Oracle® Fusion Middleware
Developing Message-Driven Beans for Oracle
WebLogic Server

12¢ (12.2.1.4.0)
E90843-02
September 2021

ORACLE"

Oracle Fusion Middleware Developing Message-Driven Beans for Oracle WebLogic Server, 12¢ (12.2.1.4.0)
E90843-02
Copyright © 2007, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility Vil

Conventions Vil
1 Understanding Message-driven Beans

JCA-Based MDBs 1-1

2 MDB Life Cycle

Overview 2-1
MDBs and Concurrent Processing 2-1
Limitations for Multi-threaded Topic MDBs 2-2

3 MDBs and Messaging Models

Point-to-Point (Queue) Model: One Message Per Listener 3-1
Publish/Subscribe (Topic) Model 3-2
Exactly-Once Processing 3-2

4 Deploying MDBs

Destination and MDBs: Collocation vs. non-Collocation 4-1
Collocated Destination/MDBs 4-1
Non-Collocated Destination/MDBs 4-2
JMS Distributed Destinations 4-4
Best Practice 4-4

5 Programming and Configuring MDBs: Main Steps

Required JMS Configuration 5-1
Create MDB Class and Configure Deployment Elements 5-2

ORACLE" iii

6 Programming and Configuring MDBs: Details

Configuring Destination Type 6-1
Configuring Transaction Management Strategy for an MDB 6-2
Configuring MDBs for Destinations 6-3
Whether to Use Foreign JMS Server Mappings 6-4
How to Set provider-url 6-4
How to Set initial-context-factory 6-4
How to Set destination-jndi-name 6-5
How to Set connection-factory-jndi-name 6-5
Common Destination Scenarios: lllustrations and Key Element Settings 6-5
Configuring Message Handling Behaviors 6-10
Ensuring Message Receipt Order 6-10
Preventing and Handling Duplicate Messages 6-11
Redelivery and Exception Handling 6-12
Using the Message-Driven Bean Context 6-13
Configuring Suspension of Message Delivery During JMS Resource Outages 6-13
Manually Suspending and Resuming Message Delivery 6-14
Configuring the Number of Seconds to Suspend a JMS Connection 6-14
How the EJB Container Determines How Long to Suspend a JMS Connection 6-14
Turning Off Suspension of a JMS Connection 6-15
Configuring a Security Identity for a Message-Driven Bean 6-15
Using MDBs With Cross Domain Security 6-16
Configuring EJBs to Use Logical Message Destinations 6-16
Configuring Logical IMS Message Destinations for Individual MDBs 6-17
Configuring Application-Scoped Logical IMS Message Destinations 6-17

7 Using EJB 3.2 Compliant MDBs

Implementing EJB 3.2 Compliant MDBs 7-1
Programming EJB 3.2 Compliant MDBs 7-1
MDB Sample Using Annotations 7-3

8 Migration and Recovery for Clustered MDBs

0 Using Batching with Message-Driven Beans
Configuring MDB Transaction Batching 9-1
How MDB Transaction Batching Works 9-2

ORACLE iv

10 Configuring and Deploying MDBs Using JMS Topics

Supported Topic Types 10-1
The Most Commonly Used MDB Attributes 10-2
Setting the JMS Destination, Destination Type, and Connection Factory 10-3
Setting Subscription Durability 10-3
Setting Automatic Deletion of Durable Subscriptions 10-4
Setting Container Managed Transactions 10-4
Setting Message Filtering (JMS Selectors) 10-4
Controlling MDB Concurrency 10-4
Setting Subscription Identifiers 10-5
Setting Message Distribution Tuning 10-5
Setting topicMessagesDistributionMode 10-5
Setting distributedDestinationConnection 10-7
Best Practices 10-8
Warning about Non-Transactional MDBs in Compatibility Mode 10-8
Warning About Using Local RDTs with Durable MDBs 10-8
Warning About Using Local RDTs with Non-Durable MDBs 10-9
Warning about Changing Durable MDB Attributes, Topic Type, EJB Name 10-9
Choosing Between Partitioned and Replicated Topics 10-9
Choosing an MDB Topic Messages Distribution Mode 10-10
Managing and Viewing Subscriptions: 10-10
Handling Uneven Message Loads and/or Message Processing Delays 10-10
Configuring for Service Migration 10-11
Upgrading Applications from Previous Releases 10-11
Topic MDB Sample 10-11
11 Deployment Elements and Annotations for MDBs
A Topic Deployment Scenarios
How Configuration Permutations Determine Deployment Actions A-1
Typical Scenarios A-3
Standalone (Non-distributed) Topic Scenarios A-4
One-Copy-Per-Server A-4
One-Copy-Per-Application A-4
Replicated Distributed Topic Scenarios A-4
Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only
Consumption A-5

ORACLE

Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption,

Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment

Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local
Only Consumption

Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every
Member Consumption

Scenario 6: Replicated DT One Copy Per Application, Remote Deployment

Partitioned Distributed Topic Scenarios

Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only
Consumption

Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every
Member Consumption

Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment

Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment, Local
Only Consumption

Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every
Member Consumption

Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment

B Topic Subscription Identifiers

A-6
A-8

A-9

A-10
A-11
A-12

A-12

A-12
A-13

A-13

A-14
A-15

C How WebLogic MDBs Leverage WebLogic JMS Extensions

ORACLE

Vi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing Message-Driven Beans for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at htt p: / / www. or acl e. cont pl s/t opi ¢/ | ookup?ct x=accé& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit htt p: / / www. or acl e. com pl s/t opi ¢/ | ookup?

ct x=acc&i d=i nfo or visit htt p: // www. or acl e. coni pl s/t opi ¢/ | ookup?ct x=accé&i d=trs if you
are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE' vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Understanding Message-driven Beans

A message-driven bean (MDB) is an enterprise bean that allows Java EE applications to
process messages asynchronously. An MDB acts as a JMS or JCA message listener, which
is similar to an event listener except that it receives messages instead of events. The
messages are sent by any of the Java EE components like application client, another
enterprise bean, a Web component, or even a non-Java EE application.

These are the key features of message-driven beans:

e Clients do not access message-driven beans through interfaces. A message-driven bean
has only a bean class.

A message-driven bean's instances retain no data or conversational state for a specific
client. All instances of a message-driven bean are equivalent, allowing the EJB container
to assign a message to any message-driven bean instance. The container can pool these
instances to allow streams of messages to be processed concurrently.

When a message arrives, the container calls the message-driven bean's onMessage method
to process the message. The onMessage method may call helper methods, or it may invoke a
session or entity bean to process the information in the message or to store it in a database.

A message may be delivered to a message-driven bean within a transaction context, so that
all operations within the onMessage method are part of a single transaction. If message
processing is rolled back, the message will be re-delivered.

For information about design alternatives for message-driven beans, see MDBs and
Messaging Models.

For a description of the overall EJB development process, see Developing Enterprise
JavaBeans for Oracle WebLogic Server.

JCA-Based MDBs

Learn how to configure MDBs to receive messages from JCA 1.7-compliant resource
adapters and to set the r esour ce- adapt er - j ndi - name deployment descriptor.

See the JCA 1.7 specification and resource-adapter-jndi-name in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

ORACLE 1-1

MDB Life Cycle

Overview

Examine the phases in the life cycle of an MDB instance and how you can configure an MDB
to control the life cycle.
This chapter includes the following sections:

e Overview
e MDBs and Concurrent Processing

e Limitations for Multi-threaded Topic MDBs

An MDB implements loosely coupled or asynchronous business logic in which the response
to a request need not be immediate. A message-driven bean receives messages from a JMS
gueue or topic, and performs business logic based on the message contents. It is an
asynchronous interface between EJBs and JMS.

All instances of a message-driven bean are equivalent—the EJB container can assign a
message to any MDB instance. The container can pool these instances to allow streams of
messages to be processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean instances
and passing JMS messages to those instances as necessary. The container creates bean
instances at deployment time and may add and remove instances during operations based
on message traffic.

MDBs and Concurrent Processing

ORACLE

MDBs support concurrent processing for both topics and queues. On an Oracle WebLogic
Server instance, each MDB deployment maintains one or more MDB instance pools, also
known as free pools, that hold MDB instances not currently servicing requests. The value of
the max- beans-i n-free-pool attribute, the number of available threads in the thread pool,
the type of thread pool, and sometimes other factors determine the maximum number of
MDB instances in a free pool .

For more information about topics and queues, see MDBs and Messaging Models.

The maximum number of MDB instances in a free pool depends on multiple factors. See
Tuning Message-Driven Beans in Tuning Performance of Oracle WebLogic Server.

The number of free pools associated with an MDB deployment depends on the type of
destination the MDB deployment is connected to. Typically, an MDB deployment is
associated with a single free pool on each Oracle WebLogic Server instance that hosts the
deployment. However, on each Oracle WebLogic Server instance that hosts the deployment,
an MDB deployment connected to a WebLogic JMS distributed destination might have one
free pool for each physical destination associated with the distributed destination. The
number of free pools is automatically determined by the EJB container; and, for MDBs
associated with a JMS destination, each MDB free pool always corresponds to a single JIMS
connection.

2-1

Chapter 2
Limitations for Multi-threaded Topic MDBs

In a queue-based JMS application (point-to-point model), each MDB instance creates
a single internal JMS session and corresponds to an MDB thread.

A topic-based JMS application (the publish/subscribe model) may require a single
instance, may share a single JMS session between multiple instances, or may create
a session for each instance. This is automatically determined by the MDB container
based on the message processing pattern specified by MDB application settings, the
type of topic, the work-manager, and the max- beans-i n-free- pool setting. See
Configuring and Deploying MDBs Using JMS Topics . Also see Tuning Message-
Driven Beans in Tuning Performance of Oracle WebLogic Server.

Limitations for Multi-threaded Topic MDBs

ORACLE

Examine the limitations for multi-threaded topic MDBs.
The default behavior for non-transactional topic MDBs is to multi-thread the message
processing. There are some limitations when using:

* Non-transactional topic MDBs that work with foreign (non-WebLogic) topics

* Non-transactional topic MDBs that consume from a WebLogic JMS topic and
process messages that have a WebLogic JIMS Unit-of-Order (UOO) value

For details, see the Caution in Controlling MDB Concurrency.

2-2

MDBs and Messaging Models

Understand the different models for for MDBs. Oracle WebLogic Server MDBs are used in
either a point-to-point (queue) or publish/subscribe (topic) messaging model.

These models are described in detail in Developing JMS Applications for Oracle WebLogic
Server

This chapter includes the following sections:

e Point-to-Point (Queue) Model: One Message Per Listener
e Publish/Subscribe (Topic) Model

* Exactly-Once Processing

Point-to-Point (Queue) Model: One Message Per Listener

In the point-to-point model, a message from a JMS queue is picked up by one MDB listener
and stays in the queue until processed. If the MDB goes down, the message remains in the
gueue, waiting for the MDB to come up again.

Example: A department must update its back-end inventory system to reflect items sold
throughout the day. Each message that decrements inventory must be processed once, and
only once. It is not necessary for messages to be processed immediately upon generation or
in any particular order, but it is critical that each message be processed.

Figure 3-1 illustrates a point-to-point application. Each message is processed by single
instance of MDB_A. Message "M1" is processed by MDB_A(1), "M2" is processed by
MDB_A(2), and "M3" is processed by MDB_A(3).

Figure 3-1 Point-to-Point Model

Updates from
message M1

MDB_A (1)

Updates from
message M2

Managed
Server 1

MDBE_A (2) Inventary

System

JMS
Queue

Updates from
message M3

ORACLE 3-1

Chapter 3
Publish/Subscribe (Topic) Model

Publish/Subscribe (Topic) Model

In the publish/subscribe model, a JMS topic publishes a copy of each message to
each logical subscription. A logical subscription consists of one or more physical
subscriptions, where each physical subscription is associated with a different member
of a distributed topic.

For stand-alone (non-distributed) topics, a logical subscription always consists of a
single physical subscription on the topic. If an MDB goes down, that MDB will miss the
message, unless the topic is a durable subscription topic. For information on durable
subscriptions and for configuration instructions, see Setting Subscription Durability.

Example: A financial news service broadcasts stock prices and financial stories to
subscribers, such as news wire services. Each message is distributed to each
subscriber.

Figure 3-2 illustrates a publish/subscribe application. In contrast to a point-to-point
application, in a publish/subscribe model, a copy of the message is processed for each
of the logical subscriptions. In this diagram, there are two logical subscriptions, where
each logical subscription consists of a separate physical subscription on the single
topic. MDB_A has two instances that process the messages for a single dedicated
subscription. Similarly, MDB_B has two instances that process the messages for a
different single dedicated subscription. Message M1 is processed by an instance of
MDB_A and an instance of MDB_B. Similarly, message M2 is processed by an
instance of each of the subscribing MDBs.

Figure 3-2 Publish/Subscribe Model

Updates from
message M1

Managed Server 2

MDB_B (1)

Domestic
Newswire
System

Updates from
message M2

Managed
Server 1

JMS Topic (£

Updates from
message M1

International
Newswire
System

Updates from
message M2

Exactly-Once Processing

ORACLE

An MDB application processes each message at least once. To ensure that a
message is processed exactly once, use container-managed transactions, so that

3-2

ORACLE

Chapter 3
Exactly-Once Processing

failures cause transactional MDB work to roll back and force the message to be redelivered.
Potentially, a message can be processed more than once:

If an application fails, a transaction rolls back, or the hosting server instance fails during
or after the onMessage() method completes but before the message is acknowledged or
committed, the message will be redelivered and processed again.

Non-persistent messages are also redelivered in the case of failure, except when the
message's host JMS server shuts down or crashes, in which case the messages are
destroyed.

3-3

Deploying MDBs

Examine the various approaches for deploying MDBs and the JMS destination to which the
MDBs listen and understand how JMS distributes the messaging load across available
members of the distributed destination.

This chapter includes the following sections:

e Destination and MDBs: Collocation vs. non-Collocation
e Collocated Destination/MDBs
* Non-Collocated Destination/MDBs

e JMS Distributed Destinations

Destination and MDBs: Collocation vs. non-Collocation

You can deploy an MDB on the same server instance as the JMS destination on which it
listens or on separate server instance. When you deploy an MDB on the same server
instance as the JMS destination on which it listens it is referred to as collocation and when
you deploy and MDB on a separate server instance it is referred as non-collocation.

Collocated Destination/MDBs

Collocating an MDB with the destination to which it listens keeps message traffic local and
avoids network round trips. Collocation is the best choice if you use Oracle WebLogic Server
JMS and want to minimize message processing latency and network traffic.

You cannot collocate the MDB and the JMS destination if you use a third-party JMS provider
that cannot run on Oracle WebLogic Server, such as MQ Series.

Figure 4-1 and Figure 4-2 illustrate architectures in which the MDB application is deployed to
the server instance that hosts the associated JMS destination. These architectures vary in
that the first has a distributed destination and the second does not. In an application that uses
distributed destinations, the MDB is deployed to each server instance that hosts a member of
the distributed destination set. For more information about distributed destinations, see JMS
Distributed Destinations. As illustrated in Figure 4-1 the message "M1" is delivered to an
instance of MDB_A on each server instance where a distributed destination and MDB_A are
deployed. Figure 4-1 illustrates a One- Copy- Per - Ser ver topic message distribution mode
pattern. Topic patterns are discussed in more detail in Setting
topicMessagesDistributionMode.

ORACLE 4-1

Chapter 4
Non-Collocated Destination/MDBs

Figure 4-1 Collocated Destination/MDBs, Distributed Topic, One-Copy-Per-
Server Pattern

WebLogic Server Cluster

Managed Server 3

Managed Server 1

Distributed Topic

Distributed Taopic

Managed Server 2

M1
MDE_AY M1
MDB_A Distributed Topic Q)
(2)
:
MDB_A @)
(1)

Figure 4-2 Collocated Destination/MDBs, Non-Distributed Destination

WebLogic Server Cluster

Managed
Server 2

Managed Server 1

MDB_A

M1 (1)

WeblLogic Server |~ MDB_A
JMS Destination 2) Managed
Server 3

MDB_A
(3)

Non-Collocated Destination/MDBS

ORACLE

Examine the non-colloacated destination/MDBs in which an MDB runs on a different
server instance from the JMS Destination. It is best suited for applications that use a
third-party JMS provider or if you want to isolate application code (the MDBSs) from the
JMS infrastructure.

Figure 4-3 illustrates an architecture in which an MDB runs on a different server
instance from the JMS Destination to which the MDB listens.

4-2

ORACLE

Chapter 4
Non-Collocated Destination/MDBs

Figure 4-3 Non-Collocated Application, Non-Distributed Destination

WebLogic Server Cluster

Managed
Server 2

DB_A
(2)

Managed
Server 3

Managed Server 1

Ms

Diestination M2

M1

Running your MDBs on a different server instance from the JMS Destination to which the
MDB listens is suitable if:

* Your application uses a third-party JMS provider, such as MQ Series.

* You want to isolate application code (the MDBs) from the JMS infrastructure. By placing
JMS destinations and MDBs on separate server instances, you prevent application
problems—for example, MDBs consuming all of your virtual machine's memory—from
interrupting the operation of the JMS infrastructure.

* Your MDB application is very CPU-intensive. On a separate machine, your application
can use 100 percent of the CPU without affecting the operation of the JMS infrastructure.

* One machine in your configuration has more processing power, disk space, and memory
than other machines in the configuration.

The JMS destination and MDBs could also be deployed on non-clustered servers, servers
within the same cluster, or to servers in separate clusters.

" Note:

WebLogic Server does not support non-collocated Destination/MDBSs in a cluster
when you deploy the destination on a target that can be migrated.

4-3

Chapter 4
JMS Distributed Destinations

JMS Distributed Destinations

When an MDB application runs on an Oracle WebLogic Server cluster, you can
configure multiple physical destinations (queues or topics) as a distributed destination,
which appears to message producers and consumers to be a single destination.

If you configure a distributed destination, WebLogic JMS distributes the messaging
load across available members of the distributed destination. If a member of the
destination becomes unavailable due to a server failure, message traffic is re-directed
to the other available physical destinations in the distributed destination set. You
control whether an MDB that accesses a WebLogic distributed queue in the same
cluster consumes from all distributed destination members or only those members
local to the current Oracle WebLogic Server, using the di stri but ed- desti nati on-
connection element in the webl ogi c-ej b-j ar. xm file or the

di stributedDestinationConnecti on annotation. Similarly, this setting controls
behavior for some topic MDB scenarios, as described in Configuring and Deploying
MDBs Using JMS Topics , and Topic Deployment Scenarios.

If you deploy an MDB and the associated distributed queue to the same cluster, Oracle
WebLogic Server automatically enumerates the distributed queue members and
ensures that each member is serviced by at least one MDB pool. For distributed
gueues, there will be one MDB pool for each local member when

di stributedDestinationConnection is Local Only (the default); otherwise, for
gueues, when di st ri but edDest i nati onConnecti on is set to Ever yMenber , each
Oracle WebLogic Server instance creates multiple local MDB pools - one for each
local member plus one for each remote member.

