default and Custom DDL
Files

The JDBC Store Configuration page provides an optional Create Table from DDL File
option, through which you can access a pre-configured DDL file that is used to create
the JDBC store's backing table (WLStore). This option is ignored when the JDBC
store's backing table already exists. It is mainly used to specify a custom DDL file
created for an unsupported database, or when upgrading JMS JDBC store tables from
a prior release to a current JDBC Store table.

If a DDL file name is not specified in the Create Table from DDL File field, and the
JDBC store detects that its backing table does not already exist, the JDBC store
automatically creates the table by executing a pre-configured DDL file that is specific
to the database vendor (see Supported JDBC Drivers).

If a DDL file name is specified in the Create Table from DDL File field, and the JDBC
store detects that its backing table does not already exist, the JDBC store searches for
the specified DDL file in the file path first, and then, if not found, searches for the DDL
file in the CLASSPATH. Once found, the SQL within the DDL file is executed to create the
JDBC store's backing table. If the configured file is not found and the table doesn't
already exist, the JDBC store will fail to boot.

Chapter 6
Using a JDBC Store

6-9

6.3.4.1 Creating a JDBC Store Table Using a Custom DDL File
To use a different database from those listed in Supported JDBC Drivers, you can
copy and edit any one of the existing DDL template files to suit your specific database.

1. Use the JAR utility supplied with the JDK to extract the DDL files to the /
weblogic/store/io/jdbc/ddl directory using the following command:

jar xf com.bea.core.store.jdbc_1.0.0.0.jar /weblogic/store/io/jdbc/ddl

Note:

If you omit the weblogic/store/io/jdbc/ddl parameter, the entire jar file
is extracted.

2. Edit the DDL file for your database. An SQL command can span several lines and
is terminated with a semicolon (;). Lines beginning with pound signs (#) are
comments.

3. Save your changes and rename the new DDL appropriately (for example,
mydatabase.ddl)

4. Create a JDBC store, as explained in Create JDBC Stores in the Oracle WebLogic
Server Administration Console Online Help.

5. Use the Create Table from DDL File option on the General Configuration page to
specify your custom DDL file (for example, /mydatabase.ddl).

Note:

On Windows systems, for full path names always include the drive letter.

6.3.4.2 Enabling Oracle BLOB Record Columns
For Oracle databases, you can use the oracle_blob.ddl or
oracle_blob_securefile.ddl file to create a JDBC store table with a BLOB record
column type rather than the default LONG RAW record column type. The
oracle_blob.ddl is used to create Oracle basic file BLOBs and the
oracle_blob_securefile.ddl file is used to create Oracle secure file BLOBs. Both
files types are pre-configured and supplied in the WebLogic CLASSPATH, as described
in Supported JDBC Drivers.

Oracle Database 11g Release 2 includes a zero copy I/O performance enhancement
for Secure Files and a logical cache for BLOBs. Use of these enhancements can
improve throughput with a JDBC store when message sizes are large and when
network connections to the database are slow. The Oracle LONG RAW datatype is
typically better performing than BLOBS when using a fast connection to the database.

Chapter 6
Using a JDBC Store

6-10

Note:

If you need to preserve data already in a Oracle LONG RAW column, but still
want to switch the column to BLOB, do not use this method. Instead, consult
the Oracle documentation for the SQL ALTER TABLE command.

To use the Oracle BLOB DDL with a JDBC store:

1. Shut down the server instance that uses the JDBC store.

2. Delete the current JDBC table, as explained in Managing JDBC Store Tables.

3. Reboot the server instance.

4. Create a new JDBC store, as explained in Create JDBC Stores in the Oracle
WebLogic Server Administration Console Online Help.

5. In the Create Table from DDL File field on the General Configuration page,
enter the location of:

• the oracle_blob.ddl file as: /weblogic/store/io/jdbc/ddl/
oracle_blob.ddl

• the oracle_blob_securefile.ddl file as: /weblogic/store/io/jdbc/ddl/
oracle_blob_securefile.ddl

6. Click Finish to create the JDBC store's backing table.

When using Oracle BLOBS, you may be able to improve performance by tuning the
ThreeStepThreshold value.

When the JDBC store schema contains an Oracle BLOB column (basic file or secure
file), the JDBC store populates the BLOB data using one of the following
implementations based on the size of the BLOB data:

• The JDBC store inserts a row with BLOB data directly into the store table in a
single step. Because only a single step is involved, JDBC batch insert is also
adopted and performs best when the data size is small. This implementation is
used when the BLOB data to be inserted is less than or equal to the value of the
ThreeStepThreshold.

• The JDBC store inserts a row with BLOB data into the store table in three steps
using the Oracle LOB API. This implementation provides better performance when
the data size is large. This implementation is used when the BLOB data to be
inserted is greater than the value of the ThreeStepThreshold.

The default value of ThreeStepThreshold is 200K.

6.3.5 Managing JDBC Store Tables
The JDBC utils.Schema utility allows you to regenerate a new JDBC store database
table (WLStore) by deleting the existing version. Running this utility is usually not
necessary, since WebLogic Server automatically creates this table for you. However, if
your existing JDBC store database table somehow becomes corrupted, you can delete
it using the utils.Schema utility.