If you deploy an MDB and its associated queue to different clusters, Oracle WebLogic
Server automatically enumerates the distributed queue members and ensures that
each member is serviced by an MDB pool on each server in the MDB cluster. For
example, if the distributed queue has three members, each JVM in the MDB cluster
will create three MDB pools.

For more information about distributed topics, see Configuring and Deploying MDBs
Using JMS Topics .

Best Practice

ORACLE

WebLogic clustering and WebLogic JMS distributed destinations increase scalability
and high availability. Examine some of the best practices to increase scalability and
high availability.

Oracle recommends that the machines that host a cluster have identical or similar
processing power, disk space, and memory to ensure well-load-balanced message
processing. Similarly, it is recommended that the Oracle WebLogic Server instances in
a particular WebLogic cluster have homogenous JMS configuration and MDB
deployments.

For an example, see Figure 4-1. For additional information about distributed
destinations, see Using Distributed Destinations in Developing JMS Applications for
Oracle WebLogic Server.

4-4

Programming and Configuring MDBs: Main

Steps

Examine the step-by-step instructions for implementing an MDB using pre-EJB 3.0 style XML
descriptors to configure its behavior.

For a summary of key deployment elements for MDBs, see Deployment Elements and
Annotations for MDBs. For an introduction to key deployment elements for topic MDBs, see
Configuring and Deploying MDBs Using JMS Topics .

This chapter includes the following sections:

Required JMS Configuration

Create MDB Class and Configure Deployment Elements

Required JMS Configuration

Examine the steps to configure JMS connection factory and JMS destination.
The steps in the following section assume that you have access to the appropriate JMS
components:

ORACLE

A JMS connection factory.

A connection factory must be XA transaction (global JTA transaction) capable in order to
support transactional MDBs.

The default WebLogic JIMS MDB connection factory is XA-capable, is automatically
generated on WebLogic clusters, and is sufficient for the majority of MDBs that consume
from WebLogic JMS destinations. For information about WebLogic JMS default
connection factories, see Using a Default Connection Factories Defined by WebLogic
Server in Administering JMS Resources for Oracle WebLogic Server.

For instructions about how to create a custom WebLogic JMS connection factory, see
Create connection factories in a system module in Oracle WebLogic Server
Administration Console Online Help.

The default behavior and configuration methods for other JMS provider connection
factories vary. If you use a hon-Oracle JMS provider, see the vendor documentation for
details.

A JMS destination

For instructions on configuring WebLogic JMS destinations, see Configure Messaging in
Oracle WebLogic Server Administration Console Online Help.

5-1

Chapter 5
Create MDB Class and Configure Deployment Elements

< Note:

If your JMS provider is a remote Oracle WebLogic Server JMS provider
or a foreign JMS provider, and you use the wrapper approach
recommended in Whether to Use Foreign JMS Server Mappings, in
addition to configuring the non-local IMS components, you must also
configure a Foreign Connection Factory and Foreign JMS Destination in
your local JNDI tree.

Create MDB Class and Configure Deployment Elements

Examine the steps to implement a message-driven bean in an Oracle WebLogic

ORACLE

Server.

Use the following steps to implement a message-driven bean:

1. Create a source file (message-driven bean class) that implements both the
j avax. ej b. MessageDri venBean and j avax. j ns. Messageli st ener interfaces.

The MDB class must define the following methods:

One gj bCreat () method that the container invokes after creating each new
instance of the MDB.

One onMessage() method that is called by the EJB container when a message
is received. This method contains the business logic that processes the
message.

One set MessageDri venCont ext {} method that provides information to the
bean instance about its environment (certain deployment descriptor values);
the MDB also uses the context to access container services. See Using the
Message-Driven Bean Context,.

One ej bRemove() method that removes the message-driven bean instance
from the free pool.

" Note:

Most EJB 3.2 applications implement only j avax. j ns. MessagelLi st ener,
which defines a single method - onMessage() . However, a message-
driven bean is permitted to implement a listener interface with no
methods. A bean that implements a no-methods interface, exposes all
non-static public methods of the bean class and of any superclasses
except j ava. | ang. Obj ect as message listener methods.

2. Declare the MDB in ej b-j ar. xm , as illustrated in the following excerpt:

<ej b-jar>

<enterpri se-beans>
<message-driven>
<ej b-name>. .. </ ej b- nane>
<ej b-class>...</ejb-class>
<transaction-type>Cont ai ner</transaction-type>
<acknow edge- node>aut o_acknow edge</ acknow edge- node>
<message- driven-destination>

5-2

ORACLE

Chapter 5
Create MDB Class and Configure Deployment Elements

<destination-type>j avax. j ns. Topi c</ desti nation-type>
<subscription-durability>Durabl e</subscription-durability>
</ message-driven-destination>
</ message-driven>
</enterprise-beans>
<assenbl y-descri pt or >
<contai ner-transaction>
<net hod>
<ej b-nane>. .. </ ej b- name>
<met hod- nane>onMessage() </ met hod- nane>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ contai ner-transaction>
</ assenbl y-descri pt or>
</ejb-jar>

The key behaviors to configure are:

» Transaction management strategy—The MDB's transaction management strategy, in
the transacti on-t ype element. For instructions, see Configuring Transaction
Management Strategy for an MDB.

e Destination type—The type of destination to which the MDB listens. For more
information, see Configuring Destination Type.

Configure WebLogic-specific behaviors for the MDB in the message- dri ven-descri pt or
element of webl ogi c- ej b-j ar. xnl . For example:

<webl ogi c-ej b-jar>
<webl ogi c- ent er pri se- bean>

<ej b- name>exanpl eMessageDri venA</ ej b- name>

<nessage-driven-descri ptor>
<pool >. .. </ pool >
<timer-descriptor>...</tiner-descriptor>
<destination-jndi-nane>...</destination-jndi-nane>
<initial-context-factory>...</initial-context-factory>
<provider-url>...</provider-url>
<connection-factory-jndi - name>. .. </ connecti on-factory-j ndi - nane>
<j ms-pol Iing-interval -seconds>...</jns-polling-interval-seconds>
<jms-client-id> ..</jms-client-id>
<gener at e-uni que-j ms-client-id>...</generate-unique-jns-client-id>
<dur abl e- subscri ption-del etion>...</durabl e-subscription-del eti on>
<max- messages-in-transaction>. .. </ max- messages-in-transaction>
<i ni t-suspend-seconds>. .. </init-suspend-seconds>
<max- suspend- seconds>. . . </ max- suspend- seconds>

</ message- dri ven-descri pt or >

</ webl ogi c-enter pri se-bean>
</ webl ogi c-ej b-j ar>

The key elements to configure are those that specify how to access the destination. In
general, applications that follow best practices should never need to specify the i niti al -
context-factory orprovider-url fields. For instructions, see Configuring MDBs for
Destinations.

Compile and generate the MDB class using the instructions in Compile Java Source in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Deploy the bean on Oracle WebLogic Server using the instructions in the section
Preparing Applications and Modules for Deployment in Deploying Applications to Oracle
WebLogic Server

5-3

ORACLE

Chapter 5
Create MDB Class and Configure Deployment Elements

If Oracle WebLogic Server cannot find an MDB's JMS destination during
deployment, deployment succeeds, but Oracle WebLogic Server prints a message
saying the destination was not found. The MDB bean then periodically tries to
connect to its IMS queue until it succeeds. For more information, see Migration
and Recovery for Clustered MDBs.

5-4

Programming and Configuring MDBs: Detalils

Examine the steps to program and configure MDBs.
The sections supplement the instructions in Programming and Configuring MDBs: Main Steps

" Note:

This chapter uses a pre-EJB 3.0 deployment descriptor to illustrate basic MDB
configuration. If you plan to use EJB 3.2 annotations, see also Deployment
Elements and Annotations for MDBs. and Using EJB 3.2 Compliant MDBs, for the
equivalent settings.

This chapter includes the following sections:

e Configuring Destination Type

e Configuring Transaction Management Strategy for an MDB

e Configuring MDBs for Destinations

e Configuring Message Handling Behaviors

e Using the Message-Driven Bean Context

e Configuring Suspension of Message Delivery During JMS Resource Outages
e Manually Suspending and Resuming Message Delivery

e Configuring the Number of Seconds to Suspend a JMS Connection

e Configuring a Security Identity for a Message-Driven Bean

e Using MDBs With Cross Domain Security

e Configuring EJBs to Use Logical Message Destinations

Configuring Destination Type

ORACLE

To configure the type of destination to which the MDB listens, set the desti nati on-type
element in the message- dri ven-desti nati on element of ej b-j ar. xm or by using an
annotation.

e To specify a topic, set desti nati on-type toj avax. j ms. Topi c. If the destination is a
topic, specify subscri ption-durability as either Durabl e or NonDur abl e. For important
additional Topic related settings see Configuring and Deploying MDBs Using JMS
Topics , and Deployment Elements and Annotations for MDBSs.

» To specify a queue, set desti nati on-type toj avax.j ms. Queue. For additional Queue
related settings see Deployment Elements and Annotations for MDBs.

6-1

Chapter 6
Configuring Transaction Management Strategy for an MDB

Configuring Transaction Management Strategy for an MDB

ORACLE

Learn how to configure an MDB for managing its own transactions or deferring
transaction management to the container.
To configure container-level transaction management using descriptor elements:

e Setthetransaction-type elementin the message-driven element in the gj b-
jar.xnl file to Cont ai ner.

e Setthetrans-attribute elementin the container-transaction elementin ejb-
jar.xm to Required.

< Note:

Iftransaction-type is setto Contai ner,and trans-attribute is not
set, the default t ransacti on-attri but e values are applied: requi red
(for EJB 3.2 MDBSs) and Not Support ed (for MDBs prior to EJB 3.0).
Oracle WebLogic Server allows you to deploy the MDB, and logs a
compliance error. However, if you make this configuration error, the MDB
will not run transactionally—if a failure occurs mid-transaction, updates
that occurred prior to the failure will not be rolled back.

* To change the timeout period for the transaction, set t rans-ti meout - seconds in
the transacti on-descri ptor element of webl ogi c-ej b-j ar. xn . If a transaction
times out, it is rolled back, and the message is redelivered. By default,
transactions time out after 30 seconds. For an application with long-running
transactions, it may be appropriate to increase the timeout period.

To configure container-level transaction management using EJB annotations:

inport javax.ejb.TransactionAttribute;
inport javax.ejb.TransactionAttributeType;

@ransactionAttribute(val ue = TransactionAttri buteType. REQU RED)
public void onMessage(Message msg) {

To configure bean-level transaction management using descriptor elements:

e Setthetransaction-type elementin the nessage-dri ven element in the gj b-
jar.xnm file to Bean.

* Set the acknow edge- node element to specify the desired JMS acknowledgment
semantics, either one of the following:

— AUTO_ACKNOALEDGE (the default) as described at ht t p: / / www. or acl e. cont
t echnet wor k/ j ava/ j ms/ i ndex. ht m #AUTO_ACKNOW.EDGE

— DUPS_OK_ACKNOWLEDGE as described at htt p: // www. or acl e. coni t echnet wor k/
javal j ms/ i ndex. ht ml #DUPS_OK_ACKNOW.EDGE

See Session in Developing JMS Applications for Oracle WebLogic Server.

6-2

http://www.oracle.com/technetwork/java/jms/index.html#AUTO_ACKNOWLEDGE
http://www.oracle.com/technetwork/java/jms/index.html#AUTO_ACKNOWLEDGE
http://www.oracle.com/technetwork/java/jms/index.html#DUPS_OK_ACKNOWLEDGE
http://www.oracle.com/technetwork/java/jms/index.html#DUPS_OK_ACKNOWLEDGE

Chapter 6
Configuring MDBs for Destinations

Configuring MDBs for Destinations

ORACLE

Learn how to configure local and remote destination for the MDBs. Oracle WebLogic Server
MDBs support WebLogic JMS destinations and foreign (non-Oracle) JMS provider
destinations.

A local destination is one that runs on the same machine or in the same cluster as the MDB.
A remote destination is one that runs on a different machine and is not a member of the same
cluster as the MDB. Whether a destination is local or remote depends on whether or not it
and the MDB share the same JNDI context.

To be considered local to one another, an MDB and the associated JMS destination must
both run either on the same machine or within the same Oracle WebLogic Server cluster. An
MDB and a JMS destination on server instances in the same Oracle WebLogic Server cluster
are local to one another even if they are on separate machines, because the server instances
in a Oracle WebLogic Server cluster each have a copy of the same cluster-wide JNDI tree.

Destinations that run under a non-Oracle JMS provider are referred to as foreign. Foreign
JMS providers have their own JNDI provider and foreign JMS objects do not share the same
context with a Oracle WebLogic Server MDB—unless the foreign JMS objects are configured
with mappings to appear in the MDB's JNDI context. This approach is discussed in Whether
to Use Foreign JMS Server Mappings.

The nature of a destination—Ilocal versus remote and WebLogic JMS versus non-Oracle—
governs the configuration alternatives available, and dictates to some extent how you
configure these key elements in the nessage- desti nati on-descri pt or for the MDB in
webl ogi c-ej b-jar.xn :

e initial-context-factory

e provider-url

e destination-jndi-nane

e connection-factory-jndi-name

For foreign and remote destinations, the simplest configuration strategy is to use Oracle
WebLogic Server foreign JMS server mappings. These mappings allow you to create a
"symbolic link" between a JMS object in a third-party JNDI provider or in a different Oracle
WebLogic Server cluster or domain, and an object in the local WebLogic JNDI tree.

For more information on when foreign JMS server mappings are appropriate, and the rules
for configuring the nessage- dri ven- descri pt or in webl ogi c-ej b-j ar. xm , see these
sections:

* Whether to Use Foreign JMS Server Mappings
* How to Set provider-url

* How to Set initial-context-factory

* How to Set destination-jndi-name

* How to Set connection-factory-jndi-name

To configure the elements in nessage- dri ven-descri pt or for specific scenarios, see
Common Destination Scenarios: lllustrations and Key Element Settings .

6-3

Chapter 6
Configuring MDBs for Destinations

Whether to Use Foreign JMS Server Mappings

Using mappings means configuring a Foreign Connection Factory and a Foreign
Destination that correspond to remote JMS objects (either non-Oracle or WebLogic
JMS) as entries in your local JNDI tree.

" Note:

The Foreign JMS Server mapping feature is not the same as the Foreign
JNDI mapping feature. MDBs generally require that you use the Foreign JMS
Server feature when mapping JMS resources into JNDI. The Foreign JNDI
feature is meant for non-JMS resource types.

* The use of mappings is recommended if you use a foreign JMS provider or a
remote WebLogic JMS provider. For more information on JMS mapping classes,
see "Simplified Access to Remote or Foreign JMS Providers" in Enhanced Support
for Using WebLogic JMS with EJBs and Servlets in Developing JMS Applications
for Oracle WebLogic Server.

* If you use a mapping for either the connection factory or the destination, you must
create and use mappings for each of these objects.

Whether or not you use mappings determines how you configure the i ni ti al -
context - factory and desti nati on-j ndi - nane.

How to Set provider-url

provi der-url specifies the URL of the JNDI service used by the JMS provider for the
destination to which the MDB listens.

e If the JMS provider is local to the MDB (by definition, WebLogic JMS), do not
specify provi der-url .

e If the JMS provider is remote, whether WebLogic JMS or a foreign provider, and:
— You do not use mappings, specify provi der-url .

— You do use mappings, do not specify provi der-url . The URL is implicitly
encoded in the mapping.

How to Set initial-context-factory

initial-context-factory identifies the class that implements the initial context
factory used by the JMS provider.

e If your JMS provider is WebLogic JMS, whether local or remote, do not specify
initial-context-factory.

* If your JMS provider is foreign, and

— you do not use mappings, specify the initial context factory used by the JMS
provider.

— you do use mappings, do not specify i ni tial -context-factory.

ORACLE 6-4

Chapter 6
Configuring MDBs for Destinations

How to Set destination-jndi-name

desti nati on-j ndi - name identifies the JNDI name of destination to which the MDB listens.

If your JMS provider is local, specify the name bound in the local JNDI tree for the
destination.

If your JMS provider is foreign and:

— You do not use mappings, specify the name of the destination, as bound in the
foreign provider's JNDI tree.

— You do use mappings, specify the name Foreign Destination you set up in your local
JNDI tree that corresponds the remote or foreign destination.

How to Set connection-factory-jndi-name

connection-factory-jndi - nane identifies the JNDI name of the connection factory used by
the JMS provider.

If your JMS provider is local, do not specify connect i on-f act ory-j ndi - nane unless you
have configured a custom connection factory that the MDB will use.

Custom connection factories are used when the default Oracle WebLogic Server
connection factory does not satisfy your application requirements. For example, you
might configure a custom connection factory in order to specify a particular desired value
for the MessagesMaxi numattribute. The procedure for configuring a connection factory is
described in Configure connection factories in Oracle WebLogic Server Administration
Console Online Help.

Note:

If you configure a custom JMS connection factory for an MDB, be sure to set
the Acknowl edge Pol i cy attribute to Previ ous, and that the
User Transact i onsEnabl ed attribute is enabled.

If your JMS provider is remote or foreign, and:

— You do not use mappings, specify the name of the connection factory used by the
JMS provider, as bound in the remote JNDI tree.

— You do use mappings, specify the Foreign Connection Factory you set up in your
local JNDI tree that corresponds to the remote or foreign JMS provider's connection
factory.

Common Destination Scenarios: lllustrations and Key Element Settings

The figures in this section illustrate common destination configurations. For remote and
foreign destinations, scenarios with and without mappings are included.

ORACLE

Figure 6-1
Figure 6-2
Figure 6-3

6-5

ORACLE

Chapter 6
Configuring MDBs for Destinations

* Figure 6-4

Table 6-1 summarizes how to configure the elements in the nessage-dri ven-
descri pt or element of webl ogi c-ej b-j ar. xm for each scenario.

Figure 6-1 A. Destination on a Local WebLogic JMS Server

WeblLogic Server Cluster

JNDI

Connection
Factary

JMS
Destination

Key
—_— Requires configuration

- Mot configured

6-6

Chapter 6
Configuring MDBs for Destinations

Figure 6-2 B. Destination On a Remote WebLogic JMS Server—No Mappings

WebLogic Server Cluster A WeblLogic Server Cluster B

JMDI

Connection
Factory

JMS
Destination

Key
B Requires configuration

—_—— e Mot configured

ORACLE 6-7

Chapter 6
Configuring MDBs for Destinations

Figure 6-3 C. Destination on Foreign JMS Server—No Mappings

WebLogic Server Cluster Foreign JMS Provider

URL JMDI

Connection
Factory

JMS
Destination

Key
. Requires configuration

—_— — = Mot configured

ORACLE 6-8

Chapter 6
Configuring MDBs for Destinations

Figure 6-4 D. Destination on a Remote Oracle WebLogic Server or Foreign JMS
Server—With Mappings

WebLogic Server Cluster A

|
UR’I:_,

~
<

/

JNDI

Foreign JMS
Connection
Factory

Foreign JMS
Destination

Remote or Foreign
JMS Provider

ﬁ Cannection

T JMS

Factory

Destination

Key

[— .