The utils.Schema utility is a Java program that takes command-line arguments to
specify the following:

Chapter 6
Using a JDBC Store

6-11

• JDBC driver

• Database connection information

• Name of a file containing the SQL Data Definition Language (DDL) commands that
create the database table

6.3.5.1 Using the utils.Schema Utility to Delete a JDBC Store Table
Enter the utils.Schema command, as follows:

$ java utils.Schema url JDBC_driver [options] DDL_file

Note:

To execute utils.Schema, your CLASSPATH must contain the weblogic.jar
file.

Table 6-4 lists the utils.Schema command-line arguments.

Table 6-4 Command-line arguments for utils.Schema

Argument Description

url
Database connection URL. This value must be a colon-separated URL as defined by
the JDBC specification.

JDBC_driver
Full package name of the JDBC Driver class.

options
Optional command options.

If required by the database, you can specify:

• The user name and password as follows:

-u <username> -p <password>

• The Domain Name Server (DNS) name of the JDBC database server as follows:

-s <dbserver>

You can also specify the -verbose option, which causes utils.Schema to echo
SQL commands as they are executed.

DDL_file
The full pathname of the DDL text file containing the SQL commands that you want to
execute. For more information, see Supported JDBC Drivers.

For example, the following command deletes a JDBC table named MYWLStore in an
Oracle server named DEMO, with the user name user1 and password foobar:

$ echo "drop MYWLStore;" > drop.ddl

$ java utils.Schema
jdbc:weblogic:oracle:DEMO \
weblogic.jdbc.oci.Driver -u user1 -p foobar -verbose \
drop.ddl

Chapter 6
Using a JDBC Store

6-12

6.3.6 Configuring JDBC Store Reconnect Retry
The JDBC Store reconnect retry period indicates the time period when a WebLogic
JDBC Store or a TLOG in-DB Store retries to connect to a database, before the Store
shuts down and requires a restart. You can configure the Store retry period through
Command line system properties, MBeans and WLST.

6.3.6.1 Using WLST and JMX MBeans
The JDBC Store reconnect retry period controls the length of the time period required
by a JDBC Store reconnect retry or a TLOG-in-DB Store to retry database requests
before a Store shuts down, and requires a restart. The JDBC Store reconnect retry
interval controls the length of the time in milliseconds between reconnect attempts
during the connection retry period. You can configure the JDBC Store reconnect retry
period and interval by using the ReconnectRetryPeriodMillis and
ReconnectRetryIntervalMillis attributes available in the JDBCStoreMBean and
TransactionLogJDBCStoreMBean. For more information about the Retry attributes, see
MBean Reference for Oracle WebLogic Server.

6.3.6.1.1 Using Command Line System Properties
You can configure the retry period and interval for custom JDBC Store reconnect retry
and TLOG-in-DB Stores by setting system properties on the WebLogic Server
command line. The -DwebLogic.store.jdbc.RecnnectRetryPeriodMillis=<millis>
and -Dweblogic.store.jdbc.ReconnectRetryIntervalMillis=<millis> option
specifies the JDBC Store reconnect retry in period and interval available in the
WebLogic Server domain.

The -Dweblogic.store.jdbc.ReconnectRetryPeriodMillis=<millis> system
property overrides legacy properties-
Dweblogic.store.jdbc.IORetryDelayMillis=<millis> or -
Dweblogic.jms.store.JMSJDBCIORetryDelay=<seconds>, if they are set on the same
command line. If the retry period property is not set, then the legacy properties will
take effect.

Deprecation Note: All JDBC Store reconnect retry command line properties are
deprecated as of 12.2.1.0 and may be removed in a future release. In 12.2.1.0 and
later. Oracle recommends setting these values through MBean attributes instead.

6.3.7 Important Tuning Considerations for Reconnect Retry
It is important to consider the following when configuring a JDBC Store reconnect retry
period:

• The total elapsed time before a Store fails may sometimes be more than double
the configured retry period.

• It is advisable to configure more tolerant retry periods of up to 15 seconds or more
instead of the maximum, since a retry period that is set to too long may lock up
WebLogic Server applications and client applications during this period.

• JDBC Store reconnect retry tuning should be configured to align with transaction
tuning.

Chapter 6
Using a JDBC Store

6-13

– Consider tuning JTA transaction time outs to be higher than the retry period so
that the application transactions that involve a JDBC Store do not time out
waiting for a JDBC Store to successfully recover from a database failure. The
default transaction time out for a domain is 30 seconds and is tunable via the
TimeoutSeconds attribute on the JTAMBean. In addition, transaction time outs
are tunable on a per application basis.

– WebLogic's transaction system will temporarily stop allowing a JDBC Store to
participate in transactions if the JDBC Store is unresponsive for more than the
JTAMBean MaxXACallMillis attribute (default is 1200000 millis/two minutes).
Once JTA decides a Store is unresponsive, it will not attempt to allow the
Store to participate in transactions until after MaxResourceUnavailableMillis
has passed (default is 1800000 millis/30minutes). It is therefore advisable to
ensure that MaxXACallMillis is at least twice the JDBC Store reconnect retry
period.

– If the retry period is configured on a TLOG-in-DB Store, it should be set to less
than half of the TransactionLogJDBCStoreMBean
MaxRetrySecondsBeforeTLOGFail setting. otherwise, the TLOG-in Store may
delay failure longer than the TLOGFail setting.

• A JDBC Store reconnect retry period is configured in milliseconds while some
transaction settings are configured in seconds.

6.3.8 Configuring a JDBC Store Connection Caching Policy
By default, a WebLogic JDBC Store obtains two JDBC connections from its Data
Source, and caches these connections throughout a Store's lifetime. You can
optionally tune the JDBC Store's Connection Caching Policy to reduce the number of
cached JDBC connections.