—_ — —

Reqguires configuration

Mot configured

Table 6-1 Common Configuration Scenarios

Scen If destination-jndi- initial-context- provider-url connection-
ario destination Configured name factory factory-jndi-
is on... name
A Local Name of the local Do not specify Do not Specify only if
WebLogic destination, as specify using a custom
JMS server bound in local JINDI connection factory
tree
B Remote Name of the remote Do not specify URL or Specify only if
WebLogic destination, as cluster using a custom
JMS Server bound in the remote address for connection factory
JNDI tree the remote on the remote
WebLogic provider
JMS Server
C Foreign JMS Name of the remote Name of remote URL to JNDI name of
Provider destination, as initial context factory, access the foreign connection
bound in the remote as bound in remote foreign JIMS factory
JNDI tree JNDI tree provider
ORACLE

6-9

Chapter 6
Configuring Message Handling Behaviors

Table 6-1 (Cont.) Common Configuration Scenarios
]

Scen |If Mappings destination-jndi- initial-context- provider-url connection-

ario destination Configured name factory factory-jndi-
is on... ? name

D Remote Mappings The name of the Do not specify Do not The name of the
Weblogic configured Foreign Destination specify Foreign
JMS Server —as bound in your Connection
or local JNDI tree — Factory—as

. that maps to the bound in your

Foreign JMS remote or foreign local JNDI tree —
server destination that maps to the

remote or foreign
connection factory

Configuring Message Handling Behaviors

Examine the guidelines for behaviors related to message delivery:
This section includes the following topics:

» Ensuring Message Receipt Order
* Preventing and Handling Duplicate Messages

* Redelivery and Exception Handling

Ensuring Message Receipt Order

Make sure that the MDB's business logic allows for asynchronous message
processing. Do not assume that MDBs receive messages in the order the client issues
them.

When using WebLogic JMS destinations, Oracle recommends using the Unit-of-Order
feature if strict ordering is required. This feature enforces ordering under all
circumstances without requiring modification of the MDB, enables concurrent
processing of sub-orderings that exist within the same destinations, and can be
enabled via configuration or programmatically as appropriate. See Using Message
Unit-of-Order in Developing JMS Applications for Oracle WebLogic Server.

If you are not using WebLogic destinations with unit-of-order to ensure that receipt
order matches the order in which the client sent the message, you must do the
following:

e Set nmax- beans-in-free-pool to 1 for the MDB. This ensures that the MDB is the
sole consumer of the message.

* If your MDBs are deployed on a cluster, deploy them to a single node in the
cluster, as illustrated in Figure 6-5.

To ensure message ordering in the event of transaction rollback and recovery,
configure a custom connection factory with MessagesMaxi mumset to 1, and ensure that
no redelivery delay is configured. Foreign vendors have different names for the
equivalent setting. This setting controls the number of messages that a vendor may
push to a consumer before the consumer completes processing of its current
message.

ORACLE 6-10

Chapter 6
Configuring Message Handling Behaviors

See Ordered Redelivery of Messages in Developing JMS Applications for Oracle WebL ogic
Server.

See the Java documentation on the Interface MessagelLi st ener —
j avax. j ms. Messageli st ener . onMessage() —for more information, at http: //
downl oad. oracl e. conl j avaee/ 1. 2. 1/ api / j avax/ j ms/ MessagelLi st ener. htni .

Preventing and Handling Duplicate Messages

ORACLE

A JMS vendor expects an MDB to acknowledge received messages. If the MDB receives the
message, but fails to send an acknowledgement, the JMS vendor re-sends the same
message.

Your MDB design should allow for the likelihood of duplicate messages. Duplicate messages
can be undesirable in certain cases. For example, if an MDB's onMessage() method includes
code to debit a bank account, receiving and processing that message twice would result in
the account being debited twice. In addition, re-sending messages consumes more
processing resources.

The best way to prevent delivery of duplicate messages is to use container-managed
transactions. In a container-managed transaction, message receipt and acknowledgement
occur within the transaction; either both happen or neither happens. However, while this
provides more reliability than using bean-managed transactions, performance can be
compromised because container-managed transactions use more CPU and disk resources.

If the MDB manages its own transactions, your onMessage() code must handle duplicate
messages, as receipt and acknowledgement occur outside of a transaction. In some
applications, receipt and processing of duplicate messages is acceptable. In other cases,
such as the bank account scenario, if a transaction is bean-managed, the bean code must
prevent processing of duplicate messages. For example, the MDB could track messages that
have been consumed in a database.

Even if an MDB's onMessage() method completes successfully, the MDB can still receive
duplicate messages if the server crashes between the time onMessage() completes and the
time the container acknowledges message delivery. Figure 6-5 illustrates this scenario.

6-11

http://download.oracle.com/javaee/1.2.1/api/javax/jms/MessageListener.html
http://download.oracle.com/javaee/1.2.1/api/javax/jms/MessageListener.html

Chapter 6
Configuring Message Handling Behaviors

Figure 6-5 Server Crash Between Completion of onMessage() and Container
Delivery Acknowledgement

JMS EJB Container MDB

1. Delivers message

2. Calls MDB's onMessage() method

3. onMessage() returns

4 Server crashes

5. Server recovers,
notes lack of
message
acknowledgement

G. Re-delivers message

Redelivery and Exception Handling

If an MDB is consuming a message when an unexpected error occurs, the MDB can
throw a system exception that causes JMS to resend, delay, and then resend or give
up, depending on how JMS is configured.

To force message redelivery for a transactional MDB, use the bean context to call
set Rol | backOnl y().

To force message redelivery for any MDB—transactional or non-transactional—you
can throw an exception derived from the Runt i meExcepti on or Error thrown by the
MDB. This causes the MDB instance to be destroyed and recreated, which incurs a
performance penalty. If you want to avoid the overhead of a destroy and recreate,
while still throwing a runtime exception, you can use a WebLogic extension. Throw an
instance of a webl ogi c. ej b. NonDest ruct i veRunt i meExcepti on, for example,

throw new webl ogi c. ej b. NonDest ructi veRunt i meException("force redelivery");

You may want to configure a redelivery delay based on what type of task the MDB's
onMessage() method is performing. In some cases, redelivery should be
instantaneous, for example, in an application that posts breaking news to a newswire
service. In other cases, for example, if the MDB throws an exception because the
database is down, redelivery should not occur immediately, but after the database is
back up.

ORACLE 6-12

Using the

Chapter 6
Using the Message-Driven Bean Context

< Note:

For fully ordered MDBs that do not use the Unit-of-Order feature, do not set a
redelivery delay.

For instructions on configuring a redelivery delay, and other JMS exception handling features
that can be used with MDB, see Managing Rolled Back, Recovered, Redelivered, or Expired
Messages in Developing JMS Applications for Oracle WebLogic Server.

Message-Driven Bean Context

Oracle WebLogic Server calls set MessageDri venCont ext () to associate the MDB instance
with a container context. Alternatively, EJB 3.2 MDB applications can specify an annotation
that injects the MDB context. This is not a client context; the client context is not passed
along with the JMS message.

To access the container context's properties from within the MDB instance, use the following
methods from the MessageDr i venCont ext interface:

e getCallerPrincipal () —Inherited from the EJBCont ext interface and should not be
called by MDB instances.

e isCallerlnRol e()—Inherited from the EJBCont ext interface and should not be called by
MDB instances.

e setRol | backOnl y() —Can only be used by EJBs that use container-managed
transactions.

e getRol I backOnl y() — Can only be used by EJBs that use container-managed
transactions.

e getUser Transacti on() —Can only be used by EJBs that use bean-managed transaction
demarcations.

" Note:

Although get EJBHone() is also inherited as part of the MessageDr i venCont ext
interface, message-driven beans do not have a home interface. Calling

get EJBHonme() from within an MDB instance causes an

I'l1egal StateException.

Configuring Suspension of Message Delivery During JMS
Resource Outages

ORACLE

To configure how an MDB behaves when the EJB container detects a JMS resource outage
such as an MDB throwing the same exception ten times in succession.
You can configure:

e An MDB to suspend the JMS connection and thereby stop receiving additional messages
when the EJB container detects a JMS resource outage. If you choose this configuration
option, you can specify:

6-13

Chapter 6
Manually Suspending and Resuming Message Delivery

— The initial number of seconds the MDB should wait before it first resumes
receiving messages.

— The maximum number of seconds the MDB should wait before it resumes
receiving messages.

* An MDB to not suspend the JMS connection when the EJB container detects a
JMS resource outage.

When a JMS connection is suspended, message delivery is suspended for all IMS
sessions associated with the connection. By default, when it detects a JMS resource
outage, the EJB container suspends an MDB's JMS connection for i ni t - suspend-
seconds.

Manually Suspending and Resuming Message Delivery

Administrators can use the WebLogic Server Administration Console to manually
suspend and resume message delivery to deployed MDBs.

See Suspend and resume MDB JMS connections in Oracle WebLogic Server
Administration Console Online Help.

Configuring the Number of Seconds to Suspend a JMS
Connection

You can suspend a JMS connection during a resource outage, which can be defined
as an MDB throwing the same exception 10 times in succession.

To suspend an MDB's JMS connection, configure the following elements in the

webl ogi c- ej b-j ar. xmfile:

e init-suspend-seconds—the initial amount of time, in seconds, to suspend a JMS
connection when the EJB container detects a JMS resource outage. The default
value is 5.

* max- suspend- seconds—the maximum amount of time, in seconds, to suspended a
JMS connection when the EJB container detects a JMS resource outage. The
default value is 60.

How the EJB Container Determines How Long to Suspend a JMS
Connection

The EJB container uses the following algorithm, based on the i ni t - suspend- seconds
and max- suspend- seconds, to determine the amount of time a JMS connection is
suspended.

When the EJB container detects a JMS resource outage:

1. The MDB's JMS connection is suspended for the amount of time specified by
i nit-suspend-seconds.

2. The connection is checked. If the resource is available, go to Step 12.

3. Ifthe value of i ni t - suspend- seconds is greater than or equal to max- suspend-
seconds, go to Step 9.

ORACLE 6-14

10.
11.
12.

Chapter 6
Configuring a Security Identity for a Message-Driven Bean

The amount of time used to suspend the JMS connection, represented by Xseconds, is
calculated by multiplying the time of the previous suspension by 2.

The MDB's JMS connection is suspended for the amount of time specified by Xseconds.
The connection is checked. If the resource is available, go to Step 12.

If the value of i ni t - suspend- seconds is greater than or equal to max- suspend- seconds,
go to Step 9.

Go to Step 4.

The MDB's JMS connection is suspended for the amount of time specified by nax-
suspend- seconds.

Check the connection. If the resource is available, go to Step 12.
Go to Step 9.

Continue processing.

Turning Off Suspension of a JMS Connection

If you do not want an MDB's JMS connection to be suspended when the EJB container
detects a resource outage, set the value of max- suspend- seconds to 0. When the value of
max- suspend- seconds is 0, the value of i ni t - suspend- seconds is ignored.

Configuring a Security Identity for a Message-Driven Bean

When a MDB receives messages from a JMS queue or topic, the EJB container uses a
Credential Mapping provider and a credential map to validate the security credentials to
establish the JMS connection and to execute the onMessage() method. This credential
mapping occurs only once, when the MDB is started.

Once the EJB container is connected, the JMS provider uses the established security identity
to retrieve all messages.

ORACLE

To configure a security identity for an MDB:

1.

Create a WebLogic user for the MDB. See Users, Groups, and Security Roles in
Securing Resources Using Roles and Policies for Oracle WebLogic Server. Assign the
user the username and password that the non-Oracle JMS provider requires to establish
a JMS connection.

In the ej b-j ar. xn deployment descriptor, define a r un- as identity for the MDB:

<security-identity>
<run- as>
<rol e- nane>adm n</ r ol e- nane>
</run-as>
</security-identity>

To create the security-identity, you must also define the security-rol e inside the
assenbl y-descriptor elementinejb-jar. xm .

<assenbl y- descri pt or >
<security-role>
<rol e- nane>j nsr ol e</rol e- nane>
</security-rol e>

</ assenbl y- descri pt or>

6-15

Chapter 6
Using MDBs With Cross Domain Security

4. Inthe webl ogi c-ej b-jar. xm deployment descriptor, map the r un- as identity to
the user defined in Step 2, as follows:

http://docs.oracle.com/middleware/1213/wls/WLACH)/taskhelp/ejb/
CreateEJBComponentCredentialMappings.htmi
where user nane is the username for the user created in step 1.

5. If the JMS provider is not WebLogic JMS, configure the credential mapper as
described in Create EJB component credential mappings in Oracle WebLogic
Server Administration Console Online Help.

" Note:

If the JMS provider is WebLogic JMS, it is not necessary to configure a
credential mapper.

Using MDBs With Cross Domain Security

Learn how to configure cross domain security for MDBSs.
You should consider the following guidelines when implementing MDBs:

* If your MDBs must handle transactional messages, you must correctly configure
either Cross Domain Security or Security Interop Mode for all participating
domains.

Keep all the domains used by your process symmetric with respect to Cross
Domain Security configuration and Security Interop Mode. Because both settings
are set at the domain level, it is possible for a domain to be in a mixed mode,
meaning the domain has both Cross Domain Security and Security Interop Mode
set. See Configuring Secure Inter-Domain and Intra-Domain Transaction
Communication in Developing JTA Applications for Oracle WebLogic Server.

* You must configure Cross Domain Security in cases where an MDB listens to a
distributed destination in a different domain.

* MDBs handling non-transactional messages do not require you to configure Cross
Domain Security. However, you must configure Cross Domain Security for all the
domains with which your process communicates, if Cross Domain Security is
configured on one domain and the membership of the distributed destination that
the MDB listens to in any domain changes. You must configure Cross Domain
Security for cases where an MDB listens to a distributed destination that is in a
different domain.

A best practice is to keep all the domains used by your process symmetric with
respect to Cross Domain Security configuration— that is, all domains use Cross
Domain Security (or are on the appropriate exception lists) or none of the domains
have Cross Domain Security configured. See Configuring Cross-Domain Security
in Administering Security for Oracle WebLogic Server.

Configuring EJBs to Use Logical Message Destinations

You can declare logical message destinations in an EJB's deployment descriptor and
map the logical message destinations to actual message destinations such as JMS
gueues or topics, or MDBs.

ORACLE 6-16

Chapter 6
Configuring EJBs to Use Logical Message Destinations

< Note:

Logical destinations and application-scoped destinations are not commonly used
and are for advanced users only. For most users, Oracle recommends using the
methods discussed in Configuring MDBs for Destinations.

After you declare logical message destinations, you can then create message destination
references that are linked to the logical message destinations. EJBs use the logical message
destination name to perform a JNDI lookup and access the actual message destination.
Logical JIMS message destinations can be defined for individual MDBs or entire applications.

For information on how unresolved and unavailable message destinations are handled, see
EJBs and Message Destination References in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server.

Configuring Logical JIMS Message Destinations for Individual MDBs

You can configure logical IMS message destinations for individual MDBs.

To configure an MDB to use a logical message destination to link to an actual message
destination:

1. Declare the message destination in the message- desti nati on-descri pt or elementin
webl ogi c-ej b-jar.xn .

2. Declare message destination references in the following elements in ej b-j ar. xm :
e nessage-destination-ref

* nmessage-destination-ref - name—the environment name used in the enterprise bean
code for the message destination, relative to j ava: conp/ env. For example,
<message- desti nation-ref>j ms/ St ockQueue</ nessage- desti nati on-ref>.

e message- destination-type—the expected type of the referenced destination. For
example, <message- desti nation-type>j avax. | ns. Queue</ nessage- desti nati on-
type>.

e nessage-desti nati on- usage—specifies whether messages are consumed from the
destination, produced for the destination, or both. For example, <message-
desti nati on- usage>Pr oduces<nessage- desti nati on- usage>.

e nmessage-destination-I|ink—links the message destination reference to the actual
message destination. This value must match the destination defined in message-
desti nati on- nane in the webl ogi c-ej b-j ar. xm file.

Configuring Application-Scoped Logical IMS Message Destinations

ORACLE

In this release of Oracle WebLogic Server, you can configure resources for applications.
Resources that are configured for entire applications are called application-scoped resources.
This section describes application-scoped logical JMS destinations for an EJB application.
For additional information on application-scoped resources, such as JMS and JDBC, see
Developing JMS Applications for Oracle WebLogic Server and Developing JDBC Applications
for Oracle WebLogic Server.

6-17

ORACLE

Chapter 6
Configuring EJBs to Use Logical Message Destinations

Application-scoped resources, such as logical JIMS message destinations, for EJBs
apply to all MDBs in the application. You can override application-scoped JMS for
specific MDBs by configuring the MDBs to use logical message destinations to link to
actual message destinations, as described in Configuring Logical IMS Message
Destinations for Individual MDBs.

To configure application-scoped JMS for EJBs:

1.

Declare the message destination in the message- desti nati on-descri pt or
element in webl ogi c-ej b-jar. xm .

Declare message destination references in the following elements in ej b-j ar. xm :

message- driven

message- dest i nati on-t ype—the expected type of the referenced destination.
For example, <nessage- desti nati on-type>j avax. j ms. Queue</ message-
destination-type>.

nmessage- dest i nat i on- usage—specifies whether messages are consumed
from the destination, produced for the destination, or both. For example,
<message- desti nati on- usage>Pr oduces<message- desti nati on- usage>.

message- dest i nati on- | i nk—links the message destination reference to the
actual message destination. For example, <nessage- desti nati on-

I i nk>ExpensePr ocessi ngQueue<nessage- desti nati on-1ink>. This value
must match the destination defined in message- dest i nati on- nane in the
webl ogi c-ej b-jar. xnl file.

message- destination

message-destination-name—the name of the message destination. For
example, <message- dest i nati on- nane>ExpensePr ocessi ngQueue<nessage-
desti nati on- name>. This value must match the destination defined in
message- dest i nati on- nane in weblogic-ejb-jar.xml.

6-18

Using EJB 3.2 Compliant MDBs

Examine how to program and implement EJB 3.2 compliant MDBs:
This chapter includes the following sections:

e Implementing EJB 3.2 Compliant MDBs
e Programming EJB 3.2 Compliant MDBs

Implementing EJB 3.2 Compliant MDBs

You can implement MDBs that are complaint to specific EJB version.
To implement EJB 3.2 compliant MDBs, follow the steps described in Overview of the EJB
Development Process in Developing Enterprise JavaBeans for Oracle WebLogic Server.

Programming EJB 3.2 Compliant MDBs

ORACLE

You can program MDBs that are complaint to specific version of EJB.
To program EJB 3.2 compliant MDBs, follow the steps described in Programming the Bean
File: Typical Steps in Developing Enterprise JavaBeans for Oracle WebLogic Server.

You must use the @ avax. ej b. MessageDr i ven annotation to declare the EJB type as
message-driven. You can specify the following optional attributes:

» messageli st ener | nt er f ace—Specifies the message listener interface, if you have not
explicitly implemented it or if the bean implements additional interfaces.

" Note:

The bean class must implement, directly or indirectly, the message listener
interface required by the messaging type that it supports or the methods of the
message listener interface. In the case of JMS, this is the

j avax. j ms. Messageli st ener interface.

e activationConfi g—Specifies an array of activation configuration properties that
configure the bean in its operational environment.

Activation configuration properties are name-value pairs that are passed to the MDB
container when an MDB is deployed. The properties can be declared in either an ej b-

j ar.xm deployment descriptor or by using the @\cti vati onConfi gProperty annotation
on the MDB bean class. An example using the @\ct i vati onConfi gProperty annotation
is shown in Example 7-1. An example using the ¢ b-j ar. xm deployment descriptor is
shown in Example 7-2.

To set activation configuration properties in the ej b-j ar. xm descriptor, use the
activation-config-property elementin the message- dri ven stanza, as shown in
Example 7-2.

7-1

Chapter 7
Programming EJB 3.2 Compliant MDBs

Because activation configuration properties can be set in an e b. j ar deployment
descriptor or by using act i vati onConfi gProperty annotation properties, conflicts
may result if the same name is used in both places. Conflicts may also result from
using same-named properties from pre-3.0 versions of EJB or from proprietary
Oracle WebLogic Server EJB annotations. Such conflicts are resolved following
the following priority order, in sequence from high to low is:

1. Properties set in the webl ogi c- ej b-j ar. xm deployment descriptor
2. Proprietary Oracle WebLogic Server 10.0 (and later) annotations

3. activation-config-property properties setin the ej b-j ar. xm deployment
descriptor

4. activationConfigProperty annotation properties

For example, if the same property exists in the webl ogi c- ej b-j ar. xm descriptor
and the ej b-j ar. xm descriptor, the one in webl ogi c- ej b-j ar. xm has the higher
priority and overrides the one in ej b-j ar. xm value. Or, if the same property is set
in both an ej b-j ar. xm descriptor element and in an acti vati onConfi gProperty
annotation, the descriptor element takes precedence and the annotation is
ignored.

For more information about activation configuration properties, see
javax.ejb.ActivationConfigProperty in Developing Enterprise JavaBeans for Oracle
WebLogic Server. Also see Table 11-1, which summarizes the activation
configuration properties supported by Oracle WebLogic Server.

" Note:

Based on the Enterprise JavaBean specification, the
j avax. ej b. Activati onConfi gProperty annotation is used for MDBs
only. This annotation is not used for session or entity beans.

For detailed information on developing MDBs to support the messaging modes as
described in MDBs and Messaging Models, see Programming and Configuring MDBs:
Details.

Example 7-1 Example @ActivationConfigProperty Code

@\ctivationConfi gProperties(

{
@\ct i vati onConfi gProperty(
name="connect i onFact or yJndi Nane", val ue="JNDI NaneCf MDBSour ceCF"

)
@\ct i vati onConfi gProperty(
name="ini ti al Cont ext Factory",
val ue="webl ogi c.j ndi . W.I ni ti al Cont ext Factory"

)
}

Example 7-2 Activation Configuration Properties Set in ejb-jar.xml

<message-driven>

<activation-config>

ORACLE 7-2

Chapter 7
Programming EJB 3.2 Compliant MDBs

<activation-config-property>
<activation-config-property-name>destinationLookup</activation-config-property-nane>
<activation-config-property-val ue>myQueue</ activation-confi g- property-val ue>

</ activation-config-property>

<activation-config-property>
<activation-config-property-nane>destinationType</activation-confi g-property-nane>
<activation-config-property-val ue>j avax. j ns. Queue</ activation-confi g- property-val ue>

<activation-config-property>

</ activation-config>

</ nessage-driven>
<message-driven>

<activation-config>
<activation-config-property>
<activation-config-property-name>destinati onLookup</activation-config-property-nane>
<activation-config-property-val ue>myQueue</ activation-confi g- property-val ue>
</ activation-config-property>
<activation-config-property>
<activation-config-property-nane>destinati onType</activation-confi g-property-nane>
<activation-config-property-val ue>j avax. j ns. Queue</ activation-confi g- property-val ue>
<activation-config-property>
</ activation-config>

</ nessage-driven>

MDB Sample Using Annotations

ORACLE

Example 7-3 shows a WebLogic MDB that uses a subscription to a WebLogic JMS queue
(from Oracle WebLogic Server 10.3.4 or later), transactionally processes the messages, and
forwards the messages to a target destination.

The MDB connects using JMS connection factory MyCF to receive from queue MyQueue. It
forwards the messages to MyTar get Dest using a connection generated from connection
factory MyTar get CF.

Resource reference pooling note: The MDB uses a resource reference to access
MyTar get CF. The resource reference automatically enables JMS producer pooling, as
described in Enhanced Support for Using WebLogic JMS with EJBs and Servlets in
Developing JMS Applications for Oracle WebLogic Server.

For a similar sample using topics instead of queues, see Example 10-1.

This is a sample Oracle WebLogic MDB for durably subscribing to a WebLogic
10.3.4/11gR1PS3 or later JMS topic, transactionally processes the messages, and forwards
the messages to a target destination.

The MDB connects using JMS connection factory "MyCF" to receive from topic "MyTopic." It
forwards the messages to "MyTargetDest" using a connection generated from connection
factory "MyTargetCF."

Resource reference pooling note:The MDB uses a resource reference to access
"MyTargetCF". The resource reference automatically enables JMS producer pooling, as per
the "Enhanced Support for Using WebLogic JMS with EJBs and Servlets" chapter of
"Programming JMS for Oracle WebLogic Server."

Example 7-3 Sample MDB Using Distributed Queues

package test;
inport javax.annotation. Resources;

7-3

Chapter 7
Programming EJB 3.2 Compliant MDBs

i nport javax.annotation. Resource;

inport javax.ejb.ActivationConfigProperty;
i nport javax.ejb. MessageDriven;

inport javax.ejh. MessageDrivenCont ext;
inport javax.ejb.TransactionAttribute;
inport javax.ejb.TransactionAttributeType;
inport javax.jms.*;

@essageDriven(
nane = "MWNMDB",
activationConfig = {
@Acti vati onConfi gProperty(propertyName
propertyVal ue

"destinationType",
"javax.j nms. Queue"),

@Act i vati onConfi gProperty(propertyName
propertyVal ue

"connecti onFact oryJndi Narme",
"MCF"), /] External JNDI Nare

"destinationJndi Nane",
"MyQueue") // Ext. JNDI Nane

@Acti vati onConfi gProperty(propertyName
propertyVal ue
}

)

@Resources ({
@Resour ce(name="t ar get CFRef ",
mappedNanme=" M Tar get CF", /1 External JNDI narme
t ype=j avax. j ns. Connecti onFactory. cl ass),

@Resour ce(name="t ar get Dest Ref ",
mappedNane="M/Tar get Dest", // External JNDI narme
type=j avax. j ns. Desti nati on. cl ass)

1))
public class MyMDB i npl ements Messageli stener {

Il inject a reference to the MDB context

@Resour ce
private MessageDrivenContext nuctx;

/'l cache targetCF and targetDest for re-use (perfornmance)

private ConnectionFactory targetCF,
private Destination targetDest;

@ransactionAttribute(val ue = TransactionAttributeType. REQUI RED)
public void onMessage(Message message) {

Systemout.printin("M/ MB got message: " + message);
/1 Forward the message to "MTargetDest" using "MTarget CF"

Connection jnsConnection = null;

try {
if (targetCF == null)
target CF = (javax.j ms. Connecti onFact ory) ndct x. | ookup("target CFRef");

if (targetDest == null)
target Dest = (javax.]jms.Destination)ndctx.|ookup("targetDestRef");

j msConnection = targetCF. createConnection();

ORACLE 7-4

ORACLE

}

}

Chapter 7
Programming EJB 3.2 Compliant MDBs

Session s = jnmsConnecti on. creat eSessi on(fal se, Sessi on. AUTO ACKNOANLEDGE) ;
MessageProducer np = s. createProducer(null);

np. send(tar get Dest, message);

catch (JMSException e) {

Systemout. println("Forcing rollback due to exception " + e);
e.printStackTrace();

mdct x. set Rol | backOnl y();

finally {

/1 dosing a connection automatically returns the connection and
Il its session plus producer to the resource reference pool.

try { if (jnmsConnection !'= null) jnsConnection.close(); }
catch (JMSException ignored) {};

/!l emulate 1 second of "think" time

try { Thread.currentThread(). sl eep(1000); }
catch (InterruptedException ie) {

}

Thread. current Thread().interrupt(); // Restore the interrupted status

7-5

Migration and Recovery for Clustered MDBs

Learn about the migration and recovery for clustered MDBs. Oracle WebLogic Server
supports migration and recovery for clustered JMS destinations. In the event of failure, you
can bring a JMS destination back online on a different JVM. You can design your cluster so
that when a server instance fails, it automatically migrates the JMS destination from the failed
server in the cluster to an available server instance.

In turn, any MDB deployment associated with a migrated JMS destination is automatically
updated. Such an update may include closing and reinitializing MDB pools and/or
reconnecting to the JMS destination

Caution:

Service migration is not recommended for the following cases. In these cases,
migration can result in either missing messages or duplicate message processing.

Case 1, when all of the following are true:

e« The MDB t opi cMessagesDi st ri but i onMbde is One- Copy- Per - Server
e The MDB di stri but edDesti nati onConnection is Local Only

e The MDB is Durabl e

e The destination is configured as the logical name of a replicated distributed
topic

Case 2, when all of the following are true:

e« The MDB t opi cMessagesDi st ri buti onMbde is Conpati bility

e The MDB is Durabl e

e The destination is configured as the logical name of a distributed topic
Case 3, when all of the following are true:

e The MDB t opi cMessagesDi st ri but i onMbde is One- Copy- Per - Appl i cation
e The MDB di stri but edDest i nati onConnection is Local Only

e The migration target server has no MDB instance. Best practice is to target
MDB deployments to the entire cluster, to avoid this problem.

For more information on topic message processing, see Configuring and Deploying
MDBs Using JMS Topics .

ORACLE 8-1

ORACLE

Chapter 8

< Note:

A migratable service works with clustered servers only. A WebLogic JIMS
destination can migrate to another server within a cluster, but cannot migrate
to a different cluster.

After a WebLogic JMS destination migrates to another server, an MDB deployment, or
"connection poller," reconnects to the migrated JMS destination and begins to receive
messages from the JMS destination again; the MDB may also create and close pools
as needed.

MDBs can be targeted to clusters or individual Oracle WebLogic Server instances, but
not to migratable targets. If an MDB is running in the same cluster as a migratable
destination, you must ensure that MDB is deployed everywhere that its source
destination may be hosted. You can do this in two ways:

* Deploy MDBs homogeneously to the cluster. (Recommended)

» Ensure that the MDB's target set includes all Oracle WebLogic Server instances
that are in the candidate lists for the migratable targets in the confi g. xm file used
by the JMS servers that host the destination. For more information on configuring
migratable targets, see Understanding Migratable Target Servers in a Cluster in
Administering Clusters for Oracle WebLogic Server.

For instructions on implementing the migratable service and for background
information on WebLogic JMS migration and recovery services for clustered
architectures, see JMS as a Migratable Service within a Cluster in Administering IMS
Resources for Oracle WebLogic Server.

8-2

Using Batching with Message-Driven Beans

Examine using transaction batching with MDB. Within an MDB, business logic, possibly
including database transactions, is performed within the onMessage() method. Within an EJB
application, multiple MDBs can perform multiple onMessage() calls concurrently. If each
onMessage() call performs a container-managed transaction, this can create a lot of
overhead.

Oracle WebLogic Server provides a mechanism for grouping multiple container-managed
transaction MDB onMessage() calls together under a single transaction. This mechanism can
help increase the performance of an EJB application by implicitly grouping all of the work
from different onMessage calls into a single request.

For information on transaction management within MDBs, see Configuring Transaction
Management Strategy for an MDB.

Note:

Transaction batching is not effective for all MDB applications. For example,
database deadlocks can occur in an application where an MDB makes multiple calls
to a database. Using the transaction batching feature will cause the MDB to lock
more rows per transaction which can lead to database deadlocks.

This chapter includes the following sections:

e Configuring MDB Transaction Batching
* How MDB Transaction Batching Works

Configuring MDB Transaction Batching

ORACLE

You can enable MDB transaction batching by defining the max- messages-i n-transaction
element or using the equivalent property in acti vati onConfi gProperty. The element is part
of the message-dri ven-descri pt or element of the webl ogi c-ej b-j ar. xm deployment
descriptor.

max- messages-in-transacti on defines the batch size Oracle WebLogic Server uses to
process onMessage() transactions. However, increasing the batch size can increase latency.
You should start with a small value, 5 for example. You can increase this value as your
application performance allows.

When using MDB batching, more messages are processed per transaction. This may cause
more transactions to time out since more work is being performed in each transaction. You
can increase the transaction timeout be increasing the value of t r ans-t i meout - seconds
attribute of webl ogi c- ej b-j ar. xni . Alternatively, you can use @r ansact i onTi neout Seconds
annotation, as follows:

i mport webl ogi c. j avaee. Transacti onTi meout Seconds;

@ransacti onTi meout Seconds(val ue = 60);

9-1

Chapter 9
How MDB Transaction Batching Works

public class M/MDB ...

How MDB Transaction Batching Works

MDB transaction batching does not require any changes to application code. As far as
the application is concerned, individual messages are still processed one by one.
There is no application level message list.

Internally, Oracle WebLogic Server creates a transaction for a batch. A message is
added to the transaction until the number of messages in the transaction is equal to
the batch size defined by max- messages-i n-transacti on or the equivalent property in
activationConfi gProperty. When the number of messages in the equals max-
messages-in-transaction or there is no next message to be added to the transaction,

the transaction is submitted for processing. See Figure 9-1.

Figure 9-1 MDB Transaction Batching Transaction Processing Flow

"

Begin New
TX

)

oo

F;

W

@

=

=]

=
waitforFirst W Application [¥ Poll for Next

Message Got a Message onMessage() More Room Message

in TX Batch

Got a Message

adessap oy

Rollback TX

If an individual onMessage() call fails, then the entire batch is rolled back. If the failure
was due to a transaction timeout, as defined in the trans-ti meout - seconds attribute
of webl ogi c- €] b-j ar. xm , the MDB container temporarily reduces the batch size and
attempts to process the transactions with smaller batches.

ORACLE"

9-2

Chapter 9
How MDB Transaction Batching Works

If failure occurs for another reason, the MDB reprocesses each message within the failed
batch as an individual transaction. This avoids the scenario where an individual onMessage()
call can permanently hang an entire batch.

ORACLE 9-3

Configuring and Deploying MDBs Using JMS

Topics

Examine how to develop an MDB that automatically sets up JMS topic subscriptions and then
processes subscription messages. A message that is published to a JMS topic is replicated
to all subscriptions that have a matching selector filter.

A single deployed MDB may create multiple topic subscriptions and may have one or more
free pools per host Oracle WebLogic Server instance. This behavior is controlled by MDB
attribute settings, topic type, and whether the MDB is running on the same cluster or JVM as
its topic. (For information about MDB free pools, see MDBs and Concurrent Processing.)

This chapter also describes how to use topic MDBs together with WebLogic JMS distributed
topics. WebLogic JMS distributed topics are logical topics that are composed of multiple
physical topics, where each physical topic is hosted on a different JMS Server instance. This
distributed topic capability was significantly enhanced in Oracle WebLogic Server 10.3.4 to
provide increased scalability and high availability. The enhancements include direct support
for remotely hosted distributed topics, for fully distributing the processing of a single logical
subscription across multiple physical subscriptions, and for multiple JVMs to process
messages from the same physical subscription.

This chapter includes the following sections:

e Supported Topic Types

e The Most Commonly Used MDB Attributes

* Best Practices

e Configuring for Service Migration

* Upgrading Applications from Previous Releases

e Topic MDB Sample

For additional information about JMS topics see:

» Topic Deployment Scenarios

» Topic Subscription Identifiers

* How WebLogic MDBs Leverage WebLogic JMS Extensions

» Developing Advanced Pub/Sub Applications in Developing JMS Applications for Oracle
WebLogic Server.

e Tuning WebLogic JMS in Tuning Performance of Oracle WebLogic Server
e Tuning Message-Driven Beans in Tuning Performance of Oracle WebLogic Server.

Oracle recommends reviewing the previous chapters of this book before reading this chapter.

Supported Topic Types

ORACLE

WebLogic MDBs support singleton, foreign provider, replicated distributed, and partitioned
distributed topic types.

10-1

Chapter 10
The Most Commonly Used MDB Attributes

WebLogic MDBs support the following types of topics:

* Singleton topics -- A singleton topic is either a non-distributed WebLogic JMS
topic or a reference to a particular member topic of a WebLogic JMS distributed
topic. The JNDI nhame syntax for a WebLogic JMS uniform distributed topic
member is based on the name of the JMS server that hosts the member: j ms-
server - name@ ndi - nanme- of - di st ri but ed-t opi c.

* Foreign provider topics -- Non-WebLogic JMS topics are called foreign provider
topics. MDBs treat foreign provider topics similarly to singleton topics. Such topics
are typically considered to be remote.

* Replicated distributed topics -- WebLogic JMS distributed topics are logical
topics composed of multiple physical topics, where each physical topic is hosted
on a different JMS server instance in the same cluster. In releases of Oracle
WebLogic Server prior to 10.3.4, each message sent to any member of a
distributed topic is always automatically replicated (forwarded) to all subscriptions
on all of the other members of the distributed topic. This kind of distributed topic is
still supported and is now called a replicated distributed topic (abbreviated RDT).

» Partitioned distributed topics - WebLogic JMS distributed topics are logical
topics composed of multiple physical topics, where each physical topic is hosted
on a different JMS server instance in the same cluster. A partitioned distributed
topic (abbreviated PDT) does not forward messages between members.
Messages published to a member of a PDT are only copied to subscriptions on
that member. Partitioned distributed topics are supported starting with Oracle
WebLogic Server 10.3.4.

To configure a distributed topic type, you set Partiti oned or Repli cat ed as the value
for the JMS distributed topic configuration attribute JM5 For war di ng Pol i cy. See
Configuring Partitioned Distributed Topics in Administering JMS Resources for Oracle
WebLogic Server.

The Most Commonly Used MDB Attributes

ORACLE

Examine some of the topic MDB attributes.
The most commonly used topic MDB attributes are:

* JMS destination and connection factory
e Subscription durability

» Container managed transactions

* Message distribution tuning

Some other useful topic MDB attributes are:
* Free pool size

* Auto-delete on undeploy

* Message filtering (JMS selectors)

e Subscription identifier

The message distribution tuning settings include the
t opi cMessagesDi stri butionMde, di stributedDestinationConnection, and
gener at e- uni que-cl i ent -i d attributes.

10-2

Chapter 10
The Most Commonly Used MDB Attributes

Most attributes can be configured either by using an annotation or via descriptor XML
stanzas. In addition, specific attribute names for descriptor XML stanzas and annotations are
summarized in the tables in Deployment Elements and Annotations for MDBs.

Setting the JMS Destination, Destination Type, and Connection Factory

A topic MDB's configuration must properly specify the location of its IMS connection factory,
its destination, and its destination type. Typically, this is accomplished by:

1.