• Using WLST and JMX MBeans

• Using a Command Line Parameter

6.3.8.1 Using WLST and JMX MBeans
The JDBC Store Connection Caching Policy setting controls how many JDBC
connections it caches. The Connection Caching policy can be configured by using the
ConnectionCachingPolicy attribute available in the JDBCStoreMBean and
TransactionLogJDBCStoreMBean. The valid values for ConnectionCachingPolicy
attribute are - DEFAULT, MINIMAL and NONE. For more information about the valid
values, see MBean Reference for Oracle WebLogic Server and Table 6-5.

Note:

The NONE policy requires additional tuning to avoid deadlocking a server. For
more information about tuning the NONE JDBC Store Connection Caching
Policy, see Important Tuning Considerations for the NONE Connection
Caching Policy.

Chapter 6
Using a JDBC Store

6-14

6.3.8.1.1 Using a Command Line Parameter
You can configure the JDBC Store Connection Caching Policy by setting a system
property on the WebLogic Server command line. The -
Dweblogic.store.jdbc.ConnectionCachingPolicy option specifies the WebLogic
JDBC Store Connections available in the WebLogic Server domain. For more
information about the valid values that can be set for this Policy, see Table 6-5.

Note:

• The weblogic.store.jdbc.ConnectionCachingPolicy system property
has been deprecated as of 12.2.1.1.0, and may not remain available in
future releases. Oracle recommends configuring a Connection Policy
through WLST or MBeans instead. For more information about tuning
the NONE JDBC Store Connection Caching Policy, see Important Tuning
Considerations for the NONE Connection Caching Policy

• The NONE policy requires additional tuning to avoid deadlocking a server.
For more information about tuning the NONE JDBC Store Connection
Caching Policy, see Important Tuning Considerations for the NONE
Connection Caching Policy.

6.3.8.2 JDBC Store Connection Caching Behavior
A JDBC Store's Connection Caching behavior is determined by the combination of its
Connection Caching Policy setting and Worker Count setting.

Table 6-5 JDBC Store Connection Caching Policy behavior

Connecti
on
Caching
Policy

Cached
Connecti
ons
when
Worker
count=1

Cached
Connecti
ons
when
WorkerC
ount>1

Description

DEFAULT 2 2+
Worker
Count

By default, each JDBC Store instance caches two database
connections for the life of store.

If the JDBC Store worker-count is configured to be more
than two, the store opens an additional connection for each
worker.

MINIMAL 1 1+Worker
Count

Each JDBC store instance caches a single database
connection for the life of the store. If the JDBC worker-
count is configured to be two or higher, the store opens one
connection for each worker.

The performance of this setting may be less than DEFAULT
for low concurrency messaging scenarios.

Chapter 6
Using a JDBC Store

6-15

Table 6-5 (Cont.) JDBC Store Connection Caching Policy behavior

Connecti
on
Caching
Policy

Cached
Connecti
ons
when
Worker
count=1

Cached
Connecti
ons
when
WorkerC
ount>1

Description

NONE 0 N/A Each JDBC store instance obtains a connection from its
data source as needed, and releases the connection when
finished.

The NONE setting is not compatible with a JDBC Store
worker-count of two or more, and will result in a
configuration validation exception. The performance of this
setting will be lesser than DEFAULT or MINIMAL.

Warning: To avoid the risk of dead-locking a WebLogic
Server, Oracle strongly recommends configuring a
dedicated data source for NONE connection-caching-policy
JDBC stores.

6.3.8.3 Important Tuning Considerations for the NONE Connection Caching
Policy

It is important to consider the following tuning considerations when a JDBC Store
Connection Caching Policy is set to NONE:

• Use a dedicated Data Source to avoid deadlocks - It is strongly advised to
configure JDBC Stores to use a dedicated Data Source when the JDBC Store
Connection Caching Policy is set to NONE. ANONE policy JDBC Store may deadlock
a server or eventually fail if it is configured to share the Data Source with
applications or non-store services.

For example, consider an application that performs the following steps:

1. Obtains a Data Source connection.

2. Sends a persistent JMS message through a JMS Server with a NONE policy,
JDBC Store that uses the same Data Source.

3. Closes the Data Source connection.

• It is possible that step 1 can obtain the last available connection in the Data
Source connection pool, and therefore in step 2, the JMS send call will block until
the NONE policy JDBC Store is able to get a connection from the same pool. This is
a problem because step 2 will potentially never get a connection no matter how
long it waits since it is possible that all other applications are also blocked in step 2
(and therefore no application can get to step 3 in order to free up a connection).
This problem in turn can cause a server or client to have many stuck threads
and/or cause a JDBC Store to ultimately shutdown once it waits too long to try and
get a connection.

• Tune a large enough Data Source connection pool - A JDBC Store uses multiple
concurrent connections when its dependent services (such as JMS) first initialize.
Hence, the Data Source pool must be configured so that it can grow somewhat
larger than the number of JDBC Stores that are using the pool.

Chapter 6
Using a JDBC Store

6-16

• Enable and tune Data Source connection testing - Enabling Data Source
connection testing helps provide JDBC Store resiliency during database access
failures. But, note that if performance is a concern, then frequent Data Source
connection testing should be avoided, since it lowers performance of a NONE policy
JDBC Store. In general, it is advisable to enable the Data Source Test
Connection on Reserve setting, and set the Data Source Seconds to Trust and
Idle Pool Connection value higher than zero, and lower than the JDBC Store
Connection Retry Interval Millis value. See Connection Testing Options for
a Data Source in Administering JDBC Data Sources for Oracle WebLogic Server.

• Monitor and tune Prepared Statement Caching performance - A JDBC Store
configured with NONE may yield poor performance if its Data Source or JDBC driver
Prepared Statement Cache size is too small. To check if cache misses are
lowering performance, monitor your prepared statement cache activity when under
load. This monitoring should show frequent cache hits and few cache misses, but
if you see many cache misses then increase your cache size.

• Monitor Oracle RAC with GridLink performance and potentially tune accordingly. If
a NONE policy JDBC Store yields poor performance in comparison to other policies
when using Oracle RAC with a GridLink driver, the potential workarounds are:

– Use a Multi Data Source instead of GridLink Data Source.

– Rebuild JDBC Store tables with a reverse index. See Rebuilding the Store
Table Index for an Oracle Database.

Note:

The NONE policy may yield measurably lower performance than the
MINIMAL or DEFAULT policies even if all of the above considerations are
carefully followed.

6.3.9 Guidelines for Configuring a JDBC Store
The following sections provide guidelines for using JDBC store prefixes,
recommended WebLogic JDBC data source settings for JDBC stores, and handling
JMS transactions with JDBC stores.

6.3.9.1 Using Prefixes with a JDBC Store
The JDBC store database contains a database table, named WLStore, that is
generated automatically and is used internally by WebLogic Server. The JDBC store
provides an optional Prefix Name parameter, which can be used to provide more
precise access to the database table.

It is always a best practice to configure a prefix for the JDBC WLStore table name,
especially when:

• The database requires fully-qualified names. (You should verify this with your
database administrator.)

• There is more than one JDBC store instance sharing a database, since no two
JDBC stores can share the same table.

• There are many tables in the database. Setting the prefix reduces the number of
tables the JDBC store must search through to find its table during boot.

Chapter 6
Using a JDBC Store

6-17

6.3.9.1.1 JDBC Store Table Rules
To avoid potential data loss, follow these rules:

• Each JDBC store table name must be unique.

• If multiple JDBC stores share a table, the behavior is undefined and data loss is
likely.

• There is no procedure for combining two database tables into a single table.

6.3.9.1.2 Prefix Name Format Guidelines
For most databases, the Prefix Name option for the JDBC store's backing database
table should be set in the following format for each configured JDBC store, which will
result in a valid table name when prepended to the JDBC store table name:

[[[catalog.]schema.]prefix]

Note that each period in the [[[catalog.]schema.]prefix] format is significant.
Generally, catalog identifies the set of system tables being referenced by the DBMS,
and schema generally corresponds to ID of the table owner (username). When no prefix
is specified, the JDBC store table name is simply WLStore and the database implicitly
determines the schema according the current user of the JDBC connection.

For example, in a production database, the database administrator could maintain a
unique table for the Sales department, as follows:

[[[Production.]JMSAdmin.]Sales]

The resulting table will be created in the Production catalog, under the JMSAdmin
schema, and will be named SalesWLStore.

For some DBMS vendors, such as Oracle, there is no catalog to set or choose, so the
format simplifies to [[schema.]prefix]. For more information, refer to your DBMS
documentation for instructions on fully-qualified table names, but note that the syntax
specified by the DBMS may differ from the format required for this option.

Caution:

If the Prefix Name setting is changed, but the WLStore database table
already exists in the database, take care to preserve existing table data. In
this case, the existing database table must be renamed by a database
administrator to match the new configured table name.

6.3.9.2 Recommended JDBC Data Source Settings for JDBC Stores
The following settings are recommended when you use a JDBC data source or multi
data source for JDBC stores.

6.3.9.2.1 Automatic Reconnection to Failed Databases
WebLogic Server provides robust JDBC data sources that can automatically reconnect
to failed databases after they come back online, without requiring you to restart

Chapter 6
Using a JDBC Store

6-18

WebLogic Server. To take advantage of this capability, and make your use of JDBC
stores more robust, configure the following options on the JDBC data source
associated with the JDBC store:

TestConnectionsOnReserve="true"
TestTableName="SYSTABLES"
ConnectionCreationRetryFrequencySeconds="600"

For more information about JDBC default Test Table Names, see Connection Testing
Options for a Data Source in the Administering JDBC Data Sources for Oracle
WebLogic Server. For more information about setting the number of database
reconnection attempts, see the Enabling Connection Creation Retries section in
Administering JDBC Data Sources for Oracle WebLogic Server.

6.3.9.2.2 Required Setting for Oracle DB2 Type 4 JDBC Drivers
For data sources used as a JDBC store that use the Oracle Type 4 JDBC driver for
DB2, the BatchPerformanceWorkaround property must be set to "true" due to internal
JMS batching requirements.

6.3.9.3 Handling JMS Transactions with JDBC Stores
The JDBC store must use a JDBC data source that uses a non-XA JDBC driver and
has Supports Global Transactions disabled. This limitation does not remove the XA
capabilities of layered subsystems that use JDBC stores. For example, WebLogic JMS
is fully XA-capable regardless of whether it uses a file store or any JDBC store.

Because the JDBC store implements the XAResource interface, it acts as it's own
resource manager and handles the transactions above the JDBC driver level. That is,
the store itself implements the XAResource and handles the transactions without
depending on the database (even when the messages are stored in the database).