Specifying a topic type. In the message- dri ven- destinati on element of ej b-j ar. xm , set
destination-type tojavax.jns. Topi c. Alternatively, if using annotations, specify an
ActivationConfi gProperty with propertyName = "destinationType" and

propertyVal ue = "javax.jms. Topi c".

Specifying a connection factory JNDI name and a destination JNDI name. Specifying a
connection factory JNDI name is usually not necessary if the connection factory is hosted
on the same cluster or server as the MDB. The default usually suffices.

If the destination is not located in the same cluster or server as the MDB pool,
administratively configure a mapping from the remote destination and connection factory
JNDI entries to local JNDI entries that match those specified in #2. There are alternative
approaches to referencing remote resources, but the mapping approach is the Oracle-
recommended best practice.

For each free pool, the MDB container creates a connection using the specified connection
factory, then uses the connection to find or create one or more subscriptions on its
destination, and finally uses the connection to create JMS consumers that receive the
messages from the subscription(s).

For the specific names of connection factory and destination MDB attributes, as well as
recommended JNDI mapping configuration, see Configuring MDBs for Destinations.

Setting Subscription Durability

MDBs automatically create subscriptions on JMS topics. JMS topics support two types of
subscriptions: durable and non-durable.

ORACLE

Non-durable subscriptions exist only for the length of time their subscribers exist. When a
subscription has no more subscribers, the subscription is automatically deleted.
Messages stored in a non-durable subscription are never recovered after a JMS server
shut down or crash.

Durable subscriptions make it possible for a subscriber to receive messages that are
published while the subscriber application is unavailable. For each durable subscription
on a topic, JMS stores a copy of each published persistent message in a file or database
until it can be delivered (or until it expires), even if there are no active subscribers on the
subscription at the time the message is delivered. JMS also stores a copy of each non-
persistent message in each durable subscription, but such messages are not recovered if
the JMS server shuts down or crashes.

Non-durable subscriptions are the default. To specify a durable subscription, in the
message- driven-destination element of ej b-jar. xm , set subscription-durability to
Dur abl e. Alternatively, when using annotations, specify an Acti vati onConfi gProperty
with propertyNane = "subscriptionDurability" and propertyVal ue = "Durabl e".

10-3

Chapter 10
The Most Commonly Used MDB Attributes

Setting Automatic Deletion of Durable Subscriptions

You can configure an MDB to automatically delete a durable topic subscription when
the MDB is undeployed or deleted from a server. To configure an MDB to automatically
delete durable topic subscriptions, set dur abl e- subscri pti on-del eti on to True. By
default, dur abl e- subscri pti on-del etion is set to Fal se

Setting Container Managed Transactions

See Configuring Transaction Management Strategy for an MDB.

Setting Message Filtering (JMS Selectors)

JMS provides an SQL-like syntax for filtering messages based on standard JMS
message header fields and message properties. In addition, WebLogic JMS supports
an extension to the selector syntax that allows the specification of selectors that
include XML "xpath" expressions for filtering XML messages based on their XML
contents.

One way to specify a message selector is to specify it as the propertyVal ue for an
ActivationConfi gProperty with propertyNanme = "messageSel ector".

The syntax of JMS selectors is fully described in the Javadoc for the
j avax. j ms. Message class. The WebLogic xpath selector extension syntax is described
in Filtering Messages in Developing JMS Applications for Oracle WebLogic Server.

Controlling MDB Concurrency

As discussed in Topic Deployment Scenarios,, an MDB deployment may create one or
more MDB free pools. The max- beans-in-free-pool and di spatch-policy

descri ptor attributes work together to control MDB thread concurrency in an MDB
free pool as follows:

* For a discussion of how to determine the number of concurrent MDBs, see
Determining the Number of Concurrent MDBs in Tuning Performance of Oracle
WebLogic Server.

* When an MDB t opi cMessagesDi stri buti onMde is set to Conpati bility and the
MDB uses container-managed transactions, concurrent MDB invocations are
prevented. In addition, max- beans- i n-free- pool should be explicitly set to 1 for
bean-managed transaction MDBs that are driven by a foreign (non-WebLogic)
topic.

ORACLE 10-4

Chapter 10
The Most Commonly Used MDB Attributes

Caution:

Non-transactional Foreign Topics: Oracle recommends explicitly setting max-
beans-in-free-pool to 1 for non-transactional MDBs that work with foreign
(non-WebLogic) topics. Failure to do so may result in lost messages in the
event of certain failures, such as the MDB application throwing Runt i me or
Error exceptions.

Unit-of-Order: Oracle recommends explicitly setting max- beans-i n-fr ee- pool
to 1 for non-transactional Conpati bi | i ty mode MDBs that consume from a
WebLogic JMS topic and process messages that have a WebLogic JMS Unit-
of-Order value. Unit-of-Order messages in this use case may not be processed
in order unless nax- beans-i n-free-pool is setto 1.

See Tuning Message-Driven Beans in Tuning Performance of Oracle WebLogic Server for
more information.

Setting Subscription Identifiers

Individual JMS topic subscriptions are created and referenced based on their "subscription
identifier,” which an MDB generates based on a number of MDB configuration settings. For a
discussion of the syntax of generated subscription identifiers, see Topic Subscription
Identifiers.

Setting Message Distribution Tuning

This section describes how and when to use message distribution tuning settings. It contains
information that applies to all topic types (singleton, foreign, and distributed). The settings
include the t opi cMessagesDi stri buti onMbde, di stri but edDesti nati onConnecti on, and
gener at e- uni que-cl i ent -i d attributes. They control where topic subscriptions are created,
what the subscription identifiers are, and whether an MDB processes each published topic
message only once or once per server.

For detailed descriptions and diagrams of the resulting automatically generated subscription
IDs, subscription locations, and deployed MDB free pool locations, see Topic Deployment
Scenarios, and Topic Subscription Identifiers.

Setting topicMessagesDistributionMode

ORACLE

Use the t opi cMessagesDi stri buti onMbde setting in combination with the

di stributedDestinati onConnecti on setting or the gener at e- uni que-cl i ent -i d setting to
control topic message processing behavior. To set the t opi cMessagesDi st ri buti onMbde, you
can use the same-named @Act i vat i onConf i gProperty annotation or specify an
<activation-config-property>inthe ejb-jar.xnl deployment descriptor.

The valid values for t opi cMessagesDi stri buti onMbde are:

e (ne- Copy- Per - Appl i cat i on -- Specifies that the MDB application as a whole receives
each message published to a distributed topic once, no matter how many servers host
the application. This mode works with WebLogic JMS singleton and distributed topics in
Oracle WebLogic Server 10.3.4 and later.

10-5

Chapter 10
The Most Commonly Used MDB Attributes

e (ne- Copy- Per - Server -- Specifies that each deployment instance of the MDB
application receives every message published to a distributed topic. This mode
works with WebLogic JMS singleton and distributed topics in Oracle WebLogic
Server 10.3.4 and later.

e Conpatibility - (Default) Specifies that the MDB application handles messages
from distributed topics in the same way they were handled in Oracle WebLogic
Server releases prior to 10.3.4. The mode supports durable and non-durable
subscriptions with foreign (non-WebLogic) topics, local replicated distributed topics
(RDTSs), and singleton WebLogic topics; it also supports non-durable subscriptions
with a remote replicated distributed topics. See the Compatibility notes section for
more detail.

Note:

Oracle recommends using the One- Copy- Per - Appl i cati on and One-
Copy- Per - Ser ver modes for most new applications, except those that
must consume from WebLogic JMS topics in versions of Oracle
WebLogic Server prior to 10.3.4 or from foreign (non-WebLogic) topics.

The topic distribution modes support different topic types and versions with the
following restrictions:

— The One- Copy- Per - Appl i cati on and One- Copy- Per - Ser ver modes work only
with WebLogic singleton and distributed topics in Oracle WebLogic Server
10.3.4 and later. WebLogic MDBs log a warning and do not process messages
with these modes when using a foreign (non-WebLogic) topic or when using a
WebLogic topic from Oracle WebLogic Server releases prior to 10.3.4.

— One- Copy- Per - Appl i cat i on topic MDBs that are durable, that subscribe to a
local RDT, and that use the default Local Onl y value for the
di stributedDestinati onConnecti on attribute, do not support Service
Migration and require that exactly one topic member be configured per Oracle
WebLogic Server instance. If a service migration occurs, if there is no local
topic member configured, or if more than one topic member is deployed per
server, then the application may experience duplicate or lost messages and
may also create abandoned subscriptions that accumulate unprocessed
messages. If service migration is required, then use the Ever yMenber option
for the di st ri but edDest i nati onConnect i on attribute instead of the default
Local Only.

— The Conpati bil ity mode supports durable and non-durable subscriptions
with foreign (non-WebLogic) topics, with local replicated distributed topics
(RDTSs) (with limitations described later), and with singleton WebLogic topics.
Compatibility mode also supports non-durable subscriptions with a remote
RDT. A deployment of a durable MDB that subscribes to the logical JNDI
name of a remote RDT may succeed, but the MDB deployment will fail to
connect, with War ni ng log messages. Similarly, a deployment of an MDB that
subscribes to a WebLogic PDT may succeed, but the MDB deployment will fail
to connect, with War ni ng log messages. See Notes on the Compatibility mode
of topicMessagesDistributionMode, for more detail.

— Compatibility mode MDBs that are durable and subscribes to a local RDT, see
Notes on the Compatibility mode of topicMessagesDistributionMode.

ORACLE 10-6

Chapter 10
The Most Commonly Used MDB Attributes

For a detailed descriptions and diagrams of MDB generated subscriptions, subscription
IDs, and free pool locations, refer to Topic Deployment Scenarios, and Topic Subscription
Identifiers..

Setting distributedDestinationConnection

To optionally fine tune the behavior of the One- Copy- Per - Appl i cati on and One- Copy- Per -
Server modes of t opi cMessagesDi stri butionMde for a local distributed topic, you can use
the di stri but edDest i nati onConnecti on activation config property. Alternatively, you can use
the di stri but ed- desti nati on-connecti on element in the webl ogi c-ej b-j ar. xn
deployment descriptor. The valid values are Local Onl y and Ever yMenber .

The di stri but edDest i nati onConnecti on setting specifies whether a Oracle WebLogic
Server MDB container sets up a local MDB free pool for each subscription in the entire
cluster (EveryMember), or local free pools only for subscriptions on members local to the
current Oracle WebLogic Server (Local Onl y - the default).

The use of di stri butedDesti nati onConnecti on is restricted as follows: if it is specified for
an MDB that subscribes to a remote cluster, a warning message is given and the option is
ignored. If you try to use it in Compatibility mode, a warning is given and the option is
ignored.

One reason to use Ever yMenber is that the Local Onl y option for durable MDBs has
restrictions for local RDTs in the One- Copy- Per - Ser ver mode. See Warning About Using
Local RDTs with Durable MDBs.

Another reason to use Ever yMenber is to better handle uneven message loads or message
processing delays. See Handling Uneven Message Loads and/or Message Processing
Delays, for advice.

Notes on the Compatibility mode of topicMessagesDistributionMode

* See Setting topicMessagesDistributionMode, for a statement about supported topic types
and versions.

* If you're using the Conpati bility topi cMessagesDi stributi onMde in combination with
non-transactional MDBs, and the topic is a foreign (non-WebLogic) destination, or the
topic is a WebLogic destination with Unit-of-Order (UOQO) messages, then see Controlling
MDB Concurrency, for warnings.

e Setthe generate-uni que-client-id attribute to change behavior:

— If generate-uni que-client-idis setto true, each durable MDB free pool generates
a unique subscriber ID. Each MDB free pool will then receive a copy of each
published message. For more information see Topic Subscription Identifiers. For
more information about free pools, see MDBs and Concurrent Processing, and Topic
Deployment Scenarios.

— If generat e-uni que-client-idis false (the default), only one subscription will be
created by a durable MDB, and only one MDB free pool will successfully connect to
the durable subscription (the remaining MDB pools will fail to connect, log warnings,
and will keep retrying).

* For durable subscription MDBs that subscribe to the logical name of a local replicated
distributed topic (a local RDT), only the configuration described in Warning About Using
Local RDTs with Durable MDBS, is supported.

* For durable subscription MDBs that subscribe to the logical name of a remote replicated
topic (a remote RDT):

ORACLE 10-7

Chapter 10
Best Practices

— A deployment of a durable MDB that subscribes to the logical INDI name of
the RDT may succeed, but the MDB deployment will fail to connect, with
\Mr ni ngs logs.

e For durable subscription MDBs that subscribe to a particular member destination
of a remote replicated topic:

— A deployment of a durable MDB that subscribes directly to a member of the
RDT will succeed, and the subsequent behavior will be determined by the
gener at e- uni que-cl i ent -i d setting. For a uniform distributed destination, the
JNDI name of a particular member is "j ns- server - nane@add- j ndi - nane" .

* For a non-durable subscription MDB that subscribes to the logical name of a local
replicated distributed topic (a local RDT), only the configuration described in
Warning About Using Local RDTs with Non-Durable MDBs, is fully supported.

e ThedistributedDestinationConnecti on option does not apply to Compatibility
mode. When set, a warning is given and it is ignored.

Best Practices

Examine some of the best practices when you configure MDBs.
Consider the information in the following sections to help you configure MDBs.

Warning about Non-Transactional MDBs in Compatibility Mode

If you're using the Conpati bil ity mode of t opi cMessagesDi stri buti onhMode in
combination with non-transactional MDBs and the topic is a foreign (non-WebLogic)
destination or the topic is a WebLogic destination with Unit-of-Order (UOO) messages,
see Controlling MDB Concurrency, for warnings.

Warning About Using Local RDTs with Durable MDBs

ORACLE

In Conpat i bi li ty mode, for durable subscription MDBs that subscribe to the logical
name of a local replicated distributed topic (a local RDT), only the following
configuration is supported:

* Always set gener at e- uni que-cl i ent-id to true.

e Ensure each Oracle WebLogic Server in the cluster hosts exactly one member of
the RDT.

e Do not use WebLogic JMS servi ce-ni gration. It is unsupported for this use
case; but you can use "whole server migration."

* Note that each server receives a copy of each message sent to the topic. When a
message arrives at one of the RDT physical topic members, the RDT
automatically ensures that a copy of the message is forwarded to each of the other
members of the topic.

Similarly, the above configuration is required in One- Copy- Per - Appl i cati on mode
when di stri but edDest i nati onConnecti on is set to Local Onl y, for durable
subscription MDBs that subscribe to the logical name of a local replicated distributed
topic (a local RDT).

If your configuration does not match the recommendations, you may get
nondeterministic behavior, including lost messages, duplicate messages, and stuck

10-8

Chapter 10
Best Practices

messages. For more information, including alternatives, see Setting
topicMessagesDistributionMode.

Warning About Using Local RDTs with Non-Durable MDBs

In Conpat i bi li ty mode, for non-durable subscription MDBs that subscribe to the logical
name of a local replicated distributed topic (a local RDT), only the following configuration is
fully supported:

» Ensure each Oracle WebLogic Server in the cluster hosts exactly one member of the
RDT.

* Do not use WebLogic JMS servi ce-mi gration. It is unsupported for this use case; but
you can use "whole server migration."

* Note that each server receives a copy of each message sent to the topic. When a
message arrives at one of the RDT physical topic members, the RDT automatically
ensures that a copy of the message is forwarded to each of the other members of the
topic.

Similarly, the above three configurations is required in One- Copy- Per - Appl i cat i on mode
when di stri but edDest i nati onConnecti on is set to Local Onl y, for non-durable subscription
MDBs that subscribe to the logical name of a local replicated distributed topic (a local RDT).

If your configuration does not match the recommendations, you may get nondeterministic
behavior, including lost messages, duplicate messages, and stuck messages. For more
information, including alternatives, see Setting topicMessagesDistributionMode.

Warning about Changing Durable MDB Attributes, Topic Type, EJB Name

Changing MDB or JMS settings can cause the current messages on durable subscriptions to
be deleted, or can cause existing durable subscriptions to be abandoned, deleted, or
replaced in favor of new durable subscriptions. These settings include topic type, JMS
selector, distribution tuning, subscription durability, ej b- name, and, cl i ent-i d.

Abandoned durable subscriptions continue to accumulate messages even though no MDB is
processing the messages. This can eventually lead to quota exceptions or even JVM out-of-
memory errors that prevent additional messages from being published to the topic.

For a discussion about locating and removing abandoned subscriptions see Managing
Durable Subscriptions in Developing JMS Applications for Oracle WebLogic Server. For a
discussion about subscription IDs and locations, see Topic Subscription Identifiers.

Choosing Between Partitioned and Replicated Topics

ORACLE

Supported Topic Types, describes the two types of WebLogic distributed topics (partitioned
and replicated). In general, Oracle recommends using partitioned topics (PDTs), when
available, except for these two cases:

e When replicated topic (RDT) behavior is required to interoperate with legacy applications
or non-MDB applications.

e Inthe local RDT case in the One- Copy- Per - Server Local Onl y case under certain
message loads. The message load determines whether the heavy forwarding overhead
built into an RDT is less expensive in comparison to the increased network traffic
required for the fully connected topology in the PDT One- Copy- Per - Server mode. In
general, it is better to use a PDT for non-persistent or "lighter" persistent message loads.

10-9

Chapter 10
Best Practices

To configure a distributed topic type, you set Partiti oned or Repl i cat ed as the value
for the WebLogic JMS Distributed Topic configuration attribute JIMS Forwarding Policy.
See Configuring Partitioned Distributed Topics in Administering JMS Resources for
Oracle WebLogic Server.

Choosing an MDB Topic Messages Distribution Mode

Oracle recommends using the One- Copy- Per - Appl i cati on and One- Copy- Per - Ser ver
modes for most new applications, except for those that must consume from WebLogic
JMS topics in Oracle WebLogic Server releases prior to 10.3.4 or from foreign (non-
WebLogic) topics. These two modes only work with WebLogic JMS topics in Oracle
WebLogic Server 10.3.4 or later.

Managing and Viewing Subscriptions:

See Topic Deployment Scenarios, and Topic Subscription Identifiers, for detailed
discussions of the names and location of subscriptions.

See also Managing Durable Subscriptions in Developing JMS Applications for Oracle
WebLogic Server.

Handling Uneven Message Loads and/or Message Processing Delays

ORACLE

For applications with uneven message loads or unanticipated message processing
delays, you may want to consider the following:

» For local distributed topics when the topic distribution mode is One- Copy- Per -
Server or One- Copy- Per - Appl i cati on, tune di stri but edDest i nati onConnecti on
to Ever yMenber . While the Local Onl y option can yield significantly better
performance since it avoids unnecessary network traffic, there are use cases
where the Local Onl y optimization network savings does not outweigh the benefit
of distributing message processing for unbalanced queue loads as evenly as
possible across all JVMs in a cluster. This is especially a concern when message
backlogs develop unevenly throughout the cluster and message processing is
expensive. In these use cases, the Local Onl y configuration should be avoided in
favor of the Ever yMenber scenario with durable subscribers.

e Use a PDT instead of an RDT, and tune producer load balancing in the producer's
connection factory configuration so that each producer's messages are evenly
processed on a round-robin basis throughout the cluster. Incoming messages can
be load balanced among the distributed topic members using the WebLogic IMS
connection factory Server Affinity Enabled and Load Balancing Enabled attributes.
Disabling affinity can increase network overhead but helps ensure that messages
are evenly load balanced across a cluster. The affinity setting has no effect with
RDTs. See Load Balancing Messages Across a Distributed Destination in
Administering JMS Resources for Oracle WebLogic Server.