This means that whenever you are using a JDBC store and a database (even if it is
the same database where the JMS messages are stored), then it is two-phase commit
transaction.

For more information about using JMS transactions with a JDBC store, see Using
Transactions with WebLogic JMS in Developing JMS Applications for Oracle
WebLogic Server.

From a performance perspective, you may also boost your performance as follows:

• Ensure that the JDBC data source used for the database work exists on the same
server instance as the JMS destination—the transaction will still be two-phase, but
it will be handled with less network overhead.

• Use file stores rather than JDBC stores.

• Configure multiple services to share the same store if they will commonly be
invoked within the same transaction.

• If an application directly performs database operations in addition to invoking store
services (such as JMS) within the same transaction, consider using a JDBC data
source with Logging Last Resource (LLR) enabled for the database operations.

With the LLR optimization, the transaction will follow the two-phase commit
protocol, but the database operations will be handled in a single local transaction,
which may improve overall transaction performance. For more information on
using the LLR optimization, see Understanding the Logging Last Resource

Chapter 6
Using a JDBC Store

6-19

Transaction Option in Administering JDBC Data Sources for Oracle WebLogic
Server.

6.3.10 Enabling I/O Multithreading for JDBC Stores
Under heavy JDBC store I/O loads, you can improve performance by configuring a
JDBC store to use multiple JDBC connections to concurrently process I/O operations.

Note:

Enabling I/O multithreading under light loads may actually reduce
performance. Oracle recommends that you tune your applications
appropriately.

To enable I/O multithreading, set the Worker Count attribute to an integer value
greater than 1. The default value of this configuration property is 1 and disables this
option. The Worker Count attribute specifies the number of worker threads the JDBC
store uses to process store I/O. Each worker thread acquires one JDBC connection
from the configured data source pool when the store is opened. In many cases,
benefits of multithreading tends to decrease after 4 concurrent threads. When using a
slow connection to the database, multithreading may not improve performance.

Note:

If you set the Worker Count to a value where there are not enough
connections available in the connection pool, the JDBC store will fail to open.

You can tune the workload for each worker thread by changing the value of the Worker
Preferred Batch Size attribute. Increasing the value of this attribute incrementally
increases the workload assigned to each worker thread. The workload consists of
store I/O requests, which are grouped and pushed to each JDBC worker thread for
processing. If the size of individual I/O requests is commonly very large (for example,
requests to store 1 MB JMS messages), then tune the value of Worker Preferred
Batch Size to a smaller value for better performance.

6.3.10.1 Rebuilding the Store Table Index for an Oracle Database
When I/O multithreading is enabled, multiple JDBC connections are used to
concurrently process store I/O operations which can result in database resource
contention. To reduce contention on Oracle databases, Oracle recommends rebuilding
the primary key index into a reverse key index when I/O multithreading is used. If you
use and then disable I/O multithreading, Oracle recommends rebuilding the primary
key index as a non-reverse index. For more information on reverse key indexes, see
Indexes and Index-Organized Tables in Oracle Database Concepts.

Use the following basic steps to rebuild the Store table index for Oracle database:

1. Login to the Oracle database under the Store schema name. The Store schema
name may or may not be the same as the data source user name.

Chapter 6
Using a JDBC Store

6-20

http://docs.oracle.com/cd/E11882_01/server.112/e40540/indexiot.htm#CNCPT721

2. Use the PL/SQL script found in Build a Reverse Index for an Oracle Database or
Build a Non-Reverse Index for an Oracle Database to rebuild the Store table index
as needed. Replace <Store Table Name> in each script with the Store table name
as described in Using Prefixes with a JDBC Store. See Execution of PL/SQL
Subprograms in Oracle Database Concepts.

Note:

Oracle recommends reverse indexes for I/O multithreading and non-
reverse indexes for single threaded I/O.

6.3.10.1.1 Build a Reverse Index for an Oracle Database
To rebuild the Store table index as a reverse index for an Oracle database, run the
following PL/SQL block as the store database user:

declare
 idx user_ind_columns.index_name%TYPE;
 alter_stmt VARCHAR2(200);
begin
 select index_name into idx from user_ind_columns where table_name =
 <Store Table Name> and column_name = 'ID';
 alter_stmt := 'alter index ' || idx || ' rebuild reverse';
 dbms_output.put_line(alter_stmt);
 execute immediate alter_stmt;
end;
/

6.3.10.1.2 Build a Non-Reverse Index for an Oracle Database
To rebuild a reverse Store table index as a non-reverse index for Oracle database, run
the following PL/SQL block as the store database user:

declare
 idx user_ind_columns.index_name%TYPE;
 alter_stmt VARCHAR2(200);
begin
 select index_name into idx from user_ind_columns where table_name =
 <Store Table Name> and column_name = 'ID';
 alter_stmt := 'alter index ' || idx || ' rebuild noreverse';
 dbms_output.put_line(alter_stmt);
 execute immediate alter_stmt;
end;
/

6.3.10.1.3 Reducing Contention in a Non-Oracle Database
For non-Oracle databases, refer to the database provider's documentation on how to
reduce the contention.

Chapter 6
Using a JDBC Store

6-21

http://docs.oracle.com/database/121/CNCPT/srvrside.htm#CNCPT036
http://docs.oracle.com/database/121/CNCPT/srvrside.htm#CNCPT036

7
Managing the WebLogic Persistent Store

This chapter explains how to use the administration utility and secure store data.

• Administering a Persistent Store

• Secure File Store Data

7.1 Administering a Persistent Store
The WebLogic Store administration utility enables administrators to troubleshoot a
WebLogic persistent store. The store utility operates only on a store that is not
currently opened by a running server instance. This utility can be run from a Java
command line or from WebLogic Scripting Tool (WLST), as described in Store
Administration Using a Java Command Line and Store Administration Using WLST.

The most common uses-cases for store administration are for compacting a file store
to reduce its size and for dumping the contents of a file store of JDBC store to an XML
file for troubleshooting purposes. Examples of these use cases are provided later in
this section.

Table 7-1 defines the available store administration commands for Java and WLST.

Table 7-1 Persistent Store Administration Options

Java Command WLST
Method

What It Does

help helpstore
Displays available commands, usage, and examples.

compact compactstor
e

Compacts and defragments the space occupied by a file
store. This command only works offline and does not
work for JDBC stores.

Note: Compacting a file store is usually not necessary if
you know that file store will likely grow to the current
size again. File stores automatically re-use space freed
by deleted records and expand only when there is
insufficient internal space for new records. Also, file
stores do not normally become fragmented as most
persistent records are short-lived.

openfile openfilesto
re

Opens an existing file store for further operations. If a
file store does not exist, a new one is created in an open
state using the -create parameter.

openjdbc openjdbcsto
re

Opens an existing JDBC store for further operations. If a
JDBC store does not exist, a new one is created in an
open state

dump dumpstore
Dumps store or connection contents in a human-
readable format to user-specified XML file. The XML file
format is the same format used by the diagnostic image
of the persistent store.

7-1

Table 7-1 (Cont.) Persistent Store Administration Options

Java Command WLST
Method

What It Does

list liststore
Lists store names, open stores, or connections in a
store.

n/a getstorecon
ns

Returns a list of connections in the specified store (for
script access)

n/a getopenstor
es

Returns a list of opened stores (for script access).

opts n/a
Lists invocation options for the store administration tool.

verbose n/a
Controls display of additional information, such as stack
traces.

close closestore
Closes a previously opened store.

quit exit
Ends the store administration session.

A persistent store can be backed by the file system (file store) or by a JDBC-capable
database (JDBC store). Except for the openfile/openfilestore() and openjdbc/
openjdbcstore() options, there is no difference in the options to operate on these two
different types of stores.

Most commands and methods work in terms of store names, while others also work in
terms of connection names. Store connections are logical groups of records within
persistent stores. For example, the JMS and JTA subsystems persist their respective
records in different connections in the same file store.

7.1.1 Store Administration Using a Java Command Line
To open the persistent store administration utility from a Java command line, type the
following:

> java weblogic.store.Admin
> storeadmin->

7.1.1.1 Accessing Store Administration Help
Type help for detailed descriptions on available store administration commands, as
well as examples of typical command usage. For example, the following
comprehensive help is provided for the list command, which lists store names, open
stores, or connections in a store.

storeadmin->help list
 Command:
 list
 Description:
 lists store names, open stores, or connections in a store

Chapter 7
Administering a Persistent Store

7-2

 Usage:
 list [-store storename|-dir dir]
 Examples:
 list #lists all opened stores by storename
 list -store store1 #lists all connections in store1
 list -dir dir1 #lists all storenames found in dir1

7.1.1.2 Dumping the Contents of a File Store
Here's an example of using a series of store administration commands to ultimately
export the contents of a file store named myfilestore into a human-readable XML file
format in a temporary directory. This does not include store connection names or the
actual record contents, which require the optional -conn and -deep parameters.

> storeadmin-> list -dir .
> storeadmin-> openfile -store myfilestore -dir .
> storeadmin-> dump -store myfilestore -out d:\tmp\filestore1-out
> storeadmin-> close -store myfilestore

The list command shows all the store names in the current directory. The openfile
and openjdbc commands must be used to open and/or create a file or JDBC store first
before calling certain administration functions, like dump and list (only when listing
open stores). After administering an open store, you must close it using the close
command. WritePolicy in generated dump is the policy that the dump tool itself uses
when it opens the store.

7.1.1.3 Compacting a File Store
Here is an example of using the compact command to compact the space occupied by
a file store in the mystores directory.

> storeadmin->compact -dir c:\mystores -tempdir c:\tmp

Since the compact command can only be used on an unopened file store, none of the
stores that have files in the source -dir directory should be open. Also, the temporary
-tempdir directory should have at least enough extra space as the source directory
and should also not be under the source directory. When compact successfully
completes, the newly compacted store files will be in the mystores directory. In
addition, a new, uniquely-named directory will be created under tmp containing the
original uncompacted store files.

7.1.2 Store Administration Using WLST
The WLST interface has additional methods (compared to the Java command line)
such as getopenstores and getstoreconns, that return relevant Java objects and can
be used for scripting in WLST.

Note:

In this release, ThreeStepThreshold, Worker Count, and Worker Preferred
Batch Size are not supported when using the WebLogic Scripting Tool
(WLST) offline.

Chapter 7
Administering a Persistent Store

7-3

7.1.2.1 Accessing Store Administration Help
To access the persistent store administration utility from WLST, type the following
command:

> java weblogic.WLST

Type helpstore() for detailed descriptions on available store administration
commands, as well as examples of typical command usage. For example, the
following help is provided for the list command, which lists store names, open stores,
or connections in a store.