» Decrease the WebLogic JMS asynchronous message pipeline size to 1 to prevent
additional messages from being pushed to an MDB thread that is already blocked
processing a previous message. The default for this setting is 10, and it is
configured by (a) configuring a custom WebLogic connection factory with the
Messages Maximum attributed tuned to 1 and XA Enabled set to true, (b) targeting
the connection factory to the same cluster that hosts the distributed topic, and (c)
modifying the MDB so that it references the custom connection factory.

10-10

Chapter 10
Configuring for Service Migration

Configuring for Service Migration

Examine how to configure service migration manually or automatically in an MDB
deployment.

For durable subscriptions, JMS service migration (auto or manual) is not supported once
Local Only is applied on local replicated topics. Normally Local Onl y means the MDB
deployment instance is pinned on the local distributed topic member once the distributed
topic member is migrated to another server. The MDB deployment instance cannot subscribe
to the same original distributed member after a restart, which may cause warning messages
to be generated. Therefore, to use JMS service migration, you should configure as

Ever yMenber . Whole server migration is supported for both cases.

Upgrading Applications from Previous Releases

Examine the steps to upgrade MDB applications to take advantage of features such as
scalability and high availability in the latest releases.

As described throughout this chapter, new JMS features in Oracle WebLogic Server 10.3.4,
such as relaxed client ID, sharable subscriptions, and partitioned durable topics, make it
possible to implement and deploy MDBs that provide enhanced scalability and high
availability. To take advantage of these features, you must upgrade MDB applications written
for releases of Oracle WebLogic Server prior to 10.3.4.

Applications written to run on releases of Oracle WebLogic Server prior to 10.3.4 will continue
to run without modification in Conpati bi | i ty mode, which is the default setting for
t opi cMessagesDi stri buti onMde, as described in Setting topicMessagesDistributionMode.

To upgrade applications from previous releases,

1. Consider changing to a partitioned distributed topic. See Choosing Between Partitioned
and Replicated Topics.

2. Setthetopi cMessagesDi stributi onMbdde to One- Copy- Per - Server or One- Copy- Per -
Appl i cation and tune the di stri but edDest i nati onConnecti on options. See Setting
Message Distribution Tuning.

Caution:

Current messages are not preserved when changing out of Conpati bi | i t y mode.
See Warning about Changing Durable MDB Attributes, Topic Type, EJB Name.

Topic MDB Sample

ORACLE

Examine a sample MDB using distributed topics.

Example 10-1 shows a WebLogic MDB that uses a durable subscription to a JMS topic (in
Oracle WebLogic Server 10.3.4 or later), transactionally processes the messages, and
forwards the messages to a target destination.

The MDB connects using JMS connection factory MyCF to receive from topic MyTopi c. It
forwards the messages to MyTar get Dest using a connection generated from connection
factory MyTar get CF.

10-11

ORACLE

Chapter 10
Topic MDB Sample

Resource reference pooling note: The MDB uses a resource reference to access
M/Tar get CF. The resource reference automatically enables JMS producer pooling, as
described in Enhanced Support for Using WebLogic JMS with EJBs and Servlets in
Developing JMS Applications for Oracle WebLogic Server.

For a similar sample using queues instead of topics, see Example 7-3.
Example 10-1 Sample MDB Using Distributed Topics

package test;

i nport javax.annot ati on. Resour ces;

i nport javax.annot ati on. Resource;

i mport javax.ejb.ActivationConfigProperty;
i nport javax.ejb. MessageDriven;

i nport javax.ejb. MessageDrivenCont ext;

i nport javax.ejb.TransactionAttribute;

i mport javax.ejb.TransactionAttributeType;
i nport javax.jms.*;

@vessageDri ven(
name = "M/MB",
activationConfig = {
@\ct i vati onConfi gProperty(propertyName
propertyVal ue

"destinationType",
"javax.jms. Topic"),

@\ct i vati onConfi gProperty(propertyName
propertyVal ue

"subscriptionDurability",
"Durable"),

@Act i vati onConfi gProperty(propertyName
propertyVal ue

"connect i onFact or yJndi Name",
"W CF"), /] External JNDI Name

"dest i nati onJndi Name",
"MyTopic"), // Ext. JNDI Name

@Act i vati onConfi gProperty(propertyName
propertyVal ue

@Act i vati onConfi gProperty(propertyName
propertyVal ue

"t opi cMessagesDi stri buti onMbde",
" One- Copy- Per - Appl i cation")

}
)

@Resources ({
@Resour ce(name="t ar get CFRef ",
mappedNanme="MTar get CF", /1 External JNDI name
t ype=j avax. j ns. Connecti onFact ory. cl ass),

@Resour ce(name="t ar get Dest Ref ",

mappedNane="M/Tar get Dest", // External JND name
t ype=j avax. j ns. Desti nati on. cl ass)

b

public class MyMDB inpl ements Messageli stener {
Il inject a reference to the MDB context

@Resour ce
private MessageDrivenContext ndctx;

/'l cache targetCF and targetDest for re-use (performnce)

private ConnectionFactory targetCF;
private Destination targetDest;

10-12

ORACLE

Chapter 10
Topic MDB Sample

@ransactionAttribute(val ue = TransactionAttri buteType. REQUI RED)
public void onMessage(Message message) {

}

Systemout.printin("M/ MB got message: " + message);

/1 Forward the message to "MTargetDest" using "MTarget CF"

Connection jnsConnection = null;

try {

}

if (targetCF == null)
target CF = (j avax.j ms. Connecti onFact ory) ndct x. | ookup("target CFRef");

if (targetDest == null)
target Dest = (javax.]jms.Destination)ndctx.|ookup("targetDestRef");

jmsConnection = targetCF. createConnection();

Session s = jnmsConnecti on. creat eSessi on(fal se, Sessi on. AUTO ACKNOANLEDGE) ;
MessageProducer np = s. createProducer(null);

np. send(tar get Dest, message);

catch (JMSException e) {

Systemout. println("Forcing rollback due to exception " + e);
e.printStackTrace();

mdct x. set Rol | backOnl y();

finally {

/1 dosing a connection automatically returns the connection and
Il its session plus producer to the resource reference pool.

try { if (jmsConnection !'= null) jnsConnection.close(); }
catch (JMSException ignored) {};

/1l emulate 1 second of "think" time

try { Thread.currentThread(). sl eep(1000); }
catch (InterruptedException ie) {

}

Thread. current Thread().interrupt(); // Restore the interrupted status

10-13

Deployment Elements and Annotations for
MDBs

Examine the deployment elements and configuration properties that affect the behavior of
MDBs.

Each row in Table 11-1 describes a deployment element (used in an EJB deployment
descriptor) and its associated configuration property (specified in annotations). Not all
elements have associated properties.

For information about using deployment descriptors versus using annotations in MDBs, see
Programming EJB 3.2 Compliant MDBs.

Note:

For those elements that have an associated configuration property, Oracle
recommends that you use that property instead of the element.

Table 11-1 is organized as follows:

* Each element in the Element column is followed in parentheses by the name of the
deployment descriptor in which the element is used. Elements in the webl ogi c- ej b-
jar.xm descriptor link to a more complete explanation of the element in weblogic-ejb-
jar.xml Deployment Descriptor Reference in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server. For elements in ej b-j ar. xm , see the schema at
http://xmns.jcp.org/xm/ns/javaeel ej b-jar_3 0. xsd.

* Unless otherwise noted, all the properties listed in the Configuration Property column
are activation configuration properties, that is, properties defined using
@\ctivationConfi gProperty annotations or using an acti vati on-confi g- property
element in the nessage- dri ven stanza of an ej b-j ar. xm descriptor. For more
information about using @ct i vati onConfi gProperty, see Programming EJB 3.2
Compliant MDBs.

Note:

Based on the Enterprise JavaBean specification, the
j avax. ej b. Activati onConfi gProperty annotation is used for MDBs only. This
annotation is not used for session or entity beans.

* The Configuration Property column also lists annotations and properties that are not
@\ctivationConfi gProperty properties. In those cases, the property is followed by the
name of the annotation and by the i nport statement required for using that annotation.

ORACLE 11-1

http://xmlns.jcp.org/xml/ns/javaee/ejb-jar_3_0.xsd

Table 11-1 Deployment Elements and Annotations for MDBs

Chapter 11

Element Configuration Description Allowable Default
Property Values
activation- acknow edgeMbde Notifies the JMS provider that the ¢ AUTO A AUTO ACKN
config-property message was received and processed. CKNOAL OWLEDGE
(ej b-jar.xn) The acknowledgement mode is ignored EDGE -
if using container-managed transactions. the
(The acknowledgement is performed in messag
the context of the transaction.) eis
acknow
ledged
immedi
ately
- DUPS O
K_ACKN
ONLEDG
E - the
acknow
ledgem
ent may
be
delayed
allowin
g
duplicat
e
messag
esto be
receive
d
connecti on- connectionFactor The lookup name of a JMS connection Valid lookup webl ogi c.
factory-jndi- yLookup factory that will be used to connect to name j ms. Messa
name the JMS provider from which a JMS geDrivenB
(webl ogi c- ej b- message-driven bean is to receive ef':anonnec
jar.xm) messages. tionFacto
ry
connecti on- connectionFactor The JNDI name of the JMS Valid INDI webl ogi c.
factory-jndi- yJndi Nane ConnectionFactory that the MDB looks name j ms. Messa
nanme up to create its queues and topics. See geDrivenB
(webl ogi c- &j b- :;)r\:eto Set connection-factory-jndi- egnOonneC
jar.xm) : tionFacto
ry
connecti on- connectionFactor Maps to a resource within a IMS Valid n/a
factory- yResour ceLi nk module defined inej b-jar.xm toan resource
resource-1ink actual IMS Module Reference in Oracle within a
(webl ogi c- ej b- WebLogic Server. Rarely used. JMS module
jar.xm)
destination- destinationLooku The lookup name of a JMS queue or Valid lookup n/a
j ndi - nane p topic from which a JMS message-driven name
(webl ogi c- ej b- bean is to receive messages.
jar.xn)

ORACLE

11-2

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Chapter 11

Element Configuration Description Allowable Default
Property Values
destinati on- destinationdndi N The JNDI name used to associate an Valid INDI n/a
j ndi - name ame MDB with an actual JMS queue or topic name
(webl ogi c- ej b- deployed in the Oracle WebLogic Server
; JNDI tree. See How to Set destination-
jar.xm) s
jndi-name.
destinati on- destinati onResou Maps to a resource within a IMS Valid n/a
resource-1ink rcelLi nk module defined in ej b-jar.xm toan resource
(webl ogi c- &j b- actual JMS Module Reference in Oracle within a
jar.xm) WebLogic Server. Rarely used. JMS module
di spatch-policy n/a This optional element allows you to Valid n/a
(webl ogi c- &j b- specify a particular WorkManager for the execute
jar. xn) bean. See Tuning Message-Driven gqueue name
Beans in Tuning Performance of Oracle
WebLogic Server.
di stri but ed- distributedDesti Specifies whether an MDB that e Local O Local Only
destination- nati onConnection accesses a WebLogic JMS distributed nly
connection destination (topic or queue) in the same . Eyer yM
(webl ogi c- ej b- clustler consumes from all distributed enber
jar.xn) destination members or only those
' members local to the current Oracle
WebLogic Server instance. May not
apply to all use cases. See JMS
Distributed Destinations, and
Configuring and Deploying MDBs Using
JMS Topics .
dur abl e- dur abl eSubscri pt Indicates whether you want durable - True False
subscription- i onDel etion topic subscriptions to be automatically . Fa| se
del etion deleted when an MDB is undeployed or
(webl ogi c- ej b- removed.
jar.xm)
gener ate-uni que- See the Indicates whether or not you wantthe < True Fal se
jms-client-id gener at eUni qued EJB container to generate a unique . False
(webl ogi c- ej b- i ent | Dattribute of ¢l i ent -_i d for_every instance of an
jar.xnl) the MDB. This setting should be used only
webl ogi c. j avaee. when
JMBC ientID t opi cMessagesDi stri butionMde is
annotation. set to Conpati bi | i ty (the default).
See Configuring and Deploying MDBs
Using JMS Topics .
initial-beans- n/a Sets the initial size of the free pool. 0to 0
i n-free-pool Oracle WebLogic Server populates the nmaxBeans
(webl ogi c- ej b- free pool with the specified number of
jar.xm) bean instances for every bean class at
startup. Populating the free pool in this
way improves initial response time for
the MDB, because initial requests for the
bean can be satisfied without generating
a new instance.
ORACLE 11-3

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Chapter 11

Element Configuration Description Allowable Default
Property Values
initial-context- initialContextFa The initial context factory thatthe EJB Valid name webl ogi c.
factory ctory container uses to create its connection of an initial j ndi . W.I n
(webl ogi c- ej b- factories. See How to Set initial-context- context i tial Cont
jar.xn) factory. factory ext Fact or
y
i nit-suspend- i ni t SuspendSecon The initial number of seconds to Any integer 5
seconds ds suspend an MDB's JMS connection
(webl ogi c- ej b- when the EJB container deFectg aJMS
jar.xn) resource_outage. See Conflg_unng _
' Suspension of Message Delivery During
JMS Resource Outages.
jms-client-id clientlD The client identifier that will be used n/a Depends on
(webl ogi c- &j b- when connecting to the JMS provider the _
jar. xn) from which a JIMS message-driven bean t opi cMess
is to receive messages. agesDi str
i buti onM
de
activation
config
property
and possibly
on
gener at e-
uni que-
client-id.
See Topic
Subscription
Identifiers)
jme-client-id jmsdientld The client ID for the MDB when it n/a Depends on
(webl ogi c- ej b- connects to a JMS destination. Optional. the _
jar. xm) Used for durable subscriptions to IMS t opi cMess
topics. For more information, see Topic agesDistr
Subscription Identifiers. i buti onMo
de
activation
config
property
and possibly
on
gener at e-
uni que-
client-id.
See Topic
Subscription
Identifiers)
j ms-pol |'i ng- jmsPol I'inglnterv The number of seconds between Any integer 10 seconds
i nterval -seconds al Seconds attempts by the EJB container to

reconnect to a JMS destination that has
become unavailable. See Migration and
Recovery for Clustered MDBs.

(webl ogi c- €] b-
jar.xm)

ORACLE

11-4

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Chapter 11

Element Configuration Description Allowable Default
Property Values
max- beans- i n- n/a The maximum number of bean 0to 1000
free-pool instances in an MDB free pool. The maxBeans
(webl ogi c- ej b- gctpal number of instan.ces is also
jar.xm) limited by thread pool size as well as
other factors. See Tuning Message-
Driven Beans in Tuning Performance of
Oracle WebLogic Server.
max- messages-in- maxMessageslnTra Specifies the maximum number of All positive n/a
transaction nsaction messages that can be in a transaction integers
(V\Ebl Ogl c- ej b- for this MDB.
jar.xn)
max- suspend- maxSuspendSecond The maximum number of seconds to Any integer 60
seconds S suspend an MDB's JMS connection
(webl ogi c- ej b- when the EJB container de.tect.s aJMS
jar.xn) resource_outage. See Conflg_unng _
' Suspension of Message Delivery During
JMS Resource Outages.
message- destinationType Specifies the type of the IMS e javax. nla
destination-type destination—the Java interface expected jms. Qu
(e b-jar.xm) to be implemented by the destination. eue
e javax.
jms. To
pic
messages- maxi mum nessagesMaxi mum The maximum number of messages that -1and 1- 10
can exist for an asynchronous session, 2631

(webl ogi c-ej b-
jar.xm)

which have not yet been passed to the
message listener. A value of - 1
indicates that there is no limit on the
number of messages. In this case,
however, the limit is set to the amount of
remaining virtual memory.

When the number of messages reaches
the specified value, the following occurs:

* For multicast sessions, new
messages are discarded according
to the specified overrun policy, and
a Dat aOverrunExceptionis
thrown.

. For non-multicast sessions, new
messages are flow-controlled, or
retained on the server until the
application can accommodate the
messages.

For multicast sessions, when a

connection is stopped, messages will

continue to be accumulated, but only
until the specified maximum value is
reached. Once this value is reached,
messages will be discarded based on
the overrun policy.

ORACLE

11-5

Chapter 11

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration Description Allowable Default
Property Values

message- sel ector nessageSel ector A string used by a client to specify, by ~ Conditional Null
(e b-jar.xm) header field references anq prqperty expression
references, the messages it is interested using
in. Only messages whose header and message
property values match the selector are properties,

delivered or message
header
messagi ng-type n/a Rarely used. javax.jms n/a
(ej b-jar.xn) : Messagel
i st ener

provi der-url provi der URL The URL provider to be used by the Valid URL Null
(webl ogi c- ej b- [nitial Context. Typically, this is the
jar.xm) host : port. See How to Set provider-

url.
resource- resour ceAdapterJ For JCA-driven MDBs, identifies the n/a n/a
adapt er-j ndi - ndi Nane resource adapter from which this MDB
name receives messages.
(webl ogi c- €] b-
jar.xm)
security-role- n/a Maps application roles in the ej b- n/a n/a
assi gnnent jar.xnl file to the names of security
(webl ogi c- ej b- principals available in Oracle WebLogic
jar.xm) Server.
start-nmdbs-with- n/a Controls when MDBs start processing + True Fal se
application messages. When settotrue,an MDB . Fgl se
(webl ogi c- starts processing messages as soon as

it is deployed, even if Oracle WebLogic
Server has not completed booting. This
can cause an MDB application to access
uninitialized services or applications
during boot up and, therefore, to fail.

Set to false to defer message
processing until after Oracle WebLogic
Server opens its listen port.

application. xm)

subscri ption- subscriptionDura Specifies whether a JMS topic e Durabl NonDurabl
durability bility subscription is Dur abl e or e e
(ej b-jar.xm) NonDur abl e. For more information, see « NonDur

Setting Subscription Durability. abl e
activation- subscriptionNanme The name of the subscription if the n/a n/a
config-property message-driven bean is intended to
(ej b-jar. xnl) receive messages published to a topic.

You can set this property for durable or
non-durable topic subscribers.