> wls:/offline> helpstore(liststore)
 lists storenames, opened stores, or connections (for interactive access)
 Parameters store and dir cannot both be specified concurrently.

 Usage: liststore(store='null',dir='null')

 @param store [optional] a previously opened JDBC or File store's name.
 If store is specified, all connections in the store are listed.
 @param dir [optional] directory for which to list available store names
 If dir is specified, all store names in the directory are listed.

 If neither store nor dir are specified, all open store names are listed.
 @return 1 on success, 0 on failure

Note that the parameters with an equal sign "=" are optional. For example, the
compactstore method can be invoked as either compactstore(dir='storename',
tempdir='/tmp') or compactstore(store='storename'), where tempdir takes the
default value. Default values for optional parameters are listed in the command-
specific help.

7.1.2.2 Dumping the Contents of a JDBC Store Using WLST
Here is an example of using the dumpstore method (store, outfile, conn='null',
deep='false') to export the contents of a JDBC store named myJDBCStore in a
human-readable XML file format out to a file named mystoredump-out.xml. This does
not include store connection names or the actual record contents, which require the
optional conn and deep parameters.

> wls:/offline>
 openjdbcstore('myJDBCStore', 'oracle.jdbc.OracleDriver',
 'jdbc:oracle:thin:@test2k31:1521:test120a', './wlstoreadmin-dump.props',
 'jmstest', 'jmstest', '', 'jdbcstoreprefix')
 dumpstore('myJDBCStore', 'mystoredump-out')
 closestore('myJDBCStore')

The openjdbcstore and openfilestore methods must be used to open and/or create
a store first before calling certain administration functions, like dumpstore and
liststore (only when listing open stores). After administering an open store, you must
close it using the closestore method.

Chapter 7
Administering a Persistent Store

7-4

7.1.2.3 Compacting a File Store Using WLST
Here is an example of a WLST script that uses the compactstore method
(dir,tempdir='null') to compact the space occupied by a file store files in the
mystores directory.

> wls:/offline> compactstore('c:\mystores','c:\tmpmystore.dir')

Since the compactstore() method can only be used on unopened file stores, none of
the stores that have files in the source 'dir' directory should be open. Also, the
temporary 'tempdir' directory should have at least enough extra space as the source
directory and should also not be under the source directory. When compact
successfully completes, the newly compacted store files will be in the mystores
directory. In addition, a new, uniquely-named directory will be created under
tmpmystore containing the original uncompacted store files.

7.2 Secure File Store Data
In order to properly secure file store data, you must set appropriate directory
permissions on all your file store directories. If you require data encryption, you must
use appropriate third-party encryption software.

Chapter 7
Secure File Store Data

7-5

8
Monitoring the WebLogic Persistent Store

This chapter explains how to monitor the WebLogic Server persistent store.

• Monitoring a Persistent Store

• Monitoring Stores

• Monitoring Store Connections

8.1 Monitoring a Persistent Store
You can monitor statistics for each existing persistent store and for each open store
connection.

8.2 Monitoring Stores
Each persistent store is represented at run time by an instance of the
PersistentStoreRuntimeMBean, which provides the following options.

Table 8-1 Persistent Store Run-time Options

Option What It Does

CreateCount Number of create requests issued to this
persistent store.

ReadCount Number of read requests issued to this
persistent store.

UpdateCount Number of update requests issued by this
persistent store.

DeleteCount Number of delete requests issued by this
persistent store.

ObjectCount Number of objects contained in the persistent
store.

Connections Number of active connections in the persistent
store.

PhysicalWriteCount Number of times the persistent store flushes
its data to durable storage.

8.3 Monitoring Store Connections
For each open persistent store connection, the persistent store also registers a
PersistentStoreConnectionRuntimemMBean, which provides the following options.

8-1

Table 8-2 Persistent Store Connection Runtime Options

Option What It Does

CreateCount Number of create requests issued to this
connection.

ReadCount Number of read requests issued to this
connection.

UpdateCount Number of update requests issued by this
connection.

DeleteCount Number of delete requests issued by this
connection.

ObjectCount Number of objects contained in the
connection.

Table 8-3 defines most of the run-time prefix names of the WebLogic services and
subsystems that can create a connection to the persistent store.

Table 8-3 Persistent Store Run-Time Prefix Names

Subsystem/Service Run-Time Prefix Name

Deployment
weblogic.deploy.internal

where internal is the name of the
deployment connection

Diagnostic Service
weblogic.diagnostics.internal

where internal is the logical name of the
diagnostic archive connection

EJB Timer Services
weblogic.ejb.timer.internal

where internal uniquely identifies EJB
deployments in a server instance

JMS Service JMS server:

weblogic.messaging.jmsServer.internal

where internal is the name of the JMS
server connection

JMS durable subscriber:

weblogic.messaging.jmsServer.durablesubs.
internal

where internal is the name of the durable
subscriber connection

JTA Transaction Log (TLOG)
weblogic.transaction.internal

where internal is the name of the TLOG
connection

Chapter 8
Monitoring Store Connections

8-2

Table 8-3 (Cont.) Persistent Store Run-Time Prefix Names

Subsystem/Service Run-Time Prefix Name

Path Service
weblogic.messaging.PathService.internal

where internal is the name of the path
service connection

SAF Service SAF agent

weblogic.messaging.SAFAgent@server1.inte
rnal

where internal is the name of the SAF
agent's connection

SAF durable subscriber:

weblogic.messaging.SAFAgent@server1.durab
lesubs.internal

where internal is the name of the durable
subscriber connection

Web Services
weblogic.wsee.server.store.internal

where internal is the name of the Web
Service's connection

Chapter 8
Monitoring Store Connections

8-3

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 The WebLogic Persistent Store
	2.1 What is a Persistent Store
	2.2 Features of the Persistent Store
	2.3 High-Performance Throughput and Transactional Support
	2.4 Comparing File Stores and JDBC-accessible Stores
	2.5 High Availability For Persistent Stores
	2.5.1 Whole Server Migration
	2.5.2 Automatic Service Migration
	2.5.3 Service Restart In Place
	2.5.3.1 Service Restart In Place in Combination with Migration
	2.5.3.2 Additional Notes

	2.5.4 High Availability Storage Solutions

	2.6 Limitations and Considerations of the Persistent Store
	2.7 Additional Requirement for High Availability File Stores
	2.8 File Locations

	3 Using the Default Persistent Store
	3.1 Using the Default Persistent Store
	3.2 Default Store Location
	3.3 Example of a Default File Store

	4 Using Custom Persistent Stores
	4.1 What are Custom File Stores and JDBC Stores
	4.2 When to Use a Custom Persistent Store
	4.3 Methods of Creating a Custom Persistent Store
	4.4 Modifying Custom Persistent Store Parameters

	5 Using Custom File Stores
	5.1 Creating a Custom (User-Defined) File Store
	5.2 Main Steps for Configuring a Custom File Store
	5.3 Example of a Custom File Store
	5.4 Guidelines for Configuring a Synchronous Write Policy
	5.4.1 Direct-Write-With-Cache Policy
	5.4.2 Direct-Write Policy
	5.4.3 Cache-Flush Policy
	5.4.4 Disabled Policy

	6 Using a JDBC Store
	6.1 Creating JDBC-accessible Stores
	6.2 Using a JDBC TLog Store
	6.2.1 Main Steps for Configuring a JDBC TLOG Store
	6.2.1.1 Choosing a Data Source

	6.2.2 Example of a JDBC TLOG Store
	6.2.3 Configuration Guidelines
	6.2.4 Additional Considerations
	6.2.5 Server Migration when using a JDBC TLOG Store
	6.2.6 Monitoring a JDBC TLOG Store
	6.2.6.1 How to Monitor the JDBC TLOG Store Health State
	6.2.6.2 How to Monitor Transaction Log Store Statistics
	6.2.6.3 How to Monitor Transaction Log Store Connections

	6.2.7 Security Considerations

	6.3 Using a JDBC Store
	6.3.1 Main Steps for Configuring a JDBC Store
	6.3.2 Example of a JDBC Store
	6.3.3 Supported JDBC Drivers
	6.3.4 Creating a JDBC Store Table Using Default and Custom DDL Files
	6.3.4.1 Creating a JDBC Store Table Using a Custom DDL File
	6.3.4.2 Enabling Oracle BLOB Record Columns

	6.3.5 Managing JDBC Store Tables
	6.3.5.1 Using the utils.Schema Utility to Delete a JDBC Store Table

	6.3.6 Configuring JDBC Store Reconnect Retry
	6.3.6.1 Using WLST and JMX MBeans
	6.3.6.1.1 Using Command Line System Properties

	6.3.7 Important Tuning Considerations for Reconnect Retry
	6.3.8 Configuring a JDBC Store Connection Caching Policy
	6.3.8.1 Using WLST and JMX MBeans
	6.3.8.1.1 Using a Command Line Parameter

	6.3.8.2 JDBC Store Connection Caching Behavior
	6.3.8.3 Important Tuning Considerations for the NONE Connection Caching Policy

	6.3.9 Guidelines for Configuring a JDBC Store
	6.3.9.1 Using Prefixes with a JDBC Store
	6.3.9.1.1 JDBC Store Table Rules
	6.3.9.1.2 Prefix Name Format Guidelines

	6.3.9.2 Recommended JDBC Data Source Settings for JDBC Stores
	6.3.9.2.1 Automatic Reconnection to Failed Databases
	6.3.9.2.2 Required Setting for Oracle DB2 Type 4 JDBC Drivers

	6.3.9.3 Handling JMS Transactions with JDBC Stores

	6.3.10 Enabling I/O Multithreading for JDBC Stores
	6.3.10.1 Rebuilding the Store Table Index for an Oracle Database
	6.3.10.1.1 Build a Reverse Index for an Oracle Database
	6.3.10.1.2 Build a Non-Reverse Index for an Oracle Database
	6.3.10.1.3 Reducing Contention in a Non-Oracle Database

	7 Managing the WebLogic Persistent Store
	7.1 Administering a Persistent Store
	7.1.1 Store Administration Using a Java Command Line
	7.1.1.1 Accessing Store Administration Help
	7.1.1.2 Dumping the Contents of a File Store
	7.1.1.3 Compacting a File Store

	7.1.2 Store Administration Using WLST
	7.1.2.1 Accessing Store Administration Help
	7.1.2.2 Dumping the Contents of a JDBC Store Using WLST
	7.1.2.3 Compacting a File Store Using WLST

	7.2 Secure File Store Data

	8 Monitoring the WebLogic Persistent Store
	8.1 Monitoring a Persistent Store
	8.2 Monitoring Stores
	8.3 Monitoring Store Connections