ORACLE 11-6

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Chapter 11

Element Configuration Description Allowable Default
Property Values
n/a t opi cMessagesDi s Sets the distribution mode for topic ¢ (One- Conpat i bi
tributionMode messages. See Configuring and Copy- ity
Deploying MDBs Using JMS Topics .. Per -
Applic
ation
. Me-
Copy-
Per -
Server
« Conpat
ibilit
y
transaction-type See trans-attribute Specifies an enterprise bean's - Bean Container
(ej b-jar.xm) transaction management type. For more . Cont ai
information, see Configuring Transaction ner
Management Strategy for an MDB.
trans-attribute TransactionAttri Specifies how the container must Requir Required
(ej b-jar.xm) but eType property of manage the transaction boundaries ed
@ransacti onAttr when delegating a method invocationto . Ngt Sup
i but e, for example: ~ an enterprise bean’s business method. por t ed
. ¢ Note: f the bean is specified as using « Suppor
| Mport b T container-managed transaction ts
J aviﬁ € b. transact demarcation, either the REQUI RED or the Requi r
I@?’?ans;lct iuoﬁAt trib NOT_SUPPORTED transaction att_ribute esNew
ut e(Tr ansact i onAtt must be used fqr the message listener . Mandat
i but eType. REQUI RE methods, and either the REQUI RED, ory
D) REQUI RES_NEW or the NOT_SUPPORTED
transaction attribute for time-out callback *© Never
methods. For more information, see
Configuring Transaction Management
Strategy for an MDB.
trans-ti meout - @r ansactionTine The maximum duration for an EJB's 0 to max If the
seconds out Seconds container-initiated transactions, in transaction
(webl ogi c- ej b- i nport seconds, after which the transaction is time-out is
jar.xm) webl ogi c. j avaee. rolled back. See Configuring Transaction not 3
Transacti onTi meo Management Strategy for an MDB. _specmed or
ut Seconds is sett0 0,
the
transaction
time-out
configured
for the
domain is
used. If a
time-out is
not
configured
for the
domain, the
default is
30.
ORACLE 11-7

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Chapter 11

Element Configuration Description Allowable Default
Property Values
use8l-style- use81Styl ePol i n Enables backwards compatibility for e True False
pol I'i ng g Oracle WebLogic Server version 8.1- . False
(V\Ebl Ogl c- ej b- style polllng
jar.xn)
activation- agMDBRecei veNoV If AQ JMS is the JMS provider for the « True False
config-property it MDB and this property is set to true, . False
Chl synchronous polling uses the

(ejb-jar.xm) MessageConsuner . recei veNoWi t ()

method to optimize QA JMS dequeue

performance.
activation- mdbDest i nati onPo When the JMS destination has no >or=0 0
config-property IllntervalMIlis messagesand synchronous polling is (Integer)
(ejb-jar.xnl) used for MDB, this property sets the

message polling interval in milliseconds.

When MDB interoperates with AQ JMS

and mi ni m zeAQSessi ons is set to

true, you can avoid database connection

usage bursts by setting this property to a

value that is greater than 5000. This

configuration randomly starts message

polling when multiple MDBs are started.
activation- m ni m zeAQSessi 0 This property is only used when MDB ~ « True False
config-property ns interoperates with AQ JMS. When this . Fa| se
(ejb-jar.xnl) property is set to true, it reduces

database resource usage by

dynamically closing AQ JMS sessions.
activation- Topi cMessagePart When MDBs that are deployed to e |solat Isolated
config-property itionhbde different partitions subscribe to the same ed
(ejb-jar.xnl) topic des_tination, t_hi_s proper_ty controls . ghared

MDB topic subscription sharing among

partitions in a WebLogic Server

multitenant (MT) environment.
ORACLE 11-8

Topic Deployment Scenarios

Examine the MDB deployment actions and typical scenarios for various topic MDB
configurations.

The actions include where and how many MDB free pools are created, where and how many
subscriptions are created, and how the subscribers work together to achieve a given
messaging consumption pattern.

These sections do not cover details about legacy behavior which occurs when the

t opi cMessagesDi stri butionMde is setto Conpati bility, when the topics are foreign (non-
WebLogic) topics, or when the topics are WebLogic JMS topics from Oracle WebLogic Server
releases prior to 10.3.4.

For help determining the right scenario (permutation) for your application, including
suggested settings, see Configuring and Deploying MDBs Using JMS Topics .

This appendix includes the following sections:

* How Configuration Permutations Determine Deployment Actions

* Typical Scenarios

How Configuration Permutations Determine Deployment Actions

ORACLE

Determine how WebLogic MDBs that consume from WebLogic JMS topics from Oracle
WebLogic Server 10.3.4 or later create instances of MDB free pools, subscription naming,
subscription locations, and how messages are distributed to those MDB pool instances.
The following settings determine:

* The topic location (in the same cluster or server as the MDB deployment or on a remote
cluster or server).

* The topic type (singleton WebLogic topic, Repl i cat ed or Parti ti oned distributed topic).
e The subscriptionDurability setting.

e The topi cMessagesDi stributionMde and di st ri but edDesti nati onConnection
settings.

Table A-1 describes possible configuration permutations and corresponding deployment
actions. The first two columns describe the configuration permutations, and the last two
columns describe the resulting deployment. The columns are as follows:

e topicMssagesDistributionMde -- The value of the t opi cMessagesDi stribution
configuration option, that is, One- Copy- Per - Server or One- Copy- Per - Appl i cati on. The
legacy Conpati bi | i ty mode is not covered in this table.

* Topic Type Permutation -- Options include the following:

— Local or Remote -- Whether the topic is deployed to the same cluster or server as
the MDB (Local) or to a different cluster or server (Remote).

A-1

Appendix A
How Configuration Permutations Determine Deployment Actions

— PDT, RDT, or Singleton WebLogic JMS topic -- The type of topic: partitioned
distributed topic (PDT), replicated distributed topic (RDT), or singleton
WebLogic JMS topic.

— EveryMember or LocalOnly -- The value of
di stribut edDesti nati onConnecti on. Specifies whether the MDB that
accesses a Local distributed topic in the same cluster consumes from all
distributed topic members or only from those local to the current server. If
neither Ever yMenber nor Local Onl y is specified, the permutation applies
regardless of how di stri but edDest i nati onConnecti on is set.

For example, the topic type permutation "Local RDT LocalOnly" means "An MDB
is deployed to the same cluster (Local) as the replicated topic (RDT), and the MDB
is configured to consume only from members of the topic on the same Oracle
WebLogic Server as the MDB (Local Onl y)."

Each Server Subscribes to... -- The number of MDB pools a Oracle WebLogic
Server instance creates, and the members of the distributed topic to which the
MDB instances subscribe. For example,

"Each server subscribes to ... All members" means "the container creates
one local MDB pool for each member of the distributed topic."

— "Each server subscribes to ... All local members" means "the container
creates one MDB pool for each of the members that are running on the same
server, and each MDB pool subscribes to one of those members."

MDB Pools Per Server -- The number of MDB deployment instances on each
server in the cluster (and thereby the number of connections to the distributed
topic members). M = the number of distributed topic members (M=1 for standalone
topics).

Table A-1 Configuration Permutations and Their Resulting Deployment Actions

MDB Configuration Deployment Actions
topicMessagesDistributionMode Topic Type Permutation Each Server Subscribes MDB Pools
to... per Server
One- Copy- Per - Ser ver + RDT Local LocalOnly! One of the local members ~ One
One- Copy- Per - Ser ver * RDT Remote (Non-durable One of the remote members One
only)?
One- Copy- Per - Ser ver « PDT Local EveryMember3 All members M

+ PDT Remote?

* RDT Local EveryMember

 RDT Remote (durable
subscriptions only)?

e Singleton WebLogic JMS

(ML)
One- Copy- Per - Appl i cation * PDT Local LocalOnly All local members One per
* RDT Local LocalOnly local
member
ORACLE A-2

Appendix A
Typical Scenarios

Table A-1 (Cont.) Configuration Permutations and Their Resulting Deployment Actions
]

MDB Configuration Deployment Actions
topicMessagesDistributionMode Topic Type Permutation Each Server Subscribes MDB Pools
to... per Server

One- Copy- Per - Appl i cation e PDT Local EveryMember All members M

+ PDT Remote?

RDT Local EveryMember

+ RDT Remote?

* Singleton WebLogic JMS
(M=1)

1 The "One- Copy- Per - Ser ver, RDT, Local, LocalOnly" permutation is not supported for durable subscription cases in some
configuration topologies (See details in Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only Consumption.)

2 For remote distributed topics, Oracle WebLogic Server always creates subscriptions to every topic member except for non-durable
subscriptions in the "One- Copy- Per - Ser ver, Replicated Distributed Topic, Remote" permutation. In that case, only one subscription
to one of the remote members is created. (See Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment.)

3 The Local Only setting is always automatically replaced with Ever yMember in the "One-Copy-Per-Server, Partitioned Distributed
Topic, Local" permutation. (See Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only Consumption.)

Typical Scenarios

ORACLE

Examine the Standalone Non-distributed, Replicated Distributed and Partitioned Distributed
scenarios of an MDB application.
The following sections show the possible deployment scenarios of an MDB application:

e Standalone (Non-distributed) Topic Scenarios
* Replicated Distributed Topic Scenarios
e Partitioned Distributed Topic Scenarios

Images and labels used in the figures presented in the scenarios are explained in Table A-2:

Table A-2 Explanation of Images and Text Used in Scenarios

Image or Text Explanation

Messages published to a distributed topic.

Messages are duplicated, and copies are forwarded to other members
of the topic. This indicates that the topics are replicated distributed

:] : topics.

DT Member n Member of a distributed topic.
MDB Pool An MDB free bean pool.

A-3

Appendix A
Typical Scenarios

Table A-2 (Cont.) Explanation of Images and Text Used in Scenarios

Image or Text Explanation

A subscription. The MDB on one end of the arrow listens for and
consumes messages from the topic on the other end of the arrow.

.

Shared subscription.

Shared suhb.

Non-shared subscription. S1 is Managed Server 1's subscription, S2
is Managed Server 2's subscription, etc.

51 52 | 53

Standalone (Non-distributed) Topic Scenarios

Standalone topic scenarios are as follows.

One-Copy-Per-Server

On each Oracle WebLogic Server instance that hosts the MDB application, an MDB
pool is created for the topic, whether the topic is running in the same cluster or in a
different cluster. For an MDB cluster of N nodes, N MDB pools are created. Each MDB
pool creates an individual subscription on the topic, and subscribers from different
MDB pools do not share the same subscription.

One-Copy-Per-Application

On each Oracle WebLogic Server instance that hosts the MDB application, an MDB
pool is created for the topic, whether the topic is running in the same cluster or in a
different cluster. For an MDB cluster of N nodes, N MDB pools are created. All
subscribers created by the MDB pools of the same MDB application share the same
subscription.

Replicated Distributed Topic Scenarios

With replicated distributed topics, all physical topic members receive each message
sent. When a message arrives at one of the physical topic members, a copy of the
message is automatically internally forwarded to the other members of the topic.

The following are the possible deployment scenarios for a replicated distributed topic:

ORACLE A-4

Appendix A
Typical Scenarios

* Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only

Consumption

* Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every Member

Consumption,

* Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment

» Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local Only

Consumption

» Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every Member

Consumption

* Scenario 6: Replicated DT One Copy Per Application, Remote Deployment

Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only

Consumption

Figure A-1 shows the following configuration:

* Replicated distributed topic
* topicMessagesDistributionMde = One- Copy- Per - Server.

» The MDB and the topic are deployed in the same (local) cluster.

e distributedDestinationConnection=Local Only.

Figure A-1 Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local

Only Consumption

S
I

Managed Server 1

Managed Server 2

Managed Server 3

WebLogic Server Cluster i?
F_____ | Distributed Topic | '____j
| DT Member 2 DT Member 2 DT Member 2 |
g B
| E@@ = = EE@ |
[__Al__ - - __T___l
MDB MDB MDE
Instance Instance Instance

ORACLE

A-5

Appendix A
Typical Scenarios

In this scenario:

» Copies of messages are forwarded to other servers in the cluster by the RDT.

* One MDB pool is created on each server in the local cluster.

* Each MDB pool listens to one of the distributed topic member on the same server.

This approach can yield higher performance than "RDT, One Copy Per Server, Local
Deployment, EveryMember," because all messaging is local (it avoids transferring
messages over network calls) and still ensures that all distributed topic members are
serviced by MDB consumers. However for some use cases, the Ever yMenber
alternative may work better, based on the trade-offs discussed in Handling Uneven
Message Loads and/or Message Processing Delays.

This scenario does not work correctly for durable subscriptions when there are multiple
members on the same server, when there are no members on any of the local servers
that host the MDB application, or when JMS service migration (auto or manual) is
involved.

Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption,

ORACLE

Figure A-2 shows the following configuration:

» Replicated distributed topic

e topicMssagesDistributionMdde = One- Copy- Per - Server .

» The MDB and the topic are deployed in the same (local) cluster.

e distributedDestinationConnection = EveryMenber.

A-6

ORACLE

Appendix A
Typical Scenarios

Figure A-2 Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every

Member Consumption

WebLogic Server Cluster

Instance 2

r————
| DT Member 1
RS
|l 51 | 52 | 53
i&__—a:“
MDEB
Instance 1

MDB ;/

Instance 3

/

Managed Server 1

A%

£

Distributed Topic
OT Member 2

MDB
Instance 1

MODB
Instance 2

MOB
Instance 3

Managed Server 2

Instance 2

MDB
Instance 3

Managed Server 3

In this scenario:

e Copies of messages are forwarded to other servers in the cluster by the RDT, but these

copies are filtered out (ignored) by the MDB subscriptions.

e An MDB pool is created for each distributed topic member on each server in the local

cluster.

e Each MDB pool listens to one of the distributed topic members in the cluster.

e Each Oracle WebLogic Server instance that hosts the MDB application listens to all
members of the distributed topic.

e Each server's subscribers on the same member of the DT have their own independent
subscriptions. In other words, subscribers from different servers to the same member do
not share any subscriptions.

This configuration yields high flexibility and is good for an application where an RDT is

required, but it cannot be guaranteed that there will be exactly one member per server, for

example due to migration.

This configuration does not give the best performance in comparison to Scenario 1:

Replicated DT, One Copy Per Server, Local Deployment, Local Only Consumption, especially

for a static environment where no migration is involved and there is one and only one

member of the distributed topic on each managed server. Applications where no migration is
involved and where there is one and only one member of the distributed topic on each
managed server can use Scenario 1.

A-7

Appendix A
Typical Scenarios

Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment

ORACLE

Figure A-3 shows the following configuration:

Replicated distributed topic

Durable subscription

t opi cMessagesDi stri buti onMbde = One- Copy- Per - Ser ver.

The MDB and the topic are deployed in different (remote) clusters.

di stribut edDesti nati onConnecti on ignored for remote deployments.

Figure A-3 Scenario 3: Replicated DT, One Copy Per Server, Remote
Deployment

WebLogic Server Cluster 1

g0
v

Managed Server 1 Managed Server 2 Managed Server 3
B
|— Distributed Topic |
| DT Member 2 DT Member 2 DT Member 2 |
g I g S
| = B o By
[51|52‘53 51|52|53 51|52|53 |
- e - —7L—"'a——\‘a——' —f"f——;z‘i—'ﬁ——'

=
\

MDE
Ingtance 1

Managed Server 1

TR

MDE MDE MDE
Instance 2 Instance 2 Instance 2
MDE ~ MDB M MDE
Instance 3 Instance 3 Instance 3

Managed Server 2

WebLogic Server Cluster 2

Instance 1

Managed Server 3

In this scenario:

» Copies of messages are forwarded to other servers in the cluster by the RDT, but

these copies are filtered out (ignored) by the MDB subscriptions.

* An MDB pool for each distributed topic member is created on each server in the

remote cluster.

» Each Oracle WebLogic Server instance that hosts the MDB application listens to
all members of the distributed topic (one local pool for each remote member).

Appendix A
Typical Scenarios

» Each server's subscribers on the same member of the DT have their own independent
subscription. In other words, subscribers from different servers to the same member do
not share any subscriptions.

Note that this is the behavior for durable cases. For non-durable cases, each Oracle
WebLogic Server instance creates a single MDB pool which connects to one of the members
(any member) as an optimization.

Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local Only
Consumption

Figure A-4 shows the following configuration:

* Replicated distributed topic

e topicMessagesDistributionMde = One- Copy- Per - Appl i cati on.
» The MDB and the topic are deployed in the same (local) cluster.

e distributedDestinationConnection=Local Only.

Figure A-4 Scenario 4: Replicated DT, One Copy Per Application, Local Deployment,
Local Only Consumption

WebLogic Server Cluster ij
7 | istributed Topic | | |
DT Member 2 DT Member 2 OT Member 2

|
[%<ﬁ> EE@ S EE@ J
T

MDE MDE MDE
Instance Instance Instance
Managed Server 1 Managed Server 2 Managed Server 3

In this scenario:

» Copies of messages are forwarded to other servers in the cluster by the RDT, but these
copies are filtered out (ignored) by the MDB subscriptions.

* One MDB pool is created on each server in the local cluster for each local member
(Figure A-5 shows a configuration where each Oracle WebLogic Server instance hosts

ORACLE A-9

Appendix A
Typical Scenarios

only one member. When there are multiple members on the same local Oracle
WebLogic Server instance, multiple MDB pools are created on the server).

* A message is given to only one MDB pool.

» All subscribers on the same member share the same subscription.

Scenario 5: Replicated DT, One Copy Per Application, Local Deployment,
Every Member Consumption

ORACLE

Figure A-5 shows the following configuration:

* Replicated distributed topic

* topicMessagesDistributionMde = One- Copy- Per - Appl i cati on.

» The MDB and the topic are deployed in the same (local) cluster.

o distributedDestinationConnection = EveryMenber.

Figure A-5 Scenario 5: Replicated DT, One Copy Per Application, Local
Deployment, Every Member Consumption

WeblLogic Server Cluster

DT Member1

&

|

|

I- Shared subs.
B
ce 1

¥
MD
Instan

MDB ‘/

Instance 2

Instance 3

MDB | |]

Managed Server 1

Distributed Topic
DT Member 2

iy

Shared subs.

MDB

Instance 1 & Jf_x/

MDB
Instance 3

Managed Server 2

DT Member 3

&y

Shared subs.

\Istance 2 &

MDEB
Instance 3

Managed Server 3

In this scenario:

» Copies of messages are forwarded to other servers in the cluster by the RDT, but
these copies are filtered out (ignored) by the MDB subscriptions.

* One MDB pool is created on each server in the local cluster for each member.

* A message is given to only one MDB pool.

A-10

Appendix A
Typical Scenarios

All subscribers on the same member share the same subscription.

Scenario 6: Replicated DT One Copy Per Application, Remote Deployment

ORACLE

Figure A-6 shows the following configuration:

Replicated distributed topic
t opi cMessagesDi stri buti onMbde = One- Copy- Per - Appl i cati on.

The MDB and the topic are deployed in different (remote) clusters.

di stri but edDesti nati onConnect i on ignored for remote deployments.

Figure A-6 Scenario 6: Replicated DT, One Copy Per Application, Remote Deployment

WebLogic Server Cluster 1

Managed Server 1

=t

Managed Server 2

Managed Server 3

- - _] -
M Distributed Topic |
| DT Member 2 DT Member 2 DT Member 2 |
|l Shared subs. Shared =subs. Shared subs. |

DA NAN

i e & I
MOB "y MDB MODB
Instance 1 Instance 1 Instance 1
MDB / MDB \ MDB
Instance 2 Instance 2 Instance 2
MDB Al MDB MDB
Instance 3 Instance 3 Instance 3

Managed Server 1

WebLogic Server Cluster 2

Managed Server 2

Managed Server 3

In this scenario:

Copies of messages are forwarded to other servers in the cluster by the RDT, but these

copies are filtered out (ignored) by the MDB subscriptions.

One MDB pool is created on each server in the local cluster for each member in the

remote cluster.

A message is given to only one MDB pool.

A-11

Appendix A
Typical Scenarios

All subscribers on the same member share the same subscription.

Partitioned Distributed Topic Scenarios

With partitioned topics:

The distributed topic member receiving the message is the only member that is
aware of the message. The message is not forwarded to other members, and
subscribers on other members do not get a copy of the message.

Incoming messages can be load balanced among the distributed topic members
using the IMS Affinity and Load Bal ance attributes. See Load Balancing
Partitioned Distributed Topics in Administering JMS Resources for Oracle
WebLogic Server.

The following are the possible deployment scenarios for a partitioned distributed topic:

Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only
Consumption

Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every
Member Consumption

Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment

Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment, Local
Only Consumption

Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every
Member Consumption

Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment

Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local
Only Consumption

The setting of di st ri but edDest i nati onConnecti on is ignored for this scenario and a
warning message is logged. The setting is forced to Ever yMenber instead. The
behavior becomes the same as the "Ever yMenber " case (see Scenario 8: Partitioned
DT, One Copy Per Server, Local Deployment, Every Member Consumption).

Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every
Member Consumption

Figure A-7 shows the following configuration:

ORACLE

Partitioned distributed topic
t opi cMessagesDi stri buti onMbde = One- Copy- Per - Ser ver.
The MDB and the topic are deployed in the same (local) cluster.

di stribut edDesti nati onConnecti on = Ever yMenber.

A-12

Appendix A
Typical Scenarios

Figure A-7 Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment,
Every Member Consumption

WebLogic Server Cluster

7 | Distributed Topic | | _i
| OT Member 1 DT Member 2 DT Member 3 |
& 5 5|
l s1|52|53 s1|52|53 s1|52|s3 |

FE e N i i
=N /7*} I
E;::ﬁez > //L L

MDE MDB Yy MDEBE
Instance 3 Instance 3 Instance 3
Managed Server 1 Managed Server 2 Managed Server 3

In this scenario:

* Messages are distributed individually to the distributed topic members. Messages are not
duplicated or copied to other members in the cluster.

* An MDB pool is created for each distributed topic member on each server in the local
cluster.

* Each server's subscribers on the same member of the DT have their own independent
subscription. In other words, subscribers from a particular server to the same member do
not share any subscriptions with subscribers from another server.

Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment
The details of this scenario are the same as the previous one except that the MDB
deployment and the PDT are in different clusters.
Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment, Local
Only Consumption

Figure A-8 shows the following configuration:

e Partitioned distributed topic
e topicMessagesDistributi onMbde = One- Copy- Per - Appl i cati on.

 The MDB and the topic are deployed in the same (local) cluster.

ORACLE A-13

Appendix A
Typical Scenarios

e distributedDestinationConnection=Local Only.

Figure A-8 Scenario 9: Partitioned DT, One Copy Per Application, Local
Deployment, LocalOnly Consumption

WebLogic Server Cluster
-
| DT Member 1 DT Member 2 DT Member 3 |
L\ B |
l Distributed Topic !
MDB MDB MDB
Instance Instance Instance
Managed Server 1 Managed Server 2 Managed Server 3

In this scenario:

* Messages are distributed individually to the distributed topic members. Messages
are not duplicated or copied to other members in the cluster.

* One MDB pool is created on each server in the local cluster for each local member
(Figure A-9 shows a configuration where each Oracle WebLogic Server hosts only
one member. When there are multiple members on the same local Oracle
WebLogic Server, multiple MDB pools are created on each Oracle WebLogic
Server instance).

This scenario is the recommended configuration for One- Copy- Per - Appl i cati on and
Local PT for high performance. However for some use cases, the Ever yMenber
alternative may work better, based on the trade-offs discussed in Handling Uneven
Message Loads and/or Message Processing Delays.

Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment,
Every Member Consumption
Figure A-10 shows the following configuration:

« Partitioned distributed topic
e topicMessagesDistributionMde = One- Copy- Per - Appl i cati on.

» The MDB and the topic are deployed in the same (local) cluster.

ORACLE A-14

Scenario 12;

ORACLE

di stribut edDesti nati onConnecti on = Ever yMenber .

Appendix A
Typical Scenarios

Figure A-9 Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment,
Every Member Consumption

WebLogic Server Cluster

|
|
|
|

DT Member 2

e

Shared subs.

MDB
Instance 2

B
ce 1

K
MD
Instan

e

MODB
Instance 3

Managed Server 1

>

/

Distributed Topic
OT Member 2

&

Shared subs.

Instance 1 & j_,f"

MOB
Instance 3

Managed Server 2

DT Member 2

L

|

|

|

Shared subs. |
a

\jstance 2 &

MODB
Instance 3

Managed Server 3

For a partitioned distributed topic, one copy per application, local deployment, it is better to
use Local Only consumption for most use cases, as shown in Scenario 9: Partitioned DT, One
Copy Per Application, Local Deployment, Local Only Consumption. However the trade-offs
discussed in Handling Uneven Message Loads and/or Message Processing Delays, apply
here.

Partitioned DT, One Copy Per Application, Remote Deployment

Figure A-10 shows the following configuration:

Partitioned distributed topic

t opi cMessagesDi stri buti onMbde = One- Copy- Per - Appl i cati on.

The MDB and the topic are deployed in different (remote) cluster.

di stributedDestinati onConnecti on ignored for remote deployments.

A-15

Appendix A
Typical Scenarios

Figure A-10 Scenario 12: Partitioned DT, One Copy Per Application, Remote
Deployment

g
IT

WebLogic Server Cluster 1

v

Managed Server 1

DT Member 2

&

Shared subs.

Managed Server 2

Distributed Topic
DT Member 2

0

Shared subs.

—— A —

Managed Server 3

DT Member 2

N
|
|
Shared subs. |
_|

AN

__Jp:%.u?_
i

MDB
Instance 1

MDE
\Istance 2 X

yd

MDE
Instance 3

L1

Managed Server 1

"y

MDE
Instance 1
MDEB
Instance 2

7
KA

MDE
Instance 3

Managed Server 2

MDB
Instance 1

MDE
Instance 3

Managed Server 3

WebLogic Server Cluster 2

In this scenario:

ORACLE

Messages are distributed individually to the distributed topic members. Messages

are not duplicated or copied to other members in the cluster.

Subscriptions are created on all the distributed topic members automatically and
dynamically.

A message is given to only one MDB pool.

All subscribers from the same MDB application on the same member share the
same subscription.

A-16

Topic Subscription Identifiers

ORACLE

Examine how the topic subscription identifiers are generated.
In JMS, a subscription is identified and located based on the following:

1.
2.

The topic with which the subscription is associated

The connection "Client ID" string that is specified for the connection that is used to
access the subscription

If durable subscriptions are used, the subscription name. The subscription name is
established by either of the following means:

* When the durable subscription is created
e By the Subscri pti onNane configuration property

If the Subscri pti onName property is provided, that property is used. Otherwise, the
subscription name is generated when the subscription is created.

The "Client ID Policy" option, by which a subscription is also identified in WebLogic JMS.
If two WebLogic JMS subscription references on the same physical topic have the same
client ID and subscription name, then the references resolve to:

e Asingle subscription, if the client ID policies are also the same

e Two different subscriptions, if the client ID policies are different

A WebLogic MDB container automatically generates items 1 through 4 in the preceding list,
based on the following settings:

ej b- nane

jms-client-id

t opi cMessagesDi stri buti onVbde
Subscri pti onName configuration property
di stributedDestinationConnection
generate-uni que-client-id
subscriptionDurability

Other elements of the MDB deployment and JMS configurations

The last four settings, apply only to Conpati bil ity mode MDBs.

Table B-1 summarizes how the settings are used to generate subscription IDs:

B-1

Table B-1 How Subscription IDs are Generated

Appendix B

Setting

ClientlD

Subscription Name for Client ID Policy for
the Durable Subscription WebLogic Topics
Case

t opi cMessagesDi stri bu
ti onMode = One- Copy-
Per - Appl i cation

jmsd i ent| DBase

Subscri pti onName Unrestricted
property, if used, or ej b-

nanme

t opi cMessagesDi stribu
ti onMbde = One- Copy-
Per - Server

jmsd i ent| DBase
4o

+ curr ent Donai nNane
Lo

+ current Server Nanme

Subscri pti onName Unrestricted
property, if used, or ej b-

nanme

t opi cMessagesDi stribu jnmsCientl| DBase Same as the G ientld, or Restricted
ti onhbde = g Subscri ptionNane
Conpatibility N C_urrent Doai nNare property, if used
generat eUni queC i ent | L
D=true - «
. . . . +uni queKe
di stributedDestinatio g y
nConnecti on =
Local Only
subscriptionDurabilit
y = Dur abl el
Same as previous row, jmsd i ent | DBase Same as the C i entld, or Restricted
except: g Subscri pti onName
di stributedDestinatio , .yrrentDonginName ProPery if used
nConnection = L
Ever yMenber -
+ uni queKey
pon
+ DDMenber Nanme
t opi cMessagesDi stribu jnmsCientl| DBase Same as the Cli entld, or Restricted

ti onMode =
Conpatibility

generat eUni queC i ent |
D=fal se

subscriptionDurabilit
y = Dur abl el

Subscri ptionNanme
property, if used

! Non-durable Conpat i bi | i t y mode MDBs do not set a Client-ID or Subscription-Name, and use the default Restricted Client

ID Policy.

Key:

e jms-client-id— an optional MDB attribute string set by the MDB descriptor or
an annotation; alternatively (but rarely), the j ms-cl i ent - i d can be set by changing
the MDB to reference a custom JMS connection factory that in turn has a client-id
configured

ORACLE

B-2

Appendix B

e Subscripti onName — an optional setting to establish the durable subscription name. If
specified, this setting takes precedence over any automatically generated name.

e g b-nane = the name of the EJB

« jmsCientlDBase —jns-client-id (if specified by user) or ej b-name (if j ns-client-id
is not specified)

e current Domai nName — the name of the WebLogic domain that runs the MDB

e current Server Nane — the name of the Oracle WebLogic Server that the MDB is running
on

* uni queKey — a string that contains some of the MDB deployment elements, possibly the
current Server Nane. If the destination is a WebLogic destination that is hosted by a JIMS
server that is using a migratable target, then this string includes the migratable target
name.

* DDMenber Nane — the name of a distributed destination member; or, alternatively, the
destination name if the topic is a singleton or a distributed destination in releases of
Oracle WebLogic Server prior to 10.3.4.

Client ID unigueness is enforced as follows:

* For foreign (non-WebLogic) JMS vendors: Some JMS vendors prevent more than one
connection from specifying the same connection Client ID. (An exception is thrown on an
attempt to create the second connection.) This limitation in turn can prevent more than
one free pool from using the same Client ID, because each free pool creates a single
JMS connection with potentially the same Client ID as other free pool connections. After
a first free pool instance of the MDB starts on a server instance in the cluster, an
additional instance of the EJB can deploy successfully on another clustered server; but
when the MDB attempts to create a JMS connection, a Client ID conflict is detected and
that instance of the MDB fails to fully connect to JMS.

» For WebLogic JMS: For WebLogic JMS in releases of Oracle WebLogic Server prior to
10.3.4, JMS connections were restricted so only one connection with the same Client ID
could exist in the scope of a cluster. However, for Oracle WebLogic Server 10.3.4 and
later, WebLogic JMS connection factories or connections can optionally set a Client ID
Policy to control this restriction. With a Client ID Policy of RESTRICTED, the pre-10.3.4
behavior remains in effect, while with a Client ID Policy of UNRESTRICTED, this
limitation is lifted. See Developing JMS Applications for Oracle WebLogic Server.
Unrestricted client IDs make it possible for multiple WebLogic subscriber connections and
subscriptions to share the same client ID. Both One- Copy- Per - Server and One- Copy-
Per - Appl i cat i on Topic Message Distribution Modes set the ClientIDPolicy to
Unrestricted. Note that if two WebLogic JMS subscription references on the same
physical topic have the same Client ID and durable subscription name, then the
references resolve to a single subscription if the Client ID Policy is also the same, but
they resolve to two different subscriptions if the Client ID Policies are different.

ORACLE B-3

How WeblLogic MDBs Leverage WebLogic
JMS Extensions

ORACLE

Examine how MDBs utilize certain WebLogic JMS features such as shared subscriptions, and
unrestricted client IDs.

The MDB deployment scenarios described in Topic Deployment Scenarios. take advantage of
the following JMS features:

« Shared subscriptions -- Shared subscriptions allow multiple subscribers to share one
subscription, even when the subscribers are created from different MDB servers. All
subscribers that share the same subscription collectively process all of the messages
published to the topic. Each message is processed by only one of the subscribers. For
example, if there are two subscribers, S1 and S2, and three messages, M1, M2, and M3,
S1 might receive M1 and M2 (but not M3) and, then, S2 would receive M3 (but not M1
and M2).

This enables applications to employ "round-robin" distributed or parallel processing of a
single subscription's topic messages. MDBs can create multiple subscribers on the same
subscription identifier, whether it is durable or non-durable. For more information about
the JMS Subscription Sharing Policy, see Configure Shared Subscriptions in
Administering JMS Resources for Oracle WebLogic Server.

* Unrestricted Client IDs -- Unrestricted Client IDs allow multiple concurrently active
connections to use the same Client ID. The JMS cl i ent | Didentifies a JMS connection
and is used to identify a durable subscription on that connection. Setting the cli entlDto
Unrestrict ed allows you to create multiple physical subscriptions, with the same name,
on different destinations. This allows subscriptions with the same name to exist on
different members of the same distributed topic, and together, these subscriptions can be
treated as a single logical subscription. See Configure an Unrestricted Client ID in
Administering JMS Resources for Oracle WebLogic Server.

The t opi cMessagesDi stri buti onMbde defines permutations of the JMS attributes

Subscri ptionSharingPolicy and CientldPolicy (set on the connection factory), to control
how messages are distributed to distributed topics. Oracle WebLogic Server sets those
values as shown in Table C-1.

Table C-1 Relationships Between topicMessagesDistributionMode Settings and
Settings on JMS Connection Factory

topicMessagesDistributionMode SubscriptionSharingPolicy ClientldPolicy
One- Copy- Per - Server or One- Copy- Sharabl e Unrestricted
Per - Appl i cation

Conpatibility (replicated distributed Excl usi ve Restricted

topics and foreign topics only)

If the settings on the connection factory are not these values, Oracle WebLogic Server
overrides them and gives a warning message. If Oracle WebLogic Server cannot override the
values for any reason, it throws an exception, and the MDB cannot process any messages
unless the administrator changes the settings on the JMS connection factory. You cannot

C-1

Appendix C

programmatically set these attributes on the connection factory directly. Instead, use
t opi cMessagesDi stri buti onMbde, and the MDB deployment will set the values on the
connection instances.

ORACLE C-2

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Understanding Message-driven Beans
	JCA-Based MDBs

	2 MDB Life Cycle
	Overview
	MDBs and Concurrent Processing
	Limitations for Multi-threaded Topic MDBs

	3 MDBs and Messaging Models
	Point-to-Point (Queue) Model: One Message Per Listener
	Publish/Subscribe (Topic) Model
	Exactly-Once Processing

	4 Deploying MDBs
	Destination and MDBs: Collocation vs. non-Collocation
	Collocated Destination/MDBs
	Non-Collocated Destination/MDBs
	JMS Distributed Destinations
	Best Practice

	5 Programming and Configuring MDBs: Main Steps
	Required JMS Configuration
	Create MDB Class and Configure Deployment Elements

	6 Programming and Configuring MDBs: Details
	Configuring Destination Type
	Configuring Transaction Management Strategy for an MDB
	Configuring MDBs for Destinations
	Whether to Use Foreign JMS Server Mappings
	How to Set provider-url
	How to Set initial-context-factory
	How to Set destination-jndi-name
	How to Set connection-factory-jndi-name
	Common Destination Scenarios: Illustrations and Key Element Settings

	Configuring Message Handling Behaviors
	Ensuring Message Receipt Order
	Preventing and Handling Duplicate Messages
	Redelivery and Exception Handling

	Using the Message-Driven Bean Context
	Configuring Suspension of Message Delivery During JMS Resource Outages
	Manually Suspending and Resuming Message Delivery
	Configuring the Number of Seconds to Suspend a JMS Connection
	How the EJB Container Determines How Long to Suspend a JMS Connection
	Turning Off Suspension of a JMS Connection

	Configuring a Security Identity for a Message-Driven Bean
	Using MDBs With Cross Domain Security
	Configuring EJBs to Use Logical Message Destinations
	Configuring Logical JMS Message Destinations for Individual MDBs
	Configuring Application-Scoped Logical JMS Message Destinations

	7 Using EJB 3.2 Compliant MDBs
	Implementing EJB 3.2 Compliant MDBs
	Programming EJB 3.2 Compliant MDBs
	MDB Sample Using Annotations

	8 Migration and Recovery for Clustered MDBs
	9 Using Batching with Message-Driven Beans
	Configuring MDB Transaction Batching
	How MDB Transaction Batching Works

	10 Configuring and Deploying MDBs Using JMS Topics
	Supported Topic Types
	The Most Commonly Used MDB Attributes
	Setting the JMS Destination, Destination Type, and Connection Factory
	Setting Subscription Durability
	Setting Automatic Deletion of Durable Subscriptions
	Setting Container Managed Transactions
	Setting Message Filtering (JMS Selectors)
	Controlling MDB Concurrency
	Setting Subscription Identifiers
	Setting Message Distribution Tuning
	Setting topicMessagesDistributionMode
	Setting distributedDestinationConnection

	Best Practices
	Warning about Non-Transactional MDBs in Compatibility Mode
	Warning About Using Local RDTs with Durable MDBs
	Warning About Using Local RDTs with Non-Durable MDBs
	Warning about Changing Durable MDB Attributes, Topic Type, EJB Name
	Choosing Between Partitioned and Replicated Topics
	Choosing an MDB Topic Messages Distribution Mode
	Managing and Viewing Subscriptions:
	Handling Uneven Message Loads and/or Message Processing Delays

	Configuring for Service Migration
	Upgrading Applications from Previous Releases
	Topic MDB Sample

	11 Deployment Elements and Annotations for MDBs
	A Topic Deployment Scenarios
	How Configuration Permutations Determine Deployment Actions
	Typical Scenarios
	Standalone (Non-distributed) Topic Scenarios
	One-Copy-Per-Server
	One-Copy-Per-Application

	Replicated Distributed Topic Scenarios
	Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only Consumption
	Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every Member Consumption,
	Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment
	Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local Only Consumption
	Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every Member Consumption
	Scenario 6: Replicated DT One Copy Per Application, Remote Deployment

	Partitioned Distributed Topic Scenarios
	Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only Consumption
	Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every Member Consumption
	Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment
	Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment, Local Only Consumption
	Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every Member Consumption
	Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment

	B Topic Subscription Identifiers
	C How WebLogic MDBs Leverage WebLogic JMS Extensions

